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Abstract A selection of results on Noetherian semigroup algebras is presented.
They are of structural, arithmetical, and combinatorial nature. Starting with the case
of Noetherian group algebras, where several deep results are known, a lot of attention
is later given to the case of algebras of submonoids of groups. The role of algebras
of this type in the general theory of Noetherian semigroup algebras is explained and
sample structural results on arbitrary Noetherian semigroup algebras, based on this
approach, are presented. A special emphasis is on various classes of algebras with
good arithmetical properties, such as maximal orders and principal ideal rings. In
this context, several results indicating the nature and applications of the structure of
prime ideals are presented. Recent results on the prime spectrum and arithmetics of
a class of non-Noetherian orders are also given.

1 Introduction

The aim of this paper is to present selected representative results on Noetherian
semigroup algebras K[S], where S is a monoid and K is a field. The results are
both of structural, arithmetical, and combinatorial nature. In particular, we present
an approach exploiting in this context linear semigroups over division rings, and
indicating the role of cancellative subsemigroups of S. An emphasis is therefore
made on the case of Noetherian algebras K[S] of submonoids S of polycyclic-by-
finite groups. Certain concrete classes of such algebras that arise independently in
other contexts and that motivate the general theory are presented. Hence, we first
summarize some of the relevant results on Noetherian group algebras. Results on
the structure of an arbitrary monoid S that yield certain necessary and sufficient
conditions for K[S] to be Noetherian are then presented. Some advantages of this
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approach are illustrated, in particular in the context of polynomial identities and the
Gelfand–Kirillov dimension. A special attention is given to prime Noetherian orders
in simple artinian rings, and especially maximal orders. We conclude with recent
developments that indicate that certain non-Noetherian orders are of interest and
importance, but at the same time they seem to be very difficult to study.

We start in Sect. 2 with important results on Noetherian group algebras that are
relevant for the rest of the paper. In Sect. 3 an approach to the structure of general
Noetherian semigroup algebras is presented. This is via semigroups of matrices over
a field, or a division ring, and this is based on finite ideal chains of some specific
type that arise in a natural way. In particular, this explains the role of cancellative
subsemigroups of the given semigroup S in the general theory. And this also explains
our focus on the case where S is a submonoid of a polycyclic-by-finite group. An
intriguing class of examples arising from a different context is presented in Sect. 4. In
Sect. 5 we discuss certain classical arithmetical properties, especially in the context
of orders in simple artinian algebras. In particular, these include maximal orders and
principal ideal rings. The special role that is played by the prime ideals is explained.
In the final Sect. 6 a recent example of a non-Noetherian order, arising from consid-
erations in noncommutative geometry, is presented. It motivates a new area of study,
namely non-Noetherian orders coming from submonoids of nilpotent groups. We
conclude with some recent results in this direction.

Throughout the paper, K will denote a field and S a monoid (a semigroup with a
unity element) with operationwrittenmultiplicatively. The corresponding semigroup
algebra is denoted by K[S]. If S has a zero element θ then Kθ is a 1-dimensional
ideal of K[S] and K0[S] = K[S]/Kθ is called the contracted semigroup algebra of S
over K . In other words, we identify the zero of S with the zero of the algebra.

Our basic references for the results and methods of the theory of group algebras
and semigroup algebras are [38, 51, 54, 57, 58], while we refer to [27, 50] for an
extensive background on noncommutative Noetherian rings.

2 Group Algebras—Introductory Results

The class of Noetherian group algebras is one of our starting points. Recall that
a polycyclic-by-finite group is a group with a finite subnormal series whose every
factor is either finite or cyclic, [61]. We have the following classical result.

Theorem 2.1 Let G be a polycyclic-by-finite group. Then K[G] is Noetherian.
The idea of the proof is easy. It is based on an induction on the length of a

subnormal chain of G with finite and cyclic factors. Let H ⊆ F be two consecutive
factors of such a chain. Assume that K[H] is Noetherian. If [F : H] < ∞, then we
have a finite module extension K[H] ⊆ K[F]. So K[F] is Noetherian. If F/H is
infinite cyclic, then an argument similar to that in the proof of Hilbert basis theorem
is used to show that K[F] is also Noetherian.
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We note that it is not known whether there exist classes of Noetherian group
algebras other than those described in Theorem 2.1.

The second point of departure is the class of commutative semigroup rings. The
following result is attributed to Budach, see [23], Theorem 5.10.

Theorem 2.2 Assume that S is a commutative monoid. Then K[S] is Noetherian if
and only if S is finitely generated.

The proof of the nontrivial implication (the necessity) is based on a decomposi-
tion theory for congruences of a commutative monoid with acc on congruences, on
properties of irreducible congruences and of cancellative congruences.

Inmany other important cases one can also show that ‘noetherian’ implies ‘finitely
generated’. Recall that theGelfand–Kirillov dimension of a finitely generated algebra
R overK is finite if the growth function dV (n) is bounded by a polynomial in n. HereV
is a finite dimensional generating subspace of R and dV (n) = dimK(V + V 2 + · · · +
Vn). Then lim sup(log dV (n)/ log(n)) is called the Gelfand–Kirillov dimension of
R and is denoted by GKdim(R), see [47]. In general, it is not an integer. On the
other hand, in the class of commutative algebras, this dimension coincides with the
classical Krull dimension.

Theorem 2.3 ([33, 38]) Assume K[S] is right Noetherian. Then S is finitely gener-
ated in each of the following cases:

1. S satisfies acc on left ideals (this holds in particular if K[S] is also left Noetherian),
2. K[S] satisfies a polynomial identity,
3. the Gelfand–Kirillov dimension of K[S] is finite.

It is not known whether the assertion of the above theorem is true for an arbi-
trary right Noetherian algebra K[S]. This is not known even in the case where S is
cancellative (in this case, S has group of classical right quotients G, because of the
acc on right ideals; whence K[G] is a classical localization of K[S] and it is also
Noetherian).

