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1 Introduction

The goal of this paper is to deepen the links between the areas in the title. Invariant
theory is concerned with the study of group actions on algebras, and in the present
article we entirely concentrate on actions of finite groups on polynomial algebras via
linear substitution of the variables.
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To begin with, let us briefly sketch the already existing links between the men-
tioned areas. For a finite-dimensional vector space V over a field F and a finite group
G ≤ GL(V ), let F[V ]G ⊂ F[V ] denote the ring of invariants. Since E. Noether we
know that F[V ]G ⊂ F[V ] is an integral ring extension and that F[V ]G is a finitely
generated F-algebra. In particular, F[V ]G is an integrally closed noetherian domain
and hence a Krull domain. Benson [4] and Nakajima [58] determined its class group.
Krull domains (their ideal theory and their class groups) are a central topic in mul-
tiplicative ideal theory (see the monographs [46, 51] and the recent survey [52]). B.
Schmid [73] observed that the Noether number of a finite abelian groupG equals the
Davenport constant of G (a constant of central importance in zero-sum theory) and
this established a first link between invariant theory and arithmetic combinatorics.
Moreover, ideal and factorization theory of Krull domains are most closely linked
with zero-sum theory via transfer homomorphisms (see [37, 40] and Sect. 3.2).

These links serve as our starting point. It is well known that a domain R is a Krull
domain if and only if its monoid R• of nonzero elements is a Krull monoid if and only
if R (resp. R•) has a divisor theory. To start with Krull monoids, a monoid H is Krull
if and only if its associated reduced monoid H/H× is Krull, and every Krull monoid
H is a direct product H× × H0 where H0 is isomorphic to H/H×. A reduced Krull
monoid is uniquely determined (up to isomorphism) by its characteristic (roughly
speaking by its class group C (H) and the distribution of the prime divisors in its
classes; see the end of Sect. 4.2). By definition of the class group, a Krull monoid H
is factorial if and only if C (H) is trivial. Information on the subset C (H)∗ ⊂ C (H)

of classes containing prime divisors is the crucial ingredient to understand the arith-
metic of H, and hence in order to study the arithmetic of Krull monoids the first
and most important issue is to determine C (H)∗. By far the best understood set-
ting in factorization theory are Krull monoids with finite class groups where every
class contains a prime divisor. Indeed, there has been an abundance of work on them
and we refer the reader to the survey by W.A. Schmid in this proceedings [77]. A
canonical method to obtain information on C (H)∗ is to identify explicitly a divisor
theory for H. A divisor theory of a monoid (or a domain) H is a divisibility pre-
serving homomorphism from H to a free abelian monoid which satisfies a certain
minimality property (Sect. 2.1). The concept of a divisor theory stems from alge-
braic number theory and it has found far-reaching generalizations in multiplicative
ideal theory [51]. Indeed, divisor-theoretic tools, together with ideal-theoretic and
valuation-theoretic ones, constitute a highly developed machinery for the structural
description of monoids and domains.

All the above-mentioned concepts and problems from multiplicative ideal theory
are studied for the ring of invariants. Theorem 4.5 (in Sect. 4.2) provides an explicit
divisor theory of the ring of invariants R = F[V ]G. The divisibility preserving homo-
morphism from R• goes into a free abelian monoid which can be naturally described
in the language of invariant theory, and the associated canonical transfer homomor-
phism θ : R• → B(C (R)∗) from the multiplicative monoid of the ring R onto the
monoid of zero-sum sequences over the class group of R also has a natural invariant
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theoretic interpretation. In addition to recovering the result of Benson and Nakajima
on the class group C (F[V ]G) (our treatment is essentially self-contained), we gain
further information on the multiplicative structure of R, and we pose the problem to
determine its characteristic (Problem 1). In particular, whenever we can show—for
a given ring of invariants—that every class contains at least one prime divisor, then
all results of factorization theory (obtained for Krull monoids with finite class group
and prime divisors in all classes) apply to the ring of invariants.

In Sect. 4.3 we specialize to abelian groups whose order is not divisible by the
characteristic of F. The Noether number β(G) is the supremum over all finite dimen-
sionalG-modules V of the maximal degree of an element in a minimal homogeneous
generating system of F[V ]G, and the Davenport constantD(G) is the maximal length
of a minimal zero-sum sequence over G. We start with a result on the structural con-
nection between F[V ]G and the monoid of zero-sum sequences over G, that lies
behind the equality β(G) = D(G). Clearly, the idea here is well known (as far as we
know, it was first used by B. Schmid [73], see also [24]). The benefit of the detailed
presentation as given in Proposition 4.7 is twofold. First, the past 20 years have seen
great progress in zero-sum theory (see Sect. 3.4 for a sample of results) and Proposi-
tion 4.7 allows to carry over all results on the structure of (long) minimal zero-sum
sequences to the structure of G-invariant monomials. Second, we observe that the
submonoidMG of R• consisting of the invariant monomials is again a Krull monoid,
and restricting the transfer homomorphism θ : R• → B(C (R)∗) (mentioned in the
above paragraph) toMG we obtain essentially the canonical transfer homomorphism
MG → B(C (MG)∗). This turns out to be rather close to the transfer homomorphism
ψ : MG → B(̂G) into the monoid of zero-sum sequences over the character group
of G (see Proposition 4.7), which is responsible for the equality β(G) = D(G). The
precise statement is given in Proposition 4.9, which explains how the transfer homo-
morphism ψ (existing only for abelian groups) relates to the more general transfer
homomorphism θ from the above paragraphwhich exists for an arbitrary finite group.
In Proposition 4.9 we point out that every class ofC (F[V ]G) contains a prime divisor
which contributes to Problem 1.

Let now G be a finite non-abelian group. Until recently, the precise value of the
Noether number β(G) was known only for the dihedral groups and very few small
groups (such as A4). In the last couple of years the first two authors have determined
the precise value of the Noether number for groups having a cyclic subgroup of
index two and for non-abelian groups of order 3p [10, 12, 13]. In this work results
on zero-sum sequences over finite abelian groups (for example, information on the
structure of long minimal zero-sum sequences and on the kth Davenport constants)
were successfully applied. Moreover, a decisive step was the introduction of the
kth Noether numbers, a concept inspired by the kth Davenport constants of abelian
groups. The significance of this concept is that it furnishes some reduction lemmas
(listed in Sect. 5.1) by which the ordinary Noether number of a group can be bounded
via structural reduction in the group.

The concept of the kth Davenport constants Dk(G) has been introduced by
Halter-Koch [50] for abelian groups in order to study the asymptotic behavior
of arithmetical counting functions in rings of integers of algebraic number fields
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(see [40, Theorem 9.1.8], [67, Theorem 1]). They have been further studied in [15,
30]. In the last years the third author and Grynkiewicz [39, 48] studied the (small
and the large) Davenport constant of non-abelian groups, and among others deter-
mined their precise values for groups having a cyclic subgroup of index two. It can
be observed that for these groups the Noether number is between the small and the
large Davenport constant.

This motivated a new and more abstract view at the Davenport constants, namely
kth Davenport constants of BF-monoids (Sect. 2.5). The goal is to relate the Noether
number with Davenport constants of suitable monoids as a generalization of the
equationβ(G) = D(G) in the abelian case. Indeed, the kthDavenport constantDk(G)

of an abelian groupG is recovered as our kth Davenport constant of themonoidB(G)

of zero-sum sequences over G.
We apply the new concept of the kth Davenport constants to two classes of BF-

monoids. First, to the monoid B(G, V ) associated to a G-module V in Sect. 4.4
(when G is abelian we recover the monoid MG of G-invariant monomials from
Sect. 4.3), whose Davenport constants provide a lower bound for the corresponding
Noether numbers (see Proposition 4.12). Second, we study the monoid of product-
one sequences over finite groups (Sects. 3.1 and 3.3). We derive a variety of features
of the kth Davenport constants of the monoid of product-one sequences over G
and observe that they are strikingly similar to the corresponding features of the kth
Noether numbers (see Sect. 5.1 for a comparison).

We pose a problem on the relationship between Noether numbers and Davenport
constants of non-abelian groups (Problem 2) and we illustrate the efficiency of the
above methods by Examples 5.2–5.4 (appearing for the first time), where the explicit
value of Noether numbers and Davenport constants of some non-abelian groups are
determined.

Throughout this paper, let G be a finite group, F be a field, and V be a finite
dimensional F-vector space endowed with a linear action of G.

2 Multiplicative Ideal Theory: Krull Monoids, C-Monoids,
and Class Groups

We denote by N the set of positive integers, and we put N0 = N ∪ {0}. For every
n ∈ N, we denote by Cn a cyclic group with n elements. For real numbers a, b ∈ R,
we set [a, b] = {x ∈ Z : a ≤ x ≤ b}. If A,B are sets, we write A ⊂ B to mean that A
is contained in B but may be equal to B. In Sects. 2.1–2.4 we gather basic material
on Krull monoids and C-monoids. In Sect. 2.5 we introduce a new concept, namely
Davenport constants of BF-monoids.
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2.1 Monoids and Domains: Ideal Theoretic and Divisor
Theoretic Concepts

Our notation and terminology follows [40, 51] (note that the monoids in [51] do con-
tain a zero-element, whereas themonoids in [40] and in the present manuscript do not
contain a zero-element). By a monoid, we mean a commutative, cancellative semi-
group with unit element. Then the multiplicative semigroup R• = R\{0} of nonzero
elements of a domain is a monoid. Following the philosophy of multiplicative ideal
theory we describe the arithmetic and the theory of divisorial ideals of domains by
means of their multiplicative monoids. Thus we start with monoids.

Let H be a multiplicatively written monoid. An element u ∈ H is called

• invertible if there is an element v ∈ H with uv = 1.
• irreducible (or an atom) if u is not invertible and, for all a, b ∈ H, u = ab implies
a is invertible or b is invertible.

• prime if u is not invertible and, for all a, b ∈ H, u | ab implies u | a or u | b.
We denote by A (H) the set of atoms of H, by H× the group of invertible elements,
and by Hred = {aH× : a ∈ H} the associated reduced monoid of H. We say that H is
reduced if |H×| = 1. We denote by q(H) a quotient group ofH withH ⊂ q(H), and
for a prime element p ∈ H, let vp : q(H) → Z be the p-adic valuation. Each monoid
homomorphism ϕ : H → D induces a group homomorphism q(H) : q(H) → q(D).
For a subsetH0 ⊂ H, we denote by [H0] ⊂ H the submonoid generated byH0, and by
〈H0〉 ≤ q(H) the subgroup generated by H0. We denote by ˜H = {

x ∈ q(H) : xn ∈
H for some n ∈ N

}

the root closure ofH, and by ̂H = {

x ∈ q(H) : there exists c ∈
H such that cxn ∈ H for all n ∈ N

}

the complete integral closure of H. Both ˜H and
̂H are monoids, and we have H ⊂ ˜H ⊂ ̂H ⊂ q(H). We say that H is root closed
(completely integrally closed resp.) if H = ˜H (H = ̂H resp.). For a set P, we denote
by F (P) the free abelian monoid with basis P. Then every a ∈ F (P) has a unique
representation in the form

a =
∏

p∈P
pvp(a), where vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P.

The monoid H is said to be

• atomic if every a ∈ H\H× is a product of finitely many atoms of H.
• factorial if everya ∈ H\H× is a product of finitelymanyprimes ofH (equivalently,
H = H× × F (P) where P is a set of representatives of primes of F).

• finitely generated if H = [E] for some finite subset E ⊂ H.

IfH = H× × F (P) is factorial and a ∈ H, then |a| = ∑

p∈P vp(a) ∈ N0 is called the
length of a. If H is reduced, then it is finitely generated if and only if it is atomic and
A (H) is finite. Since every prime is an atom, every factorial monoid is atomic. For
every non-unit a ∈ H,
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LH(a) = L(a) = {k ∈ N : a may be written as a product of k atoms} ⊂ N

denotes the set of lengths of a. For convenience, we set L(a) = {0} for a ∈ H×. We
say that H is a BF-monoid if it is atomic and all sets of lengths are finite. A monoid
homomorphism ϕ : H → D is said to be

• a divisor homomorphism if ϕ(a) | ϕ(b) implies that a | b for all a, b ∈ H.
• cofinal if for every α ∈ D there is an a ∈ H such that α | ϕ(a).
• a divisor theory (forH) ifD = F (P) for some setP,ϕ is a divisor homomorphism,
and for every p ∈ P, there exists a finite nonempty subset X ⊂ H satisfying p =
gcd

(

ϕ(X)
)

.

Obviously, every divisor theory is cofinal. Let H ⊂ D be a submonoid. Then H ⊂ D
is called

• saturated if the embedding H ↪→ D is a divisor homomorphism.
• divisor closed if a ∈ H, b ∈ D and b | a implies b ∈ H.
• cofinal if the embedding H ↪→ D is cofinal.

It is easy to verify that H ↪→ D is a divisor homomorphism if and only if H =
q(H) ∩ D, and if this holds, then H× = D× ∩ H. If H ⊂ D is divisor closed, then
H ⊂ D is saturated.

For subsets A,B ⊂ q(H), we denote by (A :B) = {x ∈ q(H) : xB ⊂ A}, by A−1 =
(H :A), and by Av = (A−1)−1. A subset a ⊂ H is called an s-ideal of H if aH = a.
A subset X ⊂ q(H) is called a fractional v-ideal (or a fractional divisorial ideal) if
there is a c ∈ H such that cX ⊂ H and Xv = X. We denote by Fv(H) the set of all
fractional v-ideals and byIv(H) the set of all v-ideals of H. Furthermore,I ∗

v (H) is
themonoidof v-invertible v-ideals (with v-multiplication) andFv(H)× = q

(

I ∗
v (H)

)

is its quotient group of fractional invertible v-ideals. The monoid H is completely
integrally closed if and only if every nonempty v-ideal of H is v-invertible, and H is
called v-noetherian if it satisfies the ACC (ascending chain condition) on v-ideals. If
H is v-noetherian, thenH is a BF-monoid. We denote byX(H) the set of all minimal
nonempty prime s-ideals of H.

The map ∂ : H → I ∗
v (H), defined by ∂(a) = aH for each a ∈ H, is a cofinal

divisor homomorphism. Thus, ifH = {aH : a ∈ H} is themonoid of principal ideals
of H, then H ⊂ I ∗

v (H) is saturated and cofinal.

2.2 Class Groups and Class Semigroups

Let ϕ : H → D be a monoid homomorphism. The group C (ϕ) = q(D)/q(ϕ(H)) is
called the class group of ϕ. For a ∈ q(D), we denote by [a]ϕ = aq(ϕ(H)) ∈ C (ϕ)

the class containing a. We use additive notation for C (ϕ) and so [1]ϕ is the zero
element of C (ϕ).
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Suppose that H ⊂ D and that ϕ = (H ↪→ D). Then C (ϕ) = q(D)/q(H), and for
a ∈ D we set [a]ϕ = [a]D/H = aq(H). Then

D/H = {[a]D/H : a ∈ D} ⊂ C (ϕ)

is a submonoid with quotient group q(D/H) = C (ϕ). It is easy to check thatD/H is
a group if and only ifH ⊂ D is cofinal. In particular, ifD/H is finite or if q(D)/q(H)

is a torsion group, thenD/H = q(D)/q(H). LetH be a monoid. ThenH ⊂ I ∗
v (H)

is saturated and cofinal, and

Cv(H) = I ∗
v (H)/H = Fv(H)×/q(H )

is the v-class group of H.
We will also need the concept of class semigroups which are a refinement of

ordinary class groups in commutative algebra. Let D be a monoid and H ⊂ D a
submonoid. Two elements y, y′ ∈ D are calledH-equivalent, if y−1H ∩ D = y′−1H ∩
D. H-equivalence is a congruence relation on D. For y ∈ D, let [y]DH denote the
congruence class of y, and let

C (H,D) = {[y]DH : y ∈ D} and C ∗(H,D) = {[y]DH : y ∈ (D\D×) ∪ {1}}.

Then C (H,D) is a semigroup with unit element [1]DH (called the class semigroup
of H in D) and C ∗(H,D) ⊂ C (H,D) is a subsemigroup (called the reduced class
semigroup of H in D). The map

θ : C (H,D) → D/H, defined by θ([a]DH) = [a]D/H for all a ∈ D,

is an epimorphism, and it is an isomorphism if and only if H ⊂ D is saturated.

2.3 Krull Monoids and Krull Domains

Theorem 2.1 Let H be a monoid. Then, the following statements are equivalent:

(a) H is v-noetherian and completely integrally closed,
(b) ∂ : H → I ∗

v (H) is a divisor theory.
(c) H has a divisor theory.
(d) There is a divisor homomorphism ϕ : H → D into a factorial monoid D.
(e) Hred is a saturated submonoid of a free abelian monoid.

If H satisfies these conditions, then H is called a Krull monoid.

Proof See [40, Theorem 2.4.8] or [51, Chap. 22].

Let H be a Krull monoid. Then I ∗
v (H) is free abelian with basis X(H). Let

p ∈ X(H). Then vp denotes the p-adic valuation of Fv(H)×. For x ∈ q(H), we
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set vp(x) = vp(xH) and we call vp the p-adic valuation of H. Then v : H →
N

(X(H))
0 , defined by v(a) = (

vp(a)
)

p∈X(H)
is a divisor theory and H = {x ∈ q(H) :

vp(x) ≥ 0 for all p ∈ X(H)}.
If ϕ : H → D = F (P) is a divisor theory, then there is an isomorphism Φ :

I ∗
v (H) → D such that Φ ◦ ∂ = ϕ, and it induces an isomorphism Φ : Cv(H) →

C (ϕ). Let D = F (P) be such that Hred ↪→ D is a divisor theory. Then D and P are
uniquely determined by H,

C (H) = C (Hred) = D/Hred

is called the (divisor) class group of H, and its elements are called the classes of H.
By definition, every class g ∈ C (H) is a subset of q(D) and P ∩ g is the set of prime
divisors lying in g. We denote by C (H)∗ = {[p]D/Hred : p ∈ P} ⊂ C (H) the subset of
classes containing prime divisors (for more details we refer to the discussion after
Definition 2.4.9 in [40]).

Proposition 2.2 Let H be a Krull monoid, and let ϕ : H → D = F (P) be a divisor
homomorphism.

1. There is a submonoid C0 ⊂ C (ϕ) and an epimorphism C0 → Cv(H).
2. Suppose that H ⊂ D is saturated and that q(D)/q(H) is a torsion group. We

set D0 = {gcdD(X) : X ⊂ H finite}, and for p ∈ P define e(p) = min{vp(h) : h ∈
H with vp(h) > 0}.
(a) D0 is a free abelian monoid with basis {pe(p) : p ∈ P}.
(b) The embedding H ↪→ D0 is a divisor theory for H.

