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Abstract Let D be an integral domain with quotient field K . The ring Int(D) =
{ f (x) ‖ f (D) ⊆ D} has been studied as a ring for more than forty years. A major
topic of interest during that time has been the question of when the construction
yields a Prüfer domain. The principal question has been resolved, but interesting
generalizations are still being worked on. This is a survey paper that traces the
history of study of integer-valued polynomial rings with a focus on when they are
Prüfer domains.

1 Introduction

Throughout this paper, D is an integral domain, K is its field of fractions, and E is a
nonempty subset of K . A polynomial f (X)with coefficients in K is integer-valued if
every d ∈ D satisfies f (d) ∈ D; i.e., f (D) ⊆ D. The collection of such polynomials
is designated Int(D). One could also consider polynomials that are integer-valued
on a subset; more precisely, the polynomial f (X) is integer-valued on the subset
E ⊆ D if every d ∈ E satisfies f (d) ∈ D; i.e., f (E) ⊆ D. The collection of these
polynomials is designated Int(E, D).

The first studies of Int(D) were by Polya [18] and Ostrowski [16] both in 1919.
Although it is easy to see that Int(D) is a ring, both of these papers dealt purely with
the additive structure. In particular, they focused on the D-module structure of Int(D)

where D is a ring of algebraic integers. For the next half century Int(D) was studied
periodically, always stillwith focus on the additive/module structure. Studyof the ring
theoretic structure of Int(D) began almost simultaneously, and independently in three
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different places. Graduate students Paul-Jean Cahen and Jean-Luc Chabert at the
University of Paris, professorsHiroshi Gunji andDonaldMcQuillan at theUniversity
of Wisconsin, and graduate student Demetrious Brizolis at UCLA all began study
of Int(D) as a ring in the early 1970s. Integer-valued polynomials have been well
studiednow; there are deep results inmanydifferent directions.Oneof themain topics
from very close to the beginning has been the question of when the integer-valued
construction yields a Prüfer domain. This article will trace, chronologically, the study
of this specific question.

2 Int(D)

2.1 Noetherian Domains

The consideration of Int(D) being a Prüfer domain began with the work of Brizolis
[1]. This actually does not appear to have been his goal. The fact that Int(D) can
be a Prüfer domain proved to be useful to him in his study of problems involving
generating ideals. He proved that Int(D) is a Prüfer domain for a class of Dedekind
domains which includes the rings of algebraic integers, and then used this result to
generalize work of Skolem from the 1940s. He did find this “intermediate” result
interesting though, and questioned what necessary and sufficient conditions on a
domain D would be for Int(D) to be a Prüfer domain.

Jean-Luc Chabert [4] and Donald McQuillan [13] pursued this aggressively in
the succeeding years and each, independently, settled the characterization problem
in the case where the ring D is Noetherian. In particular, they each essentially proved
the following theorem.

Theorem 2.1 If D is Noetherian, then Int(D) is a Prüfer domain if and only if D is
a Dedekind domain with all residue fields finite.

In each case the method was to solve the problem locally and then globalize the
solution. In particular, they each proved that Int(V ) is a Prüfer domain if V is a
DVR with a finite residue field. The general case follows from this because when
D is Noetherian Int(D) behaves well with respect to localization. More precisely,
let V be a DVR with maximal ideal M and residue field F . Let V ∗ be the M-adic
completion of V . Then Int(V ) is a Prüfer domain. Moreover, the maximal ideals of
Int(V ) lying over M all have the following form.

Mα = { f (x) ∈ Int(D) ‖ f (α) ∈ MV ∗}

And these maximal ideals are all distinct. So the maximal ideals are indexed in a
natural way by the M-adic completion of V . What McQuillan and Chabert were able
to show is that this property can be globalized. Namely, if M is a maximal ideal of
a Noetherian domain D, and S = D − M then Int(DM) = S−1 Int(D). So, if D is
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a Dedekind domain with all residue fields finite, then the maximal ideals of Int(D)

lying over a maximal ideal M are naturally indexed by the elements of the M-adic
completion of D exactly as in the DVR case, and this led to a proof of the above
theorem.

2.2 Non-Noetherian Domains

While the Noetherian case was being settled, there remained the general case where
D is not assumed to be Noetherian. The first step in this direction was a result of
Chabert [4] in 1987.

