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Abstract The messenger RNA (mRNA) molecule passes the genetic information

from the genome to the protein synthesis machinery. Decades of study of the spatial

characteristics of mRNA distribution in fixed cells and tissues particularly by

electron microscopy and in situ hybridization approaches, have revealed the sites

of synthesis in relation to the nuclear DNA, and the paths taken en route to the

nuclear pore. These studies are now complemented by experiments performed in

living cells using fluorescent tags that specifically target mRNA transcripts. The use

of high-end microscopy equipment improving the detection of mRNA molecules,

together with the advent of new fluorescent tags and original means by which to

label the mRNAs, allow us to spy on the mRNA within its natural context of the

living cell. High-resolution time-lapse imaging has brought to light the dynamics of

single molecules of mRNA during RNA polymerase II transcription, nucleoplasmic

transport of mRNA-protein complexes (mRNPs), and the final nuclear event of

mRNA export through the nuclear pore complex.

1 Introduction

In 1952 James Watson taped a small note on the wall of his room. It was his

hypothesis for how protein synthesis takes place in eukaryotic cells. The note said:

↻DNA!RNA! Protein, putting forward the propositions that: (a) RNA is syn-

thesized in the nucleus from the DNA molecule, and (b) that RNA must move into

the cytoplasm where it serves as a template for protein synthesis. As Watson

describes, his hypothesis was based on two findings (Watson 2011). First, was the

experiment that showed that the nucleus (DNA) had no role in protein synthesis.

Brachet and Chantrenne used the giant alga Acetabularia for these experiments;

after cutting the cells in half they found that the half lacking the nucleus could
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sustain protein synthesis for 2 months (Brachet and Chantrenne 1951). The second

finding was made by Beadle and Tatum, showing that the genetic information

required for protein synthesis is harbored in the cell nucleus, also known as the

“one gene–one enzyme hypothesis” (Beadle and Tatum 1941). Only in 1961 did the

term messenger RNA (mRNA) emerge following the publication of two back-to-

back papers in Nature. Meselson, Jacob and Brenner were searching for an RNA

associated with the ribosomes that was not ribosomal RNA, and discovered the

short-lived messenger RNA (Brenner et al. 1961). Independently around the same

time, Watson and colleagues came to the same conclusion (Gros et al. 1961).

Although Jacob et al. were ready for publication, Meselson tells that Watson

requested that they wait with the submission, and so they did. Thus mRNA was

discovered, and the rest is history. In the wide perspective of cell biology, it is safe

to say that the mRNA molecule has become on its own right, one of the pillars of

modern biology.

The study of mRNA biology has branched out in many directions focusing on

the highly regulated processes of nuclear transcription and cytoplasmic translation.

This chapter will describe the life cycle of the mRNAmolecule in the nucleus, from

the time it leaves the transcribing gene and travels toward the nuclear periphery,

ending with nucleo-cytoplasmic export through the nuclear pore complex (NPC).

We will emphasize the spatial considerations of mRNA dynamics in the nucleus

with regard to the temporal information obtained from live-cell studies, and will use

the technical developments in microscopy and imaging as stepping stones in

describing key discoveries and the progression in our understanding of mRNA

dynamics in eukaryotic cells. We will travel from the days where electron micros-

copy provided the first high resolution glimpses of mRNAs in fixed cells, through

the appearance of the fluorescent molecules that lighted up mRNAs in cells, to bring

us to the current era of live-cell imaging which provides real-time measurements of

mRNA dynamics.

2 The mRNP

Electron microscopy was one of the first commonly used tools to study the

appearance, location and even structure of mRNA molecules in the context of the

cell. These large complexes, biochemically purified from cells or observed in EM

specimens and identified as containing mRNAs, were considered mRNPs, meaning

an mRNA molecule coated with a substantial protein component.

It is well recognized by now that mRNA molecules are not simple linear single

stranded nucleic acids as depicted in many schemes, and are rather molecules rich

in secondary structures that serve as scaffolds for the binding of tens or even

hundreds of different proteins (Muller-McNicoll and Neugebauer 2013; Dreyfuss

et al. 2002). These proteins have a variety of roles, one being a protective coat

against the many mRNA decay factors roaming the cell in search for unprotected

mRNA ends to latch onto. Some other functions might be the regulation of mRNA
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processing and maturation, mRNP packaging, and determination of export proper-

ties. Many of the mRNP proteins assemble co-transcriptionally (Neugebauer and

Roth 1997) and accompany the mRNA as it travels to the cytoplasm (Pinol-Roma

and Dreyfuss 1992; Visa et al. 1996; Le Hir et al. 2000b). The mRNP is remodeled

as some proteins are removed during or following export in a process of mRNP

re-modelling, such as the nuclear polyA-binding protein (PABPN1) that is

exchanged with the cytoplasmic polyA binding protein (PABPC1), or the nuclear

cap binding complex (CBC) that is exchanged for eIF4E (Lejeune et al. 2002;

Hosoda et al. 2006). Some of the proteins that assemble on the mRNA in the

nucleus can determine the cytoplasmic fate of the mRNA in terms of RNA

localization and translation efficiency (Ross et al. 1997) or even function in

cytoplasmic mRNA decay (Kataoka et al. 2000; Le Hir et al. 2000a, 2001;

Haimovich et al. 2013a, b).

