
A Constraint Solver for Equations over
Sequences and Contexts

Mariam Beriashvili and Besik Dundua

Abstract In this paper we propose a solving algorithm for equational constraints

over unranked terms, contexts, and sequences. Unranked terms are constructed over

function symbols which do not have fixed arity. For some function symbols, the order

of the arguments matters (ordered symbols). For some others, this order is irrelevant

(unordered symbols). Contexts are unranked terms with a single occurrence of hole.

Sequences consist of unranked terms and contexts. Term variables stand for single

unranked terms, sequence variables for sequences, context variables for contexts,

and function variables for function symbols. We design an terminated and incom-

plete constraint solving algorithm, and indicate a fragment for which the algorithm

is complete.

1 Introduction

Unranked terms are built over function symbols which do not have a fixed arity

(unranked symbols). They are nearly ubiquitous in XML-related applications [18].

They model variadic procedures used in programming languages [2, 22, 23]. More-

over, they appear in rewriting [10], knowledge representation [9, 20], theorem prov-

ing [12, 14], program synthesis [3], just to name a few.

When working with unranked terms, it is a pragmatic necessity to consider vari-

ables which can be instantiated by a finite sequences of terms (called sequences).

Such variables are referred to as sequence variables. An example of an unranked

term is f (x, f , x, y), where f is an unranked function symbol, x and y are sequence

variables, and x is a usual term variable which can be instantiated by a single term.

We can match this term, e.g., to the term f (f , a, f , b) in two different ways, with the

substitutions {x ↦ (), x ↦ a, y ↦ (f , b)} and {x ↦ (f , a), x ↦ f , y ↦ b}, where () is

the empty sequence and (f , a) is a sequence consisting of two terms f and a. Terms

are singleton sequences.

M. Beriashvili ⋅ B. Dundua (✉)

Vekua Institute of Applied Mathematics, Tbilisi State University, 0183 Tbilisi, Georgia

e-mail: bdundua@gmail.com

© Springer International Publishing Switzerland 2016

T.B. Nguyen et al. (eds.), Advanced Computational Methods
for Knowledge Engineering, Advances in Intelligent Systems

and Computing 453, DOI 10.1007/978-3-319-38884-7_9

115

116 M. Beriashvili and B. Dundua

Sequences can be concatenated to each other. In this way, sequences can “grow

horizontally” and sequence variables help explore it by filling gaps between siblings.

However, such a concatenation has limited power, since it does not affect the depth

of sequences, i.e., it does not permit sequences “to grow vertically”. To address this

problem, Bojańczyk and Walukiewicz [1] introduced forest algebras, where along-

side sequences (thereby called forests), context also appears. Contexts are sequences

with a single occurrence of the hole symbol placed in some leaf. Contexts can be

composed by putting one of them in the hole of the other. Moreover, context can

apply to a sequence by putting it into the hole, resulting in a sequence. One can intro-

duce context variables to stand for such contexts, and function variables to stand for

function symbols.

Reasoning about sequences gives rise to constraints which should be solved. This

turned out to be quite a difficult task. Even if we consider unification problems, in the

presence of sequence variables or context variables alone they are infinitary [13, 17].

They both generalize word unification [19]. Several finitary fragments and variants of

context and sequence unification problems have been identified. Solving in a theory

which combines both context and sequence variables is relatively less studied, with

the exception of context sequence matching [15] and its application in rule-based

programming [8].

We may have function symbols whose argument order does not matter (unordered

symbols): A kind of generalization of the commutativity property to unranked terms.

The programming language of Mathematica [23] is an example of successful appli-

cation in programming of both syntactic and equational unranked pattern matching

(including unordered matching) algorithms with sequence variables.

Various forms of constraint solving are in the center of declarative programming

paradigms. Unification is the main computational mechanism for logic program-

ming. Matching plays the same role in rule-based and functional programming. Con-

straints over special domains are in the heart of constraint logic programming lan-

guages.