Theorem 2.2 Let D be an integral domain. If Int(D) is a Prüfer domain, then D is
an almost Dedekind domain with all residue fields finite.

A domain D is said to be almost Dedekind provided the localization at any max-
imal ideal is a DVR. Noetherian almost Dedekind domains are then exactly the
Dedekind domains. So the theorem seems to be a natural extension of the Noetherian
necessary and sufficient condition. However, while Chabert’s result gives a necessary
condition for Int(D) to be a Prüfer domain, there was no indication that the condition
was sufficient. In fact, at the time it seemed that the condition might be vacuous; it
seemed possible that the only almost Dedekind domains with all residue fields finite
were actually Dedekind.

There were a few examples of non-Notherian almost Dedekind domains in the
literature. The first example is due to Nakano [15]: the ring of integers AK of the
infinite algebraic extension K = Q(ζ2, ζ3, ζ5, ζ7, . . .) of Q, where ζp is a primitive
pth root of unity. Subsequently, there were several constructions of such domains, all
due toGilmer alongwith several co-authors. (A good summary of these constructions
is contained in [6].) These constructions include, for example, those obtained as a
Kronecker function ring or as a monoid ring. However, all of these non-Noetherian
almost Dedekind domain examples contain at least one maximal ideal with infinite
residue field, and hence fail Chabert’s necessary condition.

In 1990Gilmer [6] filled this gap by providing examples of non-Noetherian almost
Dedekind domains which have all finite residue fields. The construction involves infi-
nite degree algebraic extensions of algebraic number rings (ormore generalDedekind
domains). In the standard setting of algebraic number theory one takes a finite degree
algebraic extension of a number field. In the corresponding rings of integers a prime
in the smaller ring either extends to a prime in the upper ring (inertia), or extends to a
power of a prime (ramification), or to a product of primes (splitting/decomposition),
or to a combination of the three.

To see what is needed in such a construction consider three different cases. In
each case, let V be a valuation domain with maximal ideal M generated by d, finite
residue field of order q, and quotient field K . Let L be an algebraic extension of K
of degree n.
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1. (Ramification) Suppose that V extends to a valuation domain W in L , but that
MW = Qn where Q is the maximal ideal of W . Then W will still have a principal
maximal ideal, but it will not be generated by d. Rather, d generates the nth power
of Q.

2. (Inertia) Suppose that V extends to a valuation domain W and that MW is the
maximal ideal of W . Then d will generate the maximal ideal of W , but the residue
field in W will have order qn .

3. (Splitting/Decomposition) Suppose that V extends to a domain W which has n
maximal ideals. Then each maximal ideal is locally generated by d and each
residue field has order q.

If we start thenwith aDedekind domainwith all residue fields finite it is intuitively
clear that the way to obtain an almost Dedekind domain with all residue fields finite
from an infinite degree algebraic extension is to sharply curtail both inertia and
ramification in the finite algebraic extensions. The “ideal” type of extension would
be one where a prime in the extension field has the same residue field and is locally
generated by the same element as the prime it lies over in the lower field. This is called
an immediate extension. An infinite degree extension of a one-dimensional Prüfer
domain is still a one-dimensional Prüfer domain. Begin with a DVR V with maximal
ideal P and with a finite residue field and then consider an infinite degree extension.
Each maximal ideal of the extension corresponds to a branch of a tree following
the primes at successive stages, lying over P . But if one branch involves infinitely
many stages with nontrivial ramification then localization at a maximal ideal will
yield a non-discrete valuation domain rather than a DVR. And if there are an infinite
number of stages in a single branch that involve inertia then the resulting domain will
have infinite residue fields. It is not generally possible to control the behavior of an
infinite number of primes in a finite extension. Gilmer’s method however, employed
a deep result of Krull [8], to start with a single valuation domain and then to build a
tower of finite degree extensions such that at each stage the collection of all primes
(necessarily finite) is completely controlled. In particular, if we start with the unique
prime P in V then follow a single line of primes lying over it then we can arrange
things so that on that single branch we have only immediate extensions from some
finite stage onward. This will yield an almost Dedekind domain with finite residue
fields.

