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Preface

This volume contains the papers presented at Inscrypt 2015: The 11th China Interna-
tional Conference on Information Security and Cryptology, held during November 1–3,
2015, in Beijing, China. Inscrypt is a well-recognized international forum for security
researchers and cryptographers to exchange ideas and present their work, and is held
every year in China.

The conference received 79 submissions. Each submission was reviewed by two to
four Program Committee members. The Program Committee, after some deliberation,
decided to accept 27 papers. The overall acceptance rate is, therefore, 34.17 %.

Inscrypt 2015 was held in cooperation with the International Association of Cryp-
tologic Research (IACR), and was co-organized by the State Key Laboratory of
Information Security (SKLOIS) of the Chinese Academy of Sciences (CAS), and the
Chinese Association for Cryptologic Research (CACR). We note that the conference
could not have been a success without the support of these organizations, and we
sincerely thank them for their continued assistance and help.

We would also like to thank the authors who submitted their papers to Inscrypt
2015, and the conference attendees for their interest and support. We thank the
Organizing Committee for their time and efforts dedicated to arranging the conference.
This allowed us to focus on selecting papers and on dealing with the scientific program.
We thank the Program Committee members and the external reviewers for their hard
work in reviewing the submissions; the conference would not have been possible
without their expert reviews. Finally, we thank the EasyChair system and its operators
for making the entire process of the conference convenient.

November 2015 Dongdai Lin
XiaoFeng Wang

Moti Yung
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Biclique Cryptanalysis of Full Round
AES-128 Based Hashing Modes

Donghoon Chang, Mohona Ghosh(B), and Somitra Kumar Sanadhya

Indraprastha Institute of Information Technology, Delhi (IIIT-D), New Delhi, India
{donghoon,mohonag,somitra}@iiitd.ac.in

Abstract. In this work, we revisit the security analysis of hashing modes
instantiated with AES-128. We use biclique cryptanalysis as the basis for
our evaluation. In Asiacrypt’11, Bogdanov et al. had proposed biclique
technique for key recovery attacks on full AES-128. Further, they had
shown application of this technique to find preimage for compression
function instantiated with AES-128 with a complexity of 2125.56. How-
ever, this preimage attack on compression function cannot be directly
converted to preimage attack on hash function. This is due to the fact
that the initialization vector (IV) is a publically known constant in the
hash function settings and the attacker is not allowed to change it,
whereas the compression function attack using bicliques introduced dif-
ferences in the chaining variable. We extend the application of biclique
technique to the domain of hash functions and demonstrate second
preimage attack on all 12 PGV modes.

The complexities of finding second preimages in our analysis differ
based on the PGV construction chosen - the lowest being 2126.3 and
the highest requiring 2126.6 compression function calls. We implement C
programs to find the best biclique trails (that guarantee the lowest time
complexity possible) and calculate the above mentioned values accord-
ingly. Our security analysis requires only 2 message blocks and works on
full 10 rounds of AES-128 for all 12 PGV modes. This improves upon
the previous best result on AES-128 based hash functions by Sasaki at
FSE’11 where the maximum number of rounds attacked is 7. Though
our results do not significantly decrease the attack complexity factor as
compared to brute force but they highlight the actual security margin
provided by these constructions against second preimage attack.

Keywords: AES · Block ciphers · Hash functions · Cryptanalysis ·
Biclique · Second preimage attack

1 Introduction

Block ciphers have been favored as cryptographic primitives for constructing
hash functions for a long time. In [17], Preneel et al. proposed 64 basic ways to
construct a n-bit compression function from a n-bit block cipher (under a n-bit
key). Black et al. [5] analyzed the security of such constructions and showed
c© Springer International Publishing Switzerland 2016
D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 3–21, 2016.
DOI: 10.1007/978-3-319-38898-4 1



4 D. Chang et al.

12 of them to be provably secure. These modes are commonly termed as PGV
hash modes. The three most popularly used modes are Davies-Meyer (DM),
Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP) modes.

AES (Advanced Encryption Standard), standardized by the US NIST in
October 2000 and widely accepted thereafter has been considered a suitable
candidate for block cipher based hash functions in the cryptographic commu-
nity. ISO standardized Whirlpool [3] is a popular example of the same. Infact,
in the recently concluded SHA-3 competition also, several AES based hash func-
tions were submitted, e.g., LANE [11], ECHO [4], Grøstl [9] etc. A significant
progress has been made in the field of block cipher based hash function security.
Spearheaded by rebound attacks alongwith other cryptanalytic techniques, sev-
eral AES as well as other block cipher based dedicated hash functions have been
reviewed and cryptanalyzed [12,14–16,18,19,21]. But all of the analysis that
has been done has been performed on round-reduced versions of block ciphers.
Specifically, if we refer to the previous best result on AES-128 based hash modes
performed by Sasaki [18], the maximum number of rounds attacked is 7.

The reason behind this restriction was the fact that AES-128 itself was resis-
tant to full 10 rounds attack for a considerable period of time since its advent.
Until few years ago, there was no single key model attack known which could
break full AES-128 better than brute force. In Asiacrypt’11, Bogdanov et al. [7]
proposed a novel idea called biclique attack which allowed an attacker to recover
the AES secret key 3–5 times faster than exhaustive search. Subsequently, this
technique was applied to break many other block ciphers such as PRESENT [1],
ARIA [22], HIGHT [10] etc. As block cipher and block cipher based hash function
security are inter-related, it is imperative to analyse the hash function security
against biclique technique.

Biclique cryptanalysis is a variant of meet-in-the-middle attack, first intro-
duced by Khovratovich et al. in [13] for preimage attacks on hash functions Skein
and SHA-2. The concept was taken over by Bogdanov et al. to successfully crypt-
analyze full rounds of all AES variants. The biclique attack results on AES in [7]
were further improved in [6,20]. Bogdanov et al. in [7] also showed conversion of
biclique key recovery attack on AES-128 to the corresponding preimage attack
on AES-128 instantiated compression function. The current best complexity of
this attack as reported in [6] is 2125.56.

1.1 Motivation

The above biclique based preimage attack on AES-128 instantiated compression
function cannot be converted to preimage attack on the corresponding hash
function (and hence second preimage attack as discussed in Sect. 5 later). This
is due to the fact that in the preimage attack on compression function shown
in [6,7], the attacker needs to modify the chaining variable (CV ) value and the
message input to obtain the desired preimage. However, in hash function settings,
the initialization vector (IV ) is a publically known constant which cannot be
altered by the attacker. Hence, the biclique trails used in the preimage attack on
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AES-128 based compression function in [6,7] cannot be adopted to find preimage
for the corresponding AES-128 based hash function. This can be explained as
discussed below.

Let us consider Matyas-Meyer-Oseas (MMO) mode and Davies-Meyer (DM)
mode based compression functions as shown in Fig. 1(a) and (b). In case of MMO
mode, the chaining variable acts as the key input to the underlying block cipher
AES (as shown in Fig. 1(a)). If the chaining variable is used as the IV (in hash
function settings) then it is fixed and cannot be modified. This means that the
value of the key input to the block cipher should not change. However, the type of
biclique trails used in [7] (as shown in Fig. 2) for compression function introduce
a change both in the key input as well as all the intermediate states including
the plaintext input ensuring that the final chaining variable so obtained after
the attack will not be the desired IV . Hence, the kind of biclique trails we are
interested in should only affect the intermediate states (an example of which is
given in Fig. 3) and not the key input.

CV/key

E hmessage/plaintext

message/key

E hCV/plaintext

Fig. 1. Compression function in MMO
and DM mode respectively.

MC

SB
SR

MC

SB
SR

$3

$2

$1

eludehcS
ye

K
el udehcS

ye
K

ΔK
i

Plaintext

MasterKey

Fig. 2. An example of the trail used
in [7] for preimage attack on AES-128
instantiated compression function.

Similarly, in the DM mode, the chaining variable acts as the plaintext input
to the underlying block cipher (as shown in Fig. 1(b)). Therefore, if the chaining
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variable under consideration is the IV then the chosen biclique trails should not
inject any difference in the plaintext input of the block cipher (an example of the
same is shown in Fig. 4). Again, the biclique trails adapted for preimage attack
on AES-128 instantiated compression function do not satisfy this condition
(as seen in Fig. 2).

MC

SB
SR

$2

$1

K
ey

Sc
he

du
le

#2

#3

#4

#5

Δ - differential

Fig. 3. An example of the desired trails
that will work for attacking MMO
based hash function. It is to be noted
only the plaintext input and subse-
quent intermediate states are affected
in the trail considered whereas the key
input is a fixed constant.

MC

SB
SR

$1

$0

eludehcS
ye

K

#1

#2

#3

Δ - differential

ΔK
i

Plaintext

Master Key

Fig. 4. An example of the desired trail
that will work for attacking DM based
hash function. It is to be noted here
that the plaintext input is not affected
by the differential trail so chosen and is
a fixed constant.

The examples discussed above warrant searching of new biclique trails which
can be used to launch second preimage attack on AES-128 based hash func-
tions. Moreover, searching these trails manually may not give the best results as
demonstrated in [2,6]. Hence, automated search process is required. In this work,
we implemented our restrictions in C programs to enumerate the best biclique
trails which guarantee the lowest possible attack complexities. We then apply
biclique technique to evaluate the security of AES-128 based hash functions
against second preimage attack.

1.2 Our Contributions

The contributions of this paper are as follows:

– We re-evaluate the offered security of full 10 rounds AES-128 based hash
functions against second preimage attack. The previous best result could only
work on 7 rounds.
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– Our analysis works on all 12 PGV modes of the hash function constructions.
– The complexities of the biclique based analysis differ depending upon the

PGV construction chosen. For MP and MMO mode it is 2126.3 whereas for
DM mode it is 2126.67.

– We propose new biclique trails to achieve the above results.
– All the trails have been obtained by implementing C programs which ensure

that they yield the best attacks (lowest possible time complexity).

The results of our security evaluation against second preimage attack on all
12 PGV based modes are given in Table 1.

Table 1. Summary of the results obtained. In this table, we assume hash function to
be instantiated with block cipher E, h is the chaining variable, m is the message input
and h ⊕ m = w.

S.No Hash Function Modes Second Preimage Succ. Brute Force Succ.

Complexity Prob Complexity Prob

1 Eh(m) ⊕ m - MMO 2126.3 0.632 2128 0.632

2 Eh(m) ⊕ w - MP 2126.3 0.632 2128 0.632

3 Em(h) ⊕ h - DM 2126.6 0.632 2128 0.632

4 Eh(w) ⊕ w - similar to MMO 2126.3 0.632 2128 0.632

5 Eh(w) ⊕ m - similar to MMO 2126.3 0.632 2128 0.632

6 Em(h) ⊕ w - similar to DM 2126.6 0.632 2128 0.632

7 Em(w) ⊕ h - similar to DM 2126.6 0.632 2128 0.632

8 Em(w) ⊕ w - similar to DM 2126.6 0.632 2128 0.632

9 Ew(h) ⊕ h - similar to DM 2126.6 0.632 2128 0.632

10 Ew(h) ⊕ m - similar to DM 2126.6 0.632 2128 0.632

11 Ew(m) ⊕ h - similar to MP 2126.3 0.632 2128 0.632

12 Ew(m) ⊕ m - similar to MMO 2126.3 0.632 2128 0.632

2 Preliminaries

In this section we give a brief overview of the key concepts used in our crypt-
analysis technique to facilitate better understanding.

2.1 AES-128

AES-128 is a block cipher with 128-bit internal state and 128-bit key K. The
internal state and the key is represented by a 4 × 4 matrix. The plaintext is
xor’ed with the key, and then undergoes a sequence of 10 rounds. Each round
consists of four transformations: nonlinear bytewise SubBytes, the byte permu-
tation ShiftRows, linear transformation MixColumns, and the addition with a
subkey AddRoundKey. MixColumns is omitted in the last round.
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For the sake of clarity, we will follow the same notation used for description of
AES-128 as used in [7]. We address two internal states in each round as follows:
#1 is the state before SubBytes in round 1, #2 is the state after MixColumns
in round 1, #3 is the state before SubBytes in round 2, . . ., #19 is the state
before SubBytes in round 10, #20 is the state after ShiftRows in round 10. The
key K is expanded to a sequence of keys K0,K1,K2, . . . ,K10, which form a
4 × 44 byte array. Then the 128-bit subkeys $0, $1, $2, . . . , $10 come out of the
sliding window with a 4-column step. We refer the reader to [8] for a detailed
description of AES.

2.2 Biclique Key Recovery Attack

In this section, we briefly discuss the independent biclique key recovery attack
for AES-128. For a more detailed description of bicliques, one can refer to [7]. In
this attack, the entire key space of AES-128 is first divided into non-overlapping
group of keys. Then, a subcipher f that maps an internal state S to a ciphertext
C under a key K, i.e. fK(S) = C is chosen. Suppose f connects 2d intermediate
states {Sj} to 2d ciphertexts {Ci} with 22d keys {K[i, j]}. The 3-tuple of sets
[{Sj}, {Ci}, {K[i, j]}] is called a d-dimensional biclique, if: ∀i, j ∈ {0, ......., 2d −
1} : Ci = fK[i,j](Sj).

Each key in a group can be represented relative to the base key of the group,
i.e., K[0, 0] and two key differences Δk

i and ∇k
j such that: K[i, j] = K[0, 0]⊕Δk

i ⊕
∇k

j . For each group we choose a base computation i.e., S0
K[0,0]−−−−→

f
C0. Then Ci and

Sj are obtained using 2d forward differentials Δi, i.e., S0
K[0,0]⊕Δk

i−−−−−−−→
f

Ci and 2d

backward differentials ∇j , i.e., Sj

K[0,0]⊕∇k
j←−−−−−−−

f−1
C0. If the above two differentials

do not share active nonlinear components for all i and j, then the following

relation: S0 ⊕ ∇j

K[0,0]⊕Δk
i ⊕∇k

j−−−−−−−−−−→
f

C0 ⊕ Δi is satisfied [7]:

Once a biclique is constructed for an arbitrary part of the cipher, meet-in-
the middle (MITM) attack is used for the remaining part to recover the key.
During the MITM phase, a partial intermediate state is chosen as the matching
state v. The adversary then precomputes and stores in memory 2d+1 times full

computations upto a matching state v: ∀i, Pi
K[i,0]−−−−→ −→v and ∀j,←−v K[0,j]←−−−− Sj .

Here, plaintext Pi is obtained from ciphertexts Ci through the decryption ora-

cle1. If a key in a group satisfies the following relation: Pi
K[i,j]−−−−→

h

−→v = ←−v K[i,j]←−−−−
g−1

Sj , then the adversary proposes a key candidate. If a right key is not found in the
chosen group then another group is chosen and the whole process is repeated.
The full complexity of independent biclique attacks is calculated as:

Cfull = 2k−2d(Cbiclique + Cprecompute + Crecompute + Cfalsepos),

1 Under hash function settings decryption oracle is replaced by feed-forward operation.
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where, Cprecompute is the cost complexity for calculating v for 2d+1, Crecompute

is the cost complexity of recomputing v for 22d times and Cfalsepos is the com-
plexity to eliminate false positives. As mentioned in [7], the full key recovery
complexity is dominated by 2k−2d × Crecomp

2.

3 Notations

To facilitate better understanding, we use the following notations in the rest of
the paper.

CV : Chaining Variable

IV : Initialization Vector

(CV,message) : Input tuple to hash function/compression function

(key,plaintext) : Input tuple to underlying block cipher

n : Input message/key size (in bits)

Ab : Base State

mb : Base Plaintext

Kb : Base Key

K[i, j] : Keys generated by Δi and ∇j modifications

M[i, j] : Messages generated by Δi and ∇j modifications

Nbr : Number of AES rounds called

Eenc/dec : One Round of AES encryption/decryption

E(x,y) : Full AES encryption under y-bit key and x-bit message

E−1(x,y) : Full AES decryption under y-bit key and x-bit message

4 Biclique Based Preimage Attack on AES-128
Instantiated Compression Function

In this section, we examine how biclique technique discussed in Sect. 2.2 can
be applied to find preimage for block cipher based compression function. This
preimage attack on compression function will then be used to evaluate second
preimage resistance of AES-128 based hash functions under different PGV modes
as discussed in Sect. 5.

Let us consider an AES-128 based compression function (as shown in Fig. 5).
To find the preimage for h, the attacker needs to find a valid (CV , message)
pair which generates h. In terms of the underlying block cipher E which is
instantiated with AES-128, this problem translates to finding a valid (plaintext,
key) pair where both the key and the plaintext are of 128-bits size. To guarantee
the existence of a preimage for h (with probability 0.632), the attacker needs to
test 2128 distinct (key, plaintext) pairs.
2 Crecomp in turn is measured as: 2128 (#S-boxes recomputed in MITM phase/#Total

S-boxes required in one full AES encryption) =⇒ 2128 (#S-boxes recomputed in
MITM phase/200).
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message (m)/ key

E hCV/plaintext

Fig. 5. AES-128 instantiated compression function in DM mode.

When biclique methodology is applied on AES-128 to recover the secret
key [7], full key space, i.e., 2128 keys are divided into 2112 groups of 216 size
each and tested3. These 2112 groups are generated from 2112 base key values
where each base value defines one group. However, the same biclique approach
when extended to hash functions warrants the need of testing 2128 (key, plain-
text) pairs. These 2128 (key, plaintext) pairs will be generated from 2112 (key,
plaintext) base states. Hence, under hash function settings, alongwith the base
key we introduce the term “base message”. Let Kb denote the base key value and
Ab denote the base message value. If we apply the original biclique approach [7]
on compression function, then 2128 (key, plaintext) pairs are generated from a
combination of 2112(Kb, Ab) as shown in (Fig. 6). Here, a single Ab is chosen and
repeated across all the groups whereas 2112 different K ′

bs are used. The biclique
algorithm for the attack is shown in Fig. 7. In Algorithm 1, the specific (i,j) tuple
for which a match is found gives us the corresponding K[i, j] and M [i, j] as the
desired inputs for compression function. The complexity of this attack when
applied for searching preimages in AES-128 instantiated compression function is
2125.56 [6].

(K(1)
b

, Ab) −→ 216 (key, message) pairs

(K(2)
b

, Ab) −→ 216 (key, message) pairs

.

.

.
(K(2112)

b
, Ab) −→ 216 (key, message) pairs

(K(3)
b

, Ab) −→ 216 (key, message) pairs

Fig. 6. Generation of groups in
original attack [7]

Ab

2112 K′
bs

Ab

216 Δk
i ∇k

j

216K[i, j]

216K[i, j]

216K[i, j]

M [i, j] M [i, j]
Eenc/dec(K[i, j] Ab

Fig. 7. Steps of the original biclique attack in [7]
using the base key Kb and the base message Ab.

3 Here, bicliques of dimension d = 8 are constructed. In our attacks, we also construct
bicliques of dimension 8.
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In the procedure described above, it can be seen that the attacker generates a
chaining value (M [i, j]) of her own along with the preimage (K[i, j]). However, as
already discussed, the IV value is a public constant in the hash function setting
and cannot be altered by the attacker. In the subsequent section, we show how
to utilize variants of the above framework for launching second preimage attack
on AES-128 based hash functions in different PGV modes with IV being fixed.

5 Second Preimage Attack on Hash Functions

In this section, we examine the feasability of extending the biclique cryptanalysis
technique for second preimage attack on AES-128 instantiated hash functions
for all 12 PGV modes.

5.1 PGV Construction 1 - Matyas-Meyer-Oseas (MMO) Mode:
Eh(m)⊕ m

Consider MMO based hash function as shown in Fig. 8. Here, the (chaining
variable, message block) tuple act as the (key, plaintext) inputs respectively to
block cipher E. In this case, the attacker is given m = (m0 || m1 || pad) and its
corresponding hash value h2. Her aim is to find another different message, m′

that will produce the same h2. To achieve so, the attacker can consider m′ as -
(m′

0 || m1 || pad) where the second half of m′ = m while for the first half, the
attacker has to carry a biclique attack. For the first half, i.e., h1 := EIV (m′

0),
the attacker knows h1 and IV . Her aim is now to find a preimage m′

0 which
produces h1 under the given IV . The attack steps are as follows:

E

m0 m1 ||pad

E h2
h1

IV

E

m′
0 m1 ||pad

E h2
h1

IV

Fig. 8. Second preimage attack on MMO based hash function

1. The attacker fixes IV as the key input to the block cipher E & chooses a
128-bit base message Ab.

2. Choice of biclique structure . Here, the key input to the block cipher
(i.e., IV ) is fixed. The attacker has to choose a biclique structure such that
the Δi and ∇j trails only modify the message states and not the key states
(since IV cannot change) plus the biclique attack should have lowest search
complexity. All the existing biclique trails in literature allow modification in
the keys states as well, therefore, we construct new biclique trails to suit our
needs.
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3. We represent the Δ and ∇ trails as Δm
i and ∇m

j respectively. The biclique
structure satisfying the above requirements is as shown in Fig. 9(a).

4. For the above biclique, she divides the 128-bit message space into 2112 groups
each having 216 messages with respect to intermediate state #3 as shown in
Fig. 9(a). The base messages are all 16-byte values with two bytes (i.e., bytes
0 and 4) fixed to 0 whereas the remaining 14-bytes taking all possible values
(shown in Fig. 10). The messages in each group (M [i, j]) are enumerated with
respect to the base message by applying difference as shown in Fig. 11. The
proof for the claim that this base message (with the corresponding Δi and ∇j

differences) uniquely divides the message space into non-overlapping groups
is given in Appendix A.1.

5. The biclique covers 1.5 rounds (round 2 and round 3 upto Shift Rows oper-
ation). Δm

i trail activates byte 0 whereas ∇m
j trail activates bytes 3,4,9 and

14 of #3 state.
6. Meet-in-the-middle attack is performed on the rest 8.5 rounds. In the MITM

phase, partial matching is done in byte 12 of state #13. In the backward
direction, Δm

i trail activates 4 bytes in the plaintext i.e., byte 0, 5, 10 and 15
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Fig. 9. Biclique structure for MMO mode when key/IV is known
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whereas ∇m
j activates all bytes. As such, during the recomputation phase, the

4 bytes of plaintext affected by both Δm
i and ∇m

j trails need to be recomputed.
Similar explanation can be provided for other bytes shown to be recomputed
in Fig. 9(b) and (c). In the forward propagation (starting from round 4),
4+16+4 = 24 S-boxes and in the backward propagation (starting from round
1), 4+16+16+4+1= 41 S-boxes are recomputed. Thus, a total of 65 S-boxes
are involved in the recomputation process. One full AES encryption requires
200 S-box computations. As each group has 216 messages, Crecomp = 216× 65

200
= 214.3. Hence, Cfull = 2112 × 214.3 = 2126.3.

7. For the specific (i, j) value which produces a match in the middle, the cor-
responding M [i, j] i.e., xoring of #3 states in base computation, Δi and ∇j

trails (in Fig. 9(a)) yields the plaintext m′
0 for the block cipher E. The biclique

algorithm, i.e., Algorithm 2 is as shown in Fig. 12.

0 0

Fig. 10. Base message

i j1

j2
j3

j4

Fig. 11. Δi and ∇j differences

Thus with a time complexity of 2126.3, the attacker is able to find a (IV ,
m′

0) pair which produces hash value h1 and m′ = (m′
0 || m1 || pad) forms a valid

second preimage.

PGV Construction 2 - Miyaguchi-Preneel Mode (MP) Mode:
Eh(m) ⊕ m ⊕ h - The MP mode is an extended version of MMO mode. The
only difference between the two constructions is the fact that output of block
cipher is xor’ed both with the plaintext input as well the chaining variable input.
However, this does not demand any extra attack requirements and the second
preimage attack on MP mode is exactly the same as that described on MMO
mode.

5.2 PGV Construction 3 Davies-Meyer (DM) Mode: Em(h) ⊕ h

In the DM based hash function (as shown in Fig. 13), the (chaining variable,
message block) tuple act as the (plaintext, key) inputs respectively to block
cipher E. We again inspect a similar scenario as described in Sect. 5.1, i.e., for
a message m = (m0 || m1 || pad), the attacker is given its corresponding hash
value h2. Her aim is to find another different message m′ that will produce
the same h2. Consider the hash function as concatenation of two compression
functions - Em0(IV ) and Em1|| pad (h1). To get a valid second preimage, the
attacker chooses m′ as - (m′

0 || m1 || pad) i.e., she focuses on the first compression
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Ab

2112 A′
bs IV

216 Δm
i ∇m

j

216M [i, j]
216M [i, j]

216M [i, j]

Fig. 12. Steps of the new biclique attack when key input to the underlying block cipher
is fixed and cannot be modified by the attacker for MMO mode.

m0 m1 || pad

E E h2
h1

IV

m′
0

m1 || pad

E E h2
h1

IV

Fig. 13. Second preimage attack on DM based hash function

function and her aim is to find m′
0 such that Em′

0
(IV ) = h1 when IV and h1

are known to the attacker. The attack steps are as follows:

1. The attacker fixes the IV as the plaintext input to the block cipher.
2. Choice of biclique structure . Under the given attack scenario, since the

message input, i.e., IV is fixed, the attacker has to choose a biclique structure
such that the Δi and ∇j trails do not modify the plaintext state and the
biclique attack has lowest search complexity. The biclique structure satisfying
the above requirements is given in Fig. 14(a).

3. For the above biclique, she divides the 128-bit key space into 2112 groups,
each having 216 keys with respect to subkey $0 i.e., the master key as the
base key as shown in Fig. 14(a). The base keys are all 16-byte values with two
bytes (i.e., bytes 0 and 1) fixed to 0 whereas the remaining 14-bytes taking
all possible values (shown in Fig. 15). The keys in each group (K[i, j]) are
enumerated with respect to the base key by applying difference as shown in
Fig. 16. It can be easily verified that this base key uniquely divides the key
space into non-overlapping groups.

4. The biclique covers the first round. Δi trail activates byte 0 of $0 subkey
whereas ∇j trail activates byte 1 of $ 0 subkey.
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Fig. 14. Biclique structure for DM mode when IV /message input is known to the
attacker

5. The attacker then performs meet-in-the-middle attack on the rest of the 9
rounds. In the MITM phase, partial matching is done in byte 12 of state #11.
In the forward propagation (starting from round 2), 2+16+16+4 = 38 S-boxes
and in the backward propagation (starting from round 10), 5+16+16+4+1
= 42 S-boxes need to be recomputed (as shown in Fig. 14(b) and (c)). 2
S-box recomputations in the key schedule are also required. Thus a total of
82 S-boxes are involved in recomputation process. One full AES encryption
requires 200 S-box computations. As each group has 216 keys, Crecomp =
216 × 82

200 = 214.6. Hence, Cfull = 2112 × 214.6 = 2126.6.
6. For the specific (i, j) value which produces a match in the middle, the cor-

responding K[i, j] forms the key (m0) for the block cipher E. The biclique
algorithm, i.e., Algorithm 3 is given in Fig. 17.

Thus with a time complexity of 2126.6, the attacker is able to find a (IV ,
m′

0) pair which produces hash value h1 and m′ = (m′
0 || m1 || pad) forms a

valid second preimage. The attack procedure on two block message for other
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0

0

Fig. 15. Base message

j

i

Fig. 16. Δi and ∇j differences

2112 K′
bs IV

216 Δk
i ∇k

j

216K[i, j]
216K[i, j]

216K[i, j]

Fig. 17. Steps of the new biclique attack when message input is fixed and known to
the attacker under DM mode

constructions is similar to those discussed in Sects. 5.1 and 5.2. Their results are
given in Table 1.

6 Second Preimage Attack on Hash Functions Extended
to Messages with Message Length ≥3

The second preimage attack discussed in above sections can be extended to
messages of any length >2 with same complexity as obtained for 2-block mes-
sages. To demonstrate the same, consider a MMO-based hash function with
3-block message as shown in Fig. 18. In this case, the attacker is given a message
m = (m0 || m1 || m2 || pad) and its corresponding hash value h3. Her aim is
to find another message m′, such that H(m′) = H(m). The attacker knows IV
and the compression function E. She will choose any m0 of her own choice, e.g.,
let m0 = 0, and then calculate h1 = EIV (0). Once she knows h1, the setting
is reduced to the case discussed in Sect. 5.1, i.e., h1 and h2 are known to the
attacker and her aim is to find m′

1 such that m′ = (0 || m′
1 || m2 || pad) forms

a valid second preimage. This can be found with a complexity of 2126.3 which is
same as that shown for a 2-block message. Similarly, the attack can be applied
on other long messages for all other PGV modes.

7 Conclusions

In this paper, we evaluate the security of AES-128 based hash modes against
second preimage attack. Specifically, we examine the applicability of biclique
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E

0 m′
1

E

h2h1
IV E

m2 || pad

h3

E

m1

E

h2h1
IV E

m2 || pad

h3

m0

Fig. 18. MMO base hash function with |m| = 3

attack on all 12 PGV modes when instantiated with AES-128 and show that
best biclique attack for finding preimages in AES-128 instantiated compression
function does not translate to best attack for second preimage search under AES-
128 based hash function settings. A natural research extension to this work would
be to apply the ideas discussed in this paper to hash functions instantiated with
other block ciphers. Another research direction can be to extend the methodology
to carry out collision attacks on hash functions.

A Proofs

In this section, we will prove how the base structure which we chose for bicliques
in Sect. 5.1 produce non-overlapping keys/messages within a same group and
between groups.

A.1 Biclique Structure When IV Is Known and Acts
as the Message Input to Block Cipher E

For the base message (shown in Fig. 10) that is used for the biclique structure
in Fig. 9(a), our aim is to prove that when Δi and ∇j differences are injected
in this base message (as shown in Fig. 19), we are able to partition the mes-
sage space into 2112 groups with 216 messages in each and the inter and intra
group messages generated are non-overlapping. The ∇j1, ∇j2, ∇j3 and ∇j4 are
differences produced from ∇j as shown in Fig. 20.

Here, bi,j and ci,j (0 ≤ i,j ≤ 3) represent the base values of corresponding
bytes in the intermediate states #B and #C respectively as shown in Fig. 21.
#B and #C are #3 and #4 states in Fig. 9(a).
Aim : Given any two base messages B, B′, any two Δi differences i, i′, any two
∇j differences j, j′ (0 ≤ i,j ≤ 28), we want to prove that B[i,j] 	= B[i′, j′] i.e.,
messages generated are non-overlapping. We will prove this statement case-by-
case. Cases (1–4) cover inter group messages whereas Cases (5–7) cover within
group messages. For all the proofs discussed below, we will refer to Figs. 22, 23
and 24 for better understanding.
Case 1. Given B 	= B′, i = i′, j = j′, b00=b10=b′

00=b′
10=0, to show: B[i, j] 	=

B′[i′, j′]
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i j1

j2
j3

j4

Fig. 19. Δi and ∇j differ-
ences in base message

Fig. 20. Relation between ∇j, ∇j1, ∇j2, ∇j3, ∇j4

b00 b01B02b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

SB, SR, MC

# B # C

Fig. 21. Relation between #B and #C states

Proof : We will prove this setting by ‘proof by contraposition’, i.e., if B[i, j] =
B′[i′, j′], i = i′, j = j′, b00=b10=b′

00=b′
10=0, =⇒ B = B′

In Fig. 24, if B[i, j] = B′[i′, j′] =⇒ C[i, j] = C ′[i′, j′] =⇒ c0,2 = c′
0,2, c0,3 =

c′
0,3, c1,1 = c′

1,1, c1,2 = c′
1,2, c1,3 = c′

1,3, c2,1 = c′
2,1, c2,2 = c′

2,2,c2,3 = c′
2,3, c3,1 =

c′
3,1, c3,2 = c′

3,2 and c3,3 = c′
3,3. Since C[i, j] = C ′[i′, j′] =⇒ c0,1 ⊕ j = c′

0,1 ⊕ j′.
As j = j′ =⇒ c0,1 = c′

0,1. Hence, 12 bytes in state C and corresponding bytes
in state C ′ share equal values. This relation automatically transcends to related
byte positions in B and B′ after application of InvMixColumns, InvShiftRows
and InvSubBytes (as shown in Fig. 22), i.e., b0,1 = b′

0,1, b0,2 = b′
0,2, b0,3 = b′

0,3,
b1,0 = b′

1,0, b1,2 = b′
1,2, b1,3 = b′

1,3, b2,0 = b′
2,0, b2,1 = b′

2,1, b2,3 = b′
2,3, b3,0 = b′

3,0,
b3,1 = b′

3,1 and b3,2 = b′
3,2, 12 bytes in B and B′ respectively also have same

base values). As we have assumed B[i, j] = B′[i′, j′] =⇒ b1,1 = b′
1,1, b2,2 = b′

2,2

and b3,3 = b′
3,3 as these base values are not affected by Δi and ∇j differences

(as seen in Fig. 24). Since in states B and B′, b0,0 = b′
0,0 = 0, hence all 16 byte

positions in B and corresponding byte positions in B′ share same base values.
Hence B = B′. This proves that our initial proposition is correct.
Case 2. Given B 	= B′, i = i′, j 	= j′, b00=b01=b′

00=b′
01=0, to show: B[i, j] 	=

B′[i′, j′]
Proof : We will prove this setting by ‘proof by contradiction’, i.e., let us assume
if B 	= B′, i = i′, j = j′, b00=b10=b′

00=b′
10=0, =⇒ B[i, j] = B′[i′, j′]

In Fig. 24, if B[i, j] = B′[i′, j′] =⇒ C[i, j] = C ′[i′, j′] =⇒ c0,1 ⊕ j = c′
0,1 ⊕ j′.

Since j 	= j’ =⇒ c0,1 	= c′
0,1. As a result after applying InvMixColumns and

InvSubBytes on them the bytes generated i.e., b0,1 and b′
0,1 should also satisfy

the relation - b0,1 	= b′
0,1. But b0,1 = b′

0,1 = 0 (as seen in Fig. 21). Hence, a
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contradiction arises implying our assumed proposition is wrong. Therefore, our
initial proposition is correct.

Case 3. Given B 	= B′, i 	= i′, j = j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : In this setting since i 	= i′, hence B[i, j] 	= B′[i′, j′] always as they will
always differ at zeroth byte position (Fig. 24).
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Fig. 22. Relation between base
states B and C. The labels inside
each box denote the base values of
the corresponding byte positions
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Fig. 24. Relation between states #B[i, j], #C[i, j] and #B′[i, j], #C′[i, j]

Case 4. Given B 	= B′, i 	= i′, j 	= j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : Proof similar to as discussed in Case 3.
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Case 5. Given B = B′, i 	= i′, j 	= j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : Proof similar to as discussed in Case 3.

Case 6. Given B = B′, i 	= i′, j = j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : Proof similar to as discussed in Case 3.

Case 7. Given B = B′, i = i′, j 	= j′, b00=b01=b′
00=b′

01=0, to show: B[i, j] 	=
B′[i′, j′]
Proof : Since B = B′ =⇒ C = C ′ =⇒ c0,1 = c′

0,1. As j 	= j′ =⇒
c0,1 ⊕ j 	= c′

0,1 ⊕ j′ =⇒ C[i, j] 	= C ′[i′, j′] always as they will everytime differ
at fourth byte position (Fig. 24). As a result B[i, j] 	= B′[i′, j′] always due to
bijection relation between states B and C.

Hence we proved that in all cases M [i, j]’s so generated are non-overlapping.
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Abstract. Huff curves are well known for efficient arithmetics to their
group law. In this paper, we propose two deterministic encodings from
Fq to generalized Huff curves. When q ≡ 3 (mod 4), the first determin-
istic encoding based on Skalpa’s equality saves three field squarings and
five multiplications compared with birational equivalence composed with
Ulas’ encoding. It costs three multiplications less than simplified Ulas
map. When q ≡ 2 (mod 3), the second deterministic encoding based
on calculating cube root costs one field inversion less than Yu’s encod-
ing at the price of three field multiplications and one field squaring. It
costs one field inversion less than Alasha’s encoding at the price of one
multiplication. We estimate the density of images of these encodings
with Chebotarev density theorem. Moreover, based on our deterministic
encodings, we construct two hash functions from messages to generalized
Huff curves indifferentiable from a random oracle.

Keywords: Elliptic curves · Generalized Huff curves · Character sum ·
Hash function · Random oracle

1 Introduction

Plenty of elliptic/hyperelliptic curve cryptosystems require hashing into alge-
braic curves. Many identity-based schemes need messages to be hashed into
algebraic curves, including encryption schemes [1,2], signature schemes [3,4],
signcryption schemes [5,6], and Lindell’s universally-composable scheme [7]. The
simple password exponential key exchange [10] and the password authenticated
key exchange protocols [11] both require a hash algorithm to map the password
into algebraic curves.

Boneh and Franklin [8] proposed an algorithm to map elements of Fq to
rational points on an ordinary elliptic curve. This algorithm is probabilistic and
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fails to return a point at the probability of 1/2k, where k is a predetermined
bound. One disadvantage of this algorithm is that its total number of running
steps depends on the input u ∈ Fq, hence is not constant. Thus the algorithm
may be threaten by timing attacks [9], and the information of the message may
leaked out. Therefore, it is significant to find algorithms hashing into curves in
constant number of operations.

There exist various algorithms encoding elements of Fq into elliptic curves
in deterministic polynomial time. When q ≡ 3 (mod 4), Shallue and Woestijne
proposed an algorithm [12] based on Skalba’s equality [13], using a variation of
Tonelli-Shanks algorithm to calculate square roots efficiently as x1/2 = x(q+1)/4.
Fouque and Tibouchi [14] simplified this encoding by applying brief version of
Ulas’ function [15]. Moreover, they generalized Shallue and Woestijne’s method
so as to hash into some special hyperelliptic curves. When q ≡ 2 (mod 3), Icart
[16] gave an algorithm based on computing cube roots efficiently as x1/3 =
x(2q−1)/3 in Crypto 2009. Both algorithms encode elements of Fq into curves in
short Weierstrass form.

After initial algorithms listed above, hashing into Hessian curves [17] and
Montgomery curves [18] were proposed. Alasha [19] constructed deterministic
encodings into Jacobi quartic curves, Edwards curves and Huff curves. Yu con-
structed a hash function from plaintext to C34− curves by finding a cube root [20].

Huff curves, first introduced by Huff [21] in 1948, were utilized by Joye,
Tibouchi and Vergnaud [22] to develop an elliptic curve model over a finite field
K where char(K) > 2. They also presented the efficient explicit formulas for
adding or doubling points on Huff curves. In 2011, Ciss and Sow [27] introduced
generalized Huff curves: ax(y2 − c) = by(x2 −d) with abcd(a2c− b2d) �= 0, which
contain classical Huff curves [22] as special cases. Wu and Feng [23] indepen-
dently presented another kind of curves they also called generalized Huff curves:
x(ay2 − 1) = y(bx2 − 1), which is in fact an equivalent variation of Ciss and
Sow’s construction. Wu and Feng constructed arithmetic and pairing formu-
las on generalized Huff curves. Generalized Huff curves own an effective group
law and unified addition-doubling formula, hence are resistant to side channel
attacks [24]. Devigne and Joye also analyzed Huff curves over binary fields [28]:
ax(y2 + cy + 1) = by(x2 + cx + 1) with abc(a − b) �= 0.

We propose two deterministic encodings directly from Fq to generalized Huff
curves: brief Shallue-Woestijne-Ulas (SWU) encoding and cube root encoding.
Based on Skalba’s equality [13], brief SWU encoding costs three field squarings
and five multiplications less than birational equivalence from short Weierstrass
curve to generalized Huff curve composed with Ulas’ original encoding [15].
It saves three squarings less than birational equivalence from short Weier-
strass curve to generalized Huff curve composed with simplified Ulas map [26].
To prove our encoding’s B-well-distributed property, we estimate the character
sum of an arbitrary non-trivial character defined over generalized Huff curves
through brief SWU encoding. We also estimate the size of image of brief SWU
encoding. Based on calculating cube root of elements in Fq, cube root encod-
ing saves one field inversion compared with Yu’s encoding function at the price
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of one field multiplication. It saves one field inversion compared with Alasha’s
encoding at the price of one field squaring and three field multiplications. We
estimate the relevant character sum and the size of image of cube root encoding
in similar way.

Based on brief SWU encoding and cube root encoding, we construct two
hash functions efficiently mapping binary messages into generalized Huff curves,
which are both indifferentiable from random oracle.

We do experiments over 192−bit prime field FP192 and 384-bit prime field
FP384 recommended by NIST in the elliptic curve standard [25]. On both fields,
there exist efficient algorithms to calculate the square root and cube root for
each element. On FP192, our cube root encoding fI saves 13.20% running time
compared with Alasha’s encoding function fA, 8.97% with Yu’s encoding fY , on
FP384, fI saves 7.51% compared with fA and 4.40% with fY . Our brief SWU
encoding fS also runs faster than fU , birational equivalence composed with
Ulas’ encoding function and fE , birational equivalence composed with Fouque
and Tibouchi’s brief encoding. Experiments show that fS saves 9.19% compared
with fU and 7.69% with fE on FP192, while it saves 5.92% compared with fU

and 5.17% with fE on FP384.

Organization of the Paper. In Sect. 2, we recall some basics of generalized
Huff curves. In Sect. 3, we introduced brief SWU encoding, prove its B-well-
distributed property by estimating the character sum of this encoding, and cal-
culate the density of image of the encoding. In Sect. 4, we proposed the cube root
encoding, also prove its B-well-distributed property and calculate the density of
image of the encoding by similar methods. In Sect. 5, we construct 2 hash func-
tions indifferentiable from random oracle. In Sect. 6, time complexity of given
algorithms is analysed, and we presented the practical results. Section 7 is the
conclusion of the paper.

2 Generalized Huff Curves

Suppose Fq is a finite field whose characteristic is greater than 2.

Definition 1 ([27]). Generalized Huff curve can be written as:

ax(y2 − c) = by(x2 − d),

where a, b, c, d ∈ Fq with abcd(a2c − b2d) �= 0.

For generalized Huff curve E, if c = γ2, d = δ2 are squares of Fq, let (x, y) =
(δx

′
, γy

′
),wefind thatE isFq-isomorphic to classicalHuffcurve (aδγ2)x

′
(y

′2−1) =
(bδ2γ)y

′
(x

′2 − 1). If c or d is not a square of Fq, there exists no relevant classical
Huff curve which is Fq-isomorphic to E. Therefore, generalized Huff curves contain
classical Huff curves as a proper subset.

Consider the point sets on projective plane (X : Y : Z) ∈ P
2(Fq), generalized

Huff curve can be written as:

aX(Y 2 − cZ2) = bY (X2 − dZ2).
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Generalized Huff curve has 3 infinity points: (1 : 0 : 0), (0 : 1 : 0), (a : b : 0).
We give a picture of generalized curve 3x

(
y2 − 1

)
= −5 y

(
x2 − 2

)
as shown in

Fig. 1 (over R):
According to [23], a generalized Huff curve over Fq contains a copy of Z/2Z×

Z/2Z. In fact, every elliptic curve with 3 points of order 2 is Fq-isomorphism to
a generalized Huff curve. In particular, ax(y2 − c) = by(x2 − d) is Fq-isomorphic
to y2 = x(x + a2c)(x + b2d).

Fig. 1. Generalized Huff Curve 3x
(
y2 − 1

)
= −5 y

(
x2 − 2

)

3 Brief SWU Encoding

For q ≡ 3 (mod 4), Ulas presented an encoding function from Fq to curve y2 =
xn + ax2 + bx [15]. We construct our deterministic encoding function fS by
generalizing his method, mapping u ∈ Fq to (x, y) ∈ E(Fq).

3.1 Algorithm

Input: a, b, c, d and u ∈ Fq.
Output: A point (x, y) ∈ E(Fq).

1. If u = 0 then return (0, 0).

2. X(u) =
a2b2cd

a2c + b2d
(u2 − 1).

3. Calculate g(X(u)) where g(s) = s3 + (a2c + b2d)s2 + a2b2cds.

4. Y (u) = − a2b2cd

a2c + b2d
· (1 − 1

u2
).
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5. Calculate g(Y (u)).
6. If g(X(u)) is a quadratic residue, then (s, t) =

(
X(u),−√

g(X(u))
)

,

else (s, t) =
(
Y (u),

√
g(Y (u))

)
.

7. (x, y) =
(

bd(s + a2c)
t

,
ac(s + b2d)

t

)
.

According to [14], there exists a function U(u) = u3g(Y (u)), such that the
equality

U(u)2 = −g(X(u))g(Y (u)) (1)

holds. Thus either g(X(u)) or g(Y (u)) is a quadratic residue. Choose the one
which has square roots in Fq. Note that q ≡ 3 (mod 4), we can efficiently
calculate the standard square root by

√
a = a(q+1)/4. Hence the mapping

u �→ (s, t) satisfying t2 = g(s) is constructed. Then in step 7, we transfer
(s, t) to (x, y) ∈ E(Fq) by a birational equivalence. It is easy to check that
this birational equivalence is one-to-one and onto when it is extended to a map
between projective curves. The image of (0, 0), (−a2c, 0), (−b2d, 0) are infinite
points (a : b : 0), (0 : 1 : 0), (1 : 0 : 0) respectively while the image of (0 : 1 : 0) is
(0, 0) on E. Denote the map u �→ (s, t) by ρ, and denote the map (s, t) �→ (x, y)
by ψ, we call the composition fS = ψ ◦ ρ brief SWU encoding. Therefore given
(s, t) ∈ Im(ρ), either t =

√
g(s) hence s is the image of Y (u) and has at most

2 preimages, or t = −√
g(s) hence s is the image of X(u) and has still at most

2 preimages. Moreover, it is easy to check that ψ is one-to-one. Therefore for
each finite point on E(Fq), and for the infinite point (a : b : 0), fS has at most
2 preimages, but for the rest 2 infinite points of E(Fq), whose projective coor-
dinates are (1 : 0 : 0) and (0 : 1 : 0), fS has at most 4 preimages since the
corresponding t vanishes.

3.2 Theoretical Analysis of Time Cost

Let S denote field squaring, M denote field multiplication, I field inversion, ES

the square root, EC the cube root, D the determination of the square residue.
Suppose a, b, c, d ∈ Fq. In this paper we make the assumption that S = M ,
I = 10M and ES = EC = E.

The cost of fS can be calculated as follows:

1. Calculating u2 costs S, multiplying u2 − 1 by
a2b2cd

a2c + b2d
costs M , and it is

enough to calculate X(u).
2. To compute Y (u), we need to calculate the inversion of u2 for I + M .
3. When s is known, computing g(s) = s(s2 + (a2c + b2d)s + a2b2cd) = s(s +

a2c)(s + b2d) takes 2M . To make sure that the algorithm be run in constant
time, both g(X(u)) and g(Y (u)) must be calculated and it requires 4M .
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4. In general case, exact one of g(X(u)) and g(Y (u)) is a quadratic residue. We
only need to check once and it takes D, then compute the square root ES of
the quadratic residue. Then values of s and t are known.

5. Finally, we calculate the inverse of t, which requires I. Then multiplying the
inverse by s + a2c and s + b2d costs 2M , then calculating x and y costs 2M ,
hence it requires I + 4M in this step.

Therefore, fS requires ES + 2I + 10M + S + D = E + 31M + D in all.

3.3 B-Well-Distributed Property of Brief SWU Encoding

Definition 2 (Character Sum). Suppose f is an encoding from Fq into a
smooth projective elliptic curve E, and J(Fq) denotes the Jacobian group of E.
Assume that E has an Fq − rational point O, by sending P ∈ E(Fq) to the deg 0
divisor (P )−(O), we can regard f as an encoding to J(Fq). Let χ be an arbitrary
character of J(Fq). We define the character sum

Sf (χ) =
∑

s∈Fq

χ(f(s)).

We say that f is B-well-distributed if for any nontrivial character χ of J(Fq),
the inequality |Sf (χ)| � B

√
q holds [29].

Lemma 1 (Corollary 2, Sect. 3, [29]). If f is a B-well-distributed encoding
into a curve E, then the statistical distance between the distribution defined by
f⊗s on J(Fq) and the uniform distribution is bounded as:

∑

D∈J(Fq)

|Ns(D)
qs

− 1
#J(Fq)

| � Bs

qs/2

√
#J(Fq),

where
f⊗s(u1, . . . , us) = f(u1) + . . . + f(us),

Ns(D) = #{(u1, . . . , us) ∈ (Fq)s|D = f(u1) + . . . + f(us)},

i.e., Ns(D) is the size of preimage of D under f⊗s. In particular, when s is
greater than the genus of E, the distribution defined by f⊗s on J(Fq) is statis-
tically indistinguishable from the uniform distribution. Especially, in the elliptic
curves’ case, gE = 1, let s = gE + 1 = 2, the hash function construction

m �→ f⊗2(h1(m), h2(m))

is indifferentiable from random oracle if h1, h2 are seen as independent random
oracles into Fq(See [29]).

Hence, it is of great importance to estimate the character sum of an encoding
into an elliptic curve, and we will study the case of generalized Huff curves.
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Definition 3 (Artin Character). Let E be a smooth projective elliptic curve,
J(Fq) be Jacobian group of E. Let χ be a character of J(Fq). Its extension is a
multiplicative map χ : DivFq

(E) → C,

χ(n(P )) =

{
χ(P )n, P ∈ S,

0, P �∈ S.

Here P is a point on E(Fq), S is a finite subset of E(Fq), usually denotes the ram-
ification locus of a morphism Y → X. Then we call χ an Artin character of X.

Theorem 1. Let h : X̃ → X be a nonconstant morphism of projective curves,
and χ is an Artin character of X. Suppose that h∗χ is unramified and nontrivial,
ϕ is a nonconstant rational function on X̃. Then

|
∑

P∈X̃(Fq)

χ(h(P ))
(

ϕ(P )
q

)
| � (2g̃ − 2 + 2deg ϕ)

√
q,

where
( ·

q

)
denotes Legendre symbol, and g̃ is the genus of X̃.

Proof. See Theorem 3, [29].

Theorem 2. Let fS be the brief SWU encoding encoding from Fq to generalized
Huff curve E, q ≡ 2 (mod 3). For any nontrivial character χ of E(Fq), the
character sum SfS

(χ) satisfies:

|SfS
(χ)| � 16

√
q + 45.

Proof. Let S = {0}⋃{roots of g(X(u)) = 0}⋃{roots of g(Y (u)) = 0} where
X(·) and Y (·) are defined as in Sect. 3.1. For any u ∈ Fq\S, X(u) and Y (u)
are both well defined and nonzero. Let CX = {(u, s, t) ∈ F

3
q| s = X(u), t =

−√
g(X(u))}, CY = {(u, s, t) ∈ F

3
q| s = Y (u), t =

√
g(Y (u))} be the smooth

projective curves. It is trivial to see there exist one-to-one map PX : u �→ (u, s ◦
ρX(u), t ◦ ρX(u)) from P

1(Fq) to CX(Fq) and PY : u �→ (u, s ◦ ρY (u), t ◦ ρY (u))
from P

1(Fq) to CY (Fq). Let hX and hY be the projective maps on CX and
CY satisfying ρX(u) = hX ◦ PX(u) and ρY (u) = hY ◦ PY (u). Let gX = P−1

X ,
gY = P−1

Y , SX = g−1
X (S

⋃{∞}) = PX(S)
⋃

PX(∞), SY = g−1
Y (S

⋃{∞}) =
PY (S)

⋃
PY (∞).

To estimate SfS
(χ),

SfS
(χ) =

∣
∣
∣
∣
∣
∣

∑

u∈Fq\S

(f∗
Sχ)(u) +

∑

u∈S

(f∗
Sχ)(u)

∣
∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣

∑

u∈Fq\S

(f∗
Sχ)(u)

∣
∣
∣
∣
∣
∣
+ #S,
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we deduce as follows,

∣
∣
∣
∣
∣
∣

∑

u∈Fq\S
(f∗

Sχ)(u)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CY (Fq)\SY(
t(P )

q

)
=1

(h∗
Y ψ∗χ)(P ) +

∑

P∈CX (Fq)\SX(
t(P )

q

)
=−1

(h∗
Xψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�#SY +#SX +

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CY (Fq)(
t(P )
q

)
=+1

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CX (Fq)(
t(P )

q

)
=−1

(h∗
Xψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and

2

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CY (Fq)

( t(P )
q )=+1

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∑

P∈CY (Fq)

(h∗
Y ψ∗χ)(P ) +

∑

P∈CY (Fq)

(h∗
Y ψ∗χ)(P ) ·

(
t(P )

q

)

−
∑

( t(P )
q )=0

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣

�
∣
∣
∣
∣

∑

P∈CY (Fq)

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣ +

∣
∣
∣
∣

∑

P∈CY (Fq)

(h∗
Y ψ∗χ)(P ) ·

(
t(P )

q

) ∣
∣
∣
∣

+ #{roots of g(Y (u)) = 0}.

From the covering ψ ◦ hY : CY → E, Y (u) = s ◦ ψ−1(x, y), which implies

T (u) = (a3cy − b3dx)u2 − (acx − bdy)ab = 0.

⇔ u2 =
ab(acx − bdy)
a3cy − b3dx

.

Indeed, ψ ◦ hY is ramified if and only if T (u) has multiple roots, which occurs
when u = 0 or at infinity. Hence by Riemann-Hurwitz formula,

2gCY
− 2 = 0 + 1 + 1 = 2.

Hence curve CY is of genus 2. Similarly, CX is also of genus 2.
Observe that

deg t = [Fq(s, t, u) : Fq(t)] = [Fq(s, t, u) : Fq(s, t)][Fq(s, t) : Fq(t)] = 2 · 3 = 6.
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Further more, by Theorem 3 in [29],
∣
∣
∣
∣
∑

P∈CY (Fq)
(h∗

Y ψ∗χ)(P )
∣
∣
∣
∣ � (2gCY

−2)
√

q =

2
√

q,

∣
∣
∣
∣
∑

P∈CY (Fq)
(h∗

Y ψ∗χ)(P ) ·
(

t(P )
q

) ∣
∣
∣
∣ � (2gCY

− 2 + 2det t)
√

q = 14
√

q, and

g(Y (u)) = 0 is sextic polynomial, we can derive
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CY (Fq)

( t(P )
q )=+1

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

� 8
√

q + 3.

And ∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CX (Fq)

( t(P )
q )=−1

(h∗
Xψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

has the same bound.
Hence |SfS

(x)| � 16
√

q + 6 + #SY + #SX + #S. Note that g(X(u)) = 0
and g(Y (u)) = 0 have common roots, we can deduce that #S � 1 + 6 = 7.
Thus #SX � 2(#S + 1) � 16. By the same reason, #SY � 16. Then |SfS

(x)| �
16

√
q + 45. Thus fS is well-distributed encoding using the Theorem 3 in [29]. �

3.4 Calculating the Density of the Image

In the case of dealing with short Weierstrass curves, Icart conjectured that the

density of image
#Im(f)
#E(Fq)

, is near
5
8
, see [16]. Fouque and Tibouchi proved this

conjecture [14] using Chebotarev density theorem. Now we apply this theorem
onto generalized Huff curves, and give their sizes of images of deterministic
encodings.

Theorem 3 (Chebotarev, [31]). Let K be an extension of Fq(x) of degree n <
∞ and L a Galois extension of K of degree m < ∞. Assume Fq is algebraically
closed in L, and fix some subset ϕ of Gal(L/K) stable under conjugation. Let
s = #ϕ and N(ϕ) the number of places v of K of degree 1, unramified in L,

such that the Artin symbol
(

L/K

v

)
(defined up to conjugation) is in ϕ. Then

|N(ϕ) − s

m
q| � 2s

m
((m + gL) · q1/2 + m(2gK + 1) · q1/4 + gL + nm)

where gK and gL are genera of the function fields K and L.

Theorem 4. Let E be the generalized Huff curve over Fq defined by equation
ax(y2 − c) = by(x2 − d), abcd(a2c − b2d) �= 0, fS is the corresponding brief SWU
encoding function. Then

|#Im(fS) − 1
2
q| � 4q1/2 + 6q1/4 + 27.
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Proof. K is the function field of E which is the quadratic extension of Fq(x),
hence d = 2, and by the property of elliptic curve, gK = 1.

Gal(L/K) = S2, hence m = #S2 = 2. ϕ is the subset of Gal(L/K) consisting
a fixed point, which is just (1)(2), then s = 1.

Let W be the preimage of the map ψ, W (Fq) be the corresponding rational
points on W . By the property that ψ is one-to-one rational map, #Im(fS) =
#Im(ψ−1 ◦f) = IX + IY + I0, where IX = #{(s, t) ∈ W (Fq)|∃u ∈ Fq, s = X(u),
y = −√

g(X(u)) �= 0}, IY = #{(s, t) ∈ W (Fq)|∃u ∈ Fq, s = Y (u), t =√
g(Y (u)) �= 0}, I0 = #{(s, 0) ∈ W (Fq)|g(X(u)) = 0 or g(Y (u)) = 0}. It is

trivial to see that I0 � 3.
Let NX denote the number of rational points on the curve W with an s-

coordinate of the form X(u) and NY denote the number of rational points on
the curve W with an s-coordinate of the form Y (u), we have

2IX � NX � 2IX + I0 � 2IX + 3,

2IY � NY � 2IY + 3.

Hence IX + IY � 1
2
(NX + NY ) � IX + IY + 3.

Since the place v of K of degree 1 correspond to the projective unramified
points on E(Fq), hence |NX − N(ϕ)| � 12 + 3 = 15, where 3 represents the
number of infinite points, 12 represents the number of ramified points. Then we
have

|NX − 1
2
q| � |NX − N(ϕ)| + |N(ϕ) − 1

2
q|

� 15 + (4q1/2 + 6q1/4 + 6) = 4q1/2 + 6q1/4 + 21.

Analogously, |NY − 1
2q| � 4q1/2 + 6q1/4 + 21.

Therefore, we have

|#Im(fS) − 1
2
q| � |#Im(fS) − NX + NY

2
| + |NX + NY

2
− 1

2
q|

� I0 + |IX − NX

2
| + |IY − NY

2
| + (4q1/2 + 6q1/4 + 21)

� 3 +
3
2

+
3
2

+ (4q1/2 + 6q1/4 + 21)

= 4q1/2 + 6q1/4 + 27. �

4 Cube Root Encoding

4.1 Algorithm

When q ≡ 2 (mod 3) is a power of odd prime number, we give our deterministic
construction fI : u �→ (x, y) in the following way:
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Input: a, b, c, d, and u ∈ Fq.
Output: A point (x, y) ∈ E(Fq).

1. t = u2 − a2c − b2d.

2. r =
1
2

(
a2b2cd − 1

3
t2

)
.

3. s =
ut

3
+ 3

√

ur2 − (
ut

3
)3.

4. (x, y) =
(

bd(s + a2cu)
su + r

,
ac(s + b2du)

su + r

)
.

In step 3, since q ≡ 2 (mod 3), we can efficiently calculate the the cube root
by 3

√
a = a(2q−1)/3.

4.2 Theoretical Analysis of Time Cost

Let M , S, I and EC represent the same as in Sect. 3.2. The cost of encoding
function fI can be estimated as follows:

1. Computing u2 costs S. Then t can be calculated.
2. To compute r, we need S.
3. We use S +M to calculate ur2, then use M to get ut and S +M to calculate

(
ut

3
)2, take EC to calculate s.

4. Finally, to calculate the inversion of su+r, we need M +I. Calculating
s

us + r

and
u

us + r
cost 2M . Calculating

a2bcdu

su + r
,

bds

su + r
,

b2acdu

su + r
,

acs

su + r
cost 4M

with pre-computations.

Therefore, fI requires EC + I + 4S + 10M = E + 24M.

4.3 Properties of Cube Root Encodings

Lemma 2. Suppose P (x, y) is a point on generalized Huff curve E, then equa-
tion fI(u) = P has solutions satisfying H(u;x, y) = 0.

When a4c2 + b4d2 �= a2b2cd,

H(u;x, y) = (acx − bdy)u4 + (2b3d2y − 2a3c2x + 4abcd(bx − ay))u2

+ 6abcd(a2c − b2d)u + (acx − bdy)(a4c2 + b4d2 − a2b2cd).

When a4c2 + b4d2 = a2b2cd,

H(u;x, y) = (acx − bdy)u3 + (2b3d2y − 2a3c2x + 4abcd(bx − ay))u

+ 6abcd(a2c − b2d). (2)
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Proof. By the algorithm in Sect. 4.1, we have
{

(xu − bd)s = a2bcdu − xr

(yu − ac)s = ab2cdu − yr
⇒ xu − bd

yu − ac
=

a2bcdu − xr

ab2cdu − yr

⇒(−bdy + acx)u4 + (−2 a3c2x + 4xab2cd − 4 bdya2c + 2 b3d2y)u2

+ 6 abcd(a2c − b2d)u + (−b2da2c + a4c2 + b4d2)(−bdy + acx) = 0. (3)

When a4c2 + b4d2 = a2b2cd, the constant coefficient of this equation is 0. Then
eliminate u, we get (2).

Meanwhile, if H(u;x, y) = 0 and (x, y) ∈ E, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ax(y2 − c) = by(x2 − d)

(acx − bdy)

(

b2da2c −
(
a2c + b2d − u2

)2

3

)

= 2u((xu − bd)ab2cd

−a2bcdt(yu − ac))

which leads to

(xu − bd)ab2cd − (yu − ac)a2bcd = (acx − bdy)(a2b2cd − 1
3
(a2c + b2d − u2)2)/2u,

from this equation and the definition of s, r, we get
⎧
⎪⎨

⎪⎩

x =
bd(s + a2cu)

su + r

y =
ac(s + b2du)

su + r
.

⇒ (x, y) = fI(u).

�

4.4 The Genus of Curve C

Denote F by the algebraic closure of Fq. We consider the graph of fI :

C = {(x, y, u) ∈ E × P
1(F )| fI(u) = (x, y)}

= {(x, y, u) ∈ E × P
1(F )| H(u;x, y) = 0},

which is the subscheme of E × P
1(F ).

Now we calculate the genus of C. In the case a4c2 + b4d2 �= a2b2cd, the
projection g : C → E is a morphism of degree 4, hence the fiber at each point of E
contains 4 points. The branch points of E are points (x, y) ∈ E where H(u;x, y)
has multiple roots, which means the discriminant D = disc(H) vanishes at (x, y).

By substituting x2 = −−axy2 + axc − byd

by
into D, it can be represented as

D = −16a3(P1(y)x + P2(y))
b5y5

⇒ x = −P2(y)
P1(y)

,
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where P1(y) is a polynomial of degree 10, P2(y) is a polynomial of degree 11.

Substituting x = −P2(y)
P1(y)

into E(x, y) = 0, we find that y satisfies y11 ·Q(y) = 0,

where Q(y) is a polynomial of degree 12. Hence there are at most 12 branch
points on E other than (0, 0). It is easy to check that (x, y) = (0, 0) is a branch
point, since the multiplicity of u = ∞ is 3. If H(u;x, y) has triple roots at (x, y),
we have: ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E(x, y) = 0
H(u;x, y) = 0
d

du
H(u;x, y) = 0

d2

du2
H(u;x, y) = 0.

(4)

In general cases, when (x, y) �= (0, 0), (4) has no solution, thus all 12 branch
points have ramification index 2. By Riemann-Hurwitz formula, 2gC − 2 � 4 ·
(2 · 1 − 2) + 12 · (2 − 1) + 1 · (3 − 1), we get gC � 8.

In the case that a4c2 + b4d2 = a2b2cd, analogous to previous proof, we can
show that g is a morphism of degree 3, D is a cubic function of u and hence has
3 different roots unless disc(D) = 0. By similar calculation, we find that only
when y satisfies some sextic function, the point (x, y) ∈ E is a branch point.
Hence there are at most 6 branch points on E, with ramification index 2. By
Riemann-Hurwitz formula, 2gC − 2 � 3 · (2 · 1 − 2) + 6 + (3 − 1), we get gC � 5.

Hence we have

Theorem 5. If a4c2 + b4d2 �= a2b2cd, the genus of curve C is at most 8; if
a4c2 + b4d2 = a2b2cd, the genus of curve C is at most 5.

Next, we will utilize this theorem to estimate the upper bound of the char-
acter sum for an arbitrary nontrivial character of E(Fq).

4.5 Estimating Character Sums on the Curve

Theorem 6. Let fI be the cube root encoding from Fq to generalized Huff curve
E, q ≡ 3 (mod 4). For any nontrivial character χ of E(Fq), the character sum
SfI

(χ) satisfies:

|SfI
(χ)| �

{
14

√
q + 3, a4c2 + b4d2 �= a2b2cd,

8
√

q + 3, a4c2 + b4d2 = a2b2cd.
(5)

Proof. Let K = Fq(x, y) be the function field of E. Recall that a point (x, y) ∈ E
is the image of u if and only if

H(u;x, y) = 0.

Then a smooth projective curve C = {(x, y, u)|(x, y) ∈ E,H(u;x, y) = 0} is
introduced, whose function field is the extension L = K[u]/(H). By field inclu-
sions Fq(u) ⊂ L and K ⊂ L we can construct birational maps g : C → P

1(Fq)
and h : C → E. Then g is a bijection and fI(u) = H ◦ g−1(u).
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Since the genus of curve C is at most 8, by Theorem 1, we have

|SfI
(χ) +

∑

P∈C(Fq),u(P )=∞
χ ◦ h(P )| = |

∑

P∈C(Fq)

χ ◦ h(P )| � (2 · 8 − 2)
√

q = 14
√

q.

For (x, y) = (0, 0), function H(u;x, y) = 0 has only one finite solution, hence
there exist 3 infinite solutions of u; for other points on Ē, it can be check that all
solutions of H(u;x, y) = 0 are finite. Therefore |∑P∈C(Fq),u(P )=∞ χ◦h(P )| � 3.

Hence |SfI
(χ)| � 14

√
q + 3.

In the case that a4c2 + b4d2 = a2b2cd, it is proved that the genus of C is at
most 5. Analogous to previous discussion, we have |SfI

(χ)| � 8
√

q + 3. �

4.6 Galois Group of Field Extension

Let K = F (x, y) be the function field of generalized Huff curve E, L be the
function field of C. To estimate the character sum of any character of Jacobian
group of E, or to estimate the size of image of fI , we need know the structure
of Gal(L/K). By [31], when L/K is a quartic extension, then Gal(L/K) = S4

if and only if

1. H(u) is irreducible over F (x, y).
2. Let R(u) be the resolvent cubic of H(u), then R(u) is irreducible over F (x, y).
3. The discriminant of R(u) is not a square in F (x, y).

if L/K is a cubic extension, then Gal(L/K) = S3 if and only if

1. H(u) is irreducible over F (x, y).
2. The discriminant of H(u) is not a square in F (x, y).

When L/K is a quartic extension, we have to prove 3 following lemmas:

Lemma 3. The polynomial H(u) is irreducible over F (x, y).

Proof. Substitute x =
bd(s + a2c)

t
and y =

ac(s + b2d)
t

into H(u;x, y), we only
need to show

H̃(u; s, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u4 − (2a2c + 2b2d − 6s)u2 + 6tu + (a4c2 + b4d2 − a2b2cd),
when a4c2 + b4d2 �= a2b2cd,

u3 +
(−2 a2c − 6 s − 2 b2d

)
u + 6 v,

when a4c2 + b4d2 = a2b2cd

is irreducible over F (s, t) = F (x, y) = K. Let σ be the non trivial Galois
automorphism in Gal(F (s, t)/F (t)), which maps t to −t, it remains to show
H̃0(u; s, t) = H̃(u; s, t)H̃(u; s, t)σ is irreducible over F (t). Let v = u2, Note that
H̃0(u) can be represented as polynomial of v:
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J0(v) = v4 + (−4 ca2 − 12 s − 4 db2)v3 + (6 b4d2 + 6 a2b2cd + 6 a4c2 + 24 sca2+

36 s2 + 24 sdb2)v2 + (−12 b4d2s − 4 b6d3 − 24 a2b2cds − 4 a6c3 − 12 a4c2s

− 36 s3 − 36 db2s2 − 36 ca2s2)t + (b4d2 − a2b2cd + a4c2)2,

if a4c2 + b4d2 �= a2b2cd, (6)

or

J0(v) = v3 + (−4 a2c − 12 s − 4 b2d)v2 + 4 (a2c + 3 s + b2d)2v

− 36 s(s2 + a2c + b2d + b2da2c), (7)

if a4c2 + b4d2 = a2b2cd.

From (6), by Theorem 1.2.3 in [31], if J0(v) is reducible over F (s), then either
it can be decomposed as

J0(v) = (v + A)(v3 + Bv2 + Cv + D)

= v4 + (A + B)v3 + (AB + C)v2 + (AC + D)v + AD,

or it can be decomposed as

J0(v) = (v2 + Av + B)(v2 + Cv + D)

= v4 + (A + C)v3 + (B + AC + D)v2 + (BC + AD)v + BD,

where A,B,C,D ∈ F [s].
In the first case, note that AD = (b4d2 − a2b2cd + a4c2)2, A and D are

both constant. Since A + B = −4 ca2 − 12 s − 4 db2, B is of degree 1. Since the
coefficient of v2 is 2, degree of C is 2, which can lead to the inference that the
degree of v is also 2, a contradiction to the fact it is 3.

In the second case, B and D are constants. Hence summation of the degree
of A and the degree of C equals to 2, which shows that the coefficient of v is at
most 2, also a contradiction.

Then we have shown that J0(v) is irreducible over F (s). Let z be a root of
H0(u). Then

[F (s, z) : F (s)] = [F (s, z) : F (s, z2)] · [F (s, z2) : F (s)] = 4[F (s, z) : F (s, z2)].

Since τ ∈ Gal(F (s, z)/F (s, z2)) which maps z to −z is not an identity, hence
Gal(F (s, z)/F (s, z2)) �= {ι} , then [F (s, z) : F (s, z2)] � 2. Hence [F (s, z) :
F (s)] � 8, which shows that H0(u) is irreducible over F (s).

From (7), J0(v) is cubic, then if it is reducible, it should have a root in F (s),
which is factor of the constant coefficient of J0(v). However, we can confirm that
such root does not exist by enumerating all the possibilities. The remaining step
is similar to previous case. �

Lemma 4. The resolvent polynomial R(u;x, y) is irreducible over F (x, y).
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Proof. In the case that H(u;x, y) is quartic, the resolvent cubic of H(u) is

R(u;x, y) = (acx − bdy)2u3 + 2(acx − bdy)(−2cxb2ad + a3c2x + 2a2bcdy

− b3d2y)u2 − 4(a4c2 + b4d2 − a2b2cd)(acx − bdy)2u − 36 a6b2c4d2

+ 72 a4b4c3d3 − 36 a2b6c2d4 + 16 b6d3a2c2x2 + 24 b6d4a2cy2

− 24 b4d2x2a4c3 − 24 a4b4c2d3y2 + 24 a6b2c4dx2 + 16 a6c3b2d2y2

− 8 b7d4yacx − 8 a7c4bdyx − 8 b8d5y2 − 8 a8c5x2 (8)

Similar to previous lemma, we only need to show R̃(u; s, t), the transforma-
tion of R(u;x, y) such that it is defined on ψ−1(E), is irreducible over F (s, t).
Represent x, y with variable s, t, we have

R̃(u; s) = u3 + (2 ca2 + 6 s + 2 db2)u2 + (−4 b4d2 + 4 a2b2cd − 4 a4c2)u

− 24 a4c2s − 12 b2da2cs − 24 b4d2s − 8 a6c3 − 36 s2a2c − 36 s2b2d (9)

− 8 b6d3 − 36 s3

If R̃(u; s) is reducible, it must have a degree 1 factor u + A, where A ∈
F [s, t]. If A /∈ F [s], then (u + A)σ is a factor of R̃(u; s)σ = R̃(u; s). Hence

R̃(u; s)
(u + A)(u + A)σ

∈ F [s]. Without loss of generality, we suppose A ∈ F [s]. Hence

R̃(u; s) = (u+A)(u2+Bu+C), A,B,C ∈ F [s]. In this case, R̃(u; s) has a solution
in F [s] whose degree is 1, since when the value of u is a polynomial with degree
�= 1, R̃(u; s) will be equal to a polynomial whose degree greater than 0. Suppose
A = Ps + Q, P,Q ∈ F , then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B = 6s + 2b2d + 2a2c − (Ps + Q)
C = −4b4d2 + 4a2b2cd − 4a4c2 − AB

AC = −24a4c2s − 12b2da2cs − 24b4d2s − 8a6c3 − 36s2a2c − 36s2b2d

−8b6d3 − 36s3.

Then P and Q satisfies

P 2(P − 6)s3 + P (3QP − 12Q − 2Pb2d − 2Pa2c)s2+

(3Q2P − 6Q2 − 4QPb2d − 4QPa2c − 4Pa4c2 − 4Pb4d2 + 4Pa2b2cd)s+

Q(Q2 − 4 b4d2 + 4 a2b2cd − 4 a4c2 − 2Qb2d − 2Qa2c) = 0 (10)

where s is the variable. When char(F ) � 3, it can be checked that solutions of
P and Q do not exist. �
Lemma 5. Let D(x, y) be the discriminant of R(u;x, y), then D(x, y) is not a
square in F (x, y).

Proof. Similar to previous proof, we only need to show that

D̃(s, t) = D(x(s, t), y(s, t))

is not a square in F (s, t). After simplification,
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D̃(s, t) = −27 · 35 · (abcd(a2c − b2d))8

t8
· (27 s6 − (−54 a2c − 54 b2d)s5 − (−27 a4c2

− 108 a2b2cd − 27 b4d2)s4 + 2 (a2c + b2d)(8 b4d2 + 7 a2b2cd + 8 a4c2)s3

+ 3 a2b2cd(8 a4c2 − 23 a2b2cd + 8 b4d2)s2 − 24 a4b4c2d2(a2c + b2d)s

− 16 b4d2a4c2(a4c2 + b4d2 − a2b2cd)), (11)

In fact, we only need to show that G̃(s, t) = − t8

27 · 35 · (abcd(a2c − b2d))8
D̃(s, t)

is irreducible over F (s, t).
Suppose G̃ is a square in F (s, t), then F (s, t) ⊇ F (s,

√
G̃) ⊇ F (s). Note that

[F (s, t) : F (s)] = 2, either F (s,
√

G̃) = F (s, t) or F (s,
√

G̃) = F (s).
In the first case, G̃ is s(s + a2c)(s + b2d) = t2 times a square in F (s). But

divide G̃ by s(s + a2c)(s + b2d), the remainder vanishes if and only if a4c2 +
b4d2 − a2b2cd = 0.

In the second case, G̃ is a square over F (s). Suppose

G̃(s) =
(√

27s3 + Bs2 + Cs ± 4a2b2cd
√

a2b2cd − a4c2 − b4d2
)2

,

expand the right hand side of this equation and compare its coefficients of si, i =
1 to 5 with the left hand side, and it is checked there are no B,C ∈ F s.t the
equality holds. �

Remark: by similar method, we can also prove that when L/K is a cubic
extension, H(u;x, y) is irreducible over F (x, y) and its discriminant is not a
square in F (x, y).

Summarize these lemmas, we directly deduce:

Theorem 7. Let K = Fq(x, y) be the function field of E. The polynomial
H(u;x, y) introduced in (3) is irreducible over K, then when a4c2+b4d2 �= a2b2cd,
its Galois group is S4; when a4c2 + b4d2 = a2b2cd, its Galois group is S3.

In Sect. 5.2, we will use this theorem to construct a hash function indifferen-
tiable from random oracle.

4.7 Calculating the Density

Similar to Sect. 3.4, we apply Chebotarev density theorem to estimate the size
of image of fI .

Theorem 8. Let E be the generalized Huff curve over Fq defined by equation
ax(y2−c) = by(x2−d), abcd(a2c−b2d) �= 0, fI is the corresponding hash function
defined in Sect. 4.1. Then if a4c2 + b4d2 �= a2b2cd , we have

|#Im(fI) − 5
8
q| � 5

4
(31q1/2 + 72q1/4 + 67),

and if a4c2 + b4d2 = a2b2cd, we have
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|#Im(fI) − 2
3
q| � 4

3
(10q1/2 + 18q1/4 + 30).

Proof. K is the function field of E which is the quadratic extension of Fq(x),
hence d = 2, and by the property of elliptic curve, gK = 1.

In the case that a4c2+b4d2 �= a2b2cd, Gal(L/K) = S4, hence m = #S4 = 24.
ϕ is the subset of Gal(L/K) consisting at least 1 fixed point, which are conjugates
of (1)(2)(3)(4), (12)(3)(4) and (123)(4), then s = 1+6+8 = 15. Since the place v
of K of degree 1 correspond to the projective unramified points on E(Fq), hence
|#Im(fI) − N(ϕ)| � 12 + 3 = 15, where 3 represents the number of infinite
points, 12 represents the number of ramified points. Then we have

|#Im(fI) − 5
8
q| � |#Im(fI) − N(ϕ)| + |N(ϕ) − 5

8
q|

� 15 +
5
4
(31q1/2 + 72q1/4 + 55)

=
5
4
(31q1/2 + 72q1/4 + 67).

In the case that a4c2 + b4d2 = a2b2cd, Gal(L/K) = S3, hence m = #S3 = 6.
The corresponding s has the value of 4. |#Im(fI) − N(ϕ)| � 6 + 3 = 9, where
3 represents the number of infinite points, 6 represents the number of ramified
points. Hence

|#Im(fI) − 2
3
q| � |#Im(fI) − N(ϕ)| + |N(ϕ) − 2

3
q|

� 9 +
2
3
(10q1/2 + 18q1/4 + 16)

=
2
3
(10q1/2 + 18q1/4 + 30). �

5 Construction of Hash Function Indifferentiable
from Random Oracle

Let h be a classical hash function from messages to finite field Fq, we can show
that both fS ◦ h and fI ◦ h are one-way and collision-resistance according to the
fact that each point on E has finite preimage through fS and fI [16]. Hence fS ◦h
and fI ◦ h are both hash functions mapping messages to E(Fq). However, since
fS and fI are not surjective, fS ◦h and fI ◦h are easy to be distinguished from a
random oracle even when h is modeled as a random oracle to Fq [33]. Therefore,
we introduce 2 new constructions of hash functions which are indifferentiable
from a random oracle.

5.1 First Construction

Suppose f : S → G is a weak encoding [26] to a cyclic group G, where S denotes
prime field Fq, G denotes E(Fq) which is of order N with generator G, + denotes
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elliptic curve addition. According to the proof of random oracle, we can construct
a hash function HR : {0, 1}∗ → G:

HR(m) = f(h1(m)) + h2(m)G,

where h1 : {0, 1}∗ → Fq and h2 : {0, 1}∗ → Z/NZ are both classical hash
functions. HR(m) is indifferentiable from a random oracle in the random oracle
model for h1 and h2.

We only need to show fS , fI are both weak encodings to prove that HS(m) =
fS(h1(m))+h2(m)G and HI(m) = fI(h1(m))+h2(m)G are indifferentiable from
a random oracle in the random oracle model for h1 and h2. By the definition of

weak encoding [26], fS is a
2N

q
-weak encoding and fI is a

4N

q
-weak encoding,

both
2N

q
and

4N

q
are polynomial functions of the security parameter.

5.2 Second Construction

Another construction is as follows:
{

HS′ = fS(h1(m)) + fS(h2(m))
HI′ = fI(h1(m)) + fI(h2(m)).

We have proved that fS , fI are both well distributed encodings in Sects. 3.3
and 4.5. According to corollary 2 of [29], HI′ and HS′ are both indifferentiable
from a random oracle, where h1 and h2 are regarded as independant random
oracles with values in Fq.

6 Time Comparison

When q ≡ 3 (mod 4), the key step of an encoding function is calculating square
root for given element of Fq. For convenience to make comparisons, we first intro-
duce a birational map between generalized Huff curve E and short Weierstrass
curve

EW : t2 = s3+
a2b2cd − a4c2 − b4d2

3
s+

1
27

(2 a6c3−3 a4c2b2d−3 a2cb4d2+2 b6d3),

via maps

ϑ : E → EW :

(x, y) �→ (s, t) =

(
1
3

2 a2bcdy − 2 ab2cdx + xa3c2 − b3d2y

axc − byd
,
bdac

(
a2c − b2d

)

axc − byd

)

,

ς : EW → E :

(s, t) �→ (x, y) =

⎛

⎜
⎜
⎝

bd

(
s +

2
3

a2c − 1
3

b2d

)

t
,

ac

(
s +

2
3

b2d − 1
3

a2c

)

t

⎞

⎟
⎟
⎠ . (12)
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Table 1. Theoretic time cost of different deterministic encodings

Encoding Cost Converted cost

fS ES + 2I + D + S + 10M E + D + 31M

fU ES + 2I + D + 4S + 15M E + D + 39M

fE ES + 2I + D + 4S + 10M E + D + 34M

fI EC + I + 4S + 10M E + 24M

fY EC + 2I + 3S + 7M E + 30M

fA EC + 2I + 4S + 9M E + 33M

Table 2. NIST primes

Prime Value Residue (mod 3) Residue (mod 4)

P192 2192 − 264 − 1 2 3

P384 2384 − 2128 − 296 + 232 − 1 2 3

Table 3. Time cost (ms) of different square root methods on NIST

Prime P192 P384

fS 0.053 0.235

fE 0.057 0.248

fU 0.058 0.250

Therefore, we compare our encoding fS with 2 encodings: birational equiv-
alence ς in (12) composed with Ulas’ encoding function [15], denoted by fU ; ς
composed with simplified Ulas map given by Eric Brier et al., denoted by fE .

When q ≡ 2 (mod 3), the essential of an encoding function is calculating
the cube root for elements of Fq. We compare our encoding fI with Alasha’s
work [19] denoted by fA and Yu’s encoding function [32] denoted by fY . In

comparison with fA, we let c =
1
a
, d =

1
b

since Alasha only treats this special
case; in comparison with fY , we let c = d = 1, since Yu’s work can only be
applied on classical Huff curves.

We have shown that fS costs E+D+31M , fI costs E+24M . For comparison,
fU costs (ES +I +4S+11M +D)+(I +4M) = E+D+39M by Theorem 2.3(2),
[15] and the map ς in (12), while fE costs (ES + I +4S +6M +D)+(I +4M) =
E + D + 34M by [14]. Yu’s encoding fY costs EC + 2I + 3S + 7M = E + 30M ,
Alasha’s encoding fA costs EC + 9M + 4S + 2I = E + 33M (Table 1).

We do experiments on prime field FP192 and FP384 (see Table 2). General
Multiprecision PYthon project (GMPY2) [34], which supports the GNU Multiple
Precision Arithmetic Library (GMP) [35] is used for big number arithmetic. The
experiments are operated on an Intel(R) Core(TM) i5-4570, 3.20 GHz processor.
We ran fS , fU , fE , fI , fY and fA 1, 000, 000 times each, where u is randomly
chosen on FP192 and FP384.
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Table 4. Time cost (ms) comparison between fI and fA

Prime P192 P384

fI 0.053 0.233

fA 0.061 0.252

Table 5. Time cost (ms) comparison between fI and fY

Prime P192 P384

fI 0.052 0.233

fY 0.058 0.244

From the average running times listed in Table 3, fS is the fastest among
encodings which need calculate square roots. On FP192, it saves 9.19% running
time compared with fU , 7.69% running time compared with fE . On FP384, fS

saves 5.92% running time compared with fU and 5.17% running time compared
with fE . fI is also the fastest among encodings which need to calculate cube
roots. On FP192, it saves 13.20% of running time compared with fA and 8.97%
compared with fY . On FP384, the relevant percentages are 7.51% and 4.40%
(see Tables 4 and 5).

7 Conclusion

We provide two constructions of deterministic encoding into generalized Huff
curves over finite fields, namely, brief SWU encoding and cube root encoding.
We do theoretical analysis and practical implementations to show that when
q ≡ 3 (mod 4), SWU encoding is the most efficient among existed methods
mapping Fq into generalized Huff curve E, while cube root encoding is the most
efficient one when q ≡ 2 (mod 3). For any nontrivial character χ of E(Fq),
we estimate the upper bound of the character sums of both encodings. As a
corollary, hash functions indifferentiable from random oracle are constructed.
We also estimate image sizes of our encodings by applying Chebotarev density
theorem.
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Abstract. As one fundamental primitive of multivariate public key
cryptosystem, Unbalance Oil-Vinegar (UOV) signature scheme can offer
the function of digital signature with the resistance to the quantum algo-
rithm attack. By considering the large size of public key and signature
length, we propose a cubic UOV scheme by adopting the stepwise itera-
tion method in this paper. Comparing to the existing work such as the
original UOV and its improvements, the proposed scheme enjoys shorter
signature size and faster signing operation under the same security level
at the cost of larger public key size. This feature is especially desirable
in the environments where the computation resource of signer is limited
and the communication overhead matters.

Keywords: Unbalance oil and vinegar signature scheme · Multivariate
cryptosystem · Cubic polynomial

1 Introduction

The development of quantum computers will pose a threat to the safety of the
traditional public key cryptosystems based on number theoretic hard problems.
Multivariate Public Key Cryptography (MPKC) arises at this historic moment
which can be seen as a candidate to resist quantum algorithm attack. Its security
is based on the hardness of solving Multivariate Quadratic (MQ) polynomials
equation system, which is NP hard problem in the worst case. Compared with
traditional public key cryptosystems, MPKCs are very fast.

Patarin [1] proposed a multivariate public key signature scheme, named Oil
and Vinegar (OV) scheme. The key idea of OV is to construct several so-called
OV polynomials, in which the polynomials would be one degree polynomials on
the oil variables given the values of the vinegar variables. In OV scheme, the
number of oil variables is equal to the number of vinegar variables. Kipnis and
Shamir [2] found that there is no quadratic terms on the oil variables which
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made it possible to separate the oil and vinegar variables. Then, Kipnis et al.
[3] proposed the unbalance oil and vinegar signature scheme (UOV) in which
the number of vinegar variables is greater than the oil’s. Unfortunately, the Oil-
Vinegar separation attack can also work on it. In order to resist this attack, the
number of the vinegar variables should be 2 times over the oils. Hence the public
key and the length of signature were increased.

Since then, many people followed their work on how to break the UOV scheme
and how to improve the efficiency. Ding et al. [4] proposed a multi-layered UOV
scheme, named Rainbow. This scheme greatly improved efficiency of UOV, but it
is also facing the threat of separating the oil and vinegar space [5]. Petzoldt et al.
[6–9] used the linear recurring sequences (LRS) and the cyclic matrix methods
to optimize Rainbow and UOV’s key generation. This method makes the size
of public key reduced by 86 % and 62 % respectively, while it also accelerate
the speed of signature verification. But the length of signatures in them are the
same as in the original UOV and Rainbow. Although Petzoldt et al. reduced
the public key size of the UOV, the length of signature is still 3 times over the
length of the message or its hash to be signed. Furthermore, in order to against
the hybrid approach [10] for solving multivariate systems over finite fields, the
recommended parameters of UOV and UOVLRS are set to be q ≥ 28, o ≥ 26,
and v ≥ 52.

In order to resist the oil-vinegar separating attack and to shorten the length
of signature, we combine the UOV skill with stepwise iteration method to recon-
struct the central map in UOV scheme. Firstly, we randomly choose an OV poly-
nomial f1 and a set of one degree polynomials f2, . . . , fo on the oil and vinegar
variables. Then we construct some cubic polynomials and quadratic polynomi-
als by multiplying f1, f2, . . . , fo and plus some random quadratic polynomials
on the vinegar variables. In signature generation, we can use stepwise iteration
method to inverse the central map. The new scheme has enough cross-items
on the oil variables. It can resist the oil and vinegar separation attack and the
number of vinegar variables need not be bigger than the number of the oils.
According to our analysis, the cubic UOV scheme has smaller public key size,
shorter signature length, and higher efficiency than the original scheme under
the same secure level. But our scheme has bigger public key size and lower speed
of verification than some improvements of UOV, such as UOVLSR2, Rainbow,
cyclicRainbow etc.

The paper is organized as follows. In Sect. 2, we describe the basic idea of
original unbalance oil and vinegar scheme and its cryptanalysis. Then we present
our improved unbalance UOV scheme in Sect. 3. In Sect. 4, we give cryptanalysis
of our scheme. We suggest the parameters in practice and present the efficiency
comparison to the original UOV scheme and its improvements in Sect. 5. Finally,
we conclude the paper.

2 The Original UOV Signature Scheme

In this section, we will give brief description of the OV and UOV scheme and
the security of these schemes.
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2.1 OV and UOV Signature Scheme

We use the same notations as in [3]. Let K = Fq be a finite field with q elements.
Let o and v be two positive integers and set n = o+v. Let y = (y1, . . . , yo) be the
message (or its hash) to be signed, where yi ∈ K. The signature x is represented
as an element of Kn, denoted by x = (x1, . . . , xn). Let u1, . . . , uo be oil variables
and û1, · · · , ûv are vinegar variables, denoted u = (u1, . . . , uo, û1, · · · , ûv). The
central map F of UOV consists of polynomials of the form:

yk = fk(u1, . . . , uo, û1, · · · , ûv)

=
o∑

i=1

v∑

j=1

aijuiûj +
v∑

i=1

v∑

j=1

bij ûiûj +
o∑

i=1

ciui +
v∑

j=1

dj ûj + e

To invert F , one can randomly chooses the values of vinegar variables
û1, · · · , ûv and substitutes them into F . Then one can gets a system of linear
equations in the oil variables u1, . . . , uo. Solving this system can get the values
of the oil variables. If there is no solution of this system, one has to choose other
values of the vinegar variables.

To hide the structure of F the central map in the public key, one should ran-
domly choose an invertible affine map S : Kn → K

n: (u1, . . . , uo, û1, . . . , ûv) �→
S(x1, . . . , xn).

So, the public key is the map P = F ◦ S and the private keys consist of F
and S. The more details of signature and verification process can be seen in [3].

In Patarins original paper [1], it was suggested to choose o = v (Balanced
Oil and Vinegar (OV)). After this scheme was broken by Kipnis and Shamir [2],
it was recommended to choose v > o (Unbalanced Oil and Vinegar (UOV) [3]).

2.2 Security of UOV

In the expressions of the central map of both OV and UOV, there are no
quadratic terms in the oil variables. Due to this fact, the Kipnis-Shamir attack
can work on both OV and UOV. In order to resist this attack, one should increase
the rate of vinegar variables in the central map. In [3], it was recommended
that v = 2o. Furthermore, for o ≥ 26 equations and v = 2o Vinegar vari-
ables, the UOV scheme over GF (28) seems to be secure against Hybrid approach
attack [10].

3 Cubic UOV

We use the same notations as in Sect. 2.1
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3.1 Basic Idea of Improvement

In order to be immune to the Kipnis-Shamir attack, we want to reconstruct
the central map of UOV using polynomial products which can introduce many
quadratic terms in the oil variables in the central map. Randomly choose one
oil-vinegar polynomial f1(u1, . . . , uo, û1, . . . , ûv) and o − 1 linear polynomials
fi(u1, . . . , uo, û1, . . . , ûv), 2 ≤ i ≤ o in K, we get a map F̄ : Kn → Ko, as
follows, where all the coefficients are belong to K.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = f1(u1, . . . , uo, û1, . . . , ûv)

=
o∑

i=1

v∑

j=1

a1ijuiûj +
v∑

i=1

v∑

j=1

b1ij ûiûj +
o∑

i=1

c1iui +
v∑

j=1

d1j ûj + e1

z2 = f2(u1, . . . , uo, û1, . . . , ûv) =
o∑

i=1

a2iui +
v∑

j=1

b2j ûj + c2

z3 = f3(u1, . . . , uo, û1, . . . , ûv) =
o∑

i=1

a3iui +
v∑

j=1

b3j ûj + c3

...

zo = fo(u1, . . . , uo, û1, . . . , ûv) =
o∑

i=1

aniui +
v∑

j=1

bnj ûj + cn

(1)

Then we construct a map F̂ : Kn �→ Ko like follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y1 = r1(z1 + z1z2) + g1
y2 = r2z1z2 + g2
y3 = r3(z1 + z2)z3 + g3

...
yo = ro(zo−2 + zo−1)zo + go

(2)

where ri �= 0(1 ≤ i ≤ o) are the elements randomly chosen from K. gi(1 ≤ i ≤ 3)
are random cubic polynomials in the vinegar variables û1, · · · , ûv while the others
are quadratic. y = (y1 . . . , yo) be the message (or its hash) to be signed.

Let F = F̂ ◦ F̄ . Given the values of y′ = (y′
1, . . . , y

′
o), the inverse of F can

be derived as follows. Randomly choosing the values of the vinegar variables
û1 = û′

1, · · · , ûv = û′
v and substituting them into the system (2), we get a

system in the unknowns zi (1 ≤ i ≤ o). From the first two equations in this
system, we can obtain the value of z1 = z′

1. And then we can calculate the
values of zi = z′

i(2 ≤ i ≤ o) step by step. Substituting z′
i(1 ≤ i ≤ o) and the

values of the vinegar variables û1 = û′
1, · · · , ûv = û′

v into the system (1), we
get a linear equations system in the oil variables u1, . . . , uo. Solving this system,
we obtain the values of the oil variables, denoted by u′

1, . . . , u
′
o. So, the vector

(u′
1, . . . , u

′
o, û

′
1, . . . , û

′
v) is the inverse of F corresponding to the y′ = (y′

1, . . . , y
′
o).

Remark1. Note that, if zi = 0 or zi+1 = 0 (1 ≤ i ≤ o), we can not find the
inverse of F . In this case, we should reselect the values of vinegar variables.

Remark2. In formula (2), there are three cubic polynomials y1, y2, y3 and o−3
quadratic polynomials.
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3.2 Proposed Scheme

We use the map F = F̂ ◦ F̄ as the central map in UOV. To hide the structure
of the central map, we should also randomly choose an invertible affine map
S : Kn → K

n:
(u1, . . . , uo, û1, . . . , ûv) = S(x1, . . . , xn).
Let P = F ◦ S. We can now fully describe the cubic UOV scheme.

Public Key. The public key consists of the following items.

(1) The field K, including the additive and multiplicative structure.
(2) The map P = F ◦ S or equivalently, its components: p1, p2, . . . , po ∈

K[x1, x2, . . . , xn].

Private Information. The private key consists of the following items.

(1) The invertible affine transformation S : Kn → K
n.

(2) The map F̂ and F̄ .

Signature Generation. Let y′ = (y′
1, . . . , y

′
o) be the document or its hash to

be signed. First the signer computes

(z′
1, . . . , z

′
o) = F̂−1(y′

1, . . . , y
′
o),

for some random choice of (û′
1, . . . , û

′
v) ∈ Kv. And then the signer computes

(u′
1, . . . , u

′
o) = F̄−1(z′

1, . . . , z
′
o, û

′
1, . . . , û

′
v).

At last, the signer computes the signature of y′ = (y′
1, . . . , y

′
o) as

(x′
1, . . . , x

′
n) = S−1(u′

1, . . . , u
′
o, û

′
1, . . . , û

′
v).

Signature Verification. To verify (x′
1, . . . , x

′
n) is indeed a valid signature of

the message y′ = (y′
1, . . . , y

′
o), the recipient determines whether or not

P (x′
1, . . . , x

′
n) = (y′

1, . . . , y
′
o).

Remark3. Due to the special structure of our central map, the public key of
our scheme contains three cubic polynomials and o − 3 quadratic polynomials.

4 Security of Cubic UOV

In this section, we will study the known attacks against UOV signature scheme
and their effect on our scheme.
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4.1 Linearized Equations Attack

Linearization equations attack is an important tool against MPKC [11,12]. In
general, one should consider the first order linearization Eq. (3) and second order
linearization Eq. (4) of form as follows.

n,o∑

i=1,j=1

aijxiyj +
n∑

i=1

bixi +
o∑

j=1

cjyj + d = 0. (3)

∑
aijkxiyjyk +

∑
bijxiyj +

∑
cixi +

∑
djkyjyk +

∑
ejyj + f = 0. (4)

If one can find some linearization equations, he/she may forge a valid signature
with the help of linearization equations.

Due to the gi(1 ≤ i ≤ o) are randomly chosen cubic polynomials or quadratic
polynomials, we can not deduce linearization equations like Eqs. (3) and (4) in
theoretical analysis. Hence, we did many computer experiments to check them.
To find a linearization equation is to find coefficients in Eqs. (3) or (4). To do
this, we first calculate the number N of coefficients in Eqs. (3) or (4). Then,
randomly generate sufficiently many (greater than N) message/signature pairs
and substitute them into Eqs. (3) or (4), we get a linear equation system of
unknown coefficients. In all of our experiments, the linear equation systems have
no solution. So, the linearization equations attack can not work on our scheme.

4.2 Rank Attack

There are two different types of rank attack. The first one is called MinRank
attack, the other is called HighRank attack. We will consider these two attacks
against the Cubic UOV.

In the MinRank attack, one wants to recover the private key of MPKCs
whose quadratic form associated to the homogeneous quadratic parts is of low
rank. In this attack, one tries to find linear combinations H =

∑m
i=1 aiHi, where

all Hi have low rank. According to [13], the complexity of MinRank attack is
qtsm3, where s is the minimum rank, t =

⌈
m
n

⌉
. In our scheme, s ≈ o, t = 1,

q =28, when o ≥ 10, the complexity is at least O(280).
In HighRank attack, one tries to find the variables appearing the lowest

number of times in the central map. These are the oil variables in our scheme.
According to [13], the complexity of HighRank is qw(wn2 + n3/6), where w is
the minimal number of appearance in central map for any plaintext variables. In
our scheme, w ≈ o. When o ≥ 10, the complexity of this attack is greater than
O(280).

So when we choose q = 28 and o ≥ 10, our scheme would immune to Rank
attacks.
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4.3 Oil-Vinegar Separation Attack

The key point of Oil-vinegar Separation attack is that the quadratic part of
each oil-vinegar polynomial can be represented as a quadratic form with a cor-
responding n × n matrix of the form:

(
0 A
B C

)
.

The up left o×o zero submatrix is due to the fact that there are no quadratic
terms in the oil variables. This resulted in separating the oil variables to the
vinegar variables. Consequently, the adversary can create an equivalent private
key and therefore can forge valid signatures for arbitrary messages. The more
details of this attack can be see in [2,3].

In our scheme, the quadratic part of each polynomial in the central map can
be represented as a quadratic form with a corresponding n × n matrix of the
form: (

D A
B C

)
.

The up left o × o submatrix D is not a zero matrix due to the fact that there
are many quadratic terms in the oil variables.

Hence, the Oil-vinegar Separation attack cannot work on our scheme.

4.4 Direct Attacks

A direct attack on a MPKC signature scheme is that solve the system P (x) = y′

to forge a signature for a given message y′ by Gröbner Basis method and its
variants such as F4 and F5 [14]. According to the paper [15], the complexity of
F5 is upper bounded by

O

((
nx + ny + min(nx + 1, ny + 1)

min(nx + 1, ny + 1)

)ω)
,

where nx is the number of plaintext variables, ny is the number of ciphertext
variables and 2 ≤ ω ≤ 3 is the linear algebra constant. Let o = 30, v = 10,
q = 28, then the complexity of the direct attack on our scheme by F5 is greater
than 287.

Hybrid approach [10], like FXL [16], mixes exhaustive search with Gröbner
bases techniques. Instead of computing one single Gröbner basis of the whole
system, this approach compute the Gröbner bases of #K

r subsystems which
obtained by fixing r variables. The complexity of Hybrid is:

o

(
min

0≤r≤m

(
(#K)r ·

(
m ·

(
m − r − 1 + dreg(m − r,m, d)

dreg(m − r,m, d)

))ω))
.

Let o = 30, v = 10, q = 28 in our scheme. The best tradeoff for our scheme
is to fix 7 variables. Then the complexity of the Hybrid approach on our scheme
is greater than 283.
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5 Comparison and Efficiency

In Table 1, we compare the cubic UOV, the original UOV, UOVLSR2, and Rain-
bow in the key size and the efficiency under the same secure level. The results of
UOV, UOVLSR2, and Rainbow are all come from the reference [17]. According
the Table 1, our scheme has shorter signature than the original UOV, Rainbow,
UOVLRS2, cyclicUOV, and cyclicRainbow under the same secure level, though
the public key size is greater than those improvements of UOV.

And in Table 2, we compare the running time about the each process of
the original UOV, Rainbow, UOVLRS2, cyclicUOV, cyclicRainbow and CUOV
under the same secure level. According Table 2, the speeds of key generation and
signature in our scheme are faster than the original UOV, Rainbow, UOVLRS2,
cyclicUOV. But, the verification is slower than the improvements of UOV. All of

Table 1. Sizes comparison

Scheme Hash length (bit) Signature length (bit) Public key
size (KB)

UOV(28,28,56) 224 672 99.9

UOVLRS2(28,28,56) 224 672 13.5

cyclicUOV(28,28,56) 224 672 16.5

Rainbow(28,17,13,13) 208 344 25.1

cyclicRainbow(28,17,13,13) 208 344 10.4

CUOV(28,28,8) 224 272 33

UOV(28,30,60) 240 720 122.6

UOVLRS2(28,30,60) 240 720 16.4

cyclicUOV(28,30,60) 240 720 20.0

Rainbow(28,20,18,9) 216 376 31.0

cyclicRainbow(28,20,18,9) 216 376 12.8

CUOV(28,30,10) 240 320 47.5

Table 2. Efficiency comparison

Scheme Key generation (s) Signature
generation
(ms)

Signature verify (ms)

UOV(28,24,48) 53.046 56.01 25.05

UOVLRS2(28,28,56) 37.152 4.521 0.20

cyclicUOV(28,28,56) 37.152 4.521 0.23

Rainbow(28,17,13,13) 4.923 4.163 0.29

cyclicRainbow(28,17,13,13) 2.377 2.01 0.14

CUOV(28,28,8) 0.531 3.56 8.28
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our experiments were performed on a normal computer, with Intel Core i5-3470
CPU, 3.2 GHz, 4 GB RAM by Magma.

6 Conclusion

In this paper, we proposed a cubic UOV signature scheme by combining UOV
and stepwise iteration method. Our scheme can avoid oil-vinegar separation
attack. And our scheme can resist Gröbner basis attack and Hybrid approach
attack for carefully choosing parameters, for example, o = 30, v = 10, q = 28.
Moreover, our scheme has lower public key size, shorter signature and faster than
the original UOV under the same secure level.
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Abstract. UOV is one of the earliest signature schemes in Multivariate
Public Key Cryptography (MPKC). It also poses a strong security and
none of the existing attacks can cause severe security threats to it. How-
ever, it suffers from a large key size. In this paper, we will propose two
approaches to build variants of UOV with shorter private key size and
faster signature generating process.

Keywords: Multivariate public cryptography · UOV · Rainbow

1 Introduction

In post-quantum era, with the emergence of the powerful quantum computers,
public key algorithms based on traditional number theory will be extremely
vulnerable. Popular algorithms such as RSA, ECC, Elgamal will be broken in
a polynomial time according to Shor’s algorithm [17,18]. Thereby, finding an
alternative of these algorithms is very urgent. Multivariate public key cryptog-
raphy (MPKC) is one of the most promising candidates in post-quantum cryp-
tography. Other important branches include: (1) Lattice-based cryptography;
(2) Code-based Cryptography; (3) Hash-based Cryptography and so on.

A MPKC scheme is usually built as P = S ◦ F ◦ T in which S and T are
invertible linear affine transformations used to cover the structure of central
map F and make P look random. F is a special set of quadratic multivariate
polynomials which could be inverted efficiently. To sign a message M , the signer
could compute X = S−1(M), Y = F−1(X), Z = T−1(Y ) in order and output
Z as the signature. To verify the correctness of this signature, signature receiver
could check if M = P (Z). If it matches, accept. Otherwise, reject. Because of
the property that they are normally efficient in computing, MPKC schemes are
appropriate for applications on portable devices such as smart card, RFID. Its
security relies on a hard problem that solving a random system of multivariate
quadratic equations over a finite field is NP-hard. Current research indicates
that a quantum computer couldn’t solve this kind of problem in a polynomial
time.
c© Springer International Publishing Switzerland 2016
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Since the first MPKC scheme: MI [8] was proposed in 1988, this area has
undergone a rapid development in last two or three decades. A lot of encryption
and signature schemes have been proposed, e.g., HFE [11], TTS [20], etc. Among
them, UOV is one of the signature schemes with the most strong security. None
of the existing attack poses real security threats to it while a lot of other MPKC
schemes are vulnerable to attacks like MinRank [20], High Rank attack [5,20],
Direct attack, Differential attack [5], Rainbow Band Separation attack [5,19]
and so on. Consequently, UOV is an ideal choice for a signature scheme when
security is the top priority.

However, like a regular MPKC scheme, it also suffers from overlarge key size
(includes public key and private key size). This flaw can restrict its applications
on some devices with limit storage. Thereby, to come up with a secure signature
scheme with compact key size is one of the main goals in the research of MPKC.
A lot of effort has been made in this area in the recent years. For example, TTS
could be viewed as a special case of Rainbow with sparse private key. In [12–
14], the authors proposed to insert some special sequences into the generation
of public key to save some memory. This method’s effect is quite obvious. The
public key size is reduced by a factor up to more than 7 for UOV. This method
could also speed up the verification process according to the conclusion made in
[16]. In [21–23], the authors were enlightened and proposed two ways to reduce
the private key size of Rainbow and improve the efficiency of signature generation
in the meanwhile. In [22], the author combined those two methods to further
reduce the private key size and improve the efficiency.

However, research of reducing the private key size of UOV hasn’t been made
yet. In this paper, inspired by the previous research, we will propose two variants
of UOV with shorter private key size and higher signature generation efficiency.

The structure of this paper is as follows: First of all, we’d like to introduce
the general UOV [4] and Rainbow [4] signature schemes. Then we introduce the
existing methods that could be used to reduce the public key or private key size.
Next, inspired by the existing methods, we would like to propose two variants
of UOV with shorter private key size and faster signature generation. At fourth,
we’d like to make a security analysis of our schemes by applying existing known
attacks to them. During the security analysis, we also slightly modify the existing
Kipis-Shamir attack [2] against UOV based on even characteristic field since the
original one doesn’t work. Fifth, we make an overall comparison with the original
UOV concerning to two widely accepted security levels: 280 and 2100. Finally,
we make a conclusion.

2 An Introduction of the Regular UOV and Rainbow

UOV and Rainbow are two well-known MPKC signature schemes. Both of them
are based on a small field and Rainbow could be regarded as a multi-layer exten-
sion of UOV. In this section, we will introduce those two signature schemes.
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2.1 UOV

To figure out what UOV is, first of all, we’d like to introduce the concept of
Oil-Vinegar polynomial with the following form:

f =
o∑

i=1

v∑

j=1

aijxix
′
j +

v∑

i=1

v∑

j=1

bijx
′
ix

′
j

+
o∑

i=1

cixi +
v∑

j=1

djx
′
j + e (1)

Variables are divided into two kinds in the above polynomial: Oil variables (xi)
and Vinegar variables (x′

j). The number of Oil variables is o and the number
of the Vinegar variables is v. Central map F can be composed of o Oil-Vinegar
polynomials. The invertibility of the central map comes from the fact that once
random values are assigned to the vinegar variables set, it becomes a set of linear
equations of Oil variables and can be efficiently solved by Gaussian Elimination.

Once the central map F is determined, the public key can be calculated as:

P = F ◦ T (2)

in which T is a linear affine transformation. There’s no need to composite a
linear affine transformation on the left side of the central map F since it will
not affect its security (The central map polynomials will still be the Oil-Vinegar
form after the composition of the linear affine transformation on the left).

Define d = v−o, when d = 0, it’s called balanced Oil-Vinegar scheme (OV for
short) while when d > 0, it’s known as Unbalanced Oil-Vinegar scheme (UOV)
[9]. The balanced Oil-Vinegar scheme can be easily broken by the Kipnis-Shamir
attack [10]. The extended Kipnis-Shamir attack could also be used to attack
UOV [9]. The complexity of this attack can be determined by: qv−o−1o4. Thereby,
the designer could adjust corresponding parameters to meet the required security
level.

2.2 Rainbow

Rainbow is a multi-layer extension of UOV. Each layer is an independent UOV
scheme. All the variables of the previous layer could be viewed as the vinegar
variables of the next layer. More specifically, the relations of the variables of
different layers could be denoted as:

[x1, ..., xv1 ]{xv1+1, ..., xv2}[
x1, ..., xv1 , xv1+1, ..., xv2

]{xv2+1, ..., xv3}[
x1,..., xv1 , xv1+1, ..., xv2 , xv2+1, ..., xv3

]{xv3+1, ..., xv4}
...[

x1,..., ..., ..., ..., ..., ..., ..., ..., ..., ..., xvu

]{xvu1+1, ..., xn}
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in which [x1, ..., xvi
] represents ith layers’ Vinegar variables and {xvi+1, ..., xvi+1}

represents ith layers’ Oil variables. Also, in those layers, vi represents the number
of the Vinegar variables and oi represents the number of Oil variables of ith layer
and we have vi+1 = vi+oi apparently. Each layer has oi Oil-Vinegar polynomials
and m = o1+o2+, ...,+ou polynomials in total. The number of variables in total
is v1 + o1 + o2, ...,+ol = vu+1 = n. The structure of a u-layer Rainbow is
denoted as:

(v1, o1, ..., ou−1, ou).

The public key of Rainbow is built as:

P = L1 ◦ F ◦ L2 (3)

Unlike UOV, to build the public key of Rainbow, a bijective linear transformation
L1 must be composited to cover the structure difference of different layers.

In the signing process, to invert the central map F of Rainbow, the signer
needs to assign a random set of values to the Vinegar variables of the first layer
and solve the Oil variables of the first layer. Next, the signer substitutes all the
variables of the first layer to the second layer as the Vinegar variables of this
layer and solve this layer’s Oil variables. The signer repeat this process till all
layer’s variables are solved and outputted as the solution. The rest part of the
signing process is the same as a regular MPKC scheme.

3 Existing Methods to Reduce the Public Key
and Private Key Size

In this section, we will describe some existing methods that could be used to
reduce the public key or private key size of UOV and Rainbow.

3.1 Methods to Reduce the Public Key Size

In [13–15], the authors proposed two methods to reduce the public key size of
UOV and Rainbow by using two kinds of sequence: Cyclic Sequence and Linear
Recurring Sequence and insert them to the public key polynomials’ correspond-
ing matrices.

In those two methods, the public polynomials’ coefficients of quadratic terms
are no longer denoted as m traditional n × n matrices (Symmetric or Upper-
triangular). They are denoted as a single (n+1)·(n+2)

2 × m maucaley matrix MP .
Each row corresponds to one public key polynomials’ coefficients of quadratic
terms. The authors further divide MP into tow parts:

MP = (B/C) (4)

in which B denotes the coefficients of the Vinegar-Vinegar quadratic cross-terms
and Oil-Vinegar quadratic cross-terms, and C denotes Oil-Oil cross-terms. The
corresponding central map can be denoted as a matrix:

MF = (Q/0) (5)
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Since P is generated by F and T , MP and MF also have the relation:

MP = MF · A (6)

where A can be computed by coefficients of T .
The essential part of building the public key with reduced key size is to

generate B in MP using a particular sequence. Once B is assigned values, MF

can be computed by the relations revealed in (6). As long as MF is known,
the rest of MP :C can be further computed. As to the sequences to generate
B, Cyclic Sequence and Linear Recurring sequence are involved. In the case of
Cyclic Sequence, matrix B can be represented as:

⎡

⎢
⎢
⎢
⎣

b1 b2 ... bD
bD b1 ... bD−1

...
...

. . .
...

bD−m+2 bD−m+3 ... bD−m+1

⎤

⎥
⎥
⎥
⎦

From the above form, we can see that only the first row of B is generated by
random, the ith row of B is generated by cyclic right shifting i − 1 position of
the first row. This method is later extended in [23] to build the central map of
Rainbow. In this paper, the authors used a rotation sequence of matrices rather
than a Cyclic Sequence of rows in a single matrix.

The other sequence that could be used to reduce the public key size is called
Linear Recurring Sequence. The definition of this sequence is given as:

Definition: Given a positive constant number L, and L random elements in
GF (q): α1, α2, ..., αL. Given the initial values: {s1, s2, ..., sL}, the Linear Recur-
ring Sequence (LRS) is a sequence {s1, s2, ...} generated by: sj = α1sj−1 +
α2sj−2 + ... + αLsj−L(j > L).

L is defined as the length of this sequence. Apparently, this linear recurring
sequence can be also used to generate matrix B to reduce the public key size.
Elements of B in (4) can be computed as: bij = sD(i−1)+j(i = 1, ...,m, j =
1, ...,D). Variables need to store are: α1, α2, ..., αL and {s1, s2, ..., sL}.

3.2 Method to Reduce the Private Key Size of Rainbow

In [21], authors proposed another way to reduce the private key size of Rainbow:
Matrix-based Rainbow. Assume the rainbow has l layers and with structure:
(v1, o1, ..., ol). Solving each layer’s variables actually ends up with solving a sys-
tem linear equations with the form:

L · X = V (7)

in which L is a oi × oi coefficient matrix generated after assigning values to
vinegar variables of i th layer, and X is the vector of length oi composed of
the unknown oil variables. V is the constant vector with length oi. To save
storage of the private key, the above equation can be further divided into di
parts. Assume oi = di × o′

i, V = (V1, V2, · · · , Vdi
), X = (X1,X2, · · · ,Xdi

), we
will have:
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Lk · Xk = Vk, k = 1, ..., di; (8)

To solve Eq. (7), the signer can solve (8) separately to improve the efficiency. To
achieve this goal, L should have the following form:

L =

⎛

⎜
⎜
⎜
⎝

A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

⎞

⎟
⎟
⎟
⎠

(9)

in which A is a o′
i × o′

i matrix. To solve Eq. (7) by regular Gaussian Elimination
method, the complexity will be around O(oi3). However, in this new method,
it will drop to o′

i
3 (equation in (8) can be solved simultaneously, since Lk is

identical corresponding to A in L). As to how to construct a L in the above
form, the constructor needs to choose coefficients of each layer’s Oil-Vinegar
cross-terms and Oil linear terms accordingly. Details won’t be described here,
interested readers could refer to [21].