There are several deep results on the prime spectrumofNoetherian group algebras.
We mention some highlights, that will be also used in Sect. 6. The first is due to
Zalesskii, see [57], Corollary 11.4.6. Recall that a prime ideal P of K[G] is faithful
if the normal subgroup {g ∈ G | g − 1 ∈ P} of G is trivial. By Z(G) we denote the
center of G.

Theorem 2.4 Assume that G is a finitely generated torsion free nilpotent group.
There is a bijection between the set of faithful primes in K[G] and faithful primes of
K[Z(G)], given by:

Q −→ Q ∩ K[Z(G)], P −→ P · K[G].

The above, together with a reduction to a torsion free subgroup of finite index, is
one of the steps of the following result of Smith, [57], Theorem 11.4.9. Recall that
the Hirsch length h(G) of a polycyclic-by-finite group G is defined as the number of
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infinite cyclic factors in a subnormal chain in G with cyclic or finite factors (which
is independent of the chosen chain). By clKdim(R) we denote the classical Krull
dimension of an algebra R.

Theorem 2.5 Assume that G is a finitely generated nilpotent group. Then

clKdim(K[G]) = h(G).

Let us note that in the more general polycyclic-by-finite case, a more complicated
invariant, called the plinth length of G (in general, not exceeding h(G)), see [58],
page 192, plays the role of h(G), by a result of Roseblade [60].

The known Noetherian group algebras share a very important property of finitely
generated commutative algebras, called catenarity. Recall that the latter means that
every two saturated chains of primes between any two given prime ideals P ⊂ P′
have equal lengths.

Theorem 2.6 ([49]) The group algebra K[G] of a polycyclic-by-finite group G is
catenary.

The following is an immediate consequence of the fact that polycyclic-by-finite
groups are finitely presented, see [61], Theorem 8.4.

Theorem 2.7 If G is a polycyclic-by-finite group, then the algebra K[G] is finitely
presented.

As a consequence of the structural characterization obtained in Theorem 2.11, one
can prove the following corollary, which settles a general framework for the results
presented in Sect. 4.

Corollary 2.8 ([34]) Let S be a submonoid of a polycyclic-by-finite group. If S
satisfies the ascending chain condition on right ideals, then S is a finitely presented
monoid. In particular, the semigroup algebra K[S] is finitely presented.

From the point of view of the theory of orders in division rings, or more generally
in simple artinian rings, the following classical results of Connell on prime rings, see
[57], Theorem 4.2.10, and of Farkas and Snider, [57], Theorem 13.4.18, and Cliff
[11] (domains of zero and positive characteristic, respectively) are of basic interest.

Theorem 2.9 Let G be a group. Then

1. K[G] is prime if and only if G has no nontrivial finite normal subgroups.
2. If G is polycyclic-by-finite, then K[G] is a domain if and only if G is torsion free.

Orders of the form K[G] are interesting also from the point of view of the asso-
ciated division rings, as they supply a rich class of examples.
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Theorem 2.10 ([15]) Let G,H be non-isomorphic finitely generated nilpotent tor-
sion free groups. Then the classical division rings of quotients Qcl(K[G]) and
Qcl(K[H]) are not isomorphic.

As said above, if K[S] is right Noetherian for a submonoid S of a group G then S
has a group of right quotients isomorphic to SS−1 ⊆ G and K[G] is Noetherian. The
case where S is a submonoid of a polycyclic-by-finite group is therefore of special
interest; first because of Theorem 2.1, second, because of some important examples
discussed in Sect. 4, third because of a general structural approach explained in
Sect. 3.

The following complete result comes from [37], while some partial steps were
earlier made in [33, 34].

Theorem 2.11 ([37]) Let S be a submonoid of a polycyclic-by-finite group. Then
the following conditions are equivalent:

1. K[S] is right Noetherian,
2. S satisfies acc on right ideals,
3. S has a group of quotients G and there exists a normal subgroup H of G such that:

[G : H] < ∞, S ∩ H is finitely generated and the derived subgroup [H,H] ⊆ S,
4. K[S] is left Noetherian.

In the above notation, let F = [H,H]. So, in some sense, such K[S] can be
approached in two steps: from the perspective of the Noetherian group algebra
K[F] ⊆ K[S] and of the Noetherian PI-algebra K[S/F] ⊆ K[G/F]. Recall that the
general theory provides additional strong tools in the class of Noetherian PI-algebras,
[50]. In particular, finitely generated PI-algebras are catenary, see [50], Corollary
13.10.13.

3 A General Structural Approach

In this section we present a structural approach to arbitrary Noetherian semigroup
algebras K[S]. It is based on finite ideal chains of S of a very special type. Such
chains arise naturally in the study of linear semigroups and for this reason they
seem unavoidable in the context of Noetherian algebras K[S]. On the one hand, they
allow to prove certain necessary and sufficient conditions for S in order that K[S] is
Noetherian. On the other hand, they allow to reduce several problems to submonoids
of groups, and hence to group algebras. They also are very useful in the case of
certain families of algebras arising from other contexts, which will be reflected in
Sect. 4.

Let X,Y be arbitrary nonempty sets and let P = (pyx) be a Y × X-matrix with
entries in T 0 = T ∪ {0}, for a monoid T . So, strictly speaking, P is a mapping
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Y × X −→ T ∪ {0}. LetM (T ,X,Y ,P) be the set of all X × Y -matrices with entries
in T ∪ {0} but with at most one nonzero entry. Such a nonzero matrix can be denoted
by (g, x, y) (with g ∈ T in position (x, y)). Multiplication, called sandwich multipli-
cation, is defined as follows:

a ◦ b = aPb

where in the right hand side one uses the standard matrix products.
Assumealso that the ‘sandwichmatrix’P has nononzero rowsor columns andT =

G is a group. ThenM = M (G,X,Y ,P) is called a completely 0-simple semigroup
over the group G with sandwich matrix P. It has no ideals other than M and {0}
and it can bee considered as a semigroup analogue of a simple artinian ring. Such
semigroups play a prominent role in semigroup theory, see [12], §2.7 and §3.2. The
nonzero maximal subgroups of M (G,X,Y ,P) are all isomorphic to G, they are of
the form Gxy = {(g, x, y) | g ∈ G}, where pyx �= 0.