However, once the desired domains had been constructed, it was apparent that
their behavior was not necessarily like that of Dedekind domains. Note that a finite
residue field must have order a power of some prime p. In a Dedekind domain there
can only be finitely many maximal ideals with residue fields of characteristic p. But
in an almost Dedekind domain there can be a prime number p such that there are
infinitely many maximal ideals Mi with residue fields having order a power of p.
And Gilmer was able to build such a domain in which the sizes of these residue fields
of characteristic p are unbounded. The idea is that on each branch the extensions
are immediate from some point on, but looking from one branch to another we
can have inertial behavior happening at arbitrarily high levels. In such an almost
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Dedekind domain D Gilmer was able to find a distinguished maximal ideal M such
that Int(D) ⊆ DM [x]. This demonstrates that Int(D) is not a Prüfer domain since
DM [x] is not a Prüfer domain and all overrings of a Prüfer domain are again Prüfer
domains. On the other hand, Gilmer also constructed some non-Noetherian almost
Dedekind domains for which the orders of the residue fields of characteristic p is a
bounded set, and in such cases he proved that Int(D) is a Prüfer domain. Accordingly,
he posed the following question (slightly paraphrased here)?

Question 2.3 If D is an almost Dedekind domain such that all residue fields of
characteristic p are of bounded size, is Int(D) a Prüfer domain?

Note that the question only deals with the question of sufficiency. Within the
setting of construction by means of infinite degree algebraic field extension, Gilmer
had proven necessity of the boundedness condition.

Chabert [5] approached Gilmer’s question and answered it negatively. Chabert
made use of Hasse’s existence theorem [7], which, along the same lines as Gilmer’s
use of Krull’s theorem, allowed him to find an algebraic extension in which the
behavior of a finite number of primes can be completely controlled. To understand
Chabert’s method, suppose first that we are working in characteristic zero. Now
if D is an almost Dedekind domain with finite residue field then each maximal
ideal must contain a rational prime number. Start with a DVR with finite residue
field such that 2 is in the maximal ideal. Since D is a DVR then 2 generates some
power Mn of the maximal ideal M . In an almost Dedekind extension the exponent n
such that (2)DM = Mn DM varies from one maximal ideal M to another. Chabert’s
method in this example however, was to shut inertia down completely in the algebraic
extensions so that the residue fields stayed small, but to include enough ramification
that the exponents n satisfying (2)DM = Mn DM were unbounded as M ranged
across the maximal ideals containing 2. As with Gilmer’s negative examples, in
Chabert’s examples that had unbounded ramification hewas able to prove that Int(D)

was not a Prüfer domain by finding a distinguished maximal ideal M such that
Int(D) ⊆ DM [x]. FollowingweexplainChabert’s proposedmodification ofGilmer’s
conjecture (somewhat paraphrased here).

First, consider the following two conditions on an almost Dedekind domain D
with all residue fields finite.

1. Choose a prime integer p. We say that D satisfies the first boundedness condition
if there is a bound on the cardinalities of the residue fields of order a power of p
for each prime p.

2. The second condition is not as simply stated. We give it in two parts.

• If D has characteristic 0 then each maximal ideal must contain exactly one
prime number. If D has characteristic p then D must contain a finite field F .
Choose F to have maximal order—note that D cannot contain an infinite field,
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because then the residue fields would not be finite. In the characteristic p case
theremust also be an element t ∈ D such that t is transcendental over F . Hence,
the polynomial ring F[t] ⊆ D. Then each maximal ideal of D must contain
exactly one irreducible polynomial from F[t]. These irreducible polynomials
play the same role as the prime numbers do in the characteristic 0 case.

• For ease of exposition assume that D has characteristic 0. Choose a prime
number p. For each maximal ideal M containing p consider the integer n such
that pDM = (Mn)DM . Call n a ramification index. We say that D satisfies
the second boundedness condition if the collection of ramification indices is
bounded for each prime p.

An almost Dedekind domain which satisfies the above conditions is said to be
doubly-bounded. This then led Chabert to the following question.

Question 2.4 Suppose D is an almost Dedekind domain with all residue fields that
is doubly-bounded. Is Int(D) Prüfer?

Chabert’s question turned out eventually to precisely give the necessary and suf-
ficient conditions for Int(D) to be a Prüfer domain. As with Gilmer’s question,
Chabert’s questions dealt only with sufficiency. The reason for this is that both were
able to prove the necessity of the boundedness conditions in the special setting of
the constructions they employed. In particular, they began with a Dedekind domain,
took a countably generated algebraic extension of the quotient field, and produced
the desired almost Dedekind domain in the field extension. So the sufficiency ques-
tion was still outstanding, and the necessity question would be still outstanding if it
could be shown that non-Noetherian almost Dedekind domains with finite residue
fields could be constructed that were built without utilizing a countably generated
algebraic field extension.