In [7] we have studied a constraint solver for unranked sequences built over

ordered and unordered function symbols. In this paper, we generalize this approach

by combining contexts and unranked sequences in a single framework. Such a lan-

guage is rich, possesses powerful means to traverse trees both horizontally and ver-

tically in a single or multiple steps, and allows the user to naturally express data

structures (e.g., trees, sequences, multisets) and to write code concisely. We propose

a solving algorithm for constraints over terms, contexts, and sequences. The algo-

rithm works on the input in disjunctive normal form and transforms it to the partially

solved form. It is sound and terminating. The latter property naturally implies that

the solver is incomplete for arbitrary constraints, because the problem it solves is

infinitary: There might be infinitely many incomparable solutions to constraints that

involve sequence and context variables, see, e.g., [11, 17]. However, there are frag-

ments of constraints for which the solver is complete, i.e., it computes all the solu-

tions. One of such fragments is the so called the well-moded fragment [7], where

A Constraint Solver for Equations over Sequences and Contexts 117

variables on one side of equations (or in the left hand side of the membership atom)

are guaranteed to be instantiated with ground expressions at some point. This effec-

tively reduces constraint solving to sequence matching and context matching (which

are known to be NP-complete [16, 21]), plus some early failure detection rules.

2 The Language

The alphabet  contains the sets of term variables 𝖳, sequence variables 𝖲, func-
tion variables 𝖥, context variables 𝖢, unranked unordered function symbols 𝗎

and ordered function symbols 𝗈. All these sets are assumed to be mutually dis-

joint. Henceforth, we shall assume that the symbols: x, y and z range over 𝖳; x, y, z
over 𝖲; X,Y ,Z over 𝖥; X∙,Y∙,Z∙ over 𝖢; f𝗎, g𝗎, h𝗎 over 𝗎 and f𝗈, g𝗈, h𝗈 over 𝗈.

Moreover, function symbols denoted by f , g, h are elements of the set  = 𝗎 ∪ 𝗈,

a variable is an element of the set  = 𝖳 ∪ 𝖲 ∪ 𝖥 ∪ 𝖢 and a functor F is a com-

mon name for a function symbol or a function variable. The alphabet also contains

the special constant ∙, the propositional constants 𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾, the logical connectives
¬,∧,∨,⇒,⇔, the quantifiers ∃,∀ and the binary equality predicate ≐.

Definition 1 We define inductively terms, sequences, contexts and other syntactic

categories over  as follows:

t ∶∶= x ∣ F(S) ∣ X∙(t) Term

T ∶∶= t1,… , tn (n ≥ 0) Term sequence

s̃ ∶∶= t ∣ x Sequence element

S ∶∶= s̃1,… , s̃n (n ≥ 0) Sequence

C ∶∶= ∙ ∣ F(S,C, S) ∣ X∙(C) contexts

For readability, we put parentheses around sequences, writing, e.g., (f (a), x, b)
instead of f (a), x, b. The empty sequence is written as (). Besides the letter t, we

use also r and s to denote terms. Two sequences are disjoint if they do not share a

common element. For instance, (f (a), x, b) and (f (x), f (b, f (a))) are disjoint, whereas

(f (a), x, b) and (f (b), f (a)) are not.

A context C may be applied to a term t (resp. context C′
), written C[t] (resp. a

contextC[C′]), and the result is the term (resp. context) obtained fromC by replacing

the hole ∙with t (resp. withC′
). Besides the letterC, we use alsoD to denote contexts.

The set of terms is denoted by  ( ,) and the set of contexts is denoted by

( ,).

Definition 2 A formula over the alphabet  is defined inductively as follows:

1. 𝗍𝗋𝗎𝖾 and 𝖿𝖺𝗅𝗌𝖾 are formulas.

2. If t and r are terms, then t ≐ r is a formula.

3. If C and D are contexts, then C ≐ D is a formula.

118 M. Beriashvili and B. Dundua

4. If 𝐅1 and 𝐅2 are formulas, then so are (¬𝐅1), (𝐅1 ∨ 𝐅2), (𝐅1 ∧ 𝐅2), (𝐅1 ⇒ 𝐅2), and

(𝐅1 ⇔ 𝐅2).
5. If 𝐅 is a formula and v ∈ 𝖲, then ∃v.𝐅 and ∀v.𝐅 are formulas.

The formulas defined by the items (2) and (3) are called primitive constraints. A

constraint  is an arbitrary formula built over 𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾 and primitive constraints.

A substitution is a mapping from term variables to terms, from sequence vari-

ables to sequences, from function variables to functors, and from context variables

to contexts, such that all but finitely many term, sequence, and function variables

are mapped to themselves, and all but finitely many context variables are mapped to

themselves applied to the hole. Substitutions extend to terms, sequences, contexts,

formulas. The sets of free and bound variables of a formula 𝐅, denoted 𝚏𝚟𝚊𝚛(𝐅) and

𝚋𝚟𝚊𝚛(𝐅) respectively, are defined in the standard way as can be seen in [6].