What does an mRNP look like—is it a round granule or perhaps elongated or

irregular? How many proteins does it contain? How is mRNA folded within the

complex—is it hidden inside or perhaps is it wrapped around? Most of these

questions remained unanswered. The extensive biochemical studies on mRNP

composition (Sperling and Sperling 1990) have established that many of the

RNA-binding proteins coating the mRNA belong to the hnRNP family (Dreyfuss

et al. 2002; Dreyfuss 1986), which rapidly and co-transcriptionally bind to the

nascent transcripts (Fakan et al. 1986), but their exact role in mRNP biogenesis and

transport remains enigmatic for now. The heterogeneous ribonucleoprotein parti-

cles (hnRNPs) were characterized using purified hnRNP complexes which

contained approximately a 4:1 stoichomoteric ratio of protein to RNA. The studied

hnRNP particles were 20–25 nm in diameter but may have been part of larger

complexes since they were obtained by nuclease digestion. Detection of similar

sized particles on actively transcribing genes in Drosophila embryo cells was

obtained by Beyer and Osheim who implemented the Miller chromatin spreading

technique for the detection of RNA polymerase II (Pol II) transcribed mRNAs

(Beyer and Osheim 1988; Osheim et al. 1985). They could not identify which active

genes were being detected, but could clearly observe multiple nascent mRNAs of

increasing length associated with the gene body. Each transcript had 2 RNP parti-

cles associated with it, one at the 50 and one usually at a similarly spaced position

downstream. However, subsequent studies revealed that these were splicing related

particles and were not the mature mRNPs. Performing the Miller spreads at less

stringent conditions revealed 50–60 nm granules close to the chromatin, which

could be mRNPs (Sperling and Sperling 1990).

EM studies performed in situ, without the chromatin dispersal inherent to Miller

spreads, examined the site of formation of newly synthesized mRNAs. The nascent

mRNAs were coined ‘peri-chromatin fibrils’ since they were found in close prox-

imity to chromatin (Fakan 1994; Bachellerie et al. 1975). These fibrils could

sometimes be seen forming into single granules of 35–55 nm in diameter

(Puvion-Dutilleul and Puvion 1981), and were structurally similar to the best

documented example of single mRNP detection by EM, the Balbiani ring

(BR) mRNP produced from the salivary glands of the dipteran Chironomus tentans.
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The BR mRNPs contain extremely long mRNAs (35–40 kb) that are transcribed

from the BR puff genes and therefore are easily detected as 50 nm granules that

form co-transcriptionally and travel through the nucleoplasm until they reach the

NPC (Fig. 1) (Stevens and Swift 1966; Skoglund et al. 1983; Daneholt 1999). The

BR granules were spherical and uniformly dense after uranyl staining, and distin-

guishable from ribosomes or chromatin. These granules provided much insight to

the process of mRNA export on account of the large size of the mRNPs, to be

discussed later on. Studying the formation of the BR pre-mRNPs has shown that

they are structurally diverse particles, mostly due to size and structure of the

transcript, and the mRNA processing events that occur on the pre-mRNA (Bjork

andWieslander 2011). Structural analysis of the mature nucleoplasmic BR granules

by EM tomography showed that they had similar structure, namely a sphere with a

central hole. The particles contained a thick RNP ribbon folded into four domains,

with the 50 end at the top of the first domain and the 30 end in the fourth domain,

suggesting close proximity between the two ends of the mRNA (Skoglund

et al. 1986). A study that purified nuclear mRNPs from yeast found similar

configuration, exhibiting a ribbon-like elongated structure with lateral constric-

tions, and length which was dependent on mRNA size (Batisse et al. 2009). The

authors suggest that these 25–30 nm long mRNPs contain mRNA in a condensed

manner, since a 1-kb linear mRNA would be 340 nm in length, tenfold longer that

Fig. 1 Electron micrographs of growing Balbiani Ring (BR) RNP particles during various stages

of maturation in C. tentans cells. Examples are shown from the (a) proximal, (b, c) transitional,

and (d–h) distal portions of the gene. Bar¼ 100 nm. Reprinted by permission from Cell Press
(Skoglund et al. 1983)
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the mRNP particles. Very few studies of this sort document RNP structure, for

example, purification of 30–120 nm influenza virus vRNPs (Wu et al. 2007), or

in vitro generated RNPs with average lengths of ~130 nm (Matsumoto et al. 2003;

Skabkin et al. 2004). Altogether, it is difficult to conclude whether there is common

architecture for all mRNPs, and more study is required in this field.