In [22], the author combined those two methods: Matrix-based Rainbow and
NT-Rainbow to build a more compact and efficient rainbow.

4 Our Construction

In our construction, inspired by the previous works, we’d like to extend the
rotating matrix sequence and Matrix-based Rainbow method to UOV. Also,
we’d like to bring in the Linear Recurring Sequence method to build another
variant of UOV with shorter key size and faster signature generation.

4.1 UOV Variant 1

First of all, we determine the values of the coefficients of Vinegar-Vinegar cross-
terms. Apparently, these coefficients can also be denoted as a rotating sequence
of matrix. Suppose an UOV is based on GF (q), the number of Vinegar-variables
is: v and the number of Oil-variables is: o. We have n = v + o, m = o. The
coefficients of Vinegar-Vinegar cross-terms are denoted by the following matrix
sequence.

B1 =

⎡

⎢
⎢
⎢
⎣

b1,1 b1,2 ... b1,v
b2,1 b2,2 ... b2,v
...

...
. . .

...
bv,1 bv,2 · · · bv,v

⎤

⎥
⎥
⎥
⎦

, B2 =

⎡

⎢
⎢
⎢
⎣

bv,1 bv,2 ... bv,v
b1,1 b1,2 ... b1,v
...

...
. . .

...
bv−1,1 bv−1,2 · · · bv−1,v

⎤

⎥
⎥
⎥
⎦

,

..., Bl =

⎡

⎢
⎢
⎢
⎣

bv−l+2,1 bv−l+2,2 ... bv−l+2,v

bv−l+3,1 bv−l+3,2 ... bv−l+3,v

...
...

. . .
...

bv−l+1,1 bv−l+1,2 · · · bv−l+3,v

⎤

⎥
⎥
⎥
⎦
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in which 1 ≤ l ≤ o.The lth matrix is generated by down rotating l − 1 rows of
the first matrix. All the indexes are values modulus v.

Also, the method used to build Matrix-based Rainbow can also be applied
to our UOV construction. First of all, we need to generate the corresponding
coefficients to make sure the linear equations to solve during the signing process
is in the form of (8) and L be the form of (9).

First of all, assume o = d × o′. If central map’s polynomials are denoted as:

g(v+l)(x) = xTA(v+l)x + B(v+l)x + C(v+l), x = (x1, x2, ..., xn)T , l = 1, ..., o (10)

in which A(v+l) is a n × n matrix, B(v+l) is a vector with length n and C(v+l) is
a constant. A(v+l) can be further denoted as:

A(v+l) =
(

A0
(v+l) A1

(v+l)

0 0

)
, l = 1, ..., o (11)

where A0
(v+l) = c(i, j) is a v × v matrix corresponding to the coefficients

of Vinegar-Vinegar cross-terms and can be denoted by Bl. If it’s in a upper-
triangular form, then:

c(i, j) =

⎧
⎨

⎩

bi−l+1,j + bj−l+1,i (i < j)
bi−l+1,j (i = j)
0 (else)

(12)

On the other hand, A0
(v+l) can also be represented by Bl directly.

Also, to extend the Matrix-based Rainbow to UOV construction, the v × o
matrix A1

(v+l) is the most crucial part to this construction. It determines L’s
form. A1

(v+l) should have the shape:

A1
(v+io′+j) = (

io′
︷ ︸︸ ︷
0, ..., 0, aj ,

(d−i−1)o′
︷ ︸︸ ︷
0, ..., 0 ), (0 ≤ i ≤ d, 0 ≤ j ≤ o′) (13)

in which 0 represents a zero v-dimensional vector and aj represents a random
v × o′ sub-matrix.

Next, we determine the values of B(v+l) and it can be further divided into:

B(v+l) = (B0
(v+l), B1

(v+l)), l = 1, ..., o (14)

in which B0
(v+l) is a random vector in length v and B1

(v+l) is a vector with
length o of the form:

B1
(v+ho′+j) = (

ho′
︷ ︸︸ ︷
0, ..., 0, bj ,

(d−h−1)o′
︷ ︸︸ ︷
0, ..., 0 ), (0 ≤ h < d, 0 < j < o′) (15)

in which 0 represents 0 and bj is a vector of length o′ . Together, bj and aj can
determine a row of A in Eq. (9).

At last, C(v+l) can be a random constant.
This construction is similar to the case of building a sparse Rainbow with

higher efficiency in signing [22]. It could be viewed as an extension to UOV.
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4.2 UOV Variant 2

Moreover, since the linear recurring sequence can also be used to build a MPKC
scheme with shorter public key, we’d like to extend this method to UOV.

Normally, a regular linear recurring sequence is hard to explore a property of
improving signing efficiency. In [12], authors proposed a special linear recurring
sequence which could be used to reduce the public key size and enhance verifying
efficiency in the meanwhile. Instead of using one linear recurring sequence, the
authors used o different linear recurring sequences with length 1. All the initial
values for these o sequences are 1 for simplicity.

Inspired by that, we would also like to explore a special way to utilize lin-
ear recurring sequence to reduce private key size and enhance signing efficiency.
In our new construction, the linear recurring sequence is used to generate the
coefficients of Vinegar-Vinegar cross-terms. We use a upper-triangular matrix to
represent the corresponding cross-terms’ coefficients. Under this circumstance,
v·(v+1)

2 linear recurring sequences of length 1 are needed. The first matrix is com-
posed of initial values of these sequences and they are totally random instead of
being 1. The rest matrices are generated by the elements of these linear recurring
sequences. They should be in the form of:

B1 =

⎡

⎢
⎢
⎢
⎣

b11 b12 ... b1v
0 b22 ... b2v
...

...
. . .

...
0 0 · · · bvv

⎤

⎥
⎥
⎥
⎦

, B2 =

⎡

⎢
⎢
⎢
⎣

b11 · α b12 · α ... b1v · α
0 b22 · α ... b2v · α
...

...
. . .

...
0 0 · · · bvv · α

⎤

⎥
⎥
⎥
⎦

,

..., Bl =

⎡

⎢
⎢
⎢
⎣

b11 · αl−1 b12 · αl−1 ... b1v · αl−1

0 b22 · αl−1 ... b2v · αl−1

...
...

. . .
...

0 0 · · · bvv · αl−1

⎤

⎥
⎥
⎥
⎦

Apparently, this matrix sequence can be directly substituted into A0
(v+l).

As to how to determine the values of A1
(v+l), B(v+l) and C(v+l), we do the

same as UOV variant 1.

4.3 Parameters Summarization

Based on the previous description of how to construct our UOV variants, we list
the parameters needed to build the central map of them:

(1) aj : a v × o′ sub-matrix corresponding to the non-zero coefficients of cross-
terms between Vinegar variables and Oil variables, j = 1, ..., o′.

(2) B1: the initial matrix of a matrix sequence corresponding to the coefficients
of cross-terms between Vinegar variables and Vinegar variables. The matrix
sequence can be generated by a rotation sequence of matrix or some linear
recurring sequences.

(3) α: If coefficients of Vinegar-Vinegar cross-terms are generated by linear
recurring sequences of length 1, this element is needed.
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(4) bj : a o′ dimensional vector corresponding to non-zero coefficients of linear
terms of Oil variables, j = 1, ..., o′.

(5) B
(v+l)
0 : vector in length v corresponding to coefficients of linear terms of

Vinegar variables, l = 1, ..., o.
(6) C(v+l): the constant part in central map, l = 1, ..., o.

4.4 Private Key Size

After giving the parameters needed to generate the central map, we can calculate
the required private key size to build these tow UOV variants.

First of all, we calculate the required storage size for central map. This can
be calculated by simply add the size of (1)–(6) in previous section which is:

Variant 1 (Rotation Sequence):

v × o′ × o′ + v × v + o′ × o′ + v × o + o = (v + 1)o′2 + v × n + o

Variant 2 (Linear Recurring Sequence):

v×o′×o′+v×(v+1)/2+1+o′×o′+v×o+o = (v+1)o′2+v×(n+o+1)/2+o+1

Secondly, we take the size of linear affine transformation into account which
is: n · (n + 1).

The total storage size needed for private key is:

(1) UOV variant 1: (v + 1) · o′2 + v · n + o + n · (n + 1)
(2) UOV variant 2: (v + 1) · o′2 + v · (n + 1) + o + n · (n + 1)

On the other hand, the private key size of a regular UOV is:

o(v · o +
v(v + 1)

2
+ n + 1) + n · (n + 1)

Values of these equations are measured by the size of a finite field element.

In this section, we only give the formulas to calculate corresponding private
key size. In the following section, specific storage size will be given after the
parameters of UOV and UOV variants are determined.

4.5 Signing Process of Our UOV Variants and Their Efficiency

In this section, we are going to describe the signing process of our tow variants
and their efficiency.

Assume the document to sign is M . First of all, the signer needs to invert
the central map S′ = F−1(M). Secondly, invert affine linear transformation T
by calculating S = T−1(S′). For our variants, this part is the same as the origi-
nal UOV. Each element in T involves an addition operation and multiplication
operation. The complexity of this process is O(n2).
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As to inverting the central map, two parts are involved:

(1) Calculate the constant parts: V of the linear equation system in (7).
(2) Invert this linear equation system: (7).

These two parts are calculated after assigning random values to Vinegar
variables. Assume the random values set assigned to Vinegar variables is: b.

Calculation of V. Specifically, V is the sum of following three parts:

(1) After assigning random values to Vinegar variables, cross-terms between
Vinegar variables xixj(i, j = 1, ..., v) become constants;

(2) After assigning random values to Vinegar variables, linear terms of Vinegar
variables xi(i = 1, ..., v) also become constants;

(3) The constant parts in central map: C(v+l), l = 1, ..., o.

Firstly, we talk about the calculation of part (1):

UOV Variant 1: To calculate constant part (1), we substitute a v dimensional
vector b into Vinegar variables and calculate bBlbT for each central equation
(l = 1, ..., o). We further denote BlbT as b′(l)T of length v. Since Bl is generated
by cyclicly down rotating l − 1 rows of B1, b′(l)T could be generated by cyclicly
down rotating l−1 positions of b′(1)T accordingly. Anyway, the signer only needs
to compute b′(1)T , the rest of b′(l)T are generated by its down rotating sequence.
At last, compute b · b′(l)T as the constant produced by Vinegar-Vinegar cross-
terms.

UOV Variant 2: For this variant, it also substitutes a v dimensional vec-
tor b into Vinegar variables and calculates bBlbT for each central equation

(l = 1, ..., o). Since bBlbT =
v∑

i=1

v∑

j=1

bibjB
l
ij and Bl

ij = B1
ij · αl−1, we have

bBlbT =
v∑

i=1

v∑

j=1

bibjB
l
ij =

v∑

i=1

v∑

j=1

bibjB
1
ij · αl−1 = bB1bT · αl−1. Thereby, the

signer only needs to compute bB1bT and bBlbT can be computed by simply
multiply αl−1.

The complexities of calculating part (1) are O(v2 + ov) = O(v2) and O(v2 +
o − 1) = O(v2) for Variant 1 and 2 respectively. Corresponding complexity of a
Regular UOV is O(o · v2).

On the other hand, the processes of calculating part (2) and part (3) are
the same as a regular UOV and their complexities are negligible to computing
part (1).

Solving L · X = V. In the signing process of a regular UOV, after assigning
random values to Vinegar variables, the remaining Oil variables can be solved by
a set of linear Eq. (7). Normally, L looks random. However, in our construction,
L will be in the form of Eq. (9) in which A can be computed as:

A =

⎛

⎜
⎝

b · a1

...
b · ao′

⎞

⎟
⎠ +

⎛

⎜
⎝

b1
...

bo′

⎞

⎟
⎠ (16)
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Furthermore, V and X are divided into d parts V = (V1, V2, · · · , Vd), X =
(X1,X2, · · · ,Xd). Consequently, the equations need to solve can be transformed
into solving a set of A · Xi = Vi independently. This can be done by a typi-
cal Gaussian Elimination in O(o′3) operations. One thing to note is that these
equations can be solved simultaneously since all the coefficients matrices are
identical: A. Thereby, in the solving process, all equations proceed the same row
transformations of A or we can directly calculate Xi = Vi × A−1.

The complexity of this process is O(o′3) for our UOV variants while for a
general UOV, it’s O(o3) = O(d3 · o′3).

4.6 General Description of Our Schemes

In this section, we are going to give a general description of our scheme.

Key Generation.

(1) Private Key: According to the required security level, choose the appropri-
ate set of parameters including finite field k = GF (q), number of Vinegar
variables v, number of Oil variables: o and o′, d. Generate the quintuple of
parameters: (aj , B

1, br, B0
(v+l), C(v+l)) for Variant 1 or six-tuple of parame-

ters (aj , B
1, α, br, B0

(v+l), C(v+l)) for Variant 2 to construct central map F .
Moreover, generate the invertible affine transformation: T : kn → kn.

(2) Public Key: Generated by P = F ◦ T : kn → km.

Sign. Input the document to sign: M ∈ km. First, invert the central map:
S′ = F−1(M). This can be done by the process given in Sect. 4.5. Next, invert
the linear affine transformation: S = T−1(S′). Output S ∈ kn as the signature.

Verify. The signer sends document-signature pair to a receiver: (M,S). Receiver
verifies the correctness of the signature by check if P (S) = M . If it matches, the
signature is legitimate. Otherwise, reject it.

Parameters Representation of Our Scheme. Normally, a UOV’s parame-
ters can be denoted as: (k, v, o). We have two variants and o = o′ ·d. Thereby, our
schemes parameters can be denoted as: V 1 (GF (k), v, o′×d), V 2(GF (k), v, o′×d)
for Variant 1 and 2 respectively.

5 Security of Our UOV Variants

In this section, we are going to make a security analysis of our UOV variants
by applying known existing attacks to them and make a comparison with regu-
lar UOV.
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5.1 Direct Attack and UOV Reconciliation Attack

Direct attack treat UOV public key as a set of quadratic equations and solve
them directly. Known efficient algorithms include Grobner bases attack F4 [6],
F5 [7] and XL algorithm [3].

UOV reconciliation attack [5] could viewed as an improved version of brute
force attack. It tries to find a sequence of basis that could transform the public
key of UOV to the central Oil-Vinegar form. However, the main part of this
attack is still direct attack. It’s complexity could be transformed into directly
solving a quadratic system of m = o equations in v variables.

For a regular UOV, since v > o, directly solving public key of UOV or
using reconciliation attack could all be transferred to directly solving an under-
defined system (number of variables is greater than the number of equations).
Before applying direct attack to an under-defined system, one should assign
random values to variables to make the whole system a generic one or over-
defined one [1]. Consequently, reconciliation attack against UOV is as difficult
as a direct attack against it since both of them end up with directly solving
a generic or over-defined system of quadratic equations with the same number
of equations: o.

On the other hand, because of the linear affine transformation T , despite the
difference of our construction of central map from a regular UOV, our variants’
public key also look totally random. Thereby, we expect our UOV variants have
the same security level against direct attack as a regular UOV.

To verify our conclusions, we are able to write magma programs about our
UOV variants and regular UOV against direct attack on a workstation: Dell
Precision T5610. We choose three small-scale groups of parameters for each
scheme. For each scheme, we test for 100 times and record their average attacking
time. The results are listed Table 1.

Table 1. Comparisons between UOV variants and regular UOV against direct attack

Schemes Regular UOV UOV variant 1 UOV variant 2

Group 1 (GF (22),4,8) (GF (22),2 × 2,8) (GF (22),2 × 2,8)

0.539 s 0.496 s 0.514 s

Group 2 (GF (5),4,8) (GF (5),2 × 2,8) (GF (5),2 × 2,8)

3.221 s 3.051 s 3.435 s

Group 3 (GF (7),3,6) (GF (7),3 × 1,6) (GF (7),3 × 1,6)

0.728 s 0.752 s 0.732 s

From this table, we can clearly see that our UOV variants’ performances
against direct attack are almost the same as regular UOV’s.
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5.2 Kipnis-Shamir Attack

This attack was proposed in [10] by Kipnis and Shamir to attack balanced Oil-
Vinegar scheme and later extended to evaluate the security of UOV scheme [9].
At first, this attack could only work on UOV based on odd characteristic field.
The complexity of this attack is qd−1 × m4 [9]. In [2], the authors extend this
attack on UOV with even characteristic field by making a small modification.
The complexity of the modified attack against UOV with even characteristic
field is qd+1 × m4

The essence of Kipnis-Shamir attack is to use public key polynomials’ corre-
sponding matrices to find the desired the hidden Oil space which could be used
to construct an equivalent private key of linear affine transformation: T .

Here, we give a brief description of the process of Kipnis-Shamir attack in [2]:

(1) Produce the corresponding symmetric matrices for the homogeneous
quadratic parts of public key’s polynomials: W1,W2, ...,Wm. If the scheme
is based on even characteristic, the entry (1,1) of each matrix is set to 1.

(2) Randomly choose two linear combination of W1,W2, ...,Wm and still
denote them as W1 and W2 in which W1,W2 is invertible. Calculate
W12 = W1 × W2

−1.
(3) Compute the characteristic polynomial of W12 and find its linear factor

of multiplicity 1. Denote such factor as h(x). Computer h(W12) and its
corresponding kernel.

(4) For each vector o in the kernel of Step 3, use oWio = 0, (1 ≤ i ≤ m) to test
if o belongs to the hidden oil space. Choose linear dependent vectors among
them and append them to set T .

(5) If T contains only one vector or nothing, go back to step 2.
(6) If necessary, find more vectors in T : o3, o4, .... Calculate Ko1 ∩ · · · ∩ Kot to

find out the hidden Oil space in which Kot is a space from which the vectors
x satisfy that otWix = 0, (1 ≤ i ≤ m).

(7) Extract a basis of hidden Oil space and extend it to a basis of kn and use it
to transform the public key polynomials to basic Oil-Vinegar polynomials
form.

For further explanation of this process, readers could refer to [2].
According to these steps, we are able to write a magma programs to test on

some small scale UOV schemes. However, we found out that step (4) isn’t enough
to test if o is in the hidden Oil space. In our experiment, it is highly possible
that vectors we found satisfy the conditions in Step (4) but don’t belong to the
hidden Oil space.

Consequently, we made a few changes to the Kipnis-Shamir attack in [2]:
If we found a new possible vector ot in hidden Oil space in step (4), we use
otWioj = 0, (1 ≤ i ≤ m, 1 ≤ j ≤ t − 1) to test if the new vector truly belongs to
hidden Oil space and this new condition is strongly enough to find the desired
vectors. If the new vector doesn’t satisfy this condition, discard it and go back
to step (2) to find a new one. Also, it is possible that after enough tries, we still
can’t find the desired new ot. The reason is that the previous vectors o1, ..., ot−1
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are also not in the hidden Oil space. Then we should discard them all and do it
from the scratch.

In our new modified Kipnis-Shamir attack, we are able to run some tests
about this attack on some small-scale regular UOV schemes. Each scheme we
test for 50 times and record its average attacking time (Table 2).

Table 2. Kipnis-Shamir attack against regular UOV

Schemes (GF (3),3,6) (GF (3),4,8) (GF (22),3,6)

Attacking time 12.556 s 1155.568 s 16.861 s

However, when we try to apply our modified Kipnis-Shamir attack on our
new UOV variants, we found out that the vectors in the hidden Oil space can’t be
found. By further analyzing the experiments’ results, the failure of this attack
is caused by the reason that invertible matrices W1,W2 can’t be found. As a
matter of fact, all the corresponding symmetric matrices of public key’s polyno-
mials: W1,W2, ...,Wm are not invertible. Ergo, W12 can’t calculated under this
circumstance. As is stated in [2,9], it’s a necessary condition that public key’s
corresponding matrices being invertible and symmetric for Kipnis-Shamir attack
to work. Consequently, this attack is futile against our new UOV variants.

Next, we are going to illustrate why all the corresponding symmetric matrices
of public key’s polynomials: W1,W2, ...,Wm are non-invertible:

In the construction of our UOV variants, the private key polynomials’ coef-
ficients are represented by asymmetric matrix. To represent the private key
polynomials’ coefficients in a symmetric matrix form, first of all, what we need
to do is transform the original asymmetric matrix into quadratic polynomials:
n∑

i=1

n∑

j=i

aijxixj . The corresponding matrix’s coefficients is computed as:

{
ci,j = aij , i = j
ci,j = aij/2, i �= j

We further notice the original matrix of private key polynomials of our UOV
variants 1 is in the form of:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ · · · ∗ 0 · · · 0 ∗ · · · ∗ 0 · · · 0
∗ ∗ · · · ∗ 0 · · · 0 ∗ · · · ∗ 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

∗ ∗ · · · ∗ 0 · · · 0 ∗ · · · ∗ 0 · · · 0
0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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and for UOV variant 2, it’s in the form of:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ · · · ∗ 0 · · · 0 ∗ · · · ∗ 0 · · · 0
0 ∗ · · · ∗ 0 · · · 0 ∗ · · · ∗ 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 · · · ∗ 0 · · · 0 ∗ · · · ∗ 0 · · · 0
0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

in which * denotes non-zero elements. The left-upper non-zero block represents
the coefficients of Vinegar-Vinegar cross-terms and non-zero columns are the
coefficients of Oil-Vinegar cross-terms. Both these matrices are transformed to
symmetric form which should be:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ · · · ∗ 0 · · · 0 ∗ · · · ∗ 0 · · · 0
∗ ∗ · · · ∗ 0 · · · 0 ∗ · · · ∗ 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

∗ ∗ · · · ∗ 0 · · · 0 ∗ · · · ∗ 0 · · · 0
0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
∗ ∗ · · · ∗ 0 · · · 0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

∗ ∗ · · · ∗ 0 · · · 0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We can see that this symmetric matrix have zero rows. According to the descrip-
tion of our UOV variants, there will be (d−1)×o′ zero-rows and v +o′ non-zero
rows. Assume this matrix is W , apparently, we have Rank(W ) ≤ v + o′ < n.
Thereby, this symmetric matrix is not invertible matrix since it’s not a full-
rank matrix. Hence, all the corresponding symmetric matrices of public key’s
polynomials: W1,W2, ...,Wm are non-invertible. Consequently, W12 can’t be cal-
culated. Under this circumstance, Kipnis-Shamir attack is not applicable to our
UOV variants.

6 An Overall Comparison with Original UOV

In this section we are going to give an overall comparison between regular UOV
and our UOV variants under the same security level requirements.
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First of all, we choose the security level requirements that our UOV variants
and the regular UOV should satisfy. Currently, the most prevailing ones are
280 and 2100. According to the conclusions made in [1], the sets of parameters
of regular UOV (GF (28), v = 56, o = 28) and (GF (28), v = 72, o = 36) can
achieve security level 280 and 2100 respectively. Accordingly, corresponding sets of
parameters of our variants can be given as UOV Variant 1: (GF (28), v = 56, o =
4×7) and (GF (28), v = 72, o = 4×9), UOV Variant 2: (GF (28), v = 56, o = 4×7)
and (GF (28), v = 72, o = 4 × 9).

After picking the appropriate parameters, in our comparisons, we will record
the scheme generating time, signature generating time, verifying time, private
key size, public key size and signature length. All those records are produced
by calculating the average values of 100 trials. We run these tests on a Dell
Precision T5610 with Magma programs. The results are listed in Tables 3 and 4.

Table 3. Overall Comparison between regular UOV and our UOV variants under
security level requirement 280

Security level 280 Regular UOV UOV variant 1 UOV variant 2

Key generating time 9.496 s 6.615 s 6.422 s

Signature generating time 0.443 s 0.007 s 0005 s

Signature verifying time 0.015 s 0.015 s 0.014 s

Public key size 99.941 KB 99.941 KB 99.941 KB

Private key size 95.813 KB 14.321 KB 12.818 KB

Signature length 84B 84B 84 B

Table 4. Overall Comparison between regular UOV and our UOV variants under
security level requirement 2100

Security level 2100 Regular UOV UOV variant 1 UOV variant 2

Key generating time 29.533 s 23.547 s 25.704 s

Signature generating time 1.145 s 0.045 s 0.009 s

Signature verifying time 0.025 s 0.022 s 0.027 s

Public key size 206.930 KB 206.930 KB 206.930 KB

Private key size 198.844 KB 24.899 KB 22.404 KB

Signature length 108B 108B 108 B

From these two tables, we can see that our UOV variants do have obvious
advantages over Private Key size and Signature Generating time. They verify
our intentions to build the UOV variants.
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7 Conclusions

In this paper, inspired by the existing methods to build UOV and Rainbow with
shorter public key size or Rainbow with shorter private key size, we introduced
two UOV variants which have shorter private key size and higher efficiency in
signature generation. Then we made a security analysis of UOV variants by
applying existing known attacks which could be used against UOV to our UOV
variants. During the security analysis, we also made a small change to the existing
Kipis-Shamir attack [2] against UOV based on even characteristic field since the
original one didn’t work. At last, we made an overall comparison between regular
UOV and our UOV variants.
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Abstract. Yasuda, Takagi and Sakurai proposed a new signature
scheme in PQCrypto 2013 using quadratic forms over finited fields of
odd characteristic. Later on two independent attacks were proposed by
Hashimoto in PQCrypto 2014 and by Zhang and Tan in ICISC 2014 to
break their scheme. The purpose of this paper is to fix the security prob-
lem of Yasuda, Takagi and Sakurai’s scheme. We achieve this purpose by
mixing their scheme with a special type HFEv polynomials to produce a
new scheme, YTS-HFEv. We analyze its security and propose a practical
parameter set with public key size about 57KB and security level 280.

Keywords: Post-quantum cryptography · Multivariate public key cryp-
tosystem · Digital signature · HFEv

1 Introduction

Since the threat of quantum computer to public key cryptography [Sho97], it
has been active to search possible alternatives to current widely used RSA. One
of such directions is multivariate public key cryptosystems (MPKC) [DGS06]
whose trapdoor one-way functions are of the form of multivariate polynomials
over finite fields. The security of MPKC relies on the problem of solving a general
set of multivariate polynomial equations over finite fields which is proved to be
NP-hard [GJ79]. Current main trapdoor one-way functions of MPKC are usually
represented by quadratic polynomials and of course cannot be a random set of
polynomials. They are usually designed [DGS06] by composing a polynomial
map F : Fn → F

m with two affine maps F̄ = L ◦ F ◦ R : Fn → F
m. The public

key is F̄ while the secret key usually consists of L,R, F . It should be efficient to
invert the central map F but infeasible to invert F̄ unless one knows L,R, F .

Many such trapdoor one-way functions have been proposed since 1980’s for
encryption and signature schemes. According to Wolf and Preneel’s taxonomy
of MPKC [WP05], they may be categorized as basic trapdoors and modifiers.
Namely they are constructed from those basic trapdoors by applying some mod-
ification methods. In Wolf and Preneel’s taxonomy of many of them proposed
until 2005, there are various modification methods, but only four basic trapdoors:
the Matsumoto-Imai scheme [MI88], hidden field equation (HFE) [Pat96], the
unbalanced oil and vinegar schemes [KPG99], the stepwise triangular systems
c© Springer International Publishing Switzerland 2016
D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 75–89, 2016.
DOI: 10.1007/978-3-319-38898-4 5
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[WBP05,WBP06]. These basic trapdoors have been used to produce various new
schemes with many modifiers. Since then, there have been a few new trapdoors
proposed, for example, MFE [WYHL06], �IC [DWY07], Square [Clo09], ABC
[TDTD13], ZHFE [PBD14] and so on. However, most of schemes so far have
been broken and it seems very challenging to construct new secure schemes.

Recently Yasuda, Takagi and Sakurai [YTS13] proposed a new and interest-
ing signature scheme using quadratic forms over finite fields of odd characteristic,
suitable for signature schemes. The mathematical foundation of their construc-
tion is the classification of quadratic forms over finite fields of odd characteristic.
Their scheme is different from all others and is regarded as a new basic trap-
door. However, it is then soon be broken by two independent attacks [Has14] and
[ZT15a,ZT15b], and there seems no obvious secure variant of it. So it becomes
an open problem how to repair Yasuda, Takagi and Sakurai’s (YTS’ for short)
scheme to make it secure.

Notice that the mathematical foundation of YTS’ scheme is the classification
of quadratic forms over finite fields of odd characteristic, and when the charac-
teristic of the base field is two, there is also a similar but more complicated
classification of quadratic forms. Thus it is curious that if this case could pro-
vide an analogous scheme and especially if it is secure or not. In this paper we
propose such an analogous scheme over finite fields of characteristic two. However
we find that it is neither secure. The attack [ZT15a,ZT15b] is still applicable.

Although the analogous scheme is not secure, we are then motivated by a
most recent paper [ZT15c] which proposed an idea of using a special type of
HFEv polynomials to enhance the security of signature schemes. By applying
this idea to YTS’ scheme and our analog, we then construct a new variant of
YTS’ scheme, YTS-HFEv. This new scheme is also an HFEv scheme but different
from current known HFEv schemes. We show that this new scheme can resist
attacks to YTS’ scheme and other major attacks. We also propose a practical
parameter set with public key size about 57 KB and security level 280.

This paper is organized as follows. In Sect. 2, we review YTS’ scheme, then
construct an analogous scheme over even finite fields and propose an attack to it.
In Sect. 3, we give our new variant of YTS’ scheme mixed with HFEv. Security
analysis of this new scheme is then presented in Sect. 4. Finally Sect. 5 concludes
this paper.

2 Yasuda, Takagi and Sakurai’s Signature Scheme
and Its Analog over Finite Fields of Characteristic Two

In this section, we shall first briefly review Yasuda, Takagi and Sakurai’s (YTS’)
signature scheme [YTS13], then present an analogous scheme over finite fields of
characteristic two, and finally sketch an attack to this analog of YTS’ scheme.

2.1 Yasuda, Takagi and Sakurai’s Signature Scheme

YTS’ scheme [YTS13] is constructed from the classification of quadratic forms
over finite fields of odd characteristic. We give a brief review of it in the following.
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Let q be a power of an odd prime p and δ a non-square element in Fq.

Moreover let In,δ =
(

In−1

δ

)
, and In−1 the (n − 1) × (n − 1) identity matrix.

Then any n × n symmetric matrix A over Fq can be decomposed as either
A = XT X or A = XT In,δX where X an n × n matrix.

Let n = r2 and m = r(r + 1)/2. Choose two one-one correspondences

φ1 : the set of r × r matrices over Fq
1−1←→ F

n
q ,

φ2 : the set of r × r symmetric matrices over Fq
1−1←→ F

m
q .

Define two maps

F1, F2 : Fn
q → F

m
q , F1(x) = φ2(XT X), F2(x) = φ2(XT Ir,δX).

Then the pair (F1, F2) can be used to construct a multivariate quadratic signa-
ture scheme as follows.

Let R1, R2 : Fn
q → F

n
q and L : Fm

q → F
m
q be three randomly chosen invertible

affine transformations and

F̄1 = L ◦ F1 ◦ R1, F̄2 = L ◦ F2 ◦ R2.

YTS’ scheme can be described as follows.

Public Key. F̄1, F̄2.
Private Key. R1, R2, L.
Signature Generation. For a message y ∈ F

m
q , first compute y′ = L−1(y)

and the corresponding symmetric matrix Y = φ−1
2 (y′), then compute an

r × r matrix X such that Y = XT X or Y = XT Ir,δX, and the corre-
sponding vector x′ = φ1(X), finally compute x = R−1

1 (x′) or x = R−1
2 (x′)

correspondingly.
Verification. A signature x is accepted only if F̄1(x) = y or F̄2(x) = y.

The public key size is O(r6), private key size is O(r4) and efficiency of signa-
ture generation is O(r4). The parameters (q, r, n) = (6781, 11, 121) is proposed
and claimed to have security of 140-bit in [YTS13].

After YTS’ scheme was proposed in 2013, it was then quickly broken in 2014
by two different and independent attacks of Hashimoto [Has14], and of Zhang and
Tan [ZT15a]. Hashimoto used an algebraic approach to recover the private key
of YTS’ scheme if R1 has a special form, and then reduced the case of general R1

to this special case. He implemented his attack and broke the parameters (6781,
11, 121) in hundreds of seconds. Zhang and Tan applied a geometric approach
by first giving a simple matrix expression for the public map and discovering
the underlying geometric structure of YTS’ scheme in terms of invariant sub-
spaces. They then converted the problem of recovering the private key into a
geometric problem of decomposing the whole space into certain invariant sub-
spaces and calculating their appropriate bases. Finally they applied the theory
of invariant subspaces to develop an algorithm for recovering the private key.
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Later on they extended their original work and implemented their attack suc-
cessfully in [ZT15b] which totally and practically break YTS’ scheme. In this
extension paper, they tested various parameters and recovered all the private
keys efficient. For example, the private key of (6781, 11, 121) was recovered in
only about 14.77 s.

2.2 Analog of YTS’ Scheme over Finite Fields of Characteristic Two

Let q be a positive power of 2 and δ an element in Fq such that x2 + x + δ is
irreducible over Fq. There is also a classification for quadratic forms over finite
fields of characteristic two, cf. pages 138–139 of [Tay92] or Theorem 6.30 of
[LN97], which is more complicated than the case of odd characteristic. Due to
limitation of space, we shall directly give a matrix form for this classification.

Recall that a representing matrix of a quadratic form f ∈ Fq[x1, . . . , xr] is
an n × n matrix A over Fq satisfying

f(x) = xT Ax, x = (x1, . . . , xn)T .

There are many representing matrices for one f , but there is only one n×n upper
triangular representing matrix Qf = (aij) with aij = 0 for i > j by rewriting
f =

∑
1≤i≤j≤n aijxixj . Next we shall use upper triangular matrices to represent

quadratic forms.
For even r = 2t (t ≥ 1), define

Q2t =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1
0

. . .
0 1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

2t×2t

, Q′
2t =

⎛

⎝
Q2t−2

1 1
δ

⎞

⎠ .

For odd r = 2t + 1 (t ≥ 1), define

Q2t+1 =
(

Q2t

1

)
, Q′

2t+1 =
(

Q′
2t

0

)
.

We next define a helpful operation on square matrices, called folding oper-
ation. The folding matrix of an r × r matrix A = (aij) is AF = (a′

ij) where
a′

ii = aii for all i, a′
ij = aij + aji for (i, j) with i < j, and a′

ij = 0 for (i, j)
with i > j.

Proposition 1. For any r × r matrix C, (CT AF C)F = (CT AC)F .

We find that the folding operation disappears if AF and (AF )T are added
together.

Proposition 2. AF + (AF )T = A + AT .

With the help of the above notations, we can now have the following matrix
form for the classification.
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Theorem 1. For an r × r upper triangular matrix A over Fq (r can be even
or odd), there is an r × r matrix X such that either A = (XT QrX)F or A =
(XT Q′

rX)F . ��
An algorithm for computing such a matrix X is sketched in [LN97], pages

286–287.
We next give our construction of a signature scheme analogous to YTS’ sig-

nature scheme. Let n = r2, m = r(r+1)/2, and another one-one correspondence

φ3 : the set of r × r upper triangular matrices over Fq
1−1←→ F

m
q .

For x ∈ F
n
q , X = φ−1

1 (x) is an r × r matrix. Define

F1, F2 : Fn
q → F

m
q , F1(x) = φ3((XT QrX)F ), F2(x) = φ3((XT Q′

rX)F ).

Similar to YTS’ scheme, the pair (F1, F2) is surjective and can be used as the
central map of a multivariate signature scheme.

Let R1, R2 : Fn
q → F

n
q and L : Fm

q → F
m
q be three randomly chosen invertible

affine transformations and

F̄1 = L ◦ F1 ◦ R1, F̄2 = L ◦ F2 ◦ R2.

Our analog of YTS’ scheme is described as follows.

Public Key. F̄1, F̄2.
Private Key. R1, R2, L.
Signature Generation. For a message y ∈ F

m
q , first compute y′ = L−1(y)

and the corresponding upper triangular matrix Y = φ−1
3 (y′), then compute

an r × r matrix X such that Y = (XT QrX)F or Y = (XT Q′
rX)F , and

the corresponding vector x′ = φ1(X), finally compute x = R−1
1 (x′) or

x = R−1
2 (x′) correspondingly.

Verification. A signature x is accepted if F̄1(x) = y or F̄2(x) = y, otherwise
rejected.

Some features of the scheme are given below.

Public Key Size. 1
16r(r + 1)(r2 + 1)(r2 + 8)(log2 q) Bytes.

Private Key Size. 1
4 (9r4 + 2r3 + 11r2 + 2r)(log2 q) Bytes.

Efficiency. Algorithm of generating a signature is similar to YTS’ scheme and
has the same level of efficiency O(r4) = O(n2).

Security. The security level against MinRank attack is at least O(qr) = O(q
√

n)
for recovering L.

We remark that small q, such as q = 2, is impractical and we need only
consider big q. This is because the public key size is very sensitive on r, i.e.,
O(r6). Thus r should be small and q should be big. For instance, if q = 2, to
have security level even as low as 220, we should have r ≥ 20, i.e., n ≥ 400, then
the public key size is already too huge, larger than 4 MB.

For q > 2, however, we find that the attacking method of [ZT15a,ZT15b] is
still applicable but requires sophisticated modification. In the rest of this section,
we briefly sketch such an attack to the above scheme with q > 2 which can totally
break it.
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2.3 Attack to the Analog of YTS’ Scheme (q > 2)

It is sufficient to attack the first map of the public key. We shall omit the subscript
and simply write F̄ , F , R for F̄1, F1, R1 respectively. Since the affine parts of L,R
can be recovered easily when q > 2, c.f. Appendix B of [ZT15b], we can consider
only the case that both L,R are linear. Write F̄ = (f̄1, . . . , f̄m) with

f̄k(x) = xT Akx, x ∈ F
n
q

where Ak is an n × n upper triangular matrix publicly known.
We first give a simple matrix expression for the public map. Write the m×m

matrix L in the following form
⎛

⎜
⎝

l1;11 l1;12 l1;22 . . . l1;1r . . . l1;rr

...
...

...
...

...
lm;11 lm;12 lm;22 . . . lm;1r . . . lm;rr

⎞

⎟
⎠ .

In addition, let lk;ji = lk;ij for i < j and define the symmetric matrix

Lk = (lk;ij)r×r

corresponding to the kth row of L.
Then Ak has the following simple expression: if r is even, for 1 ≤ k ≤ m,

Ak = (RT

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 Lk

0
. . .

0 Lk

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R)F (2.1)

with r/2 blocks
(

0 Lk

0

)
on the diagonal, and if r is odd, for 1 ≤ k ≤ m,

Ak = (RT

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Lk

0
. . .

0 Lk

0
Dk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R)F , where Dk =

⎛

⎜
⎝

lk;11
. . .

lk;rr

⎞

⎟
⎠ (2.2)

with (r − 1)/2 blocks
(

0 Lk

0

)
on the diagonal.

Comparing with the case that q odd [ZT15a], there are two significant differ-
ences: (1) the middle matrix is singular here; (2) there is the folding operation
on the right hand side. So the method for q odd cannot be directly applied to
Ak here. Motivated by Kipnis and Shamir’s attack to the oil-vinegar scheme in
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the case that the field is of characteristic two [KS98,DGS06], we try considering
Bk := Ak + AT

k instead. For even r and odd r, Bk has the following expression
respectively,

Bk = RT

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 Lk

Lk 0
. . .

0 Lk

Lk 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R, Bk = RT

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Lk

Lk 0
. . .

0 Lk

Lk 0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R.

Compared to the left matrix, the right matrix has a zero block at the bottom
diagonal. This difference makes the two situations very different and the latter
situation is more complicated. Next we will discuss the two cases separately.

First Case: r Even. Since L is invertible, all Lk are linearly independent and
thus form a basis for r×r symmetric matrices. Hence there is a linear combination
of all Lk which is invertible and thus a linear combination of all Bk which is
invertible. Pick such an invertible linear combination of all Bk and denote it B0

and L0 its corresponding linear combination of all Lk. Let L′
k = L−1

0 Lk and
B′

k = B−1
0 Bk. Then we have

B′
k = R−1

⎛

⎜
⎝

L′
k

. . .
L′

k

⎞

⎟
⎠ R, B′

kR−1 = R−1

⎛

⎜
⎝

L′
k

. . .
L′

k

⎞

⎟
⎠ .

Based on the above identities for Ak, Bk, B′
k, we can apply the method of [ZT15a,

ZT15b] using invariant subspaces to recover equivalent private key R,L.

Second Case: r Odd. This case is troublesome. Since Bk has rank at most
n − r, it can never be invertible. So the method for the case r even is not
applicable directly here. Nevertheless we still can reduce it to the case r even as
shown below.

Similar to the case r even, we pick a linear combination, B0, of all Bk such
that it is of rank n − r. Notice that the last r columns of B0R

−1 are zero which
means that the last r columns of R−1 span the null space N(B0) of B0. Since
RR−1 = I, so N(B0), equivalently the subspace spanned by the last r columns of
R−1, is orthogonal to the subspace spanned by the first n − r rows of R. Let R1

be the submatrix consisting of the first n − r rows of R, and R2 the submatrix
consisting of the last r rows of R. Then the row space R(R1) of R1 is contained
in N(B0)⊥. It should be noted that we may not have R(R1) = N(B0)⊥ though
dim R(R1) + dim N(B0) = n due to the special theory of quadratic forms over
finite fields of characteristic two. Practically we can pick a regular dim-(n − r)
subspace of N(B0)⊥ and treat it as R(R1) — try another B0 if there is no regular
dim-(n − r) subspace. Since R(R1) is regular, there are two bases a1, . . . ,an−r
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and b1, . . . ,bn−r such that the inner product aT
i · bj = 0 if i 
= j and 1 if i = j.

Namely
(a1, . . . ,an−r)T (b1, . . . ,bn−r) = In−r.

Next notice that the identity for Bk can be reduced to

Bk = RT
1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 Lk

Lk 0
. . .

0 Lk

Lk 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R1,

and R1 can be written as

R1 = R′
1(a1, . . . ,an−r)T

where R′
1 is an (n − r) × (n − r) matrix. Let

B̄k = (b1, . . . ,bn−r)T Bk(b1, . . . ,bn−r).

Then

B̄k = R′T
1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 Lk

Lk 0
. . .

0 Lk

Lk 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R′
1.

Hence the problem of finding R1 is then reduced to finding R′
1, i.e., the case r

even. After finding R1, then R2 can be found from the identity of Ak.
To summarize, the analog of YTS’ scheme over finite field of characteris-

tic two is somehow trickier than YTS’ original scheme over finite field of odd
characteristic. However, the method of the attack of [ZT15a,ZT15b] can still be
applied to totally break this analog after a careful reduction.

3 A New Variant of YTS’ Scheme Mixed with HFEv:
YTS-HFEv

In this section, we shall construct a new variant of YTS’ scheme, named YTS-
HFEv, which is a mixture of YTS’ scheme and the well known HFEv scheme.
This construction is motivated by a most recent signature scheme called MI-T-
HFE [ZT15c] in which a new idea is proposed to apply HFEv to enhance the
security for signature schemes.

3.1 HFE and HFEv

Hidden field equations (HFE) was proposed by Patarin in 1996 [Pat96] as a
candidate to repair the Matsumoto-Imai cryptosystem [MI88] after which was
broken by his linearization equations in 1995 [Pat95].
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Let q be a power of prime p which can be even or odd. Choose a degree
s irreducible polynomial g(x) over Fq and let K = Fq[x]/(g(x)) which is then
a degree t extension of Fq. Define the following isomorphism of vector spaces
over Fq,

φ : K → F
t
q, φ(a0 + a1x + · · · + at−1x

t−1) = (a0, a1, . . . , at−1)

An HFE polynomial with degree bound D is a polynomial over K of the following
form

H(X) =
∑

1≤qi+qj≤D

aijX
qi+qj

+
∑

1≤qj≤D

bjX
qj

+ c.

The key here is that if D is relatively small, then H(X) = Y can be solved
efficiently using Berlekamp’s algorithm with complexity O(tD2 logq D + D3).
Patarin’s HFE encryption scheme has such an HFE polynomial as the core map
and composes it with two invertible affine transformations.

Although HFE has been broken thoroughly [KS99,GJS06,BFP13], it has
been developed into a most important family of multivariate public key schemes.
An important variant of HFE is HFEv, an encryption scheme which was first
presented in 1999 [KPG99] and remains secure until today. HFEv applies the
idea of unbalanced oil and vinegar signature scheme [KPG99] and add a few new
variables in Fq, called vinegar variables, to HFE. These vinegar variables in Fq

corresponds to a variable V in the extension field K. The core map of HFEv is
a polynomial of two variables X,V over K of the following form

H(X,V ) =
∑

qi+qj≤D

aijX
qi+qj

+
∑

qi≤D

bijX
qi

V qj

+
∑

qi≤D

diX
qi

+
∑

cijV
qi+qj

+
∑

eiV
qi

+ f

where the degree of the vinegar variable V can be arbitrary high. To solve the
equation H(X,V ) = Y , one first assigns any value to V and then solve it as in
HFE. A cryptanalysis of HFEv was given in [DS05] and showed that HFEv is
secure if V is not very small. A famous example is QUARTZ [PCG01] which is a
signature scheme constructed from HFEv simply with a few components deleted
from the public map of HFEv.

3.2 The New Scheme YTS-HFEv Where YTS’ Scheme Meets
HFEv

In [ZT15c], the authors proposed an idea of using the HFEv encryption scheme
to enhance the security of signature schemes. They applied the following special
type of HFEv polynomials over K:

H(X1,X2) =
∑

0≤i≤t

∑

1≤qj≤D

aijX
qi

1 Xqj

2 +
∑

1≤qi+qj≤D

bijX
qi

2 Xqj

2 +
∑

1≤qj≤D

cjX
qj

2 ,

where X1 is the vinegar variable. Notice its difference with general HFEv poly-
nomials: there are no terms Xqi

1 and no constant term. The purpose of this
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specialty is to make equation H(X1,X2) = 0 always have a solution, at least
the zero solution X2 = 0. However, for a given X1, a nonzero solution for X2

is preferred among those solutions to H(X1,X2) = 0. We shall accept the zero
solution X2 = 0 if there is no nonzero solution. Using this type of HFEv polyno-
mials to mix with signature schemes, we can not only enhance the security but
also assure that every message has a valid signature, a feature somewhat desired
by a signature scheme.

Following [ZT15c], define the following map for x1,x2 ∈ F
t
q to be used next

H̄ : Ft
q × F

t
q → F

t
q, H̄(x1,x2) = φ(H(φ−1(x1), φ−1(x2))).

Let F1, F2 : Fn
q → F

m
q be the pair of maps of YTS’ scheme or its analog in

the preceding section depending on whether q is odd or even. Then as it did in
[ZT15c], define for x1 ∈ F

t
q, x2 ∈ F

n
q , i = 1, 2,

Gi(x1,x2) = Fi(x1) + Si · H̄(Ti · x1,x2) : Ft+n
q → F

m
q

where S1, S2 are m × t matrices and T1, T2 are t × n matrices. Let

Ḡ1 = L ◦ G1 ◦ R1, Ḡ2 = L ◦ G2 ◦ R2 : Ft+n
q → F

m
q

where R1, R2 : F
t+n
q → F

t+n
q and L : F

m
q → F

m
q are three randomly chosen

invertible linear maps. Then we have the following new signature scheme, called
YTS-HFEv:

Public Key. Ḡ1, Ḡ2.
Private Key. L,R1, R2, S1, S2, T1, T2.
Signature Generation. A given message y ∈ F

n
q is signed in the following way:

1. Compute y′ = L−1(y).
2. Solve F1(x1) = y′ or F2(x1) = y′ to get a solution x2.
3. Substitute x1 into the corresponding H̄(Ti · x1,x2) = 0 and solve it by

Berlekamp’s algorithm. Among those solutions, pick a nonzero solution
and assign it to x2. If there is only the zero solution, then let x2 = 0.
Then (x1,x2) is a solution to the corresponding F ′

i (x) = y′.
4. Compute the corresponding x = R−1

i (x1,x2) which is then a signature.
Verification. A signature x is accepted if F̄ ′

1(x) = y or F̄ ′
2(x) = y.

Key sizes and efficiency of the above scheme are given below.

Public Key Size. 1
32r(r+1)(r2+1)(r2+t+1)(logp q)�log2 p� Bytes. So r should

be chosen small to have small public key size.
Private Key Size. 1

32 (5r4 + 2r3 + 28r2t + r2 + 4rt + 8t2)(logp q)�log2 p� Bytes.
Efficiency of Signature Generation. O((r2 + t)2 + tD2 logq D + D3).

Hence for practical reason, p should be close to 2�log2 p� and r should be small to
have small key size. In addition, D should be relatively small so that signature
generation can be efficient. On the other hand, there should be as more terms
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of X2 as possible so that the rank is not too small to maintain enough level of
security, thus q should also be small since qi ≤ D.

Based on the above considerations and the security reason given in next
section, we propose the following practical parameters

(q, r, t,D) = (4, 9, 40, 80).

Then the message length is 2m = r(r+1) = 90 bits, signature length is 2(n+t) =
2(r2 + t) = 242 bits, public key size is 56.3 KB, private key size is 8.7 KB. We
claim that the best attack to this new scheme is the High Rank Attack and the
security level is 280. Detailed cryptanalysis is given in next section.

4 Security Analysis

In multivariate public key cryptography, it is generally difficult to prove the
security of a scheme as there yet has been no provable security model in this
subject. We will have to check the security of a scheme against all known attacks
in this subject. In the future, if there were a provable security model, it would
then be possible to formally prove the security of a scheme. In this section,
we shall analyze the security of the new variant of YTS’ scheme, YTS-HFEv,
against attacks in multivariate public key cryptography. We shall omit those
attacks obviously not applicable here, and take into account those attacks to
YTS’ scheme, High Rank Attack and attacks to HFEv.

Recall that the pair of the central map of YTS-HFEv are the following sums

Gi(x1,x2) = Fi(x1) + Si · H̄(Ti · x1,x2) : Ft+n
q → F

m
q .

The purpose of adding H̄ is to hide the structure of the Fi in YTS’ scheme and
it is unnecessary to have t > m. Notice that if x2 is always chosen to be 0 in the
process of generating signatures, then a large collection of signatures would help
identify the secret subspace of (x1, 0). However, this would not happen in the
design of signature generation, because after x1 is calculated, a nonzero solution
to H̄(Ti · x1,x2) = 0 exists with high probability and is preferred. So leakage of
the subspace of (x1, 0) can be prevented.

4.1 Attacks to YTS’ Scheme

First of all we consider those attacks threatening YTS’ scheme and its analog over
even finite fields, including MinRank attack and attacks in [Has14,ZT15a,ZT15b]
and the one in Sect. 2 of this paper.

In YTS’ scheme and its analog over even finite fields, the quadratic polyno-
mial of each component of the central map corresponds to a matrix of rank r.
This rank is preserved under linear combination. So MinRank attack is applicable
to recover L based on this rank property, and the complexity is O(qr) [YTS13].
However, in YTS-HFEv, the adding of SiH̄ increases this rank to be no less than
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r + t. So as long as t is big enough, the new scheme can then resist the MinRank
attack. For example, to have security level of 280, we should have qr+t ≥ 280.

The attacks in [Has14,ZT15a,ZT15b] and the one in Sect. 2 of this paper all
use the special structure of the central map and the public map. Namely the
central map and the public map have too simple and too structured expressions.
For example, as pointed out in [ZT15a], each component of YTS’ public map
can be expressed as

Ak = RT

⎛

⎜
⎝

Lk

. . .
Lk

⎞

⎟
⎠ R,

and each component of the public map of our analog has an expression either
(2.1) or (2.2). These expressions have very canonical structures making the pri-
vate keys recoverable using specific methods. However, after being mixed with
HFEv, this kind of special structure is totally destroyed so that these attacks
are no longer applicable here.

4.2 High Rank Attack

High Rank Attack is to find linear combinations of the central map such that
they have the most number of variables. This is equivalent to find the variables
appearing the fewest times s in the central map. So high rank attack can recover
L with complexity O(qs) and is powerful to break triangular schemes [CSV97,
GC00,YC05]. For the new scheme here, this complexity is O(qt). If t is not
big enough, SiH̄ may be removed and then attacks [Has14,ZT15a] can remain
applicable. So it is necessary to protect SiH̄ from the High Rank Attack. To
have security level 280, we should choose t such that qt ≥ 280.

4.3 Attacks to HFEv

This part is similar to the corresponding part of [ZT15c] as we apply the same
idea of [ZT15c], i.e., using HFEv to mix with the central map. Notice that the
new scheme YTS-HFEv is indeed of the type of HFEv, hence it is necessary to
discuss those attacks to HFEv. This becomes clear if we lift the central map

Gi(x1,x2) = Fi(x1) + Si · H̄(Ti · x1,x2)

to the extension field K,

G′
i(V,X) =

∑
a′

ijV
qi+qj

+
∑

b′
iV

qi

+
∑

0≤i≤t

∑

1≤qj≤D

aijV
qi

Xqj

+
∑

1≤qi+qj≤D

bijV
qi

Xqj

+
∑

1≤qj≤D

cjX
qj

.

which obviously have the form of HFEv polynomials. The x1 of Gi(x1,x2) cor-
responds to the vinegar variable V and x2 corresponds to variable X; Fi corre-
sponds to the sum of the monomials V qi+qj

, V qi

; and TiH̄ corresponds to the
sum of the rest monomials.
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The major attacks applicable to the HFE family are Kipnis-Shamir’s attack
[KS99] and direct algebraic attack [FJ03]. Kipnis-Shamir’s attack relies on the
MinRank problem and is improved by Ding and Schmidt [DS05] to attack HFEv
as well. In their cryptanalysis, if v is very small, such as v = 1, then HFEv can be
broken, but the complexity increases fast as v increases. Especially there would
be no way to identify HFEv from a random system when the number of vinegar
variables v and the extension degree of the field K over Fq are close.

For direct algebraic attack to HFEv and HFEv-, a solid theoretical estima-
tion on the complexity is given by Ding and Yang in [DY13] by calculating the
degree of regularity. They conclude that direct attack remains feasible for very
small v but infeasible for big v. As an example, the famous QUARTZ signature
scheme is an HFEv scheme with several components deleted. It has only 4 vine-
gar variables, its degree of regularity is bounded by 9 and its security level is
estimated as 292.

Notice that YTS-HFEv has n vinegar variables which is bigger than the
extension degree t. Since we have to choose t such as qt ≥ 280 due to the high
rank attack, the public map would not be identifiable from a random system of
quadratic polynomials against Kipnis-Shamir’s MinRank attack. This choice of
the parameter t also assures that its degree of regularity is very high according
to [DY13], hence direct algebraic attack is also not applicable to this variant.

5 Conclusion

In this paper, we investigate the possibility of fixing the security problem of
Yasuda, Takagi and Sakurai’s interesting signature scheme. We first construct
its analogous scheme over finite fields of characteristic two, but then we find
that it is neither secure by developing an attack to it. To resolve this security
issue, we apply the idea of HFEv and use a special type of HFEv polynomials
to mix with Yasuda, Takagi and Sakurai’s scheme and our analogous scheme.
We then show that this new scheme, YTS-HFEv, can resist current attacks, and
propose a parameter set with public key size 57 KB and security level 280. Future
implementation is needed to verify the security claim made here.
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Abstract. D. Davies and S. Murphy found that there are at most 660
different probability distributions on the output from any three adjacent
S-boxes after 16 rounds of DES [5]. In this paper it is shown that there are
only 72 different distributions for S-boxes 4, 5 and 6.The distributions from
S-box triplets are linearly dependent and the dependencies are described.
E.g. there are only 13 linearly independent distributions for S-boxes 4, 5
and 6. A coset representation of DES S-boxes which reveals their hidden
linearity is studied. That may be used in algebraic attacks. S-box 4 can be
represented by significantly fewer cosets than the other S-boxes and there-
fore has more linearity. Open cryptanalytic problems are stated.

Keywords: S-box · Output distributions · Linear dependencies · Coset
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1 Introduction

The Data Encryption Standard (DES) is a symmetric block cipher from 1977. It
has block size of 64 bits and a 56-bit key. DES in its original form is deprecated
due to the short key. Triple DES [1] however, is still used in many applications
(e.g. in chip-based payment cards). It is therefore still important to analyze its
security. DES is probably the most analyzed cipher, and is broken by linear [8]
and differential [3] cryptanalysis. Even so, the most effective method in practice
is still exhaustive search for the key. There are also some algebraic attacks that
can break 6-round DES [4].

Donald Davies and Sean Murphy described in [5] some statistical properties of
the S-boxes in DES. They found that there are at most 660 different distributions
on the output from any three adjacent S-boxes after 16 rounds. These distrib-
utions divide the key space into classes where equivalent keys make the output
follow the same distributions. The correct class is found by identifying which
distribution a set of plaintext/ciphertext pairs follow. They used this to give a
known-plaintext attack. The time complexity of the attack is about the same as
brute-force attack and requires approximately 256.6 plaintext/ciphertext pairs.
The attack was improved by Biham and Biryukov [2] where the key can be found
with 250 plaintext/ciphertext pairs with 250 operations. Later, Kunz-Jacques and
Muller [7] further improved the attack to a chosen-plaintext attack with time
complexity 245 using 245 chosen plaintexts.
c© Springer International Publishing Switzerland 2016
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In this paper we study new statistical and algebraic properties of DES. In
Sect. 2 we show Davies and Murphy’s results, using different notations than
theirs. We also show a new exceptional property of S4, and use this to show that
there are fewer different distributions on the output from S4S5S6 compared to
other triplets. The new properties are related to the forth S-box in DES, and
is used to show that the number of different distributions on the output from
S-box 4, 5 and 6 is at most 72 (after 16 rounds). This divides the key space into
fewer, but larger, classes compared to Davies and Murphy’s results.

The distributions from S-box triplets are linearly dependent. We give a
description of the relations between the distributions, and upper bound the num-
ber of linearly independent distributions for each triplet. E.g. among the 72 dif-
ferent distributions for S-box 4, 5 and 6 there are only 13 linearly independent.

A coset representation of the DES S-boxes is suggested in Sect. 4. It is found
that S-box 4 is abnormal again. It can be covered by 10 sub-cosets while the other
S-boxes require at least 16. Also, the coset representation of S-box 4 contains
6 sub-cosets of size 8, while the other S-boxes contain at most one sub-coset
of such size. The coset representation of S-boxes makes it possible to write the
system of equations for DES in a more compact form than in [9,10].

Like the linear approximations discovered by Shamir [12] was later used by
Matsui [8] to successfully break DES, these new properties might improve some
attacks in the future. Two open problems are stated at the end of the paper. If
solved that would improve statistical and algebraic attacks on DES.

1.1 Notations

Let Xi−1,Xi denote the input to the i-th round and Xi,Xi+1 denote the i-
th round output. So X0,X1 and X17,X16 are plaintext and ciphertext blocks
respectively, where the initial and final permutations are ignored. Let Ki be the
48-bit round key at round i. Then

Xi−1 ⊕ Xi+1 = Yi, Yi = P (S(X̄i ⊕ Ki)), (1)

where X̄i is a 48-bit expansion of Xi, P denotes a permutation on 32 symbols,
and S is a transform implemented by 8 S-boxes. Let Sj be a DES S-box, so

Sj(u5, u4, u3, u2, u1, u0) = (v3, v2, v1, v0), (2)

where ui and vi are input and output bits respectively.

2 Results from Davies and Murphy

By (1), the XOR of the plaintext/ciphertext blocks are representable as follows

X17 ⊕ X1 = Y2 ⊕ Y4 ⊕ . . . ⊕ Y14 ⊕ Y16, (3)
X16 ⊕ X0 = Y1 ⊕ Y3 ⊕ . . . ⊕ Y13 ⊕ Y15. (4)

In this section we study the joint distribution of bits in X17 ⊕ X1 and in
X16 ⊕ X0 which come from the output of 3 adjacent S-boxes in DES round
function, and therefore in Yi. These results are from [5], but presented using a
different notation.
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2.1 Definitions and a Basic Lemma

The output of 3 adjacent S-boxes is called (Si−1, Si, Si+1)-output when i is
specified. When analysing (3) and (4) we assume the round function inputs
X2,X4, . . . , X16 and X1,X3, . . . , X15 are uniformly random and independent
respectively. Input to Si is accordingly assumed to be uniformly random. These
common assumptions were already in [5].

When we look at a reduced number of rounds in DES (k rounds), then
Xk+1⊕X1 and Xk⊕X0 follows the distribution for the XOR of k/2 round-outputs
(for even k). We will throughout this paper use 2n to denote the number of
rounds. n is the number of outputs that are XORed, and full DES is represented
by n = 8.

We define three distributions that are related to each Si. We use notation (2).

1. The distribution of (u1, u0, v3, v2, v1, v0) is called right hand side distrib-
ution and we denote p

(i)
y,r = Pr((u1, u0) = y and (v3, v2, v1, v0) = r).

2. The distribution of (u5, u4, v3, v2, v1, v0) is called left hand side distribu-
tion and we denote q

(i)
x,r = Pr((u5, u4) = x and (v3, v2, v1, v0) = r).

3. The distribution of (u5, u4, u1, u0, v3, v2, v1, v0) is called LR distribution
and we denote

Q(i)
x,y,r = Pr((u5, u4) = x, and (u1, u0) = y, and (v3, v2, v1, v0) = r).

Obviously, p
(i)
y,r =

∑
x Q

(i)
x,y,r and q

(i)
x,r =

∑
y Q

(i)
x,y,r, the sums are over 2-bit x, y

respectively.

Lemma 1. For any 2-bit x, y and any 4-bit r holds

p
(i)
y⊕2,r + p(i)y,r =

1
32

, (5)

q
(i)
x⊕1,r + q(i)x,r =

1
32

, (6)

Q(i)
x,y,r + Q

(i)
x,y⊕2,r + Q

(i)
x⊕1,y,r + Q

(i)
x⊕1,y⊕2,r =

1
64

. (7)

Proof. The equalities (5) and (6) were found directly from the values of p
(i)
y,r, q

(i)
x,r,

for instance, see those distributions listed for S4 in AppendixA. Alternatively,
by DES S-box definition, for any fixed (u5, u0) the distribution of (v3, v2, v1, v0)
is uniform. So (u0, v3, v2, v1, v0) and (u5, v3, v2, v1, v0) are uniformly distributed
and that implies (5) and (6) as Kholosha [6] later observed. The former implies
(7) as well.

2.2 Output-Distributions on S-box Triplets

We study the distribution of the output from three adjacent S-boxes in DES
round function. Let (a5, . . . , a0), (b5, . . . , b0) and (c5, . . . , c0) be the input to
three adjacent S-boxes in one DES round. Then

(a1, a0) ⊕ (b5, b4) = k and (b1, b0) ⊕ (c5, c4) = k′,
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where k and k′, the common key bits, are both 2-bit linear combinations of
round-key-bits. By kj = (kj1, kj0) and k′

j = (k′
j1, k

′
j0) we denote the common

key bits in round j.
Let (r, s, t) be a 12-bit output from Si−1, Si, Si+1 in one DES round. Then

Pr(r, s, t | k, k′) = 24 ×
∑

x,y

p
(i−1)
x⊕k,r Q(i)

x,y,s q
(i+1)
y⊕k′,t. (8)

The distribution of (r, s, t) after 2n rounds is the n-fold convolution of (8):

Pr(r, s, t | k1, k
′
1, . . . , kn, k′

n) =
∑ n∏

i=1

Pr(ri, si, ti | ki, k
′
i),

where the sum is over (ri, si, ti) such that
⊕

i(ri, si, ti) = (r, s, t). By changing
the order of summation and using (8) we get

Pr(r, s, t | k1, k
′
1, . . . , kn, k′

n)

= 24n ×
∑

p
(i−1)
x1⊕k1,...,xn⊕kn,r

× Q(i)
x1,y1,...,xn,yn,s × q

(i+1)
y1⊕k′

1,...,yn⊕k′
n,t

, (9)

where the sum is over 2-bit x1, y1, . . . , xn, yn, and

p(i)x1,...,xn,r =
∑

⊕
j rj=r

p(i)x1,r1 × · · · × p(i)xn,rn ,

q
(i)
y1,...,yn,t =

∑

⊕
j tj=t

q
(i)
y1,t1 × · · · × q

(i)
yn,tn ,

Q(i)
x1,y1,...,xn,yn,s =

∑

⊕
j sj=s

Q(i)
x1,y1,s1 × · · · × Q(i)

xn,yn,sn .

Lemma 1 implies the following corollary.

Corollary 1. For any 2-bit x1, y1, . . . , xn, yn and 4-bit r, t

p
(i)
x1⊕k1,...,xn⊕kn,r

= p
(i)

x1⊕k10,...,xn−1⊕k(n−1)0, xn⊕2k, r
,

q
(i)
y1⊕k′

1,...,yn⊕k′
n,t

= q
(i)

y1⊕2k′
11,...,yn−1⊕2k′

(n−1)1, yn⊕k′, t
,

where k and k′ are the parity of (k11, . . . , kn1) and (k′
10, . . . , k

′
n0).

Each value for the vector (k1, k′
1, . . . , kn, k′

n) can be mapped to a distribution
on (r, s, t). Many of these distributions are equal to each other. Corollary 1 is
now used to give an upper bound on the number of different distributions.

First, one can permute any (kj , k′
j) and (ki, k′

i) and get the same distribution.
Also the distribution is defined by the parity of (k11, . . . , kn1) and (k′

10, . . . , k
′
n0).

There are 4 values for the two parity-bits, and there are
(
3+n
n

)
combinations

for the remaining 2n bits (k10, . . . , kn0) and (k′
11, . . . , k

′
n1). Therefore there are

at most 4 × (
3+n
n

)
different distributions on the output from three adjacent S-

boxes. Table 1 lists the maximum number of different distributions after multiple
rounds. Again, 16-round DES is specified by n = 8.
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Table 1. Upper bound on number of different distributions for 2n rounds

n 1 2 3 4 5 6 7 8

Upper bound 16 40 80 140 224 336 480 660

3 New Statistical Property of S4

In this section we find an exceptional property of S4. In particular, we prove
Lemma 2, and use it to show that there are fewer different output-distributions
on S4S5S6.

Lemma 2. For any 2-bit x, y, a and 4-bit r holds
∑

h

p
(4)
x⊕a,h p

(4)
y⊕a,h⊕r =

∑

h

p
(4)
x,h p

(4)
y,h⊕r.

Proof. By Lemma 1, p
(4)
x⊕2,h + p

(4)
x,h = 1

32 for any 2-bit x and 4-bit h. It is easy
to see the lemma is true for a = 2. All other cases are reduced to a = 1 and
x = y = 0. Let

f(h) =

⎧
⎨

⎩

0, if h /∈ {0, 6, 9, 15};
1, if h ∈ {0, 9};
−1, if h ∈ {6, 15}.

From S4 right hand side distribution values, see Table 5 in AppendixA, we find

p
(4)
x⊕1, h + p

(4)
x, h =

1
32

+
(−1)x1f(h)

64
(10)

and then
∑

h

f(h)f(h ⊕ r) = 4 f(r), (11)

∑

h

p
(4)
x,h f(h ⊕ r) =

(−1)x1 2 f(r)
64

, (12)

for any 2-bit x = (x1, x0) and any 4-bit r. Hence

∑

h

p
(4)
1,h p

(4)
1,h⊕r =

∑

h

(
1
32

+
f(h)
64

− p
(4)
0,h

) (
1
32

+
f(h ⊕ r)

64
− p

(4)
0,h⊕r

)
=

∑

h

f(h)f(h ⊕ r)
642

− 2
∑

h

p
(4)
0,h

f(h ⊕ r)
64

+
∑

h

p
(4)
0,h p

(4)
0,h⊕r =

∑

h

p
(4)
0,h p

(4)
0,h⊕r.

The lemma is proved.

This surprising property holds because (10), (11) and (12) are true simulta-
neously for the right hand side distribution p

(4)
x,h.
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Corollary 2. For any 2-bit x1, . . . , xn and 4-bit r holds

p
(4)
x1⊕k1,...,xn⊕kn,r

= p
(4)

x1,...,xn−1,xn⊕k̄,r
,

where k̄ = k1 ⊕ · · · ⊕ kn.

Proof. By Lemma 2,
∑

h1⊕h2=r

p
(4)
x1⊕k1,h1

p
(4)
x2⊕k2,h2

=
∑

h1⊕h2=r

p
(4)
x1,h1

p
(4)
x2⊕(k1⊕k2),h2

for any x1, x2, k1, k2 and r. Therefore the corollary is true for n = 2. The general
case follows recursively.

3.1 The Number of Different Output-Distributions

Davies and Murphy found that there are at most 4×(
3+n
n

)
different distributions

of the output from 3 adjacent S-boxes after 2n rounds. In this section we show
(S4, S5, S6)-output has at most (8n + 8) different distributions.

Lemma 3. Let (r, s, t) be (S4, S5, S6)-output after 2n rounds. There are at most
8n + 8 different distributions (r, s, t) can follow.

Proof. By Corollaries 1 and 2 the distribution of (r, s, t) only depends on⊕n
j=1 kj ,

⊕n
j=1 k′

j0 and common key bits (k′
11, . . . , k

′
n1), where the order of the

last n bits is irrelevant. There are n + 1 combinations for (k′
11, . . . , k

′
n1) and

8 possible values for the three parity bits. The maximum number of different
distributions is therefore at most 8n + 8 as the lemma states.

We computed the actual number of different distributions for all 8 triplets.
Table 2 lists the results for n = 1, . . . , 8 together with the bound from Lemma3
and Davies-Murphy’s bound. Remark that 16-round DES is specified by n = 8.

It is not clear whether or not fewer different distribution can improve Davies-
Murphy’s attack. Intuitively, distinguishing between few distributions could be
easier than distinguishing between many distributions (if the biases are approxi-
mately the same). At the same time, the number of keys in the class representing
a given distribution is larger, so more work is required to identify the correct key
in the class. Also, the triplet attack described by Davies and Murphy does not
perform better than the attack based on the two S-box pairs in the triplet [5].
We do not know if it is possible to alter Davies-Murphy’s attack so that fewer
distribution would give an advantage.

Table 2. Number of different distributions for output of 3 adjacent S-boxes

n 1 2 3 4 5 6 7 8

D-M’s bound for all triplets 16 40 80 140 224 336 480 660

New upper bound for (S4, S5, S6) 16 24 32 40 48 56 64 72

Actual value for (S4, S5, S6) 16 24 32 40 48 56 64 72

Actual value for other triplets 16 40 80 140 224 336 480 660
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3.2 Linear Dependencies Between the Distributions

In this section we describe linear relations between distributions on the output
from three adjacent S-boxes. We will see how (S4, S5, S6) compares to the other
triplets. A distribution can be represented by a row-vector (v0, . . . , v212−1), where
vj is the probability of the output j = (r, s, t).

Let M be a matrix whose rows are (Si−1, Si, Si+1)-output distributions. M
is then called a distribution matrix. A non-zero vector r such that rM = 0 is
called a linear relation for M . Let R be a matrix whose rows are linear relations
for M , then R is called a relation matrix for M . Then

rank(M) ≤ k − rank(R), (13)

where k is the number of rows in M . There are five independent linear relations
inside the right, LR and left distribution that can be used to find linear relation
between the rows of M . By Lemma 1,

∑

a

C1
a × p

(i)
x⊕a,r = 0 and

∑

a

C2
a × q

(i)
x⊕a,r = 0, (14)

where C1 = (1,−1, 1,−1) and C2 = (1, 1,−1,−1). Also by Lemma 1, for any
2-bit x, y and 4-bit r

∑

a

Q
(i)
x⊕a,y,r + Q

(i)
x⊕a,y⊕2,r =

1
32

, (15)

∑

b

Q
(i)
x,y⊕b,r + Q

(i)
x⊕1,y⊕b,r =

1
32

, (16)

Q(i)
x,y,r + Q

(i)
x,y⊕2,r + Q

(i)
x⊕1,y,r + Q

(i)
x⊕1,y⊕2,r =

1
64

. (17)

One now subtracts (15) and (15) after changing y ← y ⊕ 1, (16) and (16) after
changing x ← x ⊕ 2, then (17) and (17) after changing y ← y ⊕ 1. So

∑

k,k′
Ck,k′ × Qx⊕k,y⊕k′,r = 0, (18)

for any x, y and r, where C is any of

C3 = (1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1),
C4 = (1, 1, 1, 1, 1, 1, 1, 1, −1, −1, −1, −1, −1, −1, −1, −1),
C5 = (1, −1, 1, −1, 1, −1, 1, −1, 0, 0, 0, 0, 0, 0, 0, 0).

For instance, C3 comes from
∑

a

Q
(i)
x⊕a,y,r + Q

(i)
x⊕a,y⊕2,r −

∑

a

Q
(i)
x⊕a,y⊕1,r + Q

(i)
x⊕a,y⊕3,r = 0.

Both (14) and (18) are used to build linear relations between the distributions
of (r, s, t), the output from three adjacent S-boxes after one round.
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Lemma 4.

For any k′ ∑

k

C1
k × Pr(r, s, t | k, k′) = 0, (19)

for any k
∑

k′
C2

k′ × Pr(r, s, t | k, k′) = 0, (20)

for C ∈ {C3, C4, C5}
∑

k,k′
Ck,k′ × Pr(r, s, t | k, k′) = 0. (21)

Proof. We will prove (19):

∑

k

C1
k × Pr(r, s, t | k, k′) = 24 ×

∑

k

C1
k ×

(
∑

x,y

p
(i−1)
x⊕k,r Q(i)

x,y,s q
(i+1)
y⊕k′,t

)

= 24 ×
∑

x,y

∑

k

C1
k ×

(
p
(i−1)
x⊕k,r Q(i)

x,y,s q
(i+1)
y⊕k′,t

)

= 24 ×
∑

x,y

Q(i)
x,y,s q

(i+1)
y⊕k′,t ×

(
∑

k

C1
k × p

(i−1)
x⊕k,r

)

= 0.

Similarly (20) is proved. We will prove (21).

∑

k,k′
Ck,k′ × Pr(r, s, t | k, k′) = 24 ×

∑

k,k′
Ck,k′ ×

(
∑

x,y

p(i−1)
x,r Q

(i)
x⊕k,y⊕k′,s q

(i+1)
y,t

)

= 24 ×
∑

x,y

∑

k,k′
Ck,k′ ×

(
p(i−1)
x,r Q

(i)
x⊕k,y⊕k′,s q

(i+1)
y,t

)

= 24 ×
∑

x,y

p(i−1)
x,r q

(i+1)
y,t ×

⎛

⎝
∑

k,k′
Ck,k′Q

(i)
x⊕k,y⊕k′,s

⎞

⎠

= 0.

Lemma 4 implies there are 11 linear dependencies between rows of the distri-
bution matrix after one round. The rank of the relation matrix is 10. We have
also computed the rank of the distribution matrix which is 6. Since there are 16
distributions in total, we have found all 10 independent linear relations between
the distributions. Lemma4 is now used to build linear relations between the
distributions after 2n rounds.

Lemma 5. For any (k1, . . . , kn), (k′
1, . . . , k

′
n), and i

∑

ki

C1
ki

× Pr(r, s, t | k1, k
′
1, . . . , kn, k′

n) = 0, (22)

∑

k′
i

C2
k′
i
× Pr(r, s, t | k1, k

′
1, . . . , kn, k′

n) = 0, (23)

∑

ki,k′
i

Cki,k′
i
× Pr(r, s, t | k1, k

′
1, . . . , kn, k′

n) = 0, (24)
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where C ∈ {C3, C4, C5}.
Proof. It is enough to prove (22) for i = 1.

∑

k1

C1
k1

× Pr(r, s, t | k1, k
′
1, . . . , kn, k′

n)

=
∑

k1

C1
k1

×
′∑ n∏

j=1

Pr(rj , sj , tj | kj , k
′
j)

=
′∑ n∏

j=2

Pr(rj , sj , tj | kj , k
′
j)

∑

k1

C1
k1

× Pr(r1, s1, t1 | k1, k
′
1) = 0,

where
′∑

is over all (rj , sj , tj) such that
⊕

j(rj , sj , tj) = (r, s, t). The proofs of
(23) and (24) are similar.

Generating all relations from (22), (23) and (24) for all values of (k1, . . . , kn),
(k′

1, . . . , k
′
n), and i will make a relation matrix too large to calculate the rank

when n ≥ 4. We will instead consider a distribution matrix M , where each
distribution occurs only once. We then generate a relation matrix for M . This
way, by using (13), we find an upper bound on the rank of M for all triplets and
n ≤ 8, see row 2 and 3 in Table 3. Triplet S4S5S6 have an upper bound on the
rank which is lower than the other triplets. Full DES is specified by n = 8. We
also computed the actual rank of M for each triplet, see row 4–11.

Each distribution is determined by a class of DES keys. Table 3 data suggests
a strong statistical dependence between ciphertexts generated with representa-
tives of such classes. An open problem is stated in the end of this paper, which
if solved, could make use of these statistical dependencies to improve the prob-
ability of success on Davies-Murphy’s attack.

Table 3. Rank of the distribution matrix for each triplet

n 1 2 3 4 5 6 7 8

Upper bound for S4S5S6 6 7 8 9 10 11 12 13

Upper bound for other triplets 6 9 13 18 24 31 39 48

S1S2S3 6 9 13 18 24 30 36 42

S2S3S4 6 9 13 18 24 31 39 48

S3S4S5 6 9 13 18 24 29 34 39

S4S5S6 6 7 8 9 10 11 12 13

S5S6S7 6 9 13 18 24 31 39 48

S6S7S8 6 9 13 18 24 31 39 48

S7S8S1 6 9 13 18 24 31 39 48

S8S1S2 6 9 13 18 24 31 39 48
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4 S-box Coset Representation and DES Equations

For each Si by (2) a set Ti of 10-bit strings

(u5, u4, u3, u2, u1, u0, v3, v2, v1, v0) (25)

is defined. They are vectors in a vector space of dimension 10 over field with
two elements F2 denoted F 10

2 . Let V be any subspace of F 10
2 . For any vector

a the set a ⊕ V is called a coset in F 10
2 . Let dim V = s, then there are 210−s

cosets associated with V . Also we say a ⊕ V has dimension s as well. Any coset
of dimension s is a set of the solutions for a linear equation system

a ⊕ V = {x |xA = b},

where A is a matrix of size 10 × (10 − s), and rankA = 10 − s, and b is a row
vector of length 10 − s.

Any set T ⊆ F 10
2 may be partitioned into a union of its sub-cosets. We

try to partition into sub-cosets of largest possible dimension, in other words of
largest size. Denote the set of such cosets by U , it is constructed by the following
algorithm. One first constructs a list of all sub-cosets in T maximal by inclusion.
Let C be a maximal in dimension coset from the list, then C is added to U and
the Algorithm recursively applies to T\C. Let

U = {C1, . . . , Cr}.

Therefore x ∈ T if and only if x is a solution to the system xAk = bk associated
with Ck ∈ U .

The algorithm was applied to the vector sets Ti defined by DES S-boxes Si.
Let the sets of cosets Ui be produced. The results are summarised in Table 4,
where 2a 4b 8c means Ui contains a cosets of size 2, b cosets of size 4 and c cosets
of size 8. The distribution is uneven. For instance, S4 admits exceptionally many
cosets of size 8. Disjoint sub-cosets which cover Ti for each i = 1, . . . , 8 are listed
in AppendixB, where strings (25) have integer number representation

u529 + u428 + u327 + u226 + u125 + u024 + v323 + v222 + v12 + v0.

4.1 More Compact DES Equations

Given one plaintext/ciphertext pair one constructs a system of equations in the
key bits by introducing new variables after each S-box application, 128 equations
for 16-round DES. By specifying Si,

Table 4. Coset distribution for S-boxes

i 1 2 3 4 5 6 7 8

coset dist. 26 413 24 414 26 411 8 44 86 416 26 413 26 411 8 24 412 8

# of cosets 19 18 18 10 16 19 18 17
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X̄ji ⊕ Kji

P−1(Xj−1 i ⊕ Xj−2 i)
=

[
0 . . . 63

Si(0) . . . Si(63)

]
, (26)

with 64 right hand sides, 10-bit vectors Ti written column-wise. Here X̄ji and Kji

are 6-bit sub-blocks of X̄j and Kj respectively. To find the key such equations
are solved. That may be done with methods introduced in [10], see also [9]. The
complexity heavily depends on the number of right hand sides.

We get a more compact representation, that is with lower number of sides.
We use the previous section notation. Let Ui contain r cosets. So x ∈ Ti if and
only if x is a solution to exactly one of the linear equation systems

xAk = bk, k = 1, . . . , r.

We cover the set of right hand side columns in (26) with sub-cosets from Ui and
get (26) is equivalent to

[
X̄ji ⊕ Kji

P−1(Xj−1 i ⊕ Xj−2 i)

]
Ak = bk, k = 1, . . . , r (27)

in sense that an assignment to the variables is a solution to (26) if and only if
it is a solution to one of (27). The number of subsystems(also called sides) in
(27), denoted by r, is between 10 and 19 depending on the S-box. For instance, in
case of S4 the Eq. (27) has only 10 subsystems, while (26) has 64. Such reduction
generally allows a faster solution, see [11].

5 Conclusion and Open Problems

In the present paper new statistical and algebraic properties of the DES encryp-
tion were found. They may have cryptanalytic implications upon resolving the
following theoretical questions.

The first problem is within the statistical cryptanalysis. Let the cipher key
space be split into n classes K1, . . . ,Kn. Each class defines a multinomial dis-
tribution on some ≥2 outcomes, defined by plaintext and ciphertext bits. Let
P1, . . . , Pn be all such distributions computed a priori. Let ν(k) denote a vec-
tor of observations on above outcomes for an unknown cipher key k. It is well
known that the problem “decide k ∈ Ki” may be solved with maximum like-
lihood method as in [5]. For the classification of several observation vectors
ν(k1), . . . , ν(ks) the same method is applied.

Open problem is to improve the method (reduce error probabilities) given the
vectors P1, . . . , Pn are linearly dependent. That would improve Davies-Murphy
type attacks against 16-round DES as for 660 different distributions (72 for
(S4, S5, S6)) only ≤48 (13 for (S4, S5, S6)) are linearly independent.

The second problem is related to algebraic attacks against ciphers. A new
type time-memory trade-off for AES and DES was observed in [9,10]. Let m
be the cipher key size. Let ≤2l right hand sides be allowed in the combinations
by Gluing of the MRHS equations [9,10] during solution. Gluing means writ-
ing several equations as one equation of the same type as (26). Then guessing
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≤m − l key-bits is enough before the system of equations is solved by finding
and removing contradictory right-hand sides in pairwise agreeing of the current
equations. The overall time complexity is at least 2m−l × 2l = 2m operations as
for each guess one needs to run over the right hand sides of at least one of the
equations. However coset representation allows reducing the number of sides by
writing them as (27). In case of DES the Eq. (26) for i = 4 is written with only
10 sides instead of 64. For AES instead of 256 right hand sides one can do 64
for each of the equations, see [11]. The combination of two Eq. (26) with Gluing
has ≤212 right hand sides. With coset representation the number of sides is at
most 192 (at most 100 for the combination of two equations from S4). Open
problem is to reduce the time complexity of the above trade-off by using coset
representation.

Acknowledgement. Stian Fauskanger is supported by the COINS Research School
of Computer and Information Security.

A Appendix

A.1 S4 Right, Left and LR Distribution

Section 2.1 define the right, left and LR distribution. Tables 5, 6 and 7 show the
distributions for S-box 4.

Table 5. Right hand side distribution of S-box 4 (each entry = 26 × p
(4)
x,r)

x\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 0 1 1 1 0 2 2 2 1 1 1 0 1 1

1 2 1 2 1 1 1 1 0 0 1 1 1 1 2 1 0

2 1 1 2 1 1 1 2 0 0 0 1 1 1 2 1 1

3 0 1 0 1 1 1 1 2 2 1 1 1 1 0 1 2

Table 6. Left hand side distribution of S-box 4 (each entry = 26 × q
(4)
x,r)

x\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 0 0 2 0 1 2 1 1 1 1 1 0 2 1 1

1 0 2 2 0 2 1 0 1 1 1 1 1 2 0 1 1

2 2 1 0 1 0 0 2 1 1 1 2 1 1 2 0 1

3 0 1 2 1 2 2 0 1 1 1 0 1 1 0 2 1
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Table 7. LR distribution of S-box 4 (each entry = 26 ×Q
(4)
x,y,r)

x y\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

0 2 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 3 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0

1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0

1 2 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1

1 3 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0

2 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0

2 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0

2 2 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

2 3 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1

3 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1

3 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0

3 2 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0

3 3 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0

B Appendix

B.1 Disjoint Sub-cosets for DES S-boxes

U1 = {{516, 626}, {678, 697}, {812, 827}, {841, 894}, {899, 922}, {944, 992},

{14, 36, 326, 364}, {16, 87, 175, 232}, {63, 77, 572, 590}, {97, 130, 545, 706},

{116, 158, 298, 448}, {178, 221, 938, 965}, {203, 241, 721, 747},

{259, 282, 653, 660}, {310, 379, 437, 504}, {348, 389, 783, 982},

{409, 425, 600, 616}, {467, 487, 851, 871}, {543, 759, 789, 1021}},

U2 = {{365, 490}, {855, 870}, {892, 912}, {949, 1007}, {15, 19, 33, 61},

{72, 84, 962, 990}, {110, 119, 134, 159}, {171, 178, 416, 441},

{195, 216, 676, 703}, {228, 254, 396, 406}, {265, 295, 475, 501},

{284, 304, 583, 619}, {322, 337, 737, 754}, {378, 453, 822, 905},

{512, 602, 931, 1017}, {541, 558, 795, 808}, {568, 625, 773, 844},

{650, 659, 717, 724}},
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U3 = {{341, 497}, {605, 624}, {648, 697}, {707, 759}, {876, 974}, {978, 1020},

{10, 29, 110, 121}, {32, 134, 301, 395}, {73, 80, 207, 214},

{163, 229, 312, 382}, {180, 250, 662, 728}, {257, 359, 420, 450},

{274, 412, 779, 901}, {443, 479, 525, 617}, {529, 687, 788, 938},

{550, 570, 834, 862}, {801, 883, 949, 999},

{55, 147, 332, 488, 580, 736, 831, 923}},

U4 = {{45, 56, 290, 311}, {395, 401, 452, 478}, {711, 733, 968, 978},

{801, 820, 878, 891}, {7, 29, 328, 338, 683, 689, 996, 1022},

{78, 91, 257, 276, 749, 760, 930, 951}, {99, 117, 428, 442, 652, 666, 835, 853},

{128, 150, 495, 505, 608, 630, 783, 793},

{166, 191, 201, 208, 550, 575, 585, 592},

{234, 243, 357, 380, 522, 531, 901, 924}},

U5 = {{2, 30, 323, 351}, {44, 59, 230, 241}, {68, 82, 203, 221}, {97, 124, 170, 183},

{135, 148, 685, 702}, {264, 277, 577, 604}, {293, 304, 367, 378},

{397, 462, 657, 722}, {403, 416, 960, 1011}, {441, 472, 948, 981},

{489, 502, 516, 539}, {546, 744, 844, 902}, {568, 711, 869, 922},

{619, 650, 783, 1006}, {631, 765, 809, 931}, {790, 831, 848, 889}},

U6 = {{467, 504}, {591, 693}, {735, 762}, {795, 836}, {887, 897}, {918, 971},

{12, 26, 256, 278}, {33, 63, 74, 84}, {111, 114, 232, 245},

{137, 151, 162, 188}, {198, 301, 563, 984}, {217, 305, 642, 874},

{323, 349, 398, 400}, {356, 423, 830, 1021}, {382, 443, 521, 716},

{453, 491, 594, 636}, {532, 613, 800, 849}, {558, 665, 775, 944},

{680, 739, 941, 998}},

U7 = {{402, 481}, {534, 587}, {621, 632}, {848, 872}, {926, 946}, {979, 1020},

{29, 43, 143, 185}, {48, 66, 426, 472}, {91, 110, 329, 380},

{148, 160, 730, 750}, {200, 237, 513, 548}, {209, 250, 969, 994},

{259, 286, 652, 657}, {300, 341, 447, 454}, {307, 359, 675, 759},

{571, 605, 793, 895}, {778, 815, 896, 933},

{4, 119, 389, 502, 692, 711, 821, 838}},
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U8 = {{446, 498}, {519, 684}, {806, 911}, {949, 1019}, {13, 17, 100, 120},

{34, 63, 649, 660}, {72, 134, 297, 487}, {154, 179, 857, 880},

{175, 203, 266, 366}, {215, 244, 530, 561}, {309, 323, 828, 842},

{342, 379, 965, 1000}, {389, 400, 460, 473}, {555, 765, 768, 982},

{580, 698, 877, 915}, {609, 631, 718, 728},

{93, 225, 284, 416, 606, 738, 799, 931}}.
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Abstract. Statistical cryptanalysis is one of the most powerful tools to
analyze symmetric key cryptographic primitives such as block ciphers.
One of these attacks, the differential attack has been demonstrated to
break a wide range of block ciphers. Block cipher proposals previously
obtain a rough estimate of their security margin against differential
attacks by counting the number of active S-Box along a differential path.
However this method does not take into account the complex cluster-
ing effect of multiple differential paths. Analysis under full differential
distributions have been studied for some extremely lightweight block
ciphers such as KATAN and SIMON, but is still unknown for ciphers
with relatively large block sizes. In this paper, we provide a framework
to accurately estimate the full differential distribution of General Feis-
tel Structure (GFS) block ciphers with relatively large block sizes. This
framework acts as a convenient tool for block cipher designers to deter-
mine the security margin of their ciphers against differential attacks. We
describe our theoretical model and demonstrate its correctness by per-
forming experimental verification on a toy GFS cipher. We then apply
our framework to two concrete GFS ciphers, LBlock and TWINE to
derive their full differential distribution by using super computer. Based
on the results, we are able to attack 25 rounds of TWINE-128 using a
distinguishing attack, which is comparable to the best attack to date.
Besides that, we are able to depict a correlation between the hamming
weight of an input differential characteristic and the complexity of the
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attack. Based on the proposed framework, LBlock and TWINE have
shown to have 178 and 208-bit security respectively.

Keywords: Differential attack · GFS · Differential distribution ·
LBlock · TWINE

1 Introduction

Block ciphers have been playing an important role in information security to
achieve confidentiality and integrity. Recently, block ciphers with lightweight
designs start attracting research attention due to their wide range of potential
applications such as RFID, wireless sensor networks and etcetera. These light-
weight block ciphers usually have small block sizes which are less or equal to 64
bits and a smaller key size, filling in the gap where the traditional ciphers such as
AES are not applicable anymore. The General Feistel Structure (GFS) is among
one of the most popular designs that have received a lot of analysis. Recently
proposed lightweight ciphers such as LBlock [22] and TWINE [21] belong to this
design category.

Among all the methods to analyze block ciphers, differential attacks are one
of the most powerful methods since its invention back in 1990 [5]. The attack is
statistical in nature and its success relies on finding long differential paths with
high probability. For a long time, one single ad hoc-found path is usually used
in the differential cryptanalysis. Thus the study of the differential path has not
received much attention until recently. First in papers [8,9], multiple differen-
tial cryptanalysis was theoretically analyzed to show that the attacker generally
has more power in building the differential distinguisher if he or she has more
knowledge in the differential distribution. Later in paper [1], the author ana-
lyzed an extremely lightweight block cipher, KATAN32 by computing the whole
differential distribution, and indeed it further increased the number of rounds
that can be attacked compared to the previous results. The downside of using
the whole differential distribution is that the attacker is unable to filter sub-
key bits, which may cause the complexity to increase. Thus there exists another
branch of research focusing more on the key recovery phase and key relation such
as related key attacks. Representative results include [6,19] which will not be
addressed further in this paper since our focus is only the single key model. The
full differential distribution can be computed if the block size is less than 32 bits,
as shown in [1]. However, for ciphers with large block sizes, it is currently com-
putationally infeasible to construct the full distribution. Thus to a large extent,
the method to derive an accurate full distribution remains unexploited.

From the provable security’s point of view, it is desirable to derive a security
bound on the number of rounds that is secure against differential attack. Cur-
rently for block ciphers with S-Box-based design, counting the number of active
S-Box [18], which is the number of S-Box on the differential path, is the com-
mon way to evaluate the security. In the proposal of both LBlock and TWINE,
the number of active S-Box multiplied by the largest differential probability of
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the S-Box is used to evaluate security margin. For more complicated designs
which involves MixColumn operation as in AES, paper [17] provided a tight
lower bound for the minimum number of active S-box for several GFS ciphers.
Although counting the number of active S-Box may be a good approximation for
one single path, the actual differential distribution involves complicated cluster-
ing effects which cannot be addressed by this model. Thus the security margin
evaluated in this way may not be accurate, or in other words, the lower bound
may be underestimated.

In this paper, we contribute mainly in two aspects. Firstly, we address the
full differential distribution for GFS ciphers with relatively large block sizes by
providing both theoretical and experimental frameworks. We partition the block
according to the length of the S-Box input, which is the size of data blocks
processed by these ciphers. Then we theoretically model the computation of the
full differential distribution for any number of rounds and verify our evaluation
by using a toy GFS cipher to show that the truncated differential distribution
can be used to accurately evaluate the concrete differential distribution. Fur-
thermore, due to the truncated differentials, the ability to store all the internal
states allow us to perform quick computing of the distribution even for large
rounds. By taking advantage of the supercomputer, we can perform the exper-
iment to obtain full differential distributions for every input difference. As a
result, our experiments have provided us with several new findings regarding
the differential attack. Firstly, we discovered that input differences with rela-
tively small hamming weights tend to lead to better distinguishers. Based on
our framework, we evaluate two GFS ciphers LBlock and TWINE to derive the
best differential attack so far. Especially for TWINE-128, we are able to obtain
a comparable result by attacking 25 rounds. Also, we are able to provide the
precise security margins against differential attacks for the full rounds of both
LBlock and TWINE for the first time. This is by far the most accurate security
proof for GFS designs to date.

Outline of the Paper. Section 2 provides the theoretical model to compute the
complete differential distribution for truncated GFS with bijective S-box design.
Experiments on the toy model are also provided in this Section to verify the
correctness of the model. In Sect. 3, concrete evaluations on LBlock and TWINE
are provided. Lastly, we conclude our paper with some final statements.

2 Differential Characteristic Revisited

Since the proposal of differential attack in [5], methods to find long differential
paths with high probability becomes the key to the success of the attack. Matsui
in [13] first proposed a branch and bound algorithm to efficiently search the high
probability linear and differential path for cipher DES. The algorithm applies
the greedy strategy to find the best single path with the highest probability.
Since then, researchers began to follow this strategy when searching for good
property paths. As an extension of the differential attack, the multi-differential
attack tries to take advantage of multiple differential paths to further increase
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the attacker’s advantage when distinguishing from random distribution. Works
[8] and [9] are two of the representative ones. For block ciphers with S-Box based
design, researchers count the number of active S-Box as a criteria to measure
the security margin against differential attack. It is well known [11] that there
usually exists more than one path that can lead from the same input α to the
output β, so that the probability of the corresponding path is actually bigger.
Unfortunately, researchers usually do not consider this differential cluster or
linear hull effect when searching good paths. [7] recently took advantage of the
differential cluster to further improve the rounds of the differential paths.

Let’s assume a block cipher E is a markov cipher with n-bit block size and
rf rounds in total. Previously, researchers try to identify one single r < rf round
path α0 → βr with high probability Prob(α0 → βr) > 2−n, so that the attacker
does not use up the entire message space. Usually, r is far from the full rounds rf

if the cipher is well designed. If we continue the search for more rounds, we will
end up with a single path with a tiny probability much smaller than 2−n. On the
other hand, if we assume all the differential paths are randomly distributed, for
a full rf -round cipher, the probability of any differential path Prob(α0 → βrf

)
should be around 2−n. Obviously, there is a gap between the two results. From
the differential cluster or linear hull effect, we make the following assumption.

Lemma 1. For an r-round ideal Markov block cipher E, a single r-round dif-
ferential path is defined as (α0 → βr)single = (α0, γ1,i1 , γ2,i2 , ..., γr−1,ir−1 , βr),
where Imin

t ≤ it ≤ Imax
t , 1 ≤ t ≤ r − 1. Here Imin

t and Imax
t denote the smallest

and largest differential values in round t respectively. Let’s define its probability
to be Prob((α0 → βr)single) = pi1,i2,...,ir−1 . Then the total probability of differ-
ential path α0 → βr can be computed by

Prob(α0 → βr) =
Imax
1∑

i1=Imin
1

· · ·
Imax
r−1∑

ir−1=Imin
r−1

pi1,i2,...,ir−1 ≈ 2−n

which is approximately equal to 2−n. And we call

CS(α0,βr) =
Imax
1∑

i1=Imin
1

· · ·
Imax
r−1∑

ir−2=Imin
r−1

1

the corresponding cluster size CS(α0,βr).

For large number of rounds r, we may assume pi1,i2,...,ir−1 to be tiny and
have the relation pi1,i2,...,ir−1 ∝ CS−1

(α0,βr). As a result, the complexity to find
the real probability of some specific path is related to the corresponding cluster
size CS(α0,βr). As the number of rounds grow, cluster size becomes bigger which
makes it more difficult to compute the real probability. Also notice that for real
cipher, the probability varies for different paths and the cluster size is related to
the input differential property. This relation will be discussed later in this paper.
Next, we will discuss first how to theoretically evaluate the cluster size and the
probability, and then efficiently compute the full clusters for GFS ciphers based
on bijective S-Box design.
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2.1 Theoretical Model to Evaluate the Cluster Size and Probability

General Feistel Structure (GFS) is one of the most popular and widely stud-
ied design strategies for constructing block ciphers. Recently in paper [20], the
authors studied different permutations and derived the optimized ones for dif-
ferent parameter settings. Recently proposed lightweight block ciphers LBlock
[22] and TWINE [21] belong to the GFS design.

In GFS, the plaintext is divided into d subblocks P = (x0
0, x

0
1, ..., x

0
d−1), where

|xi
j | = 2n/d bits in length. The output of the i-th round is derived as follows:

(xi
0, x

i
1, ..., x

i
d−1) ← π(xi−1

0 , F i−1(xi−1
0 ) ⊕ xi−1

1 , ..., F i−1(xi−1
d−2) ⊕ xi−1

d−1)

where π is the permutation, and function F : {0, 1}n/d → {0, 1}n/d is the only
non-linear function in GFS. For S-box based design with large subblock size n/d,
usually MDS matrix is applied to provide further mixing within each subblock.
However, in recent lightweight designs such as [21,22], n/d is small in size (usu-
ally 4 bits), and F is equivalent to a single S-Box. Figure 1 shows the GFS8
defined in [20] with two corresponding F functions. For the simplicity, in this
paper we will stick to the lightweight version of GFS without the application
of MDS.

Fig. 1. GFS8 [20]

Below are some definitions that will be used for the theoretical evaluation. From
now on, we use symbol αC and αT to denote a concrete differential and a trun-
cated differential respectively.

Definition 1 (Structure, Branch Weight, Hamming Weight, Cancel

Weight). Let αC,i = (αC,i
0 , αC,i

1 , ..., αC,i
d−1) denote the concrete differential states

for each of the rounds 0 ≤ i ≤ N − 1. Function Trunc maps the concrete dif-
ferential state to the truncated differential state: αT,i = (αT,i

0 , αT,i
1 , ..., αT,i

d−1) ←
Trunc(αC,i

0 , αC,i
1 , ..., αC,i

d−1), where αT,i
j = 1 if αC,i

j �= 0, and αT,i
j = 0 if αC,i

j = 0.
We call

(αT,0, αT,1, ..., αT,r)
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a r-round truncated structure, or structure in short. We define the number of
active S-Box of round i

Bi = Bi(αT,i) = αT,i
0 + αT,i

2 + · · · + αT,i
d−2

to be the Branch Weight of the corresponding round. We define the Hamming
Weight of the i-th round differential state to be

Hi = Hi(αT,i) =
d−1∑

j=0

αT,i
j

Finally, we define the Canceling Weight Gi and Non-Canceling Weight
Wi for round i to be

Gi = αT,i
0 ∧ αT,i

1 ∧ ¬αT −1,i+1
1 + · · · + αT,i

d−2 ∧ αT,i
d−1 ∧ ¬αT −1,i+1

d−1

Wi = αT,i
0 ∧ αT,i

1 ∧ αT −1,i+1
1 + · · · + αT,i

d−2 ∧ αT,i
d−1 ∧ αT −1,i+1

d−1

where (αT −1,i+1
0 , αT −1,i+1

1 , ..., αT −1,i+1
d−1 ) ← π−1(αT,i+1

0 , αT,i+1
1 , ..., αT,i+1

d−1 )

Gi counts the number of instances in round i where αT,i
j = αT,i

j+1 = 1 while

αT −1,i+1
j+1 = 0, and Wi counts the number of instances in round i where αT,i

j =

αT,i
j+1 = αT −1,i+1

j+1 = 1. Now we are ready to have the following theorem:

Lemma 2. Let αC,0
I → αC,r

O be a r-round concrete differential path with I ∈ Ωi

and O ∈ Δo. Ωi and Δo denotes the concrete differential set following the i-th
input and o-th output truncated difference. Assume we have in total m structures
which have the same truncated input and output αT,0

ΩI
, αT,r

ΔO
while differing in the

middle, we call m the truncated cluster size of truncated path (αT,0
ΩI

→ αT,r
ΔO

).
The jth structure can be presented as follows (0 ≤ j ≤ m − 1):

(αT,0
ΩI

, αT,1,j , ..., αT,r−1,j , αT,r
ΔO

)

Let’s assume before proceeding round 0 ≤ i ≤ r − 1 in the jth structure, we
have Lj

i concrete differential paths which are resulted from input differential αC,0.
Then after i-th round, the number of total paths generated from αC,0 becomes

Lj
i+1 = Lj

i × RBj
i × (2

n
d − 1)−Gj

i × (
2

n
d − 1

2
n
d − 2

)−W j
i

where R is the average branch number of the S-Box, and Lj
0 = 1 (initially, there

exists only one state). Then Lj
r can be denoted as

Lj
r = R

∑r−1
i=0 Bj

i · (2
n
d − 1)−∑r−1

i=0 Gj
i · (

2
n
d − 1

2
n
d − 2

)−∑r−1
i=0 W j

i .



114 J. Chen et al.

Proof. For the jth structure (αT,0
ΩI

, αT,1,j , ..., αT,r−1,j , αT,r
ΔO

), we can easily com-
pute parameters Bj

i ,H
j
i ,W j

i and Gj
i for each round i. Assume before proceeding

i-th round, we have Lj
i concrete differential paths which are derived from the

input differential αC,0 which follows the truncated form αT,0. Since there are Bj
i

active S-Box in this round, the increasing number of branches for each of the
existed path can be computed as RBj

i . However, for each of the Gj
i XOR opera-

tion, we know from the next round truncated pattern, the two input differences
will be canceled out. The probability for this event to happen is (2

n
d −1)−Gj

i . Also
for each of the W j

i XOR operations, instead of probability 1, we need to exclude
the cases where 0 may appear, thus the probability for this event to happen is
( 2

n
d −1

2
n
d −2

)−W j
i . Since we need the concrete paths to follow the truncated pattern,

only the paths that follow the truncated pattern can survive. As a result, we
have Lj

i+1 = Lj
i × RBj

i × (2
n
d − 1)−Gj

i × ( 2
n
d −1

2
n
d −2

)−W j
i number of paths remaining.

By computing this repeatedly, we can derive the total number of paths Lj
r after

r-th round. �

Theorem 1. Assume we have 2N concrete input differentials having the same
truncated input difference, and the average single path probability for the trun-

cated structure is P
∑r−1

i=0 Bj
i

ave . Let the counter Xj denote the number of hits for
any concrete output differences following the same output truncated difference
αT,r

ΩI
in the j-th structure. Then

Xj

αC,0
ΩI

,αC,r
ΔO

∼ B(2N · Lj
r, (2n/d − 1)−Hr · P

∑r−1
i=0 Bj

i
ave ) ≈

N
(

2N · Lj
r · (2

n
d − 1)−Hr · P

∑r−1
i=0 Bj

i
ave , 2N · Lj

r ·

(2
n
d − 1)−Hr · P

∑r−1
i=0 Bj

i
ave · (1 − (2

n
d − 1)−Hr · P

∑r−1
i=0 Bj

i
ave )

)

Denote random variable P j = 1
2N · Xj be the probability for the concrete path

αC,0
ΩI

→ αC,r
ΔO

, and let Γr
j = (2

n
d −1)−∑r−1

i=0 (Gj
i
+W

j
i
)−Hr

(2
n
d −2)−∑r−1

i=0 W
j
i

, then

P j

(αC,0
ΩI

→αC,r
ΔO

)
∼ N

(
Γr

j , (Γr
j · (1 − (2n/d − 1)−Hr · P

∑r−1
i=0 Bi

ave ))/2N

)

where Pave is the average differential probability of the S-Box.

Proof. Since the truncated output difference has hamming weight Hr, the con-
crete differential space is (2n/d − 1)Hr (excluding the 0 case). For any αC,r

ΔO,j
∈

{0, 1}log(2n/d−1)Hr , the probability that it gets hit by the 2NLj
i paths x times

follows the binomial distribution B(2N · Lj
r, (2n/d − 1)−Hr · P

∑r−1
i=0 Bj

i
ave ). Since

2NLj
i is large, we can approximate it by normal distribution as shown above.



Accurate Estimation of the Full Differential Distribution 115

To derive its probability distribution, we only need to divide by the number of
total pairs 2N . After extending Lj

r as above, branch number R is canceled by
Pave since for any S-Box, R · Pave = 1. Replace with Γr

j we derive the result.
Notice that the mean of the distribution is not affected by the number of input
pairs 2N .

P j

(αC,0
ΩI

→αC,r
ΔO

)
∼

N
(

Lj
r · (2

n
d − 1)−Hj

r · P
∑r−1

i=0 Bj
i

ave , (Lj
r · (2

n
d − 1)−Hj

r · P
∑r−1

i=0 Bj
i

ave

· (1 − (2
n
d − 1)−Hj

r · P
∑r−1

i=0 Bj
i

ave ))/2N

)

= N
(

(R · Pave)
∑r−1

i=0 Bi · Γr
j , ((R · Pave)

∑r−1
i=0 Bi · Γr

j

· (1 − (2n/d − 1)−Hj
r · P

∑r−1
i=0 Bi

ave ))/2N

)

= N
(

Γr
j , (Γr

j · (1 − (2n/d − 1)−Hj
r · P

∑r−1
i=0 Bi

ave ))/2N

)

�

Corollary 1. The distribution of probability (αC,0
ΩI

→ αC,r
ΔO

) after considering
the entire truncated cluster with size m has the following distribution.

P(αC,0
ΩI

→αC,r
ΔO

) ∼ N
( m−1∑

j=0

Γr
j ,

m−1∑

j=0

Γr
j/2N

)

Corollary 1 is straightforward by taking the truncated cluster into consider-

ation. Notice that for large number of rounds, (1 − (2n/d − 1)−Hr · P
∑r−1

i=0 Bi
ave )

can be approximated to be one, and thus the distribution can be simplified as
stated.

Since for any S-Box, we know that R · Pave = 1, thus the expect value
will converge to some stable value

∑
Γ as the number of rounds become large.

Actually, we can see that as the number of rounds becomes large, the probability
of the paths tends to gather around the mean.

2.2 Experimental Verification

The evaluation of the probability for the concrete differential cluster is the key
to the attack. Thus it is necessary to verify the correctness of the probability
calculation, especially, the mean (Γ) of the probability distribution in Corollary 1.
Our experiment has the following settings.
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1. We design a toy version of GFS cipher. It has 32-bit block size with 8 4-bit
subblocks. TWINE’s S-Box is applied and we apply the optimal block shuffle
No.2 for k = 8 from [20] as the permutation layer to guarantee good diffusion
property. It can be seen as a smaller block size version of TWINE.

2. We target 7 rounds differential path and choose the truncated input difference
αT,0

ΩI
and output difference αT,7

ΔO, such that the concrete differential cluster size
evaluated by the theoretical model is close to but less than 230 so that we
can practically collect enough sample data.

3. We compute 104 differential paths with randomly generated input and output
concrete differences αC,0

ΩI
and αC,7

ΩO
. The probability Prob(αC,0

ΩI
→ αC,7

ΩO
) is

computed by considering every possible differential path from αC,0
ΩI

to αC,7
ΩO

.

Even for 7 rounds, the computational cost is high when trying to find all
the paths connecting some specific input and output difference αC,0

ΩI
and αC,7

ΩO
.

We apply the meet-in-the-middle approach when searching the path probability.
First, we split the 7 rounds into two, 3 rounds + 4 rounds. Then starting from
αC,0

ΩI
, we compute every differential path till the middle point and save them in a

hash table along with the corresponding probabilities. Then starting from αC,7
ΩO

,
we compute backwards for all the differential paths, and match the ones in the
hash table. Once we find a match, update the total probability.

As a result, the computational cost is reduced from computing 7 rounds to
computing the longer half, which is 4 rounds. The bottleneck is the memory
storage, which is bounded by the hamming weight of the truncated difference in
the matching round. The experimental results are summarized in Fig. 2. From
the figure, it shows that the mean of the probability distribution is evaluated
very accurately. The experimental mean is 2−31.9984 while the theoretical value
is 2−31.9958. From the left figure, the histogram confirms the normal distribution
of the probability. For this particular case, the normal approximation becomes
rather accurate when the number of input pairs reaches around 2N ≈ 237.4042.
And this value also satisfies the condition in Theorem1, which again confirms
the accuracy of our model.

Fig. 2. Experimental result for toy cipher
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3 Statistical Distinguisher and Some Observations
for LBlock and TWINE

It it well known that when there are only two distributions to distinguish from,
hypothesis testing based on Neyman-Pearson lemma [14] provides us with the
most powerful test. [4] first provided a former analysis on how to build an opti-
mal distinguisher between two sources, specifically one from random distribution
and one from a real cipher distribution as in our context. They further derived
the complexity to distinguish in the form of number of observable outputs or
the input queries regarding the block cipher analysis based on the log-likelihood
ratio statistics. Several following papers such as [1,9] take advantage of this
distinguisher framework, and after combining with order statistics techniques
addressed in [3], they were able to accurately evaluate the successful probability
of a key recovery of the attack. Also, they were able to apply not only the tradi-
tional differential attack but also multiple, truncated and impossible differential
attacks. The relation between a good statistical distinguisher and the number of
rounds we can attack is pretty much straightforward. What may not seem to be
trivial is the complexity of the key recovery, which will rely on the format of the
output differential. However, it is known that if we use multiple differential out-
puts, the distinguisher behaves better and since we are especially interested in
the extent to which we can distinguish theoretically for large rounds of GFS, we
omit the key recovery discussion in this paper. We rearrange the core theorems
from [4] that will be used in our evaluation as follows.

Theorem 2 ([4]). Considering that Z1, Z2, ... is a sequence of iid random vari-
ables of distribution D and that D0 and D1 share the same support, the log-
likelihood ratio statistic follows normal distribution,

Pr[
LLR(Zn) − nμ

σ
√

n
< t] n→∞−−−−→ Φ(t)

where μ = μj with μ0 = D(D0||D1), μ1 = −D(D1||D0) and σ2
j =

∑
z∈Z

PrDj
[z](log PrD0 [z]

PrD1 [z] ) − μ2
j for j ∈ {0, 1}. And

LLR(Zn) =
∑

a∈Z
N(a|Zn)log

PrD0 [a]
PrD1 [a]

Denote v to be the number of samples need to distinguish between D0 and D1,
then

v =
4 · Φ−1(Pe)2

∑
z∈Z

(PrD0 [z]−PrD1 [z])2

PrD1 [z]

where Pe is the error probability, and D denotes the Kullback-Leibler distance

D(D0||D1) =
∑

z∈Z
PrD0 [z]log

PrD0 [z]
PrD1 [z]
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Here we assume D1 has the uniform distribution, then PrD1 [z] = 2−n for
∀z ∈ {0, 1}n. From Corollary 1, we know that PrD0 [zi] follows different normal
distributions. We know that the mean of the distribution is the unbiased point
estimator for PrD0 [zi]. Thus by replacing PrD0 [zi] with the corresponding mean
derived by Corollary 1, we are able to compute the required number of samples
v in order to distinguish.

3.1 Efficient Algorithm to Compute D0

Deriving the full distribution D0 is a practical issue. For GFS with 4-bit nibble
and 64-bit block size, the truncated differential domain is shrunk down to 216.
However, the computational cost will still grow exponentially as the number
of rounds grows. Fortunately, we can store all the 216 differential states for
each of the rounds, which makes the computational cost grow linearly regarding
the number of rounds. This will dramatically speed up the computing for D0

regarding large number of rounds.

Algorithm 1. Searching D0 for all input and output truncated differences
1: Input: Input truncated difference αT,0.
2: Output: Full distribution of D0 given αT,0.

