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Abstract Spatial patterns in urban land development are linked with the level and

type of economic activity. Here, we develop a statistical model to explore the rela-

tionship between the spatially explicit population density and the type of land use in

a region. The relationship between the type of land use (urban/non-urban) and the

level of economic activity is modeled at the scale of a single cell on the geographical

map. Thus, the statistical model should be tested against large samples of data points

on the high-resolution maps. The challenge here is that the original socio-economic

data is given at a coarser resolution than the land use (200× 200 m cells) We present

results of our spatial modeling exercise for the case study of the Seville Province,

Spain.
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1 Introduction

In recent decades urban systems have undergone rapid development. We have seen

a transition in the population distribution from the population mostly dispersed in

rural areas to a highly urbanized society, where people are concentrated in cities.

Today more than 50 % of people worldwide live in a city [1] and this figure is likely

to grow more in the future.
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At the regional scale we observe territory expansion of the urbanized centers.

However, this process typically unfolds non-uniformly with respect to the city bor-

der. Much of this development has occurred as dispersed, low density growth outside

of the major centers but within their area of economic influence. Such type of urban

development is typically referred to as urban sprawl [2]. While sprawling develop-

ments are not necessarily in themselves always undesirable, they bring a range of

issues such as increased energy consumption through encouragement of the use of

private vehicles, causing traffic congestion and air pollution, and irreversible dam-

age to ecosystems, caused by scattered and fragmented urban development in open

lands [3].

A large body of research is dedicated to the analysis and prediction of urban

expansion. Studies on land use change are based on different modeling principles

including such techniques as cellular automata [4, 5], Markov chains [6] and logis-

tic regression [7, 8]. This study focuses on the dependence between spatial patterns

in land use and population distribution (without the temporal dimension). By using

spatial data, we investigate whether part of the variance of the population density is

explained by the land use type of the corresponding cell and the types of its imme-

diate neighbors and if, in this way, we can capture spatial interactions.

Geographic data frequently shows spatial dependence, i.e., values at close dis-

tances are more similar than expected for independent observations. This property

limits the use of the multiple linear regression model for spatial data analysis. An

alternative is to incorporate a spatial lag into the model specification (e.g., spatial

lag model or spatial error model). A comprehensive introduction to the economet-

ric spatial modeling can be found in [9, 10]. But estimation of the spatial models is

not easily computable. This research focuses on application of certain filtering tech-

niques to spatial data in order to meet assumptions of standard linear regression and

use conventional statistical methods to test and interpret results of spatial analysis.

We perform a case study on the Spanish Province of Seville. The choice of this

region is motivated by the fact that Spain is one of Europe’s urban sprawl hotspots,

with problems of urban sprawl being particularly acute in the area of economic influ-

ence of major cities like Madrid and Valencia and along the Mediterranean coast.

2 Study Area

The Province of Seville is located in the Mediterranean region of Andalusia in the

southwestern part of Spain. Its territory is 14,000 km
2
. The terrain in this region

is made up almost exclusively of river basin. The Guadalquivir river crosses the

province from east to west. In the north territory includes parts of the Sierra Morena

mountain range and to the very south the foothills of the Cordillera Subbetica moun-

tain range.

The population of the region is close to two million inhabitants (2010). The

province is subdivided into 105 municipalities. The large part of the population

lives in the capital city Seville. The Seville municipality has the population of about
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700,000 people (2011, INE), which is much larger than any other municipality; for

example, the second largest municipality, Dos Hermanas, has the population of about

130,000 inhabitants (2014).

2.1 Land Use Maps

Seville has experienced notable urban development in recent years. In this region, as

well as overall in Spain, urban expansion has been especially acute since the restora-

tion of democracy in 1978, joining the EU in 1986 and skyrocketing per capita

incomes in the second half of 1980s and the decade before the 2008 crisis; after

the 2008 crisis, the speed of development has slowed down.

Figure 1 shows the urban/non-urban land distribution in this region from the year

1956 when Spain was an autocratic country to the post-crisis year 2013. The GIS

data represents the territory of the region as a regular grid of cells. We classify all the

cells into two major categories: urban land and non-urban land (vegetation, wetlands,

agricultural land and water). This figure illustrates the urbanized centers territory

expansion unfolding over the last 60 years. Table 1 provides some basic statistics

illustrating the spread of urbanization.

2.2 Economic Data

This study focuses on land use distribution in Seville region for the year 2003. As

candidate drivers for the land use change in Seville, various socio-economic factors

have been identified from the papers analyzing case studies of land conversion in

the New Castle County, the USA [8], Wuhan City, China [7], Ecuador [11], San

Francisco Bay and Sacramento areas [12] (CUF model), and San Francisco Bay

area [4] (SLEUTH model). We have included those drivers of land conversion from

these case studies, which are relevant for the Seville province. These potential land

use drivers include socio-economic factors defined on the GIS-based maps (with

200× 200 m cells) and those obtained from the census data. Where the data for the

year 2003 was not available, the closest year, for which the data was available, has

been chosen.