3 Detecting Specific mRNAs

It was not always clear that DNA and RNA coexisted in the same cells. In fact, at

the beginning of the twentieth century it was “common knowledge” that

thymonucleic acid (DNA) was found only in animal cells whereas zymonucleic

acid (RNA) was found in plants. At the time, Brachet was working on sea urchin

eggs and found that cells producing high levels of protein also contained high

concentrations of RNA (Thieffry and Burian 1996). In his studies, DNA and RNA

nucleic acids were observed using cytochemical approaches (e.g., Feulgen, Unna

and toluidine blue stains) until he finally developed the widely used methyl-green

pyronin RNA stain. These staining approaches provided information as to the

presence of RNA in all types of cells and within the different compartments of

the cells.

A dramatic step forward in RNA observation came with the development of a

method that could detect specific RNA or DNA sequences within cells. The in situ
hybridization (ISH) method developed by Joe Gall used radioactive nucleic acid

sequences that were complementary to DNA (or RNA) sequences. Gall and Pardue

were the first to detect specific chromosomal regions such as satellite DNA using

DNA probes, and the ribosomal DNA genes using radioactive ribosomal RNA as

probe (Gall and Pardue 1969; Pardue and Gall 1969, 1970). This method was

rapidly applied to many biological systems thus enabling the detection of endo-

genous genes and RNAs in fixed cells and tissues. The ISH protocol was refined and

the hybridizing oligonucleotide sequences were labeled with enzymes that pro-

duced a colored stain in place of the radioactive labels. An additional improvement

came with the appearance of fluorescence microscopy. Direct labeling of the

oligonucleotides with fluorescent fluorophores established the fluorescence in situ
hybridization (FISH) technique, popularly used in both basic sciences and diagnos-

tics (Levsky and Singer 2003).

The ability to detect bulk RNA within cells as well as specific RNA targets led to

important observations regarding the location of mRNA within the cell. In electron

microscopy studies the nascent mRNA transcripts were observed as fibers protrud-

ing from the DNA (peri-chromatin fibrils), and transcription was found to take place

in the peripheral areas of chromosomal regions that were in contact with the

nucleoplasmic surroundings, whereas more internal regions of a chromosome

were seen to be less transcriptionally active (Zirbel et al. 1993; Verschure

et al. 1999). mRNA molecules that had left the site of transcription seemed to be

randomly dispersed within the nucleoplasm, usually in between chromatin dense
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regions (Singh et al. 1999; Pante et al. 1997). With the detection of nuclear bodies

containing pre-mRNA splicing factors [termed inter-chormatin granules or nuclear

speckles (Spector 1993)] it was thought that these might serve as the sites of

splicing activity during the pathway an mRNA takes from the gene to the nuclear

pore (Huang and Spector 1992). However, it turned out that bulk mRNA or specific

transcripts were distributed throughout the nucleoplasm (Zachar et al. 1993; Dirks

et al. 1995; Snaar et al. 2002) and no particular accumulations of mRNA could be

detected. Even though poly(A) FISH detected considerable RNA signal in nuclear

speckles, the actual accumulation was probably not more than twofold higher than

the nucleoplasm (Fay et al. 1997). In the light of our current knowledge that many

long non-coding RNAs (lncRNA) are transcribed by RNA polymerase II, contain

poly(A) tails, and are nuclear retained [it was known early on that much of the

nuclear RNA never left the nucleus (Perry et al. 1974; Herman et al. 1976)], it is

possible that ncRNA is a substantial component of nuclear speckles as indicated by

the detection of the MALAT/NEAT2 ncRNA in speckles (Hutchinson et al. 2007).

In any case, the exact function of these nuclear speckle bodies remains contro-

versial and they do not specifically accumulate mRNAs within (Lamond and

Spector 2003; Hall et al. 2006). Intriguingly, some mRNA labeling studies demon-

strated fiber-like tracks in the nucleus (Lawrence et al. 1989) suggesting that

mRNAs could transport on a filamentous nuclear network, reminiscent of the

actin or tubulin cytoskeletal highways observed in the cytoplasm. To date, such a

nuclear transport system has not been detected.

The popularity of RNA FISH combined with conventional fluorescence micro-

scopy provided much qualitative information on mRNA distribution in cells and

tissues, but lacked a quantitative angle. Moreover, many of the protocols suffered

from high background issues that did not enable the detection of single molecules.

This required modification of the technique such as signal enhancement that will

easily differentiate between the real molecules and the background. To overcome

these issues, Singer and colleagues developed a single molecule RNA FISH

approach in which each mRNA transcript of interest was targeted by a series of

five short complementary DNA oligonucleotides (aprox. 50 nucleotides long), and

each oligo (or probe) was labeled with several (3–5) fluorophores. Thereby, each

transcript was labeled with many fluorophores, providing a strong point of fluores-

cence detectable by fluorescence imaging as well as high signal versus the back-

ground fluorescence of the specimen and non-specifically bound fluorescent probes.

