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Preface

This volume contains the papers presented at Inscrypt 2015: The 11th China Interna-
tional Conference on Information Security and Cryptology, held during November 1-3,
2015, in Beijing, China. Inscrypt is a well-recognized international forum for security
researchers and cryptographers to exchange ideas and present their work, and is held
every year in China.

The conference received 79 submissions. Each submission was reviewed by two to
four Program Committee members. The Program Committee, after some deliberation,
decided to accept 27 papers. The overall acceptance rate is, therefore, 34.17 %.

Inscrypt 2015 was held in cooperation with the International Association of Cryp-
tologic Research (IACR), and was co-organized by the State Key Laboratory of
Information Security (SKLOIS) of the Chinese Academy of Sciences (CAS), and the
Chinese Association for Cryptologic Research (CACR). We note that the conference
could not have been a success without the support of these organizations, and we
sincerely thank them for their continued assistance and help.

We would also like to thank the authors who submitted their papers to Inscrypt
2015, and the conference attendees for their interest and support. We thank the
Organizing Committee for their time and efforts dedicated to arranging the conference.
This allowed us to focus on selecting papers and on dealing with the scientific program.
We thank the Program Committee members and the external reviewers for their hard
work in reviewing the submissions; the conference would not have been possible
without their expert reviews. Finally, we thank the EasyChair system and its operators
for making the entire process of the conference convenient.

November 2015 Dongdai Lin
XiaoFeng Wang
Moti Yung
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Biclique Cryptanalysis of Full Round
AES-128 Based Hashing Modes

Donghoon Chang, Mohona Ghosh®), and Somitra Kumar Sanadhya

Indraprastha Institute of Information Technology, Delhi (IIIT-D), New Delhi, India
{donghoon,mohonag,somitra}@iiitd.ac.in

Abstract. In this work, we revisit the security analysis of hashing modes
instantiated with AES-128. We use biclique cryptanalysis as the basis for
our evaluation. In Asiacrypt’l1l, Bogdanov et al. had proposed biclique
technique for key recovery attacks on full AES-128. Further, they had
shown application of this technique to find preimage for compression
function instantiated with AES-128 with a complexity of 2'25-°¢. How-
ever, this preimage attack on compression function cannot be directly
converted to preimage attack on hash function. This is due to the fact
that the initialization vector (IV) is a publically known constant in the
hash function settings and the attacker is not allowed to change it,
whereas the compression function attack using bicliques introduced dif-
ferences in the chaining variable. We extend the application of biclique
technique to the domain of hash functions and demonstrate second
preimage attack on all 12 PGV modes.

The complexities of finding second preimages in our analysis differ
based on the PGV construction chosen - the lowest being 2'?®* and
the highest requiring 22 compression function calls. We implement C
programs to find the best biclique trails (that guarantee the lowest time
complexity possible) and calculate the above mentioned values accord-
ingly. Our security analysis requires only 2 message blocks and works on
full 10 rounds of AES-128 for all 12 PGV modes. This improves upon
the previous best result on AES-128 based hash functions by Sasaki at
FSE’11 where the maximum number of rounds attacked is 7. Though
our results do not significantly decrease the attack complexity factor as
compared to brute force but they highlight the actual security margin
provided by these constructions against second preimage attack.

Keywords: AES - Block ciphers + Hash functions + Cryptanalysis -
Biclique - Second preimage attack

1 Introduction

Block ciphers have been favored as cryptographic primitives for constructing
hash functions for a long time. In [17], Preneel et al. proposed 64 basic ways to
construct a n-bit compression function from a n-bit block cipher (under a n-bit
key). Black et al. [5] analyzed the security of such constructions and showed
© Springer International Publishing Switzerland 2016

D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 3-21, 2016.
DOI: 10.1007/978-3-319-38898-4_1



4 D. Chang et al.

12 of them to be provably secure. These modes are commonly termed as PGV
hash modes. The three most popularly used modes are Davies-Meyer (DM),
Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP) modes.

AES (Advanced Encryption Standard), standardized by the US NIST in
October 2000 and widely accepted thereafter has been considered a suitable
candidate for block cipher based hash functions in the cryptographic commu-
nity. ISO standardized Whirlpool [3] is a popular example of the same. Infact,
in the recently concluded SHA-3 competition also, several AES based hash func-
tions were submitted, e.g., LANE [11], ECHO [4], Grgstl [9] etc. A significant
progress has been made in the field of block cipher based hash function security.
Spearheaded by rebound attacks alongwith other cryptanalytic techniques, sev-
eral AES as well as other block cipher based dedicated hash functions have been
reviewed and cryptanalyzed [12,14-16,18,19,21]. But all of the analysis that
has been done has been performed on round-reduced versions of block ciphers.
Specifically, if we refer to the previous best result on AES-128 based hash modes
performed by Sasaki [18], the maximum number of rounds attacked is 7.

The reason behind this restriction was the fact that AES-128 itself was resis-
tant to full 10 rounds attack for a considerable period of time since its advent.
Until few years ago, there was no single key model attack known which could
break full AES-128 better than brute force. In Asiacrypt’11, Bogdanov et al. [7]
proposed a novel idea called biclique attack which allowed an attacker to recover
the AES secret key 3-5 times faster than exhaustive search. Subsequently, this
technique was applied to break many other block ciphers such as PRESENT [1],
ARIA [22], HIGHT [10] etc. As block cipher and block cipher based hash function
security are inter-related, it is imperative to analyse the hash function security
against biclique technique.

Biclique cryptanalysis is a variant of meet-in-the-middle attack, first intro-
duced by Khovratovich et al. in [13] for preimage attacks on hash functions Skein
and SHA-2. The concept was taken over by Bogdanov et al. to successfully crypt-
analyze full rounds of all AES variants. The biclique attack results on AES in [7]
were further improved in [6,20]. Bogdanov et al. in [7] also showed conversion of
biclique key recovery attack on AES-128 to the corresponding preimage attack
on AES-128 instantiated compression function. The current best complexity of
this attack as reported in [6] is 212556,

1.1 Motivation

The above biclique based preimage attack on AES-128 instantiated compression
function cannot be converted to preimage attack on the corresponding hash
function (and hence second preimage attack as discussed in Sect. 5 later). This
is due to the fact that in the preimage attack on compression function shown
in [6,7], the attacker needs to modify the chaining variable (C'V') value and the
message input to obtain the desired preimage. However, in hash function settings,
the initialization vector (IV') is a publically known constant which cannot be
altered by the attacker. Hence, the biclique trails used in the preimage attack on



Biclique Cryptanalysis of Full Round AES-128 Based Hashing Modes 5

AES-128 based compression function in [6,7] cannot be adopted to find preimage
for the corresponding AES-128 based hash function. This can be explained as
discussed below.

Let us consider Matyas-Meyer-Oseas (MMO) mode and Davies-Meyer (DM)
mode based compression functions as shown in Fig. 1(a) and (b). In case of MMO
mode, the chaining variable acts as the key input to the underlying block cipher
AES (as shown in Fig. 1(a)). If the chaining variable is used as the IV (in hash
function settings) then it is fixed and cannot be modified. This means that the
value of the key input to the block cipher should not change. However, the type of
biclique trails used in [7] (as shown in Fig. 2) for compression function introduce
a change both in the key input as well as all the intermediate states including
the plaintext input ensuring that the final chaining variable so obtained after
the attack will not be the desired IV. Hence, the kind of biclique trails we are
interested in should only affect the intermediate states (an example of which is
given in Fig. 3) and not the key input.

Plaintext

ak
MasterKey ¢
3 SR
> MC
¥
52
CV/key
V
message/plaintext D—nh 4
2 5B
3 SR
S MC
(a) MMO mode =
message/key
! s3
CV/plaintext D—n
(b) DM mode
Fig. 1. Compression function in MMO Fig. 2. An example of the trail used
and DM mode respectively. in [7] for preimage attack on AES-128

instantiated compression function.

Similarly, in the DM mode, the chaining variable acts as the plaintext input
to the underlying block cipher (as shown in Fig. 1(b)). Therefore, if the chaining
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variable under consideration is the I'V then the chosen biclique trails should not
inject any difference in the plaintext input of the block cipher (an example of the
same is shown in Fig.4). Again, the biclique trails adapted for preimage attack
on AES-128 instantiated compression function do not satisfy this condition
(as seen in Fig. 2).

Plaintext

$1 Master Key g

#3 #1

SB
SR

SB
IMC

Key Schedule
|Z)
-l

Key Schedule

#4 #2

$2 $1

#5 #3

A - differential A - differential

Fig. 3. An example of the desired trails
that will work for attacking MMO
based hash function. It is to be noted
only the plaintext input and subse-
quent intermediate states are affected
in the trail considered whereas the key

Fig. 4. An example of the desired trail
that will work for attacking DM based
hash function. It is to be noted here
that the plaintext input is not affected
by the differential trail so chosen and is
a fixed constant.

input is a fixed constant.

The examples discussed above warrant searching of new biclique trails which
can be used to launch second preimage attack on AES-128 based hash func-
tions. Moreover, searching these trails manually may not give the best results as
demonstrated in [2,6]. Hence, automated search process is required. In this work,
we implemented our restrictions in C programs to enumerate the best biclique
trails which guarantee the lowest possible attack complexities. We then apply
biclique technique to evaluate the security of AES-128 based hash functions
against second preimage attack.

1.2 Our Contributions
The contributions of this paper are as follows:

— We re-evaluate the offered security of full 10 rounds AES-128 based hash
functions against second preimage attack. The previous best result could only
work on 7 rounds.
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Our analysis works on all 12 PGV modes of the hash function constructions.
The complexities of the biclique based analysis differ depending upon the
PGV construction chosen. For MP and MMO mode it is 2'26-3 whereas for
DM mode it is 2126-67,

— We propose new biclique trails to achieve the above results.

— All the trails have been obtained by implementing C programs which ensure
that they yield the best attacks (lowest possible time complexity).

The results of our security evaluation against second preimage attack on all
12 PGV based modes are given in Table1.

Table 1. Summary of the results obtained. In this table, we assume hash function to
be instantiated with block cipher FE, h is the chaining variable, m is the message input
and h ®dm = w.

S.No | Hash Function Modes Second Preimage | Succ. | Brute Force | Succ.

Complexity Prob | Complexity | Prob
1 En(m) ®@m - MMO 21263 0.632 | 2128 0.632
2 Ep(m) @ w - MP 21263 0.632 | 228 0.632
3 Em(h) @ h - DM 2126.6 0.632 | 228 0.632
4 Ep(w) @ w - similar to MMO | 2126-3 0.632 | 2128 0.632
5 En(w) @ m - similar to MMO | 2263 0.632 | 2128 0.632
6 Em(h) @ w - similar to DM | 2126:6 0.632 | 228 0.632
7 Em(w) @ h - similar to DM | 2126-6 0.632 | 2128 0.632
8 Ep(w) @ w - similar to DM | 21266 0.632 | 2128 0.632
9 Ew(h) @ h - similar to DM 21266 0.632 | 2128 0.632
10 | Ey(h) @m - similar to DM | 21266 0.632 | 228 0.632
11 | Ey(m) @ h - similar to MP | 21263 0.632 | 228 0.632
12 | Ey(m) ®m - similar to MMO | 21263 0.632 | 2128 0.632

2 Preliminaries

In this section we give a brief overview of the key concepts used in our crypt-
analysis technique to facilitate better understanding.

2.1 AES-128

AES-128 is a block cipher with 128-bit internal state and 128-bit key K. The
internal state and the key is represented by a 4 x 4 matrix. The plaintext is
xor’ed with the key, and then undergoes a sequence of 10 rounds. Each round
consists of four transformations: nonlinear bytewise SubBytes, the byte permu-
tation ShiftRows, linear transformation MixColumns, and the addition with a
subkey AddRoundKey. MixColumns is omitted in the last round.
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For the sake of clarity, we will follow the same notation used for description of
AES-128 as used in [7]. We address two internal states in each round as follows:
#1 is the state before SubBytes in round 1, #2 is the state after MixColumns
in round 1, #3 is the state before SubBytes in round 2, ..., #19 is the state
before SubBytes in round 10, #20 is the state after ShiftRows in round 10. The
key K is expanded to a sequence of keys K°, K', K? ..., K' which form a
4 x 44 byte array. Then the 128-bit subkeys $0,$1,$2,...,$10 come out of the
sliding window with a 4-column step. We refer the reader to [8] for a detailed
description of AES.

2.2 Biclique Key Recovery Attack

In this section, we briefly discuss the independent biclique key recovery attack
for AES-128. For a more detailed description of bicliques, one can refer to [7]. In
this attack, the entire key space of AES-128 is first divided into non-overlapping
group of keys. Then, a subcipher f that maps an internal state S to a ciphertext
C under a key K, i.e. fx(S) = C is chosen. Suppose f connects 2¢ intermediate
states {S;} to 2¢ ciphertexts {C;} with 2%¢ keys {K[i,j]}. The 3-tuple of sets
[{S;}, {Ci}, {K]i, j]}] is called a d-dimensional biclique, if: Vi, j € {0, ....... ,24 —

Each key in a group can be represented relative to the base key of the group,
i.e., K[0,0] and two key differences A¥ and V¥ such that: K[i, j] = K[0,0]@ AF &

. K[0,0
V§ For each group we choose a base computation i.e., Sy % Cy. Then C; and

. Cad . . . K[0,0/0A} d
S; are obtained using 2¢ forward differentials A;, i.e., So ————— C; and 2

. . . K[0,0]&V} . .
backward differentials V;, i.e., S; T Cy. If the above two differentials

do not share active nonlinear components for all ¢ and j, then the following
. K[0,0]@AF @V . .
relation: Sy @ V; f} Co @ 4, is satisfied [7]:
Once a biclique is constructed for an arbitrary part of the cipher, meet-in-
the middle (MITM) attack is used for the remaining part to recover the key.
During the MITM phase, a partial intermediate state is chosen as the matching

state v. The adversary then precomputes and stores in memory 2%t times full

. . . KTi,0 . K105
computations upto a matching state v: Vi, P; ECUN 7 and Vj, v aCoh S;.

Here, plaintext P; is obtained from ciphertexts C; through the decryption ora-
Kli,j K[i,j
cle!. If a key in a group satisfies the following relation: P; Kledl, vT=% e—[ilL]
g
S, then the adversary proposes a key candidate. If a right key is not found in the
chosen group then another group is chosen and the whole process is repeated.

The full complexity of independent biclique attacks is calculated as:
Cfull = 2k_2d(cbiclique + Cprecompute + Crecompute + Cfalsepos)»

! Under hash function settings decryption oracle is replaced by feed-forward operation.
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where, Cprecompute 15 the cost complexity for calculating v for 2d+1 Crecompute
is the cost complexity of recomputing v for 22¢ times and C ‘falsepos 15 the com-
plexity to eliminate false positives. As mentioned in [7], the full key recovery
complexity is dominated by 2F~2¢ x CrecomPQ.

3 Notations

To facilitate better understanding, we use the following notations in the rest of
the paper.

CVv : Chaining Variable
v : Initialization Vector
(CV,message) : Input tuple to hash function/compression function

(key, plaintext) : Input tuple to underlying block cipher

n : Input message/key size (in bits)

Ay : Base State

mp : Base Plaintext

Ky : Base Key

KIi, j : Keys generated by A; and V; modifications

MIi, j] : Messages generated by A; and V; modifications

Nbr : Number of AES rounds called

Eecnc/dec : One Round of AES encryption/decryption

E(x,y) : Full AES encryption under y-bit key and x-bit message
Eil(x, y) : Full AES decryption under y-bit key and x-bit message

4 Biclique Based Preimage Attack on AES-128
Instantiated Compression Function

In this section, we examine how biclique technique discussed in Sect.2.2 can
be applied to find preimage for block cipher based compression function. This
preimage attack on compression function will then be used to evaluate second
preimage resistance of AES-128 based hash functions under different PGV modes
as discussed in Sect. 5.

Let us consider an AES-128 based compression function (as shown in Fig. 5).
To find the preimage for h, the attacker needs to find a valid (C'V, message)
pair which generates h. In terms of the underlying block cipher E which is
instantiated with AES-128, this problem translates to finding a valid (plaintext,
key) pair where both the key and the plaintext are of 128-bits size. To guarantee
the existence of a preimage for h (with probability 0.632), the attacker needs to
test 2128 distinct (key, plaintext) pairs.

2 Chrecomp in turn is measured as: 2'2® (#S-boxes recomputed in MITM phase/# Total
S-boxes required in one full AES encryption) = 2'® (#S-boxes recomputed in
MITM phase/200).
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message (m)/ key

v Vai
E AV

Fig. 5. AES-128 instantiated compression function in DM mode.

CV/plaintext

A%

When biclique methodology is applied on AES-128 to recover the secret
key [7], full key space, i.e., 2!?8 keys are divided into 2'!? groups of 26 size
each and tested®. These 2!'? groups are generated from 2!'? base key values
where each base value defines one group. However, the same biclique approach
when extended to hash functions warrants the need of testing 2'2® (key, plain-
text) pairs. These 22 (key, plaintext) pairs will be generated from 212 (key,
plaintext) base states. Hence, under hash function settings, alongwith the base
key we introduce the term “base message”. Let K} denote the base key value and
Ap denote the base message value. If we apply the original biclique approach [7]
on compression function, then 2'2® (key, plaintext) pairs are generated from a
combination of 2'12(Kj, Ay) as shown in (Fig. 6). Here, a single Ay is chosen and
repeated across all the groups whereas 2!1? different Kj s are used. The biclique
algorithm for the attack is shown in Fig. 7. In Algorithm 1, the specific (¢,5) tuple
for which a match is found gives us the corresponding K|[i, j] and M]i, j] as the
desired inputs for compression function. The complexity of this attack when

applied for searching preimages in AES-128 instantiated compression function is
912556 [g].

Algorithm 1 :

Fix a base state Ay

for each 2'12 base keys (K]s) and the fized
chosen A, do

Generate 216 (Ak, Vf) combinations
Generate corresponding 2'° K7i, j]

Construct a biclique structure using
these 216 K3, 4]

16 ors
(Kzgl) , Ap) — 216 (key, message) pairs for each 2 K[l"j] do

(Kl()z) , Ap) — 216 (key, message) pairs 1. Generate(M[[ivj]] EXV};G)I’E Mi, j] = Nbr
3 1 . enc/dec ,J1 Ap
(Kls )»Ab) —— 216 (key, message) pairs 2. Perform meet-in-the-middle attack in

the rest of the rounds

112 :
(K}()Q ), Ap) — 216 (key, message) pairs

Fig. 6. Generation of groups in Fig. 7. Steps of the original biclique attack in [7]
original attack [7] using the base key K and the base message As.

3 Here, bicliques of dimension d = 8 are constructed. In our attacks, we also construct
bicliques of dimension 8.
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In the procedure described above, it can be seen that the attacker generates a
chaining value (M[i, j]) of her own along with the preimage (K[, j]). However, as
already discussed, the IV value is a public constant in the hash function setting
and cannot be altered by the attacker. In the subsequent section, we show how
to utilize variants of the above framework for launching second preimage attack
on AES-128 based hash functions in different PGV modes with IV being fixed.

5 Second Preimage Attack on Hash Functions

In this section, we examine the feasability of extending the biclique cryptanalysis
technique for second preimage attack on AES-128 instantiated hash functions
for all 12 PGV modes.

5.1 PGV Construction 1 - Matyas-Meyer-Oseas (MMO) Mode:
Ep(m)® m

Consider MMO based hash function as shown in Fig.8. Here, the (chaining
variable, message block) tuple act as the (key, plaintext) inputs respectively to
block cipher E. In this case, the attacker is given m = (mg || m1 || pad) and its
corresponding hash value hs. Her aim is to find another different message, m’
that will produce the same ho. To achieve so, the attacker can consider m’ as -
(mg || m1 || pad) where the second half of m’ = m while for the first half, the
attacker has to carry a biclique attack. For the first half, i.e., hy := Epy(my),
the attacker knows hy and IV. Her aim is now to find a preimage m{ which
produces hy under the given I'V. The attack steps are as follows:

mo m 1 lpad

hy
]VB_ "

mg mq lipad

hy
v 9_ h2

Fig. 8. Second preimage attack on MMO based hash function

1. The attacker fixes IV as the key input to the block cipher E & chooses a
128-bit base message Ay.

2. Choice of biclique structure. Here, the key input to the block cipher
(i.e., IV) is fixed. The attacker has to choose a biclique structure such that
the A; and V; trails only modify the message states and not the key states
(since IV cannot change) plus the biclique attack should have lowest search
complexity. All the existing biclique trails in literature allow modification in
the keys states as well, therefore, we construct new biclique trails to suit our
needs.



12

D. Chang et al.

We represent the A and V trails as A" and V7" respectively. The biclique
structure satisfying the above requirements is as shown in Fig.9(a).

For the above biclique, she divides the 128-bit message space into 2! groups
each having 2'6 messages with respect to intermediate state #3 as shown in
Fig.9(a). The base messages are all 16-byte values with two bytes (i.e., bytes
0 and 4) fixed to 0 whereas the remaining 14-bytes taking all possible values
(shown in Fig. 10). The messages in each group (M, j]) are enumerated with
respect to the base message by applying difference as shown in Fig. 11. The
proof for the claim that this base message (with the corresponding A; and V
differences) uniquely divides the message space into non-overlapping groups
is given in Appendix A.1.

The biclique covers 1.5 rounds (round 2 and round 3 upto Shift Rows oper-
ation). A" trail activates byte 0 whereas V7" trail activates bytes 3,4,9 and
14 of #3 state.

Meet-in-the-middle attack is performed on the rest 8.5 rounds. In the MITM
phase, partial matching is done in byte 12 of state #13. In the backward
direction, A" trail activates 4 bytes in the plaintext i.e., byte 0, 5, 10 and 15

S+ S1 1+ $1 B

sB
M

ISB
M

Key Schedule
2
%
Key Schedule
]
%
Key Schedule
=
3

£

e

#5

# #

I
[
Base Computation A - differential ¥ - differential

(a) Biclique over 1.5 rounds

#6 #7 #3 #9 #10 #11 #12 #13

El ~ 9] 9] o [1] ] ‘matching byte
= = B3 E 5% Ed @%z } E }
2 I | |

| |

I recomputed

(b) Forward Recomputations

#13
. H:FH matching byte

(c) Backward Recomputations

Fig. 9. Biclique structure for MMO mode when key/I'V is known
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whereas V7" activates all bytes. As such, during the recomputation phase, the
4 bytes of plaintext affected by both A* and V7" trails need to be recomputed.
Similar explanation can be provided for other bytes shown to be recomputed
in Fig.9(b) and (c). In the forward propagation (starting from round 4),
441644 = 24 S-boxes and in the backward propagation (starting from round
1), 4+16+16+4+1= 41 S-boxes are recomputed. Thus, a total of 65 S-boxes
are involved in the recomputation process. One full AES encryption requires
200 S-box computations. As each group has 2'¢ messages, Crecomp = 2'6 x 25
= 2143 Hence, Clpyy = 2112 x 2143 = 212633,

7. For the specific (4,7) value which produces a match in the middle, the cor-
responding MTi, j] i.e., xoring of #3 states in base computation, A; and V,
trails (in Fig. 9(a)) yields the plaintext my, for the block cipher E. The biclique
algorithm, i.e., Algorithm 2 is as shown in Fig. 12.

Jj2

J3

Jja

Fig. 10. Base message Fig. 11. A; and V; differences

Thus with a time complexity of 2126-3  the attacker is able to find a (IV,
my) pair which produces hash value h; and m’ = (m( || m1 || pad) forms a valid
second preimage.

PGV Construction 2 - Miyaguchi-Preneel Mode (MP) Mode:
En(m) ®m @ h - The MP mode is an extended version of MMO mode. The
only difference between the two constructions is the fact that output of block
cipher is xor’ed both with the plaintext input as well the chaining variable input.
However, this does not demand any extra attack requirements and the second
preimage attack on MP mode is exactly the same as that described on MMO
mode.

5.2 PGYV Construction 3 Davies-Meyer (DM) Mode: E,,(h) & h

In the DM based hash function (as shown in Fig.13), the (chaining variable,
message block) tuple act as the (plaintext, key) inputs respectively to block
cipher E. We again inspect a similar scenario as described in Sect. 5.1, i.e., for
a message m = (my || m1 || pad), the attacker is given its corresponding hash
value hy. Her aim is to find another different message m’ that will produce
the same hsy. Consider the hash function as concatenation of two compression
functions - Ep,,(IV) and E,,,|| pad (h1). To get a valid second preimage, the
attacker chooses m’ as - (my, || m1 || pad) i.e., she focuses on the first compression
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Algorithm 2:

Fix a base state Ay

for each 2''? base messages (As) and a single base key i.e., IV
do

Generate 2'° (A", V7") combinations

Generate corresponding 2'° MTi, 5]

Construct a biclique structure using these 2*°M{[s, 5]

for each 2'°M[i, 4] do

1. Perform meet-in-the-middle attack in the rest of the rounds

Fig. 12. Steps of the new biclique attack when key input to the underlying block cipher
is fixed and cannot be modified by the attacker for MMO mode.

me m 1 Il pad

2
E}_
o
\Y %
>
-
[ﬂ}
o
AYZ

ho

m/ m 1l pad

hq
ho

o
\Y %
o
AYZ

Es
+

Fig. 13. Second preimage attack on DM based hash function

function and her aim is to find m( such that E,,, (IV) = h; when IV and hy

/
0

are known to the attacker. The attack steps are as follows:

1.
2.

The attacker fixes the IV as the plaintext input to the block cipher.
Choice of biclique structure. Under the given attack scenario, since the
message input, i.e., IV is fixed, the attacker has to choose a biclique structure
such that the A; and V; trails do not modify the plaintext state and the
biclique attack has lowest search complexity. The biclique structure satisfying
the above requirements is given in Fig. 14(a).

For the above biclique, she divides the 128-bit key space into groups,
each having 2'6 keys with respect to subkey $0 i.e., the master key as the
base key as shown in Fig. 14(a). The base keys are all 16-byte values with two
bytes (i.e., bytes 0 and 1) fixed to 0 whereas the remaining 14-bytes taking
all possible values (shown in Fig.15). The keys in each group (K[i,j]) are
enumerated with respect to the base key by applying difference as shown in
Fig.16. It can be easily verified that this base key uniquely divides the key
space into non-overlapping groups.

The biclique covers the first round. 4; trail activates byte 0 of $0 subkey
whereas V; trail activates byte 1 of $ 0 subkey.

2112



Biclique Cryptanalysis of Full Round AES-128 Based Hashing Modes 15

m mj

AK vK

SB

Key Schedule

HH

Key Schedule
]
%

Key Schedule
7
Z

#3

#3 #3

.

Base Computation A Computation v ; Computation

(a) Biclique over first round

=

10 #11
v matching byte
2 HH

[ I

[ 1

#3 #4 #5 #6 #1 #8 #9

o ]
252

Star
]
SB
SR
MC
AK
SB
SR
MC
AK
SB
SR
MC
AK
|
|

I recomputed

(b) Forward Recomputations

(¢) Backward Recomputations

Fig. 14. Biclique structure for DM mode when I'V /message input is known to the
attacker

5. The attacker then performs meet-in-the-middle attack on the rest of the 9
rounds. In the MITM phase, partial matching is done in byte 12 of state #11.
In the forward propagation (starting from round 2), 2+16+16-+4 = 38 S-boxes
and in the backward propagation (starting from round 10), 54+16+16+4+1
= 42 S-boxes need to be recomputed (as shown in Fig.14(b) and (c)). 2
S-box recomputations in the key schedule are also required. Thus a total of
82 S-boxes are involved in recomputation process. One full AES encryption
requires 200 S-box computations. As each group has 2'6 keys, Crecomp =
916 % = 2146, Hence, Clpyy = 2112 x 2146 = 21266,

6. For the specific (,7) value which produces a match in the middle, the cor-
responding Ki, j] forms the key (mg) for the block cipher E. The biclique
algorithm, i.e., Algorithm 3 is given in Fig. 17.

Thus with a time complexity of 2126-6  the attacker is able to find a (IV,
mg) pair which produces hash value h; and m’ = (mg || m1 || pad) forms a
valid second preimage. The attack procedure on two block message for other
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Fig. 15. Base message Fig. 16. A; and V; differences

Algorithm 3 :

for cach 22 base keys (K,s) and the fired chosen I'V do
Generate 2'° (A¥, V¥) combinations

Generate the corresponding 2'°K[i, j]

Construct a biclique structure using these 2*¢ K[i, j]
for cach 2'5KTi, j] do

1. Perform meet-in-the-middle attack in the rest of the rounds

Fig. 17. Steps of the new biclique attack when message input is fixed and known to
the attacker under DM mode

constructions is similar to those discussed in Sects. 5.1 and 5.2. Their results are
given in Table 1.

6 Second Preimage Attack on Hash Functions Extended
to Messages with Message Length >3

The second preimage attack discussed in above sections can be extended to
messages of any length >2 with same complexity as obtained for 2-block mes-
sages. To demonstrate the same, consider a MMO-based hash function with
3-block message as shown in Fig. 18. In this case, the attacker is given a message
m = (mg || my || me || pad) and its corresponding hash value hs. Her aim is
to find another message m/, such that H(m’) = H(m). The attacker knows IV
and the compression function E. She will choose any mg of her own choice, e.g.,
let mg = 0, and then calculate hy = FEyy(0). Once she knows hq, the setting
is reduced to the case discussed in Sect. 5.1, i.e., h; and hy are known to the
attacker and her aim is to find m} such that m’ = (0 || m} || m2 || pad) forms
a valid second preimage. This can be found with a complexity of 21263 which is
same as that shown for a 2-block message. Similarly, the attack can be applied
on other long messages for all other PGV modes.

7 Conclusions

In this paper, we evaluate the security of AES-128 based hash modes against
second preimage attack. Specifically, we examine the applicability of biclique
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mo mq moll pad

hy ho

m ol pad

hy ho
v Hhk;

Fig. 18. MMO base hash function with |m|=3

attack on all 12 PGV modes when instantiated with AES-128 and show that
best biclique attack for finding preimages in AES-128 instantiated compression
function does not translate to best attack for second preimage search under AES-
128 based hash function settings. A natural research extension to this work would
be to apply the ideas discussed in this paper to hash functions instantiated with
other block ciphers. Another research direction can be to extend the methodology
to carry out collision attacks on hash functions.

A  Proofs

In this section, we will prove how the base structure which we chose for bicliques
in Sect. 5.1 produce non-overlapping keys/messages within a same group and
between groups.

A.1 Biclique Structure When IV Is Known and Acts
as the Message Input to Block Cipher E

For the base message (shown in Fig. 10) that is used for the biclique structure
in Fig.9(a), our aim is to prove that when A; and V; differences are injected
in this base message (as shown in Fig.19), we are able to partition the mes-
sage space into 2''2 groups with 2'® messages in each and the inter and intra
group messages generated are non-overlapping. The V1, Vjs, Vi3 and Vj, are
differences produced from V;j as shown in Fig. 20.

Here, b; ; and ¢; ; (0 < i,j < 3) represent the base values of corresponding
bytes in the intermediate states #B and #C respectively as shown in Fig. 21.
#B and #C are #3 and #4 states in Fig. 9(a).

Aim: Given any two base messages B, B’, any two 4A; differences 4, i, any two
V, differences j, j/ (0 < i,j < 28), we want to prove that B[i,j] # B[, j'] i.e.,
messages generated are non-overlapping. We will prove this statement case-by-
case. Cases (1-4) cover inter group messages whereas Cases (5-7) cover within
group messages. For all the proofs discussed below, we will refer to Figs. 22, 23
and 24 for better understanding.

Case 1. Given B # B’ i =4',j = j', boo=b10=bpy=b1,=0, to show: Bl[i,j] #
Bli’, ']
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i |J1 . :
; bo1 @ J1 co1 @ J
aF b2 @0 | _ rsp 1SR 1MC |
: 73 ba3 @ js ’ ’ c23
J4 b3o @ ja €30
Fig. 19. A; and V; differ- Fig. 20. Relation between Vj, Vji, Vja, Vis, Vja
ences in base message
#B #C
boo P01 Bo2bo3 €00 (€01 (c02[c03
b b c c
10P11p12P13]| g SR. MC 1011 €c12€£13
b2 b21 p2a bos3 €20(c21 €22 (€23
b30 b31 b32 b33 €30[¢31(c32(33

Fig. 21. Relation between #B and #C states

Proof: We will prove this setting by ‘proof by contraposition’, i.e., if B[i,j] =
B'li',j'l,i=1',j = j', boo=bro=bpo=b1y=0, = B =D’

In Fig. 24, if B[Z,j] = B/[il,j/} — C[’L,]] = C/[i/,j/] — (o2 = 06’2, Co,3 =
6673, C1,1 = Cﬂ,l, Ci1,2 = 63727 C1,3 = 6/1,3, C21 = 0'2,1, €22 = 6/272702,3 = 0'2,3, C3,1 =
315 C32 = C39 and ¢33 = ¢5 5. Since C[i, j] = C'[i', j'] = co1@j =cp1DJ'-
Asj=j = co1 = 0671. Hence, 12 bytes in state C' and corresponding bytes
in state C” share equal values. This relation automatically transcends to related
byte positions in B and B’ after application of InuMizColumns, InvShiftRows
and InvSubBytes (as shown in Fig.22), i.e., b1 = bg 1, bo2 = bp o, bo,3 = bp 35
bl,o = b/1707 b1,2 = b/1727 b1,3 = b/1,3, b2,0 = b/2707 b2,1 = bl2717 b2,3 = blz,sa bS,O = bé707
b31 = by and bz o = b3, 12 bytes in B and B’ respectively also have same
base values). As we have assumed Bli, j] = B'[i',j'] = b1 = b} 1, bao = b
and b33 = bg’3 as these base values are not affected by A; and V; differences
(as seen in Fig.24). Since in states B and B’, by o = bj o = 0, hence all 16 byte
positions in B and corresponding byte positions in B’ share same base values.
Hence B = B’. This proves that our initial proposition is correct.

Case 2. Given B # B', i =14, j # j', boo=bo1=b{n=by; =0, to show: Bli,j] #
B, j

Proof: We will prove this setting by ‘proof by contradiction’, i.e., let us assume
it B#£B,i=1,j=7j byo=bro=bp,=b,=0, = Bli,j] = B[, ']

In Fig. 24, if B[i,j] = B'[i',j'] = Cli,jl =C"[i",j] = coa®j=cH, @7
Since j # j' = co,1 # 1. As a result after applying InvMizColumns and
InvSubBytes on them the bytes generated i.e., by; and bg’l should also satisfy
the relation - bg1 # by ;. But b1 = by, = 0 (as seen in Fig.21). Hence, a
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contradiction arises implying our assumed proposition is wrong. Therefore, our
initial proposition is correct.

Case 8. Given B # B', i # i, j = j', boo=bg1=b{n=b}; =0, to show: Bli,j] #
B/[i/,j/]

Proof: In this setting since ¢ # ', hence BJi, j] # B’[’,j'] always as they will
always differ at zeroth byte position (Fig.24).

#B Iy
0 | o |bo2 |bo3 o | o [b2|Ys
b1o | b1y |b12 | b13 bl iy bio | g
2 b s T T
b20 | ba1|b22 P23 b0 | Yo1| P22 | P23
b30 | b31|b32 | b33 Y30 | Va1 |bha | Yhs
SB SB
SR SR ‘
#C | MC #C' [ MC 4B #Blij]
0 | o |c02 |c03 0 ] 0 |ehy|chs 0 | o |bo2|bo3 i i1 |bo2 |bo3
b
. ’ b 12
c1o| e11|c12 €13 ol ehil¢ha | € bio | b11|b12 |b13 2.9, bio | b1t g7 b13
/ ’ b23
c20 | c21|€22 |23 cho | chy| cha | cha bag | ba1|b22 |b23 b0 | b21|b22 | g,
b
’ 30
€30 | €31 |c32 |c33 30 | 51| chy | chs b30 | b31|b32 |ba3 @, | 31|32 | b33
Fig. 22. Relation between base Fig.23. Modification of state #B
states B and C. The labels inside after applying A; and V; differences.
. . ,
each box denote the base values of Same relation exists between # B’ and
. e e
the corresponding byte positions #B'[4, 5]
#Blij) Bl
i | 71 |bo2 |bo3 i 1| bog | v0s
b b1q | P12 by o) | ot Vi
10| baa| 0 | P13 10| Y1) 47| M1
bo3 ’ , 1 e
> - 23
bo | b21|b22 | g, bho | bhy| boo sy
530 b,
B30 ot | bao | ba- 30| bl | b, |V,
@y | U3L|bs2 b33 ey 31| "z | as
ISB ISB SB ISB
Aj ISR Vj|1SR A ISR V| 1SR
MC IMC MC Tl mc
<00 | co1 P ! B ,
co2 |co3 0| “o1fel, e
i1 | @ .f,’l oy | €02 | ‘03
€10 c
0] o | |
iy | et ferz |e1a af] et eha | cis
€20 c
93 20 ’ " ’
i3 c21|¢22 (€23 ‘f,//s €1 Coo | €o3
€30 o ,
T : 30 ’ ol
@iy | 31|32 |°33 ®i 31| “32 | “33
#Cli] LIl

Fig. 24. Relation between states # B3, 7], #Cl[i, j] and #B’[i, j], #C'[i, 7]

Case 4. Given B # B', i #1i', j # j', boo=bo1=by=b; =0, to show: Bli,j] #
Bl[i/,j,]

Proof: Proof similar to as discussed in Case 3.
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Case 5. Given B = B', i # i, j # j', boo=bo1=b{n=by; =0, to show: Bli,j] #
B'li’, j']
Proof: Proof similar to as discussed in Case 3.

Case 6. Given B = B', i # i, j = j', boo=bo1=b{n=b(; =0, to show: Bli,j] #
B[, j']
Proof: Proof similar to as discussed in Case 3.

Case 7. Given B = B', i =4, j # j', boo=bo1=b(y=b(; =0, to show: Bl[i, j] #
B’ ']
Proof: Since B = B' = C =" = cy =cy;- Asj #j =
con1®jF#ch, @J = Cli,j] # C'[i’,j'] always as they will everytime differ
at fourth byte position (Fig.24). As a result B[i,j] # B’'[i’,j’] always due to
bijection relation between states B and C.

Hence we proved that in all cases M[i, j]’s so generated are non-overlapping.
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Abstract. Huff curves are well known for efficient arithmetics to their
group law. In this paper, we propose two deterministic encodings from
F, to generalized Huff curves. When ¢ = 3 (mod 4), the first determin-
istic encoding based on Skalpa’s equality saves three field squarings and
five multiplications compared with birational equivalence composed with
Ulas’ encoding. It costs three multiplications less than simplified Ulas
map. When ¢ = 2 (mod 3), the second deterministic encoding based
on calculating cube root costs one field inversion less than Yu’s encod-
ing at the price of three field multiplications and one field squaring. It
costs one field inversion less than Alasha’s encoding at the price of one
multiplication. We estimate the density of images of these encodings
with Chebotarev density theorem. Moreover, based on our deterministic
encodings, we construct two hash functions from messages to generalized
Huff curves indifferentiable from a random oracle.

Keywords: Elliptic curves - Generalized Huff curves - Character sum -
Hash function + Random oracle

1 Introduction

Plenty of elliptic/hyperelliptic curve cryptosystems require hashing into alge-
braic curves. Many identity-based schemes need messages to be hashed into
algebraic curves, including encryption schemes [1,2], signature schemes [3,4],
signcryption schemes [5,6], and Lindell’s universally-composable scheme [7]. The
simple password exponential key exchange [10] and the password authenticated
key exchange protocols [11] both require a hash algorithm to map the password
into algebraic curves.

Boneh and Franklin [8] proposed an algorithm to map elements of F, to
rational points on an ordinary elliptic curve. This algorithm is probabilistic and
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fails to return a point at the probability of 1/2%, where k is a predetermined
bound. One disadvantage of this algorithm is that its total number of running
steps depends on the input u € Iy, hence is not constant. Thus the algorithm
may be threaten by timing attacks [9], and the information of the message may
leaked out. Therefore, it is significant to find algorithms hashing into curves in
constant number of operations.

There exist various algorithms encoding elements of F, into elliptic curves
in deterministic polynomial time. When ¢ = 3 (mod 4), Shallue and Woestijne
proposed an algorithm [12] based on Skalba’s equality [13], using a variation of
Tonelli-Shanks algorithm to calculate square roots efficiently as /2 = z(at1)/4,
Fouque and Tibouchi [14] simplified this encoding by applying brief version of
Ulas’ function [15]. Moreover, they generalized Shallue and Woestijne’s method
so as to hash into some special hyperelliptic curves. When ¢ = 2 (mod 3), Icart
[16] gave an algorithm based on computing cube roots efficiently as /3 =
x(24=1)/3 in Crypto 2009. Both algorithms encode elements of F, into curves in
short Weierstrass form.

After initial algorithms listed above, hashing into Hessian curves [17] and
Montgomery curves [18] were proposed. Alasha [19] constructed deterministic
encodings into Jacobi quartic curves, Edwards curves and Huff curves. Yu con-
structed a hash function from plaintext to C34— curves by finding a cube root [20].

Huff curves, first introduced by Huff [21] in 1948, were utilized by Joye,
Tibouchi and Vergnaud [22] to develop an elliptic curve model over a finite field
K where char(K) > 2. They also presented the efficient explicit formulas for
adding or doubling points on Huff curves. In 2011, Ciss and Sow [27] introduced
generalized Huff curves: ax(y? — ¢) = by(x? — d) with abed(a?c —b?d) # 0, which
contain classical Huff curves [22] as special cases. Wu and Feng [23] indepen-
dently presented another kind of curves they also called generalized Huff curves:
x(ay? — 1) = y(bx? — 1), which is in fact an equivalent variation of Ciss and
Sow’s construction. Wu and Feng constructed arithmetic and pairing formu-
las on generalized Huff curves. Generalized Huff curves own an effective group
law and unified addition-doubling formula, hence are resistant to side channel
attacks [24]. Devigne and Joye also analyzed Huff curves over binary fields [28]:
az(y® + cy + 1) = by(z? + cx + 1) with abc(a — b) # 0.

We propose two deterministic encodings directly from I, to generalized Huff
curves: brief Shallue-Woestijne-Ulas (SWU) encoding and cube root encoding.
Based on Skalba’s equality [13], brief SWU encoding costs three field squarings
and five multiplications less than birational equivalence from short Weierstrass
curve to generalized Huff curve composed with Ulas’ original encoding [15].
It saves three squarings less than birational equivalence from short Weier-
strass curve to generalized Huff curve composed with simplified Ulas map [26].
To prove our encoding’s B-well-distributed property, we estimate the character
sum of an arbitrary non-trivial character defined over generalized Huff curves
through brief SWU encoding. We also estimate the size of image of brief SWU
encoding. Based on calculating cube root of elements in Iy, cube root encod-
ing saves one field inversion compared with Yu’s encoding function at the price
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of one field multiplication. It saves one field inversion compared with Alasha’s
encoding at the price of one field squaring and three field multiplications. We
estimate the relevant character sum and the size of image of cube root encoding
in similar way.

Based on brief SWU encoding and cube root encoding, we construct two
hash functions efficiently mapping binary messages into generalized Huff curves,
which are both indifferentiable from random oracle.

We do experiments over 192—bit prime field Fpi9o and 384-bit prime field
F p3s4 recommended by NIST in the elliptic curve standard [25]. On both fields,
there exist efficient algorithms to calculate the square root and cube root for
each element. On Fpygs, our cube root encoding f; saves 13.20 % running time
compared with Alasha’s encoding function f4, 8.97 % with Yu’s encoding fy, on
Fp3sa, f1 saves 7.51 % compared with f4 and 4.40 % with fy. Our brief SWU
encoding fg also runs faster than fy, birational equivalence composed with
Ulas’ encoding function and fg, birational equivalence composed with Fouque
and Tibouchi’s brief encoding. Experiments show that fg saves 9.19 % compared
with fy and 7.69 % with fg on Fpigo, while it saves 5.92 % compared with fi
and 5.17 % with fE on Fpss,.

Organization of the Paper. In Sect. 2, we recall some basics of generalized
Huff curves. In Sect. 3, we introduced brief SWU encoding, prove its B-well-
distributed property by estimating the character sum of this encoding, and cal-
culate the density of image of the encoding. In Sect. 4, we proposed the cube root
encoding, also prove its B-well-distributed property and calculate the density of
image of the encoding by similar methods. In Sect. 5, we construct 2 hash func-
tions indifferentiable from random oracle. In Sect. 6, time complexity of given
algorithms is analysed, and we presented the practical results. Section 7 is the
conclusion of the paper.

2 Generalized Huff Curves

Suppose I, is a finite field whose characteristic is greater than 2.

Definition 1 ([27]). Generalized Huff curve can be written as:
azx(y? — ¢) = by(x? — d),

where a,b, c,d € Fy with abed(a?c — b*d) # 0.

For generalized Huff curve E, if ¢ = 42, d = §? are squares of Fy, let (z,y) =
(62", vy, we find that E is F -isomorphic to classical Huff curve (ady?)z’ (y°-1) =
(b(527)yl (x/z — 1). If c or d is not a square of F,, there exists no relevant classical
Huff curve which is F ;-isomorphic to . Therefore, generalized Huff curves contain
classical Huff curves as a proper subset. L

Consider the point sets on projective plane (X : Y : Z) € P*(F,), generalized
Huff curve can be written as:

aX(Y? —cZ?) = bY (X? — dZ?).
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Generalized Huff curve has 3 infinity points: (1 : 0 : 0),(0 : 1 : 0),(a : b : 0).
We give a picture of generalized curve 3z (y? — 1) = —5y (2% — 2) as shown in
Fig. 1 (over R):

According to [23], a generalized Huff curve over F, contains a copy of Z /27 x
Z/27Z. In fact, every elliptic curve with 3 points of order 2 is F,-isomorphism to
a generalized Huff curve. In particular, az(y* — ¢) = by(z* — d) is Fy-isomorphic
to y? = x(x + a’c)(z + b?d).

Fig. 1. Generalized Huff Curve 3z (y2 — 1) = -5y (:):2 — 2)

3 Brief SWU Encoding

For ¢ = 3 (mod 4), Ulas presented an encoding function from F, to curve y* =
2™ + ax? + bz [15]. We construct our deterministic encoding function fs by
generalizing his method, mapping u € F, to (z,y) € E(F,).

3.1 Algorithm

Input: a,b,c,d and u € F,.
Output: A point (z,y) € E(F,).

If w = 0 then return (0, 0).

1.

a’b?ed

2. X =——(u?-1).

(U’) O,2C + bzd(u )

3. Calculate g(X (u)) where g(s) = s + (a%c + b2d)s? + a?b?cds.
a*b*cd 1

4. Y(u) = (1-—=).

T aZc+b2d u2
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5. Calculate g(Y (u)).

6. If g(X(u)) is a quadratic residue, then (s,t) = (X(u), - g(X(u))) ,
else (s,t) = (V(u), v/g(V () )

7 (ary) = (bd(s+a c) ac(s+b d))

t ’ t

According to [14], there exists a function U(u) = u3g(Y (u)), such that the
equality

U(u)® = —g(X (u))g(Y (u)) (1)

holds. Thus either g(X (u)) or g(Y (u)) is a quadratic residue. Choose the one
which has square roots in F,. Note that ¢ = 3 (mod 4), we can efficiently
calculate the standard square root by /a = al9t1/4 Hence the mapping
u > (s,t) satisfying t> = g(s) is constructed. Then in step 7, we transfer
(s,t) to (z,y) € E(F;) by a birational equivalence. It is easy to check that
this birational equivalence is one-to-one and onto when it is extended to a map
between projective curves. The image of (0,0),(—a’c,0),(—b?d,0) are infinite
points (a:b:0),(0:1:0),(1:0:0) respectively while the image of (0:1:0) is
(0,0) on E. Denote the map u — (s,t) by p, and denote the map (s,t) — (z,y)
by 1, we call the composition fs = v o p brief SWU encoding. Therefore given
(s,t) € Im(p), either t = y/g(s) hence s is the image of Y (u) and has at most
2 preimages, or t = —1/g(s) hence s is the image of X (u) and has still at most
2 preimages. Moreover, it is easy to check that i is one-to-one. Therefore for
each finite point on E(F,), and for the infinite point (a : b : 0), fg has at most
2 preimages, but for the rest 2 infinite points of E(F,), whose projective coor-
dinates are (1 : 0 : 0) and (0 : 1 : 0), fs has at most 4 preimages since the
corresponding t vanishes.

3.2 Theoretical Analysis of Time Cost

Let S denote field squaring, M denote field multiplication, I field inversion, Eg
the square root, E¢ the cube root, D the determination of the square residue.
Suppose a,b,c,d € F,. In this paper we make the assumption that S = M,
IZlOMaHdES:EC:E.

The cost of fg can be calculated as follows:

a?b%cd

1. Calculating u? costs S, multiplying u? — 1 by ——————— costs M, and it is
a’c+ b%d
enough to calculate X (u).
2. To compute Y (u), we need to calculate the inversion of u? for I + M.
3. When s is known, computing g(s) = s(s? + (a%c + b%d)s + a?b*cd) = s(s +
a?c)(s + b2d) takes 2M. To make sure that the algorithm be run in constant
time, both g(X (u)) and ¢g(Y (u)) must be calculated and it requires 4 M.
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4. In general case, exact one of g(X(u)) and g(Y (u)) is a quadratic residue. We
only need to check once and it takes D, then compute the square root Eg of
the quadratic residue. Then values of s and t are known.

5. Finally, we calculate the inverse of ¢, which requires I. Then multiplying the
inverse by s + a?c and s + b2d costs 2M, then calculating  and y costs 2M,
hence it requires I + 4M in this step.

Therefore, fg requires Fg +21 +10M +S+ D =FE 4+ 31M + D in all.

3.3 B-Well-Distributed Property of Brief SWU Encoding

Definition 2 (Character Sum). Suppose f is an encoding from Fy into a
smooth projective elliptic curve E, and J(Fy) denotes the Jacobian group of E.
Assume that E has an F, —rational point O, by sending P € E(F,) to the deg0
divisor (P)—(0), we can regard f as an encoding to J(F,). Let x be an arbitrary
character of J(F,). We define the character sum

Sr0) = Y x(f(s).

self,

We say that f is B-well-distributed if for any nontrivial character x of J(F,),
the inequality Sy (x)| < By/q holds [29].

Lemma 1 (Corollary 2, Sect. 3, [29]). If f is a B-well-distributed encoding
into a curve E, then the statistical distance between the distribution defined by
195 on J(F,) and the uniform distribution is bounded as:

N,(D) 1 B*

DeJ(F,)

where

IO (u, . us) = flur) + ..+ flu),
Ns(D) = #{(u1,...,us) € F)°|D = fu1) + ...+ f(us)},

i.e., Ns(D) is the size of preimage of D under f®5. In particular, when s is
greater than the genus of E, the distribution defined by f®° on J(F,) is statis-
tically indistinguishable from the uniform distribution. Especially, in the elliptic
curves’ case, gg = 1, let s = gg + 1 = 2, the hash function construction

m = fO(hi(m), hy(m))

1s indifferentiable from random oracle if hy, hy are seen as independent random
oracles into T, (See [29]).

Hence, it is of great importance to estimate the character sum of an encoding
into an elliptic curve, and we will study the case of generalized Huff curves.
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Definition 3 (Artin Character). Let E be a smooth projective elliptic curve,
J(Fy) be Jacobian group of E. Let x be a character of J(F,). Its extension is a
multiplicative map X : Divg, (E) — C,

- x(P)", Pes,
X(n(P)) =
0, P¢gSs.
Here P is a point on E(F,), S is a finite subset of E(Fy), usually denotes the ram-
ification locus of a morphismY — X . Then we call’xY an Artin character of X .

Theorem 1. Let h: X — X be a nonconstant morphism of projective curves,
and x is an Artin character of X. Suppose that h*x is unramified and nontrivial,
© is a nonconstant rational function on X. Then

IZXWWG?)«%JHmw@

PeX(Fq)
where () denotes Legendre symbol, and g is the genus of X.
q

Proof. See Theorem 3, [29].

Theorem 2. Let fg be the brief SWU encoding encoding from Fg to generalized
Huff curve E, ¢ = 2 (mod 3). For any nontrivial character x of E(Fy), the
character sum Sy, (x) satisfies:

1975 ()| < 161/ + 45.