3 Semantics

For a given set 𝖲, we denote by 𝖲∗ the set of finite, possibly empty, sequences

of elements of 𝖲, and by 𝖲n the set of sequences of length n of elements of 𝖲.

Given a sequence 𝗌 = (𝗌1, 𝗌2,… , 𝗌n) ∈ 𝖲n, we denote by 𝑝𝑒𝑟𝑚(𝗌) the set of sequences

{(𝗌
𝜋(1), 𝗌𝜋(2),… , 𝗌

𝜋(n)) ∣ 𝜋 is a permutation of {1, 2,… , n}}. The set of functions from

a set 𝖲1 to a set 𝖲2 is denoted by 𝖲1 ⟶ 𝖲2. The notion f ∶ 𝖲1 ⟶ 𝖲2 means that f
belongs to 𝖲1 ⟶ 𝖲2.

A structure𝔖 for a language () is a tuple ⟨,⟩ made of a non-empty carrier
set of individuals  and an interpretation function  that maps each function symbol

f ∈  to a function (f) ∶ ∗ ⟶ . Moreover, if f ∈ 𝗎 then (f)(𝗌) = (f)(𝗌′)
for all 𝗌 ∈ D∗

and 𝗌′ ∈ 𝑝𝑒𝑟𝑚(𝗌). Given such a structure, we also define the operation

c ∶ (∗ ⟶ ) ⟶ ∗ ⟶ ∗ ⟶ ( ⟶ ) ⟶ ( ⟶ ) by c(𝜓)(𝗌1)
(𝗌2)(𝜙)(𝖽) ∶= 𝜓(𝗌1, 𝜙(𝖽), 𝗌2) for all 𝜓 ∶ ∗ ⟶ , 𝗌1, 𝗌2 ∈ ∗

, 𝖽 ∈ , and 𝜙 ∶
 ⟶ .

A variable assignment for such a structure is a function with the domain  that

maps term variables to elements of ; sequence variable to elements of ∗
; function

variables to functions in ∗ ⟶ ; and context variables to functions in  ⟶ .

The interpretations of our syntactic categories with respect to a structure 𝔖 =
⟨,⟩ and variable assignment 𝜌 is shown below. The interpretation of simple

sequences [[S]]𝔖,𝜌

and of contexts [[C]]𝔖,𝜌

are defined as follows:

[[x]]𝔖,𝜌

∶= 𝜌(x).
[[f (S)]]𝔖,𝜌

∶= (f)([[S]]𝔖,𝜌

).
[[X(S)]]𝔖,𝜌

∶= 𝜌(X)([[S]]𝔖,𝜌

).
[[X∙(t)]]𝔖,𝜌

∶= 𝜌(X∙)([[t]]𝔖,𝜌

).
[[x]]𝔖,𝜌

∶= 𝜌(x).

A Constraint Solver for Equations over Sequences and Contexts 119

[[(s̃1,… , s̃n)]]𝔖,𝜌

∶= ([[s̃1]]𝔖,𝜌

,… , [[s̃n]]𝔖,𝜌

).
[[∙]]𝔖,𝜌

∶= 𝐼𝑑.

[[f (S1,C, S2)]]𝔖,𝜌

∶= c((f))([[S1]]𝔖,𝜌

)([[S2]]𝔖,𝜌

)([[C]]𝔖,𝜌

).
[[X(S1,C, S2)]]𝔖,𝜌

∶= c(𝜌(X))([[S1]]𝔖,𝜌

)([[S2]]𝔖,𝜌

)([[C]]𝔖,𝜌

).
[[X∙(C)]]𝔖,𝜌

∶= 𝜌(X∙) � [[C]]𝔖,𝜌

, where � stands for composition.

Note that terms are interpreted as elements of , sequences as elements of ∗
,

and contexts as elements of  ⟶ . We may omit 𝜌 and write simply [[E]]𝔖 for

the interpretation of a variable-free (i.e., ground) expression E.

Formulas with respect to a structure𝔖 and a variable assignment 𝜌 are interpreted
as follows:

𝔖 ⊧
𝜌

𝗍𝗋𝗎𝖾.

Not 𝔖 ⊧
𝜌

𝖿𝖺𝗅𝗌𝖾.