Proof 1. follows from [40, Theorem 2.4.8], and 2. from [74, Lemma 3.2].

Let R be a domain with quotient field K . Then R• = R\{0} is a monoid, and
all notions defined for monoids so far will be applied for domains. To mention a
couple of explicit examples, we denote by q(R) the quotient field of R and we have
q(R) = q(R•) ∪ {0}, and for the complete integral closure we have ̂R = ̂R• ∪ {0}
(wherêR is the integral closure of R in its quotient field). We denote by X(R) the set
of all minimal nonzero prime ideals ofR, byIv(R) the set of divisorial ideals ofR, by
I ∗

v (R) the set of v-invertible divisorial ideals of R, and byFv(R) the set of fractional
divisorial ideals of R. Equipped with v-multiplication, Fv(R) is a semigroup, and
the map

ι• : Fv(R) → Fv(R
•), defined by a �→ a\{0},

is a semigroup isomorphism mapping Iv(R) onto Iv(R•) and fractional principal
ideals ofRonto fractional principal ideals ofR•. ThusR satisfies theACCondivisorial
ideals of R if and only if R• satisfies the ACC on divisorial ideals of R•. Furthermore,
R is completely integrally closed if and only if R• is completely integrally closed. A
domain R is a Krull domain if it is completely integrally closed and satisfies the ACC
on divisorial ideals of R, and thus R is a Krull domain if and only if R• is a Krull
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monoid. If R is a Krull domain, we set C (R) = C (R•). The group Fv(R)× is the
group of v-invertible fractional ideals and the set I ∗

v (R) = Fv(R)× ∩ Iv(R) of all
v-invertible v-ideals ofR is a monoid with quotient groupFv(R)×. The embedding of
the nonzero principal ideals H (R) ↪→ I ∗

v (R) is a cofinal divisor homomorphism,
and the factor group

Cv(R) = Fv(R)×/{aR : a ∈ K×} = I ∗
v (R)/H (R)

is called the v-class group of R. The map ι• induces isomorphisms Fv(R)× ∼→
Fv(R•)×, I ∗

v (R)
∼→ I ∗

v (R•), and Cv(R)
∼→ Cv(R•), and in the sequel we shall

identify these monoids and groups.
The above correspondence between domains and their monoids of non-zero ele-

ments can be extended to commutative rings with zero-divisors and their monoids of
regular elements [45, Theorem 3.5], and there is an analogue for prime Goldie rings
[38, Proposition 5.1].

Examples 2.3 1. (Domains) As mentioned above, the multiplicative monoid R• of a
domain R is a Krull monoid if and only if R is a Krull domain. Thus Property (a) in
Theorem 2.1 implies that a noetherian domain is Krull if and only if it is normal (i.e.
integrally closed in its field of fractions). In particular, rings of invariants are Krull,
as we shall see in Theorem 4.1.

2. (Submonoids of domains) Regular congruence submonoids of Krull domains
are Krull [40, Proposition 2.11.6].

3. (Monoids ofmodules) LetR be a (possibly noncommutative) ring and letC be a
class of finitely generated (right)R-modules which is closed under finite direct-sums,
direct summands, and isomorphisms. Then the set V (C ) of isomorphism classes of
modules is a commutative semigroup with operation induced by the direct sum. If the
endomorphism ring of each module in C is semilocal, then V (C ) is a Krull monoid
[19, Theorem 3.4]. For more information we refer to [1, 20, 21].

4. (Monoids of product-one sequences) In Theorem 3.2 we will characterize the
monoids of product-one sequences which are Krull.

2.4 C-Monoids and C-Domains

A monoid H is called a C-monoid if it is a submonoid of a factorial monoid F such
that H ∩ F× = H× and the reduced class semigroup C ∗(H,F) is finite. A domain
is called a C-domain if R• is a C-monoid.

Proposition 2.4 Let F be a factorial monoid and H ⊂ F a submonoid such that
H ∩ F× = H×.

1. If H is a C-monoid, then H is v-noetherian with (H :̂H) �= ∅, and the complete
integral closure ̂H is a Krull monoid with finite class group C (̂H).
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2. Suppose that F/F× is finitely generated, say F = F× × [p1, . . . , ps] with pair-
wise nonassociated prime elements p1, . . . , ps. Then, the following statements are
equivalent:

(a) H is a C-monoid defined in F.
(b) There exist some α ∈ N and a subgroup W ≤ F× such that (F× :W ) | α,

W (H\H×) ⊂ H, and for all j ∈ [1, s] and a ∈ pα
j F we have a ∈ H if and

only if pα
j a ∈ H.

Proof For 1., see [40, Theorems 2.9.11 and 2.9.13] and for 2. see [40, Theo-
rems 2.9.7].

Examples 2.5 1. (Krull monoids) A Krull monoid is a C-monoid if and only if the
class group is finite [40, Theorem 2.9.12].

2. (Domains) LetR be a domain. Necessary conditions forR being a C-domain are
given in Proposition 2.4. Thus suppose that R is a Mori domain (i.e., a v-noetherian
domain) with nonzero conductor f = (R :̂R) and suppose that C (̂R) is finite. If R/f
is finite, then R is a C-domain by [40, Theorem 2.11.9]. This result generalizes to
rings with zero-divisors [45], and in special cases we know that R is a C-domain if
and only if R/f is finite [69].

3. (Congruence monoids) Let R be Krull domain with finite class group C (R) and
H ⊂ R a congruence monoid such that R/f is finite where f is an ideal of definition
forH. IfR is noetherian or f is divisorial, thenH is a C-monoid [40, Theorem 2.11.8].
For a survey on arithmetical congruence monoids see [2].

4. In Sect. 3.1 we shall prove that monoids of product-one sequences are C-
monoids (Theorem 3.2), and we will meet C-monoids again in Proposition 4.11
dealing with the monoid B(G, V ).

Finitely generated monoids allow simple characterizations when they are Krull or
when they are C-monoids. We summarize these characterizations in the next lemma.

Proposition 2.6 Let H be a monoid such that Hred is finitely generated.

1. Then H is v-noetherian with (H :̂H) �= ∅, ˜H = ̂H, ˜H/H× is finitely generated,
and ̂H is a Krull monoid. In particular, H is a Krull monoid if and only if H = ̂H.

2. H is a C-monoid if and only if C (̂H) is finite.
3. Suppose that H is a submonoid of a factorial monoid F = F× × F (P). Then, the

following statements are equivalent:

a. H is a C-monoid defined in F, F×/H× is a torsion group, and for every p ∈ P
there is an a ∈ H such that vp(a) > 0.

b. For every a ∈ F, there is an na ∈ N with ana ∈ H.

If (a) and (b) hold, then P is finite and ˜H = ̂H = q(H) ∩ F ⊂ F is saturated and
cofinal.

Proof 1. follows from [40, 2.7.9–2.7.13], and 2. follows from [41, Proposition 4.8].
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3. (a)⇒ (b) For everyp ∈ P, we setdp = gcd
(

vp(H)
)

, and by assumptionwehave
dp > 0.We set P0 = {pdp : p ∈ P} and F0 = F× × F (P0). By [40, Theorem 2.9.11],
H is a C-monoid defined in F0 and there is a divisor theory ∂ : ̂H → F (P0). By
construction of F0, it is sufficient to prove the assertion for all a ∈ F0. Since F×/H×
is a torsion group, it is sufficient to prove the assertion for all a ∈ F (P0). Let a ∈
F (P0). Since C (̂H) is finite, there is an n′

a ∈ N such that an
′
a ∈ ̂H . Since ̂H = ˜H,

there is an n′′
a ∈ N such that (an

′
a)n

′′
a ∈ H.

(b)⇒ (a) For every p ∈ P there is an np ∈ N such that pnp ∈ H whence vp(pnp) =
np > 0. Clearly, we have ̂H ⊂ ̂F = F, and hence ̂H ⊂ q(̂H) ∩ F = q(H) ∩ F. Since
for each a ∈ F there is an na ∈ N0 with ana ∈ H, we infer that q(H) ∩ F ⊂ ˜H =
̂H and hence ̂H = q(H) ∩ F. Furthermore, H ⊂ F and ̂H ⊂ F are cofinal, and
q(F)/q(H) = F/H is a torsion group. Clearly, q(H) ∩ F ⊂ F is saturated, and thus
̂H is Krull. Since ̂H× = ̂H ∩ F× and H× = ̂H× ∩ H, it follows that H× = H ∩ F×
and then we obtain that F×/H× is a torsion group.

By 1.,̂H/H× is finitely generated, saŷH/H× = {u1H×, . . . , unH×}, and setP0 =
{p ∈ P : p divides u1 · · · · · un in F}. Then P0 is finite, and we assert that P0 = P.
If there would exist some p ∈ P\P0, then there is an np ∈ N such that pnp ∈ H,
and hence pnpH× is a product of u1H×, . . . , unH×, a contradiction. Therefore P is
finite, F/F× is a finitely generated monoid, q(F)/F× is a finitely generated group,
and therefore q(F)/q(H)F× is a finitely generated torsion group and thus finite.
Since ϕ : ̂H → F → F/F× is a divisor homomorphism andC (ϕ) = q(F)/q(H)F×,
Proposition 2.2.1 implies that C (̂H) is an epimorphic image of a submonoid of
q(F)/q(H)F× and thusC (̂H) is finite. Thus 2. implies thatH is a C-monoid (indeed,
Property 2.(b) of Proposition 2.4 holds and hence H is a C-monoid defined in F).

2.5 Davenport Constants of BF-Monoids

Let H be a BF-monoid. For every k ∈ N, we study the sets

Mk(H) = {a ∈ H : max L(a) ≤ k} and M k(H) = {a ∈ H : max L(a) = k}.

A monoid homomorphism | · | : H → (N0,+) will be called a degree function on
H. In this section, we study abstract monoids having a degree function. The results
will be applied in particular to monoids of product-one sequences and to monoids
B(G, V ) (see Sects. 3.3 and 4.4). In all our applications the monoid H will be a
submonoid of a factorial monoid F and if not stated otherwise the degree function
on H will be the restriction of the length function on F.

If θ : H → B is a homomorphism and H and B have degree functions, then we
say that θ is degree preserving if |a|H = |θ(a)|B for all a ∈ H. Suppose we are given
a degree function on H and k ∈ N, then

Dk(H) = sup{|a| : a ∈ Mk(H)} ∈ N0 ∪ {∞}
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is called the large kth Davenport constant of H (with respect to | · |H ). Clearly,
M1(H)=A (H) ∪ H×.WecallD(H)=D1(H) = sup{|a| : a ∈ A (H)} ∈ N0 ∪ {∞}
the Davenport constant of H. For every k ∈ N, we have Mk(H) ⊂ Mk+1(H),
Dk(H) ≤ Dk+1(H), and Dk(H) ≤ kD(H). Furthermore, we have |u| = 0 for every
unit u ∈ H×. Therefore, the degree function on H induces automatically a degree
function | · | : Hred → (N0,+), and so the kth Davenport constant ofHred is defined.
Obviously we have Dk(H) = Dk(Hred). Let e(H) denote the smallest � ∈ N0 ∪ {∞}
with the following property:

There is a K ∈ N0 such that every a ∈ H with |a| ≥ K is divisible by an element
b ∈ H\H× with |b| ≤ �.

Clearly, e(H) ≤ D(H).

Proposition 2.7 LetH beaBF-monoid and | · | : H → (N0,+)beadegree function.

1. If Hred is finitely generated, then the setsMk(Hred) are finite andDk(H) < ∞ for
every k ∈ N.

2. If D(H) < ∞, then there exist constants DH ,KH ∈ N0 such that Dk(H) =
ke(H) + DH for all k ≥ KH.

3. If D(H) < ∞, then the map N → Q, k �→ Dk(H)

k is nonincreasing.

4. Suppose that H has a prime element. Then

Dk(H) = max
{|a| : a ∈ M k(H)

} ≤ kD(H)

and

kD(H) = max
{|a| : a ∈ H, min L(a) ≤ k

} = max
{|a| : a ∈ H, k ∈ L(a)

}

.

Proof 1. Suppose that Hred is finitely generated. Then A (Hred) is finite whence
Mk(H) is finite for every k ∈ N. It follows that D(H) < ∞ and Dk(H) ≤ kD(H) <

∞ for all k ∈ N.
2. Suppose that D(H) < ∞ and note that e(H) ≤ D(H). Let f(H) ∈ N0 be the

smallestK ∈ N0 such that every a ∈ H with |a| ≥ K is divisible by an element b ∈ H
with |b| ≤ e(H). We define A = {a ∈ A (H) : |a| = e(H)}. Let k ∈ N and continue
with the following assertion.

A. There exist a1, . . . , ak ∈ A such that a1 . . . ak ∈ Mk(H). In particular,Dk(H) ≥
|a1 . . . ak| = ke(H).

Proof of A. Assume to the contrary that for all a1, . . . , ak ∈ A the product a1 . . . ak is
divisible by an atom u ∈ A (H) with |u| < e(H). We set K = f(H) + (k − 1)e(H)

and choose a ∈ H with |a| ≥ K . Then a can be written in the form a = a1 . . . akb
where a1, . . . , ak, b ∈ H and |ai| ≤ e(H) for all i ∈ [1, k]. If there is some i ∈ [1, k]
with |ai| < e(H), thenai is a divisor ofawith |ai| < e(H). Otherwise,a1, . . . , ak ∈ A
and by our assumption the product a1 . . . ak and hence a has a divisor of degree strictly
smaller than e(H). This is a contradiction to the definition of e(H). �(Proof of A)
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Now let k ≥ f(H)/e(H)− 1.ThenA implies thatDk(H)+ e(H)≥ (k + 1)e(H) ≥
f(H). Let a ∈ H with |a| > Dk(H) + e(H). Then, by definition of f(H), there are
b, c ∈ H such that a = bcwith |c| ≤ e(H) and hence |b| > Dk(H). This implies that
max L(b) > k, whence max L(a) > k + 1 and a /∈ Mk+1(H). Therefore, we obtain
that Dk+1(H) ≤ Dk(H) + e(H) and thus

0 ≤ Dk+1(H) − (k + 1)e(H) ≤ Dk(H) − ke(H).

Since a non-increasing sequence of nonnegative integers stabilizes, the assertion
follows.

3. Suppose that D(H) < ∞. Let k ∈ N, a ∈ Mk+1(H) with |a| = Dk+1(H),
and set l = max L(a). Then l ≤ k + 1. If l ≤ k, then a ∈ Mk(H) and Dk+1(H) ≥
Dk(H) ≥ |a| = Dk+1(H)whenceDk(H) = Dk+1(H). Suppose that l = k + 1.We set
a = a1 . . . ak+1 with a1, . . . , ak+1 ∈ A (H) and |a1| ≥ · · · ≥ |ak+1|whence |ak+1| ≤
(|a1| + · · · + |ak|)/k. It follows that

Dk+1(H)

k + 1
= |a1| + · · · + |ak+1|

k + 1
≤ |a1| + · · · + |ak|

k
≤ Dk(H)

k
,

where the last inequality holds because a1 . . . ak ∈ Mk(H).
4. Let p ∈ H be a prime element. We assert that

Dk(H) ≤ max
{|a| : a ∈ H, max L(a) = k

}

. (∗)

Indeed, if a ∈ Mk(H) and max L(a) = l ≤ k, then apk−l ∈ Mk(H) and

|a| ≤ |apk−l| ≤ max
{|a| : a ∈ H, max L(a) = k

}

,

and hence (∗) follows. Next, we assert that

max
{|a| : a ∈ H, min L(a) ≤ k

} ≤ kD(H). (∗∗)

Let a ∈ H withmin L(a) = l ≤ k, say a = u1 . . . ul, where u1, . . . , ul ∈ A (H). Then
|a| = |u1| + · · · + |ul| ≤ lD(H) ≤ kD(H), and thus (∗∗) follows.Using (∗) and (∗∗)

we infer that

Dk(H) ≤ max
{|a| : a ∈ H, max L(a) = k

} ≤ max
{|a| : a ∈ H, max L(a) ≤ k

}

= Dk(H) ≤ max
{|a| : a ∈ H, min L(a) ≤ k

}

and that

kD(H) = max
{|a| : a ∈ H, k ∈ L(a)

} ≤ max
{|a| : a ∈ H, min L(a) ≤ k

} ≤ kD(H).

Let F be a factorial monoid and H ⊂ F a submonoid such that H× = H ∩ F×.
Then H is a BF-monoid by [40, Corollary 1.3.3]. For k ∈ N, let M ∗

k (H) denote the
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set of all a ∈ F such that a is not divisible by a product of k non-units of H. The
restriction of the usual length function | · | : F → N0 on F (introduced in Sect. 2.1)
gives a degree function on H. We define the small kth Davenport constant dk(H) as

dk(H) = sup{|a| : a ∈ M ∗
k (H)} ∈ N0 ∪ {∞}. (1)

In other words, 1 + dk(H) is the smallest integer � ∈ N such that every a ∈ F of
length |a| ≥ � is divisible by a product of k non-units of H. We call d(H) = d1(H)

the small Davenport constant of H. Clearly we have M ∗
k (H) ⊂ M ∗

k+1(H) hence
dk(H) ≤ dk+1(H).

Furthermore, let η(H) denote the smallest integer � ∈ N ∪ {∞} such that every
a ∈ F with |a| ≥ � has a divisor b ∈ H\H× with |b| ∈ [1,e(H)]. For p ∈ A (F)

denote by op the smallest integer � ∈ N ∪ {∞} such that pop ∈ H. Clearly, we have
op ≤ η(H) for all p ∈ A (F).

Proposition 2.8 Let F = F× × F (P) be a factorial monoid and H ⊂ F a sub-
monoid such that H× = H ∩ F×, and let k ∈ N.

1. If for every a ∈ F there is a prime p ∈ F such that ap ∈ H, then 1 + dk(H) ≤
Dk(H).

2. Suppose that Hred is finitely generated and that for every a ∈ F there is an na ∈ H
such that ana ∈ H. Then H is a C-monoid and we have

(a) e(H) = max{op : p ∈ P} and η(H) < ∞.
(b) dk(H) + 1 ≥ ke(H) and there exist constants dH ∈ Z≥−1, kH ∈ N0 such that

dk(H) = ke(H) + dH for all k ≥ kH.