A subsemigroup S ofM (G,X,Y ,P) such that S intersects nontrivially every set
Mxy = {(g, x, y) | g ∈ G}, x ∈ X, y ∈ Y , is called a uniform (sub)semigroup.

The case when X = Y and P = Δ, the identity matrix, is of special interest. If
|X| = r < ∞ then we write M (G, r, r,Δ). In this case, the contracted semigroup
algebraK0[M (G, r, r,Δ)] is isomorphic to thematrix algebraMr(K[G]). A uniform
subsemigroup S ofM (G, r, r,Δ) is called a semigroup of generalized matrix type.
So K0[S] ⊆ Mr(K[G]).

Let S ⊆ M = M (G,X,Y ,P) be a uniform subsemigroup. One can show that
there exists a unique subgroup H of G and a sandwich matrix Q over H0 so that S ⊆
M ∼= M (H,X,Y ,Q) and (if S is identified with a subsemigroup ofM (H,X,Y ,Q))
everymaximal subgroup ofM (H,X,Y ,Q) is generated as a group by its intersection
with S. So, intuitively, one is tempted to think of M (G,X,Y ,P) as a ‘semigroup
of quotients of S’. If one prefers, one can consider S as an order in M (G,X,Y ,P).
This can be given a very precise meaning if additionally H is a group of quotients of
S ∩ H, see [17]. The latter holds for example if K[S] satisfies a polynomial identity
or if S has acc on right ideals.

If I is an ideal of a semigroup S then the Rees factor S/I is defined as the set
(S \ I) ∪ {0} with the operation s · t = st if st ∈ S \ I and s · t = 0 otherwise. A
structure theorem, obtained in [52], see also [54], Theorem 3.5, reads as follows.

Theorem 3.1 If S is a subsemigroup of themultiplicativemonoidMn(F) of all n × n-
matrices over a field F, then S has a finite ideal chain I1 ⊆ I2 ⊆ · · · ⊆ Ik = S with
I1 and every factor Ij/Ij−1 nilpotent or a uniform semigroup. The same applies if F
is a division ring and S satisfies the ascending chain condition on right ideals.

In particular, the second part applies to the case where K[S] is right Noetherian and
embeds intoMn(D) for a division ring D.

Clearly, the simplest example is S = Mn(F), for a field F. Then the chain
M1 ⊆ M2 ⊆ · · · ⊆ Mn = Mn(F) defined byMj = {a ∈ Mn(F) | rank(a) ≤ j} has all
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factors completely 0-simple. The maximal subgroups of S are of the formHe = {a ∈
eMn(F)e | rank(a) = rank(e)}, where e = e2 ∈ Mn(F) and they are isomorphic to
the corresponding full linear groups Glj(F), j = rank(e).

The following important theorem is an extension of the classical result of Malcev
saying that a finitely generated commutative algebra is embeddable in a matrix ring
over a field.

Theorem 3.2 ([2]) Let R be a finitely generated right Noetherian PI-algebra. Then
R embeds into the matrix ring Mn(F) over a field extension F of the base field K.

So, in view of Theorem 2.3, Theorem 3.1 can be applied if R = K[S] is right
Noetherian and satisfies a polynomial identity. Moreover, since every semiprime
Noetherian algebra has a semisimple artinian classical quotient ring, it follows that
Theorem 3.1 applies also to K[S]/B(K[S]) (B(K[S]) denoting the prime radical of
K[S]) as well as to every prime homomorphic image K[S]/P of K[S]. So, such an S
has a finite ideal chain with all factors nilpotent or uniform.

One can show that even more is true in certain other cases.

Theorem 3.3 ([38, 55])Let S be amonoid such thatK[S] is left and rightNoetherian
and GKdim(K[S]) < ∞. If for every a, b ∈ S one has

a〈a, b〉 ∩ b〈a, b〉 �= ∅ �= 〈a, b〉a ∩ 〈a, b〉b,

then S has an ideal chain S1 ⊆ S2 ⊆ · · · ⊆ Sn = S such that S1 and every factor
Si/Si−1 is either nilpotent or a semigroup of generalized matrix type.

More importantly, the following partial converse of this theorem holds.

Theorem 3.4 ([55]) Let S be a finitely generated monoid with an ideal chain S1 ⊆
S2 ⊆ · · · ⊆ Sn = S such that S1 and every factor Si/Si−1 is either nilpotent or a
semigroup of generalized matrix type. If GKdim(K[S]) < ∞ and S satisfies the
ascending chain condition on right ideals, then K[S] is right Noetherian.

The assumptions in the theorem imply that cancellative subsemigroups of uni-
form factors Si/Si−1 and S1 have groups of quotients that are finitely generated and
nilpotent-by-finite (so polycyclic-by-finite, in particular).

As an example of an application of this strategy to some problems of a combina-
torial nature, we state the following result. Recall that the prime radical B(K[S]) of
K[S] is nilpotent if K[S] is a right Noetherian algebra.

Theorem 3.5 ([53]) Assume that K[S] a right Noetherian algebra. Then

1. theGelfand–Kirillov dimension ofK[S] is finite if and only if for every cancellative
subsemigroup T of S we have GKdim(K[T ]) < ∞.

2. Moreover, in this caseGKdim(K[S]/B(K[S])) = GKdim(K[T ]) (and it is an inte-
ger) for a cancellative subsemigroup T of the image S of S in K[S]/B(K[S]) and
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GKdim(K[S]) ≤ r · GKdim(K[T ]), where r is the nilpotency index of B(K[S]).
Moreover, T has a finitely generated nilpotent-by-finite quotient group.