𝔖 ⊧
𝜌

t1 ≐ t2 iff [[t1]]𝔖,𝜌

= [[t2]]𝔖,𝜌

.

𝔖 ⊧
𝜌

C1 ≐ C2 iff [[C1]]𝔖,𝜌

= [[C2]]𝔖,𝜌

.

Interpretation of an arbitrary formula with respect to a structure and a variable

assignment is defined in the standard way. Also, the notions 𝔖 ⊧ 𝐅 for validity of

an arbitrary formula 𝐅 in 𝔖, and ⊧ 𝐅 for validity of 𝐅 in any structure are defined as

usual.

An intended structure is a structure ℑ with a carrier set  () (the set of ground

simple terms) and interpretation  defined for every f ∈  by (f)(S) ∶= f (S).
It follows that c((f))(S1)(S2)(C) ∶= f (S1,C, S2). Thus, intended structures iden-

tify terms, sequences and contexts with themselves. Also, [[𝚁]]ℑ is the same in all

intended structures, and will be denoted by [[𝚁]]. Other remarkable properties of

intended structuresℑ are:ℑ ⊧
𝜌

t1 ≐ t2 iff t1𝜌 = t2𝜌 andℑ ⊧
𝜌

C1 ≐ C2 iffC1𝜌 = C2𝜌.

A ground substitution 𝜌 is a solution of a constraint  if ℑ ⊧ 𝜌 for all intended

structures ℑ.

4 Solved and Partially Solved Constraints

We say a variable is solved in a conjunction of primitive constraints  = 𝐜1 ∧⋯ ∧
𝐜n, if there is a 𝐜i, 1 ≤ i ≤ n, such that

∙ the variable is x, 𝐜i is x ≐ t, and x occurs neither in t nor elsewhere in , or

∙ the variable is x, 𝐜i is x ≐ S, and x occurs neither in s̃ nor elsewhere in , or

∙ the variable is X, 𝐜i is X ≐ F and X occurs neither in F nor elsewhere in , or

∙ the variable is X∙, 𝐜i is X∙ ≐ C, and X∙ occurs neither in C nor elsewhere in , or

120 M. Beriashvili and B. Dundua

In this case we also say that 𝐜i is solved in. Moreover,  is called solved if for any

1 ≤ i ≤ n, 𝐜i is solved in it.  is partially solved, if for any 1 ≤ i ≤ n, 𝐜i is solved in

, or has one of the following forms:

∙ (x, S1) ≐ (y, S2) where x ≠ y, S1 ≠ () and S2 ≠ ().
∙ (x, S1) ≐ (S, y, S2), where S is a sequence of terms, x ∉ 𝑣𝑎𝑟(S), S1 ≠ (), and S ≠ ().

The variables x and y are not necessarily distinct.

∙ f𝗎(S1, x, S2) ≐ f𝗎(S3, y, S4) where (S1, x, S2) and (S3, y, S4) are disjoint.

∙ X∙(t) ≐ r where r ≠ X∙(t′) contains term, context or sequence variables,

∙ X∙(C1) ≐ C2 where C2 ≠ X∙(C3) and C2 is not strict.

A constraint is solved, if it is either 𝗍𝗋𝗎𝖾 or a non-empty quantifier-free disjunction

of solved conjunctions. A constraint is partially solved, if it is either 𝗍𝗋𝗎𝖾 or a non-

empty quantifier-free disjunction of partially solved conjunctions.

5 Solver

In this section we present a constraint solver. It is based on rules, transforming a

constraint in disjunctive normal form (DNF) into a constraint in DNF. We say a

constraint is in DNF, if it has a form 1 ∨⋯ ∨n, where ’s are conjunctions of

𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾, and primitive constraints. The number of solver rules is not small (as it is

usual for such kind of solvers, cf., e.g., [4, 5]). To make their comprehension easier,

we group them so that similar ones are collected together in subsections. Within each

subsection, for better readability, the rule groups are put between horizontal lines.

Before going into the details, we introduce a more conventional way of writing

expressions, some kind of syntactic sugar, that should make reading easier. We write

F1 ≐ F2 instead of F1() ≐ F2(), X∙ ≐ C instead of X∙(∙) ≐ C. The symmetric closure

of ≐ is denoted by ≃.