3: procedure Dist search(r ← 0, αT,0)
4: M = {(si, pi)|0 ≤ i ≤ 2n/d} ← ∅
5: Append (αT,0, 1.0) to M .
6: while r! = N − 1 do
7: Mout ← M
8: for ∀(si, pi) ∈ M do
9: // Given si, pi, round function returns all the possible output diff and

probabilities
10: {(o0, p

′
0), ..., (ot−1, p

′
t−1)} ← round(si, pi)

11: for ∀(oi, p
′
i) do

12: if oi ∈ Mout then
13: pi ← pi + p

′
i

14: else
15: Append (oi, p

′
i) to Mout

16: M ← Mout

17: Output (si, pi) ∈ M, 0 ≤ i ≤ 2n/d

For GFS with 4-bit sub-blocks and 64-bit block size, after around 7 rounds,
M will include every truncated internal state. We apply the GMP library [10]
when computing the probability so that we do not lose precision. However, as
the number of rounds grow, the bias becomes miniscule, requiring large amounts
of memory to store the precision. When we reach some large rounds, we cannot
produce accurate result due to the memory limit. The algorithm is still very
efficient considering that we need to perform the search for not only one but all
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the 2n/d − 1 input difference αT,0. The following experimental results show the
number of rounds we have achieved with full precision as well as some rounds
where precision was lost partially.

3.2 Observations on LBlock and TWINE

LBlock is a 32-round, 64-bit block cipher with Feistel structure proposed by
Wenling Wu et al. in [22]. In each round after the left 32-bit side goes through
a non-linear function F, it is XOR-ed with the right side that has performed an
8-bit left cyclic shift. TWINE is also a 64-bit block cipher with GFS structure
proposed by Tomoyasu Suzaki, etc. in [21]. Different from LBlock, it supports
80 and 128 bits key length which both have the same 36 rounds. The F function
of LBlock and round operation of TWINE are shown in Figs. 3 and 4.

Fig. 3. F function for LBlock Fig. 4. One round for TWINE

In [21], the authors already identified that both ciphers are very similar to
each other regarding the Feistel structure and the permutation layer. This is also
our motivation to study these two ciphers, first to compare the security margins
and secondly, obtain the observataions for the behavior of GFS.

As we have pointed out, our framework can be used to exploit all the distri-
butions under our theoretical model. In order to get a close look at the strength
and weakness of the various differential paths given different input differences,
we need to perform Algorithm 1 for all the 216 − 1 input differences for different
number of rounds. Figures 5 and 6 show the experimental results of how many
samples are required in order to distinguish the cipher from a uniformly distrib-
uted random source. Particularly, for each of the input differences (hamming
weight), we consider all the possible output differences to derive the correspond-
ing distinguisher. The experiment was performed on supercomputer Cray XC30
with 700 CPU cores (Intel Xeon E5-2690v3 2.6 GHz (Haswell)) running in par-
allel for around three days.

Both figures share some similarities which provide us with an insight into
the properties of other GFS with bijective S-Box design. It also provides us
with strategies on how to perform efficient cryptanalysis. Firstly, within the
same number of rounds, we notice that the distinguisher will perform better
as the hamming weight of the input differences decrements. Considering many
previous researchers such as [16] favor the input difference with small hamming
weight, this result seems to be straightforward. However, previous results did not
consider the clustering effect where many small paths could eventually lead to



120 J. Chen et al.

Fig. 5. Distinguisher for LBlock Fig. 6. Distinguisher for TWINE

a better cluster. Here we clarify this situation by showing that input differences
with large hamming weight tend to have better randomization property with
respect to the differential distribution, thus an attacker should focus on searching
the paths with small input hamming weight.

Secondly, this trend remains the same for different number of rounds, with the
total number of pairs required to distinguish increasing as the number of rounds
grows. This makes sense according to the Markov cipher model [15], which has
been used to model modern block ciphers. Notice that for both LBlock and
TWINE, starting from round 18, the number of pairs tends to converge to some
threshold. This is due to the insufficient precision used in the GMP library. We
expect that the original trend will persist no matter the number of rounds if we
have enough memory space to store 216 elements with large enough precision.
In the current setting, we set the precision to be 10000 bits, which gives us a
good balance between the precision of the results, and the experiment speed.
Notice that even for 20 rounds, the results for the low hamming weight are still
accurate and usable.

Distinguishing Attack. Now we give distinguishing attacks for LBlock and
TWINE assuming the usage of the full code book. We have previously shown
that input differences with small hamming weight tends to have better dis-
tinguishability. For any truncated input difference αT,0, the total number of
differential pairs that conform to the input differential αT,0 is 263+4×HW (αT,0),
where HW (αT,0) denotes the hamming weight of αT,0. If the number of pairs
v in order to distinguish derived from the statistical framework is smaller than
263+4×HW (αT,0), then we are able to launch the distinguisher attack immediately.
However, for larger rounds such as 18 rounds, the experimental result indicates
that the input differential with the best distinguishing effect requires more pairs
than the total amount that the cipher can provide. Therefore, instead of taking
advantage of only one input difference, we can consider multiple input differences.
One straightforward way is to store 216 counters for each of the input difference,
and we extend the distribution domain from 216 to maximum 232 counters.
Let vi denote the number of pairs required for input difference αT,0

i , then the
number of pairs v0...i to distinguish can be computed as follows:
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v0...i = (
i∑

x=0

1
vx

)−1

This equation can be derived directly from Theorem 2. Notice that we will
proceed with the input difference with small hamming weight first, thus v is
sorted in ascending order based on hamming weight in order to provide which
input difference to use first. In order to check the success of the attack, we need
to be sure that

v0...i <

i∑

x=0

263+4×HW (αT,0
i )

For our distinguishing attack, the computational cost is the cost of the sum-
ming the counters, which requires

∑i
x=0 263+4×HW (αT,0

i ) memory accesses. Under
the conservative estimation that one memory access is equivalent to one round
operation cost, which was also used in paper [12], the computational cost can be
estimated as 1

R × ∑i
x=0 263+4×HW (αT,0

i ) R-round computation, where R is the
number of total rounds to attack.

Although for larger number rounds we currently do not have the accurate
distribution for all the input differences due to the computational limitations,
the input differences with small hamming weight are still accurate. Therefore, we
can take advantage of this accurate region to launch the attack. For 21 rounds
of LBlock, if we take the first 211 input differences sorted according to vi, then
v0...211 ≈ 297.69 which is less than the total available pairs 2100.67. This means
we can actually perform the distinguishing attack as long as we have enough
computing resources. The time complexity here is thus 293.3 21 rounds LBlock
encryptions. TWINE behaves almost exactly the same as LBlock for the first 21
rounds. By applying our framework, we can provide an accurate security bound
for different number of rounds. For example, a 21-round LBlock will theoretically
fail to achieve the security level that we claim if we set the key size to be larger
than 94 bits.

Next we summarize the security margin for both LBlock and TWINE regard-
ing the distinguishing attack. Notice that we choose the distinguishing attack to
bound the security since it is usually considered to be weaker than key recovery
attack. So from a designer’s point of view, we have to set the security parameter
(key size) to be conservative in order to resist as many attacks as possible. Due
to the limitation of computational resources, we can only derive the accurate
values up to 21 rounds for both LBlock and TWINE accordingly. However, after
observing the first 21 rounds for both LBlock and TWINE, the increase of the
computational cost is log-linear with respect to the number of rounds. Thus
the trend can be well extrapolated by using the least square methods. Figures 7
and 8 demonstrate the security level for full rounds of LBlock and TWINE, where
the dotted line is the prediction while the solid line is the experimental results.
Our analysis shows that if both ciphers use 80-bit key setting, then number of
rounds considered to be secure is around 19. However, since TWINE also sup-
port 128-bit key, in order to satisfy the corresponding security, we will need at



122 J. Chen et al.

least 25 rounds. We notice that in [2], they can achieve 25-rounds key recovery
attack for TWINE-128 by using MitM and impossible differential attack. By
using truncated differential technique, however, they can only attack 23-rounds
using dedicated techniques. Our result complements theirs by revealing a gen-
eral pattern after an in-depth analysis of the differential distinguisher. From the
differential characteristic’s point of view, although Table 3 in [2] demonstrates
several paths that are better than evaluated using active S-Box, they still cannot
achieve more than 16 rounds for TWINE.

From the provable security’s point of view, both full rounds LBlock and
TWINE are secure, and our analysis can provide the accurate security margin
which is around 178 bits and 208 bits for LBlock and TWINE respectively. The
reason TWINE is more secure in this sense is that it has 4 more rounds than
LBlock, and they are equivalently secure against differential attack if given the
same number of rounds.

Fig. 7. Security level for LBlock Fig. 8. Security level for TWINE

4 Conclusion

In this paper, we revisit the security of GFS with S-Box design regarding dif-
ferential cryptanalysis. We evaluate the differential trails taking the full cluster
into consideration by providing both theoretical and experimental results for
the full distribution in truncated form. Our framework provides a solution for
ciphers with relatively large block size to derive the full differential distribution.
As a concrete application, we evaluate LBlock and TWINE to demonstrate the
relationship between the hamming weight of the input difference and complex-
ity of the attack. For TWINE-128, our attack can achieve 25 rounds, which is
comparable to the best attacks up to date. More importantly, our framework
enables us to compute the accurate security bound on full rounds LBlock and
TWINE. As far as we know, this is the first achievement on security proof with
exact security margin provided. This framework can be utilized by future cipher
proposals to determine the minimum security margin of their designs.
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Abstract. SIMON is a family of lightweight block ciphers publicly
released by the NSA. Up to now, there have been many cryptanalytic
results on it by means of differential, linear, impossible differential, inte-
gral, zero-correlation linear cryptanalysis and so forth. At INDOCRYPT
2014, Wang et al. gave zero-correlation attacks for 20-round SIMON32,
20-round SIMON48/72 and 21-round SIMON48/96. We investigate the
security of whole family of SIMON by using zero-correlation linear crypt-
analysis in this paper. For SIMON32 and SIMON48, we can attack one
more round than the previous zero-correlation attacks given by Wang
et al. We are the first one to give zero-correlation linear approximations
of SIMON64, SIMON96 and SIMON128. These approximations are also
utilized to attack the corresponding ciphers.

Keywords: SIMON · Zero-correlation linear approximation ·
Cryptanalysis

1 Introduction

Lightweight primitives aim at finding an optimal compromise between efficiency,
security and hardware performance. Lightweight ciphers have been used in many
fields, such as RFID tags, smartcards, and FPGAs. The impact of lightweight
cipher is likely to continue increasing in the future. In recent years, many
lightweight ciphers have been developed, including KATAN [10], KLEIN [11],
LED [12], Piccolo [15], PRESENT [8] and TWINE [17].

SIMON [6] is a family of lightweight block ciphers publicly released by the
National Security Agency (NSA) in June 2013. NSA has developed three ciphers
to date, including SIMON, SPECK and Skipjack. SIMON has been optimized for
performance in hardware implementations, while its sister algorithm, SPECK [6],
has been optimized for software implementations. SIMON and SPECK offer
users a variety of block sizes and key sizes for different implementations.

Many cryptanalytic results have been published on SIMON. The first
differential cryptanalysis on SIMON was presented by Abed et al. in [1].
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Then, Biryukov et al. improved the differential cryptanalysis of SIMON32,
SIMON48 and SIMON64 by searching better differential characteristics in [7].
Based on the differential distinguisher shown by Biryukov et al., Wang et al.
improved the key recovery attacks on SIMON32, SIMON48 and SIMON64 [18].
In [18], Wang et al. gave the attack on 21-round SIMON32, which is still the
best attack up to now. In addition, Sun et al. identified better differential dis-
tinguisher for SIMON with MILP models in [16]. Impossible differential attack
against SIMON was firstly presented in [2], then the improved impossible differ-
ential attacks on SIMON32 and SIMON48 were given in [19], which had been
further improved by Boura et al. in [9].

For the integral attack, Wang et al. proposed the attack on 21-round
SIMON32 in [19] based on a zero-sum integral distinguisher for 15-round
SIMON32, which was obtained experimentally.

Zero-correlation linear attack is one of the recent cryptanalytic methods
introduced by Bogdanov and Rijmen in [3]. This kind of attack is based on the
linear approximation with correlation zero (i.e. the linear approximation with
probability exactly 1

2 ). The idea of multiple zero-correlation cryptanalysis was
developed in recent years in [4] by Bogdanov and Wang. They proposed a new
distinguisher by using the fact that there are numerous zero-correlation approxi-
mations in susceptible ciphers. In [5], a more powerful distinguisher called multi-
dimensional zero-correlation distinguisher was introduced. Wang et al. also gave
the zero correlation linear approximations for SIMON32 and SIMON48 in [19].
They employed these approximations to attack 20-round SIMON32, 20-round
SIMON48/72 and 21-round SIMON48/96.

In this paper, we investigate the security of whole family of SIMON by using
zero-correlation linear cryptanalysis. For SIMON32 and SIMON48, by using
the technique of equivalent-key, our cryptanalysis can attack one more round
than the previous zero-correlation attacks in [19]. We are the first ones to give
zero-correlation linear approximations of SIMON64, SIMON96 and SIMON128.
These approximations are also utilized to attack the corresponding ciphers.

Our Contributions. In this paper, we investigate the security of whole family
of SIMON by using zero-correlation linear cryptanalysis. Our contributions can
be summarized as follows:

– Based on the 11-round zero-correlation distinguisher for SIMON32 and
12-round zero-correlation distinguisher for SIMON48, we use the equivalent-
key technique (i.e. by moving the subkey into the left-side of round func-
tion) to improve the key recovery attack on SIMON32 and SIMON48. Finally,
we can attack 21-round SIMON32, 21-round SIMON48/72 and 22-round
SIMON48/96. The equivalent-key technique has been widely used in various
key-recovery attacks. This technique aims at reducing the number of guessed
subkey by using equivalent subkeys to replace the original subkeys used in
the cipher. This technique had been used in [13] by Isobe. But there exists a
little difference. Because the subkey is XORed after non-linear function, the
condition in [13] that some parts of plaintext should be fixed can be canceled.
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– We provide 13-, 16- and 19- round zero-correlation linear approximations of
SIMON64, SIMON96 and SIMON128, respectively. We also use them to analy-
sis the security of the corresponding ciphers. We are the first one to give the
zero-correlation linear cryptanalysis for SIMON64, SIMON96 and SIMON128.

Our results along with the previous zero-correlation attacks on SIMON32 and
SIMON48 are listed in Table 1.

Table 1. Summary of zero-correlation attacks on SIMON

Cipher Rounds Time (ENs) Data (KPs) Memory (Bytes) Ref.

SIMON32 20 259.9 232 241.4 [19]

SIMON32 21 259.4 232 231.0 Sect. 4.1

SIMON48/72 20 259.7 248 243.0 [19]

SIMON48/72 21 261.9 248 243.0 Sect. 4.2

SIMON48/96 21 272.6 248 246.7 [19]

SIMON48/96 22 280.5 248 243.0 Sect. 4.2

SIMON64/96 23 290.4 264 254.0 Sect. 4.3

SIMON64/128 24 2116.8 264 254.0 Sect. 4.3

SIMON96/144 28 2141.0 296 285.0 Sect. 4.3

SIMON128/192 32 2156.8 2128 2117.0 Sect. 4.3

SIMON128/256 34 2255.6 2128 2117.0 Sect. 4.3

KP: Known Plaintext; EN: Encryption.

Outline. The remainder of this paper is organized as follows. Section 2 gives a
brief description of SIMON and a general introduction of zero-correlation linear
cryptanalysis. Section 3 presents the zero-correlation linear distinguishers used in
the following attacks. Section 4 covers the zero-correlation attacks on the whole
family of SIMON. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Brief Description of SIMON

SIMON [6] is a family of lightweight block ciphers publicly released by the
National Security Agency (NSA) in June 2013. SIMON offers users a variety
of block sizes and key sizes for different implementations. Table 2 lists the dif-
ferent block and key sizes, in bits, for SIMON.

SIMON is a two-branch balanced Feistel network which consists of three
operations: AND (&), XOR (⊕) and rotation (≪). We denote the input of the
i-th round by (Li, Ri), i = 0, 1, . . . , r − 1. In round i, (Li, Ri) is updated to
(Li+1, Ri+1) by using a function F (x) = (x ≪ 1)& (x ≪ 8) ⊕ (x ≪ 2) as
follows:
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Table 2. SIMON parameters

Block size Key size

32 64

48 72, 96

64 96, 128

96 96, 144

128 128, 192, 256

<<< 1

<<< 8

<<< 2

&

rki

Li Ri

Li+1 Ri+1

Fig. 1. Round function of SIMON

Li+1 = F (Li) ⊕ Ri ⊕ rki,

Ri+1 = Li.

The output of the last round (Lr, Rr) is the ciphertext. An illustration of the
round function is depicted in Fig. 1.

The key schedule of SIMON uses an LFSR-like procedure to generate r sub-
keys rk0, rk1, . . . , rkr−1. SIMON processes three slightly different key schedule
procedures, depending on the number of word (ω) included in the master key.
The first ω subkeys rk0, rk1, . . . , rkω−1 are initialized by the master key. The
remaining subkeys are generated as follows:

rki+m = c ⊕ (zj)i ⊕ rki ⊕ Ym ⊕ (Ym ≫ 1),

Ym =

⎧
⎨

⎩

rki+1 ≫ 3 if ω = 2
rki+1 ⊕ (rki+2 ≫ 3) if ω = 3
rki+1 ⊕ (rki+3 ≫ 3) if ω = 4.

Here, the value c is constant 0xff. . .fc, and (zj)i denotes the i-th bit from one
of the five constant sequences z0, z1, z2, z3 and z4. The master key can be derived
if any sequence of ω consecutive subkeys is known. For more information, please
refer to [6].

2.2 Zero-Correlation Linear Cryptanalysis

Zero-correlation linear attack is one of the recent cryptanalytic methods intro-
duced by Bogdanov and Rijmen in [3]. This kind of attack is based on the linear
approximation with correlation zero (i.e. the linear approximation with probabil-
ity exactly 1

2 ). The idea of multiple zero-correlation cryptanalysis was developed
in recent years in [4] by Bogdanov and Wang. They proposed a new distinguisher
by using the fact that there are numerous zero-correlation approximations in sus-
ceptible ciphers. In [5], a more powerful distinguisher called multidimensional
zero-correlation distinguisher was introduced.

Even though multiple zero-correlation cryptanalysis and multidimensional
zero-correlation cryptanalysis perform better than zero-correlation linear crypt-
analysis for various ciphers, we have to claim that they are not appropriate



Improved Zero-Correlation Cryptanalysis on SIMON 129

for SIMON. Multiple zero-correlation cryptanalysis and multidimensional zero-
correlation cryptanalysis are more appropriate for word-level ciphers, such as
AES, Skipjack and CAST-256.

The following Theorem is useful for computing the success probability of
zero-correlation linear cryptanalysis.

Theorem 1 ([3, Proposition 3]). The probability that the correlation value is 0
for a non-trivial linear approximation of a randomly drawn n-bit permutation
can be approximated by 1√

2π
2

4−n
2 for n ≥ 5.

Based on the linear approximation of correlation zero, a technique similar to
Matsui’s Algorithm 2 [14] can be used for key recovery. Let the adversary have
2n plaintext-ciphertext pairs and a zero-correlation linear approximation α → β
for a part of the cipher. The linear approximation is placed in the middle of
the attacked cipher. Let E and D be the partial intermediate states of the data
transform at the boundaries of the linear approximations (See Fig. 2). Then the
key can be recovered using the following approach:

1. Guess the bits of the key needed to compute E and D. For each guess:
(a) Partially encrypt the plaintexts and partially decrypt the ciphertexts

up to the boundaries of the zero-correlation linear approximation α → β.
(b) Estimate the correlation c of the linear approximation α → β for the

key guess using the partially encrypted and decrypted value E and D
by counting how many times 〈α,E〉 + 〈β,D〉 is zero over 2n plaintext-
ciphertext pairs.

(c) Perform a test on the estimated correlation c to tell of the estimated
values of c is compatible with the hypothesis that the actual value of c is
zero.

Plaintext P

Ciphertext C

E

D

Round covered by 
zero-correlation

linear approximation

Partial
encryption

Partial
decryption

Check for zero-
correlation

Fig. 2. Key recovery in zero-correlation linear cryptanalysis
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Fig. 3. Zero-correlation linear approximation of 11-round SIMON32. (Color figure
online)

2. Test the surviving key candidates against a necessary number of plaintext-
ciphertext pairs.

3 Zero-Correlation Linear Distinguishers of SIMON

3.1 Zero-Correlation Linear Distinguisher of SIMON32

For SIMON32, we use the 11-round zero-correlation linear distinguisher in [19],
which is shown in Fig. 3. The input mask is (0x0001,0x0000) and the output
mask is (0x0000,0x0080). The ‘0’ at bottom left and the ‘1’ at top right (in red)
constitute the contradiction that ensures zero correlation.

3.2 Zero-Correlation Linear Distinguisher of SIMON48

Similarly, by using the 12-round zero-correlation linear distinguisher in [19],
we can mount the key recovery attacks on 21-round SIMON48/72 and
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Fig. 4. Zero-correlation linear approximation of 12-round SIMON48. (Color figure
online)

22-round SIMON48/96. The distinguisher used in the following attacks is shown
in Fig. 4. The input mask is (0x000001,0x000000) and the output mask is
(0x000000,0x000002). The ‘0’ at bottom left and the ‘1’ at top right (in red)
constitute the contradiction that ensures zero correlation.
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3.3 Zero-Correlation Linear Distinguishers of SIMON64,
SIMON96 and SIMON128

In order to attack SIMON64/96/128, we first construct 13-, 16- and 19-round
zero-correlation linear approximations for SIMON64, SIMON96 and SIMON128
by applying miss-in-the middle technique, which are shown in Figs. 5, 6 and 7,
respectively.

Fig. 5. Zero-correlation linear approximation of 13-round SIMON64.

Fig. 6. Zero-correlation linear approximation of 16-round SIMON96.
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Fig. 7. Zero-correlation linear approximation of 19-round SIMON128.

4 Zero-Correlation Linear Cryptanalysis of SIMON

In this section, we investigate the security of whole family of SIMON by using
zero-correlation linear cryptanalysis. We use 11- and 12-round zero-correlation
linear approximations of SIMON32 and SIMON48 in [19] to present the key
recovery attacks on 21-round SIMON32, 21-round SIMON48/72 and 22-round
SIMON48/96. We also utilize the distinguishers presented in Sect. 3.3 to attack
SIMON64, SIMON96 and SIMON128.

4.1 Zero-Correlation Linear Cryptanalysis of SIMON32

In this section, we use the 11-round zero-correlation linear distinguisher (See
Fig. 3) in [19] to attack 21-round SIMON32. As shown in Fig. 8, we can add five
rounds before the distinguisher and append five rounds after the distinguisher
(i.e. the zero-correlation distinguisher starts from the 5-th round and ends at
the 15-th round, with round number starting from 0). In this way, we can attack
21-round SIMON32.

Equivalent-Subkey Technique. The equivalent-subkey technique has been
widely used in various key-recovery attacks. This technique aims at reducing
the number of guessed subkey bits by replacing the equivalent subkeys with the
original subkeys. This technique had been used in [13] by Isobe. But there exists
a little difference. Because the subkey is XORed after non-linear function, the
condition in [13] that some parts of plaintext should be fixed can be canceled.

In order to reduce the number of guessed subkey bits in the key recovery
process, we move the subkey rki of the i-th round to the (i + 1)-th round,
(i = 0, 1, 2, 3, 4), to get the equivalent subkey Ki, see Fig. 8 (a). For example,
K0 in Fig. 8 (a) is equal to rk0, and K1 is equal to (rk0 ≪ 2) ⊕ rk1 and so forth.
Note that K4 is located in the distinguisher and doesn’t need to be guessed. In
Fig. 8 (a), we only list the guessed bits for Ki, 0 ≤ i ≤ 3. Similarly, we can move
the subkey rki of the i-th round to the (i − 1)-th round, (i = 16, 17, 18, 19, 20),
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to get the equivalent subkey Ki, see Fig. 8 (b). Again, K16 is located in the
distinguisher and doesn’t need to be guessed. In Fig. 8 (b), we only list the
guessed bits for Ki, 17 ≤ i ≤ 20.

Fig. 8. Key recovery attack on 21-round SIMON32.

Key Recovery Process for SIMON32. In the following, Ri denotes the
output of the i-th round. Ri,{j} denotes the j-th bit of the Ri. Li,{j} is defined
in a similar way. Note the bit position starts from ‘0’.

Firstly, we guess a part of the equivalent subkeys K17, K18, K19 and K20

(the concrete guessed key bits are shown in Fig. 8 (b)) and partially decrypt
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the ciphertext up to the state R16,{7}. Next, we guess a part of the equivalent
subkeys K0, K1, K2, K3 (the concrete guessed key bits are shown in Fig. 8
(a)) and partially encrypt the plaintext to the state L5,{0}. We count the num-
ber of occurrences of the event that L5,{0}‖R16,{7} is equal to “00” or “11”. If
the occurrence number is exactly equal to 231, we can keep the guessed 58-bit
subkey as a possible subkey candidate, and discard it otherwise. To this end,
58-bit subkey is already guessed, which includes K0

{0,2−7,9−14}, K2
{4−6,8,11−15},

K3
{0,6,7,13,14}, K4

{8,15}, K17
{6,15}, K18

{4,5,7,13,14}, K19
{2−6,11−13,15} and K20

{0−5,7,9−14}.
From Theorem 1, the probability that a wrong subkey guess is kept after

the above procedure can be approximated by 1√
2π

2
4−32

2 ≈ 2−15.33. Thus, 258 ×
2−15.33 = 242.67 subkey candidates will be left. After that, we guess 6-bit subkey
K0

{1,8,15}‖K1
{0,1,2} and obtain 29 remaining bits of K1

{3,7,9,10} ‖ K2
{1−5,8−12,15} ‖

K3
{0−7,9−14} by solving the linear equations with Gaussian elimination. At last,

we can compute all bits of the master key by inverting the key schedule, and
check the correctness by using at most two plaintext-ciphertext pairs. We express
this procedure in Algorithm 1.

Algorithm 1. Key Recovery Attack of SIMON32
1 Represent K20

{0−5,7,9−14}‖K19
{2−6,11−13,15}‖K18

{4,5,7,13,14}‖K17
{6,15} by

K0‖K1‖K2‖K3, and get 29 linear equations
2 for all 242.67 subkey candidates getting from the subkey recovery procedure (See

Table 3) do
3 for all values of K0

{1,8,15}‖K1
{0,1,2} do

4 Get 29 linear equations with respect to
K1

{3,7,9,10}‖K2
{1−5,8−12,15}‖K3

{0−7,9−14}
5 Solve the linear equations by means of Gaussian elimination
6 if solvable then
7 Compute all bits of the master key according to the key schedule.
8 Verify the master key by using two plaintext-ciphertext pairs.

Complexity of Attack. The data complexity for the attack on SIMON32 is
232 known plaintexts.

In this attack, the dominant term for the memory complexity is the term
used to store 231 8-bit counters T0[X32

1 ], which makes the memory complexity
be 231 bytes.

The time complexity of each step in subkey recovery procedure is listed in
Table 3. Overall, the time complexity in subkey recovery procedure is 259.42

21-round SIMON32 encryptions. In master key recovery phase, solving 29 lin-
ear equations with 29 variables by using Gaussian elimination needs about
1
3 · 293 ≈ 8130 bit-XOR operations, which can be measured by 8130

16·4·21 ≈ 22.60

21-round SIMON32 encryptions (Note that there are three XOR operations and
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Table 3. Procedure of subkey recovery for SIMON32

Step Input state Guessed subkey (�Bits) Computing (�Bits) Counter (size) Time complexity

0 X32
0 K20

{0−5,7,9−14}
K19

{2−6,11−13,15}
K18

{4,5,7,13,14}
K17

{6,15}(29)

R16,{7} (36)* T0[X
32
1 ](31) 232·229· 1+3+6+10+16

16×21
≈255.78

1 X32
1 None(0) L1,{0,2−14} (14) T1[X

32
2 ](25) 231·229· 14

16×21 ≈255.41

2 X32
2 K0

{0,3,5,7,10,12,14}(7) L2,{4,6,8,11,13,15} (6) T2[X
32
3 ](24) 225·236· 6

16×21 ≈255.19

3 X32
3 K0

{4,6,11,13}(4) L2,{5,12,14} (3) T3[X
32
4 ](20) 224·240· 3

16×21 ≈257.19

4 X32
4 K0

{2,9}(2) L2,{10} (1) T4[X
32
5 ](17) 220·242· 1

16×21 ≈253.61

5 X32
5 K1

{6,8,13,15}(4) L3,{0,7,14} (3) T5[X
32
6 ](15) 217·246· 3

16×21 ≈256.19

6 X32
6 K1

{5,12,14}(3) L3,{6,13} (2) T6[X
32
7 ](13) 215·249· 2

16×21 ≈256.61

7 X32
7 K1

{4,11}(2) L3,{12} (1) T7[X
32
8 ](10) 213·251· 1

16×21 ≈255.61

8 X32
8 K2

{0,7,14}(3) L4,{8,15} (2) T8[X
32
9 ](8) 210·254· 2

16×21 ≈256.61

9 X32
9 K2

{6,13}(2) L4,{14} (1) T9[X
32
10 ](5) 28·256· 1

16×21 ≈255.61

10 X32
10 K3

{8,15}(2) L5,{0} (1) T10[X
32
11 ](2) 25·258· 1

16×21 ≈254.61

Input State: input state of each step (See Table 4 for its concrete meaning);

Guessed Subkey: guessed subkey bits in each step;

Computing: state bits to be computed in each step;

Counter: counters to be constructed in each step;

Time Complexity: measured in 21-round SIMON32 encryption.
∗ : To compute R16,{7}, we also need to compute R17,{5,6,15}, R18,{3−5,7,13,14}, R19,{1−6,11−13,15}
and R20,{0−15}, which are in total 36 bits.

Table 4. Explanation of symbols used in subkey recovery of SIMON32

Symbol Meaning

X32
0 L0,{0−15}‖R0,{0,2−14}‖L21,{0−15}‖R21,{0−15}

X32
1 L0,{0−15} ‖ R0,{0,2−14} ‖ R16,{7}

X32
2 L1,{0,2−14}‖R1,{4−6,8,10−15}‖R16,{7}

X32
3 L2,{4,6,8,11,13,15}‖L1,{0,2−4,6−14}‖R1,{5,10,12,14}‖R16,{7}

X32
4 L2,{4−6,8,11−15}‖L1,{0,2,6−9,12−14}‖R1,{10}‖R16,{7}

X32
5 L2,{4−6,8,10−15}‖R2,{0,6,7,12−14}‖R16,{7}

X32
6 L3,{0,7,14}‖L2,{4,5,8,10−12,14,15}‖R2,{6,12,13}‖R16,{7}

X32
7 L3,{0,6,7,13,14}‖L2,{4,8,10,11,14,15}‖R2,{12}‖R16,{7}

X32
8 L3,{0,6,7,12−14}‖R3,{8,14,15}‖R16,{7}

X32
9 L4,{8,15}‖L3,{0,6,12,13}‖R3,{14}‖R16,{7}

X32
10 L4,{8,14,15}‖R4,{0}‖R16,{7}

X32
11 L5,{0}‖R16,{7}

one AND operation in the round function of SIMON. For simplicity, we approxi-
mate them as four XOR operations in our analysis), thus the time complexity of
master key recovery phase can be approximated as 242.67 × 25 × 22.60 + 242.67 ×
25 × (1 + 2−32) ≈ 250.49 21-round SIMON32 encryptions. Thus, the total time
complexity of this attack is about 259.42 21-round SIMON32 encryptions.
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4.2 Zero-Correlation Linear Cryptanalysis of SIMON48

Similarly, by using the 12-round zero-correlation linear distinguisher (See Fig. 4)
in [19], we can mount key recovery attacks on 21-round SIMON48/72 and
22-round SIMON48/96.

Key Recovery Attack on 21-Round SIMON48/72. As shown in Fig. 9,
we can add five rounds before the distinguisher and append four rounds after
the distinguisher. In this way, we can attack 21-round SIMON48/72. We only
list the guessed subkey bits in Fig. 9. The detailed attack procedure is proceeded
in Algorithm 2.

The data complexity for the attack on SIMON48/72 is 248 known plaintexts.

Fig. 9. Key recovery attack on 21-round SIMON48/72.
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Algorithm 2. Key Recovery Attack of SIMON48/72
1 Represent K3

{16,23}‖K18
{0,17}‖K19

{9,15,16,22,23}‖K20
{0,1,7,8,13−15,17,20−22} by

K0‖K1‖K2, and get 20 linear equations.
2 for all 230.67 subkey candidates getting from the subkey recovery procedure (the

concrete subkey recovery procedure is listed in Table 5) do
3 for all values of K0

{0−3,7,9}‖K1
{1−5,8−11,15,17,18} do

4 Get 20 linear equations with respect to K1
{22}‖K2

{0−7,9−13,16−20,23}.
5 Solve the linear equations by means of Gaussian elimination
6 if solvable then
7 Compute all bits of the master key according to the key schedule.
8 Verify the master key by using two plaintext-ciphertext pairs.

Table 5. Procedure of subkey recovery for SIMON48/72†

Step Input State Guessed Subkey(�Bits) Computing(�Bits) Counter(Size) Time Complexity

0 X48,72
0

K18
{0,17}‖K19

{9,15,16,22,23} R17,{1} (24)* T0[X
48,72
1 ](43) 248·218· 1+3+7+13

24×21
≈261.61

K20
{0,1,7,8,13−15,17,20−22}(18)

1 X48,72
1 None(0) L1,{0,4−6,8,10−23} (19) T1[X

48,72
2 ](33) 243·218· 19

24×21
≈256.27

2 X48,72
2 K0

{5,6,8,10,12,13,15−17,19,20,22,23}(13) L2,{0,6,7,13,14,16,18,20,21,23} (10) T2[X
48,72
3 ](26) 233·231· 10

24×21
≈258.34

3 X48,72
3 K0

{4,11,14,18,21}(5) L2,{12,19,22} (3) T3[X
48,72
4 ](21) 226·236· 3

24×21
≈254.61

4 X48,72
4 K1

{0,7,14,21}(4) L3,{8,15,22} (3) T4[X
48,72
5 ](17) 221·240· 3

24×21
≈253.61

5 X48,72
5 K1

{6,12,13,16,19,20,23}(7) L3,{0,20−22} (4) T5[X
48,72
6 ](11) 217·247· 4

24×21
≈257.02

6 X48,72
6 K2

{8,14,15,21,22}(5) L4,{16,22,23} (3) T6[X
48,72
7 ](5) 211·252· 3

24×21
≈255.61

7 X48,72
7 K3

{16,23}(2) L5,{0} (1) T7[X
48,72
8 ](2) 25·254· 1

24×21
≈250.02

Input State: input state of each step (See Table 6 for its concrete meaning);
Guessed Subkey: guessed subkey bits in each step;
Computing: state bits to be computed in each step;
Counter: counters to be constructed in each step;
Time Complexity: measured in 21-round SIMON48 encryption.

* : To compute R17,{1}, we also need to computeR18,{0,17,23}, R19,{1,9,15,16,21−23} and
R20,{0,1,7,8,13−15,17,19−23}, which are in total 24 bits.

† : The false positive probability of this attack is 1√
2π

2
4−48

2 ≈ 2−23.33 from Theorem 1.

The number of remaining subkey candidates is 254 · 2−23.33 ≈ 230.67 as we guess 54 subkey
bits in total.

In this attack, the dominant term for the memory complexity is the term used
to store 243 8-bit counters T0[X

48,72
1 ], which makes the memory complexity be

243 bytes.
From Table 5, the time complexity for subkey recovery is about 261.87

21-round SIMON48/72 encryptions. In Algorithm 2, it will proceed Gaussian
elimination process for 230.67 ·218 = 248.67 times, which can be ignored compared
to 261.87 21-round encryptions. After that, the time complexity of checking the
correctness of guess using two plaintext-ciphertext pairs also can be ignored com-
pared to 261.87 21-round encryptions. Thus, the total time complexity is about
261.87 21-round SIMON48/72 encryptions.
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Table 6. Explanation of symbols used in subkey recovery of SIMON48/72

Symbol Meaning

X48,72
0 L0,{0−23}‖R0,{0−23}‖L21,{0−23}‖R21,{0−23}

X48,72
1 L0,{0,2−23}‖R0,{0,4−6,8,10−23}‖R17,{1}

X48,72
2 L1,{0,4−6,8,10−23}‖R1,{0,6,7,12−14,16,18−23}‖R17,{1}

X48,72
3 L2,{0,6,7,13,14,16,18,20,21,23}‖L1,{0,4,8,10,11,14,15,17,18,20−22} ‖R1,{12,19,22}‖R17,{1}

X48,72
4 L2,{0,6,7,12−14,16,18−23}‖R2,{0,8,14,15,20−22}‖R17,{1}

X48,72
5 L3,{8,15,22}‖L2,{6,12,13,16,18−20,22,23}‖R2,{0,14,20,21}‖R17,{1}

X48,72
6 L3,{0,8,14,15,20−22}‖R3,{16,22,23}‖R17,{1}

X48,72
7 L4,{16,22,23}‖R4,{0}‖R17,{1}

X48,72
8 L5,{0}‖R17,{1}

Fig. 10. Key recovery attack on 22-round SIMON48/96.
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Algorithm 3. Key Recovery Attack of SIMON48/96
1 Represent K17

{0,17}‖K18
{9,15,16,22,23}‖K19

{0,1,7,8,13−15,17,20−22}‖K20
{0,5−7,9,11−23} by

K0‖K1‖K2‖K3, and get 36 linear equations.
2 for all 248.67 subkey candidates getting from the subkey recovery procedure (the

concrete subkey recovery procedure is listed in Table 7) do
3 for all values of K0

{0−3,7,9}‖K1
{1−5,8−11,15,17,18,22}‖K2

{0−4} do

4 Get 36 linear equations with respect to
K2

{5−7,9−13,16−20,23}‖K3
{0−15,17−22}.

5 Solve the linear equations by means of Gaussian elimination
6 if solvable then
7 Compute all bits of the master key according to the key schedule.
8 Verify the master key by using two plaintext-ciphertext pairs.

Table 7. Procedure of subkey recovery for SIMON48/96†

Step Input State Guessed Subkey(�Bits) Computing(�Bits) Counter(Size) Time Complexity

0 X48,96
0

K17
{0,17}‖K18

{9,15,16,22,23}
R17,{1} (43)* T0[X

48,96
1 ](43) 248·236· 43

24×22
≈280.38

K19
{0,1,7,8,13−15,17,20−22}
K20

{0,5−7,9,11−23}(36)

1 X48,96
1 None(0) L1,{0,4−6,8,10−23} (19) T1[X

48,96
2 ](33) 243·236· 19

24×22
≈274.20

2 X48,96
2 K0

{5,6,8,10,12,13,15−17,19,20,22,23}(13) L2,{0,6,7,13,14,16,18,20,21,23} (10) T2[X
48,96
3 ](26) 233·249· 10

24×22
≈276.28

3 X48,96
3 K0

{4,11,14,18,21}(5) L2,{12,19,22} (3) T3[X
48,96
4 ](21) 226·254· 3

24×22
≈272.54

4 X48,96
4 K1

{0,6,7,13,14,20,21}(7) L3,{8,14,15,21,22} (5) T4[X
48,96
5 ](14) 221·261· 5

24×22
≈275.28

5 X48,96
5 K1

{12,16,19,23}(4) L3,{0,20} (2) T5[X
48,96
6 ](11) 214·265· 2

24×22
≈270.96

6 X48,96
6 K2

{8,14,15,21,22}(5) L4,{16,22,23} (3) T6[X
48,96
7 ](5) 211·270· 3

24×22
≈273.54

7 X48,96
7 K3

{16,23}(2) L5,{0} (1) T7[X
48,96
8 ](2) 25·272· 1

24×22
≈267.96

Input State: input state of each step (See Table 8 for its concrete meaning);
Guessed Subkey: guessed subkey bits in each step;
Computing: state bits to be computed in each step;
Counter: counters to be constructed in each step;
Time Complexity: measured in 22-round SIMON48 encryption.

* : To compute R17,{1}, we also need to computeR18,{0,17,23}, R19,{1,9,15,16,21−23},
R20,{0,1,7,8,13−15,17,19−23} and R21,{0,1,5−7,9,11−23}, which are in total 43 bits.

† : The false positive probability of this attack is 1√
2π

2
4−48

2 ≈ 2−23.33 from Theorem 1.

The number of remaining subkey candidates is 272 · 2−23.33 ≈ 248.67 for we guess 72 subkey
bits in total.

Key Recovery Attack on 22-Round SIMON48/96. As shown in Fig. 10,
we can add five rounds before the distinguisher and append five rounds after the
distinguisher. In this way, we can attack 22-round SIMON48/96. We only list
the guessed subkey bits in Fig. 10. The detailed attack procedure is proceeded
in Algorithm 3.

The data complexity for the attack on SIMON48/96 is 248 known plaintexts.
In this attack, the dominant term for the memory complexity is the term used

to store 243 8-bit counters T0[X
48,96
1 ], which makes the memory complexity to

be 243 bytes.
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Table 8. Explanation of symbols used in subkey recovery of SIMON48/96

Symbol Meaning

X48,96
0 L0,{0−23}‖R0,{0−23}‖L22,{0−23}‖R22,{0−23}

X48,96
1 L0,{0,2−23}‖R0,{0,4−6,8,10−23}‖R17,{1}

X48,96
2 L1,{0,4−6,8,10−23}‖R1,{0,6,7,12−14,16,18−23}‖R17,{1}

X48,96
3 L2,{0,6,7,13,14,16,18,20,21,23}‖L1,{0,4,8,10,11,14,15,17,18,20−22} ‖R1,{12,19,22}‖R17,{1}

X48,96
4 L2,{0,6,7,12−14,16,18−23}‖R2,{0,8,14,15,20−22}‖R17,{1}

X48,96
5 L3,{8,14,15,21,22}‖R2,{0,20}‖L2,{12,16,18,19,22,23}‖R17,{1}

X48,96
6 L3,{0,8,14,15,20−22}‖R3,{16,22,23}‖R17,{1}

X48,96
7 L4,{16,22,23}‖R4,{0}‖R17,{1}

X48,96
8 L5,{0}‖R17,{1}

From Table 7, the time complexity for subkey recovery is about 280.54

22-round SIMON48/96 encryptions. In Algorithm 3, it will proceed Gaussian
elimination process for 248.67 ·224 = 272.67 times, which can be ignored compared
to 280.54 22-round encryptions. After that, the time complexity of checking the
correctness of guess using two plaintext-ciphertext pairs also can be ignored com-
pared to 280.54 22-round encryptions. Thus, the total time complexity is about
280.54 22-round SIMON48/96 encryptions.

4.3 Zero-Correlation Linear Cryptanalysis of SIMON64, SIMON96
and SIMON128

We can use the zero-correlation linear approximations showed in Figs. 5, 6 and 7
to attack SIMON64, SIMON96 and SIMON128, respectively. Since the attack
procedures for them are similar, we only list the attack results in Table 9.

Table 9. Summary of ZC linear attack results on SIMON

Cipher ZC linear Attacked Total Time Data Memory
distinguisher rounds rounds (ENs) (KPs)

SIMON64/96 13 23(5+13+5)* 42 290.4 264 254 bytes

SIMON64/128 13 24(6+13+5) 44 2116.8 264 254 bytes

SIMON96/144 16 28(6+16+6) 54 2141.0 296 285 bytes

SIMON128/192 19 32(7+19+6) 69 2156.8 2128 2117 bytes

SIMON128/256 19 34(8+19+7) 72 2255.6 2128 2117 bytes

KP: Known Plaintext; EN: Encryption.
∗ : For (a + b + c), a is the number of rounds before the distinguisher, b is the
length of the distinguisher and c is the number of rounds after the distinguisher.
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5 Conclusion

In this paper, we study the security of whole family of SIMON by using
zero-correlation linear cryptanalysis. We improved the previous zero-correlation
attacks for SIMON32 and SIMON48. Moreover, we present the 13-, 16- and
19-round zero correlation linear approximations of SIMON64, SIMON96 and
SIMON128, respectively, and use them to attack the corresponding ciphers. We
are the first one to give the zero-correlation linear cryptanalysis for SIMON 64,
SIMON96 and SIMON128.

Acknowledgements. This work has been supported by 973 program (No.
2013CB834205), NSFC Projects (No. 61133013 and No. 61572293), Program for
New Century Excellent Talents in University of China (No. NCET-13-0350), as
well as Outstanding Young Scientists Foundation Grant of Shandong Province (No.
BS2012DX018).

References

1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer, Heidelberg (2015)

2. Alkhzaimi, H., Lauridsen, M.: Cryptanalysis of the SIMON family of block ciphers.
IACR Cryptology ePrint Archive, 2013/543 (2013)

3. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear crypt-
analysis of block ciphers. Designs, Codes and Cryptography 70, 369–383 (2014).
Springer, Heidelberg

4. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data
complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48. Springer,
Heidelberg (2012)

5. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive, Report 2013/404 (2013)

7. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers
SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol.
8540, pp. 546–570. Springer, Heidelberg (2015)

8. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

9. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014)

10. Cannière, C., Dunkelman, O., Kneževiá, M.: KATAN and KTANTAN-a family of
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Abstract. An exhaustive search of all 16! bijective 4-bit S-boxes has
been conducted by Markku-Juhani et al. (SAC 2011). In this paper, we
present an improved exhaustive search over all permutation-xor equiva-
lence classes. We put forward some optimizing strategies and make some
improvements on the basis of their work. For our program, it only takes
about one-sixth of the time of the experiment by Markku-Juhani et al. to
get the same results. Furthermore, we classify all those permutation-xor
equivalence classes in terms of a new classification criterion, which has
been come up with by Wentao Zhang et al. (FSE 2015). For some spe-
cial cases, we calculate the distributions of permutation-xor equivalence
classes with respect to their differential bound and linear bound. It turns
out that only in three special cases, there exist S-boxes having a minimal
differential bound p = 1/4 and a minimal linear bound ε = 1/4, which
imply the optimal S-boxes.

Keywords: 4-bit S-box · Classification · Exhaustive search · Differen-
tial cryptanalysis · Linear cryptanalysis · Time complexity

1 Introduction

S-boxes play an important role in block ciphers [1], which have been proposed for
the first time in Lucifer cipher [2], whereafter are popularized by DES [3,4]. Since
S-boxes act as the only non-linear part in many block ciphers, their cryptographic
strength has a direct impact on the security of the whole block cipher. Two kinds
of S-boxes with size of 4-bit and 8-bit are widely used. For example, AES [5]
uses an 8-bit S-box, which has good performance against differential and linear
cryptanalysis. However, AES is limited for some extremely resource-constrained
environments [6,8]. The most compact hardware implementation of AES-128 still
requires 2400GE [7]. In the past decade, with extensive deployment of tiny com-
puting devices such as RFID and sensor network, many new lightweight block
ciphers and hash functions have been proposed. The AES S-box needs more than
200GE, while a typical 4-bit S-box only needs about 20–30GE. Hence, to reduce
the hardware area, 4-bit S-boxes are widely used in lightweight cryptographic
primitives, such as LBlock [13], LED [12], PHOTON [14], PRESENT [9], PRIDE
[16], PRINCE [15], RECTANGLE [11], SPONGENT [10], and so on. In such a
situation, it is very important to have a better understanding of 4-bit S-boxes.
c© Springer International Publishing Switzerland 2016
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Even if the value of n is very small, the number of permutations over n-bit
vectors is still too large. For example, the number of permutations over 4-bit
vectors is 16! ≈ 244.25, which is still huge. The number of permutations over
5-bit vectors is 32! ≈ 2117.66, which is too huge to be exhaustively searched. From
this point of view, it is meaningful to study how to effectively reduce the time
of the exhaustive search of 4-bit S-boxes. In [18], the author gave an exhaustive
search over all bijective 4-bit S-boxes according to permutation-xor equivalence
and gave an idea of golden S-boxes with ideal properties. The total time of
creating a 1.4 GB file of the representatives of all permutation-xor equivalence
classes is about half an hour with a 2011 consumer laptop. We will present some
new results which can be used to improve the efficiency of the search algorithm
greatly. Moreover, we will correct a few minor clerical errors appeared in the
algorithm description in [18].

For 4-bit S-boxes, the optimal values are known with respect to differen-
tial and linear cryptanalysis (that is, differential uniformity and linearity). An
S-box attaining these optimal values is called an optimal S-box. In [17], all
optimal 4-bit S-boxes were classified according to affine equivalence, it is a
surprising fact that there are only 16 different affine equivalence classes. In
[19], a new classification of 4-bit optimal S-boxes have been conducted. Given
an S-box, let CarD1S denote the number of times that 1-bit input difference
causes a 1-bit output difference, and CarL1S denote the number of times that a
1-bit input mask causes a 1-bit output mask. The subset of 4-bit optimal S-boxes
with the same values of CarD1S and CarL1S is called a category. All optimal
4-bit S-boxes were classified into 183 different categories. Among all the 183 cat-
egories, the authors specified 3 so-called platinum categories with the minimal
value of CarD1S + CarL1S. In [19], the authors claimed that the category with
CarD1S = 0 and CarL1S = 0 is the best case. However, they also proved that
there is no such an optimal S-box. It is worth noting that only optimal S-boxes
are considered in the work of [19]. A natural question is, whether there exists an
S-box with CarD1S = 0 and CarL1S = 0 if we enlarge the scope from optimal
4-bit S-boxes to all bijective 4-bit S-boxes. This question is one motivation of
our paper.

1.1 Contributions

In this paper, we give an improved exhaustive search over all permutation-xor
equivalence classes of 16! bijective 4-bit boxes, which is one of our main contri-
butions. Firstly we put forward three theorems, which are the core principles of
our optimizing strategies. Next we give five lookup tables, which will be used to
reduce some repeated calculations and speed up the search process. Based on
the above description, we emphatically explain our optimizing strategies. Our
experiments have been performed using one laptop with Intel Core i5 CPU. The
total time of our program to create the same 1.4 GB file is about five minutes,
which is one-sixth of the time spent in [18]. This improvement is potentially
meaningful for future study of 5-bit S-boxes or 6-bit S-boxes, even for larger
S-boxes.
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Due to the fact that two permutation-xor equivalent S-boxes have the same
values of CarD1S and CarL1S [19], we classify all permutation-xor equivalence
classes of bijective 4-bit S-boxes in terms of the values of CarD1S and CarL1S.
For S-boxes with CarD1S + CarL1S ≤ 4, we calculate the distributions of S-
boxes in relation to differential properties and linear properties. The results
show that there exist 4-bit S-boxes satisfying CarD1S = 0 and CarL1S = 0.
However, all the S-boxes with CarD1S = 0 and CarL1S = 0 are not good in
relation to differential properties and linear properties, which are linear maps.
In addition, all the S-boxes with (CarD1S,CarL1S) ∈ {(0, 1),(1, 0),(3, 0)} are
linear maps too. Another fact which is of interest is that the minimal differential
bound and linear bound of S-boxes with (CarD1S,CarL1S) ∈ {(1, 1),(1, 2),(2, 1)}
both are 0.375. For PRESENT, RECTANGLE and SPONGENT, we expect the
S-boxes with smaller values of CarD1S and CarL1S. From this point, it is worth
further studying S-boxes with (CarD1S,CarL1S) ∈ {(1, 1),(1, 2),(2, 1)}, which are
potential classes for improving the security-performance tradeoff of PRESENT,
RECTANGLE and SPONGENT.

1.2 Organization

This paper is organized as follows. Section 2 reviews some necessary definitions;
Sect. 3 describes an improved exhaustive search over all permutation-xor equiv-
alence classes; Sect. 4 revisits a new classification of 4-bit S-boxes according
to CarD1S and CarL1S; Sect. 5 concludes the paper; Appendix 5 presents some
results of our experiments.

2 Preliminaries

2.1 Differential-Uniformity, Linearity, Optimal 4 bit S-Box

Definition 1. Let S denote a 4×4 bijective S-box. Let ΔX, ΔY be two four-bit
values, define ND(ΔX,ΔY ) as:

ND(ΔX,ΔY ) = �{x ∈ F
4
2|S(x) ⊕ S(x ⊕ ΔX) = ΔY }.

ND(ΔX,ΔY )/16 is the differential probability p of the characteristic
(ΔX,ΔY ).

Definition 2. Define Diff(S) as the differential-uniformity of S:

Diff(S) = max
ΔX �=0,ΔY

ND(ΔX,ΔY ).

Obviously, the differential-uniformity of S means the capacity for the resis-
tance against differential cryptanalysis [4]. In general, the smaller the value
of the differential-uniformity of an S-box, the more secure the S-box resists
against differential cryptanalysis. It is known that for any 4 × 4 bijective S-box,
Diff(S) ≥ 4 [17].
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Definition 3. Let S denote a 4×4 bijective S-box. Let ΓX, ΓY be two four-bit
values, define Imb(ΓX,ΓY ) as the imbalance of the linear approximation:

Imb(ΓX,ΓY ) = |�{x ∈ F
4
2|ΓX · x = ΓY · S(x)} − 8|.

where · denotes the inner product on F
4
2.

Imb(ΓX,ΓY )/16 is the bias ε of the linear approximation.

Definition 4. Define Lin(S) as the linearity of S:

Lin(S) = max
ΓX,ΓY �=0

Imb(ΓX,ΓY ).

Obviously, The linearity of S means the capacity for the resistance against
linear cryptanalysis [20]. Generally speaking, the smaller the value of the linearity
of an S-box, the more secure the S-box resists against linear cryptanalysis. It is
known that for any 4 × 4 bijective S-box, Lin(S) ≥ 4 [17].

Definition 5 ([17]). Assume S is a 4 × 4 bijective S-box, which satisfies
Diff(S) = 4 and Lin(S) = 4, then S is known as the optimal S-box.

Let wt(x) denote the Hamming weight of bit vector x.

Definition 6 ([11]). Define SetD1S as follow:

SetD1S = {(ΔX, ΔY ) ∈ F
4
2 × F

4
2| wt(ΔX) = wt(ΔY ) = 1 and ND(ΔX, ΔY ) �= 0}.

Let CarD1S denote the cardinality of SetD1S.

Definition 7 ([11]). Define SetL1S as follow:

SetL1S = {(ΓX, ΓY ) ∈ F
4
2 × F

4
2| wt(ΓX) = wt(ΓY ) = 1 and Imb(ΓX, ΓY ) �= 0}.

Let CarL1S denote the cardinality of SetL1S.

2.2 Affine Equivalence and PE Equivalence

Definition 8 ([17]). Let A,B ∈ GL(4,F2) be two invertible 4×4 matrices, and
a, b ∈ F

4
2 be two vectors. We call two S-boxes S and S′ are affine equivalent if

they satisfy:
S′(x) = B(S(A(x) ⊕ a)) ⊕ b.

A(x) ⊕ a denote the inner affine transformation and B(x) ⊕ b denote the outer
affine transformation.

It is well known that the values of Diff(S) and Lin(S) of an S-box both
remain unchanged after applying an affine transformation [21,22]. In particular,
when we apply an affine transformation to an optimal S-box, the new S-box we
get is also an optimal S-box [17]. According to this property, all the optimal
S-boxes can be classified into different affine equivalence classes. [17] gives all 16
affine equivalence classes of optimal S-boxes.
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Definition 9 ([17]). Let Pi, Po ∈ GL(4,F2) be two 4 × 4 bit permutation
matrices, and ci, co ∈ F

4
2 be two vectors. We call two S-boxes S and S′ are

permutation-xor equivalent(PE) if they satisfy:

S′(x) = Po(S(Pi(x) ⊕ ci)) ⊕ co.

Pi(x)⊕ci denote the inner permutation-xor transformation and Po(x)⊕co denote
the outer permutation-xor transformation.

In the following paper, we mainly concentrate on the PE classes. The inner
permutation-xor transformation and outer permutation-xor transformation are
called inner transformation and outer transformation for short.

3 An Improved Exhaustive Search over All PE Classes

In this section, we give an improved exhaustive search over all permutation-xor
equivalence classes of all 16! bijective 4-bit boxes. Similar to the method in [18],
our algorithm takes the least member of each PE class as the representative,
then stores all the representatives on the disk together with the sizes of the PE
classes.

A bijective 4-bit S-box can be expressed as a 4× 16 bit matrix. Each column
denotes a unique mapping of 0, 1, · · · , 15. Each row can be expressed as a 16-bit
word.

Property 1 ([18]). Any 4 × 4 bijective S-box can be uniquely expressed as:

S(x) = (
3∑

i=0

2P (i)Wi,(15−x)) ⊕ c.

P denotes the bit permutation of numbers (0,1,2,3), c ∈ F
4
2 denotes the xor

constant. Wi(i = 0, 1, 2, 3) is a 16-bit word which satisfies 0 < W0 < W1 <

W2 < W3 < 215. Wi =
∑15

j=0 2jWi,j .

Due to the fact that S is bijective, it is required that wt(Wi) = 8 for each
Wi, and four Wi must be different from each other. There are 4! = 24 values
for P and 24 = 16 values for the constant c. P and c make up 24 × 16 = 384
outer transformations. Wi defines the inner transformations. There are 384 inner
transformations, which also consist of 24 bit permutations Pi and 16 constants ci.

Given an S-box S, there are 384 × 384 S-boxes which are PE equivalent with
S. We arrange them into a 384 × 384 matrix. Each S-box in the matrix is the
result of applying an inner transformation and an outer transformation to S.
Each row in the matrix corresponds to an inner transformation. Inner transfor-
mations are numbered from 0 to 383. Each column in the matrix corresponds
to an outer transformation. Outer transformations are numbered from 0 to 383.
The representative of the PE class is exactly the least member among all the
384 × 384 elements of the matrix. Now, we are ready to present three theorems.
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Theorem 1. Given an S-box S, and the corresponding matrix of PE equivalent
S-boxes of S as described above, then for each row in the matrix, the 384 S-boxes
within this row are distinct.

Proof. Let Mi(i = 0, 1, · · · , 383) denote 384 outer transformations, ϕi(i =
0, 1, · · · , 383) denote inner transformation. Si,0, Si,1, Si,2, · · · , Si,383 denote the
S-boxes in the corresponding row in the matrix, i.e.

Si,0 = M0(S(ϕi(x))), Si,1 = M1(S(ϕi(x))), · · · , Si,383 = M383(S(ϕi(x))). (1)

Assume that there exists Si,j = Si,k with Si,j = Mj(S(ϕi(x))), Si,k =
Mk(S(ϕi(x))). Then, Mj(S(ϕi(x))) = Mk(S(ϕi(x))). Since the outer transfor-
mations are invertible, then

S(ϕi(x)) = (M−1
j ◦ Mk)(S(ϕi(x))). (2)

Thus Mj = Mk. Obviously this is contradict to the precondition Mj �= Mk.
So Si,0, Si,1, Si,2, · · · , Si,383 are different from each other. 	

Theorem 2. Given an S-box S, and the corresponding matrix of PE equivalent
S-boxes of S, for any two rows i, j in the matrix, let Ai(Aj) denote the set of all
384 S-boxes in row i(j), then either Ai = Aj, or Ai and Aj are disjoint.

Proof. Let Mi(i = 0, 1, · · · , 383) denote 384 outer transformations, ϕi, ϕj denote
any two inner transformations, Ai = (Si,0, Si,1, Si,2, · · · , Si,383) denote the set of
384 S-boxes in rows i of the matrix, and Aj = (Sj,0, Sj,1, Sj,2, · · · , Sj,383) denote
the set of 384 S-boxes in row j of the matrix, i.e.

Si,0 = M0(S(ϕi(x))), Si,1 = M1(S(ϕi(x))), · · · , Si,383 = M383(S(ϕi(x))). (3)

Sj,0 = M0(S(ϕj(x))), Sj,1 = M1(S(ϕj(x))), · · · , Sj,383 = M383(S(ϕj(x))). (4)

According to Theorem 1, Si,0, Si,1, Si,2, · · · , Si,383 are different from each
other, and Sj,0, Sj,1, Sj,2, · · · , Sj,383 are different from each other.

Assume that there exists Si,m = Sj,k with Si,m = Mm(S(ϕi(x))), Sj,k =
Mk(S(ϕj(x))). Then, Mm(S(ϕi(x))) = Mk(S(ϕj(x))). Similarly, we get,

S(ϕi(x)) = (M−1
m ◦ Mk)(S(ϕj(x))). (5)

From (3) and (5), then

Si,0 = (M0 ◦ M−1
m ◦ Mk)(S(ϕj(x))),

Si,1 = (M1 ◦ M−1
m ◦ Mk)(S(ϕj(x))),

... (6)

Si,383 = (M383 ◦ M−1
m ◦ Mk)(S(ϕj(x))).
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From (4) and (6), it is deduced that (Si,0, Si,1, · · · , Si,383) ⊂ (Sj,0, Sj,1,
· · · , Sj,383). In turn, it can be proved that (Sj,0, Sj,1, · · · , Sj,383) ⊂
(Si,0, Si,1, · · · , Si,383). Thus it means

(Si,0, Si,1, · · · , Si,383) = (Sj,0, Sj,1, · · · , Sj,383). (7)

That is to say, as long as there exists a same S-box in any two rows, the
two corresponding sets of all 384 S-boxes in these two rows are exactly equal.
Otherwise the two sets are disjoint. 	

Theorem 3. Given an S-box S, and the corresponding matrix of PE equivalent
S-boxes of S, for any row i in the matrix, let Ai(i = 0, 1, · · · , 383) denote the
set of all 384 S-boxes in row i, and let B = {A0,A1, · · · ,A383} be a multiset.
Then every element in B has a same cardinality. Furthermore, let n denote the
number of distinct elements in B, then any element Ai in B has a cardinality of
384/n.

Proof. According to Theorem 2, it is known that the two sets of all 384 S-boxes
in any two rows in the matrix either are exactly equal, or are disjoint.

Firstly, we prove that every element in B has a same cardinality. Let ai(aj)
denote the cardinality of Ai(Aj), Ai �= Aj , then Ai0 = Ai1 =, · · · ,Aiai−1 , and
Aj0 = Aj1 =, · · · ,Ajaj−1 . We need to prove that ai = aj .

Let ϕik(k = 0, 1, · · · , ai − 1) denote inner transformations that result in
Aik(k = 0, 1, · · · , ai − 1). For each Aik , let Si,u denote the least member among
the 384 different S-boxes in Aik , and Lik(k = 0, 1, · · · , ai − 1) denote the outer
transformation that lead to the least S-box Si,u, i.e.

Si,u = Li0(S(ϕi0(x))), Si,u = Li1(S(ϕi1(x))), · · · , Si,u = Liai−1(S(ϕiai−1(x))). (8)

Similarly, let ϕjk(k = 0, 1, · · · , aj − 1) denote inner transformations that
result in Ajk(k = 0, 1, · · · , aj −1). For each Ajk , let Sj,v denote the least member
among the 384 different S-boxes in Ajk , and Ljk(k = 0, 1, · · · , aj −1) denote the
outer transformation that lead to the least S-box Sj,v, i.e.

Sj,v = Lj0(S(ϕj0(x))), Sj,v = Lj1(S(ϕj1(x))), · · · , Sj,v = Ljaj−1(S(ϕjaj−1(x))). (9)

From the fact that Si,u and S are PE equivalent , Sj,v and S are PE equiv-
alent, it implies that Si,u and Sj,v are PE equivalent as well. Let φ denote an
inner transformation and M denote an outer transformation, then

Sj,v = M(Si,u(φ(x))). (10)

From (8) and (10), then

Sj,v = (M ◦ Li0)(S((ϕi0 ◦ φ)(x))),
Sj,v = (M ◦ Li1)(S((ϕi1 ◦ φ)(x))),

... (11)
Sj,v = (M ◦ Liai−1)(S((ϕiai−1 ◦ φ)(x))).
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From (9) and (11), it can be inferred,

(ϕi0 ◦ φ, ϕi1 ◦ φ, · · · , ϕiai−1 ◦ φ) ⊂ (ϕj0 , ϕj1 , · · · , ϕjaj−1). (12)

Thus, it implies ai ≤ aj . In turn, it can be proved that aj ≤ ai. So ai = aj .
If Ai = Aj , it is clear that ai = aj . Thus ai(i = 0, 1, · · · , 383) are equal to each
other.

Let n denote the number of distinct elements in B. then

a0 = a1 = a2 = · · · = a383 = 384/n. (13)

	

Theorems 1, 2, 3 have a great importance on counting the sizes of PE classes.

3.1 The Search Algorithm

The total number of bijective 4-bit S-boxes is 16! ≈ 244.25. Algorithm 1 describes
the search of PE classes of all bijective 4-bit S-boxes, which is a modification
of the algorithm in [18]. We correct a few minor clerical errors appeared in the
algorithm description in [18]. Those highlighted in red in Algorithm 1 are the
modified parts.

Now we will explain Algorithm 1 and the optimizing strategies in detail.
Before performing the search, we establish five lookup tables to reduce some
repeated calculations and speed up the search process. The five lookup tables
are described as follow:

1. Table wt8tab[6435]: There are
(
16
8

)
= 12, 870 16-bit words with Hamming

weight 8. Duo to the limit of Wi < 215, it needs to discard half of the words
and remain 6435 candidates.

2. Table word distribution[6435][384]: For each word in table wt8tab[6435], apply
384 inner transformations. To normalize the word, invert all bits of a word
if the highest bit is set, then store the results in the corresponding position
of table word distribution[6435][384]. 384 inner transformations consist of 24
bit permutations and 16 xor constants, where bit permutations are repre-
sented by Pi with index from 0 to 23, and xor constants are represented by ci

from 0 to 15. Each inner transformation is corresponding to a column in table
word distribution[6435][384] with index j, j = Pi ∗16+ci. Thus when apply-
ing an inner transformation with index j (the index of bit permutation Pi is
j/16, ci = j%16) to Wi, the result is just the value of word distribution[i][j].
This method avoids the repeated calculations when applying inner transfor-
mations to the same words.

3. Table mw[6435]: For each word Wi in table wt8tab[6435], apply 384 inner
transformations and normalize the results. The results are called the equiva-
lents of Wi. Then select the minimal word among the 384 equivalents of Wi.
The minimal equivalent of Wi is just the minimal member among the ith
row in table word distribution[6435][384]. There are 58 different elements in
table mw[6435].
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Algorithm 1. An improved search algorithm over PE classes.
1: for i0 = 0 to 6434 do
2: W0 = wt8tab[i0]
3: if mw(W0) = W0 then
4: for i1 = i0 + 1 to 6434 do
5: W1 = wt8tab[i1]
6: if mw(W1) ≥ W0 and

wt(t2 = ¬W0 ∧ W1) = 4 and wt(t3 = W0 ∧ W1) = 4 and
wt(t1 = W0 ∧ ¬W1) = 4 and wt(t0 = ¬W0 ∧ ¬W1) = 4 then

7: for i2 = i1 + 1 to 6434 do
8: W2 = wt8tab[i2]
9: if mw(W2) ≥ W0 and

wt(u0 = t0 ∧ ¬W2) = 2 and wt(u4 = t0 ∧ W2) = 2 and
wt(u1 = t1 ∧ ¬W2) = 2 and wt(u5 = t1 ∧ W2) = 2 and
wt(u2 = t2 ∧ ¬W2) = 2 and wt(u6 = t2 ∧ W2) = 2 and
wt(u3 = t3 ∧ ¬W2) = 2 and wt(u7 = t3 ∧ W2) = 2 then

10: for j = 0 to 7 do
11: vj = lsb(uj)
12: end for
13: for b = 0 to 255 do
14: W3 = ⊕7

j=0(bjuj ⊕ vj)
15: if W3 < 215 then
16: if W3 > W2 and mw(W3) ≥ W0 then
17: if (mw(W1) > W0 and mw(W2) > W0 and mw(W3) > W0)

then
18: test1(W0, W1, W2, W3)
19: else
20: test2(W0, W1, W2, W3)
21: end if
22: end if
23: end if
24: end for
25: end if
26: end for
27: end if
28: end for
29: end if
30: end for

4. Table fix point[6435][384]: If word distribution[i][j] = mw[i], then fix point
[i][j] = 1, or else fix point[i][j] = 0. For each word in table mw[6435], table
fix point[6435][384] records the inner transformations that make the word
unchanged. Each minimal word maps to a set of inner transformations that
make it unchanged, which are called fix transformations.

5. Table position[32640]: position[word] = index. It is an additional table to
record the index of each word in the other four tables. Since the maximal
value of a word is 32, 640, the size of table position is defined as 32, 640.
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The program mainly consists of four nested loops. We take many optimizing
strategies to break the loop in advance. Hence, the total time complexity of
Algorithm 1 is reduced greatly. For our program, we emphasize the following
points.

1. The minimal words among the 384 equivalents of Wi(i = 1, 2, 3) should be not
less than W0, i.e. mw(W1) ≥ W0, mw(W2) ≥ W0 and mw(W3) ≥ W0. Let
W ∗

0 ,W ∗
1 , W ∗

2 and W ∗
3 denote the equivalents of W0,W1,W2 and W3, respec-

tively. Due to the selection of W0, the condition that W ∗
0 ≥ W0 is con-

stant. Assume that there exists W ∗
1 < W0, then sort W ∗

0 ,W ∗
1 , W ∗

2 and W ∗
3

in ascending order and get the new S-box (W ′
0,W

′
1,W

′
2,W

′
3). The new S-box

(W ′
0,W

′
1,W

′
2,W

′
3) maybe equal to (W0,W1,W2,W3), which can result in dupli-

cate S-boxes. Note that we add judgements for which the minimal words among
the equivalents of Wi(i = 1, 2, 3) may equal to W0. Experiments show that
there exactly exist S-boxes as the representatives of PE classes, satisfying that
the minimal words among the equivalents of Wi(i = 1, 2, 3) equal to W0.

2. W3 should be less than 215 and we directly discard the candidates of W3 which
satisfy W3 ≥ 215. This solution is different from that in [18]. The solution in
[18] is to invert all bits of W3 if W3 ≥ 215. However, in our program, we find
that the solution in [18] can lead to duplicate values for W3. We don’t know
how the author of [18] solved this problem.

3. The method of checking that whether (W0,W1,W2,W3) is the least member
of its PE class has a big influence on the time complexity of the algorithm.
However, the author of [18] didn’t explain the method of checking the least
member. Now we will give our solution to the problem, which is to use two
functions test1 and test2 in different cases, respectively.

Obviously, given an S-box S, and the corresponding matrix of PE equivalent
S-boxes of S, the search of the least member of its PE class equals to the search
of the least S-box in the matrix. However, it will take too much time if applying
384×384 transformations to any tested S-box and performing 384×384 compar-
isons. Based on the aforementioned three theorems, we find some optimization
strategies for reducing the times of transformations and comparisons.

test1(W0,W1,W2,W3): If the three minimal words among the equivalents of
W1, W2, W3 are bigger than W0, i.e. mw(W1) > W0, mw(W2) > W0 and
mw(W3) > W0, we use the function test1 to test whether (W0,W1,W2,W3) is
the least member of its PE class or not. Since that W0 is the minimal word
among its equivalents (mw(W0) = W0), the results after applying 384 trans-
formations to W0 must be no less than W0, i.e. W ∗

0 ≥ W0. If W ∗
0 > W0, the

new S-box (W ′
0,W

′
1,W

′
2,W

′
3) must be larger than (W0,W1,W2,W3) no matter

how W ∗
0 ,W ∗

1 ,W ∗
2 ,W ∗

3 are sorted, since there always exist W ∗
0 > W0, W ∗

1 > W0,
W ∗

2 > W0, and W ∗
3 > W0. In this case, it only needs to traverse the transforma-

tions that make W0 unchanged, instead of all 384 transformations. Details are
as follows.

1. The fix transformations of W0 can be got from table fix point. For each
one of fix transformations, do
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(a) Applying the transformation to W1,W2 and W3, the corresponding new
words W ∗

1 ,W ∗
2 and W ∗

3 can be got by looking up table word distribution.
(b) Sorting W ∗

1 ,W ∗
2 ,W ∗

3 and resulting in the final (W ′
0,W

′
1,W

′
2,W

′
3), which

satisfies W0 = W ′
0 < W ′

1 < W ′
2 < W ′

3. Note that each one of the
fix transformations to the four words corresponds to a row in the
384 × 384 matrix, sorting the new four words in ascending order and
inverting all bits of a word if the highest bit is set correspond to the
selection of the least S-boxes in the row.

(c) Comparing (W ′
1,W

′
2,W

′
3) with (W1,W2,W3). If there exists (W ′

1,W
′
2,

W ′
3) < (W1,W2,W3), (W0,W1,W2,W3) can’t be the least member of

its class, then the loop exits. Otherwise the loop continues.
2. For each one of the fix transformations of W0, we get a new S-box

(W ′
0,W

′
1,W

′
2,W

′
3). If (W0,W1,W2,W3) is no greater than any new S-box,

we can say (W0,W1,W2,W3) is exactly the least member of its PE class. The
pseudo code of test1 refers to Algorithm 2 in Appendix 5.

Due to the fact that in most cases, it holds that mw(W1) > W0, mw(W2) >
W0 and mw(W3) > W0. Moreover, there are only few transformations that make
W0 unchanged for most W0, the method of using function test1 greatly reduces
the times of query and comparison for estimating the least member of PE classes.

Table 1 gives all minimal words with the numbers of transformations that
make them unchanged. From Table 1, we can see that there is only one minimal
word having fix transformations with 384 values, while most of the rest have
fix transformations with a few values.

test2(W0,W1,W2,W3): As long as one of the three minimal words among the
equivalents of W1, W2, W3 equals to W0, i.e. mw(W1) = W0 or mw(W2) = W0

or mw(W3) = W0, we use the function test2 to test whether (W0,W1,W2,W3) is
the least member of its PE class or not. Since that W ∗

1 ,W ∗
2 ,W ∗

3 may equal to W0

and W ∗
0 also may be larger than W ∗

1 ,W ∗
2 ,W ∗

3 , the sizes and order of four words
W ∗

0 ,W ∗
1 ,W ∗

2 ,W ∗
3 are uncertain. In this case, the function needs to traverse all

the 384 transformations, and then perform as function test1. Only a few cases
need to use function test2. It means that the numbers of cases that indeed need
to traverse all the 384 transformations are few. The pseudo code of test2 refers
to Algorithm 3 in Appendix 5.

In function test1 and test2, if (W0,W1,W2,W3) is the least member of
the PE class, recording the numbers of inner transformations that make
(W0,W1,W2,W3) stay unchanged, denoted as ai, namely, the numbers of rows
where the least member in the row is (W0,W1,W2,W3). According to Theo-
rem 3, it is easy to calculate the expression n = 384/ai, where n denote the
number of distinct rows in the 384 × 384 matrix. According to Theorems 1, 2,
each row in the 384 × 384 matrix have 384 different S-boxes, and any two rows
either are exactly equal, or have no intersection. Thus the size of the PE class
is 384/ai × 384.

In conclusion, the method of using test1 and test2 in different cases can
discard a part of unnecessary search branches, thereby greatly optimizes the
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Table 1. Minimal words and the numbers of transformations that make them
unchanged, denoted as Tn. The total number of minimal words is 58.

Min word Tn Min word Tn Min word Tn Min word Tn

255 96 1020 8 2019 2 6030 8

383 12 1647 16 2022 4 6038 12

447 4 1659 2 2025 4 6042 2

495 4 1662 2 2033 4 6060 2

510 12 1695 16 2034 2 6120 24

831 24 1719 2 2040 4 6375 24

863 4 1725 2 4080 64 6627 4

879 2 1782 8 5739 12 6630 4

893 2 1785 8 5742 4 7128 32

894 2 1910 8 5783 12 7140 8

975 8 1913 4 5787 2 7905 16

983 2 1914 2 5790 4 15555 96

987 2 1973 2 5805 2 27030 384

989 2 1974 1 5820 2

990 1 1980 2 5865 12

time complexity of the search algorithm. The results of our search algorithm are
in accordance with the results in [18].

4 Revisiting a New Classification of 4-Bit S-Boxes
According to CarD1S and CarL1S

Based on the results of Algorithm 1 and the fact that two PE equivalent S-boxes
have the same values of CarD1S and CarL1S [19], all PE classes can be classified
in terms of the values of (CarD1S,CarL1S). Table 2 gives the distribution of
all PE classes in relation to the values of (CarD1S,CarL1S). It is clear that
0 ≤ CarD1S ≤ 16 and 0 ≤ CarL1S ≤ 16.

From [19], it is known that the larger the value of CarD1S or CarL1S, the
more likely there exists a weak differential or linear trail with only one active
S-box in each round in PRESENT, RECTANGLE and SPONGENT. Thus we
only consider the S-boxes satisfying CarD1S + CarL1S ≤ 4.

From Table 2, it shows that there exist S-boxes with (CarD1S, CarL1S) =
(0, 0). At first sight, S-boxes with CarD1S = 0 and CarL1S = 0 should be the
best cases. However, the experiments show that all of these S-boxes are linear,
which have differential bound p = 1 and linear bound ε = 0.5. Hence, the S-boxes
with (CarD1S, CarL1S) = (0, 0) can not be used in a cryptographic primitive.
Moreover, we find that all S-boxes with (CarD1S,CarL1S) ∈ {(0, 1),(1, 0),(3, 0)}
are linear as well.
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Table 3. The minimal values of differential bound and linear bound for each (CarD1S,
CarL1S).

(CarD1S, CarL1S) (p, ε)

(0,4), (1,3), (2,2) (0.25, 0.25)

(0,2), (0,3) (0.5, 0.375)

(1,1),(1,2),(2,1) (0.375, 0.375)

(3,1) (0.5, 0.25)

(2,0),(4,0) (0.5, 0.5)

For each case with CarD1S + CarL1S ≤ 4 except {(0, 0), (0, 1),(1, 0),(3, 0)},
we calculate the distributions of S-boxes in relation to differential bound p and
linear bound ε. Detailed distributions are presented in Appendix 5. From these
results, we can get the minimal values of differential bound and linear bound for
different cases, as Table 3 shows.

From Table 3, it can be seen that only if (CarD1S,CarL1S) ∈
{(0, 4), (1, 3), (2, 2)}, there exist S-boxes having a differential bound p = 1/4
and linear bound ε = 1/4, which is in accordance with the results in [19]. More-
over, we can find that the S-boxes with (CarD1S,CarL1S) ∈ {(1, 1), (1, 2), (2, 1)}
have the minimal values of differential bound and linear bound both of 0.375.
Although this kind of differential and linear bound is worse than the opti-
mal S-boxes, the values of CarD1S + CarL1S are smaller than the optimal
S-boxes. A natural question we pose here is: when considering the security
of PRESENT, RECTANGLE and SPONGENT against differential and lin-
ear cryptanalysis, whether there exist better S-boxes among the S-boxes with
(CarD1S,CarL1S) ∈ {(1, 1), (1, 2), (2, 1)}. We leave this question for future study.

5 Summary

We have presented some new results to greatly improve Saarinen’s exhaustive
search algorithm over all bijective 4-bit S-boxes. Our experimental results show
that the efficiency of the search algorithm has been improved about 6 times. The
exhaustive search of all bijective 4-bit S-boxes is relatively easy to achieve, but
the exhaustive search of 5-bit S-boxes or beyond will be very difficult. Therefore
optimization of the search algorithm is meaningful, which can be potentially
used in the study of 5-bit, 6-bit or lager S-boxes.

Based on the results of the search over all PE classes of bijective 4-bit
S-boxes, we classify all PE classes in terms of the values of CarD1S and CarL1S.
For S-boxes with CarD1S + CarL1S ≤ 4, we give the distributions in relation
to differential and linear bounds. We verify the results in [19], and our results
are in accordance with the results in [19]. In addition, we find that no good
S-box satisfies that (CarD1S,CarL1S) ∈ {(0, 0),(0, 1),(1, 0),(3, 0)}. Our results
show that the S-boxes with (CarD1S,CarL1S) ∈ {(0, 0),(0, 1),(1, 0),(3, 0)} are
all linear, which can not be used in a cryptographic primitive. Moreover, the S-
boxes with (CarD1S,CarL1S) ∈ {(1, 1),(1, 2),(2, 1)} have a minimal differential
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bound and linear bound both of 0.375, which can be further investigated to see
if they can be used to improve the security-performance tradeoff of PRESENT,
RECTANGLE and SPONGENT.

One of our future work is to study when (CarD1S,CarL1S) ∈ {(1, 1),(1, 2),
(2, 1)}, how the S-boxes influence the security of PRESENT, RECTANGLE and
SPONGENT against differential and linear cryptanalysis.

Acknowledgements. The research presented in this paper is supported by the
National Natural Science Foundation of China (No. 61379138), and the “Strategic
Priority Research Program” of the Chinese Academy of Sciences (No. XDA06010701).

Appendix A

Algorithm 2. test1: estimate the least member of the PE class.
Input:

The four words of an S-box: W0, W1, W2, W3

The indexes of four words: id0, id1, id2, id3

Output:
If (W0, W1, W2, W3) is exactly the least member of the PE class, output the numbers
of transformations that make (W0, W1, W2, W3) unchanged. Otherwise output 0.

1: result ← 0
2: for i = 0 to 384 do
3: if fix point[id0][i] = 1 then
4: new w[0] = word distribution[id1][i]
5: new w[1] = word distribution[id2][i]
6: new w[2] = word distribution[id3][i]
7: sort(new w)
8: if new w[0] < W1 then
9: return 0

10: else if new w[0] = W1 then
11: if new w[1] < W2 then
12: return 0
13: else if new w[1] = W2 then
14: if new w[2] < W3 then
15: return 0
16: else if new w[2] = W3 then
17: result ++
18: end if
19: end if
20: end if
21: end if
22: end for
23: return result

See Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14
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Algorithm 3. test2: estimate the least member of the PE class.
Input:

The four words of an S-box: W0, W1, W2, W3

The indexes of four words: id0, id1, id2, id3

Output:
If (W0, W1, W2, W3) is exactly the least member of the PE class, output the numbers
of transformations that make (W0, W1, W2, W3) unchanged. Otherwise output 0.

1: result ← 0
2: for i = 0 to 384 do
3: new w[0] = word distribution[id0][i]
4: new w[1] = word distribution[id1][i]
5: new w[2] = word distribution[id2][i]
6: new w[3] = word distribution[id3][i]
7: sort(new w)
8: if new w[0] < W0 then
9: return 0

10: else if new w[0] = W0 then
11: if new w[1] < W1 then
12: return 0
13: else if new w[1] = W1 then
14: if new w[2] < W2 then
15: return 0
16: else if new w[2] = W2 then
17: if new w[3] < W3 then
18: return 0
19: else if new w[3] = W3 then
20: result ++
21: end if
22: end if
23: end if
24: end if
25: end for
26: return result

Table 4. Distribution of S-boxes with CarD1S = 0, CarL1S = 2 in relation to differen-
tial bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 0 0.0000 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 0 0.0000 0 0.0000 0 0.0000

3/8 < p ≤ 1/2 0 0.0000 1536 0.0127 21504 0.1772

1/2 < p ≤ 5/8 0 0.0000 0 0.0000 0 0.0000

5/8 < p ≤ 3/4 0 0.0000 1536 0.0127 36096 0.2975

3/4 < p ≤ 1 0 0.0000 0 0.0000 60672 0.5000
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Table 5. Distribution of S-boxes with CarD1S = 0, CarL1S = 3 in relation to differen-
tial bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 0 0.0000 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 0 0.0000 0 0.0000 0 0.0000

3/8 < p ≤ 1/2 0 0.0000 6144 0.0702 33792 0.3860

1/2 < p ≤ 5/8 0 0.0000 0 0.0000 0 0.0000

5/8 < p ≤ 3/4 0 0.0000 0 0.0000 23040 0.2632

3/4 < p ≤ 1 0 0.0000 0 0.0000 24576 0.2807

Table 6. Distribution of S-boxes with CarD1S = 0, CarL1S = 4 in relation to differen-
tial bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 768 0.0027 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 0 0.0000 18048 0.0644 0 0.0000

3/8 < p ≤ 1/2 0 0.0000 40704 0.1452 98688 0.3521

1/2 < p ≤ 5/8 0 0.0000 11520 0.0411 20736 0.0740

5/8 < p ≤ 3/4 0 0.0000 1536 0.0055 58368 0.2082

3/4 < p ≤ 1 0 0.0000 2304 0.0082 27648 0.0986

Table 7. Distribution of S-boxes with CarD1S = 1, CarL1S = 1 in relation to differen-
tial bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 0 0.0000 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 0 0.0000 384 0.0032 0 0.0000

3/8 < p ≤ 1/2 0 0.0000 0 0.0000 5760 0.0476

1/2 < p ≤ 5/8 0 0.0000 0 0.0000 0 0.0000

5/8 < p ≤ 3/4 0 0.0000 0 0.0000 17280 0.1429

3/4 < p ≤ 1 0 0.0000 0 0.0000 97536 0.8063
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Table 8. Distribution of S-boxes with CarD1S = 1, CarL1S = 2 in relation to differen-
tial bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 0 0.0000 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 0 0.0000 2304 0.0063 0 0.0000

3/8 < p ≤ 1/2 2304 0.0063 16896 0.0464 72960 0.2004

1/2 < p ≤ 5/8 0 0.0000 0 0.0000 0 0.0000

5/8 < p ≤ 3/4 0 0.0000 5376 0.0148 77568 0.2131

3/4 < p ≤ 1 0 0.0000 0 0.0000 186624 0.5127

Table 9. Distribution of S-boxes with CarD1S = 1, CarL1S = 3 in relation to differen-
tial bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 1536 0.0019 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 3027 0.0039 16896 0.0212 0 0.0000

3/8 < p ≤ 1/2 6144 0.0077 82944 0.1043 165120 0.2076

1/2 < p ≤ 5/8 0 0.0000 5376 0.0068 13824 0.0174

5/8 < p ≤ 3/4 0 0.0000 10752 0.0135 262272 0.3298

3/4 < p ≤ 1 0 0.0000 0 0.0000 227328 0.2859

Table 10. Distribution of S-boxes with CarD1S = 2, CarL1S = 0 in relation to differ-
ential bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 0 0.0000 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 0 0.0000 0 0.0000 0 0.0000

3/8 < p ≤ 1/2 0 0.0000 0 0.0000 2304 0.0952

1/2 < p ≤ 5/8 0 0.0000 0 0.0000 0 0.0000

5/8 < p ≤ 3/4 0 0.0000 0 0.0000 0 0.0000

3/4 < p ≤ 1 0 0.0000 0 0.0000 21888 0.9048
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Table 11. Distribution of S-boxes with CarD1S = 2, CarL1S = 1 in relation to differ-
ential bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 0 0.0000 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 0 0.0000 2304 0.0130 0 0.0000

3/8 < p ≤ 1/2 3072 0.0174 0 0.0000 16512 0.0935

1/2 < p ≤ 5/8 0 0.0000 0 0.0000 0 0.0000

5/8 < pp ≤ 3/4 0 0.0000 0 0.0000 16896 0.0957

3/4 < pp ≤ 1 0 0.0000 0 0.0000 137856 0.7804

Table 12. Distribution of S-boxes with CarD1S = 2, CarL1S = 2 in relation to differ-
ential bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 1536 0.0021 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 2304 0.0031 14592 0.0195 0 0.0000

3/8 < p ≤ 1/2 21504 0.0287 29184 0.0390 147456 0.1971

1/2 < p ≤ 5/8 0 0.0000 0 0.0000 0 0.0000

5/8 < p ≤ 3/4 0 0.0000 18432 0.0246 198144 0.2649

3/4 < p ≤ 1 0 0.0000 0 0.0000 314880 0.4209

Table 13. Distribution of S-boxes with CarD1S = 3, CarL1S = 1 in relation to differ-
ential bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 0 0.0000 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 0 0.0000 0 0.0000 0 0.0000

3/8 < p ≤ 1/2 3072 0.0286 0 0.0000 16896 0.1571

1/2 < p ≤ 5/8 0 0.0000 0 0.0000 0 0.0000

5/8 < p ≤ 3/4 0 0.0000 0 0.0000 3840 0.0357

3/4 < p ≤ 1 0 0.0000 0 0.0000 83712 0.7786
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Table 14. Distribution of S-boxes with CarD1S = 4, CarL1S = 0 in relation to differ-
ential bound p and linear bound ε

LC → ε ≤ 1/4 1/4 < ε ≤ 3/8 3/8 < ε ≤ 1/2

DC ↓ n % n % n %

p ≤ 1/4 0 0.0000 0 0.0000 0 0.0000

1/4 < p ≤ 3/8 0 0.0000 0 0.0000 0 0.0000

3/8 < p ≤ 1/2 0 0.0000 0 0.0000 3456 0.8182

1/2 < p ≤ 5/8 0 0.0000 0 0.0000 0 0.0000

5/8 < p ≤ 3/4 0 0.0000 0 0.0000 0 0.0000

3/4 < p ≤ 1 0 0.0000 0 0.0000 768 0.1818
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Abstract. There are q3 + q right PGL2(Fq)−cosets in the group
PGL2(Fq2). In this paper, we present a method of generating all the

coset representatives, which runs in time Õ(q3), thus achieves the opti-
mal time complexity up to a constant factor. Our algorithm has appli-
cations in solving discrete logarithms and finding primitive elements in
finite fields of small characteristic.
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Primitive elements

1 Introduction

The discrete logarithm problem (DLP) over finite fields underpins the security
of many cryptographic systems. Since 2013, dramatic progresses have been made
to solve the DLP when the characteristic is small [1–13,15–21]. Particularly, for
a finite field Fqn , Joux [19] proposed the first algorithm with heuristic running
time at most qn1/4+o(1)

. Subsequently, Barbulescu et al. [3] proposed the first
algorithm with heuristic quasi-polynomial running time q(log n)O(1)

. In [20], these
algorithms are coined as Frobenius representation algorithms. One key compo-
nent of algorithms in [3,19] is the relation generation, which requires enumerating
the cosets of PGL2(Fq) in PGL2(Fqd), where d is a small integer, e.g. d = 2 [19].
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Huang and Narayanan [14] have applied Joux’s relation generation method for
finding primitive elements of finite fields of small characteristic. There is another
method of generating relations, see [7].

To illustrate the application of enumerating cosets of PGL2(Fq) in
PGL2(Fq2), we briefly recall Joux’s method [19] of generating relations among
linear polynomials of a small characteristic finite field Fq2k = Fq2 [X]/(I(X)),
where I(X) ∈ Fq2 [X] is an irreducible factor of h1(X)Xq − h0(X) with the
requirement that the degrees of h0(X), h1(X) are small. Let x be the image
of X mod (I(X)). Such Frobenius representation has the crucial property that
xq = h0(x)

h1(x)
. It is well known that:

∏

α∈Fq

(y − α) = yq − y.

Applying the Mobius transformation

y �→ ax + b

cx + d

where the matrix m =
(

a b
c d

)
∈ F

2×2
q2 is nonsingular, we get

∏

α∈Fq

(
ax + b

cx + d
− α) = (

ax + b

cx + d
)q − ax + b

cx + d
.

We deduce [4]:

h1(x)(cx + d)
∏

α∈Fq

((ax + b) − α(cx + d))

= (aqh0(x) + bqh1(x))(cx + d) − (ax + b)(cqh0(x) + dqh1(x))
(mod xqh1(x) − h0(x)).

If the right-hand side can be factored into a product of linear factors over Fq2 ,
we obtain a relation of the form

λe0

q2
∏

i=1

(x + αi)ei =
q2
∏

i=1

(x + αi)e′
i (mod xqh1(x) − h0(x)), (1)

where λ is a multiplicative generator of Fq2 , α1 = 0, α2, α3, . . . , αq2 is a natural
ordering of elements in Fq2 , and ei’s and e′

i’s are non-negative integers.
Recall that for a given finite field Fq, the projective general linear group

PGL2(Fq) = GL2(Fq)/E, where E is the subgroup of GL2(Fq) consisting of
non-zero scalar matrices. Following the notion in [3], we denote Pq as a set of
the right cosets of PGL2(Fq) in PGL2(Fq2), namely,

Pq = {PGL2(Fq)t|t ∈ PGL2(Fq2)}.
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Note that the cardinality of Pq is q3 + q. It was shown in [3,19] that the matri-
ces in the same right coset produce the same relation. In [19], Joux suggested
two ways to generate relations: the first is to investigate the structure of cosets
of PGL2(Fq) in PGL2(Fq2), and the second is to use hash values to remove
duplicate relations. The second approach needs to enumerate the elements in
PGL2(Fq2) that has cardinality about q6, hence has time complexity at least
q6. It may not be the most time-consuming part inside a subexponential algo-
rithm. However, if we want a more efficient algorithm to compute the discrete
logarithms of elements, or to construct a primitive element, this complexity can
be a bottleneck. In this paper, we develop the first approach to generate cosets
representatives efficiently.

1.1 Our Result

In this work, we give an almost complete characterization of Pq. The case of
determining left cosets is similar. Our main result is the following:

Theorem 1. There exists a deterministic algorithm that runs in time Õ(q3)
and computes a set S ⊆ PGL2(Fq2) such that

1. |S| ≤ q3 + 2q2 − q + 2;
2. Pq = {PGL2(Fq)t|t ∈ S}.

Here we follow the convention that uses the notation Õ(f(q)) to stand for
O(f(q) logO(1) f(q)). Note that the time complexity of our algorithm is optimal
up to a constant factor, since the Pq has size q3 + q.

2 A Preliminary Classification

We deduce our main result by two steps. Firstly, we describe a preliminary
classification. Then, we deal with the dominating case. In this section, the main
technical tool we use is the fact that the following operations on a matrix over
Fq2 will not change the membership in a right coset of PGL2(Fq) in PGL2(Fq2):

– Multiply the matrix by an element in F
∗
q2 ;

– Multiply a row by an element in F
∗
q ;

– Add a multiple of one row with an element in Fq into another row;
– Swap two rows.

Proposition 1. Let g be an element in Fq2 \Fq. Each right coset of PGL2(Fq)
in PGL2(Fq2) is equal to PGL2(Fq)t, where t is one of the following four types:

(I)
(

1 b
c 1

)
, where b, c ∈ Fq2 \ Fq, bc �= 1.

(II)
(

1 b1
g d2g

)
, where b1, d2 ∈ F

∗
q , b1 �= d2.
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(III)
(

0 1
c d

)
, where c ∈ F

∗
q2 , d ∈ Fq2 .

(IV)
(

1 0
c d

)
, where c ∈ Fq2 , d ∈ F

∗
q2 .

Proof. Let
(

a b
c d

)
be a representative of a right coset of PGL2(Fq) in PGL2(Fq2).

If any of a, b, c, d is zero, then we divide them by the other non-zero element in
the same row, and swap rows if necessary, we will find a representative of type
(III) or (IV). So we may assume that none of the entries are zero. Dividing the
whole matrix by a, we can assume a = 1. Consider the nonsingular matrix

(
1 b1 + b2g

c1 + c2g d1 + d2g

)
,

where bi, ci, di ∈ Fq for 1 ≤ i ≤ 2. We distinguish the following cases. Note that
we may also assume c1 = 0, since we can add the multiple of the first row with
−c1 into the second. We start with the matrix

(
1 b1 + b2g

c2g d1 + d2g

)

where c2 �= 0.
Case 1. b2 �= 0

Subtracting d2
b2

times the first row from the second row, the matrix becomes

(
1 b1 + b2g

−d2
b2

+ c2g d1 − b1d2
b2

)
.

We can assume that d1− b1d2
b2

�= 0. The matrix is in the same coset with a matrix
of type (I) since we can divide the second row by d1 − b1d2

b2
, and b2 and c2 are

not zero.
Case 2. b2 = 0

We will assume b1 �= 0. After subtracting d1
b1

times the first row from the
second row, the matrix becomes

(
1 b1

−d1
b1

+ c2g d2g

)

Assume d2 �= 0.

1. If d1 = 0, then the matrix can be reduced to type (II) by dividing the second
row by c2.

2. If d1 �= 0, adding the product of the second row with b1
d1

into the first row,
we get (

b1c2
d1

g b1 + b1d2
d1

g

−d1
b1

+ c2g d2g

)

.
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Dividing all the entries in the matrix by g, we get
(

b1c2
d1

b1d2
d1

+ b1g
−1

c2 − d1
b1

g−1 d2

)

.

Dividing the first row by b1c2
d1

and the second row by d2, the matrix is reduced
to type (I), since b1d2

d1
+ b1g

−1 and c2 − d1
b1

g−1 are in Fq2 \ Fq. �	

There are only O(q2) many possibilities for Case (II). Next, we simplify Cases
(III) and (IV) further. As a conclusion, we can see that there are only O(q2) many
possibilities in Case (III) and (IV) as well.

Proposition 2. Let
(

0 1
c d

)
=

(
0 1

c1 + c2g d1 + d2g

)

be one representative of a right coset of PGL2(Fq) in PGL2(Fq2), where
c1, c2, d1, d2 ∈ Fq. Then it belongs to PGL2(Fq)t, where t is of the following
two types:

(III-a):
(

0 1
g d2g

)
, where d2 ∈ Fq.

(III-b):
(

0 1
1 + c2g d2g

)
, where c2 ∈ Fq, d2 ∈ Fq.

Proof. There are two cases to consider.

1. Assume c1 = 0. Subtracting the second row by the first row times d1, we get
(

0 1
c2g d2g

)
.

Since c2 �= 0, after dividing the second row by c2, the matrix is reduced to
type (III-a).

2. Assume c1 �= 0. Subtracting the second row by the first row times d1, we get
(

0 1
c1 + c2g d2g

)
.

Dividing the second row by c1, we get
(

0 1
1 + c2g

d2
c1

g

)
.

Thus the matrix is reduced to type (III-b), which completes the proof. �	

Similarly, we have the following proposition.
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Proposition 3. Let
(

1 0
c d

)
=

(
1 0

c1 + c2g d1 + d2g

)

be one representative of a right coset of PGL2(Fq) in PGL2(Fq2). Then it belongs
to PGL2(Fq)t, where t is of the following two types:

(IV-a):
(

1 0
c2g g

)
, where c2 ∈ Fq.

(IV-b):
(

1 0
c2g 1 + d2g

)
, where c2 ∈ Fq, d2 ∈ Fq.

3 The Dominating Case

In this section, we show how to reduce the cardinality of type (I) in Proposition
1 from O(q4) to O(q3), which is the main case of representative of cosets. The
following proposition shows that if

A1 =
(

1 b
c 1

)
, A2 =

(
1 b′

c′ 1

)

are of type (I) and

bq − b

c − cq
=

b′q − b′

c′ − c′q ,
1 − bcq

b − cq
=

1 − b′c′q

b′ − c′q ,

then A1 and A2 are in the same coset. Note that the first value is in Fq. Consider-
ing parameters of the above special format is inspired by the equations appeared
in [19].

Proposition 4. Fix v ∈ F
∗
q and w ∈ Fq2 . Suppose that we solve the equations

{
xq−x
y−yq = v,
1−xyq

y−yq = w,
(2)

under conditions x, y ∈ Fq2 \ Fq and xy �= 1, and find two pairs of solu-
tions (b, c), (b′, c′), then A1 and A2 are in the same right coset of PGL2(Fq)
in PGL2(Fq2), where

A1 =
(

1 b
c 1

)
, A2 =

(
1 b′

c′ 1

)
.

Proof. The proof consists of two steps. Firstly, we will parametrize the variety
corresponding to solutions of (x, y)′s to Eq. (2). Then we will deduce the desired
result.

Note that x, y are in Fq2 , we have xq2
= x and yq2

= y. From Eq. (2), it
follows that

wq = (
1 − xyq

y − yq
)q =

1 − xqy

yq − y
.
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So wq

v = 1−xqy
x−xq and y − wq

v = xy−1
x−xq . Thus

(y − wq

v
)q+1 =

(xy − 1)(xqyq − 1)
(xq − x)(x − xq)

=
(1 − xyq)(1 − xqy)
(xq − x)(x − xq)

− y − yq

xq − x
,

which equals (wq

v )q+1 − 1
v . Besides, we have

−vy + w + wq =
y(x − xq)

y − yq
+

1 − xyq

y − yq
+

xqy − 1
y − yq

= x.

Hence Eq. (2) imply the following
{

(y − wq

v )q+1 = (wq

v )q+1 − 1
v ∈ Fq,

x = −vy + w + wq.
(3)

Let γ be one of the (q + 1)-th roots of (wq

v )q+1 − 1
v . Suppose that

c =
wq

v
+ ζ1γ, c′ =

wq

v
+ ζ2γ,

where ζ1, ζ2 are two distinct (q + 1)-th roots of unity, and

b = −vc + w + wq = w − vζ1γ,

b′ = −vc′ + w + wq = w − vζ2γ.

It follows that

A1 =
(

1 w − vζ1γ
wq

v + ζ1γ 1

)
, A2 =

(
1 w − vζ2γ

wq

v + ζ2γ 1

)
.

Since A2 is not singular, we deduce

A−1
2 =

1
det(A2)

(
1 −w + vζ2γ

−wq

v − ζ2γ 1

)
.

Thus,

A1A
−1
2 =

1
det(A2)

(
(vζ1γ − w)(wq

v + ζ2γ) + 1 −v(ζ1γ − ζ2γ)
ζ1γ − ζ2γ (vζ2γ − w)(wq

v + ζ1γ) + 1

)

=
1

det(A2)

(
m11 m12

m21 m22

)
.

Note that m12 = −vm21,m11 − m22 = (wq + w)m21. They imply that m12
m21

∈ Fq

and m11−m22
m21

∈ Fq. It remains to prove m11
m21

∈ Fq. Let δ = m11
m21

. Note that

δ ∈ Fq ⇐⇒ δ = δq

⇐⇒ m11m
q
21 = mq

11m21

⇐⇒ m11m
q
21 ∈ Fq.
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Since γq+1 = (wq

v )q+1 − 1
v = wq+1−v

v2 , we have wq+1

v = vγq+1 + 1. Hence

m11 = wqζ1γ + vζ1γζ2γ − wζ2γ − vγq+1.

Thus

m11m
q
21 = γq+1{(wq + w) − (wζq

1ζ2 + wqζ1ζ
q
2 ) + v(ζ2γ + ζq

2γq) − v(ζ1γ + ζq
1γq)}.

Since
γq+1 ∈ Fq,

wq + w ∈ Fq, wζq
1ζ2 + wqζ1ζ

q
2 ∈ Fq,

ζ2γ + ζq
2γq ∈ Fq, ζ1γ + ζq

1γq ∈ Fq,

we deduce m11m
q
21 ∈ Fq, which implies m11

m21
∈ Fq and m22

m21
∈ Fq. Thus

A1A
−1
2 =

ζ1γ − ζ2γ

det(A2)

(m11
m21

−v

1 m22
m21

)

∈ PGL2(q),

which implies that A1 and A2 are in the same right coset of PGL2(Fq) in
PGL2(Fq2). This completes the proof. �	
Remark 1. Following a similar approach, it can be shown that A1 and A2 are
also in the same left coset of PGL2(Fq) in PGL2(Fq2).

The map sending x to xq+1 is a group endomorphism from F
∗
q2 to F

∗
q . Observe

that (wq

v )q+1 − 1
v is in Fq. If it is not zero, then

(y − wq

v
)q+1 = (

wq

v
)q+1 − 1

v
(4)

has q + 1 distinct solutions in Fq2 . Out of these solutions, at most two of them
satisfy (−vy + w + wq)y = 1 because the degree on y is two. All the other
solutions satisfy xy �= 1.

Lemma 2. Of all the solutions of Eq. (4), at most two of them are in Fq.

Proof. The number of solution in Fq is equal to the degree of gcd(yq − y, (y −
wq

v )q+1 − (wq

v )q+1 + 1
v ). And

(y − wq

v
)q+1 − (

wq

v
)q+1 +

1
v

=(yq − w

vq
)(y − wq

v
) − (

wq

v
)q+1 +

1
v

≡(y − w

vq
)(y − wq

v
) − (

wq

v
)q+1 +

1
v

(mod yq − y).

The last polynomial has degree 2. �	
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Algorithm 1. Algorithm of generating right coset representatives of PGL2(Fq)
in PGL2(Fq2)
Input: A prime power q ≥ 4 and an element g ∈ Fq2 − Fq

Output: A set S including all right coset representatives of PGL2(Fq) in PGL2(Fq2).
1: for α ∈ Fq do
2: R[α] ← ∅
3: end for
4: for β ∈ Fq2 do
5: α ← βq+1

6: if the cardinality of R[α] is < 5 then
7: R[α] ← R[α] ∪ {β}
8: end if
9: end for � Now R[α] is a set consisting of at most 5 (q + 1)-th root of α.
10: S ← ∅ � Initialize S
11: for (v, w) ∈ F

∗
q × Fq2 do � Adding elements of type (I) in Proposition 1

12: α ← (w
q

v
)q+1 − 1

v

13: for r ∈ R[α] do
14: y ← wq

v
+ r

15: x ← −vy + w + wq

16: if xy �= 1 and x �∈ Fq and y �∈ Fq then

17: S ← S ∪ {
(
1 x
y 1

)
}

18: break
19: end if
20: end for
21: end for
22: for (b1, d2) ∈ F

∗
q × F

∗
q do � Adding elements of type (II) in Proposition 1

23: if b1 �= d2 then

24: S ← S ∪ {
(
1 b1
g d2g

)
}

25: end if
26: end for
27: for d2 ∈ Fq do � Adding elements of type (III) in Proposition 1

28: S ← S ∪ {
(
0 1
g d2g

)
}

29: end for
30: for (c2, d2) ∈ Fq × Fq do

31: S ← S ∪ {
(

0 1
1 + c2g d2g

)
}

32: end for
33: for c2 ∈ Fq do � Adding elements of type (IV) in Proposition 1

34: S ← S ∪ {
(

1 0
c2g g

)
}

35: end for
36: for (c2, d2) ∈ Fq × Fq do

37: S ← S ∪ {
(

1 0
c2g 1 + d2g

)
}

38: end for
39: return S;
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We observe that −vy +w +wq is in Fq if and only if y is in Fq. Thus we have

Corollary 3. Suppose that q ≥ 4, and (wq

v )q+1 − 1
v �= 0. There must exist one

solution of Eq. (3) that satisfy x, y ∈ Fq2 \ Fq and xy �= 1.

Remark 2. To list all coset representatives of type (I) in Proposition 1, one can
find one pair of (b, c) ∈ (Fq2 \ Fq) × (Fq2 \ Fq) for every (v, w) ∈ F

∗
q × Fq2 by

solving Eq. (3). Assume that q ≥ 4. In order to solve Eq. (3), one can build a
table indexed by elements in F

∗
q . In the entry of index α ∈ F

∗
q , we store 5 distinct

(q + 1)-th roots of α in Fq2 . The table will be built in advance, in time at most
Õ(q2). For given v ∈ F

∗
q and w ∈ Fq2 , one can find y ∈ Fq2 satisfying Eq. (4) and

x as −vy + w + wq in time logO(1) q such that xy �= 1 and x, y ∈ Fq2 \ Fq since
there are at most 4 such pairs from the discussion above. Thus, determining the
dominating case can be done in time Õ(q3).

4 Concluding Remarks

We summarise our algorithm in Algorithm 1. Based on the discussions above,
the number of representatives of types (I), (II), (III) and (IV) is no more than
q3 − q2, q2 − 3q + 2, q2 + q and q2 + q respectively, thus the total number of
representatives of all four types (counting repetitions) is no more than q3 +
2q2 − q + 2. From Remark 2, we can see that the time complexity is Õ(q3).
Hence Theorem 1 follows.

Acknowledgements. The authors would like to thank anonymous reviewers, Eleazar
Leal, Robert Granger and Frederik Vercauteren for helpful comments and discussions.
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Abstract. Recently, in [6] Gomez et al. presented algorithms to recover
a decomposition of an integer N = rA2 + sB2, where N, r, s are posi-
tive integers, and A, B are the wanted unknowns. Their first algorithm
recovers two addends by directly using rigorous Coppersmith’s bivariate
integer method when the error bounds of given approximations to A and

B are less than N
1
6 . Then by combining with the linearization technique,

they improved this theoretical bound to N
1
4 . In this paper, we heuristi-

cally reach the bound N
1
4 with experimental supports by transforming

the integer polynomial concerned in their first algorithm into a modular
one. Then we describe a better heuristic algorithm, the dimension of the
lattice involved in this improved method is much smaller under the same
error bounds.

Keywords: Sum of squares · Lattice · LLL algorithm · Coppersmith’s
method

1 Introduction

Coppersmith’s method to solve univariate modular polynomial [5] and bivari-
ate integer polynomial [4] enjoys prevalent cryptographic applications, such as
breaking the RSA crypto system as well as many of its variant schemes
[1,12,14,16,18–20], cracking the validity of the multi-prime Φ-hiding assump-
tions [9,21], revealing the secret information of kinds of pseudorandom generators
[2,6,10], and analyzing the security of some homomorphic encryption schemes
[22]. The essence of this famed algorithm is to find integer linear combinations of
polynomials which share a common root modulo a certain integer. These derived
polynomials possess small coefficients and can be transformed into ones hold-
ing true over integers. Thus one can extract the desired roots using standard
root-finding algorithms.
c© Springer International Publishing Switzerland 2016
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A noted theorem of Fermat addresses those integers which can be expressed
as the sum of two squares. This property relies on the factorization of the inte-
ger, from which a sum of two squares decomposition (if exists) can be efficiently
computed [8]. Recently, Gutierrez et al. [7] gave an algorithm to recover a decom-
position of an integer N = rA2 + sB2, where r, s are known integers, and A,B
are the wanted unknowns. When approximations A0, B0 to A,B are given, their
first algorithm can recover the two addends under the condition that the approx-
imation errors |A − A0|, |B − B0| are no bigger than N

1
6 .

In this paper, we first illustrate a method to solve a certain bivariate modular
polynomial fN (x, y) = a1x

2 + a2x + a3y
2 + a4y + a0 based on Coppersmith’s

method. The trick to solve this kind of polynomial can be directly used to recover
the two addends A,B of N = rA2+sB2 from their approximations with an error
tolerance N

1
4 . The least significant bits exposure attacks on A and B can also be

quickly executed by applying the method to solve this certain type polynomial.
Next, we present a better method for recovering A,B from its approximations
A0, B0. This improved approach transforms the problem into seeking the coor-
dinates of a certain vector in our built lattice. The problem of finding these
coordinates can be reduced to extracting the small roots of a different bivariate
modular polynomial f ′

N (x, y) = b1x
2 + b2x+ b3y

2 + b4y + b5xy + b0. The derived
error bound is N

1
3 in this way.

The rest of this paper is organized as follows. In Sect. 2, we recall some
preliminaries. In Sect. 3, we first describe the method to solve fN (x, y) = a1x

2 +
a2x + a3y

2 + a4y + a0 and then give our deduction on error bound N
1
4 as well

as the least significant bits exposure attacks on A,B, both of which are based
on finding the small roots of fN (x, y). In Sect. 4, we elaborate a better method
for recovering the addends of a sum of two squares. The theoretical error bound
derived by this approach is N

1
3 . Finally, we give some conclusions in Sect. 5.

2 Preliminaries

2.1 Lattices

Let b1, . . . ,bω be linear independent row vectors in R
n, and a lattice L spanned

by them is

L = {
ω∑

i=1

kibi | ki ∈ Z},

where {b1, . . . ,bω} is a basis of L and B = [b1
T , . . . ,bω

T ]T is the corresponding
basis matrix. The dimension and determinant of L are respectively

dim(L) = ω,det(L) =
√

det(BBT ).

For any two-dimensional lattice L, the Gauss algorithm can find out the reduced
basis vectors v1 and v2 satisfying

‖v1‖ ≤ ‖v2‖ ≤ ‖v1 ± v2‖
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in polynomial time. One can deduce that v1 is the shortest nonzero vector in L
and v2 is the shortest vector in L \ {kv1 | k ∈ Z}. Moreover, there are following
results, which will be used in Sect. 4.

Lemma 1 (See Gómez et al., 2006 [6], Lemma 3). Let v1 and v2 be the
reduced basis vectors of L by the Gauss algorithm and x ∈ L. For the unique
pair of integers (α, β) that satisfies x = αv1 + βv2, we have

‖αv1‖ ≤ 2√
3
‖x‖, ‖βv2‖ ≤ 2√

3
‖x‖.

Lemma 2 (See Gómez et al., 2006 [6], Lemma 5). Let {u,v} be a reduced
basis of a 2-rank lattice L in R

r. Then we have

det(L) ≤‖ u ‖‖ v ‖≤ 2√
3
det(L).

The reduced basis calculation in two-rank lattices is far from being obtained
for general lattices. The subsequently proposed reduction definitions all have
to make a choice between computational efficiency and good reduction perfor-
mances. The distinguished LLL algorithm takes a good balance, outputting a
basis reduced enough for many applications in polynomial time.

Lemma 3 [17]. Let L be a lattice. In polynomial time, the LLL algorithm out-
puts reduced basis vectors v1, . . . ,vω that satisfy

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , 1 ≤ i ≤ ω.

2.2 Finding Small Roots

Coppersmith gave rigorous methods for extracting small roots of modular uni-
variate polynomials and bivariate integer polynomials. These methods can be
heuristically extended to multivariate cases. Howgrave-Graham’s [11] reformula-
tion to Coppersmith’ s method is widely adopted by researchers for cryptanalysis.

Lemma 4 [11]. Let g(x1, x2) ∈ Z[x1, x2] be an integer polynomial that consists
of at most ω nonzero monomials. Define the norm of g(x1, x2) =:

∑
bi1,i2x

i1
1 xi2

2

as the Euclidean norm of its coefficient vector, namely,

‖g(x1, x2)‖ =
√∑

bi1,i2
2.

Suppose that

1. g(x(0)
1 , x

(0)
2 ) = 0 (mod N), for |x(0)

1 | < X1, |x(0)
2 | < X2;

2. ‖g(X1x1,X2x2)‖ < N√
ω
.