Proof 1. Let a ∈ M ∗
k (H) such that |a| = dk(H). We choose a prime p ∈ F such that

ap ∈ H. Take any factorization ap = u1 . . . u� where ui ∈ A (H). We may assume
that p | u1 in F. Then u2 . . . u� | a in F, and hence, � − 1 < k. Thus, it follows that
ap ∈ Mk(H) and Dk(H) ≥ |ap| = |a| + 1 ≥ dk(H) + 1.

2.(a) By Proposition 2.6.3, H is a C-monoid, P is finite and hence e(H) < ∞.
If p ∈ P, then pop ∈ A (H) and by the minimality of op, pop does not have a divisor
b ∈ H\H× such that |b| < op. Thus, it follows that e(H) ≥ max{op : p ∈ P}. For the
reverse inequality, note that by Proposition 2.4.2 there exists an α ∈ N such that for
all p ∈ P and all a ∈ pαF we have a ∈ H if and only if pαa ∈ H. Since any multiple
of α has the same property, we may assume that α is divisible by op for all p ∈ P. Let
b ∈ H with |b| > |P|(2α − 1). Then, there exists a p ∈ P such that b ∈ p2αF ∩ H.
Hence b is divisible in H by pα , implying in turn that pop ∈ A (H) divides b in H.
Therefore, we obtain that e(H) ≤ max{op : p ∈ P}.

If a ∈ F with |a| ≥ ∑

p∈P(op − 1), then there is a p ∈ P such that pop divides a in

F, and thus η(H) ≤ 1 + ∑

p∈P(op − 1).
2.(b)Letp ∈ Pwitho(p) = e(H). Thenpkop−1 ∈ M ∗

k (H) and |pkop−1| = ke(H) −
1, showing the inequality dk(H) + 1 ≥ ke(H) for all k ∈ N. Now let k ∈ N be such
that 1 + dk(H) + e(H) ≥ η(H), and let a ∈ F with |a| ≥ dk(H) + e(H) + 1. Then,
by definition of η(H), there are b ∈ F and c ∈ H\H× such that a = bc with |c| ≤
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e(H) and |b| > dk(H). This implies that b is divisible by a product of k non-units of
H whence a is divisible by a product of k + 1 non-units of H. Therefore, it follows
that 1 + dk+1(H) ≤ dk(H) + e(H) + 1 and hence

0 ≤ dk+1(H) − ke(H) ≤ dk(H) − (k − 1)e(H) for all sufficiently large k.

Since a nonincreasing sequence of nonnegative integers stabilizes, the assertion
follows.

3 Arithmetic Combinatorics: Zero-Sum Results
with a Focus on Davenport Constants

This section is devoted to Zero-Sum Theory, a vivid subfield of Arithmetic Combi-
natorics (see [32, 37, 49]). In Sect. 3.1 we give an algebraic study of the monoid of
product-one sequences over finite but not necessarily abelian groups. In Sect. 3.2 we
put together well-known material on transfer homomorphisms used in Sects. 4.2 and
4.3. In Sects. 3.3 and 3.4 we consider the kth Davenport constants of finite groups.
In particular, we gather results which will be needed in Sect. 5.2 and results having
relevance in invariant theory by Proposition 4.7.

3.1 The Monoid of Product-One Sequences

LetG0 ⊂ Gbe a subset and letG′ = [G,G] = 〈g−1h−1gh : g, h ∈ G〉denote the com-
mutator subgroup ofG. A sequence overG0 means a finite sequence of terms fromG0

which is unordered and repetition of terms is allowed, and it will be considered as an
element of the free abelian monoidF (G0). In order to distinguish between the group
operation in G and the operation in F (G0), we use the symbol · for the multipli-
cation in F (G0), hence F (G0) = (

F (G0), ·
)

—this coincides with the convention
in the monographs [40, 49]—and we denote multiplication in G by juxtaposition of
elements. To clarify this, if S1, S2 ∈ F (G0) and g1, g2 ∈ G0, then S1 · S2 ∈ F (G0)

has length |S1| + |S2|, S1 · g1 ∈ F (G0) has length |S1| + 1, g1 · g2 ∈ F (G0) is a
sequence of length 2, but g1g2 is an element of G. Furthermore, in order to avoid
confusion between exponentiation inG and exponentiation inF (G0), we use brack-
ets for the exponentiation in F (G0). So for g ∈ G0, S ∈ F (G0), and k ∈ N0, we
have

g[k] = g · · · · · g
︸ ︷︷ ︸

k

∈ F (G) with |g[k]| = k, and S[k] = S · · · · · S
︸ ︷︷ ︸

k

∈ F (G).
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Now let
S = g1 · · · · · g� =

∏

g∈G0

gvg(S),

be a sequenceoverG0 (in this notation,we tacitly assume that � ∈ N0 andg1, . . . , g� ∈
G0). Then |S| = � = 0 if and only if S = 1F (G0) is the identity element in F (G0),
and then S will also be called the trivial sequence. The elements inF (G0)\{1F (G0)}
are called nontrivial sequences. We use all notions of divisibility theory in general
free abelian monoids. Thus, for an element g ∈ G0, we refer to vg(S) as the multi-
plicity of g in S. A divisor T of S will also be called a subsequence of S. We call
supp(S) = {g1, . . . , g�} ⊂ G0 the support of S. When G is written multiplicatively
(with unit element 1G ∈ G), we use

π(S) = {gτ(1) . . . gτ(�) ∈ G : τ a permutation of [1, �]} ⊂ G

to denote the set of products of S (if |S| = 0, we use the convention that π(S) =
{1G}). Clearly, π(S) is contained in a G′-coset. When G is written additively with
commutative operation, we likewise let

σ(S) = g1 + · · · + g� ∈ G

denote the sum of S. Furthermore, we denote by

Σ(S) = {σ(T) : T | S and 1 �= T} ⊂ G and Π(S) =
⋃

T | S
1�=T

π(T) ⊂ G,

the subsequence sums and subsequence products of S. The sequence S is called

• a product-one sequence if 1G ∈ π(S),
• product-one free if 1G /∈ Π(S).

Every map of finite groups ϕ : G1 → G2 extends to a homomorphism ϕ : F (G1)

→ F (G2) where ϕ(S) = ϕ(g1) · · · · · ϕ(g�). If ϕ is a group homomorphism, then
ϕ(S) is a product-one sequence if and only if π(S) ∩ Ker(ϕ) �= ∅. We denote by

B(G0) = {S ∈ F (G0) : 1G ∈ π(S)}

the set of all product-one sequences over G0, and clearlyB(G0) ⊂ F (G0) is a sub-
monoid. We will use all concepts introduced in Sect. 2.5 for the monoidB(G0) with
the degree function stemming from the length function on the free abelian monoid
F (G0). For all notations ∗(H) introduced for a monoid H we write—as usual—
∗(G0) instead of ∗(B(G0)). In particular, for k ∈ N, we setMk(G0) = Mk(B(G0)),
Dk(G0) = Dk(B(G0)), η(G0) = η(B(G0)), e(G0) = e(B(G0)), and so on. By
Proposition 2.8.2(a), e(G0) = max{ord(g) : g ∈ G0}. Note that M ∗

1 (G0) is the set
of all product-one free sequences over G0. In particular,
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D(G0) = sup{|S| : S ∈ A (G0)} ∈ N ∪ {∞}

is the large Davenport constant of G0, and

d(G0) = sup{|S| : S ∈ F (G0) is product-one free} ∈ N0 ∪ {∞}

is the small Davenport constant of G0. Their study will be the focus of the Sects. 3.3
and 3.4.

Lemma 3.1 Let G0 ⊂ G be a subset.

1. B(G0) ⊂ F (G0) is a reduced finitely generated submonoid,A (G0) is finite, and
D(G0) ≤ |G|. Furthermore, Mk(G0) is finite and Dk(G0) < ∞ for all k ∈ N.

2. Let S ∈ F (G) be product-one free.

a. If g0 ∈ π(S), then g−1
0 · S ∈ A (G). In particular, d(G) + 1 ≤ D(G).

b. If |S| = d(G), then Π(S) = G\{1G} and hence
d(G) = max{|S| : S ∈ F (G) with Π(S) = G\{1G}}.

3. If G is cyclic, then d(G) + 1 = D(G) = |G|.
Proof 1. We assert that for every U ∈ A (G) we have |U| ≤ |G|. Then A (G0) ⊂
A (G) is finite and D(G0) ≤ D(G) ≤ |G|. As already mentioned, B(G0) ⊂ F (G0)

is a submonoid, and clearly B(G0)
× = {1F (G0)}. Since F (G0) is factorial and

B(G0)
× = B(G0) ∩ F (G0)

×, B(G0) is atomic by [40, Corollary 1.3.3]. This
means that B(G0) = [A (G0) ∪ B(G0)

×], and thus, B(G0) is finitely generated.
Since B(G0) is reduced and finitely generated, the sets Mk(G0) are finite by
Proposition2.7.

Now letU ∈ B(G), sayU = g1 · · · · · g� with g1g2 . . . g� = 1G. We suppose that
� > |G| and show that U /∈ A (G). Consider the set

M = {g1g2 . . . gi : i ∈ [1, �]}.

Since � > |G|, there are i, j ∈ [1, �] with i < j and g1 . . . gi = g1 . . . gj. Then
gi+1 . . . gj = 1G and thus g1 . . . gigj+1 . . . g� = 1G which implies thatU is the product
of two nontrivial product-one subsequences.

2.(a) If g0 ∈ π(S), then S can be written as S = g1 · · · · · g� such that g0 =
g1 . . . g�, which implies that g−1

0 · g1 · · · · · g� ∈ A (G).
2.(b) If S is product-one free with |S| = d(G), and if there would be an h ∈

G\{Π(S) ∪ {1G}}, then T = h−1 · S would be product-one free of length |T | = |S| +
1 > d(G), a contradiction. Thus every product-one free sequence S of length |S| =
d(G) satisfies Π(S) = G\{1G}. If S is a sequence with Π(S) = G\{1G}, then S is
product-one free and hence |S| ≤ d(G).

3. Clearly, the assertion holds for |G| = 1. Suppose thatG is cyclic of order n ≥ 2,
and let g ∈ G with ord(g) = n. Then g[n−1] is product-one free, and thus 1. and 2.
imply that n ≤ 1 + d(G) ≤ D(G) ≤ n.
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The next result gathers the algebraic properties of monoids of product-one
sequences and highlights the difference between the abelian and the non-abelian
case.

Theorem 3.2 Let G0 ⊂ G be a subset and let G′ denote the commutator subgroup
of 〈G0〉.
1. B(G0) ⊂ F (G0) is cofinal andB(G0) is a finitely generatedC-monoid. B̃(G0) =

B̂(G0) is a finitely generated Krull monoid, the embedding B̂(G0) ↪→ F (G0) is
a cofinal divisor homomorphism with class group F (G0)/B(G0), and the map

Φ : F (G0)/B(G0) −→ 〈G0〉/G′

[S]F (G0)/B(G0) �−→ gG′ for any g ∈ π(S)

is a group epimorphism. Suppose that G0 = G. Then Φ is an isomorphism, every
class ofC (B̂(G)) contains a prime divisor, and if |G| �= 2, then B̂(G) ↪→ F (G)

is a divisor theory.
2. The following statements are equivalent:

(a) B(G0) is a Krull monoid.
(b) B(G0) is root closed.
(c) B(G0) ⊂ F (G0) is saturated.

3. B(G) is a Krull monoid if and only if G is abelian.
4. B(G) is factorial if and only if |G| ≤ 2.

Proof 1. B(G0) is finitely generated by Lemma 3.1. If n = lcm{ord(g) : g ∈ G0},
then S[n] ∈ B(G0) for each S ∈ F (G0). Thus B(G0) ⊂ F (G0) and B̂(G0) ↪→
F (G0) are cofinal, F (G0)/B(G0) is a group and

F (G0)/B(G0) = q
(

F (G0)
)

/q
(

B(G0)
) = q

(

F (G0)
)

/q
(

B̂(G0)
)

is the class group of the embedding B̂(G0) ↪→ F (G0). All statements on the struc-
ture ofB(G0) and B̂(G0) follow from Proposition 2.6.3, and it remains to show the
assertions on Φ.

Let S, S′ ∈ F (G0), g ∈ π(S), g′ ∈ π(S′), and B ∈ B(G0). Then π(S) ⊂ gG′,
π(S′) ⊂ g′G′, π(B) ⊂ G′, and π(S · B) ⊂ gG′. We use the abbreviation
[S] = [S]F (G0)/B(G0), and note that [S] = [S′] if and only if there are C,C′ ∈ B(G0)

such that S · C = S′ · C′.
In order to show that Φ is well-defined, suppose that [S] = [S′] and that S · C =

S · C′ with C,C′ ∈ B(G0). Then π(S · C) = π(S′ · C′) ⊂ gG′ ∩ g′G′, and hence
gG′ = g′G′. In order to show that Φ is surjective, let g ∈ 〈G0〉 be given. Clearly,
there is an S ∈ F (G0) such that g ∈ π(S) whence Φ([S]) = gG′.
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Suppose that G0 = G. First, we show that Φ is injective. Let S, S′ ∈ F (G) with
g ∈ π(S), g′ ∈ π(S′) such that gG′ = g′G′. Then there are k ∈ N, a1, b1, . . . , ak, bk ∈
G such that

gg′−1 =
k

∏

i=1

(a−1
i b−1

i aibi).

We define T = ∏k
i=1(a

−1
i · b−1

i · ai · bi) and obtain that

S · (S′ · g−1 · T) = S′ · (S · g−1 · T) ∈ F (G).

Since 1 ∈ π(T) and gg′−1 ∈ π(T), it follows that 1 ∈ π(S′ · g−1 · T) and 1 ∈ π(S ·
g−1 · T) which implies that [S] = [S′].

If |G| ≤ 2, then 4. will show that B(G) is factorial and clearly the trivial class
contains a prime divisor. Suppose that |G| ≥ 3. In order to show that B̂(G) ↪→ F (G)

is a divisor theory, let g ∈ G\{1G} be given. Then there is an h ∈ G\{g−1, 1G},
U = g · g−1 ∈ A (G) ⊂ B̂(G), U ′ = g · h · (h−1g−1) ∈ A (G) ⊂ B̂(G), and g =
gcdF (G)(U,U ′). Thus B̂(G) ↪→ F (G) is a divisor theory.

Let S ∈ F (G) with g ∈ π(S). Then g ∈ F (G) is a prime divisor and we show
that [g] = [S]. Indeed, if g = 1G, then S ∈ B(G), 1G ∈ B(G), S · 1G = g · Swhence
[g] = [S]. If ord(g) = n ≥ 2, then g[n] ∈ B(G), S · g[n−1] ∈ B(G), S · g[n] = g · S ·
g[n−1] whence [S] = [g].

2. (a) ⇒ (b) Every Krull monoid is completely integrally closed and hence root
closed.

(b) ⇒ (c) Let S,T ∈ B(G0) with T | S in F (G0), say S = T · U where U =
g1 · · · · · g� ∈ F (G0). If n = lcm

(

ord(g1), . . . , ord(g�)
)

, then (T [−1] · S)[n] = U [n]
∈ B(G0). SinceB(G0) is root closed, this implies that U = T [−1] · S ∈ B(G0) and
hence T | S inB(G0).

(c) ⇒ (a) Since F (G0) is free abelian, B(G0) is Krull by Theorem 2.1.

3. If G is a abelian, then it is obvious that B(G) ⊂ F (G) is saturated, and thus
B(G) is a Krull monoid by 2. Suppose that G is not abelian. Then there are g, h ∈ G
with gh �= hg. Then ghg−1 �= h, S = g · h · g−1 · (ghg−1)−1 ∈ B(G), T = g · g−1 ∈
B(G) divides S in F (G) but T [−1] · S = h · (ghg−1)−1 does not have product-one.
Thus B(G) ⊂ F (G) is not saturated and hence B(G) is not Krull by 2.

4. If G = {0}, then B(G) = F (G) is factorial. If G = {0, g}, then A (G) =
{0, g[2]}, each atom is a prime, andB(G) is factorial. Conversely, suppose thatB(G)

is factorial. ThenB(G) is a Krull monoid by [40, Corollary 2.3.13], and hence G is
abelian by 3. Suppose that |G| ≥ 3. We show thatB(G) is not factorial. If there is an
element g ∈ Gwith ord(g) = n ≥ 3, thenU = g[n],−U = (−g)[n],W = (−g) · g ∈
A (G), andU · (−U) = W [n]. Suppose there is no g ∈ Gwith ord(g) ≥ 3. Then there
are e1, e2 ∈ Gwithord(e1) = ord(e2) = 2 and e1 + e2 �= 0.ThenU = e1 · e2 · (e1 +
e2),W1 = e[2]

1 ,W2 = e[2]
2 ,W0 = (e1 + e2)[2] ∈ A (G), and U [2] = W0 ·W1 ·W2.

For a subset G0 ⊂ G, the monoid B(G0) may be Krull or just seminormal but it
need not be Krull. We provide examples for both situations.
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Proposition 3.3 Let G0 ⊂ G be a subset satisfying the following property P:

P. For each two elements g, h ∈ G0, 〈h〉 ⊂ 〈g, h〉 is normal or 〈g〉 ⊂ 〈g, h〉 is
normal.

Then B(G0) is a Krull monoid if and only if 〈G0〉 is abelian.
Proof If 〈G0〉 is a abelian, then it is obvious thatB(G0) ⊂ F (G0) is saturated, and
thus B(G0) is Krull by Theorem 3.2.2.

Conversely, suppose that B(G0) is Krull and that G0 satisfies Property P. In
order to show that 〈G0〉 is abelian, it is sufficient to prove that gh = hg for each two
elements g, h ∈ G0. Let g, h ∈ G0 be given such that 〈h〉 ⊂ 〈g, h〉 is normal, ord(g) =
m, ord(h) = n, and assume to the contrary that ghg−1 �= h. Since g〈h〉g−1 = 〈h〉, it
follows that ghg−1 = hν for some ν ∈ [2, n − 1]. Thus ghgm−1hn−ν = 1 and S = g ·
h · g[m−1] · h[n−ν] ∈ B(G0). Clearly, T = g[m] ∈ B(G0) but S · T [−1] = h[n−ν+1] /∈
B(G0). Thus B(G0) ⊂ F (G0) is not saturated, a contradiction.

Proposition 3.4 Let G = D2n be the dihedral group, say G = 〈a, b〉 = {1, a, . . . ,
an−1, b, ab, . . . , an−1b}, where ord(a) = n ≥ 2, ord(b) = 2, and set G0 = {ab, b}.
Then, B(G0) is a Krull monoid if and only if n is even.