Notice, that by a celebrated result of Gromov, the Gelfand–Kirillov dimension of
a finitely generated group algebraK[G] is finite if and only ifG is nilpotent-by-finite,
and in this case due to the formula of Bass it is an integer expressible in terms of the
ranks of the (torsion free) factors of the upper central series of a nilpotent subgroup
of finite index in G, see [47], Chap. 11. Moreover, GKdim(K[T ]) = GKdim(K[G])
ifG is the group of quotients of its submonoid T , by a result of Grigorchuk, see [51],
Chap. 8.

4 Important Motivating Examples—Algebras
with Homogeneous Quadratic Relations

Important classes of examples of Noetherian semigroup algebras include algebras
corresponding to the set theoretic solutions of the Yang-Baxter equation. Recall that
by a set theoretic solution of the Yang-Baxter equation we mean a map r : X × X →
X × X, where X is a nonempty set, such that

r12r13r23 = r23r13r12,

where rij denotes the map X × X × X → X × X × X acting as r on the (i, j) factor
and as the identity on the remaining factor. We will focus on the case where X =
{x1, . . . , xn} is finite.

The problem of finding all such solutions was posed in [13], and turned out to be
very difficult. In particular, one considers solutions that are involutive (r2 = id) and
non-degenerate (this condition will be defined later). This area leads to a fascinating
class of Noetherian algebras, referred to as Yang-Baxter algebras. Namely, one asso-
ciates to r an algebra defined by the presentation K〈x1, . . . , xn〉/J where J consists
of relations of the form xy = x′y′ if r(x, y) = (x′, y′). This implies that J consists of(n
2

)
relations and it follows also that every monomial xy, x, y ∈ X, appears in at most

one relation.
These algebras arose independently in several other contexts, including homolog-

ical methods developed for an important class of algebras, called Sklyanin algebras,
[62]. The following theorem summarizes their main properties.

Theorem 4.1 ([21]) These algebras are isomorphic to K[S], where S is a submonoid
of a finitely generated torsion free abelian-by-finite group. They are Noetherian PI
domains of finite homological dimension and they are maximal orders.

Actually, S has a group of quotients that is solvable [14], see also [31], and embeds
into the semidirect product Fn � Sn, where Sn is the symmetric group acting on the
free commutative group Fn of rank n by the natural permutation of the basis, [14,
38]. Simplest examples include commutative polynomial ringsK[x1, . . . , xn], arising
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from the free commutative monoids S, and the algebra of the monoid defined by the
presentation S = 〈x, y | x2 = y2〉.

These algebras have several other properties similar to the properties of commu-
tative polynomial rings, including nice homological properties. Certain families of
such algebras are known, but new examples are very difficult to construct.

Height one prime ideals P of these algebras have been described [31, 36]. In
particular, if P ∩ S �= ∅ then P = aK[S] = K[S]a for some a ∈ S, and there are
finitely many such height one primes. While prime ideals of K[S] not intersecting S
come from primes of the group algebra K[SS−1] (see Sect. 5). In particular, this can
be used to prove that K[S] is a maximal order.

There exist important more general classes of semigroup algebras which fit in this
context. We say that an algebra A is defined by homogeneous semigroup relations if
it is defined by a presentation A = K〈x1, . . . , xn | R〉, with every relation of the set
R of defining relations of the form v = w, where v,w are words in the free monoid
on x1, . . . , xn and v,w have equal lengths. Exploiting the approach presented in the
previous section, one can prove the following result.

Theorem 4.2 ([20]) Assume that an algebra A = K[S] is right Noetherian and
GKdim(K[S]) < ∞. If A is defined by homogeneous semigroup relations, then A
satisfies a polynomial identity.

In particular, consider the following class of quadratic algebras, that generalizes
the Yang-Baxter algebras. These are semigroup algebras of monoids with generators
x1, x2, . . . , xn subject to

(n
2

)
quadratic relations of the form xixj = xkxl with (i, j) �=

(k, l) and, moreover, every monomial xixj appears at most once in one of the defining
relations. One of the origins of these algebras comes from [18]. Recently, further
combinatorial aspects of such algebras have been studied in [19].

For every x ∈ X = {x1, . . . , xn}, let

fx : X → X

and
gx : X → X

be the maps such that
r(x, y) = (fx(y), gy(x)).

One says that S is a non-degenerate quadratic monoid if each fx and each gx is
bijective, with x ∈ X.

The following resultwas obtained in [20] in the special case of square-free defining
relations, and in full generality in [41].

Theorem 4.3 Let S be a non-degenerate quadratic monoid. Then K[S] is right and
left Noetherian, it satisfies a polynomial identity and embeds into a matrix algebra
over a field extension of K.
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The proof uses the structural approach explained before and several other results.
First, a finite ideal chain in S is constructed from the combinatorial data. Every factor
of this chain is either of generalized matrix type or it is nilpotent. Independently, one
shows that K[S] has finite Gelfand–Kirillov dimension and that S satisfies acc on
one-sided ideals. This allows us to prove that K[S] is Noetherian, by applying Theo-
rem 3.4. Then, using Theorem 4.2, one shows that the algebra satisfies a polynomial
identity. Finally, using the embedding theorem of Anan’in, Theorem 3.2, we get the
last assertion.

5 Prime Ideals and Arithmetical Properties of K[S]

There are several classical important arithmetical properties that have been exten-
sively studied in the class of commutative semigroup rings. These include in par-
ticular Krull domains, integrally closed domains, principal ideal rings. For the main
results and general techniques of this theory we refer to Gilmer’s book [23]. And
for general results on commutative orders, and integrally closed domains in partic-
ular, to [16]. Several methods and results of the multiplicative ideal theory are valid
for both commutative rings and monoids, as they depend only on the multiplicative
structure of the ring. The philosophy that such results should be derived as far as
possible without making reference to the additive structure of the ring, is presented
in particular in [28].