Then g(x(0)
1 , x

(0)
2 ) = 0 holds over integers.
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Combining Howgrave-Graham’s lemma with the LLL algorithm, one can
deduce that if

2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i <
N√
ω

,

the polynomials corresponding to the shortest i reduced basis vectors hold over
integers. Neglecting the low order terms which are independent on N , the above
condition can be simplified as

det(L) < Nω+1−i. (1)

After obtaining enough equations over integers, one can extract the shared roots
by either resultant computation or Gröbner basis technique.

We need the following assumption through our analyses, which is widely
adopted in previous works.

Assumption 1. The Gröbner basis computations for the polynomials corre-
sponding to the first few LLL-reduced basis vectors produce non-zero polynomials.

3 Recovering the Addends from N = rA2 + sB2

In this section, we first describe the trick for finding the small roots of polyno-
mial fN (x, y) = a1x

2 + a2y
2 + a3x + a4y + a0. Next, we address the problem

of recovering the decomposition of a given number N = rA2 + sB2 only from
its approximations to its addends A,B, where N , r, s are public positive inte-
gers. Then, we discuss how to achieve A and B when the least significant bits
of them are revealed. Both of these two attacks can be transformed into solving
the studied polynomial fN (x, y).

3.1 Solving Polynomial fN(x, y)

Without loss of generosity, we assume a1 = 1 since we can make it by multiplying
fN with a−1

1 mod N . If this inverse does not exist, one can factorize N . Set

f(x, y) = a−1
1 fN (x, y) mod N.

Next, we find the small roots of f(x, y) by Coppersmith’s method. Build shifting
polynomials

gk,i,j(x, y) = xiyjfk(x, y)Nm−k,

where i = 0, 1; k = 0, ...,m − i; j = 0, ..., 2(m − k − i). Obviously,

gk,i,j(x, y) ≡ 0 mod Nm.

Construct a lattice L using the coefficient vectors of gk,i,j(xX, yY ) as basis
vectors. We sort the polynomials gk,i,j(xX, yY ) and gk′,i′,j′(xX, yY ) according
to the lexicographical order of vectors (k, i, j) and (k′, i′, j′). In this way, we can
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Table 1. Example of the lattice formed by vectors gk,i,j(xX, yY ) when m = 2. The
upper triangular part of this matrix is all zero, so omitted here, and the non-zero items
below the diagonal are marked by ∗.

1 y y2 y3 y4 x xy xy2 x2 x2y x2y2 x3 x4

g0,0,0 N2

g0,0,1 Y N2

g0,0,2 Y 2N2

g0,0,3 Y 3N2

g0,0,4 Y 4N2

g0,1,0 XN2

g0,1,1 XY N2

g0,1,2 XY 2N2

g1,0,0 * * * * X2N

g1,0,1 * * * * X2Y N

g1,0,2 * * * * * X2Y 2N

g1,1,0 * * * * X3N

g2,0,0 * * * * * * * * * * * * X4

ensure that each of our shifting polynomials introduces one and only one new
monomial, which gives a lower triangular structure for L. We give an example
for m = 2 in the following Table 1.

Then its determinant can be easily calculated as products of the entries on
the diagonal as det(L) = XSX Y SY NSN as well as its dimension ω where

ω =
1∑

i=0

m−i∑

k=0

2(m−k−i)∑

j=0

1 = 2m2 + 2m + 1 = 2m2 + o(m2).

Sx =
1∑

i=0

m−i∑

k=0

2(m−k−i)∑

j=0

(2k + i) =
1
3
m(4m2 + 3m + 2) =

4
3
m3 + o(m3).

Sy =
1∑

i=0

m−i∑

k=0

2(m−k−i)∑

j=0

j =
1
3
m(4m2 + 3m + 2) =

4
3
m3 + o(m3).

SN =
1∑

i=0

m−i∑

k=0

2(m−k−i)∑

j=0

(m − k) =
2
3
m(2m2 + 3m + 1) =

4
3
m3 + o(m3).

Put these relevant values into inequality det(L) < Nmω. After some basic
calculations, we gain the bound

XY < N
1
2 .

When X = Y , which means the two unknowns are balanced, the above result is

X = Y < N
1
4 .

We summarize our result in the following theorem.
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Theorem 1. Let N be a sufficiently large composite integer of unknown fac-
torization. Given a bivariate polynomial fN (x, y) = a1x

2 + a2x + a3y
2 + a4y +

a0 mod N , where |x| ≤ X, |y| ≤ Y . Under Assumption 1, if

XY < N
1
2 ,

one can extract all the solutions (x, y) of equation fN (x, y) ≡ 0 (mod N) in
polynomial time.

3.2 Recovering a Decomposition from Approximations

In this subsection, we describe the method to recover A,B of N = rA2 + sB2

from their approximations.
Supposing that positive integers r and s are given. Set N = rA2+sB2, where

A,B are balanced addends, and A0, B0 are the approximations to A,B, that is
A = A0 + x and B = B0 + y, where x, y are bounded by Δ. Then, one can
recover A and B according to Theorem 1 when

Δ < N
1
4 .

The concrete analysis is as follows. Note that

N = r(A0 + x)2 + s(B0 + y)2, (2)

which gives rise to a bivariate modular polynomial

f1(x, y) = rx2 + sy2 + 2A0rx + 2B0sy + rA2
0 + sB2

0 ≡ 0 mod N,

this is exactly the same type of the polynomial we discussed in Sect. 3.1. So
we gain the result Δ < N

1
4 simply by substituting both X and Y appeared in

Theorem 1 to Δ.
The experimental results to support the above analysis is displayed in Table 2,

which matches well with the derived theoretical bound.

Table 2. Experimental results for error bound Δ = 1
4

with 512 bit N

N (bits) m dim logNΔ LLL (seconds) Gröbner (seconds)

512 5 61 0.227 12.901 15.631

6 85 0.230 49.172 606.360

7 113 0.233 187.076 517.549

8 145 0.235 566.471 3204.339

9 181 0.236 1512.586 5538.002

10 221 0.237 3430.463 out of memory
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Table 3. Experimental results for Remark 1 with 512 bit N

N (bits) m dim logNΔ LLL (seconds) Gröbner (seconds)

512 4 28 0.130 0.842 0.265

5 36 0.132 3.806 0.842

6 45 0.133 14.914 1.420

8 66 0.135 143.349 11.532

Table 4. Experimental results for different modulus with 1024 bit N

N (bits) M m dim logNΔ LLL (seconds) Gröbner (seconds)

1024 N − 1 6 85 0.23 582.258 144.005

2N − 1 6 85 0.23 587.046 145.440

N2 − 1 6 85 0.23 5917.165 1159.431

Remark 1. Gutierrez et al. discussed the same problem in [7]. They arranged
Eq. (2) to a bivariate integer polynomial as follows,

f ′
1(x, y) = rx2 + sy2 + 2A0rx + 2B0sy + rA2

0 + sB2
0 − N. (3)

By directly applying Coppersmith’s theorem [3], their derived error bound is
only N1/6. We do experiments for their method, part of the results are displayed
in Table 3. The experimental results show that our method works much better.

Coppersmith’s original method [3] for solving bivariate integer polynomial is
difficult to understand. Coron [13] first reformulated Coppersmith’s work and
the key idea of which can be described as follows, choosing a proper integer R,
and transforming the situation into finding a small root modulo R. Then, by
applying LLL algorithm, a polynomial with small coefficients can be found out,
which is proved to be algebraically independent with the original equation.

Our approach described above also transforms the integer equation into a
modular polynomial. The difference between our method and Coppersmith’s
theorem [3] lies in the construction of shifting polynomials. We take use of the
information of the power of the original polynomial. Although we didn’t prove
that the obtained polynomial with small coefficients is algebraically independent
with the original polynomial, which is true in most cases during the experiments.

Remark 2. We studied different situations to transform Eq. (3) into modular
ones as the modulus varies. For instance q(x, y) = f1(x, y)+M ≡ 0 mod (N+M).
The experimental results for different M are shown in Table 4.

Specifically, we also consider non-constant modular polynomial

f2(x, y) = rx2 + sy2 + 2A0rx + 2B0sy ≡ 0 mod (N − rA2
0 − sB2

0). (4)

In this way, the corresponding theoretical error bound for recovering the
addends from their approximations is N1/6( please refer to Appendix A for
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the detailed analyses). However, the experimental results show a much better
performance, which is displayed in Table 5.

3.3 Recovering a Decomposition from Non-approximations

Actually, the most significant bits exposure attack of A and B can be viewed
as a special case of the above problem (recovering a a sum of two squares from
its approximations). In this subsection, we consider the case when the least
significant bits of A,B are leaked.

Given r, s are positive integers, set N = rA2 + sB2, where A,B are balanced
addends. When half bits of A and B in the LSBs are intercepted, one can recover
A,B according to Theorem 1.

Suppose A = xM + A0, B = yM + B0, where M,A0 and B0 are the gained
integers, and x, y refers to the unknown parts. Then we have the following rela-
tion

N = r(xM + A0)2 + s(yM + B0)2,

which can be expanded to a bivariate modular polynomial

f3(x, y) = rM2x2 + sM2y2 + 2rA0Mx + 2sB0My + rA2
0 + sB2

0 ≡ 0 mod N.

Set the upper bound for x and y as Δ1 and put it into Theorem 1, we get
Δ1 < N

1
4 . Since

M =
A − A0

x
>

A − A0

N
1
4

≈ A

N
1
4

≈ N
1
2

N
1
4

= N
1
4 ,

From these analyses, we get that half information from A and B can reveal
the whole knowledge of both addends, no matter the leaked bits are LSBs or
MSBs.

Table 5. Experimental results for Remark 2 with 512 bit N

N (bits) m dim logNΔ LLL (seconds) Gröbner (seconds)

512 2 12 0.16 0.001 0.001

3 24 0.19 0.016 0.14

4 40 0.20 0.406 1.888

5 60 0.21 2.558 45.490

7 112 0.22 57.954 2028.294
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4 A Better Method for Recovering the Addends

In this section, we reduce the problem of recovering a sum of two squares decom-
position to seeking the coordinates of a desired vector in a certain lattice. Then
we can find these coordinates by applying Coppersmith’s method to solve a type
of modular polynomials where the concerned monomials are x2, y2, xy, x, y and
1. Dealt this way, the theoretical error tolerance can be improved to N1/3, and
the involved lattices in this approach possess much smaller dimensions compared
to the ones in Sect. 3.

4.1 The Reduction of Recovering the Addends

From the initial key relation N = r(A0 + x)2 + s(B0 + y)2 we have

2rA0x + 2sB0y + rx2 + sy2 = N − rA2
0 − sB2

0 . (5)

Hence, the recovery of vector

e := (X1,X2,X3) = ((r + s)Δx, (r + s)Δy, rx2 + sy2)

solves the problem. Here Δ represents the upper bound for x and y. It is not
hard to see that vector e is in a shifted lattice c+S, c = (c1, c2, c3) ∈ Z

3, where
( c1
(r+s)Δ , c2

(r+s)Δ , c3) is a particular solution of (5) and S is a two-dimensional
lattice (

(r + s)Δ 0 −2A0r
0 (r + s)Δ −2B0s

)
.

According to Minkowski’s theorem [15], when ||e|| <
√

2
√

det(S), one can
recover e by solving the closet vector problem. Further, the norm of e satis-

fies ||e|| ≤ √
3(r + s)Δ2, and det(S) ≥ 2(r + s)Δ

√
min(r,s)∗N

2 with condition

min(r, s) ∗ N ≥ 4
√

NΔ(r3/2 + s3/2). These constraints give rise to the error
bound Δ < N1/6, as discussed in [7].

Next, we present our analysis for the case when Δ > N1/6. Here, we tag
f = ((r + s)Δf1, (r + s)Δf2, f3) as the output of the CVP algorithm on S, and
use {u = ((r+s)Δu1, (r+s)Δu2, u3),v = ((r+s)Δv1, (r+s)Δv2, v3)} to denote
the Gauss reduced basis for S. Then e = f + αu + βv, where α, β represent the
corresponding coordinates of vector e− f in lattice S. Thus, the problem is con-
verted to finding the parameters α and β, which satisfy equation

2A0r(f1 + αu1 + βv1) + 2B0s(f2 + αu2 + βv2)

+ r(f1 + αu1 + βv1)2 + s(f2 + αu2 + βv2)2 + rA2
0 + sB2

0 − N = 0.
(6)

We first derive the upper bounds for the unknowns α, β. Since e−f = αu+βv,
from Lemma 1, we get

||αu||||βv|| ≤ 2√
3
||e − f || ≤ 4(r + s)Δ2.
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Thus, |α| ≤ 4(r+s)Δ2

||u|| , |β| ≤ 4(r+s)Δ2

||v|| . Further, according to Lemma 2, there is
det(S) ≤ ||u||||v|| ≤ 2√

3
det(S). Then we have

|α||β| ≤ 4(r + s)Δ2

det(S)
≤ c1Δ

3/2N−1/4,

where c1 = 27/4(r + s)1/2min(r, s)−1/4 is a constant.
Notice that Eq. (6) can be arranged to

(ru2
1 + su2

2)α
2 + (rv2

1 + sv2
2)β

2 + 2(ru1v1 + su2v2)αβ + 2(A0ru1

+ B0su2 + rf1u1 + sf2u2)α + 2(A0rv1 + B0sv2 + rf1v1 + sf2v2)β

+ 2A0rf1 + 2B0sf2 + rf2
1 + sf2

2 + rA2
0 + sB2

0 ≡ 0 mod N,

(7)

which represents a certain type of modular polynomials consisting of monomials
x2, y2, xy, x, y and 1. Next, we describe our analysis for solving such polynomials.

4.2 Solving a Certain Type of Modular Polynomials

Let f ′
N (x, y) = b1x

2 + b2y
2 + b3xy + b4x + b5y + b0 mod N. Assume b1 = 1,

otherwise, set
f ′(x, y) = b−1

1 f ′
N (x, y) mod N.

If the inverse b−1
1 mod N does not exist, one can factorize N . Next, we use

Coppersmith’s method to find the small roots of this polynomial. Build shift-
ing polynomials hk,i,j(x, y) which possess the same roots modular Nm with
f ′(x, y) ≡ 0 mod N as follows:

hk,i,j(x, y) = xiyjf ′k(x, y)Nm−k,

where i = 0, 1; k = 0, ...,m − i; j = 0, ..., 2(m − k) − i.
Construct a lattice L′ using the coefficient vectors of hk,i,j(xX, yY ) as basis

vectors. We sort the polynomials hk,i,j(xX, yY ) and hk′,i′,j′(xX, yY ) according
to lexicographical order of vectors (k, i, j) and (k′, i′, j′). Therefore, we can ensure
that each of our shifting polynomials introduces one and only one new monomial,
which gives a triangular structure for L′.

Then the determinant of L′ can be easily calculated as products of the entries
on the diagonal as det(L′) = XSX Y SY NSN as well as its dimension ω where

ω =
m−i∑

k=0

1∑

i=0

2(m−k)−i∑

j=0

1 = 2m2 + o(m2),

SX =
m−i∑

k=0

1∑

i=0

2(m−k)−i∑

j=0

(2k + i) =
4
3
m3 + o(m3),

SY =
m−i∑

k=0

1∑

i=0

2(m−k)−i∑

j=0

j =
4
3
m3 + o(m3),

SN =
m−i∑

k=0

1∑

i=0

2(m−k)−i∑

j=0

(m − k) =
4
3
m3 + o(m3).
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Put these relevant values into inequality det(L′) < Nmω. After some basic
calculations, we gain the bound

XY < N
1
2 .

We summarize our result in the following theorem.

Theorem 2. Let N be a sufficiently large composite integer of unknown factor-
ization and f ′

N (x, y) = b1x
2 + b2x+ b3y

2 + b4y + b5xy + b0 mod N be a bivariate
modular polynomial, where |x| ≤ X, |y| ≤ Y . Under Assumption 1, if

XY < N
1
2 ,

one can extract all the solutions (x, y) of equation f ′
N (x, y) ≡ 0 (mod N) in

polynomial time.

Next, we use the above method to solve Eq. (7), and then recover the
unknown addends.

4.3 Recover the Addends

Notice that Eq. (7) is exactly the same type of polynomial discussed in Sect. 4.2.
Put the derived upper bounds for |α||β| in Sect. 4.1 into Theorem 2,

|α||β| ≤ c1Δ
3/2N−1/4 ≤ N1/2.

Solve this inequality, omit the constant terms, and we obtain the optimized
bound for the approximation error terms

Δ < N
1
3 . (8)

Compared to Sect. 3, this method performs much better in practice since the
dimensions of the involved lattices are much smaller when the error bounds are
the same. We present the comparison results in Table 6, where one can see a
remarkable improvement in the performing efficiency.

Remark 3. As in Sect. 3, we also analyzed the case when transforming Eq. (6)
into a non-constant modular polynomial. The corresponding error bound is
then N1/4. Table 7 is the experimental results for this situation. Please refer to
Appendix B for the detailed analysis.

5 Conclusions and Discussions

We revisit the problem of recovering the two addends in this paper. Our first
algorithm improves Gutierrez et al.’s first result N1/6 to N1/4 by transforming
the derived polynomial into a modular one. Then we improve this bound to
N1/3 in theory by reducing the problem of recovering a sum of two squares
decomposition to seeking the coordinates of a desired vector in a certain lattice.



Recovering a Sum of Two Squares Decomposition Revisited 189

Table 6. A comparison between Sect. 4 (the left part datas) and Sect. 3 (the right part
datas)

N (bits) logN Δ m dim LLL (seconds) Gröbner (seconds) m’ dim’ LLL’ (seconds) Gröbner’ (seconds)

1024 0.19 1 6 0.016 0.001 2 13 0.047 0.031

0.20 2 15 0.187 0.109 3 25 1.248 0.406

0.21 2 15 0.172 0.109 3 25 1.030 0.967

0.22 2 15 0.187 0.140 4 41 14.383 3.416

512 0.23 4 45 6.334 11.591 6 85 49.172 606.360

0.235 5 66 47.612 68.391 8 145 566.471 3204.339

0.236 6 91 229.789 579.091 9 181 1512.586 5538.002

0.237 7 120 949.094 3410.151 10 221 3430.463 out of memory

0.238 7 120 855.868 1696.823 − − − -

0.239 8 153 2852.619 out of memory − − − -

Table 7. Experimental results for Remark 3 with 512 bit N

N (bits) m dim logNΔ LLL (seconds) Gröbner (seconds)

512 2 14 0.21 0.031 0.016

3 27 0.22 0.328 0.187

6 90 0.23 180.930 188.434

J.Gutierrez et al. did similarly in [7], and their optimized bound is N1/4. Our
second approach performs much better than the first one since the dimension of
the required lattice is much smaller when the same error bounds are considered.
The tricks to solve the derived polynomials in Sects. 3 and 4 are similar, both
of which transform integer relations to modular polynomials. We study four
kinds of modular polynomials in our work (two types are discussed in Remarks 2
and 3). The tricks for solving these polynomials may find other applications in
cryptanalysis.

We do experiments to testify the deduced results. The tests are done in
Magma on a PC with Intel(R) Core(TM) Quad CPU (3.20 GHz, 4.00 GB RAM,
Windows 7). These datas well support our analyses, however, as the error terms
go larger, the dimensions of the required lattices are huger. The time, memory
costs also increase greatly, which stops our experiment at a not good enough
point. Hope people who are interested in this problem can bring us further
supports for the experiments.

Acknowledgements. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions. The work of this paper was partially supported by
National Natural Science Foundation of China (No. 61170289) and the National Key
Basic Research Program of China (2013CB834203).
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A Analysis for Remark 2

In this part, we give the details to show that when dealing with Eq. (3) as a
non-constant modular polynomial (4), the corresponding error bound is N1/6.

First, we display the trick for finding the small roots of f2(x, y) = rx2 +
sy2 + 2A0rx + 2B0sy ≡ 0 mod (N − rA2

0 − sB2
0). Set M = N − rA2

0 − sB2
0 as

the modulus. The shifting polynomials for this equation can be constructed as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g1k,i(x, y) = yiMm,

i = 1, ..., 2m;

g2k,i(x, y) = xjyifk
3 (x, y)Mm−k,

k = 0, ...,m − 1; j = 1, 2; i = 0, ..., 2(m − k − 1);

Suppose |x| ≤ X = N δ, |y| ≤ Y = N δ, then M ≈ N
1
2+δ. Similarly, the coeffi-

cients of g1(xX, yY ), g2(xX, yY ) can be arranged as a lower triangular lattice
L1, whose determinant can be easily calculated as det(L1) = XSX Y SY MSM ,
where

ω = 2m2 + 2m = 2m2 + o(m2).

SX =
1
3
m(4m2 + 3m + 2) =

4
3
m3 + o(m3).

SY =
1
3
m(4m2 + 3m + 2) =

4
3
m3 + o(m3).

SM =
1
3
m(4m2 + 9m − 1) =

4
3
m3 + o(m3).

Put these values into inequality det(L1) ≤ Mmω, we obtain δ ≤ 1
6 , which means

that the error bound derived by this method is

Δ ≤ N
1
6 ,

a poorer bound compared to N
1
4 . The experimental results in Table 5 show that

this method works much better in practice than in theoretic analysis, although
still weaker than the result in Sect. 3.2.

B Analysis for Remark 3

Notice that the problem of finding coordinates for vector e − f can also be
transformed into solving a non-constant modular equation

q(α, β) = (ru2
1 + su2

2)α
2 + (rv2

1 + sv2
2)β

2 + 2(ru1v1 + su2v2)αβ

+ (2rf1u1 + 2sf2u2 − u3)α + (2rf1v1 + 2rf2v2 − v3)β

≡ 0 mod (N − 2rA0f1 − 2sB0f2 − rf2
1 − sf2

2 − rA2
0 − sB2

0)
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Set M = |N − 2rA0f1 − 2sB0f2 − rf2
1 − sf2

2 − rA2
0 − sB2

0 | as the modulus.
Then the problem reduced to solving

q′(x, y) = x2 + b2y
2 + b3xy + b4x + b5y ≡ 0 mod M.

Here we assume that q′(x, y) is a monic irreducible polynomial, since we can make
it satisfied by multiplying the modular inverse term. We apply Coppersmith’s
method to solve this polynomial. The shifting polynomials can be constructed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1k,i(x, y) = yiMm,

i = 1, ..., 2m;

g2k,i(x, y) = yiq′k(x, y)Mm−k,

k = 1, ...,m, i = 0, ..., 2(m − k);

g3k,i(x, y) = xyiq′k(x, y)Mm−k,

k = 0, ...,m − 1, i = 0, ..., 2(m − k) − 1;

From the former analysis, we know that |x|, |y| ≤ Δ3/2N−1/4 = X = Y , and
M ≈ Δ2. Similarly, the coefficients of g1(xX, yY ), g2(xX, yY ) and g3(xX, yY )
can be arranged as a lower triangular lattice L2, whose determinant can be easily
calculated as det(L2) = XSX Y SY MSM , where

ω = 2m2 + 3m = 2m2 + o(m2).

SX =
2
3
m(2m2 + 3m + 1) =

4
3
m3 + o(m3).

SY =
2
3
m(2m2 + 3m + 1) =

4
3
m3 + o(m3).

SM =
1
6
m(8m2 + 15m + 1) =

4
3
m3 + o(m3).

Put these values into inequality det(L2) ≤ Mmω, we gain the corresponding
error bound

Δ ≤ N
1
4 .
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Abstract. We propose efficient strategies for calculating point tripling
on Hessian (8M+5S), Jacobi-intersection (7M+5S), Edwards (8M+5S)
and Huff (10M +5S) curves, together with a fast quintupling formula on
Edwards curves. M is the cost of a field multiplication and S is the cost
of a field squaring. To get the best speeds for single-scalar multiplication
without regarding perstored points, computational cost between different
double-base representation algorithms with various forms of curves is
analyzed. Generally speaking, tree-based approach achieves best timings
on inverted Edwards curves; yet under exceptional environment, near
optimal controlled approach also worths being considered.

Keywords: Elliptic curves · Scalar multiplication · Point arithmetic ·
Double-base number system

1 Introduction

Compared with finite fields Fq, solving the elliptic curve discrete logarithm prob-
lem (ECDLP) in E(Fq) is much harder. For example, index calculus is a subexpo-
nential algorithm that solves DLP for the multiplicative group of a finite field F

∗
q ,

yet the best known countermeasures against ECDLP take exponential time. It
means that when security level is equivalent, elliptic curve cryptosystem (ECC)
has key and message sizes that are at least 5 − 10 times smaller than those for
other public-key cryptosystems, including RSA and Fq-based DLP systems. This
superiority promotes the implementation of ECC in resource limited equipments,
like smart cards and cellular phones.

Practical efficiency of curve-based cryptographic system is significantly influ-
enced by the speed of fundamental operation: scalar multiplication [k]P of an
integer k ∈ Z by a generic elliptic point P . A wide range of advances has been
established to improve the efficiency of scalar multiplication.
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On the one hand, since the introduction of double-base chain (DBC) by
Dimitrov, Imbert and Mishra [1], new and optimized scalar-recoding algorithms
have attracted considerable attention to speed up single-scalar multiplication.
See [2–6] for extensive progress on the subject. In spite of algorithmic properties,
implementation complexity of double-base ({2, 3} or {2, 5} as usually used) num-
ber system relies on the cost of basic operations on elliptic groups—addition or
mixed-addition, doubling, tripling, quintupling—at the same time. For instance,
by signed DBC with {2, 3}-base, any integer can be rewritten as a sequence of
bits in {0(2), 0(3),±1} in scalar evaluation phase, meanwhile the number of 0(2),
0(3) and ±1 is exactly the amount of doublings, triplings, additions in point
multiplication phase respectively.

On the other hand, new elliptic curve forms with unified addition1 formula
were successively investigated in literature, aiming to resist side-channel attacks
as well. From a security standpoint, unified addition formulas of Jacobi intersec-
tion [7], Hessian [8,9], Jacobi quartic [10], Edwards [11] and Huff [12] can exe-
cute doubling operations the same way as additions in insecure environments. It
leaks no side channel information on scalars, and provides a simplified protection
against simple power analysis (SPA). From an efficiency standpoint, arithmetic
on various curves establish new speed records for single-scalar multiplication.
In particular, twisted curves with different coordinate systems also draw some
interest, cf. [8,13–15].

This paper is on optimizing point operations of several previously mentioned
elliptic curves, on which we study the performance of different DBC algorithms.
We introduce background knowledge of DBC in Sect. 2. Then we show faster
tripling formulas for Hessian, Jacobi-intersection, Edwards and Huff curves in
Sect. 3. Remarkably, our new Jacobi-intersection tripling formula is competitive
with that of tripling-oriented Doche-Icart-Kohel curves [16], which is the fastest
one at present. Cost of point tripling on various elliptic curves will be shown
in Table 1. Section 4 contains a comprehensive comparison of total complexities
between three efficient scalar multiplication methods, including recently pro-
posed Near Optimal Controlled (NOC) [4], greedy algorithm [1] and tree [19]
approaches. We conclude this paper in Sect. 5.

We emphasize that with several choices of coordinate systems, the useful-
ness of Edwards curves in establishing speed records for single-scalar multiplica-
tion make it valuable to develope further improvements. Nevertheless our new
tripling formula doesn’t gain enough improvement. In compensation, we give a
new strategy for computing point quintupling on Edwards curve in appendix.

2 Preliminary

2.1 Double-Base Number System

The use of double-base number system (DBNS) in cryptographic systems is pro-
posed by Dimitrov, Jullien and Miller [17]. By DBNS, any positive integer n

1 An addition formula is advertised as unified if it can handle generic doubling, that
is, the two addends are identical.
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is represented as a sum or difference of {2, 3}-integer (number of the form
2b3t), i.e.,

n =
l∑

i=1

ci2ai3bi ,

where ci ∈ {1,−1} and c1 = 1. l is called the length of expansion.
DBNS can largely reduce the total complexities of scalar multiplication than

2-radix based representation systems, e.g. non-adjacent-form (NAF) family [18,
Chap. 9]. However, for DBNS there are at least two salient weaknesses. One
ingredient is on search problem: although this system is highly redundant, how
to find the shortest representation is still an open problem now. The other is
on trade-offs between storage and efficiency: to achieve best timings of DBNS,
extra storage space is needed, see [4, Example 1].

Of these two problems, the former one is quite tough—it is conjectured to be
NP complete. Yet the latter is relatively easy to solve by making a compromise
between storage and efficiency, known as double-base chain.

2.2 Double-Base Chain

Introduced as a special form of DBNS, DBC [1] translates any integer n into a
DBNS representation with restricted exponents, satisfying:

n =
l∑

i=1

ci2ai3bi ,

where ci ∈ {1,−1}, and a1 ≥ a2 ≥ · · · ≥ al, b1 ≥ b2 ≥ · · · ≥ bl.
It’s feasible to apply Horner-like fashion in point multiplication phase due

to decreasing characteristic of {ai}1≤i≤l, {bi}1≤i≤l. 2a13b1 is called the leading
term of expansion, and it’s easy to see that we need no less than a1 doublings,
b1 triplings and l − 1 additions to perform such scalar multiplication [n]P .

Although how to find the shortest double-base chain (a.k.a canonic DBC)
for random integers remains unsolved, there are many efficiently computable
algorithms that can compute DBCs with low Hamming weight, for exam-
ple, binary/ternary [2], modified greedy algorithm, tree approach, multi-base
NAF [20], Near Optimal Controlled DBC.

3 Improved Tripling Formulas

In this section, we introduce improved step-by-step computation of tripling for-
mulas (P3 = [3]P1) for Hessian, Jacobi-intersection, Edwards and Huff curves
over Fq, with Char(Fq) �= 2, 3. We omit affine coordinates, because basic arith-
metic (e.g. point addition, doubling) in them inevitably involve expensive field
inversions. When field multiplication doesn’t gain many time penalties, pro-
jective coordinates are frequently used instead, usually trading an inversion to
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several multiplications and reducing the total cost as a consequence. We drop the
cost of additions, subtractions, and multiplications by small constants in underly-
ing fields as well. Group operations are expressed in terms of multiplication(M),
squaring(S) and multiplying by constant(D) in the sequel.

3.1 Tripling Formula on Hessian Curves

The use of Hessian curves in scalar multiplication was introduced by Smart [21]
and Joye [9]. A homogeneous projective Hessian curve over Fq is defined by

X3 + Y 3 + Z3 = dXY Z,

where d ∈ Fq and d3 �= 27. The neutral element is (1,−1, 0).
A family of generalized Hessian curves was investigated in [8]. Efficient unified

addition formulas for it were presented, which are complete2 too.
Introduced by Hisil, Carter and Dawson [22], the original formula of

inversion-free tripling on Hessian curves is shown as follows. Notice that choos-
ing another curve parameter doesn’t influence the computation of doubling and
addition. Reset curve parameter k = d−1. Inverting a constant on Fq can be
computed in advance before scalar multiplicaion, without affecting the cost of
the tripling formula.

X3 = X3
1 (Y 3

1 − Z3
1 )(Y 3

1 − Z3
1 ) + Y 3

1 (X3
1 − Y 3

1 )(X3
1 − Z3

1 )

Y3 = Y 3
1 (X3

1 − Z3
1 )(X3

1 − Z3
1 ) − X3

1 (X3
1 − Y 3

1 )(Y 3
1 − Z3

1 )

Z3 = k(X3
1 + Y 3

1 + Z3
1 )((X3

1 − Y 3
1 )2 + (X3

1 − Z3
1 )(Y 3

1 − Z3
1 ))

The tripling operation can be computed by:

A ← X3
1 , B ← Y 3

1 , C ← Z3
1 ,D ← (A − B)(C − A),

E ← (B − C)2, F ← D(B − C), G ← (2A − B − C)2 + 2D + E

X3 ← 2(A · E − B · D), Y3 ← X3 + 2F,Z3 ← k(A + B + C)G.

The best known explicit algorithm for Hessian tripling costs 8M + 6S +
1D [22,23]. Our new tripling formula is valid by performing 8M + 5S + 1D
and 1S is saved. We point out that an extended projective coordinate system
(X,Y,Z,X2, Y 2, Z2, 2XY, 2XZ, 2Y Z) for Hessian introduced in [24] reduces the
total cost of addition formula and is beneficial for side-channel attack resistance.
However this system is not suitable for tripling operations, so we ignore it in
efficiency-oriented comparison in Sect. 4.

2 As defined in [11] an addition formula is complete if it works for all pairs of inputs
without exceptional cases.
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3.2 Tripling Formula on Jacobi-Intersection Curves

Any elliptic curve over Fq is birationally equivalent to an intersection of two
quadric surfaces in P

3(Fq). Recall from [7,10], a projective point (S,C,D, T ) in
the Jacobi-intersection form satisfies

{
S2 + C2 = T 2

aS2 + D2 = T 2,

where a ∈ Fq, a(1 − a) �= 0. The identity point is (0, 1, 1, 1).
Explicit inversion-free tripling formula [22] is as follows:
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where curve parameter k = a − 1. The terms can be organized as:

A ← S2
1 , B ← C2

1 , C ← A2,D ← B2, E ← (A + B)2 − C − D,

F ← kC − D,G ← kC + D,H ← ((k − 1)E + 2F )G,

I ← (E − F )(F + kE), J ← (k + 1)EG,

S3 ← S1(H + I), C3 ← C1(H − I),D3 ← D1(I + J), T3 ← T1(I − J).

The above formula costs 7M+5S+2D. Hisil et al. [22] proposed two versions
of tripling formula on Jacobi-intersection curves, which are known best, one costs
4M + 10S + 5D, and the other costs 7M + 7S + 3D.

Moreover in [24], they showed how a redundant extended coordinate sys-
tem can remarkably reduce the cost of addition on Jacobi-intersection curves
by at least 2M . The homogeneous projective coordinate system is named as
“modified Jacobi-intersection”, by which a point is represented as the sextuplet
(S,C,D, T, U, V ) with U = SC, V = DT . If we use it to perform tripling oper-
ation, we get 2M punishment and the total cost becomes 9M + 5S + 2D3. Yet
in this case, the new tripling formula of modified Jacobi-intersection coordinate
system is still faster than that of [23, Jacobi intersections].

3.3 Tripling Formula on Edwards Curves

In [25], Harold Edwards proposed a new form of elliptic curves and thor-
oughly investigated its mathematical aspects. Later Bernstein and Lange [11]
established fast explicit formulas for elliptic group on Edwards curves. They
also proposed inverted coordinate system that allows reduced additions in [26].

3 The computation of E in the first line can be done as E ← 2U2 alternatively. It
saves 2 field additions.
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The reader is referred to [13,15] for arithmetic on twisted Edwards curves and
further improvements with different coordinate systems.

A Edwards curve over Fq defined by homogeneous projective coordinate
(X,Y,Z) is

E : (X2 + Y 2)Z2 = c2(Z4 + dX2Y 2),

where c, d ∈ Fq such that dc4 �= 0, 1. The identity for elliptic group is (0, c, 1).
The tripling formula on Edwards curves [27] is shown as follows.
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The formula can be organized as:

A ← X2
1 , B ← Y 2

1 , C ← (2c · Z1)2,D ← A2, E ← B2,

F ← B(2A − C), G ← A(2B − C),H ← D + E + F,

I ← D − 3E − F, J ← D + E + G,K ← H + I + J,

X3 ← X1 · HI, Y3 ← Y1 · JK,Z3 ← Z1 · IK.

This operation costs 8M + 5S + 1D. To our knowledge, the previously best
known tripling formulas cost 9M+4S+1D or 7M+7S+1D [22,27]. New formula
given above trades 1M to 1S, and gets several advantages because squaring costs
less than multiplication in most cases. Similar routine can be applied to inverted
Edwards coordinate.

Among Edwards curves family, the fastest addition is derived from its twisted
form −x2+y2 = 1+dx2y2 with (X,Y, XY

Z , Z) coordinate system. This redundant
representation system save 1M for addition compared with inverted Edwards,
leading to extra 1M for doubling though. So, it isn’t suitable for DBC and we
don’t discuss further application of this coordinate system, because the amount
of required doubling is usually more than that of addition.

3.4 Tripling Formula on Huff Curves

Joye, Tibouchi and Vergnaud presented unified and parameter-independent addi-
tion formulas for Huff’s form elliptic curves [12], and studied its cryptographic
application especially for pairing computations. The set of points on Huff satisfy

aX(Y 2 − Z2) = bY (X2 − Z2),

where a, b ∈ Fq and a2 �= b2. The identity element for the additive group on
Huff’s is (0, 0, 1).
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The tripling formula is shown as:
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The terms can be organized as follows:

A ← X2
1 , B ← Y 2

1 , C ← Z2
1 ,D ← A(B + C), E ← C(B + C),

F ← C(A + C), G ← F − E,H ← D − E − 2F, I ← 2F + D − E,

J ← D+E−2G,K ← H+I+J,X3 ← X1 ·HJ2, Y3 ← Y1 ·HI2, Z3 ← Z1 ·IJK.

Above formula costs 10M + 5S, and is independent of curve parameters. We
don’t give detailed improvement of tripling formulas on its generalized forms,
due to limited benefits from the arithmetic on Huff’s model, even comparing
with Weierstrass curves in Jacobian coordinates. Interested readers are referred
to [28] for discussion.

3.5 Cost Comparison Between Tripling Operations

The rest of this section includes a cost comparison between tripling formulas
of various elliptic curves, see Table 1. Total complexities are counted for both

Table 1. Cost comparison between tripling formulas of different coordinate systems.

Systems Tripling cost Total cost

1S = 0.8M 1S = 0.75M

Huff (OLD)[28] 10M + 6S 14.8M 14.5M

Huff 10M + 5S 14M 13.75M

Jacobian [23] 5M + 10S + 1D 13M 12.5M

Hessian (OLD) 8M + 6S + 1D 12.8M 12.5M

Jacobi-quartic 4M + 11S + 2D 12.8M 12.25M

Jacobi-intersection-2 (OLD) 7M + 7S + 3D 12.6M 12.25M

Jacobian, a = −3 [23] 7M + 7S 12.6M 12.25M

Edwards (OLD) 9M + 4S + 1D 12.2M 12M

Edwards 8M + 5S + 1D 12M 11.75M

Hessian 8M + 5S + 1D 12M 11.75M

Jacobi-intersection-1 (OLD) 4M + 10S + 5D 12M 11.5M

Jacobi-intersection 7M + 5S + 2D 11M 10.75M

3DIK [16] 6M + 6S + 2D 10.8M 10.5M



200 W. Li et al.

1S = 0.8M and 1S = 0.75M cases. We assume 1D = 0M . It makes sense
if chosen curve constants are of small values, or with extremely low (or high)
hamming weight, so that the cost of D is equal that of several negligible additions
on underlying field. Contributions introduced in this section are highlighted in
bold.

As shown in Table 1, tripling formula on previously mentioned curves gains
further improvement compared with the original ones (labelled with OLD in
bracket). In particular, our new Jacobi-intersection tripling formula is competi-
tive with that of tripling-oriented Doche/Icart/Kohel curves (denoted as 3DIK),
by a difference of 0.2M in “1S = 0.8M” case.

4 Experiments

In this section, we are interested in how different options of curve shapes
and scalar-recoding algorithms influence the speeds of scalar multiplication for
generic elliptic point P . Before starting speed records for implementing DBC on
various curves, basic arithmetic of involved curves is listed in Table 2, including
optimizations given in this paper and latest results in literature. Our analysis is
efficiency-oriented rather than simple power attack resistance, so several coor-
dinate systems with reduced addition formula but expensive doubling, tripling
operations are excluded in our consideration, as has been demonstrated in Sect. 3.

Table 2. Basic operations on various curves.

Curve shapes mADD DBL TRL

3DIK 7M + 4S + 1D 2M + 7S + 2D 6M + 6S + 2D

Jacob 7M + 4S 1M + 8S + 1D 5M + 10S + 1D

Jacob-3 7M + 4S 3M + 5S 7M + 7S

ExtJacQuartic 6M + 3S + 1D 2M + 5S 4M + 11S + 2D

JacoIntersection 10M + 1S + 2D 2M + 5S + 1D 7M + 5S + 2D

ExtJacIntersection 10M + 1S + 2D 2M + 5S + 1D 9M + 5S + 2D

Hessian 10M 7M + 1S 8M + 5S + 1D

Huff 10M 6M + 5S 10M + 5S

InvEdw 8M + 1S + 1D 3M + 4S + 1D 8M + 5S + 1D

In Table 2, “Jacob” is referred to short Weierstrass curves y2 = x3 + ax + b
with projective Jacobian coordinate (x, y) = ( X

Z3 ,
Y
Z2 ), and “Jacob-3” is referred

to the special case when a = −3. Moreover we consider a faster representation
system (X,Y,Z,X2, Z2) of Jacobi-quartic form y2 = x4+2ax2+1, whose detailed
description and explicit formulas can be seen in [22–24]. “ExtJacIntersection”
is referred to modified coordinate system for Jacobi-intersection as has been
discussed in Sect. 3.



Improved Tripling on Elliptic Curves 201

As for algorithmic aspect, we select Near Optimal Controlled DBC, greedy
and tree approaches to generate DBCs for integers of 256, 320 and 512 bits.
What should be pointed out is that as analyzed in [19], the average length of
DBCs returned by tree approach tends to decrease when the size of coefficient
set grows. For fair comparison and erasing precomputation, the coefficient set of
tree approach is restricted to {1,−1}.

Total cost are counted disregarding necessary time to find optimal DBC,
merely includes: 1. the amount of mixed addition (mADD), corresponding to
l—the length of DBC; 2. the amount of doubling (DBL), corresponding to a1—
the power of 2 in the leading term of DBC; 3. the amount of tripling (TPL),
corresponding to b1—the power of 3 in the leading term of DBC. Average num-
bers of required mADD, DBL, TPL of these algorithms are shown in Table 3.

Table 3. Theoretical operations consumption of different algorithms.

Bits NOC Greedy Tree

mADD DBL TPL mADD DBL TPL mADD DBL TPL

256 48 198 37 58.73 153 65 55.15 142.57 71.55

320 62 260 38 70.80 180 89 68.94 178.21 89.44

512 95 406 67 112.07 286 143 110.30 285.13 143.10

To allow easy comparison, we assume 1S = 0.8M as customary. Precomputa-
tion that derived from transforming affine points into extended projective coor-
dinate system is also disregarded, due to limited influence on total complexities.
For example, additional cost of transforming affine point (x, y) to ExtJacQuartic,
JacIntersection and ExtJacIntersection are both 1M .

Table 4. Total cost of NOC, greedy, tree approaches.

Curve shapes NOC Greedy Tree

256 320 512 256 320 512 256 320 512

3DIK 2394 3018.8 4778.2 2463.846 3051.36 4861.114 2418.802 3023.536 4837.53

Jacob 2435.8 3050.4 4844.4 2576.246 3211.16 5118.514 2547.698 3184.662 5095.32

Jacob-3 2341.8 2931.2 4655.2 2489.046 3103.56 4946.914 2462.05 3077.602 4924.03

ExtJacQuartic 2064.8 2567.2 4091.6 2243.332 2813.92 4487.788 2234.52 2793.188 4468.98

JacIntersection 2113.4 2647.6 4199 2267.284 2823.64 4499.356 2238.09 2797.652 4476.12

ExtJacIntersection 2187.4 2723.6 4333 2397.284 3001.64 4785.356 2381.19 2976.532 4762.32

Hessian 2468.4 3104 4920.8 2560.7 3180 5067.5 2522.146 3152.718 5044.21

Huff 2978 3752 5948 3027.3 3754 5982.7 2978.9 3723.66 5957.7

InvEdw 2094 2613.6 4157.2 2245.424 2807.04 4475.416 2227.854 2784.854 4455.646

As can be seen from Table 4, NOC is the fastest one among these three algo-
rithms, and it provides speed-ups for greedy and tree approaches by a factor of
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5.4% and 4.62% approximately. Theoretically, superiority of NOC is yielded as
a result of two advantages. First, smaller Hamming weight of returned DBCs by
NOC leads to less addition operations during performing scalar multiplication,
making it particularly beneficial for reducing algorithmic complexity. Second,
for scalars of size t, it’s easy verifiable that leading terms in Table 4 all satisfy
2a13b1 ≈ 2t. Owing to high a1/b1 ratio, NOC algorithm is extremely suitable
on elliptic curves with lower cost ratio of doubling over tripling, like inverted
Edwards, extended Jacobi quartic.

But how to find its optimal expansion by NOC algorithm is disappointedly
troublesome. Results in [4] reveal that this approach is practical to handle inte-
gers of size around 60 to 70 bits only. An alternatively applicative condition for
this approach is in cryptographic protocols with fixed-scalar multiplication, like
key-agreement. When handling scalar multiplication with generic scalars and
elliptic points, tree-based search is optimal.

We now turn to curve selections. For NOC, extended Jacobi-quartic is the
speed leader of both 256, 320 and 512 bits integers with necessary 5 registers
to represent a projective point. When using tree approach, inverted Edwards
coordinate system provides best performance with 3 registers to represent a
projective point during scalar multiplication. Besides, Jacobi intersection form
also behaves well, slightly slower than Inverted Edwards.

5 Conclusion

We have shown several optimizations for point tripling formulas on different
elliptic curves, largely improving the efficiency of double-base chains for scalar
multiplication. Moreover we provide an alternative efficient formula to calcu-
late point quintupling on Edwards curves in appendix, a potential usefulness of
which exists in establishing new speed records of quintupling-involved double-
base number system.

We point out that what we did on elliptic curves mainly focuses on the
arithmetic of their standard projective coordinates. We don’t give detailed opti-
mizations for all known extended coordinate systems. Some of them have been
discussed in this work; the others are quite redundant and required to be further
optimized in future work.

Taking everything into account, among discussed DBC algorithms, tree app-
roach is the optimal one for practical implementation on inverted Edwards coor-
dinate system for both 256, 320 and 512 bits integers. In some limited conditions
like small or fixed-scalar multiplication, NOC can be used as an alternative.

A Quintupling Formula on Edwards

We show a new formula to calculate the 5-fold of a point P on Edwards in
this section. Let (X5, Y5, Z5) = 5(X1, Y1, Z1). Explicit expression of (X5, Y5, Z5)
is quite involved so we exclude it in this context. Yet it’s straightforward
computable using curve equation and addition formula, one can accomplish it
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with the help of Magma or SageMath. An alternative algorithm for computing
(X5, Y5, Z5) is as follows:

A ← X2
1 , B ← Y 2

1 , C ← Z2
1 ,D ← A2, E ← B2, F ← C2,

G ← (A+C)2 −D − F,H ← (B +C)2 −E − F, I ← (A+B)2, J ← I −D −E,

K ← I2, L ← I − G − H,M ← (D − E)2, N ← J2,

O ← (D − E)(K − 2d(K − M − 2N)), P ← 2M(I + 4F − G − H),

Q ← K − 4d · N,R ← (D − E − G + H)Q,S ← L(2M − Q),

T ← O + P,U ← P − Q,V ← R + S,W ← R − S,

X5 ← X1(U +W )(U −W ), Y5 ← Y1(T + V )(T − V ), Z5 ← Z1(T + V )(U −W ).

The above algorithm derives an efficient quintupling formula that costs
10M + 12S + 2D. Including previous work reported in [27], cost of different
strategies for computing projective quintupling formula on Edwards curves is
listed as Table 5. It turns out that the new formula is preferred in most practical
environments when D\M , S\M -ratio are less than 1.

Table 5. Different quintupling formulas on Edwards curves.

Cost analysis

Bernstein et al. 17M + 7S

Bernstein et al. 14M + 11S

This work 10M + 12S + 2D
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Abstract. With the prosperity of social networking, it becomes much more
convenient for a user to sign onto multiple websites with a web-based single sign-
on (SSO) account of an identity provider website. According to the implementa‐
tion of these SSO system, we classify their patterns into two general abstract
models: independent SSO model and standard SSO model. In our research, we
find both models contain serious vulnerabilities in their credential exchange
protocols. By examining five most famous identity provider websites (e.g.
Google.com and Weibo.com) and 17 famous practical service provider websites,
we confirm that these potential vulnerabilities of the abstract models can be
exploited in the practical SSO systems. With testing on about 1,000 websites in
the wild, we are sure that the problem that we find is widely existing in the real
world. These vulnerabilities can be attributed to the lack of integrity protection
of login credentials. In order to mitigate these threats, we provide an integral
protection prototype which help keeping the credential in a secure environment.
After finishing the designation, we implement this prototype in our laboratory
environment. Furthermore, we deploy extensive experiments for illustrating the
protection prototype is effective and efficient.

Keywords: Single Sign-on · Web security · Integrity

1 Introduction

As a convenient and popular authorization method, single sign-on (SSO) is widely
deployed by multiple websites as a way for logging in with a third-party account. For
example, you can easily log into Smartsheet.com and Rememberthemilk.com using your
Google account instead of individual accounts from each of them. It means that your
Google account is authorized to access their resources by both websites. SSO reduces
password fatigue from different username and password combinations and time spent
on re-entering passwords for the same identity.

Thanks to the prosperity of social networking, multiple SSO systems, such as
OpenID [4], Google AuthSub [20], SAML [7], and OAuth [5, 13], have been widely
deployed on commercial websites. The SSO system works through the interactions
among three parties: a client browser (the user), the identity provider (IDP, e.g.

© Springer International Publishing Switzerland 2016
D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 209–226, 2016.
DOI: 10.1007/978-3-319-38898-4_13



Google.com), and service provider (SP, e.g. Smartsheet.com). The security of an SSO
system is expected to prevent an unauthorized client from accessing to a legitimate user’s
account on the SP side. Given the fact that more and more high-value personal data are
stored on the Internet, such as cloud websites, the flaws in SSO systems can completely
expose the private information assets to the hackers. It forces SSO system developers
to try their best to patch the flaws or build up a safer SSO system. However, in recent
years, more and more logic flaws and vulnerabilities have been discovered.

By analyzing many popular commercial websites, we abstract the practical SSO
systems into two categories. The first category of SSO systems is deployed with
OAuth2.0 protocol, which is standardized by RFC 6749 [11] and is used to replace the
previous SSO systems such as OpenID and AuthSub. The previous work on OAuth2.0
mostly focuses on the formal analysis [2, 15, 29] and auto detection of the vulnerabilities
[2, 39]. But they do not come up with practical solutions. We focuses on the practical
OAuth2.0 SSO systems deployed on the commercial websites, such as Google and
Weibo, then extracts the workflows of the practical SSO OAuth2.0 systems. Besides,
we also analyze the independent developed SSO systems. We find that those independent
developed SSO systems follow a simple communication model which has only three
steps. Without doubt, we find that both of these categories of SSO models have vulner‐
abilities.

By rechecking the commercial websites under our built general SSO models, we
find that almost all of them obey the models and the vulnerabilities are similar on each
website. Moreover we also find that some websites deploy SSO systems that mix the
two general model together. This mixed model makes the analysis a bit complex. But
we still find the integrity problems in the mixed model. We give a real world example
of the mixed model SSO system in Sect. 4.

As the vulnerabilities can all be attributed to the lack of integrity protection on the
login credential, we attempt to protect the credential’s integrity with cryptographic
method and try to not affect the original performance of the SSO system. In this paper,
we propose protection prototype in Sect. 5. Our prototype can prevent the attackers from
stealing the victim’s credential and logging into victim’s account with the entire access
rights as the original victim.

Contributions. We first classify current popular SSO systems into two categories and
build two abstract SSO models for analyzing the security of practical SSO systems. Then
we parse the workflow of two kinds of SSO models in depth and find the vulnerabilities
in those models.

Second, we verify that the vulnerabilities which pervasively existing in practical
SSO websites obey the logic vulnerabilities we discovered in the abstract models.

Our third contribution is attempting to design a protection prototype. For mitigating
the vulnerabilities, we focus on the integrity protection of the credentials by binding
them with a protected parameter. As the channel that has the user browser’s participation
is not secure enough, our protection prototype exploit a direct channel (or private
channel) between IDP and SP to deliver the binding parameter. The prototype can guar‐
antee the integrity of the credentials and mitigate the threats from the network attacker
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and web attacker. The evaluation also shows that the overhead of prototype’s
performance is low comparing with the original SSO model.

2 Abstract Models of SSO Protocols

In this section, we discuss about our abstract models which are extracted from the prac‐
tical SSO systems. We parse these practical systems in our research and focus on the
information and data exchange workflows in them. In order to construct the models, we
first investigate those websites that provide SSO login method and parse the login APIs
of these websites with practical login actions. We manually analyze the massive SSO
login documentations and extract the key parameters that should be pay much more
attention during the parse of practical SSO login actions. As a result, we classify our
models into two categories, which are named independent SSO model and standard SSO
model. The independent model reflects the SSO models which the websites developed
independently. The standard model represent those websites who follow the standard
SSO information exchange protocols such as [11].

In our analysis, we summarize that a basic SSO system contains three entities, which
are named IDP (Identity Provider), SP (Service Provider) and Client (Users), and the
communication channels that connect each of the three entities together. The IDP is a
server or a service cloud that stores user’s account and password. It provides authenti‐
cation of the identity of an individual user and authorizes the SP to access user’s account
on the IDP side. The SP, which is also called RP(resource provider) in some previous
researches, is also a server or cloud that provides application services, such as a forum
website, a cloud storage or a news subscription website. The client, in our research,
represents a web browser that is connected to the internet which plays both as a redi‐
rection device and a resource visitor.

Fig. 1. Independent SSO model Fig. 2. Standard SSO Model

2.1 Independent SSO Model

In the independent SSO model, we find that the IDP and SP only exchange data or
messages through the Client (which is specifically a web browser). The Client acts as
redirect party who can get all the messages and data between the IDP and SP. In Fig. 1,
we show the detail workflow of the independent SSO model and the key parameters
delivered in the communication channels. In the model, we mark out three channels in
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3 different colors. We call the 3 channels as SSO-login channel, redirect channel and
IDP-side verification channel. The SSO-login channel is only between the Client and
the SP(the purple part of Fig. 1). It represents the SSO login request and response round
trip in the model, and it stands at the first and last steps in the workflow. The redirect
channel exploits the redirect functionality of the Client’s browser (the green part of
Fig. 1). In this part, the Client works as the redirect device who has the ability to receive
and forward the messages between IDP and SP. The verification channel is used to
deliver the messages between IDP and Client for verifying the user’s identity who is on
the Client-side (the orange part).

Now, we depict the workflow of SSO login and authentication in this model step by
step.

• Step 1: When the Client want to log in the SP using the SSO method, it generates an
SSOlogin.Request and delivers the login request to the SP server through the SSO-
login channel.

• Step 2: When the SP receives this SSO login request, a redirect channel is generated
among IDP, SP and Client. Then the SP redirects Client’s SSO login request to the
IDP through the Client’s browser which acts as a relayed device.

• Step 3: After the IDP gets the redirected SSO login request, The IDP firstly need to
sponsor a verification channel with the Client directly. Then the IDP verifies the
identity of the user by checking the user’s username and password which is supplied
from the Client.

• Step 4: Once the verification is successfully accomplished, the IDP responses a
credential (it could also be a token or a session ID) to the SP using the redirect channel.

• Step 5: After the SP gets the redirected credential, it responses the Client with an
SSOlogin.Response under the SSOlogin channel.

When the user on the Client side receives this SSOlogin.Response, the user is capable
to browse the custom content on the SP server, such as the news subscription.

Security Analysis. First of all, we review the model from the communication entities’
perspective. There are three entities on the inter-connected channels (IDP, SP and
Client), we discuss the security capability of them respectively. As the IDP and SP are
represented as the servers in the model, they could be mass-flowed Internet websites in
the real world, such as Google and NetEase. These websites have large quantity of
sensitive data, which need to be protected, and enough financial investment on the
security part. So the IDP and SP have much stronger security capability than just a
personal PC or laptop. However, on the opponent side, the Client could just be a
computer or smart mobile device. The investment on these personal devices security is
limited, many malwares and Trojans focus on exploiting the personal devices other than
a website.

Next, we review the model from the communication channels’ perspective. With the
TLS/SSL encryption technics used in the Internet communication, it shows that an
encrypted channel are safer than an unencrypted channel. However, our research shows
that only a few practical SSO systems in this model used HTTPS (which supports TLS/
SSL) as one of their communication channels.
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From the security analysis on the two aspects, we can conclude that the messages
which are redirected by the Client on the redirect channels could expose the content into
insecure environment. The key point of the independent SSO model’s security should
be focus on the step 4 of the model’s workflow. In other words, this model’s security
depends on the confidentiality and integrity of the significant parameters, such as
credentials, tokens or sessionIDs in the redirect channel through in step 4.

2.2 Standard SSO Model

The IDP and SP exchange messages not only through the Client as the redirect party,
but also through a direct connection between them. In Fig. 2, we show the detail of this
model’s workflow. Comparing with Fig. 1, it has 4 channels: SSOlogin channel, the
redirect channel, the verification channel and the direct channel. As the first three chan‐
nels have been described in Sect. 2.1, we skip the discussion on them. Here we focus
on the fourth channel – the direct channel (the red part). This channel is built between
the IDP and SP directly without the participation of the Client. The functionality of this
channel is to check whether the credential is generated by the same IDP and exchange
for the second credential– access token.

Now we depict the details of the login workflows in the standard OAuth2.0 SSO
model. The first 4 steps are similar with the independent model, and the step 5 and step
6 shows the additional token exchange in this SSO model.

• Step 1: When the Client starts a login request to the SP using the SSO method, it
generates anSSOlogin.Request and send it to the SP through the SSOlogin channel.

• Step 2: Then the SP redirects Client’s SSO login request to the IDP through the
Client’s browser which acts as a relayed device.

• Step 3: After the IDP gets the redirected SSO login request in step 2, the IDP sponsors
a verification channel with the Client directly. Then the IDP verifies the identity of
the user by checking the user’s username and password which is supplied from the
Client. The step is shown as IDP-login.Request and IDP-login.Response in the
orange part.

• Step 4: Once the verification is successfully accomplished, the IDP responses a
primary credential to the SP using the redirect channel as the response to Redi‐
rect(SSOlogin.request).

• Step 5: When the SP gets the redirected credential, it does not directly response the
Client on the SSOlogin channel. What the SP has to do is to resend the credential
back to the IDP to get the access token on the direct channel, which is used to allow
the user on the Client to access the resources on the SP. This step is shown as the
Token.Request(credential) and Token.Response(access token) in Fig. 2.

• Step 6: After the SP gets the access token, it response the Client with an SSOlogin
response through the firstly established channel.

Now if the user successfully passed all the 6 steps, he should be able to visit the
special subscription recourses on the SP.
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Security Analysis. We still analyze the standard model from two perspectives. From
the perspective of communication entities, the vulnerability in the three entities lies on
the Client side which has the weakest protection technic. From the perspective of
communication channels, the vulnerability exists in the insecure channel. Here it refers
to the redirected channel where the Client takes part in.

Combining these two aspects, our analysis focuses on the Client side and the
communication channels nearby it. It means that the redirect channel is still significant
in our security analysis.

As is shown in Fig. 2, the standard SSO model extends the independent model with
extra credential exchange steps. These steps are used for checking the correctness and
availability of the credential and exchange for the real token. In order to keep these steps
secure, this model uses the private direct connection between the IDP and SP without
the participation of the Client and the redirect channels. It makes the attackers on the
redirect channel environment have no chance to get the access token for login. From
this point, this model is much safer than the independent model.

But when we go further, we find that the standard model still has its vulnerability
which is analogous to the independent model. The integrity of the credential in step 4
is still not well-protected. Even though the following steps provide the direct channel
for the security, the attacker can still stealthily get the content that contains the victim’s
credential on the redirect channel. Neither the SP nor the IDP checks whether the
credential matches the Client’s identity.

3 Adversary Models

We consider two different adversary models called network attacker [2, 29] and web
attacker [21] which have the potential capability to exploit the vulnerabilities of practical
SSO systems.

3.1 Network Attacker

Network attacker can be separated into two categories: active attacker and passive
attacker. The active attacker is capable to intercept and modify the packages in the
channel where it lies. The passive attacker is only capable to eavesdrop the packages on
the channel, but cannot intercept or modify them. We consider man-in-the-middle
attacker as our network attacker model, which belongs to one of the active attacker
patterns. The man-in-the-middle attacker can intercept the messages on the channel
between Client and the IDP or on the channel between Client and the SP. The credentials
redirected by the Client could be intercepted and modified by this attacker.

In practice, for mitigating the threats from the man-in-the-middle attack, many web-
based data transfers are available only under secured channels (for example, HTTPS).
The encrypted channel makes the man-in-the-middle attack becomes unavailable
because the attacker cannot tell which parameter is the correct credential from the cipher
text. However, recent researches have indicated that the encrypted channel cannot
completely stop the man-in-the-middle attack on the Internet. The attacker is able to
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deploy some HTTPS proxies [33–37] on the channel between the Client and Server to
intercept the encrypted data stream and modify them on the proxy. On those proxies,
the messages are decrypted, the attackers can understand the messages and pick out the
credentials in the data stream. The trick of these HTTPS proxies is to pretend to be the
forged server to the real client or forged client to the real server. These proxies just sit
in the middle, decrypting traffic from both sides. Here how to trick the victim to install
these HTTPS proxies is a kind of social engineering attack projects, and it is out of the
scope of our paper.

Figure 3 shows the two roles the attacker is able to play in the communication
between client and server.

Fig. 3. Network Attacker

3.2 Web Attacker

Web attacker refers to those who control a malicious website on the Internet. The web
attacker first lures the victim to visit this malicious website by following a malicious
URI in a hyper-linked image or a malicious link address, such as a misleading link or
image. When victim visits the malicious website, the attacker injects malicious code
into victim’s browser (e.g. XSS attack [30]) or replace victim’s credential with attacker’s
(e.g. CSRF attack [28]). In the SSO login situation, the web attacker can require the
victim delivering the credential to the malicious website under his control (XSS attack)
or pushing the attacker’s credential on the victim’s browser for cheating the victim to
login the SP as the attacker (CSRF attack).

Figure 4 shows the capability of the web attacker.

Fig. 4. Web Attacker

Our practical attack experiments (Sect. 4) and our protection prototype (Sect. 5)
consider the threats under these two adversary models.
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4 Case Study of Practical SSO Websites

In this section, we discuss our practical attack experiments on some of those famous
websites in China, including Google, Weibo [22, 24], Tencent QQ [14], Alipay [17,
27], Taobao [26]. These five websites that we picked out all play the role of the IDP.
Besides the Alipay websites deploys as our independent SSO model, the rest implement
the standard OAuth2.0 SSO model we summarized in Sect. 2. For each IDP, we register
two test account, namely Alice and Bob, and test whether the vulnerabilities work when
logging into a practical SP. In our experiments, we login Bob’s account with Alice’s
username and password by stealthily getting Bob’s credential when Bob starts his login
workflow.

Our experiment environment is as follow. First of all, we build up a local area
network (LAN) to impersonate our test environment and connect two computers to the
LAN. Then we deploy windows 7 as the operating system and play the role of victim
(which means to be Alice) on one of the computers. We deploy Ubuntu14.10 as the
attacker (which means to be Bob). On the Alice’s computer, we install a web debugger
tool – fiddler [9] for analyzing the web packages the victim gets and sends. On the Bob’s
computer, we install mitm-proxy [33], which is able to intercept the HTTPS data stream
traffic on it, to filter the victim’s SSO login messages for intercepting the Alice’s login
credentials.

4.1 Google Account

There are many service provider websites deploy Google account as one of their login
method. In this part, we choose an online project management software – smart‐
sheet.com [23] as our test SP. Although there are some SSO flaws have been reported
in the previous research [3], their research focuses on the logic flaws on the smart‐
sheet.com that the developers do not consider carefully and talks little about the vulner‐
abilities in the SSO protocol which is implemented between Google and Smartsheet.
Besides, when we begin our study, Google has changed its SSO protocol from OpenID
to OAuth2.0. So we cannot directly get experience from the previous research.

Fortunately, our study shows that the Google SSO login model follows our standard
SSO model in Sect. 2.2. In our experiments, we register two new Google accounts, for
example, Alice@gmail.com and Bob@gmail.com, and login smartsheet.com.

We search Alice’s decrypted messages on the proxy and find the credential is named
as code. Then we let Bob intercept Alice’s following data traffic and stealthily keep
Alice’s code value in Bob’s proxy. Now we start Bob’s login workflow and also block
the data stream when Bob gets his own code. Then Bob replaces his own code with
Alice’s, which is cut from her login workflow, and releases the modified redirect data
stream to smartsheet.com. Without doubt, Bob successfully logs into Alice’s account
and controls the whole content of Alice’s. Now Bob can do whatever he want to on the
Alice’s account.

During our impersonated attack, the only protection on this redirect message depends
on the HTTPS protocol. But the integrity of this code is not protected. That is why Bob
can exploit Alice’s account without being detected by either Google or smatsheet.com.
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4.2 Weibo.Com

Weibo.com also depends on standard OAuth2.0 SSO framework. It redirects the login
credential through user’s browser to the SP and it also calls this credential as code.
However, different from the Google SSO login method, Weibo does not implement
encrypted channels among the three abstract entities. Both network attacker and web
attacker can be able to easily steal the victim’s login credential.

In our experiment, we choose Baidu [38], a famous search engine service and cloud
storage service provider in China, as the instance of the SP server. Like what we do in
the Google case, we also register two Weibo accounts, which we still call them Alice
and Bob, and confirm the availability of each account. Then we start our vulnerability
exploit test. We put Bob on the proxy which Alice’s login messages have to go through.
On the proxy, we filter Alice’s traffic data stream and search for the login credential
which Weibo redirects to Baidu. As the channels are not encrypted every network
package on the internet is displayed in plaintext. Bob is able to read Alice’s packages
directly and gets the login code of Alice’s Weibo account.

Weibo redirects the code through a piece of JavaScript code in the response to the
Alice’s browser. The JavaScript code of Alice and Bob are shown as below:

On Alice’s side, the code is as follows:

<script language=`javascript'> 
callbackfunc({ 
http://baidu.com/.../afterauth?mkey=xxx 
&code=code-of-alice}); 
</script> 

On Bob’s side, the code is as follows:

<script language=`javascript'> 
callbackfunc({ 
http://baidu.com/.../afterauth?mkey=yyy 
&code=code-of-bob}); 
</script> 

Comparing the JavaScript code of two accounts, we find that the only difference of
the redirect URI is the parameters: code and mkey, where the code is the login credential
and the mkey is a ticket for preventing the CSRF attack. On the browsers, we intercept
the redirection of the credentials of both Alice and Bob and replace Bob’s code with
Alice’s. Then we redirect the modified Bob’s URI back to Baidu. As a consequence,
Baidu accepts the modified URI and regards Bob as Alice because Bob gives Baidu
Alice’s credential.

4.3 Alipay.Com

Alipay.com is an online payment and e-commerce management website (like PayPal)
hosted by the Alibaba Group, a very famous Chinese online trade company. In practice,
Alipay accounts can be used to login some other popular websites in China, such as
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Xunlei and Youku. In our test, we choose Xunlei as the test SP and login it with Alipay
accounts. Alice still plays the role of victim and Bob is the attacker.

In our test, we find that the Alipay is not following our standard SSO model, it is
constructed under the independent SSO model which is discussed in Sect. 2.1. The SP
does not resend the credential back to IDP for checking the validity. So we focus on the
credential, which has been redirected through the user’s browser, and detect whether it
could be modified without being known by the SP.

Unfortunately, our test shows that the credential is composed with three parameters
which is very different from the only one parameter in the standard OAuth2.0 model.
These three parameters are User_ID, token and sign.

Although there exist a signature to protect the credential, we still find a way to let
Bob hack into Alice’s Alipay account. We test the Alipay SSO login method a lot of
times, and find that the signature sign only protect the parameter of token.

It means that we can modify the User_ID to any value we want without being
detected by Xunlei.com. Furthermore, we discover that the User_ID is a constant and
plaintext. Each time we login no matter Alice’s account or Bob account, the User_ID is
an invariant. It means that the User_ID is guessable which is similar to the vulnerabilities
in [2, 3, 15]. What the attacker need to do is to follow some rules to guess a legal User_ID.
With this guessed User_ID attacker can log into any legitimate user’s Xunlei account
and get their sensitive data.

The Alipay SSO system also deploy a piece of javascript code as the redirect method.
At the same time, its redirect messages only depend on HTTP which is insecure for
delivering URL and significant parameters. The redirection URI is like: http://
xunlei.com/…/entrance.php?…token=xxx&user_id=USERID&sign=
xxx&…

Unlike the vulnerability in the standard OAuth2.0 SSO model, this vulnerability can
be attributed to the logic flaws when the developers design the entire system. So it only
suit for the Alipay SSO system and is not universal.

4.4 Taobao.Com

Taobao.com [26] is the most famous online shopping website in China. It also provides
SSO login method, which is called AliSSO system. AliSSO system mixes the features
of both independent SSO model and standard model together. From the perspective of
the three entities of IDP, SP and Client, AliSSO follows the independent SSO model.
When the credential is got by the SP, it does not need to send it back to IDP for checking
the validity.

However, the SP does not directly accepts this credential. AliSSO separates the SP
into two parts, in which, one is a resource server and the other is an authentication server.
The resource server stores the user’s data and information and provides services to the
user. The authentication server is in charge of certificating the identity of the legitimate
user. When the SP gets the credential, it firstly generates another access token and redi‐
rects the token to the authentication server through user’s browser after the authentica‐
tion server gets the second access token, it generates a ticket and directly send to the
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resource server without the participation of user’s browser. These steps are much more
like the standard OAuth2.0 SSO model.

In our experiment, we choose weibo as an instance of our SP websites. Then we
register two taobao accounts, namely Alice and Bob, and confirm the availability of
each account. After that we begin our vulnerability exploit test. We suppose Bob as the
attacker and put it on a proxy which Alice has to go through.

When we catch the data stream of Alice between taobao and weibo, we find that it is
hard to modify the credential, which is named as tbp. As this parameter is protected by a
signature, any change of the tbp will not be accepted by weibo. Then we let Alice’s login
workflow continues. After weibo gets the credential tbp and check the signature, it gener‐
ates a second credential and redirects it to the authentication sub-server, login.weibo.com.
This redirection also goes through Alice’s browser, we can catch it on the proxy. When the
sub-server gets the second credential, alt, it directly send alt to resource.weibo.com
following the standard OAuth2.0 SSO model. After resource.weibo.com gets the alt, it
responses Alice with her personal content.

In this login workflow, we find the second credential, alt, is not well protected. As
Bob is on the proxy that Alice has to go through, he can replace his alt with Alice’s and
login Alice’s account on weibo.com without any prevention from either weibo.com or
taobao.com.

We have reported this vulnerability to the technic support group of Weibo, and got
their thanks email in two days. Before we write our paper, this vulnerability has been
patched.

Fig. 5. Classified SSO Models

In practice, we have tested 1,037 websites manually. Most websites, except Google,
in our experiment are located in China because some most famous websites, such as
Facebook and Twitter, cannot visit in China mainland. But this problem does not affect
our research. The conclusion of our tests is that most websites deploy the standard
OAuth2.0 SSO model. The rest are independent SSO model and mixed SSO model (such
as the taobao.com). The mixed model is not a new model, it is just combined from the
two abstract SSO models together. The classified model graph is shown in Fig. 5. Then
we pick up 9 typical SP websites and 5 IDP websites from our tested SSO websites. And
we list the vulnerabilities and flaws of them in Table 1.
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Table 1. SSO threats in real-world websites

SP

IDP

Smart-

sheet

Remember-

themilk

Weibo Baidu Youku Sohu Xunlei Iqiyi JD

Google

Weibo

QQ

Alipay

Taobao

Note: – Standard OAuth2.0 SSO model; – Independent SSO model; – MixedSSO model;

5 Integrity Protection and Threat Mitigation

We can attribute the vulnerabilities we discuss in previous sections to the lack of the
login credentials’ integrity protection. In this section, we give out our prototype scheme
for protecting the login credentials integrity. Our prototype can mitigate the threats from
the network attack and web attack which are under the adversary models in Sect. 3. We
build up our test environment in our lab with a LAN and two servers which play the
roles of IDP and SP. Then we implement our prototype on those two servers and test it
through another computer which acts as the Client. Finally, we compare the performance
of our prototype and the original SSO system. The consequence shows that the perform‐
ance of our prototype is acceptable.

5.1 Prototype Design

Our basic purpose is to avoid web attackers or network attackers stealing the legitimate
user’s login credentials and protect the credentials integrity. In this part, we first describe
how our prototype prevents the web attackers and then we talk about how it prevents
the network attackers. The workflow of our prototype is shown in Fig. 6.

Protection from Web Attackers. We use Same Origin Policy (SOP) [32] and
HTTPOnly Policy [31] on the SP side to perform the protection. This protection can
avoid attacker luring victims to login attacker’s account unconsciously.

On the SP side, we add a parameter, stat, in the SSO redirect URL and set the
browser’s cookie with a parameter, signstat, which is a signature of stat and label this
cookie as HttpOnly. When the IDP gets the redirect URL, it regards the parameter of
stat as a component of the URL and append the credential after it. Then the IDP delivers
it to the Client’s browser. When the redirection URL that contains the credential and
stat comes into the Client’s browser, the browser redirects the credential to the SP with
cookie back. When the SP gets the credential, stat and cookie back, it first computes
whether the signature of stat in the URI matches the signature value in the cookie. If the
signature of stat matches the value in the cookie, it means that this URL is not from the
web attacker. The SP believes the user on the Client is a legitimate user.
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The security of this design of stat depends on SOP and HTTPOnly which need the
participation of the cookie. As the web attacker lures the victim to visit a malicious
website under his control, the attacker prefers to put his own credential as a redirect
URL in the response and send back to victim browser. When the victim gets the redirect
URL that contain attacker credential, the browser wants to send the URL to the SP. If
there is not protection, the attackers credentials would be send to SP and the SP would
regard the victim as the attacker. In case the victim does not notice that he has logged
into a wrong account and upload some significant files in this account, attacker can get
those files a few minutes later just by legally login his account. However, with the help
of SOP and HTTPOnly, this threat is blocked.

Fig. 6. WorkFlow of the Protection Prototype

Protection from Network Attackers. In order to mitigate the threats from network
attackers, we need the participation of both IDP and SP. Besides, we also need two
different channels: one is the redirect channel through the Client, the other is the direct
or private channel between the IDP and SP.

In our adversary models, the network attacker can hack into an encrypted channel
with the help of the SSL-proxy tools (such as mitmproxy). What the attacker need to do
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is to stealthily install a HTTPS proxy certificate on the victim’s computer. But this work
is out of our scope, we do not discuss it in our paper. This strong capability makes the
confidentiality invalid on the HTTPS channels. In this situation, the integrity of the
credential becomes a very significant point in the SSO system. But neither standard
OAuth2.0 framework nor independent developed SSO system protect the integrity very
well. We have easily logged into another user’s account without knowing his or her
username and password (Sect. 4). For mitigating the threats from the network attackers,
we use the direct channel between IDP and SP to deliver a binding parameter, which we
call it tag, for verifying the credential’s integrity. Supposed that this direct channel is
invisible in the attacker’s view. So the tag is delivered securely between IDP and SP.
After IDP delivers the tag directly to SP, it generates a corresponding credential which
is bonded to the tag. And we let the IDP keep the pair of the original (tag, credential)

in its database for checking the integrity of credential that delivered back from the SP.
Then the IDP redirect the credential to Client’s browser. On the SP side, it gets the tag
from the direct channel and gets the credential from the redirect channel. Once the SP
gets the login credential, we call credential’ from the redirect channel, it binds the
credential and the tag with a signature function signsk(credential

′

||tag). The sk is the
secrete key which is negotiated between IDP and SP. It is used for signing the value of
credential

′

||tag. Then SP delivers the signature back to IDP through the direct channel
with the (tag, credential′) pair. Correspondingly, the IDP has a public key pk for veri‐
fying the signature. After the IDP gets the signature and (tag, credential′) pair, it first
searches the database with the value of tag. Then IDP verifies the signature of
signsk(credential

′

||tag) with the verify function verifpk(tag, credential, signak). If the
verification successes (verifpk = 1), it means that the attacker does not modify the
credential when redirecting it. At this time, the IDP sends the access token directly to
the SP, then SP notices the Client it has logged in SP successfully. If the verification
fails, IDP reports an error and drop the (tag, credential) pair in the database.

5.2 Implementation

We deploy two desktop computers to impersonate the real SP and IDP called s-SP and
s-IDP. Both of the computers have an Intel Core i7-3770 3.4 GHz CPU and 4 GB
memory. The operation system is Ubuntu 14.10 LTS. We install the service software,
including PHP 5.5.11, Apache 2.4.9 and MySQL server 5.6, and configure the web
environment on both computers.

In our implementation, we deploy our prototype on the standard OAuth2.0 SSO
framework and we call the login credential as code. In order to simplify the workflow
of the impersonated SSO system, we omit the user’s IDP-login steps. When an SSO
login request comes from s-SP, s-IDP circumvents the verification steps and directly
begins the authorization and login operations. During the authentication and authoriza‐
tion steps, we give s-SP a secrete key, sk, for signing the code with a binding parameter,
tag, which is got through the direct channel from s-SP, and we give s-IDP a public key
pk for verifying the signature of code that is given by the s-SP.

On the s-SP side, we add a parameter, stat, for preventing the attack from a malicious
website. This parameter not only exists in the redirect URL but also has a signature in
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the user browser cookie. With the help of the SOP and HTTPOnly policies, the web
attackers cannot get the signature of stat in the cookie between browser and the real SP.
Once the forged stat is delivered back to s-SP, the server finds that the stat does not
match the signature in the cookie and it will stop the following login workflow. This
parameter can perfectly prevent the CSRF and XSS attacks that are sponsored by the
web attackers.

Another thing need to pay attention on the s-SP is the synchronization of the param‐
eters for generating the signature. Here they refer to tag and code specifically. It should
be careful to handle this problem, because tag and code come from different channels.
The tag comes from the direct channel between the s-IDP and s-SP and it is delivered
to s-SP before the code. But the code comes through the redirect channel which is relayed
from the user’s browser. These two parameters cannot arrive at s-SP at the same time.
If we do not consider the synchronization of these two parameters, s-SP may put Alice’s
code and Bob’s tag together and compute a signature of the mixed-user parameters which
is not correct for the s-IDP for verification. This problem might cause Bob logs into
Alice’s account. Our solution on this problem is simple. We build a concurrence lock
on the s-SP side, which makes the s-SP can only deal with one user’s login request.

5.3 Evaluation

Our implementation is about 100 lines of PHP and JavaScript code. Our evaluation
depends on the execution time of the code. We set two timestamps in the entire login
workflow. The first one is set at the SSO login page, when the user clicks the SSO login
button, we get a timestamp. The second one is set on the login success page, if the user
login successful, we record the second timestamp. The execution time is the difference
of the two timestamps. Then we execute 400 times, and get the average time as the
general execution time. The comparison between the original SSO model and our
protection prototype is shown in Fig. 7.

Fig. 7. Time spending comparison between original SSO model and our protection prototype

For the performance, we compare our prototype with the original SSO model which
do not show any protections on the integrity of the credentials. Averaged 400 inde‐
pendent executions of each model, the overhead of the protection prototype is only
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increased by 0.418 % compared with the original SSO model. It means that the
performance of our prototype is acceptable.

6 Related Work

Many previous works have been done to study the security of SSO systems. Wang et al.
[3] discovered the SSO flaws in OpenID [4] and Flash. The flaws of OpenID cause the
IDP to exclude the email element from the list of element it signs, which is sent back to
the SP through a BRM. When the flaws of OpenID are reported to Google by the authors,
Google replaces OpenID with OAuth2.0 as the SSO system [18, 19]. Armando et al. [10]
studied on SAML-based SSO for Google Apps and gave the formal analysis of SAML
2.0 [6, 7] web browser SSO system. They used formal method to extract the abstract
protocol in SAML 2.0 and built up the formal model of SAML. Somorovsky et al. [1]
did a lot of researches in revealing vulnerabilities in formal SAML SSO systems. They
revealed the threat from XML signature wrapping attacks is a big problem in the systems.

Bansal et al. [15] and Sun et al. [29] discovered the attacks on OAuth2.0 by formal
analysis of the basic document of RFC 6749 [11]. They analyzed the formalized
OAuth2.0 protocol and revealed that the potential threats coming from CSRF attack or
token stolen during the redirection.

Before we finish our work, a vulnerability named Covert Redirect [16, 25] was
reported about the OAuth2.0 on the Internet. It describes a process where a malicious
attacker intercepts a request from an SP to an IDP and changes the parameter called
“redirect_uri” with the intention of causing the IDP to direct the authorization credentials
to a malicious location rather than to the original SP, thus exposing any returned secrets
(e.g. credentials) to the attacker.

Zhou et al. [39] have built an automated SSO vulnerabilities test tool. This tool can
detect whether a commercial website exists popular vulnerabilities, such as access_token
misuse or OAuth credentials leak. But they only deploy the Facebook as the IDP site.

7 Conclusion

In this paper, we disclose the reason of the vulnerabilities that exist in commercial web
SSO systems. We studied the SSO systems on 17 popular websites and classified them
into two abstract models. Then we verify our models on about 1,000 SSO supported
websites in the wild. Most websites follow the standard OAuth2.0 SSO model but there
still some other websites prefer developing their own SSO system that depends on the
independent model. We also elaborate our security analysis on these practical commer‐
cial websites that deploy different SSO models. That is the credentials could be inter‐
cepted by the attackers to log into the SP as the victim. For mitigating the threats focus
on the credential’s integrity, we give our protection prototype on guaranteeing the integ‐
rity of the credentials which is simple and efficient to deploy in practice. It not only fixes
the vulnerabilities of the two abstract SSO models and the mixed model, but also miti‐
gates the threats from the two adversary models mentioned in Sect. 3. However, our
prototype also has its limitation. For example, on the SP side, it does not support
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concurrent SSO requests so far. Our prototype has to deploy on both IDP and SP server-
sides. That is a trivial and cumbersome work. In the future work, we want to improve
our prototype on these two problems and try our best to make our protection prototype
to be a convenient independent third party middle-ware which can be deployed on any
IDP or SP websites.
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Abstract. Internet users are concerned with their private web browsing
behaviors. Browsing a webpage introduces a typical request-response-
based network traffic which is associated with the structure of corre-
sponding HTML document. This may make the traffic of a specified
webpage demonstrate different features from others even when the traffic
is encrypted. Traffic analysis techniques can be used to extract those fea-
tures to identify that webpage, and hence the webpages the user visited
could be disclosed though they might be encrypted. In this paper, we pro-
pose EQPO, a method to defend against traffic analysis by obscuring web
traffic with EQual-sized Pseudo-Objects. A pseudo-object is composed
by some original objects, object fragments, or padding octets. We define
a structure of EQPO-enabled HTML document to force object requests
and responses be on pseudo-objects. For a webpage set, by equalizing
the sizes of pseudo-objects and the numbers of pseudo-objects requests
in each webpage, we can make the traffic for those webpages with no
identifiable features. We have implemented a proof of concept prototype
and validate the proposed countermeasure with some state of the art
traffic analysis techniques.

Keywords: Encrypted web traffic · Webpage identification · Traffic
analysis · Equal-sized pseudo-object

1 Introduction

Browsing webpages privately has attracted much attention in recent years due
to the increasing awareness of privacy protection. Internet users want to pre-
serve the privacy of not only what content they have browsed but also which
specified webpage they have visited. Encryption is effective in protecting the
privacy of data contents transferred in networks, but it is not a winner-take-all
method in distinguishing different webpages. Traffic features demonstrated by
different webpages could be used to identify them page by page even if they are
transmitted in encrypted form.
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The network traffic introduced by browsing webpages is on request-response
transactions. The request profile, such as the number and the sequence, is on
the webpage structure, and the response amount sizes are on the sizes of cor-
responding resources (objects) embedded in basic HTML document. Current
popular secure suites, such as SSL, SSH, IPSec, and Tor, etc., are focused on
encrypting data contents and do not alter the number of object requests. Even
for the encrypted contents, their sizes are not changed significantly comparing
to the related original plain ones. This makes the traffic of different webpages
demonstrate distinguishable features even if the traffic is encrypted. The typical
traffic features, such as the order, number, length, or timing of packets, etc., can
be extracted by traffic analysis (TA) and may lead to identifying the webpages
precisely the user visited, or even inferring the data the user privately input
[1–3,5,9,10].

Proposals against TA analysis are on changing traffic features. They can be
operated at server side, client side, or on client-server cooperation, and worked
on network level, transport level, and application level [3]. Padding extra bytes
into transmitting data is the most general method. The padding procedure can
be executed at server side before or after encryption [2,5]. An improved strat-
egy on padding is traffic morphing, which makes a specified webpage traffic
similar to another predefined traffic distribution [15]. These efforts are on fine-
grained single object analysis and they are not efficient against the coarse-grained
aggregated statistics [3]. The BuFLO method intends to cut off the aggregated
associations among packet sizes, packet directions, and time costs [3] by send-
ing specified packets in a given rate during a given time period. Some other
techniques on higher level, such as HTTPOS [7], try to influence the packet gen-
eration at server side by customizing specified HTTP requests or TCP headers
at client side.

Most of the TA analysis target on the identifying webpages in different web-
sites. It seems that webpages in the same website may challenge the effective-
ness of TA analysis because of their structure and resource similarities. However,
recent researches also show that those webpages cannot escape from TA based
identification [8]. For example, the technique discussed in [8] can identify speci-
fied webpages in the same website with up to 90 % accuracy. Partitularly, if it is
used in the website related to healthcare successfully, the subsequent inference
could be launched to reveal the reason why someone went to consult a doctor.

In this paper, we propose EQPO, a TA defence method on web applica-
tion level, which focuses on preventing webpage identification in a same website.
Motivated by the k -anonymity technique in database community [11], we intend
to make the traffic of any page in a website similar with each other by introducing
same numbers of equal-sized pseudo-object in pages. We define a pseudo-object
as an object fragment combination which is composed by a set of object frag-
ments. To make each pseudo-object with the same size, some pseudo-objects may
be appended with padding octets. To make each webpage with the same num-
ber of pseudo-objects, some extra pseudo-objects may be filled up with padding
octets. Our proposed method is on client-server cooperation. We translate a
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common traditional webpage into equal-sized-pseudo-object-enabled (EQPO-
enabled) webpage. When the browser renders the EQPO-enabled webpage, the
embedded script is invoked and initiates requests for those pseudo-objects. Coop-
eratively, a script running on server will produce pseudo-objects with given size
and given number. This kind of object generating and fetching procedure gen-
eralizes the traffic features of the webpages in that webpage set and hence may
be used to defend against the traffic analysis.

The contribution of this paper can be enumerated as follows.

1. We introduce the notion of equal-sized pseudo-object to design a new defence
method against traffic analysis. The key idea is to generate as same as possible
network traffic for webpages in a page set.

2. We develop the EQPO-enabled webpage structure to support the requests
and responses for equal-sized pseudo-objects. Given a page set with size k,
by composing the pseudo-objects with the same size and the same number,
the traffic feature of any EQPO-enabled webpage in that set is similar with
other k − 1 webpages. And hence it is hard to identify a specified webpage in
that set.

3. We have implemented a proof of concept prototype with data URI scheme
and the AJAX technique, and we demonstrate the effectiveness of EQPO on
defending against some typical TA attacks.

The rest of this paper is structured as follows. In Sect. 2, we overview some
works on traffic analysis. In Sect. 3, we introduce the notion of equal-sized
pseudo-objects. In Sect. 4, we discuss the method to construct the pseudo-
objects. In Sect. 5, we conduct some experiments to validate our proposed
method. And finally, the conclusion is drawn in Sect. 6.

2 Traffic Analysis in Encrypted Web Flows

2.1 Web Traffic

HTTP protocol is a typical request-response based protocol. To retrieve a doc-
ument resource (object) from a web server, a browser first initiates a request
for that object according to the corresponding URI (Uniform Resource Identi-
fier), and then the server responses the request with required object contents.
A webpage can be viewed as a set of objects that can be visited in a sequence.
When visiting a webpage, the browser first fetches the basic HTML document
from the web server who hosts that document, and then, issues HTTP requests
to fetch other objects in sequence. Although the object requests could be on
different connections, the requests order is logically depended on the structure
of retrieved HTML document.

It is generally well known that webpages from different organizations have
distinctly different structures, and hence could introduce distinguishable traffic
features. However, webpages in a same website could also introduce distinguish-
able web traffic [8]. As an instance, Table 1 demonstrates the numbers and sizes
of objects related to a small website, maths.gzhu.edu.cn.
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Table 1. Features of some webpages in maths.gzhu.edu.cn (Retrieved July 3, 2015)

Object default.asp about.asp news.asp

Number Size (kB) Number Size (kB) Number Size (kB)

HTML 1 25.7 1 16.5 1 22.7

CSS 1 2.6 1 2.6 1 2.6

Image 67 940.0 15 379.7 38 557.3

Others 3 38.7 1 8.7 2 11.3

Total 72 1,007.0 18 407.5 42 593.9

According to this table, all of the three webpages have distinguishable object
numbers and object sizes although they have the same CSS object. Counting
object requests and aggregating traffic amounts can fingerprint these webpages
easily.

2.2 Encrypted Web Traffic

It is well known that the HTTP protocol is not secure because of the data
transmission in plain. A simple man-in-the-middle (MITM) attack could easily
eavesdrop and intercept the HTTP conversations. HTTPS is designed to mitigate
such MITM attacks by providing bidirectional encrypted transmissions. Accord-
ing to HTTPS protocol, the HTTPS payloads are encrypted but the TCP and
IP headers are preserved. Noticed that the payloads are encrypted by a block
cipher, such as the AES algorithm, and the lengths of encrypted payloads are
almost the same as the plain ones except some octets are padded into a single
block. This means that the secrets of payload contents are protected, but the
real communicating address pairs and connections are easy to identify in HTTPS
traffic.

The tunnel-based transmissions is used to hide real communicating IP
address. It encapsulates entire original IP packet into a new IP packet. If the tun-
nel is encrypted, the encapsulated packet is also encrypted. A typical encrypted
tunnel is the secure shell (SSH) tunnel, which means that a user may visit an
external web server in private if he can connect to an external SSH server to cre-
ate an SSH tunnel. However, the payloads are also encrypted by block ciphers
and the encrypted payloads demonstrate almost same sizes as the corresponding
plain versions. In general, a client is only communicating with an SSH proxy and
the server behind the proxy is protected.

Tor is a special system for anonymization communication. Not only the com-
municating payloads but also the communicating pairs are protected. Different
from the padding strategy in HTTPS and SSH, each Tor packet is padded to
the size of MTU (Maximum Transmission Unit). It implies that all the packet
cells in Tor have the same size.

As discussed above, current secure suites for Web browsing are focused on
protecting the communicating contents, and protecting communication pairs
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in different level according to the security requirements. However, the traffic
amounts, direction, and intervals can be sniffed by an adversary in the middle.
The webpages could be identified even if they are transmitted in encrypted.

2.3 Traffic Analysis

When the traffic is encrypted and the encryption is perfect, analyzing the packet
payload is meaningless. However, the encrypted payload size and the packet
direction can be recognized clearly from the encrypted traffic. Consider that the
current cipher suites cannot significantly enlarge the difference between the size
of encrypted payload and its corresponding plain version, we can assume that
the encryption is approximatively size-preserved. This implies that the size of an
encryption object is similar to the size of object in plain form. Combining with
the order of objects in transmitting, the structure of a specified webpage could
be identified even if it is transmitted in encrypted form.

Table 2. Traffic analysis attack instances

Method Classifier Features considered

LL [5] näıve Bayes packet lengths

HWF [4] multinomial näıve Bayes packet lengths

LCC [6] edit distance packet lengths, order

DCRS [3] näıve Bayes total trace time,

bidirectional total bytes,

bytes in traffic bursts

Traffic analysis plays a key role in identifying a webpage in a webpage set. The
core technique for traffic analysis is machine learning. There are two operation
steps included in learning procedure, one for model training and the other for
data classifying. A model is first trained by sampling data to extract generalized
data features, and then it is incorporated into a classifier to distinguish new com-
ing data. In particular, TA classifiers are constructed with supervised machine
learning algorithms. It means that a classifier is trained on sets of traces that
are labeled with k different webpages, and then it is used to determine whether
or not a new set of traces is from a given webpage. Formally, the TA classifier is
trained to a given labeled feature set {(F 1, page1), (F 2, page2), ..., (F k, pagek)},
where each F i is a feature vector and pagei is a webpage label. And then, a
new set of traces with feature F

′
is input and the classifier will decide which

label pagei that the F
′

is attached. Some typical traffic analysis methods are
enumerated in Table 2.

Liberatore and Levine [5] developed a webpage identification method (LL)
by using näıve Bayes (NB) classifier. The LL method uses the packet direction
and the packet length as feature vector. According to this method, NB is used
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to predict a label page: page = arg maxi P (pagei|F
′
) for a given feature vector

F
′

using Bayes rule P (pagei|F
′
) = P (F

′ |pagei)P (pagei)

P (F
′
)

, where i ∈ {1, 2, ..., k}.
The LL method adopts the kernel density estimation to estimate the prob-
ability P (F

′ |pagei) over the example vector during the training phase, and
the P (pagei) is set to k−1. The normalization constant P (F

′
) is computed as

∑k
i=1 P (F

′ |pagei) · P (pagei).
Herrmann, Wendolsky, and Federrath [4] proposed a method (HWF) by using

a multinomial näıve Bayes (MNB) classifier. Both LL and HWF methods use the
same basic learning method with the same traffic features. The difference is in
the computation of P (F

′ |pagei). The HWF method determines the P (F
′ |pagei)

with normalized numbers of occurrences of features while the LL method deter-
mines with corresponding raw numbers.

Observing that the order of non-MTU packets is almost invariable between
packet sequences from the same webpage, Lu, Chang, and Chan [6] proposed a
method (LCC) on the Levenshtein distance. The outgoing and incoming non-
MTU packet length of pagei, Lout,i and Lin,i, are obtained through learning. For
the new traces t, the corresponding length pair, Lout,t and Lin,t, are computed.
The formula, 1−α ·D(Lout,i, Lout,t)− (1−α) ·D(Lin,i, Lin,t), is used to evaluate
the difference, where α is the bias factor, which is set to 0.6 in their experiments,
and D is the Levenshtein distance, which is equal to the number of insertions,
deletions and substitutions of packet lengths to transform one packet sequence
into another.

Most of the works are on single fine-grained packet analysis. In [3], Dyer,
Coull, Ristenpart, and Shrimpton proposed an identification method (DCRS)
based on coarse trace attributes, including total transmission time, total per-
direction bandwidth, and traffic burstiness (total length of non ack packets sent
in a direction between two packets sent in another direction). They used NB
as the underlying machine learning algorithm and build the VNG++ classi-
fier. Their results show that TA methods can reach a high identification accu-
racy against existed countermeasures without using individual packet lengths.
It implies that the chosen feature attributes may be the most important factor
in identifying webpages.

2.4 The Assumption

We follow the general scenario assumed in webpage identifying methods [4]: a
user, say Alice, wants to protect which webpages she browsed from a web server
against third parties. She can use popular secure suites, such as SSL, SSH, and
IPSec, etc., to make the webpage contents transmit in encrypted form. The
attacker, Mallory, is located between Alice and the web server and he can record
the traffic between the two entities. Although the traffic may be encrypted,
Mallory can retrieve the source and destination of the traffic, and also the sizes of
packet payloads. He can identify Alice and the website based on the retrieved IP
address. He intends to use traffic analysis techniques to identify which webpage
in that website that Alice just visited.
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2.5 Motivation of the EQPO Method

We first overview some methods against traffic analysis. The basic idea against
TA analysis is to change traffic features. A typical method is using padding
octets in packets to change the distributions of traffic packets. We consider the
following defence countermeasures.

1. PadMTU. All packet sizes are increased to MTU. This method makes the
length of each packet in session reach to the length of maximum transmission
unit (MTU).

2. PadRand. For each packet in session, its size is increased to len + r, where
r, r ∈ {0, 8, ...,MTU− len}, is a random chosen number and len is the original
packet length.

3. Morphing. Change packet length distribution in a webpage and make it look
like another webpage.

4. BuFLO. The abbreviation of Buffered Fixed-Length Obfuscator, denoted
by (d, ρ, t), where d is the size of fixed-length packets, ρ denotes the rate or
frequency (in milliseconds) of packets sending, and t denotes the minimum
amount of time (in milliseconds) for sending packets. The BuFLO counter-
measure is different from the former 3 padding based methods for changing
packet lengths, it tries to mitigate the effectiveness of coarse trace attributes
by adjusting the traffic burstiness. A BuFLO implementation will send a
packet of length d every ρ milliseconds until communications are stopped and
at least t milliseconds of time have elapsed.

The features of web traffic are depended on the request-response traffic intro-
duced by object retrieving transactions when webpages are rendering. Current
techniques against traffic analysis are intended to make traffic features change
dynamically. Observing that the same structure of webpages will generate indis-
tinguishable traffic, if we can browse different webpages with a same number of
equal-sized objects, we could make the traffic indistinguishable.

In the rest of this paper, we will propose EQPO, a method against traffic
analysis. When visiting webpages in a page set, we intend to generate same
number of requests for objects at client side, where each of those objects has the
same size. Thus the traffic for object request-response transactions can be makd
indistinguishable.

3 The Equal-Sized Pseudo-Object

We now turn our attention to how to construct equal-sized objects in a set
of objects. We will introduce the notion of pseudo-object. We first review the
scheme of data URI which provides a method to translate binary objects into
text-based objects. And then we will propose the text-based pseudo-object.
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3.1 Data URI

The dynamic programming language, JavaScript, is commonly viewed as part of
web browsers. It has many routines to support the text string operations. The
HTTP is an application protocol to exchange or transfer hypertext. When ren-
dering a webpage, many types of objects are needed to retrieve from servers. Not
all objects are text-based. For the non-text-based objects, such as the image files,
splitting them directly with JavaScript language into fragments is not easy. We
consider adopting the data URI scheme to handle the non-text-based objects [16].

The data URI scheme allows inclusion of small media type data as immedi-
ate data inline. It has the form of data:[<mediatype>][;base64],<encoded-data>
where the mediatype part specifies the Internet media type and the ;base64 indi-
cates that the data is encoded as base64. If both options are omitted, default to
text/plain;charset=US-ASCII.

For example, the segment <img src=“data:image/png;base64,iVBORw0...”>
could be used to define an inline image embedded in HTML document. Consider-
ing that the base64-code is text-based, the base64-encoded objects can be easily
cut into fragments and translated into pseudo-objects. It is trivial to compose
any sizes of pseudo-objects at client side.

3.2 The Pseudo-Object

Let obj be an object in a webpage and || be the concatenation operator.

Definition 1. A fragmentation of obj with length m(m ≥ 1) is a piece set,
F (obj) = {f1, f2, ..., fm}, such that obj = ||mi=1fi where ∀fi : fi �= φ.

For example, let jso be a script object in webpage page with content is
<script>alert("Hello World!");</script>. A fragmentation of object jso
with length 2 is the piece set {jso f1, jso f2}, where the pieces jso f1 and
jso f2 is <script>alert("Hello World"); and </script>, respectively. It is
obviously that we can reassemble the object jso by simply concatenating the
fragments in sequence, i.e., jso = jso f1||jso f2. It is noted that an object itself
is also a fragmentation of this object with length 1. For example, if csso is the
css object in page whose content is hr {color:sienna;}, csso can also be viewed
as a fragmentation.

Suppose there is an object set S, S = {obj1, obj2, ..., objn}, where each obji is
in a webpage page and 1 ≤ i ≤ n. Let F (obji) = {obj fi,1, obj fi,2, ..., obj fi,mi

}
be a fragmentation of obji with length mi.

Definition 2. A pseudo-object po with length l is ||lj=1obj fij ,ni
, where each

component object objij ∈ S, obj fij ,ni
∈ F (obji), and for any two component

object objij and obji
j
′ , objij �= obji

j
′ if ij �= ij′ .

For the two objects, jso and csso, we discussed before, we can construct
some pseudo-objects. For example, the pseudo-object, po1 = jso f1, is only
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constructed by the first fragment of jso, while the object, po2 = jso f2||csso, is
concatenated by the second fragment of jso and csso.

Follow the Definition 2, we call the objects associated with a pseudo-object as
the component objects, abbreviated as components. We also call the fragments
associated with a pseudo-object as the component pseudo-fragment. When with-
out causing confusion, we abbreviate the pseudo-fragment as fragment. As an
example, the components of po2 are jso and csso, and the corresponding frag-
ments are jso f2 and csso.

We call the number of bytes contained in a fragment as the size of the frag-
ment. Correspondingly, the sum of the sizes of all fragments in a pseudo-object
is called the size of this pseudo-object. For example, the size of the fragment
jso f1 and jso f2 is 30 and 9, respectively, and the size of the pseudo-object po1
and po2 is 30 and 27, respectively.

We say that two pseudo-objects are equal-sized if they have the same size.
In general, given any two pseudo-objects, they are generally not equal-sized.
However, we can append some padding octets to equalize them. We use the
notation Padding(n) to denote a string with n padding octets. As an example,
if po

′
2 = po2||Padding(3), po1 and po

′
2 are equal-sized.

Suppose we have another webpage page∗. Besides the object jso and csso
in page, it has a third object jso∗, <script>alert("Hi!");</script>. When
the browser needs to render page and page∗, besides the request for the basic
HTML file, it will issue other 2 and 3 requests for objects, respectively. It is easy
to distinguish page and page∗ by using traffic analysis because of the different
object request numbers and different object response amounts.

We consider the defence method with the same traffic features, i.e., we intend
to browse the two pages with the same request numbers and the same object
response amounts. As an example, we can require the browser to issue 3 object
requests, with 30 bytes of response data each, to download all the objects in
these two pages, respectively. To do so, we only need the requests and responses
to be on equal-sized pseudo-objects. For the webpage page, we can define the 3
pseudo-objects as:

(a) po1 = jso f1;
(b) po2 = jso f2||css||Padding(3);
(c) po3 = Padding(30),

while for page
′
, we define

(a) po∗
1 = jso f1;

(b) po∗
2 = jso f2||csso||jso∗ f1;

(c) po∗
3 = jso∗ f2||Padding(3),

where jso∗ f1 is <sc and jso∗ f2 is ript>alert(“Hi!”);</script>. Since these six
pseudo-objects are equal-sized with each other, the traffic features for pseudo-
objects in these two pages are the same if the requests and responses are on
pseudo-objects. It implies that it is difficult to distinguish the two pages accord-
ing to the encrypted web traffic.
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4 Proof of Concept Implementation

In this section, we will provide our proof of concept EQPO implementation.
We will discuss how to represent pseudo-objects in an HTML document, and
how to retrieve those objects from web servers. We will present the structure of
equal-sized pseudo-object-enabled (EQPO-enabled) HTML document to support
retrieving the pseudo-object and assembling the original objects.

4.1 The EQPO-enabled HTML Document

In order to support retrieving pseudo-objects, it needs to redefine the structure
of traditional HTML document. We call the HTML document that can support
accessing equal-sized pseudo-objects as the equal-sized-pseudo-object-enabled
(EQPO-enabled) HTML document. The following demonstrates an instance
structure for EQPO-enabled HTML document with two img tags.

<html>
<head> ...... </head>
<script> ......
function EQPOObject()
......

</script>
<body onload="EQPOObject()">

......
<img id = objID1>
......

<img id = objID2>
......

</body>
</html>

To retrieve the pseudo-objects, the scripts for pseudo-objects must be
included in HTML document and the URIs for extern objects are also needed to
change. The document fragment <body onload=“EQPOObject()”> implies that
when the basic HTML document has been loaded, the onload event triggers the
embedded script for EQPO objects. Note that the contents within img tags are
referred to object identifiers (objIDs), it makes browser do not issue request
for individual image file. When the script EQPOObject() is initiated, an XML-
HttpRequest (XHR) object is created. The XHR object provides an easy way to
retrieve data from a URI without having to refresh a full webpage. This means
that some parts of the webpage could be updated while not downloading the
whole. We use this XHR object to download EQPO objects.

The open() and send() methods in XHR object are used to require EQPO
objects. The server generates EQPO objects and returns them to client. The
construction of EQPO objects is on the order of the original objects in HTML
document. The property of responseText in the XHR object is used to read
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the response content from server. When the browser handles the response, the
onreadystatechange event listener is invoked and the property of readyState the
current state of the request for the XHR objects. Particularly, when readyState is
4, which means done, and the status property is 200, which means ok, the response
content has been retrieved successfully. A predefined procedure is invoked to call
the success method in callback object to deal the server response. The response
string responseText contains the EQPO objects. We then can decompose the
string text according to the predefined syntax and obtain renderable object
contents.

The parameter document includes the pseudo-object request number, the
pseudo-object size, the original object number, and original object header
sequences. This sequence can be expressed as the regular expression

<objID@objlen@<mediatype>(;base64)?,|>{n},
where n is the number of objects in this webpage, objlen is the size of the
original object, which is denoted by objID, encoded in text or base64, and
each object item is separated by |.

4.2 The Communications for Equal-Sized Pseudo-Objects

Figure 1 demonstrates the communications between browser and web server for
pseudo-objects. When the browser initiates the request for basic HTML doc-
ument, the server returns the EQPO-enabled HTML document. The browser
renders it, and then requires parameters for equal-sized pseudo-objects.

Fig. 1. Communications for pseudo-Objects

The pseudo-objects are fetched according to a predefined order and composed
at server side on the structure of original webpage. The composed pseudo-object
is in the form of <objID@encoded-data>(|<objID@encoded-data>)* with given
size. With the received encoded object sizes, the browser maintains a buffer
to store the downloaded fragment contents for each object. A simple com-
paring operation could be used to decide whether or not a given object has
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been downloaded. The returned encoded pseudo-objects are then decomposed
and dispatched to the browser for rendering. The require-compose-decompose-
dispatch procedure will be continue until all of equal-sized pseudo-objects has
been downloaded.

It is noted that the notion of pseudo-object does not address the EQPO-
enabled document and the EQPO parameter document. In fact, both of the
two documents are text-based, it is easy to change their sizes for each webpage
by appending HTML comments or padding octets. With the defined EQPO-
enabled HTML document and the AJAX based communications, each trans-
lated webpage will demonstrate very similar traffic, especially when the traffic
is encrypted.

5 Experiments and Discussions

5.1 The Experiment Setup

Our experiments are on artificial webpages with only image objects. We create
an image library by picking some image files whose sizes are ranged from 5k
to 25k from Internet. We then randomly select n (n ∈ [nL, nH ]) image files to
construct 200 traditional webpages and corresponding EQPO-enabled webpages,
respectively. For each webpage, we visit 100 times via HTTPS and SSH tunnel,
respectively. We record the traces, strip packet payloads with the TCPurify
tool [18], and construct four types of trace set, EQPOHTTPS, EQPOSSH, TrHTTPS,
and TrSSH, as listed in Table 3.

Table 3. Types of trace set

Type Description

EQPOHTTPS traces for visiting EQPO-enabled webpages via HTTPS

EQPOSSH traces for visiting EQPO-enabled webpages via SSH

TrHTTPS traces for visiting original webpages via HTTPS

TrSSH traces for visiting original webpages via SSH

Note that the EQPOHTTPS dataset are on traces for visiting EQPO-enabled
webpages via HTTPS. Analyzing those traces based on a certain traffic analysis
technique can validate the capabilities of our proposed EQPO method against
that specified traffic classifier. The comparison tests will be on TrHTTPS, the
traces for visiting original webpages via HTTPS. With the tool from [17], we can
test some popular defence countermeasures such as those described in Sect. 2,
i.e., the PadMTU, PadRand, Morphing, and the BuFLO countermeasures. The
usages of dataset EQPOSSH and TrSSH are analogous, the differences are that
these two datasets are recorded from SSH tunnel.

In our conducted experiments, we set [nL, nH ] in 3 cases, i.e., [20, 40], [40, 60],
and [60, 80]. These cases are denoted by case[20,40], case[40,60], and case[60,80],
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respectively. For each case, we set the pseudo-object request number as 35, 45,
and 50, respectively. The sizes of each pseudo-object are equalized to 30,000
bytes.

To test the performances against traffic analysis, we run the code from [17]
with classifiers and countermeasures we discussed in Sect. 2. The number of web-
pages, k, is set to 2i, where 1 ≤ i ≤ 7, and 200, respectively. We use the default
parameters in original code configuration. For each k with different classifiers
and countermeasures, we run the test 10 times and average the accuracy as the
ratio of successful identification.

5.2 Visiting Webpages with EQPO Method via HTTPS

HTTPS is a common secure protocol to resist MITM attacks in HTTP com-
munication. It provides bidirectional encrypted communications between clients
and servers. The HTTP payloads are encrypted but the TCP and IP headers
are preserved.

We conduct a set of experiments to test our proposed method against the
4 discussed classifiers on EQPOHTTPS and compare with the results with other 4
countermeasures on TrHTTPS dataset. We figure the comparison results in fol-
lowing figures. It is noted that as the evaluation metric for the countermeasure
against traffic analysis, the lower the identification accuarcy, the higher capabil-
ities the countermeasure against analysis.

Fig. 2. Comparisons for case[40,60] with HTTPS traffic, EQPO vs PadMTU, PadRand,
and Morphing.

Figure 2 demonstrates the comparison results with PadMTU, PadRand, and
Morphing countermeasures for transmissions via HTTPS. As demonstrated in
Fig. 2, the performances of the EQPO are different in the 4 addressed classifiers.
It is the most effective countermeasure to defend against the LL, LCC, and
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Fig. 3. Comparisons for case[40,60] with HTTPS traffic, EQPO vs BuFLO with d =
1000, ρ = 20.

DCRS classifiers, comparing with the three discussed countermeasures. For the
HWF classifier, the comparing results get tangled up in performances.

Figure 3 shows the comparison results with BuFLO for transmissions via
HTTPS. We set the parameters of BuFLO as d = 1000, ρ = 20, and t as 0, 5,000,
10,000, respectively. As demonstrated in Fig. 3, the performances of the EQPO
are different in the 4 addressed classifiers. It is the most effective countermeasure
to defend against the LL and LCC classifiers, comparing with the three sets of
BuFLO parameters. For the HWF classifier, the EQPO also reach to the best
except some smaller ks. For the DCRS classifier, the EQPO method is in average.

5.3 Visiting Webpages with EQPO Method via SSH

HTTPS can protect the content of transmitted packet, but it discloses real com-
municated peers. In some applications, we often require tunnel-based transmis-
sions to hide real communicating IP address. The tunnel-based transmission
means that the entire specified IP packet is encapsulated into a new IP packet,
i.e., that specified packet is as the payload of that new packet. Thus the real
IP addresses and ports are protected from any MITM attackers if the tunnel is
encrypted. A typical encrypted tunnel is the secure shell (SSH) tunnel.

We also conduct some experiments to test our proposed method against
the 4 discussed classifiers on EQPOSSH, comparing with the results with other 4
countermeasures on TrSSH.

Figure 4 shows the comparison results with PadMTU, PadRand, and Mor-
phing countermeasures for transmissions via SSH.

For the case of transmission over SSH tunnel is shown in Fig. 4. It demon-
strates similar comparing results as in HTTPS case. It is the most effective
countermeasure to defend against the LL, LCC, and DCRS classifiers, compar-
ing with the three discussed countermeasures. For the HWF classifier, the EQPO
method gets tangled up with other three countermeasures.
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Fig. 4. Comparisons for case[40,60] with SSH traffic, EQPO vs PadMTU, PadRand,
and Morphing.

Fig. 5. Comparisons for case[40,60] with SSH traffic, EQPO vs BuFLO with d =
1000, ρ = 20.

Figure 5 demonstrates the comparison results with BuFLO for transmissions
via SSH. We also set the parameters of BuFLO as d = 1000, ρ = 20, and t as 0,
5,000, 10,000, respectively. The case for transmission over SSH tunnel is shown
in Fig. 5. It demonstrates that the EQPO is the most effective method against
the LL, LCC and DCRS classifiers. For the HWF classifier, the EQPO method
is weak in performances comparing with other three BuFLO scenarios.

5.4 Time Cost for the EQPO Method

To evaluate the time costs of the proposed EQPO method, we compare the time
costs visiting EQPO-enabled webpages with visiting traditional webpages. We
first construct 10 webpages whose object number ranged in 3 cases, i.e., ranged
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Fig. 6. Loading time: traditional pages and EQPO-enable pages

in [20, 40], [40, 60], and [60, 80], respectively, and transform them into EQPO-
enabled pages, respectively. We visit each page 10 times, record the total time
for loading objects, and then compute the average of time cost.

Figure 6 demonstrates the comparison results in visiting two types of web-
pages. It shows that as the number of objects increasing, the extra time cost is
also increased. Comparing to the traditional webpage rendering, the loading time
of the EQPO-enabled webpages is proportional to that of the traditional web-
pages. For example, in the case of HTTPS transmission, visiting EQPO-enabled
pages with 40–60 objects needs 0.52 s in average while visiting traditional pages
needs 0.32 s. For the pages with 60–80 objects, it averagely needs 0.58 s to visit
EQPO-enabled pages while needs 0.36 s to visit traditional pages.

5.5 Discussions

The idea of our proposed EQPO method is on generating the same web traffic
for different webpages. Our conducted experiments demonstrate that the EQPO
method can defend against the 4 state of the art TA classifiers more effectively
that the other addressed countermeasure. However, this method may introduce
extra computation costs in both server side and client side. Since the pseudo-
object is composed in base64-encode, it may increase at least 15 % of the network
traffic volumes.

Our POC implementation is immature. The object retrieving process is
AJAX-based and is over a single connection. Additionally, we do not consider the
possible negative effects introduced by cookies, scripts, or caches. And also, we
do not consider the case that the objects in page are from different web servers.