The GIS-based maps in the collected dataset include data on transportation net-

works (i.e., the distance to the nearest road (2005) and the distance to the nearest

airport (2006)), biophysical factors (i.e., the distance to the nearest waterfront (2005)

and the distance to the nearest area of forest (2006)), data on physical proximity to

different infrastructure objects (i.e., the distance to the nearest area of commercial

or industrial land use (2006), the proximity to a city center with more than 10,000

inhabitants (2011) and the proximity to a city center with more than 50,000 inhabi-

tants (2011)).
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Fig. 1 Historical transformation of land use in the Province of Seville, Spain
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Table 1 Spread of urbanization in the Province of Seville estimated from the GIS data

Year Number of urban cells % of urban cells in the map (%) Relative growth (%)

1956 2461 0.71 –

1999 9218 2.63 274.56

2003 10,105 2.88 9.62

2007 12,289 3.50 21.61

2013 13,674 3.89 11.27

The census data on potential factors includes several types of records charac-

terizing the social and economic activity in the region. Namely, the group of gen-

eral economic factors includes data on the income per capita (2003, Euros, Source:

SIMA), people employed (2001, number of people, Source: SIMA), and economi-

cally active population (2001, number of people, Source: SIMA). Population factors

are composed from the percentage of population younger than 20 years old, the per-

centage of population between 20 and 64 years old, and the percentage of popula-

tion older than 65 years (2001, number of people, Source: Instituto de Estadistica y

Cartografia de Andalucia, Consejeria de Economia, Innovacion, Ciencia y Empleo).

Land economic factors include data on the real estate transactions (2004, number of

transactions, Source: Diputacion de Sevilla, Anuario Estadistico de la Provincia de

Sevilla) and the number of dwellings built (2001, number of houses, Source: Insti-

tuto Nacional de Estadistica). Finally, social factors are represented by the number

of secondary schools (2005, number of centers, Source: SIMA).

3 Modeling

Here, we put forward a multiple regression model that relates the expansion of urban

territories with the spatial population growth in the following form

y = X𝛼 + Z1𝛽1 + Z2𝛽2 + 𝛾 + 𝜖

𝜖 ∼ N(0, 𝜎2In) (1)

In (1) y contains a n × 1 vector of the section-based dependent variable, X is a

n × p matrix of the GIS-based explanatory variables describing the land use types

of the given cell and its neighboring cells, Z1 represents a n × k1 matrix of the

socio-economic GIS-based explanatory variables and Z2 is a n × k2 matrix of the

municipality-based explanatory variables. 𝛼, 𝛽
1

and 𝛽
2

are p × 1, k1 × 1 and k2 × 1
vectors of the corresponding coefficients respectively and 𝛾 is an intercept. The error

term 𝜖 is a n×1 vector of independent identically normally distributed variables with

mean equal zero and variance equal 𝜎
2
. In denotes a n × n identity matrix. Observa-

tions are accounted at the level of a single cell. Thus, the number of cells defines the

sample size n.
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We take the population density as dependent variable in the regression equation

(1). Note that population density is defined at the lowest level of administrative divi-

sion for the census data in Spain (census tracts called sections). As the section level

is coarser than the cell level, we assign the value of the population density in a given

section to every cell that belongs to this particular section. In the same way, we also

extend the municipality-level socio-economic data to the level of a single cell on a

GIS-based map.

Note also, that in general, X includes the type of land use in a focal cell and

the types of land use in its Moore neighborhood, which comprises the eight cells

surrounding a central cell on a two-dimensional square lattice. Alternatively, the

information about the cell neighborhood can be aggregated and represented just by

a number of urban cells in it (including the type of a focal cell). In what follows, we

employ the latter aggregation for defining X.

3.1 Implementation

The computations are done in the Clojure programming language (version 1.6.0).

Regression estimates are obtained using Incanter 1.9.0, a Clojure-based, R-like sta-

tistical computing and graphics environment for the JVM. For principal component

analysis, we use R version 3.0.3.

The input GIS-based maps are stored in an ESRI ArcInfo ASCII raster file format.

The census data is given as tabular records in a csv file format.