At the same time as he analyzed a two-part condition which he knew to be nec-
essary under certain conditions, Chabert also considered a condition which he could
prove was sufficient

• For M a maximal ideal of D let S = D − M . Then Int(D) is said to behave
well under localization if S−1 Int(D) = Int(DM) for each maximal ideal M of D.
Chabert proved:

Theorem 2.5 Let D be an almost Dedekind domain with finite residue fields. If
Int(D) behaves well under localization, it is a Prüfer domain.

This clearly leads to a question about necessity:

Question 2.6 If Int(D) is a Prüfer domain, does it necessarily behave well under
localization?

In some sense, the property of good behavior under localization would not be a
satisfactory resolution of the characterization question because it attempts to equate
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two properties of Int(D) rather than equating the Prüfer property of Int(D) with a
property of D. However, in the particular case of almost Dedekind domains defined
by countably infinite degree algebraic field extensions, Chabert was able to show
that good behavior under localization was equivalent to a property of D which he
called the immediate subextension property. This property imposed a strongfiniteness
condition on the manner in which properties of valuation domains could be modified
as one went up and down the ladder of an infinite degree field extension. We explain
more precisely below.

• Let K0 be a field and let K be a countably generated algebraic extension of K0.
Let D0 be a Dedekind domain with quotient field K0 and let D be an almost
Dedekind domain with quotient field K such that every maximal ideal of D lies
over a maximal ideal of D0.

• Choose a maximal ideal M of D. Then we can associate other maximal ideals Mi

of D with M by

– Choose an intermediate field K ∗ between K0 and K .
– Contract the valuation domain DM to a valuation domain V ∗ contained in K ∗.
– Consider all the valuation overrings of D which are extensions of V ∗. Consider
these valuation domains to be associated with DM .

• Then we say that D has the immediate subextension property if for every DM we
can find a field K ∗ which is finitely generated over K0 such that when we restrict
DM to a valuation domain V ∗ of K ∗ and then pull back up to all the valuation
overrings of D which are extensions of V ∗, then for all DM and all the valuation
domains thus associated with it the extensions are immediate.

A modified form of Theorem 2.5 is then

Theorem 2.7 Let D be an almost Dedekind domain with finite residue fields. If D
is constructed using a countably infinite algebraic field extension and satisfies the
immediate subextension property then Int(D) is a Prüfer domain.

So we pose a modification of Question 2.6.

Question 2.8 If Int(D) is a Prüfer domain, does D have the immediate subextension
property?

This question focuses on a property of D, but it is restricted to just those domains
built using countably infinite algebraic field extensions. In any case, the properties
of behaving well under localization and immediate subextension turned out not to
be the properties that characterize when Int(D) is a Prüfer domain. Nonetheless,
they are important because they illustrate the topological nature of resolving the
classification problem in the general case. In particular, it seems reasonable that
for a Dedekind domain, since any nonzero element is contained in only finitely
many prime ideals then perhaps the only convergence that could happen with prime
ideals is convergence to the zero ideal. But if an almost Dedekind domain were not
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Noetherian then a nonzero element could be contained in infinitelymany prime ideals
and nontrivial convergence of some sort could happen. A model for this idea is the
behavior of Int(Z). The maximal ideals containing a given prime p are naturally
indexed by the p-adic numbers. Hence, one might expect these maximal ideals to
have topological properties relative to each other matching the topology of the p-adic
integers. In the negative examples of Gilmer and Chabert the proof that Int(D) was
not a Prüfer domain was accomplished by finding a maximal ideal M of D such
that Int(D) ⊆ DM [x]. Also, in both cases there were infinite collections of maximal
ideals for which a particular index was unbounded on the collection. So it seems
plausible to try to locate the distinguished maximal ideal as a limit of a sequence
of maximal ideals which has the relevant index going to infinity. With this intuitive
idea in mind, Loper defined what seemed to be perhaps the simplest possible class
of non-Noetherian almost Dedekind domains.