Proof Clearly, we have ord(ab) = ord(b) = 2 and 〈G0〉 = G. Suppose that n is odd
and consider the sequence S = (ab)[n] · b[n]. Since

(

(ab)b
)n = 1, it follows that S is a

product-one sequence. Obviously, S1 = (ab)[n−1] · b[n−1] ∈ B(G0) and S2 = (ab) ·
b /∈ B(G0). Since S = S1 · S2, it follows thatB(G0) ⊂ F (G0) is not saturated, and
hence B(G0) is not Krull by Theorem 3.2.2.

Suppose that n is even. Then A (G0) = {(ab)[2], b[2]} and B(G0) = {(ab)[�] ·
b[m] : �,m ∈ N0 even}. This description ofB(G0) implies immediately thatB(G0) ⊂
F (G0) is saturated, and hence B(G0) is Krull by Theorem 3.2.2.

Remark (Seminormality of B(G0)) A monoid H is called seminormal if for all
x ∈ q(H)with x2, x3 ∈ H it follows that x ∈ H. Thus, by definition, every root closed
monoid is seminormal.

1. Letn ≡ 3 mod 4 andG = D2n the dihedral group, sayG = 〈a, b〉 = {1, a, . . . ,
an−1, b, ab, . . . , an−1b}, where ord(a) = n, ord(b) = 2, and

akbalb = ak−l for all k, l ∈ Z.

We consider the sequence

S = a
[

n−1
2

]

· b[2] ∈ F (G).

Then

S[2] = (

a
[

n−1
2

]

· b · a
[

n−1
2

]

· b) · (b · b) and S[3] = a[n] · (

a
[

n−3
4

]

· b · a
[

n−3
4

]

· b) · b[4]
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are both in B(G) whence S ∈ q
(

B(G)
)

, but obviously S /∈ B(G). Thus B({a, b})
and B(G) are not seminormal.

2. LetG = H8 = {E, I, J,K,−E,−I,−J,−K} be the quaternion group with the
relations

IJ = −JI = K, JK = −KJ = I, and KI = −IK = J,

and set G0 = {I, J}. By Theorem 3.2, B(G) is not Krull and by Proposition 3.3,
B(G0) is not Krull. However, we assert that B(G0) is seminormal.

First, we are going to derive an explicit description of B(G0). Since E =
(−E)(−E) = (KK)(II) = (IJ)(IJ)(II), it follows that U = I [4] · J [2] ∈ B(G0).
Assume that U = U1 · U2 with U1,U2 ∈ A (G0) and |U1| ≤ |U2|. Then |U1| ∈
{2, 3}, but U does not have a subsequence with product one and length two or
three. Thus U ∈ A (G0) and similarly we obtain that I [2] · J [4] ∈ A (G0). Since
D(G0) ≤ D(G) = 6, it is easy to check that

A (G0) = {I [4], J [4], I [2] · J [2], I [4] · J [2], I [2] · J [4]}.

This implies that

B(G0) = {I [k] · J [l] : k = l = 0 or k, l ∈ N0 are both even with k + l ≥ 4}.

In order to show that B(G0) is seminormal, let x ∈ q
(

B(G0)
)

be given such
that x[2], x[3] ∈ B(G0). We have to show that x ∈ B(G0). Since x[2], x[3] ∈ B(G0) ⊂
F (G0) andF (G0) is seminormal, it follows that x ∈ F (G0). If x = I [k] with k ∈ N0,
then I [3k] ∈ B(G0) implies that 4 | 3k, hence 4 | k, and thus x ∈ B(G0). Similarly,
if x = J [l] ∈ B(G0) with l ∈ N0, then x ∈ B(G0). It remains to consider the case
x = I [k] · J [l] with k, l ∈ N. Since x[3] = I [3k] · J [3l] ∈ B(G0), it follows that k, l are
both even, and thus x ∈ B(G0). Therefore, B(G0) is seminormal.

3.2 Transfer Homomorphisms

A well-established strategy for investigating the arithmetic of a given monoid H is
to construct a transfer homomorphism θ : H → B, where B is a simpler monoid than
H and the transfer homomorphism θ allows to shift arithmetical results from B back
to the (original, more complicated) monoidH. We will use transfer homomorphisms
in Sect. 4 in order to show that properties of the monoid of G-invariant monomials
can be studied in a monoid of zero-sum sequences (see Propositions 4.7 and 4.9).

Definition 3.5 A monoid homomorphism θ : H → B is called a transfer homo-
morphism if it has the following properties:

(T 1) B = θ(H)B× and θ−1(B×) = H×.
(T 2) If u ∈ H, b, c ∈ B and θ(u) = bc, then there exist v, w ∈ H such that

u = vw, θ(v)B× = bB× and θ(w)B× = cB×.
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We will use the simple fact that, if θ : H → B and θ ′ : B → B′ are transfer homo-
morphisms, then their composition θ ′ ◦ θ : H → B′ is a transfer homomorphism too.
The next proposition summarizes key properties of transfer homomorphisms.

Proposition 3.6 Let θ : H → B be a transfer homomorphism and a ∈ H.

1. a is an atom of H if and only if θ(a) is an atom of B.

2. LH(a) = LB
(

θ(a)
)

, whence θ
(

Mk(H)
) = Mk(B) and θ−1

(

Mk(B)
) = Mk(H).

3. If θ is degree preserving, then Dk(H) = Dk(B) for all k ∈ N.

Proof 1. and 2. follow from [40, Proposition 3.2.3]. In order to prove 3., note that
for all k ∈ N we have

Dk(H) = sup{|a|H : a ∈ Mk(H)} = sup{|θ(a)|B : θ(a) ∈ Mk(B)}
= sup{|b|B : b ∈ Mk(B)} = Dk(B).

The first examples of transfer homomorphisms in the literature start from a Krull
monoid to its associated monoid of zero-sum sequences which is a Krull monoid
having a combinatorial flavor. These ideas were generalized widely, and there are
transfer homomorphisms from weakly Krull monoids to (simpler) weakly Krull
monoids (having a combinatorial flavor) and the same is true for C-monoids.

Proposition 3.7 LetH be aKrullmonoid,ϕ : H → F (P) be a cofinal divisor homo-
morphism with class group G = C (ϕ), and let G∗ ⊂ G denote the set of classes con-
taining prime divisors. Let ˜θ : F (P) → F (G∗) denote the unique homomorphism
defined by ˜θ(p) = [p] for all p ∈ P, and set θ = ˜θ ◦ ϕ : H → B(G∗).

1. θ is a transfer homomorphism.
2. For a ∈ H, we set |a| = |ϕ(a)| and for S ∈ B(G∗) we set |S| = |S|F (G∗). Then

|a| = |θ(a)| for all a ∈ H, θ(M ∗
k (H)) = M ∗

k (G∗) and θ−1(M ∗
k (G∗)) = M ∗

k (H)

for all k ∈ N. Furthermore,e(H) = e(G∗),η(H) = η(G∗), andDk(H) = Dk(G∗)
for all k ∈ N.

Proof 1. follows from [40, Sect. 3.4]. By definition, we have |a| = |θ(a)| for all
a ∈ H. Thus, the assertions onDk(H) follow from Proposition 2.7, and the remaining
statements can be derived in a similar way.

The above transfer homomorphism θ : H → B(G∗) constitutes the link between
the arithmetic ofKrull monoids on the one side and zero-sum theory on the other side.
In this way, methods from Arithmetic Combinatorics can be used to obtain precise
results for arithmetical invariants describing the arithmetic of H. For an overview of
this interplay see [37].

There is a variety of transfer homomorphisms from monoids of zero-sum
sequences to monoids of zero-sum sequences in order to simplify specific struc-
tural features of the involved subsets of groups. Below we present a simple example
of such a transfer homomorphism which we will meet again in Proposition 4.9
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(for more of this nature we refer to [74] and to [40, Theorem 6.7.11]). Let G be
abelian and let G0 ⊂ G be a subset. For g ∈ G0 we define

e(G0, g) = gcd
({vg(B) : B ∈ B(G0)}

)

,

and it is easy to check that (for details see [43, Lemma 3.4])

e(G0, g) = gcd
({vg(A) : A ∈ A (G0)}

)

= min
({vg(A) : vg(A) > 0,A ∈ A (G0)}

)

= min
({vg(B) : vg(B) > 0,B ∈ B(G0)}

)

= min
({k ∈ N : kg ∈ 〈G0\{g}〉}

) = gcd
({k ∈ N : kg ∈ 〈G0\{g}〉}

)

.

Proposition 3.8 Let G be abelian and G0,G1,G2 ⊂ G be subsets such that G0 =
G1 � G2. For g ∈ G0 we set e(g) = e(G0, g) and we define G∗

0 = {e(g)g : g ∈ G1} ∪
G2. Then, the map

θ : B(G0) −→ B(G∗
0)

B =
∏

g∈G0

g[vg(B)] �−→
∏

g∈G1

(e(g)g)[vg(B)/e(g)] ∏

g∈G2

g[vg(B)]

is a transfer homomorphism.

Proof Clearly, θ is a surjective homomorphism satisfying θ−1(1F (G0)) = {1F (G0)}.
In order to verify property (T2) ofDefinition 3.5, letB ∈ B(G0) andC1,C2 ∈ B(G∗

0)

be such that θ(B) = C1 · C2. We have to show that there are B1,B2 ∈ B(G0) such
that B = B1 · B2, θ(B1) = C1, and θ(B2) = C2. This can be checked easily.

3.3 The kth Davenport Constants: The General Case

Let G0 ⊂ G be a subset, and k ∈ N. Recall that e(G) = max{ord(g) : g ∈ G}. If G
is nilpotent, then G is the direct sum of its p-Sylow subgroups and hence e(G) =
lcm{ord(g) : g ∈ G} = exp(G). Let

• E(G0) be the smallest integer � ∈ N such that every sequence S ∈ F (G0) of length
|S| ≥ � has a product-one subsequence of length |G|.

• s(G0) denote the smallest integer � ∈ N such that every sequence S ∈ F (G0) of
length |S| ≥ � has a product-one subsequence of length e(G).

The Davenport constants, together with the Erdős–Ginzburg–Ziv constant s(G),
the constants η(G) and E(G), are the most classical zero-sum invariants whose study
(in the abelian setting) goes back to the early 1960s. The kth Davenport constants
Dk(G) were introduced by Halter-Koch [50] and further studied in [40, Sect. 6.1]



66 K. Cziszter et al.

and [30] (all this work is done in the abelian setting). First results in the non-abelian
setting were achieved in [15].

If G is abelian, then W. Gao proved that E(G) = |G| + d(G). For cyclic groups
this is the Theorem of Erdős–Ginzburg–Ziv which dates back to 1961 [40, Proposi-
tion 5.7.9]. W. Gao and J. Zhuang conjectured that the above equality holds true for
all finite groups [82, Conjecture 2], and their conjecture has been verified in a variety
of special cases [3, 33, 34, 53]. For more in the non-abelian setting see [79, 80].

We verify two simple properties occurring in the assumptions of Propositions 2.7
and 2.8.

• If S ∈ F (G) and g0 ∈ π(S), then h = g−1
0 ∈ G is a prime in F (G) and h · S ∈

B(G).
• Clearly, 1G ∈ B(G) is a prime element of B(G).

Therefore, all properties proved in Propositions 2.7 and 2.8 forDk(H) anddk(H) hold
for the constants Dk(G) and dk(G) (the linearity properties as given in Propositions
2.7.2 and 2.8.2.(b) were first proved by Freeze and W.A. Schmid in case of abelian
groups G [30]). We continue with properties which are more specific.

Proposition 3.9 Let H ≤ G be a subgroup, N � G be a normal subgroup, and
k, � ∈ N.

1. dk(N) + d�(G/N) ≤ dk+�−1(G).

2. dk(G) ≤ ddk(N)+1(G/N).

3. dk(G) + 1 ≤ [G :H](dk(H) + 1).

4. dk(G) + 1 ≤ k(d(G) + 1).

5. Dk(G) ≤ [G :H]Dk(H).

Proof 1. Let S = (g1N) · · · · · (gsN) ∈ M ∗
� (G/N) with |S| = s = d�(G/N) and let

T = h1 · · · · · ht ∈ M ∗
k (N)with t = dk(N).We consider the sequenceW = g1 · · · · ·

gs · h1 · · · · · ht ∈ F (G) and suppose that it is divisible by S1 · · · · · Sa · T1 · · · · ·
Tb where Si,Tj ∈ B(G)\{1F (G)}, supp(Si) ∩ {g1, . . . , gs} �= ∅ and T1 · · · · · Tb | h1 ·
· · · · ht for all i ∈ [1, a] and all j ∈ [1, b]. For i ∈ [1, a], let Si ∈ F (G/N) denote
the sequence obtained from Si by replacing each gν by gνN and by omitting the
elements ofSiwhich lie in {h1, . . . , ht}. ThenS1, . . . , Sa ∈ B(G/N)\{1F (G)} andS1 ·
· · · · Sa | S whence a ≤ � − 1. By construction, we have b ≤ k − 1 whence a + b <

k + � − 1, W ∈ M ∗
k+�−1(G), and |W | = s + t = dk(N) + d�(G/N) ≤ dk+�−1(G).

2. We set m = ddk(N)+1(G/N) + 1. By (1), we have to show that every sequence
S over G of length |S| ≥ m is divisible by a product of k nontrivial product-
one sequences. Let f : G → G/N denote the canonical epimorphism and let S ∈
F (G) be a sequence of length |S| ≥ m. By definition of m, there exist sequences
S1, . . . , Sdk(N)+1 such that S1 · · · · · Sdk(N)+1 | S and f (S1), . . . , f (Sdk(N)+1) are
product-one sequences over G/N . Thus, for each ν ∈ [1,dk(N) + 1], there are
elements hν ∈ N such that hν ∈ π(Sν). Then T = h1 · · · · · hdk(N)+1 is a sequence
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over N , and it has k nontrivial product-one subsequences T1, . . . ,Tk whose prod-
uct T1 · · · · · Tk divides T . Therefore we obtain k nontrivial product-one sequences
whose product divides S.

3. We set m = [G :H] and start with the following assertion.

A. If S ∈ F (G) with |S| ≥ m, then Π(S) ∩ H �= ∅.
Proof of A. Let S = g1 · · · · · gn ∈ F (G) with |S| = n ≥ m. We consider the left
cosets g1H, g1g2H, . . . , g1 . . . gmH. If one of these cosets equalsH, thenwe are done.
If this is not the case, then there are k, � ∈ [1,m] with k < � such that g1 . . . gkH =
g1 . . . gkgk+1 . . . g�H which implies that gk+1 . . . g� ∈ H. �(Proof of A)

Now let S ∈ F (G) be a sequence of length |S| = [G :H](dk(H) + 1). We have to
show thatS is divisible by aproduct of k nontrivial product-one sequences.ByA, there
are dk(H) + 1 sequences S1, . . . , Sdk(H)+1 and elements h1, . . . , hdk(H)+1 ∈ H such
that S1 · · · · · Sdk(H)+1 | S and hν ∈ π(Sν) for each ν ∈ [1,dk(H) + 1]. By definition,
the sequence h1 · · · · · hdk(H)+1 ∈ F (H) is divisible by a product of k nontrivial
product-one sequences. Therefore S is divisible by a product of k nontrivial product-
one sequences.

4. Let S ∈ F (G) be a sequence of length |S| = k(d(G) + 1). Then S may be
written as a productS = S1 · · · · · Sk whereS1, . . . , Sk ∈ F (G)with |Sν | = d(G) + 1
for every ν ∈ [1, k]. Then each Sν is divisible by a nontrivial product-one sequence
Tν , and hence, S is divisible by T1 · · · · · Tk . Thus by (1) we infer that dk(G) + 1 ≤
k(d(G) + 1).

5. Let A = g1 · · · · · g� ∈ B(G) with g1 . . . g� = 1 and � > [G : H]Dk(H). We
show that � > Dk(G). We set d = Dk(H) and consider the left H-cosets Cj =
g1 . . . gjH for each j ∈ [1, �]. By the pigeonhole principle there exist 1 ≤ i1 < · · · <

id+1 ≤ � such that Ci1 = · · · = Cid+1 . We set hs = gis+1 . . . gis+1 for each s ∈ [1, d]
and hd+1 = gid+1+1 . . . g�g1 . . . gi1−1. Clearly h1, . . . , hd+1 ∈ H, and g1 · · · g� = 1
implies h1 · · · hd+1 = 1 whence h1 · · · · · hd+1 ∈ B(H). The inequality d + 1 >

Dk(H) implies that h1 · · · · · hd+1 = S1 · · · · · Sk+1, where 1F (H) �= Si ∈ B(H) for
i ∈ [1, k + 1]. LetTi ∈ F (G)denote the sequence obtained fromSi by replacing each
occurrence of hs by gis+1 · · · · · gis+1 for s ∈ [1, d] and hd+1 by gid+1+1 · · · · · g� · g1 ·
· · · · gi1−1. Then T1, . . . ,Tk+1 ∈ B(G) andA = g1 · · · · · g� = T1 · · · · · Tk+1, which
implies that � > Dk(G).

Much more is known for the classical Davenport constants D1(G) = D(G) and
d1(G) = d(G). We start with metacyclic groups of index two. The following result
was proved in [39, Theorem 1.1].

Theorem 3.10 Suppose that G has a cyclic, index 2 subgroup. Then

D(G) = d(G) + |G′| and d(G) =
{ |G| − 1 if G is cyclic

1
2 |G| if G is noncyclic,

where G′ = [G,G] is the commutator subgroup of G.
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The next result gathers upper bounds for the large Davenport constant (for d(G)

see [36]).

Theorem 3.11 Let G′ = [G,G] denote the commutator subgroup of G.

1. D(G) ≤ d(G) + 2|G′| − 1, and equality holds if and only if G is abelian.
2. If G is a non-abelian p-group, then D(G) ≤ p2+2p−2

p3 |G|.
3. If G is non-abelian of order pq, where p, q are primes with p < q, thenD(G) = 2q

and d(G) = q + p − 2.
4. If N � G is a normal subgroup with G/N ∼= Cp ⊕ Cp for some prime p, then

d(G) ≤ (d(N) + 2)p − 2 ≤ 1

p
|G| + p − 2.

5. If G is noncyclic and p is the smallest prime dividing |G|, then D(G) ≤ 2
p |G|.

6. If G is neither cyclic nor isomorphic to a dihedral group of order 2n with odd n,
then D(G) ≤ 3

4 |G|.
Proof All results can be found in [48]: see Lemma 4.2, Theorems 3.1, 4.1, 5.1, 7.1,
7.2, and Corollary 5.7.