5.1 Logical Rules

The logical rules perform logical transformations of the constraints and have to be

applied in constraints, at any depth modulo associativity and commutativity of dis-

junction and conjunction. 𝐅 stands for any formula. We denote the whole set of rules

by Log.

A Constraint Solver for Equations over Sequences and Contexts 121

5.2 Failure Rules

In the second group there are rules for failure detection. The first two rules detect

function symbol clash:

The next three rules perform occurrence check. Peculiarity of this operation for

our language is that the variable occurrence into a term/context does not always

leads to failure. For instance, the equation x ≐ X∙(x), where the variable x occurs in

X∙(x), still has a solution {X∙ ↦ ∙}. Therefore, the occurrence check should fail on

equations of the form var ≐ nonvar only if no instance of the non-variable expression

nonvar can become the variable var. To achieve this, the rules below require the non-

variable terms to contain F (the first two rules) and t (the third rule), which can not

be erased by a substitution application:

Further, we have two more rules which lead to failure in the case when the hole

is unified with a context whose all possible instances are nontrivial contexts (guar-

anteed by the presence of F), and when the empty sequence is attempted to match to

an inherently nonempty sequence (guaranteed by t):

We denote this set of rules (F1)–(F7) by Fail.

5.3 Deletion Rules

There are five rules which delete identical terms, sequence variables or context vari-

ables from both sides of an equation. They are more or less self-explanatory. Just

note that under unordered head, we delete an arbitrary occurrence of a term (that is

not a sequence variable).

122 M. Beriashvili and B. Dundua

We denote the set of rules (Del1)–(Del5) by Del.

5.4 Decomposition Rules

Like the membership rules, each of the decomposition rules operates on a conjunc-

tion of constraint literals and gives back either a conjunction again, or a disjunction

of conjunctions. These rules should be applied to disjuncts of constraints in DNF, to

preserve the DNF structure.

We denote the set of rules (D1)–(D4) by Dec.

5.5 Variable Elimination Rules

This set of rules eliminate variables from the given constraint, keeping only a single

equation for them. The first four rules replace a variable with the corresponding

expression, provided that the variable does not occur in the expression:

A Constraint Solver for Equations over Sequences and Contexts 123

The rules (E5) and (E6) for sequence variable elimination assign to a variable an

initial part of the sequence in the other side of the selected equation. The sequence

has to be a sequence of terms in (E5). In (E6), only a split of the prefix of the

sequence is relevant. The rest is blocked by the term t due to occurrence check:

No instantiation of x can contain it.

The rules (E7) and (E8) below can be seen as counterparts of (E5). In the rule

(E8) we need conservative decomposition of contexts. Before giving those rules, we

define the notion of conservativity.

We will speak about the main path of a context as the sequence of symbols (path)

in its tree representation from the root to the hole. For instance, the main path in

the context f (X∙1(a),X(X∙2(b), g(∙)), x) is fXg, and in f (X∙1(a),X(X∙2(b),X∙3(∙)), x) −
fXX∙3. A context is called strict if its main path does not contain context variables. For

instance, the context f (X∙1(a),X(X∙2(b), g(∙)), x) is strict, while f (X∙1(a),X(X∙2(b),
X∙3(∙)), x) is not, because X∙3 is in its main path fXX∙3. We say that a context C is

decomposed in two contexts C1 and C2 if C = C1[C2].

124 M. Beriashvili and B. Dundua

We say that a context C is conservative, if for any instance C𝜌 of C and for

any decomposition D1[D2] of C𝜌 there exists a decomposition C1[C2] of C such

that D1 = C1𝜌 and D2 = C2𝜌. Strict contexts satisfy this property. Non-strict con-

texts violate it, as the following example shows: The context C = X∙(∙) has two

decompositions into C1[C2] with C1 = ∙, C2 = X∙(∙) and C1 = X∙(∙), C2 = ∙. Let

𝜌 = {X∙ ↦ f (g(∙))}. Then C𝜌 = f (g(∙)). One of its decomposition with D1 = f (∙),
D2 = g(∙) is not an instance of any of the decompositions of C.

The rules (E7) and (E8) are formulated now as follows:

Finally, there are two rules for function variable elimination. Their behavior is

standard:

We denote the set of rules (E1)–(E10) by Elim.

The constraint solver rewrites a constraint with respect to the rules specified in

this section into a constraint in partially solved form. First, we define how rewriting

is done in a single step:

𝗌𝗍𝖾𝗉 ∶= first(Log, Fail, Del, Dec, Elim).