This approach enabled the detection of actively transcribing genes in mammalian

cells and the counting of nascent and cellular mRNAs (Femino et al. 2003; Shav-

Tal et al. 2004b). For instance, quantification of single molecules of β-actin mRNA

showed that a quiescent population of cells contained 500� 200 β-actin mRNAs

per cell, whereas a proliferating population had up to ~1500 copies per cell (Femino

et al. 1998). At high activation levels the transcribing β-actin alleles harbored ~30

nascent transcripts suggesting the presence of numerous RNA polymerase II

enzymes associated with the DNA along the β-actin gene body. Using differently

labeled probe sets to the 50-untranslated region (UTR) and the 30UTR they could

determine a rate of 1.1–1.4 kb/min for RNA Pol II transcription.
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The single molecule RNA FISH approach underwent another level of simplifi-

cation by Raj, van Oudenaarden and Tyagi making it easily applicable in many

laboratories (Raj et al. 2008). In place of the unique fluorophore conjugation

procedures required for labeling the probes in 3–5 different positions within one

probe, the DNA probes were typically labeled only at one end, and signal ampli-

fication was obtained by the use of between 40 and 100 short probes to the known

mRNA sequence (compared to five probes in the previous approach). This approach

and others are now commercially available [reviewed in (Pitchiaya et al. 2014)].

Subsequent studies have used these single molecule techniques to quantify mRNA

expression levels in different types of cells and tissues generating a broad picture of

stochastic behavior in gene expression patterns (Fig. 2), for instance see (Yunger

et al. 2010; Raj et al. 2006; Vargas et al. 2011; Levsky et al. 2002; Zenklusen

et al. 2008; Itzkovitz et al. 2012; Hansen and van Oudenaarden 2013; Waks

et al. 2011; Battich et al. 2013; Chou et al. 2013; Hoyle and Ish-Horowicz 2013;

Lee et al. 2014).

Fig. 2 Demonstration that pre-mRNA molecules dispersed in the nucleus are capable of being

spliced. (a) Upper panels show composite RNA FISH images of cells in which a gene containing

array with an intron was transcriptionally induced for a brief period (2 h). Many pre-mRNA

molecules are seen scattered within the nucleoplasm with little accumulation of spliced mRNA

molecules in the cytoplasm. Lower panels show images from the same batch of cells as above, but

in which induction was followed by a period of suppression (2 h). There was a decrease in the

proportion of pre-mRNA molecules in cells fixed after the chase period, with a concomitant

increase in spliced mRNA molecules in the cytoplasm. Raw images are shown on the left and
overlays with colored balls identifying the RNA species are presented on the right. (b) Percentage
of the three different RNA species in individual cells as a function of time after the addition of

doxycycline (dox). Doxycycline turns off new RNA synthesis within several minutes. Even though

the proportion of spliced mRNAs continues to increase after 3 h, the overall number of RNAs

declines due to degradation. Error bars represent 95% CI. Reprinted by permission from Cell
Press (Vargas et al. 2011)
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4 Bringing mRNAs to Life

Do drive RNA detection from fixed cell imaging to real-time imaging, Pederson

and Politz applied the FISH method to living cells. Much of the initial detections of

RNA by FISH in fixed cells were performed using an oligo(dT) fluorescent probe

that hybridized with the poly(A) tails of all mRNAs, thus detecting the bulk poly

(A)-containing populations of nuclear RNAs. This approach in living cells and the

detection of several sub-populations based on their nuclear mobility [one of the first

applications of fluorescence correlation spectroscopy (FCS) in the study of mole-

cule mobility in living cells], suggested the existence of different mRNA

populations that may vary in size (Politz et al. 1995, 1998). This study brought

upon a whole new set of scientific questions and motivated the generation of new

approaches for RNA labeling in living cells. It is important to note two of the major

obstacles that had to be addressed in future development of studies in living cells.

First, since excess oligo(dT) probe roamed the nucleus and could not hybridize with

mRNA, it was difficult to distinguish between the mRNA-probe fraction and the

unbound probe, hence the required use of FCS that could help differentiate between

the populations. But the latter did not provide a solution for examining where in the

nucleus do the mRNAs actually travel. Second, as with FISH in fixed cells, it

became important to be able to examine specific mRNA transcripts rather than only

the bulk poly(A) population.

An elegant approach helped solve the first issue of detection. Instead of labeling

bulk mRNAwith a fluorescent oligo(dT) probe, a caged fluorophore was attached to

the probe, and only by specific activation of the caged fluorophore could the probe

become detectable (Politz et al. 1999). In this manner, Politz and colleagues

activated only a small portion of the probe in one area of the nucleus, and

subsequently could follow the fluorescently tagged mRNA molecules over time.

If mRNA were a non-mobile molecule one would expect the uncaged fluorescent

signal bound to the mRNA to remain in one spot. This was in fact not the case at all,

and the movement of the hybridized uncaged signal could be tracked over time.

Importantly, this study included labeling of the DNA using the Hoescht 33342 dye

that can be applied to living cells, and unequivocally demonstrated that mRNA

traveled throughout all the nucleoplasmic space that was not occupied by chromatin

(Fig. 3). In light of the abovementioned accumulation of poly(A) signal in nuclear

speckles, it was later on shown that mRNA passed through nuclear speckles with

the same mobility as within the rest of the nucleoplasm, not showing any “rest-

stops” at which it might pause for further processing (Politz et al. 2006; Molenaar

et al. 2004).