Proof. Let S = {0} J{roots of g(X(u)) = 0} J{roots of g(Y (u)) = 0} where
X(-) and Y(-) are defined as in Sect.3.1. For any u € F,\S, X (u) and Y (u)
are both well defined and nonzero. Let Cx = {(u,s,t) € Fi|s = X(u),t =
—9(X(u)},Cy = {(u,s,t) € ]Fg\s = Y(u),t = y/g(Y(u))} be the smooth
projective curves. It is trivial to see there exist one-to-one map Px : u +— (u,so
px (u),t o px(u)) from P(F,) to Cx(F,) and Py : u — (u,s o py(u),to py(u))
from PY(F,) to Cy(F,). Let hx and hy be the projective maps on Cx and
Cy satisfying px(u) = hx o Px(u) and py (u) = hy o Py(u). Let gx = Py',
gy = P7', Sx = g3 (SU{o}) = Px()UPx (), Sy = g7 (S U{oo}) =
Py (8)U Py ().
To estimate Sy (x),

Srs() =| D (f&)(w) + Y (f5)(w)

u€F,\ S ues

N

D (Fa0)| +#5,

u€F\S




Hashing into Generalized Huff Curves 29

we deduce as follows,

> ()| = S (hyet(P) + o (hx¥T)(P)

u€F \S PECy (Fy)\Sy PeCx (Fg)\Sx
(42 ()
<HSy +#Sx + Z (h3-¢*x)(P)| + Z (Rx ™ x)(P)],
PGCy(]Fq) PECX(Fq)
(45 ()"
and

2 3 (er(P)

PECy (Fg)
(),

P

Y meoe s Y <h*yw*x><P>-(”)

PGCy(IFq) PGCy(Fq) q

S IRCTNITE]
()=
> o)+ X meror) ()]

PECy(Fq) PECy(]Fq)
+ #{roots of g(Y (u)) = 0}.

<

From the covering ¢ o hy : Cy — E, Y (u) = s o~ 1(x,y), which implies

T(u) = (a3cy — b3d:c)u2 — (acx — bdy)ab = 0.
2 _ ablacz — bdy)
s ascy — b3dx

Indeed, 9 o hy is ramified if and only if T'(u) has multiple roots, which occurs
when v = 0 or at infinity. Hence by Riemann-Hurwitz formula,

200, —2=0+1+1=2.

Hence curve Cy is of genus 2. Similarly, C'x is also of genus 2.
Observe that

degt = [Fy(s,t,u) : Fo(t)] = [Fy(s,t,u) : Fy(s, t)][Fq(s,t) : Fe(t)] =2-3=6.
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Further more, by Theorem 3 in [29],

2V4, | Xopecy #,) (W™ X)(P) - (t(qP)) < (290, — 2+ 2dett)\/q = 14,/q, and

g(Y (u)) = 0 is sextic polynomial, we can derive

LB (P)| < (2005 —2)va =

> (Be)(P)| <8Va+3.

PeCy (Fq)
(1)

And

Y. (xvTX)(P)

PeCx (Fq)
(87)-"
has the same bound.

Hence [Syq(2)] < 16,/q + 6 + #Sy + #Sx + #S. Note that g(X(u)) =
and ¢g(Y(u)) = 0 have common roots, we can deduce that #5 < 1+ 6 =
Thus #Sx < 2(#S + 1) < 16. By the same reason, #Sy < 16. Then | Sy, (z)
16,/q +45. Thus fs is well-distributed encoding using the Theorem 3 in [29].

0
7.
<
]

3.4 Calculating the Density of the Image
In the case of dealing with short Weierstrass curves, Icart conjectured that the

#Im(f) . 5 , . .
———= is near —, see [16]. Fouque and Tibouchi proved this
4E(F,) e 110

conjecture [14] using Chebotarev density theorem. Now we apply this theorem
onto generalized Huff curves, and give their sizes of images of deterministic

encodings.

Theorem 3 (Chebotarev, [31]). Let K be an extension of F,(x) of degree n <
oo and L a Galois extension of K of degree m < co. Assume Fy is algebraically
closed in L, and fix some subset ¢ of Gal(L/K) stable under conjugation. Let
s = #¢ and N(p) the number of places v of K of degree 1, unramified in L,

L/K

such that the Artin symbol () (defined up to conjugation) is in @. Then
v

density of image

s 2s
IN() = —al < —((m+g1) - ¢"* +m(20x +1) - ¢'/* + g1+ nm)

where g and gy, are genera of the function fields K and L.

Theorem 4. Let E be the generalized Huff curve over Fy defined by equation
ax(y® —c) = by(z? — d), abed(a’c — b%d) # 0, fs is the corresponding brief SWU
encoding function. Then

1
[#Im(fs) — 5al < 4¢"/° +6¢'/* + 27.
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Proof. K is the function field of E which is the quadratic extension of F,(z),
hence d = 2, and by the property of elliptic curve, g = 1.

Gal(L/K) = S3, hence m = #5, = 2. ¢ is the subset of Gal(L/K) consisting
a fixed point, which is just (1)(2), then s = 1.

Let W be the preimage of the map 1, W (F,) be the corresponding rational
points on W. By the property that 1 is one-to-one rational map, #Im(fs) =
#Im(yp~ro f) = Ix + Iy + Iy, where Ix = #{(s,t) € W(F,)|Tu € Fq,s = X(u),

= —Va(X@) # 0} Iy = #{(s.1) € WE)Fu € Fps = Y(u).t =
V(Y (u)) # 0}, Io = #{(s,0) € W(Fy)[g(X(u)) = 0or g(Y(u)) = 0} It is
trivial to see that Iy < 3.

Let Nx denote the number of rational points on the curve W with an s-
coordinate of the form X (u) and Ny denote the number of rational points on
the curve W with an s-coordinate of the form Y (u), we have

2fx + Ip < 2Ix + 3,
2

1
Hence Ix + Iy < i(NXJrNy) <Ix + Iy +3.

Since the place v of K of degree 1 correspond to the projective unramified
points on E(F,), hence |[Nx — N(¢)| < 12 + 3 = 15, where 3 represents the
number of infinite points, 12 represents the number of ramified points. Then we
have

1 1
[N = 2al < INx = N(@)| + IN(9) — 341
<15 + (4¢"% + 6¢M* + 6) = 4¢"/% + 644 + 21.

Analogously, [Ny — 3q| < 4¢%? + 6¢1/* + 21.
Therefore, we have

1 Nx + N Nx+Ny 1
[#Im(fs) — ~q| < |#Im(fs) — ——— Y|+ |2 2Y _ —g|
2 2 2 2
N
10+|IX—fX|+|IY——|+(4q1/2+6q1/4+21)

3 3
<345+ 5+ (g2 +6g"1 1 21)

=4q¢"? 4+ 6¢"/* + 27. n
4 Cube Root Encoding

4.1 Algorithm

When ¢ = 2 (mod 3) is a power of odd prime number, we give our deterministic
construction fr : u — (x,y) in the following way:
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Input: a,b,c,d,and v € F,.
Output: A point (z,y) € E(F,).

1. t =u? — a?c— b%d.

1 1
9 == a2b2cd — =2 ) .
T 2(abcd 3t>

t . t
3. 5= % + {fur? — (%)3

4 (ay) = (bd(s +a’cu) ac(s+ b2du)> .

)

su—+r su—+r

In step 3, since ¢ = 2 (mod 3), we can efficiently calculate the the cube root
by a = a(24-1/3,

4.2 Theoretical Analysis of Time Cost

Let M, S, I and F¢ represent the same as in Sect.3.2. The cost of encoding
function f; can be estimated as follows:

1. Computing u? costs S. Then ¢ can be calculated.
2. To compute r, we need S.

3. We use S+ M to calculate ur?, then use M to get ut and S + M to calculate

t
(%)2, take E¢ to calculate s.

4. Finally, to calculate the inversion of su+r, we need M +1I. Calculating

2bed bd b2acd
4 cost 2M. Calculating aoe u’ 5 , ac u7 aes cost 4M
r su+r° su—+r Ssu+r su-+r

r

and

with pre-computations.

Therefore, fr requires Ec + I + 45+ 10M = E + 24M.

4.3 Properties of Cube Root Encodings

Lemma 2. Suppose P(x,y) is a point on generalized Huff curve E, then equa-
tion fr(u) = P has solutions satisfying H (u;x,y) = 0.

When a*c® + b*d? # a’bcd,

H(u;z,y) = (acx — bdy)u* + (2b3d*y — 2a°c*x + 4abed(bx — ay))u?
+ 6abed(ac — b2d)u + (acx — bdy)(a*c® + b*d* — a*bcd).

When a*c® + b*d? = a’b?cd,

H(u;z,y) = (acx — bdy)u® + (2b3d%y — 2a®c*x + 4abed(bx — ay))u
+ 6abcd(a’c — b2d). (2)
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Proof. By the algorithm in Sect. 4.1, we have

{(qu —bd)s = abedu — xr N bd  a?bedu — xr

(yu —ac)s = ab?cdu—yr  yu—ac ab’cdu —yr

=(—bdy + acx)u* + (=2a®c*x + 4 xab*cd — 4 bdya*c + 2 b3 d%y)u?
+ 6 abed(a’c — b*d)u + (—b?da*c + a*c? + b*d?)(—bdy + acz) = 0. (3)
When a*c? + b*d? = a®b?cd, the constant coefficient of this equation is 0. Then

eliminate u, we get (2).
Meanwhile, if H(u;z,y) =0 and (x,y) € E, we have

ax(y® — ¢) = by(z® — d)
(CLQC +b%d — u2)2
3

(acx — bdy) <b2da2c - ) = 2u((2u — bd)ab?cd

—a?bedt(yu — ac))
which leads to
(zu — bd)ab*cd — (yu — ac)a*bed = (acx — bdy) (a*b*cd — %(GQC +b%d — u?)?)/2u,
from this equation and the definition of s, r, we get
bd(s + a*cu)

su—+r _
B ac(s+b2du) :>(x,y)—f1(u).
vy= su+r |

4.4 The Genus of Curve C

Denote F' by the algebraic closure of F,. We consider the graph of f;:

C={(z,y,u) € ExPYF)| fi(u)=(z,y)}
={(z,y,u) € ExP'(F)| H(u;z,y) =0},

which is the subscheme of E x P!(F).

Now we calculate the genus of C. In the case ac? + b*d? # a?b’cd, the
projection g : C' — E is a morphism of degree 4, hence the fiber at each point of F
contains 4 points. The branch points of F are points (z,y) € E where H (u; x,y)
has multiple roots, which means the discriminant D = disc(H ) vanishes at (z,y).
—azy? + axc — byd

by

16a*(Pi(y)z + Pa(y)) Lo (y)

boyP Pi(y)’

By substituting 2% = — into D, it can be represented as

D =
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where Pj(y) is a polynomial of degree 10, P(y) is a polynomial of degree 11.
P,
PQEy; into E(x,y) = 0, we find that y satisfies y'' - Q(y) = 0,
1y
where Q(y) is a polynomial of degree 12. Hence there are at most 12 branch
points on E other than (0,0). It is easy to check that (x,y) = (0,0) is a branch
point, since the multiplicity of u = co is 3. If H(u;z,y) has triple roots at (z,y),
we have:

Substituting z = —

E(x’ y) =0

H(w;z,y) =0

iH(u; xz,y) =0 (4)
dy,
WH(u;x, y) = 0.

In general cases, when (z,y) # (0,0), (4) has no solution, thus all 12 branch
points have ramification index 2. By Riemann-Hurwitz formula, 2gc — 2 < 4 -
(2:1-2)+12-(2—-1)+1-(3—1), we get g < 8.

In the case that a*c? + b*d? = a?b%cd, analogous to previous proof, we can
show that g is a morphism of degree 3, D is a cubic function of u and hence has
3 different roots unless disc(D) = 0. By similar calculation, we find that only
when y satisfies some sextic function, the point (z,y) € E is a branch point.
Hence there are at most 6 branch points on F, with ramification index 2. By
Riemann-Hurwitz formula, 2g0 —2 < 3-(2-1—-2)+ 6+ (3 —1), we get go < 5.

Hence we have

Theorem 5. If a*c? + b*d? # a2b’cd, the genus of curve C is at most 8; if
a*c?® 4+ b d? = a®b%cd, the genus of curve C is at most 5.

Next, we will utilize this theorem to estimate the upper bound of the char-
acter sum for an arbitrary nontrivial character of E(F,).

4.5 Estimating Character Sums on the Curve

Theorem 6. Let fr be the cube root encoding from ¥, to generalized Huff curve
E, ¢ =3 (mod 4). For any nontrivial character x of E(Fy), the character sum
St,(x) satisfies:

14\/q + 3, a*c® + b*d? # a’b?cd,

5
8y/q + 3, a*c?® + v*d? = a?bcd. 5)

157 00| < {

Proof. Let K = F4(x,y) be the function field of E. Recall that a point (z,y) € E
is the image of u if and only if

H(u;z,y) = 0.

Then a smooth projective curve C' = {(z,y,u)|(z,y) € E,H(u;z,y) = 0} is
introduced, whose function field is the extension L = KJu]/(H). By field inclu-
sions F,(u) C L and K C L we can construct birational maps g : C — P'(F,)
and h: C — E. Then g is a bijection and f;(u) = H o g~ *(u).
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Since the genus of curve C is at most 8, by Theorem 1, we have

SR00+ Y. xeh®)=] Y. xoh(P)<(2-8-2)y7=14/4.

PeC(Fq),u(P)=o0 PeC(Fq)

For (z,y) = (0,0), function H(u;z,y) = 0 has only one finite solution, hence
there exist 3 infinite solutions of u; for other points on F, it can be check that all
solutions of H (u; x,y) = 0 are finite. Therefore [} pecp,) w(p)=oo X0 M(P)] < 3.

Hence [Sy, (x)| < 14,/q + 3.
In the case that a*c® + b*d? = ab%cd, it is proved that the genus of C is at
most 5. Analogous to previous discussion, we have |S, (x)| < 8y/q + 3. [ |

4.6 Galois Group of Field Extension

Let K = F(z,y) be the function field of generalized Huff curve E, L be the
function field of C'. To estimate the character sum of any character of Jacobian
group of E, or to estimate the size of image of f;, we need know the structure
of Gal(L/K). By [31], when L/K is a quartic extension, then Gal(L/K) = S,
if and only if

1. H(u) is irreducible over F(z,y).
2. Let R(u) be the resolvent cubic of H(u), then R(u) is irreducible over F(z,y).
3. The discriminant of R(w) is not a square in F(z,y).

if L/K is a cubic extension, then Gal(L/K) = Ss if and only if

1. H(u) is irreducible over F(x,y).
2. The discriminant of H(u) is not a square in F'(z,y).

When L/K is a quartic extension, we have to prove 3 following lemmas:
Lemma 3. The polynomial H(u) is irreducible over F(x,y).

ac(s + b*d)

bd 2
M and y = — into H(u;z,y), we only

Proof. Substitute x = .

need to show

ut — (2a%c + 2b%d — 6s)u® + 6tu + (a’c® + b1d? — a?b3cd),
when a*c? + b4d? # a’bcd,
H(u;s,t) =
ud 4 (72a20—65—2b2d)u+6v,
when a*c? + b*d? = a?b%cd

is irreducible over F(s,t) = F(z,y) = K. Let ¢ be the non trivial Galois
automorphism in Gal(F(s,t)/F(t)), which maps ¢t to —t, it remains to show
Hy(u;s,t) = H(u;s, t)H(u; s,t)7 is irreducible over F(t). Let v = u2, Note that
Hy(u) can be represented as polynomial of v:
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Jo(v) = v* + (=4 ca® — 125 — 4db*)v® + (6 b*d* + 6 a*b*cd + 6 a*c® 4 24 sca®+
36 52 + 24 5db?)v? + (—12b*d%s — 405d® — 24 a*b?cds — 4a®c® — 12a*c?s
— 365> — 36db%s? — 36 ca®s?)t + (b*d* — a®b%cd + a*c?)?,
if a*c? + b*d? # a*b?cd, (6)

or

Jo(v) = v® + (—4a’c — 125 — 4b*d)v? + 4 (a*c + 35 + b?d)*v
— 36 5(s* + a’c + b*d + b*da’c), (7)

if a*c? + b*d? = a2b3cd.

From (6), by Theorem 1.2.3 in [31], if Jy(v) is reducible over F(s), then either
it can be decomposed as

Jo(v) = (v + A)(v® + Bv® + Cv + D)
=v* + (A + B)v® + (AB + C)v* + (AC + D)v + AD,

or it can be decomposed as

Jo(v) = (v* + Av + B)(v* + Cv + D)
=t 4 (A+C)v3+ (B—l—AC—i—D)v2 + (BC + AD)v + BD,

where A, B,C,D € Fs].

In the first case, note that AD = (b*d? — a®b*cd + a*c?)?, A and D are
both constant. Since A + B = —4ca? — 125 — 4db?, B is of degree 1. Since the
coefficient of v? is 2, degree of C is 2, which can lead to the inference that the
degree of v is also 2, a contradiction to the fact it is 3.

In the second case, B and D are constants. Hence summation of the degree
of A and the degree of C equals to 2, which shows that the coefficient of v is at
most 2, also a contradiction.

Then we have shown that Jy(v) is irreducible over F(s). Let z be a root of
Hy(u). Then

[F(s,2): F(s)] = [F(s,2) : F(s,2%)] - [F(s,2°) : F(s)] = 4[F (s, 2) : F(s,2%)].

Since 7 € Gal(F(s,z)/F(s,2%)) which maps z to —z is not an identity, hence
Gal(F(s,2)/F(s,2%)) # {t} , then [F(s,2) : F(s,2?)] > 2. Hence [F(s,z) :
F(s)] > 8, which shows that Hy(u) is irreducible over F(s).

From (7), Jo(v) is cubic, then if it is reducible, it should have a root in F(s),
which is factor of the constant coefficient of Jy(v). However, we can confirm that
such root does not exist by enumerating all the possibilities. The remaining step
is similar to previous case. |

Lemma 4. The resolvent polynomial R(w;x,y) is irreducible over F(x,y).
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Proof. In the case that H(u;x,y) is quartic, the resolvent cubic of H(u) is
R(u;z,9) = (acx — bdy)*u® + 2(acx — bdy)(—2cxb’ad + a’c*x + 2a*bedy
— v d*y)u® — 4(a*c® + b*d? — a®b*cd) (acx — bdy)*u — 36 a®b?ctd?
+ 72a*b*Ed® — 36 a?0°2dt + 160°d3a? P2 + 245442 ey?
— 240 %20’ A — 24 a*b P dPy? + 24 aPb?ctdx? + 16 a2 d?y?
— 8b"d*yace — 8a"ctbdyx — 8b3d%y? — 8aBcPa? (8)
Similar to previous lemma, we only need to show R(u, s,t), the transforma-
tion of R(u;z,y) such that it is defined on ~!(E), is irreducible over F(s,t).
Represent x,y with variable s, ¢, we have
R(u; s) = u® + (2ca® 4 65 + 2db*)u? + (—4b*d? + 4a*b?cd — 4 a*cP)u
—24a*c?s — 12b%da’cs — 24 b d%s — 8aS¢3 — 36 s2a%c — 36 s°b%d (9)
—8b°d* — 36 5
If R(u, s) is reducible, it must have a degree 1 factor u + A, where A €
Fls,t]. If A ¢ Fls], then (u + A)7 is a factor of R(u;s)” = R(u;s). Hence
R(u; s)
(u+A)(u+ Ay )
R(u;s) = (u+A)(u*+Bu+C), A, B,C € F|s]. In this case, R(u; s) has a solution
in F'[s] whose degree is 1, since when the value of u is a polynomial with degree

#1, R(u, s) will be equal to a polynomial whose degree greater than 0. Suppose
A=Ps+Q, P,Q € F, then

€ F[s]. Without loss of generality, we suppose A € F'[s]. Hence

B =6s+2b%d+2a’c — (Ps+ Q)

C = —4b*d? + 4a®b%cd — 4a*c® — AB

AC = —24a*c?s — 12b%da’®cs — 24b*d?s — 8abc? — 36s5%a’c — 3652b%d
—8b8d3 — 36s°.

Then P and @ satisfies
P*(P —6)s® + P(3QP —12Q — 2 Pb*d — 2 Pa’c)s*+
(3Q*P —6Q? —4QPb?d — 4QPa’*c — 4 Pa*c®* — 4 Pb*d® 4 4 Pa*b?cd)s+
Q(Q? — 4b*d® + 4a*v?cd — 4a*® — 2Qb*d — 2Qa’c) = 0 (10)

where s is the variable. When char(F) > 3, it can be checked that solutions of
P and @ do not exist. |

Lemma 5. Let D(x,y) be the discriminant of R(u;x,y), then D(x,y) is not a
square in F(z,y).

Proof. Similar to previous proof, we only need to show that

D(s,t) = D(x(s,t),y(s,t))

is not a square in F'(s,t). After simplification,
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7 95 2. 12 \8
D(s,t) = _23 (abcctiéa c=bd)) (27 8% — (=54 a’c — 54b°d)s” — (—27a*
— a”“ b cd — s +2(a"c+ +7a"0cd+8ac’)s
108 a’b’cd — 270 d*)s* + 2 (a®c + b*d)(8b*d® + Ta’b’cd + 8a’c?)s®
+3a"b¢c a c — a“b cd + s — abc a“ ¢+ s
3a’b’cd(8a*c® — 23a’b*cd 4+ 8b*d?)s® — 24 a*b* P d® (a®c + bd

—16b*d*a*c*(a*® + b*d® — a*b’cd)), (11)

8 -
D(s,t
27 .35 - (abed(a?c — b2d))® (s,2)

In fact, we only need to show that G(s,t) = —

is irreducible over F'(s,t).

Suppose G is a square in F(s, t), then F(s,t) D F(s, \/5) D F(s). Note that
[F'(s,t) : F(s)] = 2, either F(s, \/5) = F(s,t) or F(s, \/5) = F(s).

In the first case, G is s(s + a®c)(s + b*d) = * times a square in F(s). But
divide G' by s(s + a?c)(s + b%d), the remainder vanishes if and only if a*c? +
bid? — a%b%cd = 0. ~

In the second case, G is a square over F'(s). Suppose

- 2
G(s) = (\/ﬁs?’ + Bs® + Cs & 4a®b*cd\/a2bcd — a*c® — b4d2) ,

expand the right hand side of this equation and compare its coefficients of s?,i =
1 to 5 with the left hand side, and it is checked there are no B,C € F s.t the
equality holds. |

Remark: by similar method, we can also prove that when L/K is a cubic
extension, H(u;x,y) is irreducible over F'(z,y) and its discriminant is not a
square in F'(z,y).

Summarize these lemmas, we directly deduce:

Theorem 7. Let K = Fy(z,y) be the function field of E. The polynomial
H (u; z,y) introduced in (3) is irreducible over K, then when a*c®>+b*d? # a*b%cd,
its Galois group is S4; when a*c® + b*d? = ab%cd, its Galois group is Ss.

In Sect. 5.2, we will use this theorem to construct a hash function indifferen-
tiable from random oracle.

4.7 Calculating the Density

Similar to Sect. 3.4, we apply Chebotarev density theorem to estimate the size
of image of f.

Theorem 8. Let E be the generalized Huff curve over Fy defined by equation

ax(y*—c) = by(x®—d), abed(a?c—b%d) # 0, f1 is the corresponding hash function
defined in Sect. 4.1. Then if a*c® + b*d? # a®b%cd , we have

5 5
[#Im(fr) = gal < 7(31¢"* +72¢'/* 4 67),

and if a*c? + b*d? = a®b’cd, we have
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(10¢'/2 + 18¢'/* + 30).

ol

#Im(fr) - 5al <

Proof. K is the function field of E which is the quadratic extension of F,(z),
hence d = 2, and by the property of elliptic curve, gx = 1.

In the case that a*c? +b*d? # a?b?cd, Gal(L/K) = Sy, hence m = #5S, = 24.
 is the subset of Gal(L/K) consisting at least 1 fixed point, which are conjugates
of (1)(2)(3)(4), (12)(3)(4) and (123)(4), then s = 1+6+8 = 15. Since the place v
of K of degree 1 correspond to the projective unramified points on E(F,), hence
|[#Im(fr) — N(¢)| < 124+ 3 = 15, where 3 represents the number of infinite
points, 12 represents the number of ramified points. Then we have

5 5
[#Im(f1) — gal < [#Im(fr) = N(p)| + [N (p) — 24l
<15+ 2(31(11/2 + 72¢"/* + 55)
5
= Z(31ql/2 + 72¢* 4 67).

In the case that a*c? 4+ b*d? = a?b*cd, Gal(L/K) = S3, hence m = #5S3 = 6.
The corresponding s has the value of 4. |[#Im(fr) — N(p)| < 6 +3 = 9, where
3 represents the number of infinite points, 6 represents the number of ramified
points. Hence

2 2
[#Im(f1) = gal < [#Im(fr) = N(e)| + [N (@) = 34]
<9+ ;(IOql/Q +18¢'/% 4 16)

2
= 5(10q1/2 +18¢'/* + 30). -

5 Construction of Hash Function Indifferentiable
from Random Oracle

Let h be a classical hash function from messages to finite field F,, we can show
that both fgoh and f; o h are one-way and collision-resistance according to the
fact that each point on E has finite preimage through fs and f; [16]. Hence fgoh
and fr o h are both hash functions mapping messages to E(F,). However, since
fs and f7 are not surjective, fgoh and fyoh are easy to be distinguished from a
random oracle even when h is modeled as a random oracle to F [33]. Therefore,
we introduce 2 new constructions of hash functions which are indifferentiable
from a random oracle.

5.1 First Construction

Suppose f : S — G is a weak encoding [26] to a cyclic group G, where S denotes
prime field F,, G denotes E(F,) which is of order N with generator G, + denotes
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elliptic curve addition. According to the proof of random oracle, we can construct
a hash function Hg : {0,1}* — G:

Hg(m) = f(hi(m)) + ha(m)G,

where hqy : {0,1}* — F, and hy : {0,1}* — Z/NZ are both classical hash
functions. Hr(m) is indifferentiable from a random oracle in the random oracle
model for hy and ho.

We only need to show fg, fr are both weak encodings to prove that Hg(m) =
fs(h1(m))+h2(m)G and Hy(m) = fr(h1(m))+ha(m)G are indifferentiable from
a random oracle in the random oracle model for h; and hs. By the definition of

2 4N
weak encoding [26], fs is a —-weak encoding and f; is a —-weak encoding,
q

2N 4N
both — and — are polynomial functions of the security parameter.
q

q

5.2 Second Construction

Another construction is as follows:

{ Hg = fs(hi(m)) + fs(ha(m))
Hy = fr(hi(m)) + fr(ha(m)).

We have proved that fg, f; are both well distributed encodings in Sects. 3.3
and 4.5. According to corollary 2 of [29], Hpr and Hg are both indifferentiable
from a random oracle, where h; and hy are regarded as independant random
oracles with values in F,.

6 Time Comparison

When ¢ =3 (mod 4), the key step of an encoding function is calculating square
root for given element of ;. For convenience to make comparisons, we first intro-
duce a birational map between generalized Huff curve E and short Weierstrass
curve

2b2 d — 42_b4d2 1
By 2= 34 22C ‘;C s+3- (2% -3d* V-3 & +2°d%),
via maps
v:FE — By :
1 2a2bedy — 2 ab?cdzx + za®c® — bPd?y bdac (a?c — b2d)
(xay) = (Svt) =13 ) 3
3 azxc — byd axc — byd
s:Bw — FE:
2 1 2 1
bd (s+3agc— 3b2d> ac <s+3b2d— 3@%)
(s,t) = (2,y) = (12)

t ’ t
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Table 1. Theoretic time cost of different deterministic encodings

Encoding | Cost Converted cost
fs Es+2I+D+S+10M |E+ D+ 31M
fu Es+2I+D+45+15M | E+ D+ 39M
fE Es+2I+D+45+10M |E+ D + 34M
fr Ec+I1+4S+10M E 4 24M
Iy Ec+2I+35+7M E+30M
fa Ec+2I+45+9M E +33M

Table 2. NIST primes

Prime | Value Residue (mod 3) | Residue (mod 4)
P192 2192 —20% —1 2 3
P384 | 2°%* — 2128 _ 290 1 932 112 3

Table 3. Time cost (ms) of different square root methods on NIST

Prime | P192 | P384
fs 0.053|0.235
fE 0.057 | 0.248
fu 0.058 | 0.250

Therefore, we compare our encoding fg with 2 encodings: birational equiv-
alence ¢ in (12) composed with Ulas’ encoding function [15], denoted by fi; ¢
composed with simplified Ulas map given by Eric Brier et al., denoted by fg.

When ¢ = 2 (mod 3), the essential of an encoding function is calculating
the cube root for elements of FF,. We compare our encoding f; with Alasha’s
work [19] denoted by fa and Yu’s encoding function [32] denoted by fy. In

comparison with fa, we let ¢ = —,d = — since Alasha only treats this special

case; in comparison with fy, we let ¢ = d = 1, since Yu’s work can only be
applied on classical Huff curves.

We have shown that fg costs E4+D+31M, fr costs E424M . For comparison,
fu costs (Es+I+4S+11M+ D)+ (I+4M) = E+ D+39M by Theorem 2.3(2),
[15] and the map ¢ in (12), while fg costs (Es+I1+4S+6M+ D)+ (I +4M) =
E + D+ 34M by [14]. Yu’s encoding fy costs E¢ + 21 +35+7M = E + 30M,
Alasha’s encoding fa costs Ec +9M + 45 + 2] = E + 33M (Tablel).

We do experiments on prime field Fpjgo and Fpsgs (see Table2). General
Multiprecision PYthon project (GMPY?2) [34], which supports the GNU Multiple
Precision Arithmetic Library (GMP) [35] is used for big number arithmetic. The
experiments are operated on an Intel(R) Core(TM) i5-4570, 3.20 GHz processor.
We ran fs, fu, fe, f1, fy and fq 1,000,000 times each, where u is randomly
chosen on Fpjigo and Fpsgy.
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Table 4. Time cost (ms) comparison between fr and fa

Prime | P192 | P384
fr 0.053 | 0.233
fa 0.061 | 0.252

Table 5. Time cost (ms) comparison between fr and fy

Prime | P192 | P384
fr 0.052 | 0.233
fy 0.058 | 0.244

From the average running times listed in Table3, fg is the fastest among
encodings which need calculate square roots. On Fpigo, it saves 9.19 % running
time compared with fi7, 7.69 % running time compared with fz. On Fpsg4, fs
saves 5.92 % running time compared with fyy and 5.17 % running time compared
with fg. fr is also the fastest among encodings which need to calculate cube
roots. On Fpigo, it saves 13.20 % of running time compared with f4 and 8.97 %
compared with fy. On Fp3gy, the relevant percentages are 7.51 % and 4.40 %
(see Tables4 and 5).

7 Conclusion

We provide two constructions of deterministic encoding into generalized Huff
curves over finite fields, namely, brief SWU encoding and cube root encoding.
We do theoretical analysis and practical implementations to show that when
g = 3 (mod 4), SWU encoding is the most efficient among existed methods
mapping F, into generalized Huff curve E, while cube root encoding is the most
efficient one when ¢ = 2 (mod 3). For any nontrivial character x of E(F,),
we estimate the upper bound of the character sums of both encodings. As a
corollary, hash functions indifferentiable from random oracle are constructed.
We also estimate image sizes of our encodings by applying Chebotarev density
theorem.
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Abstract. As one fundamental primitive of multivariate public key
cryptosystem, Unbalance Oil-Vinegar (UOV) signature scheme can offer
the function of digital signature with the resistance to the quantum algo-
rithm attack. By considering the large size of public key and signature
length, we propose a cubic UOV scheme by adopting the stepwise itera-
tion method in this paper. Comparing to the existing work such as the
original UOV and its improvements, the proposed scheme enjoys shorter
signature size and faster signing operation under the same security level
at the cost of larger public key size. This feature is especially desirable
in the environments where the computation resource of signer is limited
and the communication overhead matters.

Keywords: Unbalance oil and vinegar signature scheme - Multivariate
cryptosystem - Cubic polynomial

1 Introduction

The development of quantum computers will pose a threat to the safety of the
traditional public key cryptosystems based on number theoretic hard problems.
Multivariate Public Key Cryptography (MPKC) arises at this historic moment
which can be seen as a candidate to resist quantum algorithm attack. Its security
is based on the hardness of solving Multivariate Quadratic (MQ) polynomials
equation system, which is NP hard problem in the worst case. Compared with
traditional public key cryptosystems, MPKCs are very fast.

Patarin [1] proposed a multivariate public key signature scheme, named Oil
and Vinegar (OV) scheme. The key idea of OV is to construct several so-called
OV polynomials, in which the polynomials would be one degree polynomials on
the oil variables given the values of the vinegar variables. In OV scheme, the
number of oil variables is equal to the number of vinegar variables. Kipnis and
Shamir [2] found that there is no quadratic terms on the oil variables which
© Springer International Publishing Switzerland 2016
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made it possible to separate the oil and vinegar variables. Then, Kipnis et al.
[3] proposed the unbalance oil and vinegar signature scheme (UOV) in which
the number of vinegar variables is greater than the oil’s. Unfortunately, the Oil-
Vinegar separation attack can also work on it. In order to resist this attack, the
number of the vinegar variables should be 2 times over the oils. Hence the public
key and the length of signature were increased.

Since then, many people followed their work on how to break the UOV scheme
and how to improve the efficiency. Ding et al. [4] proposed a multi-layered UOV
scheme, named Rainbow. This scheme greatly improved efficiency of UOV, but it
is also facing the threat of separating the oil and vinegar space [5]. Petzoldt et al.
[6-9] used the linear recurring sequences (LRS) and the cyclic matrix methods
to optimize Rainbow and UOV’s key generation. This method makes the size
of public key reduced by 86 % and 62 % respectively, while it also accelerate
the speed of signature verification. But the length of signatures in them are the
same as in the original UOV and Rainbow. Although Petzoldt et al. reduced
the public key size of the UOV, the length of signature is still 3 times over the
length of the message or its hash to be signed. Furthermore, in order to against
the hybrid approach [10] for solving multivariate systems over finite fields, the
recommended parameters of UOV and UOVLRS are set to be g > 28, 0 > 26,
and v > 52.

In order to resist the oil-vinegar separating attack and to shorten the length
of signature, we combine the UOV skill with stepwise iteration method to recon-
struct the central map in UOV scheme. Firstly, we randomly choose an OV poly-
nomial f; and a set of one degree polynomials fo,..., f, on the oil and vinegar
variables. Then we construct some cubic polynomials and quadratic polynomi-
als by multiplying f1, f2,..., f, and plus some random quadratic polynomials
on the vinegar variables. In signature generation, we can use stepwise iteration
method to inverse the central map. The new scheme has enough cross-items
on the oil variables. It can resist the oil and vinegar separation attack and the
number of vinegar variables need not be bigger than the number of the oils.
According to our analysis, the cubic UOV scheme has smaller public key size,
shorter signature length, and higher efficiency than the original scheme under
the same secure level. But our scheme has bigger public key size and lower speed
of verification than some improvements of UOV, such as UOVLSR2, Rainbow,
cyclicRainbow etc.

The paper is organized as follows. In Sect. 2, we describe the basic idea of
original unbalance oil and vinegar scheme and its cryptanalysis. Then we present
our improved unbalance UOV scheme in Sect. 3. In Sect. 4, we give cryptanalysis
of our scheme. We suggest the parameters in practice and present the efficiency
comparison to the original UOV scheme and its improvements in Sect. 5. Finally,
we conclude the paper.

2 The Original UOV Signature Scheme

In this section, we will give brief description of the OV and UOV scheme and
the security of these schemes.
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2.1 OV and UOV Signature Scheme

We use the same notations as in [3]. Let K = F}, be a finite field with g elements.
Let o and v be two positive integers and set n = o4v. Let y = (y1, ..., ¥y,) be the
message (or its hash) to be signed, where y; € K. The signature x is represented
as an element of K", denoted by = (z1,...,2y). Let u1, ..., u, be oil variables
and 4y, -+, 4, are vinegar variables, denoted u = (uy,...,ue, U1, - ,0y,). The
central map F' of UOV consists of polynomials of the form:

yk:fk(uh-'- um’&l,"';av)
—ZZaUou—I—Zwauluj—i—Zczul—l—Zd U +e
=1 j=1 =1 j=1

To invert F, one can randomly chooses the values of vinegar variables
U1, , U, and substitutes them into F. Then one can gets a system of linear
equations in the oil variables u1, ..., u,. Solving this system can get the values
of the oil variables. If there is no solution of this system, one has to choose other
values of the vinegar variables.

To hide the structure of F' the central map in the public key, one should ran-
domly choose an invertible affine map S : K™ — K™: (u1,...,up, U1,...,0y) —
Sz, xn).

So, the public key is the map P = F o S and the private keys consist of F
and S. The more details of signature and verification process can be seen in [3].

In Patarins original paper [1], it was suggested to choose o = v (Balanced
Oil and Vinegar (OV)). After this scheme was broken by Kipnis and Shamir [2],
it was recommended to choose v > o (Unbalanced Oil and Vinegar (UOV) [3]).

2.2 Security of UOV

In the expressions of the central map of both OV and UOV, there are no
quadratic terms in the oil variables. Due to this fact, the Kipnis-Shamir attack
can work on both OV and UOV. In order to resist this attack, one should increase
the rate of vinegar variables in the central map. In [3], it was recommended
that v = 20. Furthermore, for o > 26 equations and v = 20 Vinegar vari-
ables, the UOV scheme over GF(2%) seems to be secure against Hybrid approach
attack [10].

3 Cubic UOV

We use the same notations as in Sect. 2.1
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3.1 Basic Idea of Improvement

In order to be immune to the Kipnis-Shamir attack, we want to reconstruct
the central map of UOV using polynomial products which can introduce many
quadratic terms in the oil variables in the central map. Randomly choose one
oil-vinegar polynomial fi(uy,...,ue,1,...,%,) and o — 1 linear polynomials
filug, ... U, Gy, .., 1y), 2 <4 < 0in K, we get a map F : K" — K°, as
follows, where all the coefficients are belong to K.

z1 = fi(u

U,y U, . uv)
v

Uy,
z Q145Uj u] + Z E blz Uy ﬂ + z C1iU; + E dljﬂj + e
j=1 i=1j= i=1 j

I
Mo

— ,_.
>

|

M°

v
29 f2 ULy ooy Uy Uy ey Thy) QiUi'FZijUj"‘CZ

1

.
ol

i=1

23 = f3(Uty- - s Up, Uty n s lly) = Z asiu; + Z bs;i; + c3
j=

o v
Zo = fo(ula e aumﬂly e aﬁv) = Z QAnilg + Z b”j’aj + Cn
i=1 j=1

Then we construct a map E : K" — K° like follows:

y1 =r1(z1 + 2122) + 1
Yo =T22122 + g2
Yz =r3(21 + 22)23 + g3 (2)

Yo = ro<zo—2 + Zo—l)zo + Yo

where r; # 0(1 < i < 0) are the elements randomly chosen from K. g;(1 < i < 3)
are random cubic polynomials in the vinegar variables 44, - - - , 4, while the others
are quadratic. y = (y1...,¥,) be the message (or its hash) to be signed.

Let F = F o F. Given the values of ¥’ = (y},...,4,), the inverse of F' can
be derived as follows. Randomly choosing the values of the vinegar variables
iy = 4y, -+, 4, = @) and substituting them into the system (2), we get a
system in the unknowns z; (1 < i < o). From the first two equations in this
system, we can obtain the value of z; = zj. And then we can calculate the
values of z; = z[(2 < i < 0) step by step. Substituting z;(1 < ¢ < 0) and the
values of the vinegar variables 4y = 4}, -+, 4, = @ into the system (1), we
get a linear equations system in the oil variables uq, ..., u,. Solving this system,
we obtain the values of the oil variables, denoted by uf,...,u.. So, the vector
(uf,...,ul,a}, ... 4)) is the inverse of F' corresponding to the ¥/ = (y1,...,y,).

Remark 1. Note that, if z; = 0 or z;41 = 0 (1 < ¢ < 0), we can not find the
inverse of F. In this case, we should reselect the values of vinegar variables.

Remark 2. In formula (2), there are three cubic polynomials y1, y2, y3 and 0 —3
quadratic polynomials.
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3.2 Proposed Scheme

We use the map F = F o F as the central map in UOV. To hide the structure
of the central map, we should also randomly choose an invertible affine map
S K" - K™

(Uty ey Uy Tty ey Uy) = S(X1,. .0, X))

Let P = F o S. We can now fully describe the cubic UOV scheme.

Public Key. The public key consists of the following items.

(1) The field K, including the additive and multiplicative structure.
(2) The map P = F o S or equivalently, its components: pi,p2,...,po €
K[xlax27 s axn}'

Private Information. The private key consists of the following items.

(1) The invertible affine transformation S : K" — K".
(2) The map F and F.

Signature Generation. Let y' = (yi,...,y,) be the document or its hash to
be signed. First the signer computes

(2),...,20) = FYyl,...,v)),
for some random choice of (@}, ...,4,) € K¥. And then the signer computes

(... ul) = F ey, ..., 20,40, ... d).

» 09

At last, the signer computes the signature of ¢y = (y1,...,y.) as

(@), vay) = STy, g, A W),
Signature Verification. To verify (2],...,z},) is indeed a valid signature of
the message v’ = (y1,-..,y,), the recipient determines whether or not

Py, ...,x)) = (Y], ..., y)).

Remark 3. Due to the special structure of our central map, the public key of
our scheme contains three cubic polynomials and o — 3 quadratic polynomials.

4 Security of Cubic UOV

In this section, we will study the known attacks against UOV signature scheme
and their effect on our scheme.
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4.1 Linearized Equations Attack

Linearization equations attack is an important tool against MPKC [11,12]. In
general, one should consider the first order linearization Eq. (3) and second order
linearization Eq. (4) of form as follows.

2 @ijTiY; + Z bix; + Z cjy; +d=0. (3)
i=1 j=1

i=1,j=1

Z aijkTiY; Yk + Z bijriy; + Z ciT; + Z djkYiyx + Z ejy; +f=0. (4)

If one can find some linearization equations, he/she may forge a valid signature
with the help of linearization equations.

Due to the g;(1 < ¢ < 0) are randomly chosen cubic polynomials or quadratic
polynomials, we can not deduce linearization equations like Egs. (3) and (4) in
theoretical analysis. Hence, we did many computer experiments to check them.
To find a linearization equation is to find coefficients in Eqs. (3) or (4). To do
this, we first calculate the number N of coefficients in Egs. (3) or (4). Then,
randomly generate sufficiently many (greater than N) message/signature pairs
and substitute them into Egs. (3) or (4), we get a linear equation system of
unknown coefficients. In all of our experiments, the linear equation systems have
no solution. So, the linearization equations attack can not work on our scheme.

4.2 Rank Attack

There are two different types of rank attack. The first one is called MinRank
attack, the other is called HighRank attack. We will consider these two attacks
against the Cubic UOV.

In the MinRank attack, one wants to recover the private key of MPKCs
whose quadratic form associated to the homogeneous quadratic parts is of low
rank. In this attack, one tries to find linear combinations H = Z:il a;H;, where
all H; have low rank. According to [13], the complexity of MinRank attack is
¢*m3, where s is the minimum rank, ¢t = {%1 In our scheme, s =~ o, t = 1,
q =28, when o > 10, the complexity is at least O(280).

In HighRank attack, one tries to find the variables appearing the lowest
number of times in the central map. These are the oil variables in our scheme.
According to [13], the complexity of HighRank is ¢*(wn? + n3/6), where w is
the minimal number of appearance in central map for any plaintext variables. In
our scheme, w &~ 0. When o > 10, the complexity of this attack is greater than
0(280).

So when we choose ¢ = 2% and o > 10, our scheme would immune to Rank
attacks.
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4.3 Oil-Vinegar Separation Attack

The key point of Oil-vinegar Separation attack is that the quadratic part of
each oil-vinegar polynomial can be represented as a quadratic form with a cor-
responding n X n matrix of the form:

(5c)

The up left o x 0 zero submatrix is due to the fact that there are no quadratic
terms in the oil variables. This resulted in separating the oil variables to the
vinegar variables. Consequently, the adversary can create an equivalent private
key and therefore can forge valid signatures for arbitrary messages. The more
details of this attack can be see in [2,3].

In our scheme, the quadratic part of each polynomial in the central map can
be represented as a quadratic form with a corresponding n x n matrix of the

form:
DA
BC)

The up left 0 x o submatrix D is not a zero matrix due to the fact that there
are many quadratic terms in the oil variables.
Hence, the Oil-vinegar Separation attack cannot work on our scheme.

4.4 Direct Attacks

A direct attack on a MPKC signature scheme is that solve the system P(x) = ¢/
to forge a signature for a given message 3’ by Grobner Basis method and its
variants such as Fy and Fy [14]. According to the paper [15], the complexity of
F5 is upper bounded by

0 ((nw—i—n,,—i—min(naC +1,ny + 1))‘”)

min(n, +1,n, + 1)

where n; is the number of plaintext variables, n, is the number of ciphertext
variables and 2 < w < 3 is the linear algebra constant. Let o = 30, v = 10,
g = 28, then the complexity of the direct attack on our scheme by Fy is greater
than 287,

Hybrid approach [10], like FXL [16], mixes exhaustive search with Grobner
bases techniques. Instead of computing one single Grobner basis of the whole
system, this approach compute the Grobner bases of #K” subsystems which
obtained by fixing r variables. The complexity of Hybrid is:

0 (mnm ((#K)’" : (m : (m B ’“;T:gfmdiei(,mm;z; o d)»))

Let 0 = 30, v = 10, ¢ = 2% in our scheme. The best tradeoff for our scheme
is to fix 7 variables. Then the complexity of the Hybrid approach on our scheme
is greater than 233
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5 Comparison and Efficiency

In Table 1, we compare the cubic UOV, the original UOV, UOVLSR2, and Rain-
bow in the key size and the efficiency under the same secure level. The results of
UOV, UOVLSR2, and Rainbow are all come from the reference [17]. According
the Table 1, our scheme has shorter signature than the original UOV, Rainbow,
UOVLRS2, cyclicUOV, and cyclicRainbow under the same secure level, though
the public key size is greater than those improvements of UOV.

And in Table2, we compare the running time about the each process of
the original UOV, Rainbow, UOVLRS2, cyclicUOV, cyclicRainbow and CUOV
under the same secure level. According Table 2, the speeds of key generation and
signature in our scheme are faster than the original UOV, Rainbow, UOVLRS2,
cyclicUOV. But, the verification is slower than the improvements of UOV. All of

Table 1. Sizes comparison

Scheme Hash length (bit) | Signature length (bit) | Public key
size (KB)
UOV(28,28,56) 224 672 99.9
UOVLRS2(28,28,56) 224 672 13.5
cyclicUOV (28,28,56) 224 672 16.5
Rainbow(2%,17,13,13) 208 344 25.1
cyclicRainbow(2%,17,13,13) | 208 344 10.4
CUOV (28 28,8) 224 272 33
UOV(28,30,60) 240 720 122.6
UOVLRS2(2%,30,60) 240 720 16.4
cyclicUOV (28,30,60) 240 720 20.0
Rainbow(2%,20,18,9) 216 376 31.0
cyclicRainbow(2%,20,18,9) | 216 376 12.8
CUOV(28,30,10) 240 320 47.5

Table 2. Efficiency comparison

Scheme Key generation (s) | Signature | Signature verify (ms)
generation
(ms)
UOV/(25,24,48) 53.046 56.01 25.05
UOVLRS2(2°,28,56) 37.152 4.521 0.20
cyclicUOV (28 ,28,56) 37.152 4.521 0.23
Rainbow(2%,17,13,13) 4.923 4.163 0.29
cyclicRainbow(28,17,13,13) | 2.377 2.01 0.14
CUOV/(28,28,8) 0.531 3.56 8.28
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our experiments were performed on a normal computer, with Intel Core 15-3470
CPU, 3.2GHz, 4GB RAM by Magma.

6 Conclusion

In this paper, we proposed a cubic UOV signature scheme by combining UOV
and stepwise iteration method. Our scheme can avoid oil-vinegar separation
attack. And our scheme can resist Grébner basis attack and Hybrid approach
attack for carefully choosing parameters, for example, o = 30, v = 10, ¢ = 28.
Moreover, our scheme has lower public key size, shorter signature and faster than
the original UOV under the same secure level.
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with Shorter Private Key and Faster Signature
Generation
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Abstract. UOV is one of the earliest signature schemes in Multivariate
Public Key Cryptography (MPKC). It also poses a strong security and
none of the existing attacks can cause severe security threats to it. How-
ever, it suffers from a large key size. In this paper, we will propose two
approaches to build variants of UOV with shorter private key size and
faster signature generating process.

Keywords: Multivariate public cryptography - UOV - Rainbow

1 Introduction

In post-quantum era, with the emergence of the powerful quantum computers,
public key algorithms based on traditional number theory will be extremely
vulnerable. Popular algorithms such as RSA, ECC, Elgamal will be broken in
a polynomial time according to Shor’s algorithm [17,18]. Thereby, finding an
alternative of these algorithms is very urgent. Multivariate public key cryptog-
raphy (MPKC) is one of the most promising candidates in post-quantum cryp-
tography. Other important branches include: (1) Lattice-based cryptography;
(2) Code-based Cryptography; (3) Hash-based Cryptography and so on.

A MPKC scheme is usually built as P = S o F oT in which S and T are
invertible linear affine transformations used to cover the structure of central
map F and make P look random. F' is a special set of quadratic multivariate
polynomials which could be inverted efficiently. To sign a message M, the signer
could compute X = S7Y(M), Y = F~1(X), Z = T7}(Y) in order and output
Z as the signature. To verify the correctness of this signature, signature receiver
could check if M = P(Z). If it matches, accept. Otherwise, reject. Because of
the property that they are normally efficient in computing, MPKC schemes are
appropriate for applications on portable devices such as smart card, RFID. Its
security relies on a hard problem that solving a random system of multivariate
quadratic equations over a finite field is NP-hard. Current research indicates
that a quantum computer couldn’t solve this kind of problem in a polynomial
time.

© Springer International Publishing Switzerland 2016
D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 57-74, 2016.
DOI: 10.1007/978-3-319-38898-4._4
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Since the first MPKC scheme: MI [8] was proposed in 1988, this area has
undergone a rapid development in last two or three decades. A lot of encryption
and signature schemes have been proposed, e.g., HFE [11], TTS [20], etc. Among
them, UOV is one of the signature schemes with the most strong security. None
of the existing attack poses real security threats to it while a lot of other MPKC
schemes are vulnerable to attacks like MinRank [20], High Rank attack [5,20],
Direct attack, Differential attack [5], Rainbow Band Separation attack [5,19]
and so on. Consequently, UOV is an ideal choice for a signature scheme when
security is the top priority.

However, like a regular MPKC scheme, it also suffers from overlarge key size
(includes public key and private key size). This flaw can restrict its applications
on some devices with limit storage. Thereby, to come up with a secure signature
scheme with compact key size is one of the main goals in the research of MPKC.
A lot of effort has been made in this area in the recent years. For example, TTS
could be viewed as a special case of Rainbow with sparse private key. In [12—
14], the authors proposed to insert some special sequences into the generation
of public key to save some memory. This method’s effect is quite obvious. The
public key size is reduced by a factor up to more than 7 for UOV. This method
could also speed up the verification process according to the conclusion made in
[16]. In [21-23], the authors were enlightened and proposed two ways to reduce
the private key size of Rainbow and improve the efficiency of signature generation
in the meanwhile. In [22], the author combined those two methods to further
reduce the private key size and improve the efficiency.

However, research of reducing the private key size of UOV hasn’t been made
yet. In this paper, inspired by the previous research, we will propose two variants
of UOV with shorter private key size and higher signature generation efficiency.

The structure of this paper is as follows: First of all, we’d like to introduce
the general UOV [4] and Rainbow [4] signature schemes. Then we introduce the
existing methods that could be used to reduce the public key or private key size.
Next, inspired by the existing methods, we would like to propose two variants
of UOV with shorter private key size and faster signature generation. At fourth,
we’d like to make a security analysis of our schemes by applying existing known
attacks to them. During the security analysis, we also slightly modify the existing
Kipis-Shamir attack [2] against UOV based on even characteristic field since the
original one doesn’t work. Fifth, we make an overall comparison with the original
UOV concerning to two widely accepted security levels: 280 and 2!°°. Finally,
we make a conclusion.

2 An Introduction of the Regular UOV and Rainbow

UOV and Rainbow are two well-known MPKC signature schemes. Both of them
are based on a small field and Rainbow could be regarded as a multi-layer exten-
sion of UOV. In this section, we will introduce those two signature schemes.
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2.1 UOV

To figure out what UOV is, first of all, we’d like to introduce the concept of
Oil-Vinegar polynomial with the following form:

o

v v v
/ I,
f = E Qi TiT; + E E bijxixj

=1 j=1 i=1 j=1
o v

+Zcixi +Zdj$; +e (1)
i=1 j=1

Variables are divided into two kinds in the above polynomial: Oil variables (x;)
and Vinegar variables (). The number of Oil variables is 0 and the number
of the Vinegar variables is v. Central map F' can be composed of o Oil-Vinegar
polynomials. The invertibility of the central map comes from the fact that once
random values are assigned to the vinegar variables set, it becomes a set of linear
equations of Oil variables and can be efficiently solved by Gaussian Elimination.

