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Abstract. In this work, we revisit the security analysis of hashing modes
instantiated with AES-128. We use biclique cryptanalysis as the basis for
our evaluation. In Asiacrypt’11, Bogdanov et al. had proposed biclique
technique for key recovery attacks on full AES-128. Further, they had
shown application of this technique to find preimage for compression
function instantiated with AES-128 with a complexity of 2125.56. How-
ever, this preimage attack on compression function cannot be directly
converted to preimage attack on hash function. This is due to the fact
that the initialization vector (IV) is a publically known constant in the
hash function settings and the attacker is not allowed to change it,
whereas the compression function attack using bicliques introduced dif-
ferences in the chaining variable. We extend the application of biclique
technique to the domain of hash functions and demonstrate second
preimage attack on all 12 PGV modes.

The complexities of finding second preimages in our analysis differ
based on the PGV construction chosen - the lowest being 2126.3 and
the highest requiring 2126.6 compression function calls. We implement C
programs to find the best biclique trails (that guarantee the lowest time
complexity possible) and calculate the above mentioned values accord-
ingly. Our security analysis requires only 2 message blocks and works on
full 10 rounds of AES-128 for all 12 PGV modes. This improves upon
the previous best result on AES-128 based hash functions by Sasaki at
FSE’11 where the maximum number of rounds attacked is 7. Though
our results do not significantly decrease the attack complexity factor as
compared to brute force but they highlight the actual security margin
provided by these constructions against second preimage attack.

Keywords: AES · Block ciphers · Hash functions · Cryptanalysis ·
Biclique · Second preimage attack

1 Introduction

Block ciphers have been favored as cryptographic primitives for constructing
hash functions for a long time. In [17], Preneel et al. proposed 64 basic ways to
construct a n-bit compression function from a n-bit block cipher (under a n-bit
key). Black et al. [5] analyzed the security of such constructions and showed
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12 of them to be provably secure. These modes are commonly termed as PGV
hash modes. The three most popularly used modes are Davies-Meyer (DM),
Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP) modes.

AES (Advanced Encryption Standard), standardized by the US NIST in
October 2000 and widely accepted thereafter has been considered a suitable
candidate for block cipher based hash functions in the cryptographic commu-
nity. ISO standardized Whirlpool [3] is a popular example of the same. Infact,
in the recently concluded SHA-3 competition also, several AES based hash func-
tions were submitted, e.g., LANE [11], ECHO [4], Grøstl [9] etc. A significant
progress has been made in the field of block cipher based hash function security.
Spearheaded by rebound attacks alongwith other cryptanalytic techniques, sev-
eral AES as well as other block cipher based dedicated hash functions have been
reviewed and cryptanalyzed [12,14–16,18,19,21]. But all of the analysis that
has been done has been performed on round-reduced versions of block ciphers.
Specifically, if we refer to the previous best result on AES-128 based hash modes
performed by Sasaki [18], the maximum number of rounds attacked is 7.

The reason behind this restriction was the fact that AES-128 itself was resis-
tant to full 10 rounds attack for a considerable period of time since its advent.
Until few years ago, there was no single key model attack known which could
break full AES-128 better than brute force. In Asiacrypt’11, Bogdanov et al. [7]
proposed a novel idea called biclique attack which allowed an attacker to recover
the AES secret key 3–5 times faster than exhaustive search. Subsequently, this
technique was applied to break many other block ciphers such as PRESENT [1],
ARIA [22], HIGHT [10] etc. As block cipher and block cipher based hash function
security are inter-related, it is imperative to analyse the hash function security
against biclique technique.

Biclique cryptanalysis is a variant of meet-in-the-middle attack, first intro-
duced by Khovratovich et al. in [13] for preimage attacks on hash functions Skein
and SHA-2. The concept was taken over by Bogdanov et al. to successfully crypt-
analyze full rounds of all AES variants. The biclique attack results on AES in [7]
were further improved in [6,20]. Bogdanov et al. in [7] also showed conversion of
biclique key recovery attack on AES-128 to the corresponding preimage attack
on AES-128 instantiated compression function. The current best complexity of
this attack as reported in [6] is 2125.56.