Corollary 3.12 The following statements are equivalent:

(a) G is cyclic or isomorphic to a dihedral group of order 2n for some odd n ≥ 3.

(b) D(G) = |G|.
Proof If G is not as in (a), then D(G) ≤ 3

4 |G| by Theorem 3.11.6. If G is cyclic,
then D(G) = |G| by Lemma 3.1.3. If G is dihedral of order 2n for some odd n ≥
3, then the commutator subgroup G′ of G has order n and hence D(G) = |G| by
Theorem3.10.

3.4 The kth Davenport Constants: The Abelian Case

Throughout this subsection, all groups are abelian and will be written additively.

We have G ∼= Cn1 ⊕ · · · ⊕ Cnr , with r ∈ N0 and 1 < n1 | . . . | nr , r(G) = r is the
rank of G and nr = exp(G) is the exponent of G. We define

d∗(G) =
r

∑

i=1

(ni − 1).

IfG = {0}, then r = 0 = d∗(G). An s-tuple (e1, . . . , es) of elements ofG\{0} is said
to be a basis of G if G = 〈e1〉 ⊕ · · · ⊕ 〈es〉. First, we provide a lower bound for the
Davenport constants.
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Lemma 3.13 Let G be abelian.

1. Dk(G) = 1 + dk(G) for every k ∈ N.

2. d∗(G) + (k − 1) exp(G) ≤ dk(G).

Proof 1. Let k ∈ N. By Proposition 2.8.1, we have 1 + dk(G) ≤ Dk(G). Obviously,
the map

ψ : M ∗
k (G) → Mk(G)\{1}, given by ψ(S) = (−σ(S)) · S,

is surjective and we have |ψ(S)| = 1 + |S| for every S ∈ M ∗
k (G). Therefore, we

have 1 + dk(G) = Dk(G).

2. Suppose that G ∼= Cn1 ⊕ · · · ⊕ Cnr , with r ∈ N0 and 1 < n1 | . . . | nr . If
(e1, . . . , er) is a basis of G with ord(ei) = ni for all i ∈ [1, r], then

S = e[nr(k−1)]
r

r
∏

i=1

e[ni−1]
i

is not divisible by a product of k nontrivial zero-sum sequences whence d∗(G) +
(k − 1) exp(G) = |S| ≤ dk(G).

We continue with a result on the kth Davenport constant which refines the more
general results in Sect. 2.5. It provides an explicit formula for dk(G) in terms of d(G)

(see [40, Theorem 6.1.5]).

Theorem 3.14 Let G be abelian, exp(G) = n, and k ∈ N.

1. Let H ≤ G be a subgroup such that G = H ⊕ Cn. Then

d(H) + kn − 1 ≤ dk(G) ≤ (k − 1)n + max{d(G), η(G) − n − 1}.

In particular, if d(G) = d(H) + n − 1 and η(G) ≤ d(G) + n + 1, then dk(G) =
d(G) + (k − 1)n.

2. If r(G) ≤ 2, then dk(G) = d(G) + (k − 1)n.

3. If G is a p-group and D(G) ≤ 2n − 1, then dk(G) = d(G) + (k − 1)n.

For the rest of this section, we focus on the classical Davenport constant D(G).
By Lemma 3.13.2, there is the crucial inequality

d∗(G) ≤ d(G).

We continue with a list of groups for which equality holds. The list is incomplete
but the remaining groups for which d∗(G) = d(G) is known are of a similar special
nature as those listed in Theorem 3.15.3 (see [76] for a more detailed discussion).
In particular, it is still open whether equality holds for all groups of rank three (see
[76, Sect. 4.1]) or for all groups of the form G = Cr

n (see [47]).
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Theorem 3.15 We have d∗(G) = d(G) in each of the following cases:

1. G is a p-group or has rank r(G) ≤ 2.
2. G = K ⊕ Ckm where k,m ∈ N, p ∈ P a prime, m a power of p and K ≤ G is a

p-subgroup with d(K) ≤ m − 1.
3. G = C2

m ⊕ Cmn where m ∈ {2, 3, 4, 6} and n ∈ N.

Proof For 1. see [40] (in particular, Theorems 5.5.9 and 5.8.3) for proofs and histor-
ical comments. For 2. see [37, Corollary 4.2.13], and 3. can be found in [5] and [76,
Theorem 4.1].

There are infinite series of groups G with d∗(G) < d(G). However, the true rea-
son for the phenomenon d∗(G) < d(G) is not understood. Here is a simple obser-
vation. Suppose that G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | . . . | nr , I ⊂ [1, r], and let
G′ = ⊕i∈ICni . If d

∗(G′) < d(G′), then d∗(G) < d(G). For series of groups G which
have rank four and five and satisfy d∗(G) < d(G) we refer to [42, 44]. A standing
conjecture for an upper bound on D(G) states that d(G) ≤ d∗(G) + r(G). However,
the available results are much weaker [6], [40, Theorem 5.5.5].

The remainder of this subsection is devoted to inverse problems with respect to
the Davenport constant. Thus the objective is to study the structure of zero-sum free
sequences S whose lengths |S| are close to the maximal possible value d(G).

If G is cyclic of order n ≥ 2, then an easy exercise shows that S is zero-sum free
of length |S| = d(G) if and only if S = g[n−1] for some g ∈ Gwith ord(g) = n. After
many contributions since the 1980s, S. Savchev and F. Chen could finally prove a
(sharp) structural result. In order to formulate it we need some more terminology. If
g ∈ G is a nonzero element of order ord(g) = n and

S = (n1g) · · · · · (n�g), where � ∈ N0 and n1, . . . , n� ∈ [1, n],

we define
‖S‖g = n1 + · · · + n�

n
.

Obviously, S has sum zero if and only if ‖S‖g ∈ N0, and the index of S is defined as

ind(S) = min{‖S‖g : g ∈ G with G = 〈g〉} ∈ Q≥0.

Theorem 3.16 Let G be cyclic of order |G| = n ≥ 3.

1. If S is a zero-sum free sequence over G of length |S| ≥ (n + 1)/2, then there exist
g ∈ G with ord(g) = n and integers 1 = m1, . . . ,m|S| ∈ [1, n − 1] such that

• S = (m1g) · · · · · (m|S|g)
• m1 + · · · + m|S| < n and Σ(S) = {νg : ν ∈ [1,m1 + · · · + m|S|]}.

2. If U ∈ A (G) has length |U| ≥ � n
2� + 2, then ind(U) = 1.
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Proof 1. See [71] for the original paper. For the history of the problem and a proof
in the present terminology see [37, Chap. 5.1] or [49, Chap. 11].

2. This is a simple consequence of the first part (see [37, Theorem 5.1.8]).

The above result was generalized to groups of the form G = C2 ⊕ C2n by S.
Savchev and F. Chen [72]. Not much is known about the number of all minimal
zero-sum sequences of a given group. However, the above result allows to give a
formula for the number of minimal zero-sum sequences of length � ≥ � n

2� + 2 (this
formula was first proved by Ponomarenko [66] for � > 2n/3).

Corollary 3.17 LetGbe cyclic of order |G| = n ≥ 3, and let � ∈
[

� n
2� + 2, n

]

. Then

the number of minimal zero-sum sequences U ∈ A (G) of length � equalsΦ(n)p�(n),
where Φ(n) = |(Z/nZ)×| is Euler’s Phi function and p�(n) is the number of integer
partitions of n into � summands.

Proof Clearly, every generating element g ∈ G and every integer partition n =
m1 + · · · + m� gives rise to a minimal zero-sum sequence U = (m1g) · · · · · (m�g).
Conversely, if U ∈ A (G) is of length |U| = �, then Theorem 3.16.2 implies that
there is an element g ∈ G with ord(g) = n such that

U = (m1g) · · · · · (m�g) where m1, . . . ,m� ∈ [1, n − 1]with n = m1 + · · · + m�.

(∗)

Since G has precisely Φ(n) generating elements, it remains to show that for every
U ∈ A (G) of length |U| = � there is precisely one generating element g ∈ G with
‖U‖g = 1. LetU be as in (∗), and assume to the contrary that there are a ∈ [2, n − 1]
with gcd(a, n) = 1 and m′

1, . . . ,m
′
� ∈ [1, n] such that m′

1 + · · · + m′
� = n and

U = (

m′
1(ag)

) · · · · · (

m′
�(ag)

)

.

Let a′ ∈ [2, n − 1] be such that aa′ ≡ 1 (mod n). Since

n = m1 + · · · + m� ≥ vg(U) + avag(U) + 2(� − vg(U) − vag(U))

= 2� − vg(U) + (a − 2)vag(U) and

n = m′
1 + · · · + m′

� ≥ a′vg(U) + vag(U) + 2(� − vg(U) − vag(U))

= 2� + (a′ − 2)vg(U) − vag(U),

it follows that

(a − 1)n = n + (a − 2)n

≥ 2� − vg(U) + (a − 2)vag(U) + (a − 2)(2� + (a′ − 2)vg(U) − vag(U))

= (a − 1)2� + ((a − 2)(a′ − 2) − 1)vg(U),

whence a = 2, a′ = n+1
2 or a′ = 2, a = n+1

2 because � ≥ � n
2� + 2. By symmetry,

we may assume that a = 2. Then vg(U) ≥ 2� − n ≥ 2� n
2� + 4 − n ≥ 3, and thus

n ≥ a′vg(U) ≥ 3 n+1
2 , a contradiction.
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The structure of all minimal zero-sum sequences of maximal length D(G) has
been completely determined for rank two groups [31, 35, 68, 75], for groups of the
formG = C2 ⊕ C2 ⊕ C2n with n ≥ 2 [76, Theorem 3.13], and for groups of the form
G = C4

2 ⊕ C2n with n ≥ 70 [8, Theorems 5.8 and 5.9].

4 Multiplicative Ideal Theory of Invariant Rings

After gathering basic material from invariant theory in Sect. 4.1 we construct an
explicit divisor theory for the algebra of polynomial invariants of a finite group (see
Sect. 4.2). In Sect. 4.3 we present a detailed study of the abelian case as outlined in
the Introduction. In Sect. 4.4 we associate a BF-monoid to a G-module whose kth
Davenport constant is a lower bound for the kth Noether number.

4.1 Basics of Invariant Theory

Let n = dimF(V ) and let ρ : G → GL(n, F) be a group homomorphism. Consider
the action of G on the polynomial ring F[x1, . . . , xn] via F-algebra automorphisms
induced by g · xj = ∑n

i=1 ρ(g−1)jixi. Taking a slightly more abstract point of depar-
ture, we suppose that V is a G-module (i.e., we suppose that V is endowed with
an action of G via linear transformations). Choosing a basis of V , V is identified
with F

n, the group GL(n, F) is identified with the group GL(V ) of invertible linear
transformations of V , and F[V ] = F[x1, . . . , xn] can be thought of as the symmetric
algebra of V ∗, the dual G-module of V , in which (x1, . . . , xn) is a basis dual to the
standard basis in V . The action on V ∗ is given by (g · x)(v) = x(ρ(g−1)v), where
g ∈ G, x ∈ V ∗, v ∈ V . Note that, if F is infinite, then F[V ] is the algebra of polyno-
mial functions V → F, and the action of G on F[V ] is the usual action on functions
V → F induced by the action of G on V via ρ. Denote by F(V ) the quotient field
of F[V ], and extend the G-action on F[V ] to F(V ) by

g · f1
f2

= g · f1
g · f2 for f1, f2 ∈ F[V ] and g ∈ G.

We define

F(V )G = {f ∈ F(V ) : g · f = f for all g ∈ G} ⊂ F(V ) and F[V ]G = F(V )G ∩ F[V ].

Then F(V )G ⊂ F(V ) is a subfield and F[V ]G ⊂ F[V ] is an F-subalgebra of F[V ],
called the ring of polynomial invariants of G (the group homomorphism ρ : G →
GL(V ) giving theG-action onV is usually suppressed from the notation). Since every
element of F(V ) can be written in the form f1f

−1
2 with f1 ∈ F[V ] and f2 ∈ F[V ]G,



The Interplay of Invariant Theory with Multiplicative Ideal Theory … 73

it follows that F(V )G is the quotient field of F[V ]G. Next, we summarize some
well-known ring theoretical properties of F[V ]G going back to E. Noether [64].

Theorem 4.1 Let all notations be as above.

1. F[V ]G ⊂ F[V ] is an integral ring extension and F[V ]G is normal.

2. F[V ] is a finitely generated F[V ]G-module, and F[V ]G is a finitely generated
F-algebra (hence in particular a noetherian domain).

3. F[V ]G is a Krull domain with Krull dimension dimF(V ).

Proof 1. To show that F[V ]G is normal, consider an element f ∈ F(V )G which is
integral over F[V ]G. Then f is integral over F[V ] as well, and since F[V ] is normal,
it follows that f ∈ F[V ] ∩ F(V )G = F[V ]G.

To show that F[V ]G ⊂ F[V ] is an integral ring extension, consider an element
f ∈ F[V ] and the polynomial

Φf =
∏

g∈G
(X − gf ) ∈ F[V ][X]. (2)

The coefficients ofΦf are the elementary symmetric functions (up to sign) evaluated
at (gf )g∈G, and hence, they are in F[V ]G. Thus f is a root of a monic polynomial
with coefficients in F[V ]G.

2. For i ∈ [1, n], we consider the polynomials Φxi(X) (cf. (2)), and denote by
A ⊂ F[V ]G ⊂ F[V ] the F-algebra generated by the coefficients of Φx1 , . . . , Φxn . By
definition, A is a finitely generated F-algebra, and hence, a noetherian domain. Since
x1, . . . , xn are integral overA,F[V ] = A[x1, . . . , xn] is a finitely generated (and hence
noetherian) A-module. Therefore, the A-submodule F[V ]G is a finitely generated A-
module, and hence, a finitely generated F-algebra.

3. By 1. and 2., F[V ]G is a normal noetherian domain, and hence a Krull domain
by Theorem 2.1.2. Since F[V ]G ⊂ F[V ] is an integral ring extension, the Theo-
rem of Cohen–Seidenberg implies that their Krull dimensions coincide, and hence
dim(F[V ]G) = dim(F[V ]) = dimF(V ).

The algebra F[V ] is graded in the standard way (namely, deg(x1) = · · · =
deg(xn) = 1), and the subalgebra F[V ]G is generated by homogeneous elements.
For F-subspaces S,T ⊂ F[V ] we write ST for the F-subspace in F[V ] spanned by
all the products st (s ∈ S, t ∈ T), and write Sk = S . . . S (with k factors). The factor
algebra of F[V ] by the ideal generated by F[V ]G+ is usually called the algebra of
coinvariants. It inherits the grading of F[V ] and is finite dimensional.

Definition 4.2 Let k ∈ N.

1. Let βk(G, V ) be the top degree of the factor space F[V ]G+/(F[V ]G+)k+1, where
F[V ]G+ is themaximal ideal ofF[V ]G spannedby thepositive degree homogeneous
elements. We call
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βk(G) = sup{βk(G,W ) : W is a G-module over F}

the kth Noether number of G.
2. Let bk(G, V ) denote the top degree of the factor algebraF[V ]/(F[V ]G+)kF[V ] and

set
bk(G) = sup{bk(G,W ) : W is a G-module over F}.

In the special case k = 1 we set

β(G, V ) = β1(G, V ), β(G) = β1(G), b(G, V ) = b1(G, V ), and b(G) = b1(G),

and β(G) is the Noether number of G. If {f1, . . . , fm} and {h1, . . . , hl} are two min-
imal homogeneous generating sets of F[V ]G, then m = l and, after renumbering if
necessary, deg(fi) = deg(hi) for all i ∈ [1,m] [61, Proposition 6.19]. Therefore by
the Graded Nakayama Lemma [61, Proposition 8.31] we have

β(G, V ) = max{deg(fi) : i ∈ [1,m]},

where {f1, . . . , fm} is a minimal homogeneous generating set of F[V ]G. Again by the
GradedNakayamaLemma,b(G, V ) is themaximal degree of a generator in aminimal
system of homogeneous generators of F[V ] as an F[V ]G-module. If char(F) � |G|,
then by [11, Corollary 3.2] we have

βk(G) = bk(G) + 1 and β(G, V ) ≤ b(G, V ) + 1, (3)

where the second inequality can be strict. IfG is abelian, then βk(G, V ) and bk(G, V )

will be interpreted as kth Davenport constants (see Proposition 4.7).
The regular G-module Vreg has a basis {eg : g ∈ G} labeled by the group elements,

and the group action is given by g · eh = egh for g, h ∈ G. More conceptually, one can
identify Vreg with the space of F-valued functions on G, on which G acts linearly via
the action induced by the leftmultiplication action ofG on itself. In this interpretation,
the basis element eg is the characteristic function of the set {g} ⊂ G. It was proved in
[73] that, if char(F) = 0, then β(G) = β(G, Vreg). If F is algebraically closed, each
irreducible G-module occurs in Vreg as a direct summand with multiplicity equal to
its dimension.

Theorem 4.3 1. If char(F) � |G|, then β(G) ≤ |G|.
2. If char(F) | |G|, then β(G) = ∞.

Proof 1. The case char(F) = 0 was proved by E. Noether [63] in 1916, and her
argument works as well when the characteristic of F is greater than |G|. The general
case was shown independently by P. Fleischmann [25] and J. Fogarty [28] (see also
[62, Theorem 2.3.3] and [56]. For 2. see [70].

Bounding the Noether number has always been an objective of invariant theory
(for recent surveys we refer to [60, 81]; degree bounds are discussed in [10, 17, 26,
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54, 78]; see [16] for algorithmic aspects).Moreover, themainmotivation to introduce
the kth Noether numbers βk(G) [11–13] was to bound the ordinary Noether number
β(G) via structural reduction (see Sect. 5.1).

4.2 The Divisor Theory of Invariant Rings

Let G ⊂ GL(V ) and χ ∈ Hom(G, F
•). Then

F[V ]G,χ = {f ∈ F[V ] : g · f = χ(g)f for all g ∈ G}

denotes the space of relative invariants of weight χ , and we set

F[V ]G,rel =
⋃

χ∈Hom(G,F•)

F[V ]G,χ .

Clearly, we have F[V ]G ⊂ F[V ]G,rel ⊂ F[V ], and to simplify notation, we set

H = (F[V ]G\{0})red, D = (F[V ]G,rel\{0})red, and E = (F[V ]\{0})red.