Once the central map F' is determined, the public key can be calculated as:

P=FoT (2)

in which T is a linear affine transformation. There’s no need to composite a
linear affine transformation on the left side of the central map F' since it will
not affect its security (The central map polynomials will still be the Oil-Vinegar
form after the composition of the linear affine transformation on the left).

Define d = v—o, when d = 0, it’s called balanced Oil-Vinegar scheme (OV for
short) while when d > 0, it’s known as Unbalanced Oil-Vinegar scheme (UOV)
[9]. The balanced Oil-Vinegar scheme can be easily broken by the Kipnis-Shamir
attack [10]. The extended Kipnis-Shamir attack could also be used to attack
UOV [9]. The complexity of this attack can be determined by: ¢*~°~!0*. Thereby,
the designer could adjust corresponding parameters to meet the required security
level.

2.2 Rainbow

Rainbow is a multi-layer extension of UOV. Each layer is an independent UOV
scheme. All the variables of the previous layer could be viewed as the vinegar
variables of the next layer. More specifically, the relations of the variables of
different layers could be denoted as:

[T1y ey oy [{Twy 415 oves Ty }

L1y eees Logy Log+1s o5 Loy {xvz+17 ~--7xv3}
I:xl,"'7xv17x’u1+17 ooy Lyg s Log 41y ey xvg] {x’t)3+17 '“7*%.’04}

[xl,..., ety eeey nny aeey nany aeey nny eees ...,xvu]{xvul+1, vy T}
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in which [z1, ..., z,,] represents ith layers’ Vinegar variables and {zy, 11, ..., Zv,,, }
represents ith layers’ Oil variables. Also, in those layers, v; represents the number
of the Vinegar variables and o; represents the number of Oil variables of ith layer
and we have v; 11 = v;+0; apparently. Each layer has o; Oil-Vinegar polynomials
and m = 01 + 09+, ..., +0, polynomials in total. The number of variables in total
is v1 + 01 + 02,...,+0; = vyy1 = n. The structure of a u-layer Rainbow is
denoted as:
(V1,01 ey Ou—1,04).

The public key of Rainbow is built as:
P= L1 oFo L2 (3)

Unlike UOV, to build the public key of Rainbow, a bijective linear transformation
L1 must be composited to cover the structure difference of different layers.

In the signing process, to invert the central map F' of Rainbow, the signer
needs to assign a random set of values to the Vinegar variables of the first layer
and solve the Oil variables of the first layer. Next, the signer substitutes all the
variables of the first layer to the second layer as the Vinegar variables of this
layer and solve this layer’s Oil variables. The signer repeat this process till all
layer’s variables are solved and outputted as the solution. The rest part of the
signing process is the same as a regular MPKC scheme.

3 Existing Methods to Reduce the Public Key
and Private Key Size

In this section, we will describe some existing methods that could be used to
reduce the public key or private key size of UOV and Rainbow.

3.1 Methods to Reduce the Public Key Size

In [13-15], the authors proposed two methods to reduce the public key size of
UOV and Rainbow by using two kinds of sequence: Cyclic Sequence and Linear
Recurring Sequence and insert them to the public key polynomials’ correspond-
ing matrices.

In those two methods, the public polynomials’ coefficients of quadratic terms
are no longer denoted as m traditional n x n matrices (Symmetric or Upper-
triangular). They are denoted as a single (”LZ("H) X m maucaley matrix Mp.
Each row corresponds to one public key polynomials’ coefficients of quadratic
terms. The authors further divide Mp into tow parts:

Mp = (B/C) (4)

in which B denotes the coefficients of the Vinegar-Vinegar quadratic cross-terms
and Oil-Vinegar quadratic cross-terms, and C denotes Oil-Oil cross-terms. The
corresponding central map can be denoted as a matrix:

Mp = (Q/0) ()
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Since P is generated by F and T, Mp and My also have the relation:
Mp = Mp- A (6)

where A can be computed by coefficients of T

The essential part of building the public key with reduced key size is to
generate B in Mp using a particular sequence. Once B is assigned values, Mg
can be computed by the relations revealed in (6). As long as Mp is known,
the rest of Mp:C' can be further computed. As to the sequences to generate
B, Cyclic Sequence and Linear Recurring sequence are involved. In the case of
Cyclic Sequence, matrix B can be represented as:

bl b2 bD
bp br ... bp

bp_m+42 bD_m43 - bD_my1

From the above form, we can see that only the first row of B is generated by
random, the ith row of B is generated by cyclic right shifting 7+ — 1 position of
the first row. This method is later extended in [23] to build the central map of
Rainbow. In this paper, the authors used a rotation sequence of matrices rather
than a Cyclic Sequence of rows in a single matrix.

The other sequence that could be used to reduce the public key size is called
Linear Recurring Sequence. The definition of this sequence is given as:

Definition: Given a positive constant number L, and L random elements in
GF(q): a1, g, ...,ar. Given the initial values: {s1, s2, ..., s1.}, the Linear Recur-
ring Sequence (LRS) is a sequence {si,s2,...} generated by: s; = ays;_1 +
a8j—2+ ... +ars;—r(j > L).

L is defined as the length of this sequence. Apparently, this linear recurring
sequence can be also used to generate matrix B to reduce the public key size.
Elements of B in (4) can be computed as: bj; = sp(i—1)+;(i = 1,...,m,j =
1,..., D). Variables need to store are: a1, as, ..., and {s1, sa, ..., sp.}.

3.2 Method to Reduce the Private Key Size of Rainbow

In [21], authors proposed another way to reduce the private key size of Rainbow:
Matrix-based Rainbow. Assume the rainbow has [ layers and with structure:
(v1, 01, ..., 0). Solving each layer’s variables actually ends up with solving a sys-
tem linear equations with the form:

L-X=V (7)

in which L is a 0; x 0; coefficient matrix generated after assigning values to
vinegar variables of ¢ th layer, and X is the vector of length o; composed of
the unknown oil variables. V' is the constant vector with length o;. To save
storage of the private key, the above equation can be further divided into d;
parts. Assume o, = d; x 0of, V.= (V1,Va,--- , Vy,), X = (X1,X2, -+, X4,), we
will have:
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Ly Xp=Vi, k=1,...,d (8)

To solve Eq. (7), the signer can solve (8) separately to improve the efficiency. To
achieve this goal, L should have the following form:

L=|... . (9)
00---A

in which A is a o} x o} matrix. To solve Eq. (7) by regular Gaussian Elimination
method, the complexity will be around O(0;®). However, in this new method,
it will drop to 0;® (equation in (8) can be solved simultaneously, since Ly is
identical corresponding to A in L). As to how to construct a L in the above
form, the constructor needs to choose coeflicients of each layer’s Oil-Vinegar
cross-terms and Oil linear terms accordingly. Details won’t be described here,
interested readers could refer to [21].

In [22], the author combined those two methods: Matrix-based Rainbow and
NT-Rainbow to build a more compact and efficient rainbow.

4 Our Construction

In our construction, inspired by the previous works, we’d like to extend the
rotating matrix sequence and Matrix-based Rainbow method to UOV. Also,
we’d like to bring in the Linear Recurring Sequence method to build another
variant of UOV with shorter key size and faster signature generation.

4.1 UOV Variant 1

First of all, we determine the values of the coefficients of Vinegar-Vinegar cross-
terms. Apparently, these coefficients can also be denoted as a rotating sequence
of matrix. Suppose an UOV is based on GF'(q), the number of Vinegar-variables
is: v and the number of Oil-variables is: 0. We have n = v + 0o, m = o. The
coefficients of Vinegar-Vinegar cross-terms are denoted by the following matrix
sequence.

b171 bLQ va bv,l bv72 byﬂ,
1 b2’1 b272 bg’v 5 bl,l bl,g bl,u
B = . )B = . . . bl
bv,l bv,2 T bv,v bv—l,l bv—1,2 e bv—l,v
bv7l+2,1 bv7l+2,2 bvflJrZ,v
B by—14+3,1 by—143,2 - by—i1430
ceey = . . .

bvflJrl,l bv7l+1,2 tee bvflJrS,v
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in which 1 <[ < 0.The [th matrix is generated by down rotating [ — 1 rows of
the first matrix. All the indexes are values modulus v.

Also, the method used to build Matrix-based Rainbow can also be applied
to our UOV construction. First of all, we need to generate the corresponding
coefficients to make sure the linear equations to solve during the signing process
is in the form of (8) and L be the form of (9).

First of all, assume o = d x o'. If central map’s polynomials are denoted as:

g(UH)(x) =27 ATy 4 B 4 0Dy = (z1,22, s xn) 1 =1,...,0 (10)

in which At is a n x n matrix, B("*Y is a vector with length n and C("t9 is
a constant. AWt can be further denoted as:

A (v+1) A (v+1)
AWHD — [ £50 1 =1,.. 11
O O ) l b 70 ( )
where AO(”“) = ¢(i,7) is a v X v matrix corresponding to the coefficients

of Vinegar-Vinegar cross-terms and can be denoted by B!. If it’s in a upper-
triangular form, then:

~—

bicit1, +bjip1,: (i <y
(i, j) = q bimi+1,5 (i =J) (12)
0 (else)

On the other hand, A¢"™ can also be represented by B! directly.
Also, to extend the Matrix-based Rainbow to UOV construction, the v x o

matrix A; Y is the most crucial part to this construction. It determines L’s
form. A; "tV should have the shape:
io (d—i—1)0’
. p—N—— —
A ) — (0,044, 0,..,0 ),(0<i<d,0<j<0) (13)

in which 0 represents a zero v-dimensional vector and a; represents a random
v X 0’ sub-matrix.
Next, we determine the values of B and it can be further divided into:

BUH = (B0, By ), 1= 1,0 (14)

(v+1)

in which Bo*Y is a random vector in length v and B, is a vector with

length o of the form:

ho' (d—h—1)0’
Iy —~ —
B, vtho' ) — (0,...,0,b;, 0,...,0 ),(0<h < d,0<j<0) (15)

in which 0 represents 0 and b; is a vector of length o’ . Together, b; and a; can
determine a row of A in Eq. (9).

At last, C(**Y can be a random constant.

This construction is similar to the case of building a sparse Rainbow with
higher efficiency in signing [22]. It could be viewed as an extension to UOV.
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4.2 UOV Variant 2

Moreover, since the linear recurring sequence can also be used to build a MPKC
scheme with shorter public key, we’d like to extend this method to UOV.

Normally, a regular linear recurring sequence is hard to explore a property of
improving signing efficiency. In [12], authors proposed a special linear recurring
sequence which could be used to reduce the public key size and enhance verifying
efficiency in the meanwhile. Instead of using one linear recurring sequence, the
authors used o different linear recurring sequences with length 1. All the initial
values for these o sequences are 1 for simplicity.

Inspired by that, we would also like to explore a special way to utilize lin-
ear recurring sequence to reduce private key size and enhance signing efficiency.
In our new construction, the linear recurring sequence is used to generate the
coefficients of Vinegar-Vinegar cross-terms. We use a upper-triangular matrix to
represent the corresponding cross-terms’ coefficients. Under this circumstance,
% linear recurring sequences of length 1 are needed. The first matrix is com-
posed of initial values of these sequences and they are totally random instead of
being 1. The rest matrices are generated by the elements of these linear recurring
sequences. They should be in the form of:

b11 b12 bh, b11 e b12 Q... blv jye
Bl 0 b22 bgv 32 0 b22 R ZRPON bQ»U e
0 0 "'bvv 0 0 "'bvv'a
b11 - al1 bis - a1 . b1y catt
. 0 bos - ot~ . bay - alt—1
Bl =
0 0 e by - al=1!

Apparently, this matrix sequence can be directly substituted into AT,

As to how to determine the values of A; T, BO+D and C*D, we do the
same as UOV variant 1.

4.3 Parameters Summarization

Based on the previous description of how to construct our UOV variants, we list
the parameters needed to build the central map of them:

(1) aj: a v x o' sub-matrix corresponding to the non-zero coefficients of cross-
terms between Vinegar variables and Oil variables, j = 1,...,0'.

(2) B!: the initial matrix of a matrix sequence corresponding to the coefficients
of cross-terms between Vinegar variables and Vinegar variables. The matrix
sequence can be generated by a rotation sequence of matrix or some linear
recurring sequences.

(3) a: If coefficients of Vinegar-Vinegar cross-terms are generated by linear

recurring sequences of length 1, this element is needed.
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(4) b;: a o' dimensional vector corresponding to non-zero coefficients of linear
terms of Oil variables, j =1,...,0'.

(5) B(()UH): vector in length v corresponding to coefficients of linear terms of
Vinegar variables, [ =1, ..., 0.

(6) C(*D: the constant part in central map, [ = 1, ..., 0.

4.4 Private Key Size

After giving the parameters needed to generate the central map, we can calculate
the required private key size to build these tow UOV variants.

First of all, we calculate the required storage size for central map. This can
be calculated by simply add the size of (1)—(6) in previous section which is:

Variant 1 (Rotation Sequence):

vxo xo +vxv+o xo +uvxoto=(w+1)*+vxn+to

Variant 2 (Linear Recurring Sequence):
vx0 x0o' +ux(v+1)/24+1+0 x0' +vxot+o= (v+1)o*+vx(n+o+1)/24+0+1

Secondly, we take the size of linear affine transformation into account which
issn-(n+1).
The total storage size needed for private key is:

(1) UOV variant 1: (v+1)-0?4+v-n+o+n-(n+1)
(2) UOV variant 2: (v+1)-0%+v-(n+1)+o0+n-(n+1)

On the other hand, the private key size of a regular UOV is:

1
o(v-o—i—%—kn—kl)—i—n-(n—kl)

Values of these equations are measured by the size of a finite field element.

In this section, we only give the formulas to calculate corresponding private
key size. In the following section, specific storage size will be given after the
parameters of UOV and UOV variants are determined.

4.5 Signing Process of Our UOV Variants and Their Efficiency

In this section, we are going to describe the signing process of our tow variants
and their efficiency.

Assume the document to sign is M. First of all, the signer needs to invert
the central map S’ = F~1(M). Secondly, invert affine linear transformation T
by calculating S = T—1(S"). For our variants, this part is the same as the origi-
nal UOV. Each element in T involves an addition operation and multiplication
operation. The complexity of this process is O(n?).
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As to inverting the central map, two parts are involved:

(1) Calculate the constant parts: V' of the linear equation system in (7).
(2) Invert this linear equation system: (7).

These two parts are calculated after assigning random values to Vinegar
variables. Assume the random values set assigned to Vinegar variables is: b.

Calculation of V. Specifically, V is the sum of following three parts:

(1) After assigning random values to Vinegar variables, cross-terms between
Vinegar variables z;2;(¢,j = 1,...,v) become constants;

(2) After assigning random values to Vinegar variables, linear terms of Vinegar
variables z;(i = 1, ...,v) also become constants;

(3) The constant parts in central map: cth 1 =1, .. 0.

Firstly, we talk about the calculation of part (1):

UOV Variant 1: To calculate constant part (1), we substitute a v dimensional
vector b into Vinegar variables and calculate bB'bT for each central equation
(I=1,...,0). We further denote B'b” as b7 of length v. Since B! is generated
by cyclicly down rotating [ — 1 rows of B, #’OT could be generated by cyclicly
down rotating [ — 1 positions of &’ V7T accordingly. Anyway, the signer only needs
to compute b7 the rest of DT are generated by its down rotating sequence.
At last, compute b - (D7 as the constant produced by Vinegar-Vinegar cross-
terms.

UOV Variant 2: For this variant, it also substitutes a v dimensional vec-
tor b into Vinegar variables and calculates bB'b” for each central equation
(I = 1,..,0). Since bB'0T = 3> > bb;Bl; and Bl; = B}, - /™!, we have
i=1j=1
bBIT = ,lelbibjBﬁj = ZIZImbjB}j -l = B - al~!. Thereby, the
i=1j= i=1j=

signer only needs to compute bB'6” and bB'bT can be computed by simply
multiply a!~1.

The complexities of calculating part (1) are O(v? + ov) = O(v?) and O(v? +
0 —1) = O(v?) for Variant 1 and 2 respectively. Corresponding complexity of a
Regular UOV is O(o - v?).

On the other hand, the processes of calculating part (2) and part (3) are
the same as a regular UOV and their complexities are negligible to computing

part (1).
Solving L - X = V. In the signing process of a regular UOV, after assigning
random values to Vinegar variables, the remaining Oil variables can be solved by
a set of linear Eq. (7). Normally, L looks random. However, in our construction,
L will be in the form of Eq. (9) in which A can be computed as:

b- ay bl

a=| |+ (16)
b- Qo bo/
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Furthermore, V' and X are divided into d parts V. = (Vq, Vo, -+, V), X =
(X1, Xs, -+, X4). Consequently, the equations need to solve can be transformed
into solving a set of A- X; = V; independently. This can be done by a typi-
cal Gaussian Elimination in O(0®) operations. One thing to note is that these
equations can be solved simultaneously since all the coefficients matrices are
identical: A. Thereby, in the solving process, all equations proceed the same row
transformations of A or we can directly calculate X; = V; x A~

The complexity of this process is O(0) for our UOV variants while for a
general UOV, it’s O(0%) = O(d® - 0'3).

4.6 General Description of Our Schemes

In this section, we are going to give a general description of our scheme.

Key Generation.

(1) Private Key: According to the required security level, choose the appropri-
ate set of parameters including finite field k¥ = GF(q), number of Vinegar
variables v, number of Oil variables: o and o', d. Generate the quintuple of
parameters: (a;, B'.b,, Bo(”+l), C("’“‘l)) for Variant 1 or six-tuple of parame-
ters (aj, B! a,b,, BO(U‘H), C(”‘“l)) for Variant 2 to construct central map F'.
Moreover, generate the invertible affine transformation: 7" : k™ — k™.

(2) Public Key: Generated by P = F o T : k™ — k™.

Sign. Input the document to sign: M € k™. First, invert the central map:
S’ = F~1(M). This can be done by the process given in Sect.4.5. Next, invert
the linear affine transformation: S = T~1(S’). Output S € k™ as the signature.

Verify. The signer sends document-signature pair to a receiver: (M, S). Receiver
verifies the correctness of the signature by check if P(S) = M. If it matches, the
signature is legitimate. Otherwise, reject it.

Parameters Representation of Our Scheme. Normally, a UOV’s parame-
ters can be denoted as: (k, v, 0). We have two variants and o = o’ -d. Thereby, our
schemes parameters can be denoted as: V1 (GF(k),v, 0 xd), V2(GF(k),v, 0 xd)
for Variant 1 and 2 respectively.

5 Security of Our UOV Variants

In this section, we are going to make a security analysis of our UOV variants
by applying known existing attacks to them and make a comparison with regu-
lar UOV.
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5.1 Direct Attack and UOV Reconciliation Attack

Direct attack treat UOV public key as a set of quadratic equations and solve
them directly. Known efficient algorithms include Grobner bases attack F4 [6],
F5 [7] and XL algorithm [3].

UOV reconciliation attack [5] could viewed as an improved version of brute
force attack. It tries to find a sequence of basis that could transform the public
key of UOV to the central Oil-Vinegar form. However, the main part of this
attack is still direct attack. It’s complexity could be transformed into directly
solving a quadratic system of m = o equations in v variables.

For a regular UOV, since v > o, directly solving public key of UOV or
using reconciliation attack could all be transferred to directly solving an under-
defined system (number of variables is greater than the number of equations).
Before applying direct attack to an under-defined system, one should assign
random values to variables to make the whole system a generic one or over-
defined one [1]. Consequently, reconciliation attack against UOV is as difficult
as a direct attack against it since both of them end up with directly solving
a generic or over-defined system of quadratic equations with the same number
of equations: o.

On the other hand, because of the linear affine transformation 7', despite the
difference of our construction of central map from a regular UOV, our variants’
public key also look totally random. Thereby, we expect our UOV variants have
the same security level against direct attack as a regular UOV.

To verify our conclusions, we are able to write magma programs about our
UOV variants and regular UOV against direct attack on a workstation: Dell
Precision T5610. We choose three small-scale groups of parameters for each
scheme. For each scheme, we test for 100 times and record their average attacking
time. The results are listed Table 1.

Table 1. Comparisons between UOV variants and regular UOV against direct attack

Schemes | Regular UOV | UOV variant 1 | UOV variant 2
Group 1| (GF(2%),4,8) | (GF(2%),2 x 2,8) | (GF(2?),2 x 2,8)
0.539s 0.496s 0.514s
Group 2 | (GF(5),4,8) |(GF(5),2%x2,8) | (GF(5),2 x 2,8)
3.221s 3.051s 3.435s
Group 3 | (GF(7),3,6) |(GF(7),3%x1,6) | (GF(7),3 x1,6)
0.728 s 0.752s 0.732s

From this table, we can clearly see that our UOV variants’ performances
against direct attack are almost the same as regular UOV’s.
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5.2 Kipnis-Shamir Attack

This attack was proposed in [10] by Kipnis and Shamir to attack balanced Oil-
Vinegar scheme and later extended to evaluate the security of UOV scheme [9].
At first, this attack could only work on UOV based on odd characteristic field.
The complexity of this attack is ¢?~! x m* [9]. In [2], the authors extend this
attack on UOV with even characteristic field by making a small modification.
The complexity of the modified attack against UOV with even characteristic
field is g%+ x m*

The essence of Kipnis-Shamir attack is to use public key polynomials’ corre-
sponding matrices to find the desired the hidden Oil space which could be used
to construct an equivalent private key of linear affine transformation: 7.

Here, we give a brief description of the process of Kipnis-Shamir attack in [2]:

(1) Produce the corresponding symmetric matrices for the homogeneous
quadratic parts of public key’s polynomials: Wy, Ws, ..., W,,,. If the scheme
is based on even characteristic, the entry (1,1) of each matrix is set to 1.

(2) Randomly choose two linear combination of Wy, Ws,...,W,, and still
denote them as W; and Wy in which Wiy, W5 is invertible. Calculate
W12 = W1 X Wg_l.

(3) Compute the characteristic polynomial of Wiy and find its linear factor
of multiplicity 1. Denote such factor as h(z). Computer h(Wiz) and its
corresponding kernel.

(4) For each vector o in the kernel of Step 3, use oW;0 =0, (1 <i < m) to test
if 0 belongs to the hidden oil space. Choose linear dependent vectors among
them and append them to set T'.

(5) If T contains only one vector or nothing, go back to step 2.

(6) If necessary, find more vectors in T 03, 04, .... Calculate K,, N---N K,, to
find out the hidden Oil space in which K,, is a space from which the vectors
x satisfy that o, Wiz =0, (1 < < m).

(7) Extract a basis of hidden Oil space and extend it to a basis of k™ and use it
to transform the public key polynomials to basic Oil-Vinegar polynomials
form.

For further explanation of this process, readers could refer to [2].

According to these steps, we are able to write a magma programs to test on
some small scale UOV schemes. However, we found out that step (4) isn’t enough
to test if o is in the hidden Oil space. In our experiment, it is highly possible
that vectors we found satisfy the conditions in Step (4) but don’t belong to the
hidden Oil space.

Consequently, we made a few changes to the Kipnis-Shamir attack in [2]:
If we found a new possible vector o; in hidden Oil space in step (4), we use
otWio0; =0,(1 <i<m,1<j<t—1) to test if the new vector truly belongs to
hidden Oil space and this new condition is strongly enough to find the desired
vectors. If the new vector doesn’t satisfy this condition, discard it and go back
to step (2) to find a new one. Also, it is possible that after enough tries, we still
can’t find the desired new o;. The reason is that the previous vectors o1, ..., 041
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are also not in the hidden Oil space. Then we should discard them all and do it
from the scratch.

In our new modified Kipnis-Shamir attack, we are able to run some tests
about this attack on some small-scale regular UOV schemes. Each scheme we
test for 50 times and record its average attacking time (Table 2).

Table 2. Kipnis-Shamir attack against regular UOV

Schemes (GF(3),3,6)  (GF(3),4,8) | (GF(2%),3,6)
Attacking time | 12.556 s 1155.5685 | 16.861s

However, when we try to apply our modified Kipnis-Shamir attack on our
new UOV variants, we found out that the vectors in the hidden Oil space can’t be
found. By further analyzing the experiments’ results, the failure of this attack
is caused by the reason that invertible matrices W7, W5 can’t be found. As a
matter of fact, all the corresponding symmetric matrices of public key’s polyno-
mials: Wy, Wy, ..., W, are not invertible. Ergo, Wi, can’t calculated under this
circumstance. As is stated in [2,9], it’s a necessary condition that public key’s
corresponding matrices being invertible and symmetric for Kipnis-Shamir attack
to work. Consequently, this attack is futile against our new UOV variants.

Next, we are going to illustrate why all the corresponding symmetric matrices
of public key’s polynomials: Wy, Wy, ..., W,,, are non-invertible:

In the construction of our UOV variants, the private key polynomials’ coef-
ficients are represented by asymmetric matrix. To represent the private key
polynomials’ coefficients in a symmetric matrix form, first of all, what we need

to do is transform the original asymmetric matrix into quadratic polynomials:
n

n
>~ > ajjx;xj. The corresponding matrix’s coefficients is computed as:
i=1j=i

Cij = Gij; 1=]
Cij =aij/2, i#]

We further notice the original matrix of private key polynomials of our UOV
variants 1 is in the form of:

S e

00---00---00---00---0

00---00---00---00---0
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and for UOV variant 2, it’s in the form of:

o

00---%0---0%---%0---0
00---00---00---00---0

00---00---00---00---0
in which * denotes non-zero elements. The left-upper non-zero block represents
the coeflicients of Vinegar-Vinegar cross-terms and non-zero columns are the

coefficients of Oil-Vinegar cross-terms. Both these matrices are transformed to
symmetric form which should be:

o

00---00---00---00---0
We can see that this symmetric matrix have zero rows. According to the descrip-
tion of our UOV variants, there will be (d —1) X o’ zero-rows and v + o’ non-zero
rows. Assume this matrix is W, apparently, we have Rank(W) < v+ o < n.
Thereby, this symmetric matrix is not invertible matrix since it’s not a full-
rank matrix. Hence, all the corresponding symmetric matrices of public key’s
polynomials: Wy, Wy, ..., W,,, are non-invertible. Consequently, W75 can’t be cal-

culated. Under this circumstance, Kipnis-Shamir attack is not applicable to our
UOV variants.

6 An Overall Comparison with Original UOV

In this section we are going to give an overall comparison between regular UOV
and our UOV variants under the same security level requirements.
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First of all, we choose the security level requirements that our UOV variants
and the regular UOV should satisfy. Currently, the most prevailing ones are
280 and 2!%9. According to the conclusions made in [1], the sets of parameters
of regular UOV (GF(28),v = 56,0 = 28) and (GF(2%),v = 72,0 = 36) can
achieve security level 280 and 2190 respectively. Accordingly, corresponding sets of
parameters of our variants can be given as UOV Variant 1: (GF(28),v = 56,0 =
4x7)and (GF(28),v = 72,0 = 4x9), UOV Variant 2: (GF(2%),v = 56,0 = 4x7)
and (GF(28),v = 72,0 =4 x 9).

After picking the appropriate parameters, in our comparisons, we will record
the scheme generating time, signature generating time, verifying time, private
key size, public key size and signature length. All those records are produced
by calculating the average values of 100 trials. We run these tests on a Dell
Precision T5610 with Magma programs. The results are listed in Tables 3 and 4.

Table 3. Overall Comparison between regular UOV and our UOV variants under

security level requirement 25°
Security level 2%° Regular UOV | UOV variant 1| UOV variant 2
Key generating time 9.496's 6.615s 6.422s
Signature generating time | 0.443s 0.007s 0005s
Signature verifying time |0.015s 0.015s 0.014s
Public key size 99.941 KB 99.941 KB 99.941 KB
Private key size 95.813 KB 14.321 KB 12.818 KB
Signature length 84B 84B 84B

2100

Table 4. Overall Comparison between regular UOV and our UOV variants under
security level requirement

Security level 2190 Regular UOV | UOV variant 1 | UOV variant 2
Key generating time 29.533s 23.547s 25.704 s
Signature generating time | 1.145s 0.045s 0.009s
Signature verifying time |0.025s 0.022s 0.027s

Public key size 206.930KB | 206.930 KB 206.930 KB
Private key size 198.844 KB 24.899 KB 22.404 KB
Signature length 108 B 108 B 108 B

From these two tables, we can see that our UOV variants do have obvious

advantages over Private Key size and Signature Generating time. They verify
our intentions to build the UOV variants.
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7 Conclusions

In this paper, inspired by the existing methods to build UOV and Rainbow with
shorter public key size or Rainbow with shorter private key size, we introduced
two UOV variants which have shorter private key size and higher efficiency in
signature generation. Then we made a security analysis of UOV variants by
applying existing known attacks which could be used against UOV to our UOV
variants. During the security analysis, we also made a small change to the existing
Kipis-Shamir attack [2] against UOV based on even characteristic field since the
original one didn’t work. At last, we made an overall comparison between regular
UOV and our UOV variants.
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Abstract. Yasuda, Takagi and Sakurai proposed a new signature
scheme in PQCrypto 2013 using quadratic forms over finited fields of
odd characteristic. Later on two independent attacks were proposed by
Hashimoto in PQCrypto 2014 and by Zhang and Tan in ICISC 2014 to
break their scheme. The purpose of this paper is to fix the security prob-
lem of Yasuda, Takagi and Sakurai’s scheme. We achieve this purpose by
mixing their scheme with a special type HFEv polynomials to produce a
new scheme, YTS-HFEv. We analyze its security and propose a practical
parameter set with public key size about 57 KB and security level 25°.

Keywords: Post-quantum cryptography - Multivariate public key cryp-
tosystem - Digital signature - HFEv

1 Introduction

Since the threat of quantum computer to public key cryptography [Sho97], it
has been active to search possible alternatives to current widely used RSA. One
of such directions is multivariate public key cryptosystems (MPKC) [DGS06]
whose trapdoor one-way functions are of the form of multivariate polynomials
over finite fields. The security of MPKC relies on the problem of solving a general
set of multivariate polynomial equations over finite fields which is proved to be
NP-hard [GJ79]. Current main trapdoor one-way functions of MPKC are usually
represented by quadratic polynomials and of course cannot be a random set of
polynomials. They are usually designed [DGS06] by composing a polynomial
map F : F* — F™ with two affine maps F = Lo F o R : F* — F™. The public
key is F' while the secret key usually consists of L, R, F. It should be efficient to
invert the central map F but infeasible to invert F unless one knows L, R, F.
Many such trapdoor one-way functions have been proposed since 1980’s for
encryption and signature schemes. According to Wolf and Preneel’s taxonomy
of MPKC [WPO05], they may be categorized as basic trapdoors and modifiers.
Namely they are constructed from those basic trapdoors by applying some mod-
ification methods. In Wolf and Preneel’s taxonomy of many of them proposed
until 2005, there are various modification methods, but only four basic trapdoors:
the Matsumoto-Imai scheme [MI88], hidden field equation (HFE) [Pat96], the
unbalanced oil and vinegar schemes [KPG99], the stepwise triangular systems
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[WBP05, WBP06]. These basic trapdoors have been used to produce various new
schemes with many modifiers. Since then, there have been a few new trapdoors
proposed, for example, MFE [WYHLO06], /IC [DWYO07], Square [Clo09], ABC
[TDTD13], ZHFE [PBD14] and so on. However, most of schemes so far have
been broken and it seems very challenging to construct new secure schemes.

Recently Yasuda, Takagi and Sakurai [YTS13] proposed a new and interest-
ing signature scheme using quadratic forms over finite fields of odd characteristic,
suitable for signature schemes. The mathematical foundation of their construc-
tion is the classification of quadratic forms over finite fields of odd characteristic.
Their scheme is different from all others and is regarded as a new basic trap-
door. However, it is then soon be broken by two independent attacks [Has14] and
[ZT15a,ZT15b], and there seems no obvious secure variant of it. So it becomes
an open problem how to repair Yasuda, Takagi and Sakurai’s (YTS’ for short)
scheme to make it secure.

Notice that the mathematical foundation of YTS’ scheme is the classification
of quadratic forms over finite fields of odd characteristic, and when the charac-
teristic of the base field is two, there is also a similar but more complicated
classification of quadratic forms. Thus it is curious that if this case could pro-
vide an analogous scheme and especially if it is secure or not. In this paper we
propose such an analogous scheme over finite fields of characteristic two. However
we find that it is neither secure. The attack [ZT15a,ZT15b] is still applicable.

Although the analogous scheme is not secure, we are then motivated by a
most recent paper [ZT15c¢] which proposed an idea of using a special type of
HFEv polynomials to enhance the security of signature schemes. By applying
this idea to YTS’ scheme and our analog, we then construct a new variant of
YTS’ scheme, YTS-HFEv. This new scheme is also an HFEv scheme but different
from current known HFEv schemes. We show that this new scheme can resist
attacks to YTS’ scheme and other major attacks. We also propose a practical
parameter set with public key size about 57 KB and security level 280,

This paper is organized as follows. In Sect. 2, we review YTS’ scheme, then
construct an analogous scheme over even finite fields and propose an attack to it.
In Sect. 3, we give our new variant of YTS’ scheme mixed with HFEv. Security
analysis of this new scheme is then presented in Sect. 4. Finally Sect. 5 concludes
this paper.

2 Yasuda, Takagi and Sakurai’s Signature Scheme
and Its Analog over Finite Fields of Characteristic Two

In this section, we shall first briefly review Yasuda, Takagi and Sakurai’s (YTS’)
signature scheme [Y'TS13], then present an analogous scheme over finite fields of
characteristic two, and finally sketch an attack to this analog of YTS’ scheme.

2.1 Yasuda, Takagi and Sakurai’s Signature Scheme

YTS’ scheme [YTS13] is constructed from the classification of quadratic forms
over finite fields of odd characteristic. We give a brief review of it in the following.
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Let ¢ be a power of an odd prime p and § a non-square element in F,.
I, . . .
Moreover let I,, 5 = ( nl 5) , and I,,_1 the (n — 1) x (n — 1) identity matrix.

Then any n x n symmetric matrix A over F; can be decomposed as either
A=XTX or A= XTIW;X where X an n X n matrix.
Let n =72 and m = r(r + 1) /2. Choose two one-one correspondences

. 1—1
¢1 : the set of 7 x r matrices over Fy, «—— Fy,

@2 : the set of r x r symmetric matrices over F, &L Fy'
Define two maps
BBy F) = B, Fi(e) = 0o(XTX), Fo(x) = 6o(XT15X).

Then the pair (Fy, F3) can be used to construct a multivariate quadratic signa-
ture scheme as follows.

Let R1, R : IF;’ — IE‘Z and L : IF;” —F 0 be three randomly chosen invertible
affine transformations and

F1:LOF10R1, FQZLOFQORQ.
YTS’ scheme can be described as follows.

Public Key. Fy, F,.
Private Key. Ry, Ro, L.
Signature Generation. For a message y € F;", first compute y' = L=(y)

and the corresponding symmetric matrix ¥ = ¢y 1(y’ ), then compute an
r x r matrix X such that Y = X7X or ¥ = XTIT,(;X7 and the corre-
sponding vector z' = ¢ (X), finally compute 2 = Ry (2') or 2 = Ry ' (a')
correspondingly.

Verification. A signature z is accepted only if Fy(z) = y or Fa(z) = y.

The public key size is O(r®), private key size is O(r*) and efficiency of signa-
ture generation is O(r). The parameters (q,r,n) = (6781,11,121) is proposed
and claimed to have security of 140-bit in [YTS13].

After YTS’ scheme was proposed in 2013, it was then quickly broken in 2014
by two different and independent attacks of Hashimoto [Has14], and of Zhang and
Tan [ZT15a]. Hashimoto used an algebraic approach to recover the private key
of YTS’ scheme if R; has a special form, and then reduced the case of general Ry
to this special case. He implemented his attack and broke the parameters (6781,
11, 121) in hundreds of seconds. Zhang and Tan applied a geometric approach
by first giving a simple matrix expression for the public map and discovering
the underlying geometric structure of YTS’ scheme in terms of invariant sub-
spaces. They then converted the problem of recovering the private key into a
geometric problem of decomposing the whole space into certain invariant sub-
spaces and calculating their appropriate bases. Finally they applied the theory
of invariant subspaces to develop an algorithm for recovering the private key.



78 W. Zhang and C.H. Tan

Later on they extended their original work and implemented their attack suc-
cessfully in [ZT15b] which totally and practically break YTS’ scheme. In this
extension paper, they tested various parameters and recovered all the private
keys efficient. For example, the private key of (6781, 11, 121) was recovered in
only about 14.77s.

2.2 Analog of YTS’ Scheme over Finite Fields of Characteristic Two

Let g be a positive power of 2 and § an element in F, such that z? + z + § is
irreducible over F,. There is also a classification for quadratic forms over finite
fields of characteristic two, cf. pages 138-139 of [Tay92] or Theorem 6.30 of
[LN97], which is more complicated than the case of odd characteristic. Due to
limitation of space, we shall directly give a matrix form for this classification.

Recall that a representing matrix of a quadratic form f € F[z1,...,z,] is
an n x n matrix A over F, satisfying

f(x)=xTAx, x=(21,...,2,)7.

There are many representing matrices for one f, but there is only one n x n upper
triangular representing matrix Q; = (a;;) with a;; = 0 for ¢ > j by rewriting
=>4 <i<j<n QijTiT;- Next we shall use upper triangular matrices to represent
quadratic forms.

For even r = 2t (¢t > 1), define

01

0 Qat—2
QZt = . . ) Q/2t = 11
01 g
2t X2t

For odd r =2t +1 (¢t > 1), define

Q241 = <Q2t 1) ) Q/2t+1 = <Q/2t 0> .

We next define a helpful operation on square matrices, called folding oper-
ation. The folding matrix of an 7 x r matrix A = (a;;) is A = (aj;) where
aj; = ay for all i, aj; = a;; + aj; for (4,7) with i < j, and aj; = 0 for (i,7)
with i > j.

Proposition 1. For any r x r matriz C, (CTAFC)F' = (CT AC)F.

We find that the folding operation disappears if A" and (A¥)T are added
together.

Proposition 2. A 4+ (AF)T = A + AT,

With the help of the above notations, we can now have the following matrix
form for the classification.
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Theorem 1. For an r x r upper triangular matriz A over Fy (r can be even
or odd), there is an r x r matriz X such that either A = (XTQ,. X)) or A =
(XTQX)F. 0
An algorithm for computing such a matrix X is sketched in [LN97], pages
286-287.
We next give our construction of a signature scheme analogous to YTS’ sig-
nature scheme. Let n = r2, m = r(r+1)/2, and another one-one correspondence

@3 : the set of r x r upper triangular matrices over F, L Fy'
For z € Fy, X = #7'(x) is an 7 x r matrix. Define
Fi,Fy:Fp = F), Fi(z) = ¢s((XTQ. X)), Fa(z) = ¢s((XTQ.X)").

Similar to YTS’ scheme, the pair (Fy, Fy) is surjective and can be used as the

central map of a multivariate signature scheme.

Let Ry, R : IF;L — IF;‘ and L : IFZ]” — ]F;” be three randomly chosen invertible
affine transformations and
FlzLOFloRl, FQZLOF2OR2.

Our analog of YTS’ scheme is described as follows.

Public Key. F, Fs.

Private Key. Ry, Rs, L.

Signature Generation. For a message y € FJ", first compute 3 = L™'(y)
and the corresponding upper triangular matrix ¥ = d)gl(y’ ), then compute
an 7 X r matrix X such that ¥ = (X7Q, X)) or Y = (XTQ'X)¥, and
the corresponding vector 2/ = ¢;(X), finally compute = Ry'(z') or
& = Ry*(2') correspondingly. - B

Verification. A signature x is accepted if F}(z) = y or Fy(x) = y, otherwise
rejected.

Some features of the scheme are given below.

Public Key Size. r(r +1)(r? + 1)(r? + 8)(log, q) Bytes.

Private Key Size. (91" 4 2r* + 11r? + 2r)(log, q) Bytes.

Efficiency. Algorithm of generating a signature is similar to YTS’ scheme and
has the same level of efficiency O(r?) = O(n?).

Security. The security level against MinRank attack is at least O(¢") = O(qV"™)
for recovering L.

We remark that small ¢, such as ¢ = 2, is impractical and we need only
consider big g. This is because the public key size is very sensitive on r, i.e.,
O(r%). Thus r should be small and ¢ should be big. For instance, if ¢ = 2, to
have security level even as low as 22°, we should have r > 20, i.e., n > 400, then
the public key size is already too huge, larger than 4 MB.

For ¢ > 2, however, we find that the attacking method of [ZT15a,ZT15b] is
still applicable but requires sophisticated modification. In the rest of this section,
we briefly sketch such an attack to the above scheme with ¢ > 2 which can totally
break it.
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2.3 Attack to the Analog of YTS’ Scheme (g > 2)

It is sufficient to attack the first map of the public key. We shall omit the subscript
and simply write F, I, R for F|, I, Ry respectively. Since the affine parts of L, R
can be recovered easily when ¢ > 2, c.f. Appendix B of [ZT15b], we can consider
only the case that both L, R are linear. Write F' = (f1, ..., f,,) with

fulx) =2t Apz, z€ Fy

where Ay, is an n X n upper triangular matrix publicly known.
We first give a simple matrix expression for the public map. Write the m x m
matrix L in the following form

i Ty oo oo liar oo Diger

lm;ll lm;12 lm;22 e lm;lr e lm;rr
In addition, let lj.;; = lx;s; for ¢ < j and define the symmetric matrix
Lk = (lk;ij)rxr

corresponding to the kth row of L.
Then Ay has the following simple expression: if r is even, for 1 < k < m,

0Ly
0
Ay, = (RT R)¥ (2.1)
0 Ly
0
with /2 blocks (0 Ig“) on the diagonal, and if r is odd, for 1 < k < m,
0Ly
0
. lk;ll
Ay, = (RT - R)¥,  where Dy, = (2.2)
0 Ly I
0 kyrr
Dy,

with (r —1)/2 blocks (0 [E)k> on the diagonal.

Comparing with the case that ¢ odd [ZT15a], there are two significant differ-
ences: (1) the middle matrix is singular here; (2) there is the folding operation
on the right hand side. So the method for ¢ odd cannot be directly applied to
Ay, here. Motivated by Kipnis and Shamir’s attack to the oil-vinegar scheme in
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the case that the field is of characteristic two [KS98,DGS06], we try considering
By = A + Ag instead. For even r and odd r, By has the following expression
respectively,

0 Ly

0 Ly Li 0

Ly 0
Br = RT R, B,=R"T B R.
0 Ly
Li 0

Compared to the left matrix, the right matrix has a zero block at the bottom
diagonal. This difference makes the two situations very different and the latter
situation is more complicated. Next we will discuss the two cases separately.

First Case: » Even. Since L is invertible, all L are linearly independent and
thus form a basis for X symmetric matrices. Hence there is a linear combination
of all Ly which is invertible and thus a linear combination of all By which is
invertible. Pick such an invertible linear combination of all By and denote it By
and Ly its corresponding linear combination of all Ly. Let L) = Ly 'L, and
Bj, = By ' By,. Then we have

Ly, Ly,
B, =R! R, B,R"'=R7! )
Ly Ly

Based on the above identities for Ay, By, Bj,, we can apply the method of [ZT15a,
ZT15b] using invariant subspaces to recover equivalent private key R, L.

Second Case: » Odd. This case is troublesome. Since B has rank at most
n — r, it can never be invertible. So the method for the case r even is not
applicable directly here. Nevertheless we still can reduce it to the case r even as
shown below.

Similar to the case r even, we pick a linear combination, By, of all By such
that it is of rank n — r. Notice that the last r columns of ByR~! are zero which
means that the last r columns of R~! span the null space N(By) of By. Since
RR™! = I, 50 N(By), equivalently the subspace spanned by the last 7 columns of
R~ is orthogonal to the subspace spanned by the first n — r rows of R. Let R;
be the submatrix consisting of the first n — r rows of R, and Ry the submatrix
consisting of the last r rows of R. Then the row space R(R;) of R; is contained
in N(Bp)*. It should be noted that we may not have R(R;) = N(Bj)* though
dimR(R;y) + dim N(By) = n due to the special theory of quadratic forms over
finite fields of characteristic two. Practically we can pick a regular dim-(n — r)
subspace of N(By)* and treat it as R(R;) — try another By if there is no regular
dim-(n — r) subspace. Since R(R;) is regular, there are two bases aj,...,a,_,
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and by, ...,b,_, such that the inner product al -b; = 0if i # j and 1 if i = j.
Namely
(ar,...,an—)  (b1,...,by_y) = L.

Next notice that the identity for By can be reduced to
0 Ly
Ly 0
Bk = R{ e Rl,
0 Lg
Li 0
and R can be written as
Ry = Rj(ai,...,a, )"
where R} is an (n — r) X (n — r) matrix. Let
By = (by,...,b, )T Br(by,..., b, ).

Then

By =R R].
0 Ly
Ly 0

Hence the problem of finding R; is then reduced to finding R}, i.e., the case r
even. After finding R;, then Ry can be found from the identity of Ag.

To summarize, the analog of YTS’ scheme over finite field of characteris-
tic two is somehow trickier than YTS’ original scheme over finite field of odd
characteristic. However, the method of the attack of [ZT15a,ZT15b] can still be
applied to totally break this analog after a careful reduction.

3 A New Variant of YTS’ Scheme Mixed with HFEv:
YTS-HFEv

In this section, we shall construct a new variant of YT'S’ scheme, named YTS-
HFEv, which is a mixture of YTS’ scheme and the well known HFEv scheme.
This construction is motivated by a most recent signature scheme called MI-T-
HFE [ZT15¢] in which a new idea is proposed to apply HFEv to enhance the
security for signature schemes.

3.1 HFE and HFEv

Hidden field equations (HFE) was proposed by Patarin in 1996 [Pat96] as a
candidate to repair the Matsumoto-Imai cryptosystem [MI88] after which was
broken by his linearization equations in 1995 [Pat95].
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Let g be a power of prime p which can be even or odd. Choose a degree
s irreducible polynomial g(z) over F, and let K = F,[z]/(g(z)) which is then
a degree ¢ extension of . Define the following isomorphism of vector spaces
over [Fy,

¢:K—F,, ¢lao+az+- -+ ar—12'") = (ag, a1, ..., as-1)

An HFE polynomial with degree bound D is a polynomial over K of the following
form o _
HX)= > azX"T 4+ Y ;X7 tc
1<¢*+¢7<D 1<¢i<D

The key here is that if D is relatively small, then H(X) = Y can be solved
efficiently using Berlekamp’s algorithm with complexity O(tD*log, D + D?).
Patarin’s HFE encryption scheme has such an HFE polynomial as the core map
and composes it with two invertible affine transformations.

Although HFE has been broken thoroughly [KS99,GJS06,BFP13], it has
been developed into a most important family of multivariate public key schemes.
An important variant of HFE is HFEv, an encryption scheme which was first
presented in 1999 [KPG99] and remains secure until today. HFEv applies the
idea of unbalanced oil and vinegar signature scheme [KPG99] and add a few new
variables in Iy, called vinegar variables, to HFE. These vinegar variables in I,
corresponds to a variable V in the extension field K. The core map of HFEv is
a polynomial of two variables X,V over K of the following form

HX, V)= > ayX?+ 4+ 3" b X0ve + 3 4, X7

q¢i+¢I<D ¢'<D q'<D
F eV eV

where the degree of the vinegar variable V' can be arbitrary high. To solve the
equation H(X,V) =Y, one first assigns any value to V and then solve it as in
HFE. A cryptanalysis of HFEv was given in [DS05] and showed that HFEv is
secure if V' is not very small. A famous example is QUARTZ [PCGO01] which is a
signature scheme constructed from HFEv simply with a few components deleted
from the public map of HFEv.

3.2 The New Scheme YTS-HFEv Where YTS’ Scheme Meets
HFEv

In [ZT15c¢], the authors proposed an idea of using the HFEv encryption scheme
to enhance the security of signature schemes. They applied the following special
type of HFEv polynomials over K:

_ E : § : q’ yd’ § : a’ ¢’ § : '
H(Xl,XQ) = ainl X2 + bUXQ X2 + CjX2 5
0<i<t1<¢i<D 1<qi+¢i<D 1<¢7<D

where X is the vinegar variable. Notice its difference with general HFEv poly-
nomials: there are no terms Xfl and no constant term. The purpose of this
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specialty is to make equation H (X7, X2) = 0 always have a solution, at least
the zero solution X5 = 0. However, for a given X7, a nonzero solution for X,
is preferred among those solutions to H (X7, X2) = 0. We shall accept the zero
solution X5 = 0 if there is no nonzero solution. Using this type of HFEv polyno-
mials to mix with signature schemes, we can not only enhance the security but
also assure that every message has a valid signature, a feature somewhat desired
by a signature scheme.

Following [ZT15¢c], define the following map for x;,x5 € Ffl to be used next

H:F!xFL— T H(xi,x) = ¢(H(67 (x1), 671 (x2))).

Let Fy, Fy : Fjy — F7* be the pair of maps of YTS’ scheme or its analog in
the preceding section depending on whether ¢ is odd or even. Then as it did in
[ZT15¢], define for x; € F}, xo € F', i = 1,2,

Gi(XhX?) = Fi(xl) + S+ H(Ty 'X1,X2) :]F?L" — [E‘;n
where S1, S5 are m x t matrices and Ty, T are t X n matrices. Let
G1=LoGioRy, GQZLOGQORQZFZ+n—>FZL

where Ry, Ry : IFZ*” — IFfI*” and L : Fj* — Ty are three randomly chosen
invertible linear maps. Then we have the following new signature scheme, called
YTS-HFEv:

Public Key. G1,Gs.
Private Key. L, Rl, RQ, 517 SQ, Tl, TQ.
Signature Generation. A given message y € [y is signed in the following way:
1. Compute y’ = L™} (y).
2. Solve Fi(x1) =y’ or F5(x1) =y’ to get a solution xs.
3. Substitute x; into the corresponding H (T} - x1,%3) = 0 and solve it by
Berlekamp’s algorithm. Among those solutions, pick a nonzero solution
and assign it to xa. If there is only the zero solution, then let x5 = 0.
Then (x1,x2) is a solution to the corresponding F(x) =y’.
4. Compute the corresponding x = R; *(x;,%2) which is then a signature.
Verification. A signature x is accepted if F(x) =y or Fj(x) =y.

Key sizes and efficiency of the above scheme are given below.

Public Key Size. 557(r+1)(r?41)(r?+t+1)(log, q) [log, p] Bytes. So r should
be chosen small to have small public key size.

Private Key Size. 35 (5r* + 2r® + 28r2t 4 1% + 4rt + 8t%) (log,, ¢) [log, p] Bytes.

Efficiency of Signature Generation. O((r? 4 t)* + tD?log, D + D?).

Hence for practical reason, p should be close to 2/1°%271 and r should be small to
have small key size. In addition, D should be relatively small so that signature
generation can be efficient. On the other hand, there should be as more terms
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of Xs as possible so that the rank is not too small to maintain enough level of
security, thus ¢ should also be small since ¢* < D.

Based on the above considerations and the security reason given in next
section, we propose the following practical parameters

(q7 T? t? D) = (47 97 407 80)'

Then the message length is 2m = r(r+1) = 90 bits, signature length is 2(n+t) =
2(r? +t) = 242 bits, public key size is 56.3 KB, private key size is 8.7 KB. We
claim that the best attack to this new scheme is the High Rank Attack and the
security level is 280, Detailed cryptanalysis is given in next section.

4 Security Analysis

In multivariate public key cryptography, it is generally difficult to prove the
security of a scheme as there yet has been no provable security model in this
subject. We will have to check the security of a scheme against all known attacks
in this subject. In the future, if there were a provable security model, it would
then be possible to formally prove the security of a scheme. In this section,
we shall analyze the security of the new variant of YTS’ scheme, YTS-HFEv,
against attacks in multivariate public key cryptography. We shall omit those
attacks obviously not applicable here, and take into account those attacks to
YTS’ scheme, High Rank Attack and attacks to HFEv.

Recall that the pair of the central map of YTS-HFEv are the following sums

Gi(Xl,Xg) = Fi(Xl) + Sz . H(TZ . Xl,Xg) : IFZ+TL — F;n

The purpose of adding H is to hide the structure of the F; in YTS’ scheme and
it is unnecessary to have ¢t > m. Notice that if x» is always chosen to be 0 in the
process of generating signatures, then a large collection of signatures would help
identify the secret subspace of (x1,0). However, this would not happen in the
design of signature generation, because after x; is calculated, a nonzero solution
to H(T; - x1,Xs) = 0 exists with high probability and is preferred. So leakage of
the subspace of (x1,0) can be prevented.

4.1 Attacks to YTS’ Scheme

First of all we consider those attacks threatening YT'S’ scheme and its analog over
even finite fields, including MinRank attack and attacks in [Has14,ZT15a,ZT15b]
and the one in Sect. 2 of this paper.