1.1 Motivation

The above biclique based preimage attack on AES-128 instantiated compression
function cannot be converted to preimage attack on the corresponding hash
function (and hence second preimage attack as discussed in Sect. 5 later). This
is due to the fact that in the preimage attack on compression function shown
in [6,7], the attacker needs to modify the chaining variable (CV ) value and the
message input to obtain the desired preimage. However, in hash function settings,
the initialization vector (IV ) is a publically known constant which cannot be
altered by the attacker. Hence, the biclique trails used in the preimage attack on
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AES-128 based compression function in [6,7] cannot be adopted to find preimage
for the corresponding AES-128 based hash function. This can be explained as
discussed below.

Let us consider Matyas-Meyer-Oseas (MMO) mode and Davies-Meyer (DM)
mode based compression functions as shown in Fig. 1(a) and (b). In case of MMO
mode, the chaining variable acts as the key input to the underlying block cipher
AES (as shown in Fig. 1(a)). If the chaining variable is used as the IV (in hash
function settings) then it is fixed and cannot be modified. This means that the
value of the key input to the block cipher should not change. However, the type of
biclique trails used in [7] (as shown in Fig. 2) for compression function introduce
a change both in the key input as well as all the intermediate states including
the plaintext input ensuring that the final chaining variable so obtained after
the attack will not be the desired IV . Hence, the kind of biclique trails we are
interested in should only affect the intermediate states (an example of which is
given in Fig. 3) and not the key input.

CV/key

E hmessage/plaintext

message/key

E hCV/plaintext

Fig. 1. Compression function in MMO
and DM mode respectively.
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Fig. 2. An example of the trail used
in [7] for preimage attack on AES-128
instantiated compression function.

Similarly, in the DM mode, the chaining variable acts as the plaintext input
to the underlying block cipher (as shown in Fig. 1(b)). Therefore, if the chaining
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variable under consideration is the IV then the chosen biclique trails should not
inject any difference in the plaintext input of the block cipher (an example of the
same is shown in Fig. 4). Again, the biclique trails adapted for preimage attack
on AES-128 instantiated compression function do not satisfy this condition
(as seen in Fig. 2).
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Fig. 3. An example of the desired trails
that will work for attacking MMO
based hash function. It is to be noted
only the plaintext input and subse-
quent intermediate states are affected
in the trail considered whereas the key
input is a fixed constant.
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Fig. 4. An example of the desired trail
that will work for attacking DM based
hash function. It is to be noted here
that the plaintext input is not affected
by the differential trail so chosen and is
a fixed constant.

The examples discussed above warrant searching of new biclique trails which
can be used to launch second preimage attack on AES-128 based hash func-
tions. Moreover, searching these trails manually may not give the best results as
demonstrated in [2,6]. Hence, automated search process is required. In this work,
we implemented our restrictions in C programs to enumerate the best biclique
trails which guarantee the lowest possible attack complexities. We then apply
biclique technique to evaluate the security of AES-128 based hash functions
against second preimage attack.

1.2 Our Contributions

The contributions of this paper are as follows:

– We re-evaluate the offered security of full 10 rounds AES-128 based hash
functions against second preimage attack. The previous best result could only
work on 7 rounds.
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– Our analysis works on all 12 PGV modes of the hash function constructions.
– The complexities of the biclique based analysis differ depending upon the

PGV construction chosen. For MP and MMO mode it is 2126.3 whereas for
DM mode it is 2126.67.

– We propose new biclique trails to achieve the above results.
– All the trails have been obtained by implementing C programs which ensure

that they yield the best attacks (lowest possible time complexity).

The results of our security evaluation against second preimage attack on all
12 PGV based modes are given in Table 1.

Table 1. Summary of the results obtained. In this table, we assume hash function to
be instantiated with block cipher E, h is the chaining variable, m is the message input
and h ⊕ m = w.

S.No Hash Function Modes Second Preimage Succ. Brute Force Succ.

Complexity Prob Complexity Prob

1 Eh(m) ⊕ m - MMO 2126.3 0.632 2128 0.632

2 Eh(m) ⊕ w - MP 2126.3 0.632 2128 0.632

3 Em(h) ⊕ h - DM 2126.6 0.632 2128 0.632

4 Eh(w) ⊕ w - similar to MMO 2126.3 0.632 2128 0.632

5 Eh(w) ⊕ m - similar to MMO 2126.3 0.632 2128 0.632

6 Em(h) ⊕ w - similar to DM 2126.6 0.632 2128 0.632

7 Em(w) ⊕ h - similar to DM 2126.6 0.632 2128 0.632

8 Em(w) ⊕ w - similar to DM 2126.6 0.632 2128 0.632

9 Ew(h) ⊕ h - similar to DM 2126.6 0.632 2128 0.632

10 Ew(h) ⊕ m - similar to DM 2126.6 0.632 2128 0.632

11 Ew(m) ⊕ h - similar to MP 2126.3 0.632 2128 0.632

12 Ew(m) ⊕ m - similar to MMO 2126.3 0.632 2128 0.632

2 Preliminaries

In this section we give a brief overview of the key concepts used in our crypt-
analysis technique to facilitate better understanding.