Since F[V ] is a factorial domain with F
• as its set of units, E = F (P) is the free

abelian monoid generated by P = {F•f : f ∈ F[V ] is irreducible}. The action of G
on F[V ] is via F-algebra automorphisms, so it induces a permutation action of G
on E and P. Denote by P/G the set of G-orbits in P. We shall identify P/G with
a subset of E as follows: assign to the G-orbit {f1, . . . , fr} the element f1 . . . fr ∈ E
(here f1, . . . , fr ∈ P are distinct).

We say that a nonidentity element g ∈ G ⊂ GL(V ) is a pseudoreflection if a
hyperplane in V is fixed pointwise by g, and g is not unipotent (this latter condition
holds automatically if char(F) does not divide |G|, since then a nonidentity unipotent
transformation cannot have finite order).We denote by Hom0(G, F

•) ≤ Hom(G, F
•)

the subgroup of the character group consisting of the characters that contain all
pseudoreflections in their kernels. For each p ∈ P, choose a representative p̃ ∈ F[V ]
in the associate class p = F

•p̃. We have X(F[V ]) = {p̃F[V ] : p ∈ P} because F[V ]
is factorial. We set vp̃ = vp : q(F[V ]•) = F(V )• → Z, and for a subset X ⊂ F(V )

we write vp(X) = inf{vp(f ) : f ∈ X\{0}}. The ramification index of the prime ideal
p̃F[V ] over F[V ]G is e(p) = vp(p̃F[V ] ∩ F[V ]G). The ramification index e(p) can
be expressed in terms of the inertia subgroup

Ip = {g ∈ G : g · f − f ∈ p̃F[V ] for all f ∈ F[V ]}.

Since V � is a G-stable subspace in F[V ], the inertia subgroup Ip acts trivially on
V �/(V � ∩ p̃F[V ]). On the other hand Ip acts faithfully on V �. So if Ip is nontriv-
ial, then V � ∩ p̃F[V ] �= 0, implying p̃ ∈ V �. Clearly Ip must act trivially on the
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hyperplane V (p̃) = {v ∈ V : p̃(v) = 0}, and hence acts via multiplication by a char-
acter δp ∈ Hom(Ip, F

•) on the one-dimensional factor space V/V (p̃). So ker(δp) is
a normal subgroup of Ip (necessarily unipotent hence trivial if char(F) � |G|) and
Ip = ker(δp)Z decomposes as a semi-direct product of ker(δp) and a cyclic subgroup
Z consisting of pseudoreflections fixing pointwise V (p̃). So Z ∼= Ip/ ker(δp) is iso-
morphic to a finite subgroup of F

•.
The next Lemma 4.4 is extracted from Nakajima’s paper [58].

Lemma 4.4

1. We have the equality e(p) = |Z|.
2. vp(F[V ]G,χ ) < e(p) for all χ ∈ Hom(G, F

•).
3. vp(F[V ]G,χ ) = 0 for all χ ∈ Hom0(G, F

•).

Proof 1. By [59, 9.6, Proposition (i)], we have that e(p) = vp(p̃F[V ] ∩ F[V ]Ip),
the ramification index of the prime ideal p̃F[V ] over the subring of Ip-invariants.
Thus, if Ip is trivial, then e(p) = 1, and of course |Z| = 1. If Ip is nontrivial, then
as it was explained above, p̃ is a linear form, which is a relative Ip-invariant with
weight δ−1

p , hence p̃|Z| is an Ip-invariant, implying vp(p̃F[V ] ∩ F[V ]Ip) ≤ |Z|. On the
other hand F[V ]Ip is contained in F[V ]Z , and the algebra of invariants of the cyclic
group Z fixing pointwise the hyperplane V (p̃) is generated by p̃|Z| and a subspace of
V ∗ complementary to Fp̃. Thus vp(p̃F[V ] ∩ F[V ]Ip) ≥ vp(p̃F[V ] ∩ F[V ]Z) = |Z|,
implying in turn that e(p) = |Z|.

2. Take anh ∈ F[V ]Gwith e(p) = vp(h).Note thatvq(h) = vp(h) andvq(F[V ]G,χ )

= vp(F[V ]G,χ ) holds for all q ∈ G · p, sinceF[V ]G,χ is aG-stable subset inF[V ]. Set
S = { ft : f ∈ F[V ], t ∈ F[V ]G\p̃F[V ]}. This is a G-stable subring in q(F[V ]) con-
taining F[V ]. Consider Sχ = S ∩ q(F[V ])χ , where q(F[V ])χ = {s ∈ q(F[V ]) : g ·
s = χ(g)s for all g ∈ G}. Then vq(Sχ ) = vq(F[V ]G,χ ) for all q ∈ G · p, since for
any denominator t of an element f

t of S we have vq(t) = 0. Now suppose that
contrary to our statement we have e(p) ≤ vp(F[V ]G,χ ), and hence vq(h) ≤ vq(Sχ )

for all q ∈ G · p. In particular this means that F[V ]G,χ �= {0}. Then vq(h−1Sχ ) ≥ 0
holds for all q ∈ G · p. Now S is a Krull domain with X(S) = {q̃S : q ∈ G · p}, thus
h−1Sχ ⊂ S (see the discussion after Theorem 2.1), implying that Sχ ⊂ hS. Clearly
hS ∩ Sχ = hSχ , so we conclude in turn that Sχ ⊂ hSχ . Iterating this we deduce
{0} �= Sχ ⊂ ∩∞

n=1h
nS, a contradiction.

3. It is well known that F[V ]G,χ �= {0} (see the proof of A4. below). Write v =
vp(F[V ]G,χ ). Take f ∈ F[V ]G,χ with vp(f ) = v, say f = p̃vh, where h ∈ F[V ]. Note
that both f and p̃ are relative invariants of Ip, hence so is h. Therefore g · h ∈ F

•h,
and p̃ |F[V ] (g · h − h) for all g ∈ Ip, implying that h is an Ip-invariant. Any χ ∈
Hom0(G, F

•) contains Ip in its kernel (the unipotent normal subgroup ker(δp) of Ip
has no non-trivial characters at all, andZ = Ip/ ker(δp) consists of pseudoreflections).
Thus f is Ip-invariant as well. Therefore p̃v is Ip-invariant, so its weight δvp is trivial.
Consequently, the order |Z| of δp in Hom(Ip, F

•) divides v. We have e(p) = |Z| by
1., and on the other hand v < e(p) by 2., forcing v = 0.
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For a relative invariant f , we denote byw(f ) the weight of f . This induces a homo-
morphismw : D → Hom(G, F

•) assigning toF
•f ∈ D theweightw(f ) of the relative

invariant f . Clearly, w extends to a group homomorphism w : q(D) → Hom(G, F
•).

The kernel of w consists of elements of the form (F•h)−1
F

•f , where f , h ∈ F[V ]G,χ

for some character χ . Now f /h belongs to F(V )G, which is the field of fractions
of F[V ]G, so there exist f1, h1 ∈ F[V ]G with f /h = f1/h1, implying (F•h)−1

F
•f =

(F•h1)−1
F

•f1 ∈ q(H). Thus ker(w) = q(H). Therefore,w induces a monomorphism
w : q(D)/q(H) → Hom(G, F

•).

Theorem 4.5 Let G ⊂ GL(V ), H = (F[V ]G\{0})red, and D = (F[V ]G,rel\{0})red.
1. The embeddings F[V ]G\{0} ϕ

↪→ F[V ]G,rel\{0} ψ
↪→ F[V ]• are cofinal divisor

homomorphisms.
2. D is factorial, P/G ⊂ E is the set of prime elements in D, and C (ϕ) is a torsion

group.
3. The monoid D0 = {gcdD(X) : X ⊂ H finite} ⊂ D is free abelian with basis

{qe(q) : q ∈ P/G}, where e(q) = min{vq(h) : q |D h ∈ H}, and the embedding
H ↪→ D0 is a divisor theory.

4. We have D0 = {f ∈ D : w(f ) ∈ Hom0(G, F
•)} and w |q(D0)/q(H) : C (F[V ]G) =

q(D0)/q(H) → Hom0(G, F
•) is an isomorphism.

Theorem 4.5 immediately implies the following corollary which can be found in
Benson’s book [4, Theorem 3.9.2] and which goes back to Nakajima [58] (see also
[27] for a discussion of this theorem).

Corollary 4.6 (Benson–Nakajima) The class group of F[V ]G is isomorphic to
Hom0(G, F

•), the subgroup of the character group consisting of the characters that
contain all pseudoreflections in their kernels.

Proof (of Theorem 4.5) 1. Since F[V ]G = F(V )G ∩ F[V ], the embedding ψ ◦
ϕ : F[V ]G ↪→ F[V ] is a divisor homomorphism, and hence ϕ is a divisor homo-
morphism. Furthermore, if the quotient of two relative invariants lies in F[V ], then
it is a relative invariant whence ψ is a divisor homomorphism. In order to show that
the embeddings are cofinal, let 0 �= f ∈ F[V ] be given. Then f ∗ = ∏

g∈G gf ∈ F[V ]G
and f | f ∗, so the embedding ψ ◦ ϕ is cofinal and hence ϕ and ψ are cofinal.

2. Suppose that {f1, . . . , fr} ⊂ F[V ] represents a G-orbit in P. Then g · (f1 . . . fr)
is a non-zero scalar multiple of f1 . . . fr , hence f1 . . . fr ∈ F[V ]G,rel. This shows that
P/G ⊂ E is in fact contained inD. Conversely, take an irreducible element F•f in the
monoid D (so f is a relative invariant). Take any irreducible divisor f1 of f in F[V ].
Since g · f ∈ F

•f , the polynomial g · f1 is also the divisor of f . Denoting by f1, . . . , fr
polynomials representing theG-orbit of F

•f1 in P, we conclude that f1 . . . fr divides f
in F[V ], hence F

•f1 . . . fr divides F
•f in D as well, so F

•f1 . . . fr = F
•f . This implies

that D is the submonoid of E = F (P) generated by P/G.
In order to show that C (ϕ) is a torsion group, let f ∈ D be given. We have to find

anm ∈ N such that f m ∈ H. Clearly, this holds withm being the order in Hom(G,F•)
of the weight of the relative invariant corresponding to f .
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3. Since C (ϕ) is a torsion group, Proposition 2.2 implies that the embedding
H ↪→ D0 is a divisor theory, and that D0 is free abelian with basis {qe(q) : q ∈ P/G},
where e(q) = min{vq(h) : q |D h ∈ H} (note that if q ∈ P/G is the G-orbit of p ∈ P,
then vq(h) = vp(h), where the latter is the exponent of p in h ∈ E = F (P)).

4. It remains to prove the following three assertions.

A1. D0 = {f ∈ D : w(f ) ∈ Hom0(G, F
•)}.

A2. w(D0) = Hom0(G, F
•).

A3. w |q(D0)/q(H) : q(D0)/q(H) → w(D0) is an isomorphism.

Proof of A1. Set D0 = {f ∈ D : w(f ) ∈ Hom0(G, F
•)}. We show first D0 ⊂ D0. Let

χ be a character of G, and assume that χ(g) �= 1 for some pseudoreflection g ∈ G.
Let f be a relative invariant with w(f ) = χ . Then for any v with gv = v we have
f (v) = f (g−1v) = (gf )(v) = χ(g)f (v), hence f (v) = 0. So l |F[V ] f , where l is a
nonzero linear form on V that vanishes on the reflecting hyperplane of g. Denot-
ing by l = l1, . . . , lr representatives of the G-orbit of F

•l, we find that the rela-
tive invariant q = l1 . . . lr divides f . Thus gcdD{f ∈ D | w(f ) = χ} �= 1. Now sup-
pose that for some F

•k ∈ D0 we have that w(k) does not belong to Hom0(G, F
•).

By definition of D0 there exist h1, . . . , hn ∈ D with gcdD(h1, . . . , hn) = 1 and
kh1, . . . , khn ∈ H. Clearlyw(hi) = w(k)−1 /∈ Hom0(G, F

•), hence by the above con-
siderations gcdD(h1, . . . , hn) �= 1, a contradiction.

Next we show D0 ⊂ D0. Let d be an element in the monoid D0. By Lemma 4.4.3
for any prime divisor p ∈ P of d there exists an hp ∈ D such that w(hp) = w(d)−1

and p �E hp. Denote by m > 1 the order of w(d) in the group of characters. Clearly
dm ∈ H and dhp ∈ H. Moreover, gcdE(dm, dhp : p ∈ P, p |E d) = d.

Proof of A2. The statement follows from A1, as soon as we show that F[V ]G,χ �=
0 for all χ ∈ Hom(G, F

•). For any character χ ∈ Hom(G, F
•) the group Ḡ =

G/ ker(χ) is isomorphic to a cyclic subgroup of F
•, hence its order is not divisible by

char(F). Moreover, Ḡ acts faithfully on the field T = F(V )ker(χ), with TḠ = F(V )G.
By the Normal Basis Theorem, T as a Ḡ-module over TḠ is isomorphic to the regular
representation of Ḡ, hence contains the representation χ as a summand with mul-
tiplicity 1. This shows in particular that TḠ contains a relative invariant of weight
χ . Multiplying this by an appropriate element of TḠ ∩ F[V ] = F[V ]G we get an
element of F[V ]G,χ . So all characters of G occur as the weight of a relative invariant
in F[V ].

Proof of A3. Since w : q(D)/q(H) → Hom(G, F
•) is a monomorphism, the

map w |q(D0)/q(H) : q(D0)/q(H) → w(q(D0)) is an isomorphism. Note finally that
w(q(D0)) = q(w(D0)) = w(D0).

As already mentioned, not only the class group but also the distribution of prime
divisors in the classes is crucial for the arithmetic of the domain. Moreover, the class
group together with the distribution of prime divisors in the classes are characteristic
(up to units) for the domain. For a precise formulation we need one more definition.

LetH be a Krull monoid,Hred ↪→ F (P) a divisor theory, and letG be an abelian
group and (mg)g∈G be a family of cardinal numbers. We say thatH has characteristic
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(G, (mg)g∈G) if there is a group isomorphism Φ : G → C (H) such that mg = |P ∩
Φ(g)|. Two reduced Krull monoids are isomorphic if and only if they have the same
characteristic [40, Theorem 2.5.4]. We pose the following problem.

Problem 1 Let G be a finite group, F be a field, and V be a finite dimensional
F-vector space endowed with a linear action of G. Determine the characteristic of
F[V ]G.

Let all assumptions be as in Problem 1 and suppose further that G acts trivially
on one variable. Then F[V ]G is a polynomial ring in this variable and hence every
class contains a prime divisor by [29, Theorem 14.3].

4.3 The Abelian Case

Throughout this subsection, suppose that G is abelian, F is algebraically closed,
and char(F) � |G|.
The assumption on algebraic closedness is not too restrictive, since for any field

F the set F[V ]G spans the ring of invariants over the algebraic closure F as a vector
space overF. The assumption on the characteristic guarantees that everyG-module is
completely reducible (i.e., is the direct sumof irreducibleG-modules). The dual space
V ∗ has a basis {x1, . . . , xn} consisting of G-eigenvectors whence g · xi = χi(g)xi
for all i ∈ [1, n] where χ1, . . . , χn ∈ Hom(G, F

•). We set ̂G = Hom(G, F
•), ̂GV =

{χ1, . . . , χn} ⊂ ̂G, and note thatG ∼= ̂G. Recall that a completely reducibleH-module
W (for a not necessarily abelian group H) is called multiplicity free if it is the direct
sum of pairwise non-isomorphic irreducibleH-modules. In our case V is multiplicity
free if and only if the characters χ1, . . . , χn are pairwise distinct.

It was B. Schmid [73, Sect. 2] who first formulated a correspondence between a
minimal generating system of F[V ]G and minimal product-one sequences over the
character group (see also [24]). The next proposition describes in detail the structural
interplay. In particular, Proposition 4.7.2 shows that all (direct and inverse) results on
minimal zero-sum sequences over ̂GV (see Sects. 3.3 and 3.4) carry over toA (MG).

Proposition 4.7 Let M ⊂ F[x1, . . . , xn] be the multiplicative monoid of monomials,
ψ : M → F (̂GV ) be the unique monoid homomorphism defined by ψ(xi) = χi for
all i ∈ [1, n], and let MG ⊂ M denote the submonoid of G-invariant monomials.

1. F[V ]G has MG as an F-vector space basis, and F[V ]G is minimally generated as
an F-algebra by A (MG).

2. The homomorphismψ : M → F (̂GV ) and its restrictionψ |MG : MG → B(̂GV )

are degree-preserving transfer homomorphisms. Moreover, MG is a reduced
finitely generated Krull monoid, and A (MG) = ψ−1

(

A (̂GV )
)

.
3. ψ |MG is an isomorphism if and only if V is a multiplicity free G-module.
4. βk(G, V ) = Dk(MG) = Dk(̂GV ) and βk(G) = Dk(G) for all k ∈ N.
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Proof 1. Each monomial spans a G-stable subspace in F[V ], hence a polynomial is
G-invariant if and only if all its monomials areG-invariant, soMG spans F[V ]G. The
elements ofMG are linearly independent, therefore F[V ]G can be identified with the
monoid algebra of MG over F, which shows the second statement.

2.M andF (̂GV ) are free abelian monoids and ψ maps primes onto primes. Thus
ψ : M → F (̂GV ) is a surjective degree-preservingmonoid homomorphismand it is a
transfer homomorphism. Let π : F (̂G) → ̂G be the monoid homomorphism defined
by π(χ) = χ for all χ ∈ ̂G. Then ker(π) = B(̂G). Taking into account that for a
monomial m ∈ M G acts on the space Fm via the character π(ψ(m)), we conclude
that for a monomial m ∈ M we have that m ∈ MG if and only if ψ(m) ∈ B(̂GV ).
This implies that the restriction ψ |MG of the transfer homomorphism ψ is also a
transfer homomorphism. Therefore MG is generated by A (MG) = ψ−1

(

A (̂GV )
)

.
Since A (̂GV ) is finite, and ψ has finite fibers, we conclude that the monoid MG is
finitely generated. Since M is factorial and F[V ]G ⊂ F[V ] is saturated by Theorem
4.5, it follows that

M ∩ q(MG) ⊂ M ∩ F[V ] ∩ q(F[V ]G) ⊂ M ∩ F[V ]G = MG

whence MG ⊂ M is saturated and thus MG is a Krull monoid.
3. V is a multiplicity freeG-module if and only if χ1, . . . , χn are pairwise distinct.