The proposed method requires that the original webpages translating into
EQPO-enabled webpages. Actually, it is difficult to require different website
masters translate their managed webpages into EQPO-enabled webpages. How-
ever, our proposed method is suitable for an individual website whose webpages
are maintained by a single website master. For example, the clinic websites. Even
if the attacker can infer the website the user visited, he cannot infer which the
specified webpage the user visited.
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5.6 Related Work

Encrypting web traffic is a common strategy to preserve users’ privacy when
surfing the Web. However, the current encryption suites are focused on pro-
tecting contents in flight and some other side traffic features cannot be effec-
tively protected. A traffic analysis attack could use these features to infer the
users’ web browsing habits and their network connections. Identifying webpage
on encrypted traffic is an important class of traffic analysis attacks.

Sun et al. [10] proposed a classifier based on the Jaccard coefficient similarity
metric, and reliably identified a large number of webpages in 100,000 webpages.
They also proposed some countermeasures against TA attacks but our proposed
method is not addressed. Bissias et al. [1] used cross-correlation to determine
webpage similarity with features of packet length and timing. Liberatore et al.
[5] showed that it is possible to infer webpages with näıve Bayes classifier by
observing only the lengths and the directions of packets. Herrmann et al. [4]
suggested a multinomial näıve Bayes classifier for page identification that exam-
ines normalized packet counts.

Panchenko et al. [9] developed a Support Vector Machine(SVM) based clas-
sifier to identify webpages transmitted on onion routing anonymity networks
(such as Tor). They used a variety of features, include some totaling data, based
on volume, time, and direction of the traffic. Dyer et al. [3] provided a compre-
hensive analysis of general-purpose TA countermeasures. Their research showed
that it is the choosing features, not the analysis tools, that mainly influence the
accuracy of webpage identification.

Some other attacks are not only depended on network packets. Wang et al.
[14] proposed a new webpage identifying technique on Tor tunnel. They inter-
preted the data by using the structure of Tor elements as a unit of data rather
than network packets. Miller et al. [8] proposed an attack on clustering tech-
niques for pages in a website. They used Gaussian distribution to determine the
distance between clusters and identify specified webpages.

Padding extra bytes to packets is a standard countermeasure. Various
padding strategies have been proposed to change encrypted web traffic [3]. How-
ever, this kind of countermeasures is on a single non-MTU packet, it is vulnerable
when using coarse-grain traffic features [3,9]. Traffic morphing [15] tries to make
a webpage traffic similar to another given webpage. This method is also focused
on the fine-grain packets and is limited in changing coarse-grain features. Send-
ing specified packets at fixed intervals [3] can reduce the correlation between
the observed traffic and the hidden information and demonstrate more capabil-
ities against the coarse-grain feature based analysis. However, it also introduces
traffic overhead or delay in communication.

Some countermeasure proposals are on application-level. The browser-based
obfuscation method, such as the HTTPOS method [7], takes the existing HTTP
and TCP implementations to generate randomized requests with different object
data requirements at client. It changes the number of requests from clients and
the distribution of response packet volumes from servers. The HTTPOS method
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is on splitting the response packets by introducing special HTTP requests or
TCP packets.

The authors also proposed some other methods based on artificial pseudo-
objects and the data URI schema [12,13]. The sizes and numbers of pseudo-
objects are different in different visits, and hence makes the traffic demonstrate
different features in different visits.

6 Conclusion

We have proposed a countermeasure method, EQPO, to defend against webpage
identification based traffic analysis by introducing equal-sized pseudo-objects in
a page set. By forcing requests and responses on the same number of pseudo-
objects, the traffic for a set of webpages could exhibit similar traffic patterns
and is difficult to identify a specified webpage. Possible future work may include
reducing the computation costs in client side and server side and make it more
compatible in current web applications.
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Abstract. This paper proposes a new blind color images watermarking scheme
based on SVD and DNA sequences, in which a color watermark is embedded
into a color host image for copyright protection. Firstly, the color watermark is
encrypted by using DNA encoding and CML. Secondly, the color host image is
partitioned into 4 × 4 non-overlapping pixel blocks and then the SVD transform
is performed on each selected pixel block. Finally, the DNA sequence water-
mark (encrypted watermark) is embedded into the host image by modifying the
matrix V. The watermark can be extracted from the watermarked image without
resorting to the original host image and the original watermark. The experi-
mental results show that the proposed watermarking scheme has not only good
transparency, but strong robustness against the common image processing
attacks and geometric attacks.

Keywords: Digital watermarking � Color image watermark � SVD � DNA
sequences � Blind extraction � Robustness

1 Introduction

Due to the rapid development of Internet and multimedia technology, copyright pro-
tection of the multimedia information has received growing attention. Among various
solutions for this issue, the digital watermarking is regarded as a powerful one. Digital
watermarking is a technique that inserts a watermark into the multimedia host data [1].
The watermark can later be detected or extracted from the watermarked data for
identifying the copyright owner. An efficient watermarking method should satisfy some
essential requirements including imperceptibility, robustness, security etc. [2, 3].

According to the application of the host data during watermark extraction, the
watermarking techniques can be divided into three categories: non-blind, semi-blind
and blind [2]. The non-blind watermarking methods need the host data when water-
mark is extracted. Unfortunately, they are weak against the ambiguity attack [4]. The
semi-blind watermarking schemes also require the host data or additional information
during watermark detection, while the blind watermarking approaches can recover the
watermark without referring to the host data. In real life, the blind watermarking
schemes are preferred in view of the portability and availability of the host data.
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As considering the domain in which the watermark is embedded, the image water-
marking techniques can also be broadly classified into two categories: the spatial-domain
and frequency-domain (transform domain) methods [5]. The spatial-domain schemes
are simple but generally fragile to common image processing operations or other attacks
[6, 7]. The watermarking methods based on transform domains such as discrete Fourier
transform (DFT), discrete cosine transform (DCT), discrete wavelet transform (DWT),
the singular value decomposition (SVD) and so forth, have more robustness and invis-
ibility than the spatial-domain ones [8–13]. Although DCT and DWT are frequently used
to design the digital watermarking methods in the past decades, the SVD transform has
attracted more and more consideration due to the excellent properties of the SVD from
the perspective of image processing, i.e., (i) the size of the matrix is not fixed; (ii) it has a
good stability. In other words, when a small perturbation is exerted to an image, the
fluctuation of its singular values is very small; (iii) singular values represent intrinsic
algebraic image properties [11].

In the past few years, many SVD-based image watermarking methods have been
proposed [11, 14–18]. In [11], a digital image watermarking method is proposed based
on SVD. However, Zhang and Li [19] argued that the extracted watermark is not the
embedded watermark but relate to the reference watermark. Fan et al. [14] modified
the elements in the first column of U/V component for watermarking and used the
V/U component to compensate visible distortion when embedding watermark into the
component of SVD. But some image pixels will be modified incorrectly. Lai and Tsai
[15] developed a hybrid image-watermarking scheme using DWT and SVD, in which
the watermark is divided into two parts and then they were separately embedded in the
singular values of the LH and HL sub-bands. Unfortunately, this scheme is impractical
when the singular values generated from the original image are required to extract the
watermark [20]. The SVD-based image watermarking schemes [16–18] are robust
against the common image manipulations and geometric attacks. However, these
methods usually lead to the false positive problem [21]. In addition, it is noted that the
SVD-based watermarking methods [14–18] mainly embedded the gray-scale or binary
watermarks into the gray-scale host images. It is known that the color images contain
more information and are more prevalent in real applications compared with the
gray-scale ones. So it is essential to develop the color image watermarking algorithms.

Most recently, some dual color images watermarking schemes are presented based
on SVD [22–24]. Goléa et al. [22] introduced a block-SVD based blind dual color
images watermarking scheme, in which one or more singular values must be modified
to keep the order of singular values. However, modifying the singular values in this
method will deteriorate the quality of the watermarked image. Su et al. [23] proposed a
dual color images watermarking based on the improved compensation of SVD. In this
method, the watermark bits are embedded into 4 × 4 blocks by modifying the second
row first column and the third row first column elements of U component after SVD. In
[24], a blind dual color images watermarking scheme was presented by analyzing the
orthogonal matrix U via SVD. But the robustness of the dual color images water-
marking methods [23, 24] is unsatisfactory for some severe attacks. To our best
knowledge, there are few papers on the dual color images watermarking schemes based
on SVD and DNA sequences.
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Motivated by the above discussions, in this paper, we propose a secure dual color
images watermarking scheme based on SVD and DNA sequences. First, the color
watermark is encrypted by DNA sequences and CML for enhancing the security of the
watermark. Then the host image is decomposed into 4 × 4 non-overlapping pixel
blocks and the SVD is performed on each selected pixel block. The DNA sequence
watermark is finally inserted into the host image by modifying the matrix V from the
SVD transformation. Without the original watermark and host image information, the
watermark can be extracted from the watermarked image by the watermark extraction
algorithm. The experimental results show that the proposed watermarking scheme is
effective. The main contributions of this paper are listed as follows: (1) encrypt the
color watermark using DNA encoding and CML; (2) divide the color host image into
4 × 4 non-overlapping pixel blocks and perform the SVD transform on each selected
pixel block; (3) embed the DNA sequence watermark (encrypted watermark) into the
host image by modifying the elements in the first column of the matrix V; (4) our
proposed method is a blind watermarking scheme, i.e., the host image and the original
watermark are not required to extract the embedded watermark.

The rest of this paper is organized as follows. Section 2 gives a brief description on
the SVD, DNA sequences and CML. In Sect. 3, the proposed method including the
watermark embedding and extraction are described in detail. Section 4 presents the
experimental results. Finally, the conclusions are drawn in Sect. 5.

2 Some Basics

2.1 SVD

SVD plays an important role in image processing, signal analysis and data compres-
sion. From the viewpoint of image processing, a digital image can be considered as a
matrix. Let A denote an image with size of m� n (m� n), and r be the rank of the
matrix A. Then the SVD of the matrix A can be given as follows:

A ¼ U � S� VT; ð1Þ

where U and V are the m� m and n� n orthogonal matrices, respectively. S ¼
diag a1; a2; � � � ; amð Þ is a m� n diagonal matrix, where ai are called as the singular
values and satisfy a1 � a2 � � � � � ar [ arþ 1 ¼ � � � ¼ am ¼ 0. The columns of U and
V , i.e., Ui and Vi, are the left and right singular vectors, respectively. Each singular
value specifies the luminance (energy) of the image. The singular vectors Ui and Vi

denote the horizontal and vertical details (edges) of the image, respectively.
From various numerical experiments, it is found that the matrix V has an interesting

feature, i.e., all of the elements in the first column are negative and their values are very
close [23, 24]. So we will make full use of this property in our watermarking algorithm.

2.2 DNA Sequences

In recent years, the researchers have attempted to apply the DNA sequences to design
the image encryption algorithms owing to huge potential of parallel computing ability,
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immense information storage density, and ultra-low energy consumption [25, 26]. The
single-strand DNA sequence consists of four bases, i.e., A, C, G and T, where A and T,
and C and G are complementary pairs, respectively. In modern electronic computer, the
information is represented by the binary system. As is well known, the binary system
has only two numbers, i.e., 0 and 1, and they are complementary to each other.
Obviously, 00 and 11 are complementary, and 01 and 10 are also complementary.
Therefore, we can use them to represent four bases A, C, G and T, respectively. There
are total 24 kinds of coding schemes. However, according to the Watson-Crick com-
plementary rule [27], only 8 kinds of them meet this rule, which are listed in Table 1. In
our work, the DNA XOR operation is employed. We define the XOR operation for the
DNA sequences based on the traditional XOR operation in the binary. There are also
eight types of the DNA XOR rules. Table 2 gives one type of the DNA XOR operation,
which is used to encrypt the watermark. As can be seen, a base in each row or column
is unique and the DNA XOR is a reflexive operation.

2.3 Coupled Map Lattice (CML)

A coupled map lattice (CML) is a dynamical system with discrete time, discrete space
and continuous state [28], which can be described by

xtþ 1ðnÞ ¼ ð1� eÞf ðxtðnÞÞþ e
2
½f ðxtðn� 1ÞÞþ f ðxtðnþ 1ÞÞ�; ð2Þ

where t ¼ 1; 2; 3; � � � is the time index, n ¼ 1; 2; � � � ; L is the lattice site index, e 2
ð0; 1Þ is the coupling constant, and f ð�Þ is the mapping function. In this paper, we
choose the Logistic map f ðxÞ ¼ 1� lx2, where the parameter l 2 ð0; 2Þ, and
x 2 ð0; 1Þ. The periodic boundary condition xtðnÞ ¼ xtðnþ LÞ is used in the CML,
where L is the length of CML.

3 The Proposed Watermarking Method

In this section, a new secure dual color images watermarking scheme is proposed based
on the SVD, DNA sequences and CML. The core idea is to encrypt the watermark by
DNA sequences and CML followed by the embedding of the DNA sequence water-
mark via modifying the values of the first column of the matrix V. Without loss of
generality, let the host image H be a color image with size of M � N, and the
watermark W be a color image with size of m� n.

3.1 Watermark Embedding Algorithm

The watermark embedding process can be described as follows:
Step 1. Decompose the host image H and the watermark W into the R, G, B com-
ponents, respectively. The color components Hh andWh (h ¼ R;G;B) are obtained. For
improving the security of the watermarking method, the color watermark W is
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encrypted using DNA sequences and CML (2). Iterate CML (2) with the parameters e0,
l0 and the initial conditions x0ð1Þ, x0ð2Þ, x0ð3Þ to generate the key streams. Then
transform the image matrices and the key streams into the DNA sequence matrices
according to the encoding rules (given in Table 1). The DNA sequence watermark ~W
can be obtained by using the DNA XOR operation (given in Table 2). Here the
parameters e0, l0 and the initial conditions x0ð1Þ, x0ð2Þ, x0ð3Þ are used as the secret
keys.
Step 2. Each component of the host image H is equally divided into non-overlapping
4 × 4 pixel blocks. Randomly select the embedding blocks in Hh for embedding the
corresponding component watermark ~Wh.
Step 3. Perform the SVD transform on each selected pixel block and obtain the
matrix V.
Step 4. The DNA sequence watermark ~W is embedded by changing the relations
between v1 and v3, and v2 and v4 of the matrix V, where v1 ¼ Vð1; 1Þ, v2 ¼ Vð2; 1Þ,
v3 ¼ Vð3; 1Þ and v4 ¼ Vð4; 1Þ. If the embedded DNA watermark base is ‘A’,
v1 � v3 [ 0, v2 � v4 [ 0, v1 � v3j j[ d and v2 � v4j j[ d. If the embedded DNA
watermark base is ‘T’, v1 � v3 [ 0, v2 � v4\0, v1 � v3j j[ d and v2 � v4j j[ d. If the
embedded DNA watermark base is ‘C’, v1 � v3\0, v2 � v4 [ 0, v1 � v3j j[ d and
v2 � v4j j[ d. If the embedded DNA watermark base is ‘G’, v1 � v3\0, v2 � v4\0,
v1 � v3j j[ d and v2 � v4j j[ d. Here d represents an embedding threshold. When the
aforementioned conditions are violated, the elements v1, v2, v3 and v4 should be
modified by the following formulae given in Eqs. 3, 4, 5 and 6.

if w ¼ 'A';

v1 ¼ � �V1 � d=2ð Þ
v2 ¼ � �V2 � d=2ð Þ
v3 ¼ � �V1 þ d=2ð Þ
v4 ¼ � �V2 þ d=2ð Þ

8
>>><

>>>:

; ð3Þ

Table 1. The encoding and decoding rules for DNA sequences.

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

A 00 00 01 01 10 10 11 11
C 01 10 00 11 00 11 01 10
G 10 01 11 00 11 00 10 01
T 11 11 10 10 01 01 00 00

Table 2. The XOR operation for DNA sequences.

XOR A C G T

A T G C A
C G T A C
G C A T G
T A C G T
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if w ¼ 'T';

v1 ¼ � �V1 � d=2ð Þ
v2 ¼ � �V2 þ d=2ð Þ
v3 ¼ � �V1 þ d=2ð Þ
v4 ¼ � �V2 � d=2ð Þ

8
>>><

>>>:

; ð4Þ

if w ¼ 'C';

v1 ¼ � �V1 þ d=2ð Þ
v2 ¼ � �V2 � d=2ð Þ
v3 ¼ � �V1 � d=2ð Þ
v4 ¼ � �V2 þ d=2ð Þ

8
>>><

>>>:

; ð5Þ

if w ¼ 'G';

v1 ¼ � �V1 þ d=2ð Þ
v2 ¼ � �V2 þ d=2ð Þ
v3 ¼ � �V1 � d=2ð Þ
v4 ¼ � �V2 � d=2ð Þ

8
>>><

>>>:

; ð6Þ

where w denotes the DNA watermark base, �V1 ¼ v1j j þ v3j jð Þ=2 and
�V2 ¼ v2j j þ v4j jð Þ=2.
Step 5. The inverse SVD is performed to all selected blocks. One can obtain the R, G,
B components of the watermarked image.
Step 6. Recombine the watermarked R, G, B components and the resulting water-
marked image P is obtained.

3.2 Watermark Extraction Algorithm

The detailed extraction process can be formulated as follows:
Step 1. Divide the watermarked image P into the R, G, B components, and then
decompose equally each watermarked component into the non-overlapping 4 × 4 pixel
blocks.
Step 2. Choose the pixel blocks using the same random numbers as those in Sect. 3.1.
Then perform SVD on each selected pixel blocks to get the matrix V.
Step 3. Extract the DNA sequence watermark Ŵ according to the following formula:

w ¼

'A'; if v1 [ v3ð Þ and v2 [ v4ð Þ
'T'; if v1 [ v3ð Þ and v2\v4ð Þ
'C'; if v1\v3ð Þ and v2 [ v4ð Þ
'G'; if v1\v3ð Þ and v2\v4ð Þ

8
>>><

>>>:

: ð7Þ

Step 4. By CML and the same secret keys, each watermark component can be extracted
through executing the inverse process of DNA encryption presented in Sect. 3.1.
Step 5. Reconstruct the final watermark W 0 from the three recovered components.
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4 Experimental Results and Discussions

In this section, to investigate the performance of the proposed method, six different
color images of size 512� 512 shown in Fig. 1 are used as the host images, and three
different color images of size 32� 32 displayed in Fig. 2 are regarded as the water-
marks. In the following simulations, Fudan badge is embedded into Lena and Panda
images, Multi-color image is embedded into Airplane and Lake images, and IEEE logo
is embedded into House and Terrace images. We arbitrarily choose the embedding
threshold as d ¼ 0:05. In our work, peak signal-to-noise ratio (PSNR) [8, 9] and the
normalized cross-correlation (NC) [23, 24] are employed to evaluate the impercepti-
bility and robustness of the proposed scheme, respectively.

(a) Lena                              (b) Panda                              (c) Airplane

(d) Lake                               (e) House                               (f) Terrace

Fig. 1. The original color host images.

 (a) Fudan badge      (b) Multi-color image      (c) IEEE logo

Fig. 2. The color watermarks.
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4.1 Imperceptibility Analysis

Figure 3 shows the watermarked images and corresponding PSNR values. As can be
seen, the proposed method has a better watermark transparency. It is known that if the
value of PSNR is more than 30 dB, the difference between the original and processed
images is unnoticeable. Figure 4 displays the extracted watermarks and the NC values
under no attacks. As can be seen, all the NC values are extremely close to 1, which
indicates that the extracted watermarks are very similar to the original ones. It is
virtually impossible to distinguish the differences between the original watermarks and
the original ones.

Fig. 3. The watermarked images.

Fig. 4. The extracted watermarks without attacks.
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4.2 Robustness Analysis

JPEG compression attack is one of the common attacks. In this experiment, the
watermarked images are lossy-compressed with different quality factors. As shown in
Fig. 5, the proposed scheme can effectively extract the watermark, which illustrates the
proposed scheme is robust against the JPEG compression.

To measure the robustness of the proposed method, many other attacks are also
tested with the Lena and House images. Table 3 provides the comparison of the NC
and visual perception results with other watermarking algorithms [22, 24]. As can be
seen, the proposed scheme is more robust against median filtering, sharpening, Gamma
correction, histogram equalization and cropping attacks compared with those methods
in [22, 24]. The watermarking method in [24] has a better robustness against salt &
pepper noise and resizing attacks, while the presented scheme in [22] has a more
satisfying robustness against contrast adjustment.

4.3 Security Analysis

Apart from the robustness considerations, the security is also important for an efficient
watermarking method. In order to guarantee the security of the watermark, a water-
marking scheme should be highly sensitive to the secret keys. In other words, a slight
change in the secret keys will result in the failure of the perfect extraction. In the
proposed technique, the parameters e, l and the initial conditions x0ð1Þ, x0ð2Þ, x0ð3Þ are
used as the secret keys. All of these keys are private keys, and the keys in the extraction

(a) Attacked Lena image (b) Extracted watermark

(c) Attacked House image (d) Extracted watermark

Fig. 5. Results for JPEG compression with quality factor 30.
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Table 3. The extracted watermarks and NC values under various attacks.
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stage must be identical to those in the embedding stage. If the computational precision
is 10−15, the key space of the proposed technique is larger than 2172, which makes the
brute-force attack infeasible.
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Let the initial key set be K0 ¼ e0; l0; x0ð1Þ; x0ð2Þ; x0ð3Þð Þ. We slightly modify the
secret keys as follows: (i) K1 ¼ e00; l0; x0ð1Þ; x0ð2Þ; x0ð3Þ

� �
where e00 ¼ e0 þ 10�15;

(ii) K2 ¼ e0; l00; x0ð1Þ; x0ð2Þ; x0ð3Þ
� �

where l00 ¼ l0 � 10�15; (iii) K3 ¼ e0; l0; x
0
0ð1Þ;

�

x0ð2Þ; x0ð3ÞÞ where x00ð1Þ ¼ x0ð1Þþ 10�15; (iv) K4 ¼ e0; l0; x0ð1Þ; x00ð2Þ; x0ð3Þ
� �

where x00ð2Þ ¼ x0ð2Þ � 10�15; (v) K5 ¼ e0; l0; x0ð1Þ; x0ð2Þ; x00ð3Þ
� �

where x00ð3Þ ¼
x0ð3Þþ 10�15. Figure 6 shows the sensitivity test of the proposed method by extracting
the watermark using different secret keys. As can be seen, the correct watermark can be
recovered only by the right keys. Therefore, our proposed watermarking scheme is
highly sensitive to the secret keys, and all correct keys are necessary for perfect
extraction.

5 Conclusions

In this paper, a secure dual color images watermarking scheme is presented based on
SVD, DNA sequences and CML, in which both the host image and the watermark are
the color images. Different from the existing image watermarking schemes, we insert
the DNA sequences instead of binary numbers into the host images. The watermark is
embedded by modifying the elements in the first column of the matrix V from the SVD
transformation. The experimental results have validated the effectiveness and robust-
ness of the proposed watermarking scheme.
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Fig. 6. The extracted watermarks using different secret keys.
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Abstract. In this work we propose a scheme that could be used as an
alternative to the existing proof of work(PoW) scheme for mining in
Bitcoin P2P network. Our scheme ensures that the miner must do at
least a non-trivial amount of computation for solving the computational
problem put forth in the paper and thus solving a PoW puzzle. Here,
we have proposed to use the problem of finding the largest clique in a
big graph as a replacement for the existing Bitcoin PoW scheme. In this
paper, we have dealt with a graph having O(230) vertices and O(248)
edges which is constructed deterministically using the set of transactions
executed within a certain time slot. We have discussed some algorithms
that can be used by any Bitcoin miner to solve the PoW puzzle. Then we
discuss an algorithm that could perform this task by doing O(280) hash
calculations. We have also proposed an improvement to this algorithm
by which the PoW puzzle can be solved by calculating O(270.5) hashes
and using O(248) space. This scheme is better than the existing proof
of work schemes that use Hashcash, where a lucky miner could manage
to find a solution to the proof of work puzzle by doing smaller amount
of computation though it happens with very low probability. Bitcoin
incentivizes the computing power of miners and hence, it is desirable
that miners with more computing power always wins. Also, the Bitcoin
PoW scheme only incentivizes computing power of miners but our PoW
scheme incentivizes both computing power and memory of a miner. In
our proposed scheme only the miner cannot randomly find a largest clique
without knowing the clique number of the graph.

Keywords: Random graph · Clique problem · Proof of work · Bitcoin

1 Introduction

Bitcoin is a cryptocurrency that does not rely on any centralized trusted server
such as a bank. Here, users maintain a publicly auditable ledger called the Bitcoin
block chain. This block chain contains all the valid blocks of valid transactions
conducted by users and “accepted” by the Bitcoin network. These blocks are
generated by ‘Bitcoin miners’ by solving a proof of work puzzle [13]. This puzzle
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is adopted from Back’s Hashcash [2]. In the classical model the miners would
need to construct a block by doing a brute force search with the SHA-256 hash
function in order to find a nonce such that the hash of all the transactions and
the nonce along with the header of the previous block happens to fall below
some predefined target value. If a Bitcoin miner can find such a nonce, then
she broadcasts it along with the transactions she considers to be valid. A miner
who solves the proof of work puzzle, that is a miner who finds the appropriate
nonce is given some amount of Bitcoins as incentive and the block that she
broadcasted is mostly accepted by all the users in the entire Bitcoin network.
The consistency of the Bitcoin network largely depends upon the honesty of
Bitcoin miners who win the proof of work puzzle. This incentive is given to lure
honest Bitcoin users into investing their computational resources for keeping
Bitcoin secure and to keep dishonest users at bay. In the existing Bitcoin mining
scheme a miner needs to compute O(270) hash computations on an average for
finding a nonce such that the hash of the nonce and the set of valid transactions
is less than a predefined limit under SHA-256 hash scheme. There are other
altcoins like Permacoin [11] that uses proof of storage rather than proof of work.
Another paper [18] by Sengupta et al. proposed Retriecoin that uses proof of
retrievability scheme to improve the communication and storage requirement of
Permacoin. Details about Bitcoin are provided in Sect. 2.

Motivation: The existing Bitcoin mining scheme is simple to implement and
has got sufficient mean computational complexity for being a computationally
expensive mining scheme. The main downside of this scheme is that a Bitcoin
miner may solve the puzzle in a single attempt that is the nonce she chooses
at first instance might produce a hash which is less than the desired limit. The
probability of getting such a nonce in polynomial time is very low, though it is
not equal to zero. In fact the probability of solving the PoW puzzle in the i’th
attempt is same as solving it in the first attempt. The work of Tromp [21] is
proposed as a substitute for the current Bitcoin mining Algorithm. In this scheme
the author proposed to use graph problems for Bitcoin PoW. The paper proposes
to construct a big graph depending upon a hash based computation and then
examines the presence of subgraph (usually an L cycle) in the original graph.
Tromp did not discuss any method to apply his scheme in Bitcoin network. Also,
the solution of the PoW puzzle could be stolen while in transmission and then
the miner who has stolen it could re-transmit is as her solved PoW puzzle.

Contribution: In this paper we introduce another proof-of-work scheme that
could be used as an alternative to the existing Bitcoin mining puzzle. Our scheme
proposes to employ clique finding problem in a giant random graph for the proof
of work puzzle. Finding the maximum clique in a graph is NP-hard. Hence, we
choose clique finding problem for the PoW scheme for Bitcoin mining. In our
scheme a miner needs to find the largest possible clique in a graph containing
exponential number of vertices. The construction of the random graph itself
requires computation of exponentially many hashes. Thus, finding the largest
clique in the graph becomes a hard problem. We also have proposed an Algo-
rithm that could find the largest cliques in O(280) time which is not too higher
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than the capacity of Bitcoin network as of April 2015 according to the pub-
licly available information on WWW.BITCOIN.INFO. We further improve the
run-time to O(270.5). Our work is motivated by Tromp’s paper [21], but is bet-
ter than [21]. In our scheme, however the graph is constructed deterministically
from the set of transactions conducted during a certain time slot. So, any peer
of the Bitcoin network can construct the graph deterministically from the set of
transactions she wants to verify. Tromp’s work does not discuss how to relate his
proposed PoW scheme to Bitcoin mining and hence is incomplete. Our scheme
however is proposed exclusively for the Bitcoin network. Thus, our scheme is
more applicable to the decentralized Bitcoin networking scenario. In our scheme,
the miners try to find the largest possible clique within a bounded time what we
call an epoch. A miner who can find the largest possible clique within this time-
bound is the one who wins the mining game. As we shall see in later parts of the
paper that a miner’s probability of finding such a clique in the first few attempts
is much lower than that of the current PoW schemes that use Hashcash. Chan
et al. [4] showed that there can be no algorithm running time O(no(k)) to test
whether a given graph has a clique of size k. So, to find a clique, one needs to
do a lot of computation and the difficulty of solving our PoW puzzle is based on
this result.

Organization: The rest of the paper is organized as follows: In Sect. 2 we do
a background study of Bitcoin cryptocurrency and clique problem. In Sect. 3,
we have discussed some previous results on random graphs that will be used
in our paper. In Sect. 4.1 we discuss our PoW schemes for Bitcoin mining. We
provide two mining algorithms namely Figs. 1 and 2 in Sect. 4.1, the second
algorithm being a modification of the first one. The mining algorithms use a
variant of clique finding problem as the proof of work puzzle. In Sect. 5, we give
a detailed theoretic study of our PoW scheme. We also provide two algorithms
for solving the proposed PoW scheme. These are Figs. 3 and 4. Figure 3 does
random search over the set of vertices of the graph to find the maximum clique
whereas Fig. 4 does an efficient search for the maximum clique. We have discussed
some improvement of the Fig. 4 that will allow any miner to efficiently find the
largest clique and thus to solve the PoW puzzle. In Sect. 6, we give a comparison
between our scheme and other PoW schemes proposed for Bitcoin. We conclude
the paper in Sect. 7.

2 Related Work

We discuss these topics for our background study.

(1) Bitcoin: Bitcoin is a decentralized cash system that does not depend on a
centralized server such as a Bank. Its users make online payments by digitally
signing every transaction with their secret key. The corresponding public key can
be used to publicly verify the authenticity of the transaction. Bitcoin network
maintains a publicly auditable ledger called Bitcoin block chain that is aimed at
preventing double spending of Bitcoins. In every 10 min a new block is added to

WWW.BITCOIN.INFO
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the block chain that consists of valid transactions. To create a new block Bitcoin
users need to solve a PoW puzzle that requires nontrivial amount of compu-
tation. Bitcoin network uses Back’s Hashcash [2] for PoW. A Bitcoin block is
constructed by users called miners and it requires one to execute a nontrivial
amount of computation. For mining Bitcoin, a miner needs to find a nonce such
that the hash of the nonce, the merkle root of all valid transactions as well as
some other parameter starts with some predefined number of zeros. Since the
hash function is secure under random oracle model, the only way of finding such
a nonce is to do a brute force over all the possible values of the nonce until a
nonce is found that gives the hash the requires number of zeros. This is called
the Bitcoin mining puzzle and it needs to be solved by at least one miner every
time a block is constructed. Typically it takes about ten minutes to construct
a block in the Bitcoin network. The number of zeros which are required for the
hash to be valid solution defines the difficulty level of the Bitcoin mining puzzle
and is updated regularly to ensure that the time to construct a block remains
nearly equal to ten minutes. A Bitcoin miner is given a reward of 25 Bitcoins
when she can succesfully create a valid block. This incentive attracts Bitcoin
miners into expending their computational resources for solving the mining puz-
zle. At present the Bitcoin network computes 400 million Gigahashes per second.
Since, mining takes a nontrivial amount of computation, typically equivalent to
the processing power of millions of desktop machines it is not possible for an
individual miner to solve the mining puzzle on her own. Hence, many individual
miners form a big computational force by combining their processing power to
crack down the mining puzzle together. The group of miners is called a mining
pool and are administrated by a miner called pool operator. In every pool, the
pool operator is solely responsible for distribution of jobs to individual miners
as well as for sharing the reward if the pool can solve the mining puzzle.

(2) Clique problem: A clique is a complete subgraph of a graph. Clique problem
involves finding two types of cliques viz. maximal clique and maximum clique.
A maximal clique is one that cannot be extended to form a clique of bigger size
i.e. there is no bigger clique in the graph that contains the former as a subgraph.
Again, a maximum clique of graph is a clique that has the size equal to that of
the largest clique in the same graph. Clique problem is defined as the problem of
finding the largest clique in a graph or listing all maximal cliques in the graph.
Moon et al. [12] showed that the number of maximal cliques of a graph could be
O(3n/3). The simplest Algorithm that can list all maximum clique of a graph is
the Bron-Kerbosch Algorithm [3] that has a mean run time of O(3n/3). A variant
of this was proposed by Tomita et al. [20] and it has a worst case complexity of
O(3n/3). The Algorithm finds all the maximal cliques in the graph and returns
the largest one. Tarian et al. [19] proposed an Algorithm that improved the
complexity to O(2n/3) using a recursive backtracking scheme that eliminates
some recursive calls intelligently. Further improvements were proposed by Jian
[8]. This Algorithm can list all largest cliques in O(20.304n) time. Robson [16]
again used dynamic programming technique to reduce it to O(20.276n). But his
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Algorithm uses higher amount of space. The best Algorithm known till today is
by Robson [17] that has a run time of O(20.249n).

Cliques of a fixed size k can be found in polynomial time by examining all
subsets of size k and checking whether each of them forms a clique or not. This
would take O(

(
n
k

)
k2) time. There has been a lot of research done on finding all

triangles in a graph. Chiba et al. [5] proposed an Algorithm that finds all trian-
gles in O(e

3
2 ) time, e being the number of edges in the graph. The Algorithm

can enumerate all triangles in a sparse graph faster. Alon et al. [1] improved the
O(e

3
2 ) Algorithm for finding triangles to O(e1.41) by using fast matrix multipli-

cation. The idea of faster matrix multiplication has also been used for finding
bigger cliques in [6,9,14,22,23].

3 Preliminaries

3.1 Random Graph

A random graph Gn,p is a graph (V,E) on a set of vertices V , |V | = n such that

∀v1, v2 ∈ V, Pr[{v1, v2} ∈ E] = p.

That is in a random graph with n vertices, the probability of occurrence of an
edge between a pair of vertices is given by p. This model of construction of graph
was first proposed by Erdős and Rényi and is named after them.

Theorem 1. [7] Let Z(n, p) denote the size of largest complete subgraph of a
graph Gn,p. The sequence {Z(n, p)} of random variables satisfies

lim
n−→∞ Pr[Z(n, p) → 2 log n

log 1
p

+ O(log n)] = 1

Theorem 2. [10] For n ≥ 1, 0 < p < 1, for 1 ≤ k ≤ n,

⎧
⎨

⎩

k∑

j=max(0,2k−n)

(
n−k
k−j

)(
k
j

)

(
n
k

) p−j(j−1)/2

⎫
⎬

⎭

−1

≤ Prob[Z(n, p) ≥ k] ≤
(

n

k

)
pk(k−1)/2

The above Theorems show that for any random graph having high number of
vertices the size of the largest subgraph approaches a certain value. In Theorem2,
Matula proved using computation that the density of Z(n, p) is very spiked for a
big random graph. There is a single spike where more than 99 % of the observed
data accumulate. He computed that Pr[Z(1010, 1/4) = 30] > 0.9997 [10]. If we
have a random graph Gn,p, then if n is very high, typically having exponential
size, then the size of the largest complete subgraph will be ≈ 2 log n

log 1/p + O(log n)
with an very high probability. Due to this behavior of the density of Z(n, p), it
is possible to apply clique finding problem for solving Bitcoin proof of work.
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3.2 Bitcoin Transactions

Bitcoin users, as mentioned above, make online payments by making a transac-
tion. A Bitcoin transaction is hashed with the payee’s public key and is signed
by the payer to validate the payment. A transaction can have multiple input
fields as well as output fields and the number of all of them determines the
actual size of the transaction. Each transaction input requires at least 41 bytes
for references to the previous transaction and other headers and each transac-
tion output requires an additional 9 bytes of headers. Besides, each transaction
has an at least 10 bytes long header. Thus, 166 bytes is the minimum size of a
Bitcoin transaction.

3.3 Notations

We have used the following notations in this paper:

• Ki is a clique of size i.
• Ci is the set of all Kis in the graph.
• For any integer m > 0, [m] = {1, 2, . . . ,m}.
• R(η, q) is the random graph having η vertices, where the probability of occur-

rence of an edge between any pair of vertices is q.

4 Our Scheme

4.1 The First Scheme

Let us define ‘epoch’ to be the period of time between construction of two consec-
utive blocks. The time of construction of a block in the Bitcoin network happens
to be 10 to 15 min or may be less. Therefore an epoch may last for a time
between 10 to 15 min so that all transactions executed after the commencement
of an epoch and before the expiry of that epoch are included in the Bitcoin block
for that epoch. Transactions which are executed sharply before the expiry of an
epoch may not be included in the block for the current epoch due to the delay
of the transaction in traveling across the Bitcoin network and therefore it could
be safely accommodated in the next block if their validity is acknowledged by
the miner. Note that the transaction set for which a miner attempts to find a
PoW solution may not be the same for all miners. Without loss of generality
we may assume that the number of transactions occurring in a particular block
is a power of 2. It can be forcibly done either by accommodating some extra
transactions to the next block or by using some predefined dummy transactions.

As we have discussed we are going to propose the problem of finding the
largest clique in a big graph. Here we shall be dealing with a graph having 230

vertices. We also fix the probability of occurrence of an edge between any two
vertices of the graph equal to 1

212 . The reason behind fixing the values of these
two crucial parameters is to have the difficulty level of solving the PoW in the
close range of the amount of computation needed to solve the Bitcoin PoW
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puzzle as of June 2015. In future, as the computational power of the Bitcoin
network will increase, the difficulty level could be adjusted by increasing the
graph size as it is done in the case of the current Hashcash based Bitcoin mining
strategy. Another way of adjusting the difficulty is to increase the number of
edges of the graph. As we will see below, the probability of occurrence of any
edge of the graph can be adjusted. A higher probability of occurrence of edges
will create a denser graphs. The size of maximum clique will shoot up(as the size
of the maximum clique depends on the probability of occurrence of edge). The
difficulty of finding the maximum clique will also increase. The detailed study of
the effect of graph size and the density is beyond the scope of this paper and we
will study them in future. The clique finding problem takes O(nk) time for fixed
clique of size k, where n is the number of vertices. Chen et al. [4] Showed that
there can be no algorithm that runs in O(no(k)) to test that a given graph has a
clique of size k or not. This result provides a surety that finding a clique of size
k gets hard as the number of vertices n increases. So, by increasing the number
of vertices n we can increase the difficulty of solving the PoW puzzle details of
which will be incorporated in a future work.

Let, τ = {Ti : 1 ≤ i ≤ 2ν} be the set of 2ν transactions that the miner wants
to validate in a certain epoch ε0 where ν is a fixed integer. The set τ may not be
the same for all miners and depends upon the choice of a particular miner. This
set τ is the set of transactions that this particular miner wants to include in the
block created by her. Like the Bitcoin network in our scheme the miners have
some degree of freedom in choosing the transactions for any epoch. Let pk be the
public key of the miner. We use the set τ to build the set of vertices of the graph
that will be ultimately used by this miner for solving the PoW puzzle. Let, T be
a set such that T = {L(i−1)∗230−ν+j : L(i−1)∗230−ν+j = Ti||pk||j, 1 ≤ i ≤ 2ν , 0 ≤
j ≤ 230−ν −1}. Hence, |T | = 2ν ∗230−ν = 230 = n(say). The set T contains some
elements which are the concatenation of a transaction from the set τ , the public
key pk of the miner and a nonce that takes the value from 0 to 230−ν − 1. So,
|T | = |τ | × 230−ν = 230. The miner constructs a graph Gn,p = (V,E) such that
V = T , n = |T |. The set of vertices is the set T itself. We define the set of edges
as E = {(u, v) : u, v ∈ V,H(u||v) = 012||{0, 1}∗}, where H(·) is a hash function.
Hence, a single hash needs to be calculated to check the existence of an edge
between a pair of vertices. Thus in the graph any two vertices will be connected
by an edge if the hash of the concatenation of the two vertices starts with 12
zeros. So, the probability of occurrence of an edge between any two vertices is
given by p = 1

212 . We choose this to be the probability of occurrence of an edge
for having the expected size of the maximum clique as low as 5 for this graph.
Since, we use hash function for computing the edges of the graph, the final graph
will be random for every miner and will have 230 vertices. So, the difficulty of
finding the largest possible clique will be same in all the graphs. Thus, this
scheme is fair and the public key of the miner has negligible effect on the graph
other than making it different from all other graphs on which other miners are
mining. It is also easy to see that the graph need not be stored anywhere as
the miner can generate it using the above technique during runtime. It can be
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easily seen that one can increase the size of the graph changing the number of
nonces used to compute the vertices of this graph. Here, we chose 230−ν to be
the number of nonces that are concatenated with the transaction and the public
key to compute the vertices. If we choose 2λ−ν to be the number of nonces, we
will get a graph of 2λ vertices. Also, if we tune the probability of occurrence of
any edge we can get sparser or denser graph. So, thus we can adjust the size of
the largest clique in the graph as it follows Theorem 1 making the clique number
very close to 2λ

log 1
p

. From [4], we can say that as the clique number increases the

difficulty to find it also increases. The details of this will be covered in a future
paper.

Our Proof-of-Work scheme is to find the largest complete subgraph in Gn,p

constructed as above. So, if the miner can find the solution of this PoW that is
if she can find the largest clique and his PoW is accepted all transactions in τ
will be validated. We provide our PoW scheme in Fig. 1. In this Algorithm, a
miner tries to find the maximum clique by searching the adjacency matrix of the
graph Gn,p. So, the problem of finding the maximum complete subgraph of Gn,p

is reduced to the problem of finding the maximum submatrix of the adjacency
matrix of Gn,p with all entries equal to ‘1’ except the diagonal entries. Let, B be
the adjacency matrix of the graph Gn,p. The dimension of B is |V | × |V |. Let B′

be an arbitrary submatrix of B. We define the index set IB′ of B as IB′ contains
the indices of each element of B′ in the original matrix B.

Fig. 1. Algorithm 1: new proof of work scheme for mining in Bitcoin network
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Remark 1. Every miner should send all the transactions, her public key and her
solution(largest clique) across the Bitcoin network. The peers will require to
check that the solution indeed forms a clique. For example if the largest clique
has six vertices, v1, v2, . . . , v5, where vi = {Ti||pk||ji}, 1 ≤ i ≤ 5. So, the miner
should send (T1, T2, . . . , T5) and {j1, j2, . . . , j5}. She also needs to send the set
of all transactions τ . From these sets, a peer can easily check whether the set
of 5 vertices indeed form a clique or not. Later we will see that a peer needs to
calculate 10–15 hashes to check that the vertices indeed form a clique.

It could be observed that in our scheme in Fig. 1, a Bitcoin miner does not
necessarily require to find the biggest clique in the graph. It is sufficient if she
finds a clique which is larger than any other clique found by other miners. The
Bitcoin network, according to our Fig. 1, selects the largest clique from all the
cliques it received from all the miners as potential solutions. Hence, a miner
may send multiple cliques of different sizes as they are found if the miner uses
a bottom up approach to find them. A network peer will store every clique it
receives during a particular epoch and when the epoch ends, it will open the
cache and choose the largest clique it has received. The peer can alternately
store a clique as long as it does not receive a bigger clique from some miner.
Thus, the peer will only store one clique as a potential solution at any time and
if a clique of bigger size is received it would drop the earlier one and store the
new one. If there are multiple cliques of largest size from different miners, the
network may break ties by selecting the one that came first. So, a miner may
send a clique of size κ even before she is able to confirm that there is no clique
of size κ + 1 which could take a longer time. This would allow miners to play
safely, eliminating the chance of not being able to send a single solution before
the epoch ends even if she had indeed found a solution before the epoch ended.
Since, the epoch is fixed and the miners must submit their solution before the
epoch ends, there will be no instability of the block chain due to delayed arrival
of PoW solutions. All solutions appearing late will be rejected. Someone can
argue that multiple miners may find the solution before the epoch ends and this
could cause branching in the block chain. However, branching does happen in
Bitcoin block chain and ultimately only one branch wins the race. The same can
be true in our scheme. Besides, we have fixed a window of time within which the
solution is to be submitted and among all the solutions only the one must be
accepted that came first. This would lower the probability of branching in the
block chain. Even if a fork happens, only a single branch will grow longer as the
original Bitcoin block chain does.

It can be noted that no other miner can steal a miner’s solution and relay that
as her own solution, because of the inclusion of the public key(pk) of the miner
in the calculation of the giant graph. This is incorporated in the construction
of the graph to ensure that every graph constructed by every miner is separate
but the difficulty in finding the maximum clique will be same in all the graphs
because of the result of Lemma 1 which says that all such graphs that different
miners are working on are statistically indistinguishable from a random graph
R(230, 1

212 ) and hence the difficulty of finding the maximum clique will be same
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in all of them. So, the amount of computation needed to find the maximum
clique will be equivalent for all miners. Also, the size of the maximum clique will
be same in all of them because of Theorem 1.

In our scheme there is no way by which a verifier can determine the exact
size of the largest clique of the random graph Gn,p without repeating the same
procedure used by miners. However, there are some sharp bounds that allow a
verifier to guess the value of the largest clique with a high degree of accuracy as
explained in Sect. 3.1. With the help of this bound, the Bitcoin peers can guess
the size of the maximum clique with a great degree of accuracy. Since, the graphs
on which the different miners are working are statistically indistinguishable, the
size of maximum cliques will be same in all of them with a very high probability.

4.2 A Modified Mining Algorithm

According to Theorem 1, the size of the largest clique in a random graph is of the
order of 2 log n

log(1/p) + O(log n), n being the number of vertices(230 in our case) and
p being the probability of occurrence of an edge between a pair of vertices( 1

212

in our case). The probability that the size of the largest clique will be anything
beyond this tends to zero as n tends to infinity.

Fig. 2. Algorithm 2: yet another proof of work scheme for mining in Bitcoin network
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Note that there could be many largest cliques in the graph Gn,p. So, many
miners may find more than one largest cliques if the ‘epoch’ is sufficiently long.
Therefore, it could be possible to decide the winning miner not by selecting the
first solution that was submitted to the Bitcoin network but by the number of
cliques a miner has found. That is we can choose a winner by selecting a miner
who has found the highest number of distinct cliques in the graph. So, we modify
the Fig. 1 as follows:

(1) The miner needs to find as many cliques as she can from the graph.
(2) All those cliques will be on an exclusive subset of vertices of the graph.

Thus, instead of finding a single largest clique, the miners are encouraged to
compute as many cliques as they can within a bounded time. The miner who
computes maximum number of cliques is the winner of the Bitcoin mining game.
Note, that the expected number of largest cliques of size k in our graph is given by(
230

k

)
( 12 )6k(k−1) ≈ 26k(6−k), where k is given by 5+30c, c 	 1. Note that putting

k = 5, we find that the number of cliques of size 5 is 230. Similarly, putting
k = 6, the expected number of cliques of size 6 comes to be only 1. Again the
expected number of cliques of size 7 happens to be a very small fraction ≈ 1

242 .
This shows that c must be a small constant so that k = 5 or 6 with a very high
probability conforming to the results of [7].

In Fig. 2, we give a modified version of Fig. 1. Here, as discussed before,
we allow the miners to find multiple largest cliques in the graph. In Fig. 1,
just finding a single clique would have been sufficient. But in Fig. 2 the miner
who sends maximum number of cliques wins. So, a miner who uses incremental
approach to construct cliques in Fig. 1, sending them as soon as they are found,
will need to find the size of the maximum clique first, then only she can start
computing those cliques one by one using her own strategy. Therefore, a Bitcoin
miner will be more encouraged to co-operate to constitute a big pool of miners
to add up their computational resources. Note that since finding a clique is very
costly operation, so only few mining pools having sufficient resources can afford
to do mining for our PoW scheme. In Sect. 5, we provide some algorithms that
can be used for finding maximum cliques for our PoW schemes i.e. they can be
used for finding maximum cliques in our graph Gn,p. To verify the PoW solutions
one peer does not need to compute the entire graph. Instead she only needs to
check the solutions found by the miners indeed form cliques. In our model the
size of the largest clique will be 5 or 6 with a very high probability according to
Theorem 1. So in order to check one maximum clique, the verifiers will require
to compute 10 or 15 hashes. Also the peers don’t need to be sure that the clique
found by a miner is the largest clique in the graph. She can only choose the
biggest one she has received and can accept the corresponding block. This may
seem to be slightly inefficient compared to the classical Bitcoin mining scheme
where only a single hash needs to be calculated. But in this scheme we ensure
that the miner who invests maximum amount of computation can only win the
mining game unlike the existing scheme where a lucky solver can get a solution
much earlier than others who possess much higher amount of computational
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resources. In our scheme, a solver needs to calculate a large number of hashes to
ensure that a significantly large part of the graph is constructed to find the size
of the largest clique that fall within a narrow range of 5 or 6 with a very high
probability.

5 Analysis of Our Scheme

Lemma 1. Let C be the incidence matrix of a random graph R(230, 1
212 ) and B

be as defined in Fig. 1. For every probabilistic polynomial time distinguisher Δ,

|Pr[Δ(B) = 1] − Pr[Δ(C) = 1]| ≤ negl

provided H() is a secure hash function.

Proof. If the above lemma is not true, then the hash function will be such that for
any two vertices, v1, v2, P r[e(v1, v2)] 
= 1

212 . So, for a pair of any T1, T2 ∈ τ, 0 ≤
m,n ≤ 230−ν −1, P r

[
H((T1||pk||m)||(T2||pk||n)) = 012||{0, 1}∗] 
= 1

212 . So, there
exists x, y such that Pr[H(x) = a] 
= Pr[H(y) = a], for some a belonging to the
domain of the output of the hash function. This shows that H() is not a secure
hash function. So, our assumption is incorrect. �

Thus, it is apparent that finding a maximum clique in the giant graph is as
difficult as finding the same in a random graph R(230, 1

212 ). Finding a maximum
clique in any graph is known to be NP-hard problem [15]. In later sections of
this paper we attempt to construct feasible Algorithms for miners to compute
the solution of the graph based proof of work puzzle proposed in Figs. 1 and
2. Before we propose feasible algorithms for finding maximum cliques in the
graph, we show that the miner cannot construct a clique by manipulating the
transactions i.e. the miner cannot compute transactions that forms a clique in
the graph and add it to the graph. The only way a miner can find a maximum
clique is by searching the entire graph.

Lemma 2. The miner cannot compute transactions T1, T2, . . . , T5, (not all nec-
essarily distinct), such that H((Ti||pk||j)||(Tk||pk||l)) = 012||{0, 1}∗, 1 ≤ i, k ≤
5, i < k, 0 ≤ j, l ≤ 230−ν , (Ti, j) 
= (Tk, l).

Proof. The miner will need to find transactions T1, T2, . . . , T5(not all dis-
tinct) such that there exists {j1, j2, . . . , j5}, 0 ≤ ji ≤ 230−ν , such that
H((Ti||pk||ji)||(Tk||pk||jk)) = 012||{0, 1}∗,∀i, k ∈ {1, 2, 3, 4, 5}, i < k.
For any i, k ∈ {1, 2, . . . , 5} and 0 ≤ ji, jk ≤ 230−ν , Pr [H((Ti||
pk||ji)||(Tk||pk||jk)) = 012||{0, 1}∗] = 1

212 . So, finding two transactions Ti, Tk

such that H((Ti||pk||ji)||(Tk||pk||jk)) = 012||{0, 1}∗, 1 ≤ i, k ≤ 5, i <
k, 0 ≤ ji, jk ≤ 230−ν , (Ti, ji) 
= (Tk, jk) takes 212 hash computations.
So, finding a set of transactions {T1, T2, . . . , T5}(not all necessarily dis-
tinct) and indices {j1, j2, . . . , j5} (not all necessarily distinct) such that
H((Ti||pk||ji)||(Tk||pk||jk)) = 012||{0, 1}∗, 1 ≤ i, k ≤ 5, i < k, ji, jk ∈
{j1, j2, . . . , j5}, (Ti, ji) 
= (Tk, jk) takes on an average (212)(

5
2) = 2120 hash com-

putations. As we shall see later, this is higher than the computation required to
find a maximum clique in the graph. �
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Since our graph contains 230 vertices, all the maximum cliques could be listed
by doing an exhaustive search, checking all possible

(
230

k

) ≈ 230k subgraphs of k
vertices. Lemma 3 shows that by doing a brute force search a maximum clique
could be found in time exponential in k when the size of the maximum clique k
is known beforehand.

Lemma 3. The expected amount of computation needed to find the first largest
clique in brute force search method is O

(
26k(k−1)

)
, where k is the size of the

largest clique.

Proof. Let Nk be the number of iteration required to find the first clique of size
k. The miner’s strategy is as follows:

Step 1: Ω = ∅.
For each Step i, The miner chooses a set Γi of k vertices randomly from the set
of vertices V such that Γi /∈ Ω.

If the vertices in Γi form a clique then she outputs it. Else she updates Ω
as Ω = Ω ∪ Γi. Now, the expected number of iterations needed to find the first
clique is

E(Nk) =
∞∑

i=1

i(1 − r)i−1r,

where r = p
1
2k(k−1). So, E(Nk) = r

∑∞
i=1 i(1 − r)i−1 = 1

r . Since, in our scheme
p = 1

212 , the lemma follows. �

The method of Lemma 3 finds a clique of size k by randomly choosing k new
vertices each time and checking them whether they form a clique or not. The
method incurs an additional space complexity of O

(
26k(k−1)k

)
to store the set

Ω before the first clique is found. Now, in our model, the value of k roughly
equals to 5 or 6, so, the average amount of computation required is of the order
of 2120 or 2180 if brute force search is applied. In each of such searches the miner
needs to search that a particular k × k submatrix of the big adjacency matrix B
of the random graph Gn,p has all entries equal to ‘1’ except the diagonal entries.
Note that our verification Algorithm does not verify whether the clique which
is given by the miner is the biggest one or not. It just selects the largest clique
from all solutions given by the miners.

5.1 Finding Cliques in the Graph: Algorithms

Here, we give a naive Algorithm to find a clique of arbitrary size using random
search. This Fig. 3 supports parallel computation of candidate cliques of the
random graph. We know that the clique number of the random graph takes the
value of k + O(log n) with a very high probability, where k = 2 log n

log 1
p

, n being

the number of vertices of the graph(230 in our case) and p being the probability
of occurrence of an edge between any two vertices( 1

212 in our case). Thus if
the clique number k is known a clique could be found using Fig. 3. In each of
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the iterations of Fig. 3, a miner only needs to check whether a particular k × k
submatrix of the adjacency matrix of the graph contains all entries equal to ‘1’
excepting the diagonal entries. Since the adjacency matrix is very high in size, it
will not be possible to store it at a particular place. Neither will it be possible to
share it by different miners spread across the entire globe. Hence, the miner who
executes Fig. 3 needs to compute the hashes on the fly and check for existence
of a clique. From Lemma 4, we can see that the number of hashes required to
be calculated is O(26k(k−1)). In our case k = 5 or 6. So, for k = 5 the amount
of hash computations needed will be O(2120). For k = 6, however it is much
higher. Hence, the Fig. 3 is impractical for use in mining as it would increase
the computation vigorously. We need to find an Algorithm that would allow the
miners to find a solution in reasonable time. We attempt to construct a feasible
Algorithm in later part of this paper.

Fig. 3. Algorithm 3: a parallel algorithm to compute a candidate maximum clique of
size k

Lemma 4. The Fig. 3 takes O(26k(k−1)) time to find the first clique of size k if
k < 6.

Proof. In every iteration, Fig. 3 selects k vertices randomly and checks whether
they form a clique of size k or not. If they do, the Algorithm outputs it. Now the
difference between the Fig. 3 and the method described in Lemma 3 is that in
Lemma 3 every time a distinct set of vertices is chosen. But in Fig. 3, since the set
of vertices are chosen depending upon the output of the hash function, it may so
happen that some set of vertices that have previously been verified for formation
of clique is again selected for the same verification. This is because Fig. 3 does
not store the set of vertices that are selected and verified for formation of clique.
Thus we would be doing the same computation that we did previously. This
may entail some extra computation. Now, we can try to quantify the amount of
computation needed. This has been done below:
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There are
(
230

k

) ≈ 230k different sets of vertices that needed to be checked for
existence of clique. Figure 3 randomly chooses one of these 230k cliques in every
iteration and examines them for existence of a clique. Let us enumerate all 230k

subsets of vertices arbitrarily. Let Xi denote the random variable such that

Xi =
{

1 if Algorithm 3 never selects the ithsubset
0 elsewhere

Let, Fig. 3 needs to do L iteration to find a clique of size k. Also, let Y =
∑230k

i=1 Xi

Now, E(Y ) = E(
∑230k

i=1 Xi) =
∑230k

i=1 E(Xi) =
∑230k

i=1 P [Xi = 1] =
∑230k

i=1
(230k−1)L

230kL . Thus, E(Y ) = 230k (230k−1)L

230kL .
Hence, the number of sets of vertices that are not selected by Fig. 3 is

230k (230k−1)L

230kL . So, the number of distinct sets of k vertices that are checked

by Fig. 3 after L iterations are completed is 230k

(
1 −

(
230k−1
230k

)L
)

. By Lemma 3

this must be equal to 26k(k−1). Equating them we get 1 −
(

230k−1
230k

)L

= 1
26k(6−k) .

Now if L << 230k, we get L
230k ≈ 1

26k(6−k) . Whence we get L ≈ 26k(k−1). Hence,
the time complexity of Fig. 3 is O(26k(k−1)). �

The complexity of Fig. 3 is equal to the average number of iteration needed
to find a clique in Lemma 3. So, for k < 6, the Fig. 3 has same computational
complexity as the method of Lemma 3. The space complexity of Fig. 3 is O(1)
for k < 6. From Fig. 3 and Lemma 4, we can state the following Theorem:

Theorem 3. If the size of the maximum clique k is less than 6, then there exists
an Algorithm that finds it in O(26k(k−1)) time and with O(1) space.

Another method of finding the maximum clique is to take a bottom up app-
roach, starting from a set of all κ-cliques of the graph and trying to grow them
in size. Once, we find some candidate cliques of size κ using some Algorithm,
we can try to find some larger cliques, if there is any. The method of finding a
clique of size κ + 1 is as follows:

(1) Let C be the set of cliques of size κ output by some arbitrary Algorithm. A
mining pool may store all candidates cliques at a shared location so that other
miners could access them whenever necessary.
(2) Now the miners can try to grow every clique c ∈ C by checking whether any
of the 230 − κ forms a clique of size κ + 1 with the vertices of c. This would
require O(|C|230) computation. We have calculated the amount of computation
needed to find a clique of size κ + 1 from the set C of all cliques of size κ in
Lemma 5.

Lemma 5. The computation needed to find all cliques of size κ + 1, if it exists
given the set of all cliques of size κ is O(230+6k(6−κ)κ).
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Proof. The expected number of cliques of size κ is ω =
(
n
κ

)
p

1
2κ(κ−1). In our case,

n = 230, p = 1
212 . So, ω =

(
230

κ

)
/26κ(κ−1) ≈ 230κ

26κ(κ−1) = 26κ(5−κ+1) = 26κ(6−κ).
Now, from this set of candidate cliques of size κ, a clique of size κ + 1 can be
found using the above method. So, the total computation needed is ω ∗ 230 ∗ κ.
Hence, proved. �

We shall now show how the result of Lemma 5 could be used to construct
an Algorithm that finds all maximum cliques in reasonable time. Let us define
Ci = {〈v1, v2, . . . , vi〉} be the set of all i-cliques of the graph Gn,p = (V,E).

Fig. 4. Algorithm 4: an algorithm to list all largest cliques

Lemma 6. The computational complexity of Fig. 4 is O(285.58)

Proof. The Fig. 4 takes a bottom up approach in computing the maximum clique.
It first takes as input the set of all cliques of size 3. Then it tries to grow the
size of the cliques by checking if any of the other vertices of the graph creates
a bigger clique with it. Thus in every iteration of the outer for loop of Fig. 4,
it uses the set of all cliques of size i to construct a set of all cliques of size
i + 1. Now, according to Lemma 5, the complexity in each iteration is given
by O(230+6i(6−i)i). Without loss of generality we may assume that we run the
Algorithm until C6 is computed. So, the complexity in each iteration should be
as follows;

For i = 3, the run time is O(284 ∗ 3)
For i = 4, the run time is O(278 ∗ 4)
For i = 5, the run time is O(260 ∗ 5).

It is apparent that the complexity of the above Algorithm is O(3∗284). Now, we
can pre-compute C3 using the Chiba & Nishizeki Algorithm [5] in O(272) time.
So, the total complexity of finding all cliques of size 6(if at least one exists) is
O(3 ∗ 284) ≈ O(285.58). �
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This is a reasonable amount of computation for Bitcoin miners. The present
hash rate of Bitcoin network is 1022 ≈ 273 and soon it is expected to reach
the order of 285 when our Fig. 4 will become feasible to be applied for minting
Bitcoin.

The space complexity of Fig. 4 is determined as M = max6
i=3(|Ci|) =

O(max6
i=3 26κ(6−κ)). It is easy to see that M = O(254). Hence, the space com-

plexity is of the order of a petabyte. Hence, the mining pool requires to store
the set Ci in a distributed fashion. Since, a mining pool may contain tens of
thousands of miners it is possible to afford this much space for executing Fig. 4.

Further reduction of the computational complexity of finding C6 can be done
by computing all K4s of the graph as follows:

(1) Find all quadrangles of the graph using the Chiba & Nishizeki Algorithm [5].
(2) Find all K4s using the set of quadrangles.
(3) Then using the set of all K4s (C4) try to find C6 using Fig. 4.

Lemma 7. The method stated above improves the computational complexity of
Fig. 4 to O(280).

Proof. The set of all quadrangles could be found using Chiba & Nishizeki Algo-
rithm in 270.5 time [5]. We calculate the expected number of quadrangles as
follows; the number of ways 4 vertices could be chosen out of 230 vertices is(
230

4

)
. Now, we can create 3 quadrangles from every set of 4 vertices, each of

them with a probability of ( 1
212 )4. So the expected number of quadrangles will

be
(
230

4

)
( 1
212 )4 ∗ 3 < 269.6. So, in order to check whether each of them is a sub-

graph of a clique, O(269.6) computations would be required. Thus, C4 could be
generated. Thereafter we could follow Fig. 4 and Lemma 5 to find C6. It can be
seen from Lemma 6, that in order to compute C5 from C4 it takes O(280) compu-
tation which is the dominating part of the entire complexity evaluation, because
computing all K6 from the set of K5s takes O(260 ∗ 5) time. Thus, the overall
run time is dominated by O(280). �
Theorem 4. There exists an Algorithm that outputs the set of maximum cliques
in O(270.5) time and O(248) space.

Proof. The Algorithm works as follows:

(1) It finds all quadrangles using Chiba & Nishizeki Algorithm. Whenever a
quadrangle is found the Algorithm checks whether it could be a part of a
K4 or not. This could be done by computing only two hashes per quadrangle.
If a quadrangle could be extended to a K4 store it in C4. So, the total amount
of computation needed is bounded by the total number of quadrangles in
the graph which is O(269.6).

(2) Without loss of generality we may assume C4 stores all K4s such that
∀(u1, u2, u3, u4) ∈ C4, u1 < u2 < u3 < u4. Store the set of K4s C4 in a sorted
array A[] such that for every i, j ∈ |C4|, i < j if A[i] = {v1, v2, v3, v4} and
A[j] = {v′

1, v
′
2, v

′
3, v

′
4}, then ∃l ∈ {1, 2, 3, 4} such that vm = v′

m,∀1 ≤ m < l
and vl < v′

l. This would require |C4| log |C4| time. Since, |C4| = 248, the
amount of computation needed to do this is (48 ∗ 248) ≈ O(254).
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(3) We can now use the sorted array A[] to find all K5s. For all i, 1 ≤ i <
|C4|, if A[i] = {u1, u2, u3, v} and A[i + t] = {u1, u2, u3, v

′}, where t > 1,
check whether {u1, u2, u3, v, v′} is a clique or not. This could be checked by
computing a single hash. If {u1, u2, u3, v, v′} is a K5 add it to C5. This would
take O(|C4|) or O(248) computations (see Lemma 8). The space needed to
store C5 is O(230).

(4) Now, the set C5 could be used to compute the set C6 if it is nonempty. This
could be done using the same method stated in step 2 and 3 or in Fig. 4.

It could be checked that the time complexity of this Algorithm is determined
by the time needed to find all quadrangles using Chiba & Nishizeki Algorithm
which is O(270.5). Similarly, the space complexity is O(|C4|) or O(248). �

The time complexity of the Algorithm described in Theorem 4 is same as the
average computation needed to solve the existing proof of work puzzle which is
equivalent to O(273) hash computations.

Lemma 8. Let A[] be a sorted array of all K4s such that for every i ∈ [|C4|], if
A[i] = {v1, v2, v3, v4}, then v1 < v2 < v3 < v4 and for every i, j ∈ |C4|, i < j if
A[i] = {v1, v2, v3, v4} and A[j] = {v′

1, v
′
2, v

′
3, v

′
4}, then ∃l ∈ {1, 2, 3, 4} such that

vm = v′
m,∀1 ≤ m < l and vl < v′

l. Then finding every pairs (i, j), i 
= j such that
A[i] = {v1, v2, v3, v4} and A[j] = {v1, v2, v3, v

′
4} takes O(|A|) time.

Proof. For any arbitrary i ∈ [|C4|], Let A[i] = {v1, v2, v3, v4}. Therefore, all
other K4s like {v1, v2, v3, z} if there are any will be adjacent to A[i] in the array.
If there are Δ such cliques A[j] whose first three vertices are same as that of
A[i], then all such pairs (i, j) could be found in O(Δ2) time. Whether any of
these pairs could be extended to form a K5 can be ascertained by computing
a single hash per such pair. Now, for any three vertices {u, v, w ∈ V }, Δ =
{i : i ∈ [|C4|], {u, v, w} ⊂ A[i]}. So, E(Δ) = 230 ∗ ( 1

212 )3 = 1
26 . Now, the total

time needed to find every pairs (i, j), i 
= j such that A[i] = {v1, v2, v3, v4} and
A[j] = {v1, v2, v3, v

′
4} is O

(|A|{max(1, E2(Δ))
})

or O(|A|). �

6 Comparison with Other Schemes

As we have stated earlier, the existing Hashcash based proof of work scheme
has high variance where, a lucky miner may find the solution of a proof of work
scheme sooner than others. Similarly, the cycle detection scheme of Tromp [21]
does not ensure that the miners will need to do at least a fixed amount of
computation to find the challenged subgraph in the large graph. In our scheme,
however the miner needs to do an O(270.5) hash computations in order to find
the most possible solution that is a clique of size 5 or 6. Here, a miner would
need to figure out the size of the largest clique before doing any random search
similar to that of Fig. 3. So in our scheme the miner cannot find a maximum
clique without doing the minimum amount of computation needed. Even if an
adversary makes a wild guess of the size of the maximum clique to be k, she
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will have to find one of the 26k(6−k) expected number of cliques of size k present
in the graph. If she follows the method described in Lemma3, it would take
O(26k(k−1)) computation on an average to find the first one which is O(2120)
for k = 5 and O(2180) for k = 6. The probability that she could find it at the
first iteration is 1

26k(k−1) . For, k = 5 this would be 1
2120 and for k = 6, this

would be 1
2180 . So her best option is to execute the sequential steps of described

in Theorem 4 and do the O(270.5) computations (that includes O(270.5) hash
calculations) to find the maximum clique or the set of all maximum cliques. The
method of Theorem 4 has low variance as the steps entail constant number of
operation to be performed by every miner.

The main downside of Tromp’s work [21] is that it does not discuss how the
scheme could be applied to the decentralized Bitcoin network. On the other hand,
we have discussed how the graph can be build using the set of transactions that
a miner wants to verify. Thus, our scheme is compatible to the Bitcoin network.

7 Conclusion

In this paper we propose a new proof of work scheme for cryptocurrencies such
as Bitcoin. This proof of scheme makes use of the set of transactions to construct
a giant graph deterministically. The miners are required to find the largest clique
of in this graph as a solution to the proof of work puzzle. We also have proposed
an Algorithm that can be used to find a solution of this puzzle by perform-
ing O(270.5) hash calculations which is commensurate to the hashpower of the
current Bitcoin network. In this paper we used fixed parameter for our sys-
tem model. However as the computational power of the Bitcoin network would
increase in future, one may use our generic model to manipulate the difficulty
level of the puzzle. The study of the effect of every parameter of our model on
the difficulty of the puzzle will open a scope of future work.
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Abstract. Since public clouds are untrusted by many consumers, it is
important to check whether their remote data keeps intact. Sometimes,
it is necessary for many clients to cooperate to store their data in the
public clouds. For example, a file needs many clients’ approval before it is
stored in the public clouds. Specially, different files need different client
subsets’ approval. After that, these stored remote data will be proved
possession by the verifier. In some cases, the verifier has no ability to
perform remote data possession proof, for example, the verifier is in the
battlefield because of the war. It will delegate this task to its proxy.
In this paper, we propose the concept of proxy provable data posses-
sion (PPDP) which supports a general access structure. We propose the
corresponding system model, security model and a concrete PPDP pro-
tocol from n-multilinear map. Our concrete PPDP protocol is provably
secure and efficient by security analysis and performance analysis. Since
our proposed PPDP protocol supports the general access structure, only
the clients of an authorized subset can cooperate to store the massive
data to PCS (Public Cloud Servers), and it is impossible for those of an
unauthorized subset to store the data to PCS.

Keywords: Cloud computing · Provable data possession · Proxy cryp-
tography · Access control

1 Introduction

Cloud computing is an emerging technology where the client can rent the storage
and computing resource of cloud computing servers. The client only needs a
terminal device, such as smart phone, tablet, etc. Cloud computing servers have
huge storage space and strong computation capability. In order to apply for
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data storing or remote computing, the end clients can access cloud computing
servers via a web browser or a light weight desktop or mobile application, etc. In
cloud computing, cloud servers can provide three types service: Infrastructure
as a Service, Platform as a Service and Application as a Service. The end nodes
are some capacity-limited electronic facilities, for example, personal computer,
tablet, remote desktop, mini-note, mobile. These end nodes can access the cloud
computing networking to get computing service by via a web browser, etc.

Generally, cloud computing can be divided into three different types: public
cloud, private cloud and hybrid cloud. Public cloud service may be free or offered
on a pay-per-usage model. The main benefits of public cloud service can be listed
as follows: easy and inexpensive set-up due to the reason that the corresponding
costs are covered by the provider; better scalability; cheaper due to pay-per-usage
model; etc. Public clouds are external or publicly available cloud environments
that are accessible to any client, whereas private clouds are internal or private
cloud environments for particular organizations. Hybrid clouds are composed of
public clouds and private clouds. More security responsibilities for the clients
are indispensable to cloud service providers. It is more critical in public clouds
for their own properties.

Public clouds’ infrastructure and computational resources are owned and
operated by outside public cloud service providers which deliver services to the
general clients via a multi-tenant platform. Thus, the clients can not look into
the public cloud servers’ management, operation, technical infrastructure and
procedures. This property incurs some security problems due to the reason that
the clients can not control their remote data. For the clients, one of the main
concerns about moving data to a public cloud infrastructure is security. Specially,
the clients need to ensure their remote data is kept intact in public clouds. It is
important to study remote data integrity checking since the public cloud servers
(PCS) may modify the clients’ data to save the storage space or other aims.
Or, some inevitable faults make some data lost. Thus, it is necessary to design
provable data possession protocol in public clouds.

1.1 Motivation

We consider the application scenario below.
In a big supermarket, the different managers will move the massive data

to the public clouds. The data has to do with sale, capital, staff member, etc.
These different data needs to get different approvals before they are moved to the
public clouds. Such as, before sale data is moved, these data must be approved
by salesman and sales manager; before staff member data is moved, these data
must be approved by human resource manager and the chairman; capital data
will have to be approved by the salesman, the chief financial officer and the
chairman before they are moved to public clouds, etc.

There exist many application scenarios that the data must be approved by
multi clients before they are moved to the public clouds. Since different data
needs different client subset’s approval, it is necessary to study provable data
possession protocol which supports a general access structure. In order to ensure
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their data security, the verifier has to check their remote data possession at reg-
ular intervals. In some situations, the verifier is restricted to access the network,
e.g., in prison because of comitting crime, in the battlefield because of the war,
etc. Thus, the verifier has to delegate its remote data possession proof task to
the proxy. After that, the proxy will perform the remote data possession proof
protocol based on their warrant. This real social requirement motivates us to
study proxy provable data possession with general access structure in public
clouds.

1.2 Related Work

It is important to ensure the clients’ remote data integrity since the clients do
not control their own data. In 2007, a provable data possession (PDP) model was
proposed by G. Ateniese et al. [1]. PDP is a lightweight probable remote data
integrity checking model. After that, they proposed dynamic PDP model and
designed the concrete dynamic PDP scheme based on symmetric cryptography
algorithm [2]. In order to support data insert operation, Erway et al. proposed
a full-dynamic PDP scheme from authenticated skip table [3]. F. Sebe et al.
designed a provable data possession scheme by using factoring large numbers
difficult problem [4]. Wang proposed the concept of proxy provable data posses-
sion [5]. After that, identity-based provable data possession were proposed [6,7].
In order to ensure critical data secure, some clients copy them and get their
replications. Then, they move these original data and replicated data to multi
PCS. In this case, client must ensure its remote data intact on multi PCS, i.e.,
multi-replica provable data possession [8–11]. At the same time, as a stronger
remote data integrity checking model, proofs of retrievability (PORs) was also
proposed [12]. After that, H. Shacham gave the first PORs protocol with full
security proofs in the strong security model [12,13]. It can be also applied into
the fields, pay-TV [14], medical/health data [15], etc. Some research results have
been gotten in the field of PORs [16–19]. Provable data possession is an impor-
tant model which gives the solution of remote data integrity checking. At the
same time, it is also very meaningful to study special PDP models according to
different application requirements.

1.3 Private PDP and PPDP

From the role of the PDP verifier, it can be divided into two categories: private
PDP and public PDP. In the CheckProof phase of private PDP, some private
information is needed. On the contrary, private information is not needed in the
CheckProof phase of public PDP. Public PDP provides no guarantee of privacy
and can easily leak information. Private PDP is necessary in some cases.

A supermarket sells goods every day and stores the sale records in the pub-
lic clouds. The supermarket can check these sale records integrity periodically
by using PDP model. It would not like other entities to perform the checking
task. If the competitors can perform the integrity checking, they can get the sale



286 H. Wang and D. He

information by performing many times integrity queries. Without loss of gen-
erality, we assume that the queried block sequence is {ms1 ,ms2 , · · · ,msc

}. The
symbols s1, s2, · · · , sc denote the queried block indices where s1 ≤ s2 ≤ · · · ≤ sc.
By making sc bigger gradually until the PCS can not reply valid response, the
competitors can get the biggest number ŝc. Making use of block size and ŝc,
the competitors can get the supermarket’s sale record data size. Then, they can
evaluate its sale volume for every day. It is dangerous for the supermarket. In
this case, private PDP is necessary.

In private PDP, when the verifier has no ability to perform PDP protocol,
it will delegate the PDP task to the proxy according to the warrant. Thus, it is
important and meaningful to study PPDP with the general access structure.

Table 1. Notations and descriptions

Notations Descriptions

A General access structure

Ai Valid subset to move the file to PCS

Ujl the l-th member in the subset Aj

(xjl , Xjl) Private/public key pair of Ujl

(y, Y ) Private/public key pair of PCS

(z, Z) Private/public key pair of dealer

(mi, Ti) Block-tag pair

Σ ordered collection of tags

F = {m1, · · · , mn} Stored file

G1,G2 two multiplicative groups

ê the bilinear map from G1 to G2

q the order of G1 and G2

π pseudo-random permutation

H, h cryptographic hash function

f, Ω two pseudo-random functions

chal = (c, k1, k2) the challenge, i.e., c denotes the size of the challenged block
set, k1, k2 are two different random numbers

(ω , cert) warrant-certificate pair

PCS public cloud server

PPDP proxy provable data possession

1.4 Our Contribution

In this paper, we propose the concept, system model and security model of PPDP
protocol with general access structure. Then, by making use of the n-multiinear
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pairings and some difficult problems, we design a concrete and provably secure
PPDP protocol which supports general access structure. Finally, we give the
formal security proof and performance analysis. Through security analysis and
performance analysis, our protocol is shown secure and efficient.

1.5 Organization

The rest of the paper is organized as follows. Section 2 introduces the prelim-
inaries. Section 3 describes our PPDP protocol with general access structure,
the formal security analysis and performance analysis. Finally, Sect. 4 gives a
conclusion.

The notations throughout this paper are listed in Table 1.

2 Preliminaries

In this section, we propose the system model and security model of PPDP with
general access structure. Then, the bilinear pairing, multilinear map and some
corresponding difficult problems are reviewed in this section.

2.1 System Model and Security Model

The system consists of four different network entities: Client, PCS, Dealer,
Proxy. They can be shown as the following.

1. Client, who has massive data to be stored on PCS for maintenance and com-
putation, can be either individual consumer or organization, such as desktop
computers, laptops, tablets, smart phones, etc.;

2. PCS, which is managed by public cloud service provider, has significant stor-
age space and computation resource to maintain client’ massive data;

3. Dealer is delegated to store multi-clients’ data to PCS where the multi-client
subset belongs to the concrete general access structure. It is trusted by all
the clients.

4. Proxy, which is delegated to check Client’s data possession, has the ability to
check Client’s data possession according to the warrant ω.

In the system model, there exists a general access structure A = {A1,A2, · · · ,
An′}. In order to store some special files, all the clients in some subset Aj

cooperate to approve and move the special files to PCS via the entity Dealer.
The clients no longer store the special files locally. The clients can perform the
remote data possession proof or delegate it to the proxy in special cases.

We start with the precise definition of PPDP with general access structure,
followed by the formal security definition. Before that, we define the general
access structure in our PPDP protocol.
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Definition 1 (General Access Structure). For the client set U =
{U1, U2, · · · , Un}, the clients in U ’s subset Aj = {Uj1 , Uj2 , · · · , Ujnj

} can coop-
erate to approve and store the file F to PCS where j = 1, 2, · · · , n′ and Aj ⊆ U .
Denote A = {A1,A2, · · · ,An′}. Then, A is regarded as the general access struc-
ture.

Without loss of generality, suppose the stored file F is divided into n blocks,
i.e., F = {m1,m2, · · · ,mn}.

Definition 2 (PPDP with General Access Structure). For general access
structure, PPDP is a collection of six polynomial time algorithms (SetUp,
TagGen, CertVry, CheckTag, GenProof, CheckProof) among PCS, Client,
Dealer and Proxy such that:

1. SetUp(1k) → (sk, pk) is a probabilistic polynomial time key generation algo-
rithm. Input a security parameter k, it returns a private/public key pair for
every running. Every client Ujl ∈ Aj can get its private/public key pair
(xjl ,Xjl). PCS can also get its private/public key pair (y, Y ). On the other
hand, the client set Aj also prepares the warrant ωj and the corresponding
certificate certj, where ωj points out the restriction conditions that the Proxy
can perform the remote data possession checking task. The warrant-certificate
pair (ωj, certj) is sent to the Proxy.

2. TagGen(xjl ,Xjl , Y,mi, Ujl ∈ Aj) → Ti is a probabilistic polynomial time
algorithm that is run by all members of Aj and Dealer to generate the block
tag Ti. Input the private/public key pair (xjl ,Xjl) for all the Ujl ∈ Aj, PCS’s
public key Y and a file block mi, this algorithm returns the block tag Ti.

3. CertV ry(ωj , certj) → {“success”, “failure”} is run by the proxy in order to
validate the warrant-certificate pair. If the pair is valid, it outputs “Success”
and accepts the pair ; otherwise, it outputs “failure” and rejects the pair.

4. CheckTag(mi, Ti, y,Xjl , Y, Ujl ∈ Aj) → {“success”, “failure”} is a deter-
mined polynomial time algorithm that is run by the PCS to check whether the
block-tag pair (mi, Ti) is valid or not. Input the block-tag pair (mi, Ti), PCS’s
private/public key pair (y, Y ) and the clients’ public key Xjl for all Ujl ∈ Aj,
the algorithm returns “success” or “failure” denoting the pair is valid or
not respectively.
Notes: CheckTag phase is important in order to prevent the malicious clients.
If the malicious clients store invalid block-tag pairs to PCS, PCS will accept
them if CheckTag phase does not exist. When the malicious clients check these
data’s integrity, PCS’s response will not pass the verification. The malicious
clients will require PCS to pay compensation. Thus, PCS’s benefits will be
harmed.

5. GenProof(Xjl , y, Y, F,Σ, chal, Ujl ∈ Aj) → V is a polynomial time algo-
rithm that is run by the PCS in order to generate a proof of data integrity,
where Σ = {T1, T2, · · · , Tn} is the ordered collection of tags. Input the public
keys (Xjl , Y, Ujl ∈ Aj), an ordered collection F of blocks, an ordered collection
of tags Σ and a challenge chal. Upon receiving the challenge from the proxy,
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it returns a data integrity proof V for some blocks in F that are determined
by the challenge chal.

6. CheckProof(Xjl , Y, chal, V, auxiliary data, Ujl ∈ Aj) → {“success′′,
“failure′′} is a polynomial time algorithm that is run by the proxy in order
to check the PCS’s response V . Input the public keys Xjl , Y for Ujl ∈ Aj,
a challenge chal, PCS’s response V and some auxiliary data, this algorithm
returns “success” or “failure” denoting whether V is valid or not for the
data integrity checking of the blocks determined by chal.

For the general access structure, in order to ensure that PPDP protocol is
secure and efficient, the following requirements must be satisfied:

1. For the general access structure, the PPDP protocol only be performed by
the clients or the delegated proxy.

2. Dealer should not be required to keep an entire copy of the files and tags.
3. The protocol should keep secure even if the PCS is malicious. If the PCS has

modified some block tag pairs that are challenged, the response V can only
pass the CheckProof phase with negligible probability. In other words, PCS
has no ability to forge the response V in polynomial time.

According to the above security requirements, for general access structure,
we define what is a secure PPDP protocol against malicious PCS (security prop-
erty (3) ) below. Without loss of generality, suppose the stored file is F and it is
grouped into n blocks, i.e., F = {m1,m2, · · · ,mn}. Let the general access struc-
ture be A = {A1,A2, · · · ,An′}. Suppose the subset Aj = {Uj1 , Uj2 , · · · , Ujnj

} ∈
A has the right to approve to store the file F to PCS.

Definition 3 (Unforgeability).For general access structure, PPDP protocol
is unforgeable if for any (probabilistic polynomial time) adversary A the proba-
bility that A wins the following PPDP game is negligible. For the general access
structure, the PPDP game between the challenger C and the adversary A can be
shown below:

1. SetUp: C generates system parameters params, clients’ private/public key
pairs (xjl ,Xjl) for all Ujl ∈ Aj, the proxy’s private/public key pair (z, Z) and
PCS’s private/public key pair (y, Y ). Then, it sends (params,Xjl , Y, y, Z, z,
Ujl ∈ Aj) to the adversary A. C keeps (xjl , Ujl ∈ Aj) confidential and sends
y, z to A, i.e., y, z are known to A. It is consistent with the real environment
since the adversary A simulates PCS or the collusion of PCS and the proxy.

2. First-Phase Queries: A adaptively makes a number of different queries to C.
Each query can be one of the following.
– Hash queries. A makes Hash function queries adaptively. C responds the

Hash values to A.
– Tag queries. A makes block tag queries adaptively. For a query m11 queried

by A, C computes the tag T11 ← TagGen(xjl , y, z,Xjl , Y, Z,m11 , Ujl ∈ Aj)
and sends it back to A. Without loss of generality, let {m11 ,m12 , · · · ,m1i ,
· · · ,m1|I1|} be the blocks which have been submitted for tag queries. Denote
the index set as I1, i, e., 1i ∈ I1.
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3. Challenge: C generates a challenge chal which defines a ordered collection
{j1, j2, · · · , jc}, where {j1, j2, · · · , jc} � I1 is a set of indexes and c is a
positive integer. C is required to provide a data integrity proof for the blocks
mj1 , · · · ,mjc .

4. Second-Phase Queries: Similar to the First-Phase Queries. Without loss of
generality, let {m21 ,m22 , · · · ,m2i , · · · ,m2|I2|} be the blocks which have been
submitted for tag queries. Denote the index set as I2, i, e., 2i ∈ I2. The restric-
tion is that {j1, j2, · · · , jc} � I1 ∪ I2.

5. Forge: A returns a data integrity checking response V for the blocks indicated
by chal.

We say that A wins the above game if CheckProof(Xjl , Y, chal, V, auxiliary
data, Ujl ∈ Aj) → “success” with nonnegligible probability.

Definition 3 states that, for the challenged blocks, a malicious PCS cannot
produce a valid remote data integrity checking response if some challenged block
tag pairs have been modified. It is a very important security property. On the
other hand, if the response can pass the proxy’s verification, what is the prob-
ability of all the data keeps intact ? The following definition states clearly the
status of the blocks that are not challenged. In practice, a secure PPDP protocol
also needs to guarantee that after validating the PCS’s response, the proxy can
be convinced that all of his outsourced data have been kept intact with a high
probability. This observation gives the following security definition.

Definition 4 ((ρ, δ) Security). For general access structure, a PPDP protocol
is (ρ, δ) secure if PCS corrupted ρ fraction of the whole blocks, the probability
that the corrupted blocks are detected is at least δ.

In order to explain the definition 4, we give a concrete example. Suppose
PCS stored n̈ block-tag pairs. The instrument troubles or malicious operations
make l̈ block-tag pairs lost for PCS. Then, the corrupted fraction of the whole
blocks is ρ = l̈

n̈ . Suppose the clients query c̈ block-tag pairs’ integrity checking.
If the probability that the corrupted blocks can detected is at least δ, we call
this scheme satisfies the (ρ, δ) security.

2.2 Bilinear Pairings, Multilinear Map and Difficult Problem

Let G1 and G2 be two cyclic multiplicative groups with the same prime order q.
Let ê : G1 × G1 → G2 be a bilinear map. The bilinear map ê can be constructed
by the modified Weil or Tate pairings [20,21] on elliptic curves. The group G1

with such a map ê is called a bilinear group. The Computational Diffie-Hellman
(CDH) problem is assumed hard while the Decisional Diffie-Hellman (DDH)
problem is assumed easy on the group G1 [22]. We give their expression below.

Gap Diffie-Hellman Problem (GDH). Let g is the generator of G1. For instance,
given unknown a, b, c ∈ Z∗

q and g, ga, gb, gc ∈ G1, it is recognized that there exists
an efficient algorithm to determine whether ab = c mod q by verifying ê(ga, gb) =
ê(g, g)c in polynomial time (DDH problem), while no efficient algorithm can
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compute gab ∈ G1 with non-negligible probability within polynomial time (CDH
problem). An algorithm A is said to (t, ε)-break the CDH problem on G1 if A’s
advantage is at least ε in time t, , i.e.,

AdvCDH
A = Pr[A(g, ga, gb) = gab : ∀a, b ∈ Z∗

q ] ≥ ε

The probability is taken over the choice of a, b and A’s coin tosses.
A group G1 is a (t, ε)-GDH group if the DDH problem on G1 is efficiently

computable and there exists no algorithm can (t, ε)-break the CDH problem
on G1.

We say that G1 satisfies the CDH assumption if for any randomized polyno-
mial time (in k) algorithm A we have that AdvCDH

A (k) is a negligible function.
In this paper, our multi-client PDP protocol come from the GDH group G1.

Next, we give the definition of an n-multilinear map. Multilinear map was
proposed in the Ref. [23]. Many experts have proposed the concrete implemen-
tation [24,25]. We view the groups G1 and Gn as multiplicative groups.

Definition 5. A map ên : Gn
1 → Gn is an n-multilinear map if it satisfies the

following properties:

1. G1 and Gn are groups of the same prime order q;
2. If a1, · · · , an ∈ Z∗

q and g1, · · · , gn ∈ G1 then

ên(ga1
1 , · · · , gan

n ) = ên(g1, · · · , gn)a1a2···an

3. The map ên is non-degenerate in the following sense: if g ∈ G1 is a generator
of G1 then ên(g, · · · , g) is a generator of Gn.

Multilinear Diffie-Hellman Problem. Given g, ga1 , · · · , gan+1 in G1, it is hard
to compute ên(g, · · · , g)a1···an+1 in Gn.

n-multilinear map has been used in the encryption, key management, hash
function etc. [26–28].

3 Our Proposed PPDP Protocol with General Access
Structure

3.1 Construction of PPDP Protocol with General Access Structure

First, we introduce some additional notations which will be used in the construc-
tion of our PPDP protocol with general access structure. Let g be a generator
of G1. Suppose the stored file F (maybe encoded by using error-correcting code,
such as, Reed-Solomon code) is divided into n blocks (m1,m2, · · · ,mn) where
mi ∈ Z∗

q , i.e., F = (m1,m2, · · · ,mn) . The following functions are given below:

f : Z∗
q × {1, 2, · · · , n} → Z∗

q

Ω : Z∗
q × {1, 2, · · · , n} → Z∗

q

π : Z∗
q × {1, 2, · · · , n} → {1, 2, · · · , n}

H : {0, 1}∗ → Z∗
q

h : Z∗
q × Z∗

q → G∗
1
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where f and Ω are two pseudo-random functions, and π is a pseudo-random
permutation, H and h are cryptographic hash functions. For general access
structure, PPDP protocol construction consists of six phases: SetUp, TagGen,
CertVry, CheckTag, GenProof, CheckProof.

SetUp: PCS picks a random number y ∈ Z∗
q as its private key and com-

putes Y = gy as its public key. The proxy picks a random number z ∈ Z∗
q

as its private key and computes Z = gz as its public key. Suppose there
are n̄ clients U = {U1, U2, · · · , Un̄}. Let the general access structure be A =
{A1,A2, · · · ,As}, where Aj = {Uj1 , Uj2 , · · · , Ujnj

} ⊆ U , 1 ≤ j ≤ s. For
every Aj , the dealer picks a random uj ∈ G1 as Aj ’s public key. For any
client Ui ∈ U , it picks a random xi ∈ Z∗

q as its private key and computes
Xi = gxi as its public key. Aj ’s warrant consists of the description ωj of the
constraints for which remote data possession proof is delegated together with
a certificate certj . certj is the multi-signature on ωj of all the clients in Aj by
using the concrete algorithms [29,30]. Once delegated, the proxy can perform the
data possession proof by using its private key z and warrant-certification pair
(ωj , certj). The clients send (ωj , certj) to the proxy. The system parameter set
is params = {G1,G2,Gnj+1, ênj+1, ê, f, Ω, π,H, h, q, uj ,Xi,Aj ∈ A, Ui ∈ U}.

TagGen(xjl , F, i, Ujl ∈ Aj): Suppose the valid client subset Aj generates the cor-
responding tags for the file F = (m1,m2, · · · ,mn). Denote the set Ājl = Aj/Ujl .
For every block mi, the clients {Uj1 , Uj2 , · · · , Ujnj

} in Aj and the dealer gener-
ate the tag Ti. In Aj , all the clients cooperate to generate the multi-signature
certj on the warrant ωj . The warrant-certification pair (ωj , certj) are sent to
the proxy. For Ujl ∈ {Uj1 , Uj2 , · · · , Ujnj

}, it performs the following procedures:

1. Ujl computes

tj = H(ênj+1(Xj1 , · · · ,Xjl−1 ,Xjl+1 , · · · ,Xjnj
, Y, Z)xjl , ωj)

Wi,j = Ωtj (i), Ti,jl = (h(tj ,Wi,j)umi
j )xjl ;

2. Ujl sends the block-tag pair (mi, Ti,jl) and the corresponding warrant ωj to
dealer.

After receiving all the block-tag pairs (mi, Ti,jl), where mi ∈ F, Ujl ∈ Aj , the
dealer computes Ti =

∏

Ujl
∈Aj

Ti,jl . Then it uploads the block-tag pair (mi, Ti) and

the corresponding warrant ωj to PCS. When the above procedures are performed
n times, all the block-tag pairs (mi, Ti) are generated and uploaded to PCS for
1 ≤ i ≤ n.

CertVry({(ωj , certj),Xji , Uji ∈ Aj}): Upon receiving the clients’ warrant-
certification pair (ωj , certj), the proxy verifies its validity. If it is valid, the
proxy accepts ωj ; otherwise, the proxy rejects it and queries the Clients for new
warrant-certification pair.
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CheckTag((mi, Ti), 1 ≤ i ≤ n): Given {(mi, Ti), 1 ≤ i ≤ n}, for every i and
Aj ∈ A, PCS computes

t̂j = H(ênj+1(Xj1 , · · · ,Xjnj
, Z)y, ωj), Ŵi,j = Ωt̂j

(i)

Then, it verifies whether the following formula holds.

ê(Ti, g) ?= ê(h(t̂j , Ŵi,j)umi
j ,

∏

Ujl
∈Aj

Xjl)

If it holds, PCS accepts it; otherwise, it is rejected.

GenProof(pk, F, chal,Σ): Let F, chal,Σ denote F = (m1,m2, · · · ,
mn), chal = (c, k1, k2), Σ = (T1, · · · , Tn) where chal is the proxy’s challenge.
In this phase, the dealer asks the PCS for remote data integrity checking of c
file blocks whose indices are randomly chosen for each challenge. It can prevent
the PCS from anticipating which blocks will be queried in each challenge. The
number k1 ∈ Z∗

q is the random key of the pseudo-random permutation π. The
number k2 ∈ Z∗

q is the random key of the pseudo-random function f . On the
other hand, the proxy sends (ωj , certj) to PCS. PCS verifies whether the signa-
ture certj is valid. If it is valid, PCS compares this ωj with its stored warrant
ω′

j . When ωj = ω′
j and the proxys query complys with the warrant ωj , PCS

performs the procedures as follows. Otherwise, PCS rejects the proxys query.

1. For 1 ≤ r ≤ c, PCS computes ir = πk1(r), ar = fk2(r) as the indexes and
coefficients of the blocks for which the proof is generated.

2. PCS computes T =
∏c

r=1 T ar
ir

, m̂ =
∑c

r=1 armir .
3. PCS outputs V = (T, m̂) and sends V to the proxy as the response to the

chal query.

CheckProof(chal,Xjl , V, Ujl ∈ Aj): Upon receiving the response V from
PCS, the proxy performs the procedures below:

1. For 1 ≤ r ≤ c, the proxy computes

tj = H(ênj+1(Xj1 , · · · ,Xjnj
, Y )z, ωj)

vr = πk1(r), ar = fk2(r), Wvr,j = Ωtj (vr)

2. The proxy checks whether the following formula holds.

ê(T, g) ?= ê(
c∏

r=1

h(tj ,Wvr,j)arum̂
j ,

∏

Ujl
∈Aj

Xjl)

If the above formula holds, then the proxy outputs “success”. Otherwise the
proxy outputs “failure”.

Notes: In the subset Aj , any client Ujl can also perform the phase CheckProof
since the following formula holds:

ênj+1(Xj1 , · · · ,Xjl−1 ,Xjl+1 , · · · ,Xjnj
, Y, Z)xjl

= ênj+1(Xj1 , · · · ,Xjnj
, Y )z

Thus, Ujl can also calculate tj and finish CheckProof.
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3.2 Correctness Analysis and Security Analysis

The correctness analysis and security analysis of our proposed PPDP protocol
can be given by the following lemmas and theorems:

Theorem 1. If Client, Dealer, and PCS are honest and follow the proposed
procedures, then the uploaded block-tag pairs can pass PCS’s tag checking.

Proof. In the phases TagGen and CheckTag, for all Ujl ∈ Aj ,

t̄j = H(ênj+1(Xj1 , · · · ,Xjnj
, Z)y, ωj)

= H(ênj+1(g, · · · , g, g)
yz

∏
Ujl

∈Aj

xjl

, ωj)
= tj
= t̂j

Then, we can get Wi,j = W̄i,j = Ŵi,j . By using TagGen, we know that

ê(Ti, g) = ê(
∏

Ujl
∈Aj

(h(tj ,Wi,j)umi
j )xjl , g)

= ê(h(tj ,Wi,j)umi
j , g

∑
Ujl

∈Aj

xjl

)
= ê(h(tj ,Wi,j)umi

j ,
∏

Ujl
∈Aj

Xjl)

Theorem 2. If the proxy and PCS are honest and follow the proposed proce-
dures, the response V can pass the proxy’s data integrity checking, i.e., our PPDP
protocol satisfies the correctness.

Proof. Based on TagGen and GenProof, we know that T =
∏c

r=1 T ar
ir

. Thus,

ê(T, g) = ê(
∏c

r=1 T ar
ir

, g)
= ê(

∏c
r=1 (h(tj ,Wir,j)u

mir
j )ar ,

∏

Ujl
∈Aj

Xjl)

= ê(
∏c

r=1 h(tj ,Wir,j)aru
∑c

r=1 armir

j ,
∏

Ujl
∈Aj

Xjl)

= ê(
∏c

r=1 h(tj ,Wir,j)arum̂
j ,

∏

Ujl
∈Aj

Xjl)

Lemma 1. Let (G1,G2) be a (T ′, ε′)-GDH group pair of order q. Let Aj

be the tag generating subset. Then the tag generation scheme TagGen is
(T, qS , qH , qh, ε)-existentially unforgeable under the adaptive chosen-message
attack for all T and ε satisfying ε′ ≥ ε

(qs+1)e and T ′ ≤ T +cG1(qh+2qS)+cênj
qH ,

where cG1 is the time cost of exponentiation on G1, cênj
is the time cost of nj-

linear map. Here e is the base of the natural logarithm, and qS , qH , qh are the
times of Tag query, H-query and h-query respectively. nj is the cardinal number
of the tag generating subset Aj.

Proof. It is similar with Ref. [5]. We omit the proof procedures due to the page
limits.
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Lemma 2. Let the challenge be chal = (c, k1, k2). Then, the queried block-tag
pair set is {(mπk1 (i)

, Tπk1 (i)
), 1 ≤ i ≤ c}. If some block tag pairs are modified, the

grouped block tag pair (m̂, T ) can pass the proxy’s verification only with negligible
probability.

Proof. We will prove this lemma by contradiction. It is assumed that the forged
block tag pair (m̂, T̂ ) can pass the dealer’s integrity checking, i.e.,

ê(T̂ , g) = ê(
c∏

r=1

h(tj ,Wir,j)arum̂
j ,

∑

Ujl
∈Aj

Xjl)

We prove this lemma from two cases.
Case 1, PCS makes use of the modified block tag pair to generate the grouped

block tag pair and the block indexes satisfy the challenge requirements:

ê(
c∏

r=1

T̂ ar
ir

, g) = ê(
c∏

r=1

h(tj ,Wir,j)aru
∑c

r=1 arm̂ir

j ,
∏

Ujl
∈Aj

Xjl)

where ar = fk2(r) and ir = πk1(r) are pseudo random, 1 ≤ r ≤ c. Then,

c∏

r=1

ê(T̂ ar

m̂ir
, g) =

c∏

r=1

ê(h(tj ,Wir,j)u
m̂ir
j ,

∏

Ujl
∈Aj

Xjl)
ar

Let the generator of G2 be d, and

ê(T̂ir , g) = dŷr

ê(h(tj ,Wir,j)u
m̂ir
j ,

∏

Ujl
∈Aj

Xjl) = dyr

Then we can get
d
∑c

r=1 ar ŷr = d
∑c

j=1 aryr

c∑

r=1

arŷr =
c∑

r=1

aryr

c∑

r=1

aj(ŷr − yr) = 0 mod (q − 1) (1)

According to Lemma 1, a single block Tag is existential unforgeable. So, there
exist at least two different indexes r such that ŷr 
= yr. Suppose there are s ≤ c
pairs (ŷr, yr) such that ŷr 
= yr. Then, there exist qs−1 tuples (a1, a2, · · · , ac)
satisfying the above Eq. (1). Since (a1, a2, · · · , ac) is a random vector, the proba-
bility that the tuple satisfies the Eq. (1) is not greater than qs−1/qc ≤ qc−1/qc =
q−1. This probability is negligible.

Case 2, the PCS substitutes the other valid block-Tag pairs for modified
block-Tag pairs:



296 H. Wang and D. He

To the challenge chal = (c, k1, k2), PCS can get queried block tag pairs index
set {i1, i2, · · · , ic}. Without loss of generality, we assume s block tag pairs are
modified and their index set is {i1, i2, · · · , is} where s ≤ c. PCS substitutes s
valid block tag pairs for the s modified pairs. Without loss of generality, suppose
the s valid block tag pairs indexes are V = {v1, v2, · · · , vs}. PCS computes the
grouped block tag pair as follows:

T =
c∏

r=s+1

T ar
ir

∏

v∈V
T av

v , m̂ =
c∑

r=s+1

armir +
∑

v∈V
avmv

where ar = fk2(r) for all 1 ≤ r ≤ c and avi
= ai for 1 ≤ i ≤ s.

Assume the forged group block tag pair can pass the dealer’s checking, i.e.,

ê(T, g) = ê(
c∏

r=1

h(tj ,Wir,j)arum̂
j ,

∏

Ujl
∈Aj

Xjl)

Since some block tag pairs are valid, i.e., for s + 1 ≤ r ≤ c,

ê(Tir , g) = ê(h(tj ,Wir,j)u
mir
j ,

∏

Ujl
∈Aj

Xjl)

We can get the following formula:

ê(
∏

v∈V
T av

v , g) = ê(
∏s

r=1 h(tj ,Wir,j)aru

∑
v∈V

avmv

j ,
∏

Ujl
∈Aj

Xjl) On the other hand,

ê(
∏

v∈V
T av

v , g) = ê(
∏

v∈V
h(tj ,Wv,j)avu

∑
v∈V

avmv

j ,
∏

Ujl
∈Aj

Xjl)

Thus,
ê(

∏s
r=1 h(tj ,Wir,j)aru

∑
v∈V avmv

j ,
∏

Ujl
∈Aj

Xjl)

= ê(
∏

v∈V h(tj ,Wv,j)avu
∑

v∈V avmv

j ,
∏

Ujl
∈Aj

Xjl)

We can get
∏s

r=1 h(tj ,Wir,j)ar =
∏

v∈V h(tj ,Wv,j)av . The probability that
the above formula holds is q−1 because of h is hash oracle. It is negligible.

Based on Case 1 and Case 2, the forged group block tag pair can pass the
dealer’s checking with the probability no more than q−1. It is negligible.

Lemma 1 states that an untrusted PCS cannot forge individual tag to cheat
the proxy. Lemma 2 implies that the untrusted PCS cannot aggregate fake tags
to cheat the dealer.

Theorem 3. According to our proposed PPDP protocol with general access
structure, if some queried block tag pairs are modified, PCS’s response can
only pass the proxy’s CheckProof phase with negligible probability based on the
assumption that the CDH problem is hard on G1.
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Proof. Suppose the stored blocks set is {m1,m2, · · · ,mn}. We denote the chal-
lenger as C and the adversary as A. Let the public parameters be params =
{G1,G2, ê, f, Ω, π,H, h, q}. Input (g, ga, gb), the goal of C is to compute the value
gab. Let the client subset that can generate tag is Aj . First, C picks random
zjl ∈ Z∗

q , uj ∈ G1 and calculates Xjl = (ga)zjl for all Ujl ∈ Aj . uj can be
regarded as the public parameter of the access subset Aj . Let Xjl be the client
Ujl ’s public key. The corresponding private key is unknown to C. The challenger
maintains three tables TH , Th, T which are initialized empty. PCS picks a ran-
dom y ∈ Z∗

q and computes Y = gy. Let (y, Y ) be the PCS’s private/public key
pair. PCS picks a random z ∈ Z∗

q and computes Z = gz. Let (z, Z) be the
proxy’s private/public key pair. Then, C answers all the queries that A makes.

H-Oracle, h-Oracle, Tag-Oracle are the same as the corresponding procedures
in the Lemma 1.

We consider the challenge chal = (c, k1, k2). Assume the forged aggregated
block-tag pair (m̂, T ) can pass the dealer’s data integrity checking, i.e.,

ê(T̂ , g) = ê(
c∏

r=1

h(tj ,Wir,j)arum̂
j ,

∏

Ujl
∈Aj

Xjl) (2)

where aj = fk2(j) are random, 1 ≤ j ≤ c.
According to Lemmas 1 and 2, we know that if some queried block-tag pairs

are corrupted, the verification formula (2) holds with negligible probability. Thus,
our propose multi-client PDP protocol is provably unforgeable in the random
oracle model.

Theorem 4. For the general access structure, the proposed PPDP protocol is
( d

n , 1− (n−d
n )c)-secure. The probability PR of detecting the modification satisfies:

1 − (
n − d

n
)c ≤ PR ≤ 1 − (

n − c + 1 − d

n − c + 1
)c

where n denotes the stored block-tag pair number, d denotes the modified block-tag
pair number, and the challenge is chal = (c, k1, k2).

Proof. It is similar with the Ref. [5]. We omit it due to the page limits.

3.3 Performance Analysis

In this section, we analyze the performance of our proposed PPDP protocol in
terms of computation and communication overheads.

Computation: In our proposed PPDP protocol, suppose there exist n message
blocks and the tag generating client subset is Aj which comprises nj clients. In
the TagGen phase, the clients need to perform nj nj-linear map, nj exponenti-
ations on the group Gnj+1 and 2nnj exponentiations on the group G1. On the
other hand, the proxy needs to perform 1 nj-linear map, 1 exponentiations on
the group Gnj+1, 2nnj bilinear pairings. In the CheckTag phase, PCS has to
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compute 1 nj1 -linear map, 1 exponentiations on the group Gnj+1, 2n bilinear
pairings and n exponentiations on the group G1. In the GenProof phase, PCS
needs to perform c exponentiations on the group G2. In the CheckProof phase,
the proxy can perform 1 nj-linear map (it can be pre-computed and stored in
the TagGen phase), 2 bilinear pairings, and c + 1 exponentiations on G1. Com-
pared to the pairings and exponentiation, other operations, such as hashing,
permutation, multiplication, etc., are omitted since their costs are negligible.

Communication: The communication overhead mostly comes from the PPDP
queries and responses. In PPDP query, the proxy needs to send log2 c bits and 2
elements in Z∗

q to PCS. In the response, the PCS responds 1 element in G1 and
1 element in Z∗

q to the proxy. Thus, our PPDP protocol has low communication
cost.

Notes: Our proposed PPDP protocol is a general remote data integrity checking
method with the general access structure. The idea is motivated by the applica-
tion requirements which has been given in the subsection 1.1. The existing PDP
protocols can only be applied for single client. It is not enough because the multi-
client PDP and proxy PDP are also indispensable in some application fields. Of
course, single client PDP is only the special case of our protocol when the size
of the valid subset is 1 and the proxy is omitted. In general access structure, the
PPDP protocol is proposed for the first time. It can be used in many application
fields.

4 Conclusion

In this paper, we proposes a PPDP protocol with general access structure. We
give its concept, security model, formal security proof and performance analysis.
It is shown that our PPDP protocol is provably secure and efficient. It can be
used in the public clouds to ensure remote data integrity.

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Capitani, D., di Vimercati,
S., Syverson, P. (eds.) CCS 2007, pp. 598–609. ACM, New York (2007)

2. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Liu, P., Molva, R. (eds.) SecureComm 2008, pp. 9:1–9:10.
ACM, New York (2008)
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Abstract. In recent years, numerous provable data possession (PDP)
schemes have been proposed for checking the availability and integrity
of data stored on cloud storage server (CSS) which is not fully trusted.
However, these schemes do not work with specific subsets of verifiers,
and they do not efficiently support dynamic enrollment and revocation
of verifiers. In this paper, we propose a novel provable data posses-
sion scheme under hierarchical data framework in cloud environment.
Our scheme can be considered as a generalization of privately verifiable
PDP schemes. Specifically, data of different values are integrated into a
data hierarchy, and clients are classified and authorized different access
permissions according to their amounts of payment. Furthermore, our
scheme allows the data owner to efficiently enroll and revoke clients. The
scheme satisfies existential unforgeability against malicious CSS based
on the hardness of the computational Diffie-Hellman problem.

Keywords: Cloud storage server · Provable data possession · Data
hierarchy · Computational Diffie-Hellman assumption

1 Introduction

Outsourcing data to cloud storage servers (CSS), which alleviates the burden of
local data storage and maintenance, has been receiving remarkable attentions
thanks to its comparably low cost, high scalability, location-independent plat-
form. However, CSS, in most of the cases, is not fully trusted. For instance, for
its own benefits, it might delete or modify some data while concealing these
behaviors from the data owner, or it might not store data in a fast storage spec-
ified by the contract with the owner. Thus, security issues such as availability
and integrity of outsourced data are taken into consideration. It is a crucial
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demand that data owners and data users (clients) are able to get strong evi-
dences (proofs) that CSS still possesses the outsourced data, and that they have
not been tampered or partially deleted over time. Meanwhile, it is impractical
for the data owner and clients to download all outsourced data on cloud in order
to validate its integrity, because of the immense transmission overheads across
the network. Therefore, an efficient mechanism to validate the integrity of out-
sourced data with inexpensive computation, transmission, communication and
storage overheads is highly desirable.
Scenario. Data outsourced in CSS are frequently downloaded by clients (e.g.,
the employees of the company that owns the data). The clients must be able
to validate the data integrity before downloading, to ensure that they can be
safely used. Furthermore, in practice, according to the different payments for
the data from the clients, the data owner may determine which data the clients
are allowed to use through controlling their ability to validate the corresponding
integrity proof.

The existing Proofs of Retrievability (PORs) [1,20] and Provable Data Pos-
session (PDP) [3,7,9,10,12] schemes do not address this issue in the above
scenario, since they are either publicly verifiable or privately verifiable. Fur-
thermore, if one client wants to use multiple data, the client needs to keep the
corresponding multiple secret keys when we implement the aforementioned PDP
schemes. This will aggravate the burden of clients and the key managements and
distributions become more complicated. In brief, the existing cannot solve these
issues effectively, and they do not efficiently support dynamic enrollment and
revocation of verifiers. These observations inspire us to explore a new solution
in which not only specific subsets of verifiers are allowed to validate the proofs
of data integrity, but also the verifiers can be efficiently added or revoked.
Related Works. A number of PORs [1,4,17,20] and PDPs [2,3,5–10,12–16]
in various models have been proposed to enable the verification of data avail-
ability and integrity. Most of the existing PDP schemes rely on probabilistic
proof techniques. In these challenge-response protocols, upon receiving a chal-
lenge from a verifier, CSS calculates a PDP (proof) as the response, so that the
verifier can check the validity of the PDP. Few PORs are more efficient than
their PDP counterparts, based on an observation made by Barsoum et al. [3].
Sookhak et al. [11] surveyed the techniques of the existing remote data audit-
ing schemes (i.e., they are the generalization of PDP schemes) and classified
them into three different classes: replication-based model, erasure-coding-based
model, and network-coding-based model. They also investigated the similarities
and differences of these models. From the view of the security requirements, the
challenges and the issues are described to offer a lightweight and efficient security
mechanism.

All existing PDP schemes can be divided into two categories based on the
role of the verifiers in the model: private verification and public verification.
Most of the PDP schemes are publicly verifiable, while some others [2,16] pro-
vide both private and public verification. However, public verification is unde-
sirable in many circumstances, and private verification is necessary in some
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applications to prevent the disclosure of some confidential information. Shen
and Tzeng [10] proposed a delegable PDP model, in which data owner gener-
ates verifiable tags for CSS and delegation key for the delegated verifier. The
delegated verifier then checks the PDP obtained from CSS, but he cannot re-
delegate this verification ability to others. Wang [14] also proposed a proxy PDP
model, in which the authorized proxy verifier sends a warrant obtained from
data owner and a challenge to CSS. CSS then validates the warrant and gen-
erates a PDP as the response. Based on elliptic curves, Ren et al. [8] proposed
a designated-verifier PDP model in which data owner designates a verifier to
check the integrity of outsourced data, while the verifier is stateless and indepen-
dent from CSS. Wang et al. [16] proposed identity-based remote data possession
checking in public clouds. In their PDP scheme, a trusted private key generator
(PKG) generates system public key, master secret key and private key, the client
accepts the private key after validating its correctness by using the public key.
The client then challenges CSS, and CSS computes a PDP as the response. It
appoints some people to validate the PDP without certificate management and
verification.

Nevertheless, aforementioned PDP schemes only considered a small number
of clients, and they do not address specific subsets of clients. Ren et al. [9] then
proposed an attributed-based PDP model, in which attribute-based signature is
utilized to construct the homomorphic authenticator. In their scheme, only the
clients who satisfied the strategy can validate the PDP, since the homomorphic
authenticator contains an attribute strategy. The data owner can adaptively
authorize clients to use data through controlling their ability to validate the PDP
by the attribute strategy in [9]. Nevertheless, their PDP scheme is inefficient in
case of the number of clients is changing overtime or is large. Additionally, in
their scheme, the enrollment and revocation of clients are inefficient.

When a large number of users access the data stored in cloud, these data are
not only files but also are considered as file system. Role-based access control
(RBAC) is one of the most important access systems to control the permissions.
The hierarchical structure is used to manage the user permission in RBAC. The
data belonging to the data owner will be treated as a special structure, called
data hierarchy, to support our new PDP scheme. The idea of data hierarchy
is inspired by the role-key hierarchy in the role-based cryptosystem proposed
by Zhu et al. [18,19]. They introduced a new RBAC and used them to enforce
fine-grained policies for sharing resources as well as to support various security
features, including encryption, identification, and signature. They also provided
several role-based cryptosystems such as role-based encryption, role-based sig-
nature and role-based authentication to achieve the RBAC system based on the
rich algebraic structure of elliptic curves. Moreover, the role and user revocation,
anonymity and tracing are also implemented.