In YTS’ scheme and its analog over even finite fields, the quadratic polyno-
mial of each component of the central map corresponds to a matrix of rank r.
This rank is preserved under linear combination. So MinRank attack is applicable
to recover L based on this rank property, and the complexity is O(q") [YTS13].
However, in YTS-HFEv, the adding of S; H increases this rank to be no less than
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r+t. So as long as t is big enough, the new scheme can then resist the MinRank
attack. For example, to have security level of 289, we should have ¢"* > 280,

The attacks in [Has14,ZT15a,ZT15b] and the one in Sect. 2 of this paper all
use the special structure of the central map and the public map. Namely the
central map and the public map have too simple and too structured expressions.
For example, as pointed out in [ZT15a], each component of YTS’ public map
can be expressed as

Ly,
A, =RT R,
Ly

and each component of the public map of our analog has an expression either
(2.1) or (2.2). These expressions have very canonical structures making the pri-
vate keys recoverable using specific methods. However, after being mixed with
HFEv, this kind of special structure is totally destroyed so that these attacks
are no longer applicable here.

4.2 High Rank Attack

High Rank Attack is to find linear combinations of the central map such that
they have the most number of variables. This is equivalent to find the variables
appearing the fewest times s in the central map. So high rank attack can recover
L with complexity O(¢®) and is powerful to break triangular schemes [CSV97,
GC00,YCO05]. For the new scheme here, this complexity is O(g'). If ¢ is not
big enough, S; H may be removed and then attacks [Has14,ZT15a] can remain
applicable. So it is necessary to protect S;H from the High Rank Attack. To
have security level 289, we should choose ¢ such that ¢t > 280,

4.3 Attacks to HFEv

This part is similar to the corresponding part of [ZT15¢c] as we apply the same
idea of [ZT15c], i.e., using HFEv to mix with the central map. Notice that the
new scheme YTS-HFEv is indeed of the type of HFEv, hence it is necessary to
discuss those attacks to HFEv. This becomes clear if we lift the central map

Gi(x1,%x2) = Fy(x1) + Si - H(T; - x1,%2)
to the extension field K,
UV, X) =Y alvetd £ N e

+ 303 avrxT Y b VIXT 4+ Y X

0<i<t1<¢7<D 1<qi+¢7 <D 1<¢i<D

which obviously have the form of HFEv polynomials. The x; of G;(x1,x2) cor-
responds to the vinegar variable V' and x» corresponds to variable X; F; corre-
sponds to the sum of the monomials V¢ ¢ V%' and T;H corresponds to the
sum of the rest monomials.
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The major attacks applicable to the HFE family are Kipnis-Shamir’s attack
[KS99] and direct algebraic attack [FJ03]. Kipnis-Shamir’s attack relies on the
MinRank problem and is improved by Ding and Schmidt [DS05] to attack HFEv
as well. In their cryptanalysis, if v is very small, such as v = 1, then HFEv can be
broken, but the complexity increases fast as v increases. Especially there would
be no way to identify HFEv from a random system when the number of vinegar
variables v and the extension degree of the field K over F, are close.

For direct algebraic attack to HFEv and HFEv-, a solid theoretical estima-
tion on the complexity is given by Ding and Yang in [DY13] by calculating the
degree of regularity. They conclude that direct attack remains feasible for very
small v but infeasible for big v. As an example, the famous QUARTZ signature
scheme is an HFEv scheme with several components deleted. It has only 4 vine-
gar variables, its degree of regularity is bounded by 9 and its security level is
estimated as 2%2.

Notice that YTS-HFEv has n vinegar variables which is bigger than the
extension degree ¢. Since we have to choose t such as ¢* > 280 due to the high
rank attack, the public map would not be identifiable from a random system of
quadratic polynomials against Kipnis-Shamir’s MinRank attack. This choice of
the parameter t also assures that its degree of regularity is very high according
to [DY13], hence direct algebraic attack is also not applicable to this variant.

5 Conclusion

In this paper, we investigate the possibility of fixing the security problem of
Yasuda, Takagi and Sakurai’s interesting signature scheme. We first construct
its analogous scheme over finite fields of characteristic two, but then we find
that it is neither secure by developing an attack to it. To resolve this security
issue, we apply the idea of HFEv and use a special type of HFEv polynomials
to mix with Yasuda, Takagi and Sakurai’s scheme and our analogous scheme.
We then show that this new scheme, YTS-HFEv, can resist current attacks, and
propose a parameter set with public key size 57 KB and security level 28°. Future
implementation is needed to verify the security claim made here.
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Abstract. D. Davies and S. Murphy found that there are at most 660
different probability distributions on the output from any three adjacent
S-boxes after 16 rounds of DES [5]. In this paper it is shown that there are
only 72 different distributions for S-boxes 4, 5 and 6. The distributions from
S-box triplets are linearly dependent and the dependencies are described.
E.g. there are only 13 linearly independent distributions for S-boxes 4, 5
and 6. A coset representation of DES S-boxes which reveals their hidden
linearity is studied. That may be used in algebraic attacks. S-box 4 can be
represented by significantly fewer cosets than the other S-boxes and there-
fore has more linearity. Open cryptanalytic problems are stated.

Keywords: S-box + Output distributions + Linear dependencies - Coset
representation

1 Introduction

The Data Encryption Standard (DES) is a symmetric block cipher from 1977. It
has block size of 64 bits and a 56-bit key. DES in its original form is deprecated
due to the short key. Triple DES [1] however, is still used in many applications
(e.g. in chip-based payment cards). It is therefore still important to analyze its
security. DES is probably the most analyzed cipher, and is broken by linear [8]
and differential [3] cryptanalysis. Even so, the most effective method in practice
is still exhaustive search for the key. There are also some algebraic attacks that
can break 6-round DES [4].

Donald Davies and Sean Murphy described in [5] some statistical properties of
the S-boxes in DES. They found that there are at most 660 different distributions
on the output from any three adjacent S-boxes after 16 rounds. These distrib-
utions divide the key space into classes where equivalent keys make the output
follow the same distributions. The correct class is found by identifying which
distribution a set of plaintext/ciphertext pairs follow. They used this to give a
known-plaintext attack. The time complexity of the attack is about the same as
brute-force attack and requires approximately 2°6-¢ plaintext/ciphertext pairs.
The attack was improved by Biham and Biryukov [2] where the key can be found
with 259 plaintext /ciphertext pairs with 2°0 operations. Later, Kunz-Jacques and
Muller [7] further improved the attack to a chosen-plaintext attack with time
complexity 245 using 24° chosen plaintexts.
© Springer International Publishing Switzerland 2016
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In this paper we study new statistical and algebraic properties of DES. In
Sect. 2 we show Davies and Murphy’s results, using different notations than
theirs. We also show a new exceptional property of Sy, and use this to show that
there are fewer different distributions on the output from 54555 compared to
other triplets. The new properties are related to the forth S-box in DES, and
is used to show that the number of different distributions on the output from
S-box 4, 5 and 6 is at most 72 (after 16 rounds). This divides the key space into
fewer, but larger, classes compared to Davies and Murphy’s results.

The distributions from S-box triplets are linearly dependent. We give a
description of the relations between the distributions, and upper bound the num-
ber of linearly independent distributions for each triplet. E.g. among the 72 dif-
ferent distributions for S-box 4, 5 and 6 there are only 13 linearly independent.

A coset representation of the DES S-boxes is suggested in Sect. 4. It is found
that S-box 4 is abnormal again. It can be covered by 10 sub-cosets while the other
S-boxes require at least 16. Also, the coset representation of S-box 4 contains
6 sub-cosets of size 8, while the other S-boxes contain at most one sub-coset
of such size. The coset representation of S-boxes makes it possible to write the
system of equations for DES in a more compact form than in [9,10].

Like the linear approximations discovered by Shamir [12] was later used by
Matsui [8] to successfully break DES, these new properties might improve some
attacks in the future. Two open problems are stated at the end of the paper. If
solved that would improve statistical and algebraic attacks on DES.

1.1 Notations

Let X;_1,X; denote the input to the i-th round and X;, X;;1 denote the i-
th round output. So X, X; and X7, X16 are plaintext and ciphertext blocks
respectively, where the initial and final permutations are ignored. Let K; be the
48-bit round key at round ¢. Then

Xi1® X =Y, Y, =PS(X; 8 K)), (1)

where X; is a 48-bit expansion of X;, P denotes a permutation on 32 symbols,
and S is a transform implemented by 8 S-boxes. Let S; be a DES S-box, so

S;(us, ua, uz, 2, u1, ug) = (vs, V2,01, Vo), (2)

where u; and v; are input and output bits respectively.

2 Results from Davies and Murphy

By (1), the XOR of the plaintext/ciphertext blocks are representable as follows
X700 X1 =Y20Y,®... Y14 D Yis, (3)
Xis®Xo=Y10Y35... Y13 D Yis5. (4)

In this section we study the joint distribution of bits in X7 & X; and in
X16 ® Xy which come from the output of 3 adjacent S-boxes in DES round
function, and therefore in Y;. These results are from [5], but presented using a
different notation.
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2.1 Definitions and a Basic Lemma

The output of 3 adjacent S-boxes is called (S;_1,.5;, Si+1)-output when i is
specified. When analysing (3) and (4) we assume the round function inputs
X9, X4,...,X16 and Xi, X3,..., X5 are uniformly random and independent
respectively. Input to .5; is accordingly assumed to be uniformly random. These
common assumptions were already in [5].

When we look at a reduced number of rounds in DES (k rounds), then
Xp+1©X1 and X @ X follows the distribution for the XOR of k/2 round-outputs
(for even k). We will throughout this paper use 2n to denote the number of
rounds. n is the number of outputs that are XORed, and full DES is represented
by n =8.

We define three distributions that are related to each S;. We use notation (2).

1. The distribution of (u1,ug,vs, ve,v1,v) is called right hand side distrib-
ution and we denote p.,(j),, =Pr((u1,up) =y and (vs,ve,v1,v0) =7T).

2. The distribution of (us,u4,vs, ve,v1,v) is called left hand side distribu-
tion and we denote qg(f)r = Pr((us,us) = and (v3,va,v1,v9) = 7).

3. The distribution of (us,u4,u1,ug, vs,v2,v1,v9) is called LR distribution

and we denote

Q:(xl;)y r = Pr((u57u4) =, and (U‘l?uo) =Y, and (U37U27U1700) = T)'

Obviously, py "= Qx y,r and qx ) = =2, Q%y r, the sums are over 2-bit z,y
respectively.

Lemma 1. For any 2-bit x,y and any 4-bit v holds

pZ(JE?BQT +p(l) =

32
1
Q z,y,r Q’I‘ yd2,r Qr@l YT Qr@l ye2,r 674 (7)

Proof. The equalities (5) and (6) were found directly from the values of py(f,)r, qg(f%n,

for instance, see those distributions listed for Sy in Appendix A. Alternatively,
by DES S-box definition, for any fixed (us,ug) the distribution of (vs, va, v1, vg)
is uniform. So (ug, vs, va,v1,v9) and (us,vs,ve,v1,v0) are uniformly distributed
and that implies (5) and (6) as Kholosha [6] later observed. The former implies
(7) as well.

2.2  Output-Distributions on S-box Triplets

We study the distribution of the output from three adjacent S-boxes in DES
round function. Let (as,...,aq), (bs,...,bo) and (cs,...,co) be the input to
three adjacent S-boxes in one DES round. Then

(al, ao) D (()57 b4) =k and (bl, bo) D (057 04) = k?l,
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where k and &/, the common key bits, are both 2-bit linear combinations of
round-key-bits. By k; = (kj1,kjo) and kj = (kj;,kjy) we denote the common
key bits in round j.

Let (r,s,t) be a 12-bit output from S;_1,.5;, Si+1 in one DES round. Then

Pr(r,s,t | k, k) 4% sz@erfj)y’s ?Sgkl,) ) (8)

T,y

The distribution of (r, s,t) after 2n rounds is the n-fold convolution of (8):
Pr(r,s,t | ki ki, .. ko k) =Y  [[Prlrsiti | ki k),

where the sum is over (r;,s;,t;) such that @,(r;, s;,t;) = (r,s,t). By changing
the order of summation and using (8) we get

Pr(r,s,t | ki1, ’,.. yKny k)
(i+1)

__ odn (%)
=27 X Z pzl@kl, n@knr X Qut iy wmynrs X okt gkt (D)

where the sum is over 2-bit x1,¥1,..., Ty, Yn, and

(@) ceex pld
Pay,.wn,r Py < x

D, rj=r
(i) (%) (i)
yy,s.csyn,t = Z Qyrtr X0 Xy, b,
P, t;=t
_ § ' (4) ... (2)
QM»ZJM Tn,Yn,S Ql‘hyhsl X X meymsn'
@j s5;=s

Lemma 1 implies the following corollary.

Corollary 1. For any 2-bit ©1,y1,-..,Tn, Yn and 4-bit r,t
p(i) _ p(i) B
T1DBk1 ;. Ty Dhin,T T1®k10, - Tn—1®k(n_1)0, Tn D2k, 1’
q(i) q(i) -
1Ok, yn@kyt T Y1O2K] 1 Yn—1@2k], ), Yn @K', 1

where k and k' are the parity of (ki1,...,kn1) and (kg ..., k).

Each value for the vector (ki, k1, ..., kn, k) can be mapped to a distribution
on (r,s,t). Many of these distributions are equal to each other. Corollary1 is
now used to give an upper bound on the number of different distributions.

First, one can permute any (k;, k) and (k;, k;) and get the same distribution.
Also the distribution is defined by the parity of (k11,...,kn1) and (kig, ..., kL)
There are 4 values for the two parity-bits, and there are (3+") combinations
for the remaining 2n bits (k1q, ..., ko) and (kiq,..., k). Therefore there are
at most 4 x (3:") different distributions on the output from three adjacent S-
boxes. Table 1 lists the maximum number of different distributions after multiple

rounds. Again, 16-round DES is specified by n = 8.
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Table 1. Upper bound on number of different distributions for 2n rounds

n 112134 |5 |6 |7 |8
Upper bound | 16 | 40 | 80 | 140 | 224 | 336 | 480 | 660

3 New Statistical Property of Sy

In this section we find an exceptional property of S;. In particular, we prove
Lemma 2, and use it to show that there are fewer different output-distributions

on S4S5SG~
Lemma 2. For any 2-bit x,y,a and 4-bit r holds

(4) (4) (4) , (4)
preaa h Py@a,her = Z Dy b Py har-
h h

Proof. By Lemmal, p,ie)ﬂ n T p;421 = 3% for any 2-bit x and 4-bit h. It is easy

to see the lemma is true for a = 2. All other cases are reduced to a = 1 and
z=19y=0. Let
0, ifh¢{0,6,9,15};
f(hy=<1, if he{0,9}
—1,if h € {6,15}.

From S right hand side distribution values, see Table 5 in Appendix A, we find

@ @ _ L =D f0h)
pm@l h+pm7h_§+ 64 (10)
and then
Zf f(haer)=4f(r), (11)
4) _ (=)™ 25()
- 12
Zp (her) YR (12)
for any 2-bit x = (21, x0) and any 4-bit r. Hence
4 1 f(h) 4 1 fher) 4
Zpﬁiplh@r=2(32+64—pé,i e BB ) -
f(h 4) 4 @
Z 642 22795, Z Dy, h po h@r p((),})L p((),i)z@r'

The lemma is proved.

This surprising property holds because (10), (11) and (12) are true simulta-
neously for the right hand side distribution p (4 ;1
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Corollary 2. For any 2-bit x1,...,x, and 4-bit r holds

(4) @ )
pm@kl, T Dky,T pzl,..,,mn_l,zn@k,r’

wherek=ki & - B k,.
Proof. By Lemma?2,

Z pl’1€Bk17h1 p$2€9k27h2 Z pz1,h1 mg@(kléBkz)
h1®ho=r h1®hs=r
for any x1, x2, k1, ko and r. Therefore the corollary is true for n = 2. The general
case follows recursively.

3.1 The Number of Different Output-Distributions

Davies and Murphy found that there are at most 4 x (3+") different distributions
of the output from 3 adjacent S-boxes after 2n rounds. In this section we show
(Sy, S5, Sg)-output has at most (8n + 8) different distributions.

Lemma 3. Let (r,s,t) be (S4,S5,S6)-output after 2n rounds. There are at most
8n + 8 different distributions (r,s,t) can follow.

Proof. By Corollaries1 and 2 the distribution of (r,s,t) only depends on
D1 k), EB] 1 kjo and common key bits (kiq, ..., ky;), where the order of the
last m bits is irrelevant. There are n + 1 combinations for (kiq,...,k},;) and
8 possible values for the three parity bits. The maximum number of different

distributions is therefore at most 8n + 8 as the lemma states.

We computed the actual number of different distributions for all 8 triplets.
Table 2 lists the results for n = 1,..., 8 together with the bound from Lemma 3
and Davies-Murphy’s bound. Remark that 16-round DES is specified by n = 8.

It is not clear whether or not fewer different distribution can improve Davies-
Murphy’s attack. Intuitively, distinguishing between few distributions could be
easier than distinguishing between many distributions (if the biases are approxi-
mately the same). At the same time, the number of keys in the class representing
a given distribution is larger, so more work is required to identify the correct key
in the class. Also, the triplet attack described by Davies and Murphy does not
perform better than the attack based on the two S-box pairs in the triplet [5].
We do not know if it is possible to alter Davies-Murphy’s attack so that fewer
distribution would give an advantage.

Table 2. Number of different distributions for output of 3 adjacent S-boxes

n 121314 |5 |6 |7 |8

D-M’s bound for all triplets 16 1 40| 80 | 140 | 224 | 336 | 480 | 660
New upper bound for (S4, Ss5,56) | 16|24 32| 40| 48| 56| 64| 72
Actual value for (S4, Ss, Se) 16|24 32| 40| 48| 56| 64| 72
Actual value for other triplets 16|40 | 80| 140 | 224 | 336 | 480 660
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3.2 Linear Dependencies Between the Distributions

In this section we describe linear relations between distributions on the output
from three adjacent S-boxes. We will see how (S4, S5, Sg) compares to the other
triplets. A distribution can be represented by a row-vector (vg, ..., vs12_1), where
v; is the probability of the output j = (r, s, t).

Let M be a matrix whose rows are (S;_1, S, Si+1)-output distributions. M
is then called a distribution matrix. A non-zero vector r such that rM = 0 is
called a linear relation for M. Let R be a matrix whose rows are linear relations
for M, then R is called a relation matrix for M. Then

rank(M) < k — rank(R), (13)

where k is the number of rows in M. There are five independent linear relations
inside the right, LR and left distribution that can be used to find linear relation
between the rows of M. By Lemma 1,

ZCI X prBa r = a’nd Z 02 X quBa r = 7 (14)

where C! = (1,-1,1,—1) and C? = (1,1,—1,—1). Also by Lemma 1, for any
2-bit z,y and 4-bit r

1
Z Qz@a,y r Qz@a,yeaQ r = 32’ (15)
_ 2 16
ZQﬂy@bT x@ly@br_ﬁ’ ( )
1
Q z,y,r Q( z,yd2,r + Qz@l YT + Qx@l y®2,r 674 (17)

One now subtracts (15) and (15) after changing y «— y @ 1, (16) and (16) after
changing x « x @ 2, then (17) and (17) after changing y «— y & 1. So

Z Ci i X Qzokyor r =0, (18)

kK’
for any x, y and r, where C' is any of

CS = (15 715 1a 71a 17 717 17 717 15 715 15 715 15 715 15 71)7
ct =, 1,1, 1,1, 1,1, 1, -1, -1, =1, =1, —1, -1, -1, —1),
ch = (1, -1, 1, -1,1, -1, o0, 0 0O, O 0, 0, 0, O0).

—_

sy Ty by T

For instance, C® comes from

E :QmEBa y,r m@a,y@Q r E Qw@a yPbl,r + Qz@a yPb3,r = 0

Both (14) and (18) are used to build linear relations between the distributions
of (r,s,t), the output from three adjacent S-boxes after one round.
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Lemma 4.

Forany k' ZC,% X Pr(r,s,t | k,k') =0, (19)
foranyk ZC’,%, x Pr(r,s,t | k, k') =0, (20)
forC e {C3 C* C%} > Crpr x Pr(r,s,t | k, k) =0, (21)

kK’

Proof. We will prove (19):
i—1 i+1
>t Prtnat |0 =2 St x (et 0
1 1
! x Z Z Cy, % ( S@k)v QY Y8 qg(/gk’) )

T,y k
(i+1)
>< Zngsqy@k’ <Z Ck Xpr@k r) =0.

Similarly (20) is proved. We will prove (21).

ZC’k p X Pr(r,s,t | k, k') =2* x ch k' X (ZP zealc Yok s qél,Jrl))

k, k' kK’
-1 (i+1)
4 x Z ch,k’ X (pa: oY Qzeak YOk s Ayt )
zy kK
(i+1) o (%)
X Zp qy t Z Ck,k’Qr@k,y@k/,s
kK’

=0.

Lemma 4 implies there are 11 linear dependencies between rows of the distri-
bution matrix after one round. The rank of the relation matrix is 10. We have
also computed the rank of the distribution matrix which is 6. Since there are 16
distributions in total, we have found all 10 independent linear relations between
the distributions. Lemma4 is now used to build linear relations between the
distributions after 2n rounds.

Lemma 5. For any (k1,...,ks), (k,...,k.), and i

Y

ZC,; X Pr(r,s,t | ki, K, ... kp,kl) =0, (22)
Zok, X Pr(r,s,t | ki, K, ... ko, k) =0, (23)
Z C’k“k/ X Pr(r,s,t | ki, k), ... kn, k) =0, (24)

ki k!
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where C € {C3,C*, C°}.

Proof. Tt is enough to prove (22) for ¢ = 1.

ch X Pr(r,s,t | ky, k... kn, k)

_ZC’kle HPrrj,sj,” ) K))
_Z H Pr(rj,sj, t; | kj, K/ ) ch x Pr(ry,s1,t1 | k1, k7)) =0,
k1

/
where } is over all (ry,s;,t;) such that @ ,(r;,s;,t;) = (r,s,t). The proofs of
(23) and (24) are similar.

Generating all relations from (22), (23) and (24) for all values of (ki,...,ky),
(ki,...,k.,), and ¢ will make a relation matrix too large to calculate the rank
when n > 4. We will instead consider a distribution matrix M, where each
distribution occurs only once. We then generate a relation matrix for M. This
way, by using (13), we find an upper bound on the rank of M for all triplets and
n < 8, see row 2 and 3 in Table 3. Triplet S455Sg have an upper bound on the
rank which is lower than the other triplets. Full DES is specified by n = 8. We
also computed the actual rank of M for each triplet, see row 4-11.

Each distribution is determined by a class of DES keys. Table 3 data suggests
a strong statistical dependence between ciphertexts generated with representa-
tives of such classes. An open problem is stated in the end of this paper, which
if solved, could make use of these statistical dependencies to improve the prob-
ability of success on Davies-Murphy’s attack.

Table 3. Rank of the distribution matrix for each triplet

n 1/2 4, 56| 7|8
Upper bound for 545556 67 10 |11 |12 |13
Upper bound for other triplets |6 |9 |13 |18 |24 |31 |39 |48
515253 69|13 |18 |24 |30 |36 |42
525354 69|13 |18 |24 |31 |39 |48
535485 69|13 |18 (24 |29 |34 |39
545556 6/7 8| 9|10 |11 12 13
S5S56S7 69|13 |18 |24 |31 |39 |48
S6.57.5s 69|13 |18 |24 |31 |39 |48
S7S5851 6/9(13 |18 |24 |31 |39 |48
585152 69|13 |18 |24 |31 |39 |48
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4 S-box Coset Representation and DES Equations

For each S; by (2) a set T; of 10-bit strings
(us, ua, uz, uz, u, uo, v3, va, v1, Vo) (25)

is defined. They are vectors in a vector space of dimension 10 over field with
two elements Fy denoted Fj°. Let V be any subspace of F3°. For any vector
a the set a @ V is called a coset in F}0. Let dimV = s, then there are 210~*
cosets associated with V. Also we say a @ V has dimension s as well. Any coset
of dimension s is a set of the solutions for a linear equation system

a®V ={z|zA = b},

where A is a matrix of size 10 x (10 — s), and rank A = 10 — s, and b is a row
vector of length 10 — s.

Any set T C F3#% may be partitioned into a union of its sub-cosets. We
try to partition into sub-cosets of largest possible dimension, in other words of
largest size. Denote the set of such cosets by U, it is constructed by the following
algorithm. One first constructs a list of all sub-cosets in 7" maximal by inclusion.
Let C be a maximal in dimension coset from the list, then C' is added to U and
the Algorithm recursively applies to T\C. Let

U={C,...,C.}.

Therefore « € T if and only if z is a solution to the system x Ay = by associated
with C, € U.

The algorithm was applied to the vector sets T; defined by DES S-boxes .S;.
Let the sets of cosets U; be produced. The results are summarised in Table4,
where 2% 4% 8¢ means U; contains a cosets of size 2, b cosets of size 4 and ¢ cosets
of size 8. The distribution is uneven. For instance, S; admits exceptionally many
cosets of size 8. Disjoint sub-cosets which cover T; for each i = 1, ..., 8 are listed
in Appendix B, where strings (25) have integer number representation

u529 + U428 + u327 + uz26 + u125 + u024 + v323 + 0222 + v12 + vg.

4.1 More Compact DES Equations

Given one plaintext/ciphertext pair one constructs a system of equations in the
key bits by introducing new variables after each S-box application, 128 equations
for 16-round DES. By specifying 5,

Table 4. Coset distribution for S-boxes

i 1 2 3 4 5 |6 7 8
coset dist. | 206413 2441|2641 814486 | 41696413 | 96411 8|24 4128
# of cosets | 19 18 18 10 16 |19 18 17
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P_l(Xjfu @Xj,gi) 1 S8:(0) ... S;(63) |’

with 64 right hand sides, 10-bit vectors T; written column-wise. Here X ji and Kj;
are 6-bit sub-blocks of X; and K; respectively. To find the key such equations
are solved. That may be done with methods introduced in [10], see also [9]. The
complexity heavily depends on the number of right hand sides.

We get a more compact representation, that is with lower number of sides.
We use the previous section notation. Let U; contain r cosets. So x € T; if and
only if x is a solution to exactly one of the linear equation systems

.CEAk:bk, kil,...,’/‘.

We cover the set of right hand side columns in (26) with sub-cosets from U; and
get (26) is equivalent to

Xji ® Kji _ _
P_I(Xjfli@XJ;Qi) Ak—bk, k—l,...,’l" (27)
in sense that an assignment to the variables is a solution to (26) if and only if
it is a solution to one of (27). The number of subsystems(also called sides) in
(27), denoted by r, is between 10 and 19 depending on the S-box. For instance, in
case of Sy the Eq. (27) has only 10 subsystems, while (26) has 64. Such reduction
generally allows a faster solution, see [11].

5 Conclusion and Open Problems

In the present paper new statistical and algebraic properties of the DES encryp-
tion were found. They may have cryptanalytic implications upon resolving the
following theoretical questions.

The first problem is within the statistical cryptanalysis. Let the cipher key
space be split into n classes Ki,..., K,. Each class defines a multinomial dis-
tribution on some >2 outcomes, defined by plaintext and ciphertext bits. Let
Py, ..., P, be all such distributions computed a priori. Let v(k) denote a vec-
tor of observations on above outcomes for an unknown cipher key k. It is well
known that the problem “decide k € K;” may be solved with maximum like-
lihood method as in [5]. For the classification of several observation vectors
v(ki),...,v(ks) the same method is applied.

Open problem is to improve the method (reduce error probabilities) given the
vectors Py, ..., P, are linearly dependent. That would improve Davies-Murphy
type attacks against 16-round DES as for 660 different distributions (72 for
(S4,S5,56)) only <48 (13 for (S4, S5, Sg)) are linearly independent.

The second problem is related to algebraic attacks against ciphers. A new
type time-memory trade-off for AES and DES was observed in [9,10]. Let m
be the cipher key size. Let <2 right hand sides be allowed in the combinations
by Gluing of the MRHS equations [9,10] during solution. Gluing means writ-
ing several equations as one equation of the same type as (26). Then guessing
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<m — [ key-bits is enough before the system of equations is solved by finding
and removing contradictory right-hand sides in pairwise agreeing of the current
equations. The overall time complexity is at least 27! x 2! = 2™ operations as
for each guess one needs to run over the right hand sides of at least one of the
equations. However coset representation allows reducing the number of sides by
writing them as (27). In case of DES the Eq. (26) for ¢ = 4 is written with only
10 sides instead of 64. For AES instead of 256 right hand sides one can do 64
for each of the equations, see [11]. The combination of two Eq. (26) with Gluing
has <2'2 right hand sides. With coset representation the number of sides is at
most 192 (at most 100 for the combination of two equations from S;). Open
problem is to reduce the time complexity of the above trade-off by using coset
representation.

Acknowledgement. Stian Fauskanger is supported by the COINS Research School
of Computer and Information Security.

A Appendix

A.1 S; Right, Left and LR Distribution

Section 2.1 define the right, left and LR distribution. Tables 5, 6 and 7 show the
distributions for S-box 4.

Table 5. Right hand side distribution of S-box 4 (each entry = 2° x pgﬁ)

x\r|0[1/2[3/4/5/6|/7|/8/9/10/11|12/13|14|15
0 |1/1/0/1j1}1|0/2/2|2/1 |1 1 |0 |1 |1
1 |2f1{2|1{1/1/1/0/0f2f2 |1 |1 2 |1 |0
2 |j1/1/2/1/1/1}2/0/0/0|1 |1 |1 |2 |1 |1
3 |0/1j0/1j1|1|{1|2|2|1/1 |1 |1 |0 |1 |2

Table 6. Left hand side distribution of S-box 4 (each entry = 2° x qg(ﬁ)

x\r/0/1/2/3[4/5/6/7/8/9/10(11|12/13|14|15
0 |2/0/0/2/0f1|2|1|1|1/1 |1 O |2 |1 |1
1 |0|2/2{0/2/1/0/1/11|1 1 |2 |0 |1 |1
2 |2/1/0/1/0/0}2f1|1|1|2 |1 |1 |2 |0 |1
3 |0/1}(2/1/2]/2|0f1|1|{1/0 |1 1 |0 |2 |1
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Table 7. LR distribution of S-box 4 (each entry = 2% x Q;42,T)
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B Appendix

B.1 Disjoint Sub-cosets for DES S-boxes

U, = {{516,626}, {678,697}, {812,827}, {841,894}, {899, 922}, {944, 992},
{14, 36,326, 364}, {16,87, 175,232}, {63, 77, 572,590}, {97, 130, 545, 706 }
{116, 158,298, 448}, {178, 221,938,965}, {203, 241, 721, 747}

{259,282, 653,660}, {310, 379, 437, 504}, {348, 389, 783, 982}
{409, 425, 600, 616}, {467, 487, 851, 871}, {543, 759, 789, 1021} }

U, = {{365,490}, {855,870}, {892,912}, {949, 1007}, {15, 19, 33,61}
{72, 84,962,990}, {110, 119, 134, 159}, {171, 178, 416, 441}
{195,216, 676, 703}, {228, 254, 396, 406}, {265, 295, 475, 501}
{284,304, 583, 619}, {322, 337, 737, 754}, {378, 453, 822,905}
{512,602,931,1017}, {541, 558, 795, 808}, {568, 625, 773, 844},
{650, 659, 717, 724} }
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Us = {{341,497}, {605,624}, {648, 697}, {707, 759}, {876,974}, {978, 1020},
{10,29,110, 121}, {32,134, 301, 395}, {73, 80, 207, 214},
{163,229, 312, 382}, {180, 250, 662, 728}, {257, 359, 420, 450}
{274,412, 779,901}, {443,479, 525,617}, {529, 687, 788, 938}
{550, 570, 834, 862}, {801, 883,949, 999}
{55,147, 332, 488, 580, 736, 831,923} }

Uy = {{45,56,290, 311}, {395, 401, 452, 478}, {711, 733,968, 978},
{801,820,878,891}, {7, 29, 328, 338, 683, 689, 996, 1022}
{78,91,257,276, 749, 760, 930,951}, {99, 117, 428, 442, 652, 666, 835, 853}
{128, 150, 495, 505, 608, 630, 783, 793}
{166,191, 201, 208, 550, 575, 585, 592}
{234,243, 357, 380,522, 531,901,924} }

Us = {{2,30, 323,351}, {44, 59,230,241}, {68, 82, 203, 221}, {97, 124, 170, 183}
{135,148, 685, 702}, {264, 277, 577, 604}, {293, 304, 367, 378}
{397,462, 657, 722}, {403,416, 960, 1011}, {441,472, 948, 981}
{489,502, 516,539}, {546, 744, 844,902}, {568, 711, 869, 922}
{619, 650, 783,1006}, {631, 765,809, 931}, {790, 831,848,889} },

Us = {{467,504}, {591,693}, {735,762}, {795,836}, {887,897}, {918,971},
{12, 26,256, 278}, {33,63, 74, 84}, {111, 114, 232, 245}
{137,151, 162, 188}, {198, 301, 563, 984}, {217, 305, 642, 874},
{323,349, 398, 400}, {356, 423, 830, 1021}, {382, 443, 521, 716},
{453,491, 594, 636}, {532, 613,800, 849}, {558, 665, 775, 944},
{680, 739,941,998} }

Ur = {{402,481}, {534, 587}, {621, 632}, {848, 872}, {926, 946}, {979, 1020},
{29, 43,143,185}, {48, 66,426,472}, {91, 110, 329, 380},
{148,160, 730, 750}, {200, 237, 513, 548}, {209, 250, 969, 994},
{259,286, 652, 657}, {300, 341, 447, 454}, {307, 359, 675, 759},
{571,605, 793,895}, {778, 815,896,933}
{4,119, 389,502, 692, 711, 821, 838} }
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Us = {{446,498}, {519,684}, {806,911}, {949, 1019}, {13, 17, 100, 120},
{34,63,649, 660}, {72,134, 297,487}, {154, 179, 857, 830},
{175,203, 266, 366}, {215, 244, 530, 561}, {309, 323, 828, 842},
{342, 379,965, 1000}, {389, 400, 460, 473}, {555, 765, 768, 982},
{580,698, 877,915}, {609, 631, 718, 728},

{93,225, 284, 416, 606, 738, 799,931} }.
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Abstract. Statistical cryptanalysis is one of the most powerful tools to
analyze symmetric key cryptographic primitives such as block ciphers.
One of these attacks, the differential attack has been demonstrated to
break a wide range of block ciphers. Block cipher proposals previously
obtain a rough estimate of their security margin against differential
attacks by counting the number of active S-Box along a differential path.
However this method does not take into account the complex cluster-
ing effect of multiple differential paths. Analysis under full differential
distributions have been studied for some extremely lightweight block
ciphers such as KATAN and SIMON, but is still unknown for ciphers
with relatively large block sizes. In this paper, we provide a framework
to accurately estimate the full differential distribution of General Feis-
tel Structure (GFS) block ciphers with relatively large block sizes. This
framework acts as a convenient tool for block cipher designers to deter-
mine the security margin of their ciphers against differential attacks. We
describe our theoretical model and demonstrate its correctness by per-
forming experimental verification on a toy GFS cipher. We then apply
our framework to two concrete GFS ciphers, LBlock and TWINE to
derive their full differential distribution by using super computer. Based
on the results, we are able to attack 25 rounds of TWINE-128 using a
distinguishing attack, which is comparable to the best attack to date.
Besides that, we are able to depict a correlation between the hamming
weight of an input differential characteristic and the complexity of the
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attack. Based on the proposed framework, LBlock and TWINE have
shown to have 178 and 208-bit security respectively.

Keywords: Differential attack + GFS - Differential distribution -
LBlock - TWINE

1 Introduction

Block ciphers have been playing an important role in information security to
achieve confidentiality and integrity. Recently, block ciphers with lightweight
designs start attracting research attention due to their wide range of potential
applications such as RFID, wireless sensor networks and etcetera. These light-
weight block ciphers usually have small block sizes which are less or equal to 64
bits and a smaller key size, filling in the gap where the traditional ciphers such as
AES are not applicable anymore. The General Feistel Structure (GFS) is among
one of the most popular designs that have received a lot of analysis. Recently
proposed lightweight ciphers such as LBlock [22] and TWINE [21] belong to this
design category.

Among all the methods to analyze block ciphers, differential attacks are one
of the most powerful methods since its invention back in 1990 [5]. The attack is
statistical in nature and its success relies on finding long differential paths with
high probability. For a long time, one single ad hoc-found path is usually used
in the differential cryptanalysis. Thus the study of the differential path has not
received much attention until recently. First in papers [8,9], multiple differen-
tial cryptanalysis was theoretically analyzed to show that the attacker generally
has more power in building the differential distinguisher if he or she has more
knowledge in the differential distribution. Later in paper [1], the author ana-
lyzed an extremely lightweight block cipher, KATAN32 by computing the whole
differential distribution, and indeed it further increased the number of rounds
that can be attacked compared to the previous results. The downside of using
the whole differential distribution is that the attacker is unable to filter sub-
key bits, which may cause the complexity to increase. Thus there exists another
branch of research focusing more on the key recovery phase and key relation such
as related key attacks. Representative results include [6,19] which will not be
addressed further in this paper since our focus is only the single key model. The
full differential distribution can be computed if the block size is less than 32 bits,
as shown in [1]. However, for ciphers with large block sizes, it is currently com-
putationally infeasible to construct the full distribution. Thus to a large extent,
the method to derive an accurate full distribution remains unexploited.

From the provable security’s point of view, it is desirable to derive a security
bound on the number of rounds that is secure against differential attack. Cur-
rently for block ciphers with S-Box-based design, counting the number of active
S-Box [18], which is the number of S-Box on the differential path, is the com-
mon way to evaluate the security. In the proposal of both LBlock and TWINE,
the number of active S-Box multiplied by the largest differential probability of
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the S-Box is used to evaluate security margin. For more complicated designs
which involves MixColumn operation as in AES, paper [17] provided a tight
lower bound for the minimum number of active S-box for several GFS ciphers.
Although counting the number of active S-Box may be a good approximation for
one single path, the actual differential distribution involves complicated cluster-
ing effects which cannot be addressed by this model. Thus the security margin
evaluated in this way may not be accurate, or in other words, the lower bound
may be underestimated.

In this paper, we contribute mainly in two aspects. Firstly, we address the
full differential distribution for GFS ciphers with relatively large block sizes by
providing both theoretical and experimental frameworks. We partition the block
according to the length of the S-Box input, which is the size of data blocks
processed by these ciphers. Then we theoretically model the computation of the
full differential distribution for any number of rounds and verify our evaluation
by using a toy GFS cipher to show that the truncated differential distribution
can be used to accurately evaluate the concrete differential distribution. Fur-
thermore, due to the truncated differentials, the ability to store all the internal
states allow us to perform quick computing of the distribution even for large
rounds. By taking advantage of the supercomputer, we can perform the exper-
iment to obtain full differential distributions for every input difference. As a
result, our experiments have provided us with several new findings regarding
the differential attack. Firstly, we discovered that input differences with rela-
tively small hamming weights tend to lead to better distinguishers. Based on
our framework, we evaluate two GFS ciphers LBlock and TWINE to derive the
best differential attack so far. Especially for TWINE-128, we are able to obtain
a comparable result by attacking 25 rounds. Also, we are able to provide the
precise security margins against differential attacks for the full rounds of both
LBlock and TWINE for the first time. This is by far the most accurate security
proof for GF'S designs to date.

Outline of the Paper. Section 2 provides the theoretical model to compute the
complete differential distribution for truncated GF'S with bijective S-box design.
Experiments on the toy model are also provided in this Section to verify the
correctness of the model. In Sect. 3, concrete evaluations on LBlock and TWINE
are provided. Lastly, we conclude our paper with some final statements.

2 Differential Characteristic Revisited

Since the proposal of differential attack in [5], methods to find long differential
paths with high probability becomes the key to the success of the attack. Matsui
in [13] first proposed a branch and bound algorithm to efficiently search the high
probability linear and differential path for cipher DES. The algorithm applies
the greedy strategy to find the best single path with the highest probability.
Since then, researchers began to follow this strategy when searching for good
property paths. As an extension of the differential attack, the multi-differential
attack tries to take advantage of multiple differential paths to further increase
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the attacker’s advantage when distinguishing from random distribution. Works
[8] and [9] are two of the representative ones. For block ciphers with S-Box based
design, researchers count the number of active S-Box as a criteria to measure
the security margin against differential attack. It is well known [11] that there
usually exists more than one path that can lead from the same input « to the
output 3, so that the probability of the corresponding path is actually bigger.
Unfortunately, researchers usually do not consider this differential cluster or
linear hull effect when searching good paths. [7] recently took advantage of the
differential cluster to further improve the rounds of the differential paths.

Let’s assume a block cipher E is a markov cipher with n-bit block size and
r¢ rounds in total. Previously, researchers try to identify one single » < r¢ round
path ag — G, with high probability Prob(ag — 5,) > 27", so that the attacker
does not use up the entire message space. Usually, r is far from the full rounds 7
if the cipher is well designed. If we continue the search for more rounds, we will
end up with a single path with a tiny probability much smaller than 27". On the
other hand, if we assume all the differential paths are randomly distributed, for
a full ry-round cipher, the probability of any differential path Prob(ag — ;)
should be around 27". Obviously, there is a gap between the two results. From
the differential cluster or linear hull effect, we make the following assumption.

Lemma 1. For an r-round ideal Markov block cipher E, a single r-round dif-
ferential path is defined as (o = Br)singte = (a0,717i1,727i2,...,%_17“71, Gr),
where I <4y < I[*** 1 <t <r—1. Here I and I]*** denote the smallest
and largest differential values in round t respectively. Let’s define its probability
to be Prob((cy — Br)single) = Diis,....in_.- Lhen the total probability of differ-

ential path cg — B, can be computed by

[maz Imalw
1 r—
J— ~ -n
Prob(ag — B,) = E E Pinin,.oyip 1 R 2
i=Ipin iy =Imip

which is approximately equal to 27". And we call

max maxr
I I

r—1
S D DECLD D
G=Imin . _p=]min

the corresponding cluster size C'S(q, 3,)-

For large number of rounds r, we may assume p;, i, .. i._, to be tiny and
have the relation p;, i,,..4,_, X CS(_O}O’&). As a result, the complexity to find
the real probability of some specific path is related to the corresponding cluster
size CS(qg,3,)- As the number of rounds grow, cluster size becomes bigger which
makes it more difficult to compute the real probability. Also notice that for real
cipher, the probability varies for different paths and the cluster size is related to
the input differential property. This relation will be discussed later in this paper.
Next, we will discuss first how to theoretically evaluate the cluster size and the
probability, and then efficiently compute the full clusters for GFS ciphers based
on bijective S-Box design.
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2.1 Theoretical Model to Evaluate the Cluster Size and Probability

General Feistel Structure (GFS) is one of the most popular and widely stud-
ied design strategies for constructing block ciphers. Recently in paper [20], the
authors studied different permutations and derived the optimized ones for dif-
ferent parameter settings. Recently proposed lightweight block ciphers LBlock
[22] and TWINE [21] belong to the GFS design.

In GFS, the plaintext is divided into d subblocks P = (z§, 9, ...,2%_,), where
|x3| = 2/4 bits in length. The output of the i-th round is derived as follows:

(0, 21, oy 1) = w(ag L FT g ) @y T () @2 y)

where 7 is the permutation, and function F : {0,1}"/¢ — {0,1}"™/? is the only
non-linear function in GFS. For S-box based design with large subblock size n/d,
usually MDS matrix is applied to provide further mixing within each subblock.
However, in recent lightweight designs such as [21,22], n/d is small in size (usu-
ally 4 bits), and F is equivalent to a single S-Box. Figure1 shows the GFS8
defined in [20] with two corresponding F' functions. For the simplicity, in this
paper we will stick to the lightweight version of GFS without the application
of MDS.

_...MDS version

......Lightweight version
k

allnd

Fig. 1. GFS8 [20]

Below are some definitions that will be used for the theoretical evaluation. From
now on, we use symbol a© and o to denote a concrete differential and a trun-
cated differential respectively.

Definition 1 (Structure, Branch Weight, Hamming Weight, Cancel

Weight). Let o = (a5, a$ ..., agfl) denote the concrete differential states

for each of the rounds 0 < i < N — 1. Function Trunc maps the concrete dif-

ferential state to the truncated differential state: oT* = (aOT’i,cvlT’i, ...,ag’_il) —

Ci Ci Cyi Ti _ 4 ¢ Cy Ti _ g Cri _
Trunc(ag™, a7, . ap”), where o " = 1if " #0, and o " = 0 if ;" = 0.

We call

(@T0 Tt ot
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a r-round truncated structure, or structure in short. We define the number of
active S-Bozx of round i

Bi=Bi(aT) = ol +al" 4+ + ol

to be the Branch Weight of the corresponding round. We define the Hamming
Weight of the i-th round differential state to be

U
_

Hi = Hi(aT’i) = a?’i

<.
I
o

Finally, we define the Canceling Weight G; and Non-Canceling Weight
W; for round i to be

T 141 il
Gi=al " nal" A-al +- —&—ode/\ozdl/\ﬁd1
. T 1i+1 —li+1
W; = 040 /\041 /\a1 +- +ad2/\ad1/\ dl
T 141 T*l,i+1 T 141 1 Tz+1 T,i+1 T7,+1
where (o ) O wag ) e (o TT a’y )
. . . T,i T,i .
G; counts the number of instances in round ¢ where o = ozjjfl = 1 while
QL T,
Qg 1 =0, and W; counts the number of instances in round i where a; P =
T, 1
ag+Z1 = aj+1 = 1. Now we are ready to have the following theorem:

Lemma 2. Let a?’ — 0‘0 be a r-round concrete differential path with I € €,
and O € A,. Q; and A, denotes the concrete differential set following the i-th

input and o-th output truncated difference. Assume we have in total m structures
T,r

which have the same truncated input and output O‘QI ay,, while differing in the
middle, we call m the truncated cluster size of truncated path (o o agg)

The jth structure can be presented as follows (0 < j <m —1):

(aglo albi | aTrmh ofi’g)
Let’s assume before proceeding round 0 < ¢ < r — 1 in the jth structure, we
have L] concrete differential paths which are resulted from input differential a0
Then after i-th round, the number of total paths generated from a©° becomes

n 2¢ — 1 _yy
J J BJ _ GI -w/
Li,, =L x R% x (22 —1)" x(23_2)

where R is the average branch number of the S-Box, and Lé =1 (initially, there
exists only one state). Then LI can be denoted as

L= RES B (9% _y-Timel . 2w wy
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Proof. For the jth structure (ag}o, albi . aTr=hi, ai’g), we can easily com-
pute parameters Bf JH f , WZJ and Gf for each round i. Assume before proceeding
i-th round, we have Lg concrete differential paths which are derived from the
input differential o which follows the truncated form a”*°. Since there are Bg
active S-Box in this round, the increasing number of branches for each of the
existed path can be computed as RB!. However, for each of the Gg XOR opera-
tion, we know from the next round truncated pattern, the two input differences
will be canceled out. The probability for this event to happen is (24 — 1)’Gg . Also
for each of the W] XOR operations, instead of probability 1, we need to exclude

the cases where 0 may appear, thus the probability for this event to happen is
(2%71

2d —2
only the paths that follow the truncated pattern can survive. As a result, we
have Lerl = Lg x RBi x (2 —1)~G1 x (%)‘Wﬁ number of paths remaining.
By computing this repeatedly, we can derive the total number of paths L/ after
r-th round. OJ

)7Wf . Since we need the concrete paths to follow the truncated pattern,

Theorem 1. Assume we have 2V concrete input differentials having the same

truncated input difference, and the average single path probability for the trun-
r—1 pj .

cated structure is P§g=° BL . Let the counter X7 denote the number of hits for

any concrete output differences following the same output truncated difference

\T

ag in the j-th structure. Then
I

. . r—1 nj
Xy o ~BEN LI, (24— 1) Hr L pRico Py o

2o Yan

. n r—1 j .
N(ZN L3 (2% —1)He . pXico Bl 9N g

n

r—1pJ n r-lpJ
(25 _ 1)—H7' . Pazv:ézo B} X (1 _ (23 _ 1)—Hr 'Paz’u:elzo Bf))

Denote random variable PJ 2% - X7 be the probability for the concrete path

(2% 1) EicoChwhm
n _sr=1 g J) t en
(2d —2) im0 Wi

C,0 C,r ro__
ag, —ap,, and let I'; =

. r—1 .
Plagoagy ~N (Fz, R e Bl>>/2N>

(a5 —ag] J
where Py,e is the average differential probability of the S-Box.
Proof. Since the truncated output difference has hamming weight H,., the con-
crete differential space is (27/¢ — 1)Hr (excluding the 0 case). For any agg,j €
{0, 1}o9@™*=1"" "the probability that it gets hit by the N LI paths z times

. r—1 pj
follows the binomial distribution B(2N - L, (27/4 — 1)~ Hr. pri=o B ). Since
2N L7 is large, we can approximate it by normal distribution as shown above.
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To derive its probability distribution, we only need to divide by the number of
total pairs 2V. After extending LJ as above, branch number R is canceled by
P,,. since for any S-Box, R - P, = 1. Replace with I‘; we derive the result.
Notice that the mean of the distribution is not affected by the number of input
pairs 27V,

J
P(OZC’OHO(C’T)
Qr Ao

N (@i - PR ey P

(1= (2% —1)~H . pico Bf))/zN)

— o Bi.pr 2o Bi . T
—N((R + Pave)2i=0 B0 T7 (R Paye)>i=0 B . T
(1= @) )Y )

r r n/d —HJ E:;OIBL N
:N(F]’v (Fj(l_(Q/ _1) 7'P)ave ))/2 ) |:|

Corollary 1. The distribution of probability (ag}o — agg) after considering

the entire truncated cluster with size m has the following distribution.

m—1 m—1

T r /oN

P(ag}o_)aig)w./\/'( E I, E Fj/2 )
=0 =0

Corollary 1 is straightforward by taking the truncated cluster into consider-
ation. Notice that for large number of rounds, (1 — (2*/¢ — 1)~ Hr . P%g:”l Bi)
can be approximated to be one, and thus the distribution can be simplified as
stated.

Since for any S-Box, we know that R - P,,. = 1, thus the expect value
will converge to some stable value Y T' as the number of rounds become large.
Actually, we can see that as the number of rounds becomes large, the probability
of the paths tends to gather around the mean.

2.2 Experimental Verification

The evaluation of the probability for the concrete differential cluster is the key
to the attack. Thus it is necessary to verify the correctness of the probability
calculation, especially, the mean (I") of the probability distribution in Corollary 1.
Our experiment has the following settings.
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1. We design a toy version of GFS cipher. It has 32-bit block size with 8 4-bit
subblocks. TWINE’s S-Box is applied and we apply the optimal block shuffle
No.2 for k = 8 from [20] as the permutation layer to guarantee good diffusion
property. It can be seen as a smaller block size version of TWINE.

2. We target 7 rounds differential path and choose the truncated input difference
ag}o and output difference ag’g, such that the concrete differential cluster size
evaluated by the theoretical model is close to but less than 23° so that we
can practically collect enough sample data.

3. We compute 10* differential paths with randomly generated input and output
concrete differences ag’IO and ag’g. The probability Prob(ag}o — agg) is

o7

computed by considering every possible differential path from ag’lo to aq’ .

Even for 7 rounds, the computational cost is high when trying to find all
the paths connecting some specific input and output difference ag’lo and ag’(j.
We apply the meet-in-the-middle approach when searching the path probability.
First, we split the 7 rounds into two, 3 rounds + 4 rounds. Then starting from
ozg’lo, we compute every differential path till the middle point and save them in a
hash table along with the corresponding probabilities. Then starting from ag’o?,
we compute backwards for all the differential paths, and match the ones in the
hash table. Once we find a match, update the total probability.

As a result, the computational cost is reduced from computing 7 rounds to
computing the longer half, which is 4 rounds. The bottleneck is the memory
storage, which is bounded by the hamming weight of the truncated difference in
the matching round. The experimental results are summarized in Fig.2. From
the figure, it shows that the mean of the probability distribution is evaluated
very accurately. The experimental mean is 27319984 while the theoretical value
is 27319958 From the left figure, the histogram confirms the normal distribution
of the probability. For this particular case, the normal approximation becomes
rather accurate when the number of input pairs reaches around 2V a 237-4042,
And this value also satisfies the condition in Theorem 1, which again confirms
the accuracy of our model.
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Fig. 2. Experimental result for toy cipher
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3 Statistical Distinguisher and Some Observations
for LBlock and TWINE

It it well known that when there are only two distributions to distinguish from,
hypothesis testing based on Neyman-Pearson lemma [14] provides us with the
most powerful test. [4] first provided a former analysis on how to build an opti-
mal distinguisher between two sources, specifically one from random distribution
and one from a real cipher distribution as in our context. They further derived
the complexity to distinguish in the form of number of observable outputs or
the input queries regarding the block cipher analysis based on the log-likelihood
ratio statistics. Several following papers such as [1,9] take advantage of this
distinguisher framework, and after combining with order statistics techniques
addressed in [3], they were able to accurately evaluate the successful probability
of a key recovery of the attack. Also, they were able to apply not only the tradi-
tional differential attack but also multiple, truncated and impossible differential
attacks. The relation between a good statistical distinguisher and the number of
rounds we can attack is pretty much straightforward. What may not seem to be
trivial is the complexity of the key recovery, which will rely on the format of the
output differential. However, it is known that if we use multiple differential out-
puts, the distinguisher behaves better and since we are especially interested in
the extent to which we can distinguish theoretically for large rounds of GF'S, we
omit the key recovery discussion in this paper. We rearrange the core theorems
from [4] that will be used in our evaluation as follows.