The appearance of green fluorescent protein (GFP) at the doorstep of cell

biology expanded the toolbox for mRNA tagging in living cells. For instance,

instead of using oligo(dT) probes, the group of Carmo-Fonseca used the natural

nuclear poly(A)-binding protein (PABPN1) fused to GFP, to bind to the poly

(A) region of mRNAs (Calapez et al. 2002). This study used fluorescence recovery

after photobleaching (FRAP) to measure the nuclear mobility of the different
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Fig. 3 Intranuclear localization of uncaged fluorescein labeled (FL) FL–oligo(dT) compared to

chromatin distribution. Cells were incubated sequentially with caged FL–oligo(dT) and Hoechst

33342 and three-dimensional stacks in both (a, c, e) blue (Hoechst-labeled chromatin), and (b, d, f)
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populations of moving molecules and could distinguish between free versus

mRNA-bound GFP-PABPN1. Still, it was not possible to detect specific mRNAs.

To this end, the laboratory of Singer generated a unique tagging sequence that could

be inserted into a gene of interest, and subsequently the mRNA molecule would

contain the tagging sequence within, that would be bound by a specific

RNA-binding protein (RBP). In order for this tag not to interact with eukaryotic

RBPs, the chosen sequence was taken from the MS2 bacteriophage, which contains

an MS2-coat protein (MCP) that binds to a unique stem-loop structure in the phage

MS2 RNA (Bertrand et al. 1998). The MS2 sequence was introduced as a series of

24 sequence repeats into the 30UTR of a mammalian gene, thus forming 24 stem-

loops in the mRNA transcribed from the gene, to be bound by GFP-MS2-CPs

(Fig. 4).

The binding of the many GFP-CP RBPs to this specific mRNA immediately as

this region was transcribed allowed the detection of the mRNA during transcription

(Janicki et al. 2004; Darzacq et al. 2007; Boireau et al. 2007; Brody et al. 2011),

co-transcriptional mRNA splicing (Martin et al. 2013; Coulon et al. 2014), release

from the gene and nucleoplasmic travels (Shav-Tal et al. 2004a), and the final

nuclear point of mRNA export (Mor et al. 2010b; Grunwald and Singer 2010). It is

notable that this technique has been successfully implemented in prokaryotes as

well as in almost every eukaryotic model organism used in experimental biology

(Fig. 5) (Lionnet et al. 2011; Bertrand et al. 1998; Chubb et al. 2006; Muramoto

et al. 2012; Golding and Cox 2004; Golding et al. 2005; Bothma et al. 2014).

Additional RNA tagging platforms based on similar repeated sequences, known as

PP7 and λN (Coulon et al. 2014; Martin et al. 2013; Schonberger et al. 2012; Daigle

and Ellenberg 2007), have since emerged thus expanding the possibilities for

simultaneous mRNA tagging in living cells (Hocine et al. 2013). The dynamics

of single mRNPs could then be followed in living human cells showing that mRNPs

travel by diffusion at rates that are between 10 and 100 fold slower than single

proteins or small complexes (Shav-Tal et al. 2004a). Movement and diffusion rates

of mRNPs have since been measured by a variety of additional mRNA tagging

techniques (Vargas et al. 2005; Shav-Tal and Gruenbaum 2009; Siebrasse

et al. 2008; Ishihama and Funatsu 2009; Thompson et al. 2010; Tyagi 2009;

Bratu et al. 2003; Kubota et al. 2010; Santangelo et al. 2009; Gohring

et al. 2014), altogether highlighting the bulkiness of the large mRNP particle as it

Fig. 3 (continued) green (uncaged FL–oligo(dT)), channels were captured and restored. (a, b)

Raw and (c, d) restored midsections show the distribution of Hoechst signal and uncaged FL–oligo

(dT) signal in the same nucleus. (e, f) The same images as in (c, d) but high intensity regions of

Hoechst signal were (e) outlined and (f) the outlines superimposed on the oligo(dT) image. (g) A

color encoded overlay in which the Hoechst signal is green and the oligo(dT) signal is red. (h) A
plot (linescan) of the intensity (arbitrary units) versus pixel number for the Hoechst (green) and
oligo(dT) (red) signals as they vary along a line across the middle of (g). For (a–g), each image is

~19� 19 mm. Reprinted by permission from Cell Press (Politz et al. 1999)
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travels through the nucleoplasm, randomly moving to end up at the exit point at the

nuclear pore.