3.2 Pre-processing of the GIS-based Explanatory Variables

Before performing the regression analysis, we rescale and clean the source GIS-

based maps. We use the rule that if either any of neighboring land use types of a

cell are undefined or socio-economic data is not set for the corresponding section

or municipality, we exclude the cell from the sample. The algorithm of GIS data

cleaning is done sequentially:

Step 1. Exclusion of cells with neighborhoods containing undefined values—we

exclude cells, which either belong to the border of the studied area or have

undefined values in their neighborhood in any of the given maps in the

dataset.

Step 2. Normalization of the GIS-based explanatory variables—we bring all the val-

ues of these variables into the range [0, 1].
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Step 3. Exclusion of cells, which fall into protected natural areas in the Seville

province, or cells whose neighborhood contains cells belonging to these

areas.

Step 4. Exclusion of cells, which do not have a specified value of the population

density in the section they belong to.

Note that protected natural areas include UNESCO World Heritage sites, Ramsar

wetland sites, Nature network 2000 sites, biosphere reserves, protected areas and

European Diploma sites. Since urban development is not allowed at all of these sites,

they have been excluded from the sample.

3.3 Principal Component Analysis

First, we find out that the municipality-based variables exhibit strong pairwise corre-

lation as shown in Table 2. Note that in case of moderate- and big-size samples (i.e.,

those containing more than 80 points), the critical Pearson correlation coefficient

that ensures the statistical significance at 0.05 level is near 0.25.

Because of a large number of highly correlated variables, the principal compo-

nent analysis is applied to reveal interrelationships and remove multicollinearity in

the set of the municipality-based economic factors. This kind of transformation of

the original variables allows obtaining orthogonal factors, which certainly do not

correlate with each other.

In this case, we are able to reduce the number of factors to the first two principal

components, which explain 99 % of the total sample variance. The first component

represents the average yield of 9 out of 10 variables. The second principal component

correlates with the remaining original explanatory variable—income per capita. The

intuition behind the revealed two first principal components is the following. The first

principal component separates municipalities with a high number of inhabitants (by

assigning bigger values) from the underpopulated territories. The second principal

component separates observations from the municipalities with medium population

(in terms of the Seville Province) from other points in the sample.

3.4 Data Compilation

After the procedure described in Sect. 3.2, we have a dataset with 235,678 observa-

tions, which fall into 99 different municipalities with 1,219 sections. In contrast to

the GIS data, municipalities and sections do not divide territory uniformly and vary

in size significantly. In highly populated areas section size coincides with one cell,

while the upper value of the size can exceed 20,000 cells in other territories.

Table 3 contains a list of variables, which serve as an input to the multiple regres-

sion analysis.
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Table 3 Variables included in the multiple regression analysis

Variable Range

GIS-based

Number of cells with urban land use in the

neighborhood

0…9

Distance to the nearest road [0, 1]
Distance to the nearest area of commercial or

industrial land use

[0, 1]

Distance to the nearest airport [0, 1]
Distance to the nearest waterfront [0, 1]
Distance to the nearest area of forest [0, 1]
Distance to the nearest city with more than

10,000 inhabitants

[0, 1]

Distance to the nearest city with more than

50,000 inhabitants

[0, 1]

Municipality-based

PC1 (first principal component) [−28.44, 0.89]
PC2 (second principal component) [−4, 1.45]
Section-based

Population density (people per cell, 2001) [0, 2704]

4 Results

In what follows, we take the log transformed population density as the dependent

variable in the model.

The advantage of the classical multiple linear regression is that we can easily

interpret the estimated coefficients if the standard assumptions of the model are ful-

filled. However, the latter is rarely a case for the spatial data, and this study is not

an exception. Figure 2c shows that residuals are not statistically independent and

substantial heteroscedasticity is present when we apply regression (1) to all cells

from the GIS-based maps which remain in the dataset after the pre-processing step

described in Sect. 3.2.

A non-uniform administrative division of the territory is one of the reasons that

may cause the violation of the error independence assumption. Sections necessar-

ily represent the entire province, including areas where human economic activity is

very low due to difficult or undeveloped terrain. As a rule, these sections contain

many cells (more than 100) and are characterized by a low population density and

monotonic change in the distance-related explanatory variables.

Unlike in, e.g., [9, 11], we do not use more advanced statistical models that can

incorporate spatial autocorrelation in these areas, but apply a certain filtering to deal

with non-independence and heteroscedasticity of the residuals. For this purpose, two

filters have been constructed:
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Fig. 2 Residuals (y-axis) versus predicted values (x-axis). a Filter 1—Model 1. b Filter 2—Model

1. c All cells—Model 1. d Filter 2—Model 2

Filter 1. Exclude all cells, which have either all non-urban or all urban cells in their

Moore neighborhoods (including the focal cell itself).