Theorem 2 ([4]). Considering that Zy, Zs, ... is a sequence of #id random vari-
ables of distribution D and that Dy and Dy share the same support, the log-
likelihood ratio statistic follows normal distribution,

LLR(Z™) —npi ., noo
Pr <t Ot
EERE) 20 g 2= g
where = pj with po = D(Do||D1), 1 = —D(D1]|Do) and o5 = Y. =
Prp, [z}(zogﬁjgf{j) — i for j € {0,1}. And

Prp,|a]

LLR(Z") =Y N( (al 2™)log 5 = — o[

a€EZ

Denote v to be the number of samples need to distinguish between Dy and D1,
then
4.0 YP,)?

(Prpy[2]—Prp, [2])?
ZzEZ DOPTDI[zfl

v =

where P, is the error probability, and D denotes the Kullback-Leibler distance

7D, (2]

D(Dy||Dy) = ZP’I“DO logP o, 2]

2EZ
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Here we assume D; has the uniform distribution, then Prp,[z] = 27" for
Vz € {0,1}™. From Corollary 1, we know that Prp,[z;] follows different normal
distributions. We know that the mean of the distribution is the unbiased point
estimator for Prp,[z;]. Thus by replacing Prp,[z;] with the corresponding mean
derived by Corollary 1, we are able to compute the required number of samples
v in order to distinguish.

3.1 Efficient Algorithm to Compute Dg

Deriving the full distribution Dy is a practical issue. For GFS with 4-bit nibble
and 64-bit block size, the truncated differential domain is shrunk down to 2'6.
However, the computational cost will still grow exponentially as the number
of rounds grows. Fortunately, we can store all the 26 differential states for
each of the rounds, which makes the computational cost grow linearly regarding
the number of rounds. This will dramatically speed up the computing for Dy
regarding large number of rounds.

Algorithm 1. Searching Dy for all input and output truncated differences
T,0

1: Input: Input truncated difference «
2: Output: Full distribution of Do given aT°.

3: procedure Dist_search(r « 0,a™°)

4 M ={(si,p:)|0 <i <2V —

5: Append (a™°,1.0) to M.

6: while ! = N — 1 do

T Moyt — M

8: for V(si,p;) € M do

9: // Given s;,p;, round function returns all the possible output diff and
probabilities ) ,

10: {(00,P0), - (0t—1,Pt_1)} — round(s;,p;)

11: for V(o0;,p;) do

12: if o0; € Moyt t/hen

13: Dpi < Dpi + Dy

14: else

15: Append (oi,p;) to Mout

16: M — Moyt

17: Output (s;,p;) € M,0 <4 < 2n/¢

For GFS with 4-bit sub-blocks and 64-bit block size, after around 7 rounds,
M will include every truncated internal state. We apply the GMP library [10]
when computing the probability so that we do not lose precision. However, as
the number of rounds grow, the bias becomes miniscule, requiring large amounts
of memory to store the precision. When we reach some large rounds, we cannot
produce accurate result due to the memory limit. The algorithm is still very
efficient considering that we need to perform the search for not only one but all
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the 27/¢ — 1 input difference o”*?. The following experimental results show the
number of rounds we have achieved with full precision as well as some rounds
where precision was lost partially.

3.2 Observations on LBlock and TWINE

LBlock is a 32-round, 64-bit block cipher with Feistel structure proposed by
Wenling Wu et al. in [22]. In each round after the left 32-bit side goes through
a non-linear function F, it is XOR-ed with the right side that has performed an
8-bit left cyclic shift. TWINE is also a 64-bit block cipher with GFS structure
proposed by Tomoyasu Suzaki, etc. in [21]. Different from LBlock, it supports
80 and 128 bits key length which both have the same 36 rounds. The F function
of LBlock and round operation of TWINE are shown in Figs. 3 and 4.

!
L EIEE
M

Fig. 3. F function for LBlock Fig. 4. One round for TWINE

In [21], the authors already identified that both ciphers are very similar to
each other regarding the Feistel structure and the permutation layer. This is also
our motivation to study these two ciphers, first to compare the security margins
and secondly, obtain the observataions for the behavior of GF'S.

As we have pointed out, our framework can be used to exploit all the distri-
butions under our theoretical model. In order to get a close look at the strength
and weakness of the various differential paths given different input differences,
we need to perform Algorithm 1 for all the 2'6 — 1 input differences for different
number of rounds. Figures5 and 6 show the experimental results of how many
samples are required in order to distinguish the cipher from a uniformly distrib-
uted random source. Particularly, for each of the input differences (hamming
weight), we consider all the possible output differences to derive the correspond-
ing distinguisher. The experiment was performed on supercomputer Cray XC30
with 700 CPU cores (Intel Xeon E5-2690v3 2.6 GHz (Haswell)) running in par-
allel for around three days.

Both figures share some similarities which provide us with an insight into
the properties of other GFS with bijective S-Box design. It also provides us
with strategies on how to perform efficient cryptanalysis. Firstly, within the
same number of rounds, we notice that the distinguisher will perform better
as the hamming weight of the input differences decrements. Considering many
previous researchers such as [16] favor the input difference with small hamming
weight, this result seems to be straightforward. However, previous results did not
consider the clustering effect where many small paths could eventually lead to
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sample size(10R] sample size(12R] ample size(14R] Sample size(10R) Sample size(12R) Sample size(14R)

T A T T TR T T ST T
Hamming Weight Hamming Weight Hamming Weight Hamming Weight Hamming Weight

Fig. 5. Distinguisher for LBlock Fig. 6. Distinguisher for TWINE

a better cluster. Here we clarify this situation by showing that input differences
with large hamming weight tend to have better randomization property with
respect to the differential distribution, thus an attacker should focus on searching
the paths with small input hamming weight.

Secondly, this trend remains the same for different number of rounds, with the
total number of pairs required to distinguish increasing as the number of rounds
grows. This makes sense according to the Markov cipher model [15], which has
been used to model modern block ciphers. Notice that for both LBlock and
TWINE, starting from round 18, the number of pairs tends to converge to some
threshold. This is due to the insufficient precision used in the GMP library. We
expect that the original trend will persist no matter the number of rounds if we
have enough memory space to store 2'6 elements with large enough precision.
In the current setting, we set the precision to be 10000 bits, which gives us a
good balance between the precision of the results, and the experiment speed.
Notice that even for 20 rounds, the results for the low hamming weight are still
accurate and usable.

Distinguishing Attack. Now we give distinguishing attacks for LBlock and
TWINE assuming the usage of the full code book. We have previously shown
that input differences with small hamming weight tends to have better dis-
tinguishability. For any truncated input difference a”*?, the total number of
differential pairs that conform to the input differential 7> is 263+4xHW (@™
where HW (a™"?) denotes the hamming weight of a”°. If the number of pairs
v in order to distinguish derived from the statistical framework is smaller than
Q63+4xH W("‘T'O), then we are able to launch the distinguisher attack immediately.
However, for larger rounds such as 18 rounds, the experimental result indicates
that the input differential with the best distinguishing effect requires more pairs
than the total amount that the cipher can provide. Therefore, instead of taking
advantage of only one input difference, we can consider multiple input differences.
One straightforward way is to store 2'6 counters for each of the input difference,
and we extend the distribution domain from 2'®¢ to maximum 232 counters.
Let v; denote the number of pairs required for input difference aZT’O, then the
number of pairs vg._.; to distinguish can be computed as follows:
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vo..i = () ;)_1
z=0 ¥

This equation can be derived directly from Theorem 2. Notice that we will
proceed with the input difference with small hamming weight first, thus v is
sorted in ascending order based on hamming weight in order to provide which
input difference to use first. In order to check the success of the attack, we need
to be sure that

i
T,0
Vo i < Z 963+4x HW (a]*°)
=0
For our distinguishing attack, the computational cost is the cost of the sum-
; T,0
ming the counters, which requires Z;ZO 203+4xHW (i) memory accesses. Under

the conservative estimation that one memory access is equivalent to one round
operation cost, which was also used in paper [12], the computational cost can be

estimated as £ x >0 963+4x HW (o) R round computation, where R is the
number of total rounds to attack.

Although for larger number rounds we currently do not have the accurate
distribution for all the input differences due to the computational limitations,
the input differences with small hamming weight are still accurate. Therefore, we
can take advantage of this accurate region to launch the attack. For 21 rounds
of LBlock, if we take the first 2! input differences sorted according to v;, then
Vo211 & 29769 which is less than the total available pairs 219067, This means
we can actually perform the distinguishing attack as long as we have enough
computing resources. The time complexity here is thus 2933 21 rounds LBlock
encryptions. TWINE behaves almost exactly the same as LBlock for the first 21
rounds. By applying our framework, we can provide an accurate security bound
for different number of rounds. For example, a 21-round LBlock will theoretically
fail to achieve the security level that we claim if we set the key size to be larger
than 94 bits.

Next we summarize the security margin for both LBlock and TWINE regard-
ing the distinguishing attack. Notice that we choose the distinguishing attack to
bound the security since it is usually considered to be weaker than key recovery
attack. So from a designer’s point of view, we have to set the security parameter
(key size) to be conservative in order to resist as many attacks as possible. Due
to the limitation of computational resources, we can only derive the accurate
values up to 21 rounds for both LBlock and TWINE accordingly. However, after
observing the first 21 rounds for both LBlock and TWINE, the increase of the
computational cost is log-linear with respect to the number of rounds. Thus
the trend can be well extrapolated by using the least square methods. Figures 7
and 8 demonstrate the security level for full rounds of LBlock and TWINE, where
the dotted line is the prediction while the solid line is the experimental results.
Our analysis shows that if both ciphers use 80-bit key setting, then number of
rounds considered to be secure is around 19. However, since TWINE also sup-
port 128-bit key, in order to satisfy the corresponding security, we will need at
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least 25 rounds. We notice that in [2], they can achieve 25-rounds key recovery
attack for TWINE-128 by using MitM and impossible differential attack. By
using truncated differential technique, however, they can only attack 23-rounds
using dedicated techniques. Our result complements theirs by revealing a gen-
eral pattern after an in-depth analysis of the differential distinguisher. From the
differential characteristic’s point of view, although Table3 in [2] demonstrates
several paths that are better than evaluated using active S-Box, they still cannot
achieve more than 16 rounds for TWINE.

From the provable security’s point of view, both full rounds LBlock and
TWINE are secure, and our analysis can provide the accurate security margin
which is around 178 bits and 208 bits for LBlock and TWINE respectively. The
reason TWINE is more secure in this sense is that it has 4 more rounds than
LBlock, and they are equivalently secure against differential attack if given the
same number of rounds.
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Fig. 7. Security level for LBlock Fig. 8. Security level for TWINE

4 Conclusion

In this paper, we revisit the security of GFS with S-Box design regarding dif-
ferential cryptanalysis. We evaluate the differential trails taking the full cluster
into consideration by providing both theoretical and experimental results for
the full distribution in truncated form. Our framework provides a solution for
ciphers with relatively large block size to derive the full differential distribution.
As a concrete application, we evaluate LBlock and TWINE to demonstrate the
relationship between the hamming weight of the input difference and complex-
ity of the attack. For TWINE-128, our attack can achieve 25 rounds, which is
comparable to the best attacks up to date. More importantly, our framework
enables us to compute the accurate security bound on full rounds LBlock and
TWINE. As far as we know, this is the first achievement on security proof with
exact security margin provided. This framework can be utilized by future cipher
proposals to determine the minimum security margin of their designs.
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Abstract. SIMON is a family of lightweight block ciphers publicly
released by the NSA. Up to now, there have been many cryptanalytic
results on it by means of differential, linear, impossible differential, inte-
gral, zero-correlation linear cryptanalysis and so forth. At INDOCRYPT
2014, Wang et al. gave zero-correlation attacks for 20-round SIMON32,
20-round SIMON48/72 and 21-round SIMON48/96. We investigate the
security of whole family of SIMON by using zero-correlation linear crypt-
analysis in this paper. For SIMON32 and SIMON48, we can attack one
more round than the previous zero-correlation attacks given by Wang
et al. We are the first one to give zero-correlation linear approximations
of SIMONG64, SIMON96 and SIMON128. These approximations are also
utilized to attack the corresponding ciphers.

Keywords: SIMON - Zero-correlation linear approximation
Cryptanalysis

1 Introduction

Lightweight primitives aim at finding an optimal compromise between efficiency,
security and hardware performance. Lightweight ciphers have been used in many
fields, such as RFID tags, smartcards, and FPGAs. The impact of lightweight
cipher is likely to continue increasing in the future. In recent years, many
lightweight ciphers have been developed, including KATAN [10], KLEIN [11],
LED [12], Piccolo [15], PRESENT [8] and TWINE [17].

SIMON [6] is a family of lightweight block ciphers publicly released by the
National Security Agency (NSA) in June 2013. NSA has developed three ciphers
to date, including SIMON, SPECK and Skipjack. SIMON has been optimized for
performance in hardware implementations, while its sister algorithm, SPECK [6],
has been optimized for software implementations. SIMON and SPECK offer
users a variety of block sizes and key sizes for different implementations.

Many cryptanalytic results have been published on SIMON. The first
differential cryptanalysis on SIMON was presented by Abed et al. in [1].
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Then, Biryukov et al. improved the differential cryptanalysis of SIMON32,
SIMON48 and SIMONG64 by searching better differential characteristics in [7].
Based on the differential distinguisher shown by Biryukov et al., Wang et al.
improved the key recovery attacks on SIMON32, SIMON48 and SIMONG64 [18].
In [18], Wang et al. gave the attack on 21-round SIMON32, which is still the
best attack up to now. In addition, Sun et al. identified better differential dis-
tinguisher for SIMON with MILP models in [16]. Impossible differential attack
against SIMON was firstly presented in [2], then the improved impossible differ-
ential attacks on SIMON32 and SIMON48 were given in [19], which had been
further improved by Boura et al. in [9].

For the integral attack, Wang et al. proposed the attack on 21-round
SIMON32 in [19] based on a zero-sum integral distinguisher for 15-round
SIMON32, which was obtained experimentally.

Zero-correlation linear attack is one of the recent cryptanalytic methods
introduced by Bogdanov and Rijmen in [3]. This kind of attack is based on the
linear approximation with correlation zero (i.e. the linear approximation with
probability exactly %) The idea of multiple zero-correlation cryptanalysis was
developed in recent years in [4] by Bogdanov and Wang. They proposed a new
distinguisher by using the fact that there are numerous zero-correlation approxi-
mations in susceptible ciphers. In [5], a more powerful distinguisher called multi-
dimensional zero-correlation distinguisher was introduced. Wang et al. also gave
the zero correlation linear approximations for SIMON32 and SIMON4S in [19].
They employed these approximations to attack 20-round SIMON32, 20-round
SIMON48/72 and 21-round SIMON48/96.

In this paper, we investigate the security of whole family of SIMON by using
zero-correlation linear cryptanalysis. For SIMON32 and SIMON48, by using
the technique of equivalent-key, our cryptanalysis can attack one more round
than the previous zero-correlation attacks in [19]. We are the first ones to give
zero-correlation linear approximations of SIMONG64, SIMON96 and SIMON128.
These approximations are also utilized to attack the corresponding ciphers.

Our Contributions. In this paper, we investigate the security of whole family
of SIMON by using zero-correlation linear cryptanalysis. Our contributions can
be summarized as follows:

— Based on the 1l-round =zero-correlation distinguisher for SIMON32 and
12-round zero-correlation distinguisher for SIMON48, we use the equivalent-
key technique (i.e. by moving the subkey into the left-side of round func-
tion) to improve the key recovery attack on SIMON32 and SIMON48. Finally,
we can attack 2l-round SIMON32, 21-round SIMON48/72 and 22-round
SIMON48/96. The equivalent-key technique has been widely used in various
key-recovery attacks. This technique aims at reducing the number of guessed
subkey by using equivalent subkeys to replace the original subkeys used in
the cipher. This technique had been used in [13] by Isobe. But there exists a
little difference. Because the subkey is XORed after non-linear function, the
condition in [13] that some parts of plaintext should be fixed can be canceled.
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— We provide 13-, 16- and 19- round zero-correlation linear approximations of
SIMONG64, SIMON96 and SIMON128, respectively. We also use them to analy-
sis the security of the corresponding ciphers. We are the first one to give the
zero-correlation linear cryptanalysis for SIMONG64, SIMON96 and SIMON128.

Our results along with the previous zero-correlation attacks on SIMON32 and
SIMON(48 are listed in Table 1.

Table 1. Summary of zero-correlation attacks on SIMON

Cipher Rounds | Time (ENs) | Data (KPs) | Memory (Bytes) | Ref.
SIMON32 20 2599 232 2414 [19]
STMON32 21 2594 232 2310 Sect. 4.1
SIMON48/72 20 259-7 218 218:0 [19]
SIMON48/72 | 21 2619 218 2430 Sect. 4.2
SIMON48/96 21 2726 218 2167 [19]
SIMON48/96 | 22 2805 218 2130 Sect. 4.2
SIMONG64/96 | 23 2904 204 2540 Sect. 4.3
SIMONG64/128 |24 21168 204 2540 Sect. 4.3
SIMON96/144 |28 Q1410 296 2850 Sect. 4.3
SIMON128/192 | 32 21568 2128 Q1170 Sect. 4.3
SIMON128/256 | 34 22556 2128 21170 Sect. 4.3

KP: Known Plaintext; EN: Encryption.

Outline. The remainder of this paper is organized as follows. Section 2 gives a
brief description of SIMON and a general introduction of zero-correlation linear
cryptanalysis. Section 3 presents the zero-correlation linear distinguishers used in
the following attacks. Section 4 covers the zero-correlation attacks on the whole
family of SIMON. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Brief Description of SIMON

SIMON [6] is a family of lightweight block ciphers publicly released by the
National Security Agency (NSA) in June 2013. SIMON offers users a variety
of block sizes and key sizes for different implementations. Table 2 lists the dif-
ferent block and key sizes, in bits, for SIMON.

SIMON is a two-branch balanced Feistel network which consists of three
operations: AND (&), XOR (@) and rotation (<«). We denote the input of the
i-th round by (L;, R;),i = 0,1,...,7 — 1. In round 4, (L;, R;) is updated to
(Lit1, Riy1) by using a function F(z) = (z <« 1) & (z K 8) @ (v K 2) as
follows:
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L R;
Table 2. SIMON parameters e eecd v
| ey &
Block size | Key size v
»<<< 2 N4
32 64
48 72, 96 rh—D
64 96, 128 —
96 96, 144 Lus R
12 128, 192, 2
8 8, 192, 256 Fig. 1. Round function of SIMON

Lisi = F(L;) @ R @ rks,
Rt = L;.

The output of the last round (L,, R,) is the ciphertext. An illustration of the
round function is depicted in Fig. 1.

The key schedule of SIMON uses an LFSR-like procedure to generate r sub-
keys rko,rk1,...,7k.—1. SIMON processes three slightly different key schedule
procedures, depending on the number of word (w) included in the master key.
The first w subkeys rkq,7k1,...,7k,_1 are initialized by the master key. The
remaining subkeys are generated as follows:

Thiym =c®(25)i @rki @Y, & (Y, > 1),

rkip1 >3 ifw=2
Y, = ’I“]{Ji_;,_l D (Tki+2 > 3) ifw=3
Tkit1 @ (rkiys > 3) if w = 4.

Here, the value c is constant Oxff...fc, and (z;); denotes the i-th bit from one
of the five constant sequences zg, 21, 22, 23 and z4. The master key can be derived
if any sequence of w consecutive subkeys is known. For more information, please
refer to [6].

2.2 Zero-Correlation Linear Cryptanalysis

Zero-correlation linear attack is one of the recent cryptanalytic methods intro-
duced by Bogdanov and Rijmen in [3]. This kind of attack is based on the linear
approximation with correlation zero (i.e. the linear approximation with probabil-
ity exactly %) The idea of multiple zero-correlation cryptanalysis was developed
in recent years in [4] by Bogdanov and Wang. They proposed a new distinguisher
by using the fact that there are numerous zero-correlation approximations in sus-
ceptible ciphers. In [5], a more powerful distinguisher called multidimensional
zero-correlation distinguisher was introduced.

Even though multiple zero-correlation cryptanalysis and multidimensional
zero-correlation cryptanalysis perform better than zero-correlation linear crypt-
analysis for various ciphers, we have to claim that they are not appropriate
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for SIMON. Multiple zero-correlation cryptanalysis and multidimensional zero-
correlation cryptanalysis are more appropriate for word-level ciphers, such as
AES, Skipjack and CAST-256.

The following Theorem is useful for computing the success probability of
zero-correlation linear cryptanalysis.

Theorem 1 ([3, Proposition 3]). The probability that the correlation value is 0
for a mon-trivial linear approximation of a randomly drawn n-bit permutation
can be approximated by \/%2477” forn >5.

Based on the linear approximation of correlation zero, a technique similar to
Matsui’s Algorithm 2 [14] can be used for key recovery. Let the adversary have
2" plaintext-ciphertext pairs and a zero-correlation linear approximation @ — (3
for a part of the cipher. The linear approximation is placed in the middle of
the attacked cipher. Let E and D be the partial intermediate states of the data
transform at the boundaries of the linear approximations (See Fig.2). Then the
key can be recovered using the following approach:

1. Guess the bits of the key needed to compute E and D. For each guess:

(a) Partially encrypt the plaintexts and partially decrypt the ciphertexts
up to the boundaries of the zero-correlation linear approximation o — 3.

(b) Estimate the correlation ¢ of the linear approximation o« — [ for the
key guess using the partially encrypted and decrypted value E and D
by counting how many times («, E) 4+ (3, D) is zero over 2" plaintext-
ciphertext pairs.

(c) Perform a test on the estimated correlation ¢ to tell of the estimated
values of ¢ is compatible with the hypothesis that the actual value of ¢ is
Zero.

Plaintext P

Partial
encryption
13

Round covered by
zero-correlation
linear approximation

D
Partial
decryption

Ciphertext C

Check for zero-
correlation

Fig. 2. Key recovery in zero-correlation linear cryptanalysis
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Fig. 3. Zero-correlation linear approximation of 11-round SIMON32. (Color figure
online)

2. Test the surviving key candidates against a necessary number of plaintext-
ciphertext pairs.

3 Zero-Correlation Linear Distinguishers of SIMON

3.1 Zero-Correlation Linear Distinguisher of SIMON32

For SIMON32, we use the 11-round zero-correlation linear distinguisher in [19],
which is shown in Fig.3. The input mask is (0x0001,0x0000) and the output
mask is (0x0000,0x0080). The ‘0’ at bottom left and the ‘1’ at top right (in red)
constitute the contradiction that ensures zero correlation.

3.2 Zero-Correlation Linear Distinguisher of SIMON48

Similarly, by using the 12-round zero-correlation linear distinguisher in [19],
we can mount the key recovery attacks on 21-round SIMON48/72 and
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Fig. 4. Zero-correlation linear approximation of 12-round SIMON48. (Color figure

online)

22-round SIMON48/96. The distinguisher used in the following attacks is shown
in Fig.4. The input mask is (0x000001,0x000000) and the output mask is
(0x000000,0x000002). The ‘0’ at bottom left and the ‘1’ at top right (in red)
constitute the contradiction that ensures zero correlation.
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3.3 Zero-Correlation Linear Distinguishers of SIMONG64,
SIMON96 and SIMON128

In order to attack SIMONG4/96/128, we first construct 13-, 16- and 19-round
zero-correlation linear approximations for SIMON64, SIMON96 and SIMON128
by applying miss-in-the middle technique, which are shown in Figs.5, 6 and 7,

respectively.

|;] [ROUND|
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RIGHT

0 00000000000000000000000000000001 00000000000000000000000000000000

1 00000000000000000000000000000000 00000000000000000000000000000001
e 2 00000000000000000000000000000001 *100000%000000000000000000000000
% 3 *100000%000000000000000000000000 0%%10000%%00000%0000000000000001
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Fig. 5. Zero-correlation linear approximation of 13-round SIMONG64.
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Fig. 6. Zero-correlation linear approximation of 16-round SIMONO96.
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Fig. 7. Zero-correlation linear approximation of 19-round SIMON128.

4 Zero-Correlation Linear Cryptanalysis of SIMON

In this section, we investigate the security of whole family of SIMON by using
zero-correlation linear cryptanalysis. We use 11- and 12-round zero-correlation
linear approximations of SIMON32 and SIMON48 in [19] to present the key
recovery attacks on 21-round SIMON32, 21-round SIMON48/72 and 22-round
SIMON48/96. We also utilize the distinguishers presented in Sect. 3.3 to attack
SIMONG64, SIMON96 and SIMON128.

4.1 Zero-Correlation Linear Cryptanalysis of SIMON32

In this section, we use the 11-round zero-correlation linear distinguisher (See
Fig. 3) in [19] to attack 21-round SIMON32. As shown in Fig. 8, we can add five
rounds before the distinguisher and append five rounds after the distinguisher
(i.e. the zero-correlation distinguisher starts from the 5-th round and ends at
the 15-th round, with round number starting from 0). In this way, we can attack
21-round SIMON32.

Equivalent-Subkey Technique. The equivalent-subkey technique has been
widely used in various key-recovery attacks. This technique aims at reducing
the number of guessed subkey bits by replacing the equivalent subkeys with the
original subkeys. This technique had been used in [13] by Isobe. But there exists
a little difference. Because the subkey is XORed after non-linear function, the
condition in [13] that some parts of plaintext should be fixed can be canceled.
In order to reduce the number of guessed subkey bits in the key recovery
process, we move the subkey rk; of the i-th round to the (i 4+ 1)-th round,
(i =0,1,2,3,4), to get the equivalent subkey K*, see Fig.8 (a). For example,
K in Fig.8 (a) is equal to rky, and K is equal to (rky << 2) @ rk; and so forth.
Note that K* is located in the distinguisher and doesn’t need to be guessed. In
Fig. 8 (a), we only list the guessed bits for K%, 0 < i < 3. Similarly, we can move
the subkey rk; of the i-th round to the (i — 1)-th round, (i = 16,17, 18,19, 20),
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to get the equivalent subkey K°, see Fig.8 (b). Again, K¢ is located in the

distinguisher and doesn’t need to be guessed. In Fig.8 (b), we only list

guessed bits for K, 17 < i < 20.
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Fig. 8. Key recovery attack on 21-round SIMON32.

the

Key Recovery Process for SIMON32. In the following, R; denotes the
output of the i-th round. R; (;; denotes the j-th bit of the R;. L; (5, is defined
in a similar way. Note the bit position starts from ‘0’.

Firstly, we guess a part of the equivalent subkeys K17, K'8 K'9 and K?°
(the concrete guessed key bits are shown in Fig.8 (b)) and partially decrypt
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the ciphertext up to the state Ryg (7. Next, we guess a part of the equivalent
subkeys K°, K', K2 K3 (the concrete guessed key bits are shown in Fig.8
(a)) and partially encrypt the plaintext to the state Ls ;oy. We count the num-
ber of occurrences of the event that Ls 10y||Ri6 7} is equal to “00” or “11”. If
the occurrence number is exactly equal to 23!, we can keep the guessed 58-bit
subkey as a possible subkey candidate, and discard it otherwise. To this end,
58-bit subkey is already guessed, which includes K?072_779_14}, K?4_678711_15},

3 4 17 18 19 20
K{O,6,7,13,14}’ K{8,15}’ K{6,15}’ K{4,5,7,13,14}’ K{2—6,11—13,15} and K{075,7,9714}‘
From Theorem 1, the probability that a wrong subkey guess is kept after

4—32

the above procedure can be approximated by %2 3 & 271933 Thus, 258 x

2715:33 — 942.67 gybkey candidates will be left. After that, we guess 6-bit subkey
K?178,15}||K{1071,2} and obtain 29 remaining bits of K337779710} | K{21_578_12715} I

K 5077’971 4 by solving the linear equations with Gaussian elimination. At last,
we can compute all bits of the master key by inverting the key schedule, and
check the correctness by using at most two plaintext-ciphertext pairs. We express
this procedure in Algorithm 1.

Algorithm 1. Key Recovery Attack of SIMON32

1 Represent K?8—5,7,9—14}HK%S—6,11—13,15}||KEZ,5,7,13,14}||K~%g,15} by
KO K| K?|| K3, and get 29 linear equations

2 for all 2**%7 subkey candidates getting from the subkey recovery procedure (See
Table 3) do

3 for all values of K?1,8,15}||K%o,1,2} do

4 Get 29 linear equations with respect to
K{13,7,9,10}||K%175,8712,15}||K~:{)’077,9714}

5 Solve the linear equations by means of Gaussian elimination

6 if solvable then

7 Compute all bits of the master key according to the key schedule.

8 L Verify the master key by using two plaintext-ciphertext pairs.

Complexity of Attack. The data complexity for the attack on SIMON32 is
232 known plaintexts.

In this attack, the dominant term for the memory complexity is the term
used to store 231 8-bit counters Tp[X 2], which makes the memory complexity
be 23! bytes.

The time complexity of each step in subkey recovery procedure is listed in
Table 3. Overall, the time complexity in subkey recovery procedure is 25942
21-round SIMON32 encryptions. In master key recovery phase, solving 29 lin-
ear equations with 29 variables by using Gaussian elimination needs about
1 -29% ~ 8130 bit-XOR operations, which can be measured by 329 ~ 22:60

16-4-21
21-round SIMON32 encryptions (Note that there are three XOR operations and
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Table 3. Procedure of subkey recovery for SIMON32

Step | Input state | Guessed subkey (#Bits) | Computing (§Bits) Counter (size) | Time complexity
0 x 32 K0 _5.7.0-14} Ry, 7} (36)* To[X$2](31) |232.229. LE3464 10416
K%g—6,11—13,15} ~2%5:78
K§§,5,7,13,14}
K{16,15)(29)
1 x3$2 No{ne((); Ly {0,214} (14) Ty [X52](25) |251.229. A4 ~055-41
2 ng K({)o,3,5,7110,12,14}(7> L2 (4,6,8,11,13,15} (6) T2[X::332](24> 225'236'ﬁz255'19
3 x3? K?4,6,11,13}(4) Ly (512,14} (3) T3[X§2](20) |224.290. 8 - x2P719
4 x32 K?zyg}(Q) Ly (10} (1) T4[X32)(17) |220.242. el 05861
5 x32 K{6.8.13,15; 4 L3,{0,7,143 (3) T5[X§21(15) | 217296, 8 1 ~256.19
6 x 32 K%5Y12114}(3) L, (6,13} (2) To[X32](13) |21°.249. 2 - ~256.61
7 x32 K%“l)(z) Ly (123 (1) T7[X§3](10) |218.250. L ~055-61
8 x32 K%OJ,M}(B) Ly, (8,15} (2) Te[X32)(8) |210-2%%. 52 5 ~250-60
9 x32 K%6)13}(2) Ly (143 (1) To[X331(5) |23-290. plorm255-01
10 |x32 K%&w}(z) Ls 03 (1) Tio[X33](2) |25-2%8 plogm2®0t

Input State: input state of each step (See Table4 for its concrete meaning);

Guessed Subkey: guessed subkey bits in each step;

Computing: state bits to be computed in each step;

Counter: counters to be constructed in each step;

Time Complexity: measured in 21-round SIMON32 encryption.

*:To compute R16,{7}v we also need to compute R17,{5,6,15}v R181{3,5)7713714}, RIQ,{1—6,11—13,15}
and RZO,{O—15}a which are in total 36 bits.

Table 4. Explanation of symbols used in subkey recovery of SIMON32

Symbol | Meaning

X3? Lo t0-151 1| Ro, {0,214} || L21,{0—15} || R21,{0—15}

X% Lojo-15y || Rof0.2-143 |l Rie (7}

Xx3? Ll,{0,2—14}||R1,{476,8,10715}”RIG,{?}

X352 Lo (4,6,8,11,13,15} || L1,10,2—4,6—14} || R1,{5,10,12,14} | R16,{7}
x3? L3 a—6,8,11-15} || L1,10,2,6—9,12— 14} || B1 {10} | R16,{7}
X2 L3 4-6,8,10-15} | R2,{0,6,7,12—14} | R16,{7}

X§? L3 (07,14} ||L2,{4,5,8,10—12,14,15} |‘R2,{6,12,13} ||R16,{7}

X$2 L3,{0,6,7,13,14} |‘L2,{4,8,10,11,14,15} ||R2,{12} HR16,{7}

x3? Ls 10,6,7,12—14} || R3,{8,14,15} | R16,{7}

x3§? Ly (5,151 | L3,{0,6,12,13} || Rs,{14} | R16,17}

X33 Ly ¢s,14,15 || Ra {0} | Ru6 {7}
D ¢t Ls 10y |1 R16,(7}

one AND operation in the round function of SIMON. For simplicity, we approxi-
mate them as four XOR operations in our analysis), thus the time complexity of
master key recovery phase can be approximated as 24267 x 25 x 22:60 4 942.67
25 x (14 2732) ~ 25049 21round SIMON32 encryptions. Thus, the total time
complexity of this attack is about 2°942 21-round SIMON32 encryptions.
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4.2 Zero-Correlation Linear Cryptanalysis of SIMON48

Similarly, by using the 12-round zero-correlation linear distinguisher (See Fig. 4)
in [19], we can mount key recovery attacks on 21-round SIMON48/72 and
22-round SIMON48/96.

Key Recovery Attack on 21-Round SIMON48/72. As shown in Fig.9,
we can add five rounds before the distinguisher and append four rounds after
the distinguisher. In this way, we can attack 21-round SIMON48/72. We only
list the guessed subkey bits in Fig. 9. The detailed attack procedure is proceeded
in Algorithm 2.

The data complexity for the attack on SIMON48/72 is 248 known plaintexts.

LO,{O.Z 23} RO,((J.4 6.8.10-23}
[E—
e
[E—
F——w<<2——P
Ll {0,4-6.,8,10-23} R] {0,6,7,12-14,16,18-23} lg-r'ounqzc
S S e Distinguisher
K s Brj F‘ &—p 0000,0000,0000, 0000,0000,0000,
== 0000,0000,0000 0000,0000,0010
—— << r——(
= D Lluo.w,zs: 17,43
; Lo |
>-<+ K 017} 72 » »—» &-ﬂ}
LZ,((L()]_BfMJ(v.lxfl?} RZ,{U,}(,H.]S..ZU 22} > <<< 2
IS
1 — &—(
K {0,6,7,12-14,16,19-21,23} %_K«;j—‘ P
——<<<2——(
D LlB,{l.Q.IS.l().ZI—ZS) Rl&w.m:z)
18
L >_<+ K {9,15,16,22,23} é
3,{0,8,14,15,20-22} R],}Hx 22,23}
s L e
K (8,14.15,21,22) | é < g & p
<<
Ll‘),(l),LI&l}-lS,I7.I‘)-2]} Rl‘),:]_@_lﬁ_]ﬁl\—zl)
19 -
>—_<+ K {0,1,7,8,13-15,17,20-22}
L4,U(\22.:3,\ R4,,wn
K, . P' &—()
116,23} <<
F—<<< Zﬁ
9 LZO,,’O.LS—I‘M 1-23} RZO,{O.IJ.X.]3715.17.19—23,\
[ — Hig
&
Ls,w) N
0000,0000,0000, 0000,0000,0000, -
0000,0000,0001 0000,0000,0000
12-round ZC
Distinguisher Lzl,,'m." 8,13-15,17,19-23} R21,(0_1_5,—‘q_1 1-23}
(a) five rounds before the (b) four rounds after the
distinguisher distinguisher

Fig. 9. Key recovery attack on 21-round SIMON48/72.
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Algorithm 2. Key Recovery Attack of SIMON48/72

3 18 19 20
1 Represent K{16,23}HK{O,N}||K{9,15,16,22,23}||K{o,1,7,8,13—15,17,20—22} by
K°||K'||K?, and get 20 linear equations.

2 for all 2°°%7 subkey candidates getting from the subkey recovery procedure (the
concrete subkey recovery procedure is listed in Table 5) do
3 for all values of K~({)073,7,9}”K{1175,8—11,15,17,18 do
4 Get 20 linear equations with respect to K{22}||K?0,7’9713716,20723}.
5 Solve the linear equations by means of Gaussian elimination
6 if solvable then
7 Compute all bits of the master key according to the key schedule.
8 Verify the master key by using two plaintext-ciphertext pairs.
Table 5. Procedure of subkey recovery for SIMON48 /721
Step‘lnput State‘ Guessed Subkey (#Bits) ‘ Computing(Bits) Counter (Size) ‘ Time Complexity
0 ‘ ng,72 ‘ Kzlg%g,n}HK{lg,w,m,zz,'zs} Ryzq1y (24)% ‘To[st‘n](zl:i) 248‘21&1%»21?»7‘;113%261.61
{0.1‘7,8.13715.17.20722}(18) *
1] x| None(0) | Lijoa-es10-2s (19) T[X357%)(33)] 213218 10 AT
2 ‘ X5 ‘I\’({)ayu,;5‘10‘12‘13‘15717_19_2()_22_23}(13)‘L‘Z.(0.6,7.13.14.16.18.20.21.25} (10)‘T2[X§S'n](26)‘ 2%3.238. 10 - ~0P834
3 x3¥7 | K11 148,01y (5) | Lo (12,1022 (3) [T5[X 3572 (21)| 2%0.2%0. 2 w00t
O XE? | Krnan® | L O [BXETID] 220
5 X537 | K{612,13,16,19,20,23} (7) ‘ L3 {0,20-22} (4) [T5[ X T2](11)] 217247 pd w202
6 ‘ Xé8,72 ‘ K‘{ZS,14)15)21)22)(5) ‘ L4,(16.22.23} (3) ‘TG[X;lS,"Z](S) ‘ 211_252'24i212255 61
7 ‘ x5 ‘ K?m.za)@) ‘ Ls 0y (1) ‘T7[X;8’72](2) ‘ 20.2% ym2%00?

Input State: input state of each step (See Table 6 for its concrete meaning);
Guessed Subkey: guessed subkey bits in each step;
Computing: state bits to be computed in each step;
Counter: counters to be constructed in each step;
Time Complexity: measured in 21-round SIMON48 encryption.
" To compute Ri7 (1}, we also need to computeRig {0,17,23}, R19,{1,9,15,16,21—23} and
R20,{0,1,7,8,13—15,17,19—23} » Which are in total 24 bits.
. The false positive probability of this attack is \/%24 248 ~ 272333 from Theorem 1.
A~ 930.67

The number of remaining subkey candidates is 2°4 . 2723:33
bits in total.

as we guess 54 subkey

In this attack, the dominant term for the memory complexity is the term used
to store 243 8-bit counters Tj [Xf 8’72], which makes the memory complexity be
243 bytes.

From Table5, the time complexity for subkey recovery is about 26187
21-round SIMON48/72 encryptions. In Algorithm 2, it will proceed Gaussian
elimination process for 239:67.218 — 24867 times which can be ignored compared
to 26187 21-round encryptions. After that, the time complexity of checking the
correctness of guess using two plaintext-ciphertext pairs also can be ignored com-
pared to 26187 21-round encryptions. Thus, the total time complexity is about
26187 21-round SIMON48/72 encryptions.
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Table 6. Explanation of symbols used in subkey recovery of SIMON48/72
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Symbol | Meaning
48,72
X, Lo, {0—23} | Ro,{0—23} | L21,{0—23} || R21, {023}
48,72
X717 | Lo {0,2—23} | Ro,0,4—6,8,10-23} || R17,{1}
48,72
X357 | L1 {0,4-6,8,10—23} || R1,{0,6,7,12—14,16,18—23} || R17 {1}
48,72
X3 | La,{0,6,7,13,14,16,18,20,21,23} || L1,{0,4,8,10,11,14,15,17,18,20—22} || R1,{12,10,22} || R17,{1}
48,72
X7 | Lag0,6,7,12—14,16,18—23} || R2,{0,8,14,15,20—22} || R17 {1}
48,72
X357 | Ls (8,15,22} | L2,{6,12,13,16,18—20,22,23} || R2,{0,14,20,21} || R17,{1}
48,72
X" | L3 {0,8,14,15,20—22} || R3,{16,22,23} | R17, {13
48,72
Xz Ly (16,22,23 || Ra oy || R17, {1}
48,72
Xg "% | Ls 0y | Ri7, {13
Lo,(o 223y Ru{o_ma,x.mfzz} 12'-1'.0un(.1 ZC
Distinguisher
B 0000,0000,0000, 0000,0000,0000,
0000,0000,0000 0000,0000,0010
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Fig. 10. Key recovery attack on 22-round SIMON48/96.
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Algorithm 3. Key Recovery Attack of SIMON48/96

1 Represent K{lg,n}||K{1§,15,16,22,23}||Kig,1,7,8,13—15,17,20—22}HK{28,5—7,9,11—23} by
KO K| K?|| K3, and get 36 linear equations.

2 for all 2*8°7 subkey candidates getting from the subkey recovery procedure (the
concrete subkey recovery procedure is listed in Table 7) do

0 1 2

3 for all values of K{073,7,9}”K{175,8—11,15,17,18,22}||K{0—4} do

4 Get 36 linear equations with respect to

2 3
K{577,9713,16720,23}||K{0715,17—22}‘

5 Solve the linear equations by means of Gaussian elimination

6 if solvable then

7 Compute all bits of the master key according to the key schedule.

8 Verify the master key by using two plaintext-ciphertext pairs.

Table 7. Procedure of subkey recovery for SIMON48/96T
Step‘Input State‘ Guessed Subkey (#Bits) ‘ Computing(Bits) (Size) ‘ Time Complexity
48,96 io 17}“1‘{9 15,16,22,23} * 48,961/ 10\ |48 536 43 __580.38
0 Xo \{02{]78 13—-15,17,20—22} R17-{1} (43) To[ X5 ](43))27-2 ’24><22N2
1‘{0 —7,9,11— 23}(36)

1 ‘ X;IB,QG ‘ N()Il?(()) ‘ Ll {0,4—6,8,10—23} (1()) ‘T [X48 96](33)‘243‘236'24;922 %274.2(]
2 ‘ X35 ‘K(gosm 12,13,15-17,19,20,22,23} (13) ‘Lz {0,6,7,13,14,16,18,20,21,23} (10) ‘TQ[X“ 96](26)‘233-240-2“22"‘2’628
3 ‘ X350 ‘ K1 1418,213(5) ‘ Ly {12,10,22) (3) ‘Ts[ 6](21)‘22642°4~24X)2 ~272:54
4 ‘ XZS'% ‘ I‘{o 6,7,13,14,20, 21}(7> ‘ Ls (814152122} (5) ‘T4[ 6](14)‘221‘261'2“22 A2
5 ‘ X;m’% ‘ A{12,16‘19.23}(4) ‘ L3 10,20y (2) T5[X, 48 96]“ 1)‘2|4'265'24>2<22 ~270:90
6 ‘ Xg®% ‘ K?x.14.15,21,22}(5) ‘ Ly (16,22,23) (3) ‘ Ts[ X7%9%](5) |2 270~24X22 27354
7 ‘ X740 ‘ Kii6,23) (2) ‘ Ls,10y (1) ‘T7[X;m'96] (2) | 2727 a2

Input State: input state of each step (See Table 8 for its concrete meaning);
Guessed Subkey: guessed subkey bits in each step;
Computing: state bits to be computed in each step;
Counter: counters to be constructed in each step;
Time Complexity: measured in 22-round SIMON48 encryption.
*: To compute R;7 {1}, we also need to computeR;g (0,17,23}, 19,{1,9,15,16,21—23}+
RQU‘{0_’1,718‘13,15@7,19,23} and R211{071)5,7’9111,23}, which are in total 43 bits.

4-48
T The false positive probability of this attack is ﬁQ 2~ 272333 from Theorem 1.
972 9—23.33

The number of remaining subkey candidates is ~ 21867 for we guess 72 subkey

bits in total.

Key Recovery Attack on 22-Round SIMON48/96. As shown in Fig. 10,
we can add five rounds before the distinguisher and append five rounds after the
distinguisher. In this way, we can attack 22-round SIMON48/96. We only list
the guessed subkey bits in Fig. 10. The detailed attack procedure is proceeded
in Algorithm 3.

The data complexity for the attack on SIMON48/96 is 2% known plaintexts.

In this attack, the dominant term for the memory complexity is the term used
to store 243 8-bit counters To[X+®%%], which makes the memory complexity to
be 243 bytes.
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Table 8. Explanation of symbols used in subkey recovery of SIMON48/96

Symbol | Meaning

X %% | Lo 10-231 || Ro,{o—23} | L22, {0—23} | R22, {023}

X159 Lo 10,223} |1 Ro,{0,4—6,8,10—23} | Ri7, {1}

48,96
X7 Ll,{0,476,8,10723}||R1,{0,6,7,12—14,16,18723}||R17,{1}

L1 {0,4,8,10,11,14,15,17,18,20—22} HR1,{12,19,22} HR17,{1}

48,96
X3™ L2,{0,6,7,13,14,16,18,20,21,23}|

48,96
Xy L2,{0,6,7,12—14,16,18—23} ||R2,{0,8,14,15,20—22} ||R17,{1}

48,96
X5 Ls,{8,14,15,21,22}| Rz,{o,Qo}|\L2,{12,16,18,19,22,23}||Rl7,{1}

D Gat L3 10,8,14,15,20—22} || R3,116,22,23} | R17,{1}
X;ls’% L4,{16,22,23}||R4,{0}||R17,{1}
ng’% Ls 0y | R17,11}

From Table7, the time complexity for subkey recovery is about 289-54
22-round SIMON48/96 encryptions. In Algorithm 3, it will proceed Gaussian
elimination process for 248:67.224 = 272:67 times, which can be ignored compared
to 28054 22-round encryptions. After that, the time complexity of checking the
correctness of guess using two plaintext-ciphertext pairs also can be ignored com-
pared to 280-%4 22-round encryptions. Thus, the total time complexity is about
280-54 92 round SIMON48/96 encryptions.

4.3 Zero-Correlation Linear Cryptanalysis of SIMON64, SIMON96
and SIMON128

We can use the zero-correlation linear approximations showed in Figs. 5, 6 and 7
to attack SIMONG64, SIMON96 and SIMON128, respectively. Since the attack
procedures for them are similar, we only list the attack results in Table9.

Table 9. Summary of ZC linear attack results on SIMON

Cipher ZC linear Attacked Total | Time |Data | Memory
distinguisher | rounds rounds | (ENs) | (KPs)
SIMONG64/96 |13 23(54+13+5)* | 42 2904 | 964 1954 hutes
SIMONG64/128 | 13 24(64+13+5) | 44 2116-8 1964 | 954 hyytes
SIMON96/144 |16 28(6+16+6) |54 Q1410 1996 1985 hutes
SIMON128/192 | 19 32(74+1946) |69 2156:8 | 9128 | 97 hyutes
SIMON128/256 | 19 34(8+19+7) |72 2255-6 | 9128 | o7 hyteg

KP: Known Plaintext; EN: Encryption.
*:For (a + b+ ¢), a is the number of rounds before the distinguisher, b is the
length of the distinguisher and c is the number of rounds after the distinguisher.
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5 Conclusion

In this paper, we study the security of whole family of SIMON by using
zero-correlation linear cryptanalysis. We improved the previous zero-correlation
attacks for SIMON32 and SIMON48. Moreover, we present the 13-, 16- and
19-round zero correlation linear approximations of SIMONG64, SIMON96 and
SIMON128, respectively, and use them to attack the corresponding ciphers. We
are the first one to give the zero-correlation linear cryptanalysis for SIMON 64,
SIMON96 and SIMON128.
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Abstract. An exhaustive search of all 16! bijective 4-bit S-boxes has
been conducted by Markku-Juhani et al. (SAC 2011). In this paper, we
present an improved exhaustive search over all permutation-xor equiva-
lence classes. We put forward some optimizing strategies and make some
improvements on the basis of their work. For our program, it only takes
about one-sixth of the time of the experiment by Markku-Juhani et al. to
get the same results. Furthermore, we classify all those permutation-xor
equivalence classes in terms of a new classification criterion, which has
been come up with by Wentao Zhang et al. (FSE 2015). For some spe-
cial cases, we calculate the distributions of permutation-xor equivalence
classes with respect to their differential bound and linear bound. It turns
out that only in three special cases, there exist S-boxes having a minimal
differential bound p = 1/4 and a minimal linear bound € = 1/4, which
imply the optimal S-boxes.

Keywords: 4-bit S-box - Classification - Exhaustive search - Differen-
tial cryptanalysis - Linear cryptanalysis - Time complexity

1 Introduction

S-boxes play an important role in block ciphers [1], which have been proposed for
the first time in Lucifer cipher [2], whereafter are popularized by DES [3,4]. Since
S-boxes act as the only non-linear part in many block ciphers, their cryptographic
strength has a direct impact on the security of the whole block cipher. Two kinds
of S-boxes with size of 4-bit and 8-bit are widely used. For example, AES [5]
uses an 8-bit S-box, which has good performance against differential and linear
cryptanalysis. However, AES is limited for some extremely resource-constrained
environments [6,8]. The most compact hardware implementation of AES-128 still
requires 2400GE [7]. In the past decade, with extensive deployment of tiny com-
puting devices such as RFID and sensor network, many new lightweight block
ciphers and hash functions have been proposed. The AES S-box needs more than
200GE, while a typical 4-bit S-box only needs about 20-30GE. Hence, to reduce
the hardware area, 4-bit S-boxes are widely used in lightweight cryptographic
primitives, such as LBlock [13], LED [12], PHOTON [14], PRESENT [9], PRIDE
[16], PRINCE [15], RECTANGLE [11], SPONGENT [10], and so on. In such a
situation, it is very important to have a better understanding of 4-bit S-boxes.

© Springer International Publishing Switzerland 2016
D. Lin et al. (Eds.): Inscrypt 2015, LNCS 9589, pp. 144-164, 2016.
DOI: 10.1007/978-3-319-38898-4_9
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Even if the value of n is very small, the number of permutations over n-bit
vectors is still too large. For example, the number of permutations over 4-bit
vectors is 16! ~ 24425 which is still huge. The number of permutations over
5-bit vectors is 32! a2 211766 which is too huge to be exhaustively searched. From
this point of view, it is meaningful to study how to effectively reduce the time
of the exhaustive search of 4-bit S-boxes. In [18], the author gave an exhaustive
search over all bijective 4-bit S-boxes according to permutation-xor equivalence
and gave an idea of golden S-bores with ideal properties. The total time of
creating a 1.4 GB file of the representatives of all permutation-xor equivalence
classes is about half an hour with a 2011 consumer laptop. We will present some
new results which can be used to improve the efficiency of the search algorithm
greatly. Moreover, we will correct a few minor clerical errors appeared in the
algorithm description in [18].

For 4-bit S-boxes, the optimal values are known with respect to differen-
tial and linear cryptanalysis (that is, differential uniformity and linearity). An
S-box attaining these optimal values is called an optimal S-box. In [17], all
optimal 4-bit S-boxes were classified according to affine equivalence, it is a
surprising fact that there are only 16 different affine equivalence classes. In
[19], a new classification of 4-bit optimal S-boxes have been conducted. Given
an S-box, let CarD1g denote the number of times that 1-bit input difference
causes a 1-bit output difference, and CarL1lg denote the number of times that a
1-bit input mask causes a 1-bit output mask. The subset of 4-bit optimal S-boxes
with the same values of CarDlg and CarLlg is called a category. All optimal
4-bit S-boxes were classified into 183 different categories. Among all the 183 cat-
egories, the authors specified 3 so-called platinum categories with the minimal
value of CarD1g + CarLlg. In [19], the authors claimed that the category with
CarD1lg = 0 and CarLlg = 0 is the best case. However, they also proved that
there is no such an optimal S-box. It is worth noting that only optimal S-boxes
are considered in the work of [19]. A natural question is, whether there exists an
S-box with CarD1g = 0 and CarL1lg = 0 if we enlarge the scope from optimal
4-bit S-boxes to all bijective 4-bit S-boxes. This question is one motivation of
our paper.