Finally, these studies following bulk RNA and specific mRNA movement in

cells showed that the nuclear mRNA movement was diffusion-based and that there

was no energy-requiring process utilized by the cell to drive mRNA nucleo-

cytoplasmic transport (Politz et al. 1998; Shav-Tal et al. 2004a; Politz

et al. 2006). Although some studies could find an effect of ATP depletion on the

mobility of mRNA in living cells (Molenaar et al. 2004; Calapez et al. 2002), it

seems that was an indirect effect, while the primary site of energy depletion was on

global chromatin structure thereby affecting the structure of the inner nuclear space

and confining the movement of mRNPs within the nucleoplasm (Shav-Tal

Fig. 4 The MS2 mRNA tagging system. The MS2 sequence, when transcribed, forms repeated

stem-loop secondary structures in the mRNAmolecule. To observe transcription in living cells, the

YFP-MCP protein (can also be GFP/CFP/mCherry etc.) is transfected, and then binds the MS2

loops. For use by RNA FISH in fixed cells, fluorescently tagged DNA oligonucleotides comple-

mentary to MS2 repeated sequences, hybridize to the target mRNA. Empty circle, square and star
indicate RBPs. At the bottom, images corresponding to each of the methods: single mRNPs are

detected in the nucleus of 293 T cells using GFP-MCP (right), or by RNA FISH (left)
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et al. 2004a; Mor et al. 2010b). To this end we can conclude that the bulk of genetic

information moving from the nucleus into the cytoplasm in the form of messenger

RNA molecules reaches it cytoplasmic destination by diffusion, and that the cell

does not require energy investment for this step of message transport, in contrast to

the cytoplasm where some of the mRNAs must be transported by molecular motors

(Shav-Tal and Singer 2005). We could track the movement of single mRNPs in the

nucleoplasm of mammalian cells (Fig. 6) and showed that the timescale of nucleo-

cytoplsamic transport ranged from 5 to 40 min on average, with longer mRNAs

prone to longer transport times (Ben-Ari et al. 2010; Mor et al. 2010b). Therefore,

the timeframe of this path is determined by the particle size of the mRNP that would

be influenced by mRNA length and the number of proteins coating the mRNA, as

well as the biophysical properties of the nucleoplasmic space in which the mRNPs

Fig. 6 Analysis of mRNP kinetics in the cell nucleoplasm. (a) Frames of a diffusive nucleoplas-

mic mRNP labeled with the YFP-MS2-CP tracked for 102 s (green track). (b) The full tracked

movement from (a). Red, start of track; blue, end of track. Bar¼ 1 μm. Reprinted by permission

from Nature Publishing Group (Mor et al. 2010b)

Fig. 5 Confocal image of a transgenic Drosophila embryo carrying an eve>MS2 transgene. The

mRNA is labeled via in situ hybridization with probes for the reporter gene (green) and endog-

enous eve mRNAs (red) in the same embryo during nuclear cycle 14. Eve>MS2 transcripts

identify authentic stripe 2 and stripe 7 expression patterns. Reprinted by permission from PNAS
(Bothma et al. 2014)
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travel and the hindrance of the chromatin structure (Mor and Shav-Tal 2010; Mor

et al. 2010a; Roussel and Tang 2012).

5 Exit to the Cytoplasm

Export of mRNAs through the NPC and into the cytoplasm, where they are to reach

the translation machinery, is an irreversible step, thus making this a key point of

regulation in gene expression. One of the main systems used to visualize mRNA

export are the abovementioned exceptionally large BR mRNPs easily observed by

EM in the salivary glands cells of C. tentans, and their detection on the nucleo-

plasmic and cytoplasmic sides of the NPC allowed the examination of mRNPs

during export. In an early study, Stevens and Swift showed images of the BR

granule re-structuring to form a rod shape during translocation through the pore

(Stevens and Swift 1966). Immunoelectron microscopy images demonstrating

co-localization of the RNA helicase Dbp5 with the BR mRNP as it changes

shape, implied the involvement of a helicase in this transformation (Zhao

et al. 2002). Indeed, the remodeling of the mRNP on the cytoplasmic side is thought

to prevent its return back into the nucleus, suggestive of a molecular ratchet

mechanism imposing directionality on nucleo-cytoplasmic mRNA export (Stewart

2007). Using TEM and SEM (transmission and scanning EM, respectively),

Kiseleva et al. were able to provide remarkable pictures of the BR mRNPs during

the act of transport through the pore. Based on the analysis of these images, a model

was proposed for mRNA export, in which the nuclear basket ring exhibits dynamic

restructuring in order to allow the passage of the mRNP through it (Kiseleva

et al. 1996, 1998; Daneholt 1997). The passage of the mRNP seems to be direc-

tional since Mehlin, Daneholt and Skoglund showed by applying 3D technology on

high resolution images of BR mRNPs, that the 50 region of the mRNA is first to

Fig. 7 A schematic overview of BR mRNP export, based on (Daneholt 1997). Left to right: the
mRNP granule docks at the ring of the nuclear basket. Then, the mRNP changes shape to a rod-like

structure and begins to enter the central channel of the pore, with the 50 region inserted first. Next,
the mRNP translocates through the pore, crossing from the nucleus to the cytoplasm, and finally

released from the NPC
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enter the pore (Fig. 7), suggestive of functional interactions between mRNP pro-

teins situated at the 50-end of the mRNA and the pore proteins, prior to translocation

(Mehlin et al. 1992). Supporting information that this was a general phenomenon in

mammalian cells as well, was provided by the group of Robin Reed who used RNA

immunopercipitation experiments in human cells to show that the transcription-

export protein complex (TREX) is situated on the first exon near the 50-end of the

mRNA (Cheng et al. 2006).