2.1 AES-128

AES-128 is a block cipher with 128-bit internal state and 128-bit key K. The
internal state and the key is represented by a 4 × 4 matrix. The plaintext is
xor’ed with the key, and then undergoes a sequence of 10 rounds. Each round
consists of four transformations: nonlinear bytewise SubBytes, the byte permu-
tation ShiftRows, linear transformation MixColumns, and the addition with a
subkey AddRoundKey. MixColumns is omitted in the last round.
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For the sake of clarity, we will follow the same notation used for description of
AES-128 as used in [7]. We address two internal states in each round as follows:
#1 is the state before SubBytes in round 1, #2 is the state after MixColumns
in round 1, #3 is the state before SubBytes in round 2, . . ., #19 is the state
before SubBytes in round 10, #20 is the state after ShiftRows in round 10. The
key K is expanded to a sequence of keys K0,K1,K2, . . . ,K10, which form a
4 × 44 byte array. Then the 128-bit subkeys $0, $1, $2, . . . , $10 come out of the
sliding window with a 4-column step. We refer the reader to [8] for a detailed
description of AES.

2.2 Biclique Key Recovery Attack

In this section, we briefly discuss the independent biclique key recovery attack
for AES-128. For a more detailed description of bicliques, one can refer to [7]. In
this attack, the entire key space of AES-128 is first divided into non-overlapping
group of keys. Then, a subcipher f that maps an internal state S to a ciphertext
C under a key K, i.e. fK(S) = C is chosen. Suppose f connects 2d intermediate
states {Sj} to 2d ciphertexts {Ci} with 22d keys {K[i, j]}. The 3-tuple of sets
[{Sj}, {Ci}, {K[i, j]}] is called a d-dimensional biclique, if: ∀i, j ∈ {0, ......., 2d −
1} : Ci = fK[i,j](Sj).

Each key in a group can be represented relative to the base key of the group,
i.e., K[0, 0] and two key differences Δk

i and ∇k
j such that: K[i, j] = K[0, 0]⊕Δk

i ⊕
∇k

j . For each group we choose a base computation i.e., S0
K[0,0]−−−−→

f
C0. Then Ci and

Sj are obtained using 2d forward differentials Δi, i.e., S0
K[0,0]⊕Δk

i−−−−−−−→
f

Ci and 2d

backward differentials ∇j , i.e., Sj

K[0,0]⊕∇k
j←−−−−−−−

f−1
C0. If the above two differentials

do not share active nonlinear components for all i and j, then the following

relation: S0 ⊕ ∇j

K[0,0]⊕Δk
i ⊕∇k

j−−−−−−−−−−→
f

C0 ⊕ Δi is satisfied [7]:

Once a biclique is constructed for an arbitrary part of the cipher, meet-in-
the middle (MITM) attack is used for the remaining part to recover the key.
During the MITM phase, a partial intermediate state is chosen as the matching
state v. The adversary then precomputes and stores in memory 2d+1 times full

computations upto a matching state v: ∀i, Pi
K[i,0]−−−−→ −→v and ∀j,←−v K[0,j]←−−−− Sj .

Here, plaintext Pi is obtained from ciphertexts Ci through the decryption ora-

cle1. If a key in a group satisfies the following relation: Pi
K[i,j]−−−−→

h

−→v = ←−v K[i,j]←−−−−
g−1

Sj , then the adversary proposes a key candidate. If a right key is not found in the
chosen group then another group is chosen and the whole process is repeated.
The full complexity of independent biclique attacks is calculated as:

Cfull = 2k−2d(Cbiclique + Cprecompute + Crecompute + Cfalsepos),

1 Under hash function settings decryption oracle is replaced by feed-forward operation.
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where, Cprecompute is the cost complexity for calculating v for 2d+1, Crecompute

is the cost complexity of recomputing v for 22d times and Cfalsepos is the com-
plexity to eliminate false positives. As mentioned in [7], the full key recovery
complexity is dominated by 2k−2d × Crecomp

2.