1.1 Contributions

In this paper, we give an improved exhaustive search over all permutation-xor
equivalence classes of 16! bijective 4-bit boxes, which is one of our main contri-
butions. Firstly we put forward three theorems, which are the core principles of
our optimizing strategies. Next we give five lookup tables, which will be used to
reduce some repeated calculations and speed up the search process. Based on
the above description, we emphatically explain our optimizing strategies. Our
experiments have been performed using one laptop with Intel Core i5 CPU. The
total time of our program to create the same 1.4 GB file is about five minutes,
which is one-sixth of the time spent in [18]. This improvement is potentially
meaningful for future study of 5-bit S-boxes or 6-bit S-boxes, even for larger
S-boxes.
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Due to the fact that two permutation-xor equivalent S-boxes have the same
values of CarD1lg and CarLlg [19], we classify all permutation-xor equivalence
classes of bijective 4-bit S-boxes in terms of the values of CarDlg and CarLlg.
For S-boxes with CarDlg + CarLlg < 4, we calculate the distributions of S-
boxes in relation to differential properties and linear properties. The results
show that there exist 4-bit S-boxes satisfying CarDlg = 0 and CarLlg = 0.
However, all the S-boxes with CarD1lg = 0 and CarLLls = 0 are not good in
relation to differential properties and linear properties, which are linear maps.
In addition, all the S-boxes with (CarDlg, CarLlg) € {(0,1),(1,0),(3,0)} are
linear maps too. Another fact which is of interest is that the minimal differential
bound and linear bound of S-boxes with (CarD1g, CarL1s) € {(1,1),(1,2),(2,1)}
both are 0.375. For PRESENT, RECTANGLE and SPONGENT, we expect the
S-boxes with smaller values of CarD1g and CarLls. From this point, it is worth
further studying S-boxes with (CarD1g, CarL1s) € {(1,1),(1,2),(2,1)}, which are
potential classes for improving the security-performance tradeoff of PRESENT,
RECTANGLE and SPONGENT.

1.2 Organization

This paper is organized as follows. Section 2 reviews some necessary definitions;
Sect. 3 describes an improved exhaustive search over all permutation-xor equiv-
alence classes; Sect.4 revisits a new classification of 4-bit S-boxes according
to CarD1g and CarLlg; Sect.5 concludes the paper; Appendix 5 presents some
results of our experiments.

2 Preliminaries

2.1 Differential-Uniformity, Linearity, Optimal 4 bit S-Box

Definition 1. Let S denote a 4 x 4 bijective S-box. Let AX, AY be two four-bit
values, define ND(AX, AY) as:

ND(AX, AY) = #{z € F3|S(z) @ S(z ® AX) = AY'}.

ND(AX,AY)/16 is the differential probability p of the characteristic
(AX, AY).

Definition 2. Define Diff (S) as the differential-uniformity of S':

Diff(S) = max ND(AX,AY).
AXA0,AY

Obviously, the differential-uniformity of S means the capacity for the resis-
tance against differential cryptanalysis [4]. In general, the smaller the value
of the differential-uniformity of an S-box, the more secure the S-box resists
against differential cryptanalysis. It is known that for any 4 x 4 bijective S-box,
Diff(S) > 4 [17].
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Definition 3. Let S denote a 4 x 4 bijective S-box. Let I'X, I'Y be two four-bit
values, define Imb(I"' X, I'Y) as the imbalance of the linear approximation:

Imb(I'X,I'Y) = |#{z € F3|TX -2 =TY - S(x)} — 8|.
where - denotes the inner product on Fj.
Imb(I"X, I'Y)/16 is the bias € of the linear approximation.
Definition 4. Define Lin(S) as the linearity of S:

Lin(S) = AR Imb(I"X, I'Y).

Obviously, The linearity of S means the capacity for the resistance against
linear cryptanalysis [20]. Generally speaking, the smaller the value of the linearity
of an S-box, the more secure the S-box resists against linear cryptanalysis. It is
known that for any 4 x 4 bijective S-box, Lin(S) > 4 [17].

Definition 5 ([17]). Assume S is a 4 x 4 bijective S-box, which satisfies
Diff(S) = 4 and Lin(S) = 4, then S is known as the optimal S-box.

Let wt(z) denote the Hamming weight of bit vector x.

Definition 6 ([11]). Define SetDlg as follow:

SetDls = {(AX, AY) € F3 x F3| wt(AX) = wt(AY) = 1 and ND(AX, AY) # 0}.
Let CarD1g denote the cardinality of SetDlg.
Definition 7 ([11]). Define SetLlg as follow:

SetLls = {(I'X,T'Y) € F4 x F| wt(I'X) = wt(I'Y) = 1 and Imb(I'X, I'Y) # 0}.

Let CarLlg denote the cardinality of SetLls.

2.2 Affine Equivalence and PE Equivalence

Definition 8 ([17]). Let A, B € GL(4,F3) be two invertible 4 x 4 matrices, and
a,b € F3 be two vectors. We call two S-bozes S and S’ are affine equivalent if
they satisfy:

S'(z) = B(S(A(z) ® a)) & b.

A(z) ® a denote the inner affine transformation and B(x) @ b denote the outer
affine transformation.

It is well known that the values of Diff(S) and Lin(S) of an S-box both
remain unchanged after applying an affine transformation [21,22]. In particular,
when we apply an affine transformation to an optimal S-box, the new S-box we
get is also an optimal S-box [17]. According to this property, all the optimal
S-boxes can be classified into different affine equivalence classes. [17] gives all 16
affine equivalence classes of optimal S-boxes.
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Definition 9 ([17]). Let P;,P, € GL(4,F3) be two 4 x 4 bit permutation
matrices, and c;,c, € F3 be two vectors. We call two S-boves S and S’ are
permutation-zor equivalent(PE) if they satisfy:

S'(x) = Py(S(Pi(z) @ ¢;)) D co.

P;(z)®c¢; denote the inner permutation-zor transformation and P,(x)®c, denote
the outer permutation-zor transformation.

In the following paper, we mainly concentrate on the PE classes. The inner
permutation-xor transformation and outer permutation-xor transformation are
called inner transformation and outer transformation for short.

3 An Improved Exhaustive Search over All PE Classes

In this section, we give an improved exhaustive search over all permutation-xor
equivalence classes of all 16! bijective 4-bit boxes. Similar to the method in [18],
our algorithm takes the least member of each PE class as the representative,
then stores all the representatives on the disk together with the sizes of the PE
classes.

A bijective 4-bit S-box can be expressed as a 4 x 16 bit matrix. Each column
denotes a unique mapping of 0,1, --- ,15. Each row can be expressed as a 16-bit
word.

Property 1 ([18]). Any 4 x 4 bijective S-box can be uniquely expressed as:

3
S(z) = (Z 2P(i)Wi,(15—x)) @

=0

P denotes the bit permutation of numbers (0,1,2,3), ¢ € F3 denotes the xor
constant. W;(i = 0,1,2,3) is a 16-bit word which satisfies 0 < Wy < W3 <
Wy < W3 < 215, W, = 2;5:0 2jWZ‘,j.

Due to the fact that S is bijective, it is required that wt(WW;) = 8 for each
Wi, and four W; must be different from each other. There are 4! = 24 values
for P and 2* = 16 values for the constant c¢. P and ¢ make up 24 x 16 = 384
outer transformations. W; defines the inner transformations. There are 384 inner
transformations, which also consist of 24 bit permutations P; and 16 constants c;.

Given an S-box S, there are 384 x 384 S-boxes which are PE equivalent with
S. We arrange them into a 384 x 384 matrix. Each S-box in the matrix is the
result of applying an inner transformation and an outer transformation to S.
Each row in the matrix corresponds to an inner transformation. Inner transfor-
mations are numbered from 0 to 383. Each column in the matrix corresponds
to an outer transformation. Outer transformations are numbered from 0 to 383.
The representative of the PE class is exactly the least member among all the
384 x 384 elements of the matrix. Now, we are ready to present three theorems.
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Theorem 1. Given an S-box S, and the corresponding matriz of PE equivalent
S-bozes of S as described above, then for each row in the matriz, the 384 S-bozes
within this row are distinct.

Proof. Let M;(i = 0,1,---,383) denote 384 outer transformations, ¢;(i =
0,1, ---,383) denote inner transformation. S; ¢, Si 1,2, ,Si 383 denote the
S-boxes in the corresponding row in the matrix, i.e.

Sio = Mo(S(pi(2))), Sin = M1(S(pi())), -, Sizss = Magz(S(wi(z))). (1)

Assume that there exists S;; = Sk with S;; = M;(S(pi(2))),Six =
M (S(pi(z))). Then, M;(S(pi(x))) = Mp(S(¢i(x))). Since the outer transfor-

mations are invertible, then

S(pi(x)) = (M " o My)(S(pi())). (2)
Thus M; = M;,. Obviously this is contradict to the precondition M; # M;,.
So Si.0,5:1,5i,2, - ,5; 383 are different from each other. O

Theorem 2. Given an S-box S, and the corresponding matriz of PE equivalent
S-bozes of S, for any two rows i, j in the matriz, let A;(A;) denote the set of all
384 S-bozes in row i(j), then either A; = A;, or A; and A; are disjoint.

Proof. Let M;(i =0,1,---,383) denote 384 outer transformations, ¢;, ¢; denote
any two inner transformations, A; = (S; 0,551, 5i,2,-- -, Si 333) denote the set of
384 S-boxes in rows ¢ of the matrix, and A; = (Sj,0, 51,52, - , S} 383) denote
the set of 384 S-boxes in row j of the matrix, i.e.

Sio = Mo(S(pi())), Si1 = M1(S(@i(x))),- -+, Si383 = M3g3(S(wi(x))). (3)

Sjo0 = Mo(S(p;(x))), Sj1 = Mi(S(p;(x))), -, Sj383 = M3s3(S(pj())). (4)

According to Theorem 1, S; 0,5 1,552, -, 5383 are different from each
other, and Sj,85;,1,S5;,2, - ,5;,3s3 are different from each other.

Assume that there exists S; ., = Sj with S; ., = M, (S(pi(x))), Sjk =
M (S(pj(2))). Then, My, (S(pi(x))) = Mr(S(pj(2))). Similarly, we get,

S(pi()) = (My" o My)(S(p;(2)))- (5)
From (3) and (5), then

Sio = (Mo o M,;" o My)(S(;(x))),
Siqn = (My o M. o My)(S(p;j())),

i3s3 = (Mssz o M,," o My)(S(¢;(x))).
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From (4) and (6), it is deduced that (Si,075i,17"' ;Si,383) C (Sj70,Sj71,

-,S8j383). In turn, it can be proved that (Sj0,Sj1,---,Sj383) C
(Si,0,5i1,+ ,Si383). Thus it means
(S0, Sis1y e+ 5 Sizas3) = (Sj,0,55,1, 7+, Sj383)- (7)

That is to say, as long as there exists a same S-box in any two rows, the
two corresponding sets of all 384 S-boxes in these two rows are exactly equal.
Otherwise the two sets are disjoint. O

Theorem 3. Given an S-box S, and the corresponding matriz of PE equivalent
S-bozes of S, for any row i in the matriz, let A;(i = 0,1,---,383) denote the
set of all 384 S-boxes in row i, and let B = {Ap, A1, , Asss} be a multiset.
Then every element in B has a same cardinality. Furthermore, let n denote the
number of distinct elements in B, then any element A; in B has a cardinality of
384/n.

Proof. According to Theorem 2, it is known that the two sets of all 384 S-boxes
in any two rows in the matrix either are exactly equal, or are disjoint.

Firstly, we prove that every element in B has a same cardinality. Let a;(a;)
denote the cardinality of A;(A;), A; # A;, then A;; = A;, =,--- | A, ,, and
Ajo = Ajy =+, Aj,,_,- We need to prove that a; = a;.

Let ¢;, (k = 0,1,--- ;a; — 1) denote inner transformations that result in
A (k=0,1,--- ,a; — 1). For each A;,, let S;,, denote the least member among
the 384 different S-boxes in A;,, and L;, (k =0,1,--- ,a; — 1) denote the outer
transformation that lead to the least S-box S; ., i.e.

Siu = Lig(S(¢io (2))), Siwu = Liy (S(pir (%)), » Siw = Liy, 1 (S(¢ia,_1 () (8)

Similarly, let ¢j, (k = 0,1,---,a; — 1) denote inner transformations that

result in A, (k =0,1,--- ,a;—1). For each A;, , let S}, denote the least member

among the 384 different S-boxes in A;, , and L;, (k=0,1,--- ,a; —1) denote the
outer transformation that lead to the least S-box S ., i.e.

Sjw = Lo (S(050 (%)), Sio = Ljy (S(51 ())), -+, Sjw = Ly, 1 (S (05,1 (2)))- (9)

From the fact that S; , and S are PE equivalent , S;, and S are PE equiv-
alent, it implies that S;, and S;, are PE equivalent as well. Let ¢ denote an
inner transformation and M denote an outer transformation, then

Sjw = M(Siu(d(2)))- (10)
From (8) and (10), then

Sjw = (Mo Li;)(S((#i, © 9)(2))),
Sjw = (Mo Li,)(S((#i, 0 9)(x))),

: (11)
Sjw = (Mo Li, _,)(S((¢i,_, ©9)())).
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From (9) and (11), it can be inferred,
(‘Pio © ¢7 Piy © d)a e 7901'%,1 o d)) C (@joa Pjis " a(pjaj71)' (12)

Thus, it implies a; < a;. In turn, it can be proved that a; < a;. So a; = a;.
If A; = A;, it is clear that a; = a;. Thus a;(i =0,1,--- ,383) are equal to each
other.

Let n denote the number of distinct elements in B. then

aozalzagz---:a383:384/n. (13)
O

Theorems 1, 2, 3 have a great importance on counting the sizes of PE classes.

3.1 The Search Algorithm

The total number of bijective 4-bit S-boxes is 16! ~ 24425, Algorithm 1 describes
the search of PE classes of all bijective 4-bit S-boxes, which is a modification
of the algorithm in [18]. We correct a few minor clerical errors appeared in the
algorithm description in [18]. Those highlighted in red in Algorithm 1 are the
modified parts.

Now we will explain Algorithm 1 and the optimizing strategies in detail.
Before performing the search, we establish five lookup tables to reduce some
repeated calculations and speed up the search process. The five lookup tables
are described as follow:

1. Table wtStab[6435]: There are ('?) = 12,870 16-bit words with Hamming
weight 8. Duo to the limit of W; < 2%, it needs to discard half of the words
and remain 6435 candidates.

2. Table word_distribution[6435][384]: For each word in table wt8tab[6435], apply
384 inner transformations. To normalize the word, invert all bits of a word
if the highest bit is set, then store the results in the corresponding position
of table word_distribution[6435][384]. 384 inner transformations consist of 24
bit permutations and 16 xor constants, where bit permutations are repre-
sented by P; with index from 0 to 23, and xor constants are represented by ¢;
from 0 to 15. Each inner transformation is corresponding to a column in table
word_distribution[6435][384] with index j, j = P;* 16+ ¢;. Thus when apply-
ing an inner transformation with index j (the index of bit permutation P; is
J/16, ¢; = j%16) to W;, the result is just the value of word_distribution]i][j].
This method avoids the repeated calculations when applying inner transfor-
mations to the same words.

3. Table mw|[6435]: For each word W; in table wt8tab[6435], apply 384 inner
transformations and normalize the results. The results are called the equiva-
lents of W;. Then select the minimal word among the 384 equivalents of W.
The minimal equivalent of W; is just the minimal member among the ith
row in table word_distribution[6435][384]. There are 58 different elements in
table mw[6435].
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Algorithm 1. An improved search algorithm over PE classes.

1: for i9p = 0 to 6434 do
2: Wo = thtab[io]
3 if mw(Wy) = Wy then
4: for 711 =19+ 1 to 6434 do
5 W1 = thtab[iﬂ
6 if mw(W1) > Wy and
wt(t2 =-=-Wy A W1) =4 and wt(t3 =Wy A Wl) =4 and
wt(t1 = Wo N ‘!Wl) =4 and wt(to = ‘\WO N ‘!Wl) = 4 then
7. for 12 =71 + 1 to 6434 do
8: Wo = wit8tabliz)
9: if mw(Ws) > Wy and
wt(uo = to A ~Wa) = 2 and wt(ug = to A W2) = 2 and
wit(u; = t1 A =Wa) =2 and wt(us = t1 A Wz) = 2 and
wit(uz = ta A "Wa) = 2 and wi(ue = t2 A W2) = 2 and
wt(ug = tg A ~Ws) = 2 and wt(ur = t3 A W2) = 2 then
10: for j =0to 7 do
11: v; = lsb(u;)
12: end for
13: for b =0 to 255 do
14: Ws = @] _o(bju; & vj)
15: if W3 < 2" then
16: if W5 > Wy and mw(W3) > Wy then
17: if (mw (W) > Wy and mw(Ws) > Wy and mw(Ws) > W)
then
18: test1(Wo, Wi, Wa, W3)
19: else
20: test2(Wo, Wi, Wa, Ws)
21: end if
22: end if
23: end if
24: end for
25: end if
26: end for
27: end if
28: end for
29:  end if
30: end for
4. Table fix_point[6435][384]: If word_distribution[i][j] = mwl[i], then fiz_point

[i][4] = 1, or else fix_point[i][j] = 0. For each word in table mw[6435], table
fix_point[6435][384] records the inner transformations that make the word
unchanged. Each minimal word maps to a set of inner transformations that
make it unchanged, which are called fiz_transformations.

Table position[32640]: position|word] = index. It is an additional table to
record the index of each word in the other four tables. Since the maximal
value of a word is 32,640, the size of table position is defined as 32, 640.
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The program mainly consists of four nested loops. We take many optimizing
strategies to break the loop in advance. Hence, the total time complexity of
Algorithm 1 is reduced greatly. For our program, we emphasize the following
points.

1. The minimal words among the 384 equivalents of W;(i = 1, 2, 3) should be not
less than Wy, i.e. mw(Wy) > Wy, mw(Wa) > Wy and mw(Ws) > Wy. Let
Wg Wi, Wy and W3 denote the equivalents of Wy, W;,Ws and W3, respec-
tively. Due to the selection of Wy, the condition that Wi > W, is con-
stant. Assume that there exists W} < W), then sort Wy, Wy, W5 and Wy
in ascending order and get the new S-box (W{, W{, W3, W.). The new S-box
(W, Wi, Wj, Wi) maybe equal to (Wy, Wy, Wa, W3), which can result in dupli-
cate S-boxes. Note that we add judgements for which the minimal words among
the equivalents of W;(i = 1,2,3) may equal to Wy. Experiments show that
there exactly exist S-boxes as the representatives of PE classes, satisfying that
the minimal words among the equivalents of W;(i = 1,2, 3) equal to Wy,

2. W3 should be less than 2'® and we directly discard the candidates of W5 which
satisfy W3 > 215, This solution is different from that in [18]. The solution in
[18] is to invert all bits of W3 if W3 > 215, However, in our program, we find
that the solution in [18] can lead to duplicate values for W3. We don’t know
how the author of [18] solved this problem.

3. The method of checking that whether (W, Wy, Wy, W3) is the least member
of its PE class has a big influence on the time complexity of the algorithm.
However, the author of [18] didn’t explain the method of checking the least
member. Now we will give our solution to the problem, which is to use two
functions testl and test2 in different cases, respectively.

Obviously, given an S-box S, and the corresponding matrix of PE equivalent
S-boxes of S, the search of the least member of its PE class equals to the search
of the least S-box in the matrix. However, it will take too much time if applying
384 x 384 transformations to any tested S-box and performing 384 x 384 compar-
isons. Based on the aforementioned three theorems, we find some optimization
strategies for reducing the times of transformations and comparisons.

test1(Wy, Wy, Wo, W3): If the three minimal words among the equivalents of
Wy, Wa, W5 are bigger than Wy, i.e. mw(Wy) > Wy, mw(Ws) > Wy and
mw(W3) > Wy, we use the function testl to test whether (Wy, Wy, Wa, W3) is
the least member of its PE class or not. Since that Wy is the minimal word
among its equivalents (mw(Wy) = Wy), the results after applying 384 trans-
formations to Wy must be no less than Wy, i.e. W5 > Wy. If W5 > Wy, the
new S-box (W, W1, W3, W4) must be larger than (Wy, W1, Wa, W3) no matter
how Wy, Wi, W3, W5 are sorted, since there always exist W§ > Wy, Wi > W,
W35 > Wy, and W5 > Wy. In this case, it only needs to traverse the transforma-
tions that make Wy unchanged, instead of all 384 transformations. Details are
as follows.

1. The fix_transformations of Wy can be got from table fixz_point. For each
one of fix_transformations, do
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(a) Applying the transformation to Wy, Wy and W3, the corresponding new
words W7, W5 and W3 can be got by looking up table word_distribution.

(b) Sorting W7, W5, W5 and resulting in the final (W{, W], W3, W3), which
satisfies Wy = Wy < W| < W3 < Wj. Note that each one of the
fix_transformations to the four words corresponds to a row in the
384 x 384 matrix, sorting the new four words in ascending order and
inverting all bits of a word if the highest bit is set correspond to the
selection of the least S-boxes in the row.

(¢) Comparing (Wy, W3, W3) with (W7, Wy, W3). If there exists (W7, W3,
W3 < (Wy, Wa, W3), (Wy, W1, Wa, W3) can’t be the least member of
its class, then the loop exits. Otherwise the loop continues.

2. For each one of the fix_transformations of Wy, we get a new S-box
(W, WL, W, Wi). If (Wo, Wy, W, W3) is no greater than any new S-box,
we can say (Wy, Wy, Wy, W3) is exactly the least member of its PE class. The
pseudo code of testl refers to Algorithm 2 in Appendix 5.

Due to the fact that in most cases, it holds that mw(W;) > Wy, mw(Ws) >
Wy and mw(W5) > Wy. Moreover, there are only few transformations that make
Wy unchanged for most Wy, the method of using function testl greatly reduces
the times of query and comparison for estimating the least member of PE classes.

Table 1 gives all minimal words with the numbers of transformations that
make them unchanged. From Table 1, we can see that there is only one minimal
word having fix_transformations with 384 values, while most of the rest have
fiz_transformations with a few values.

test2(Wy, Wi, W, W3): As long as one of the three minimal words among the
equivalents of Wy, Wa, W3 equals to Wy, i.e. mw(Wy) = Wy or mw(Wa) = Wy
or mw(W3) = Wy, we use the function test2 to test whether (Wy, Wy, Wy, W3) is
the least member of its PE class or not. Since that W7, W3 W3 may equal to Wy
and W also may be larger than W7*,W3 Wy, the sizes and order of four words
Wi Wi W5 W4 are uncertain. In this case, the function needs to traverse all
the 384 transformations, and then perform as function testl. Only a few cases
need to use function test2. It means that the numbers of cases that indeed need
to traverse all the 384 transformations are few. The pseudo code of test2 refers
to Algorithm 3 in Appendix 5.

In function testl and test2, if (Wy, Wi, Wy, W3) is the least member of
the PE class, recording the numbers of inner transformations that make
(Wo, W1, Wo, W3) stay unchanged, denoted as a;, namely, the numbers of rows
where the least member in the row is (Wy, Wy, Wy, W3). According to Theo-
rem 3, it is easy to calculate the expression n = 384/a;, where n denote the
number of distinct rows in the 384 x 384 matrix. According to Theorems 1, 2,
each row in the 384 x 384 matrix have 384 different S-boxes, and any two rows
either are exactly equal, or have no intersection. Thus the size of the PE class
is 384/a; x 384.

In conclusion, the method of using testl and test2 in different cases can
discard a part of unnecessary search branches, thereby greatly optimizes the
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Table 1. Minimal words and the numbers of transformations that make them
unchanged, denoted as T,,. The total number of minimal words is 58.

Min word | T,, | Min word | T, | Min word | T, | Min word | T,
255 96 | 1020 8 12019 2 16030 8
383 12 1647 16 | 2022 4 16038 12
447 4 11659 2 12025 4 16042

495 4 |1662 2 2033 4 16060

510 12 11695 16 | 2034 2 16120 24
831 24 11719 2 12040 4 16375 24
863 4 1725 2 14080 64 | 6627

879 2 1782 8 |5739 12 | 6630 4
893 2 | 1785 8 |5742 4 7128 32
894 2 1910 8 |5783 12 | 7140 8
975 8 1913 4 | 5787 2 | 7905 16
983 2 1914 2 |5790 4 |15555 96
987 2 11973 2 | 5805 2 127030 384
989 2 1974 1 |5820

990 1 1980 2 | 5865 12

time complexity of the search algorithm. The results of our search algorithm are
in accordance with the results in [18].

4 Revisiting a New Classification of 4-Bit S-Boxes
According to CarD1g and CarLlg

Based on the results of Algorithm 1 and the fact that two PE equivalent S-boxes
have the same values of CarD1g and CarL1g [19], all PE classes can be classified
in terms of the values of (CarDlg, CarLlg). Table2 gives the distribution of
all PE classes in relation to the values of (CarDlg, CarLlg). It is clear that
0 < CarDlg <16 and 0 < CarL1lg < 16.

From [19], it is known that the larger the value of CarDlg or CarLlg, the
more likely there exists a weak differential or linear trail with only one active
S-box in each round in PRESENT, RECTANGLE and SPONGENT. Thus we
only consider the S-boxes satisfying CarD1g 4+ CarL1lg < 4.

From Table2, it shows that there exist S-boxes with (CarDlg, CarLlg) =
(0,0). At first sight, S-boxes with CarD1lg = 0 and CarLlg = 0 should be the
best cases. However, the experiments show that all of these S-boxes are linear,
which have differential bound p = 1 and linear bound € = 0.5. Hence, the S-boxes
with (CarD1g, CarLlg) = (0,0) can not be used in a cryptographic primitive.
Moreover, we find that all S-boxes with (CarD1g, CarL1s) € {(0,1),(1,0),(3,0)}
are linear as well.
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Table 3. The minimal values of differential bound and linear bound for each (CarDlsg,
CaI‘Lls).

(CarDl1g, CarLls) | (p,€)

(0,4), (1,3), (2,2) | (0.25, 0.25)
(0,2), (0,3) (0.5, 0.375)
(1,1),(1,2),(2,1) | (0.375, 0.375)
3,1) (0.5, 0.25)
(2,0),(4,0) (0.5, 0.5)

For each case with CarDlg + CarLlg < 4 except {(0,0), (0,1),(1,0),(3,0)},
we calculate the distributions of S-boxes in relation to differential bound p and
linear bound e. Detailed distributions are presented in Appendix 5. From these
results, we can get the minimal values of differential bound and linear bound for
different cases, as Table 3 shows.

From Table3, it can be seen that only if (CarDlg,Carlls) €
{(0,4),(1,3),(2,2)}, there exist S-boxes having a differential bound p = 1/4
and linear bound e = 1/4, which is in accordance with the results in [19]. More-
over, we can find that the S-boxes with (CarD1g, CarLlg) € {(1,1),(1,2),(2,1)}
have the minimal values of differential bound and linear bound both of 0.375.
Although this kind of differential and linear bound is worse than the opti-
mal S-boxes, the values of CarDlg + CarLlg are smaller than the optimal
S-boxes. A natural question we pose here is: when considering the security
of PRESENT, RECTANGLE and SPONGENT against differential and lin-
ear cryptanalysis, whether there exist better S-boxes among the S-boxes with
(CarDl1g, CarLlg) € {(1,1),(1,2), (2,1)}. We leave this question for future study.

5 Summary

We have presented some new results to greatly improve Saarinen’s exhaustive
search algorithm over all bijective 4-bit S-boxes. Our experimental results show
that the efficiency of the search algorithm has been improved about 6 times. The
exhaustive search of all bijective 4-bit S-boxes is relatively easy to achieve, but
the exhaustive search of 5-bit S-boxes or beyond will be very difficult. Therefore
optimization of the search algorithm is meaningful, which can be potentially
used in the study of 5-bit, 6-bit or lager S-boxes.

Based on the results of the search over all PE classes of bijective 4-bit
S-boxes, we classify all PE classes in terms of the values of CarD1g and CarLlg.
For S-boxes with CarDl1lg+ CarLlg < 4, we give the distributions in relation
to differential and linear bounds. We verify the results in [19], and our results
are in accordance with the results in [19]. In addition, we find that no good
S-box satisfies that (CarDlg, CarLlg) € {(0,0),(0,1),(1,0),(3,0)}. Our results
show that the S-boxes with (CarDlg, CarLlg) € {(0,0),(0,1),(1,0),(3,0)} are
all linear, which can not be used in a cryptographic primitive. Moreover, the S-
boxes with (CarD1g, CarLlg) € {(1,1),(1,2),(2,1)} have a minimal differential
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bound and linear bound both of 0.375, which can be further investigated to see
if they can be used to improve the security-performance tradeoff of PRESENT,
RECTANGLE and SPONGENT.

One of our future work is to study when (CarD1g, CarLlg) € {(1,1),(1,2),
(2,1)}, how the S-boxes influence the security of PRESENT, RECTANGLE and
SPONGENT against differential and linear cryptanalysis.

Acknowledgements. The research presented in this paper is supported by the
National Natural Science Foundation of China (No. 61379138), and the “Strategic
Priority Research Program” of the Chinese Academy of Sciences (No. XDA06010701).

Appendix A

Algorithm 2. testl: estimate the least member of the PE class.
Input:
The four words of an S-box: Wy, W1, W, W3
The indexes of four words: ido, id1, id2, ids
Output:
If (Wo, Wi, Wa, Ws) is exactly the least member of the PE class, output the numbers
of transformations that make (Wy, W1, Wa, W3) unchanged. Otherwise output 0.

1: result <0

2: for i =0 to 384 do

3. if fiz_pointlido][i] = 1 then

4: new_w|[0] = word_distribution[id:][i]
5: new_w(1l] = word_distribution[ids][i]
6: new_w(2] = word_distribution[ids][i]
7 sort(new_w)

8: if new_w[0] < Wi then

9: return 0

10: else if new_w[0] = W1 then

11: if new_w(l] < W, then

12: return 0

13: else if new_w([l] = W, then

14: if new_w[2] < W3 then

15: return 0

16: else if new_w([2] = W5 then
17: result ++

18: end if

19: end if
20: end if
21:  end if
22: end for

23: return result

See Tables4, 5, 6, 7, 8,9, 10, 11, 12, 13 and 14



A New Cryptographic Analysis of 4-bit S-Boxes 159

Algorithm 3. test2: estimate the least member of the PE class.
Input:
The four words of an S-box: Wy, W1, Wa, W3
The indexes of four words: idy, id1, ids, ids
Output:
If (Wo, Wi, Wa, Ws) is exactly the least member of the PE class, output the numbers
of transformations that make (Wo, W1, W2, W3) unchanged. Otherwise output 0.

1: result <0

2: for ¢ =0 to 384 do

3:  new-w|0] = word_distribution[ido][i]
4:  new_w(l] = word_distribution|id:][i]
5. new-w|2] = word_distribution[ids][i]
6:  new-w[3] = word_distribution[ids][i]
7. sort(new_w)

8  if new_w[0] < Wy then

9: return 0

10:  else if new_w[0] = Wy then

11: if new_w[l] < Wi then

12: return 0

13: else if new_w(l] = W, then

14: if new_w[2] < Ws then

15: return 0

16: else if new_w[2] = W; then
17: if new_w[3] < W3 then

18: return 0

19: else if new_w(3] = W3 then
20: result ++

21: end if

22: end if

23: end if

24:  end if

25: end for

26: return result

Table 4. Distribution of S-boxes with CarD1s = 0, CarLl1s = 2 in relation to differen-
tial bound p and linear bound €

LC — e<1/4 |1/4<e<3/8/3/8<e<1/2
DC | n % n % n %
p<1/4 0 10.0000 |0 0.0000 |0 0.0000
1/4 < p<3/8/0/0.0000 0 0.0000 |0 0.0000
3/8<p<1/2/0/0.0000 1536 0.0127 |21504|0.1772
0
0
0

1/2<p<5/8 0.0000 | 0 0.0000 |0 0.0000
5/8 < p<3/4 0.0000 | 1536 | 0.0127 | 36096 | 0.2975
3/4<p<1 0.0000 | 0 0.0000 |60672|0.5000
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Table 5. Distribution of S-boxes with CarD1s = 0, CarL1s = 3 in relation to differen-
tial bound p and linear bound e

LC — e<1/4 |1/4<e<3/8|3/8<e<1/2
DC | n % n % n %
p<1/4 00.0000 | 0 0.0000 |0 0.0000
1/4 < p<3/8/0/0.0000 0 0.0000 |0 0.0000
3/8<p<1/2/0/0.0000 6144 |0.0702 | 33792 0.3860
0
0
0

1/2<p<5/8 0.0000 | 0 0.0000 |0 0.0000
5/8 < p<3/4 0.0000 | 0 0.0000 | 23040 |0.2632
3/4<p<1 0.0000 | 0 0.0000 | 24576 | 0.2807

Table 6. Distribution of S-boxes with CarD1s = 0, CarL1s = 4 in relation to differen-
tial bound p and linear bound e

LC — e<1/4 |1/4<e<3/8]3/8<e<1/2
DC | n | % n % n %

p<1/4 768 1 0.0027 | 0 0.0000 | O 0.0000
1/4<p<3/8|0 0.0000 | 18048 | 0.0644 | 0 0.0000
3/8<p<1/2{0 0.0000 | 40704 | 0.1452 | 98688 | 0.3521
1/2<p<5/8|0 0.0000 | 11520 | 0.0411 | 20736 | 0.0740
5/8<p<3/4|0 0.0000 | 1536 | 0.0055 | 58368 | 0.2082
3/4<p<1 0 0.0000 | 2304 | 0.0082 | 27648 | 0.0986

Table 7. Distribution of S-boxes with CarD1s = 1, CarLl1s = 1 in relation to differen-
tial bound p and linear bound e

LC — e<1/4 |1/4<e<3/8/3/8<ec<1/2
DC | n| % n | % n %

p<1/4 0 0.0000 |0 0.0000 0 0.0000
1/4 <p <3/800.0000 | 384 | 0.0032 0 0.0000
3/8 <p<1/2/0/0.0000|0 0.0000 5760 |0.0476
1/2<p<5/8/00.0000|0 0.0000 0 0.0000
5/8 <p<3/4/00.0000 |0 0.0000 17280 0.1429
3/4<p<1 0 10.0000 |0 0.0000 97536 | 0.8063
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Table 8. Distribution of S-boxes with CarD1s = 1, CarL1s = 2 in relation to differen-
tial bound p and linear bound e

LC — e<1/4 1/4<e<3/8]3/8<e<1/2
DC | n % n % n %
p<1/4 0 0.0000 | O 0.0000 | O 0.0000
1/4<p<3/8|0 0.0000 | 2304 |0.0063 |0 0.0000
3/8 <p<1/2/2304 0.0063|16896 | 0.0464 | 72960 |0.2004
1/2<p<5/8|0 0.0000 | 0 0.0000 | 0 0.0000
5/8<p<3/4|0 0.0000 | 5376 |0.0148 | 77568 |0.2131
3/4<p<1 0 0.0000 | 0 0.0000 | 186624 | 0.5127

Table 9. Distribution of S-boxes with CarD1s = 1, CarL1s = 3 in relation to differen-
tial bound p and linear bound e

LC — e<1/4 1/4<e<3/8/3/8<e<1/2
DC | n % n % n %

p<1/4 1536 1 0.0019 |0 0.0000 | O 0.0000
1/4 < p <3/8|3027|0.0039 | 16896 | 0.0212 |0 0.0000

3/8 < p<1/2]6144 0.0077 | 82944 | 0.1043 | 165120 | 0.2076
1/2<p<5/8|0 0.0000 | 5376 | 0.0068 | 13824 |0.0174
5/8<p<3/4|0 0.0000 | 10752 | 0.0135 | 262272 | 0.3298
3/4<p<1 |0 0.0000 | 0 0.0000 | 227328 | 0.2859

Table 10. Distribution of S-boxes with CarD1s = 2, CarLLls = 0 in relation to differ-
ential bound p and linear bound €

LC — e<1/4 |[1/4<c<3/8[3/8<c<1/2
DC | n % n % n %

p<1/4 0 /0.0000 | 0 | 0.0000 0 0.0000
1/4 <p <3/80/0.0000 |0  0.0000 0 0.0000
3/8 < p<1/2/0/0.0000 0 |0.0000 2304 |0.0952
1/2 < p<5/8|0|0.0000 |0 |0.0000 0 0.0000
5/8 <p<3/4|00.0000 0 |0.0000 0 0.0000
3/4<p<1 0 /0.0000 | 0 | 0.0000 21888 | 0.9048
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Table 11. Distribution of S-boxes with CarD1g = 2, CarLLls = 1 in relation to differ-
ential bound p and linear bound €

LC — e<1/4 1/4<e<3/83/8<e<1/2
DC | n % n % n %

p<1/4 0 0.0000 | O 0.0000 |0 0.0000
1/4<p<3/8 |0 0.0000 | 2304 | 0.0130 |0 0.0000

3/8<p<1/2 |3072 0.0174|0 0.0000 |16512 |0.0935
1/2<p<5/8 |0 0.0000 0.0000 |0 0.0000
5/8 <pp<3/4|0 0.0000 0.0000 | 16896 |0.0957
3/4<pp<1 |0 0.0000 0.0000 | 137856 | 0.7804

oo | o

Table 12. Distribution of S-boxes with CarD1s = 2, CarLLls = 2 in relation to differ-
ential bound p and linear bound €

LC — e<1/4 1/4<e<3/8/3/8<e<1/2
DC | n % n % n %
p<1/4 1536 |0.0021 |0 0.0000 | O 0.0000
1/4 <p<3/8/2304 |0.0031 14592 0.0195 |0 0.0000
3/8 < p<1/2]21504|0.0287 | 29184 | 0.0390 | 147456 | 0.1971
1/2<p<5/8|0 0.0000 | O 0.0000 | O 0.0000
5/8<p<3/40 0.0000 | 18432 | 0.0246 | 198144 | 0.2649
3/4<p<1 0 0.0000 | 0 0.0000 | 314880 | 0.4209

Table 13. Distribution of S-boxes with CarD1g = 3, CarLls = 1 in relation to differ-
ential bound p and linear bound €

LC — e<1/4 1/4<e<3/8/3/8<e<1/2
DC | n % n| % n %

p<1/4 0 0.0000 | 0 | 0.0000 0 0.0000
1/4<p<3/8|0 0.0000 | 0 | 0.0000 0 0.0000
3/8 < p<1/2/3072|0.0286 | 0 0.0000 16896 | 0.1571
1/2<p<5/8|0 0.0000 | 0 | 0.0000 0 0.0000
5/8<p<3/40 0.0000 | 0 | 0.0000 3840 |0.0357
3/4<p<1 |0 0.0000 | 0 | 0.0000 837121 0.7786
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Table 14. Distribution of S-boxes with CarD1s = 4, CarLls = 0 in relation to differ-
ential bound p and linear bound €

LC — e<1/4 1/4<e<3/8 3/8<e<1/2
DC | % % n %
p<1/4 0.0000 | 0 | 0.0000 0 | 0.0000
1/4 < p<3/8/00.0000 0 0.0000 0 | 0.0000
3/8<p<1/2 0 0.0000 0 0.0000 3456 | 0.8182
1/2<p<5/8 0 0.0000 0 0.0000 0 | 0.0000
5/8 <p<3/4 0 0.0000 0 0.0000 0 | 0.0000
3/4<p<1 0.0000 | 0 | 0.0000 768 | 0.1818

o|lo|o|o|o|O|=

o|lo|o|o|o|O|B=
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Abstract. There are ¢® + ¢ right PGL2(Fy)—cosets in the group
PGL2(F,2). In this paper, we present a method of generating all the
coset representatives, which runs in time O(q3), thus achieves the opti-
mal time complexity up to a constant factor. Our algorithm has appli-
cations in solving discrete logarithms and finding primitive elements in
finite fields of small characteristic.

Keywords: Projective linear group - Cosets - Discrete logarithm -
Primitive elements

1 Introduction

The discrete logarithm problem (DLP) over finite fields underpins the security
of many cryptographic systems. Since 2013, dramatic progresses have been made
to solve the DLP when the characteristic is small [1-13,15-21]. Particularly, for
a finite field Fgn, Joux [19] proposed the first algorithm with heuristic running

nl/4+o(1)

time at most ¢ . Subsequently, Barbulescu et al. [3] proposed the first

algorithm with heuristic quasi-polynomial running time ¢(°8 RS ™ [20], these
algorithms are coined as Frobenius representation algorithms. One key compo-
nent of algorithms in [3,19] is the relation generation, which requires enumerating
the cosets of PG Ly(F,) in PGLo(F,a), where d is a small integer, e.g. d = 2 [19].
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Huang and Narayanan [14] have applied Joux’s relation generation method for
finding primitive elements of finite fields of small characteristic. There is another
method of generating relations, see [7].

To illustrate the application of enumerating cosets of PGLy(F,) in
PGLy(Fg2), we briefly recall Joux’s method [19] of generating relations among
linear polynomials of a small characteristic finite field For = Fp2[X]/(1(X)),
where I(X) € Fp2[X] is an irreducible factor of hy(X)X? — ho(X) with the
requirement that the degrees of ho(X),hi(X) are small. Let = be the image
of X mod (I(X)). Such Frobenius representation has the crucial property that

9 = Z?Eig It is well known that:

[Te-—a)=y" -y

a€lfy
Applying the Mobius transformation

ar +b
cr+d

yl—}

where the matrix m = (Z Z) € FEQXQ is nonsingular, we get
H(ax—l—b ) (aas—|—b)q ar +b

—a) = - .

ocF cx+d cx+d cx+d

We deduce [4]:

hi(z)(cx +d) [] ((az +b) — afcz + d))

a€l,
= (a%ho(z) + bThi(x))(cx + d) — (az + b)(c?ho(x) + d?hq(z))
(mod z%hq(x) — ho(x)).

If the right-hand side can be factored into a product of linear factors over I,
we obtain a relation of the form

q ¢
X [[@+a) = [[@+a)  (mod a®hi(@) —ho(w), (1)
i=1 i=1
where A is a multiplicative generator of Fp2, a3 = 0, a2, a3, ..., a4 is a natural

ordering of elements in Fg 2, and e;’s and e}’s are non-negative integers.

Recall that for a given finite field F,, the projective general linear group
PGLy(F,) = GLy(Fy)/E, where E is the subgroup of GLy(F,) consisting of
non-zero scalar matrices. Following the notion in [3], we denote P, as a set of
the right cosets of PGLy(IF,) in PGLy(F,2), namely,

Pq = {PGLQ(]Fq)tlt S PGLQ(IFqQ)}
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Note that the cardinality of P, is ¢ + ¢. It was shown in [3,19] that the matri-
ces in the same right coset produce the same relation. In [19], Joux suggested
two ways to generate relations: the first is to investigate the structure of cosets
of PGLy(F,;) in PGLy(F,2), and the second is to use hash values to remove
duplicate relations. The second approach needs to enumerate the elements in
PGLy(F,2) that has cardinality about ¢%, hence has time complexity at least
¢%. It may not be the most time-consuming part inside a subexponential algo-
rithm. However, if we want a more efficient algorithm to compute the discrete
logarithms of elements, or to construct a primitive element, this complexity can
be a bottleneck. In this paper, we develop the first approach to generate cosets
representatives efficiently.

1.1 Owur Result

In this work, we give an almost complete characterization of P,. The case of
determining left cosets is similar. Our main result is the following;:

Theorem 1. There exists a deterministic algorithm that runs in time O(q3)
and computes a set S C PGLQ(]qu) such that

1 |S| < +2¢> —q+2;
2. P, = {PGLsy(F,)i|t € 5}.

Here we follow the convention that uses the notation O(f(q)) to stand for
O(f(q) log®™) f(g)). Note that the time complexity of our algorithm is optimal
up to a constant factor, since the P, has size ¢° + q.

2 A Preliminary Classification

We deduce our main result by two steps. Firstly, we describe a preliminary
classification. Then, we deal with the dominating case. In this section, the main
technical tool we use is the fact that the following operations on a matrix over
[F,2 will not change the membership in a right coset of PGL2(Fy) in PGLo(F2):

Multiply the matrix by an element in e

— Multiply a row by an element in Fy;

— Add a multiple of one row with an element in [y into another row;
— Swap two rows.

Proposition 1. Let g be an element in Fp2 \Fy. Each right coset of PGLo(F,)
in PGLo(Fy2) is equal to PGLy(IFg)t, where t is one of the following four types:

(1) ((1: l{), where b,c € Fp2 \ Fy,be # 1.

) (1 b

g dgg)} where bl,dg S F27b1 7é do.
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(17) (2 ;) where ¢ € F%y,d € Fpe.

10 *
(1V) <c d>’ where ¢ € Fgz2,d € Frs.

ab
Proof. Let cd

If any of a, b, ¢,d is zero, then we divide them by the other non-zero element in
the same row, and swap rows if necessary, we will find a representative of type
(II) or (IV). So we may assume that none of the entries are zero. Dividing the
whole matrix by a, we can assume a = 1. Consider the nonsingular matrix

1 by +bayg
c1+cogdi +dog)’
where b;,c;,d; € Fy for 1 <17 < 2. We distinguish the following cases. Note that

we may also assume c¢; = 0, since we can add the multiple of the first row with
—c1 into the second. We start with the matrix

1 b1+ bag
c2g dy1 + dag

> be a representative of a right coset of PG Ly (F,) in PGLa(Fg2).

where co # 0.
Case 1. b2 #0
Subtracting z—j times the first row from the second row, the matrix becomes

1 b1 + bag
*% +cog di — b})dz ’

2

We can assume that d; — % # 0. The matrix is in the same coset with a matrix

of type (I) since we can divide the second row by d; — b});b, and by and co are
not zero.
Case 2. by =0

We will assume b; # 0. After subtracting % times the first row from the
second row, the matrix becomes

1 by
—Z—ll + cog dag

1. If d; = 0, then the matrix can be reduced to type (II) by dividing the second
row by cs.
2. If dy # 0, adding the product of the second row with % into the first row,

we get
Jie bt tiRg)
—5hF g dayg

Assume dy # 0.
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Dividing all the entries in the matrix by g, we get

co — ﬁg_l do

Dividing the first row by b;% and the second row by do, the matrix is reduced

to type (I), since bji‘fQ +b1g7 ! and g — Z—ig_l are in F2 \ IF,. O

There are only O(g?) many possibilities for Case (II). Next, we simplify Cases
(IIT) and (IV) further. As a conclusion, we can see that there are only O(g?) many
possibilities in Case (IIT) and (IV) as well.

01\ [ 0 1
cd)  \c1+cagdy +dag

be one representative of a right coset of PGLy(Fy) in PGLy(Fgs2), where
€1,¢2,d1,de € Fy. Then it belongs to PGLo(F,)t, where t is of the following
two types:

Proposition 2. Let

(I1I-a): (2 dig)’ where dy € Fy.

0 1
(I1I-b): (1 t sg dog

), where c3 € Fy,dy € Fy.
Proof. There are two cases to consider.

1. Assume c¢; = 0. Subtracting the second row by the first row times d;, we get

0 1
cag dag)”

Since ¢y # 0, after dividing the second row by cs, the matrix is reduced to
type (III-a).
2. Assume ¢; # 0. Subtracting the second row by the first row times d;, we get

0 1
c1+cogdag )’

Dividing the second row by ¢y, we get

0 1
1+CQg(Ci—f ’

Thus the matrix is reduced to type (III-b), which completes the proof. a

Similarly, we have the following proposition.
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10y [ 1 0
cd)  \c1+cagdy +dag

be one representative of a right coset of PG Ly(Fy) in PG Ly (Fy2). Then it belongs
to PGLy(Fy)t, where t is of the following two types:

Proposition 3. Let

10
IV-a): , wh eF,.
(IV-a) <029 g> where co € Fy

(IV-b): ( b0

ag 14+ d29> , where cg € Fy,dy € Fy.

3 The Dominating Case

In this section, we show how to reduce the cardinality of type (I) in Proposition
1 from O(g*) to O(g?), which is the main case of representative of cosets. The
following proposition shows that if

1b 1y
m=(g1) = ()

B—b BT 1-bet 1Y

c—cl =1 b—cl b —ca’

are of type (I) and

then A; and A, are in the same coset. Note that the first value is in F,. Consider-
ing parameters of the above special format is inspired by the equations appeared
in [19].

Proposition 4. Fiz v € Fy and w € F2. Suppose that we solve the equations

zl—x
_ =v
{ oy (2)

y—yT w,

under conditions x,y € Fpe \ Fqy and xy # 1, and find two pairs of solu-
tions (b,c),(V',c), then A1 and Ay are in the same right coset of PGLy(Fy)

in PGLy(Fy2), where
1b 1y
Alz(cl>7A2:<Cl 1)

Proof. The proof consists of two steps. Firstly, we will parametrize the variety
corresponding to solutions of (x,y)’s to Eq. (2). Then we will deduce the desired
result.
Note that z,y are in Fg2, we have 29 = z and yq2 = y. From Eq. (2), it
follows that ) . .
— vyt _ 1— 2%

y —ya yi—y

w? = (
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q —r4 q —
So ¥ = 1228 and y — »* = 21 Thus

r—x"

w? (wy —D(fy'=1) (A —-ay)(—z%) y—y*
v (21 — x)(x — 29) (x4 —x)(x —29) 21—2x’

which equals (2°)4+! — L. Besides, we have

1) 1 — g ay — 1
AU k) SR Sk AN Tk

y—yld y—y y—yl

Hence Eq. (2) imply the following

(y— Byt = (et — L eF,,
r=—vy+w+ wi.

Let 7 be one of the (¢ + 1)-th roots of (’”7(1)‘”‘1 — L. Suppose that

wd wd
c= 7+<1’Yac/ = 7+<2,77
v v
where (1, (2 are two distinct (¢ + 1)-th roots of unity, and
b= —vec+w+w! =w-—v7,

b = —vd +w+w? =w—vly.
It follows that

1 w— v(w) < 1 w — UCQ“Y)
A= Ay = (e .
! (“jj + Gy 1 2 Y+ oy 1

Since Az is not singular, we deduce

A71 — 1 ( 1 —w + UCQ’Y)
2 det(As) \ =% — (o 1 ’

v

Thus,
AlAfl _ 1 ((’UC17 - w)(qu + C2'7) +1 —v(C1y . C2'7) )
2 det(Ay) Gy — G2 (vay —w)(*- + C1y) + 1
_ 1 (miim
det(Ag) \ma1 maz )
Note that miy = —vmay, m1; — mag = (w? 4+ w)may. They imply that 2 eF,

and #=m22 € | It remains to prove 1L € Fy. Let 6 = 1. Note that
21 ma1 ma1

deF, < =101
e mumgl = m‘{lmgl
< mymi, €F,.



174 J. Zhuang and Q. Cheng

+1_ q+1
72, we have “—— = vy?*t!l + 1. Hence

Since v+ = (w;’)q+1 _ 1w
v v v

miy = w1y + vGyCey — wly — vyt

Thus

mumd; =y {(w! +w) — (Wl + wiG ) + vy + D) —v(Gy + ¢y}

Since
1
,ny- c Fq,

w? +w € Fo, wl{C + wiGi1¢3 € Fy,
Gy + (3 €Fy, iy + (I € Fy,

we deduce my1m3; € Fy, which implies ™4 € F, and 222 ¢ F,. Thus

21 ma1
mi1
A A—l — Clry B 427 mo1 —v
12 det(Ay) \ 1 222
c PGLQ((]),

which implies that A; and Ay are in the same right coset of PGLs(F,) in
PGLy(F,2). This completes the proof. O

Remark 1. Following a similar approach, it can be shown that A; and As are
also in the same left coset of PGLy(F,) in PGLy(Fy2).

The map sending  to 291! is a group endomorphism from IF;Z to ;. Observe

that (2°)9+! — L is in F,. If it is not zero, then

(y— Lot = (Do (®)

has g + 1 distinct solutions in Fg2. Out of these solutions, at most two of them
satisfy (—vy + w 4+ w?)y = 1 because the degree on y is two. All the other
solutions satisfy zy # 1.

Lemma 2. Of all the solutions of Eq.(4), at most two of them are in F,.

Proof. The number of solution in F, is equal to the degree of ged(y? — y, (y —
wlyg+l _ (“JTQ)qul + %) And

v

w? w? 1
(y — T)q+1 - (T)HI 4 -
w w? w? 1
=(y? - E)(Z/ - 7) - (T)QH + >
w w1 w1
=(y- - —) = ()" 4~ (mod y? —y)

The last polynomial has degree 2. O
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Algorithm 1. Algorithm of generating right coset representatives of PG L4 (IF,)
in PGLy(F,2)

Input: A prime power ¢ > 4 and an element g € F 2 — F,
Output: A set S including all right coset representatives of PG L2 (Fy) in PGLa(F2).

1:
2:

for a€F,; do
Rla] — 0
end for

: for BeF, do

a — B(H_l
if the cardinality of R[a] is < 5 then
Rla] — R[] U{f}
end if
end for > Now R[a] is a set consisting of at most 5 (¢ + 1)-th root of a.