There has been also an extensive work done on noncommutative orders, that
we will discuss in this section. Some of this is based on earlier general work on
noncommutative orders (in particular, see [1, 8] and its bibliography), some has
been developed for special classes of noncommutative semigroups in [64], and more
recently in [22].

Recall that a monoid S which has a left and right group of quotients G is called
an order. Then S is called a maximal order if there does not exist a submonoid S′ of
G properly containing S and such that aS′b ⊆ S for some a, b ∈ G.

For subsets A,B ⊆ G we define (A :l B) = {g ∈ G | gB ⊆ A}, (A :r B) = {g ∈
G | Bg ⊆ A}. Then S is a maximal order if and only (I :l I) = (I :r I) = S for every
fractional ideal I of S. A nonempty subset I of G is called a fractional ideal of S if
SIS ⊆ I and cI, Id ⊆ S for some c, d ∈ S.

Assume now that S is a maximal order. Then (S :r I) = (S :l I) for any fractional
ideal I . One denotes this set as (S : I). Define I∗ = (S : (S : I)), the divisorial closure
of I . If I = I∗ then I is said to be divisorial. Then S is said to be a Krull order (or
a Krull monoid in the terminology of [22]) if S satisfies also the ascending chain
condition on divisorial ideals contained in S. In this case the divisor group D(S)
(also defined as in ring theory) is a free abelian group with basis the set of prime
divisorial ideals. The latter are minimal prime ideals of S.

The following result is our starting point. Notice in particular that the obtained
description is expressed in terms of the underlying semigroup only. Here U(S)
denotes the unit group of the monoid S.
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Theorem 5.1 ([10]) A commutative monoid algebra K[S] is a Krull domain if and
only if S is a submonoid of a torsion free abelian group which satisfies the ascending
chain condition on cyclic subgroups and S is a Krull order in its group of quotients.

Furthermore, S is a Krull order if and only if S = U(S) × S1, where S1 is a
submonoid of a free abelian group F such that S1 is the intersection of the quotient
group of S1 with the positive cone of F. Moreover, in this situation the class group
of K[S] coincides with the class group of S.

This result extended an earlier work of Anderson, [3, 4], on commutative
Noetherian maximal orders. Notice that the class of commutative Noetherian max-
imal orders K[S] coincides with the class of finitely generated integrally closed
domains.

The last property mentioned in the theorem allows one to simplify the calculation
of the class group in several concrete classes of algebras, and it also shows that the
height one primes of K[S] determined by the minimal primes of S are crucial. In
particular, for certain concrete finitely presented commutative algebras this invariant
was calculated in [26].

Theorem 5.2 Let A be a finitely generated commutative algebra over a field K
with a presentation A = K[X1, . . . ,Xn|R], where R is a set of monomial relations
in the generators X1, . . . ,Xn. So A = K[S], the semigroup algebra of the monoid
S = 〈X1, . . . ,Xn|R〉. A characterization, purely in terms of the defining relations, is
given of when A is an integrally closed domain, provided R contains at most two
relations. Also the class group of such algebras A is calculated.

Alsowithin the noncommutative ring theory, Noetherian orders in simple algebras
form an important class of rings.Maximal orders have been studied in this context, in
particular for the class of group algebras of polycyclic-by-finite groups. Recall that
the infinite dihedral group 〈a, b | ba = a−1b, b2 = 1〉 is denoted by D∞. A group G
is said to be dihedral-free if the normalizer of any subgroup H isomorphic with D∞
is of infinite index in G, (equivalently, H has infinitely many conjugates in G).

Theorem 5.3 ([5]) Let G be a polycyclic-by-finite group. The group algebra K[G]
is a prime maximal order if and only if

1. G has no nontrivial finite normal subgroups,
2. G is dihedral-free.

The first condition in the theorem is equivalent with the group algebra being
prime, see Theorem 2.9. Brown also determined when the height one prime ideals
are principal. By Δ(G) we denote the finite conjugacy subgroup of G.

Theorem 5.4 ([5]) LetG be a polycyclic-by-finite group. If K[G] is a primemaximal
order, then the following conditions are equivalent for a height one prime ideal P of
K[G]:
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1. P is right principal,
2. P is invertible, that is, Qcl(K[G]) contains a K[G]- bimodule J with IJ = JI =

K[G],
3. P is right projective;
4. P = K[G]n = nK[G] for some n ∈ K[Δ(G)],
5. P contains a nonzero central element,
6. P contains a nonzero normal element,
7. P contains an invertible ideal.

If these conditions hold for all height one primes of K[G], then K[G] is a UFR
(unique factorization ring) in the sense of Chatters and Jordan, [9]. Some earlier
partial results on this topic can be found in [42, 43, 63]. The following consequence
for the case of PI-algebras that are domains is of special interest.

Theorem 5.5 ([5]) Let G be a finitely generated torsion free abelian-by-finite group.
Then the group algebra K[G] is a Noetherian maximal order. Moreover, all height
one primes of K[G] are principally generated by a normal element.

Only for very few classes of noncommutative semigroups S it has been determined
when the semigroup algebra is a Noetherian maximal order. Apart from the Yang-
Baxter algebras, see Sect. 4, Wauters in [64] dealt with cancellative semigroups S
consisting of normal elements (so aS = Sa for every a ∈ S) and with the cancellative
semigroups of the regular elements of a prime Goldie ring. Various aspects of arith-
metical properties of noncommutative monoids were recently studied in [22]. We
will summarize results obtained on algebras of submonoids of a polycyclic-by-finite
group G, obtained in [24, 25, 32, 36].

Recall that G has a normal subgroup of finite index H that is torsion free. Then
K[G] can be considered as a ring graded by the finite group G/H in a natural way.
Therefore, known deep results on the correspondence of prime ideals for rings graded
by finite groups [58], Theorem 17.9, allow to establish a strong link between the
primes in K[G] and in K[H] (incomparability, going up, going down). Hence, the
informationonprime ideals in the torsion free case is essential, [24].Crucial results on
prime ideals in case K[S] is Noetherian and G = SS−1, based also on Theorem 2.11,
were proved in [24, 34].