Our Contributions. In this paper, we propose a provable data possession with
data hierarchy on cloud, in which the data owner constructs a data hierarchy, and
classifies the clients into the data hierarchy according to their different amounts
of payment for the data. In brief, the data owner controls clients’ ability to access
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the data by classifying them into the data hierarchy, and the data can be used
if clients can access the corresponding data. The capability to validate the PDP
is equivalent to the ability to access the corresponding data which is authorized
by data owner in the data hierarchy. Our main contributions of the work are
summarized as follows:

(1) We propose a new PDP with data hierarchy in which a data hierarchy is
constructed. The system model and security model are also presented for-
mally.

(2) In our proposed PDP scheme, CSS is stateless and independent of data
owner. CSS sends a commitment value which is obtained from the data owner
to the trusted third party to arbitrate between them in case the controversy
on the integrity of data happens.

(3) The data owner can add or revoke clients easily and efficiently.
(4) We provide the full security proof for the proposed scheme based on the

hardness of the computational Diffie-Hellman problem and provide the full
security proof.

(5) We analyze the performance of the proposed PDP scheme. Comparing it with
others, we draw the conclusion that our proposed PDP with data hierarchy
is more feasible.

Organization. In Sect. 2, the system model, bilinear pairs and hardness assump-
tions will be given, and we give the partial order relation and a data hierarchy,
meanwhile, the role-based cryptosystem (RBC) [18] will be reviewed in brief. We
provide the definition of the proposed PDP scheme with data hierarchy and its
security definition in Sect. 3. In Sect. 4, we present the concrete PDP scheme with
data hierarchy. We analyze the security of the proposed PDP scheme with data
hierarchy including the full security proof in Sect. 5. The performance analysis
is presented in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Preliminaries

2.1 System Model

Our proposed PDP scheme with data hierarchy involves three different entities
as illustrated in Fig. 1.

– The data owner, who has a huge number of data files stored in clouds and
is entitled to access and manipulate outsourced (stored) data, he/she can
be a company or an organization who has a large number of clients (data
users), and the data owner constructs a data hierarchy to manage the clients
efficiently according to their different amount of payment for the data.

– The clients, who are data users and are required to pay for using (or down-
loading) some data, but they are not entitled to access and manipulate stored
data. They have to validate the availability and integrity of the data before
using them.
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– The cloud storage server (CSS), which provides data storage services and has
enough storage space and significant computation resources but is manipu-
lated by manpower such as the CSS providers.

Fig. 1. PDP model with data hierarchy

The paper assumes that CSS is untrusted. It implies that CSS maybe tamper
or partially delete the outsourced data for their own benefits, while we assume
that the data is secure when it is transmitted to CSS through a secure channel.
We do not consider the security issues when the data has been sent to CSS
and CSS has confirmed it since CSS must take responsibility for this security
issue. Once such security problem has occurred, CSS either compensates for it
or conceals it which is also included in untrusted situation. We also assume that
the data owner first constructs a data hierarchy, then authorizes or revokes the
permissions of the clients to validate the PDP. The data owner is also able to
validate the PDP if it is necessary.

2.2 Bilinear Pairings

Let S = (p, G1, G2, GT , e) be a bilinear map group system, where G1, G2 and GT

are three multiplicative cyclic groups of prime order p. Moreover, e : G1×G2 −→
GT is a bilinear map which has the following properties : for any G ∈ G1, H ∈ G2

and all a, b ∈ Zp, we have

– bilinearity: e(Ga,Hb) = e(G,H)ab;
– non-degeneracy: e(G,H) �= 1GT

unless G or H = 1;
– computability: e(G,H) is efficiently computable.

Definition 1 (Computation Diffie-Hellman (CDH) Problem). Given g,
gx, h ∈ G for some group G and x ∈ Zp, to compute hx.

Definition 2 (q-Strong Diffie-Hellman (SDH) Problem [18]). Given
〈G, [x]G, [x2]G, · · · , [xq]G〉, to compute 〈c, [ 1

x+c ]G〉 where c ∈ Z
∗
p and G be a

generator chosen from G1 (or G2).
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2.3 Partial Order Relation and Data Hierarchy

We describe briefly the partial order relation, more details about it are referred
to Zhu et al.’s work [18]. Let Ψ = 〈P,�〉 be a partially ordered set with partial
order relation “�” on a set P . A partial order is a transitive, reflexive and
antisymmetric binary relation. Two distinct elements x and y in Ψ are said to
be comparable if x � y or y � x. Otherwise, they are incomparable, denoted by
x ‖ y. An order relation “�” on P gives rise to a relation “�” of strict partial
order: x ≺ y in P iff x � y and x �= y. We define the predecessors and successors
of elements in Ψ = 〈P,�〉 as follows: for an element x in P , ↑ x = {y ∈ P : x � y}
denotes the set of predecessors of x. ↓ x = {y ∈ P : y � x} denotes the set of
successors.

In the paper, the data owner first constructs a data hierarchy. An example of
the data hierarchy, 〈D,�〉, which is transformed from the role-key hierarchy in
RBAC [18], is shown in Fig. 2, in which the circle denotes data and the triangle
denotes user, and more powerful (senior) data (the data allocated to senior
roles) are in the higher level and less powerful (junior) data (the data allocated
to junior roles) toward lower level in the data hierarchy. Specifically, data have
been authorized different permissions with the partial order relation illuminated
in the data hierarchy, and users are classified into different data, thus obtain
the corresponding permissions of data (means they can validate its PDP in the
paper) based on the different amount of payment for the data. It is essentially a
cryptographic order relation for the set of data denoted by Ω = 〈U,K,D,P,�〉,
where U denotes set of users, K denotes the set of keys including the data-key
set PK and the user-key set SK, D denotes the set of data and P denotes the set
of permissions. The six basic conditions for the data hierarchy and its security
goals are referred to Zhu et al. [18], we will not present it here due to the limited
space.

Fig. 2. The example of the data hierarchy



A Provable Data Possession Scheme with Data Hierarchy in Cloud 307

2.4 Review of the Role-Based Cryptosystem

We here highlight Zhu et al.’s role-based cryptosystem (RBC) [18], more details
are referred to [18]. Let Ω = 〈U,K,D,P,�〉 be a data key hierarchy with partial-
order “�”. We assume that the total number of the data and users are m and
N in Ω respectively, i.e., D = {d1, d2, · · · , dm}, | D |= m, and | U |= N , where
D and U denote the set of data and users, respectively. The RBC scheme is
constructed as follows.

– Setup(κ, ψ): Let S = (P, G1, G2, GT , e) be a bilinear map group system with
the random elements G ∈ G1 and H ∈ G2, where G1, G2 and GT are three
multiplicative cyclic groups of prime order p. The algorithm chooses a random
integer τi ∈ Z

∗
p for each data di in the data hierarchy, where di denotes the

i-th data in D. Then, defines
{

Ui = Gτi ∈ G1 ∀di ∈ R,
V = e(G,H) ∈ GT .

Each τi is called as the secret of a data and Ui is the identity of a data. Defines
U0 = Gτ0 by computing from a random τ0 ∈ Z

∗
p. Thus, the public parameter is

params = 〈H,V,U0, U1, · · · , Um〉,

and mk = 〈G, τ0, τ1, · · · , τm〉 is kept privately.
– GenRKey(params, di): This is an assignment algorithm from the setup para-

meter params. According to the data hierarchy, for any data di, it computes
the data key pki as follows:

{
pki = 〈H,V,Wi, {Uk}dk∈↑di

〉,
Wi = U0 · ∏

di�dk
Uk,

where pki denotes the public data key of data di ∈ D and {Uk}dk∈↑di
is the set

of all data in ↑ di which denotes the control domain for the data di. It is clear
that Wi = G

τ0+
∑

di�dk
τk . For the sake of simplicity, lets ζi = τ0 +

∑
di�dk

τk,
so that it has Wi = Gζi .

– AddUser(mk, ID, ui,j): Given mk = 〈G, {τi}m
i=0〉 and a user index ui,j in the

data di (where ui,j denotes the j-th user in data di), the data owner generates
a unique private key by randomly selecting a fresh xi,j = Hash(ID, ui,j) ∈ Z

∗
p

as a labi,j (labi,j = xi,j) of ui,j which is public and defines

{
Ai,j = G

xi,j
ζi+xi,j ∈ G1,

Bi,j = H
1

ζi+xi,j ∈ G2.

Therefore, the user ui,j takes ski,j = 〈Ai,j , Bi,j〉 as the corresponding
secret key.
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Finally, the above procedure outputs the set of public data keys {pki} and the
set of user secret keys {ski,j}.

Since the users can been added into the RBC dynamically, collusion attack,
which implies that two or more users belonged to different roles may collaborate
to reveal the user key that they are unknown before, is possible in RBC. Zhu
et al. [18] proved that the proposed RBC is secure against this collusion attack
and got the following theorem.

Theorem 1. Given a role-key hierarchy Ω = 〈U,K,D,P,�〉, the RBC scheme
is (m,N, t)-collusion secure against collusion under Strong Diffie-Hellman
(SDH) problem.

3 Formal Definitions

In this section, we present the formal definition of the PDP scheme with data
hierarchy and the corresponding security definition.

3.1 Definition of the PDP Scheme with Data Hierarchy

Definition 3 (PDP with Data Hierarchy). A PDP protocol with data hier-
archy is a collection of two algorithms (KeyGen, TagGen) and two interactive
proof systems (GenProof, CheckProof), which are described in details below.

KeyGen (1κ). The key generation algorithm is run by the data owner to setup
the scheme. Input a bilinear map group system S = (p, G1, G2, GT , e), accord-
ing to the role-based cryptosystem in Sect. 2, it outputs the system public
parameters params, the public keys pk and the secret keys sk.

TagGen (sk, pk, F ). The block-tag generation algorithm is also run by the data
owner. Input the private keys sk and the public keys pk, the block mk (the data
owner splits file F into n blocks, i.e., F = (m1,m2, · · · ,mn), where mk ∈ Z

∗
p),

it outputs the tuple {Φk, (mk, Tmk
)}, where Φk denotes the k-th record of meta-

data, (mk, Tmk
) denotes the k − th block-tag pair. Denotes all the metadata

{Φk} as Φ and all the block-tag pairs {(mk, Tmk
), k ∈ [1, n]} as Σ.

GenProof (pk, chal,Σ). This proof generation algorithm is run by CSS in
response to a query from a client. Input the public keys pk, a chal from the
query of the client uj,k and Σ, it outputs a PDP (proof) Γ as the response.

CheckProof (pk, skj,k, chal, Γ ). This checking algorithm is run by the client
uj,k to validate the PDP. Input the public keys pk, the private key skj,k, the
chal and the PDP Γ , the client uj,k outputs “success” or “failure”.

Remark 1. This definition is similar to other PDP schemes [5,8–10,13,14,16],
except that the KeyGen is more complicated since the more public keys are
generated in our scheme. We note that some PDP schemes in [3,5] encrypt
outsourced data beforehand, while our PDP focus on the checking the integrity
of outsourced data and the outsourced data is known for CSS, but they are secret
for the clients except that the clients can validate its integrity after paying for
them.
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3.2 Security Definition

We know that the security of outsourced data, i.e., the availability and integrity,
are the most important issues on outsourcing data to CSS. In this subsection, we
follow the security definition in [8,14], and define the security for our proposed
PDP scheme. We say that there is no (polynomial-time algorithm) adversary
A (malicious CSS) that can successfully construct a valid proof so as to cheat
verifier with non-negligible probability. The security definition of the game model
between a challenger and an adversary A is provided as follows.

Setup. For any data di and the corresponding allocated file Fi, the challenger
implements KeyGen (1κ) to generates (sk, pk), and keeps sk secretly, while
sends pk to the adversary A .

First-Phase Queries. The adversary A adaptively queries the hash, block-tag
pairs and PDP, which are described as follows.
– H-query: Any time A queries the hash, if the challenger has the hash

value, then gives it to A directly. Otherwise, the challenger computes the
hash value and sends it to A .

– Block-tag pairs query: For the file Fi, the adversary A selects a block
mi,k from Fi and sends it to the challenger, the challenger implements
TagGen(sk, pk, Fi) to compute the tag Tmi,k

, then sends the block-tag
pair (mi,k, Tmi,k

) to A . Let Π1 be the set of indices of block tags that
have been queried.

– PDP query: The adversary A sends a challenge chal1 = (c1, k1,1, k1,2)
which defines an order collection {i1, i2, · · · , ic1}, where c1 ∈ [1, n], is a
positive integrity and denotes the number of block data queried by A , and
k1,1, k1,2 ∈ Z

∗
p. The challenger runs TagGen(sk, pk, Fi) to generate the

commitment value V ti , then runs GenProof(π, f, chal1, Σi) to generate
a valid PDP, after that, sends the PDP and commitment value V ti to A .

Challenge. The challenger generates a challenge chal = (c, k1, k2) which defines
an order collection {i1, i2, · · · , ic}, where c ∈ [1, n], is a positive integrity and
denotes the number of block data queried by the challenger, and k1, k2 ∈ Z

∗
p,

requests the adversary A to provide a PDP for the corresponding blocks.
Second-Phase Queries. Similar to the first-phase queries. Let Π2 be the set of

indices of block tags in the Block-tag pairs query, chal2 = (c2, k2,1, k2,2)
denotes the challenge in PDP query.

Answer. The adversary A sends a forged PDP Γ ′
i = (μ′

i, T
′
i ) as the response to

the challenger.

We say that the adversary A wins the game if

(1) The PDP Γ ′
i = (μ′

i, T
′
i ) can pass the checking.

(2) The challenge chal = (c, k1, k2) /∈ {chal1, chal2} and the order collection
{i1, i2, · · · , ic} � (Π1 ∪ Π2).

We define AdvSigA to be the probability that A wins the above game, which
taken over the coin tosses of A and the challenger. Based on the adversary’s
advantage in definition, we provide a security definition below:



310 C. Lin et al.

Definition 4 (Unforgeability). An adversary A (malicious CSS) is said to
be a (ε, t, qh, qb, qp)-forgery against the PDP scheme if A runs in time at most t,
A makes at most qh hash queries, at most qb block-tag pairs queries and at most
qp PDP queries, while AdvSigA is at least ε. The PDP scheme is (ε, t, qh, qb, qp)-
existentially unforgeable under the attack if no (ε, t, qh, qb, qp)-forgery exists.

4 Our Construction of the PDP Scheme with Data
Hierarchy

Our PDP scheme with data hierarchy comprises with algorithms ( KeyGen,
TagGen) and algorithm (GenProof, CheckProof), where the KeyGen is
more complicated involving a data hierarchy than the others schemes. The data
owner (maybe a company or an organization) constructs a data hierarchy, gen-
erates the private keys of clients and outputs public keys by implementing the
algorithm KeyGen, and then sends the private keys to clients and posts the pub-
lic parameters on the public cloud. Specifically, the data owner first constructs
a role-key hierarchy in RBAC, then allocates different data into different roles
according to their different values. The role-key hierarchy is implemented by a
data hierarchy (different data is bound with different roles). The clients, who
are regarded as different users, are classified into the data hierarchy according
to their payment for the data or the contracts. That is, the clients are authorized
different permissions to access different values data. Next, the data owner com-
putes the block-tag pairs by operating algorithm TagGen, and CSS generates a
PDP (proof) by implementing algorithm GenProof as a response to the query
of the client. Finally, the client operates CheckProof to check the PDP. The
permission to access the data is achieved by validating the corresponding PDP,
i.e., the data cannot be used by clients if the clients cannot validate its PDP.
We describe them in detail as follows.

First, we define the following cryptographic functions which are used in our
PDP scheme:

h(·) : GT −→ Z
∗
p,

H(·) : {0, 1}∗ −→ G1,
f : Z

∗
p × {1, 2, · · · , n} −→ Z

∗
p,

π : Z
∗
p × {1, 2, · · · , n} −→ {1, 2, · · · , n},

where, f is a pseudo-random function and π is a pseudo-random permutation.
The parameters {h,H, f, π} are made publicly. Our concrete PDP scheme with
data hierarchy is constructed as follows.

KeyGen (1κ). First, with a bilinear map group system S = (p, G1, G2, GT , e),
the data owner constructs a data hierarchy based on the RBC mentioned
in Sect. 2, and classifies the clients into the data hierarchy. The data owner
generates corresponding public parameters and private keys, sends private
keys to clients and posts the public parameters on the public cloud. The
processes are provided below.
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(1) The data owner constructs a data hierarchy by implementing RBC. For
data di, the data owner generates public parameters

{
pki = 〈H,V,Wi, {Uk}dk∈↑di

〉,
Wi = U0 · ∏

di�dk
Uk,

and classifies the clients as users of data into the data hierarchy. The
data owner then generates the clients private keys ski,j = 〈Ai,j , Bi,j〉 and
sends them to the corresponding clients ui,j in data di. The data owner
also generates manager private keys mk = 〈G, τ0, τ1, · · · , τm〉, then stores
them on local storage. Finally, the above process outputs the set of data
keys {pki} and the set of clients keys {ski,j}.

(2) For the data di, the data owner randomly chooses ti ∈ Z
∗
p, and generates

the following values,
⎧
⎪⎪⎨

⎪⎪⎩

C1 = W ti
i ∈ G1,

C2 = Hti ∈ G2,
C3 = V ti ∈ GT ,
U ′

k = U ti

k ∈ G1 dk ∈↑ di.

p̂i = 〈C1, C2, {U ′
k}dk∈↑di

〉 is posted as the public parameters of data di,
while C3 = V ti is sent to CSS as a commitment for data di.

(3) The data owner selects a random element u ∈ G1 and a random value
x ∈ Z

∗
p, chooses a generator g ∈ G2, then computes υ ← gx.

Finally, the data owner outputs secret keys sk = (mk, x) and the public
parameters pk = (pki, p̂i, h,H, f, π, u, υ, g, p).

TagGen (sk, pk, Fi). For data di, the data owner allocates the file Fi to it. The
data owner splits file Fi into n blocks, i.e., Fi = (mi,1,mi,2, · · · ,mi,n), where
mi,� ∈ Z

∗
p of which � ∈ [1, n]. For every block mi,�, the data owner performs

the procedures as follows:
(1) Calculates h(V ti), and generates u‖�, then, computes H(u‖�), where � ∈

[1, n].
(2) Calculates

Tmi,�
= (H(u‖�)uh(V ti )umi,�)x.

(3) Outputs (mi,�, Tmi,�
).

After the procedures are performed at n times, all block tags are generated by
the data owner, then, the data owner denotes the collection of all block-tag
pairs {(mi,�, Tmi,�

), � ∈ [1, n]} as

Σi = {(mi,1, Tmi,1), (mi,2, Tmi,2), · · · , (mi,n, Tmi,n
)},

and sends the block-tag pairs collection Σi and commitment value V ti to CSS.
Then, CSS stores the block-tag pairs collection Σi and the commitment value
V ti . After confirming CSS has stored the outsourced data, the data owner
deletes the block-tag pairs collection Σi and commitment value V ti from its
local storage but stores the private key sk and the corresponding metadata
Φi. Next, we assume a client uj,k in data dj , where di � dj , queries CSS.
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GenProof (π, f, chal,Σi). Upon receiving a query from the client uj,k which
is chal = (c, k1, k2), where c ∈ [1, n] is the number of queried block data,
k1, k2 ∈ Z

∗
p. CSS performs the procedures as follows:

(1) For 1 ≤ j ≤ c, CSS calculates the indexes and coefficients of the blocks
for which the PDP is generated: aj = πk1(j), vj = fk2(j).

(2) CSS calculates

Ti =
c∏

j=1

T vj
mi,aj

, μi =
c∑

j=1

vjmi,aj
.

(3) CSS outputs Γi = (μi, Ti), and sends Γi to the client uj,k as the response
to the query.

CheckProof (pk, skj,k, chal, Γi). Upon receiving the response Γi from CSS, the
client uj,k performs the procedures as follows:
(1) For 1 ≤ j ≤ c, the client uj,k calculates the indexes and coefficients of the

blocks: aj = πk1(j), vj = fk2(j), in the same way with CSS.
(2) With the public parameters p̂i of pk and private keys skj,k ,the client uj,k

calculates the value V ti . The client uj,k can figure the value V ti out due
to di � dj .

(3) With the value V ti , the client uj,k calculates h(V ti), then checks whether
the following equation holds:

e(Ti, g) ?= e(
c∏

j=1

H(u‖aj)vj uh(V ti )vj , υ) · e(uμi , υ). (1)

(4) If it holds, the client uj,k outputs “success”. Otherwise, the client uj,k

declares “failure”.

– Revocation. The clients have to pay for the data in order to use them, and
the clients might have signed contracts with the data owner. If the contract
expires, the clients will not extend the contract, or other reasons, and if the
whole clients of a data dj are to be revoked, i.e., the data dj is to be revoked,
what can the date user do? Actually, this two situations can be solved easily.
The data owner implements AddUser algorithm in role-based encryption
scheme with revocation mechanism [18] to generate users’ private keys and
public labels, and generates new values p̂i = 〈C1, C2, {U ′

k}dk∈↑di
〉 in step 2

and the commitment value C3 = V ti

Ru
in KeyGen to revoke them, where,

⎧
⎪⎪⎨

⎪⎪⎩

C1 = W ti
i ∈ G1,

C2 = Bti

Ru
∈ G2,

C3 = V ti

Ru
∈ GT ,

U ′
k = U ti

k ∈ G1 dk ∈↑ di.

The values Ru,C1,C2,V ti

Ru
,U ′

k are same with the corresponding values in role-
based encryption scheme with revocation mechanism [18], the details are not
presented here due to the limited space.
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– Adding. When some new clients pay for the data and are authorized to use
the data. It implies that the clients should be added into the data hierarchy by
data owner. The data owner just classifies them into data hierarchy based on
their payment or the contracts, and then authorizes them the corresponding
permission to access the data by implementing the AddUser procedure in
Sect. 2.4.

Remark 2. When the controversy occurs between CSS and the data owner, for
example, CSS asserts the data Fi is complete but the data owner does not agree
with it. In this case, CSS sends the commitment value V ti to the trusted third
party to arbitrate between them. This enables the trusted third party to validate
the PDP since anyone can validate the PDP if he/she figures the value V ti out. In
such situation, CSS may reveal the commitment value V ti to the clients privately.
However, CSS cannot know the identities of clients since the information about
it is kept secretly, meanwhile, CSS cannot publish the commitment value V ti

naturally (the data owner can give clear indication of this in the contract with
CSS). Moreover, in the worse situation, CSS reveals the commitment value V ti

successfully. This will damage the interests of the data owner, but it will not
release the secret keys of the data owner. That is, this will not threat to the
security in our PDP scheme. In brief, the commitment value V ti is useless to
CSS except for solving the controversy about the integrity of data.

5 Security Analysis

In this section, we describe the security analysis for our proposed PDP scheme
with data hierarchy. We first verify the correctness and then we prove that there
are no clients in data dj can validate the PDP of file Fi if di � dj . We finally
prove that our scheme is secure against the forgery attack if the CDH problem
is hard.

Theorem 2. If the data owner, CSS and client are honest and they follow
our proposed processes, then any challenge-response can pass clients’ checking,
namely, the PDP scheme satisfies the correctness.

Proof. According to the proposed PDP scheme with data hierarchy in Sect. 4,
any challenge-response can pass checking if Eq. (1) is satisfied. If di � dj , any
client uj,k in data dj can verify the PDP. With the public parameters p̂i of pk
and private keys skj,k, we first have

V ti = e

(
C1 ·

∏

d�∈Γ (dj ,di)

U ′
�, Bj,k

)
· e(Aj,k, C2) (2)

= e

(
W ti

i ·
∏

d�∈Γ (dj ,di)

U ′
�, Bj,k

)
· e(Aj,k,Hti)

= e

(
(U0 ·

∏

di�dk

Uk)ti · (
∏

d�∈∪dj�dk
{dk}\∪di�dk

{dk}
U�)ti , Bj,k

)
· e(Aj,k,Hti)
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= e
(
Gζj ·ti ,H

1
ζj+xj,k

) · e
(
G

xj,k
ζj+xj,k ,Hti

)

= e(G,H)
ζj ·ti

ζj+xj,k · e(G,H)
xj,k·ti

ζj+xj,k = e(G,H)ti = V ti ,

where Γ (dj , di) denotes ∪dj�dk
{dk} \ ∪di�dk

{dk} and d� ∈ Γ (dj , di) ⊆↑ di.
Then, with the value V ti , we have

e

(
Ti, g

)
= e

( c∏

j=1

T vj
mi,aj

, g

)
= e

( c∏

j=1

(
H(u‖aj)uh(V ti )umi,aj

)vj
, υ

)

= e

( c∏

j=1

H(u‖aj)vj uh(V ti )vj , υ

)
· e

( c∏

j=1

uvjmi,aj , υ

)

= e

( c∏

j=1

H(u‖aj)vj uh(V ti )vj , υ

)
· e

(
uμi , υ

)
. �

Theorem 3. In our proposed PDP scheme with data hierarchy, there are no
clients in data dj can validate the PDP of file Fi other than validating it by
guessing, if di � dj.

Proof. According to procedures of the proposed PDP scheme with data hierar-
chy, the client has to figure the value V ti out by the Eq. (2). Otherwise, he/she
cannot calculate the value h(V ti) that result in failing to verify the Eq. (1). In
Zhu et al.’s security proof [18], since ri � rj , clients {uj,k}k∈[1,N ] in role rj have
no permissions to access the role ri, namely, the clients {uj,k}k∈[1,N ] in role rj

cannot recover the corresponding message M due to they cannot calculate V ti .
Above all, the clients {uj,k}k∈[1,N ] in data dj cannot calculate V ti result in fail-
ing to validate the PDP of file Fi but validating it by guessing, which completes
the proof. �

Lemma 1. If all the outsourced block tags are intact, while challenged blocks are
modified or lost by the malicious CSS, the malicious CSS can compute a valid
PDP with negligible probability.

Proof. Without loss of generality, we assume the challenge is chal = (c, k1, k2),
the forged PDP generated by the malicious CSS is Γ ′

i = (μ′
i, T

′
i ), where,T ′

i =
c∏

j=1

T
vj

m′
i,aj

and μ′
i =

c∑

j=1

vjm
′
i,aj

. We also assume the block tags are intact , so

T ′
i =

c∏

j=1

T
vj

m′
i,aj

is calculated correctly, while μ′
i =

c∑

j=1

vjm
′
i,aj

is not. If the forged

PDP Γ ′
i = (μ′

i, T
′
i ) can pass the checking, we have

e(T ′
i , g) = e(

c∏

j=1

H(u‖aj)vj uh(V ti )vj , υ) · e(uμ′
i , υ), (3)
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where
c∏

j=1

H(u‖aj)vj uh(V ti )vj is calculated correctly by verifier. On the other

hand, if the challenged blocks are intact, we have

e(Ti, g) = e(
c∏

j=1

H(u‖aj)vj uh(V ti )vj , υ) · e(uμi , υ). (4)

where μi =
c∑

j=1

vjmi,aj
is an expected value which is calculated correctly. Divid-

ing the Eq. (4) by Eq. (3), we have

e(T ′
i · T−1

i , g) = e(uμ′
i−μi , υ),

since we assume all the outsourced block tags are intact, so T ′
i = Ti, then, we

have,

e(uμ′
i−μi , υ) = e(T ′

i · T−1
i , g) = 1,

from the above equation, we have uμ′
i−μi = 1, resulting in μ′

i = μi, namely,
c∑

j=1

vjm
′
i,aj

=
c∑

j=1

vjmi,aj
, then we get

c∑

j=1

vj(m′
i,aj

− mi,aj
) = 0. (5)

Suppose there exist s ≤ c indices of blocks have been modified or lost, such that
the corresponding index pairs (m′

i,aj
,mi,aj

) have the property m′
i,aj

�= mi,aj
,

then there exist at most (p − 1)s−1 tuples (v1, v2, · · · , vc) satisfy the Eq. (5).
Thus, if there exist s ≤ c indices of blocks have been modified or lost, the
Eq. (5) holds only with the negligible probability less than (p− 1)s−1/(p− 1)c ≤
(p − 1)c−1/(p − 1)c = 1/(p − 1), which completes the proof. �

Theorem 4. Suppose the (ε′, t′)-CDH problem is hard in bilinear groups, then
our PDP scheme with data hierarchy is (ε, t, qh, qb, qp)-existentially unforgeable.
That is, no adversary A (malicious CSS) can pass the checking procedure, i.e.,
the verification Eq. (1) in CheckProof cannot been satisfied. If the original
blocks of file Fi and even only one of the blocks are incomplete, except by respond-

ing with the correctly computed PDP Γi = (μi, Ti), where,Ti =
c∏

j=1

T
vj
mi,aj

and

μi =
c∑

j=1

vjmi,aj
. For all ε and t satisfying

ε′ ≥ ε · (p − 2)/(p − 1) and t′ ≥ t + th · qh + tb · qb + tp · qp + tc,

where, th is the cost of computing hash function, tb is the cost of generating
queried block tag, tp is the cost of generating queried PDP, and tc is the compu-
tational cost in solving the CDH problem.
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Proof. Based on the security definition model, we analyze the possible attacks
and countermeasures. First, it is infeasible for the adversary A to pass the
checking procedures using blocks with different indices even if the data owner
uses the same secret key x with all tags of blocks. This is because that the hash
value H(u‖aj) and the block indices are embedded into the block tag which
specified the tag so as to prevent using the tag to obtain a valid PDP(proof) for
the different block. Second, the value uh(V ti ) of tags is fixed and independent
which is computed by the data owner beforehand and must be computed by
verifiers when checking the PDP afterward. It is useful for the verifiers but
useless for the adversary A . Above all, the goal of the adversary A is to generate
a forged PDP which is not computed correctly but can pass the verification
procedures. We will construct an algorithm B (which plays as a verifier) that, by
interacting with A , to solve the CDH problem if we assume that the adversary
A wins the game.

The CDH problem is that: given g, gx, h ∈ G for some group G, where
x ∈ Zp is unknown, compute hx. We suppose that the algorithm B expects
to compute hx. We also assume B can compute all values except for x in our
proposed PDP scheme. B sets u = gαhβ for α, β ∈ Z

∗
p as a public parameter

beforehand.

Setup. For data di and the corresponding allocated file Fi, B implements Key-
Gen(1κ) to generates (sk, pk), and keeps sk secretly, while sends pk to the
adversary A , where, private keys sk = (mk, x) and the public parameters
pk = (pki, p̂i, h,H, f, π, u, υ, g, p).

First-Phase Queries. It involves three kinds of queries:
– H-query: Any time A queries the hash, if B has the hash value, then

gives it to A directly. Otherwise, B computes the hash value and sends
it to A .

– Block-tag pairs query: For the file Fi, the adversary A selects a block
mi,k from Fi and sends it to B, B implements TagGen(sk, pk, Fi) to
compute the tag Tmi,k

, then sends the block-tag pair (mi,k, Tmi,k
) to A ,

where Tmi,k
= (H(u‖k) uh(V ti )umi,k)x. Let Π1 be the set of indices of

block tags that have been queried.
– PDP query: The adversary A sends a challenge chal1 = (c1, k1,1, k1,2)

which defines an order collection {i1, i2, · · · , ic1}, where c1 ∈ [1, n], is a
positive integrity and denotes the number of block data queried by A , and
k1,1, k1,2 ∈ Z

∗
p. B runs TagGen(sk, pk, Fi) to generate the commitment

value V ti and runs GenProof(π, f, chal1, Σi) to generate a valid PDP,
then sends them to A .

Challenge. B generates a challenge chal = (c, k1, k2) which defines an order
collection {i1, i2, · · · , ic}, where c ∈ [1, n], is a positive integrity and denotes
the number of block data queried by the challenger, and k1, k2 ∈ Z

∗
p, requests

the adversary A to provide a PDP for the corresponding blocks.
Second-Phase Queries. Similar to the first-phase queries. Let Π2 be the set of

indices of block tags in the Block-tag pairs query, chal2 = (c2, k2,1, k2,2)
denotes the challenge in PDP query.
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Answer. The adversaryA sends a forged PDP Γ ′
i = (μ′

i, T
′
i ) as the response toB.

Output. If the PDP Γ ′
i = (μ′

i, T
′
i ), where T ′

i =
c∏

j=1

T
vj

m′
i,aj

and μ′
i =

c∑

j=1

vjm
′
i,aj

,

is valid, i.e., A wins the game, we have
(1) The PDP Γ ′

i = (μ′
i, T

′
i ) can pass the checking, namely, the Eq. (1) holds.

(2) The challenge chal = (c, k1, k2) /∈ {chal1, chal2} and the order collection
{i1, i2, · · · , ic} � (Π1 ∪ Π2).

We assume Γi = (μi, Ti) is an expected response with correctly values μi

and Ti, along with Ti =
c∏

j=1

T
vj
mi,aj

and μi =
c∑

j=1

vjmi,aj
. According to the

above 2), if the adversary A wins the game, we know that A cannot send
a valid PDP to B obtained from the queries, thus, the corresponding block-
tag pairs of the challenged blocks also cannot be obtained from the queries.
According to the Lemma 1, since the challenged blocks are incomplete, we
have μ′

i = μi holds only with the negligible probability less than 1/(p − 1).
Then Γ ′

i = Γi holds with the negligible probability less than 1/(p − 1). In
other word, Γ ′

i �= Γi holds with the overwhelming probability (p−2)/(p−1).
Then, B begins to solve the CDH problem as follows.
The response Γ ′

i = (μ′
i, T

′
i ) of the adversary A is valid, i.e. Γ ′

i = (μ′
i, T

′
i )

satisfies the Eq. (1), thus, B computes

e(T ′
i , g) = e(

c∏

j=1

H(u‖aj)vj uh(V ti )vj , υ) · e(uμ′
i , υ). (6)

At the same time, the expected proof Γi = (μi, Ti) also satisfies the Eq. (1),
then, B also computes

e(Ti, g) = e(
c∏

j=1

H(u‖aj)vj uh(V ti )vj , υ) · e(uμi , υ). (7)

Since Γ ′
i �= Γi, then, there are two cases:

(a) T ′
i = Ti, μ′

i �= μi. B gets e(T ′
i , g) = e(Ti, g) and T ′

i · T−1
i = 1, then

according to the Eqs. (6) and (7), B defines Δμ = μ′
i − μi �= 0, dividing

the Eq. (7) by Eq. (6) to obtain

e(T ′
i · T−1

i , g) = e(uΔμi , υ). (8)

Then, B transforms Eq. (8) aboved to obtain

e(T ′
i · T−1

i , g) = e(uxΔμi , g). (9)

Since u = gαhβ , B computes hx by the Eq. (9) as follows:

(gαhβ)xΔμi = T ′
i · T−1

i

hxβΔμi = 1 · υ−αΔμi

hx = υ− α
β . (10)

Thus, the given CDH problem is solved by B.
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(b) T ′
i �= Ti, μ′

i �= μi. The same to the above processes, B divides the Eq. (4)
by Eq. (3) result in e(T ′

i · T−1
i , g) = e(uΔμi , υ), then, computes hx as

follows:

(gαhβ)xΔμi = T ′
i · T−1

i

hxβΔμi = T ′
i · T−1

i · υ−αΔμi

hx = (T ′
i · T−1

i · υ−αΔμi)
1

βΔμi . (11)

Thus, the given CDH problem is also solved by B.

Hence, if the adversary A breaks the proposed PDP scheme at a polynomial
time t in non-negligible advantage ε, the algorithm B solves CDH problem
at the polynomial time t′ in non-negligible advantage ε′ ≥ ε · (p − 2)/(p − 1).
Let th be the cost of computing hash function, tb be the cost of generating
queried block tag, tp be the cost of generating queried PDP, and tc be the
computational cost in solving the CDH problem, then the total running time
t′ of B are no less than the total time of the running time t of A , the time
th · qh for responding to qh hash queries, the time tb · qb for qb block tag pairs
queries. the time tp · qp for qp PDP queries, and the time tc in computing the
CDH problem. Therefore, the advantage ε′ ≥ ε · (p − 2)/(p − 1) and the total
running time is t′ ≥ t + th · qh + tb · qb + tp · qp + tc as required. This completes
the proof. �

6 Performance Analysis

We analyze performance of our proposed PDP scheme with data hierarchy
mainly in four aspects: the computational cost of each algorithm, the commu-
nication cost of each phase, the storage cost of the data owner, the clients and
CSS, and comparison with some other private verifiability PDP schemes.

Table 1. Computational cost of each algorithm

Algorithm Addition Scalar exponentiation Hash Pairing

KeyGen O(m) m + 4 + 2m ·N m ·N 1

TagGen 0 2n + 1 n + 1 0

GenProof 3c 0 0 0

CheckProof 0 4c + 1 c + 1 4

• m denotes the number of data and N denotes the number
of clients in each data.
• O(m) denotes a polynomial of m.
• c and n denote the number of data blocks queried by the
clients, and the number of data blocks, respectively.

Table 1 shows the computational cost of each algorithm. We calculate the
numbers of additions in Z

∗
p, scalar exponentiations in G1, G2 and GT , hashes,

and pairings.
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Table 2. Communication cost

Phase Communication cost

KeyGen mN · (q1 + q2)

TagGen n · (p + q1 − 1) + qt

GenProof c + 3p + q1 − 3

• m denotes the number of data
and N denotes the number of
clients in each data.
• q1, q2 and qt denote the size of
the element in G1, G2 and GT .
• c, n denote the number of data
blocks queried by the clients,
and the number of data blocks,
respectively.

Table 3. Storage cost

Entity Storage cost

Data owner (p− 1) · (m + 2) + q1

Clients mN · (q1 + q2)

CSS mn · (p + q1 − 1) + qt ·m
• m denotes the number of data and N
denotes the number of clients in each data.
• q1, q2 and qt denote the size of the element
in G1, G2 and GT .
• n denotes the number of data blocks.

Table 2 presents the communication cost of each phase in our PDP scheme. In
the KenGen phase, the data owner generates private keys and delivers them to
the corresponding clients of data in the data hierarchy through a secure channel.
In the TagGen phase, the data owner computes all block-tag pairs and sends
them to CSS via a secure channel. In the GenProof phase, the verifier queries
CSS and CSS makes a respond.

Table 3 presents the storage cost of the data owner, the clients and CSS. The
data owner needs to store the private keys sk, the clients receive the private
keys from data owner and have to store them, and CSS stores the block-tag
pairs collection Σi and the commitment value V ti . We compare the proposed
PDP with data hierarchy with some other private verifiability PDP scheme on
the number of the verifiers and whether they support the adding/revoking the
users or not in Table 4.

From the Tables 1, 2 and 3, we find that the total cost of computational,
communication and storage are lesser, except that it costs more in KeyGen
process. In Table 4, we note that only our proposed PDP with data hierarchy
satisfies both multi-verifiers, and to add or revoke clients easily and efficiently.

Remark 3. We note that our proposed PDP scheme is similar with [5], except for
our KeyGen algorithm is more complicated since we introduce the hierarchi-
cal data framework. Comparing with the privately verifiable PDP [8–10,14,16],
the total computational cost of our PDP is the nearly same with them. In our
PDP scheme, we introduce the multiple clients and a data hierarchy in which
clients’ private keys and public parameters of the data hierarchy are computed,
and a commitment value has to be figured out by the verifier in CheckProof
algorithm. They involve two bilinear pairs computation and a few multiplication
in G1. Moreover, though the KeyGen algorithm consumes more, it is no great
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Table 4. Comparison with other PDP schemes

Protocols Architecture of verifying Add/Revoke or not

PDP in [10] Single Verifier Yes

PDP in [14] Single Verifier Yes

PDP in [8] Single Verifier No

PDP in [16] Single Verifier Yes

PDP in [9] Multi-verifiers No

Our PDP Multi-verifiers Y es

impact on the entire system performance since the KeyGen algorithm is only
implemented at a time during the files life.

7 Conclusions

In this paper, we propose a provable data possession scheme which is the first
provably secure PDP scheme that operates with a data hierarchy.

The capability to validate the PDP is authorized by the data hierarchy, while
the clients are added or revoked efficiently by data owner. Moreover, CSS in our
PDP scheme is stateless and independent of data owner. The controversy on
the integrity of data can be solved efficiently without revealing the secret keys
of the data owner. A small shortcoming is that the setup procedure consumes
more time since it involves constructing a data hierarchy. A subject of our future
work is to design a less time-consuming setup procedure.
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Abstract. Many users store their data in a cloud, which might not be
fully trusted, for the purpose of convenient data access and sharing. For
efficiently accessing the stored data, keyword search can be performed
by the cloud server remotely with a single query from the user. How-
ever, the cloud server cannot directly search the data if it is encrypted.
One of solutions could be to allow the user to download the encrypted
data, in order to carry out a search; however, it might consume huge
network bandwidth. To solve this problem, the notion of keyword search
on encrypted data (searchable encryption) has been proposed. In this
paper, a special variant of searchable encryption with threshold access
is studied. Unlike some previous proposals which have fixed group and
fixed threshold value, we define a new notion named Threshold Broad-
cast Encryption with Keyword Search (TBEKS) for dynamic groups and
flexible threshold values. We formalize the security of a TBEKS scheme
via a new security model named IND-T-CKA which captures indistin-
guishability against chosen keyword attacks in the threshold setting. We
also propose the first practical TBEKS scheme with provable security in
our IND-T-CKA security model, assuming the hardness of the Decisional
Bilinear Diffie-Hellman problem.

Keywords: Searchable encryption · Keyword search · Cloud security

1 Introduction

Cloud computing [8] provides flexible computing resources, including data stor-
age, to end users. Users are able to upload their data to the cloud for later
access by themselves or by other users (i.e., data sharing) via the Internet. In
other words, on-demand data access is available via the Internet where users
can search and then download what they need. To prevent a huge amount of
network bandwidth consumption, the search operations are usually done by the
cloud instead of letting users download all the data and search locally.

Meanwhile, to ensure the privacy of the users, some sensitive data should be
protected against the cloud server while the keyword search functionality is main-
tained. Specifically, the data to be searched and the keyword used in the search
c© Springer International Publishing Switzerland 2016
D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 322–337, 2016.
DOI: 10.1007/978-3-319-38898-4 19
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operation should be inaccessible by any non-authorised parties, including the
cloud. With such a demand, various searchable encryption schemes [1,3,4,7,11]
have been proposed to enable secure searching over encrypted data. In a public
key searchable encryption scheme, Bob encrypts both the data and the keywords
under Alice’s public key and uploads the ciphertexts to the cloud. As both the
data and the keywords are protected, it is hard for the cloud server to gain
any information about the data. To perform search operations, Alice generates
a trapdoor for a keyword [1,3,4] or multiple keywords [7] and transfers it to
the cloud via a secure communication channel. Upon receiving Alice’s trapdoor
of the keyword, the cloud server searches the whole database and returns the
search results back to Alice. Finally, Alice downloads the ciphertexts from the
cloud based on the search results, and decrypts them to get the original data.

In the normal searchable encryption schemes, the accessibility to the data and
its search operation is authorised to a user [1,4] or a set of users [12,15] where any
single user in the authorised user set can perform the search and the decryption
operations. However, a single identity may not be trustful in some scenarios. For
instance, a research team of a company is developing a new product and needs
to access the company database. The head of the research department does not
trust any single member of the research team to access the database, since an
individual member may leak the secrets of the company for monetary purposes.
To reduce the risk of a single point failure, a threshold searchable encryption
scheme is more suitable where the accessibility to the data is decentralised from
a single member to n members of the team where searching the database and
decrypting a ciphertext both require at least t members to work together. To
be more precise, in order to perform a search operation successfully, the cloud
needs to obtain for a keyword at least t trapdoors from the n authorised users. If
such a threshold searchable encryption also supports dynamic groups and flexible
threshold values, the company can specify different classifications for different
data by changing the authorised user set and the threshold value t. This paper
aims to provide a practical solution for this problem.

1.1 Related Work

Boneh et al. [4] introduced the searchable encryption, namely public encryption
with keyword search (PEKS), and defined the security model that the adver-
sary cannot identify the keyword from the ciphertext without a trapdoor. Xu
et al. [14] argued that PEKS is insecure under key guessing attack (KGA) since
the remote server can always create a ciphertext of a keyword and test it with
the target trapdoor. If the keyword space is in polynomial size, the adversary
can get the keyword from the target trapdoor in polynomial time. Xu et al. [14]
also proposed a method to enhance the security under KGA by encrypting and
searching for the fuzzy keyword instead of the exact keyword.

Boneh et al. [4] showed that PEKS implies identity-based encryption (IBE)
but not vice versa. Nevertheless, Abdalla et al. [1] proposed a PEKS scheme
generically constructed using anonymous identity-based encryption (AnonIBE).
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They also proposed identity-based searchable encryption (IBKS) from a 2-
leveled anonymous hierarchical identity-based encryption (AnonHIBE). Simi-
larly, searchable broadcasting encryption, namely broadcast encryption with
keyword search (BEKS), can be constructed using 2-leveled anonymous hier-
archical identity-coupling broadcast encryption (AnonHICBE) [2].

Searchable encryption can be divided into the single user setting (e.g. PEKS)
and the multi-user setting. Broadcast encryption with keyword search [2] and
attribute-based encryption with keyword search (ABKS) [12,15] are in the multi-
user setting. In BEKS, the keyword is encrypted for a set of users. If a user is
in the target set, the user can generate the trapdoor for testing the ciphertext.
In ABKS, the keyword is encrypted under a policy or with attributes. Only the
user who has a match of the policy and the attributes can generate the trapdoor
for testing the ciphertext.

However, in both BEKS and ABKS, the individual target user has the full
ability to generate the trapdoor. Wang et al. [13] decentralised the ability of
trapdoor generation to multi-user in a threshold manner, which requires at least
k of n users to generate the trapdoor. Siad [10] gave a formal definition of
threshold public key encryption with keyword search (TPEKS), and generi-
cally constructed a TPEKS scheme with threshold (n, t)-IBE but no concrete
scheme is provided. In Wang et al.’s scheme [13], a trusted centralised manager
is required to generate the private keys for all users. To enhance the security,
Siad’s scheme [10] leverages a distributed protocol in private keys generation
instead of a trusted third party.

We find that both schemes [10,13] are limited to a fixed number of users and
fixed threshold value at the key generation stage. It makes adding or removing
a user impossible, and changing the threshold value for individual ciphertext
impossible. To encrypt a keyword for different set of users or with different
threshold value, we have to generate the private keys for all the users in the
target set. If it is an (n, t)-TPEKS scheme where t is the threshold value such
that 0 < t ≤ n and n is the maximum number of users, the users have to store
O(n ·2n) private-public key pairs for the possible ciphertexts, although they may
share the same global public parameters.

1.2 Our Contribution

In this paper, we introduce a new notion named Threshold Broadcast Encryp-
tion with Keyword Search (TBEKS). We provide a formal definition of TBEKS
and a formal security model, named indistinguishability in the threshold setting
against chosen keyword attack (IND-T-CKA), to capture its security. Moreover,
we construct a practical TBEKS scheme and prove that it is IND-T-CKA secure
under the Decisional Bilinear Diffle-Hellman (DBDH) assumption in random
oracle model.

In our TBEKS definition and scheme, users are ad hoc, i.e., they can generate
their own private-public key pair individually. The data owner selects a target
set of users and threshold value t to encrypt a keyword, and then uploads the full
ciphertext to the remote server. To search the files containing a certain keyword,
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at least t users of the target user set need to generate their trapdoor shares for
that keyword, and transfer those trapdoor shares to the remote server, in order
to enable the remote server to perform the search operation. Our scheme does
not fix the user group and the threshold value at the system setup, and only
one private-public key pair is required for each user. Thus we solve Wang et al.’s
open problem for dynamic group [13].

1.3 Paper Organisation

The rest of this paper is organised as follows. In Sect. 2, we review some essential
tools and assumptions, including threshold secret sharing schemes and bilinear
maps. We define TBEKS and its security model in Sect. 3. Then we propose our
TBEKS scheme in Sect. 4 and prove that it is secure under the security model
defined in Sect. 3.2. Finally, conclusion is addressed in Sect. 5.

2 Preliminaries

2.1 Threshold Secret Sharing Scheme

Shamir’s secret sharing scheme [9] divides a secret s into n pieces s1, . . . , sn using
a k − 1 degree polynomial and distributes to n users. If and only if k users or
more come together, they can recover s by polynomial interpolation. Knowing
k − 1 pieces of s does not reveal any information about s. This scheme is also
called (k, n) Threshold Secret Sharing Scheme. Details are shown as follows.

Let GF (q) be a finite field with order q where q > n. Each user Ui is asso-
ciated with a public unique number ui ∈ GF (q). We also represent randomly
choosing r from a space S by r ∈R S. To share a secret s ∈ GF (q) among
a user set S = {U1, . . . , Un}, a random k − 1 degree polynomial is picked as
p(x) = s +

∑k−1
j=1 ajx

j where aj ∈R GF (q). Each user in the user set S gets a
share si = p(ui). When k users come together and form a user set A ⊂ S, we
can recover p(x) =

∑
Ui∈A ΔA

i si where ΔA
i =

∏
U�∈A∧i�=�

x−u�

ui−u�
. Then we can

recover s = p(0). Obviously, we can recover any point by

sj = p(uj) =
∑

Ui∈A

ΔA
ijsi where ΔA

ij =
∏

U�∈A∧i�=�

uj − u�

ui − u�
.

By defining u0 = 0, we have s =
∑

Ui∈A ΔA
i0si.

2.2 Bilinear Maps

A bilinear map is a function that maps two group spaces to a third space. For
simplicity, we exploit the same bilinear map used in [5] where the first two group
spaces are the same. Let G1 be a additive group, G2 be a multiplicative group,
and both are cyclic groups of prime order q. Let P be a generator of G1. A
bilinear map e : G1 × G1 → G2 has the following properties:
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– Bilinearity: ∀a, b ∈ Zq, e(aP, bP ) = e(P, P )ab.
– Non-Degeneracy: e(P, P ) �= 1.
– Efficiency: It can be computed for any possible input efficiently.

There is a computational hard problem named Decisional Bilinear Diffie-
Hellman problem (DBDH) coming with the bilinear map that we can rely on to
construct our cryptographic scheme. The definition of DBDH problem is shown
as follows.

Definition 1 (Decisional Bilinear Diffie-Hellman Problem). Let a, b, c be
uniformly and independently chosen from Zq, and T be uniformly and indepen-
dently chosen from G2. Giving two probability distributions DBDH = (P, aP, bP,
cP, e(P, P )abc) and Drand = (P, aP, bP, cP, T ), there is an algorithm A can dis-
tinguish DBDH and Drand with advantage:

AdvDBDH
A =

1
2

∣
∣
∣Pr[1 ← A(D U←− DBDH)] − Pr[1 ← A(D U←− Drand)]

∣
∣
∣

where D
U←− DBDH means that D is uniformly and independently chosen from

DBDH . The advantage can be represented alternatively as

D0
U←− DBDH , D1

U←− Drand, b
U←− {0, 1},

AdvDBDH
A =

∣
∣
∣
∣Pr[b = b′ ← A(Db)] − 1

2

∣
∣
∣
∣ .

The DBDH problem is computational hard if and only if the advantage
AdvDBDH

A is negligible. In other words, it is hard to distinguish whether a vector
is chosen from DBDH or Drand other than a random guess. Our scheme is secure
based on the assumption of the hardness of the DBDH problem.

3 Threshold Broadcast Encryption with Keyword Search

3.1 Definition

Generally speaking, a Threshold Broadcast Encryption with Keyword Search
(TBEKS)1 scheme is used along with a Threshold Broadcast Encryption (TBE)
scheme [6], where the former encrypts the keywords and the latter encrypts the
message2. Independent private-public key pairs are suggested for the combina-
tion of the above mentioned system. In TBKES, there are three roles involved,
including the data owner who encrypts the message and the keywords, the
server who stores the ciphertexts and performs the requested search, and the
user who has the access to the decryption of the message and generates search
queries. TBEKS works as follows. The data owner chooses a set of users and
a threshold value t, and encrypts the message under TBE and the keyword
1 We choose the name TBEKS in order to separate it from TPEKS.
2 In a storage system, messages are actually files.
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under TBEKS. Then the data owner combines the ciphertexts and uploads
them to the server. To perform a search operation, at least t users generate
their individual trapdoors for the same target keyword W and upload the trap-
doors to the server via a secure communication channel. After that, the server
searches the whole database of ciphertexts with the given trapdoors and returns
the result message indices back. Upon receiving the indices, the users retrieve
the corresponding ciphertexts and decrypt them with at least t users working
together. Note that only the trapdoors are required to be transferred via a secure
communication channel.

Formally, we present the definition of Threshold Broadcast Encryption with
Keyword Search as follows.

Definition 2 (Threshold Broadcast Encryption with Keyword
Search). A threshold broadcast encryption with keyword search scheme, involv-
ing the data users, the servers and the users Ui, consists of the following five
possibly probabilistic polynomial time algorithms:

– params ← Setup(1k): The randomised system setup algorithm takes a security
parameter 1k, and outputs a set of parameters used in the system widely. This
algorithm can be run by anyone whereas all users are required to agree on the
same parameters.

– (PKi, SKi) ← KeyGen(params): The randomised user key generation algo-
rithm takes a system parameter params, and outputs a pair of secret key SKi

and public key PKi of a user Ui. This algorithm is run by the users individ-
ually.

– C ← TBEKS({PK1, . . . , PKn}, t,W ): The randomised keyword encryption
algorithm takes a set of public keys {PK1, . . . , PKn} of n target users, a
threshold value t and a keyword W , and outputs a ciphertext C of the keyword
W . This algorithm is run by the data owner.

– T ← Trapdoor(SKi,W ): The possibly randomised trapdoor generation algo-
rithm takes the secret key SKi of a user Ui and a keyword W , and outputs a
user trapdoor T of the keyword W . This algorithm is run by the users indi-
vidually.

– 1/0 ← Test({T1, . . . , Tt}, C): The deterministic test algorithm takes t trap-
doors Ti ← Trapdoor(SKi,W ) and a keyword ciphertext C ← TBEKS
({PK ′

1, . . . , PK ′
n}, t′,W ′), and outputs

{
1 if W = W ′ ∧ t ≥ t′ ∧ {PK1, . . . , PKt} ⊂ {PK ′

1, . . . , PK ′
n},

0 otherwise.

where (PKi, SKi) ← KeyGen(params). This algorithm is run by the servers
and the results will be sent back to each user involved.

In addition, we require the scheme to be correct.
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Definition 3 (Correctness). A threshold broadcast encryption with keyword
search scheme is correct if the following statement is always true:

∀params ← Setup(1k), ∀(SK,PK) ← KeyGen(params),

∀n, t ∈ Z
+ ∧ t ≤ n, ∀W ∈ {0, 1}∗, ∀C ← TBEKS({PK1, . . . , PKn}, t,W ),

∀S ⊂ {1, . . . , n} ∧ t ≤ |S| ≤ n,

Test({T | T ← Trapdoor(SKi,W ) ∧ i ∈ S}, C) = 1.

3.2 Security Model

In Definition 2, we implicitly allow the server to combine the trapdoors for a
keyword freely without any interaction with related users. For instance, the data
owner creates C1 ← TBEKS({PK1, PK2}, 2,W ). To search for C1, the users
U1, U2 generate Ti ← Trapdoor(SKi,W ) for i = 1, 2. Later, the data owner
creates C2 ← TBEKS({PK2, PK3}, 2,W ) for the same keyword W . Similarly,
to search for C2, the users U2, U3 generate T ′

i ← Trapdoor(SKi,W ) for i = 2, 3.
If Trapdoor is a deterministic algorithm, the server can easily link T1, T2 and
T ′
3 together that they are created for the same keyword since T2 = T ′

2. As a
result, if the data owner creates C3 ← TBEKS({PK1, PK2, PK3}, 3,W ), the
server can search C3 by Test({T1, T2, T

′
3}, C3) = 1. However, the server gains

no information, especially the keyword encrypted in the trapdoors, other than
the test result. Instead, this provides a feature that the server can cache the
uploaded trapdoors from the users.

Because of this feature, we consider that the server is honest but curious.
Importantly, we do not allow the server to collude with any users. Otherwise,
the user U1 and the server can learn the keyword in the ciphertext. For example,
the server gets T1, T2 and T3 from the users to test C3. Then the server can use
T2 and T3 to test C2, and return the result to the user U1. Now, the user U1

knows the keyword of a ciphertext while U1 is not in the target user set.
We also do not consider the keyword guessing attack (KGA) [14], since the

server can always create a ciphertext C = TBEKS({PK}, 1,W ) for all the
keywords W with the user’s trapdoor T . Commonly, if the keyword space is
polynomial sized, the server can get the corresponding keyword W of C in poly-
nomial time. However, this kind of attack can be prevented by Xu et al.’s method
[14]. The BDOP scheme [4] also does not consider this attack.

In threshold broadcast encryption with keyword schemes, many users are
involved. We consider that all users are registered before creating the cipher-
texts, as the adversary may be able to register the private-public key pair of
the target user. Now we define the indistinguishability in the threshold setting
against chosen keyword attack (IND-T-CKA) game (Game 1) where an active
adversary A tries to distinguish two encryptions of keywords W0 and W1 with
the security parameter k:

1. The challenger runs the Setup(1k) algorithm to generate a set of system-wide
parameters and passes them to the adversary A.
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GamekIND−T−CKA :

U , C,W ← ∅
params ← Setup(1k)

(S, t,W0,W1) ← AOKeyGen,OCorrupt,OT rapdoor (params)

b ∈R {0, 1}
C ← TBEKS({PKi}i∈S , t,Wb)

b′ ← AOKeyGen,OCorrupt,OT rapdoor (C)

OKeyGen :

(PKi, SKi) ← KeyGen(params)

U ← U ∪ {Ui}
return PKi

OCorrupt :

C ← C ∪ {Ui} ⊂ U
return SKi

OTrapdoor :

T ← Trapdoor(SKi,W )

W ← W ∪ {W}
return T

AdvIND−T−CKA
A =

∣
∣∣
∣Pr
[
b = b′ ∧ |S ∩ C| < t ∧ W0,W1 /∈ W]− 1

2

∣
∣∣
∣

Game 1: IND-T-CKA

2. The adversary can adaptively ask the challenger to register a user and obtain
the public key of that user by querying the key generation oracle OKeyGen.
At the same time, the challenger records the requested user Ui in the user
list U .

3. The adversary can adaptively ask the challenger to obtain the secret key of a
registered user Ui ∈ U by querying the collusion oracle OCorrupt. At the same
time, the challenger records the requested user Ui in the collusion list C.

4. The adversary can adaptively ask the challenger to obtain the user Ui’s trap-
door of a keyword W by querying the trapdoor generation oracle OTrapdoor.
At the same time, the challenger records the requested keyword W in the
keyword list W. For the corrupted users Ui ∈ C, the adversary can compute
the trapdoor by itself using the users Ui’s secret key SKi. Hence, the keyword
list W only contains the requested keywords of uncorrupted users.

5. At some point, the adversary A outputs a set S of users, a threshold value t
and two keywords W0 and W1 to be challenged. The adversary is restricted
that W0 and W1 are not in the list W as they are not queried to OTrapdoor.
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The adversary is also restricted that it cannot corrupt t users or more in the
user set S.

6. The challenger randomly selects b to be 0 or 1, and gives a ciphertext C =
TBEKS({PKi}i∈S , t,Wb) to the adversary A.

7. The adversary can continue to query all three oracles OKeyGen, OCorrupt,
OTrapdoor with the same restrictions.

8. Eventually, the adversary A outputs a bit b′. If b = b′, the adversary wins the
game.

We define the advantage of winning Game 1 as

AdvIND−T−CKA
A =

∣
∣
∣
∣Pr [b = b′ ∧ |S ∩ C| < t ∧ W0,W1 /∈ W] − 1

2

∣
∣
∣
∣ .

Definition 4 (IND-T-CKA Security). A threshold broadcast encryption
with keyword search (TBEKS) scheme is indistinguishable in the threshold setting
against chosen keyword attack (IND-T-CKA) if AdvIND−T−CKA

A is a negligible
function for all adversary A winning the Game 1 in polynomial time.

4 Construction

4.1 The Scheme

We build our TBEKS scheme based on Daza et al.’s TBE scheme [6] using the
idea similar to Boneh et al.’s PEKS scheme [4]. The main idea of the construction
is to use the secret keys of users as the shares of a shared secret in an (n, 2n− t)
threshold secret sharing scheme. The shared secret works as the secret key of a
dummy user in [4]. Since all computations are done with points on the elliptic
curve and due to the hardness of discrete logarithm problem (DLP), the secret
shares are computationally secure.

Our TBEKS scheme works as follows.

– params ← Setup(1k): Given a security parameter 1k, this algorithm generates
a prime number of q bits and groups G1 and G2 of order q where there is a
bilinear map e : G1 ×G1 → G2. This algorithm also picks a random generator
P of G1. After that, the algorithm picks two hash functions H : {0, 1}∗ → G1

and H ′ : G1 → Zq. Note that the hash function H is used to hash a keyword
W into a point on the elliptic curve and the hash function H ′ is used to hash
the public key PKi of a user Ui to an domain input ui = H ′(PKi) used in
the threshold secret sharing scheme. Hence, it is required H ′ to be a collision
resistant hash function. Alternatively, instead of using a hash function H ′, a
user Ui can select its own unique ui and then register along with its public
key PKi to a certification authority. Thus each user Ui has a unique public
key PKi associated with a unique public value ui. For the system simplicity,
we use the hash function H ′.

G1 = 〈P 〉, e : G1 × G1 → G2, H : {0, 1}∗ → G1, H ′ : G1 → Zq.

return params = (q,G1,G2, P, e,H,H ′).
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– (PKi, SKi) ← KeyGen(params): With the system wide parameters param,
each user Ui randomly chooses a secret key SKi = xi ∈R Z

+
q . Then its public

key can be computed as PKi = xiP .

SKi = xi ∈ Z
+
q , PKi = xiP.

return (PKi, SKi).
– C ← TBEKS({PK1, . . . , PKn}, t,W ): To encrypt a keyword W , the data

owner first obtains all the public keys of the target users S = {U1, . . . , Un}.
Then the data owner obtains the associated input values U = {ui = H ′(PKi) |
Ui ∈ S}. Having n input values ui and PKi = xiP , we can recover/construct a
polynomial p(uj)P =

∑
Ui∈S ΔS

ijPKi. To form an (n, 2n − t) threshold secret
sharing scheme, the data owner chooses n − t unique domain input values
D ← Z

n−t
q , where U ∩ D = ∅, for n − t dummy users. Given the n − t dummy

users as a dummy user set D, the data owner can compute the public keys of
the dummy users by computing PKj = p(uj)P for all uj ∈ D. The detail of
this algorithm works as follows.

Q = p(0)P =
∑

Ui∈S

ΔS
i0PKi, s ∈R Z

∗
q , C1 = sP, C2 = e(H(W ), Q)s,

For each dummy user Uj ∈ D,

PKj = p(uj)P =
∑

Ui∈S

ΔS
ijPKi, Kj = e(sH(W ), PKj).

return C = (S, t,D,C1, C2, {Kj}Uj∈D).

To improve computational efficiency, it is possible to reuse Q and PKj for
the same user set S and different keywords, since these two variables are
irrelevant to the keyword W and the randomness s. When calculating Kj , we
can calculate sH(W ) before the loop so that all we need is a pairing operation.
For the ciphertext C, it is not necessary to include all the public keys and the
associated domain input values for both real users and dummy users since we
only need the domain input values later. For better efficiency, this algorithm
can return the ciphertext as C = (U , t,D, C1, C2, {Kj}Uj∈D). As the values
in D are not required to be chosen uniformly, the data owner can choose a
continuous interval that D = {r, r +1, r +2, . . . , r +n− t− 1} where r ∈R Zq.
Thus D can be represented in two numbers in Zq. Hence, for the best result,
the ciphertext size is (n + 3)Zq + (n − t + 2)G1.

– T ← Trapdoor(SKi,W ): The user Ui generates the trapdoor T for the key-
word W simply using its secret key. Then the user Ui uploads the trapdoor
to the server via a secure communication channel.

T = xiH(W ).

return T .
– 1/0 ← Test({T1, . . . , Tt}, C): Upon receiving t trapdoors from the users A =

{U1, . . . , Ut} where |A ⊂ S| = t, the server can run the following algorithm.
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If more than t target trapdoors are uploaded, the server only picks the first t
trapdoors.

For each user Ui ∈ A, Ki = e(Ti, C1),

B = A ∪ D, K =
∏

Ui∈B

K
ΔB

i0
i .

return K
?= C2.

Theorem 1. The proposed threshold broadcast encryption with keyword search
scheme is correct.

Proof. Correctness is verified as following. First, Ki can be calculated as

Ki = e(sH(W ), PKi) = e(sH(W ), xiP ) = e(xiH(W ), sP ) = e(Ti, C1).

Then we continue to verify the correctness of K,

K =
∏

Ui∈B

K
ΔB

i0
i =

∏

Ui∈B

e(sH(W ), PKi)ΔB
i0 = e(H(W ),

∑

Ui∈B

ΔB
i0PKi)s.

Since the (n, 2n − t) threshold secret sharing scheme is constructed by n real
users S, distributing shares to n − t dummy users D, any n users in S ∪ D can
recover the polynomial p used in the TBEKS algorithm. Having |D| = n − t
and S ∩ D = ∅ and |A ⊂ S| = t, we conclude that A ∩ D = ∅ and further
|B = (A ∪ D) ⊂ (S ∪ D)| = n. Thus the algorithm can recover the polynomial p
with the users B. Then we have,

∑

Ui∈B

ΔB
i0PKi = p(0)P = Q.

Finally,
K = e(H(W ), Q)s = C2.

4.2 Security Proof

Theorem 2. The proposed threshold broadcast encryption with keyword search
scheme is IND-T-CKA secure. If an adversary A can win Game 1 with the
advantage ε, an algorithm S can be constructed to solve DBDH problem in poly-
nomial time with the advantage ε′ ≥ ε

2e2(qC+1)(qT +1) , querying OCorrupt for at
most qC times and OTrapdoor for at most qT times.

Proof. Let δ = (P, aP, bP, cP, T ) be an instance of DBDH problem (recall Def-
inition 1) that a simulator S is challenged to distinguish that δ ∈ DBDH or
δ ∈ Drand. From the DBDH instance D, the simulator S is also given two
groups G1 and G2 of the same order q, a generator P of G1 and a bilinear
map e : G1 × G1 → G2. The simulator S further chooses two hash functions
H : {0, 1}∗ → G1 and H ′ : G1 → Zq. Then the simulator S packs those parame-
ters as params = (q,G1,G2.P, e,H,H ′) and passes param to the adversary A.

At the same time, the simulator S simulates the three oracles as follows.
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– OH : The hash function H is viewed as a random oracle for the adversary A
simulated by the simulator S. Upon requesting the hash value of the keyword
Wi, the simulator S randomly tosses a coin ci ∈ {0, 1} such that Pr[ci = 0] = α
where α is determined later. The simulator S also chooses a random value
ai ∈R Z

+
q . Then the simulator S computes the hash value hi as

hi =

{
aiaP if ci = 0,

aiP if ci = 1.

The distribution of {hi} is indistinguishable with a random distribution of
G1. After that, the simulator S returns hi to the adversary A. In addition,
the simulator S maintains a hash list H = {Wi, ci, ai.hi}. If the requested
keyword W is on the list H, the simulator S returns hi directly.

– OKeyGen: To create a user Ui, the simulator S randomly tosses a coin di ∈
{0, 1} such that Pr[di = 0] = β where β is determined later. The simulator
also chooses a random value xi ∈ Z+

q . Then the simulator S computes the
secret key SKi and the public key PKi as follows.

SKi =

{
unknown if di = 0,

xi if di = 1.
PKi =

{
xibP if di = 0,

xiP if di = 1.

In the case of di = 0, the secret key SKi = xib cannot be computed by and is
unknown to the simulator S since it is computational hard to compute b from
bP . The distribution of {PKi} is indistinguishable with a random distribution
of G1. After that, the simulator S returns PKi to the adversary A. In addition,
the simulator S maintains a user key list K = {Ui, di, SKi, PKi}.

– OCorrupt: Upon requesting the secret key SKi of a created user Ui, the sim-
ulator S searches the user key list K and checks the corresponding di value.
If di = 0, the simulator S aborts since the secret key SKi is unknown to S.
Otherwise, the simulator S returns SKi to the adversary A.

– OTrapdoor: To create a created user Ui’s trapdoor of a keyword Wj , the simu-
lator S first looks up the hash list H for Wj . If cj = 0, the simulator S simply
aborts. Otherwise, the simulator S computes the trapdoor T = ajPKi and
returns it to the adversary A. The correctness is verified as follows.

T = ajPKi =

{
ajxibP = xibajP = xibhi = SKiH(Wj) if di = 0,

ajxiP = xiajP = xihi = SKiH(Wj) if di = 1.

Although the trapdoor is still able to be simulated in the case of cj = 1∧di = 0
as T = SKiH(Wj) = xihj = xiajaP , the simulator S still aborts for the
simplicity of this proof. In other words, the probability ε′ of solving the DBDH
problem is greater if the simulator S does not abort in the above case but
makes the proof harder. As long as ε′ is not negligible, it is still acceptable.

At some point, the adversary A outputs a target user set S, a target threshold
value t and two target keyword W0 and W1. The simulator looks up the hash
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list H for W0 and W1. If the keyword is not on the list H, the simulator asks
the OH oracle for its hash value and then the keyword is on the list. If the
corresponding values c0 and c1 of the keywords W0 and W1 is equals to 1, the
simulator S aborts. Otherwise, the simulator S randomly picks b ∈ {0, 1} such
that cb = 0. If there is only one c = 0, the simulator S has no choice and the
value b is fixed. Then we have H(Wb) = abaP . Due to the restrictions to the
adversary A, at least one user Uσ in S has not been corrupted. The simulator
S looks up the user key list K for that user. If the corresponding value dσ = 1,
the simulator S aborts. Otherwise, the simulator S divides the user set S into
two sets S0 = {Ui ∈ S | di = 0} and S1 = {Ui ∈ S | di = 1}. Intuitively, S0 �= ∅
because of the existence of Uσ. After that, the simulator S sets C1 = cP . Before
simulating C2, we first seek how the genuine ciphertext is computed:

C2 = e(H(W ), Q)c = e(H(W ),
∑

Ui∈S

ΔS
i0PKi)c

= e(H(W ),
∑

Ui∈S0

ΔS
i0PKi)c · e(H(W ),

∑

Ui∈S1

ΔS
i0PKi)c

= e(abaP,
∑

Ui∈S0

ΔS
i0xibP )c · e(abaP,

∑

Ui∈S1

ΔS
i0xiP )c

= e(P, P )abc·ab

∑
Ui∈S0

ΔS
i0xi · e(aP, cP )ab

∑
Ui∈S1

ΔS
i0xi .

The simulator S replaces the e(P, P )abc part with T and sets C2 as

C2 = T ab

∑
Ui∈S0

ΔS
i0xi · e(aP, cP )ab

∑
Ui∈S1

ΔS
i0xi .

After that, the simulator S selects a set D of n − t dummy users with the same
restrictions in the normal construction (i.e. U ∩ D = ∅). Similar to C2, the
simulator S computes Kj as

Kj = T ab

∑
Ui∈S0

ΔS
ijxi · e(aP, cP )ab

∑
Ui∈S1

ΔS
ijxi .

Finally, the simulator S packs the ciphertext C = (S, t,D,C1, C2, {Kj}Uj∈D)
and sends to the adversary A. Note that the resulted ciphertext C is consistent
only if T = e(P, P )abc.

Eventually, the adversary A outputs a guess b′. If b = b′, it means the cipher-
text is consistent and it is believed that T = e(P, P )abc. Hence, the simulator S
outputs δ ∈ DBDH . Otherwise, the simulator S outputs δ ∈ Drand.

Lemma 1. Let ρ be the probability of the simulator S not aborting. The advan-
tage ε′ of the simulator S solving the DBDH problem is at least ρε

2 , assuming
the probability of δ ∈ DBDH is 1

2 and the adversary A wins Game 1 with the
advantage ε.

Proof. We prove this lemma by calculating the probability of the simulator S
succeeding. If δ ∈ Drand, the behaviour of the adversary A is unpredictable.
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Thus, the simulator A succeeds at least better than a random guess with suc-
ceeding probability of 1

2 . Similarly, if the simulator S aborts, we just have a
random guess. Otherwise, we take the result of the adversary A with the correct
probability of 1

2 + ε. Let R be the event that the simulator S succeeds with a
random guess. We have,

Pr[S succeeds]

=
1
2

Pr[S succeeds | δ ∈ DBDH ] +
1
2

Pr[S succeeds | δ ∈ Drand]

≥ 1
2

(Pr[S does not abort] · Pr[A succeeds] + Pr[S aborts] · Pr[R]) +
1
2

Pr[R]

=
1
2

(
Pr[S does not abort] · (

1
2

+ ε) + Pr[S aborts] · 1
2

)
+

1
2

· 1
2

=
1
2

(
ρ · (

1
2

+ ε) + (1 − ρ) · 1
2

)
+

1
2

· 1
2

=
1
2
ρε +

1
2
.

Since Pr[S succeeds] ≥ 1
2ρε + 1

2 and AdvDBDH
S =

∣
∣Pr[S succeeds] − 1

2

∣
∣, we have

AdvDBDH
S ≥ ρε

2
.

Lemma 2. The simulator S does not abort with the probability ρ at least

1
e2(qC + 1)(qT + 1)

,

querying OCorrupt for at most qC times and OTrapdoor for at most qT times.

Proof. There are 4 possible points that the simulator S may abort.

1. The simulator S aborts in answering OCorrupt queries if di = 0. The single
abort probability is β. The probability of not aborting for all OCorrupt queries
is Pr[E1] = (1 − β)qC .

2. The simulator S aborts in answering OTrapdoor queries if ci = 0. The single
abort probability is α. The probability of not aborting for all OTrapdoor queries
is Pr[E2] = (1 − α)qT .

3. The simulator S aborts in the challenge phase if c0 = c1 = 1. The probability
of not aborting for this event is Pr[E3] = 1 − (1 − α)2 = 2α − α2. Since
α ∈ [0, 1], we have

α ≤ 1 =⇒ α2 ≤ α =⇒ 0 ≤ α − α2 =⇒ α ≤ 2α − α2 = Pr[E3].

4. The simulator S aborts in the challenge phase if dδ = 1. The probability of
not aborting for this event is Pr[E4] = β.
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Since all the events are independent, we have

ρ = Pr[E1] · Pr[E2] · Pr[E3] · Pr[E4] ≥ α(1 − α)qT β(1 − β)qC .

The function α(1−α)qT β(1−β)qC is maximised when α = 1
qT +1 and β = 1

qC+1 .
Now we have

ρ ≥ 1
qT + 1

(1 − 1
qT + 1

)qT · 1
qC + 1

(1 − 1
qC + 1

)qC

≥ 1
qT + 1

(
lim

qT →∞(1 − 1
qT + 1

)qT

)
· 1
qC + 1

(
lim

qC→∞(1 − 1
qC + 1

)qC

)

=
1

e2(qC + 1)(qT + 1)
.

Note that the statement (1 − 1
qT +1 )qT ≥ 1

e = limqT →∞(1 − 1
qT +1 )qT is always

true for any qT . Similar statement for qC also applies.
Combining AdvDBDH

S ≥ ρε
2 from Lemma 1 and ρ ≥ 1

e2(qC+1)(qT +1) from
Lemma 2, we have

ε′ = AdvDBDH
S ≥ ε

2e2(qC + 1)(qT + 1)
.

5 Conclusion

In this paper, we defined Threshold Broadcast Encryption with Keyword Search
(TBEKS) scheme and its IND-T-CKA security model. We proposed the first
TBEKS scheme and proved it is IND-T-CKA secure, assuming the hardness
of the Decisional Bilinear Diffie-Hellman problem. In our TBEKS scheme, we
consider the server to be honest but curious and we do not allow the server to
collude with the users. It is an open problem to build a scheme that is secure
against a malicious server that may collude with other users.
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In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
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Abstract. Secret sharing schemes with general monotone access struc-
tures have been widely discussed in the literature. But in some scenarios,
non-monotone access structures may have more practical significance. In
this paper, we shed a new light on secret sharing schemes realizing general
(not necessarily monotone) access structures. Based on an attack model
for secret sharing schemes with general access structures, we redefine per-
fect secret sharing schemes, which is a generalization of the known con-
cept of perfect secret sharing schemes with monotone access structures.
Then, we provide for the first time two constructions of perfect secret
sharing schemes with general access structures. The first construction
can be seen as a democratic scheme in the sense that the shares are gen-
erated by the players themselves. Our second construction significantly
enhances the efficiency of the system, where the shares are distributed
by the trusted center (TC).

Keywords: Secret sharing schemes · General access structures ·
Information rate · Orthogonal arrays · Resilient functions

1 Introduction

Secret sharing schemes were first introduced by Blakley [5] and Shamir [29] inde-
pendently in 1979. Besides secure information storage, secret sharing schemes
have numerous other applications in cryptography such as secure multiparty
computations [4,14,15], key-distribution problems [23], multi-receiver authenti-
cation schemes [33] etc. Note that minimal codes introduced and studied in the
literature have applications in secret sharing (see for instance [12,16,18]).
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The secret sharing schemes given in [5,29] are for the threshold case, i.e.,
the qualified groups that can reconstruct the secret key are all the subsets with
cardinality no smaller than a threshold. A (t, n) threshold scheme is a method
where n pieces of information of the secret key K, called shares are distributed
to n players so that the secret key can be reconstructed from the knowledge
of any t or more shares and the secret key can not be reconstructed from the
knowledge of fewer than t shares. But in reality, there are many situations in
which it is desirable to have a more flexible arrangement for reconstructing the
secret key. Given some n players, one may want to designate certain authorized
groups of players who can use their shares to recover the key. This kind of scheme
is called secret sharing scheme for general access structure, which generalizes the
threshold case. Formally, a secret sharing scheme for general access structure is
a method of sharing a secret K among a finite set of players P = {P1, . . . ,Pn}
in such a way that

1. if the players in A ⊆ P are qualified to know the secret, then by pooling
together their partial information, they can reconstruct the secret K,

2. any set B ⊂ P which is not qualified to know K, cannot reconstruct the
secret K.

The threshold secret sharing schemes have received considerably attention,
see e.g. [13,17,26,27]. Secret sharing schemes for general monotone access struc-
tures were first studied by Ito et al. [21]. The access structure defined in [21] is a
set of qualified groups Γ which satisfies the monotone property that if A ∈ Γ and
A ⊆ B, then B ∈ Γ . Secret sharing schemes for general monotone access struc-
tures have got a lot of attention, and there exist a wide range of general methods
of constructing monotone secret sharing schemes [2,3,7,22]. The approaches to
the construction of monotone secret sharing schemes based on linear codes can
be found in [6,25]. To our best knowledge, all the known secret sharing schemes
are designed for realizing monotone access structures. We refer to [15] for a
survey on monotone secret sharing schemes.

A secret sharing scheme can be represented by a set of recovery algorithms
which realizes an access structure such that only qualified groups can reconstruct
the secret key by pooling their shares. For example, in the bank teller problem
described in Chap. 13 of [30], any two out of three tellers are authorized to recon-
struct the secret key. It is quite natural to assume that three tellers are permitted
to make a requirement on two of them to execute the recovery algorithm and
reconstruct the secret key, then any group with two or more tellers is a quali-
fied group. Hence, the access structure considered in this scenario has monotone
property. However, for some scenarios, the requirement on fewer players of a
group to recover the secret key is not available, and secret sharing schemes with
non-monotone access structures may be more preferable. For a secret sharing
scheme, it is reasonable to assume that the access structure is public and in the
reconstruction phase, the players are anonymous, that is to say, the players will
not disclose which group they belong to.

Scenario 1. Suppose that on the network, there are several groups of users
who share a large amount of information resources stored by the network center



Secret Sharing Schemes with General Access Structures 343

(e.g., a secure cloud storage server) with a secret key. Once the secret key is
recovered, only the users who pool their shares will get the access to download
the information. For some reasons, the users of the same group are not willing
to download their information together with an outsider who does not belong
to this group. So, only when all the users of the same group pool their shares,
the secret key can be reconstructed, and if an outsider joins, the reconstruction
reveals nothing about the secret key.

The access structure in the above scenario is non-monotone, since there exist
A ∈ Γ and B �∈ Γ such that A ⊆ B. A secret key can always be recovered
by all the users in a qualified group A, but if an outsider, say P, intrudes, the
reconstruction by the users in the unqualified (i.e., forbidden) group B = A

⋃
P

reveals nothing about the secret key. Consider that in Scenario 1, different groups
of users have independently purchased the access to the database from the net-
work center, and the payment of each group is afforded by every user of this
group, thus the costs of the users from different groups may be different. Of
course, the users belonging to one group do not hope to download their data
together with an outsider. We consider data mining as another example for
Scenario 1. Suppose different groups of market investigators are employed by
different companies respectively to gather some information from the network
center. Because of the market competition, the companies do not hope to dis-
close what they are gathering to each other, i.e., the market investigators of
one company are not willing to reconstruct the secret key and download their
information together with an outsider. Thus, the access structures here should
be non-monotone.

Secret sharing scheme is also a key tool for secure multiparty computation
(MPC) (see [1,14,15]). Secure MPCs solve the problem that n players want
to compute some agreed function with their inputs private. For instance, two
millionaires want to know who is richer without disclosing their wealths to each
other. This millionaire problem, first introduced by Yao [32], is a secure MPC
problem which can be solved by monotone secret sharing schemes. A secure
MPC protocol can be described as that every player shares his input with all
the players by employing some secret sharing scheme, then the players in a
qualified group can compute the result of the agreed function, and the players in
a forbidden group cannot learn anything about the result and the inputs of the
other players, where the qualified and the forbidden groups are determined by
the access structure of the employed secret sharing scheme (see [1,14] for more
details). In the following scenario, a secure MPC with non-monotone access
structure is preferable.

Scenario 2. Suppose that the employees of several different companies are inter-
ested in their salary level by comparing their incomes, i.e., they want to know
the ranking of the average income of each company by sharing their incomes pri-
vately. To avoid the risk of embarrassment, the employees of one company are
not willing to compute the ranking result together with an outsider who does
not belong to this company. So, only all the employees of the same company can
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compute the ranking result, and if an outsider joins, the computation reveals
nothing about the result.

In the above scenarios, we must guarantee that if B is a qualified group but
A ⊇ B is not, then the players in A cannot make a requirement on the players in
B to reconstruct the secret key or to compute the result of the agreed function.
When all the players in a forbidden group follow the protocol accordingly, they
can determine nothing about the secret key or the result of the agreed function.

Perhaps one can find some other means to solve the problems presented in
the above scenarios, and Scenario 2 may have less practical significance, but all
these are intended primarily as examples to provide us a direction for possible
applications of non-monotone secret sharing schemes. Similar practical scenarios
could be found.

In this paper, we mainly discuss secret sharing schemes realizing general
(not necessarily monotone) access structures. We first describe a general attack
model for secret sharing schemes. Afterwards, a formal definition of uncondi-
tional security (called perfect) for secret sharing schemes with general access
structures is given, which is a generalization of the known perfect monotone
secret sharing schemes. Moreover, we propose two constructions for secret shar-
ing schemes realizing general access structures. To the best of our knowledge,
this is the first time when constructions of non-monotone secret sharing schemes
are proposed. Our first construction is democratic in the sense that the shares
are generated by the players themselves instead of distributed by the trusted
center (TC). In this construction, TC has to recompute an updated function for
every time the secret key changes. The second construction is presented for the
sake of efficiency, where the shares are computed and distributed by TC. We
also show that the well designed secret sharing schemes presented in this paper
are perfect.

This paper is organized as follows. Formal definitions and necessary prelim-
inaries are introduced in Sect. 2. In Sect. 3, we discuss the attack model and
the security of secret sharing schemes with general access structures. Perfect
democratic secret sharing schemes are constructed in Sect. 4, and perfect secret
sharing schemes with distributed shares are constructed in Sect. 5. In the last
section, we summarize this paper and indicate some future research directions.

2 Preliminaries

For a secret sharing scheme, we denote a player by Pi, where i = 1, 2, . . ., the
set of all the players by P, the set of all the subsets of P by 2P , and the trusted
center of the scheme by TC. The groups authorized to reconstruct the secret key
are called qualified, and the groups unauthorized to reconstruct the secret key are
called forbidden. The sets of qualified and forbidden groups are denoted by Γ and
Δ respectively, where Γ ⊆ 2P and Δ ⊆ 2P . If Γ

⋂
Δ = ∅, then the tuple (Γ,Δ)

is called an access structure. Moreover, an access structure is called complete if
Γ

⋃
Δ = 2P . In this paper, we focus on secret sharing schemes with complete

access structures. The set of qualified groups Γ is called monotone increasing if
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for each set A ∈ Γ , the superset of A is also in Γ . An access structure (Γ,Δ) is
called monotone if Γ is monotone increasing.

Let S be a secret sharing scheme. We denote the set of all possible secret keys
by K, the set of all possible shares of group A = {Pi1 , . . . ,Pim} ∈ 2P by S(A),
i.e., S(A) = S(Pi1)×· · ·×S(Pim), where S(Pij ) is the set of all possible shares of
Pij and “×” denotes the Cartesian product. For a qualified group A ∈ Γ , there
exists a recovery algorithm fA defined on S(A) which satisfies fA(s(A)) = k,
where k ∈ K is the secret key that TC wants to share and s(A) ∈ S(A) is the
shares of the players in A. Then, a secret sharing scheme S realizing access
structure (Γ,Δ) can be viewed as a set of recovery algorithms F = {fA | A ∈ Γ}
such that only qualified groups can reconstruct the secret key by pooling their
shares.

Definition 1 [8]. Let S be a secret sharing scheme, K be the set of all possible
secret keys, and for 1 � i � n, S(Pi) be the set of all possible shares that Pi

might have. Then, the information rate of Pi is defined as ρi = log2 |K|
log2 |S(Pi)| , and

the information rate of S is defined as

ρ = min{ρi | 1 � i � n}. (1)

In the following, we introduce some definitions and properties of q-ary func-
tions, which will be useful in constructing secret sharing schemes.

Let Fq be a finite field, where q is a power of a prime, then F
n
q denotes

the n-dimensional vector space over the finite field Fq. In this paper, we always
assume q > 2. Let F

∗
q = Fq \ {0}, then (F∗

q)
n denotes the Cartesian product that

n
︷ ︸︸ ︷
F

∗
q × · · · × F

∗
q . The mappings from the vector space F

n
q to Fq are called n-variable

q-ary functions, which can be uniquely represented in the algebraic normal form
(ANF), see [28]: F (x) =

∑
u∈Zn

q
auxu1

1 xu2
2 · · · xun

n , where Zq = {0, . . . , q − 1},
x = (x1, . . . , xn) ∈ F

n
q , u = (u1, . . . , un) ∈ Z

n
q , and au ∈ Fq. In fact, given the

values of F (w), w = (w1, . . . , wn) ∈ F
n
q , the ANF of F can be determined as

F (x) =
∑

w∈Fn
q

F (w)
n∏

i=1

(
1 − (xi − wi)q−1

)
. (2)

For an n-variable q-ary function F , the set F
n
q is called the domain set of

F and the vector (F (v0), . . . , F (vqn−1)) is called the value table of F , where
v0, . . . , vqn−1 are all the vectors in F

n
q which have some prescribed order, e.g., the

lexicographical order. F is called balanced if for any element a ∈ Fq, the size of
the pre-image set satisfies |F−1(a)| = qn−1.

More generally, if F is a mapping from E1 ⊆ F
n
q to E2 ⊆ Fq, then E1 is

called the domain set of F , and (F (v0), . . . , F (v|E1|−1)) is called the value table
of F , where v0, . . . , v|E1|−1 are all the vectors in E1 with some prescribed order.
In addition, F is called balanced onto E2 if for any element a ∈ E2, the size of
the pre-image set satisfies |F−1(a)| = |E1|/|E2|.
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For i = 1, . . . ,m, let Fi be a mapping from Ei ⊆ F
n
q to Fq, where E1, . . . , Em

are disjoint sets, then the concatenation function F of F1, . . . , Fm is the mapping
from

⋃m
i=1 Ei to Fq which satisfies F (x) = Fi(x) for x ∈ Ei, where i = 1, . . . , m.

3 The Security of Secret Sharing Schemes with General
Access Structures

For a secret sharing scheme with general access structure (Γ,Δ), we assume that
the players in A ∈ Δ are passively collaborating to pool their shares and try to
reconstruct the secret key. Note that the collaborating players are assumed to
execute the protocol correctly and every player will keep his share private, i.e.,
the attack is passive. We also assume that the collaborating players are static,
which means that the set of collaborating players is fixed during the protocol.

Attack Model. The players in A ∈ Δ are passively collaborating to find some
efficient recovery algorithms to reconstruct the secret key.

For a general access structure, the players in group A ∈ Δ will try to guess the
secret key by collaborating, and in this case, even if A ⊇ B ∈ Γ (this case only
appears in the non-monotone case), the players in B are passively collaborating,
and cannot be required to execute their recovery algorithm and reconstruct the
secret key independently from A. In Sect. 1, we present two scenarios to show
that this assumption is reasonable for the non-monotone case. Note that a secret
sharing scheme can be viewed as a set of recovery algorithms F = {fA | A ∈ Γ}.
Hence, if the players in A ∈ Δ are passively collaborating, they can only try to
guess the secret key by employing some known reconstruction algorithms that
fB , B ∈ Γ , where B �⊆ A.

Particularly, for monotone access structures, one can just assume that all the
players belonging to a forbidden group (which is a proper subset of a qualified
group) are passively collaborating to reconstruct the secret key.

Let A be any subset of players, B ∈ Γ , and k ∈ K, then given s(A) ∈ S(A),
the conditional probability determined by algorithm fB is denoted by PrB(K =
k | S(A) = s(A)), which means that by using algorithm fB , the players in A
can guess the secret key correctly with probability PrB(K = k | S(A) = s(A)).
We use Pr(K = k | S(A) = s(A)) for short if there is no risk of confusion, and
use Pr(K = k) to denote the a prior probability distribution on the secret key
set K. Considering the above attack model, we present a formal definition of
unconditional security for secret sharing schemes with general access structures.

Definition 2. A secret sharing scheme S with access structure (Γ,Δ) and
secret key set K is perfect if S satisfies the following two properties.

(i) For any A ∈ Γ , the secret key can be reconstructed correctly.
(ii) For any A ∈ Δ and any B ∈ Γ , where B �⊆ A, the conditional probability

determined by algorithm fB satisfies Pr(K = k | S(A) = s(A)) = Pr(K = k) for
every k ∈ K. In other words, by using algorithm fB, the players in A can learn
nothing about the secret key.
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Remark 1. For secret sharing schemes with monotone access structures, the con-
cept of perfect system has been introduced in [8] and widely studied (see [1,30]
for a survey). If a secret sharing scheme S with monotone access structure
(Γ,Δ) satisfies (i) for any A ∈ Γ , the secret key can be reconstructed correctly,
(ii) for any A ∈ Δ, the players in A can learn nothing about the secret key, then
S is called perfect. From the above discussion, it is easy to see that the concept
of perfect system given in Definition 2 is more general, and for the monotone
case, Definition 2 coincides with the standard perfect monotone secret sharing
schemes.

For perfect secret sharing schemes with monotone access structures, it is
proved that the information rate ρ � 1, see [8,30]. We now show that this result
still holds for perfect secret sharing schemes with general access structures.

Theorem 1. For any perfect secret sharing scheme with general access struc-
ture, the information rate satisfies ρ � 1.

Proof. Suppose that S is a perfect secret sharing scheme with general access
structure (Γ,Δ), then there must exist a set A ∈ Γ such that B = A \ {Pi} ∈ Δ
for some Pi ∈ A. In fact, if for any A ∈ Γ and any Pi ∈ A, A′ = A \ {Pi} ∈ Γ ,
then ∅ �= A′ ∈ Γ and A′\{Pj} = A\{Pi,Pj} ∈ Γ . This process can be continued
until we get the contradiction that ∅ ∈ Γ .

Without loss of generality, we assume that A = {P1, . . . ,Pm} ∈ Γ and
B = A \ {Pm} ∈ Δ. Since B ∈ Δ and S is perfect, when the players in B
are collaborating to reconstruct the secret key by using the recovery algorithm
fA, then the conditional probability of the secret key is

Pr(K = k | S(B) = s(B)) = Pr(K = k), (3)

where k ∈ K. Since A ∈ Γ , then Eq. (3) implies that for any two distinct secret
keys k1, k2 ∈ K, there exist two distinct shares s1(Pm), s2(Pm) ∈ S(Pm) such
that

fA(s(B), s1(Pm)) = k1, fA(s(B), s2(Pm)) = k2. (4)

Therefore, |S(Pm)| � |K|, and thus ρm � 1. Hence, from (1), we
have ρ � 1. �	

4 Democratic Secret Sharing Schemes

In this section, we present a construction of democratic secret sharing schemes
with general access structures, where the shares are generated on the set of all
possible shares independently by the players themselves. Moreover, we provide
a perfect secret sharing scheme with information rate ρ = 1.
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4.1 A General Description

Let ei be the identity vector in F
n
q with 1 in the i-th position and zeros else-

where, where q is a power of a prime. By abuse of notation, we write a set
A = {i1, . . . , im} for A = {Pi1 , . . . ,Pim} ⊆ P.

In Table 1, we present a construction of democratic secret sharing schemes
realizing general access structures.

4.2 Perfect Democratic Secret Sharing Schemes Realizing General
Access Structures

As shown in Table 1, given a set of n players P = {P1, . . . ,Pn} with gen-
eral access structures (Γ,Δ) and secret key set K = F

∗
q , one can always con-

struct a democratic secret sharing scheme. Clearly, the security of Secret Sharing

Table 1. Secret Sharing Scheme I
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Scheme I depends heavily on the choice of the q-ary function F . In Table 2, an
explicit construction of q-ary functions is presented. Employing such functions in
Secret Sharing Scheme I, one can get perfect democratic secret sharing schemes.
We first introduce some useful notations below.

For x = (x1, . . . , xn) ∈ F
n
q , let supp(x) = {i | xi �= 0} denote the support set

of x. Then, for an n-variable q-ary function F and a set A ⊆ P, F |A denotes the
restriction of F to the set

EA = {x ∈ F
n
q | supp(x) = A}, (6)

i.e., F |A : EA → Fq satisfies F |A(x) = F (x) for x ∈ EA. For a set E ⊆ F
n
q and

an element a ∈ F
n
q , a + E = {a + e | e ∈ E}. For s(Pi) ∈ S(Pi), i ∈ A, which are

the shares of players in A, define s(A) =
∑

i∈A s(Pi)ei ∈ F
n
q , then for B ⊆ A,

we denote by F |s(A\B)×B the restriction of F to the set

Es(A\B)×B = s(A \ B) + EB . (7)

Moreover, for B ⊆ A, we denote by F |s(A\B)×B the restriction of F to the set

Es(A\B)× B = {(x1, . . . , xn) ∈ Es(A\B)× B | xi �= s(Pi), i ∈ B}. (8)

Clearly, if B = ∅, then F |s(A\B)× B = F |s(A\B)× B = F (s(A)).

Proposition 1. For A ⊆ P, the set EA can be partitioned into disjoint subsets
Es(A\B)×B, where B ⊆ A, i.e.,

EA =
⋃

B⊆A

Es(A\B)×B, (9)

where for two distinct subsets B1, B2 ⊆ A,

Es(A\B1)×B1

⋂
Es(A\B2)×B2

= ∅. (10)

Proof. We first prove (10). Since B1 �= B2, then without loss of generality, we
assume that i ∈ B1 but i �∈ B2. Suppose that there exists x = (x1, . . . , xn) ∈
Es(A\B1)×B1

⋂
Es(A\B2)×B2

, then we have xi �= s(Pi) since i ∈ B1. However,
i �∈ B2 implies that xi = s(Pi), a contradiction. Hence, (10) holds.

It is obvious that
⋃

B⊆A Es(A\B)×B ⊆ EA. Suppose that |A| = m, then since
the sets Es(A\B)×B, where B ⊆ A, are disjoint, we have that

∣
∣
∣
∣

⋃

B⊆A

Es(A\B)×B

∣
∣
∣
∣ =

∑

B⊆A

|Es(A\B)×B| =
m∑

i=0

(
m

i

)
(q − 2)i = (q − 1)m = |EA|.

(11)

Therefore, (9) holds, and we get the desired result. �	
By using Proposition 1, we can prove that Construction I in Table 2 outputs

a q-ary function.
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Table 2. Construction I

Lemma 1. 1Construction I outputs an n-variable q-ary function F .

Lemma 2. Let F be constructed by Construction I. Then, for any subset of play-
ers A ∈ Γ and any non-empty set B ⊆ A, the restriction function F |s(A\B)×B

is balanced onto F
∗
q .

Proof. Let A ∈ Γ and ∅ �= B ⊆ A with |A| = m and |B| = l � m. According
to Step 2 of Construction I, we have that for any subset C ⊆ B with |C| =
s, where 0 � s � l, the secret key k appears ns = (q − 1)s−1 − ∑s−1

i=0

(
s
i

)
ni

times in the value table of F |s(A\C)×C , where n0 = 1, and every element in

F
∗
q \ {k} appears Ns = (q − 1)s−1 − ∑s−1

i=0

(
s
i

)
Ni times in the value table of

F |s(A\C)×C , where N0 = 0. Clearly, ns and Ns depend only on s. Similar to
Proposition 1, we can prove that Es(A\B)×B =

⋃
C⊆B Es(A\C)×C , where for

two distinct subsets C1, C2 ⊆ B, Es(A\C1)×C1

⋂
Es(A\C2)×C2

= ∅. Therefore,
F |s(A\B)×B is the concatenation function of F |s(A\C)×C , C ⊆ B. Note that the
number of different C ⊆ B with |C| = s is

(
l
s

)
. Thus, in the value table of

F |s(A\B)×B, the secret key k appears
∑l

i=0

(
l
i

)
ni times and every element in

1 A formal proof of this lemma is provided in a full version of this paper [24].
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F
∗
q \ {k} appears

∑l
i=0

(
l
i

)
Ni times. According to Eqs. (12) and (13), we have

∑l
i=0

(
l
i

)
ni =

∑l
i=0

(
l
i

)
Ni = (q−1)l−1, which implies that F |s(A\B)×B is balanced

onto F
∗
q . �	

Theorem 2. Let F be constructed by Construction I. Then, Secret Sharing
Scheme I is perfect with information rate ρ = 1.

Proof. It is clear that Secret Sharing Scheme I has ρ = 1. We now prove that if
F is constructed by Construction I, then Secret Sharing Scheme I is perfect.

For any A ∈ Γ , the recovery algorithm fA satisfies fA(s(A)) = F (s(A)) = k,
thus the qualified group A can reconstruct the secret key.

For any forbidden group A ∈ Δ, we assume that the players in A are collab-
orating to reconstruct the secret key by using some recovery algorithm, say fB,
where B ∈ Γ . As discussed in Sect. 3, we must have B � A, i.e., C = A

⋂
B � B,

where C � B means that C is a proper subset of B (i.e., C ⊆ B but C �= B).
Since C � B, then B \ C �= ∅. Due to Lemma 2, the restriction function
F |s(C)×(B\C) is balanced onto F

∗
q . Hence, the conditional probability determined

by fB satisfies

Pr(K = γ | S(C) = s(C)) =
1

q − 1
=

1
|K| = Pr(K = γ), (12)

where γ ∈ F
∗
q , which implies that for every k ∈ K, the secret key k can be

guessed correctly with probability Pr(K = k) = 1/|K|. Therefore, according to
Definition 2, we get that Secret Sharing Scheme I is perfect. �	

5 Secret Sharing Schemes with Distributed Shares

In Sect. 4, we have shown a construction of perfect democratic secret sharing
schemes with information rate ρ = 1. Note that in Secret Sharing Scheme I, the
shares are generated by the players themselves, but when the secret key that TC
wants to share is changed, the function F published by TC should be updated
accordingly. This may cause the problem of low efficiency if n is large, because
TC has to recompute the ANF of the new function F , and this process needs
approximately O(nqn) operations over the finite field Fq.

To avoid the drawback of updating the function F , we propose Secret Sharing
Scheme II, where the shares of the players are computed and distributed secretly
by TC. In Secret Sharing Scheme II, the public q-ary function F is fixed, and
when the secret key is changed, the shares distributed to the players by TC
will be updated accordingly. Comparing the two constructions, one can see that
Secret Sharing Scheme I realizes the democracy, while Secret Sharing Scheme II
is designed towards enhancing the efficiency.

5.1 A General Description

Recall that for an n-variable q-ary function F , F |A denotes the restriction of F
to the set EA = {x ∈ F

n
q | supp(x) = A}, where A = {i1, . . . , im}, and we use
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A = {Pi1 , . . . ,Pim} ⊆ P to denote a subset of players. In Table 3, we present
Secret Sharing Scheme II, in which the shares of the players are computed and
distributed secretly by TC. It can be seen that, different from Secret Sharing
Scheme I, in Secret Sharing Scheme II, the q-ary function determined by TC
does not depend on the choice of the secret key.

Table 3. Secret Sharing Scheme II
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5.2 Perfect Secret Sharing Schemes from Orthogonal Arrays

An orthogonal array, denoted by OAλ(t,m, v), is a λvt × m array of v symbols,
such that in any t columns of the array, every possible t-tuple of the symbols
appears exactly λ times. An orthogonal array is called simple if and only if no
two rows are identical. A large set of orthogonal arrays LOAλ(t,m, v) is a set of
vm−t/λ simple arrays OAλ(t,m, v) which satisfies that every possible m-tuple
of the symbols appears in exactly one of the orthogonal arrays in the set. We
refer to [31] for background on orthogonal arrays.

In Table 4, we propose a method to construct q-ary functions by using orthog-
onal arrays. By employing such functions in Secret Sharing Scheme II, we can
get perfect secret sharing schemes.

Theorem 3. Let F be constructed by Construction II. Then, Secret Sharing
Scheme II is perfect.

Proof. For any subset of players A = {Pi1 , . . . ,Pim} ∈ Γ , the recovery algorithm
fA satisfies fA

(
x
(A)
i1

, . . . , x
(A)
im

)
= F |A

(
x(A)

)
= k, where

x(A) =
(
0, . . . , 0, x

(A)
i1

, 0, . . . , 0, x
(A)
im

, 0, . . . , 0
)

,

thus the qualified group A can reconstruct the secret key.
For any forbidden group A ∈ Δ, we assume that the players in A are collab-

orating to reconstruct the secret key by using some recovery algorithm, say fB,
where B ∈ Γ . As discussed in Sect. 3, we must have B � A, i.e., C = A

⋂
B � B.

Suppose that |C| = t, |B| = m, then t < m. From Step 2.1 of Construction II,
we have that for B ∈ Γ , there exists

{OA(B)
γ

∣
∣ γ ∈ F

∗
q

}
, which is a set of q − 1

disjoint simple arrays OA1(m−1,m, q−1). Given γ ∈ F
∗
q , every possible (m−1)-

tuple of F
∗
q occurs exactly one time in OA(B)

γ , which implies that every possible

Table 4. Construction II

Input: A set of players P = {P1, . . . , Pn} with access structure (Γ, Δ)

Output: A function F : F
n
q → Fq

Step 1: For every subset of players A ∈ Δ, set F |A = 0, i.e., F |A is a zero
function

Step 2: For every subset of players A = {Pi1 , . . . , Pim} ∈ Γ , execute the fol-
lowing two steps

1. Choose a large set of orthogonal arrays LOA1(m−1, m, q −1), i.e., a
set of q−1 disjoint simple arrays OA1(m−1, m, q−1), which is denoted

by
{OA(A)

γ

∣∣ γ ∈ F
∗
q

}

2. For x ∈ EA, denote by x̃ the vector obtained by deleting all the zero
coordinates of x. Then, set F |A(x) = γ if and only if x̃ is a row vector

of OA(A)
γ
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t-tuple of F
∗
q occurs exactly (q − 1)m−1−t times in OA(B)

γ . Hence, from Step 2.2
of Construction II, we have that given γ ∈ F

∗
q , for any shares s(B)(C) ∈ (F∗

q)
t,

the conditional probability determined by fB satisfies

Pr
(
S(B)(C) = s(B)(C)

∣
∣ K = γ

)

=
(q − 1)m−1−t

(q − 1)m−1
=

1
(q − 1)t

= Pr
(
S(B)(C) = s(B)(C)

)
,

which implies from Bayes’ theorem that

Pr
(
K = γ

∣
∣ S(B)(C) = s(B)(C)

)

=
Pr

(
S(B)(C) = s(B)(C)

∣
∣ K = γ

)
Pr(K = γ)

Pr
(
S(B)(C) = s(B)(C)

) = Pr(K = γ) =
1

|K| . (16)

Due to Eq. (16), we have that for every k ∈ K, the secret key k can be guessed
correctly with probability Pr(K = k) = 1/|K|. Therefore, from Definition 2,
Secret Sharing Scheme II is perfect. �	
Remark 2. We can prove that by employing q-ary function F constructed in
Construction II, Secret Sharing Scheme I is perfect. In fact, let k be the secret
key and α1, . . . , αn be the generated shares of P1, . . . ,Pn respectively. When we
add the constraint that x̃ = (αi1 , . . . , αim) is a row vector of OA(A)

k to Step 2.2
of Construction II, then the function F satisfies F (s(A)) = k for A ∈ Γ . Thus, it
can be proved similarly as in Theorem 3 that Secret Sharing Scheme I is perfect.
By adding this constraint, the output functions in Construction II form a proper
subset of all the output functions in Construction I.

5.3 Perfect Secret Sharing Schemes from Resilient Functions

For two integers n and m, the function F : F
n
q → F

m
q is called t-resilient if

the output value of F satisfies for any {i1, . . . , it} ⊆ {1, 2, . . . , n}, any zj ∈ Fq,
j = 1, . . . , t, and any γ ∈ Fq,

Pr(F (x1, . . . , xn) = γ | xi1 = z1, . . . , xit = zt) = Pr(F (x1, . . . , xn) = γ) =
1

qm
.

(17)

In [19], t-resilient functions from F
n
q to F

m
q are characterized in terms of

orthogonal arrays. Furthermore, Camion et al. [9] claimed that this characteri-
zation holds for t-resilient functions from Fn to Fm, where F is a finite alphabet.
Inspired by Construction II in Table 4 and the close relationship between orthog-
onal arrays and t-resilient functions, we find a way to construct perfect secret
sharing schemes with general access structures by employing t-resilient functions.
The idea of constructing perfect secret sharing schemes by using resilient func-
tions can be found in simplified (n, n)-threshold scheme that all the n players
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Table 5. Construction III

pool their shares and compute the secret key k ∈ Zm (Zm is the residue class ring
with m elements) by the formula k =

∑n
i=1 xi mod m, where for i = 1, . . . , n,

xi ∈ Zm is the share of player Pi (see [30, Chap. 13] for more details). Note
that the recovery algorithm F (x) =

∑n
i=1 xi mod m, x = (x1, . . . , xn) ∈ Z

n
m

is indeed an (n − 1)-resilient function from Z
n
m to Zm. When m = 2, this idea

appears in [17, Chap. 7] for the construction of binary (n, n)-threshold schemes.
Resilient functions can also be employed as building blocks of perfect monotone
secret sharing schemes from the description of monotone circuit, see [2,3].

For convenience, we denote t-resilient functions from F
n
q to Fq by (n, t, q)

resilient functions. Clearly, an (n, t, q) resilient function must be (n, t′, q) resilient
when t′ � t. In Table 5, we use (n, t, q) resilient functions to construct q-ary
functions. By employing such functions in Secret Sharing Scheme II, we can get
perfect secret sharing schemes.

Remark 3. In Construction III, the finite field Fq should satisfy that q − 1 is a
power of a prime, i.e., q = ps + 1 for some prime p and positive integer s. If
q = 2t for some t � 2, then p is odd and ps = 2t − 1. If q is odd, then p is even
and q = 2t + 1 for some t � 1. In Table 6, we give some examples of q such that
q − 1 is a power of a prime.

Theorem 4. Let F be constructed by Construction III. Then, Secret Sharing
Scheme II is perfect.

Proof. For any subset of players A = {Pi1 , . . . ,Pim} ∈ Γ , the recovery algorithm
fA satisfies fA

(
x
(A)
i1

, . . . , x
(A)
im

)
= F |A

(
x(A)

)
= k, where

x(A) =
(
0, . . . , 0, x

(A)
i1

, 0, . . . , 0, x
(A)
im

, 0, . . . , 0
)

,
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Table 6. All numbers 2 < q < 264 satisfying q is a power of a prime and q − 1 is a
power of a prime

q q − 1 q q − 1

3 = 31 2 = 21 257 = 2571 256 = 28

4 = 22 3 = 31 8192 = 213 8191 = 81911

5 = 51 4 = 22 65537 = 655371 65536 = 216

8 = 23 7 = 71 131072 = 217 131071 = 1310711

9 = 32 8 = 23 524288 = 219 524287 = 5242871

17 = 171 16 = 24 2147483648 = 231 2147483647 = 21474836471

32 = 25 31 = 311 2305843009213693952 = 261 2305843009213693951
= 23058430092136939511

128 = 27 127 = 1271

Note: a1 means that a is a prime.

thus the qualified group A can reconstruct the secret key.
For any forbidden group A ∈ Δ, we assume that the players in A are

collaborating to reconstruct the secret key by using some recovery algorithm,
say fB , where B ∈ Γ . As discussed in Sect. 3, we must have B � A, i.e.,
C = A

⋂
B � B. Suppose that |C| = t, |B| = m, then t < m. Let x ∈ EB with

x̃ = (xi1 , . . . , xim) ∈ (F∗
q)

m, where x̃ is the vector obtained by deleting all the
zero coordinates of x. From Step 3.1 of Construction III, we have that GB is an
(m,m−1, q′) resilient function, where q′ = q−1. Let {j1, . . . , jt} ⊆ {i1, . . . , im},
then from Eq. (17), we have that for any zs ∈ Fq′ , s = 1, . . . , t, and any β ∈ Fq′ ,

Pr(GB ◦ φ(x̃) = β | φ(xj1) = z1, . . . , φ(xjt) = zt)

= Pr(GB ◦ φ(x̃) = β) =
1
q′ =

1
q − 1

. (19)

According to Eq. (18), we get that Eq. (19) is equivalent to

Pr(F |B(x) = φ−1(β) | xj1 = φ−1(z1), . . . , xjt = φ−1(zt))

= Pr(F |B(x) = φ−1(β)) =
1

q − 1
. (20)

Since φ is a one-to-one mapping from F
∗
q to Fq′ , then given the shares

s(B)(C) ∈ (F∗
q)

t, for any γ ∈ F
∗
q , the conditional probability determined by

fB satisfies

Pr
(
K = γ

∣
∣ S(B)(C) = s(B)(C)

)
= Pr(K = γ) =

1
q − 1

=
1

|K| , (21)

which implies that for every k ∈ K, the secret key k can be guessed correctly
with probability Pr(K = k) = 1/|K|. Therefore, from Definition 2, we have that
Secret Sharing Scheme II is perfect. �	
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Remark 4. It is proved in [19] that an (m, t, q) resilient function is equivalent
to a large set of orthogonal arrays LOAqm−1−t(t,m, q). In fact, in Step 3.2 of
Construction III, the sets {x̃ ∈ (F∗

q)
m | F |A(x) = γ, x ∈ EA}, γ ∈ F

∗
q , consist of

a large set of orthogonal arrays LOA1(m − 1,m, q − 1). Hence, Construction III
can be seen as a special case of Construction II.

There exist a large amount of constructions of resilient functions over finite
fields, e.g. see [10,11,20,34]. We remark that, generally, given the value table of a
q-ary function F , it needs approximately O(nqn) operations over the finite field
Fq to compute the ANF of F . However, it will be much easier for us to derive
the ANF of F by using the known ANFs of resilient functions. We illustrate this
process by a simple example in the Appendix, which provides a perfect secret
sharing scheme realizing a non-monotone access structure.

For Secret Sharing Scheme II it is clear that the information rate is

ρ = min
{

ρi =
1

|{A ∈ Γ | Pi ∈ A}|
∣
∣
∣
∣ 1 � i � n

}
, (22)

which depends on the access structure. In the worst case, there may exist a player
who joins in 2n−1 qualified groups, then according to Eq. (22), the information
rate is O(2−n) which is much lower than the upper bound.

We emphasize that in the sharing phase of Secret Sharing Scheme I and Secret
Sharing Scheme II, the computational complexity depends on the access struc-
ture, which is often exponential in the number of players for practical applica-
tions. In general, for non-monotone secret sharing schemes, it is hard to decrease
the complexity of the sharing phase (excepting some special access structures).

6 Conclusion

In this paper, we discuss secret sharing schemes realizing general (not necessarily
monotone) access structures. For secret sharing schemes with general access
structures, the attack model and the definition of unconditional security (called
perfect) given in this paper are generalizations of the monotone access structure
case. Secret Sharing Scheme I presented in Table 1 is a democratic scheme such
that the shares are generated by the players. We prove that if the value table
of the q-ary function F is well arranged, Secret Sharing Scheme I is perfect
with information rate ρ = 1. We propose Secret Sharing Scheme II for the sake
of efficiency, which requires the trusted center TC to distribute the shares. By
employing orthogonal arrays as well as resilient functions in the construction of
q-ary function F , we prove that Secret Sharing Scheme II is perfect.