3 Notations

To facilitate better understanding, we use the following notations in the rest of
the paper.

CV : Chaining Variable

IV : Initialization Vector

(CV,message) : Input tuple to hash function/compression function

(key,plaintext) : Input tuple to underlying block cipher

n : Input message/key size (in bits)

Ab : Base State

mb : Base Plaintext

Kb : Base Key

K[i, j] : Keys generated by Δi and ∇j modifications

M[i, j] : Messages generated by Δi and ∇j modifications

Nbr : Number of AES rounds called

Eenc/dec : One Round of AES encryption/decryption

E(x,y) : Full AES encryption under y-bit key and x-bit message

E−1(x,y) : Full AES decryption under y-bit key and x-bit message

4 Biclique Based Preimage Attack on AES-128
Instantiated Compression Function

In this section, we examine how biclique technique discussed in Sect. 2.2 can
be applied to find preimage for block cipher based compression function. This
preimage attack on compression function will then be used to evaluate second
preimage resistance of AES-128 based hash functions under different PGV modes
as discussed in Sect. 5.

Let us consider an AES-128 based compression function (as shown in Fig. 5).
To find the preimage for h, the attacker needs to find a valid (CV , message)
pair which generates h. In terms of the underlying block cipher E which is
instantiated with AES-128, this problem translates to finding a valid (plaintext,
key) pair where both the key and the plaintext are of 128-bits size. To guarantee
the existence of a preimage for h (with probability 0.632), the attacker needs to
test 2128 distinct (key, plaintext) pairs.
2 Crecomp in turn is measured as: 2128 (#S-boxes recomputed in MITM phase/#Total

S-boxes required in one full AES encryption) =⇒ 2128 (#S-boxes recomputed in
MITM phase/200).
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message (m)/ key

E hCV/plaintext

Fig. 5. AES-128 instantiated compression function in DM mode.

When biclique methodology is applied on AES-128 to recover the secret
key [7], full key space, i.e., 2128 keys are divided into 2112 groups of 216 size
each and tested3. These 2112 groups are generated from 2112 base key values
where each base value defines one group. However, the same biclique approach
when extended to hash functions warrants the need of testing 2128 (key, plain-
text) pairs. These 2128 (key, plaintext) pairs will be generated from 2112 (key,
plaintext) base states. Hence, under hash function settings, alongwith the base
key we introduce the term “base message”. Let Kb denote the base key value and
Ab denote the base message value. If we apply the original biclique approach [7]
on compression function, then 2128 (key, plaintext) pairs are generated from a
combination of 2112(Kb, Ab) as shown in (Fig. 6). Here, a single Ab is chosen and
repeated across all the groups whereas 2112 different K ′

bs are used. The biclique
algorithm for the attack is shown in Fig. 7. In Algorithm 1, the specific (i,j) tuple
for which a match is found gives us the corresponding K[i, j] and M [i, j] as the
desired inputs for compression function. The complexity of this attack when
applied for searching preimages in AES-128 instantiated compression function is
2125.56 [6].

(K(1)
b

, Ab) −→ 216 (key, message) pairs

(K(2)
b

, Ab) −→ 216 (key, message) pairs

.

.

.
(K(2112)

b
, Ab) −→ 216 (key, message) pairs

(K(3)
b

, Ab) −→ 216 (key, message) pairs

Fig. 6. Generation of groups in
original attack [7]

Ab

2112 K′
bs

Ab

216 Δk
i ∇k

j

216K[i, j]

216K[i, j]

216K[i, j]

M [i, j] M [i, j]
Eenc/dec(K[i, j] Ab

Fig. 7. Steps of the original biclique attack in [7]
using the base key Kb and the base message Ab.

3 Here, bicliques of dimension d = 8 are constructed. In our attacks, we also construct
bicliques of dimension 8.
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In the procedure described above, it can be seen that the attacker generates a
chaining value (M [i, j]) of her own along with the preimage (K[i, j]). However, as
already discussed, the IV value is a public constant in the hash function setting
and cannot be altered by the attacker. In the subsequent section, we show how
to utilize variants of the above framework for launching second preimage attack
on AES-128 based hash functions in different PGV modes with IV being fixed.