A sequence domain is a non-Noetherian almost Dedekind domain D with finite
residue fields and field of fractions K such that the following conditions hold:

1. There exists a collection of maximal ideals S = {Pi }∞i=1 of D such that

a. D = ∩∞
i=1DPi ,

b. each residue field D/Pi has the same characteristic p,
c. the collection {Pi }∞i=1 does not constitute all of the maximal ideals of D.

2. There exists a collection {vi }∞i=1 of valuations on K such that

a. v(N )
i is the normed valuation on K corresponding to Pi for each i ,

b. for all d ∈ D\{0}, the sequence {vi (d)}∞i=1 is eventually constant,
c. for all d ∈ D\{0}, v∗(d) = limi→∞ vi (d) ∈ Z+ ∪ {0},
d. there is π ∈ D such that for all i ∈ Z+, vi (π) = 1.

Set P∗ = {d ∈ D ‖ v∗(d) > 0} ∪ {0}. It turns out that if the residue field of each
Pi is finite, then the set {P∗, P1, P2, · · · } comprises all of the maximal ideals of
the sequence domain D. Moreover, the primes Pi are all principal while P∗ is not
finitely generated. The idea here is to view P∗ as the limit of the sequence {Pi }. Then
the maximal ideals of Int(D) lying over P∗ inherit their properties from sequences
of maximal ideals lying over the Pi ’s rather than from the structure of Int(DP∗). In
particular

Theorem 2.9 If D is a sequence domain, then Int(D) is Prüfer if and only if D is
doubly-bounded.

For sequence domains, double-boundedness translates to the set {|D/Pi |}i∈Z+∪∞
being bounded and, for each d ∈ D\{0}, the set {v(N )

i (d)}i∈Z+∪∞ being bounded.
Hence in the setting of sequence domains, the classification question has a complete
answer.

This setting also allows insight into whether Int(D) behaving well under local-
ization is necessary for it to be Prüfer. When D is a sequence domain, the following
result characterizes when Int(D) behaves well under localization:
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Theorem 2.10 If D is a sequence domain, then Int(D) behaves well under local-
ization if and only if both of the following conditions hold:

1. qi = |D/Pi | = |D/P∗| for all but finitely many i ∈ Z+.
2. vi = v(N )

i for all but finitely many i ∈ Z+.

The key to both the Prüfer characterization and the good behavior under local-
ization for sequence domains is the same. The behavior of maximal ideals of Int(D)

that lie over P∗ is determined by sequences of maximal ideals lying over the Pi ’s.
Consider just the residue field part of this. If the sizes of the residue fields of the
Pi ’s are unbounded then, even though the residue field of P∗ is finite, we have
Int(D) ⊆ DP∗ [x]. which proves that Int(D) is not Prüfer. So since P∗ is a limit
of primes with residue fields of cardinalities going to infinity then Int(D) behaves
as if the residue field of P∗ was infinite even though it is actually finite. Similarly,
examples can be built such that the residue field of each Pi has order p2 but P∗ has
residue field of order p and then Int(D)will have maximal ideals lying over P∗ with
residue field of order p2. The integer-valued polynomial ring for such a domain is a
Prüfer domain but does not behave well under localization. Thus Question 2.6 has
a negative answer. The key again is that Int(D) respects the limiting process of the
maximal ideals of D even when D does not.

The complete classification of all domains D such that Int(D) is a Prüfer domain
came not long after the paper on sequence domains. Loper’s proof that double-
boundedness is sufficient in [10] was expanded by Cahen and Chabert in [2]. While
not presented as such, their proof actually demonstrates sufficiency for the general
case. Chabert proved necessity in the case where D is built using a countably infinite
algebraic field extension. So what was left was to prove necessity in a general setting.
This was done in [9] using the topological ideas in [10]. In particular, ultrafilters were
used to find limit primes of unbounded sequences, yielding a maximal ideal M of D
such that Int(D) ⊆ DM [x].

If D has characteristic zero the final theorem is as follows.

Theorem 2.11 Let D be an almost Dedekind domain with finite residue fields. Then
the following conditions are equivalent.

1. Int(D) is a Prüfer domain.
2. For each prime number p which is a nonunit in D, the two sets

Fp = {|D/P| ‖ p ∈ P}

and
E p = {v(N )

P (p) ‖ p ∈ P}

are bounded sets.