Proposition 5.6 ([24]) Let S be a submonoid of a torsion free polycyclic-by-finite
group. Assume that K[S] is right Noetherian. Then
1. K[S ∩ P] is a prime ideal in K[S] for any prime ideal P in K[S] with P ∩ S �= ∅.
2. K[Q] is a prime ideal in K[S] for any prime ideal Q in S.
3. the set of height one prime ideals of K[S] intersecting S nontrivially coincides

with the set of the ideals of the form K[Q], where Q is a minimal prime ideal
of S.

In view of the above theorem, the study of prime ideals of K[S] splits into two
cases, one leading to primes of the group algebra K[SS−1] and one leading to the
primes of the monoid S. Recall that if C is a right Ore subset consisting of regular
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elements in a ring R, we denote by RC the classical localization of R with respect to
C. If either R is right Noetherian or R satisfies a polynomial identity and RC is right
Noetherian, then the maps P �→ PRC , J �→ J ∩ R are inverse bijections between the
sets of prime ideals in R not intersecting C and the set of primes in RC , see [27],
Theorems 10.18 and 10.20 and its proof. This also holds in the following case.

Lemma 5.7 ([29]) Let S be a submonoid of a nilpotent group and let G be the group
of quotients of S. Assume that P is a prime ideal of K[S]. If P ∩ S = ∅, then
1. PK[G] is a two-sided ideal of K[G],
2. Q = PK[G] is a prime ideal of K[G],Q ∩ K[S] = P andK[G]/Q is a localization

(with respect to an Ore set) of K[S]/P.
We say that a prime Goldie ring R is a Krull order if R is a maximal order

that satisfies the ascending chain condition on divisorial integral ideals. In the next
theorem we collect some of the essential properties of these orders in the case of
algebras satisfying a polynomial identity. In this case, our definition coincides with
that ofChamarie. For detailswe refer the reader to hiswork [7, 8]. Theprime spectrum
of R is denoted by Spec(R), and the set of height one prime ideals of R by X1(R).

In view of the structural result on Noetherian algebras K[S], Theorem 2.11, it
is natural to consider first the case where G is a finitely generated abelian-by-finite
group. Recall that the group algebra of a finitely generated groupG satisfies a polyno-
mial identity if and only ifG is abelian-by-finite, see [57], Theorems 5.3.7 and 5.3.9.

Theorem 5.8 ([24]) Let R be a prime Krull order satisfying a polynomial identity.
Then the following properties hold:

1. The divisorial ideals form a free abelian group with basis X1(R), the height one
primes of R.

2. If P ∈ X1(R) then P ∩ Z(R) ∈ X1(Z(R)), and furthermore, for any ideal I of R,
I ⊆ P if and only if I ∩ Z(R) ⊆ P ∩ Z(R).

3. R = ⋂
RZ(R)\P, where the intersection is taken over all height one primes of R,

and every regular element r ∈ R is invertible in almost all (that is, except possibly
finitely many) localizations RZ(R)\P. Furthermore, each RZ(R)\P is a left and right
principal ideal ring with a unique nonzero prime ideal.

4. For a multiplicatively closed set of ideals M of R, the (localized) ring RM = {q ∈
Qcl(R)|Iq ⊆ R, for some I ∈ M} is a Krull order, and RM = ⋂

RZ(R)\P, where
the intersection is taken over those height one primes P for which RM ⊆ RZ(R)\P.

If S is a monoid with a torsion free abelian-by-finite group of quotientsG (soK[S]
is a PI-domain), the maximal order property of K[S] is determined by the structure
of S and can be reduced to some ‘local’ monoids SP, with P a minimal prime ideal
of S. Here

SP = {g ∈ G | Cg ⊆ S for some G-conjugacy class C

of G contained in S with C � P}.

The next theorem comes from [35], see also [38], Theorems 7.2.5 and 7.2.7.



268 J. Okniński

Theorem 5.9 Let S be a submonoid of a finitely generated torsion free abelian-by-
finite group. Then the monoid algebra K[S] is a Noetherian maximal order if and
only if the following conditions are satisfied:

1. S satisfies the ascending chain condition on one-sided ideals,
2. S is a maximal order in its group of quotients,
3. for every minimal prime ideal P of S the monoid SP has only one minimal prime

ideal.

Furthermore, in this case, each SP is a maximal order satisfying the ascending chain
condition on one-sided ideals.

This result was extended in [24] to the case of a submonoid of an arbitrary finitely
generated abelian-by-finite group. The final step was made in [25], where a further
extension was obtained.

Theorem 5.10 ([25]) Let S be a submonoid of a polycyclic-by-finite group such
that the semigroup algebra K[S] is Noetherian, i.e., there exist normal subgroups F
and N of G = SS−1 such that F ⊆ S ∩ N, N/F is abelian, G/N is finite and S ∩ N
is finitely generated. Suppose that for every minimal prime P of S the intersection
P ∩ N is G-invariant. Then, the semigroup algebra K[S] is a prime maximal order
if and only if the monoid S is a maximal order in its group of quotients G, the group
G is dihedral-free and has no nontrivial finite normal subgroups.

Suppose that in the previous theorem one also assumes that the groupG is abelian-
by-finite. Then, in [24], it is shown that the condition ‘for every minimal prime P of
S the intersection P ∩ N is G-invariant’ is necessary for K[S] to be a maximal order.
However, no example of a maximal order S in a polycyclic-by-finite groupG = SS−1

(withG dihedral-free and K[G] prime) is known so that K[S] is Noetherian but not a
maximal order. We note that for a submonoid S of a torsion free polycyclic-by-finite
group certain necessary and certain sufficient conditions for a Noetherian K[S] to
be a unique factorization ring in the sense of Chatters and Jordan were studied in
[44, 45].