Filter 2. Exclude all cells, which have all urban neighbors around them (including

the focal cell itself) as in Filter 1, and additionally, exclude all sections,

where the share of non-urban cells in the total number of cells is more than

70 % and the number of non-urban cells in this section exceeds 100.

Note that in both filters we exclude the urbanized cells with entirely urbanized

neighborhoods, because the population density in these cells is likely to be highly

dependent on some other (missing in this study) independent variables (for all urban-

ized cells with entirely urbanized neighborhoods, the distance to roads remains zero

and the distance to commercial centers changes insignificantly to capture the popu-

lation density variance).

4.1 Results of Multiple Regression

In the current exploratory research, we perform the regression analysis applying

either Filter 1 or Filter 2, and also varying the number of the GIS-based explanatory

variables. Figure 2a, b shows the residual plots against predicted values after apply-

ing Filter 1 and Filter 2 correspondingly. In case of the original GIS-based maps,
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Table 4 Multiple regression results (Filter 2)

Variable Coefficient

Model 1

Number of urban neighbors 0.23 (0.22, 0.24)

Distance to roads −8.42 (−10.86, −5.97)

Distance to the commercial centers −1.46 (−2.44, −0.49)

PC1 0.02 (0.01, 0.02)

PC2 0.29 (0.26, 0.32)

R2
(adjusted R2

) 0.42 (0.42)

Model 2

Number of urban neighbors 0.22 (0.21, 0.23)

Distance to roads −6.65 (−9.06, −4.25)

Distance to the commercial centers* −0.07 (−1.02, 0.88)

Distance to airport −1.45 (−2.28, −0.61)

Distance to waterfront −0.35 (−0.7, 0.0)

Distance to forest 0.52 (0.31, 0.73)

Distance to the city with >10 ths people −1.59 (−2.06, −1.13)

Distance to the city with >50 ths people 3.05 (2.27, 3.82)

PC1 0.01 (0.0, 0.02)

PC2 0.28 (0.25, 0.31)

R2
(adjusted R2

) 0.47 (0.46)

*Not significant (p-value > 0.05)

the sample size n is 235,678 cells (case c in Fig. 2). Filter 1 reduces this number to

17,351 cells, while Filter 2 leaves 4,138 points for the regression analysis.

Here, we present two models, which differ in the number of explanatory variables.

Model 1 includes two GIS-based explanatory variables, which have a visually iden-

tifiable correlation trend with the population density on the respective scatterplots.

Model 2 takes all available factors as explanatory variables. Figure 2d presents the

residual plot for Model 2 after Filter 2 has been applied.

Table 4 presents the estimates obtained from Model 1 and Model 2. In both cases

we use the sample obtained from Filter 2.

4.2 Discussion

Figure 2 illustrates that filtering of the original observations facilitates the fulfillment

of the standard multiple regression assumptions regarding the error independence

and homoscedasticity. Note that a well-recognized problem in the analysis of spatial

data is the presence of spatial autocorrelation in the dataset. The effects of spatial

dependence on the conventional statistical methods are various, including a likely
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overestimation of R2
and the unreliability of the significance tests. Filtering helps

to deal with the spatial autocorrelation in such a way, that we select a sample of

(presumably) independent observations (cells) from the original GIS-based land use

map consequently removing spatial correlations in the sample.

Coefficient estimates in Table 4 indicate that the population density is higher in

the cells with more urbanized neighborhoods and is lower in the cells which are far

away from the transportation routes. The closer a cell is to commercial centers, the

higher the population density is, but this variable has a lesser impact. All estimates

in Table 4 are statistically significant (p-value < 0.05).

The R2
coefficient suggests that about 40 % of the total variance in the popula-

tion density is explained by Model 1 using Filter 2. This value almost doubles com-

pared to the case when Filter 1 is used. Despite the fact that we cannot explain most

of the variance of the population density using the collected set of socio-economic

indicators inside the urban areas (and for the whole territory in general), the results

obtained so far suggest, that the land use neighborhood partly captures the spatial pat-

tern of the population distribution, which is caused by unknown drivers not included

in this study.

5 Conclusion

We have showed that filtering procedures can be used to deal with a non-

independence of observations in case of spatial data. Heteroscedasticity and correla-

tion have been detected in the residuals of the standard multiple regression model in

the case study of the Seville province. We have constructed special filters to isolate

the territory at the borders of urban areas, where spatial correlation is not present.

The obtained results have showed a more random pattern in the residuals of the

regression model.

The model suggests that for the remaining part of the spatial data (after filtering), a

decent part of the variance of the population density can be explained by the abundant

land use types in the neighborhood of the focal cell. This finding can help obtain

new insights related to the phenomenon of urban sprawl, which occurs at the fringe

of urban areas outside of the city centers with high population densification.
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