Other groups were motivated to search for proteins that may act as porters in

nucleo-cytoplasmic transport. For instance, in a study conducted by the Dreyfuss

laboratory during their studies of hnRNP proteins, the hnRNP A1 mRNA-binding

protein was shown to shuttle between the nucleus and the cytoplasm (Michael

et al. 1995). This seemed a suitable quality for a carrier of mRNAs, and indeed

specific amino acid sequences were identified as crucial for export activity, and

termed nuclear export signals (NES). In accordance, the titration of NES-receptors

with NES-conjugated peptides in Xenopus oocytes cells resulted in mRNA export

inhibition (Pasquinelli et al. 1997), suggesting that the NES-mediated mRNA

export pathway is limited by NES-receptor availability. Meanwhile, the RBP

Crm1 was discovered. This protein also possessed nucleo-cytoplasmic shuttling

properties and was suspected as a carrier of mRNAs. Use of leptomycin B which

specifically inhibits CRM1, caused poly(A) RNAs to accumulate in the nucleo-

plasm thus strengthening the notion of RBP-facilitated transport in mammalian

cells (Watanabe et al. 1999). Using inhibition of LMB in heterokaryons of HeLa

cells and Xenopus A6 cells demonstrated that hnRNP A1 can still translocate from

the HeLa cells into the Xenopus cells, thus implying that the Crm1 export pathway

and hnRNP A1 export are separable (Lichtenstein et al. 2001). The Crm1 pathway

is currently considered important mostly in protein transport.

Accumulating data indicated separate export pathways for ncRNAs and

mRNAs, the latter involving the mammalian protein TAP/NXF1 (or yeast

Mex67). When constitutive transport element (CTE) containing mRNAs taken

from viral RNAs, were microinjected by the Izaurralde group concomitantly with

recombinant TAP into nuclei of Xenopus oocytes, an increase in mRNA export was

registered. Indeed, the C-terminal domain of TAP interacts directly with the

FG-repeat domains of different nucleoporins (Nups) both on the nuclear and

cytoplasmic sides of the NPC (Bachi et al. 2000). The export machinery also

interacts with upstream events of gene expression (Luna et al. 2008). For instance,

coupling between pre-mRNA splicing and export was shown after the microinjec-

tion of 32P-labeled pre-mRNA and mRNA into nuclei of Xenopus oocytes, and the

observed increased export of spliced mRNAs whereas only 5% of the unspliced

mRNA underwent export (Luo and Reed 1999). This issue was re-examined by

looking at β-globin mRNA distribution by RNA FISH. Quantifying single mRNA

cellular localization demonstrated higher cytoplasm to nucleus ratio of the spliced

mRNAs compared to unspliced transcripts (Valencia et al. 2008), demonstrating the

enhancing effect of splicing on mRNA export.

Quite surprisingly, one RNA FISH study has shown regarding the signal

sequence coding region (SSCR) amino acid sequence used to localize secreted
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proteins to the ER, that this same sequence but on the mRNA nucleotide level will

allow the mRNAs of these proteins to export independently of the TREX proteins

but in a TAP mediated process (Palazzo et al. 2007). RNA FISH localization assays

also helped in sorting out export pathways. For instance, influenza A vRNAs in

MDCK cells showed co-localization with GFP-TAP thus implying that the TAP

host cellular export mechanism is exploited for the packaging of influenza A virus

(Wang et al. 2008). Currently, it is realized that many more RBPs and post-

translational modifications are involved in defining the mRNA export process

(Tutucci and Stutz 2011).

A further visual demonstration of the importance of Nups in mRNA export was

obtained by the injection of antibodies to Nup153 into C. tentans salivary gland

cells, and as a result, the export of BR mRNPs and rRNA was blocked (Soop

et al. 2005). This study suggested that mRNP entry into the nuclear basket is a

two-step process; first the mRNP binds to the tip of the basket fibrils and only then

is it transferred through the basket by a Nup153-dependent process. Later on, live-

cell studies following the behavior of single mRNPs in the human nucleus during

blockage of mRNA export (using a dominant negative form of Dbp5) showed that

indeed mRNP binding to the NPC occurred independently of export itself (Hodge

et al. 2011). To provide compelling evidence as to the role of the already suspected

DEAD-box ATPase Dbp5 in mRNA export, Lund and Guthrie employed oligo

(dT) cellulose chromatography to extract mRNPs from Saccharomyces cerevisiae
and quantified the bound fraction of Mex67-GFP on Dbp5 mutants compared to

wild-type Dbp5. This resulted in an increase of the bound protein on the Dbp5

mutant, implying that Dbp5 is an active participant in the removal of Mex67 and as

the terminator of the mRNA export process (Lund and Guthrie 2005).