The following result allows to construct several concrete examples of maximal
orders in the PI-case. As we shall see, this is in contrast to the situation described in
Sect. 6, where no such a general construction is known.

Proposition 5.11 ([24, 38]) Let A be an abelian normal subgroup of finite index
in a group G. Suppose that B is a submonoid of A so that A = BB−1 and B is a
finitely generated maximal order. Let S be a submonoid of G such that G = SS−1 and
S ∩ A = B. Then S is a maximal order that satisfies the ascending chain condition on
right ideals if and only if S is maximal among all submonoids T of G with T ∩ A = B.

Substantial results have been also obtained on semigroup algebras that are princi-
pal ideal rings. This story begins with the case of group algebras, settled by Passman
in [56], and concludes with the results obtained in [30]. References to several partial
intermediate results can be found in [23, 38]. The rest of this section is devoted to
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a presentation of these results. We will always assume that a principal ideal ring
contains an identity element, though in this section S is not necessarily a monoid.
First we state Passman’s result on the group algebra case. We follow [46], where this
result is stated in the slightly more general context of matrices over group algebras,
that will be needed later.

Proposition 5.12 ([56]) Let G be a group and R = Mn(K), a matrix ring over K.
The following conditions are equivalent:

1. R[G] = Mn(K[G]) is a principal right ideal ring,
2. R[G] is right Noetherian and the augmentation ideal ω(R[G]) is a principal right

ideal,
3. if char K = 0, then G is finite or finite-by-infinite cyclic,

if char K = p > 0, then G is finite p′-by-cyclic p or G is finite p′-by-infinite cyclic.

This result was then extended to semigroup algebras of cancellative monoids as
follows.

Proposition 5.13 ([46]) Let T be a cancellative monoid and K a field of character-
istic p (possibly zero). The following conditions are equivalent:

1. K[T ] is a principal right ideal ring,
2. T is a semigroup satisfying one of the following conditions:

a. T is a group satisfying the conditions of Proposition 5.12,
b. T contains a finite p′-subgroup H and a nonperiodic element x such that

xH = Hx, T = ⋃
i∈N Hxi and the central idempotents of K[H] are central

in K[T ].
As explained in Sect. 3, the structure theorem for linear semigroups provides a

link between a linear semigroup and some of its cancellative subsemigroups. In
order to apply this approach to semigroup algebras of arbitrary semigroups that are
principal ideal rings one first has to reduce the problem to linear semigroups. This
is guaranteed by Theorem 3.2 together with the following result.

Theorem 5.14 ([30]) Let K[S] be a principal right ideal ring. Then K[S] satisfies
a polynomial identity.

Using the structure theorem of linear semigroups, explained in Sect. 3, one now
can prove the following results.

Proposition 5.15 ([30]) If K[S] is a principal right ideal ring, then the
Gelfand–Kirillov dimension of K[S] is equal to its classical Krull dimension and
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it is 0 or 1. In the former case S is finite. Moreover, every prime artinian homomor-
phic image of K[S] is finite dimensional over K.

Theorem 5.16 ([30]) Let S be a semigroup andK afield of characteristic p (possibly
zero). The following conditions are equivalent:

1. K0[S] is a principal (left and right) ideal ring;
2. there exists an ideal chain

I1 ⊆ · · · ⊆ It = S

such that I1 and every factor Ij/Ij−1 is of the formM (T , n, n,P) for an invertible
over K0[T ] sandwich matrix P, and one of the following conditions holds:

a. T is a group of the type described in Proposition 5.12;
b. T is a monoid with a finite group of units H such that T = ⋃

i≥0 Hx
i for

some x ∈ T, and either this union is disjoint or xn = θ for some n ≥ 1. Also
Hx = xH, the central idempotents of K[H] commute with x, and p = 0 or
p � |H|.

In case the equivalent conditions are satisfied it follows that

K0[S] ∼= K0[I1] ⊕ K0[I2/I1] ⊕ · · · ⊕ K0[It/It−1].

Moreover, K0[S] is a finite module over its center, which is finitely generated.

It is not known whether the left-right symmetric hypothesis in Theorem 5.16 is
essential.

The above theorem applies to finite dimensional algebras K[S], since a finite
dimensional algebra is a principal right ideal ring if and only if it is a principal left
ideal ring. One can also show that semiprime principal right ideal semigroup algebras
are necessarily principal left ideal rings as well.

Theorem 5.17 ([30]) Let S be a semigroup andK afield of characteristic p (possibly
zero). Then K0[S] is a semiprime principal right ideal ring if and only if there exists
an ideal chain

I1 ⊆ · · · ⊆ It = S

such that I1 and every factor Ij/Ij−1 is of the form M (T , n, n,P) for an invertible
over K0[T ] sandwich matrix P and a monoid T such that

1. either T is a group as in Proposition 5.12 so that K[T ] is semiprime,
2. or T is a monoid with finite group of units H such that T = ⋃

i Hx
i is a disjoint

union, for some x ∈ T. Also Hx = xH, the central idempotents of K[H] commute
with x, and p = 0 or p � |H|. Furthermore, for every primitive central idempotent
e ∈ K[H], either K[H]ex = 0 or K[H]exi �= 0 for all i ≥ 1.

Moreover, if the equivalent conditions are satisfied, then K0[S] is a principal left
ideal ring.
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Corollary 5.18 K0[S] is a prime principal right ideal ring if and only if

S ∼= M ({1}, n, n,Q), S ∼= M (〈x〉, n, n,Q) or S ∼= M (〈x, x−1〉, n, n,Q)

where Q is invertible in Mn(K), Mn(K[x]) or Mn(K[x, x−1]) respectively.
Hence, K0[S] ∼= Mn(K),Mn(K[x]), or Mn(K[x, x−1]).