Appendix: An Example of Secret Sharing Scheme II

We illustrate Secret Sharing Scheme II by the following example, where the q-ary
function F is constructed by Construction III in Table 5.
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Example 1. Let P = {P1,P2,P3,P4} and Γ = {A1 = {P1,P2,P3}, A2 =
{P1,P2, P4}, A3 = {P3,P4}, A4 = {P1,P2,P3,P4}}. The set of secret keys is
K = F

∗
8 = {1, α, α2, . . . , α6}, where α is a primitive element of F8. Suppose that

TC wants to share k = α5 as the secret key. Following Construction III, TC
defines φ : F

∗
8 → F7 as φ(γ) = logα γ, which means that if γ = αa ∈ F

∗
8 for some

integer a, then logα γ = a. For the access structure Γ , TC chooses
⎧
⎪⎪⎨

⎪⎪⎩

GA1(z1, z2, z3) = 2z1 + 3z2 + z3,
GA2(z1, z2, z4) = z1 + 2z2 + 3z4,

GA3(z3, z4) = 2z3 + 4z4,
GA4(z1, z2, z3, z4) = z1 + z2 + z3 + z4 + 1

(23)

as the 7-ary linear resilient functions (see [9] for more details). After that, TC
computes and secretly transmits the shares

s(P1) = {s
(A1)
1 = α, s

(A2)
1 = α2, s

(A4)
1 = α},

s(P2) = {s
(A1)
2 = α2, s

(A2)
2 = α3, s

(A4)
2 = α},

s(P3) = {s
(A1)
3 = α4, s

(A3)
3 = α, s

(A4)
3 = α},

s(P4) = {s
(A2)
4 = α6, s

(A3)
4 = α6, s

(A4)
1 = α},

to P1, P2, P3, P4 respectively. From (23), the 8-ary function F is defined as

F |A1(x) = φ−1 ◦ GA1 ◦ φ(x̃) = x2
1x

3
2x3,

F |A2(x) = φ−1 ◦ GA2 ◦ φ(x̃) = x1x
2
2x

3
4,

F |A3(x) = φ−1 ◦ GA3 ◦ φ(x̃) = x2
3x

4
4,

F |A4(x) = φ−1 ◦ GA4 ◦ φ(x̃) = αx1x2x3x4,

where x ∈ F
4
8, x̃ denotes the vector obtained by deleting all the zero coordinates

of x, and for every forbidden group A ∈ Δ = 2P \ Γ , F |A = 0. Finally, TC
publishes F (x) = (1 − x7

4)x
2
1x

3
2x3 + (1 − x7

3)x1x
2
2x

3
4 + (1 − x7

1)(1 − x7
2)x

2
3x

4
4 +

αx1x2x3x4 = x2
3x

4
4 + x2

1x
3
2x3 + x1x

2
2x

3
4 − x7

1x
2
3x

4
4 − x7

2x
2
3x

4
4 + αx1x2x3x4 −

x2
1x

3
2x3x

7
4 − x1x

2
2x

7
3x

3
4 + x7

1x
7
2x

2
3x

4
4.

Due to Theorem 4, this secret sharing scheme is perfect. In fact, assume
that the players in the forbidden group B = {P1,P3,P4} ∈ Δ are collabo-
rating to reconstruct the secret key. Their recovery algorithm defined in (15)
is fB(x1, x3, x4) = (1 − x7

1)x
2
3x

4
4, which equals 0 for any (x1, x3, x4) ∈ (F∗

8)
3.

Suppose that they try to use the recovery algorithms

fA1(x1, x2, x3) = F (x1, x2, x3, 0) = x2
1x

3
2x3,

fA2(x1, x2, x4) = F (x1, x2, 0, x4) = x1x
2
2x

3
4,

fA4(x1, x2, x3, x4) = F (x1, x2, x3, x4) = x2
3x

4
4 + x2

1x
3
2x3 + x1x

2
2x

3
4 − x7

1x
2
3x

4
4

− x7
2x

2
3x

4
4 + αx1x2x3x4 − x2

1x
3
2x3x

7
4 − x1x

2
2x

7
3x

3
4 + x7

1x
7
2x

2
3x

4
4,
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which are functions defined on (F∗
8)

3, (F∗
8)

3, and (F∗
8)

4 respectively. For the
players P1, P3, and P4, the values of s

(A1)
2 , s

(A2)
2 , and s

(A4)
2 are unknown random

values, thus according to (21), the secret key can be guessed correctly with
probability 1/|K|, i.e., the players in B can learn nothing about the secret key.
Similar discussion holds for other forbidden groups.

Moreover, it is clear that the information rate of this scheme is

ρ = min
{

log2 |K|
log2 |S(Pi)|

∣
∣
∣
∣ 1 � i � 4

}
=

1
3
.
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Abstract. We present a CCA secure PKE based on the problem of the
LWE with uniform errors. We use one of the instantiations of parameters of
LWE with uniform errors suggested by Micciancio and Peikert (CRYPTO
2013). Since the uniform errors do not bear the Fourier-properities as the
Gaussian errors, the statistical techniques and tools used by Micciancio
and Peikert (EUROCRYPT 2012) to construct CCA secure PKE are not
available for LWE with uniform errors. However, we conquer the problem
by employing the double-trapdoor mechanism to construct a tag-based
encryption with CCA security and transform it to a CCA secure PKE from
the generic conversion based on one-time signatures.

Keywords: Public key encryption · Chosen-ciphertext security · LWE ·
Uniform errors

1 Introduction

The learning with errors (LWE) problem, a generalization of the learning parity
with noise (LPN) problem, has been applied in many cryptographic scenarios
in the past decade. Informally, given a random matrix A ∈ Z

m×n
q and b =

As + e ∈ Z
m
q with a secret vector s ∈ Z

n
q and some error vector e, it asks

to recover the secret vector s ∈ Z
n
q . Regev set the error distribution to be the

discrete Gaussian distribution and the modulus q = poly(n) to be a polynomial
in n, and gave a reduction from solving some lattice problems such as GapSVP in
the worst-case to this LWE problem in average-case quantumly [Reg05]. Peikert
gave a classical reduction with exponential modulus q in [Pei09], and Barkerski
et al. showed a classical reduction with polynomial modulus q [BLP+13]. These
worst-to-average-case reductions were given according to the Fourier-properties
of the Gaussian distribution.
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The LWE problem with discrete Gaussian errors has been proved to
be versatile and useful in cryptographic constructions. Currently, there are
many cryptographic applications based on LWE with discrete Gaussian
errors, including public key encryption (PKE) under chosen-plaintext attacks
(CPA) [Reg05,KTX07,PVW08,LP11] and PKE under chosen-ciphertext secure
attacks (CCA) [PW08,Pei09,MP12], identity-based encryption (IBE) [GPV08,
CHKP10,ABB10,MP12], oblivious transfer [PVW08], and fully homomorphic
encryption (FHE) [Gen09a,Gen09b,BV11,BGV12,Bra12].

CCA from LWE. LWE based PKE with CPA security was first proposed by
Regev in [Reg05]. Peikert and Waters proposed a new framework to construct
CCA secure PKE schemes based on a new primitive named as lossy trapdoor
function (LTDF), and showed that LTDF can be realized from the LWE assump-
tion [PW08]. Peikert observed that the LWE problem can be used to construct
correlated products trapdoor function [Pei09], which can be used to construct
CCA secure PKE schemes [RS09]. Using the generic conversion technique in
[BCHK07], one can obtain CCA secure PKE schemes from IBE schemes based
on the LWE problem [ABB10,CHKP10]. Micciancio and Peikert proposed a new
method to generate trapdoors for the LWE problem [MP12]. Based on their new
technique, an efficient CCA secure PKE scheme was proposed. In fact, they con-
structed an adaptive trapdoor function (ATDF) based on the LWE problem by
using their new technique and achieved CCA security by employing the tech-
nique in [KMO10].

LWE with discrete Gaussian errors attracts more attention [Reg05,MR07,
Pei09,BLP+13] and has been proved its success in cryptography. However, sam-
pling discrete Gaussian errors usually costs a significant amount of computa-
tional resource in key generation and encryption algorithms [Pei10,MP12]. Con-
struction based on LWE without discrete Gaussian errors is not considered until
Döttling and Müller-Quade replaced the discrete Gaussian errors with uniform
errors [DM13]. They gave the first worst-to-average case reduction for LWE with
uniform errors over small interval by using a new tool called lossy codes. Mic-
ciancio and Peikert showed that the hardness of LWE remains even with small
errors, provided that the number of samples is small enough [MP13].

LWE with Uniform Errors. Micciancio and Mol mentioned the impor-
tance of understanding LWE problems with various errors [MM11]. Döttling
and Müller-Quade used a tool called lossy codes and showed the hardness of the
LWE problem with uniform errors in a small interval [DM13]. Lossy codes loss
the information of the message on average, but random linear codes can recover
the message from a type of errors information theoretically. Moreover, lossy codes
are computationally indistinguishable from random linear codes. Concurrently
and independently, Micciancio and Peikert gave the new results on the hard-
ness of LWE with uniform errors [MP13]. Particularly, it showed the hardness
connection between the LWE problem with linear number of samples, uniform
errors and polynomial modulus and standard lattice problems.
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Cabarcas, Göpfert and Weiden gave the first CPA secure PKE scheme based
LWE with uniform errors [CGW14]. There is no CCA secure PKE scheme from
LWE with uniform errors.

1.1 Our Contributions and Technique

In this work we use one of the instantiations of parameters of the LWE with
uniform errors which is suggested by Micciancio and Peikert in [MP13] to con-
struct a tag-based encryption, and transform it into a CCA secure PKE. The
instantiation includes a linear number of samples m = cn with a constant c ≥ 1
and an error interval of polynomial magnitude. More precisely,

m = 3n, s ≥ (6Cn)5, q ≥ max{3
√

n, (4s)
3
2 , 12n2s2 + 2},

where C is a large enough universal constant and s is the size of the interval
from where the errors are sampled uniformly. Our scheme is the first one with
CCA security based on the LWE without discrete Gaussian errors.

Since the uniform distribution does not bear the Fourier-properties as the
discrete Gaussian distribution which is a powerful tool in standard LWE, we can
not give an almost statistically perfect simulation of the challenge ciphertext and
provide decryption oracle simultaneously. However, we use the double-trapdoor
mechanism introduced by Kiltz, Masny and Pietrzak in [KMP14] instantiated
with normal LWE problem, which gives a computationally indistinguishable sim-
ulation. More specifically, the simulator must answer decryption queries without
the secret of the instance of Normal LWE (which is one of the trapdoors) during
the security reduction. But the simulator knows the other trapdoor thus it can
answer decryption queries, and the adversary can not distinguish which trapdoor
is used by the simulator.

2 Preliminaries

2.1 Notation

Let Q be the rational field. Let Zq be the q-ary finite field for a prime q ≥ 2.
If x = [x1, · · · , xn]T is a vector over Z

n
q , then ‖x‖∞ � maxn

i=1 |xi| denotes its
�∞ norm. If A is an algorithm, then y ← A(x) denotes that A outputs y with
input x, no matter that A is deterministic or probabilistic. Specially, we denote
by y ← AO(x) that when A has access to an oracle O, A outputs y with input
x. If D is a distribution, then e ∼ D denotes that e distributes according to D.
Assuming that there is an efficient algorithm that samples from the distribution
D, e ← D denotes that the random variable e is output from the algorithm. If
S is a finite set, then s ← S denotes sampling s from S uniformly at random.

We write poly(n) to denote a function f(n) = O(nc) for some constant c. A
negligible function on n, denoted as negl(n) usually, is a function f(n) such that
f(n) = o(n−c) for every fixed constant c. An event happens with overwhelming
probability if it happens with probability at least 1 − negl(n). Two ensembles
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of distributions {Xn} and {Yn} are computationally indistinguishable, if for any
probabilistic polynomial time algorithm A, |Pr[A(Xn) = 1] − Pr[A(Yn) = 1]| ≤
negl(n).

2.2 Public Key Encryption and Tag-Based Encryption

We recall the definition of the public key encryption scheme and the security
definition under adaptive chosen-ciphertext attacks [RS91].

A public key encryption scheme PKE = (KeyGen,Enc,Dec) consists of
three (either probabilistic or deterministic) polynomial time algorithms, where

– KeyGen(1k): a probabilistic algorithm that takes a security parameter k as
input, and outputs a pair of public key and secret key (PK,SK).

– Enc(PK, μ): a probabilistic algorithm that takes the public key PK and a
message μ as input, and outputs a ciphertext CT.

– Dec(SK,CT): a deterministic algorithm that takes the secret key SK and a
ciphertext CT as input, and outputs a plaintext μ or aborts.

The correctness of the scheme PKE requires that for all messages μ, it
holds that

Pr[Dec(SK,Enc(PK, μ)) 	= μ : (PK,SK) ← KeyGen(1k)] < negl(k).

CCA Security. Let A = (A1,A2) be a two-stage adversary. The advantage of A
in the CCA experiment of a public key encryption scheme PKE = (KeyGen,
Enc, Dec) is defined as

Advcca,A
PKE (k) �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = b′ :

(PK,SK) ← KeyGen(1k),
(μ0, μ1, St) ← ADec(SK,·)

1 (PK),
b ← {0, 1},
CT∗ ← Enc(PK, μb),
b′ ← ADec(SK,·)

2 (PK,CT∗, St)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where A1 and A2 both have access to a decryption oracle Dec(SK, ·), but A2

is not allowed to ask the decryption oracle on CT∗. And Advcca
PKE,t,Q(k) =

maxA Advcca,A
PKE (k), where the equation is taken over all adversaries A that run

in time t and make Q decryption queries at most. PKE is said to be indistin-
guishable against adaptive chosen-ciphertext attacks (CCA secure in short) if
Advcca

PKE,t,Q(k) < negl(k) for t = poly(k) and Q = poly(k).
A tag-based encryption (TBE) scheme TBE = (T.KeyGen,T.Enc,T.Dec)

with message space M and tag space T consists of three (either probabilistic or
deterministic) polynomial time algorithms, where

– T.KeyGen(1k): a probabilistic algorithm that takes a security parameter k
as input, and outputs a pair of public key and secret key (PK,SK).

– T.Enc(PK, τ, μ): a probabilistic algorithm that takes the public key PK, a tag
τ ∈ T and a message μ ∈ M as input, and outputs a ciphertext CT.
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– T.Dec(SK, τ,CT): a deterministic algorithm that takes the secret key SK, a
tag τ ∈ T and a ciphertext CT as input, and outputs a message μ or the abort
symbol ⊥.

The correctness of the scheme TBE requires that for all messages μ ∈ M
and tags τ ∈ T , it holds that

Pr[T.Dec(SK, τ,T.Enc(PK, τ, μ)) 	= μ : (PK,SK) ← T.KeyGen(1k)] < negl(k).

Selective-Tag Weak CCA Security. Let A = (A1,A2,A3) be a three-stage adver-
sary. The advantage of A in selective-tag weak CCA experiment against a tag-
based encryption scheme TBE = (T.KeyGen, T.Enc, T.Dec) is defined as

Advst-cca,A
TBE (k) �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′ :

(τ∗, St1) ← A1(1k),
(PK,SK) ← T.KeyGen(1k),
(μ0, μ1, St2) ← AT.Dec(SK,·,·)

2 (PK, St1),
b ← {0, 1},
CT∗ ← T.Enc(PK, τ∗, μb),
b′ ← AT.Dec(SK,·,·)

3 (PK,CT∗, St2),

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where A2 and A3 both have access to a decryption oracle T.Dec(SK, ·, ·), but not
allowed to ask the decryption oracle on the target tag τ∗. And Advst-cca

TBE,t,Q(k) =
maxA Advst-cca,A

TBE (k), where the equation is taken over all adversaries A that run
in time t and make Q decryption queries at most. TBE is said to be selective-tag
weakly secure against chosen ciphertext attacks if Advst-cca

TBE,t,Q(k) < negl(k) for
t = poly(k) and Q = poly(k).

There are mainly two generic transformations from a selective-tag weak CCA
secure TBE scheme to a CCA secure PKE. One is to use one-time signatures
(OTS) [Kil06,BCHK07]. The transformation sets the verification key to be the
tag of the ciphertext of TBE and makes a signature for the ciphertext of TBE.
The other one is to replace OTS with message authentication code [BK05].

2.3 One-Time Signatures

A one-time signature scheme SIG = (SIG.Gen,SIG.Sign,SIG.Verify) with
message space M′ consists of three (either probabilistic or deterministic) poly-
nomial time algorithms, where

– SIG.Gen(1k): a probabilistic algorithm that takes a security parameter k as
input, and outputs a pair of verification and signature keys (VK,SGK).

– SIG.Sign(SGK,m): a probabilistic algorithm that takes the signature key
SGK and a message m ∈ M′ as input, and outputs a signature σ.

– SIG.Verify(VK,m, σ): an algorithm that takes the verification key VK, the
message m and the signature σ as input, and outputs a bit b ∈ {0, 1}.
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The correctness of the scheme SIG requires that for all messages m ∈ M′,
it holds that

Pr[SIG.Verify(VK,m,SIG.Sign(SGK,m)) = 0 : (VK,SGK) ← SIG.Gen(1k)]
≤ negl(k).

Strong One-Time Signature. Let A be a adversary. The advantage of A against
the signature scheme SIG = (SIG.Gen,SIG.Sign,SIG.Verify) is defined as

Advot-ex-for,A
SIG (k) �

Pr
[
SIG.Verify(VK,m∗, σ∗) = 1 :

(VK,SGK) ← SIG.Gen(1k),
(m∗, σ∗) ← ASIG.Sign(SGK,·)(VK),

]
,

where the pair (m∗, σ∗) that A outputs must be different from (m, σ) that
A obtained from the oracle query and A can only ask the signature oracle
SIG.Sign(SGK, ·) one time. And Advot-ex-for

SIG (k) � maxA Advot-ex-for,A
SIG (k),

where the equation is taken over all the probabilistic time adversary. SIG is
said be a strong one-time signature scheme if Advot-ex-for,A

SIG (k) ≤ negl(k).

2.4 Learning with Errors

In this section we recall the standard decisional learning with errors (LWE)
problem and some variants of LWE problem. Let q ∈ Z

∗ be the modulus, n ∈ Z
∗

be the size of the secret vector, m be the number of the samples and χ be the
error distribution over Zq.

Definition 1 ((Decisional) LWE). The LWE distribution is defined as

DLWE(n,m,χ) �
(
(A,As + e)|A ← Z

m×n
q , s ← Z

n
q , e ← χm

)
.

The advantage of a distinguisher D in distinguishing DLWE(n,m,χ) from uniform
distribution is defined as

AdvD
LWE(n,m,χ) �

∣
∣
∣
∣ Pr
A,s,e

[D(A,As + e) = 1] − Pr
A,u

[D(A,u) = 1]
∣
∣
∣
∣ ,

where (A,As + e) ← DLWE(n,m,χ), u ← Z
m
q . Also define AdvLWE(n,m,χ),t �

maxD AdvD
LWE(n,m,χ), where the equation is taken over all D’s that run in time

t, and say that LWE is hard if AdvLWE(n,m,χ),t ≤ negl(n) for t = poly(n).

2.4.1 Normal (Extended) LWE

In [ACPS09], Applebaum et al. gave a version of LWE called normal LWE, where
the secret vector hidden in the normal LWE distribution is chosen from the error
distribution χ rather than the uniform distribution over Zn

q in the standard LWE.
Namely,

DNorm-LWE(n,m−n,χ) �
(
(A,At + x) |A ← Z

(m−n)×n
q , t ← χn,x ← χm−n

)
.
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Applebaum et al. gave a transformation technique from standard LWE distrib-
ution to the normal LWE distribution, and showed that distinguishing normal
LWE distribution from an uniform one is as hard as the standard LWE problem
at least.

In [AP12], Alperin-Sheriff and Peikert gave a tight reduction from standard
LWE to extended-LWE (ELWE) introduced by O’Neil et al. [OPW11], where a
hint of the error vector is leaked. Similarly, we use Applebaum et al.’s technique
on ELWE samples and obtain normal extended-LWE (Normal ELWE) samples
with a hint of the error vector and secret vector.

Definition 2 (Normal ELWE). The normal ELWE distribution is defined as

DNorm-ELWE(n,m−n,χ) �
((

A,At + x,

(
e
f

)
, tTe + xTf

) ∣
∣
∣
∣
∣
A ← Z

(m−n)×n
q , t, e ← χn,x, f ← χm−n

)

.

The advantage of a distinguisher D in distinguishing DNorm-ELWE(n,m−n,χ) from
uniform distribution is defined as

AdvD
Norm-ELWE(n,m−n,χ) �

∣
∣
∣
∣Pr

[
D

(
A,At + x,

(
e
f

)
, tTe + xTf

)
= 1

]

− Pr
[
D

(
A,u,

(
e
f

)
, tTe + xTf

)
= 1

]∣
∣
∣
∣ ,

where A, t,x, e, f is as above and u ← Z
m−n
q . Also define

AdvNorm-ELWE(n,m−n,χ),t � max
D

AdvD
Norm-ELWE(n,m−n,χ),

where the equation is taken over all D’s that run in time t, and say that normal
ELWE is hard if AdvNorm-ELWE(n,m−n,χ),t ≤ negl(n) for t = poly(n).

By a routine hybrid argument we directly have the hardness of the �-fold
normal LWE and the �-fold normal ELWE problem (i.e. T has � rows, and every
row is a secret vector in unfolded problem). Namely,

AdvNorm-LWE�(n,m−n,χ),t � max
D

|Pr [D (A,TA + X) = 1] − Pr [D (A,U) = 1]|
≤� · AdvNorm-LWE(n,m−n,χ),t,

and

AdvNorm-ELWE�(n,m−n,χ),t � max
D

∣
∣
∣
∣Pr

[
D

(
A,TA + X,

(
e
f

)
,Te + Xf

)
= 1

]

− Pr
[
D

(
A,U,

(
e
f

)
,Te + Xf

)
= 1

]∣
∣
∣
∣

≤ � · AdvNorm-ELWE(n,m−n,χ),t,

where A ← Z
n×(m−n)
q ,T ← χ�×n,X ← χ�×(m−n), e ← χn, f ← χm−n,U ←

Z
�×(m−n)
q , and the equation is taken over all D’s that run in time t = poly(n).
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2.4.2 LWE with Uniform Errors and Instantiation

In the original paper of LWE problem [Reg05] and the consequent developments
of cryptographic constructions based on LWE, the Gaussian errors are employed.
In our construction, we use the result given by Micciancio and Peikert about the
LWE with small parameters and uniform errors. Namely,

Lemma 1 ([MP13]). Let 0 < k ≤ n ≤ m − ω(log k) ≤ kO(1), � = m − n + k,
s ≥ (Cm�/(n−k)) for a large enough universal constant C, and q be a prime such
that max{3

√
k, (4s)m/(m−n)} ≤ q ≤ kO(1). For any set of X ⊆ {−s, · · · , s}m of

size |X| ≥ sm, the LWE(n,m, χ) function family is pseudorandom with respect
to the uniform input distribution χ = U(X), under the assumption that SIVPγ

is (quantum) hard to approximate, in the worst case, on k-dimensional lattices
to within a factor γ = Õ(

√
k · q).

We set k1 = n1
2 and k2 = n2

2 . From Lemma 1, we give two sets of parameters
instantiation used in our scheme as follows

m1 = 3n1, s1 ≥ (3Cn1)5, q1 ≥ max{3
√

n1, (4s1)
3
2 }, (1)

and
m2 = 3n2, s2 ≥ (3Cn2)5, q2 ≥ max{3

√
n2, (4s2)

3
2 }, (2)

The LWE(n1,m1, χ1) function family under the modulus q1 and LWE(n2,
m2, χ2) function family under the modulus q2 are pseudorandom, where χi is
uniform distribution over Xi ⊆ {−si, · · · , si}mi of size |Xi| ≥ smi

i , i = 1, 2.
To unify the error interval and the modulus in the two parameters instanti-

ations, we set n1 = n, n2 = 2n1 = 2n and

m = 3n, s ≥ (6Cn)5 ≥ max{s1, s2}, q ≥ (4s)
3
2 ≥ max{q1, q2, 12n2s2 + 2}.

(3)
1The LWE(n,m, χ1) and LWE(2n, 2m,χ2) function families under the same
prime modulus q are both pseudorandom, where χi is uniform distribution over
Xi ⊆ {−s, · · · , s}mi of size |Xi| ≥ smi , m1 = 3n, m2 = 6n, i = 1, 2.

3 TBE Scheme from LWE Without Gaussian Error

In this section we present a TBE scheme with selective-tag weak CCA security
if the LWE problem is hard under the parameter instantiation defined above. It
can be transformed to a standard PKE with CCA security.

3.1 Codes Under �∞-norm

Before the description of the scheme, we introduce our codes and decoding algo-
rithm. Similarly to [MP12], we use the public “gadget” matrix G which is viewed
1 q ≥ 12n2s2 + 2 is related to the correctness of the decryption and we will explain it

later.
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as the generator-matrix of codes. Differently, the codes used in our construc-
tion work under �∞-norm rather than �2-norm in [MP12]. So we give a new
decoding algorithm. We consider the case of 1-dimension. More specifically, let
[q0, · · · , qk−1]T ∈ {0, 1}k be the binary expansion of q. Let g = [1, 21, · · · , 2k−1]T

and

Sk(q) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 −1
2 −1

. . . . . .
2 −1

q0 q1 q2 · · · qk−2 qk−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ Z
k×k.

Obviously, it holds that Sk(q)g = 0 (mod q). Next, we construct an efficient
decoding algorithm.

Lemma 2. There is an efficient decoding algorithm D1 to recover x ∈ Zq from
y = x · g + e ∈ Z

k
q , if ‖e‖∞ ≤ 1

k · � q
2
.

Proof. The decoding algorithm D1 works as follows:

1. Compute y′ ← Sk(q)y (mod q) ∈ Z
k
q .

2. Compute e′ ← S−1
k (q)y′ (not mod q and S−1

k (q) ∈ Q
k×k).

3. Compute y − e′ and obtain x · g and x finally.

From the decoding, there is

y′ =
(
Sk(q)y (mod q)

)
=

(
Sk(q)(x · g + e) (mod q)

)

=
(
Sk(q)e (mod q)

)
= Sk(q)e ∈ Q

k,

where the last equation satisfies

‖Sk(q)e‖∞ ≤ max{ k−1
max
i=1

|2ei−1−ei|, |
k−1∑

i=0

eiqi|} ≤ max{3 ·‖e‖∞, k ·‖e‖∞} ≤ �q

2

.

Hence e′ = e ∈ Q
k. Finally it is easy to obtain x ∈ Zq. ��

In our construction, we need to extend g and Sk(q) to G and S with higher
dimension. More precisely, let G = In×n ⊗g ∈ Z

�×n
q with k = �lg q� and � = nk,

and S = In×n ⊗ Sk(q). We can construct the decoding algorithm D to decode
y = Gx + z ∈ Z

�
q and recover x ∈ Z

n
q by calling D1 k-wisely in parallel if

‖z‖∞ ≤ 1
k · � q

2
.

3.2 Description of the TBE Scheme

The following parameters and public settings are involved in the scheme.

– The security parameter n.
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– m, s, q is defined as in (3) with a prime modulus q, and � = 2n�log q�.
– χ = U(X) is the uniform distribution over a set X ⊆ {−s, · · · , s}m with

|X| = sm.
– Message space M = {0, 1}m, tag space T = {0, · · · , q − 1}n.
– An encoding function H : T → Z

(m−n)×(m−n)
q , τ �→ Hτ , such that H0 =

0(m−n)×(m−n), and for all τ1 	= τ2, Hτ1 − Hτ2 = Hτ1−τ2 is full-rank and
invertible [ABB10].

Our scheme is described as follows:

T.KeyGen(1n) → (PK,SK): The algorithm runs as follows:

A ← Z
n×(m−n)
q ,T0,T1 ← χ�×n,X0,X1 ← χ�×(m−n),

B0 ← T0A + X0,B1 ← T1A + X1,

C ← Z
m×(m−n)
q ,

SK ← (T0,T1) ∈ (Z�×n
q )2,

PK ← (A,B0,B1,C) ∈ Z
n×(m−n)
q × Z

�×(m−n)
q × Z

�×(m−n)
q × Z

m×(m−n)
q .

T.Enc(PK, τ,m) → CT: The algorithm runs as follows:

f ← χm−n, e ← χn, e2 ← χm,T′
0,T

′
1 ← χ�×n,X′

0,X
′
1 ← χ�×(m−n)

c ← Af + e ∈ Z
n
q ,

c0 ← (B0 + GHτ )f + T′
0e − X′

0f ∈ Z
�
q,

c1 ← (B1 + GHτ )f + T′
1e − X′

1f ∈ Z
�
q,

c2 ← Cf + e2 + � q
2
 · m ∈ Z

m
q ,

CT ← (c, c0, c1, c2).

T.Dec(SK, τ,CT) → (⊥/m): The algorithm works as follows:
1. Compute y0 ← c0 − T0c and use the decoding algorithm D of G to

recover Hτ f from y0. If D aborts, then the decryption algorithm outputs
⊥. Otherwise, the decryption algorithm computes f = H−1

τ Hτ f .
2. If ‖f‖∞ > s or ‖c − Af‖∞ > s or ‖c0 − (B0 + GHτ )f‖∞ > m · s2

or ‖c1 − (B1 + GHτ )f‖∞ > m · s2, then output ⊥. Otherwise, compute
c2−Cf = � q

2
·m+e2 and recover the message m ∈ {0, 1}m and output it.

3.2.1 Correctness

We now prove the correctness of the scheme.

Theorem 1 (Correctness). In the above scheme with the choice of the public
settings, for (PK,SK) ← T.KeyGen(1k), T.Dec(SK, τ,CT) = m, where CT ←
T.Enc(PK, τ,m).
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Proof. Since y0 = c0−T0c = GHτ f+X0f+T′
0e−X′

0f−T0e, it needs to bound
the error-term X0f+T′

0e−X′
0f−T0e. For any t, e ← χn and x, f ← χm−n, it has

|tTe| ≤ ns2 and |xTf | ≤ (m − n)s2. Since CT is generated from the encryption
algorithm,

‖X0f + T′
0e − X′

0f − T0e‖∞ ≤ ‖X0f‖∞ + ‖T′
0e‖∞ + ‖X′

0f‖∞ + ‖T0e‖∞
≤ (m − n)s2 + ns2 + (m − n)s2 + ns2 = 6ns2

≤ 1
n

· (
q

2
− 1) ≤ 1

k
· �q

2

.

As the construction of G and the decoding algorithm D, the decryption algorithm
recovers Hτ f and further computes f with ‖f‖∞ ≤ s. Furthermore, it has

‖c − Af‖∞ = ‖e‖∞ ≤ s,

‖c0 − (B0 + GHτ )f‖∞ = ‖T′
0e − X′

0f‖∞ ≤ ‖T′
0e‖∞ + ‖X′

0f‖∞
≤ ns2 + (m − n)s2 ≤ ms2,

and ‖c1 − (B1 + GHτ )f‖∞ = ‖T′
1e − X′

1f‖∞ ≤ ‖T′
1e‖∞ + ‖X′

1f‖∞
≤ ns2 + (m − n)s2 ≤ ms2.

Since ‖e2‖∞ ≤ s < 1
n · � q

4
, the decryption algorithm computes m correctly. ��

3.2.2 Proof of Security

Theorem 2. If the normal LWE problem is hard, then the scheme TBE is
selective-tag weak CCA secure. In particular, for any PPT adversary A that
runs in time t, there is

Advst-cca,A
TBE (n) ≤ 2� · AdvNorm-LWE(n,2n,χ),t + 2� · AdvNorm-ELWE(n,2n,χ),t

+AdvNorm-LWE(2n,4n,χ),t

(4)

Proof. Before the adversary A receives the public key from the challenger
C, A commits to the challenge tag τ∗. The challenge ciphertext is CT∗ =
(c∗, c∗

0, c
∗
1, c

∗
2), and CT = (c, c0, c1, c2) denotes one of Q = poly(n) decryption

queries with tag τ . A(Gamei) = 1 denotes the event that A’s output b′ equals
to the C’s random choice b in Game i.

Game 0. This is the original selective-tag weak CCA game between the
adversary A and the challenger C. We have

Advst-cca,A
TBE (k) =

∣
∣
∣
∣Pr [A(Game0) = 1] − 1

2

∣
∣
∣
∣ . (5)

Game 1. In this game the challenger C replaces B1 = T1A + X1 with a
uniformly random B1 = U1 ← Z

�×(m−n)
q . The rest is identical to Game 0. The

adversary A can not distinguish Game 1 from Game 0 for the hardness of
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�-fold normal LWE problem. More specifically, assuming that the adversary A
distinguishes Game 1 from Game 0, we construct an algorithm A1 to solve �-
fold normal LWE problem. Given a tuple (A,B′

1), where B′
1 is either T1A+X1

or uniformly random U1, A1 sets B1 ← B′
1. The rest is identical in Game 0.

A1 outputs whatever A outputs.
Since that the decryption oracle works under the secret key T0 which the

challenger C chooses, it is identical as in Game 0. We now analyse the behavior
of A1.

Normal LWE: Since B′
1 = T1A+X1, B1 = T1A+X1 is distributed as in

Game 0. Hence A1 simulates the challenger in Game 0 and

Pr [A(Game0) = 1] = Pr [A1 (A,B′
1 = T1A + X1) = 1] .

Uniform: Since that B′
1 = U1 is uniform, A1 simulates the behavior of the

challenger C in Game 1 and

Pr [A(Game1) = 1] = Pr [A1 (A,B′
1 = U1) = 1] .

Therefore,

|Pr [A(Game1) = 1] − Pr [A(Game0) = 1]| ≤ AdvNorm-LWE�(n,m−n,χ),t. (6)

Game 2. In this game the challenger C replaces the uniformly random B1 =
U1 with B1 = T1A+X1 −GHτ∗ and sets c∗

1 = (B1 +GHτ∗)f∗ +T1e∗ −X1f∗.
The rest is identical to Game 1. Note that the decryption oracle works under the
secret key T0 and it answers identically as in Game 1 for the same ciphertext
query. A can not distinguish Game 2 from Game 1 for the hardness of normal
extended LWE.

Assuming that A distinguishes Game 2 from Game 1, we construct an algo-
rithm A1 to solve the �-fold normal extended LWE problem. Given a quadruple(
A,B′

1,

(
e′

f ′

)
, z1 = T1e′ + X1f ′

)
, where B′

1 is either T1A + X1 or uniformly

random U1, A1 sets B1 = B′
1 − GHτ∗ , f∗ = f ′, e∗ = −e′, and c∗

1 = B′
1f

′ − z1.
We now analyse the behavior of A1.

Normal ELWE: Since B′
1 = T1A + X1, B1 = T1A + X1 − GHτ∗ is

distributed as in Game 2. c∗, c∗
0 and c∗

2 are distributed as in Game 2
as well. And

c∗
1 = B′

1f
′ − z1 = (B1 + GHτ∗)f ′ − (T1e′ + X1f ′)

= (B1 + GHτ∗)f ′ + T1(−e′) − X1f ′

= (B1 + GHτ∗)f∗ + T1e∗ − X1f∗

has the same distribution as in Game 2. Hence A1 simulates the behavior
of the challenger in Game 2 and

Pr [A(Game2) = 1]

= Pr
[
A1

(
A,B′

1 = T1A + X1,

(
e′

f ′

)
, z1 = T1e′ + X1f ′

)
= 1

]
.
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Uniform: Since that B′
1 = U1 is uniform, B1 = B′

1 − GHτ∗ is uniform as
well. c∗, c∗

0 and c∗
2 are distributed as in Game 1. And

c∗
1 = B′

1f
′ − z1 = (B1 + GHτ∗)f ′ − (T1e′ + X1f ′)

= (B1 + GHτ∗)f ′ + T1(−e′) − X1f ′

= (B1 + GHτ∗)f∗ + T∗
1e

∗ − X∗
1f

∗

has the same distribution as in Game 1 with T∗
1 = T1, X∗

1 = X1, e∗ = −e′

and f∗ = f ′. Hence A1 simulates the behavior of the challenger in Game 1
and

Pr [A(Game1) = 1] = Pr
[
A1

(
A,B′

1 =U1,

(
e′

f ′

)
, z1 =T1e′ + X1f ′

)
= 1

]
,

Therefore,

|Pr [A(Game2) = 1] − Pr [A(Game1) = 1]| ≤ AdvNorm-ELWE�(n,m−n,χ),t. (7)

Game 3. In this game the challenger C sets c∗
1 ← T1c∗. The rest is identical

to Game 2. Note that

c∗
1 = T1c∗ = T1(Af∗ + e∗)

= (T1A + X1)f∗ + T1e∗ − X1f∗

= (B1 + GHτ∗)f∗ + T1e∗ − X1f∗

is identical to c∗
1 in Game 3. Therefore,

Pr [A(Game3) = 1] = Pr [A(Game2) = 1] . (8)

Game 4. In this game the challenger C answers the decryption queries
with the other “secret key” T1 (together with the challenge tag τ∗) rather
than T0 in Game 3. More precisely, C computes y1 = c1 − T1c, recovers
(Hτ − Hτ∗)f = Hτ−τ∗f from y1 and computes f = H−1

τ−τ∗Hτ−τ∗f . The rest of
decryption oracle is the same as the real decryption algorithm. We will show
that the modification to the decryption oracle can not change the answers to the
decryption queries, since that the two decryption oracles give the same answer
to the same decryption query.

Lemma 3. The decryption oracles in Game 3 and Game 4 have the same
output distributions.

Proof. Let CT = (c, c0, c1, c2) be a ciphertext of decryption queries with tag
τ . If the decryption oracle in Game 3 outputs m, then it recovers f ∈ Z

m−n
q

such that ‖e � c − Af‖∞ ≤ s, ‖c0 − (B0 + GHτ )f‖∞ ≤ m · s2 and ‖r1 �
c1−(B1+GHτ )f‖∞ ≤ m·s2. Then y1 = c1−T1c = GHτ−τ∗f+r1+X1f−T1e.
Since that the error-term

‖r1 + X1f − T1e‖∞ ≤ ‖r1‖∞ + ‖X1f‖∞ + ‖T1e‖∞ ≤ 2ms2,
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the decryption oracles in Game 3 and Game 4 recover the same f . The rest of
the decryption oracles are identical in Game 3 and Game 4. Therefore, they
have the same output distribution. ��

Therefore,

Pr [A(Game4) = 1] = Pr [A(Game3) = 1] . (9)

Game 5. In this game the challenger C replaces B0 = T0A + X0 with a
uniformly random B0 = U0 ← Z

�×(m−n)
q . The rest is identical to Game 4.

Note that the decryption oracle works under the other “secret key” T1 and
its answer to the decryption query is identical as in Game 4. With the same
analysis in Game 1, it has

|Pr [A(Game5) = 1] − Pr [A(Game4) = 1]| ≤ AdvNorm-LWE�(n,m−n,χ),t. (10)

Game 6. In this game the challenger C replaces the uniformly random B0 =
U0 with B0 = T0A+X0 −GHτ∗ and sets c∗

0 = (B0 +GHτ∗)f∗ +T0e∗ −X0f∗.
The rest is identical to Game 5. With the same analysis in Game 2, it has

|Pr [A(Game6) = 1] − Pr [A(Game5) = 1]| ≤ AdvNorm-ELWE�(n,m−n,χ),t.
(11)

Game 7. In this game the challenger C sets c∗
0 ← T0c∗. The rest is identical

to Game 6. With the same analysis in Game 3, it has

Pr [A(Game7) = 1] = Pr [A(Game6) = 1] . (12)

Game 8. In this game the challenger C replaces c∗ = Af∗+e∗ with uniformly
random u ← Z

m
q and c∗

2 = Cf∗ + e∗
2 + � q

2
 · mb with uniformly random u2 ←
Z

m
q respectively. The hardness of the normal LWE problem ensures that the

adversary A can not distinguish Game 8 from Game 7.
Assuming that A distinguishes Game 8 from Game 7, we construct an algo-

rithm A1 to solve normal LWE problem. A1 is given a tuple
((

A′

C′

)
,

(
b′

b′
2

))
,

where A′ ← Z
n×(m−n)
q , C′ ← Z

m×(m−n)
q ,

(
b′,b′

2

) ∈ Z
n
q × Z

m
q is either

b′ = A′f ′ + e′, b′
2 = C′f ′ + e′

2 for some f ′ ← χm−n, e′ ← χn, e′
2 ← χm or(

b′,b′
2

)
= (u′,u′

2) for the uniform u′ and u′
2. It sets A ← A′, C ← C′ and

generates B0 and B1 as in Game 7. It also sets

c∗ ← b′, c∗
2 ← b′

2 + �q

2

 · mb.

c∗
0 and c∗

1 are generated as in Game 7 and the decryption oracle works as in
Game 7 as well. We now analyze the behavior of A1.

Normal LWE: Since b′ = A′f ′ + e′ and b′
2 = C′f ′ + e′

2, c
∗ = A′f ′ + e′ and

c∗
2 = C′f ′ + e′

2 + � q
2
 ·mb are distributed as in Game 7. Hence A1 simulates

the behavior of C in Game 7 and

Pr [A(Game7) = 1] = Pr
[
A1

((
A′

C′

)
,

(
b′ = A′f ′ + e′

b′
2 = C′f ′ + e′

2

))
= 1

]
.
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Uniform: Since b′ = u′ and b′
2 = u′

2, A1 simulates the behavior of C in
Game 8 and

Pr [A(Game8) = 1] = Pr
[
A1

((
A′

C′

)
,

(
b′ = u′

b′
2 = u′

2

))
= 1

]
.

Therefore,

|Pr [A(Game8) = 1] − Pr [A(Game7) = 1]| ≤ AdvNorm-LWE(m−n,m+n,χ),t.
(13)

Finally, in Game 8, the challenge ciphertext is independent of the message
that the challenger C chooses. Hence,

∣
∣
∣
∣Pr [A(Game8) = 1] − 1

2

∣
∣
∣
∣ = 0.

Let m = 3n and sum up all the probabilities, we complete the proof. ��

4 To CCA Secure PKE

From Kiltz’s generic conversion [Kil06], TBE scheme with selective-tag weak
CCA security can be transformed into a PKE scheme with CCA security. Specif-
ically, assuming that TBE = (T.KeyGen,T.Enc,T.Dec) is defined above
and SIG = (SIG.Gen,SIG.Sign,SIG.Verify) is a strong one-time signature
scheme, the CCA secure PKE scheme is described as follows:

KeyGen(1n) → (PKE.PK,PKE.SK): The algorithm runs as follows:

(PK,SK) ← T.KeyGen(1n),
PKE.PK ← PK, PKE.SK ← SK.

Enc(PKE.PK,m) → PKE.CT: The algorithm runs as follows:

(VK,SGK) ← SIG.Gen,

CT ← T.Enc(PK, τ = VK,m),
σ ← SIG.Sign(SGK,CT),

PKE.CT ← (CT, σ,VK).

Dec(PKE.CT) → (⊥/m̄): The algorithm works as follows:

Parse PKE.CT as (CT, σ,VK). Check whether SIG.Verify(VK,CT, σ) = 1. If
not, output ⊥. Otherwise compute and output m = T.Dec(SK, τ = VK,CT).

5 Conclusion

In this work we use the instantiation of the LWE problem with uniform errors
suggested by Micciancio and Peikert to construct a tag-based encryption scheme
with selective-tag weak CCA security. It is transformed to CCA secure PKE from
the generic conversion based on one-time signature. Our scheme is the first one
with CCA security based on the LWE with uniform errors.
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Abstract. Discrete-logarithm authentication protocols are known to
present two interesting features: The first is that the prover’s commit-
ment, x = gr, claims most of the prover’s computational effort. The
second is that x does not depend on the challenge and can hence be
computed in advance. Provers exploit this feature by pre-loading (or pre-
computing) ready to use commitment pairs ri, xi. The ri can be derived
from a common seed but storing each xi still requires 160 to 256 bits
when implementing DSA or Schnorr.

This paper proposes a new concept called slow motion zero-knowledge
(SM-ZK). SM-ZK allows the prover to slash commitment size (by a factor
of 4 to 6) by combining classical zero-knowledge and a timing channel.
We pay the conceptual price of requiring the ability to measure time but,
in exchange, obtain communication-efficient protocols.

1 Introduction

Authentication is a cornerstone of information security, and much effort has been
put in trying to design efficient authentication primitives. However, even the
most succinct authentication protocols require collision-resistant commitments.
As proved by Girault and Stern [13], breaking beyond the collision-resistance
size barrier is impossible. This paper shows that if we add the assumption that
the verifier can measure the prover’s response time, then commitment collision-
resistance becomes unnecessary. We call this new construction slow-motion zero
knowledge (SM-ZK).

As we will show, the parameter determining commitment size in SM-ZK
protocols is the attacker’s online computational power rather than the attacker’s
overall computational power. As a result, SM-ZK allows a significant reduction
(typically by a factor of 4 to 6) of the prover’s commitment size.

The prover’s on-line computational effort remains unchanged (enabling
instant replies in schemes such as GPS [12]). The prover’s offline work is only
slightly increased. The main price is paid by the verifier who has to solve a
time-puzzle per session. The time taken to solve this time-puzzle determines the
commitment’s shortness.

The major contribution of this work is thus a technique forcing a cheating
prover to either attack the underlying zero-knowledge protocol or exhaust the
c© Springer International Publishing Switzerland 2016
D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 381–396, 2016.
DOI: 10.1007/978-3-319-38898-4 22
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space of possible replies in the presence of a time-lock function that slows down
his operations. When this time-lock function is properly tuned, a simple time-out
on the verifier’s side rules out cheating provers. It is interesting to contrast this
approach to the notion of knowledge tightness introduced by Goldreich, Micali
and Widgerson [14], and generalizations such as precise/local ZK introduced by
Micali and Pass [18], which uses similar time-constraint arguments but to prove
reduced knowledge leakage bounds.

2 Building Blocks

SM-ZK combines two existing building blocks that we now recall: three-pass
zero-knowledge protocols and time-lock functions.

2.1 Three-Pass Zero-Knowledge Protocols

A Σ-protocol [6,15,16] is a generic 3-step interactive protocol, whereby a prover
P communicates with a verifier V. The goal of this interaction is for P to convince
V that P knows some value – without revealing anything beyond this assertion.
The absence of information leakage is formalized by the existence of a simulator
S, whose output is indistinguishable from the recording (trace) of the interaction
between P and V.

The three phases of a Σ protocol can be summarized by the following
exchanges:

x−→
P c←−V

y−→

Namely,

– The prover sends a commitment x to the verifier;
– The verifier replies with a challenge c;
– The prover gives a response y.

Upon completion, V may accept or reject P, depending on whether P’s answer is
satisfactory. Such a description encompasses well-known identification protocols
such as Feige-Fiat-Shamir [10] and Girault-Poupard-Stern [11].

Formally, let R be some (polynomial-time) recognizable relation, then the
set L = {v s.t. ∃w, (v, w) ∈ R} defines a language. Proving that v ∈ L therefore
amounts to proving knowledge of a witness w such that (v, w) ∈ R. A Σ-protocol
satisfies the following three properties:

– Completeness: given an input v and a witness w such that (v, w) ∈ R, P is
always able to convince V.
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– Special honest-verifier zero-knowledge1: there exists a probabilistic
polynomial-time simulator S which, given v and a c, outputs triples (x, c, y)
that have the same distribution as in a valid conversation between P and V.

– Special soundness: given two accepting conversations for the same input v,
with different challenges but an identical commitment x, there exists a prob-
abilistic polynomial-time extractor procedure E that computes a witness w
such that (v, w) ∈ R.

Many generalizations of zero-knowledge protocols have been discussed in the
literature. One critical question for instance is to compose such protocols in
parallel [14,18], or to use weaker indistinguishably notions (e.g., computational
indistinguishability).

2.2 Commitment Pre-processing

Because the commitment x does not depend on the challenge c, authors quickly
noted that x can be prepared in advance. This is of little use in protocols where
the creation of x is easy (e.g., Fiat-Shamir [10]). Discrete-logarithm commitment
pre-processing is a well-known optimization technique (e.g., [19,22]) that exploits
two properties of DLP:

1. In DLP-based protocols, a commitment is generated by computing the expo-
nentiation x = gr in a well-chosen group. This operation claims most of the
prover’s efforts.

2. The commitment x being unrelated to the challenge c, can hence be com-
puted in advance. A “pre-computed commitment” is hence defined as {r, x}
computed in advance by P2. Because several pre-computed commitments
usually need to be saved by P for later use, it is possible to derive all the ri

components by hashing a common seed.

Such pre-processing is interesting as it enables very fast interaction between
prover and verifier. While the technique described in this work does not require
the use of pre-processing, it is entirely compatible with such optimizations.

2.3 Time-Lock Puzzles

Time-lock puzzles [17,21] are problems designed to guarantee that they will take
(approximately) τ units of time to solve. Like proof-of-work protocols [8], time-
locks have found applications in settings where delaying requests is desirable,
such as fighting spam or denial-of-service attacks, as well as in electronic cash
[1,7,9].

Time-lock puzzles may be based on computationally demanding problems,
but not all such problems make good time-locks. For instance, inverting a weak

1 Note that special honest-verifier zero-knowledge implies honest-verifier zero-
knowledge.

2 Or for P by a trusted authority.
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one-way function would in general not provide a good time-lock candidate [21].
The intuition is that the time it takes to solve a time-lock should not be sig-
nificantly reduced by using more computers (i.e., parallel brute-force) or more
expensive machines.

A time-lock puzzle is informally described as a problem such that there is a
super-polynomial gap between the work required to generate the puzzle, and the
parallel time required to solve it (for a polynomial number of parallel processors).
The following definition formalizes this idea [5].

Definition 1 (Time-Lock Puzzle). A time-lock puzzle is the data two PPT
algorithms TG(1k, t) (problem generator) and TV (1k, a, v) (solution verifier) sat-
isfying the following properties:

– For every PPT algorithm B(1k, q, h), for all e ∈ N, there exists m ∈ N such
that

sup
t≥km,|h|≤ke

Pr
[
(q, a) ← TG(1k, t) s.t. TV (1k, a, B(1k, q, h)) = 1

]

is negl(k). Intuitively, TG generates puzzles of hardness t, and B cannot eff-
icently solve any puzzle of hardness t ≥ km for some constant m depending
on B.

– There is some m ∈ N such that, for every d ∈ N , there is a PPT algorithm
C(1k, t) such that

min
t≤kd

Pr
[
(q, a) ← TG(1k, t), v ← C(1k, q) s.t. TV (1k, a, v) = 1 and |v| ≤ km

]

is overwhelming in k. Intuitively, this second requirement ensures that for any
polynomial hardness value, there exists an algorithm that can solve any puzzle
of that hardness.

Rivest, Shamir and Wagner [21], and independently Boneh and Naor [4] proposed
a time-lock puzzle construction relying on the assumption that factorization is
hard. This is the construction we retain for this work, and to the best of our
knowledge the only known one to achieve interesting security levels. The orig-
inal Rivest-Shamir-Wagner (RSW) time-lock [21] is based on the “intrinsically
sequential” problem of computing:

22
τ

mod n

for specified values of τ and an RSA modulus n. The parameter τ controls the
puzzle’s difficulty. The puzzle can be solved by performing τ successive squares
modulo n.

Using the formalism above, the RSW puzzle can be described as follows:

TG(1k, t) =
(
(p1p2,min(t, 2k)), (p1, p2,min(t, 2k))

)

TV (1k, (p1, p2, t′), v) =

{
1 if (v = v1, v2) and v1 = 22

t′
mod n and v2 = n

0 otherwise
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where p1 and p2 are (k/2)-bit prime numbers. Both solving the puzzle and ver-
ifying the solution can be efficiently done if p1 and p2 are known.

Good time-lock problems seem to be hard to find, and in particular there exist
impossibility results against unbounded adversaries [17]. Nevertheless, the RSW
construction holds under a computational assumption, namely that factorisation
of RSA moduli is hard.

3 Slow Motion Zero-Knowledge Protocols

3.1 Definition

We can now introduce the following notion:

Definition 2 (SM-ZK). A Slow Motion Zero-Knowledge (SM-ZK) protocol
(σ, T , τ,Δmax), where σ defines a Σ protocol, T is a time-lock puzzle, τ ∈ N,
and Δmax ∈ R, is defined by the three following steps of σ:

1. Commitment: P sends a commitment x to V
2. Timed challenge: V sends a challenge c to P, and starts a timer.
3. Response: P provides a response y to V, which stops the timer.

V accepts iif

– y is accepted as a satisfactory response by σ; and
– x is a solution to the time-lock puzzle T with input (y, c) and hardness τ ; and
– time elapsed between challenge and response, as measured by the timer, is

smaller than Δmax.

3.2 Commitment Shortening

Commitments in a Σ-protocol are under the control of P, which may be mali-
cious. If commitments are not collision-resistant, the protocol’s security is weak-
ened. Hence commitments need to be long, and in classical Σ protocols breaking
below the collision-resistance size barrier is impossible as proved by [13].

However, as we now show, commitment collision-resistance becomes unnec-
essary in the case of SM-ZK protocols.

4 An Example SM-ZK

While SM-ZK can be instantiated with any three-pass ZK protocol, we will
illustrate the construction using the Girault-Poupard-Stern (GPS) protocol [11,
12,20], and a modification of the time-lock construction due to Rivest, Shamir
and Wagner [21].
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Fig. 1. Girault-Poupard-Stern identification protocol.

4.1 Girault-Poupard-Stern Protocol

GPS key generation consists in generating a composite modulus n, choosing a
public generator g ∈ [0, n − 1] and integers A,B, S such that A � BS. Choice
of parameters depends on the application and is discussed in [12]. Implicitly,
parameters A,B, S are functions of the security parameter k.

The secret key is an integer s ∈ [0, S − 1], and the corresponding public key
is v = g−s mod n. Authentication is performed as in Fig. 1.

P can also precompute as many values xi ← gri as suitable for the applica-
tion, storing a copy of ri for later usage. The detailed procedure by which this
is done is recalled in AppendixB.

4.2 GPS-RSW SM-ZK

We can now combine the previous building-blocks to construct a pre-processing
scheme that requires little commitment storage.

The starting point is a slightly modified version of the RSW time-lock func-
tion τ 	→ 22

τ

. Let μ be some deterministic function (to be defined later) and n an
RSA modulus different from the n used for the GPS, we define for integers τ, �:

fτ,�(x) =
(
μ(x)2

τ

mod n
)

mod 2�.

Here, τ controls the puzzle hardness and � is a parameter controlling output size.
The function fτ,� only differs from the RSW time-lock in two respects: We

use μ(x) instead of 2; and the result is reduced modulo 2�.
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The motivation behind using a function μ stems from the following observa-
tion: An adversary knowing x2τ

1 and x2τ

2 could multiply them to get (x1x2)2
τ

.
To thwart such attacks (and similar attacks based on the malleability of RSA)
we suggest to use for μ a deterministic RSA signature padding function (e.g.,
the Full Domain Hash [2]).

The reduction modulo 2� is of practical interest, it is meant to keep the
size of answers manageable. Of course, an adversary could brute-force all values
between 0 and 2� − 1 instead of trying to solve the time-lock. To avoid this
situation, � and τ should be chosen so that solving the time-lock is the most
viable option of the two.

Under the same assumptions as RSW (hardness of factorization), and if �
and τ are properly tuned, fτ,� generates a time-lock problem.

Then, we adapt a construction of M’Räıhi and Naccache [19] to GPS [11].
This is done by defining a secret J , a public hash function H, and computing
the quantities:

x′
i = gH(J,i,s) mod n

This computation can be delegated to a trusted authority. This is interesting in
our case because the authority can compress these x′

i by computing xi = fτ,�(x′
i).

Note that because the authority knows the factors of n, computing the xi is fast.
P is loaded with k pre-computed commitments x1, . . . , xk as shown in Fig. 2. The
quantity k of pre-computed commitments depends on the precise application.

Fig. 2. Slow motion commitment pre-processing for GPS.

When V wishes to authenticate P the parties execute the protocol shown in
Fig. 3.

With a proper choice of τ, � we can have a reasonable verification time (assum-
ing that V is more powerful than P), extremely short commitments (e.g., 40-bit
ones) and very little on-line computations required from P.
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Fig. 3. Slow Motion GPS. Range tests on c and y omitted for the sake of clarity.

4.3 Choice of Parameters

What drives the choice of parameters is the ratio between:

– The time t it takes to a legitimate prover to compute y and transmits it. In
GPS this is simply one multiplication of operands of sizes log2 B and log2 S
(additions neglected), this takes time λ log(B) log(S) for some constant λ (not
assuming optimizations such as [3] based on the fact that operand s is con-
stant).

– The time T it takes for the fastest adversary to evaluate once the time-lock
function fτ,�. T does not really depend on �, and is linear in τ . We hence let
T = ντ . Note that there is no need to take into account the size of n, all we
require from n is to be hard to factor. That way, the slowing effect will solely
depend on τ .

In a brute-force attack, there are 2� possibilities to exhaust. The most pow-
erful adversary may run κ ≤ 2� parallel evaluations of the time-lock function,
and succeed to solve the puzzle in t time units with probability

ε =
κt

2�T
=

κ log(B) log(S)λ
ν2�τ

A typical instance resulting in 40-bit commitments is {κ = 224, T = 1, t =
2−4, ε = 2−20} ⇒ � = 40. Here we assume that the attacker has 16.7 million
(224) computers capable of solving one time-lock challenge per second (T = 1)
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posing as a prover responding in one sixteenth of a second (t = 2−4). Assuming
the least secure DSA parameters (160-bit q) this divides commitment size by 4.
For 256-bit DSA the gain ratio becomes 6.4.

The time-out constant Δmax in Fig. 3 is tuned to be as small as possible, but
not so short that it prevents legitimate provers from authenticating. Therefore
the only constraint is that Δmax is greater or equal to the time t it takes to the
slowest legitimate prover to respond. Henceforth we assume Δmax = t.

5 Security Proof

The security of this protocol is related to that of the standard GPS protocol
analysed in [12,20]. We recall here the main results and hypotheses.

5.1 Preliminaries

The following scenario is considered. A randomized polynomial-time algorithm
Setup generates the public parameters (G, g, S) on input the security parameter
k. Then a second probabilistic algorithm GenKey generates pairs of public and
private keys, sends the secret key to P while the related public key is made
available to anybody, including of course P and V. Finally, the identification
procedure is a protocol between P and V, at the end of which V accepts or not.

An adversary who doesn’t corrupt public parameters and key generation
has only two ways to obtain information: either passively, by eavesdropping
on a regular communication, or actively, by impersonating (in a possibly non
protocol-compliant way) P and V.

The standard GPS protocol is proven complete, sound and zero-knowledge
by reduction to the discrete logarithm with short exponent problem [12]:

Definition 3 (Discrete Logarithm with Short Exponent Problem).
Given a group G, g ∈ G, and integer S and a group element gx such that
x ∈ [0, S − 1], find x.

5.2 Compressed Commitments for Time-Locked GPS

We now consider the impact of shortening the commitments to � bits on secu-
rity, while taking into account the time constraint under which P operates. The
shortening of commitments will indeed weaken the protocol [13] but this is com-
pensated by the time constraint, as explained below.

Lemma 1 (Completeness). Execution of the protocol of Fig. 3 between a
prover P who knows the secret key corresponding to his public key, and replies
in bounded time Δmax, and a verifier V is always successful.

Proof. This is a direct consequence of the completeness of the standard GPS
protocol [12, Theorem 1]. By assumption, P computes y and sends it within the
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time allotted for the operation. This computation is easy knowing the secret s
and we have

gyvc = gri+csvc = x′
ig

csvc = x′
iv

c−c = x′
i

Consequently, fτ,�(gyvc) = fτ,�(x′
i) = xi. Finally,

y = r + cs ≤ (A − 1) + (B − 1)(S − 1) < ymax.

Therefore all conditions are met and the identification succeeds. �

Lemma 2 (Zero-Knowledge). The protocol of Fig. 3 is statistically zero-
knowledge if it is run a polynomial number of times N , B is polynomial, and
NSB/A is negligible.

Proof. The proof follows [12] and can be found in AppendixA.

The last important property to prove is that if V accepts, then with over-
whelming probability P must know the discrete logarithm of v in base g.

Lemma 3 (Time-Constrained Soundness). Under the assumption that the
discrete logarithm with short exponent problem is hard, and the time-lock hard-
ness assumption, this protocol achieves time-constrained soundness.

Proof. After a commitment x has been sent, if A can correctly answer with
probability > 1/B then he must be able to answer to two different challenges,
c and c′, with y and y′ such that they are both accepted, i.e., fτ,�(gyvc) = x =
fτ,�(gy′

vc′
). When that happens, we have

μ (gyvc)2
τ

= μ
(
gy′

vc′)2τ

mod n mod 2�

Here is the algorithm that extracts these values from the adversary A. We write
Success(ω, c1, . . . , cn) the result of the identification of A using the challenges
c1, . . . , cn, for some random tape ω.

Step 1. Pick a random tape ω and a tuple c of N integers c1, . . . , cN in [0, B−1].
If Success(ω, c) = false, then abort.

Step 2. Probe random N -tuples c′ that are different from each other and from
c, until Success(ω, c′) = true. If after BN − 1 probes a successful c′ has
not been found, abort.

Step 3. Let j be the first index such that cj �= c′
j , write yj and y′

j the corre-
sponding answers of A. Output cj , c

′
j , yj , y

′
j .

This algorithm succeeds with probability ≥ ε − 1/BN = ε′, and takes at most
4Δmax units of time [12]. This means that there is an algorithm finding collisions
in fτ,� with probability ≥ ε′ and time ≤ 4Δmax.

Assuming the hardness of the discrete logarithm with short exponents prob-
lem, the adversary responds in time by solving a hard problem, where as pointed
out earlier the probability of success is given by

ζ =
κ log(B) log(S)λ

ν2�τ
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where κ is the number of concurrent evaluations of fτ,� performed by A. There is
a value of τ such that ζ � ε. For this choice of τ , A is able to compute fτ,� much
faster than brute-force, which contradicts the time-lock hardness assumption. �

6 Conclusion and Further Research

This paper introduced a new class of protocols, called Slow Motion Zero Knowl-
edge (SM-ZK) showing that if we pay the conceptual price of allowing time
measurements during a three-pass ZK protocol then commitments do not need
to be collision-resistant.

Because of its interactive nature, SM-ZK does not yield signatures but seems
to open new research directions. For instance, SM-ZK permits the following
interesting construction, that we call a fading signature: Alice wishes to send a
signed message m to Bob without allowing Bob to keep a long-term her involve-
ment. By deriving c ← H(x,m, ρ) where ρ is a random challenge chosen by Bob,
Bob can convince himself3 that m comes from Alice. This conviction is however
not transferable if Alice prudently uses a short commitment as described in this
paper.

A Proof of Lemma2

Proof. The zero-knowledge property of the standard GPS protocol is proven
by constructing a polynomial-time simulation of the communication between a
prover and a verifier [12, Theorem 2]. We adapt this proof to the context of the
proposed protocol. The function δ is defined by δ(true) = 1 and δ(false) = 0, and
∧ denotes the logical operator “and”. For clarity, the function fτ,� is henceforth
written f .

The scenario is that of a prover P and a dishonest verifier A who can use an
adaptive strategy to bias the choice of the challenges to try to obtain information
about s. In this case the challenges are no longer chosen at random, and this
must be taken into account in the security proof. Assume the protocol is run N
times and focus on the i-th round.

A has already obtained a certain amount of information η from past interac-
tions with P. P sends a pre-computed commitment xi. Then A chooses a com-
mitment using all information available to her, and a random tape ω: ci (xi, η, ω).

The following is an algorithm (using its own random tape ωM ) that simulates
this round:

Step 1. Choose ci
$←− [0, B − 1] and yi

$←− [(B − 1)(S − 1), A − 1] using ωM .
Step 2. Compute xi = fτ,�

(
gyivci

)
.

3 If y was received before Δmax.
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Step 3. If ci (xi, η, ω) = ci then return to step 1 and try again with another pair
(ci, yi), else return (xi, ci, yi).4

The rest of the proof shows that, provided Φ = (B−1)(S−1) is much smaller
than A, this simulation algorithm outputs triples that are indistinguishable from
real ones, for any fixed random tape ω.

Formally, we want to prove that

Σ1 =
∑

α,β,γ

∣
∣
∣
∣Pr
ωP

[(x, c, y) = (α, β, γ)] − Pr
ωM

[(x, c, y) = (α, β, γ)]
∣
∣
∣
∣

is negligible, i.e., that the two distributions cannot be distinguished by accessing
a polynomial number of triples (even using an infinite computational power). Let
(α, β, γ) be a fixed triple, and assuming a honest prover, we have the following
probability:

p = Pr
ωP

[(x, c, y) = (α, β, γ)]

= Pr
0≤r<A

[α = f(gr) ∧ β = c(α, η, ω) ∧ γ = r + βs]

=
A−1∑

r=0

1
A

δ
(
α = f(gγvβ) ∧ β = c(α, η, ω) ∧ r = γ − βs

)

=
1
A

δ
(
α = f(gγvβ) ∧ β = c(α, η, ω) ∧ γ − βs ∈ [0, A − 1]

)

=
1
A

δ
(
α = f(gγvβ)

)
δ (β = c(α, η, ω)) δ (γ − βs ∈ [0, A − 1]) .

where f = fτ,�.
We now consider the probability p = PrωM

[(x, c, y) = (α, β, γ)] to obtain
the triple (α, β, γ) during the simulation described above. This is a conditional
probability given by

p = Pr
y∈[Φ,A−1]
c∈[0,B−1]

[
α = f

(
gyvc

) ∧ β = c ∧ γ = y
∣
∣ c = c

(
f

(
gyvc

)
, η, ω

)]

Using the definition of conditional probabilities, this equals

p =

Pr
y∈[Φ,A−1]
c∈[0,B−1]

[
α = f

(
gyvc

) ∧ β = c ∧ γ = y
]

Pr
y∈[Φ,A−1]
c∈[0,B−1]

[c = c (f (gyvc) , η, ω)]

Let us introduce

Q =
∑

y∈[Φ,A−1]
c∈[0,B−1]

δ
(
c = c

(
f

(
gyvc

)
, η, ω

))

4 The probability of success at step 3 is essentially 1/B, and the expected number of
executions of the loop is B, so that the simulation of N rounds runs in O(NB): the
machine runs in expected polynomial time.
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then the denominator in p is simply Q/B(A − Φ). Therefore:

p =
∑

c∈[0,B−1]

1
B

Pr
y∈[Φ,A−1]

[
α = f

(
gyvc

) ∧ γ = y ∧ β = c = c(α, η, ω)
] B(A − Φ)

Q

= Pr
y∈[Φ,A−1]

[
α = f

(
gγvβ

) ∧ γ = y ∧ β = c(α, η, ω)
] A − Φ

Q

=
∑

y∈[Φ,A−1]

1
A − Φ

δ
(
α = f

(
gγvβ

) ∧ γ = y ∧ β = c(α, η, ω)
) A − Φ

Q

=
1
Q

δ
(
α = f

(
gγvβ

))
δ (β = c(α, η, ω)) δ (γ ∈ [Φ,A − 1])

We will now use the following combinatorial lemma:

Lemma 4. If h : G → [0, B − 1] and v ∈ {g−s, s ∈ [0, S − 1]} then the total
number M of solutions (c, y) ∈ [0, B −1]× [Φ,A−1] to the equation c = h(gyvc)
satisfies A − 2Φ ≤ M ≤ A.

Proof. (Proof of Lemma 4) [12, Appendix A]. Specialising Lemma4 to the func-
tion that computes c(f(gyvc), η, ω) from (c, y) gives A − 2Φ ≤ Q ≤ A. This
enables us to bound Σ1:

Σ1 =
∑

α,β,γ

∣
∣
∣
∣Pr
ωP

[(x, c, y) = (α, β, γ)] − Pr
ωM

[(x, c, y) = (α, β, γ)]
∣
∣
∣
∣

=
∑

α,β,γ∈[Φ,A−1]

∣
∣
∣
∣Pr
ωP

[(x, c, y) = (α, β, γ)] − Pr
ωM

[(x, c, y) = (α, β, γ)]
∣
∣
∣
∣

+
∑

α,β,γ /∈[Φ,A−1]

Pr
ωP

[(x, c, y) = (α, β, γ)]

=
∑

γ∈[Φ,A−1]
β∈[0,B−1]

α=f(gγvβ)

∣
∣
∣
∣
1
A

δ (β = c(α, η, ω)) − 1
Q

δ(β = c(α, η, ω))
∣
∣
∣
∣

+

⎛

⎝1 −
∑

α,β,γ∈[Φ,A−1]

Pr
ωP

[(x, c, y) = (α, β, γ)]

⎞

⎠

=
∣
∣
∣
∣
1
A

− 1
Q

∣
∣
∣
∣ Q + 1 −

∑

γ∈[Φ,A−1]
β∈[0,B−1]

α=f(gγvβ)

1
A

δ (β = c(α, η, ω))

=
|Q − A|

A
+ 1 − Q

A

Therefore Σ1 ≤ 2|Q − A|/A ≤ 4Φ/A < 4SB/A, which proves that the
real and simulated distributions are statistically indistinguishable if SB/A
is negligible. �
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B GPS Commitment Pre-computation

Figure 4 described one possible way in which pre-computed commitments are
generated and used for GPS. In this figure, we delegate the computation to
a trusted authority. That role can be played by P alone, but we leverage the
authority to alleviate P’s computational burden.

To efficiently generate a sequence of commitments, the authority uses a
shared secret seed J and a cryptographic hash function H. Here J is chosen
by P but it could be chosen by the authority instead.

Fig. 4. Commitment pre-processing as applied to GPS. The first stage describes the
preliminary interaction with a trusted authority, where pre-computed commitments
are generated and stored. The second stage describes the interaction with a verifier.
For the sake of clarity the range-tests on c and y were omitted. The trusted authority
can be easily replaced by P himself.
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Abstract. In this paper, we study multi-client outsourced computation
where n computationally weak clients outsource their computation of a
function f over their joint inputs (x1, · · · , xn) to remote servers. Some
prior works consider outsourcing computation to an untrusted server.
However these schemes either are inefficient, make the clients’ status
unequal or require client interactions. Based on prior works, we con-
struct an efficient multi-client outsourced computation scheme using two
servers. Our scheme avoids interactions among all the parties and it is
secure against one malicious server. Furthermore it is public verifiable
that any client can verify the correctness of the computation result using
a public verify key.

Keywords: Multi-client · Outsourced computation · Cloud computing ·
Privacy · Efficient · Public verification

1 Introduction

Cloud computing has been rapidly developed recent years. The cloud not only
offer data storage service but also help companies or users to accomplish their
computation tasks. This trend contributes to the study of outsourced computa-
tion where a computationally weak client outsources its computation of a func-
tion f to a powerful server [6]. Outsourced computation has several real applica-
tions. For example, in cloud computing, businesses outsource their computation
to a service and pay the computing time rather than purchasing and maintaining
the computing devices. It helps companies save costs and can mainly focus on
their key services. Outsourced computation is also useful in weak mobile devices
such as smart phones, net books that would like to outsource a computation(e.g.,
a photo manipulation) to a remote server.

Some earlier works about outsourced computation consider single-client sce-
nario [2,4–6,12] where the functionality only works on one client’s input. While
in some cases, several resource-constrained clients may want to jointly do some

c© Springer International Publishing Switzerland 2016
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computation. It would be desirable to study multi-client outsourced computa-
tion where n clients wish to outsource the computation of a function f over a
series of joint inputs (x1, · · · , xn) to a remote server [3].

In outsourced computation, we can not ensure that the remote server is
honest. Thus two security problems should be considered: one is keeping privacy
of the outsourced data from the server, the other one is verifying the correctness
of the computation result returned from the untrusted server. In addition to these
two problems, in multi-client outsourced computation we should consider how to
keep privacy of the clients’ inputs from each other. Furthermore another problem
is whether the verification of the computation can be public: any other client can
verify the correctness of the computation result returned from the server using a
public verify key [5]. This is important, for example, a lab assistant outsourced a
computation on input x, he may need to produce a verification key that will let
the patients obtain the answer from the cloud and check its correctness. In this
paper, we mainly study the problems of multi-client outsourced computation
and construct an efficient non-interactive multi-client outsourced computation.

1.1 Related Work

Multi-client Outsourced Computation. Choi et al. [3] first introduced the
notion of multi-client verifiable computation(MVC) and constructed a MVC
scheme secure against a malicious server. It is efficient in the sense of amor-
tization. Later Gordon et al. [9] designed a MVC scheme with stronger security
guarantees (satisfies a simulation-based notion of security). In their scheme the
clients’ cost depends on the depth of the function f being computed. Goldwasser
et al. [7] showed that multi-input functional encryption can be used to design
publicly verifiable multi-client outsourcing scheme(any other client can verify the
correctness of computation result using a public verify key). These three works
talked above all can keep privacy of the clients inputs and are secure against a
malicious server. However, in both [3,9]’s schemes, only one client can do the
verification and get the computation result in every execution, which makes the
clients’ status unequal. Although [7]’s construction is public verifiable, its privacy
property relies on a completely honest client who generates the master secret
key(MSK). The cost of the clients in these above three works is closely related
to the function f being computed. López-Alt et al. [11] proposed a multi-key
homomorphic encryption scheme which can be used in multi-client outsourced
computation, but the clients need to interactively compute the decryption key
in order to get the computation result.

In order to improve the clients’ efficiency and avoid interactions among the
clients, Peter et al. [13] designed an efficient multi-client outsourcing scheme
using BCP encryption scheme and two noncolluding servers. What the clients
need to do is just the encryption and decryption process, thus their cost is inde-
pendent of the function f being computed. However their scheme is secure in
the semi-honest model and complex interactions are needed between these two
servers. Utilizing Proxy Re-Encryption scheme Wang et al. [16] constructed an
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efficient multi-client outsourced computation scheme that requires minimal inter-
actions between these two servers. Similar to [13,16]’s works, [15] constructed
a multi-client outsourced computation scheme using lattice-based encryption
scheme and two noncolluding servers. These three works all avoid interactions
among the clients and the clients’ computation cost is independent of the func-
tion f being computed, but they are only secure in the semi-honest model and
need server interactions. Jakobsen et al. [14] designed a framework for outsourc-
ing multi-client computation to multiple servers. It is secure when at least one
of the server is honest. Their solution is generic and can be instantiated with
reactive Multiparty Computation(MPC) protocol. However,their work is only
secret verifiable and the servers in [14] also need to do interactions in order to
accomplish the computation.

In this work, we aim to design an efficient multi-client outsourced computa-
tion scheme that avoids interactions among the clients and the servers. And we
want to make the scheme public verifiable such that all the clients can verify
and obtain the computation result during one execution. Furthermore we try to
make the scheme secure against a malicious server. Our basic idea comes from
Choi et al.’s work [3], so we describe it in details next.

Details About Choi et al.’s Work. In their scheme, to securely compute a
function f , one client(suppose client 1) generates a garbled circuit Γ of f and
sends Γ to the server. Only after receiving the labels corresponding to the clients’
inputs (x1, · · · , xn), can the server compute the garbled circuit Γ . While only
client 1 who generates the garbled circuit has the input-wire labels, but it does
not know the inputs of other clients and it can not send all the input-wire labels
to anyone else. Thus how can the server obtain the labels corresponding to other
clients’ inputs? To solve this problem, They used a tool called proxy oblivious
transfer protocol(proxy OT). In proxy OT, client 1 acts as a sender, client i(i �=1)
acts as a chooser and the server is a proxy. After the protocol, the proxy can
only learn the labels corresponding to chooser’s input and the chooser’s input is
kept private. This is a novel idea to extend Gennaro et al.’s one-client outsourced
computation scheme [6] to multi-client outsourced computation scheme. In [3]’s
construction, only the client who generates the garbled circuit can verify and get
the computation result f(x1, · · · , xn). These n clients need to run the scheme n
times in order to ensure all of them can verify and get the output. Thus all the
clients need to generate the garbled circuit of function f , and the computation
cost of the clients are closely related to the function f being computed.

1.2 Our Contribution

We design an efficient multi-client outsourced computation scheme using two
noncolluding servers. In our scheme, the clients’ inputs are keeping private from
each other and the two servers. Our scheme has these following features:

– The computation cost of the clients is independent of the function f being
computed. See Table 1 below.
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Table 1. Comparisons with related work

Work Client’s cost

Choi et al. [6] Only efficient in amortization

Goldwasser et al. [8] O(|skf | · lk)

Gordon et al. [7] O(d · nlk)

Our work O(lk)

– Our scheme avoids interactions among all the parties (the clients and two
servers).

– Our outsourced computation scheme is publicly verifiable that any other client
can verify the correctness of the computation result.

– It is secure against one malicious server in the two-server setting(we assume
that the other server is semi-honest).

In Table 1, d is the depth of the function f being computed, l is the input
length and k is the security parameter. skf is the secret key corresponding to
function f in [8]’s multi-input functional encryption scheme.

1.3 Paper Organization

The rest of this paper is organized as follows. In Sect. 2 we introduce the tool that
will be used in our scheme. In Sect. 3 we talk about the model and techniques
used in our scheme. In Sect. 4 we show the construction of multi-client outsourced
computation scheme. Finally, in Sect. 5 we make the conclusion.

2 Preliminaries

We denote k the security parameter, negl(·) a negligible function and PPT the
probabilistic polynomial time. Denote Dom(F ) the domain of the function set
F and

∏
the protocol of multi-client outsourced computation scheme.

2.1 Garbled Circuits

Garbled circuits were first presented by Yao [17] in the context of secure two-
party computation and were proven secure by Lindell and Pinkas [10]. The notion
was formalized by Bellare et al. [1] and was simplified by Goldwasser et al. [8].
In this paper, we refer to [8]’s definition of the garbling scheme for simplicity.

Definition 1 (Garbling Scheme). [8] Cn is the set of circuit taking as input
n bits. A garbling scheme for a family of circuits C = {Cn}n∈N , is a tuple of
PPT algorithms Gb= (Gb.Garble, Gb.Enc, Gb.Eval, Gb.Dec) such that

1. Gb.Garble(1k, C) takes as input the security parameter k and a circuit C ∈ Cn

for some n, and outputs the garbled circuit Γ and a secret key sk.
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2. Gb.Enc(sk, x) takes as input the secret key sk and data x ∈ {0, 1}n and
outputs an encoding c.

3. Gb.Eval(Γ, c) takes as input a garbled circuit Γ , an encoding c and outputs a
value y .

4. Gb.Dec(d,Y) takes as input decoding key d and the garbled output Y , maps
Y to a final output y.

Correctness. For any polynomial n(·), for all sufficiently large security para-
meters k, for n = n(k), for all circuits C ∈ Cn and all x ∈ {0, 1}n, Pr[(Γ, sk) ←
Gb.Garble(1k, C); c ← Gb.Enc(sk, x); y ← Gb.Eval(Γ, c) : C(x) = y] = 1 −
negl(k).

Input and Circuit Private. If there exist a ppt simulator SimGarble, such that
for every ppt adversaries A and D, for all sufficiently large security parameters
k, the following equation holds. Then the garbled scheme Gb for a family of
circuits {Cn}n∈N is input and circuit private.

|Pr[(x,C, α) ← A(1k); (Γ, sk) ← Gb.Garble(1k, C);
c ← Gb.Enc(sk, x) : D(α, x,C, Γ, c)]

−Pr[(x,C, α) ← A(1k); (Γ̃ , c̃)
← SimGarble(1k, C(x), 1|C|, 1|x|) : D(α, x,C, Γ̃ , c̃)]| = negl(k)

Additionally we require that the garbling scheme satisfies authenticity [3].

Authenticity. We say that a garbling scheme provides authenticity if for any
PPT adversary learning a set of labels to some input x is unable to produce a
set of labels that corresponds to an output different from f(x).

The garbling scheme used in our protocol is a projective garbling scheme
which means that the encryption algorithm treat the input in pieces instead of
processing the whole input at once. In our work, each encoding only depends on
one bit of the input. For example, let x = x1, · · · , xn ∈ {0, 1}n, the encryption
algorithm needs to generate encoding for each xi(i ∈ [n]). In the rest of this
paper, the word ‘label’ denotes the encoding in the garbling scheme.

3 Our Model and Techniques

3.1 Multi-client Outsourced Computation Scheme

Refer to the description of Choi et al.’s work [3], we give a model of multi-client
outsourced computation scheme in the two-server setting. We denote the two
servers S1,S2. Fig. 1 gives the model of the multi-client outsourced computation
in two-server setting.

In Fig. 1, Z and V Ky are the messages returned by the two servers.

Security Model: In the two-server setting, we consider the security against one
malicious server(S2) and one semi-honest server(S1). Our scheme assumes that
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Fig. 1. Multi-client outsourced computation

the clients know which server is semi-honest in advance. Informally, we say that
a multi-client outsourced computation scheme is secure if it can keep privacy
the clients’ inputs from each other and the two servers, and a malicious server
S2 can not forge an incorrect message Z that makes the clients accept. In this
paper, we analyze its security using the real-ideal paradigm.

In the real world, all parties together with these two servers run the pro-
tocol

∏
to get the desired output. During the protocol, all the clients and the

server S1 follow the protocol semihonestly. An adversary A can corrupt server
S2 and attempts to gain more information about the clients’ inputs and forge
an incorrect computation result that can pass the verification.

In the ideal world, the clients send their inputs and a function f to a trusted
third party(TTP). Then TTP will do the computation of function f on the
clients’ inputs (x1, · · · , xn) and obtain f(x1, · · · , xn). After that, TTP will send
function f to the ideal world simulator S. If S returns yes, then TTP will send
f(x1, · · · , xn) to the clients. Otherwise, TTP will return abort.

We denote IDEALF,S(x1, · · · , xn) the joint execution of f under the Simula-
tor S in the ideal world on input (x1, · · · , xn). REAL∏,A(x1, · · · , xn) the joint
execution of

∏
under A in the real world on input (x1, · · · , xn).

Definition 2 (Multi-client Outsourced Computation). A multi-client
outsourced computation scheme in the two server setting consists the following
four algorithms:

1. KeyGen(1k) → (PK,SK): Takes input the security parameter k, the algo-
rithm generates a key pair (PK,SK).

2. ProbGen(PK, f, x1, · · · , xn) → (c1, c2): Takes input the public key PK, func-
tion f being computed, and n clients’ inputs (x1, · · · , xn), the algorithm com-
putes ciphertext c1 and c2, sends c1 and f to server S1 and c2 to server S2.

3. Compute(PK, c1, c2, f) → (V Ky, Z): Given the public key PK, server S1

with input (c1, f) and server S2 with input c2 corporately compute a message
Z and a verify-message V Ky, and then send them to the clients.

4. Verify(V Ky, Z) → (y, reject): Using public verify message V Ky, the algo-
rithm verifies the correctness of Z. If the verification passed, the correspond-
ing result y can be recovered after the verification. Otherwise reject.
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Correctness: A multi-client outsourced computation scheme is correct if for
any function f ∈ F and any (SK,PK) ← KeyGen(1k, f), any (x1, · · · , xn) ∈
Dom(F ), if (c1, c2) ← ProbGen(PK, x1, · · · , xn) and (V Ky, Z) ←
Compute(PK, c1, c2, f), then y = f(x1, · · · , xn) ← Verify(V Ky, Z) holds with
all but negligible probability.

Security: A multi-client outsourced computation scheme is secure if for any
PPT adversary A in the real world, there exists a PPT simulator S in the ideal
world such that for all (x1, · · · , xn) no PPT distinguisher D is able to distinguish
IDEALF,S(x1, · · · , xn) from REAL∏,A(x1, · · · , xn).

3.2 Techniques

In this part, we talk about the techniques in our protocol. Our basic idea comes
from Choi et al.’s work [3]. In Sect. 1.1 we have showed that the computation
cost of the clients are closely related to the function f being computed.

To reduce the computation cost of the clients, we use a semi-honest server
S1 to generate the garbled circuit Γ of function f . One directly thinking is just
let the semi-honest server S1 to compute the garbled circuit with the labels
corresponding to clients’ inputs and send the computation result to the clients.
While in this situation, the clients’ inputs can not be kept private from S1 for
the garbled circuit is generated by S1. Thus we need to separate the garbled
circuit generation process from the computation process of the garbled circuit.
Let the computation process done by another server S2.

In our construction, let S1 send Γ to the other server S2. Then S2 computes
the garbled circuit Γ with the labels corresponding to (x1, · · · , xn). For S1 and S2

do not know the inputs of the clients and only S1 know all the input-wire labels.
How can S2 get the labels corresponding to (x1, · · · , xn)? A nature thought is to
directly use [3]’s proxy OT protocol. Each client together with S1, S2 involved
in the proxy OT protocol. While in proxy OT each client needs to run a key-
exchange protocol with S1. Every time, the clients and the server S1 need to run
the setup algorithm to generate their key pairs. To reduce the key generation
process, we design a new protocol π for choosing labels.

Choose Labels. In protocol π, we use a public key encryption (PKE) scheme
to encrypt the randomness elements and a one-time pad encryption scheme to
encrypt the client’s input. The protocol π is designed as followings:

– π.Setup(1k): Server S1 runs a public key encryption scheme(PKE) to generate
its key pair (PK,SK).

– π.Client(x, PK): The client with its input x(|x| = l). It chooses 2l ran-
dom elements (r01, r

1
1, · · · , r0l , r

1
l ) with the same length k and a random

element t (|t| = l). Denote r = (r01, r
1
1, · · · , r0l , r

1
l ). The client computes

c1=PKE.EncPK(r, t) and c2 = (x ⊕ t, rx1
1 , · · · , rxl

l ). Sends c1 to server S1

and c2 to server S2.
– π.S1(c1,k, SK): S1 holds the labels k = (k0

1, k
1
1, · · · , k0

l , k
1
l ). S1 decrypts c1

using its secret key SK and obtains (r, t). Computes w
tj
j = r0j ⊕ k0

j , w
1⊕tj
j =

r1j ⊕ k1
j for all j ∈ [l]. Let w = (w0

1, w
1
1, · · · , w0

l , w
1
l ) and sends w to server S2.
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– π.S2(w, c2): w = (w0
1, w

1
1, · · · , w0

l , w
1
l ), parse c2 as (d, rx1

1 , · · · , rxl

l ). S2 com-
putes kj = w

dj

j ⊕ r
xj

j for all j ∈ [l].

The above protocol π acts as a sub-protocol of our multi-client outsourcing
scheme

∏
. In our work, let each client run the sub-protocol π with the two

servers S1 and S2 synchronously. After executing the protocol, server S2 can get
the labels corresponding to the inputs of all clients.

Public Verification. After solving the problem of how to choose labels, server
S2 can compute the garbled circuit Γ . Another problem is how to verify the
correctness of the result returned from S2. Similar to the idea of [6], the output
of the garbled circuit are the labels corresponding to the output bits. We use
the garbling scheme that satisfies authenticity property. The decoding key d
consists of the wire values chosen. After receiving a message Z returned from
the server, the client maps the message Z to an output y using the decoding key
d. If the map process passed, we say that server honestly do the computation of
function f .

In this paper, We aim to design a public verify method that all the clients
can verify the correctness of the computation result and obtain f(x1, · · · , xn).
Observe that the output of the garbled circuit Γ is the label corresponding to
f(x1, · · · , xn)(For simplicity, we assume that the output of the function f is one
bit). Let k0

y, k
1
y be the labels of the output-wire. If f(x1, · · · , xn) = 0, Γ outputs

label k0
y, else if f(x1, · · · , xn) = 1 outputs k1

y. Let server S1 compute a one-way
function g on k0

y and k1
y and make g(k0

y), g(k1
y) public. After server S2 returns

message Z to the clients, all the clients can compute g(Z) and verify whether it
is equal to g(k0

y) or g(k1
y). If g(Z) = g(k0

y), outputs 0, if g(Z) = g(k1
y), outputs

1. Otherwise reject.

4 Our Construction

Now we are ready to describe our construction of multi-client outsourced compu-
tation scheme(denote

∏
) in the two-server setting. We use a garbling scheme and

the protocol π designed in Sect. 3 as our tools. Suppose server S1 is semi-honest.
The scheme

∏
is designed as followings:

1. KeyGen(1k) → (PK,SK): The semi-honest server S1 runs π.Setup algorithm
and obtains a key pair (PK,SK).

2. ProbGen(PK, f, x1, · · · , xn) → (c1, c2): Each client i (i ∈ [n]) runs π.Client
algorithm with its input xi to creates its ciphertext ci = (c1i , c

2
i ), and sends

c1i and function f to server S1, sends c2i to server S2. Let c1 = (c11, · · · , c1n),
c2 = (c21, · · · , c2n).

3. Compute(PK,SK, c1, c2, f) → Z: The computation process can be divided
into two parts that are done by S1 and S2 respectively.
– After receiving c1 = (c11, · · · , c1n) and function f , S1 first computes the

garbled circuit Γ of function f . Parse (k0
y, k1

y) as the labels of the output-
wire. S1 computes V Ky = (g(k0

y), g(k1
y)) and makes them public(here g is

a one-way function).
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S1 having SK runs π.S1 algorithm n time to generate messages τ1, · · · , τn
respectively. τi is the output of π.S1 algorithm with inputs (c1i ,ki) (here ki

are the labels of client i’s input-wires). After that S1 sends τ = (τ1, · · · , τn)
and Γ to S2.

– After receiving c2 = (c21, · · · , c2n) from the clients and (τ, Γ ) from S1, the
second server S2 runs π.S2 algorithm respectively to obtain the labels
corresponding to each client’s input. Using these labels, S2 computes the
garbled circuit Γ to obtain the output message Z and sends Z to the
clients.

4. Verify(V Ky, Z) → (y, reject): Using public verify message V Ky =
(g(k0

y), g(k
1
y)), each client computes g(Z) and verifies whether it is equal to g(k0

y)
or g(k1

y). If g(Z) = g(k0
y), outputs 0, if g(Z) = g(k1

y), outputs 1. Otherwise reject.

Efficiency Analysis. From the above construction, we can see that the clients
only need to run the PKE scheme to generate their ciphertexts and then later
run the one-way function to verify the correctness of the computation result.
The computation cost of the clients is only depend on the their input length l
and the security parameter k. The efficiency comparison with other verifiable
outsourced computation schemes is given in Table 1 in Sect. 1.2.

4.1 Correctness and Security Proof

Theorem 1 (Correctness). If the underlying garbling scheme and PKE
scheme are correct, then the above scheme

∏
is a correct multi-client outsourced

computation scheme.

Proof: In our construction, we use the sub-protocol π to choose the labels cor-
responding to the clients’ inputs. For the PKE and one-time pad encryption
scheme in π is correct, it is easy to verify that the output of S2 in the sub-
protocol π are (kx1

1 , · · · , kxl

l ) which are the labels corresponding to x. And we
use garbling scheme to securely compute function f on the inputs (x1, · · · , xn).
Due to the correctness of the garbling scheme, the output of our scheme

∏
is

f(x1, · · · , xn). Thus our scheme is a correct multi-client outsourced computation
scheme.

Theorem 2 (Security). Suppose the garbling scheme we use is input and cir-
cuit private and provides authenticity, the PKE scheme is secure, and the one-
time pad encryption scheme is secure, then our scheme

∏
is secure against a

malicious server(S2) and a semi-honest server(S1).

Proof: We prove the security using the real-ideal model described in Sect. 2 (refer
to Fig. 2). A is an PPT adversary that corrupts server S2.

We say that a multi-client outsourced computation scheme is secure if for any
PPT adversary A in the real world there exists a PPT simulator S with black-
box access to A such that for all (x1, · · · , xn) no PPT environment D is able to
distinguish IDEALF,S(x1, · · · , xn) from REAL∏,A(x1, · · · , xn). The Simulator
S in the ideal world acts as following(refer to Fig. 3 for better understanding):
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Fig. 2. Real-ideal model

Fig. 3. Ideal world

The Simulator S

– After receiving function f from the trusted third party(TTP), the simulator S
generates a garbled circuit Γ of function f . It then runs the π.client algorithm
n times each with input 0l to generates c′1

i (i = 1, · · · , n) and c′2
i (i = 1, · · · , n).

Using the labels of the garbled circuit and the randomness chosen in running
π.Client algorithm, the simulator can directly compute τ ′ = (τ ′

1, · · · , τ ′
n). Let

c′1 = (c′1
1, · · · , c′1

n) and c′2 = (c′2
1, · · · , c′2

n). Involve A with inputs (c′2, τ ′,Γ ).
– S generates the public verify message V Ky and then verifies the correctness

of the output of A by running the verify algorithm. If the verification passed,
the simulator S will return yes to TTP, otherwise, return no.

– The output of the simulator is (c′1, c′2, f, τ ′, Γ,A(c′2, τ ′, Γ )).

Next we show that IDEALF,S(x1, · · · , xn) is indistinguishable from REAL∏,A
(x1, · · · , xn).

REAL∏,A(x1, · · · , xn) equals (⊥, c1, c2, f, τ, Γ,A(c2, τ, Γ )) if Verify algo-
rithm return ⊥. Otherwise REAL∏,A(x1, · · · , xn) equals (OUTPUT

∏
(x1, · · · ,

xn), c1, c2, f, τ, Γ,A(c2, τ, Γ )). Here OUTPUT
∏

(x1, · · · , xn) denotes the output
of the clients.
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IDEALF,S(x1, · · · , xn) equals (⊥, S(f)) if the simulator S returns no, oth-
erwise IDEALF,S(x1, · · · , xn) equals (f(x1, · · · , xn), S(f)). For the simulator S
has been constructed above, S(f) equals (c′1, c′2, f, τ ′, Γ,A(c′2, τ ′, Γ )).
We define the following games:
Game 0 is the real world experiment.
Game 1 is the same as Game 0 except that the c1 is the encryption of the
randomness chosen by the simulator S.
Game 2 is the same as Game 1 expect that c2 is the encryption of (0l, · · · , 0l).
Game 3 is the ideal world experiment.

Lemma 1. Assume that the PKE scheme is secure, Game 0 and Game 1 are
computationally indistinguishable.

Proof: The difference between Game 0 and Game 1 is that c1 is the PKE encryp-
tion of two different messages. If there exist a PPT distinguisher D that can
distinguish these two games, the there exist a PPT adversary B that can break
the security of the PKE scheme.

Lemma 2. Assume that the one-time pad encryption scheme is secure and the
garbled circuit is input and circuit private, Game 2 and Game 1 are computa-
tionally indistinguishable.

Proof: The only difference between Game 2 and Game 1 is how c2 computed.
In Game 1, c2 is the encryption of (x1, · · · , xn), while in Game 2 c2 is the
encryption of (0l, · · · , 0l). For the garbling scheme is input and circuit private,
thus the garbled circuit do not reveal any information about the messages. For
these messages (x1, · · · , xn) and (0l, · · · , 0l) are encrypted by the one-time pad
encryption algorithm respectively, if there exist a PPT distinguisher that can
distinguish these two games, then there exist a PPT adversary B that can break
the security of the one-time pad encryption scheme.

Lemma 3. Assume the garbling scheme satisfies authenticity property, then
Game 3 and Game 2 are computational indistinguishable.

Proof: The garbling scheme satisfies authenticity property. If the output of the
semi-honest clients in Game 2 is ⊥, which means that the malicious adversary
A forged an incorrect answer Z. In this case, the Simulator S in the ideal world
will return no to TTP, thus the clients in the ideal world will also output ⊥. In
Game 2, if the output of the semi-honest clients return OUTPUT

∏
(x1, · · · , xn),

it must be f(x1, · · · , xn) due to the authenticity of the garbling scheme. In this
case, the simulator S will return yes to TTP, then the output of the clients
in the ideal world is f(x1, · · · , xn). The distribution of Game 2 and Game 3 is
indistinguishable. From the above lemmas, we get that Game 0 the real world
execution is indistinguishable from Game 3 the ideal world execution.

From the above lemmas, we get that Game 0 the real world execution is
indistinguishable from Game 3 the ideal world execution. �	
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5 Conclusion

In this paper, we design an efficient multi-client outsourced computation scheme
in the two-server setting model. It avoids interactions among all the parties
(the clients and servers), and it is public verifiable that any client can verify the
correctness of the computation result using a public verify key. The computation
cost of the clients is independent from function being computed. Our scheme is
proved to be correct and secure against a malicious server and a semi-honest
server. In the future, it will be interesting to explore an efficient non-interactive
multi-client outsourced computation scheme that is secure against two malicious
servers.
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Abstract. New types of devices, such as smart-meters, wearables and
home appliances, have been connected to the Internet recently. Data
they send is usually very privacy sensitive, containing personal infor-
mation about, e.g., household consumption, health status or behavior
profiles of family members. In this paper, we propose a cryptographic
scheme for the protection of data collection systems that is secure (in
the sense of data authenticity and integrity) and privacy-friendly at the
same time. This functionality is achieved by designing a novel group sig-
nature that provides signature anonymity, unlinkability and untraceabil-
ity while retaining features for malicious user identification. Besides the
full cryptographic specification, we also provide implementation results
that confirm the computational efficiency of the scheme allowing easy
deployment on existing devices.

Keywords: Data collection · Sensors · Smart-metering · Privacy ·
Attributes · IoT · Security · Cryptography

1 Introduction

There are many applications where secure data collection from remote devices
is important. The examples are temperature sensors, human activity and health
sensors, machine operation status sensors, home automation equipment or
implants in future. Although our scheme can be used in all these applications,
we’ll use the smart-metering as the example throughout the paper. The reason
for our choice is that smart-metering is becoming a significant topic world-wide
and a large-scale deployment of intelligent gas/water/electricity consumption
meters to households is expected in a very short time. The legislation, secu-
rity profiles and certification procedures are being finalized. The purpose of this
paper is to show that not only the security but also privacy protection is impor-
tant in data collection systems and that there are actually technical means for
achieving strong privacy protection in secure data collection systems.

The scheme presented in this paper is a specific version of a group signature.
It makes it possible that data originating from a smart-meter is digitally signed

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-38898-4 24
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at the device so that it cannot be altered or manipulated during the transfer.
However, the signature only reveals that the data is originating from a group
of authorized meters, the concrete identification number (ID) of the meter is
not disclosed. To further improve privacy protection, all signatures of a single
meter are mutually unlinkable. If the owner wishes so, it cannot be distinguished,
whether the signed data is coming from a single smart-meter or different smart-
meters. That allows energy suppliers to have a statistical overview about the
consumption in a given area but prevents them from linking the consumption
profile to concrete users. If a user wishes so, e.g., if smart-meters are used not
only for statistical data collection but also for billing, the identity might be
disclosed by the smart-meter using standard methods.

In contrast to most existing schemes, the scheme proposed here contains
features for the practical revocation of invalid users and the identification of
malicious users. In case the collector needs to reveal the signer’s identity, he
may ask a special entity that is able to de-anonymize the group signature and
disclose the smart-meter’s ID to the collector. However, such an action must be
supported by reasonable evidence.

1.1 Model Scenario

Today’s smart-meters have the ability to upload measured data to central stor-
age. The data is used for statistical reasons, network planning, load balancing or
the identification of potential problems in distribution networks. Data needs to
be anonymized to preserve privacy of users. However, it is necessary to prevent
malicious users from flooding the central storage with false, misleading data. The
scheme presented in this paper provides mechanisms assuring that all messages
delivered to the central storage are authentic (originating from real, authorized
smart-meters) and integral (have not been tampered during transfer) without
disclosing the identity of users. Each smart-meter has its own private key that
is used to prove that it belongs to the group of authorized smart-meters. If the
owner’s identity needs to be disclosed (a serious problem is discovered from data
measured, messages are coming from stolen/malicious meters, etc.), it is still pos-
sible, however this feature is strongly protected against misuse by cryptographic
mechanisms and available only to certain authorities.

1.2 Related Work

In existing data collection schemes, privacy is usually protected by two main
mechanisms, i.e., pseudonyms and group signatures.

Privacy preserving solutions based on pseudonyms have been proposed, e.g.,
in [14,28,29]. Some schemes need additional pseudonimization infrastructure,
e.g. [29]. The work [28] uses anonymous certificates which are stored in a tamper-
proof device. This approach uses a set of temporal pseudonyms and fast changing
of these pseudonyms provides the privacy protection. Nevertheless, this approach
is burdened by the pre-loading and storing of a large number of anonymous
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certificates with pseudonyms. For low-performance devices like smart-meters,
the management of pseudonyms becomes a too complex operation.

The second approach is based on general group signatures. They provide user
anonymity by producing message signatures on behalf of a group. Generally,
group signatures guarantee the anonymity of honest users and the traceability
of misbehaving users. A large number of group signatures has been proposed,
e.g., in [2,3,5,10,12,20,21]. In particular, the scheme called BBS [2] serves as a
fundamental building block for many security solutions (e.g., [23,31]). However
most schemes lack efficient revocation mechanisms that allow the removal and de-
anonymization of invalid users. Mechanisms for revocation have been proposed
for schemes based on bilinear pairings [4,24]. Nevertheless, these schemes need
several expensive operations, mostly bilinear pairings, modular exponentiations
and multiplications and are not appropriate for applications using computation-
ally very restricted devices such as smart-meters, wearables, wireless sensors,
etc. Currently, achieving reasonable privacy of honest users and the revocability
and de-anonymization of malicious users is an unresolved problem.

In addition to group signatures, the signatures based on anonymous creden-
tials [9,17,19,26] are also an option. However, these schemes are more focused
on privacy protection in access-control applications and lack features for efficient
revocation and identification of malicious users too [22].

Finally, some of the schemes analyzed [1,18] rely on the hardware tamper-
resistance. However, it is unrealistic to expect the presence of a tamper-proof
key storage when using sensors and wearables.

1.3 Our Contribution

In this paper, we propose a novel cryptographic data collection (DC) scheme
addressing the above identified weaknesses of existing systems. In particular,
our scheme is designed to provide the following features.

– Provable Security: our DC scheme is based on provably secure crypto-
graphic primitives, particularly the interactive proofs of knowledge about dis-
crete logarithms [30] in the Okamoto-Uchiyama (OU) group [25]. We provide
the full security analysis in Sect. 4.

– Privacy Protection Features: the DC scheme provides features for the
protection of users’ privacy and digital identity, namely the hiding of user IDs
and the unlinkability and untraceability of signatures.

– Revocation of Invalid Users: it is possible to efficiently revoke invalid users
without affecting remaining users.

– Identification of Malicious Users: using existing schemes, it is very diffi-
cult (if not impossible) to simultaneously provide privacy-enhancing features
(signatures anonymity, untraceability and unlinkabilty) and efficient identifi-
cation of malicious users. In our scheme, it is possible to obtain all these fea-
tures without negative effects on communication and computation efficiency.

– No Tamper-Proof Devices: the scheme has cryptographic protection
against collusion attacks. The user’s private signing key is stored only in
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user’s device and cannot be used for collusion attacks even if extracted by
malicious users. That makes the implementation on available hardware lack-
ing the tamper-proof storage much easier.

– Computational and Communication Efficiency: our DC scheme is com-
putationally efficient enough to run on low-resource devices like smart-meters
and micro-controllers.

2 Scheme Description

In this section, we present the overview of our scheme and describe the entities
and cryptographic protocols.

2.1 Notation

For various proofs of knowledge or representation, we use the efficient notation
introduced by Camenisch and Stadler [7]. The protocol for proving the knowledge
of discrete logarithm of c with respect to g is denoted as PK{α : c = gα}. The
proof of discrete log equivalence with respect to different generators g1, g2 is
denoted as PK{α : c1 = gα

1 ∧ c2 = gα
2 }. A signature by a traditional signature

scheme (e.g., RSA) of a user U on some data is denoted as SigU (data). The
symbol “:” means “such that”, “|” means “divides”, “|x|” is the bitlength of x
and “x ∈R {0, 1}l” is a randomly chosen bitstring of maximum length l.

2.2 Scheme Overview

There are three types of entities in our scheme: Meter, Collector and Revocation
Authority.

– Meter (M): the Meter is the source of data. It acquires data from mea-
surement, signs it using it’s private key and sends it to the Collector. Meters
represent users in our scheme.

– Collector (C): is the destination where all data is collected. It receives data
from all Meters, verifies the group signatures and further processes them. The
Collector is assured that data is coming from a predefined group of Meters,
however the concrete IDs of the Meters remain hidden.

– Revocation Authority (RA): does the initial setup of the system including
system parameters generation and participates on the management of meters,
particularly on adding new Meters and removing invalid Meters from the
system. RA participates on the de-anonymization of malicious Meters. RA is
a semi-trusted authority as it can revoke Meters but is unable to de-anonymize
Meters by itself only.

The entities engage in the following protocols.

– (params,KRA,KC) ← Setup (k, l,m): is run by the Revocation Authority
and the Collector. It inputs security parameters (k, l,m) and outputs system
parameters params, RA’s private key KRA and Collector’s private key KC .
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– KM ← getKey (params,KC ,KRA): is run by the Revocation Authority, the
Collector and the Meter. It inputs system parameters params, RA’s and C’s
private keys KRA and KC and outputs the private key of a new Meter KM .
KM is the Meter’s private output of the protocol, no other entity learns the
value of KM although they cooperate on its generation.

– GSKM
(data) ← GroupSign (params, data,KM ): is run by the Meter. The

algorithm inputs system parameters params, data and Meter’s private key
KM and outputs the group signature GSKM

(data).
– {0, 1} ← GroupVerify (params, data,GSKM

(data)): is run by the Collector.
The algorithm inputs the system parameters params, data and Meter’s group
signature GSKM

(data) and outputs 1 if the signature is valid and the Meter
has not been revoked.

– rev ← Revoke (params,GSKM
(data),KRA): is run by the Collector and Revo-

cation Authority. In case Meter needs to be removed from the system or a sig-
nature must be de-anonymized due to some misbehavior, the Collector sends
the signature to Revocation Authority that revokes the Meter by putting its
key-derivate rev on a public blacklist. The signatures of blacklisted Meters
are always rejected by the Collectors.

– IDM ←Identify(params,GSKM
(data),KRA,KC): is run by the Collec-

tor and Revocation Authority. The protocol inputs the system parameters
params, the group signature GSKM

(data) and private keys KRA,KC and
outputs the Meter’s identifier IDM as C’s private output. Only C learns the
Meter’s ID but RA must cooperate on that disclosure.

The overview of the architecture of the scheme is depicted in Fig. 1.

Fig. 1. Architecture of DC scheme proposed.
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2.3 Description of Cryptographic Protocols

We provide the full description of all cryptographic protocols, i.e., Setup, getKey,
GroupSign, GroupVerify, Revoke and Identify in this section.

Primitives Used. Two key cryptographic primitives are used in the scheme.
They are the commitment schemes and the non-interactive zero-knowledge proof
of knowledge protocols. Both primitives are used either in the DSA group modulo
large prime p [15], denoted as Z

∗
p, or in the Okamoto-Uchiyama group modulo

product n, where n = r2s, and r, s are large safe primes, denoted as Z
∗
n [25].

The scheme presented in this paper relies on the assumption that the discrete
logarithms are difficult to compute in Okamoto-Uchiyama (OU) group, similarly
as in groups modulo primes or RSA composites. However, if factorization (r, s)
of OU modulus n = r2s is known, the discrete logarithms can be efficiently
computed. For example, w from c = gw mod n can be computed as:

logg c = w =
((cr−1 mod r2) − 1)/r

((gr−1 mod r2) − 1)/r
mod r.

The discrete logarithm can be computed only by entities who know the factor-
ization (r, s), as proven in [25].

Setup. (params,KRA,KC) ← Setup(k, l,m) - The Setup protocol is used to
generate all system parameters and private keys of C and RA. It inputs the
security parameters k (length of the output of the hash function used), l (length
of Meter’s private key) and m (protocol error parameter).

The Collector defines a group Z
∗
p by randomly choosing the prime modulus

p and elements h1, h2 of large order q : |q| = 2l and q|(p − 1).
The Revocation Authority defines a group Z

∗
n by randomly choosing the

modulus n : n = r2s and r, s are large safe primes such that r = 2r′ + 1 and s =
2s′ +1 holds and r′, s′ are also primes. RA selects a random element g1 of orders
ord(g1) = rr′ in Z

∗
r2 and ord(g1) = rr′s′ in Z

∗
n. RA also randomly generates its

secrets S1, S2 : |S1| = 2.5l, |S2| = l and GCD(S1, φ(n)) = GCD(S2, φ(n)) = 1
and computes a value g2 = gS2

1 mod n.
For each group of meters, RA computes the group public key GPK =

gS1
1 mod n. For simplicity, we consider only one group in this paper, but many

group public keys can be defined analogically.
The values q, p, h1, h2, n, g1, g2, GPK are made public as system parameters

params. The values r, s, S1, S2 are securely stored at RA as the KRA key. C
generates a keypair of any conventional signature scheme (like RSA or DSA),
stores its private key as KC and publishes its public key.

getKey. KM ← getKey(params,KC ,KRA) - The getKey protocol is split into
two parts. The first one runs between the Meter and the Collector while the sec-
ond runs between the Meter and RA. The purpose of the protocol is to generate
a private key of the Meter KM in such a way that only the Meter learns the
value but both C and RA contribute to its creation.
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RA Meter Collector

w′
1 ∈R {0, 1}2l−1, w2 ∈R {0, 1}l−1

CC = commit(w′
1, w2) = h

w′
1

1 hw2
2 mod p

PK{w′
1, w2 : CC = h

w′
1

1 hw2
2 }, SigM (CC)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Store (CC , SigM (CC))

SigC(CC)←−−−−−−−−−−−−−−−−−−−−−−−−−−
GPK′ = g

w′
1

1 gw2
2 mod n

GPK′, CC , SigC(CC),

PK{(w′
1, w2) : CC = h

w′
1

1 hw2
2 ∧ GPK′ = g

w′
1

1 gw2
2 }

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Random generator: g3 ∈R Z

∗
n

w′′
1 ∈R {0, 1}l

w3 : GPK = g
w′

1
1 g

w′′
1

1 gw2
2 gw3

3 mod n
Random primes: {w31, w32, . . . , w3(j−1) ∈R {0, 1}l}
w3j = w3(w31w32 . . . w3(j−1))

−1 mod φ(n)
w′′

1 , (w31, w32, . . . , w3j), g3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Meter’s private group key: KM = {w1 = w′

1 + w′′
1 , w2, (w31, w32, . . . , w3j), g3}

GPK = gw1
1 gw2

2 g
w31...w3j
3 mod n

Fig. 2. getKey protocol in CS notation.

In the first part, the Meter randomly generates its portion of the key (w′
1, w2)

and commits to these values. It digitally signs its commitment CC using a con-
ventional signature scheme including owner’s real identity and sends it to the
Collector together with the proof of construction PK. The Collector checks the
proof, the signature and the identity of the Meter’s owner. If the Meter is autho-
rized to be included in the group, the Collector returns the commitment, this
time signed by his KC (again, any classical signature can be used, like RSA)
together with a unique, randomly generated identifier IDM . By this procedure,
the Collector certifies that the Meter belongs to the group of meters sharing
the GPK public group key. If more groups are available, the signature also con-
tains the information about the concrete group. The Collector stores the whole
protocol transcript in its database.

In the second part, the rest of the Meter’s key is issued. To have a valid private
key for group public key GPK, the Meter must have values (w1, w2, w3, g3) so
that

GPK ≡ gw1
1 gw2

2 gw3
3 mod n (1)

holds. The Meter creates another commitment GPK ′ to his keys (w′
1, w2), this

time using the Okamoto-Uchiyama group Z
∗
n. The Meter sends both commit-

ments and Collector’s signature on the commitment to RA and proves that the
keys in commitments are the same. If the proof and signatures are valid, RA
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chooses g3 (a random element with same properties as g1), random w′′
1 (RA’s

contribution to Meter’s key so that w1 = w′
1 + w′′

1
1) and w3 such that the Eq. 1

holds. This can be done only by RA who knows the Okamoto-Uchiyama trapdoor
secret (the factorization of n) as w3 = logg3

(GPK/(gw′′
1 GPK ′)).

The w3 is then split into j factors modφ(n) and sent back to the Meter as
RA’s portion of Meter’s private key. The Revocation Authority stores the whole
protocol transcript in its database.

As a result, the Meter knows a unique discrete logarithm representation
w1, w2, (w31 . . . w3j) of public GPK. The values w1, w2, (w31 . . . w3j), g3 are the
Meter’s private key corresponding to the group public key GPK.

The getKey protocol is fully specified and depicted in CS notation in Fig. 2.

GroupSign. GSKM
(data) ← GroupSign(params, data,KM ) - The GroupSign

algorithm inputs system parameters params, Meter’s private key KM and mea-
sured data data and outputs a group signature GSKM

(data). The signature
certifies that the Meter has a valid private key KM corresponding to the group
public key GPK but does not disclose any more information about the Meter,
including its identifier. The protocol is the non-interactive proof of knowledge
signature based on the Fiat-Shamir heuristic [13]. The Meter proves using a
zero-knowledge proof of knowledge protocol that it knows the discrete logarithm
representation of GPK, i.e., it knows the private key (w1, w2, w3). To provide
the anonymity and unlinkability of signatures, all unique values must be ran-
domized. Therefore, the unique g3 must be randomized to g′

3 using half of the
key w3. With w3 split into 20 values, i.e. setting the parameter j to 20, we get
enough combination variants to randomize

(
20
10

)
= 184 756 signatures. Further-

more, we randomize each signature by using a unique per-signature key KS . To
provide revocation and identification features, commitments to keys (w1, w2,KS)
denoted as C12, C1S are included in the signature.