5 Second Preimage Attack on Hash Functions

In this section, we examine the feasability of extending the biclique cryptanalysis
technique for second preimage attack on AES-128 instantiated hash functions
for all 12 PGV modes.

5.1 PGV Construction 1 - Matyas-Meyer-Oseas (MMO) Mode:
Eh(m)⊕ m

Consider MMO based hash function as shown in Fig. 8. Here, the (chaining
variable, message block) tuple act as the (key, plaintext) inputs respectively to
block cipher E. In this case, the attacker is given m = (m0 || m1 || pad) and its
corresponding hash value h2. Her aim is to find another different message, m′

that will produce the same h2. To achieve so, the attacker can consider m′ as -
(m′

0 || m1 || pad) where the second half of m′ = m while for the first half, the
attacker has to carry a biclique attack. For the first half, i.e., h1 := EIV (m′

0),
the attacker knows h1 and IV . Her aim is now to find a preimage m′

0 which
produces h1 under the given IV . The attack steps are as follows:

E

m0 m1 ||pad

E h2
h1

IV

E

m′
0 m1 ||pad

E h2
h1

IV

Fig. 8. Second preimage attack on MMO based hash function

1. The attacker fixes IV as the key input to the block cipher E & chooses a
128-bit base message Ab.

2. Choice of biclique structure . Here, the key input to the block cipher
(i.e., IV ) is fixed. The attacker has to choose a biclique structure such that
the Δi and ∇j trails only modify the message states and not the key states
(since IV cannot change) plus the biclique attack should have lowest search
complexity. All the existing biclique trails in literature allow modification in
the keys states as well, therefore, we construct new biclique trails to suit our
needs.
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3. We represent the Δ and ∇ trails as Δm
i and ∇m

j respectively. The biclique
structure satisfying the above requirements is as shown in Fig. 9(a).

4. For the above biclique, she divides the 128-bit message space into 2112 groups
each having 216 messages with respect to intermediate state #3 as shown in
Fig. 9(a). The base messages are all 16-byte values with two bytes (i.e., bytes
0 and 4) fixed to 0 whereas the remaining 14-bytes taking all possible values
(shown in Fig. 10). The messages in each group (M [i, j]) are enumerated with
respect to the base message by applying difference as shown in Fig. 11. The
proof for the claim that this base message (with the corresponding Δi and ∇j

differences) uniquely divides the message space into non-overlapping groups
is given in Appendix A.1.

5. The biclique covers 1.5 rounds (round 2 and round 3 upto Shift Rows oper-
ation). Δm

i trail activates byte 0 whereas ∇m
j trail activates bytes 3,4,9 and

14 of #3 state.
6. Meet-in-the-middle attack is performed on the rest 8.5 rounds. In the MITM

phase, partial matching is done in byte 12 of state #13. In the backward
direction, Δm

i trail activates 4 bytes in the plaintext i.e., byte 0, 5, 10 and 15
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Fig. 9. Biclique structure for MMO mode when key/IV is known
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whereas ∇m
j activates all bytes. As such, during the recomputation phase, the

4 bytes of plaintext affected by both Δm
i and ∇m

j trails need to be recomputed.
Similar explanation can be provided for other bytes shown to be recomputed
in Fig. 9(b) and (c). In the forward propagation (starting from round 4),
4+16+4 = 24 S-boxes and in the backward propagation (starting from round
1), 4+16+16+4+1= 41 S-boxes are recomputed. Thus, a total of 65 S-boxes
are involved in the recomputation process. One full AES encryption requires
200 S-box computations. As each group has 216 messages, Crecomp = 216× 65

200
= 214.3. Hence, Cfull = 2112 × 214.3 = 2126.3.

7. For the specific (i, j) value which produces a match in the middle, the cor-
responding M [i, j] i.e., xoring of #3 states in base computation, Δi and ∇j

trails (in Fig. 9(a)) yields the plaintext m′
0 for the block cipher E. The biclique

algorithm, i.e., Algorithm 2 is as shown in Fig. 12.

0 0

Fig. 10. Base message

i j1

j2
j3

j4

Fig. 11. Δi and ∇j differences

Thus with a time complexity of 2126.3, the attacker is able to find a (IV ,
m′

0) pair which produces hash value h1 and m′ = (m′
0 || m1 || pad) forms a valid

second preimage.