Sinceψ : M → F (̂GV )maps the primes x1, . . . , xn ofM onto the primes χ1, . . . , χn

of F (̂GV ), ψ is an isomorphism if and only if χ1, . . . , χn are pairwise distinct.
4. Let k ∈ N andMG+ = MG\{1}. ThenMG\(MG+)k+1 = Mk(MG). Since ψ |MG :

MG → B(̂GV ) is degree-preserving transfer homomorphism, Proposition 3.6.3
implies that Dk(MG) = Dk(̂GV ). Since F[V ]G is spanned by MG, (F[V ]G+)k+1 is
spanned by (MG+)k+1. Therefore, the top degree of a homogeneous G-invariant not
contained in (F[V ]G+)k+1 coincides with the maximal degree of a monomial in
MG+\(MG+)k+1 = Mk(MG). Thus βk(G, V ) = Dk(MG). For the kth Noether number
βk(G) we have

βk(G) = sup{βk(G,W ) : W is a G-module over F}
= sup{Dk(̂GW ) : W is a G-module over F} = Dk(̂G)

because for the regular representation Vreg we have ̂GVreg = ̂G.

Recalling the notation of Theorem 4.5, we have

H = (F[V ]G\{0})red and D0 = {gcd
D

(X) : X ⊂ H finite} ⊂ D = (F[V ]G,rel\{0})red.

Furthermore, M ⊂ F[V ] = F[x1, . . . , xn] is the monoid of monomials, MG = M ∩
F[V ]G, and we can view M as a submonoid of H and then MG = M ∩ H. Since
M ⊂ H is saturated, M = q(M) ∩ H, and
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q(M)/q(MG) = q(M)/q(M ∩ H) = q(M)/(q(M) ∩ q(H))

∼= q(M)q(H)/q(H) ⊂ q(D)/q(H),

we consider q(M)/q(MG) as a subset of q(D)/q(H).

Proposition 4.8 Let all notation be as above and set M0 = M ∩ D0.

1. M0 ⊂ D0 is divisor closed whence M0 is free abelian, and A (M0) = M ∩
A (D0) = {xe(x1)1 , . . . , xe(xn)n }.

2. We have e(xi) = min{k ∈ N : χ k
i ∈ 〈χj | j �= i〉}.

3. Hom0(ρ(G), F
•) is generated by {χ e(x1)

1 , . . . , χ e(xn)
n } and F[xe(x1)1 , . . . , xe(xn)n ] =

F[V ]G1 , where G1 denotes the subgroup of ρ(G) generated by the pseudoreflec-
tions in ρ(G).

4. The embedding MG ↪→ M0 is a divisor theory,

w |q(M0)/q(MG) : C (MG) = q(M0)/q(MG) → Hom0(ρ(G), F
•)

is an isomorphism, and w(C (MG)∗) = {χ e(x1)
1 , . . . , χ e(xn)

n }.
Proof 1. If the product of two polynomials in F[V ] has a single non-zero term,
then both polynomials must have only one non-zero term. Thus, if ab ∈ M for some
a, b ∈ D, then both a and b belong to M. Hence M ⊂ D is divisor closed implying
that M0 ⊂ D0 is divisor-closed. Therefore A (M0) = M ∩ A (D0).

By Theorem 4.5.3, A (D0) = {qe(q) : q ∈ A (D)}. The divisor closedness of M
in D implies that if qe(q) ∈ M, then q ∈ M ∩ A (D) = A (M) = {x1, . . . , xn}. Thus
M ∩ A (D0) = {xe(x1)1 , . . . , xe(xn)n }.

2. For i ∈ [1, n], we have

e(xi) = min{vxi(h) : xi |D h, h ∈ H} = min{vxi(m) : xi |D m,m ∈ MG},

where the second equality holds because for all h ∈ H we have vxi(h) = min
{vxi(m) : m ranges over the monomials of h}. Note that a monomial m = ∏n

i=1 x
ai
i

lies in MG if and only if
∏n

i=1 χ
[ai]
i is a product-one sequence over ̂G if and only

if χ
ai
i = ∏

j �=i χ
−aj
j . Thus min{vxi(m) : xi |D m,m ∈ MG} = min{k ∈ N : χ k

i ∈ 〈χj |
j �= i〉}.

3. By Theorem 4.5.4, Hom0(ρ(G), F
•) = w(D0) and hence Hom0(ρ(G), F

•)
is generated by w(A (D0)). Thus by 1., it remains to show that 〈w(A (D0))〉 =
〈w(A (M0))〉. SinceA (M0) ⊂ A (D0), it follows that 〈w(A (D0))〉 ⊃ 〈w(A (M0))〉.
To show the reverse inclusion, let a ∈ A (D0). For any monomial m occurring in a,
we have w(m) = w(a). By Theorem 4.5.4, D0 = {f ∈ D : w(f ) ∈ Hom0(ρ(G), F

•)}
whence m ∈ M ∩ D0 = M0 and clearly w(m) ∈ 〈w(A (M0))〉.

Recall that each monomial in F[V ] spans a G-invariant subspace. Thus f ∈ F[V ]
is G1-invariant if and only if all monomials of f are G1-invariant. Furthermore, a
monomialm isG1-invariant if and only ifw(m) containsG1 in its kernel; equivalently
(by the characterization of D0) m ∈ M ∩ D0 = M0. Thus F[V ]G1 is generated by
A (M0) and hence the assertion follows from 1.
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4. SinceM ⊂ D,M0 ⊂ D0 andMG ⊂ H are divisor closed and since the embed-
ding H ⊂ D0 is a divisor theory (Theorem 4.5.4), MG ↪→ M0 is a divisor homo-
morphism into a free abelian monoid. Let m ∈ M0. Then m ∈ D0 and there is a
finite subset Y ⊂ H such thatm = gcdD0

(Y). Let X ⊂ D0 ∩ M = M0 be the set of all
monomials occurring in some y ∈ Y . Then m = gcdD0

(X) = gcdM0
(X), where the

last equality holds because M0 ⊂ D0 is divisor closed.
Restricting the isomorphism

w |q(D0)/q(H) : C (F[V ]G) = q(D0)/q(H) → Hom0(ρ(G), F
•)

from Theorem 4.5, we obtain a monomorphism

w |q(M0)/q(MG) : C (MG) = q(M0)/q(MG) → Hom0(ρ(G), F
•).

By 1. and 3., the image contains the generating set {χ e(x1)
1 , . . . , χ e(xn)

n } of the group
Hom0(ρ(G), F

•) and hence the above monomorphism is an isomorphism. The last
statement follows from 1. by w(C (MG)∗) = w(A (M0)).

Proposition 4.9 Let M ⊂ F[x1, . . . , xn] be the multiplicative monoid of monomials,
and MG ⊂ M the submonoid of G-invariant monomials.

1. Every class of C (F[V ]G) contains a prime divisor.
2. We have the following commutative diagram of monoid homomorphisms

H
θ1 �� B(C (H))

w1

∼=
�� B(Hom0(ρ(G), F

•))

B(̂GV )

ν

��������������������

MG
θ2 ��

ψ |MG

������������������

��

B(C (MG)∗)
��

w2

��

where

• θ1 and θ2 are transfer homomorphisms of Krull monoids as given in Proposi-
tion 3.7.

• w1 is the extension to the monoid of product-one sequences of the group
isomorphism w |q(D0)/q(H) given in Theorem 4.5.4

• w2 is the extension to the monoid of product-one sequences of the restriction
to C (MG)∗ of the group isomorphism w |q(M0)/q(MG) given in Proposition 4.8

• ψ is given in Proposition 4.7.
• ν will be defined below (indeed, ν is a transfer homomorphism as given in
Proposition 3.8).

3. If ̂GV = ̂G, then every class of C (MG) contains a prime divisor.
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Proof 1. By Proposition 4.7.1, F[V ]G is the monoid algebra ofMG over F. Thus, by
[7, Theorem 8], every class of F[V ]G contains a prime divisor.

2. In order to show that the diagram is commutative, we fix an m ∈ MG. We
consider the divisor theory MG ↪→ M0 from Proposition 4.8 and factorize m in M0,
say m = ∏n

i=1

(

xe(xi)i

)ai where a1, . . . , an ∈ N0. Since w(xe(xi)i ) = χ
e(xi)
i for all i ∈

[1, n], it follows that

(w2 ◦ θ2)(m) = (χ
e(x1)
1 )[a1] · · · · · (χ e(xn)

n )[an] ∈ B(Hom0(ρ(G), F
•)).

Next we view m as an element in H and consider the divisor theory H ↪→ D0. Since
M0 ⊂ D0 is divisor closed,m = ∏n

i=1

(

xe(xi)i

)ai is a factorization ofm inD0. Therefore
(w1 ◦ θ1)(m) = (w2 ◦ θ2)(m).

By definition of ψ , we infer that

ψ(m) = χ
[e(x1)a1]
1 · · · · · χ [e(xn)an]

n .

We define a partition of ̂GV = G1 ∪ G2, where G2 = {χi : χi = χj for some distinct
i, j ∈ [1, n]} and G1 = ̂GV \G2. Let ν : B(̂GV ) → B(Hom0(ρ(G), F

•)) be defined
as in Proposition 3.8 (with respect to the partition G0 = G1 � G2). By Proposition
4.8.2, e(xi) = 1 if χi ∈ G2, and e(xi) equals the number e(χi) in Proposition 3.8 if
χi ∈ G1. Therefore it follows that

ν(ψ(m)) = (χ
e(x1)
1 )[a1] · · · · · (χ e(xn)

n )[an],

and hence the diagram commutes.
3. In a finite abelian group all elements are contained in the subgroup generated

by the other elements, with the only exception of the generator of a 2-element group.
Therefore unless G is the 2-element group and the non-trivial character occurs with
multiplicity one in the sequence χ1 · · · · · χn, all the e(xi) = 1 by Proposition 4.8.3,
and the elements xi are all prime in M0, so they represent all the divisor classes, as
i varies in [1, n]. In the missing case we have F[V ]G = F[x1, . . . , xn−1, x2n] (after a
renumbering of the variables if necessary), hence both class groups are trivial, and
x1 and x22 are prime elements in the unique class.

Thus Proposition 4.9.1 gives a partial answer to Problem 1. Using that notation it
states that mg ≥ 1 for all g ∈ C (F[V ]G).

Example 4.10 The setC (MG)∗ may be a proper subset ofC (MG), and consequently
the monoid homomorphism ν : B(̂GV ) → B(Hom0(ρ(G), F

•)) is not surjective in
general.

1. Indeed, let G be cyclic of order 3, g ∈ G with ord(g) = 3, and the action on
F[x1, x2, x3] is given by g · xi = ωxi, whereω is a primitive cubic root of 1. Thenχ1 =
χ2 = χ3 = χ , so e(x1) = e(x2) = e(x3) = 1, implying w(C (MG)∗) = {χ} (each of
the xi is a prime element in the class χ ), whereas w(C (MG)) = {χ, χ2, χ3 = 1},
the 3-element group. Thus B(̂GV ) = {χ [3k] : k ∈ N0}, and ν(B(̂GV )) is the free
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abelian monoidF ({χ3}) generated by χ3 = 1 ∈ ̂G. The polynomials x21 + x2x3 and
x31 + x22x3 are irreducible, they are relative invariants of weight χ2 and χ3, so they
represent prime elements of D0 in the remaining classes χ2 and χ3 = 1.

2. To provide an example with a multiplicity free module, let G be cyclic
of order 5, g ∈ G with ord(g) = 5, and the action on F[x1, x2, x3] is given by
g · x1 = ωx1, g · x2 = ω2x2, g · x3 = ω3x3, where ω is a primitive fifth root of 1.
Then setting χ = χ1, we have χ2 = χ2, χ3 = χ3 and w(C (MG)) = 〈χ〉 is the 5-
element group, so V is multiplicity free. Still we have e(x1) = e(x2) = e(x3) = 1,
so w(C (MG)∗) = {χ, χ2, χ3} (and x1, x2, x3 are the prime elements of M0 in these
classes). The remaining classes χ4 and χ5 = 1 contain the prime elements of D0

represented by x22 + x1x3 and x51 + x2x3.

4.4 A Monoid Associated with G-Modules

Throughout this subsection, suppose that char(F) � |G|.
In this subsection, we discuss a monoid associated with representations of not nec-
essarily abelian groups which in the case of abelian groups recovers the monoid of
G-invariant monomials. Decompose V into the direct sum of G-modules:

V = V1 ⊕ · · · ⊕ Vr (4)

and denote by ρi : G → GL(Vi) the corresponding group homomorphisms. Then (4)
induces a decomposition of F[V ] into multihomogeneous components as follows.
The coordinate ring F[V ] is the symmetric algebra Sym(V ∗) = ⊕∞

n=0 Sym
n(V ∗).

Writing F[V ]a = Syma1(V ∗
1 ) ⊗ ... ⊗ Symar (V ∗

r ) we have Symn(V ∗) = ⊕|a|=n

F[V ]a, and hence F[V ] = ⊕a∈N
r
0
F[V ]a. The summands F[V ]a are G-submodules

in F[V ], and F[V ]aF[V ]b ⊂ F[V ]a+b, so F[V ] is a N
r
0-graded algebra. Moreover,

F[V ]G is spanned by its multihomogeneous components F[V ]Ga = F[V ]G ∩ F[V ]a.
For f ∈ F[V ]a we call a the multidegree of f . We are in the position to define

B(G, V ) = {a ∈ N
r
0 : F[V ]Ga �= {0}} (5)

the set of multidegrees of multihomogeneousG-invariants. We give precise informa-
tion on B(G, V ) in terms of quantities associated to the direct summands Vi of V .
For i ∈ [1, r] denote by ci the greatest common divisor of the elements ofB(G, Vi),
and Fi the Frobenius number of the numerical semigroup B(G, Vi) ⊂ N0, so Fi is
the minimal positive integer N such that B(G, Vi) contains N + kci for all k ∈ N0.

Proposition 4.11

1. B(G, V ) ⊂ N
r
0 is a reduced finitely generated C-monoid.

2. For each i ∈ [1, r] and all a ∈ N
r
0 satisfying ai ≥ b(G, Vi) + Fi we have
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a ∈ B(G, V ) if and only if ciei + a ∈ B(G, V ). (6)

3. For each i ∈ [1, r] we have ci = |ρi(G) ∩ F
•idVi |.

Proof 1. Take a, b ∈ B(G, V ), so there exist non-zero f ∈ F[V ]Ga and h ∈ F[V ]Gb .
Now 0 �= fh ∈ F[V ]Ga+b, hence a + b ∈ B(G, V ). This shows that B(G, V ) is a
submonoid of N0. Moreover, the multidegrees of a multihomogeneous F-algebra
generating system of F[V ]G clearly generate the monoid B(G, V ). Thus B(G, V )

is finitely generated by Theorem 4.1.
To show that B(G, V ) is also a C-monoid, recall that by Proposition 2.6.3 a

finitely generated submonoid H of N
r
0 is a C-monoid if and only if each standard

basis element ei ∈ N
r
0 has a multiple in H. Now this condition holds for B(G, V ),

since byTheorem4.1.2F[Vi]G ⊂ F[V ]G contains a homogeneous element of positive
degree for each i ∈ [1, r].

2. By symmetry it is sufficient to verify (6) in the case i = 1. Suppose a ∈
B(G, V ), so there is a non-zero G-invariant f ∈ Syma1(V ∗

1 ) ⊗ · · · ⊗ Symar (V ∗
r ).

Decompose Syma1(V ∗
1 ) = ⊕

j Wj into a direct sum of irreducible G-modules. This
gives a direct sum decomposition Syma1(V ∗

1 ) ⊗ · · · ⊗ Symar (V ∗
r ) = ⊕

j(Wj ⊗
Syma2(V ∗

2 ) ⊗ · · · ⊗ Symar (V ∗
r )). It follows that Syma1(V ∗

1 ) contains an irreducible
G-module direct summand W such that W ⊗ Syma2(V ∗

2 ) ⊗ · · · ⊗ Symar (V ∗
r ) con-

tains a non-zero G-invariant. By definition of b(G, V1) we know that F[V1] is gen-
erated as an F[V1]G module by its homogeneous components of degree ≤ b(G, V1).
Therefore, there exists a d ≤ b(G, V1) such that the degree d homogeneous compo-
nent of F[V ] contains a G-submodule U ∼= W , and a1 ∈ d + B(G, V1). Now for
any homogeneous h ∈ F[V1]G we have hU ⊗ Syma2(V ∗

2 ) ⊗ · · · ⊗ Symar (V ∗
r )) ⊂

F[V ](d+deg(h),a2,...,ar) contains a non-zero G-invariant, since it is isomorphic to
W ⊗ Syma2(V ∗

2 ) ⊗ · · · ⊗ Symar (V ∗
r )). It follows that (k, a2, . . . , ar) ∈ B(G, V )

for all k ∈ d + B(G, V1), in particular, for all k ∈ {d + F1, d + F1 + c1, d + F1 +
2c1, . . .}.

3. Let i ∈ [1, r], and to simplify notation set W = Vi, c = ci, and φ = ρi. Recall
that F[W ]A = F[W ]B for some finite subgroups A,B ⊂ GL(W ) implies that A =
B. Indeed, the condition implies equality F(W )A = F(W )B of the corresponding
quotient fields, and so both A and B are the Galois groups of the field extension F(W )

over F(W )A = F(W )B, implying A = B. Now denote by Z ⊂ GL(W ) the subgroup
of scalar transformations Z = {ωidW : ωc = 1}, so Z is a central cyclic subgroup of
GL(W ) of order c. Clearly every homogeneous element of F[W ] whose degree is a
multiple of c is invariant under Z . It follows thatF[W ]G ⊂ F[W ]Z , hence denoting by
G̃ the subgroup φ(G)Z of GL(W ), we haveF[W ]G = F[W ]G̃. It follows that φ(G) =
G̃, i.e. Z ⊂ φ(G), and so c = |Z| divides the order of φ(G) ∩ F

•idW . Conversely, if
λidW belongs to ρ(G), then every element of F[W ]G must be invariant under the
scalar transformation λidW , whence all homogeneous components of F[W ]G have
degree divisible by the order of λ, so the order of the cyclic group φ(G) ∩ F

•idW
must divide c.

In general B(G, V ) is not a Krull monoid. To provide an example, consider the
two-dimensional irreducible representation V of the symmetric group S3 = D6. Its
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ring of polynomial invariants is generated by an element of degree 2 and 3, hence
B(G, V ) = 〈2, 3〉 ⊂ (N0,+), which is not Krull.