The GroupSign protocol is fully specified and depicted in CS notation in
Fig. 3.

GroupVerify. {0, 1} ← GroupVerify(params, data,GSKM
(data)) - The group

signature verification is composed of the verification of the zero-knowledge proofs
and the revocation check. The verification of proofs of knowledge depends on con-
crete implementation, the signature check used in our implementation is shown

in Fig. 4. The revocation check is done by a single equation Crev
12

?

�≡ C1S (mod n)
where the commitments C12, C1S are checked against the revocation list. If the
equation holds for any of rev values present on the revocation list, the Meter has
been revoked and the signature is rejected. Otherwise, the signature is accepted.

Revoke. rev ← Revoke(params,GSKM
(data),KRA,KC): the protocol inputs

the system parameters params, the signature GSKM
(data), RA’s and C’s private

keys KRA,KC and outputs the revocation information rev. The rev value is then
put on a blacklist so that all signatures can be checked against the blacklist for
revoked users.
1 RA’s key contribution is necessary to prevent malicious users from submitting mal-

formed keys allowing attacks on RA’s secrets.
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Fig. 3. GroupSign protocol in CS notation.

In the Okamoto-Uchiyama group, which is used in this scheme, it is generally
hard to compute discrete logarithms as it is in the RSA and DSA groups. But
there is a trapdoor value, the factor r of modulus n, which makes the discrete
logarithm computation possible. The only entity, that knows the factorization
of n, thus the value of r, is RA (Revocation Authority). From logg1

C12, the
RA gets KS(w1 + w2S2). From logg1

C1S , RA gets KS . Then, using r, RA is
able to compute the revocation information rev = (w1 + w2S2)−1 mod (rr′s′).

The rev value is put on a blacklist. Then, the equation Crev
12

?≡ C1S (mod n) is
evaluated during all signature verifications for all revs. If it holds, the Meter has
been revoked and the Collector rejects the signature.

Identify. IDM ← Identify(params,GSKM
(data),KRA,KC) - The purpose

of the protocol is to de-anonymize the signature so that the concrete Meter is
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disclosed. This can be done only in exceptional situations, for example in cases
in which malicious users need to be identified. In that case the Collector sends to
the Revocation Authority the signature GSKM

(data). RA gets KS(w1 + w2S2)
and KS in the same way as in the Revoke protocol above. Using these value,
RA is able to compute gw1

1 gw2
2 = gw1+w2S2

1 and find in its getKey transcript
database the corresponding commitment CC . The commitment is then sent back
to Collector, who can learn the Meter’s identifier IDM and owner’s identity from
CC using its getKey transcript database. Using this method, it is assured, that
Collector and Revocation Authority must cooperate on the de-anonymization
and only Collector learns the Meter’s and owner’s identity. This distribution
of privileges protects users’ privacy and makes the scheme less vulnerable to
attacks.

3 Scheme Implementation

In Sect. 2, we used the abstract CS notation to describe the protocols. This nota-
tion allows simple description of proofs of knowledge about discrete logarithms
according to their purpose. It has been shown in [8] that a large variety of proofs
and their logical compositions can be constructed. However, for implementation,
it is necessary to describe the protocols in details. The proof of knowledge proto-
cols can be implemented in many ways, interactive or non-interactive. We have
chosen the non-interactive implementation based on Fiat-Shamir heuristic [11]
and Schnorr signatures [30]. In our construction, the challenge e is computed as
a hash function of all past cryptographic values instead of receiving e from the
Collector. This construction has been proven secure in the random oracle model
[27]. The full specification of GroupSign and GroupVerify protocols is shown
in Fig. 4.

3.1 Performance Evaluation

The scheme proposed requires no complex operations, such as bilinear pairings.
Only simple modular operations are required. To compute a group signature, the
Meter must compute 11 modular exponentiations and 3 modular multiplications.
To verify a signature, the Collector must compute 12 modular exponentiations
and 10 modular multiplications plus one exponentiation per an item on a black-
list. These operations are easily computable on contemporary micro-controllers
in a very short time. We implemented the operations, i.e., modular exponenti-
ation (Mexp), modular multiplication (Mmul), plain multiplication (Mul) and
hash function (Hash), on a device with 900 MHz ARM Cortex-A7 CPU with
1 GB RAM using 6 different modular arithmetic libraries written in C. The per-
formance results of the fastest library, GMP [16], are shown in Fig. 5. The size of
the operands is shown in the graph captions and the size of modulus is 2048 b.
We present the average of 100 measurements.

The results show that the most computationally demanding operation in
the scheme takes around 57 ms using the fastest library (GMP [16]). We also
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implemented other required operations (random number generation, (modular)
multiplication, hash functions, subtraction) but most of them were faster than
the modular exponentiation at least by several orders of magnitude.

The total time required to compute a group signature using our experimental
implementation was under 0.5 s and the time of verification on the same device
was also under 0.5 s. We consider these results to be a good proof of practical
implementability of our scheme on existing, off-the-shelf devices commonly used
in smart-metering applications.

4 Scheme Analysis

In this section, we show that the scheme proposed in this paper is secure and
privacy-friendly. We prove that group members are able to construct a valid
signature on data (the scheme is complete), that non-members are not able to
create a valid signature on data (the scheme is sound) and that the signature
leaks no unnecessary information about signers (the scheme is zero-knowledge).

4.1 Security Analysis

Completeness The group members who know a valid private group key KM =
(w1, w2, w3, g3) are always able to construct a signature that is accepted by the
Collector’s verification equations shown in Fig. 4. The completeness is proven by
Eqs. 2–8. All operations are in Z

∗
n.

Ā = AegzS1
1 gzS2

2 g′zS3
3 = GPKeKSgrS1

1 g−eKSw1
1 grS2

2 g−eKSw2
2 g′rS3

3 g
′−eKSw′′

3
3 =

= grS1
1 grS2

2 g′rS3
3 = Ā (2)

¯̄A = AeGPKzS = GPKeKSGPKrSGPK−eKS = GPKrS = ¯̄A (3)

C̄12 = Ce
12g

zS1
1 gzS2

2 = gw1KSe
1 gw2KSe

2 grS1
1 g−eKSw1

1 grS2
2 g−eKSw2

2 = grS1
1 grS2

2 = C̄12

(4)

Ā

C̄12
=

A

C12

e

g′zS3
3 = (

gw1KS
1 gw2KS

2 g
′w′′

3 KS

3

gw1KS
1 gw2KS

2

)eg′rS3
3 g

′−eKSw′′
3

3 = g′rS3
3 =

=
grS1
1 grS2

2 g′rS3
3

grS1
1 grS2

2

=
Ā

C̄12
(5)

¯div =
A

C12

e

Cz3
S = (

gw1KS
1 gw2KS

2 g
′w′′

3 KS

3

gw1KS
1 gw2KS

2

)eCr3
S C

−ew′′
3

S = Cr3
S = ¯div (6)

C̄S = Ce
Sg′zS

3 = g′eKS
3 g′rS

3 g′−eKS
3 = g′rS

3 = C̄S (7)

C̄1S = Ce
1S(g1)zS = geKS

1 grS
1 g−eKS

1 = grS
1 = C̄1S (8)
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Fig. 4. GroupSign and GroupVerify algorithms implementation.



Privacy-Enhanced Data Collection Scheme for Smart-Metering 425

Fig. 5. Time necessary to compute modular operations on 900MHz ARM microproces-
sor using GMP library.

Soundness. We implemented the group signature using the Fiat-Shamir heuris-
tic applied to discrete logarithm proof of knowledge protocols. This is a common
construction used in many other schemes [7]. Here, we follow the proof presented
in [6,18].

In the detailed description of the GroupSign protocol provided in Fig. 4 it
is visible that the Meter first generates randomness (values rS1, rS2, rS3, rS , r3),
then computes the commitments to these values (values Ā, ¯̄A, C̄12, C̄S , C̄1S , ¯div).
The hash of all these values is then used as a challenge e. Since the hash is a one-
way function, the Meter is unable to predict e before selecting the randomness.
Thus, after committing to randomness, the Meter must be ready to response
any challenge e since its value is unpredictable.

In the proof below we show that Meters that are ready to respond at least
2 challenges (e, e′) know the private group key KM . Thus, malicious users not
aware of KM are able to answer at most 1 challenge of 2k possible challenges,
thus have the probability P = 1

2k
of creating a valid signature.

Let’s assume that exists a malicious Meter that is able to produce signatures
for different challenges (e, e′) that get accepted by the Collector, without knowing
KM . A valid signature must pass all signature checks shown in Fig. 4. Thus, both
the equations must hold:

C̄1S = Ce
1S(g1)zS (9)

C̄1S = Ce′
1S(g1)z′

S (10)

By rewriting the equations we get:

1 = Ce−e′
1S g

zS−z′
S

1 (11)
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And finally we get:
logg1

C1S = (zS − z′
S)(e′ − e)−1 (12)

The Eq. 12 can be easily computed by the Meter since it knows all values
e′, e, zS , z′

S . Thus, the Meter knows the logg1
C1S . Therefore, it knows KS .

The same method can be applied to all verification equations, proving that
Meter must know KS ,KSw1,KSw2,KSw′′

3 to be able to construct a valid signa-
ture.

However, from these values, the discrete logarithm representation of GPK,
thus KM , can be efficiently computed. We reached the contradiction to our
assumption, there are no users that can pass the verification checks without
knowing KM .

Zero-Knowledge. The protocols specified in Sect. 2 can be implemented in
an interactive version with a challenge e randomly chosen by the Collector. In
that case, the honest-verifier zero-knowledge (HVZK) property can be proven
by constructing the standard HVZK simulator. The simulator is able to out-
put a protocol transcript that is computationally indistinguishable from a real
protocol without using any Meter’s secrets. Thus, it can be proven that the pro-
tocol leaks no secret information. The simulator proceeds in a standard way, i.e.
first randomly selecting the answers z, randomly generating the challenge e and
computing the commitments using the Collector’s verification equations.

However, we use the non-interactive version based on hash function in our
implementation. The random challenge is substituted by a hash output to
improve the performance of the scheme. Nevertheless, we disclose exactly the
same values as in the interactive version except the hash. Therefore, assum-
ing the hash function is secure, the protocol releases no information about the
private keys.

4.2 Privacy Analysis

In the beginning of the paper we stated that the group signature is anonymous,
untraceable and unlinkable to other signatures of the same Meter. We analyze
these properties below.

– Anonymity: the only link between a particular Meter and a signature is the
private key KM . However, the key is never disclosed in any form as proven
in the zero-knowledge analysis above. The g3 value is randomized to g′

3 =
g

w′
3

3 mod n for each signature.
– Untraceability: the Collector is unable to link the getKey protocol tran-

script and the GroupVerify protocol transcript. This is achieved by using
different modular groups in both protocols. During the getKey protocol, the
Collector learns the Meter’s key commitment in Z

∗
p. During the GroupVerify

protocol, the Collector learns the Meter’s key commitment in the Z
∗
n group.

It is computationally unfeasible to decide whether same keys are present in
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commitments using different groups unless discrete logarithm is computable.
In both groups the computation of discrete logarithms is hard without the
knowledge of a trapdoor.

– Unlinkability: no entity except Revocation Authority is able distinguish
whether two signatures originate from a single Meter or two different Meters.
This holds even if same data was signed. This feature was achieved by the
randomization of all Meter-specific values by the session key KS . As visible
in Fig. 4, all values that would be otherwise constant are randomized by KS .
The KS key changes for each signature. The de-randomization is possible only
if discrete logarithms can be efficiently computed. The only entity that can
compute discrete logarithms in Z

∗
n is RA because it knows the factorization

of n thus knows the Okamoto-Uchiyama trapdoor. This RA’s ability is used
to achieve the revocation and malicious user identification features.

5 Conclusion

In this paper, we introduced a novel scheme for secure and privacy-friendly
data collection. The scheme assures data group authenticity and integrity, like
the classical digital signatures. In addition, the privacy-enhancing features are
added. The sender’s identity is not disclosed to collectors and all signatures are
mutually unlinkable and untraceable. In contrast to existing schemes, our scheme
provides advanced features for the identification and revocation of malicious
users. The attackers can be efficiently revoked from the system and their identity
can be disclosed so that they are held responsible for their acting in the system.
Additionally to the full cryptographic specification and security analysis, we also
presented the performance analysis. The implementation results show that the
scheme including revocation features is practical and easily implementable on
microprocessors commonly used in existing smart-metering systems. Currently,
the scheme is being piloted in smart-house applications in cooperation with
industrial partners.
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Abstract. In this paper, we present a novel secure architecture for
OS-level virtualization on mobile devices. OS-level virtualization allows
to simultaneously operate multiple userland OS instances on one physi-
cal device. Compared to previous approaches, our main objective is the
confidentiality of sensitive user data stored on the device. We isolate
the OS instances by restricting them to a set of minimal, controlled
functionality and allow communication between components exclusively
through well-defined channels. With our secure architecture, we there-
fore go beyond the common deployment of Linux kernel mechanisms,
such as namespaces or cgroups. We develop a specially tailored, stacked
LSM concept using SELinux and a custom LSM, leverage Linux capa-
bilities and the cgroups devices subsystem. Based on the architecture,
we present secure device virtualization concepts allowing to dynamically
assign device functionalities to different OS instances. Furthermore, we
develop a mechanism for secure switching between the instances. We
realize the architecture with a fully functional and performant implemen-
tation on the Samsung Galaxy S4 and Nexus 5 mobile devices, running
Android 4.4.4 and 5.1.1, respectively. With a systematic security evalu-
ation, we demonstrate that the secure isolation of OS instances provides
confidentiality even when large parts of the system are compromised.

Keywords: Mobile device security · Security architecture · Data confi-
dentiality · Operating System security

1 Introduction

Today’s mobile devices are not only widely used, but also represent a fingerprint
of their users. Essential corporate and private data is likely to be found on those
devices, rising the necessity to carefully consider security aspects, such as data
confidentiality protection. However, the prevalence of only few Operating System
(OSs), and the pace of their development make them prone to get targeted by
attackers [5,15]. The abundance of security issues makes these devices vulnerable
to a large number of attacks [16,22,23,31]. Efforts were made to mitigate the
susceptibility towards common attack vectors [1,3,10,14,21]. Nevertheless, an
c© Springer International Publishing Switzerland 2016
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adversary remains able to access all data on the phone with common privilege
escalation attacks. None of the approaches features an overall secure architec-
ture for data confidentiality, although being the utmost goal when it comes to
protecting sensitive private and corporate data.

A promising way to approach data confidentiality is to provide multiple, vir-
tualized environments on a single mobile device [6]. OS-level virtualization [19]
allows to simultaneously operate multiple userland OS instances running on a
single kernel instance. These virtualized instances are henceforth called contain-
ers. In [27,28], Wessel et al.propose such an architecture based on Android. How-
ever, their and other OS-level virtualization approaches [2,9] lack a full-fledged
secure architecture for domain isolation and data confidentiality protection.

In this paper, we present a novel secure architecture for OS-level virtualiza-
tion on mobile devices for Linux driven OSs. Our main objective is the confi-
dentiality of sensitive user data at container boundaries. This means, we achieve
data confidentiality when data inside a container remains confidential to other,
possibly malicious containers at all time. For this purpose, we isolate contain-
ers by restricting them to a set of minimal, controlled functionality. We confine
communication between components to only specific channels in our architecture.
Based on this, we develop secure device virtualization concepts and a convenient
mechanism for secure switching between containers. Addressing common OS-
level virtualization security requirements [24], we focus on the development of
an easily portable solution, suitable for real-life application. In particular, our
contributions are:

– The development of a kernel-based secure virtualization architecture for
data confidentiality, including a Secure Element (SE).

– Improved container isolation through confining containers to minimal, con-
trolled functionality and to only specific communication channels. We develop
a stacked Linux Security Modules (LSM) concept using Security-Enhanced
Linux (SELinux) and a custom LSM. We leverage Linux capabilities and the
control groups (cgroups) devices subsystem.

– A secure device virtualization mechanism allowing to dynamically assign
hardware functionalities on a per-container basis. A classification of devices
into different device categories.

– The introduction of a fast and secure container switch mechanism with
security devices.

– A full implementation on the Samsung Galaxy S4 and the Nexus 5 devices.
– A performance evaluation for the realization on the Nexus 5 device.
– A systematic security evaluation of our architecture showing data confi-

dentiality even when large parts of the system are compromised.

The paper is structured as follows. In Sect. 2, we present related work. We
describe our secure architecture in Sect. 3. In Sect. 4 we present our concept
for container isolation. Based on that, we elaborate the refined secure device
virtualization mechanisms in Sect. 5. We develop the secure container switching
mechanism in Sect. 6. In Sect. 7, we conduct a systematic security evaluation.
We describe the implementation and show performance results in Sect. 8 and
conclude in Sect. 9.
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2 Related Work

The necessity for data confidentiality protection results from the numerous
attacks on mobile device OSs, especially on the widespread Android platform
[16,22,23,31]. Another threat for confidentiality are applications that leak sensi-
tive data [13]. Approaches for security enhancements on Android are presented
in [1,3,10,14,21]. These approaches focus on the middleware layer to, e.g., gain
fine-grained control over the OS permission system [3,21], to restrict applications
from OS resources [10,14], or to harden the OS [1]. Introducing security mech-
anisms on middleware level results in a highly complex system, a large Trusted
Computing Base (TCB) and a very OS specific solution.

To tackle this problem, virtualization techniques create isolated environments
for distinct purposes, namely user level isolation, system- and OS-level virtualiza-
tion. User-level isolation [7,8,26] is an approach to create separate environments
through isolating applications on the framework level. A successful attack on
privileged processes results in gaining full control over the system. System vir-
tualization [11,17,25] deals with full OS virtualization including the kernel. The
approach is strongly hardware dependent, because drivers have to be reimple-
mented for all hardware devices. OS-level virtualization separates userland OS
instances running on a single modified kernel. An attacker must compromise the
kernel to break out of a container. Achieved with LXC, Jails [18], Docker [20],
OpenVZ, or Linux-VServer, the technique is established on x86 and considered
efficient [24,30].

Cells [2] is an OS-level virtualization approach for Android mobile devices.
They introduce device namespaces to provide a framework for device driver vir-
tualization on kernel-level. Device namespaces multiplex hardware driver states
on a per-container basis. With the concept of active device namespaces, drivers
are made aware of the current active namespace, i.e., the foreground container.
The work puts the main focus on realizing the functionality, but lacks the con-
sideration of security aspects. No secure architecture is provided and data con-
fidentiality is not discussed.

Based on Cells, Condroid [9] puts the focus on efficiency. Device virtualiza-
tion is mostly applied in the Android framework. More OS resources are shared
among the containers, such as their read only parts and OS services. For con-
tainer management, the authors port LXC and run it in a single host Android in
the root namespace. This makes the solution highly specific to a certain OS ver-
sion and blends domain isolation with domain interaction, resulting in a weaker
security model and a larger TCB.

AirBag [29] leverages OS-level virtualization in a single phone usage model for
probing and profiling of untrusted applications. The framework allows the user
to install and execute new applications quarantined inside a second, untrusted
container. In contrast to our approach, their objective is the preliminary analysis
of Android applications before their execution in the trusted container.

The virtualization approach by Wessel et al. [27,28] forms the starting point
of our work. They leverage mechanisms, like (device) namespaces and cgroups.
Focusing on security aspects and integrity protection, they develop a security
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Fig. 1. The secure virtualization architecture.

infrastructure. The infrastructure provides concepts for remote management,
secure communication and storage protection. In [27], the authors elaborate the
integration of an SE and a device provisioning and enrollment process with a cer-
tificate infrastructure. They describe a many-to-many usage model for contain-
ers, users and devices. However, their infrastructure lacks a secure architecture
for data confidentiality, secure device virtualization and container switching.

3 Architecture Overview

Figure 1 gives an overview on the components of our secure architecture. The
illustration depicts different containers C0, C1, ..., Cn running on a single Linux
kernel. We differentiate between components located in user and in kernel space.
Another differentiation is between common components on a stock Linux based
mobile device and between components we added. The latter ones are highlighted
by bold letters. The varying background grayscale colors visualize the separation
of components into different privilege levels. The dark gray colored components
are in the TCB in root namespace. The mid gray C0 is a privileged container in
contrast to the unprivileged containers Ci (i.e., C1, ..., Cn).

3.1 Hardware and Kernel Components

The hardware part consists of common hardware devices and security devices.
We define the SE, LED and power button as security devices. These are non-
virtualized hardware devices, because they serve a security critical purpose. They
are not accessible to C0..n. The LED and power button are usually available on
common mobile devices. In our architecture, the power button’s purpose is to
securely initiate a switch between containers (see Sect. 6). The LED is a secure
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container indicator for the user, showing the unique color of the currently active
container. C0..n are thus unable to disguise their identities to fake another con-
tainer. We use the SE as secure storage for integrity and confidentiality protec-
tion. The SE is a passphrase-protected device, e.g., a smartcard connected via
Near Field Communication (NFC). We securely virtualize the remaining devices
in order to ensure a seamless user experience and the operability of the contain-
ers on the device (see Sect. 5). That includes, amongst others, graphics, input,
Radio Interface Layer (RIL), sensors, or Wi-Fi device virtualization. In kernel
space, we substitute the stock mobile device’s kernel with our modified Linux
kernel. The kernel handles multiple containers through the (device) namespaces
feature. Further kernel mechanisms for container isolation and resource control
we leverage in our secure architecture are capabilities, cgroups, as well as a
stacked LSM with SELinux and a custom LSM.

3.2 User Space Components

Containers C0..n, the Container Management (CM) and Security Management
(SM) are located in user space. Only the SM and the CM are part of the TCB.

Security Management. The SM has the responsibility to securely and exclu-
sively communicate with different SEs. The SM performs cryptographic opera-
tions for the CM, such as container storage key unwrapping using the SE.

Container Management. The CM configures the kernel features and acts as
mediator between the containers. It has exclusive access to the LED and power
button. The CM is responsible of container operations, such as to start C0..n or
to securely switch between containers (see Sect. 6). The CM is also responsible of
container storage encryption. Container storage is protected with a symmetric
container key. This key is wrapped with the public key belonging to the SE’s
private key. When a container starts, the CM asks the SM with a provided
passphrase to unwrap the container key using the SE.

Container C0. This is a special, privileged container, comparable to dom0 in
XEN [4]. C0 is used for local container management with a Trusted GUI and
for secure device virtualization (see Sect. 5). The Trusted GUI enables the user
to securely enter the passphrase required for starting containers, to initiate a
container switch and to make container specific and device global settings. We
use the Driver MUXs as device multiplexers for user space device virtualization
over container boundaries. Device drivers, often proprietary binaries, are mostly
running only within a userland OS, such as Android. We therefore require C0 to
run a minimal OS for hardware device driver access.

Container Ci. These components are the isolated and unprivileged contain-
ers. The CM encapsulates C0..n into their specific namespaces, maintained by
the kernel. During start-up of a container, the CM creates the namespaces and
configures the security mechanisms. The vService in each container realizes an
interface to the CM for sending commands to a container, e.g., to shutdown,
suspend or resume. The Driver Proxies request device functionality from C0’s
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Fig. 2. Kernel mechanisms for container isolation.

Driver MUXs (see Sect. 5). This enables Ci to obtain specific device functional-
ities without explicit device access.

4 Container Isolation

In the following, we describe the isolation of the containers from each other and
the root namespace. In order to achieve strict isolation, we restrict C0..n to a
minimal set of functionality. We allow communication only over well-defined and
protected communication channels. Figure 2 depicts a detailed view on the con-
tainer isolation of Ci and Cj with the kernel mechanisms we make use of. We
isolate components on intra- and inter-container basis. We support and enforce
the commonly deployed LSM realization SELinux inside containers. This iso-
lates processes inside containers to protect it from being compromised. The CM
loads and enforces a global LSM policy for each container. We also require LSM
mechanisms for inter-container isolation. Therefore, we use the LSM stacking
mechanism1. This mechanism allows to register multiple LSMs in the kernel.
Multiple handlers are hence called on an LSM hook to perform access control.
A hook is successfully passed only if each of the handlers grants access to the
kernel resource.

4.1 Communication Channels

We specify secure and exclusive communication channels between the compo-
nents over well-defined interfaces. This restricts the components to interfaces
exclusively used for container management and for secure device virtualization.
First, we classify communication channels into three different layers of commu-
nication, as depicted in Fig. 3.

Layer 1 Communication. Layer 1 communication is on system call level, i.e.,
calls like open, write or ioctl, which are executed in the kernel. Any commu-
nication between components results in layer 1 communication interacting with
1 http://article.gmane.org/gmane.linux.kernel.lsm/22729.

http://article.gmane.org/gmane.linux.kernel.lsm/22729
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the kernel. On this layer, we prevent containers from unspecified device access
with the cgroups devices subsystem based on device major minor numbers. We
allow C0..n to directly access device drivers virtualized on kernel-level via device
namespaces (see Sect. 5). To prevent components from critical system calls, we
use Linux capabilities and our LSMs.

Layer 2 Communication. Layer 2 communication involves the communica-
tion between two or more processes. This layer represents all types of low-level
Inter-Process Communication (IPC) over OS resources, e.g., sockets, and results
in system calls. We separate this layer between containers through namespaces
isolation. With our custom LSM, we selectively allow access to defined kernel
resources relevant for IPC. An example is the denial of accessing certain sock-
ets. This makes it possible to explicitly grant or refuse the establishment of
communication channels.

Fig. 3. Communication channels of the secure architecture.

Layer 3 Communication. This layer uses a protocol for IPC between the
components. We secure the communication by message filtering and by utilizing
a secure protocol. Figure 3 illustrates the following layer 3 channels we allow.

– CM and SM: The CM uses this channel in the root namespace to retrieve
the results of the cryptographic operations that the SM executes.

– CM and external components: For remote device management via a back-
end, the CM offers a protocol on an update and remote control interface.

– CM and vService: To send commands to C0..n and to check their status,
the CM communicates via the status interface with the vService inside C0..n.

– CM and Trusted GUI: The CM offers a control interface for local container
management. The Trusted GUI in C0 uses this control interface.

– CM and Driver MUX: The Driver MUX utilizes this channel to notify
the CM via the vDeviceRegister interface of the user space virtualized device
functionality the multiplexer offers.

– CM and Driver Proxy: The Driver Proxy uses this channel to demand the
CM via the vDevice interface for setting up the connection channel to the
Driver MUX to obtain functionality of user space virtualized devices.
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– Driver MUX and Driver Proxy: This channel, set up by the CM, exists
for user space-based device virtualization. C0 accesses hardware devices on
layer 1 on behalf of Ci and selectively provides the functionality to Ci.

4.2 Identification and Isolation of OS Functionalities

To enforce data confidentiality across container boundaries, we prevent C0..n

from defying namespace boundaries through other than the specified channels.
In order to do so, we confine the containers to minimal OS functionalities with
the kernel mechanisms (see Fig. 2). System calls represent the interface via which
all components act and are thus crucial for our secure architecture. In order to
achieve a global view on these resources, we investigate all system calls and their
usage. Based on the whole set of system calls, we try to identify and group OS
functionalities. In the following, we elaborate the protection of the functionalities
using the aforementioned security mechanisms.

Mounting. We only allow containers to execute noncritical mount operations.
First, we embed every container into its own mount namespace, which pro-
vides each container with isolated filesystem mount views. For managing the
mount permissions of containers, we then introduce mount restrictions with our
custom LSM. This prohibits mounting of non-required resources and specifies
paths where a container can mount to. For example, C0..n are only allowed to
mount sysfs to /sys and procfs to /proc. Containers are, e.g., not allowed to
mount cgroups, which prevents C0..n from overwriting cgroups configurations.
Our custom LSM performs the mount permission checks based on a static mount
whitelist in our LSM policy. The list specifies the device, mount point, filesys-
tem type and mount flags. We furthermore drop the capability CAP SYS ADMIN,
because it comprises various critical functionality we prohibit. However, the
mounting privileges are part of this capability. We therefore introduce a new
capability CAP SYS MOUNT, which only allows a process to (un)mount and to cre-
ate new mount namespaces. The new capability contains the minimal required
subset of mount-related privileges former part of CAP SYS ADMIN.

Filesystem Access. For some of its mounted filesystems, a container should
only have limited file access. To achieve this, we define protection rules with our
custom LSM. We may assume fixed locations of objects in the filesystem due to
the fixed mount points we defined. We utilize path-based whitelists, to specify
the access permissions for filesystem locations. We define read-write, read-only
and privileged container whitelists in our LSM policy. The LSM traverses the
whitelists when the system triggers the corresponding LSM hooks, e.g., for the
open or ioctl system call. An example is the access restriction to the sysfs
filesystem. We allow a container to mount it in order to operate correctly, but
we limit the access in this filesystem. For example, the LSM restricts an attempt
from C0..n to set the LED color via the sysfs filesystem.

Device Access. Containers must be able to fulfill their usage purpose, which
often requires virtualized device functionality from C0, such as telephony or
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sensors (see Sect. 5). The goal is thus to enforce fine-granular control over device
access permissions on a per-container basis. We grant or deny containers access
to devices using the cgroups devices subsystem. This subsystem uses a whitelist
configuration. The list specifies rules, which contain the device major minor
numbers, its type, and the kind of operation allowed (e.g., mknod, read, write).
The /dev/random pseudo device is an example for a device we allow a container
to access. Since each container is in a different cgroup, we provide different per-
container configurations. We adapt the configurations dynamically according to
whether a container is in the fore- or background (see Sect. 6). With the device
namespaces for kernel virtualized devices, we provide filtering mechanisms for
fine-granular usage control of a device’s functionality even when device node
access is generally granted. Using the described mechanism allows us to permit
the container to populate its own device directory. This results in less changes to
containers and provides maximum compatibility. Therefore, we do not drop the
capability CAP MKNOD used for creating filesystem nodes. We enforce the security
in using mknod via cgroups devices and LSM mount whitelisting.

IPC. To achieve container isolation, we generally restrict all kind of IPC between
namespace boundaries. Solely for container management and secure device vir-
tualization, we allow IPC functionality via protected and controlled commu-
nication channels (see Sect. 4.1). For inter-container isolation, IPC namespaces
provide containers with dedicated resources for IPC inside containers and iso-
late them at container boundaries. With our custom LSM, we restrict unau-
thorized namespace crossing IPC. The LSM considers the PID namespaces for
file-based IPC via the mounting and filesystem access restrictions. An exam-
ple are checks for socket functionality with LSM hooks responsible for control-
ling inter-container IPC. We drop the capabilities CAP IPC (OWNER, LOCK) and
CAP SYS ADMIN. These capabilities include critical IPC privileges. For instance,
CAP IPC LOCK allows a process to lock memory, e.g., to prevent the OS from
swapping. Such locking goes beyond the scope of a container and can lock-up
the whole system if used by a malicious process.

Networking. We allow containers to individually setup the network within
their boundaries. Therefore, we keep the networking capabilities CAP NET *. We
embed containers into their own network namespace. Thus, the scope of the
capabilities is limited to only affect the container’s own subnet. However, we
preserve the privilege to control the network dataflow. The CM sets up the
global network configuration of the containers. The CM provides virtual network
interfaces (veth) for each container with individual IP addresses. We conduct
network package filtering and control on global level with netfilter components.

Signal Handling. With signals, a malicious container might adversely influ-
ence components of the architecture. However, a container should be capable of
sending signals inside its namespace. We thus restrict containers from sending
signals over namespace boundaries. We secure this functionality through PID
namespaces, which ensure that signals from processes remain only visible inside
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a container’s namespace. Therefore, we are not required to drop the capability
CAP KILL.

Resource Consumption. We provide containers access to sufficient system
resources for working conveniently, but not to excessively exhaust resources.
Mount namespaces provide a container with its own fixed and limited filesystem.
With the cgroups CPU subsystem we determine a maximum share of the CPU
resource for a process group. With the memory subsystem we ensure that a
process group can only allocate a fixed maximum amount of memory. We do not
need to drop the capability CAP SYS NICE, because even if a container changes
process priorities, it cannot exceed its CPU usage limit.

Process Management. We grant a container to reduce the capabilities of its
processes. We thus do not drop the capability CAP SETPCAP. It allows processes to
drop capabilities for child processes. The containers’ init process has a reduced
set of capabilities and is only allowed to further reduce this set. We prevent
processes from process directory manipulation and accounting. For that purpose,
we drop the capabilities CAP SYS (PACCT, CHROOT, ADMIN).

Time Management. We allow only C0 to set the system time. Consequently,
we drop the capability CAP SYS TIME from Ci in order to prevent them from
setting the system time via system calls. However, in Android the time setting
functionality works via the /dev/alarm driver. This is unfortunately not covered
by CAP SYS TIME. We thus prohibit the access to /dev/alarm driver functionality
for Ci by introducing new LSM hooks for Android alarm. With our custom LSM,
we prevent time setting for Ci.

Power Management. In order to prevent containers from changing the global
power state, such as from shutting down or waking the system, we drop the
capabilities CAP SYS BOOT and CAP WAKE ALARM.

Kernel Module Loading. We prevent containers from loading kernel modules
by dropping the capability CAP SYS MODULE.

Debugging. To prohibit containers from obtaining debugging control over other
processes, we drop the capability CAP SYS PTRACE. We also enforce this with PID
namespace checks in the ptrace controlling LSM hooks.

Logging. In order to prevent containers from making changes to the kernel log-
ging functionality, we drop the capabilities CAP AUDIT (WRITE, CONTROL) and
CAP SYSLOG.

5 Secure Device Virtualization

Our architecture allows to securely and dynamically assign device functionali-
ties to C0..n on a per-container basis. We classify each device as either a non-
virtualized, security, user space virtualized, or kernel virtualized device. Depend-
ing on device type and container, we handle access to device functionality.
Figure 4 depicts the virtualization and access mechanisms for the device types.
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Fig. 4. Secure device virtualization mechanisms.

5.1 Non-virtualized and Security Devices

Security devices are part of the non-virtualized device category. We do not virtu-
alize security devices, since they provide critical, security relevant functionality.
In our architecture, these are the SE, LED and power button (see Sect. 3). We
prohibit C0..n access to these devices, as depicted by the crossed dashed lines
in Fig. 4. The hardware driver for accessing security devices is exclusively acces-
sible to management components inside the TCB. We restrict access using the
cgroups device access protection mechanism (see Sect. 4).

We allow access to other non-virtualized devices only to foreground contain-
ers. We enforce this device access rule during a container switch by dynamically
adapting the cgroups devices whitelist (see Sect. 6). An example for such a device
is the display, exclusively used by the foreground container.

5.2 Kernel Virtualized Devices

We virtualize kernel virtualized devices on kernel level using the device
namespace mechanism [2]. In Fig. 4, Ci is in foreground as active device
namespace, while Cj is in background. Ci is trying to access kernel virtual-
ized devices from userland. The device driver in the kernel is addressed via
the container’s /dev filesystem. Examples for kernel-level virtualized devices
are the alarm and input device (except for the power button), handled via the
/dev filesystem. The driver decides about access to the functionality it offers
based on the information about the active namespace (provided by the device
namespaces). This is represented by the device namespace filter component
in Fig. 4. With the cgroups devices subsystem, we have an additional driver-
independent and dynamic mechanism to deny containers access to a device.

5.3 User Space Virtualized Devices

A lot of devices are accessed via proprietary user space drivers. In user space,
we can re-use the existing drivers and achieve a portable solution. Thereby, we
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do not expand the TCB and avoid growing kernel complexity incurred by the
virtualization. We place the virtualization functionality inside privileged C0 and
reuse its userland drivers. With the cgroups devices subsystem, we grant access
to user space virtualized devices exclusively to C0, highlighted by the crossed
dashed lines in Fig. 4. Like Ci, C0 is also allowed to use kernel-level virtualized
devices, omitted in the illustration.

Fig. 5. The secure container switching procedure.

The Driver MUX in C0 multiplexes the hardware device functionality for Ci.
It utilizes the existing userland functionality and user space driver for hardware
device access. The Driver MUX keeps track of the driver states and is aware
of the different Ci. Device functionality is forwarded from C0 over a dedicated
communication channel to Ci. Userspace components in Ci are not aware of the
Driver Proxy redirection. The CM sets up the channel between C0 and Ci. The
Driver MUX registers the device it virtualizes at the CM via the vDeviceReg-
ister interface. When Ci tries to make use of a user space virtualized device’s
functionality, the Driver Proxy requests the CM for setting up a communication
channel to the Driver MUX over the vDevice interface. Depending on whether
we allow Ci access to the functionality of that device, the CM establishes the
communication channel, as illustrated in Fig. 4. This can, e.g., be realized by
creating a socket pair in the CM with the system call socketpair. The CM
also informs C0 of Ci requesting the device functionality. C0 is thus aware of the
specific container it is communicating with to securely provide Ci with different
sets of functionalities for each hardware device. An example is the radio interface
where Ci might be allowed to use the telephony and mobile data feature, while
Cj might only be allowed to make use of the mobile data feature. The filter in
the Driver MUX selectively handles device functionality access for Ci and filters
non-protocol compliant data.

6 Secure Container Switch

When the user is in C0, we use the Trusted GUI to trigger a switch to Ci. The
user initiates a container switch from Ci back to C0 by a long power button press
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in our concept. The CM handles the switch between containers. In the following,
we describe the container switch procedure and its initiation inside Ci.

6.1 The Container Switching Procedure

Figure 5 depicts the container switch procedure. The illustration shows the
switch between a foreground container CF and a background container CB to be
put to foreground. The CM requests the suspension of CF via the status interface
to the vService. The vService triggers the suspend routine of the container OS,
e.g., PowerManager.goToSleep on Android. The CM waits in a non-blocking
mode for the OS to suspend. In the next step, the CM restricts CF access to
non-virtualized (and possibly kernel-level virtualized) devices, which are prohib-
ited to background containers. We achieve this by dynamically reconfiguring the
cgroups devices whitelist in the CM. With this mechanism, we separate device
access decision making from device functionality filtering while accessing the
device driver. A container could refuse or fail to suspend if certain processes
do not release their resources. In that case, the CM kills those suspend block-
ing processes after a timeout. This forces the open devices to be closed and
the container to suspension. In the next step, the CM grants CB device access
via dynamic cgroups device allocation. The following step is to switch the active
device namespace to the new foreground container. The CM requests the resume
of CB via the container’s vService, e.g., PowerManager.wakeUp on Android OS.
To complete the container switch process, the CM sets the LED color according
to the color of CB via the kernel using the LED driver.

Fig. 6. The power button event capturing.

6.2 Switch Initiation in Ci

In order to securely switch to C0 despite being in possibly malicious Ci, we use
the power button. As a security device, it is exclusively accessible by the CM,
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meaning that power button events never arrive in C0..n. We define the behavior,
visualized in Fig. 6, as follows: Pressing the power button in Ci for more than a
fixed time interval ε, e.g., 0.5 s, triggers a switch to C0. Otherwise, the button
triggers the suspend or resume functionality of CF. We modify the kernel in order
to forward power button events exclusively to the CM, i.e., the root namespace.
The power button driver notifies the kernel of a power button pressed event
(KEY POWER, 1). The kernel forwards this event to the CM, which starts a timer
at time t1. When the power button is released, the release event (KEY POWER,
0) arrives at the CM at time t2. The CM then decides about the action to be
carried out according to the fixed time interval ε. Until now, none of the events
has reached any of the containers. When the user is in Ci and t2 − t1 ≥ ε, the
CM conducts the switch to C0. Otherwise, the CM transparently forwards the
power button press and release events to CF, resulting in either a resume or
suspend. For the injection of power button events into C0..n, we add a custom
event, KEY POWER INJECT, to the kernel. We modify the kernel to recognize this
special event type and to forward it as a common KEY POWER event type to CF.
The power button event now appears to CF as a common input event resulting
from an input device. In case the foreground container is C0, the CM always
injects the power button events unmodified.

A malicious container spoofing C0 could try to trick the user into believing
of having switched, while stuck in the malicious one. In the worst case, the user
might enter critical information inside malicious Ci. As the LED is a security
device, we use it in order to securely identify CF. The CM sets the LED color
to the container’s specific color.

7 Security Evaluation

We evaluate the security of our architecture regarding data confidentiality. If a
container is compromised, our isolation mechanisms (see Sect. 4) ensure that the
attacker with local root privileges cannot break out of the container’s boundary,
unable to leverage global privileges. An attacker can affect other components
only through the specified communication channels. In the following, we consider
the compromising of the different components and the implications on data
confidentiality.

Attacker Model: In our attacker model, we consider an adversary having the
capability of compromising every component outside the TCB. This includes
taking full control over the privileged C0 and the unprivileged Ci. The attacker is
able to execute runtime attacks and is furthermore capable of acting as a MITM
between the device and backend according to the Dolev-Yao model [12]. The
attacker is also considered to be able to fully compromise a remote management
backend. We also assume an attacker with physical access to the device trying to
manipulate it via common physical interfaces, e.g., via USB and the touchscreen.
However, we do not consider covert channels and advanced physical attacks on
the device or the SE. This excludes side-channel attacks, especially cold boot,
JTAG and microprobing attacks.
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7.1 Compromised Ci

Ci is exposed to common attacks on the OS. In order to harden a container
from compromise, we propose to limit it to trusted applications and to function-
ality required for its special purpose only. The processes inside Ci are isolated
and protected by SELinux. Full control over the container and its data is only
exposed when the attacker manages to take control over a process and to knock
off SELinux. Ci cannot retrieve more device functionality via established user
space virtualization channels than it is supposed to. C0’s Driver MUXs prevent
this by making data routing decisions and input validation. Ci is also not capa-
ble of retrieving additional device functionality via the vDevice interface, as the
CM handles setting up the connection between C0 and Ci. The cgroups devices
subsystem and device namespaces prevent Ci from prohibited device access to
kernel-level virtualized devices. Ci can send fake status information or refuse
commands from the CM via the status interface. However, Ci cannot deny con-
tainer switching. Consequently, the overall system’s behavior is not adversely
affected by the compromise of Ci. Data confidentiality is retained beyond con-
tainer boundaries, meaning that sensitive user data stored in other containers
remains protected.

7.2 Compromised C0

We tailored C0 to the minimal amount of required functionality. SELinux poli-
cies further raise its security level. However, proprietary code of the container’s
drivers cannot be completely controlled. In case of the compromise of C0, the
attacker has access to the local control interface to the CM. The adversary
can misuse device management functionality and intercept the user’s passphrase
entry for the SE. In this case, the attacker can start containers without user
interaction when the SE is present. The attacker is also able to change settings,
create and shutdown containers. C0 has full access to user space virtualized
devices and to already established Driver MUX channels. The attacker can hence
drop, eavesdrop and transmit forged data from, resp., to those devices. Sensi-
tive data transmitted over these communication channels must be encrypted to
be transparent to C0. The adversary controls the registering of device function-
alities via the vDeviceRegister channel, but cannot set up new channels. The
same consequences as for a compromised Ci hold regarding the status interface.
Kernel-level virtualized devices and security devices cannot be impaired. The
adversary also cannot take advantage of the update functionality of the CM,
since the update interface is not accessible for C0. In sum, the attacker controls
many functionalities. However, the data in other containers remains confidential.

7.3 Compromised TCB

The TCB exposes full access and control over all functionalities, communication
channels and data on the device. In contrast to running containers, non-running
ones are still encrypted and hence remain opaque to the attacker. Only if the
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passphrase of the SE was intercepted and the SE is present, as well as unlocked,
the adversary is able to retrieve to the containers’ data. If the passphrase was
not intercepted, the attacker cannot brute-force a present SE, because it locks
itself after a certain amount of retries. In order to obtain control over the SE,
physical access to the SE is required. The attacker has control over the backend
communication channel between the device and backend. This exposes the capa-
bility to download updates and encrypted backups. However, the device cannot
request container images from other devices, since the identity of the device is
bound to certificates on the device itself [27].

7.4 Backend and Remote Management Link

The network communication between the device and backend is exposed to
attacks according to the Dolev-Yao model. The channel is protected by TLS
encryption using certificates, which prevents gaining control over this channel.
In case the backend is compromised, the adversary can access the CM’s control
interface. The attacker is furthermore capable of carrying out denial of service
attacks towards the device. The device verifies software updates through sig-
nature verification. The adversary cannot sign updates of the device’s software
entities, since the software-signing key and functionality are separated from the
backend. Data confidentiality is hence preserved.

7.5 Physical Device Access

If the device is switched off and an attacker manages to extract all data, data con-
fidentiality is not impaired. The storage cannot be decrypted, since the SE and
its passphrase are both required for decrypting the containers. We also lock the
device to prevent attackers from overwriting partitions, e.g., in firmware upgrade
mode. We provide our own tailored recovery image featuring only uncritical func-
tionality. Connecting to the USB port, an attacker has no access to the device’s
data and functionality. We remove functionalities, such as ADB, or mounting
the device storage.

8 Implementation and Performance

We fully realized the implementation of the proposed architecture on the Sam-
sung Galaxy S4 and Nexus 5 smartphones, where we use Android 5.1.1, resp.
4.4.4, as container OS. We verified the easy portability of the architecture by a
proof-of-concept realization on the Nexus 7 tablet.

Linux Kernel. We enable the support of namespaces, capabilities and cgroups
features on the device’s kernel (AOSP kernel 3.42). We extended the kernel with
our new capability (see Sect. 4) and power key event capturing (see Sect. 6.2),
as well as the LSM stacking feature (see Sect. 4). We therefore include the LSM

2 https://android.googlesource.com/kernel/msm.

https://android.googlesource.com/kernel/msm
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stacking patch, SELinux and our custom LSM implementation. We use device
namespaces [2] for kernel-level virtualization, e.g., for the alarm, audio, binder
and input devices.

CM. We implemented the CM as a non-blocking callback-based daemon in C
using the epoll, inotify and timer kernel features. In contrast to LXC, the CM is
a specifically tailored, minimalist implementation. It consists of less than 10,000
lines of code. We realized the update, control, vDevice and status interface’s
protocol layer with protobuf3. Protobuf serializes structured data transmitted
over the different components and validates input. The CM processes incoming
messages with callbacks. For the internal status, control and vDevice interfaces,
we used UNIX domain sockets. We realized the remote control and update inter-
faces for the backend with TLS protected internet sockets. The CM establishes
communication channels into Ci during its startup procedure. For that purpose,
the CM creates a new Unix domain socket and inherits the corresponding file
descriptor to the newly created root process of Ci. The root container process still
under control of the CM binds the socket to a specific location in the container’s
filesystem. This location inside Ci can be accessed by specific processes support-
ing the virtualization, e.g., the vService or the Trusted GUI. The CM listens
on the shared file descriptor and is hence able to accept connections from these
processes over container boundaries. The CM sets up the cgroups subsystems,
drops capabilities, loads the SELinux policies and revokes custom LSM privileges
for Ci before delivering control to the container’s init process. For dropping
privileges, our LSM provides a special file in the securityfs pseudo filesystem.
As soon as a process opens this file, its namespace and nested namespaces lose
their LSM privileges, which is a one-way operation.

SM. We also implemented this component in C as a non-blocking callback-
based daemon using the epoll, inotify and timer kernel features. The SM includes
the OpenSSL library for cryptographic operations. In our implementation, we
replaced the SE by a PKCS12 softtoken. With the token’s private key, the CM
wraps the symmetric key for container en-/decryption using dm-crypt. We pro-
tect the container images with a hash in a signed container configuration, includ-
ing mount points, and user data images. The SM implementation comprises less
than 1,500 lines of code.

C0. This container runs a minimal Android. We kept only basic functionality
and the native user space drivers and modules, such as the rild for accessing
the radio hardware. We implemented the vService as an Android Service and the
Trusted GUI as an Android system application. We realized the Driver MUXs
as daemons that utilize the native drivers for user space virtualized devices,
such as RIL, Wi-Fi and sensors, including GPS. The interfaces for user-space
virtualization are also realized via UNIX domain sockets.

Ci. We modified the init process of Android to prevent init from firmware
loading. The firmware is loaded only once into the system by C0. We also prohibit

3 https://github.com/google/protobuf.

https://github.com/google/protobuf
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the OS from loading the SELinux policy. We modified the Android framework
to comply with a dropped resource set. For example, the stock Zygote process
checks capabilities and would prevent the OS from booting.

Fig. 7. Performance comparison on the Nexus 5 device between stock Android and our
secure architecture using PCMark & 3DMark on Android 4.4.4 & 5.1.1 (Color figure
online)

Performance Results. We ran the benchmark tools PCMark and 3DMark on
the Nexus 5 with stock Android and with our secure architecture on Android
5.1.1, resp. 4.4.4. On the secure architecture, C0-2 were deployed and simulta-
neously running. We executed the benchmarks in foreground C2. Figure 7 sum-
marizes the performance results, which are average values over more than 30
test runs. The total number of points achieved with our secure architecture in
3DMark is close to the stock device results, because 3DMark is rather stressing
the graphics hardware. 3DMark determines this figure based on the graphics and
physics test results in Fig. 7b, deducted from the results in Fig. 7c. The perfor-
mance impact of our architecture in PCMark is no more than 6.5 % compared
to stock Android 5.1.1 (resp. 10 % with Android 4.4.4). PCMark obtains the
total amount of points by aggregating over the subtest results in Fig. 7a. In gen-
eral, the user experience with the secure architecture exposed no recognizable
performance impact.

We measured the container switching time, C0-2 running, from C0 to Ci and
vice versa when CF is not suspended. The switching procedure consumes about
330 ms to switch from Ci to C0 and 300 ms from C0 to Ci. High load in C1

and C2, such as running HD videos, caused only negligible overhead. Most time
is allocated for suspending CF. We measured the switching time in case CF is
suspended to consume only about 60 ms. Thereby, most time is spent in resuming
former CB.
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9 Conclusions

We developed a secure architecture for OS-level virtualization on mobile devices.
Including an SE, the main objective of the secure architecture is data confiden-
tiality at container boundaries. To fulfill this goal, we systematically isolated
the different, simultaneously running containers from each other. Therefore, we
restricted the different containers to a minimal set of controlled functionality.
This made it possible to confine communication of the architecture’s components
to only well-defined channels for container management and device virtualiza-
tion. In order to realize the strict isolation, we devised a stacked LSM concept
using SELinux and a specially tailored, custom LSM. We furthermore leveraged
Linux capabilities and the cgroups devices subsystem. Based on that, we devel-
oped mechanisms for secure device virtualization and secure container switching
sustaining a seamless user experience. Thereby, we classified devices into differ-
ent categories and provided containers with distinct hardware functionalities on
a per-container basis. To demonstrate the feasibility of our approach, we real-
ized the secure architecture with a fully-functional implementation, applicable
in real-life, on the Samsung Galaxy S4 and the Nexus 5 devices. The perfor-
mance evaluation shows that the system performs well and that it is suitable
for real-life application. In our security evaluation, we demonstrated that the
architecture provides data confidentiality even when large parts of the system
are compromised.
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Abstract. Mobile-aware services can be regarded as data-sharing systems in
nature. In these systems, users obtain personalized service at the cost of sharing
their personal information. As a result, it will inevitably lead to the disclosure of
users’ profiles and raise the serious privacy concerns. To assessing the privacy
risk of sharing the user profile information items, in this paper we score and
measure the potential risk of users caused by sharing information for the sake of
personalization services. By adopted the 3-parameter logistic model, we explore
information item’s sensitivity, influence and probability of proper setting as well
as users’ potential attitudes to measure the privacy disclosure risk. The
MMLE/EM algorithm is then adopted to estimate the above parameters. Finally,
experiments on synthetic and real-world data sets are conducted and the results
show that the obtained scores of our approach fit well with the real-world data.

Keywords: Privacy scoring � Risk assessment � Mobile-aware sensing
service � Three-parameter-logistic model

1 Introduction

With the wide application of mobile-aware services, users shared a rich of personal
information to the service server for personalized service (e.g., location-based). Our
smartphones, wearable devices, cars, or credit cards generate information about where
we are, whom we call, or how much we spend. In addition, for scientific research and
commercial purposes, some user profiles are acquired, retained and/or processed by a
third party without the consent by the individual. In science, it is essential for the data
to be available and shareable. Sharing data allows scientists to build on previous work,
replicate results, or propose alternative hypotheses and models. However, during the
process of the sharing and processing, the presence of abuse the sensitive data will lead
to a privacy violation. Users’ identity information, behaviors and other sensitive
information will be leaked by the inference attack with the auxiliary knowledge that the
adversary might have gathered. For example, the attacker can infer the patient’s genetic
privacy information by analysis the personalized warfarin dosing [1]. The adversary
can infer the private information using social network data [2]. And an adversary can
exploit an online social network with a mixture of public and private user profiles to
predict the private attributes of users [3].
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The serious privacy risk caused by the sharing the user profile’s is overlooked.
Users can not choose the appropriate privacy protection technology, due to the lack of
accurate assessment of risk. How to measure the sharing/publishing private data
leakage risks resulting from our research goals. Note that we are not concerned with
database privacy, but with the privacy issues of releasing a single sensitive user profile.

In this paper, we address the privacy issues of sharing/releasing the user profile
information items by scoring the potential risk of users. This score measures the users’
potential privacy risk due to sharing behaviors for the sake of personalization services.
Our definition of privacy score increases with the (i) sensitivity of the information items
being revealed and (ii) with the impact of the revealed information items to the
recipients, as well as the probability for items of profile information to be externally
related. Intuitively, the more sensitive and influential of information item and the more
unique (sole) the user profile in the whole data set, the greater the potential user privacy
risk. We develop three-parameter-logistic model to estimate these three factors, and we
show how to combine these three factors in the calculation of the privacy score. Based
on this privacy score, users can select privacy enhancement technologies accordingly.
Specifically, we estimate information item parameters (sensibility, impact and random
setting) using EM algorithm, and use three-parameter-logistic model to calculate the
probability of each item that the user is set up appropriately. The complement of the
probability of each item that the user is set up appropriately is the privacy risks of each
item. Finally, we put all the item privacy score together to obtain the privacy score of
the user.

The contribution of this paper is threefold.

• We provided an effective methodology for computing users’ privacy scores in
mobile-aware settings.

• We gave EM algorithm for the computation of privacy score that will be used to
guide the selection of appropriate privacy protection technologies.

• We demonstrated the effectiveness of our proposed method over synthetic data sets
and real world datasets.

The rest of this paper is organized as follows. Section 2 provides the overview of
the related work and the preliminaries of privacy risk assessment are in Sect. 3. We
apply MMLE/EM algorithm to estimate the above parameters in Sect. 4. Section 5
presents the experimental results show that the privacy scoring fit well with real-world
data. Finally, Sect. 6 provides our concluding remarks.

2 Related Work

Current the works with respect to the privacy risk assessment are achieved mainly
through two ways. Firstly, privacy disclosure risk assessment is carried out through
simple inquiry. For instance, whether the profile contains any sensitive information
(precise location, personal physiological feature and identity) before it is released? If
not, the user will have a low disclosure risk. Secondly, privacy disclosure risk assess-
ment is conducted through technological means. Common risk assessment techniques

452 D. Quan et al.



include EBIOS (expression of needs and identification of security) [4] and PIA (privacy
impact assessment) [5]. The former protects personal data as if they are valuable
property and fully considers the privacy issues of the relevant data objects, while the
latter reviews the potential privacy issues and risks from the perspective of all stake-
holders and seeks ways to avoid and minimize the impact of privacy disclosure. To
avoid contact with raw data when conducting risk assessment, privacy risk should be
assessed based on privacy protection. The most commonly used method is security
multiparty computation [6]. In addition, with the rapid development of social network,
the leak of users’ privacy is more common. In Literature [7], the sensitivity and visibility
of information are assessed by the latent trait model, and privacy risk scoring mecha-
nism can automatically give scores for corresponding operations and alert at the early
stage. In Literature [15], p-link anonymous method that quantifies the similarity between
user profiles is adopted, which focuses on the anonymization of information items in
user profile but not on risk assessment.

Our model is inspired by the work [7], but there are some differences between them.
Our model takes into account more scoring indicators. From the perspective of risk
analysis elements, we extended their model. Since they focus on the sensitivity of
information and ignore the attacker’s inference ability, we improve our model in this
respect. By setting ′ = 0, we can get their scoring model. In addition, their model is
applied in social network, while our model can be used in more scenarios. Therefore,
we pay more attention to the influence of information, namely, information gain.
Works in [8, 9] assess the inference risk of attackers based on specific background
information of social networks (links from friends and information spreading in Circle
of Friends), but fail to consider the user’s privacy preference, namely, the sensitivity of
information. In this paper, the privacy disclosure risks in mobile-aware settings are
assessed by incorporating the sensitivity of information item, impact of the information
item and the random setting of the information of a user profile.

3 Preliminaries and Notions

In this section, we give the preliminaries for privacy risk assessment. And then, we
briefly introduce several notions involved in privacy scoring.

3.1 User Profiles

When users share their personal data with the mobile aware service system, attackers
(other common users in the service system or non-trusted third parties) can collect user
information to construct user profile set. User profile is a vector of the user information
items. We assume that user i has a profile consisting of m profile items (also called
information items). We use upi ¼ it1; it2; � � � ; itmf g denote this vector. For each profile
item, such as iti, user set a privacy level that determines their willingness to disclose
information associated with this item. At present, the domain of the privacy level in this
paper is 0; 1f g. It will be extended 0; 1; � � � ; lf g in the near future. Let U P ¼
up1; up2; � � � ; upnf g be n user profiles. The n� m matrix U stores the privacy levels of
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all n users for all m profile items. U i; jð Þ ¼ 1 means the ith user is willing to disclose
the contents of jth information item. While U i; jð Þ ¼ 0 means the user will not to
public the sensitive information associated with this item. For example, we assume user
i and let j ¼ mobile-phone numberf g be a single profile item. Naturally, setting
U i; jð Þ ¼ 1 is a more risky behavior than setting U i; jð Þ ¼ 0:Making i’s mobile phone
publicly available increases i’s privacy risk.

In general, when Uði; jÞ\Uði; ĵÞ, it reveals the user i is unwilling to disclose
contents of information item j, with respect to another information item ĵ. Similarly,
when U i; jð Þ\U i0; jð Þ, it means the user i to be more conservative about the privacy
settings of information item j than the other user i0. Then we introduce several related
vector.

Row vector Ui represents the privacy level settings on all information items of the
ith user. It indicates how much the user cares about the sensitive information items.
Column vector Uj represents the privacy level on the jth information item by all users.
It embodies the sensitivity of the information item itself. For instance, a 2 � 3 privacy

setting matrix is denoted as U ¼ 0 1 1
0 0 1

� �
. The first row vector 0 1 1½ � corre-

sponds to the user who does not really care about his/her privacy and thus most of the
items have a privacy weight of 1. The second row vector 0 0 1½ � corresponds to the
user who values his/her sensitive information items and thus most of the items have a
privacy weight of 0. As mentioned above, the column vector of the user data embodies
sensitivity of the information item itself. The first column vector 0 0½ �T represents
that the first item of information is highly sensitive and all the users will not sharing this
item. The second column vector 1 0½ �T represents that the second item of information
is moderately sensitive. Some users make it public while the rest make it unavailable.
The third column vector 1 1½ �T represents that the third item of information is not
sensitive. All users will share it without privacy risk.

3.2 Notions of Privacy Scoring

Privacy attitude quantifies how concerned the user is about his or her privacy. By
setting the information item public or not, the user reveal their privacy attitude
implicitly. For instance, those users who hardly release any sensitive items of infor-
mation have a serious attitude towards the privacy. Conversely, those users who
arbitrarily share the location on social networks in real time hold in contempt of the
privacy risk.

Sensitivity of a profile item quantifies the privacy level. The bigger value of the
privacy level, the more sensitive the item is. Intuitively, the higher the sensitivity of an
item, the less number of people are willing to disclose it.

The user profile in mobile-aware system has a multi-attribute characteristic. Users
leave their nickname, IM contact number, gender, friends and other items of information
on Weibo account. They also share the items: real name, IM contact number, graduate
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institutions and so on in Renren1. For instance in Zhenai.com2, some users make their
email, marital status, education level, income, hobbies and expertise, sexual orientation
and other information items available. For each item of information, the user can set the
privacy settings. The privacy is mainly addressed by restricting, through an
access-control mechanism. Which information item is fully open, which information is
totally hidden, and which information items are open to the friends while some ones
close to the stranger. The following examples illustrate the sensitivity of a profile item.

Example 1. Assume user i and two profile items j ¼ mobile-phone numberf g and
j’ = {age}. U i; jð Þ ¼ 1 is a much more risky setting than U i; j0ð Þ ¼ 1. The
mobile-phone number is more sensitive than the age. The sensitivity of an item depends
on the item itself. In the above example, phone number is more sensitive than the age.
Moreover, it depends on the user’s privacy preference. Such as, in dating platform
sexual orientation item is more sensitive than the phone number item.

Impact of the information item quantifies the information receiver’s information
gain. In the mobile-aware era, the public of certain information items of user profile
will incur the dramatic changes in cognitive for the receivers. The disclosure of the
information items shocks the public. In this paper, we adopt the slope of the curve that
characterized the probability of setting correctly as the impact of the information items.

Random setting of the information item quantifies the random guess. We often
consider users’ settings for different profile items as random process. There are still a
small chance that the user with no privacy protection ability setting the items correctly.
In such case, the user makes a guess to configure his profile items.

4 Assessment Method of Privacy Disclosure Risks

This section, we elaborate our assessment method of privacy disclosure risks. We
present the mathematic model and how to estimate the parameters of a specific infor-
mation item given the user profile matrix.

4.1 Active Privacy Assessment Framework

In this subsection, we present a general framework, as depicted in Fig. 1. In this paper,
we focus on the privacy risk assessment.

User profiles are the input and the risk scores of users are the output. The frame-
work is composed of two core components: privacy risk assessment component and
Privacy Enhancement Technologies component. The former is our topic in this paper,
and the latter is our follow-up study. We deem PETs as important, albeit orthogonal, to
our work.

Risk assessment task should have two functions: (1) the capability to actively
determine the level of privacy risks prior to data sharing (2) the ability to guide users to

1 a leading real-name social networking internet platform in China.
2 a social network for dating.
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select proper privacy protection technologies once data sharing has been decided. It
should be noted that efforts should be made to protect relevant data during the risk
assessment.

4.2 Mathematical Model

We assume users’ settings for different profile items as random variables described by a
probability distribution. In this case, the matrix U (CF. Sect. 3.1) observed is just one
sample that follows probability distribution. For binary matrix whose value range is
limited to f0; 1g, pij is used to represent the probability of choosing Uði; jÞ ¼ 1 by the
user i, namely, pij ¼ PrfUði; jÞ ¼ 1g. The privacy disclosure risk indicator is embodied
by privacy risk score. The greater the value is, more likely the user’s privacy will be
disclosed. Our basic idea is that privacy disclosure risk scoring obeys the following
principles:

More sensitive the information item is, the greater the value will be; more
influential the released information item is, the greater the value will be; more likely the
user profile is correlated with external data, the greater the value will be. Thus, privacy
disclosure risk score is a monotonic function of three parameters: information sensi-
tivity, influence, correlation possibility.

Inspired by the psychological test process, we take the user’s setting of information
item in related profile as a test. The 3-parameter logistic model is adopted to calculate
the probability that the information item meets privacy requirements after the setting,
namely, pij ¼ PrðUij ¼ 1jhi; aj; bj; gjÞ.

pij ¼ gj þ
1� gj

1þ e�ajðhi�bjÞ ð1Þ

The main parameter symbols and their descriptions are shown in Table 1.

Profiles Risk Score

Risk As-
sessment

PETs

Fig. 1. Privacy risk assessment and management framework

Table 1. Parameter description

Symbol Descriptions

α The influence of the released information item
β The sensitivity of information item
θ The user’s awareness of privacy protection

The risk that user profile is correlated with external data
qij The probability that the user i’s information item j is properly set
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pij is a function of three parameters ðaj; bj; gjÞ, which also involves the user i’s
privacy attitude hi. For a given user profile UPi with parameters ðaj; bj; gjÞ, the plot of
the above equation in Eq. (1) is called the characteristic curve of the information item.
The individual risk score of the information item j for the user i is quantified and
expressed as:

fenði; jÞ ¼ 1� pij ð2Þ

It shows that the privacy disclosure risk faced by the user i in terms of the infor-
mation item j equals to the probability of improper setting of this information item
j. When we put all the items’ score together, we obtain the privacy score of a user.

fenðiÞ ¼
Xm

j¼1

fenði; jÞ ð3Þ

To calculate the privacy score, we need to estimate the parameters ðaj; bj; gjÞ of all
information items j 2 f1; � � � ;mg and the privacy attitude hi of all the users
i 2 f1; � � � ; ng. Based on Eq. (1), the probability pij is computed, namely,
pij ¼ Pr½Uði; jÞ ¼ 1�. If the values of the parameters are known, the computing pij, for
every i and j, is trivial. Thereby, we can obtain the user privacy score according to
Eq. (3). In this following subsection, we will present in details how to estimate the
parameters of a specific information item j. that is, how to estimate the specific
h; a; b; g.

4.3 Estimation of Parameters

For different user i and different information item j, the distribution of uði; jÞ also varies,
so the Method of Moments does not work. Therefore, maximum likelihood estimation
(MLE) method is often adopted to estimate parameters due to its inherent advantages
[12].

We have n user profiles with privacy settings, whose generation process is inde-
pendently and identically distributed. Thus, the likelihood function is:

Lðh;a,bjUÞ ¼
Yn

i¼1

Ym

i¼1

Puij
ij ð1� PijÞ1�uij ð4Þ

As we know, pij ð1� PijÞ [ 0, taking its log will be helpful for further calculation.
The log-likelihood function is expressed as:

‘ðh; a; bjUÞ ¼ log Lðh; a; b; gjUÞ

¼
Xn

i¼1

Xm

j¼1

ðuij logPij þð1� uijÞ logð1� PijÞÞ: ð5Þ
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By calculating the conditional extremum of Eq. (5), the maximum likelihood
estimation value of the parameter is obtained. We estimate parameters in two cases:
(1) the parameters of the information item are known, and the user’s privacy attitude

needs to be estimated. That is, ð a!, b
!
, g!Þ are given and h

!
is to be calculated. (2) The

user’s privacy attitude h
!

and the parameters ð a!, b
!
, g!Þ all remain unknown. We need

to estimate these parameters and the user’s privacy attitude in accordance with the
privacy setting matrixes of n users. In the latter case, EM algorithm is adopted to
achieve marginal maximum likelihood estimation (MMLE/EM). Due to space limita-
tions, we elaborate the latter case.

The first case: the parameters of the information item are known, and the user’s
privacy attitude needs to be estimated. For each information item j, logarithmic like-
lihood function (5) has an unknown parameter h, and hi’s first-order derivative is 0,
expressed as:

f ¼ @l
@hi

¼ 0 i ¼ 1; . . .;n ð6Þ

Where the parameter expression with respect to the privacy attitude h is a nonlinear
equation and the iterative method must be used to solve it, such as Newton-Raphson
(N_R) [10] or dichotomy method. In this paper, we use Newton-Raphson method.

The second case: Our basic ideas are as follows: First of all, under the condition
that the initial value of the user’s privacy attitude is given, the parameter values of the
information item are estimated; based on these values, the user’s privacy attitude value
is estimated; further, the privacy attitude value is used for upgrading the parameters of
the information item. Repeat the iterations until the convergence is achieved. The main
feature of EM algorithm lies in that each step of iteration consists of two steps: firstly,
get the Expectation Step (abbreviated as E Step); secondly, get the Maximization Step
(abbreviated as M Step). To be specific, a priori of the user’s privacy attitude is firstly
given and then integration (marginalized means of privacy attitude) is conducted.

Let f ¼ ða,b,gÞ and p uij~f
� �

� R
L uijhi~f
� �

g hij~f
� �

dhi. According to Bayes Theo-

rem, the conditional distribution of privacy attitude θ for ui (namely, h’s posterior

distribution) is h hjui;~f
� �

¼ L uijhi;~fgðhiÞð Þ
P uij~fð Þ ¼ L uijhi;~fgðhiÞð Þ

P uij~fð ÞgðhiÞdhi. Then the marginal likelihood

function based on the user’s privacy setting U is
M ¼

Yn

i¼1

P uij~f
� �

. The equivalent

form of the logarithmic marginal likelihood function is:

ln M ¼
Xn

i¼1

ln P uij~f
� �

ð7Þ
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It can be seen from the above equation that M’s first-order derivatives all have
integral symbols. Gauss-Hermite quadrature can be used to convert integration into
summation.

E Step: Calculating Eh ln L U; hjfð Þj U; fðpÞ
h i

, and we denote it as X fjfðpÞ
� �

.

X fjfðpÞ
� �

¼
Xn

i¼1

Eh ln Lðuijhi; fÞjui; fðpÞ
h i

þEh ln gðhiÞjui; fðpÞ
h in o

ð8Þ

M Step: X fðpþ 1ÞjfðpÞ
� �

�X fjfðpÞ
� �

. To obtain the fðpþ 1Þ, we must solve the

nonlinear equation where fk ¼ 0; k ¼ 1; 2; 3, f1 ¼ @ lnM
@aj

, f2 ¼ @ lnM
@bj

, f3 ¼ @ lnM
@gj

,

j ¼ 1; . . .;m.
As fk ¼ 0; k ¼ 1; 2; 3 are integrals, we will adopt the form of numerical integral

and set gðhÞ as a standard normal distribution. By using Gauss-Hermite quadrature to
convert integration into summation, the following equation can be obtained:

fj � ð1� gjÞ
Xq

k¼1

ðxk � bjÞ uij � P̂kj
� �

Ŵkjĥ xkjuij; fðpÞ
� �

ð9Þ

where x1; x2. . .; xq are integral nodes and AðxkÞ is the quadrature coefficient.

Pij ¼ gj þ 1�gj
1þ expð�ajðXi�bjÞÞ, P�

ij ¼ pij�gj
1�gj

;Q�
ij ¼ 1� P�

ij, wij ¼ P�
ijQ

�
ij

pijQij
, ĥðxkjuij; fðpÞÞ ¼

LiðxkÞAðxkÞ
Pq

k¼1

LiðxkÞAðxkÞ
Let rðpÞkj ¼ Pn

i¼1
uijĥðxkjuij; fðpÞÞ and f ðpÞk ¼ Pn

i¼1
ĥðxkjuij; fðpÞÞ, the above

numerical integrations of fj can be:

f1 � ð1� gjÞ
Xq

k¼1

ðxk�bjÞŵkj rðpÞkj � P̂kjf
ðpÞ
k

� �
ð10Þ

f2 � ð1� gjÞaj
Xq

k¼1

ŵkj rðpÞkj � P̂kjf
ðpÞ
k

� �
ð11Þ

f3 � � 1
1� gj

Xq

k¼1

rðpÞkj � Pkjf
ðpÞ
k

P̂kj
ð12Þ

f ðpÞk means the expectation value of the user with privacy setting vector ui and privacy

protection capability xk among all n users based on the given fðpÞ. rðpÞkj represents the
expectation number of users with privacy setting vector ui and privacy protection
capability xk who properly set the jth information item based on the given fðpÞ.
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To solve the equations, F fð Þ ¼ f1 fð Þ ¼ 0; f2 fð Þ ¼ 0; f3 fð Þ ¼ 0f g, we must compute

the second-order partial derivatives
@X fjfðpÞð Þ

@ti@tj
¼ gij; ti; tj 2 aj; bj; gj

� 	
. Obviously,

second-order derivatives can be further derived by first-order derivative:
gij ¼ @fi

@tj
; i; j ¼ 1; 2; 3. We assume that the parameter value of the information item f has

worked out the estimated value at the previous iteration. Assume that the newly esti-
mated value is always more close to the true value than the previous estimated value,
and we take the newly obtained parameter estimated value as the true value of f. Then,

f ðpÞk and rðpÞkj will be known in the next iteration. According to the meanings of f ðpÞk and

rðpÞkj , we have the equation E rðpÞkj � f ðpÞk P̂kj

� �
¼ 0. The second-order derivative of lnM is

more simper, which greatly reduce the solving process.

Eg11� @f 1
@aj

¼
�1

1�gjð Þ2
Pq

k¼1
xk � bjð Þ2f pð Þ

k
bPkj � gj

� �2
bQkj

bPkj

ð13Þ

Likewise, the values of Eg22;Eg23;Eg31;Eg32;Eg33 can also be estimated.
N-R method can be used for iteration to linearize the nonlinear equation step by

step, and one set of linear equations will be solved in the each iteration. The iteration
equation is fkþ 1 ¼ fk � J�1F fkð Þ; k ¼ 0; 1; 2; � � �, which can be transformed into:

J fkð Þ fkþ 1 � fkð ÞþF fkð Þ ¼ 0 ð14Þ

Where is the Jacobian matrix that consists of second-order derivatives.

J ¼

@21nL
@a2j

@21nL
@aj@bj

@21nL
@aj@gj

@21nL
@bj@aj

@21nL
@b2j

@21nL
@bj@gj

@21nL
@gj@a

2
j

@21nL
@gj@bj

@21nL
@g2j

0

BBB@

1

CCCA
¼

@f1
@aj

@f1
@bj

@f1
@gj

@f2
@aj

@f2
@bj

@f2
@gj

@f3
@aj

@f3
@bj

@f3
@gj

0

BB@

1

CCA

Let Df ¼ fkþ 1 � fk, and the iteration Eq. (14) can be transformed into:

J fkð Þ Dfkð Þ ¼ �F fkð Þ
fkþ 1 ¼ fk þDf



ð15Þ

For the each iteration, we just need to solve the linear equation: Df ¼
�J�1 fkð ÞF fkð Þ. The termination condition for the iteration is k Df k \e, or we can
also set the maximum number of iterations as the termination condition.

4.4 Calculation and Aggregation of Individual Risk Score

The privacy disclosure risk faced by the user i in terms of the information item j equals
to the probability of improper setting of this information item j. If the user’s privacy
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attitude and the parameters of the information item are known, the probability of proper
setting of information item can be easily calculated in accordance with Eq. (1).
Likewise, it is also easy for us to calculate the individual risk score based on Eq. (2).
After knowing the risk score of each information item, we can get the privacy score for
each user through aggregation of the risk scores of all information items.

5 Experiment and Analysis

In the section, we made some experiments on synthetic data sets and real data sets to
verify the effectiveness of our proposed method of scoring. Our experiment environ-
ment is as follows. The operating system is Windows 7, and synthetic data is generated
by WinGen3 [13], EM algorithm is implemented with JAVA language and the mat-
plotlib of Python plotting package is used.

5.1 Data Set

Now we provide the brief description of the synthetic and real-world data sets used in
our experiments. A 256 × 16 binary matrix for UP (CF. Sect. 3.1) is generated by the
Win-Gen tool, among which the rows correspond to the user and the columns corre-
spond to the information items. For every information item j (the total number of j is
16), we have generated an influence α from (0, 2) and an information sensitivity β from
(6, 8) randomly. Afterwards, we have generated the privacy attitude of user uniformly
from (0, 14). For the information item j of the user i, we have generated the probability

pij with gj þ 1�gj

1þ e�aj hi�bjð Þ.

The real-world data set Data comes from user profile on social network platforms.
We have gathered the privacy settings of user files on Sina Weibo and Tencent Wechat
in order to overcome the insufficient information items. 300 Followers of the Weibo
account of our research team member have been surveyed to collect their privacy item
settings of their own Weibo accounts and their settings of privacy option files of their
own Wechat accounts. There are 16 information items in the questionnaire, of which
the information items are: “Show my contact information (telephone, mobile phone)?
Show my e-mail? Show your income? Friend confirmation? Allow QQ friends rec-
ommendation? Find me by QQ number? Public Moments? Allow 10 pictures of my
Moments for others? Show my location? Show my input state? Show my QQ Music
playlist? Show my QQ game? Show my course dynamics?”.

5.2 Analysis of Experimental Results from Synthetic Data Set

The horizontal axis in Fig. 2 means the user’s awareness of privacy protection, namely,
privacy attitude h: The greater the value h is, the more the users care about their privacy
and more reluctant the user will be to release the profile items. Thus, p hð Þ value will be
greater and the privacy disclosure risk faced by the user is smaller. The smaller the
value h is, the careless user will attach to privacy protection and the smaller p hð Þ value
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will be. In this case, the probability of setting proper privacy protection is small but will
not possibly be 0. A user who does not care about privacy protection will also possibly
set proper privacy protection by coincidence. The vertical axis refers to the possibility
that the user sets proper information items (expressed in the form of probability).

Under the circumstance that the influence a of information item and the random
guess setting g are given, Fig. 2 also compares the sensitivity b of different information
items. As mentioned above, b represents the sensitivity of information item, which is
an inherent attribute of information item. For users with the same awareness of privacy
protection (the same privacy attitude), if the inherent sensitivity of the information item
is different (for instance, b2 [ b1), the information item with greater sensitivity is less
likely to be made public, namely, p2 ¼ 0:32ð Þ\p1 0:5ð Þ. The red × in the figure sug-
gests the probability p1 ¼ 0:5ð Þ of proper setting under the same privacy setting; as the
sensitivity b2 ¼ 7:5ð Þ[ b2 ¼ 6:5ð Þ, the privacy attitude h2 ¼ 7:28ð Þ[ h1 ¼ 6:28ð Þ.

Figure 3 illustrates the different influence a of information items with the random
guess probability g that the users set proper information items with the help of common
sense and the sensitivity b of information item are given. As mentioned in Sect. 3.2, a
means the slope of the curve that characterized the probability of setting correctly as the
impact of the information items.

When the probability is 0.55, more steeper the curve is (in Fig. 3, the slope of green
solid line is greater than that of blue solid line), the greater the impact of the released
information item on the information recipient is, namely, a2 ¼ 2:0ð Þ[ a1 ¼ 1:0ð Þ.
When the user’s awareness h ¼ 7:5ð Þ of privacy protection for information item is
higher than the information sensitivity b ¼ 7:5ð Þ, cautious users are more likely to
properly deal with information item with great influence (the right part of the equi-
librium point in Fig. 3 where the green line is above the blue line); When the user’s
awareness h ¼ 7:5ð Þ of privacy protection for information item is lower than the

Fig. 2. Probability of different sensitivities (Color figure online)
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information sensitivity b ¼ 7:5ð Þ, careless users are less likely to properly deal with
information item with great influence (the left part of the equilibrium point in Fig. 3
where the green line is below the blue line).

Figure 4 demonstrates the probability varies with the random guess probability g
that the users set proper information items under the circumstance that the influence a
of information item and the information sensitivity b are known. It can be seen from
Fig. 4 that the curve’s intercept on the vertical axis is greater than 0, suggesting that
any user may properly set the information items regardless of his/her awareness of

Fig. 3. Probability of different influences (Color figure online)

Fig. 4. Probability of different guess (Color figure online)
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privacy protection, even if this kind of probability is minimal. The greater the value g
is, easier the information item is protected (g2 0:25ð Þ[ g1 0:15ð Þ). It can be seen from
the line close to the origin of coordinates in Fig. 4 that, even if the user has not
developed any awareness of privacy protection, the information item will still be
disclosed due to its inherent attributes (impact and sensitivity), and the so-called
“perfect privacy” actually does not exist. It can be seen from the graph in the upper
right corner in Fig. 4 that, when the user has a strong awareness of privacy protection,
the possibility that the information items are randomly and properly set nearly has no
influence on the probability p hð Þ (the blue and green lines overlap).

5.3 Experimental Analysis on Real-World Data Set

256 valid users are selected from the survey results (excluding the users whose privacy
setting of information item is all 0 or all 1). Based on EM algorithm, the curves for 16
information items are obtained.

It can be seen from Fig. 5 that more sensitive the information item is, more closer
the curve will get to the lower right corner. With reference to Fig. 6, we can find that
the information items 4, 8, 9, 10, 11, 13 and 16 all have sensitivity greater than the
threshold value 2, which are the ones the users do not want to release in our experi-
ments. It should be noted that the information item 8 has the highest sensitivity and that
its corresponding characteristic curve in Fig. 5 is not perfect.

Fig. 5. Characteristic curves of information items (Color figure online)
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Figure 6 illustrates the sensitivity of 256 users. The peak points of the curve
correspond to the information item number is 4, 8, 9, 10, 11, 13 and 16. The red dotted
line is that we specify sensitive threshold. It is worth mentioning that the information
item 8 has the highest sensitivity.

Figure 7 shows the 256 users’ privacy score. Most users have a score ranging from
5 to 7. The user No. 240 has the lowest score (2.27 points) and the user No. 79 has the
highest score (11.88 points). By checking their privacy settings, we found that they
both set the information items with high sensitivity as to be open to the public. We
check their privacy settings and find that they all set the information items with high
sensitivity as to be open (namely, 1).

Fig. 6. Sensitivity of information item (Color figure online)

Fig. 7. The users’ privacy risk scores
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Figure 8 demonstrates the statistics of the involved users’ privacy attitude. The 256
users’ attitudes distributed within (−1,1) are classified in accordance with the threshold
values 0.4 and −0.15. Thus, we get 50 cautious users and 83 careless users, which tally
with the statistical data in the random street interviews of a talk show “Who Dominates
My Privacy?” [16].

6 Conclusions

Our goal is to enhance the user’s awareness of privacy protection in mobile-aware
settings. By scoring the privacy disclosure risk of user profile, the users are able to
select appropriate privacy protection techniques and tools. By adopting the 3-parameter
logistic model, we explore information item’s sensitivity, influence and probability of
random setting as well as the user’s potential attitude (how much the user cares about
the sensitive information items) to measure the user’s privacy disclosure risk.
MMLE/EM methods are adopted to estimate the above parameters. Finally, our ideas
are verified on synthetic and real-world data sets.

According to the experiments on synthetic data set, the user’s privacy attitude
obeys normal distribution; but in terms of real-world data set, the followers we have
selected do not obey this distribution, which is probably due to the fact that they pay
more attention to their own privacy. Nevertheless, our experimental results show that
the model parameters estimated based on these assumptions fit well with real-world
data.

Acknowledgements. This work was supported by the National High Technology Research and
Development Program of China (2013AA014002) and “Strategic Priority Research Program” of
the Chinese Academy of Sciences (XDA06030200).

Fig. 8. The privacy attitude of users
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Abstract. Today’s software is growing in size and complexity. Con-
sequently analysing closed-source binaries becomes time-consuming and
labour-intensive. In the common use case, the analyst is only interested in
specific functions of the given application. Identifying the relevant func-
tions is difficult since no related meta information is given. In this paper
we present a framework which speeds up the reverse-engineering process
using interactive function identification. We use the benefits of Dynamic
Binary Instrumentation as base to collect the executed function calls.
We support the analyst in filtering the relevant functions for specific
functionality. Our approach is divided into three process steps. Real-
time data gathering, user defined information processing/filtering and
graphical representation. We show a significant speed up in the reverse
engineering process using our framework. We reduce the number of exe-
cuted functions to be viewed by the analyst more than 90 % and due to
visual components we help the analyst pre-selecting the functions on an
abstract level.

Keywords: Reverse engineering · Information visualisation · Security ·
IP protection

1 Introduction

Reverse engineering is a challenging task, requiring time and experience.
Analysing given binary executables can be used to find code blocks with certain
properties, possible bottlenecks and vulnerable spots of a system or to identify
components and their relationships. In order to accomplish this, reverse engi-
neers are forced to look into the assembly of the binaries, since most of the
software in use is closed-source.

The main goal of reverse engineering is to determine the functionality of
a given binary or to locate a specific functionality inside the executable. This
allows modifications or to bypass certain functionality. Usually the gained infor-
mation about the software behaviour and structure resides in the reverse engi-
neers mind. Therefore, mastering reverse engineering takes a lot of time and is
c© Springer International Publishing Switzerland 2016
D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 468–487, 2016.
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labour-intensive even for an experienced reverse engineer, making reverse engi-
neering a costly activity.

There exist tools for static as well as for dynamic analysis of executables to
assist the reverse engineer. Static tools can be disassemblers, string searching
tools, signature comparing utilities and others. IDA Pro [1] is an example for
a well-known static analysis tool. It is a disassembler, which includes function
name resolving of known API-calls and allows the to view the assembly in a flow
chart, representing the branches of the code.

Dynamic analysis is mainly performed using debuggers, allowing the reverse
engineer to inspect the executed code at runtime, set breakpoints and look at the
content of registers at a given execution. Furthermore binaries can be analysed
during execution with the help of binary instrumentation, allowing the analyst
to dynamically insert additional code into the execution flow of the application.
Using dynamic analysis it is possible to extract variables, memory accesses, func-
tion calls and more during execution. Also with the already existing tools the
reverse engineering process takes a considerable amount of time. Identifying cer-
tain functionality requires experience and patience.

We developed a framework to achieve progress in this problem. We use
Dynamic Binary Instrumentation (DBI) as base to collect all executed functions,
identified by their Virtual Function Address (VFA), inside the target applica-
tion. The gathered information is saved to a database and is processed by using
set operations on the data and represented using our framework. Using graphical
visualisation techniques we display the data in a manner to the reverse engineer
so that he can deduce the applications behaviour and structure, thus increasing
the efficiency of his reverse engineering process.

In summary, our contributions are the following. Our framework allows to

– efficiently log function calls of a target application.
– provide labelling of program states.
– process the gathered data using common set operations.
– reduce the amount of functions the analyst has to check.
– visualise the processed information with highlighting.

The rest of the paper is structured as follows. Section 2 describes previous
work done towards our topic. In Sect. 3, we present the design of our framework.
Section 4 shows the possibilities of data gathering and presents our solution.
Then we discuss the information processing performed by our framework in
Sect. 5. The information visualisation is presented in Sect. 6. We describe the
implementation of our framework in Sect. 7 and evaluate our framework with a
set of experiments in Sect. 8, showing how we identify the location of function-
ality in selected applications. We conclude in Sect. 9.

2 Related Work

Software visualisation displays software structure, behaviour or evolution using
information visualisation. An overview over the existing software visualisation



470 F. Kilic et al.

tools is given by Diehl [15]. For example, Rigi [20] displays program structure
and interaction. Rigi allows to analyse and document large software systems,
when there the source code is available. The information about the system’s
evolution is visualised as directed graph to represent software modules. SeeSoft
[17] can be used to visually represent the evolution of software source code. Eick
et al. focused heavily on the software engineering part such as version control
and static structure analysis, but also use profilying as a dynamic analysis to
round up Seesoft. Reniers et al. [24] present their tool for software maintenance.
The toolset is designed to keep track of software structure, metrics and code
duplicates. These informations are represented visually. Trinius et al. [25] use
visual analysis to quickly identify malware samples and classify the samples
according to their behaviour as illustrated by the tool with treemaps and thread
graphs. To do so they use a sandbox report and visualise it to the analyst. Using
this approach it simplifies the analyst’s work of classifying new malware samples
into the families of already known malware.

Reverse engineering a given binary is time consuming. Different researchers
try to develop tools to make the reverse engineering process more efficient and to
speed it up. Quist et al. [23] presented a method using dynamic analysis to visu-
ally represent the execution flow of a program (focusing on malware), making the
process of reverse engineering easier. They use the Ether hypervisor framework
to monitor the execution of the target application and display the data to the
reverse engineer in a processed manner highlighting the often executed portions.
A visual reverse engineering system was already presented by Conti et al. [12]
indicating that visual utilities speed up the work of analysts noticeably. Conti
et al. present a way to analyse binary files, allowing the reverse engineer to gain
insight into unfamiliar formats and structures.

Determining relevant functions and parts is the main task of the reverse engi-
neer. Our tool is stepping here, providing the reverse engineer additional analysis
functionality to visualise and identify interesting functions. For our framework,
we use visualisation to display gathered reverse engineering data to speed up the
reverse engineers labour.

Previous work on function identification focused on identifying cryptographic
algorithms using dynamic analysis or static analysis of the binary. Wang et al.
[26] try to identify cryptographic functionality using DBI. The assumption about
the programs behaviour that the message is processed after the decryption causes
problems when it comes to identifying block ciphers, because they only get
processed at the end of the message. Caballero et al. [11] extend the method
introduced by Wang et al. and scan for repeatedly called functions. This app-
roach is able to identify more algorithmic procedures, but also leads to false posi-
tives in loop-intensive applications. The proposed method of Caballero et al. was
further developed by Gröbert et al. [18], who introduced a divide-and-conquer
algorithm, analysing parts of the target application’s source and merge them
back together later on.

DBI is already widely used for performance analysis of all kinds like call-
grind [14] for call graphs and cache performance analysis and Dr. Memory [8]
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to find memory leaks. In general there are different approaches to do DBI. One
way is probe-based like Dyninst [10]. In this approach, so called trampolines are
added in the executable and when they are executed they jump to the instru-
mentation instructions. This makes the code not transparent because the original
instructions are overwritten with trampolines and are no more in the memory. A
program can notice this and so prohibit the reverse engineering. But as an advan-
tage trampolines can be executed fast without much overhead. The more flexible
approach for analysis is the jit-based approach which is used by frameworks like
DynamoRIO, Pintool and Valgrind [13,14,16]. It means that just before a block
of instructions of the original application is executed, it is analysed and new
instructions are dynamically inserted. This means that the main work of the
frameworks is done during runtime of the analysed application.

We provide reverse engineers a tool, which allows to identify functions of their
interest and does not rely on algorithms but on program state classifications to
filter the specific VFAs with the interaction of the analyst.

3 Application Design

Our Framework is divided into three components as illustrated in Fig. 1. The
Extractor-Module of our framework creates a real-time call trace of the target
application. The interactive usage of the Processor-Module allows the to filter the
functions executed in a specific state of the program. The Visualiser-Module is
responsible for visualising the information returned by the Processor-Module.

Fig. 1. Framework design
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During the execution of the target application our Extractor-Module col-
lects data on the loaded modules and the executed functions. By doing so, the
Extractor-Module creates a call trace, which we want to enrich by a state prop-
erty. The application will be in different states based on the actions the is trig-
gering. A state in our case could be for example opening a file, establishing a
connection or just idling. The analyst is able to set human understandable labels
to mark the states that are interesting. This can be also a set of different states
for example key press and execute at once by pressing the Enter key on the
keyboard. By doing so the analyst marks executed functions of the current per-
formed actions of the applications with a label. This label can also be interpreted
as a state of the program, in which a set of functions are called to perform a
certain action and lead into another state. We allow the analyst to set his labels
with the help of our Extractor-Module, which adds the label information to every
called function. This is performed using DBI. This labelling process is central to
our approach, since we want to visualise functions executed in different program
states later.

As further step after collecting data of calls made during execution with the
respected label, we allow the to set different filters to the collected data. The
may specify a concatenation of these filters using common set operators, allowing
him to quickly identify functions of program states, find stubs used in various
states or display call traces of the threads. This functionality is implemented in
our Processor-Module.

The Visualiser-Module is using the visual perception of human beings to
display the results of the Processor-Module. It uses different optical elements
like colors, shapes and sizes for fast visual recognition of important data. As
one solution we use boxes for different functions, displaying the amount of calls
for the function performed in the selected state filter. It adds colouring to the
functions, representing Labels, Modules or ThreadIDs to give additional visual
information to the reverse engineer allowing him to identify interesting code parts
inside the executable faster. Another solution is displaying the high amount of
results as coloured node graph optimized with the algorithm ForceAtlas2 [19].

4 Information Gathering

In this section we first will discuss different frameworks for DBI and explain the
decision for a framework we use in our tool set.

4.1 DynamoRio

The framework supports x86 (32-bit and 64-bit) and is available for Windows
and Linux. It is developed as free software under the BSD license. To keep the
application code transparent DynamoRIO follows three basic guidelines. The
first says to keep as much as possible unchanged from the original application.
So if you, for example, count the mov instructions in the program executed in
the virtual environment it is very likely that the number is very near to the mov
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instructions execute in the original application. If it is necessary to change some-
thing, the application should not notice the change (second guideline). Finally
the third guideline states that DynamoRIO does not make assumptions about
the architecture and the operation system besides the minimum needed.

To generate basic blocks, DynamoRIO copies small parts of the executable
into the code cache and applies small modifications. This is called copy-and-
annotate. To optimize the execution, often sequentially executed basic blocks
are combined and put into the trace cache which is separated by the normal
basic block code cache. There the trace can be executed as one unit without exe-
cuting management overhead, which decreases execution time. Also an indirect
branch lookup is inlined and so it is possible to execute more basic blocks with
indirect branches without doing a context switch back to the Manager. Another
optimization DynamoRIO applies is the delay of interrupts. This is important
because in contrast to Valgrind, for DynamoRIO it is not easy to determine the
current machine context at every point. So if possible the interrupt is delayed
to a point where the state of the application is accessible to DynamoRIO. For
example if a timer signal is received and the execution is currently in the middle
of a basic block in the code cache the application gets the timer interrupt later.

When it comes to the development of a tool for DynamoRIO (called clients),
DynamoRIO provides the possibility to change the instructions of a clean C call
before inserting it. Of course then the tool developer has to care himself about
transparency and can deliberately destroy transparency. To avoid problems of
shared libraries, DynamoRIO loads the library used in the instrumentation code
separately.

4.2 Pin

Pin is a proprietary framework from Intel which can be used free of charge
for non-commercial use. It supports x86 (32-bit and 64-bit), Itanium and ARM
architecture. It focuses on an easy to use high level C/C++ API [13]. So Pin
follows a call-based model which means you do not insert single instructions,
only calls to C/C++ functions. Internally Pin works often like DynamoRIO
and tries to improve certain points. In difference to DynamoRIO and Valgrind
Pin automatically inlines code for performance optimization (mainly execution
time) and takes care about register saving. Also it can be dynamically attached
or detached to a program execution.

For optimization reasons Pin uses a Just-in-time-Compiler which directly
compiles form the ISA code to the same ISA (for example x86 code to x86
code). During compilation, registers can be re-allocated. For example, if the
instrumentation code, which should be included, needs registers also needed by
the application, it can be avoided to save and restore registers by re-allocation
of registers. This re-allocation must now be handled when going from one basic
block (or trace) to another. Pin tries do only the minimal reconciliation needed.
To achieve this for every trace entry we remember the register bindings and con-
sider them if we compile a new trace which targets this trace. No reconciliation
is needed if we compile a trace which is a target of a single other trace. In this
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case we just use the binding of the traces targeting the trace currently compiled.
Because of this technique, the executed instructions differ much more from the
original instructions, compared to DynamoRIO.

4.3 Valgrind

Valgrind is an Open Source framework under the GPL licence and is available
for many different ISAs like x86, ARM, PPC, MIPS. To combine the different
ISAs, Valgrind uses an intermediate representation (IR). So first the code is
translated to the IR and there the instrumentation code can be easily added
platform independently. To execute a basic block in the IR the block again has
to be translated back to the original ISA. This procedure is split into eight phases
and is called disassemble-and-resynthesise.

Valgrind takes more basic blocks together to a superblock, which only has
one entry but can have more exits, to reduce the management overhead. So
Valgrind is one of the most flexible DBI frameworks which of course also brings
some drawbacks demonstrated in the next section [14,22].

4.4 Instrumentation Tool Selection

For our framework we decided to use Intel’s Pin [2] for three reasons. Pin can
be attached and detached from the target application during execution, which
is quite useful to allow the analyst to instrument only the part of the target
application he chooses to.

Compared to DynamoRIO, Pin is more stable. Memory intensive 32-bit appli-
cations can crash because DynamoRIO has a memory overhead which then could
exceed the addressable memory [9,16]. Also in difference to DynamoRIO, Pin
chains basic blocks incrementally, which means that at the end of a basic block
with an indirect jump, Pin adds new targets dynamically to the chain. Com-
pared to DynamoRIO, which collects one trace and saves it, this approach is
more flexible.

Valgrind is a much more comprehensive framework than Pin. Due to its
great potential Valgrind looses out when it comes to performance. Regarding
performance of an application with instrumentation, Pin is doing really well,
compared to Valgrind and DynamoRIO, as stated in the Pin white paper [21].

5 Information Processing

In this section we present the Processor-Module of our framework. The gathered
data contains the information about every executed function with a specific
Label, ThreadID and Module matched to the respective VFA. The Module and
ThreadID for each function is extracted from the application and is saved by
the Extractor-Module. The Label information is set by the analyst using the
Extractor-Module. A function with VFA x is part of the set label:y if and only
if a call to the VFA occurred within the time the specified y as the current
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program state. Since the labelling is a time dependent property, the values in
a set of a specific label are not limited to the specific functions the analyst
is looking for. The target application is always executing some functions like
updating the Graphical User Interface (GUI) of the application or something
alike. Therefore the VFAs for a specific label may also have occurred in other
defined labels. This has to be considered during processing.

Trying to identify a specific functionality is quite challenging. During the
execution of the process we define our labels of the program states. Figure 2
shows the execution of an application. The x-Axis shows the time in seconds,
the y-Axis states the amount of unique function calls within a second span of
time. The time where label connect was specified is marked by falling hachures
(\\), the label userinput with rising hachures (//) and label init was specified
without hachures. The colours indicate the called functions belonging to a label
or to an intersection of labels. We are interested in extracting unique calls of
functions belonging only to the label connect coloured in red. The red colour
displays the amount of functions uniquely called during connect. As we can see
in Fig. 2 during label connect there are also function calls, which are also executed
in states with other labels. The goal of the Processor-Module is to process these
interesting VFAs from the gathered data.

The Processor-Module provides the possibility to filter the collected func-
tions by ThreadID, Module and the used Label, gathered during the execution.
The main goal of this filtering functionality is to determine specific VFA that

Fig. 2. Executed functions with label
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occurs within specified circumstances (states). To do so we allow the analyst
to chain together the filtering options for Label, Module and ThreadID with
common operations on sets. These operations are union, intersection and set
difference (∪, ∩, \).

To extract those functions from the gathered data we will use the set oper-
ations of our Processor-Module. As shown in Fig. 3 after the extracting process
we end up with 440 (=39+1+204+196) functions (red label set) called during
the label connect. To reduce the amount of VFAs to the interesting application
parts, the reverse engineer has the possibility to exclude the other two labels
using our Processor-Module with its set difference operator, ending up with 39
VFAs uniquely called by the functionality he is interested in. Figure 3 shows
the number of functions belonging to one or more labels. There are 39 functions,
which exclusively belong to the label connect, while there are 196 functions called
during connect as well as userinput. 204 functions have been called during all
three labels. We can filter for the functions exclusively used in connect by using
label:connect\label:userinput\label:init. In this example we used three labels. It
is possible to use more labels, leading to a more detailed states, which allows the
analyst identify further functionality of the target application.

After applying the analyst’s filter the Processor-Module calculates the call
count for each function accordingly from the gathered call trace. The number
of calls can help the analyst to understand the internal structure of the target
application more quickly. We calculate the number of calls for the VFAs to give
the analyst lead towards the function he is looking for. Since the analyst knows

Fig. 3. Venn diagram of executed functions
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how often he triggered his action during the program execution, the call count
allows him to conclude if the VFA is relevant for him. E.g., if he triggered the
connect functionality during the gathering process once he is most likely looking
for a function also called once.

6 Graphical Representation

After the analyst specified the filter he wants to apply to the collected func-
tion call data in the Processor-Module it is presented to him by our Visualiser-
Module. The main goal of the Visualiser-Module is to show the big data col-
lection from the Extractor-Module in a manner that the analyst can quickly
derive information about the program structure and behaviour by visualising
the applied filter.

Since a program under analysis will execute a few hundred calls in a short
period of time, common reverse engineers have to rely on their experience where
to look for certain functionality. Using our framework after an experimental
execution with label setting can speed up this process by reducing the virtual
addresses the reverse engineer has to check for a functionality.

We implemented a box view and a graph view to visualise the filter of the
analyst. The result set of the VFAs of the applied filter is presented to the analyst
by displaying boxes for every VFA as shown in Fig. 4 by default. The VFA itself
is not the first thing we want the analyst to notice. We want him to quickly
identify functions with a low call count and highlight this property with text
size.

Fig. 4. Graphical representation

Displaying the number of calls of a specific VFA gives the analyst a general
idea about the structure of the program. VFAs with a smaller count call, espe-
cially when filtering for labels, tend to be the function the analyst is looking for.
As a second focus after the call count of the individual VFAs we allow the ana-
lyst to bind function properties (label, module, thread) to colour the background
of the box or the border. This gives the analyst multiple ways of analysing the
gathered data and allows him to notice VFA properties visually. We use only
two colour informations at the same time to not overload the user with visual
effects. Further we have three properties we allow to be visualised with colours.
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The analyst removes one by setting his filter. Due to this two colour informations
are enough. We provide a colour set as default, but the analyst may change the
colours individually. The method of visualisation of the properties is stated in
Table 1.

E.g., after applying the filter for connect exclusive functions label:connect\
label:userinput\label:init we end up with 39 boxes in our Visualiser-Module.
Since we used a very heavy label restricting filter we bind the module property
of the VFA to the background colour and the thread information to the border
colour. This way we can quickly determine the main module responsible for
the label we filtered for. We end up with 37 boxes of the module putty.exe,
which represent the main VFAs for the connect functionality inside the PuTTY
application.

Using this individual colouring option allows the analyst to familiarize with
the VFAs and their properties on a visual basis, without having to remember
properties in numerical form.

If the analyst is interested in a specific thread behaviour he may set the filter
to that thread, bind the background color of the boxes to the label property and
the border colour to the module. The eye now can catch labels in use for the
thread easily, thus recognise the functionalities executed by the various threads.

Analysing modules for their purpose can also be achieved with the help of
our Visualiser-Module. We just have to set the filter to a specific module. We
bind the thread to the background, to identify the threads the module is used
in quickly. Further the border colour may be set according to the label, giving
us an idea in which program states the module is in use.

On selection of a function box the analyst is provided with additional prop-
erties regarding the selected VFA. These properties include lists of labels and
threads the VFA occurred, the module and the overall call count of the function
(see Table 1).

The purpose of the graph view is to give a quick overview over the target
application. It can also help the analyst when the result set of his filter is too
large to narrow down his filter to the interesting functionality. In the node graph
view the function VFAs are represented by nodes of the tree, the size of the nodes

Table 1. Function details and visual representation

Function property Value Visualisation

Function ID 385 –

Function address 0x01351780 Text

Function name ssh2 setup pty –

Module: putty.exe Colour

Thread ID(s): 4 Colour

Label: connect Colour

Count: 2 Text and Size
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visually represents the call count of the function if the analyst chooses to do so,
allowing him to find VFAs with a lower call count more quickly. Further we allow
the analyst to colour the nodes according to label, module or thread. We only
display the call count inside the nodes and provide the additional properties
(Table 1) of each function only on selection of the analyst.

Figure 5 shows a representation of all the called VFAs (represented as nodes)
related to their calling thread by edges. The rectangle nodes represent the dif-
ferent thread Id’s. This allows the analyst to gain insight into VFAs used by one
specific thread. For example the functions west of thread 2 were only called by
thread 2. Thread 5 has its specific functions displayed north of the node and
thread 6 to its east. On the other hand the analyst can quickly determine VFAs,
which are used by more threads. In Fig. 5 these would be the nodes between the
threads 0, 5, 7, 6 and 2. Thread 0 and 7 only use functions shared with other
threads. Such shared VFAs are most likely low-level functions, such as strlen
or similar. Low-level and shared functions generally are called more frequently
than specific functions, therefore we want to visualise the number of calls as a
central focus of attention. The call count of VFAs is represented by the number
in the nodes, as well as by the node size. The lower the call count the bigger is
the node. This helps the analyst determine interesting functions as described in
Sect. 5 in this graph more easily. Especially the VFAs with an amount of one or
two calls are very promising to represent a certain functionality. From the graph
the analyst can see how many different VFAs are used by the threads. Thread 4
calls the most amount of functions. The color of the node represents the module,
the function is belonging to. For example, the analyst can derive that thread 3
only uses one module, the dark green one. The orange module is only used by
thread 4. Overall Fig. 5 shows the analyst relations between threads, the func-
tions and their modules, but also provides visual highlighting of VFAs with a
low amount of calls.

7 Implementation

In this section we describe how we implemented our framework on a machine
with an Intel Core i7-4600U CPU 2.10 GHz CPU and 8 GB RAM. We used
Windows 7 Professional with Service Pack 1 as Operating System (OS).

7.1 Dynamic Binary Instrumentation

In order to keep track of the called functions as well as logging additional infor-
mation about the functions and modules we use Intel’s Pin Framework (Pin
2.14 kit 71293 E) [2], because of its overall performance and stability described
in Sect. 4.4

The Extractor-Module is implemented as a Pintool, which has the purpose
of saving the execution flow of the target application but also allow us to label
certain states of execution.
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Fig. 5. Graphical representation with nodes stating the call count.
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The labelling process needs us to allow to interact with the Pintool while it is
attached to the target process. To enable a simple communication with the Pin-
tool we print the address of an allocated variable of the Pintool to a file before
adding any kind of instrumentation to the target application. This address is then
used by our labelling functionality. When the analyst sets a new label we sim-
ply open a handle to the target application process and use WriteProcessMemory
to the passed address. From this point on the Extractor-Module will use the new
label, with whom is written to the database. The overhead by establishing an IPC
we would have even bigger. Thus we write the value into the memory ourselves.

After passing the address of the label variable we add two Instrumentations
to the target application: IMG AddInstrumentFunction is called whenever an
image is loaded by the target process. Therefore this instrumentation allows
us to gather data about the loaded modules and save them to our database.
RTN AddInstrumentFunction allows us to insert a function at routine granular-
ity. This way we can enumerate the existing procedures, save the interesting data
about these functions and add a further instrumentation using RTN InsertCall
to log every call of the function.

7.2 Buffering Data

Keeping track of all the functions called within the target application is a chal-
lenging task. Since we also want to instrument very fast and thread intensive
applications, the amount of calls in the target application quickly may exceed
the amount of calls we can save to our hard disk. If we would pause the process
on every function call to write the desired information to our hard disk, we
would end up with a very slow reacting binary. The amount of function calls
may exceed the number of functions we can save to hard disk in a given time
period. We want to buffer the gathered data in memory and write them to hard
disk to improve performance. Since we gather data from different threads we
have to make sure we are thread safe. The Boost Library [4] includes a single-
producer-single-consumer lock-free queue. This means one thread is allowed to
push to the queue and one to pop from it without worries about race condi-
tions. We use a boost::lockfree::spsc queue and keep the data in memory. We
save objects representing function calls in our queue from multiple threads so
we have to use a lock to take fall into the single-producer requirements for the
queue. Furthermore we have to pause the target process if our queue is full. Oth-
erwise we would miss some function calls in our execution flow. Writing to the
database will be done by an additional thread in the target process. This allows
us to push multiple function calls onto memory during program execution with-
out great performance issues. The additional thread will pop multiple strings of
gathered data about the function calls from the queue, concatenate them and
then store them to the database on hard disk. This way, we lower the performed
hard disk accesses. We plotted the time related to the objects of called functions
kept in memory for the worst-case-scenario under full CPU usage. As we can see
in Fig. 6 a usage of more than two hundred objects will not gather any benefit to
the performance, since the time used per object settles down at about 0.02 ms
afterwards.
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Fig. 6. Time/memory plot for the worst-case-scenario

If the target application exits we pause the process, write the remaining data
from the queue to our database and then quit the process.

7.3 Gathered Data

We want to save information about the modules loaded by the target process, like
the name and path to the module for recognition purposes and the module base
to calculate relative VFAs of functions. Further we are interested in properties
of the called functions such as their name, the module they belong to, the VFA
and the amount of calls of the function. During execution of the application we
monitor the timestamp of a call, the VFA of the currently called function, the
ID of the issuing thread and the label specified by the analyst.

All this data is saved to a single SQLite database (SQLite Version 3.8.10.1)
[3]. We decided to use SQLite, because it is a lightweight solution. Furthermore
SQL allows us to perform queries to evaluate the gathered data very efficiently.
The scheme of this database is illustrated in Fig. 7.

When a module is loaded by the process we save it in the table modules,
storing its name, the path to the module and the module base address. Functions
present in the executable are saved with eventual given name and VFA and a

Fig. 7. UML-Diagram of database
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reference to a module they belong to. The call count is calculated after the
extracting process, in the Processor-Module. The table calltracking is the main
table where we store our call trace. For every function call we insert a new ID,
with a timestamp, save the VFA of the called function and add the thread who
called the function and reference the label as an integer variable.

7.4 Information Processing

As a next step the analyst can use the Processor-Module, which can be used
to perform common set operations to the gathered data. Since the data already
resides in an SQLite database we use the SQL implementation of the set opera-
tions to reach our goal.

Union of two sets of filters is performed by concatenating two select state-
ments, according to the desired filter together, together with the UNION oper-
ator. Intersections of sets are performed using the INTERSECT operator and
the set difference is calculated by using EXCEPT.

After the gathering process we can make use of the calltracking-table of the
database to apply filters to the label and the different threads. Since this table
quickly has a few hundred thousands of entries we make filtering more effective
by creating a temporary copy of the calltracking-table, restricting it to unique
entries of VFA, ThreadID and Label. Our main output is the table functions
where the VFA and the count resides. These are the main informations we want
the analyst to catch immediately. We also apply module filters to the functions-
table, since a join of the large calltracking-table with the functions table takes
an unnecessary amount of time.

We also provide parentheses to be inserted into the filter to gain even more
possibilities and lower possible mistakes in longer statements. E.g. the analyst
can specify the following operation chaining together multiple set operations as
he chooses.

((label:key Enter \ label:key A) ∩ threadid:7)) ∩ module:gpg.exe

To provide the use of parentheses in filtering statements we use temporary
tables. These are created for any statement between an opening and a closing
bracket, parsing the input to a statement without any brackets, removing the
innermost once at a time with regular expression search. This is also necessary
because SQLite does not support the use of brackets with multiple select state-
ments. Therefore standard SQLite statements could not reach the details we
would like. The temporary tables are dropped before a new filter is applied.

7.5 Information Visualisation

After applying the desired filter to the function calls, the analyst quickly wants
to determine functions by their VFAs with special attention to functions with a
low call count. A low amount of calls is indicating a higher probability of being
the function, the analyst is looking for. This is due to the analyst looking for
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a functionality, which is most likely implemented in a wrapper function. These
are called less often than the according helper functions.

The Visualiser-Module of our application shows VFAs in boxes. These are
implemented as custom widgets in Qt (Qt Version 5.4.1 32-bit), allowing us
to bind the border colour or the background colour to the analyst specified
preferences. On selection of a box we display the additional information about
the VFA in a small pop-up window.

After the database selection we make sure to generate an appropriate amount
of colours for the function properties and only show them if the analyst chooses
to do so, as we do not want to overload the interface with information the analyst
is not interested in.

The Visualiser-Module uses the box visualisation as the primary way of rep-
resenting the functions according to the analysts filter settings. The node graph
view as described in Sect. 6 still has to be implemented in future work.

8 Experiments

In this section we present some experiments performed with our framework. We
show how we identified specific functions in open source software, explain the
labels we set during the execution and provide the results of the performed tests
on the framework’s performance.

We used as a ground truth open source applications to validate the detected
functions in the source file. We selected three applications using security related
functions like cryptographic functions or hash functions. We have chosen the well
known applications Putty [7], GPG [6] and OpenSSL [5]. To verify our results
easier we compiled the test application ourselves with debug information in order
to get function names for the found function VFAs.

We present the results of function identification in Putty, GPG and OpenSSL
in Table 2. We set labels during execution for Putty trying to identify the func-
tions relevant for establishing a SSH connection. We processed the data with
our framework showing only functions that occurred during state connect and
excluded all the other labels. In GPG we looked for functions responsible for
creating an RSA key. OpenSSL is analysed for the relevant functions for the
creation of the PEM file of a newly created key.

Step-by-step we are now going through the example looking for PuTTY’s
SSH connection functionality.

We started in label init and changed it to analystinput after a few seconds of
not interacting with the application. In analystinput we typed the analyst name,
hit the ENTER key and typed the password for the connection we are going to
establish. We used the init label between the actions. We change the label to
connect and hit the ENTER key straight afterwards. After the connection is
completed we change back to init and perform some more actions within the
console like listing the files of the current directory and closing the connection
using the analystinput label. To identify the functions related to the connect
functionality we used the following filter:

(label:connect \ label:init \ label:analystinput) ∩ module:putty.exe
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Table 2. Experiments

APP-Name # executed # filtered # interesting functions Relevance Reduction

Putty 746 37 18 ssh functions 48.6 % 95.04%

GPG 335 23 8 cipher functions 34.8 % 93.13%

6 hash functions 26.1 %

OpenSSL 735 29 24 cipher/hash functions 82.8 % 96.05%

The other applications were analysed in a similar manner in order to identify
a main functionality.

In Table 2 the columns state the application name, the number of executed
function and the number of filtered functions, which we found using an appro-
priate filter on the application. Further we number the interesting functions
representing the functionality we try to identify.

The column relevance of Table 2 indicates how much of the filtered functions
by our process also are interesting functions a reverse engineer might be looking
for. The column reduction shows the percentage of the executed functions the
analyst does not have to look into when using our framework filtering. With the
help of our tool and using good labelling the analyst can reduce his work by
more than 90 %, assuming he would check every executed function otherwise.

9 Conclusion

We proposed our framework for interactive function identification decreasing
the effort of reverse engineering. We have shown how we speed up the reverse
engineering process by using three steps in the analysing process. We used the
Pintool to get the data of all executed functions during the test. We used a
time memory trade-off to speed up the logging functionally for real-time perfor-
mance. We processed the data by supporting common set operations. A filter
can be applied to labels, threads and module of a function and concatenated
together using common set operations to restrict the desired functionality of the
binary even further using our Processor-Module. We implemented a graphical
representation for the output of the huge amount of data to identify the results
fast using visual components reducing the functions We used an iterative and
interactive approach to give the analyst the possibility to set human readable
labels using our Extractor-Module. We reduced the number of functions to be
checked by the analyst by more than 90 %.
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