PGV Construction 2 - Miyaguchi-Preneel Mode (MP) Mode:
Eh(m) ⊕ m ⊕ h - The MP mode is an extended version of MMO mode. The
only difference between the two constructions is the fact that output of block
cipher is xor’ed both with the plaintext input as well the chaining variable input.
However, this does not demand any extra attack requirements and the second
preimage attack on MP mode is exactly the same as that described on MMO
mode.

5.2 PGV Construction 3 Davies-Meyer (DM) Mode: Em(h) ⊕ h

In the DM based hash function (as shown in Fig. 13), the (chaining variable,
message block) tuple act as the (plaintext, key) inputs respectively to block
cipher E. We again inspect a similar scenario as described in Sect. 5.1, i.e., for
a message m = (m0 || m1 || pad), the attacker is given its corresponding hash
value h2. Her aim is to find another different message m′ that will produce
the same h2. Consider the hash function as concatenation of two compression
functions - Em0(IV ) and Em1|| pad (h1). To get a valid second preimage, the
attacker chooses m′ as - (m′

0 || m1 || pad) i.e., she focuses on the first compression
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Ab

2112 A′
bs IV

216 Δm
i ∇m

j

216M [i, j]
216M [i, j]

216M [i, j]

Fig. 12. Steps of the new biclique attack when key input to the underlying block cipher
is fixed and cannot be modified by the attacker for MMO mode.

m0 m1 || pad

E E h2
h1

IV

m′
0

m1 || pad

E E h2
h1

IV

Fig. 13. Second preimage attack on DM based hash function

function and her aim is to find m′
0 such that Em′

0
(IV ) = h1 when IV and h1

are known to the attacker. The attack steps are as follows:

1. The attacker fixes the IV as the plaintext input to the block cipher.
2. Choice of biclique structure . Under the given attack scenario, since the

message input, i.e., IV is fixed, the attacker has to choose a biclique structure
such that the Δi and ∇j trails do not modify the plaintext state and the
biclique attack has lowest search complexity. The biclique structure satisfying
the above requirements is given in Fig. 14(a).

3. For the above biclique, she divides the 128-bit key space into 2112 groups,
each having 216 keys with respect to subkey $0 i.e., the master key as the
base key as shown in Fig. 14(a). The base keys are all 16-byte values with two
bytes (i.e., bytes 0 and 1) fixed to 0 whereas the remaining 14-bytes taking
all possible values (shown in Fig. 15). The keys in each group (K[i, j]) are
enumerated with respect to the base key by applying difference as shown in
Fig. 16. It can be easily verified that this base key uniquely divides the key
space into non-overlapping groups.

4. The biclique covers the first round. Δi trail activates byte 0 of $0 subkey
whereas ∇j trail activates byte 1 of $ 0 subkey.



Biclique Cryptanalysis of Full Round AES-128 Based Hashing Modes 15

MC

SB
SR

$1

$0

eludehcS
ye

K

#1

#2

#3

MC

SB
SR

eludehcS
ye

K

#1

#2

#3

MC

SB
SR

$1

$0

K
ey

Sc
he
du

le

#1

#2

#3

$0

$1

mb mi mj

Base Computation Δi Computation ∇j Computation

ΔK
i

∇K
j

M
C

SRSB

#5 #6 #7

A
K

#3 #4

recomputed

A
K

SR M
C

SB
#8

A
K

#9

SR M
C

SB

#10

A
K

#11
matching byte

St
ar M
C

SRSB

M
C

SR SB

#17 #16 #15#19

A
K

SRM
C

SB

#18

recomputed

A
K

SRM
C

SB

#14

A
K

#13

SRM
C

SB

#12 #11
matching byte

A
K

SR SB

#20#21

A
K

$10 $9

Fe
ed

Fo
rw

ar
d

H
⊕

pl
ai
nt
ex
t

Fig. 14. Biclique structure for DM mode when IV /message input is known to the
attacker

5. The attacker then performs meet-in-the-middle attack on the rest of the 9
rounds. In the MITM phase, partial matching is done in byte 12 of state #11.
In the forward propagation (starting from round 2), 2+16+16+4 = 38 S-boxes
and in the backward propagation (starting from round 10), 5+16+16+4+1
= 42 S-boxes need to be recomputed (as shown in Fig. 14(b) and (c)). 2
S-box recomputations in the key schedule are also required. Thus a total of
82 S-boxes are involved in recomputation process. One full AES encryption
requires 200 S-box computations. As each group has 216 keys, Crecomp =
216 × 82

200 = 214.6. Hence, Cfull = 2112 × 214.6 = 2126.6.
6. For the specific (i, j) value which produces a match in the middle, the cor-

responding K[i, j] forms the key (m0) for the block cipher E. The biclique
algorithm, i.e., Algorithm 3 is given in Fig. 17.