It is almost dogmatically accepted that all import and export to the nucleus can

only follow through the NPCs. Therefore, the field was overwhelmed by the

demonstration of an alternative export pathway independent of NPCs. This process

resembles herpes virus budding. The studied large mRNP granules in Drosophila
synapses were found to exit the nucleus via budding through the inner and the outer

nuclear membranes (Speese et al. 2012). However, to date, this is the exception

rather than the rule, and in fact even the exact path taken by the mRNP inside the

pore is not clearly defined. EM examination of various cargoes moving through the

pore has distinguished between two pathways, central and peripheral. Use of

nanometer sized RNA-gold conjugates offered the opportunity to examine different

sub-classes of regular sized RNAs (mRNA, rRNA, tRNA) by EM to test questions

regarding the exact pathway of passage within the pore and the competitive nature

of RNA export, rather than using radiolabeled RNAs (Jarmolowski et al. 1994). The

Mattaj group conjugated DHFR mRNA, tRNA and U1 snRNA to gold particles and

microinjected them into Xenopus oocyte nuclei and found that only RNA species of

the same type could inhibit export by competition (Pante et al. 1997). Analyzing

these gold-mRNA conjugates at NPCs showed that mRNA passes through the

center of the NPC, in accordance with an earlier study (Dworetzky and Feldherr

1988). In contrast, when Cook and colleagues examined mRNA localization at the

pore using indirect immunogold labeling in HL-60 cells, the labeled transcripts

Dynamics and Transport of Nuclear RNA 505



localized at the side of the pore channels and not in the center (Iborra et al. 2000).

Huang and Spector presented similar findings using electron microscope

pre-embedding in situ hybridization with eosin photo-oxidation to monitor poly

(A) RNA in HeLa cells, to reveal a stronger staining in the periphery of the pores

indicative for transport through the side of the NPC channel (Huang et al. 1994).

The well-known hypothesis termed “gene gating” proposed by Gunter Blobel

(Blobel 1985), argued that NPCs play an active part in nuclear organization through

interactions between NPC constituents and DNA sequences. It was proposed that

the proximity of a gene to the nuclear envelope would facilitate export. Although

some studies in yeast strengthen the latter (Casolari et al. 2004; Cabal et al. 2006),

most studies in living mammalian cells demonstrate mRNAs slowly diffusing

through the whole nucleoplasm on their way to the nuclear pores, as discussed

above (Sheinberger and Shav-Tal 2013). mRNA export however, was always

considered a rapid event, since not much mRNA was detected within the pores

by the different staining approaches used. With the improvement of imaging

techniques and rapid live-cell imaging, these type of studies could focus on the

detection of mRNP dynamics at the pore. Large MS2-tagged mRNPs were visual-

ized exiting the nucleus at an estimated time frame of 500 ms or less, and were seen

to approach the NPC in a compact form to then emerge in the cytoplasm as a

disorganized open structure, implying remodeling of the large mRNP during

passage through the pore (Mor et al. 2010a, b). In a study performed on endogenous

MS2-tagged β-actin mRNAs together with labeled NPCs, export kinetics were

measured using super-registration which employs high-sensitive cameras and pro-

vide a time resolution of 20 ms. This revealed that a total of 180 ms was required for

passage through the NPC, and that the longer dwelling times occurred at the nuclear

and cytoplasmic sides (~80 ms) while the movement through the central channel

was significantly faster (5–20 ms) (Grunwald and Singer 2010). Another rapid

imaging approach could show that export times were in the range of ~12 ms

(Ma et al. 2013). This study could also reconstruct a 3D pathway of mRNPs

traveling through the NPC in live cells, and found that mRNPs moved along the

periphery of NPC and not through the central axial channel that was used by small

passively diffusing molecules. Even BR mRNPs were followed in live salivary

gland cells They were indirectly tagged by a fluorescently labeled hrp36 protein

(hnRNP A1 homologue) and export times ranging from 65 ms to 6 s were measured

(Siebrasse et al. 2012). They could also detect significant binding times at the pore

before export, pointing to a rate-limiting step occurring at the nuclear basket.

Future studies will enable direct examination of both mRNPs and NPCs in living

cells to better understand the structural changes both undergo as the large mRNP

complex travels through the channel in the NPC. It seems probable that both

structures must transform to some extent but exactly what happens is not well

understood. For instance, using wavelength anomalous dispersion on NPC crystals

derived from Rattus norvegicus, Melcak et al. proposed that circumferential sliding

of Nup58/45 affects the pore diameter and allows transport of macromolecules,

potentially explaining how mRNPs translocate through the pores (Melcak

et al. 2007). Another study proposed that the nucleoplasmic basket filaments are
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connected at their distal ends, and only when an mRNP engages with this structure,

does the nuclear basket ring form and continue to dilate as the mRNP passes

through (Kiseleva et al. 1998). As a consequence, the filaments shorten, potentially

assisting the mRNP approach to the central channel. It will be important to better

understand the exact areas of interactions and molecular events of binding and

remodeling of mRNA-associated RBPs moving through the NPC. These studies

will take us further to examining the connections of nuclear trafficking in human

disease and as potential targets for pharmaceutical intervention (Mor et al. 2014).
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