Proposition 4.12 For every k ∈ N we have Dk(B(G, V )) ≤ βk(G, V ).

Proof Let k ∈ N. Take a ∈ B(G, V ) such that |a| > βk(G, V ). By (5) a multi-
homogeneous invariant f ∈ F[V ]Ga exists. As deg(f ) = |a| > βk(G, V ) it follows
that f = ∑N

i=1 fi,1 . . . fi,k+1 for some non-zero multihomogeneous invariants fi,j of
positive degree. Denoting by ai,j ∈ N

r
0 the multidegree of fi,j, we have that a =

ai,1 + · · · + ai,k+1, where 0 �= ai,j ∈ B(G, V ). This shows that all a ∈ B(G, V )with
|a| > βk(G, V ) factor into the product of more than k atoms, implying the desired
inequality.

Remarks 1. LetG be abelian and suppose thatF is algebraically closed. Thenwemay
take in (4) a decomposition of V into the direct sum of 1-dimensional submodules
and so V ∗

i , is spanned by a variable xi as in Sect. 4.3. Then F[V ]a is spanned by
the monomial xa11 · · · xarr and a ∈ B(G, V ) holds if and only if the corresponding
monomial is G-invariant. So in this case B(G, V ) can be naturally identified with
MG and the transfer homomorphism ψ |MG of Proposition 4.7 can be thought of as
a transfer homomorphism B(G, V ) → B(̂GV ), which is an isomorphism if V is
multiplicity free. However, this transfer homomorphism does not seem to have an
analogues for non-abelian G (i.e., the study of B(G, V ) can not be reduced to the
multiplicity free case), as it is shown by the example below.

2. The binary tetrahedral group G = ˜A4
∼= SL2(F3) of order 24 has a two-

dimensional complex irreducible representation V such that F[V ]G is minimally
generated by elements of degree 6, 8, 12 (see for example [4, Appendix A]), hence
B(G, V ) = {0, 6, 8, 12, 14, 16, 18, . . .}. On the other hand under this representa-
tion G is mapped into the special linear group of V , so on V ⊕ V the function

maping ((x1, x2), (y1, y2)) �→ det

(

x1 y1
x2 y2

)

is a G-invariant of multidegree (1, 1),

implying that (1, 1) ∈ B(G, V ⊕ V ). This shows that the transfer homomorphism
τ : N

2
0 → N0, (a1, a2) �→ a1 + a2 does not map B(G, V ⊕ V ) into B(G, V ), as

τ(1, 1) = 2 /∈ B(G, V ).

Recall that the multigraded Hilbert series of F[V ]G in r indeterminates T =
(T1, ...,Tr) is

H(F[V ]G,T) =
∑

a∈N
r
0

dimF(F[V ]Ga )Ta1
1 · · · Tar

r , and hence

B(G, V ) = {a ∈ N
r
0 : the coefficient of Ta inH(F[V ]G,T) is nonzero }.

By this observation Proposition 4.12 can be used for finding lower bounds on the
Noether number β(G, V ), thanks to the following classical result of Molien (see for
example [4, Theorem 2.5.2]):
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Proposition 4.13 Given a G-module V = V1 ⊕ ... ⊕ Vr over C, let ρi(g) ∈ GL(Vi)

be the linear transformation defining the action of g ∈ G on Vi. Then we have

H(C[V ]G,T) = 1

|G|
∑

g∈G

r
∏

i=1

1

det(idVi − ρi(g) · Ti) .

Example 4.14 (see pp. 54–55 in [62]) Consider the alternating group A5 and its 3-
dimensional representation over C

3 as the group of symmetries of an icosahedron.
The Hilbert series then equals

1 + T 15

(1 − T 2)(1 − T 6)(1 − T 10)

whence it is easily seen that B(A5, C
3) = 〈2, 6, 10, 15〉 and consequently β(A5) ≥

D(B(A5, C
3)) = 15. Note that this lower bound is stronger than what we could get

from β(G) ≥ maxH�G β(H), since β(H) ≤ |H| ≤ 12 for any proper subgroup H
of A5.

5 Constants from Invariant Theory and Their
Counterparts in Arithmetic Combinatorics

In Sect. 5.1 we compare known reduction lemmas for the Noether number with
reduction lemmas for the Davenport constants achieved in previous sections. We
demonstrate how to use them to determine the precise value of Noether numbers and
Davenport constants in new examples. In Sect. 5.2 we consider an invariant theoretic
analogue of the constant η(G) (for the definition of η(G) see the discussions before
Proposition 2.8 and Lemma 3.1).

Throughout this section, suppose that char(F) � |G|.

5.1 The Noether Number Versus the Davenport Constant

In the non-abelian case no structural connection (like Proposition 4.7) is known
between the G-invariant polynomials and the product-one sequences over G. Nev-
ertheless, a variety of features of the kth Noether numbers and the kth Davenport
constants are strikingly similar, and we offer a detailed comparison.

Recall that βk(G) = bk(G) + 1 ((3)) and that dk(G) + 1 ≤ Dk(G)

(Proposition 2.8.1).
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1. The inequalities

(a) βk(G) ≤ kβ(G) (b) dk(G) + 1 ≤ k(d(G) + 1) (c) Dk(G) ≤ kD(G)

(7)

2. Reduction lemma for normal subgroups N � G:

(a) βk(G) ≤ ββk(G/N)(N) (b) dk(G) ≤ ddk(N)+1(G/N) (8)

3. Reduction lemma for arbitrary subgroups H ≤ G with index l = [G : H]:
(a) βk(G) ≤ βkl(H) ≤ lβk(H) (b) dk(G) + 1 ≤ l(dk(H) + 1) (c) Dk(G) ≤ lDk(H)

(9)

4. Supra-additivity: for a normal subgroup N � G we have

(a) bk+r−1(G) ≥ bk(N) + br(G/N) if G/N is abelian (10)

(b) dk+r−1(G) ≥ dk(N) + dr(G/N)

5. Monotonicity: for an arbitrary subgroup H ≤ G we have

(a) βk(G) ≥ βk(H) (b) dk(G) ≥ dk(H) (c) Dk(G) ≥ Dk(H) (11)

6. Almost linearity in k: there are positive constants C,C′,C′′, k0, k′
0, k

′′
0 depending

only on G such that

(a) βk(G) = kσ(G) + C for all k > k0 if char(F) = 0 (b) dk(G) = ke(G) + C′
(12)

for all k > k′
0 and (c) Dk(G) = ke(G) + C′′ for all k > k′′

0

7. The following functions are nonincreasing in k:

(a) βk(G)/k if char(F) = 0 (b) Dk(G)/k (13)

The inequality (7) (a) is observed in [12], (b) is shown in Proposition 3.9.4,
whereas (c) is observed in the beginning of Sect. 2.5.

For the proof of (8) (a) see [12, Lemma 1.5] and for part (b) see Proposition 3.9.2.
Note that the roles of N and G/N are swapped in the formulas (a) respectively (b),
but in the abelian case they amount to the same.

The first inequality in part (a) of (9) is proved in [12, Corollary 1.11] for cases
when (i) char(F) = 0 or char(F) > [G : H]; (ii) H is normal in G and char(F) �

[G : H]; (iii) char(F) does not divide |G|. It is conjectured, however that it holds in
fact whenever char(F) � [G : H] (see [55]). By [11, Lemma 4.3], we have βkl(H) ≤
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lβk(H) for all positive integers k, l, implying the second inequality in part (a). Parts
(b) and (c) of (9) appear in Proposition 3.9 (3. and 5.).

Part (a) of (10) appears in [13, Theorem 4.3 and Remark 4.4] while part (b) is
proved in Proposition 3.9.1.

Parts (b) and (c) of (11) are immediate from the definitions, while part (a) fol-
lows from an argument of B. Schmid [73, Proposition 5.1] which also shows that
βk(G, IndGHV ) ≥ βk(H, V ) for all k ≥ 1 (see [13, Lemma 4.1]).

Part (a) of (12) is proved in [11, Proposition 4.5] (the constant σ(G) will be
discussed in Sect. 5.2, and for (12) (b) and (c) we refer to Proposition 2.7.2 and
Proposition 2.8.2.

Part (a) of (13) is proved in [11, Sect. 4] and for (13) (b) we refer to Proposi-
tion 2.7.3.

Furthermore, for a normal subgroup N � G we have

(a) β(G) ≤ β(G/N)β(N) (b) D(G) ≤ D(N)D(G/N), (14)

where in (b) we assume that N ∩ G′ = {1}. Here part (a) is originally due to B.
Schmid [73, Lemma 3.1] and it is an immediate consequence of (7) (a) and (8) (a)
while part (b) is proven in [39, Theorem 3.3].

The above reduction lemmas on the Noether numbers are key tools in the proof
of the following theorem.

Theorem 5.1 Let k ∈ N.

1. βk(A4) = 4k + 2 and β(Ã4) = 12, where A4 is the alternating group of degree 4
and Ã4 is the binary tetrahedral group.

2. If G is a non-cyclic group with a cyclic subgroup of index two, then

βk(G) = 1

2
|G|k +

{

2 if G = Dic4m, m > 1;
1 otherwise.

where Dic4m = 〈a, b : a2m = 1, b2 = am, bab−1 = a−1〉 is the dicyclic group.
3.

β(G) ≥ 1

2
|G| if and only if G has a cyclic subgroup of index at most two or

G is isomorphic to C3 ⊕ C3, C2 ⊕ C2 ⊕ C2, A4 or Ã4

Proof For 1. see [12, Theorem 3.4 and Corollary 3.6], for 2. see [13, Theorem 10.3],
and 3. can be found in [12, Theorem 1.1].

It is worthwhile to compare Theorem 5.1.3 with the statement from [65] asserting
that d(G) < 1

2 |G| unlessG has a cyclic subgroup of index at most two. IfG is abelian,
then Lemma 3.13 and Proposition 4.7 imply d(G) + 1 = β(G) = D(G). Combining
Theorems 3.10 and 5.1 we obtain that all groupsG having a cyclic subgroup of index
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at most two satisfy the inequality d(G) + 1 ≤ β(G) ≤ D(G). Moreover, for these
groups β(G) = d(G) + 1, except for the dicyclic groups, where β(G) = d(G) + 2.
On the other hand, it was shown in [14] that for the Heisenberg group H27 of order
27 we have D(H27) < β(H27).

Problem 2 Study the relationship between the invariants d(G), β(G), and D(G).
In particular,

• Characterize the groups G satisfying d(G) + 1 ≤ β(G).
• Characterize the groups G satisfying β(G) ≤ D(G).

In the following examples we demonstrate how the reduction results presented at
the beginning of this section do work. This allows us to determine Noether numbers
and Davenport constants of non-abelian groups, for which they were not known
before.

Example 5.2 Let p, q be primes such that q | p − 1.
1. Consider the non-abelian semi-direct product G = Cp � Cq. A conjecture

attributed to Pawale [81] states that β(Cp � Cq) = p + q − 1 and many subsequent
research was done in this direction [12, 17]. Currently it is fully proved only for
the cases q = 2 in [73] and q = 3 in [10] whereas for arbitrary q we have only
upper bounds in [12], proved using known results related to the Olson constant of
the cyclic group of order p. Theorem 3.11.3 implies that d(G) + 1 = p + q − 1 and
hence d(G) + 1 coincides with the conjectured value for β(G).

2. In view of the great difficulties related to Pawale’s conjecture it is quite remark-
able that we can determine the exact value of the Noether number for the non-abelian
semi-direct product Cpq � Cq. Indeed, this group contains an index p subgroup iso-
morphic to Cq ⊕ Cq, hence β(Cpq � Cq) ≤ βp(Cq ⊕ Cq) by (9). By Proposition 4.7
4. we have βp(Cq ⊕ Cq) = Dp(Cq ⊕ Cq), and finally,Dp(Cq ⊕ Cq) = pq + q − 1 by
Theorem 3.14. Thuswe haveβ(Cpq � Cq) ≤ pq + q − 1. The reverse inequality also
holds, since β(Cpq � Cq) contains a normal subgroup N ∼= Cpq with G/N ∼= Cq, so
by (10) and (3) we have β(Cpq � Cq) ≥ β(Cpq) + β(Cq) − 1 = pq + q − 1. So we
have β(Cpq � Cq) = pq + q − 1.

Next we determine the small Davenport constant of this group. Since Cpq is a
normal subgroup and the corresponding factor group is Cq, we have by Proposi-
tion 3.9.1 that d(Cpq � Cq) ≥ d(Cpq) + d(Cq) = p + q − 2. The reverse inequality
d(Cpq � Cq) ≤ p + q − 2 follows from Theorem 3.11.4, since Cpq � Cq contains
also a normal subgroupN ∼= Cp such thatG/N ∼= Cq ⊕ Cq. Consequently, byLemma
3.1.2.(a) we have

D(Cpq � Cq) ≥ d(Cpq � Cq) + 1 = pq + q − 1.

Example 5.3 The symmetric group S4 has a normal subgroup N ∼= C2 ⊕ C2 such
that S4/N ∼= D6. We know that β(D6) = 4 (say by Theorem 5.1 2.). Thus by (8) and
Theorem 3.14 we have β(S4) ≤ ββ(D6)(C2 ⊕ C2) = D4(C2 ⊕ C2) = 2 · 4 + 1 = 9.
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Now let V be the standard 4-dimensional permutation representation of S4 and
sign : S4 → {±1} the sign character. It is not difficult to prove the algebra isomor-
phism F[V ⊗ sign]S4 ∼= F[V ]S4even ⊕ Δ4F[V ]S4odd whereΔ4 is the Vandermonde deter-
minant in 4 variables, F[V ]S4even is the span of the even degree homogeneous compo-
nents ofF[V ]S4 , andF[V ]S4odd is the span of the odd degree homogeneous components
of F[V ]S4 . Moreover, the algebra F[V ]S4even ⊕ Δ4F[V ]S4odd is easily seen to be mini-
mally generated by σ2, σ

2
1 , σ1σ3, σ4, σ

2
3 , σ1Δ4, σ3Δ4, where σi is the ith elementary

symmetric polynomial. As a resultβ(S4, V ⊗ sign) = deg(σ3Δ4) = 3 + (4
2

) = 9. So
we conclude that β(S4) = 9 (and not 10, as it is claimed on p. 14 of [57]).

Example 5.4 Let G be the group generated by the complex Pauli matrices

(

0 1
1 0

)

,

(

0 −i
i 0

)

,

(

1 0
0 −1

)

.

This is a pseudoreflection group, hence the ring of invariants on V = C
2 is generated

by two elements, namelyC[x, y]G = C[x4 + y4, x2y2]. Moreover, b(G, V ) is the sum
of the degrees of the generators minus dim(V ) (again becauseG is a pseudoreflection
group, see [9]), sob(G, V ) = 6. It follows by (3) thatβ(G) = b(G) + 1 ≥ b(G, V ) +
1 = 7.

On the other hand,G is a non-abelian semi-direct product(C4 ⊕ C2) � C2. There-
fore G has a normal subgroup N such that N ∼= G/N ∼= C2 ⊕ C2 and thus

β(G) ≤ ββ(C2⊕C2)(C2 ⊕ C2) = D3(C2 ⊕ C2) = 7.

So we conclude that β(G) = 7.

5.2 The Constants σ(G, V ) and η(G, V )

Definition 5.5 1. Let σ(G, V ) denote the smallest d ∈ N0 ∪ {∞} such that F[V ]G
is afinitely generatedmodule over a subringF[f1, . . . , fr] such thatmax{deg(fi) : i
∈ [1, r]} = d. We define σ(G) = sup{σ(G,W ) : W is a G-module}.

2. Let S ⊂ F[V ]G be the F-subalgebra of F[V ]G generated by its elements of degree
at most σ(G, V ). Then η(G, V ) denotes the maximal degree of generators of
F[V ]G+ as an S-module.

One motivation to study σ(G, V ) and η(G, V ) is that by a straightforward induc-
tion argument [11, Sect. 4] we have

βk(G, V ) ≤ (k − 1)σ (G, V ) + η(G, V ).

By [11, Proposition 6.2], σ(Cp � Cq) = p (this is also true in characteristic q, see
[18, Proposition 4.5]).
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If F is algebraically closed, then, by Hilbert’s Nullstellensatz, σ(G, V ) is the
smallest d such that there exist homogeneous invariants of degree at most d whose
common zero locus is the origin. It is shown in Lemmas 5.1, 5.4 and 5.6 of [11]
(some extensions to the modular case and for linear algebraic groups are given in
[18]) that

• σ(G) ≤ σ(G/N)σ (N) if N � G;
• σ(H) ≤ σ(G) ≤ [G : H]σ(H) if H ≤ G;
• σ(G) = max{σ(G, V ) : V is an irreducible G-module}.
Proposition 5.6 Let G be abelian.

1. σ(G) = exp(G) = e(G).
2. η(G) = sup{η(G,W ) : W is a G-module}.
Proof For 1. see [11, Corollary 5.3]. To prove 2., let T ∈ F (̂G)with |T | = η(G) − 1
such that T has no product-one subsequence U with |U| ∈ [1,e(G)]. Let V be the
regular representation ofG, and denote by S the subalgebra ofF[V ]G generated by its
elements of degree at most σ(G) = e(G). Now ψ : M → F (̂G) is an isomorphism
(see the proof of Proposition 4.7.3.). Thus ψ−1(T) ∈ M is not divisible by a G-
invariant monomial of degree smaller than e(G). Since both S and F[V ] are spanned
by monomials, it follows that ψ−1(T) ∈ M is not contained in the S-submodule of
F[V ]G+ generated by elements of degree less than deg(ψ−1(T)). This shows that for
the regular representation V of G we have η(G, V ) ≥ η(̂G).

On the other hand let W be an arbitrary G-module, and m ∈ M a monomial with
deg(m) > η(G). Then ψ(m) has a product-one subsequence with length at most
e(G) = σ(G), hence m is divisible by a G-invariant monomial of length at most
σ(G) (see the beginning of the proof of Proposition 4.7.2). This shows the inequality
η(G,W ) ≤ η(̂G). Taking into account the isomorphism ̂G ∼= G we are done.

For the state of the art on η(G) (in the abelian case) we refer to [22, 23], [40,
Theorem 5.8.3]. Proposition 5.6 inspires the following problem.

Problem 3 LetG be a finite non-abelian group. Is sup{η(G,W ) : W is a G-module}
finite? Is it related to η(B(G)) (see Sects. 2.5 and 3.1)?
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53. D. Han, The Erdős-Ginzburg-Ziv Theorem for finite nilpotent groups. Archiv Math. 104, 325–
332 (2015)
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