Thus with a time complexity of 2126.6, the attacker is able to find a (IV ,
m′

0) pair which produces hash value h1 and m′ = (m′
0 || m1 || pad) forms a

valid second preimage. The attack procedure on two block message for other
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0

0

Fig. 15. Base message

j

i

Fig. 16. Δi and ∇j differences

2112 K′
bs IV

216 Δk
i ∇k

j

216K[i, j]
216K[i, j]

216K[i, j]

Fig. 17. Steps of the new biclique attack when message input is fixed and known to
the attacker under DM mode

constructions is similar to those discussed in Sects. 5.1 and 5.2. Their results are
given in Table 1.

6 Second Preimage Attack on Hash Functions Extended
to Messages with Message Length ≥3

The second preimage attack discussed in above sections can be extended to
messages of any length >2 with same complexity as obtained for 2-block mes-
sages. To demonstrate the same, consider a MMO-based hash function with
3-block message as shown in Fig. 18. In this case, the attacker is given a message
m = (m0 || m1 || m2 || pad) and its corresponding hash value h3. Her aim is
to find another message m′, such that H(m′) = H(m). The attacker knows IV
and the compression function E. She will choose any m0 of her own choice, e.g.,
let m0 = 0, and then calculate h1 = EIV (0). Once she knows h1, the setting
is reduced to the case discussed in Sect. 5.1, i.e., h1 and h2 are known to the
attacker and her aim is to find m′

1 such that m′ = (0 || m′
1 || m2 || pad) forms

a valid second preimage. This can be found with a complexity of 2126.3 which is
same as that shown for a 2-block message. Similarly, the attack can be applied
on other long messages for all other PGV modes.

7 Conclusions

In this paper, we evaluate the security of AES-128 based hash modes against
second preimage attack. Specifically, we examine the applicability of biclique
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Fig. 18. MMO base hash function with |m| = 3

attack on all 12 PGV modes when instantiated with AES-128 and show that
best biclique attack for finding preimages in AES-128 instantiated compression
function does not translate to best attack for second preimage search under AES-
128 based hash function settings. A natural research extension to this work would
be to apply the ideas discussed in this paper to hash functions instantiated with
other block ciphers. Another research direction can be to extend the methodology
to carry out collision attacks on hash functions.

A Proofs

In this section, we will prove how the base structure which we chose for bicliques
in Sect. 5.1 produce non-overlapping keys/messages within a same group and
between groups.

A.1 Biclique Structure When IV Is Known and Acts
as the Message Input to Block Cipher E

For the base message (shown in Fig. 10) that is used for the biclique structure
in Fig. 9(a), our aim is to prove that when Δi and ∇j differences are injected
in this base message (as shown in Fig. 19), we are able to partition the mes-
sage space into 2112 groups with 216 messages in each and the inter and intra
group messages generated are non-overlapping. The ∇j1, ∇j2, ∇j3 and ∇j4 are
differences produced from ∇j as shown in Fig. 20.

Here, bi,j and ci,j (0 ≤ i,j ≤ 3) represent the base values of corresponding
bytes in the intermediate states #B and #C respectively as shown in Fig. 21.
#B and #C are #3 and #4 states in Fig. 9(a).
Aim : Given any two base messages B, B′, any two Δi differences i, i′, any two
∇j differences j, j′ (0 ≤ i,j ≤ 28), we want to prove that B[i,j] 	= B[i′, j′] i.e.,
messages generated are non-overlapping. We will prove this statement case-by-
case. Cases (1–4) cover inter group messages whereas Cases (5–7) cover within
group messages. For all the proofs discussed below, we will refer to Figs. 22, 23
and 24 for better understanding.
Case 1. Given B 	= B′, i = i′, j = j′, b00=b10=b′

00=b′
10=0, to show: B[i, j] 	=

B′[i′, j′]
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j4

Fig. 19. Δi and ∇j differ-
ences in base message

Fig. 20. Relation between ∇j, ∇j1, ∇j2, ∇j3, ∇j4
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c00 c01 c02 c03
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Fig. 21. Relation between #B and #C states