S —0 > Initialize S
11:
12:
13:
14:
15:
16:

17:

18:
19:
20:
21:
22:
23:

24:

25:
26:
27:

28:

29:
30:

31:

32:
33:

34:

35:
36:

37:

38:
39:

for (v,w) e Fy xF2 do > Adding elements of type (I) in Proposition 1
w9 \q+1 1
o= ()T =5
for r € R[a] do
ye— 2 4r
T — —vy +w+ w?
if zy#1landz¢F,;and y ¢ F,; then

&—Su{@f)}

break
end if
end for
end for
for (bi,d2) € F; x F; do > Adding elements of type (II) in Proposition 1
if b1 #dz then

1 b
S SuU
- {(gdzg)}
end if

end for
for d; € F, do > Adding elements of type (III) in Proposition 1

S<—SU{<0 ! )}

g dag
end for

for (c2,d2) € Fy xFy do

0 1
S — SU{<1+029 dzg)}
end for

for c; € F, do > Adding elements of type (IV) in Proposition 1

SHSU{< ! 0)}

29 g
end for

for (c2,d2) € Fy xFy do
1 0
S — SU{(CQg 1+d2g)}
end for
return S;
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We observe that —vy +w+w? is in [y if and only if y is in F,. Thus we have

Corollary 3. Suppose that ¢ > 4, and (7“”7(2)(1“‘1 — % # 0. There must exist one
solution of Eq. (3) that satisfy x,y € Fp2 \ Fy and zy # 1.

Remark 2. To list all coset representatives of type (I) in Proposition 1, one can
find one pair of (b,c) € (Fp2 \ Fy) x (Fg2 \ Fy) for every (v,w) € F; x Fp2 by
solving Eq. (3). Assume that ¢ > 4. In order to solve Eq. (3), one can build a
table indexed by elements in IF;. In the entry of index a € Fy, we store 5 distinct
(g + 1)-th roots of o in Fy2. The table will be built in advance, in time at most
O(q?). For given v € [y and w € Fg2, one can find y € Fy2 satisfying Eq. (4) and
r as —vy + w + w? in time logo(l) g such that zy # 1 and z,y € Fp2 \ F, since
there are at most 4 such pairs from the discussion above. Thus, determining the
dominating case can be done in time O(g?).

4 Concluding Remarks

We summarise our algorithm in Algorithm 1. Based on the discussions above,
the number of representatives of types (I), (IT), (IIT) and (IV) is no more than
@ —q%q¢> — 3¢+ 2,¢° + q and ¢% + ¢ respectively, thus the total number of
representatives of all four types (counting repetitions) is no more than ¢ +
2¢®> — ¢ + 2. From Remark 2, we can see that the time complexity is O(q?’).
Hence Theorem 1 follows.

Acknowledgements. The authors would like to thank anonymous reviewers, Eleazar
Leal, Robert Granger and Frederik Vercauteren for helpful comments and discussions.
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Abstract. Recently, in [6] Gomez et al. presented algorithms to recover
a decomposition of an integer N = rA% + sB?, where N,r,s are posi-
tive integers, and A, B are the wanted unknowns. Their first algorithm
recovers two addends by directly using rigorous Coppersmith’s bivariate
integer method when the error bounds of given approximations to A and
B are less than N&. Then by combining with the linearization technique,
they improved this theoretical bound to N1, In this paper, we heuristi-
cally reach the bound N 1 with experimental supports by transforming
the integer polynomial concerned in their first algorithm into a modular
one. Then we describe a better heuristic algorithm, the dimension of the
lattice involved in this improved method is much smaller under the same
error bounds.

Keywords: Sum of squares - Lattice - LLL algorithm - Coppersmith’s
method

1 Introduction

Coppersmith’s method to solve univariate modular polynomial [5] and bivari-
ate integer polynomial [4] enjoys prevalent cryptographic applications, such as
breaking the RSA crypto system as well as many of its variant schemes
[1,12,14,16,18-20], cracking the validity of the multi-prime @-hiding assump-
tions [9,21], revealing the secret information of kinds of pseudorandom generators
[2,6,10], and analyzing the security of some homomorphic encryption schemes
[22]. The essence of this famed algorithm is to find integer linear combinations of
polynomials which share a common root modulo a certain integer. These derived
polynomials possess small coefficients and can be transformed into ones hold-
ing true over integers. Thus one can extract the desired roots using standard
root-finding algorithms.
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DOI: 10.1007/978-3-319-38898-4_11



Recovering a Sum of Two Squares Decomposition Revisited 179

A noted theorem of Fermat addresses those integers which can be expressed
as the sum of two squares. This property relies on the factorization of the inte-
ger, from which a sum of two squares decomposition (if exists) can be efficiently
computed [8]. Recently, Gutierrez et al. [7] gave an algorithm to recover a decom-
position of an integer N = rA2% + sB2, where r, s are known integers, and A, B
are the wanted unknowns. When approximations Ay, By to A, B are given, their
first algorithm can recover the two addends under the condition that the approx-
imation errors |A — Ag|, |B — By| are no bigger than Ns.

In this paper, we first illustrate a method to solve a certain bivariate modular
polynomial fy(z,y) = a1x? + asx + azy® + asy + ap based on Coppersmith’s
method. The trick to solve this kind of polynomial can be directly used to recover
the two addends A, B of N = r A% +sB? from their approximations with an error
tolerance N7. The least significant bits exposure attacks on A and B can also be
quickly executed by applying the method to solve this certain type polynomial.
Next, we present a better method for recovering A, B from its approximations
Ap, By. This improved approach transforms the problem into seeking the coor-
dinates of a certain vector in our built lattice. The problem of finding these
coordinates can be reduced to extracting the small roots of a different bivariate
modular polynomial fi (x,y) = b12? + boxw + b3y? + bsy + bszy + bo. The derived
error bound is N3 in this way.

The rest of this paper is organized as follows. In Sect.2, we recall some
preliminaries. In Sect. 3, we first describe the method to solve fx(x,y) = a;2® +
asx + asy® + aay + ap and then give our deduction on error bound N7 as well
as the least significant bits exposure attacks on A, B, both of which are based
on finding the small roots of fy(z,y). In Sect.4, we elaborate a better method
for recovering the addends of a sum of two squares. The theoretical error bound
derived by this approach is N 3 Finally, we give some conclusions in Sect. 5.

2 Preliminaries

2.1 Lattices

Let by, ..., b, be linear independent row vectors in R™, and a lattice £ spanned
by them is

L={> kibi|k €1},
i=1

where {by,...,b,} is a basis of £ and B = [by”,...,b,"]7 is the corresponding
basis matrix. The dimension and determinant of £ are respectively

dim(L) = w, det(L) = y/det(BBT).

For any two-dimensional lattice £, the Gauss algorithm can find out the reduced
basis vectors vq and vg satisfying

[vall < vall < [lva £ va
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in polynomial time. One can deduce that vy is the shortest nonzero vector in £
and vy is the shortest vector in £\ {kvy | k € Z}. Moreover, there are following
results, which will be used in Sect. 4.

Lemma 1 (See Gémez et al., 2006 [6], Lemma 3). Let vi and va be the
reduced basis vectors of L by the Gauss algorithm and x € L. For the unique
pair of integers (o, B) that satisfies x = avy + fva, we have

2
x|, [1Bval < —=Ix]-

2
el 73
Lemma 2 (See G6émez et al., 2006 [6], Lemma 5). Let {u, v} be a reduced
basis of a 2-rank lattice L in R". Then we have

avy] <

2
det(L) <[[u ]| v [I< \/gdet(ﬁ)

The reduced basis calculation in two-rank lattices is far from being obtained
for general lattices. The subsequently proposed reduction definitions all have
to make a choice between computational efficiency and good reduction perfor-
mances. The distinguished LLL algorithm takes a good balance, outputting a
basis reduced enough for many applications in polynomial time.

Lemma 3 [17]. Let £ be a lattice. In polynomial time, the LLL algorithm out-
puts reduced basis vectors vy, ...,V that satisfy

w(w—1)
[va] < [[val < - < |Jvi]] < 27+=9 det(£) =777, 1 < i < w.

2.2 Finding Small Roots

Coppersmith gave rigorous methods for extracting small roots of modular uni-
variate polynomials and bivariate integer polynomials. These methods can be
heuristically extended to multivariate cases. Howgrave-Graham’s [11] reformula-
tion to Coppersmith’ s method is widely adopted by researchers for cryptanalysis.

Lemma 4 [11]. Let g(x1,x2) € Z[xy,x2] be an integer polynomial that consists
of at most w nonzero monomials. Define the norm of g(x1,x2) =: > by, i, 27 T3
as the Euclidean norm of its coefficient vector, namely,

lg(zr, )l = /D biyin -

Suppose that

1. g(:c%o),xéo)) =0 (mod N), for |x§0)\ < X1, |x§0)| < Xo;
2. [lg(X121, Xoxa)|| < %

Then g(xgo), :L'go)) = 0 holds over integers.
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Combining Howgrave-Graham’s lemma with the LLL algorithm, one can

deduce that if N
w(w—1
23T det(L)THTT <
NG
the polynomials corresponding to the shortest ¢ reduced basis vectors hold over
integers. Neglecting the low order terms which are independent on N, the above

condition can be simplified as
det(L) < N¥*177, (1)

After obtaining enough equations over integers, one can extract the shared roots
by either resultant computation or Grébner basis technique.

We need the following assumption through our analyses, which is widely
adopted in previous works.

Assumption 1. The Grobner basis computations for the polynomials corre-
sponding to the first few LLL-reduced basis vectors produce non-zero polynomials.

3 Recovering the Addends from N = rA? + sB?2

In this section, we first describe the trick for finding the small roots of polyno-
mial fy(x,y) = a12? + asy® + asx + asy + ag. Next, we address the problem
of recovering the decomposition of a given number N = rA2? 4+ sB? only from
its approximations to its addends A, B, where N, r, s are public positive inte-
gers. Then, we discuss how to achieve A and B when the least significant bits
of them are revealed. Both of these two attacks can be transformed into solving
the studied polynomial fy(z,y).

3.1 Solving Polynomial fn(z,vy)

Without loss of generosity, we assume a; = 1 since we can make it by multiplying
fn with afl mod N. If this inverse does not exist, one can factorize N. Set

f(z,y) = ai " fn(z,y) mod N.

Next, we find the small roots of f(z,y) by Coppersmith’s method. Build shifting
polynomials

Gh,ij (@, y) = 2y’ fF (2, y) N,

where i = 0,1;k =0,....,m — ;5 =0, ..., 2(m — k — i). Obviously,
Gij(z,y) =0 mod N™.

Construct a lattice £ using the coefficient vectors of g ;j(zX,yY) as basis
vectors. We sort the polynomials g ; j(xX,yY) and gp i ;s (2X,yY) according
to the lexicographical order of vectors (k,1,j) and (k',4’, ). In this way, we can
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Table 1. Example of the lattice formed by vectors gi,i ;(xX,yY) when m = 2. The
upper triangular part of this matrix is all zero, so omitted here, and the non-zero items
below the diagonal are marked by .

1 |y y?

y® y

4

Yy

90,0,0 | N?

90,0,1 YN?

90,0,2 Y2N?

g90,0,3

Y3N?

90,0,4

Y4N?

go,1,0

XN?

go,1,1

XY N?

g90,1,2

XY?2N?

91,0,0

91,0,1

X2YN

g1,0,2

X2Y2N

91,1,0

92,0,0

* *

X4

ensure that each of our shifting polynomials introduces one and only one new
monomial, which gives a lower triangular structure for £. We give an example
for m = 2 in the following Table 1.

Then its determinant can be easily calculated as products of the entries on
the diagonal as det(L£) = X5XY Y N9 as well as its dimension w where

-3

Se

|
(]
M
™

i=0 k=0  j=0
1 m—i2(m—k—1)
Sy =
i=0 k=0  j=0

) ,
Z 1=2m?42m +1 = 2m? + o(m?).
i=0 k=0  j=0

1 4
Jj= §m(4m2 +3m+2)= §m3 + o(m?).

1 4
(2k +1) = §m(4m2 +3m+2) = gm‘q’ + o(m?).

2 4
(m—k)= §m(2m2 +3m+1) = gmg + o(m?).

Put these relevant values into inequality det(£) < N™¢. After some basic
calculations, we gain the bound

XY < Nz.

When X =Y, which means the two unknowns are balanced, the above result is

X =Y < Nt.

We summarize our result in the following theorem.
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Theorem 1. Let N be a sufficiently large composite integer of unknown fac-
torization. Given a bivariate polynomial fn(x,y) = a12? + asx + azy? + aqy +
ap mod N, where |z| < X, |y| <Y . Under Assumption 1, if

XY < Nz,

one can extract all the solutions (x,y) of equation fy(x,y) = 0 (mod N) in
polynomial time.

3.2 Recovering a Decomposition from Approximations

In this subsection, we describe the method to recover A, B of N = rA? + sB?
from their approximations.

Supposing that positive integers r and s are given. Set N = r A2+ sB?%, where
A, B are balanced addends, and Ag, By are the approximations to A, B, that is
A= Ay+x and B = By + y, where z,y are bounded by A. Then, one can
recover A and B according to Theorem 1 when

A< Ni.
The concrete analysis is as follows. Note that
N =r(Ao +2)* + s(Bo + )%, (2)
which gives rise to a bivariate modular polynomial
fi(z,y) = ra? + sy* + 2A¢rx + 2Bosy + 1A% + sB2 = 0 mod N,

this is exactly the same type of the polynomial we discussed in Sect.3.1. So
we gain the result A < N 1 simply by substituting both X and Y appeared in
Theorem 1 to A.

The experimental results to support the above analysis is displayed in Table 2,
which matches well with the derived theoretical bound.

Table 2. Experimental results for error bound A = i with 512 bit N

N (bits) |m |dim |logn A | LLL (seconds) | Grébner (seconds)
512 5| 61 0.227 12.901 15.631

6 | 85 |0.230 49.172 606.360

7 1113 |0.233 187.076 517.549

8 145 1 0.235 566.471 3204.339

9 | 181 |0.236 |1512.586 5538.002

10 | 221 | 0.237 |3430.463 out of memory
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Table 3. Experimental results for Remark 1 with 512 bit N

N (bits) | m | dim | logn A | LLL (seconds) | Grébner (seconds)
512 4 128 |0.130 0.842 0.265

5 136 |0.132 3.806 0.842

6 |45 |0.133 14.914 1.420

8 |66 |0.135 |143.349 11.532

Table 4. Experimental results for different modulus with 1024 bit N

N (bits) | M m | dim | logny A | LLL (seconds) | Grébner (seconds)
1024 N-1 |6 |8 |0.23 582.258 144.005
2N—-1 6 |85 |0.23 587.046 145.440
N?—-1/6 |85 |0.23 5917.165 1159.431

Remark 1. Gutierrez et al. discussed the same problem in [7]. They arranged
Eq. (2) to a bivariate integer polynomial as follows,

fi(x,y) = ra? + sy® + 2A¢rz + 2Bosy + 1A% + sBE — N. (3)

By directly applying Coppersmith’s theorem [3], their derived error bound is
only N1'/6. We do experiments for their method, part of the results are displayed
in Table 3. The experimental results show that our method works much better.
Coppersmith’s original method [3] for solving bivariate integer polynomial is
difficult to understand. Coron [13] first reformulated Coppersmith’s work and
the key idea of which can be described as follows, choosing a proper integer R,
and transforming the situation into finding a small root modulo R. Then, by
applying LLL algorithm, a polynomial with small coefficients can be found out,
which is proved to be algebraically independent with the original equation.
Our approach described above also transforms the integer equation into a
modular polynomial. The difference between our method and Coppersmith’s
theorem [3] lies in the construction of shifting polynomials. We take use of the
information of the power of the original polynomial. Although we didn’t prove
that the obtained polynomial with small coefficients is algebraically independent
with the original polynomial, which is true in most cases during the experiments.

Remark 2. We studied different situations to transform Eq.(3) into modular
ones as the modulus varies. For instance ¢(z,y) = fi(x,y)+M = 0mod (N+M).
The experimental results for different M are shown in Table 4.

Specifically, we also consider non-constant modular polynomial

fa(z,y) = ra? + sy + 2A¢rz + 2Bosy = 0 mod (N —rA3 — sB3).  (4)

In this way, the corresponding theoretical error bound for recovering the
addends from their approximations is N'/6( please refer to Appendix A for
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the detailed analyses). However, the experimental results show a much better
performance, which is displayed in Table 5.

3.3 Recovering a Decomposition from Non-approximations

Actually, the most significant bits exposure attack of A and B can be viewed
as a special case of the above problem (recovering a a sum of two squares from
its approximations). In this subsection, we consider the case when the least
significant bits of A, B are leaked.

Given r, s are positive integers, set N = rA? +sB?, where A, B are balanced
addends. When half bits of A and B in the LSBs are intercepted, one can recover
A, B according to Theorem 1.

Suppose A = axM + Ay, B =yM + By, where M, Ay and By are the gained
integers, and x, y refers to the unknown parts. Then we have the following rela-
tion

N =r(xM + Ap)* + s(yM + By)?,
which can be expanded to a bivariate modular polynomial
fa(z,y) = rM?2?® + sM?y* + 2rAgMa + 2sBoMy + rA2 + sB2 = 0 mod N.

Set the upper bound for x and y as A; and put it into Theorem 1, we get
A < N 1. Since

A—-A A—-A A
0o 0

~

Bl

M = =N

~
~

TNt T NG

1

x N1

From these analyses, we get that half information from A and B can reveal

the whole knowledge of both addends, no matter the leaked bits are LSBs or
MSBs.

Table 5. Experimental results for Remark 2 with 512 bit N

N (bits) | m |dim | logny A | LLL (seconds) | Grobner (seconds)
512 2 12 10.16 0.001 0.001

3 241019 0.016 0.14

4 | 40 |0.20 0.406 1.888

5 | 60 [0.21 2.558 45.490

7 1112 10.22 57.954 2028.294
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4 A Better Method for Recovering the Addends

In this section, we reduce the problem of recovering a sum of two squares decom-
position to seeking the coordinates of a desired vector in a certain lattice. Then
we can find these coordinates by applying Coppersmith’s method to solve a type
of modular polynomials where the concerned monomials are z2,y?, zy, z,y and
1. Dealt this way, the theoretical error tolerance can be improved to N/, and
the involved lattices in this approach possess much smaller dimensions compared
to the ones in Sect. 3.

4.1 The Reduction of Recovering the Addends
From the initial key relation N = r(Ag + x)? + s(Bo + y)? we have
2r Aoz + 25Boy + ra® + sy = N —rA3 — sB]. (5)
Hence, the recovery of vector
e:= (X1, X2, X3) = ((r+ ) Az, (r + 5) Ay, rz* + sy?)

solves the problem. Here A represents the upper bound for x and y. It is not
hard to see that vector e is in a shifted lattice ¢ + S, ¢ = (c1, ca,¢3) € Z3, where
((Hfﬁ, (,rfﬁ,@,) is a particular solution of (5) and S is a two-dimensional

((r+S)A 0 —2A0r>.

lattice
0 (r+s)A—-2Bgs

According to Minkowski’s theorem [15], when |le|| < v/2y/det(S), one can
recover e by solving the closet vector problem. Further, the norm of e satis-

fies |le]| < V3(r + s)A2, and det(S) > 2(r + s)Ay/ ™ N Gith condition
min(r,s) * N > 4/ NA(r3/? + s3/2). These constraints give rise to the error
bound A < N6 as discussed in [7].

Next, we present our analysis for the case when A > N'/6. Here, we tag
f=((r+s)Af1,(r+s)Afs, f3) as the output of the CVP algorithm on S, and
use {u = ((r+s)Auq, (r+s)Aus, uz), v = ((r+s)Avy, (r+s)Avg, v3)} to denote
the Gauss reduced basis for S. Then e = f + au + v, where «, 8 represent the
corresponding coordinates of vector e — f in lattice S. Thus, the problem is con-
verted to finding the parameters o and (3, which satisfy equation

2A07(f1 + aur + B1) + 2Bos(f2 + aus + Bvs)
+7(f1 + auy + 1) + s(f2 + aug + Bu2)® + 1AF + sBf — N = 0.

We first derive the upper bounds for the unknowns «, 8. Since e—f = au+pgv,
from Lemma 1, we get

(6)

2
V3

lloullllavil < —=lle — £l < 4(r + 5) A%
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Thus, |a| < ij , 18] < TIIHI)IA Further, according to Lemma 2, there is

det(S) < [|ul|||v]] < 23det(8) Then we have

4(r + 5)A?

< 3/2 n7—1/4
ey SadTNT

||| <
where ¢; = 27/4(r + 5)Y/2min(r, s)~'/* is a constant.
Notice that Eq. (6) can be arranged to

(ru? + su3)a® + (rv} + sv3)B? + 2(ruivy + sugvs)af + 2(Agrus
+ Bosug + 7 frur + sfous)a + 2(Agrvr + Bosve + 1 fivr + sfov2)8 (7)
+2A0rf1 +2Bosfo +1fi +sfs + A3+ 5By = 0 mod N,

which represents a certain type of modular polynomials consisting of monomials
22,42, 2y, z,y and 1. Next, we describe our analysis for solving such polynomials.

4.2 Solving a Certain Type of Modular Polynomials

Let fn(z,y) = bix? + bay? + bszy + baw + by + by mod N. Assume by = 1,
otherwise, set

f'(z,y) = b fi(x,y) mod N.
If the inverse bfl mod N does not exist, one can factorize N. Next, we use
Coppersmith’s method to find the small roots of this polynomial. Build shift-

ing polynomials hy; j(x,y) which possess the same roots modular N™ with
f'(z,y) =0 mod N as follows:

i (2,y) = fciyjf’k(m,y)Nm_k,

where i =0,1;k=0,....m —14;5=0,...,2(m — k) —

Construct a lattice £ using the coefﬁ(nent Vectors of hy; ;(xX,yY) as basis
vectors. We sort the polynomials hy ; ;j(zX,yY") and hy i (2 X, yY) according
to lexicographical order of vectors (k, i, j) and (k', 4, j"). Therefore we can ensure
that each of our shifting polynomials introduces one and only one new monomial,
which gives a triangular structure for £'.

Then the determinant of £’ can be easily calculated as products of the entries
on the diagonal as det(L') = XYY NN as well as its dimension w where

m—i 1 2(m—k)—i

w= Z Z 1 =2m? 4 o(m?),
=0

k=0 i=0 j

m—i 1 2(m—k)—1 A

Sx = Z (2k +1i) = =m?® + o(m?),
‘ - 3

k=0 i=0 7=0

m—1 1 2(777,71{‘) 7 4
Sy=3> D i=gm’tom),

k=0 i=0 7=0

m—i 1 2(m—k)—t

4 3

Sy = (m—k) 3m + o(m?)
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Put these relevant values into inequality det(L') < N™“. After some basic
calculations, we gain the bound

XY < N2,
We summarize our result in the following theorem.

Theorem 2. Let N be a sufficiently large composite integer of unknown factor-
ization and fi(z,y) = biz? 4 box + bsy® + bay + bszy + by mod N be a bivariate
modular polynomial, where |xz| < X, |y| <Y. Under Assumption 1, if

XY < Nz,

one can extract all the solutions (x,y) of equation fy(x,y) = 0 (mod N) in
polynomial time.

Next, we use the above method to solve Eq. (7), and then recover the
unknown addends.

4.3 Recover the Addends

Notice that Eq. (7) is exactly the same type of polynomial discussed in Sect. 4.2.
Put the derived upper bounds for |«||5] in Sect. 4.1 into Theorem 2,

|04Hﬂ| < ClA3/2N71/4 < N1/2.

Solve this inequality, omit the constant terms, and we obtain the optimized
bound for the approximation error terms

A< N5, (8)

Compared to Sect. 3, this method performs much better in practice since the
dimensions of the involved lattices are much smaller when the error bounds are
the same. We present the comparison results in Table6, where one can see a
remarkable improvement in the performing efficiency.

Remark 3. As in Sect. 3, we also analyzed the case when transforming Eq. (6)
into a non-constant modular polynomial. The corresponding error bound is
then N1/4. Table7 is the experimental results for this situation. Please refer to
Appendix B for the detailed analysis.

5 Conclusions and Discussions

We revisit the problem of recovering the two addends in this paper. Our first
algorithm improves Gutierrez et al.’s first result N*/6 to N/4 by transforming
the derived polynomial into a modular one. Then we improve this bound to
N'/3 in theory by reducing the problem of recovering a sum of two squares
decomposition to seeking the coordinates of a desired vector in a certain lattice.
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Table 6. A comparison between Sect. 4 (the left part datas) and Sect. 3 (the right part
datas)

N (bits)|logny A|m|dim |LLL (seconds)|Grébner (seconds)|m’ |dim’|LLL’ (seconds)|Grébner’ (seconds)
1024 0.19 1 6 0.016 0.001 2| 13 0.047 0.031
0.20 2| 15 0.187 0.109 3| 25 1.248 0.406
0.21 2 15 0.172 0.109 3| 25 1.030 0.967
0.22 2 15 0.187 0.140 4 | 41 14.383 3.416
512 0.23 4 | 45 6.334 11.591 6 | 85 49.172 606.360
0.235 |5 66 47.612 68.391 8 |145 566.471 3204.339
0.236 |6 | 91 | 229.789 579.091 9 |181 |1512.586 5538.002
0.237 |7 |120 | 949.094 3410.151 10 |221 |3430.463 out of memory
0.238 |7 |120 | 855.868 1696.823 — - —
0.239 |8 |153 |2852.619 out of memory — — —

Table 7. Experimental results for Remark 3 with 512 bit N

N (bits) | m |dim | logny A | LLL (seconds) | Grébner (seconds)
512 2 |14 021 0.031 0.016

3 127 10.22 0.328 0.187

6 190 0.23 180.930 188.434

J.Gutierrez et al. did similarly in [7], and their optimized bound is N /4 Our
second approach performs much better than the first one since the dimension of
the required lattice is much smaller when the same error bounds are considered.
The tricks to solve the derived polynomials in Sects.3 and 4 are similar, both
of which transform integer relations to modular polynomials. We study four
kinds of modular polynomials in our work (two types are discussed in Remarks 2
and 3). The tricks for solving these polynomials may find other applications in
cryptanalysis.

We do experiments to testify the deduced results. The tests are done in
Magma on a PC with Intel(R) Core(TM) Quad CPU (3.20 GHz, 4.00 GB RAM,
Windows 7). These datas well support our analyses, however, as the error terms
go larger, the dimensions of the required lattices are huger. The time, memory
costs also increase greatly, which stops our experiment at a not good enough
point. Hope people who are interested in this problem can bring us further
supports for the experiments.

Acknowledgements. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions. The work of this paper was partially supported by
National Natural Science Foundation of China (No. 61170289) and the National Key
Basic Research Program of China (2013CB834203).



190 X. Zhang et al.

A Analysis for Remark 2

In this part, we give the details to show that when dealing with Eq. (3) as a
non-constant modular polynomial (4), the corresponding error bound is N 1/6,
First, we display the trick for finding the small roots of fo(z,y) = ra? +
sy? + 2Agrz + 2Bgsy = 0 mod (N —rA3 — sB3). Set M = N —rA% — sB? as
the modulus. The shifting polynomials for this equation can be constructed as

ghi(@,y) =y M™,

i=1,...2m;

gri(@,y) = 27y f§(z, y) M™F,
k=0,.om—1;j=1,2i=0,....2(m -k —1);

Suppose |z| < X = N° |y| <Y = N% then M ~ Nz79. Similarly, the coeffi-
cients of g'(xX,yY),¢%(xX,yY) can be arranged as a lower triangular lattice
L1, whose determinant can be easily calculated as det(L;) = XXV Sy Mou

where
w = 2m? + 2m = 2m? + o(m?).

1 4

Sx = §m(4m2 +3m+2) = gm?’ + o(m®).
1 4

Sy = §m(4m2 +3m+2)= gm?’ + o(m?).
1 4

Sy = §m(4m2 +9m—1)= gm?’ + o(m?).

Put these values into inequality det(L£1) < M™, we obtain 6 < %, which means
that the error bound derived by this method is

A< N,

a poorer bound compared to N . The experimental results in Table 5 show that
this method works much better in practice than in theoretic analysis, although
still weaker than the result in Sect. 3.2.

B Analysis for Remark 3

Notice that the problem of finding coordinates for vector e — f can also be
transformed into solving a non-constant modular equation

q(a, B) = (ru% + sug)cy2 + (rvf + 505)52 + 2(rujvy + sugve)af
+ (2r fiuy + 2sfaus — ug)a + (2r fivg + 2r fave — v3)0
=0mod (N —2rAgfi —2sBofa — rff — sfi —rA2 — sB?)
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Set M = |N — 2rAgfi1 — 2sBofo — rf? — sfs — rA3 — sB2| as the modulus.
Then the problem reduced to solving

q'(2,y) = 2 + bay? + bzxy + bax + bsy = 0 mod M.

Here we assume that ¢’(z, y) is a monic irreducible polynomial, since we can make
it satisfied by multiplying the modular inverse term. We apply Coppersmith’s
method to solve this polynomial. The shifting polynomials can be constructed as

ghi(zy) =y'M™,

i=1,..2m:

gri(@y) = y'q* (@, y)M™F,
k=1,..,m,i=0,...,2(m — k);
gri(z,y) = ay'q" (@, y) M™F,
k=0,...,m—1,i=0,..,2(m —k) — 1;

From the former analysis, we know that |z|,|y| < A%2N-1/%4 = X =Y, and
M =~ AZ. Similarly, the coefficients of g'(xX,yY), ¢*(zX,yY) and ¢*(zX,yY)
can be arranged as a lower triangular lattice Lo, whose determinant can be easily
calculated as det(Lo) = XSXYSY MSM  where

w = 2m? 4 3m = 2m? + o(m?).

Sx = %m(Zm2 +3m+1)= §m3 + o(m?).
Sy = §m(2m2 +3m+1) = %mg + o(m?).
Sy = ém(Sm2 +15m+1) = §m3 + o(m?).

Put these values into inequality det(Ls) < M™Y. we gain the corresponding
error bound .
A< N1,

References

1. Aono, Y.: A new lattice construction for partial key exposure attack for RSA. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 34-53. Springer,
Heidelberg (2009)

2. Bauer, A., Vergnaud, D., Zapalowicz, J.-C.: Inferring sequences produced by
nonlinear pseudorandom number generators using Coppersmith’s methods. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
609-626. Springer, Heidelberg (2012)

3. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233-260 (1997)



192

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

X. Zhang et al.

Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.
1070, pp. 178-189. Springer, Heidelberg (1996)

Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155-165. Springer,
Heidelberg (1996)

Gomez, D., Gutierrez, J., Ibeas, A.: Attacking the pollard generator. IEEE Trans.
Inf. Theor. 52(12), 5518-5523 (2006)

Gutierrez, J., Ibeas, A., Joux, A.: Recovering a sum of two squares decomposition.
J. Symb. Comput. 64, 16-21 (2014)

Hardy, K., Muskat, J.B., Williams, K.S.: A deterministic algorithm for solving
n = fu? + gv? in coprime integers v and v. J. Math. Comput. 55, 327-343 (1990)
Herrmann, M.: Improved cryptanalysis of the multi-prime ¢ - hiding assumption.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
92-99. Springer, Heidelberg (2011)

Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
when do we output too much? In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol.
5912, pp. 487-504. Springer, Heidelberg (2009)

Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Crytography and Coding. LNCS, vol. 1355, pp. 131-142.
Springer, Heidelberg (1997)

Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASTACRYPT 2006. LNCS, vol. 4284, pp. 267-282. Springer, Heidelberg (2006)
Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492-505. Springer, Heidelberg (2004)

Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K. (eds.)
ASTACRYPT 2012. LNCS, vol. 7658, pp. 404-414. Springer, Heidelberg (2012)
Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415-440 (1987)

Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295-313.
Springer, Heidelberg (2010)

Lenstra, A.K., Lenstra, HW., Lovasz, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515-534 (1982)

May, A.: Using LLL-reduction for solving RSA and factorization problems. In:
Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm: Survey and Applications.
ISC, pp. 315-348. Springer, Heidelberg (2010)

Sarkar, S.: Reduction in lossiness of RSA trapdoor permutation. In: Bogdanov,
A., Sanadhya, S. (eds.) SPACE 2012. LNCS, vol. 7644, pp. 144-152. Springer,
Heidelberg (2012)

Sarkar, S., Maitra, S.: Cryptanalysis of RSA with two decryption exponents. Inf.
Process. Lett. 110, 178-181 (2010)

Tosu, K., Kunihiro, N.: Optimal bounds for multi-prime ¢-hiding assumption. In:
Mu, Y., Seberry, J., Susilo, W. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 1-14.
Springer, Heidelberg (2012)

van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24-43. Springer, Heidelberg (2010)



Improved Tripling on Elliptic Curves

Weixuan Li’?3, Wei Yu!'2®) | and Kunpeng Wang!:2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
yuwei_1_yw@163.com
2 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. We propose efficient strategies for calculating point tripling
on Hessian (8M+55S), Jacobi-intersection (7M+55S), Edwards (8 M 455
and Huff (10M +55) curves, together with a fast quintupling formula on
Edwards curves. M is the cost of a field multiplication and S is the cost
of a field squaring. To get the best speeds for single-scalar multiplication
without regarding perstored points, computational cost between different
double-base representation algorithms with various forms of curves is
analyzed. Generally speaking, tree-based approach achieves best timings
on inverted Edwards curves; yet under exceptional environment, near
optimal controlled approach also worths being considered.

Keywords: Elliptic curves + Scalar multiplication - Point arithmetic -
Double-base number system

1 Introduction

Compared with finite fields I, solving the elliptic curve discrete logarithm prob-
lem (ECDLP) in E(F,) is much harder. For example, index calculus is a subexpo-
nential algorithm that solves DLP for the multiplicative group of a finite field Fy,
yet the best known countermeasures against ECDLP take exponential time. It
means that when security level is equivalent, elliptic curve cryptosystem (ECC)
has key and message sizes that are at least 5 — 10 times smaller than those for
other public-key cryptosystems, including RSA and F-based DLP systems. This
superiority promotes the implementation of ECC in resource limited equipments,
like smart cards and cellular phones.

Practical efficiency of curve-based cryptographic system is significantly influ-
enced by the speed of fundamental operation: scalar multiplication [k]P of an
integer k € Z by a generic elliptic point P. A wide range of advances has been
established to improve the efficiency of scalar multiplication.
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On the one hand, since the introduction of double-base chain (DBC) by
Dimitrov, Imbert and Mishra [1], new and optimized scalar-recoding algorithms
have attracted considerable attention to speed up single-scalar multiplication.
See [2-6] for extensive progress on the subject. In spite of algorithmic properties,
implementation complexity of double-base ({2, 3} or {2, 5} as usually used) num-
ber system relies on the cost of basic operations on elliptic groups—addition or
mixed-addition, doubling, tripling, quintupling—at the same time. For instance,
by signed DBC with {2, 3}-base, any integer can be rewritten as a sequence of
bits in {0(2), 00, +1} in scalar evaluation phase, meanwhile the number of 0,
03 and 41 is exactly the amount of doublings, triplings, additions in point
multiplication phase respectively.

On the other hand, new elliptic curve forms with unified addition' formula
were successively investigated in literature, aiming to resist side-channel attacks
as well. From a security standpoint, unified addition formulas of Jacobi intersec-
tion [7], Hessian [8,9], Jacobi quartic [10], Edwards [11] and Huff [12] can exe-
cute doubling operations the same way as additions in insecure environments. It
leaks no side channel information on scalars, and provides a simplified protection
against simple power analysis (SPA). From an efficiency standpoint, arithmetic
on various curves establish new speed records for single-scalar multiplication.
In particular, twisted curves with different coordinate systems also draw some
interest, cf. [8,13-15].

This paper is on optimizing point operations of several previously mentioned
elliptic curves, on which we study the performance of different DBC algorithms.
We introduce background knowledge of DBC in Sect.2. Then we show faster
tripling formulas for Hessian, Jacobi-intersection, Edwards and Huff curves in
Sect. 3. Remarkably, our new Jacobi-intersection tripling formula is competitive
with that of tripling-oriented Doche-Icart-Kohel curves [16], which is the fastest
one at present. Cost of point tripling on various elliptic curves will be shown
in Table 1. Section4 contains a comprehensive comparison of total complexities
between three efficient scalar multiplication methods, including recently pro-
posed Near Optimal Controlled (NOC) [4], greedy algorithm [1] and tree [19]
approaches. We conclude this paper in Sect. 5.

We emphasize that with several choices of coordinate systems, the useful-
ness of Edwards curves in establishing speed records for single-scalar multiplica-
tion make it valuable to develope further improvements. Nevertheless our new
tripling formula doesn’t gain enough improvement. In compensation, we give a
new strategy for computing point quintupling on Edwards curve in appendix.

2 Preliminary

2.1 Double-Base Number System

The use of double-base number system (DBNS) in cryptographic systems is pro-
posed by Dimitrov, Jullien and Miller [17]. By DBNS, any positive integer n

1 An addition formula is advertised as unified if it can handle generic doubling, that
is, the two addends are identical.
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is represented as a sum or difference of {2,3}-integer (number of the form
2031, i.c.,

l
n= E ¢;203%
i=1

where ¢; € {1,—1} and ¢; = 1. [ is called the length of expansion.

DBNS can largely reduce the total complexities of scalar multiplication than
2-radix based representation systems, e.g. non-adjacent-form (NAF) family [18,
Chap. 9]. However, for DBNS there are at least two salient weaknesses. One
ingredient is on search problem: although this system is highly redundant, how
to find the shortest representation is still an open problem now. The other is
on trade-offs between storage and efficiency: to achieve best timings of DBNS,
extra storage space is needed, see [4, Example 1].

Of these two problems, the former one is quite tough—it is conjectured to be
NP complete. Yet the latter is relatively easy to solve by making a compromise
between storage and efficiency, known as double-base chain.

2.2 Double-Base Chain

Introduced as a special form of DBNS, DBC [1] translates any integer n into a
DBNS representation with restricted exponents, satisfying:

l
n= E ¢;2913%
i=1

where ¢; € {1,-1},and a1 > as >--->a;, by > by > --- > b

It’s feasible to apply Horner-like fashion in point multiplication phase due
to decreasing characteristic of {a;}1<i<i, {bit1<i<i- 2713 is called the leading
term of expansion, and it’s easy to see that we need no less than a; doublings,
by triplings and [ — 1 additions to perform such scalar multiplication [n]P.

Although how to find the shortest double-base chain (a.k.a canonic DBC)
for random integers remains unsolved, there are many efficiently computable
algorithms that can compute DBCs with low Hamming weight, for exam-
ple, binary/ternary [2], modified greedy algorithm, tree approach, multi-base
NAF [20], Near Optimal Controlled DBC.

3 Improved Tripling Formulas

In this section, we introduce improved step-by-step computation of tripling for-
mulas (P3 = [3]P;) for Hessian, Jacobi-intersection, Edwards and Huff curves
over Fy, with Char(F;) # 2,3. We omit affine coordinates, because basic arith-
metic (e.g. point addition, doubling) in them inevitably involve expensive field
inversions. When field multiplication doesn’t gain many time penalties, pro-
jective coordinates are frequently used instead, usually trading an inversion to
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several multiplications and reducing the total cost as a consequence. We drop the
cost of additions, subtractions, and multiplications by small constants in underly-
ing fields as well. Group operations are expressed in terms of multiplication(M),
squaring(S) and multiplying by constant(D) in the sequel.

3.1 Tripling Formula on Hessian Curves

The use of Hessian curves in scalar multiplication was introduced by Smart [21]
and Joye [9]. A homogeneous projective Hessian curve over F, is defined by

X34+ Y34+ 73 =dXYZ,

where d € F, and d® # 27. The neutral element is (1,—1,0).

A family of generalized Hessian curves was investigated in [8]. Efficient unified
addition formulas for it were presented, which are complete? too.

Introduced by Hisil, Carter and Dawson [22], the original formula of
inversion-free tripling on Hessian curves is shown as follows. Notice that choos-
ing another curve parameter doesn’t influence the computation of doubling and
addition. Reset curve parameter k = d~!. Inverting a constant on F, can be
computed in advance before scalar multiplicaion, without affecting the cost of
the tripling formula.

Xy = XP(Y? - 2P - Z20) + P (X? - Y2 (X - Z7)
Yz = YP(XT — Z9) (X} — Z7) — XP(X7 = YP) (Y — Z79)
Zs = k(X7 + Y7+ ZD) (X7 = YP)? + (X7 — Z9) (Y} — Z7))

The tripling operation can be computed by:
A~ X} B—Y?C—Z}, D+ (A-B)(C - A),

E«— (B-C)*F«—DB-0),G—(2A-B-C)?+2D+E
X3+ 2(A-E—~B-D),Ys «+ X3+ 2F,Z3 — k(A+ B + O)G.

The best known explicit algorithm for Hessian tripling costs 8M + 6S +
1D [22,23]. Our new tripling formula is valid by performing 8M + 55 + 1D
and 1S5 is saved. We point out that an extended projective coordinate system
(X,Y,Z, X% Y? 72 2XY,2X Z,2Y Z) for Hessian introduced in [24] reduces the
total cost of addition formula and is beneficial for side-channel attack resistance.
However this system is not suitable for tripling operations, so we ignore it in
efficiency-oriented comparison in Sect. 4.

2 As defined in [11] an addition formula is complete if it works for all pairs of inputs
without exceptional cases.
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3.2 Tripling Formula on Jacobi-Intersection Curves

Any elliptic curve over F, is birationally equivalent to an intersection of two
quadric surfaces in P3(F,). Recall from [7,10], a projective point (S,C, D, T) in
the Jacobi-intersection form satisfies

52402 =17
aS?+ D? =17,
where a € Fy, a(l — a) # 0. The identity point is (0,1,1,1).
Explicit inversion-free tripling formula [22] is as follows:
S = S1(k(kS? +6S{C} +4S7CY) — 4570% —3C%)
Cs = Oy (k(3kSS 4 4kSSC? — 4585C? —65{C}) — CF)
D3 = Dy (k(—kSS +4S5C? + 6S{C} +4520%) — C¥)
Ts = Ty (k(—kSY — 4kSYCT + 6S{CY) — 4S1CY — CF),

where curve parameter k = a — 1. The terms can be organized as:
A—S?B—C?C—A*D—B*E—(A+B)?-C-D,

F«— kC—D,G—kC+D,H « ((k—1)E +2F)G,
[ — (E—F)(F+kE),J — (k+1)EG,
Sg — Sl(H+I),03 — Ol(H—I),Dg — Dl(I—FJ),Tg <—T1(I— J)

The above formula costs 7TM +5S5+2D. Hisil et al. [22] proposed two versions
of tripling formula on Jacobi-intersection curves, which are known best, one costs
4M + 10S + 5D, and the other costs TM + 7S + 3D.

Moreover in [24], they showed how a redundant extended coordinate sys-
tem can remarkably reduce the cost of addition on Jacobi-intersection curves
by at least 2M. The homogeneous projective coordinate system is named as
“modified Jacobi-intersection”, by which a point is represented as the sextuplet
(S,C,D,T,U,V) with U = SC, V = DT. If we use it to perform tripling oper-
ation, we get 2M punishment and the total cost becomes 9M + 55 + 2D3. Yet
in this case, the new tripling formula of modified Jacobi-intersection coordinate
system is still faster than that of [23, Jacobi intersections].

3.3 Tripling Formula on Edwards Curves

In [25], Harold Edwards proposed a new form of elliptic curves and thor-
oughly investigated its mathematical aspects. Later Bernstein and Lange [11]
established fast explicit formulas for elliptic group on Edwards curves. They
also proposed inverted coordinate system that allows reduced additions in [26].

3 The computation of F in the first line can be done as E «— 2U? alternatively. It
saves 2 field additions.
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The reader is referred to [13,15] for arithmetic on twisted Edwards curves and
further improvements with different coordinate systems.
A Edwards curve over F, defined by homogeneous projective coordinate
(X,Y,2) is
E:(X?+YHZ? =22 +dX?Y?),
where ¢, d € F, such that dc* # 0, 1. The identity for elliptic group is (0, ¢, 1).
The tripling formula on Edwards curves [27] is shown as follows.

X3 = X1 (X{ +2X7Y2 —4YPZE + Y1) (XT — 2X3Y2 + 42Y32ZE — 3YY)
Yz = Yi(XT 4+ 2X7Y? — 4P X772 + YH(3XT + 2X7YE — 42 X728 — V)
X3 = Zy(X} = 2X3Y2 +4PYPZE — 3V (3XY + 2X3YE — 42 XEZ7 — YY)

The formula can be organized as:
A— X} B—Y?C«— (2¢-7,)*,D «— A* F « B?,

F— B(2A-C),G—A@2B—C),H —D+E+F,
I«—D-3E—-FJ—D+E+GK«—H+1+,
X3<—X1~HI,Y3<—Y1~JK,Z3HZ1~IK.

This operation costs 8M + 55 4 1D. To our knowledge, the previously best
known tripling formulas cost 9M +4S+1D or TM +75+1D [22,27]. New formula
given above trades 1M to 15, and gets several advantages because squaring costs
less than multiplication in most cases. Similar routine can be applied to inverted
Edwards coordinate.

Among Edwards curves family, the fastest addition is derived from its twisted
form —a2+y? = 1+dx?y? with (XY, X—ZY, Z) coordinate system. This redundant
representation system save 1M for addition compared with inverted Edwards,
leading to extra 1M for doubling though. So, it isn’t suitable for DBC and we
don’t discuss further application of this coordinate system, because the amount
of required doubling is usually more than that of addition.

3.4 Tripling Formula on Huff Curves

Joye, Tibouchi and Vergnaud presented unified and parameter-independent addi-
tion formulas for Huff’s form elliptic curves [12], and studied its cryptographic
application especially for pairing computations. The set of points on Huff satisfy

aX(Y? - 7% =bY (X2 - Z%),

where a,b € F, and a® # b?. The identity element for the additive group on
Huff’s is (0,0,1).
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The tripling formula is shown as:
X3 = X(XPY? — X222 Y277 - 3Z1)(X3Y? — X372 +3YPZ3 + Z1)?
Yy = Vi(XPY - X727 - Y27 = 32) (XY + 3X1 28 — Y77 + 7))
Zy=Z0(X3Y? — X723 + 3Y2 23 + ZH)(X3YE +3X3 27 — Y27 + 7))
C(BXIYE+ X2ZP Y272 - 7))
The terms can be organized as follows:
A~ X} B« Y}, C—2Z} D« AB+C),E« C(B+0),

F—CA+C),G—F—-EH«—D-FE—-2FI—2F+D-E,
J—D+E—-2G, K — H+I+J X3 —X,-HJ*Ys — Y, -HI?* Z3 — Z,-1JK.

Above formula costs 10M + 55, and is independent of curve parameters. We
don’t give detailed improvement of tripling formulas on its generalized forms,
due to limited benefits from the arithmetic on Huff’s model, even comparing
with Weierstrass curves in Jacobian coordinates. Interested readers are referred
to [28] for discussion.

3.5 Cost Comparison Between Tripling Operations

The rest of this section includes a cost comparison between tripling formulas
of various elliptic curves, see Table 1. Total complexities are counted for both

Table 1. Cost comparison between tripling formulas of different coordinate systems.

Systems Tripling cost Total cost

15 =0.8M |15 =0.75M
Huff (OLD)[28] 10M + 65 14.8M 14.5M
Huff 10M + 58S 14M 13.75M
Jacobian [23] 5M +10S+1D |13M 12.5M
Hessian (OLD) 8M +6S+1D | 12.8M 12.5M
Jacobi-quartic AM +11S+2D | 12.8M 12.25M
Jacobi-intersection-2 (OLD) | TM + 75 + 3D 12.6 M 12.25M
Jacobian, a = —3 [23] TM+7S 12.6 M 12.25 M
Edwards (OLD) 9M +4S + 1D 12.2M 12M
Edwards 8M + 5S + 1D | 12M 11.75M
Hessian 8M + 5S + 1D | 12M 11.75M
Jacobi-intersection-1 (OLD) | 4M + 10S + 5D | 12M 11.5M
Jacobi-intersection ™ + 58S + 2D |11M 10.75M
3DIK [16] 6M +6S +2D 10.8M 10.5M
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15 = 0.8M and 1S = 0.75M cases. We assume 1D = 0M. It makes sense
if chosen curve constants are of small values, or with extremely low (or high)
hamming weight, so that the cost of D is equal that of several negligible additions
on underlying field. Contributions introduced in this section are highlighted in
bold.

As shown in Table 1, tripling formula on previously mentioned curves gains
further improvement compared with the original ones (labelled with OLD in
bracket). In particular, our new Jacobi-intersection tripling formula is competi-
tive with that of tripling-oriented Doche/Icart/Kohel curves (denoted as 3DIK),
by a difference of 0.2M in “1.5 = 0.8M” case.

4 Experiments

In this section, we are interested in how different options of curve shapes
and scalar-recoding algorithms influence the speeds of scalar multiplication for
generic elliptic point P. Before starting speed records for implementing DBC on
various curves, basic arithmetic of involved curves is listed in Table 2, including
optimizations given in this paper and latest results in literature. Our analysis is
efficiency-oriented rather than simple power attack resistance, so several coor-
dinate systems with reduced addition formula but expensive doubling, tripling
operations are excluded in our consideration, as has been demonstrated in Sect. 3.

Table 2. Basic operations on various curves.

Curve shapes mADD DBL TRL

3DIK "™ +4S +1D |2M +75+2D | 6M +6S + 2D
Jacob TM +4S 1M +8S+ 1D |5M +10S + 1D
Jacob-3 TM +4S 3M +5S TM+TS
ExtJacQuartic 6M +3S+1D | 2M + 58S 4M + 115 + 2D
Jacolntersection 10M + 1S +2D |2M +55+ 1D | 7TM + 5S + 2D
ExtJacIntersection | 10M + 1S + 2D | 2M +5S + 1D |9M + 55 + 2D
Hessian 10M ™ + 1S 8M 4+ 55+ 1D
Huff 10M 6M + 55 10M + 58
InvEdw 8M +1S+1D |3M +4S+ 1D |8M +5S+ 1D

In Table2, “Jacob” is referred to short Weierstrass curves y? = 23 + ax + b
with projective Jacobian coordinate (z,y) = (%, %), and “Jacob-3” is referred
to the special case when a = —3. Moreover we consider a faster representation
system (XY, Z, X2, Z?) of Jacobi-quartic form y? = x*+2ax2+1, whose detailed
description and explicit formulas can be seen in [22-24]. “ExtJacIntersection”
is referred to modified coordinate system for Jacobi-intersection as has been
discussed in Sect. 3.
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As for algorithmic aspect, we select Near Optimal Controlled DBC, greedy
and tree approaches to generate DBCs for integers of 256, 320 and 512 bits.
What should be pointed out is that as analyzed in [19], the average length of
DBCs returned by tree approach tends to decrease when the size of coefficient
set grows. For fair comparison and erasing precomputation, the coefficient set of
tree approach is restricted to {1,—1}.

Total cost are counted disregarding necessary time to find optimal DBC,
merely includes: 1. the amount of mixed addition (mADD), corresponding to
[—the length of DBC; 2. the amount of doubling (DBL), corresponding to a;—
the power of 2 in the leading term of DBC; 3. the amount of tripling (TPL),
corresponding to by—the power of 3 in the leading term of DBC. Average num-
bers of required mADD, DBL, TPL of these algorithms are shown in Table 3.

Table 3. Theoretical operations consumption of different algorithms.

Bits | NOC Greedy Tree

mADD | DBL | TPL | mADD | DBL | TPL | mADD | DBL | TPL
256 |48 198 |37 58.73 | 153 65 | 55.15 | 142.57| 71.55
320 |62 260 |38 70.80 | 180 89 68.94 |178.21 | 89.44
512 |95 406 |67 | 112.07 |286 | 143 |110.30 |285.13|143.10

To allow easy comparison, we assume 15 = 0.8M as customary. Precomputa-
tion that derived from transforming affine points into extended projective coor-
dinate system is also disregarded, due to limited influence on total complexities.
For example, additional cost of transforming affine point (z, y) to ExtJacQuartic,
JacIntersection and ExtJacIntersection are both 1M.

Table 4. Total cost of NOC, greedy, tree approaches.