The theorem remains true for fields with nonzero characteristic, provided a suit-
able irreducible polynomial replaces the prime number p.
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3 Int(E, D)

Recall that Int(E, D) is the set of polynomialswith coefficients in K thatmap a subset
E of D into D; that is, Int(E, D) = { f ∈ K [X ] | f (E) ⊆ D}. As with Int(D), the
question of when Int(E, D) is a Prüfer domain has been studied; however, it is
far from being resolved. Recall that E ⊆ K is a fractional subset of D if there is
some nonzero element d of D such that d E is a subset of D. In almost all cases,
Int(E, D) = D if E ⊆ K is not a fractional subset of D. In the few cases where
Int(E, D) is different from D when E is not a fractional subset, D is not integrally
closed. It is easy to see that Int(E, D) is not a Prüfer domain in this case. Moreover,
if E is a fractional subset of D and d E ⊆ D with d 
= 0 then Int(E, D) is naturally
isomorphic to Int(d E, D). We will then assume henceforth that E ⊆ D.

There is then a very easy necessary condition. Choose an element d ∈ E . Then
the set { f (x) ∈ Int(E, D) | f (d) = 0} is easily seen to be a prime ideal of Int(D).
It is also easy to see that the quotient of Int(D) by this prime ideal is D. Hence our
necessary condition is

• If E is a fractional subset of D and Int(E, D) is a Prüfer domain, then D is a
Prüfer domain.

McQuillan [14] completely settled the case when E is finite. He has shown:

Theorem 3.1 If E is finite, then Int(E, D) is a Prüfer domain if and only if D is a
Prüfer domain.

Since a necessary condition is that D be a Prüfer domain, and it is reasonable
to approach the problem locally, the next results consider Int(E, V ) where V is a
valuation domain. If V is a DVR with finite residue field and E ⊆ V then Int(E, V )

is an overring of the Prüfer domain Int(V ) and hence a Prüfer domain.
Along this line, Cahen, Chabert, and Loper [3] considered the case of Int(E, V ),

where E is an infinite subset of a valuation domain V with quotient field K with
particular focus on the cases where Int(V ) is not a Prüfer domain. Let I ⊂ V be an
ideal of V such that ∩(I n) = (0), and consider the I -adic completions ̂E, ̂K , ̂V of
E, K , V , respectively. We say that E is precompact if ̂E is compact in ̂K . The main
result of the paper connected to the Prüfer property is a sufficient condition.

Theorem 3.2 If E is a precompact subset of V , then Int(E, V ) is Prüfer.

The key to this theorem is that if E is precompact then E hits only finitely many
cosets modulo any nonzero ideal. In this regard, E has many properties in common
with the collection of all elements of a DVR with finite residue field. There was no
proof of the necessity of this condition.

There is also a curious example in the paper. Let T be the ring of entire functions.
It is well known that T is a Bezout domain and that it has many maximal ideals of
infinite height. In fact, the height of such a maximal ideal is large enough that the
intersection of a chain of prime ideals contained in it cannot be the zero ideal. One
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consequence of this is that if we localize T at a maximal ideal of infinite height, we
obtain a valuation domain V such that Int(E, V ) is a Prüfer domain if and only if E
is finite.

Recently, Loper and Werner proved that precompactness is not a necessary con-
dition.

To understand this result let V be a one-dimensional valuation domain that is
not discrete. Let {di } be a sequence of elements of V such that v(di − di+1) is an
increasing sequence, but does not increase to infinity. We say then that the sequence
is pseudo- convergent. If {di } is a pseudo-convergent sequence and α ∈ V is such
that v(α − di ) is an increasing sequence then we say that α is a pseudo-limit of the
sequence.

It can happen in such a valuation domain V that pseudo-convergent sequences
that have pseudo-limits or that do not have pseudo-limits can both exist, with the
sequences in both cases not converging in the classical sense. Consider the following
examples.

1. Let k be a field. Consider the ring k[{xα}] where α runs over the positive real
numbers. We can either think of this as a polynomial ring in powers of x or
as a semigroup ring over k. In any case, localize the ring at the maximal ideal
generated by the powers of x . The result is a one-dimensional valuation ring V
with value group the field of real numbers under addition. For a given power of
x , the value is simply the exponent.

2. Consider the sequence {xβi }where {βi } is an increasing sequence of real numbers
converging to 2. Then the sequence {xβi } is a pseudo-convergent sequence with
x2 as a pseudo-limit.