Proof : We will prove this setting by ‘proof by contraposition’, i.e., if B[i, j] =
B′[i′, j′], i = i′, j = j′, b00=b10=b′

00=b′
10=0, =⇒ B = B′

In Fig. 24, if B[i, j] = B′[i′, j′] =⇒ C[i, j] = C ′[i′, j′] =⇒ c0,2 = c′
0,2, c0,3 =

c′
0,3, c1,1 = c′

1,1, c1,2 = c′
1,2, c1,3 = c′

1,3, c2,1 = c′
2,1, c2,2 = c′

2,2,c2,3 = c′
2,3, c3,1 =

c′
3,1, c3,2 = c′

3,2 and c3,3 = c′
3,3. Since C[i, j] = C ′[i′, j′] =⇒ c0,1 ⊕ j = c′

0,1 ⊕ j′.
As j = j′ =⇒ c0,1 = c′

0,1. Hence, 12 bytes in state C and corresponding bytes
in state C ′ share equal values. This relation automatically transcends to related
byte positions in B and B′ after application of InvMixColumns, InvShiftRows
and InvSubBytes (as shown in Fig. 22), i.e., b0,1 = b′

0,1, b0,2 = b′
0,2, b0,3 = b′

0,3,
b1,0 = b′

1,0, b1,2 = b′
1,2, b1,3 = b′

1,3, b2,0 = b′
2,0, b2,1 = b′

2,1, b2,3 = b′
2,3, b3,0 = b′

3,0,
b3,1 = b′

3,1 and b3,2 = b′
3,2, 12 bytes in B and B′ respectively also have same

base values). As we have assumed B[i, j] = B′[i′, j′] =⇒ b1,1 = b′
1,1, b2,2 = b′

2,2

and b3,3 = b′
3,3 as these base values are not affected by Δi and ∇j differences

(as seen in Fig. 24). Since in states B and B′, b0,0 = b′
0,0 = 0, hence all 16 byte

positions in B and corresponding byte positions in B′ share same base values.
Hence B = B′. This proves that our initial proposition is correct.
Case 2. Given B 	= B′, i = i′, j 	= j′, b00=b01=b′

00=b′
01=0, to show: B[i, j] 	=

B′[i′, j′]
Proof : We will prove this setting by ‘proof by contradiction’, i.e., let us assume
if B 	= B′, i = i′, j = j′, b00=b10=b′

00=b′
10=0, =⇒ B[i, j] = B′[i′, j′]

In Fig. 24, if B[i, j] = B′[i′, j′] =⇒ C[i, j] = C ′[i′, j′] =⇒ c0,1 ⊕ j = c′
0,1 ⊕ j′.

Since j 	= j’ =⇒ c0,1 	= c′
0,1. As a result after applying InvMixColumns and

InvSubBytes on them the bytes generated i.e., b0,1 and b′
0,1 should also satisfy

the relation - b0,1 	= b′
0,1. But b0,1 = b′

0,1 = 0 (as seen in Fig. 21). Hence, a
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contradiction arises implying our assumed proposition is wrong. Therefore, our
initial proposition is correct.

Case 3. Given B 	= B′, i 	= i′, j = j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : In this setting since i 	= i′, hence B[i, j] 	= B′[i′, j′] always as they will
always differ at zeroth byte position (Fig. 24).
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Case 4. Given B 	= B′, i 	= i′, j 	= j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : Proof similar to as discussed in Case 3.
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Case 5. Given B = B′, i 	= i′, j 	= j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : Proof similar to as discussed in Case 3.

Case 6. Given B = B′, i 	= i′, j = j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : Proof similar to as discussed in Case 3.

Case 7. Given B = B′, i = i′, j 	= j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : Since B = B′ =⇒ C = C ′ =⇒ c0,1 = c′

0,1. As j 	= j′ =⇒
c0,1 ⊕ j 	= c′

0,1 ⊕ j′ =⇒ C[i, j] 	= C ′[i′, j′] always as they will everytime differ
at fourth byte position (Fig. 24). As a result B[i, j] 	= B′[i′, j′] always due to
bijection relation between states B and C.

Hence we proved that in all cases M [i, j]’s so generated are non-overlapping.
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attack on the full Lane compression function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)
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