Curve shapes NOC Greedy Tree

256 320 512 256 320 512 256 320 512
3DIK 2394 |3018.8|4778.2|2463.8463051.36|4861.114|2418.802|3023.536 |4837.53
Jacob 2435.8|3050.4 |4844.4|2576.246 | 3211.16 | 5118.514 | 2547.698 | 3184.662 | 5095.32
Jacob-3 2341.8/2931.2|4655.2|2489.046 | 3103.56 |4946.914 | 2462.05 |3077.602|4924.03

ExtJacQuartic 2064.8|2567.2|4091.6|2243.332 |2813.92 |4487.788 2234.52 |2793.1884468.98
JacIntersection 2113.4/2647.6 4199 |2267.284 2823.64|4499.356 2238.09 |2797.652|4476.12
ExtJaclntersection |2187.4|2723.6 4333 |2397.284|3001.64|4785.356 2381.19 |2976.532|4762.32

Hessian 2468.4 3104 |4920.8|2560.7 |3180 5067.5 |2522.146|3152.718|5044.21
Huff 2978 3752 |5948 |3027.3 |3754 5982.7 |2978.9 |3723.66 |5957.7
InvEdw 2094 2613.6|4157.2|2245.424|2807.04 |4475.416 | 2227.854 |2784.854 | 4455.646

As can be seen from Table4, NOC is the fastest one among these three algo-
rithms, and it provides speed-ups for greedy and tree approaches by a factor of
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5.4% and 4.62 % approximately. Theoretically, superiority of NOC is yielded as
a result of two advantages. First, smaller Hamming weight of returned DBCs by
NOC leads to less addition operations during performing scalar multiplication,
making it particularly beneficial for reducing algorithmic complexity. Second,
for scalars of size t, it’s easy verifiable that leading terms in Table4 all satisfy
2013 ~ 2¢. Owing to high a;/b; ratio, NOC algorithm is extremely suitable
on elliptic curves with lower cost ratio of doubling over tripling, like inverted
Edwards, extended Jacobi quartic.

But how to find its optimal expansion by NOC algorithm is disappointedly
troublesome. Results in [4] reveal that this approach is practical to handle inte-
gers of size around 60 to 70 bits only. An alternatively applicative condition for
this approach is in cryptographic protocols with fixed-scalar multiplication, like
key-agreement. When handling scalar multiplication with generic scalars and
elliptic points, tree-based search is optimal.

We now turn to curve selections. For NOC, extended Jacobi-quartic is the
speed leader of both 256, 320 and 512 bits integers with necessary 5 registers
to represent a projective point. When using tree approach, inverted Edwards
coordinate system provides best performance with 3 registers to represent a
projective point during scalar multiplication. Besides, Jacobi intersection form
also behaves well, slightly slower than Inverted Edwards.

5 Conclusion

We have shown several optimizations for point tripling formulas on different
elliptic curves, largely improving the efficiency of double-base chains for scalar
multiplication. Moreover we provide an alternative efficient formula to calcu-
late point quintupling on Edwards curves in appendix, a potential usefulness of
which exists in establishing new speed records of quintupling-involved double-
base number system.

We point out that what we did on elliptic curves mainly focuses on the
arithmetic of their standard projective coordinates. We don’t give detailed opti-
mizations for all known extended coordinate systems. Some of them have been
discussed in this work; the others are quite redundant and required to be further
optimized in future work.

Taking everything into account, among discussed DBC algorithms, tree app-
roach is the optimal one for practical implementation on inverted Edwards coor-
dinate system for both 256, 320 and 512 bits integers. In some limited conditions
like small or fixed-scalar multiplication, NOC can be used as an alternative.

A Quintupling Formula on Edwards

We show a new formula to calculate the 5-fold of a point P on Edwards in
this section. Let (X5, Ys, Z5) = 5(X1, Y1, Z1). Explicit expression of (X5, Ys, Z5)
is quite involved so we exclude it in this context. Yet it’s straightforward
computable using curve equation and addition formula, one can accomplish it
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with the help of Magma or SageMath. An alternative algorithm for computing
(X5,Y5, Z5) is as follows:

A~ X} B—Y?C«— 7} D« A E« B* F « C?,

G+~ (A+C)?~-D~-FH+« (B+C)?-E—~F I« (A+B)? J«I-D-FE,
K«TI*L—1-G—-HM<+«— (D—-E)* N« J?

O — (D—E)(K —2d(K — M —2N)),P « 2M(I +4F — G — H),
Q+—K—4d-N,R— (D—E -G+ H)Q,S «— L(2M — Q),
T—O+PU—P-QV—R+SW<—R-S,

X5 — X((U+W)U-W),Ys —Yi(T+VNT =V),Zs — Z,(T+V)(U - W).

The above algorithm derives an efficient quintupling formula that costs
10M + 12S + 2D. Including previous work reported in [27], cost of different
strategies for computing projective quintupling formula on Edwards curves is
listed as Table 5. It turns out that the new formula is preferred in most practical
environments when D\M, S\M-ratio are less than 1.

Table 5. Different quintupling formulas on Edwards curves.

Cost analysis
Bernstein et al. | 17TM + 75
Bernstein et al. | 14M + 115

This work 10M + 125 + 2D
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Abstract. With the prosperity of social networking, it becomes much more
convenient for a user to sign onto multiple websites with a web-based single sign-
on (SSO) account of an identity provider website. According to the implementa-
tion of these SSO system, we classify their patterns into two general abstract
models: independent SSO model and standard SSO model. In our research, we
find both models contain serious vulnerabilities in their credential exchange
protocols. By examining five most famous identity provider websites (e.g.
Google.com and Weibo.com) and 17 famous practical service provider websites,
we confirm that these potential vulnerabilities of the abstract models can be
exploited in the practical SSO systems. With testing on about 1,000 websites in
the wild, we are sure that the problem that we find is widely existing in the real
world. These vulnerabilities can be attributed to the lack of integrity protection
of login credentials. In order to mitigate these threats, we provide an integral
protection prototype which help keeping the credential in a secure environment.
After finishing the designation, we implement this prototype in our laboratory
environment. Furthermore, we deploy extensive experiments for illustrating the
protection prototype is effective and efficient.

Keywords: Single Sign-on - Web security - Integrity

1 Introduction

As a convenient and popular authorization method, single sign-on (SSO) is widely
deployed by multiple websites as a way for logging in with a third-party account. For
example, you can easily log into Smartsheet.com and Rememberthemilk.com using your
Google account instead of individual accounts from each of them. It means that your
Google account is authorized to access their resources by both websites. SSO reduces
password fatigue from different username and password combinations and time spent
on re-entering passwords for the same identity.

Thanks to the prosperity of social networking, multiple SSO systems, such as
OpenlD [4], Google AuthSub [20], SAML [7], and OAuth [5, 13], have been widely
deployed on commercial websites. The SSO system works through the interactions
among three parties: a client browser (the user), the identity provider (IDP, e.g.
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Google.com), and service provider (SP, e.g. Smartsheet.com). The security of an SSO
system is expected to prevent an unauthorized client from accessing to a legitimate user’s
account on the SP side. Given the fact that more and more high-value personal data are
stored on the Internet, such as cloud websites, the flaws in SSO systems can completely
expose the private information assets to the hackers. It forces SSO system developers
to try their best to patch the flaws or build up a safer SSO system. However, in recent
years, more and more logic flaws and vulnerabilities have been discovered.

By analyzing many popular commercial websites, we abstract the practical SSO
systems into two categories. The first category of SSO systems is deployed with
OAuth2.0 protocol, which is standardized by RFC 6749 [11] and is used to replace the
previous SSO systems such as OpenID and AuthSub. The previous work on OAuth2.0
mostly focuses on the formal analysis [2, 15, 29] and auto detection of the vulnerabilities
[2, 39]. But they do not come up with practical solutions. We focuses on the practical
OAuth2.0 SSO systems deployed on the commercial websites, such as Google and
Weibo, then extracts the workflows of the practical SSO OAuth2.0 systems. Besides,
we also analyze the independent developed SSO systems. We find that those independent
developed SSO systems follow a simple communication model which has only three
steps. Without doubt, we find that both of these categories of SSO models have vulner-
abilities.

By rechecking the commercial websites under our built general SSO models, we
find that almost all of them obey the models and the vulnerabilities are similar on each
website. Moreover we also find that some websites deploy SSO systems that mix the
two general model together. This mixed model makes the analysis a bit complex. But
we still find the integrity problems in the mixed model. We give a real world example
of the mixed model SSO system in Sect. 4.

As the vulnerabilities can all be attributed to the lack of integrity protection on the
login credential, we attempt to protect the credential’s integrity with cryptographic
method and try to not affect the original performance of the SSO system. In this paper,
we propose protection prototype in Sect. 5. Our prototype can prevent the attackers from
stealing the victim’s credential and logging into victim’s account with the entire access
rights as the original victim.

Contributions. We first classify current popular SSO systems into two categories and
build two abstract SSO models for analyzing the security of practical SSO systems. Then
we parse the workflow of two kinds of SSO models in depth and find the vulnerabilities
in those models.

Second, we verify that the vulnerabilities which pervasively existing in practical
SSO websites obey the logic vulnerabilities we discovered in the abstract models.

Our third contribution is attempting to design a protection prototype. For mitigating
the vulnerabilities, we focus on the integrity protection of the credentials by binding
them with a protected parameter. As the channel that has the user browser’s participation
is not secure enough, our protection prototype exploit a direct channel (or private
channel) between IDP and SP to deliver the binding parameter. The prototype can guar-
antee the integrity of the credentials and mitigate the threats from the network attacker
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and web attacker. The evaluation also shows that the overhead of prototype’s
performance is low comparing with the original SSO model.

2 Abstract Models of SSO Protocols

In this section, we discuss about our abstract models which are extracted from the prac-
tical SSO systems. We parse these practical systems in our research and focus on the
information and data exchange workflows in them. In order to construct the models, we
first investigate those websites that provide SSO login method and parse the login APIs
of these websites with practical login actions. We manually analyze the massive SSO
login documentations and extract the key parameters that should be pay much more
attention during the parse of practical SSO login actions. As a result, we classify our
models into two categories, which are named independent SSO model and standard SSO
model. The independent model reflects the SSO models which the websites developed
independently. The standard model represent those websites who follow the standard
SSO information exchange protocols such as [11].

In our analysis, we summarize that a basic SSO system contains three entities, which
are named IDP (Identity Provider), SP (Service Provider) and Client (Users), and the
communication channels that connect each of the three entities together. The IDP is a
server or a service cloud that stores user’s account and password. It provides authenti-
cation of the identity of an individual user and authorizes the SP to access user’s account
on the IDP side. The SP, which is also called RP(resource provider) in some previous
researches, is also a server or cloud that provides application services, such as a forum
website, a cloud storage or a news subscription website. The client, in our research,
represents a web browser that is connected to the internet which plays both as a redi-
rection device and a resource visitor.

IDP Client sp IDP Client sp

(brgwser) (brgmser)
A & g &
SIS Sis &) N

SSOLogin.Request SSOLogin.Request
Redirect (SSOLogin.Request)

Redirect| (SSOLogin.Request)

IDP-logn.Request
IDP-login.Response
Redirect (crefdential)

IDP-logn.Request

IDP-login.Response

Redirect (credeftial / token / Session ID) Token.Request(credential)
SSOLogin.Response Token.Response(access token)
.......... ; SSOLogin.Response
I —
Fig. 1. Independent SSO model Fig. 2. Standard SSO Model

2.1 Independent SSO Model

In the independent SSO model, we find that the IDP and SP only exchange data or
messages through the Client (which is specifically a web browser). The Client acts as
redirect party who can get all the messages and data between the IDP and SP. In Fig. 1,
we show the detail workflow of the independent SSO model and the key parameters
delivered in the communication channels. In the model, we mark out three channels in
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3 different colors. We call the 3 channels as SSO-login channel, redirect channel and
IDP-side verification channel. The SSO-login channel is only between the Client and
the SP(the purple part of Fig. 1). It represents the SSO login request and response round
trip in the model, and it stands at the first and last steps in the workflow. The redirect
channel exploits the redirect functionality of the Client’s browser (the green part of
Fig. 1). In this part, the Client works as the redirect device who has the ability to receive
and forward the messages between IDP and SP. The verification channel is used to
deliver the messages between IDP and Client for verifying the user’s identity who is on
the Client-side (the orange part).

Now, we depict the workflow of SSO login and authentication in this model step by
step.

o Step 1: When the Client want to log in the SP using the SSO method, it generates an
SSOlogin.Request and delivers the login request to the SP server through the SSO-
login channel.

e Step 2: When the SP receives this SSO login request, a redirect channel is generated
among IDP, SP and Client. Then the SP redirects Client’s SSO login request to the
IDP through the Client’s browser which acts as a relayed device.

o Step 3: After the IDP gets the redirected SSO login request, The IDP firstly need to
sponsor a verification channel with the Client directly. Then the IDP verifies the
identity of the user by checking the user’s username and password which is supplied
from the Client.

e Step 4: Once the verification is successfully accomplished, the IDP responses a
credential (it could also be a token or a session ID) to the SP using the redirect channel.

o Step 5: After the SP gets the redirected credential, it responses the Client with an
SSOlogin.Response under the SSOlogin channel.

When the user on the Client side receives this SSOlogin.Response, the user is capable
to browse the custom content on the SP server, such as the news subscription.

Security Analysis. First of all, we review the model from the communication entities’
perspective. There are three entities on the inter-connected channels (IDP, SP and
Client), we discuss the security capability of them respectively. As the IDP and SP are
represented as the servers in the model, they could be mass-flowed Internet websites in
the real world, such as Google and NetEase. These websites have large quantity of
sensitive data, which need to be protected, and enough financial investment on the
security part. So the IDP and SP have much stronger security capability than just a
personal PC or laptop. However, on the opponent side, the Client could just be a
computer or smart mobile device. The investment on these personal devices security is
limited, many malwares and Trojans focus on exploiting the personal devices other than
a website.

Next, we review the model from the communication channels’ perspective. With the
TLS/SSL encryption technics used in the Internet communication, it shows that an
encrypted channel are safer than an unencrypted channel. However, our research shows
that only a few practical SSO systems in this model used HTTPS (which supports TLS/
SSL) as one of their communication channels.
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From the security analysis on the two aspects, we can conclude that the messages
which are redirected by the Client on the redirect channels could expose the content into
insecure environment. The key point of the independent SSO model’s security should
be focus on the step 4 of the model’s workflow. In other words, this model’s security
depends on the confidentiality and integrity of the significant parameters, such as
credentials, tokens or sessionIDs in the redirect channel through in step 4.

2.2 Standard SSO Model

The IDP and SP exchange messages not only through the Client as the redirect party,
but also through a direct connection between them. In Fig. 2, we show the detail of this
model’s workflow. Comparing with Fig. 1, it has 4 channels: SSOlogin channel, the
redirect channel, the verification channel and the direct channel. As the first three chan-
nels have been described in Sect. 2.1, we skip the discussion on them. Here we focus
on the fourth channel — the direct channel (the red part). This channel is built between
the IDP and SP directly without the participation of the Client. The functionality of this
channel is to check whether the credential is generated by the same IDP and exchange
for the second credential— access token.

Now we depict the details of the login workflows in the standard OAuth2.0 SSO
model. The first 4 steps are similar with the independent model, and the step 5 and step
6 shows the additional token exchange in this SSO model.

e Step 1: When the Client starts a login request to the SP using the SSO method, it
generates anSSOlogin.Request and send it to the SP through the SSOlogin channel.

o Step 2: Then the SP redirects Client’s SSO login request to the IDP through the
Client’s browser which acts as a relayed device.

o Step 3: After the IDP gets the redirected SSO login request in step 2, the IDP sponsors
a verification channel with the Client directly. Then the IDP verifies the identity of
the user by checking the user’s username and password which is supplied from the
Client. The step is shown as IDP-login.Request and IDP-login.Response in the
orange part.

e Step 4: Once the verification is successfully accomplished, the IDP responses a
primary credential to the SP using the redirect channel as the response to Redi-
rect(SSOlogin.request).

o Step 5: When the SP gets the redirected credential, it does not directly response the
Client on the SSOlogin channel. What the SP has to do is to resend the credential
back to the IDP to get the access token on the direct channel, which is used to allow
the user on the Client to access the resources on the SP. This step is shown as the
Token.Request(credential) and Token.Response(access token) in Fig. 2.

o Step 6: After the SP gets the access token, it response the Client with an SSOlogin
response through the firstly established channel.

Now if the user successfully passed all the 6 steps, he should be able to visit the
special subscription recourses on the SP.
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Security Analysis. We still analyze the standard model from two perspectives. From
the perspective of communication entities, the vulnerability in the three entities lies on
the Client side which has the weakest protection technic. From the perspective of
communication channels, the vulnerability exists in the insecure channel. Here it refers
to the redirected channel where the Client takes part in.

Combining these two aspects, our analysis focuses on the Client side and the
communication channels nearby it. It means that the redirect channel is still significant
in our security analysis.

As is shown in Fig. 2, the standard SSO model extends the independent model with
extra credential exchange steps. These steps are used for checking the correctness and
availability of the credential and exchange for the real token. In order to keep these steps
secure, this model uses the private direct connection between the IDP and SP without
the participation of the Client and the redirect channels. It makes the attackers on the
redirect channel environment have no chance to get the access token for login. From
this point, this model is much safer than the independent model.

But when we go further, we find that the standard model still has its vulnerability
which is analogous to the independent model. The integrity of the credential in step 4
is still not well-protected. Even though the following steps provide the direct channel
for the security, the attacker can still stealthily get the content that contains the victim’s
credential on the redirect channel. Neither the SP nor the IDP checks whether the
credential matches the Client’s identity.

3 Adversary Models

We consider two different adversary models called network attacker [2, 29] and web
attacker [21] which have the potential capability to exploit the vulnerabilities of practical
SSO systems.

3.1 Network Attacker

Network attacker can be separated into two categories: active attacker and passive
attacker. The active attacker is capable to intercept and modify the packages in the
channel where it lies. The passive attacker is only capable to eavesdrop the packages on
the channel, but cannot intercept or modify them. We consider man-in-the-middle
attacker as our network attacker model, which belongs to one of the active attacker
patterns. The man-in-the-middle attacker can intercept the messages on the channel
between Client and the IDP or on the channel between Client and the SP. The credentials
redirected by the Client could be intercepted and modified by this attacker.

In practice, for mitigating the threats from the man-in-the-middle attack, many web-
based data transfers are available only under secured channels (for example, HTTPS).
The encrypted channel makes the man-in-the-middle attack becomes unavailable
because the attacker cannot tell which parameter is the correct credential from the cipher
text. However, recent researches have indicated that the encrypted channel cannot
completely stop the man-in-the-middle attack on the Internet. The attacker is able to
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deploy some HTTPS proxies [33-37] on the channel between the Client and Server to
intercept the encrypted data stream and modify them on the proxy. On those proxies,
the messages are decrypted, the attackers can understand the messages and pick out the
credentials in the data stream. The trick of these HTTPS proxies is to pretend to be the
forged server to the real client or forged client to the real server. These proxies just sit
in the middle, decrypting traffic from both sides. Here how to trick the victim to install
these HTTPS proxies is a kind of social engineering attack projects, and it is out of the
scope of our paper.

Figure 3 shows the two roles the attacker is able to play in the communication
between client and server.

Real Forged§ Forged Real
client server: C"ent server
‘ @;J HTTP /HTTPS a HTTP /HTTPS |

- g | &)

Manipulate the data stream directly

Fig. 3. Network Attacker

3.2 Web Attacker

Web attacker refers to those who control a malicious website on the Internet. The web
attacker first lures the victim to visit this malicious website by following a malicious
URI in a hyper-linked image or a malicious link address, such as a misleading link or
image. When victim visits the malicious website, the attacker injects malicious code
into victim’s browser (e.g. XSS attack [30]) or replace victim’s credential with attacker’s
(e.g. CSREF attack [28]). In the SSO login situation, the web attacker can require the
victim delivering the credential to the malicious website under his control (XSS attack)
or pushing the attacker’s credential on the victim’s browser for cheating the victim to
login the SP as the attacker (CSRF attack).
Figure 4 shows the capability of the web attacker.
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Fig. 4. Web Attacker

Our practical attack experiments (Sect. 4) and our protection prototype (Sect. 5)
consider the threats under these two adversary models.
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4 Case Study of Practical SSO Websites

In this section, we discuss our practical attack experiments on some of those famous
websites in China, including Google, Weibo [22, 24], Tencent QQ [14], Alipay [17,
27], Taobao [26]. These five websites that we picked out all play the role of the IDP.
Besides the Alipay websites deploys as our independent SSO model, the rest implement
the standard OAuth2.0 SSO model we summarized in Sect. 2. For each IDP, we register
two test account, namely Alice and Bob, and test whether the vulnerabilities work when
logging into a practical SP. In our experiments, we login Bob’s account with Alice’s
username and password by stealthily getting Bob’s credential when Bob starts his login
workflow.

Our experiment environment is as follow. First of all, we build up a local area
network (LAN) to impersonate our test environment and connect two computers to the
LAN. Then we deploy windows 7 as the operating system and play the role of victim
(which means to be Alice) on one of the computers. We deploy Ubuntul4.10 as the
attacker (which means to be Bob). On the Alice’s computer, we install a web debugger
tool —fiddler [9] for analyzing the web packages the victim gets and sends. On the Bob’s
computer, we install mitm-proxy [33], which is able to intercept the HTTPS data stream
traffic on it, to filter the victim’s SSO login messages for intercepting the Alice’s login
credentials.

4.1 Google Account

There are many service provider websites deploy Google account as one of their login
method. In this part, we choose an online project management software — smart-
sheet.com [23] as our test SP. Although there are some SSO flaws have been reported
in the previous research [3], their research focuses on the logic flaws on the smart-
sheet.com that the developers do not consider carefully and talks little about the vulner-
abilities in the SSO protocol which is implemented between Google and Smartsheet.
Besides, when we begin our study, Google has changed its SSO protocol from OpenID
to OAuth2.0. So we cannot directly get experience from the previous research.

Fortunately, our study shows that the Google SSO login model follows our standard
SSO model in Sect. 2.2. In our experiments, we register two new Google accounts, for
example, Alice @ gmail.com and Bob@ gmail.com, and login smartsheet.com.

We search Alice’s decrypted messages on the proxy and find the credential is named
as code. Then we let Bob intercept Alice’s following data traffic and stealthily keep
Alice’s code value in Bob’s proxy. Now we start Bob’s login workflow and also block
the data stream when Bob gets his own code. Then Bob replaces his own code with
Alice’s, which is cut from her login workflow, and releases the modified redirect data
stream to smartsheet.com. Without doubt, Bob successfully logs into Alice’s account
and controls the whole content of Alice’s. Now Bob can do whatever he want to on the
Alice’s account.

During our impersonated attack, the only protection on this redirect message depends
on the HTTPS protocol. But the integrity of this code is not protected. That is why Bob
can exploit Alice’s account without being detected by either Google or smatsheet.com.
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4.2 Weibo.Com

Weibo.com also depends on standard OAuth2.0 SSO framework. It redirects the login
credential through user’s browser to the SP and it also calls this credential as code.
However, different from the Google SSO login method, Weibo does not implement
encrypted channels among the three abstract entities. Both network attacker and web
attacker can be able to easily steal the victim’s login credential.

In our experiment, we choose Baidu [38], a famous search engine service and cloud
storage service provider in China, as the instance of the SP server. Like what we do in
the Google case, we also register two Weibo accounts, which we still call them Alice
and Bob, and confirm the availability of each account. Then we start our vulnerability
exploit test. We put Bob on the proxy which Alice’s login messages have to go through.
On the proxy, we filter Alice’s traffic data stream and search for the login credential
which Weibo redirects to Baidu. As the channels are not encrypted every network
package on the internet is displayed in plaintext. Bob is able to read Alice’s packages
directly and gets the login code of Alice’s Weibo account.

Weibo redirects the code through a piece of JavaScript code in the response to the
Alice’s browser. The JavaScript code of Alice and Bob are shown as below:

On Alice’s side, the code is as follows:

<script language="javascript'>
callbackfunc ({
http://baidu.com/.../afterauth?mkey=xxx
&code=code-of-alice});

</script>

On Bob’s side, the code is as follows:

<script language=javascript'>

callbackfunc ({

http://baidu.com/.../afterauth?mkey=yyy

&code=code-of-bob}) ;

</script>

Comparing the JavaScript code of two accounts, we find that the only difference of
the redirect URI is the parameters: code and mkey, where the code is the login credential
and the mkey is a ticket for preventing the CSRF attack. On the browsers, we intercept
the redirection of the credentials of both Alice and Bob and replace Bob’s code with
Alice’s. Then we redirect the modified Bob’s URI back to Baidu. As a consequence,
Baidu accepts the modified URI and regards Bob as Alice because Bob gives Baidu
Alice’s credential.

4.3 Alipay.Com

Alipay.com is an online payment and e-commerce management website (like PayPal)
hosted by the Alibaba Group, a very famous Chinese online trade company. In practice,
Alipay accounts can be used to login some other popular websites in China, such as
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Xunlei and Youku. In our test, we choose Xunlei as the test SP and login it with Alipay
accounts. Alice still plays the role of victim and Bob is the attacker.

In our test, we find that the Alipay is not following our standard SSO model, it is
constructed under the independent SSO model which is discussed in Sect. 2.1. The SP
does not resend the credential back to IDP for checking the validity. So we focus on the
credential, which has been redirected through the user’s browser, and detect whether it
could be modified without being known by the SP.

Unfortunately, our test shows that the credential is composed with three parameters
which is very different from the only one parameter in the standard OAuth2.0 model.
These three parameters are User_ID, token and sign.

Although there exist a signature to protect the credential, we still find a way to let
Bob hack into Alice’s Alipay account. We test the Alipay SSO login method a lot of
times, and find that the signature sign only protect the parameter of roken.

It means that we can modify the User_ID to any value we want without being
detected by Xunlei.com. Furthermore, we discover that the User_ID is a constant and
plaintext. Each time we login no matter Alice’s account or Bob account, the User_ID is
aninvariant. It means that the User_ID is guessable which is similar to the vulnerabilities
in[2, 3, 15]. What the attacker need to do is to follow some rules to guess alegal User_ID.
With this guessed User_ID attacker can log into any legitimate user’s Xunlei account
and get their sensitive data.

The Alipay SSO system also deploy a piece of javascript code as the redirect method.
At the same time, its redirect messages only depend on HTTP which is insecure for
delivering URL and significant parameters. The redirection URI is like: http://
xunlei.com/../entrance.php?..token=xxx&user_1id=USERID&sign=
XXX&...

Unlike the vulnerability in the standard OAuth2.0 SSO model, this vulnerability can
be attributed to the logic flaws when the developers design the entire system. So it only
suit for the Alipay SSO system and is not universal.

4.4 Taobao.Com

Taobao.com [26] is the most famous online shopping website in China. It also provides
SSO login method, which is called AliSSO system. AliSSO system mixes the features
of both independent SSO model and standard model together. From the perspective of
the three entities of IDP, SP and Client, AliSSO follows the independent SSO model.
When the credential is got by the SP, it does not need to send it back to IDP for checking
the validity.

However, the SP does not directly accepts this credential. AliSSO separates the SP
into two parts, in which, one is a resource server and the other is an authentication server.
The resource server stores the user’s data and information and provides services to the
user. The authentication server is in charge of certificating the identity of the legitimate
user. When the SP gets the credential, it firstly generates another access token and redi-
rects the token to the authentication server through user’s browser after the authentica-
tion server gets the second access token, it generates a ticket and directly send to the
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resource server without the participation of user’s browser. These steps are much more
like the standard OAuth2.0 SSO model.

In our experiment, we choose weibo as an instance of our SP websites. Then we
register two taobao accounts, namely Alice and Bob, and confirm the availability of
each account. After that we begin our vulnerability exploit test. We suppose Bob as the
attacker and put it on a proxy which Alice has to go through.

When we catch the data stream of Alice between taobao and weibo, we find that it is
hard to modify the credential, which is named as 7bp. As this parameter is protected by a
signature, any change of the bp will not be accepted by weibo. Then we let Alice’s login
workflow continues. After weibo gets the credential tbp and check the signature, it gener-
ates a second credential and redirects it to the authentication sub-server, login.weibo.com.
This redirection also goes through Alice’s browser, we can catch it on the proxy. When the
sub-server gets the second credential, alt, it directly send alf to resource.weibo.com
following the standard OAuth2.0 SSO model. After resource.weibo.com gets the alt, it
responses Alice with her personal content.

In this login workflow, we find the second credential, alt, is not well protected. As
Bob is on the proxy that Alice has to go through, he can replace his alt with Alice’s and
login Alice’s account on weibo.com without any prevention from either weibo.com or
taobao.com.

We have reported this vulnerability to the technic support group of Weibo, and got
their thanks email in two days. Before we write our paper, this vulnerability has been
patched.
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Fig. 5. Classified SSO Models

In practice, we have tested 1,037 websites manually. Most websites, except Google,
in our experiment are located in China because some most famous websites, such as
Facebook and Twitter, cannot visit in China mainland. But this problem does not affect
our research. The conclusion of our tests is that most websites deploy the standard
OAuth2.0 SSO model. The rest are independent SSO model and mixed SSO model (such
as the taobao.com). The mixed model is not a new model, it is just combined from the
two abstract SSO models together. The classified model graph is shown in Fig. 5. Then
we pick up 9 typical SP websites and 5 IDP websites from our tested SSO websites. And
we list the vulnerabilities and flaws of them in Table 1.
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Table 1. SSO threats in real-world websites

SP Smart- | Remember- | Weibo | Baidu | Youku | Sohu | Xunlei | Iqiyi D
1DP sheet themilk
Google A A
Weibo A A A A A
QQ A A A A A A
Alipay O O | O
Taobao ©) O

Note: A — Standard OAuth2.0 SSO model; [J - Independent SSO model; O — MixedSSO model;

5 Integrity Protection and Threat Mitigation

We can attribute the vulnerabilities we discuss in previous sections to the lack of the
login credentials’ integrity protection. In this section, we give out our prototype scheme
for protecting the login credentials integrity. Our prototype can mitigate the threats from
the network attack and web attack which are under the adversary models in Sect. 3. We
build up our test environment in our lab with a LAN and two servers which play the
roles of IDP and SP. Then we implement our prototype on those two servers and test it
through another computer which acts as the Client. Finally, we compare the performance
of our prototype and the original SSO system. The consequence shows that the perform-
ance of our prototype is acceptable.

5.1 Prototype Design

Our basic purpose is to avoid web attackers or network attackers stealing the legitimate
user’s login credentials and protect the credentials integrity. In this part, we first describe
how our prototype prevents the web attackers and then we talk about how it prevents
the network attackers. The workflow of our prototype is shown in Fig. 6.

Protection from Web Attackers. We use Same Origin Policy (SOP) [32] and
HTTPOnly Policy [31] on the SP side to perform the protection. This protection can
avoid attacker luring victims to login attacker’s account unconsciously.

On the SP side, we add a parameter, stat, in the SSO redirect URL and set the
browser’s cookie with a parameter, signstat, which is a signature of stat and label this
cookie as HttpOnly. When the IDP gets the redirect URL, it regards the parameter of
stat as a component of the URL and append the credential after it. Then the IDP delivers
it to the Client’s browser. When the redirection URL that contains the credential and
stat comes into the Client’s browser, the browser redirects the credential to the SP with
cookie back. When the SP gets the credential, stat and cookie back, it first computes
whether the signature of stat in the URI matches the signature value in the cookie. If the
signature of sfat matches the value in the cookie, it means that this URL is not from the
web attacker. The SP believes the user on the Client is a legitimate user.
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The security of this design of stat depends on SOP and HTTPOnly which need the
participation of the cookie. As the web attacker lures the victim to visit a malicious
website under his control, the attacker prefers to put his own credential as a redirect
URL in the response and send back to victim browser. When the victim gets the redirect
URL that contain attacker credential, the browser wants to send the URL to the SP. If
there is not protection, the attackers credentials would be send to SP and the SP would
regard the victim as the attacker. In case the victim does not notice that he has logged
into a wrong account and upload some significant files in this account, attacker can get
those files a few minutes later just by legally login his account. However, with the help
of SOP and HTTPOnly, this threat is blocked.
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Fig. 6. WorkFlow of the Protection Prototype

Protection from Network Attackers. In order to mitigate the threats from network
attackers, we need the participation of both IDP and SP. Besides, we also need two
different channels: one is the redirect channel through the Client, the other is the direct
or private channel between the IDP and SP.

In our adversary models, the network attacker can hack into an encrypted channel
with the help of the SSL-proxy tools (such as mitmproxy). What the attacker need to do
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is to stealthily install a HTTPS proxy certificate on the victim’s computer. But this work
is out of our scope, we do not discuss it in our paper. This strong capability makes the
confidentiality invalid on the HTTPS channels. In this situation, the integrity of the
credential becomes a very significant point in the SSO system. But neither standard
OAuth2.0 framework nor independent developed SSO system protect the integrity very
well. We have easily logged into another user’s account without knowing his or her
username and password (Sect. 4). For mitigating the threats from the network attackers,
we use the direct channel between IDP and SP to deliver a binding parameter, which we
call it tag, for verifying the credential’s integrity. Supposed that this direct channel is
invisible in the attacker’s view. So the fag is delivered securely between IDP and SP.
After IDP delivers the rag directly to SP, it generates a corresponding credential which
is bonded to the tag. And we let the IDP keep the pair of the original (tag, credential)
in its database for checking the integrity of credential that delivered back from the SP.
Then the IDP redirect the credential to Client’s browser. On the SP side, it gets the tag
from the direct channel and gets the credential from the redirect channel. Once the SP
gets the login credential, we call credential’ from the redirect channel, it binds the
credential and the tag with a signature function sign(credential ||tag). The sk is the
secrete key which is negotiated between IDP and SP. It is used for signing the value of
credential ||tag. Then SP delivers the signature back to IDP through the direct channel
with the (tag, credential’) pair. Correspondingly, the IDP has a public key pk for veri-
fying the signature. After the IDP gets the signature and (fag, credential’) pair, it first
searches the database with the value of tag. Then IDP verifies the signature of
sign, (credential ||tag) with the verify function verif,,(tag, credential, sign,,). 1f the
verification successes (veri];k = 1), it means that the attacker does not modify the
credential when redirecting it. At this time, the IDP sends the access token directly to
the SP, then SP notices the Client it has logged in SP successfully. If the verification
fails, IDP reports an error and drop the (tag, credential) pair in the database.

5.2 Implementation

We deploy two desktop computers to impersonate the real SP and IDP called s-SP and
s-IDP. Both of the computers have an Intel Core i7-3770 3.4 GHz CPU and 4 GB
memory. The operation system is Ubuntu 14.10 LTS. We install the service software,
including PHP 5.5.11, Apache 2.4.9 and MySQL server 5.6, and configure the web
environment on both computers.

In our implementation, we deploy our prototype on the standard OAuth2.0 SSO
framework and we call the login credential as code. In order to simplify the workflow
of the impersonated SSO system, we omit the user’s IDP-login steps. When an SSO
login request comes from s-SP, s-IDP circumvents the verification steps and directly
begins the authorization and login operations. During the authentication and authoriza-
tion steps, we give s-SP a secrete key, sk, for signing the code with a binding parameter,
tag, which is got through the direct channel from s-SP, and we give s-IDP a public key
pk for verifying the signature of code that is given by the s-SP.

On the s-SP side, we add a parameter, stat, for preventing the attack from a malicious
website. This parameter not only exists in the redirect URL but also has a signature in
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the user browser cookie. With the help of the SOP and HTTPOnly policies, the web
attackers cannot get the signature of stat in the cookie between browser and the real SP.
Once the forged stat is delivered back to s-SP, the server finds that the star does not
match the signature in the cookie and it will stop the following login workflow. This
parameter can perfectly prevent the CSRF and XSS attacks that are sponsored by the
web attackers.

Another thing need to pay attention on the s-SP is the synchronization of the param-
eters for generating the signature. Here they refer to tag and code specifically. It should
be careful to handle this problem, because tag and code come from different channels.
The tag comes from the direct channel between the s-IDP and s-SP and it is delivered
to s-SP before the code. But the code comes through the redirect channel which is relayed
from the user’s browser. These two parameters cannot arrive at s-SP at the same time.
If we do not consider the synchronization of these two parameters, s-SP may put Alice’s
code and Bob’s tag together and compute a signature of the mixed-user parameters which
is not correct for the s-IDP for verification. This problem might cause Bob logs into
Alice’s account. Our solution on this problem is simple. We build a concurrence lock
on the s-SP side, which makes the s-SP can only deal with one user’s login request.

5.3 Evaluation

Our implementation is about 100 lines of PHP and JavaScript code. Our evaluation
depends on the execution time of the code. We set two timestamps in the entire login
workflow. The first one is set at the SSO login page, when the user clicks the SSO login
button, we get a timestamp. The second one is set on the login success page, if the user
login successful, we record the second timestamp. The execution time is the difference
of the two timestamps. Then we execute 400 times, and get the average time as the
general execution time. The comparison between the original SSO model and our
protection prototype is shown in Fig. 7.

Comparison between original and our prototype

Zob 10 TR Yy
EE R A O
Original Our prototype

Fig. 7. Time spending comparison between original SSO model and our protection prototype

For the performance, we compare our prototype with the original SSO model which
do not show any protections on the integrity of the credentials. Averaged 400 inde-
pendent executions of each model, the overhead of the protection prototype is only



224 M. Liet al.

increased by 0.418 % compared with the original SSO model. It means that the
performance of our prototype is acceptable.

6 Related Work

Many previous works have been done to study the security of SSO systems. Wang et al.
[3] discovered the SSO flaws in OpenlD [4] and Flash. The flaws of OpenID cause the
IDP to exclude the email element from the list of element it signs, which is sent back to
the SP through a BRM. When the flaws of OpenlD are reported to Google by the authors,
Google replaces OpenlD with OAuth2.0 as the SSO system [18, 19]. Armando et al. [10]
studied on SAML-based SSO for Google Apps and gave the formal analysis of SAML
2.0 [6, 7] web browser SSO system. They used formal method to extract the abstract
protocol in SAML 2.0 and built up the formal model of SAML. Somorovsky et al. [1]
did a lot of researches in revealing vulnerabilities in formal SAML SSO systems. They
revealed the threat from XML signature wrapping attacks is a big problem in the systems.

Bansal et al. [15] and Sun et al. [29] discovered the attacks on OAuth2.0 by formal
analysis of the basic document of RFC 6749 [11]. They analyzed the formalized
OAuth2.0 protocol and revealed that the potential threats coming from CSRF attack or
token stolen during the redirection.

Before we finish our work, a vulnerability named Covert Redirect [16, 25] was
reported about the OAuth2.0 on the Internet. It describes a process where a malicious
attacker intercepts a request from an SP to an IDP and changes the parameter called
“redirect_uri” with the intention of causing the IDP to direct the authorization credentials
to a malicious location rather than to the original SP, thus exposing any returned secrets
(e.g. credentials) to the attacker.

Zhou et al. [39] have built an automated SSO vulnerabilities test tool. This tool can
detect whether a commercial website exists popular vulnerabilities, such as access_token
misuse or OAuth credentials leak. But they only deploy the Facebook as the IDP site.

7 Conclusion

In this paper, we disclose the reason of the vulnerabilities that exist in commercial web
SSO systems. We studied the SSO systems on 17 popular websites and classified them
into two abstract models. Then we verify our models on about 1,000 SSO supported
websites in the wild. Most websites follow the standard OAuth2.0 SSO model but there
still some other websites prefer developing their own SSO system that depends on the
independent model. We also elaborate our security analysis on these practical commer-
cial websites that deploy different SSO models. That is the credentials could be inter-
cepted by the attackers to log into the SP as the victim. For mitigating the threats focus
on the credential’s integrity, we give our protection prototype on guaranteeing the integ-
rity of the credentials which is simple and efficient to deploy in practice. It not only fixes
the vulnerabilities of the two abstract SSO models and the mixed model, but also miti-
gates the threats from the two adversary models mentioned in Sect. 3. However, our
prototype also has its limitation. For example, on the SP side, it does not support



An Approach for Mitigating Potential Threats 225

concurrent SSO requests so far. Our prototype has to deploy on both IDP and SP server-
sides. That is a trivial and cumbersome work. In the future work, we want to improve
our prototype on these two problems and try our best to make our protection prototype
to be a convenient independent third party middle-ware which can be deployed on any
IDP or SP websites.
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Abstract. Internet users are concerned with their private web browsing
behaviors. Browsing a webpage introduces a typical request-response-
based network traffic which is associated with the structure of corre-
sponding HTML document. This may make the traffic of a specified
webpage demonstrate different features from others even when the traffic
is encrypted. Traffic analysis techniques can be used to extract those fea-
tures to identify that webpage, and hence the webpages the user visited
could be disclosed though they might be encrypted. In this paper, we pro-
pose EQPO, a method to defend against traffic analysis by obscuring web
traffic with EQual-sized Pseudo-Objects. A pseudo-object is composed
by some original objects, object fragments, or padding octets. We define
a structure of EQPO-enabled HTML document to force object requests
and responses be on pseudo-objects. For a webpage set, by equalizing
the sizes of pseudo-objects and the numbers of pseudo-objects requests
in each webpage, we can make the traffic for those webpages with no
identifiable features. We have implemented a proof of concept prototype
and validate the proposed countermeasure with some state of the art
traffic analysis techniques.

Keywords: Encrypted web traffic - Webpage identification - Traffic
analysis + Equal-sized pseudo-object

1 Introduction

Browsing webpages privately has attracted much attention in recent years due
to the increasing awareness of privacy protection. Internet users want to pre-
serve the privacy of not only what content they have browsed but also which
specified webpage they have visited. Encryption is effective in protecting the
privacy of data contents transferred in networks, but it is not a winner-take-all
method in distinguishing different webpages. Traffic features demonstrated by
different webpages could be used to identify them page by page even if they are
transmitted in encrypted form.
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The network traffic introduced by browsing webpages is on request-response
transactions. The request profile, such as the number and the sequence, is on
the webpage structure, and the response amount sizes are on the sizes of cor-
responding resources (objects) embedded in basic HTML document. Current
popular secure suites, such as SSL, SSH, IPSec, and Tor, etc., are focused on
encrypting data contents and do not alter the number of object requests. Even
for the encrypted contents, their sizes are not changed significantly comparing
to the related original plain ones. This makes the traffic of different webpages
demonstrate distinguishable features even if the traffic is encrypted. The typical
traffic features, such as the order, number, length, or timing of packets, etc., can
be extracted by traffic analysis (TA) and may lead to identifying the webpages
precisely the user visited, or even inferring the data the user privately input
[1-3,5,9,10].

Proposals against TA analysis are on changing traffic features. They can be
operated at server side, client side, or on client-server cooperation, and worked
on network level, transport level, and application level [3]. Padding extra bytes
into transmitting data is the most general method. The padding procedure can
be executed at server side before or after encryption [2,5]. An improved strat-
egy on padding is traffic morphing, which makes a specified webpage traffic
similar to another predefined traffic distribution [15]. These efforts are on fine-
grained single object analysis and they are not efficient against the coarse-grained
aggregated statistics [3]. The BuFLO method intends to cut off the aggregated
associations among packet sizes, packet directions, and time costs [3] by send-
ing specified packets in a given rate during a given time period. Some other
techniques on higher level, such as HTTPOS [7], try to influence the packet gen-
eration at server side by customizing specified HTTP requests or TCP headers
at client side.

Most of the TA analysis target on the identifying webpages in different web-
sites. It seems that webpages in the same website may challenge the effective-
ness of TA analysis because of their structure and resource similarities. However,
recent researches also show that those webpages cannot escape from TA based
identification [8]. For example, the technique discussed in [8] can identify speci-
fied webpages in the same website with up to 90 % accuracy. Partitularly, if it is
used in the website related to healthcare successfully, the subsequent inference
could be launched to reveal the reason why someone went to consult a doctor.

In this paper, we propose EQPO, a TA defence method on web applica-
tion level, which focuses on preventing webpage identification in a same website.
Motivated by the k-anonymity technique in database community [11], we intend
to make the traffic of any page in a website similar with each other by introducing
same numbers of equal-sized pseudo-object in pages. We define a pseudo-object
as an object fragment combination which is composed by a set of object frag-
ments. To make each pseudo-object with the same size, some pseudo-objects may
be appended with padding octets. To make each webpage with the same num-
ber of pseudo-objects, some extra pseudo-objects may be filled up with padding
octets. Our proposed method is on client-server cooperation. We translate a
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common traditional webpage into equal-sized-pseudo-object-enabled (EQPO-
enabled) webpage. When the browser renders the EQPO-enabled webpage, the
embedded script is invoked and initiates requests for those pseudo-objects. Coop-
eratively, a script running on server will produce pseudo-objects with given size
and given number. This kind of object generating and fetching procedure gen-
eralizes the traffic features of the webpages in that webpage set and hence may
be used to defend against the traffic analysis.
The contribution of this paper can be enumerated as follows.

1. We introduce the notion of equal-sized pseudo-object to design a new defence
method against traffic analysis. The key idea is to generate as same as possible
network traffic for webpages in a page set.

2. We develop the EQPO-enabled webpage structure to support the requests
and responses for equal-sized pseudo-objects. Given a page set with size k,
by composing the pseudo-objects with the same size and the same number,
the traffic feature of any EQPO-enabled webpage in that set is similar with
other k — 1 webpages. And hence it is hard to identify a specified webpage in
that set.

3. We have implemented a proof of concept prototype with data URI scheme
and the AJAX technique, and we demonstrate the effectiveness of EQPO on
defending against some typical TA attacks.

The rest of this paper is structured as follows. In Sect. 2, we overview some
works on traffic analysis. In Sect.3, we introduce the notion of equal-sized
pseudo-objects. In Sect.4, we discuss the method to construct the pseudo-
objects. In Sect.5, we conduct some experiments to validate our proposed
method. And finally, the conclusion is drawn in Sect. 6.

2 Traffic Analysis in Encrypted Web Flows

2.1 Web Traffic

HTTP protocol is a typical request-response based protocol. To retrieve a doc-
ument resource (object) from a web server, a browser first initiates a request
for that object according to the corresponding URI (Uniform Resource Identi-
fier), and then the server responses the request with required object contents.
A webpage can be viewed as a set of objects that can be visited in a sequence.
When visiting a webpage, the browser first fetches the basic HTML document
from the web server who hosts that document, and then, issues HT'TP requests
to fetch other objects in sequence. Although the object requests could be on
different connections, the requests order is logically depended on the structure
of retrieved HTML document.

It is generally well known that webpages from different organizations have
distinctly different structures, and hence could introduce distinguishable traffic
features. However, webpages in a same website could also introduce distinguish-
able web traffic [8]. As an instance, Table 1 demonstrates the numbers and sizes
of objects related to a small website, maths.gzhu.edu.cn.
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Table 1. Features of some webpages in maths.gzhu.edu.cn (Retrieved July 3, 2015)

Object | default.asp about.asp news.asp

Number | Size (kB) | Number | Size (kB) | Number | Size (kB)
HTML | 1 25.7 1 16.5 1 22.7
CSS 1 2.6 1 2.6 1 2.6
Image |67 940.0 |15 379.7 38 557.3
Others | 3 38.7 1 8.7 2 11.3
Total |72 1,007.0 |18 407.5 42 593.9

According to this table, all of the three webpages have distinguishable object
numbers and object sizes although they have the same CSS object. Counting
object requests and aggregating traffic amounts can fingerprint these webpages
easily.

2.2 Encrypted Web Traffic

It is well known that the HTTP protocol is not secure because of the data
transmission in plain. A simple man-in-the-middle (MITM) attack could easily
eavesdrop and intercept the HTTP conversations. HT'TPS is designed to mitigate
such MITM attacks by providing bidirectional encrypted transmissions. Accord-
ing to HTTPS protocol, the HTTPS payloads are encrypted but the TCP and
IP headers are preserved. Noticed that the payloads are encrypted by a block
cipher, such as the AES algorithm, and the lengths of encrypted payloads are
almost the same as the plain ones except some octets are padded into a single
block. This means that the secrets of payload contents are protected, but the
real communicating address pairs and connections are easy to identify in HT'TPS
traffic.

The tunnel-based transmissions is used to hide real communicating IP
address. It encapsulates entire original IP packet into a new IP packet. If the tun-
nel is encrypted, the encapsulated packet is also encrypted. A typical encrypted
tunnel is the secure shell (SSH) tunnel, which means that a user may visit an
external web server in private if he can connect to an external SSH server to cre-
ate an SSH tunnel. However, the payloads are also encrypted by block ciphers
and the encrypted payloads demonstrate almost same sizes as the corresponding
plain versions. In general, a client is only communicating with an SSH proxy and
the server behind the proxy is protected.

Tor is a special system for anonymization communication. Not only the com-
municating payloads but also the communicating pairs are protected. Different
from the padding strategy in HTTPS and SSH, each Tor packet is padded to
the size of MTU (Maximum Transmission Unit). It implies that all the packet
cells in Tor have the same size.

As discussed above, current secure suites for Web browsing are focused on
protecting the communicating contents, and protecting communication pairs
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in different level according to the security requirements. However, the traffic
amounts, direction, and intervals can be sniffed by an adversary in the middle.
The webpages could be identified even if they are transmitted in encrypted.

2.3 Traffic Analysis

When the traffic is encrypted and the encryption is perfect, analyzing the packet
payload is meaningless. However, the encrypted payload size and the packet
direction can be recognized clearly from the encrypted traffic. Consider that the
current cipher suites cannot significantly enlarge the difference between the size
of encrypted payload and its corresponding plain version, we can assume that
the encryption is approximatively size-preserved. This implies that the size of an
encryption object is similar to the size of object in plain form. Combining with
the order of objects in transmitting, the structure of a specified webpage could
be identified even if it is transmitted in encrypted form.

Table 2. Traffic analysis attack instances

Method | Classifier Features considered
LL [5] naive Bayes packet lengths

HWF [4] | multinomial naive Bayes | packet lengths

LCC [6] |edit distance packet lengths, order
DCRS [3] | naive Bayes total trace time,

bidirectional total bytes,

bytes in traffic bursts

Traffic analysis plays a key role in identifying a webpage in a webpage set. The
core technique for traffic analysis is machine learning. There are two operation
steps included in learning procedure, one for model training and the other for
data classifying. A model is first trained by sampling data to extract generalized
data features, and then it is incorporated into a classifier to distinguish new com-
ing data. In particular, TA classifiers are constructed with supervised machine
learning algorithms. It means that a classifier is trained on sets of traces that
are labeled with k different webpages, and then it is used to determine whether
or not a new set of traces is from a given webpage. Formally, the TA classifier is
trained to a given labeled feature set {(F'1,pages), (F2,pages), ..., (F, pager)},
where each F'; is a feature vector and page; is a webpage label. And then, a
new set of traces with feature F  is input and the classifier will decide which
label page; that the F’ is attached. Some typical traffic analysis methods are
enumerated in Table 2.

Liberatore and Levine [5] developed a webpage identification method (LL)
by using naive Bayes (NB) classifier. The LL method uses the packet direction
and the packet length as feature vector. According to this method, NB is used
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to predict a label page: page = arg max; P(pagei|F/) for a given feature vector

F’ using Bayes rule P(page;|F) = 2& lpc;ff;)};(pagei), where i € {1,2,...,k}.
The LL method adopts the kernel density estimation to estimate the prob-

ability P(F,|page¢) over the example vector during the training phase, and

the P(page;) is set to k~!. The normalization constant P(F') is computed as
SF ) P(F |page;) - P(page;).

Herrmann, Wendolsky, and Federrath [4] proposed a method (HWF) by using
a multinomial naive Bayes (MNB) classifier. Both LL and HWF methods use the
same basic learning method with the same traffic features. The difference is in
the computation of P(F' |page;). The HWF method determines the P(FI |page;)
with normalized numbers of occurrences of features while the LL method deter-
mines with corresponding raw numbers.

Observing that the order of non-MTU packets is almost invariable between
packet sequences from the same webpage, Lu, Chang, and Chan [6] proposed a
method (LCC) on the Levenshtein distance. The outgoing and incoming non-
MTU packet length of page;, Loyt,; and L;y, ;, are obtained through learning. For
the new traces t, the corresponding length pair, Ly, and L;y, ¢, are computed.
The formula, 1 —a-D(Lout,i, Lout,t) — (1 — @) D(Lin i, Lin,t), is used to evaluate
the difference, where « is the bias factor, which is set to 0.6 in their experiments,
and D is the Levenshtein distance, which is equal to the number of insertions,
deletions and substitutions of packet lengths to transform one packet sequence
into another.

Most of the works are on single fine-grained packet analysis. In [3], Dyer,
Coull, Ristenpart, and Shrimpton proposed an identification method (DCRS)
based on coarse trace attributes, including total transmission time, total per-
direction bandwidth, and traffic burstiness (total length of non ack packets sent
in a direction between two packets sent in another direction). They used NB
as the underlying machine learning algorithm and build the VNG++ classi-
fier. Their results show that TA methods can reach a high identification accu-
racy against existed countermeasures without using individual packet lengths.
It implies that the chosen feature attributes may be the most important factor
in identifying webpages.

2.4 The Assumption

We follow the general scenario assumed in webpage identifying methods [4]: a
user, say Alice, wants to protect which webpages she browsed from a web server
against third parties. She can use popular secure suites, such as SSL, SSH, and
IPSec, etc., to make the webpage contents transmit in encrypted form. The
attacker, Mallory, is located between Alice and the web server and he can record
the traffic between the two entities. Although the traffic may be encrypted,
Mallory can retrieve the source and destination of the traffic, and also the sizes of
packet payloads. He can identify Alice and the