3. Let {βi } be as above. Then define y1 = xβ1 and for n > 1 define yn = xβ1 +
xβ2 + · · · + xβn . The sequence {yi } is then pseudo-convergent, but does not have
a pseudo-limit in V .

Using this type of setup Loper and Werner [12] proved:

Theorem 3.3 There exists a nondiscrete one-dimensional valuation domain V with
a subset E consisting of a pseudo-convergent sequence which does not have a pseudo-
limit in V such that Int(E, V ) is a Prüfer domain, even though E is not precompact.

Hence the question of when Int(E, D) is a Prüfer domain is very far from settled.
There is no complete classification for when Int(E, D) is a Prüfer domain even in the
special case where D is a valuation domain. And in the case where D is a valuation
domain it is clear that the solution will not mirror the characterization for Int(D).

4 Generalizations

Let D be domain with quotient field K and let K be an algebraic closure of K . If
we let f (x) be a polynomial in K [x] and let α ∈ K be integral over D then it is
reasonable to ask whether f (α) is still integral over D. Along this line of thought
we can define a generalized form of integer-valued polynomial ring.
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1. Let Aα be the ring of algebraic integers in the finite degree extension Q[α] of the
rational numbers.

2. Let A∞ be the ring of all algebraic integers.
3. Let An be the set of all algebraic integers in A∞ of degree ≤ n over Q.
4. Let IntQ[Aα] = { f (x) ∈ Q[x] ‖ f (Aα) ⊆ Aα} = Int(Aα) ∩ Q[x]
5. Let IntQ(An) = { f (x) ∈ Q[x] ‖ f (An) ⊆ An} = ⋂

[Q[α]:Q]≤n Int(Aα) ∩ Q[x]
Using the above constructions Loper and Werner [11] proved the following the-

orem.

Theorem 4.1 Let Aα and An be as above. Then IntQ[Aα] and IntQ(An) are Prüfer
domains.

Moreover, they give a strong answer to a question posed by Brizolis in the paper
wherePrüfer rings of integer-valuedpolynomialswere introduced.Brizoliswondered
whether a proper subring of Int(Z) existed which had Q(x) as quotient field and was
a Prüfer domain. Chabert answered this question in [4] by demonstrating that if we
let E = 1

2 Z be the fractional ideal of Z generated by 1/2 then Int(E, Z) is a proper
subring of Int(Z) and is isomorphic to Int(Z). Note however, that 2x lies in the ring
Int(E, Z) but x does not. A stronger question is whether there exists a Prüfer domain
which lies properly between Z [x] and Q[x]. The theorem above demonstrates that
such domains do exist.

The paper [11] also generalizes a little farther. Let I be the n × n identity matrix,
let α be a rational number and identify α with the diagonal matrix α I . With this
identification we can choose a polynomial f (x) over the rational numbers and eval-
uate at an n × n matrix M with integer entries. It is then reasonable to ask which
polynomials with rational coefficients map integral n × n matrices to integral n × n
matrices. Let Mn(Z) be the ring of n × n matrices over the integers. We then define
IntQ(Mn(Z)) to be the ring of all polynomials over the rational numbers which map
Mn(Z) to Mn(Z). Since each such matrix satisfies a monic polynomial over the
integers it seems natural to identify this ring with IntQ(An). However, let M be a
nonzero matrix such that M2 = 0. Then f (x) = x2/n2 will map M to 0 for any
positive integer n, but for all but finitely many integers g(x) = x/n will map M to a
matrix with entries not lying in the integers. This suggests that IntQ(Mn(Z)) is not
integrally closed. Accordingly, Loper and Werner proved the following theorem.

Theorem 4.2 IntQ(Mn(Z)) is not integrally closed but has integral closure equal
to IntQ(An), which is a Prüfer domain.

Along the same lines as the above results, Peruginelli [17] has very recently
extendedMcQuillan’s results concerning integer-valued polynomials over finite sets.

Theorem 4.3 Let D be an integrally closed domain with quotient field K , and let A
be a torsion-free, finitely generated D-algebra. Let E ⊆ A be a finite set of elements
and consider the ring IntK (E, A) of polynomials with coefficients in K which map
E into A. Then the integral closure of IntK (E, A) is a Prüfer domain if and only if
D is a Prüfer domain.
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