When 𝗌𝗍𝖾𝗉 is applied to a constraint, it will transforms the constraint by the first
successful rule from the sets Log, Fail, Del, Dec, and Elim. If none of the rules apply,

then the constraint is said to be in a normal form with respect to 𝗌𝗍𝖾𝗉.

The constraint solving method implements the strategy 𝗌𝗈𝗅𝗏𝖾 which is defined as

a repeatedly application of the 𝗌𝗍𝖾𝗉:

𝗌𝗈𝗅𝗏𝖾 ∶= NF(step).

That means, 𝗌𝗍𝖾𝗉 is applied to a constraint repeatedly as long as possible.

A Constraint Solver for Equations over Sequences and Contexts 125

It remains to show that this definition yields an algorithm, which amounts to prov-

ing that a normal form is reached by NF(step) for any constraint .

6 Properties of the Constraint Solver

In this section, we present theorems and lemmata which demonstrate that the con-

straint solver is terminated, sound and partially complete. The proofs are omitted and

can be easily obtained from the proofs of the similar theorems and lemmata given

in [6].

The solver halts for any input constraint and a normal form is reached.

Theorem 1 𝗌𝗈𝗅𝗏𝖾 terminates on any input constraint.

Here we state that the solver reduces a constraint to its equivalent constraint.

Lemma 1 If 𝗌𝗍𝖾𝗉() = , thenℑ ⊧ ∀
(
 ⇔ ∃

𝑣𝑎𝑟()
)
for all intended structuresℑ.

Theorem 2 If 𝗌𝗈𝗅𝗏𝖾() = , thenℑ ⊧ ∀
(
 ⇔ ∃

𝑣𝑎𝑟()
)
for all intended structures

ℑ, and  is either partially solved or the 𝖿𝖺𝗅𝗌𝖾 constraint.

Theorem 3 If the constraint is solved, thenℑ ⊧ ∃ for all intended structuresℑ.

7 Well-Moded Constraints

A sequence of primitive constraints 𝐜1,… , 𝐜n is well-moded if the following condi-

tions are satisfied:

1. If for some 1 ≤ i ≤ n, 𝐜i is t1 ≐ t2, then 𝑣𝑎𝑟(t1) ⊆
⋃i−1

j=1 𝑣𝑎𝑟(𝐜j) or 𝑣𝑎𝑟(t2) ⊆
⋃i−1

j=1 𝑣𝑎𝑟(𝐜j).
2. If for some 1 ≤ i ≤ n, 𝐜i is C1 ≐ C2, then 𝑣𝑎𝑟(C1) ⊆

⋃i−1
j=1 𝑣𝑎𝑟(𝐜j) or 𝑣𝑎𝑟(C2) ⊆

⋃i−1
j=1 𝑣𝑎𝑟(𝐜j).

A conjunction of primitive constraints  is well-moded if there exists a sequence

of primitive constraints 𝐜1,… , 𝐜n which is well-moded and  =
⋀n

i=1 𝐜i modulo

associativity and commutativity of ∧. A constraint  = 1 ∨⋯ ∨n is well-moded

if each i, 1 ≤ i ≤ n, is well-moded.

The following Theorem states, that, the solver brings any well-moded constraints

to a solved form or to 𝖿𝖺𝗅𝗌𝖾.

Lemma 2 Let  be a well-moded constraint and 𝗌𝗍𝖾𝗉() = ′, then ′ is either well-
moded, 𝗍𝗋𝗎𝖾 or 𝖿𝖺𝗅𝗌𝖾.

126 M. Beriashvili and B. Dundua

Theorem 4 Let  be a well-moded constraint and 𝗌𝗈𝗅𝗏𝖾() = ′, where ′ ≠ 𝖿𝖺𝗅𝗌𝖾.
Then ′ is solved.

Acknowledgments Besik Dundua has been partially supported by the Shota Rustaveli National

Science Foundation under the grants FR/325/4-120/14, YS/10/11-811/15 and YS15_2.1.2_70.

References

1. Bojanczyk, M., Walukiewicz, I.: Forest algebras. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic

and Automata. Texts in Logic and Games, vol. 2, pp. 107–132. Amsterdam University Press

(2008)

2. Boley, H.: A Tight, Practical Integration of Relations and Functions. Lecture Notes in Com-

puter Science, vol. 1712. Springer, Berlin (1999)

3. Chasseur, E., Deville, Y.: Logic program schemas, constraints, and semi-unification. In: Fuchs,

N.E. (ed.) LOPSTR. Lecture Notes in Computer Science, vol. 1463, pp. 69–89. Springer, Berlin

(1997)

4. Comon, H.: Completion of rewrite systems with membership constraints. Part II: constraint

solving. J. Symb. Comput. 25(4), 421–453 (1998)

5. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic programming. ACM

Trans. Program. Lang. Syst. 22(5), 861–931 (2000)

6. Dundua, B.: Programming with Sequence and Context Variables:Foundations and Applica-

tions. Ph.D. thesis, Universidade do Porto (2014)

7. Dundua, B., Florido, M., Kutsia, T., Marin, M.: Constraint logic programming for hedges: A

semantic reconstruction. In: Codish, M., Sumii, E. (eds.) Functional and Logic Programming—

12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4—6, 2014. Proceedings.

Lecture Notes in Computer Science, vol. 8475, pp. 285–301. Springer, Switzerland (2014)

8. Dundua, B., Kutsia, T., Marin, M.: Strategies in P𝜌log. In: Fernández, M. (ed.) WRS, EPTCS,

vol. 15, pp. 32–43 (2009)

9. ISO/IEC. Information technology—Common Logic (CL): a framework for a family of logic-

based languages. International Standard ISO/IEC 24707 (2007). http://standards.iso.org/ittf/

PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007(E).zip

10. Jacquemard, F., Rusinowitch, M.: Closure of hedge-automata languages by hedge rewriting.

In: Voronkov, A. (ed.) RTA. LNCS, vol. 5117, pp. 157–171. Springer, Berlin (2008)

11. Kutsia, T.: Solving and Proving in Equational Theories with Sequence Variables and Flexi-

ble Arity Symbols. RISC report Series 02–09, Research Institute for Symbolic Computation

(RISC), University of Linz, Schloss Hagenberg, 4232 Hagenberg, Austria, May 2002. Ph.D.

thesis

12. Kutsia, T.: Theorem proving with sequence variables and flexible arity symbols. In: Baaz,

M., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 2514, pp. 278–291.

Springer, Berlin (2002)

13. Kutsia, T.: Solving equations with sequence variables and sequence functions. J. Symb. Com-

put. 42(3), 352–388 (2007)

14. Kutsia, T., Buchberger, B.: Predicate logic with sequence variables and sequence function sym-

bols. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM. Lecture Notes in Computer

Science, vol. 3119, pp. 205–219. Springer, Berlin (2004)

15. Kutsia, T., Marin, M.: Matching with regular constraints. In: Sutcliffe, G., Voronkov, A. (eds.)

LPAR. Lecture Notes in Computer Science, vol. 3835, pp. 215–229. Springer, Berlin (2005)

16. Kutsia, T., Marin, M.: Solving, reasoning, and programming in common logic. In: SYNASC,

pp. 119–126. IEEE Computer Society (2012)

17. Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA. Lecture Notes in Com-

puter Science, vol. 1103, pp. 332–346. Springer, Berlin (1996)

http://standards.iso.org/ittf/PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007(E).zip

A Constraint Solver for Equations over Sequences and Contexts 127

18. Libkin, L.: Logics for unranked trees: an overview. Logical Methods Comput. Sci. 2(3) (2006)

19. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math. USSR-Sb.

32(2), 129, 147–236 (1977)

20. Menzel, C.: Knowledge representation, the world wide web, and the evolution of logic. Syn-

these 182(2), 269–295 (2011)

21. Schmidt-Schauß, M., Stuber, J.: The complexity of linear and stratified context matching prob-

lems. Theor. Comput. Syst. 37(6), 717–740 (2004)

22. Wand, M.: Complete type inference for simple objects. In: LICS, pp. 37–44. IEEE Computer

Society (1987)

23. Wolfram, S.: The Mathematica Book. Wolfram-Media, 5th edn. (2003)

	A Constraint Solver for Equations over Sequences and Contexts
	1 Introduction
	2 The Language
	3 Semantics
	4 Solved and Partially Solved Constraints
	5 Solver
	5.1 Logical Rules
	5.2 Failure Rules
	5.3 Deletion Rules
	5.4 Decomposition Rules
	5.5 Variable Elimination Rules

	6 Properties of the Constraint Solver
	7 Well-Moded Constraints
	References