6 Why Should We Look at the Non-Noetherian Case?
Motivation and First Results

We start with an interesting example of a finitely presented algebra, denoted by R(1),
that has recently played an important role in certain aspects of noncommutative
geometry. This algebra is not Noetherian, but it leads to a family of deformations
that consists of Noetherian algebras [59]. It turns out that it is based on a relatively
simple construction of a semigroup algebra of a submonoid of the Heisenberg group
(a nilpotent group of class 2):

G = gr(a, b, c | ac = ca, ab = ba, bc = acb).

On one hand, this example shows that computations in such algebras may be quite
difficult. On the other hand, it seems to be a good motivation for studying non-
Noetherian orders coming from finitely generated nilpotent groups. After explaining
the nature of this example, we present some recent general results on this class of
algebras.

Let
M = 〈x, y, z, t | xy = yx, zt = tz, yz = xt = zx, zy = tx = yt〉,

a finitely presented monoid, defined by homogeneous relations. So K[M] carries
some similarity to Yang-Baxter algebras, considered in Sect. 4. Namely, it has the
‘correct’ number of quadratic relations (

(n
2

)
relations), however some monomials

appear in two different relations.
It can be shown that: φ : M −→ G defined by

x �→ c, y �→ ac, z �→ bc, t �→ abc

is a homomorphism which also is an embedding. Hence

M ∼= φ(M) ⊆ G.

Note that K[M] is an Ore domain, but it is not Noetherian (use Theorem 2.11: G is
not abelian-by-finite whileM has trivial units; but this is also easy to check directly).
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K[M] is the algebra used by Yekutieli and Zhang [65] (as a counterexample in the
context of Artin-Schelter regular rings), and recently by Rogalski and Sierra, where
it plays a key role in the classification of 4-dimensional non-commutative projective
surfaces, [59]. Namely, a family of deformations of K[M] is considered. They are of
the form:

R(ρ, θ) = K〈x1, x2, x3, x4 | fi = 0, i = 1, 2, 3, 4, 5, 6〉

where

f1 = x1(cx1 − x3) + x3(x1 − cx3)

f2 = x1(cx2 − x4) + x3(x2 − cx4)

f3 = x2(cx1 − x3) + x4(x1 − cx3)

f4 = x2(cx2 − x4) + x4(x2 − cx4)

f5 = x1(dx1 − x2) + x4(x1 − dx2)

f6 = x1(dx3 − x4) + x4(x3 − dx4)

for c = (θ − 1)/(θ + 1) and d = (ρ − 1)(ρ + 1).
Notice that R(1, 1) ∼= K[M] and it is embeddable in the skew polynomial ring

K(u, v)[t, σ ] over the rational function field K(u, v), where σ(v) = v, σ (u) = uv.

Theorem 6.1 ([59]) Assume that K is algebraically closed and uncountable. If
ρ, θ are algebraically independent over the prime subfield of K, then R(ρ, θ) is
a Noetherian domain of global dimension 4 and Gelfand–Kirillov dimension 4. And
it is birational to P

2.

Here, for a Noetherian domain R such that R = ⊕
i≥0 Ri is connected N-graded

(meaning that the zero component R0 = K and dim(Ri) < ∞ for every i), it is known
that the graded ring of quotients Qgr(R) ∼= D[t, t−1, σ ], for a division ring D. So,
Qgr(R) is obtained by localizing with respect to the set of nonzero homogeneous
elements in R. If the division ringD is a field (thenD = K(X) for a projective variety
X), then R is said to be birational to X.

Hence, this provides a newmotivation to study algebras of submonoids of nilpotent
groups that are not necessarily Noetherian. The starting case is where the quotient
group is nilpotent of class 2. Then we have the following surprising and very useful
result.

Lemma 6.2 ([29]) Aprime ideal P of a submonoid S of a nilpotent group of class two
is completely prime; that is, st ∈ P implies s ∈ P or t ∈ P, for s, t ∈ S. In particular,
if S is finitely generated, then S has only finitely many prime ideals.

Using also Lemma 5.7 and Proposition 5.6, one can then get a partial extension of
the classical result on the classical Krull dimension of a group algebra of a nilpotent
group, stated in Theorem 2.5.
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Theorem 6.3 ([40]) Let S be a submonoid of a nilpotent group of class two. If the
group of quotients G = SS−1 of S is finitely generated then clKdim(K[S]) = h(G).
Moreover, if P is a prime ideal of K[S], then K[S]/P is a Goldie ring.

In order to indicate a striking contrast with the case of higher nilpotency classes,
we will construct some prime ideals in the algebra K[S] of the submonoid S = 〈b, c〉
of the free nilpotent group F3(b, c) of class 3. In other words, F3(b, c) is defined by
the following relations:

bc = acb, ab = dba, ac = eca,

db = bd, dc = cd, eb = be, ec = ce.

Lemma 6.4 For positive integers k and n, the word (bck)n cannot be rewritten in
S = 〈b, c〉 ⊆ F3(b, c).

Recall that a doubly infinite word in b and c is a sequence x = (xi)i∈Z with xi ∈
{b, c}. One says that x is recurrent if every (finite) subword of x appears in x at least
twice (thus, it appears infinitely many times). For example, the cyclic word (bck)∞
is of this type. Then,

J = {s ∈ S : s �= t in S for every subword t of x}

is an ideal of S and it is easy to check that J is a prime ideal of S. Since F3(b, c)
is torsion free, this, together with Proposition 5.6, is used to derive the following
consequence.

Theorem 6.5 ([40]) The submonoid S = 〈b, c〉 of the group F3(b, c) has infinitely
many prime ideals P that are not completely prime. Furthermore, each K[P] is
a prime ideal of K[S] such that K[S]/K[P] is an algebra satisfying a polynomial
identity and clKdim(K[S]/K[P]) = GKdim(K[S]/K[P]) = 1.

This result shows that the situation is quite different than the one in the case of
nilpotency class 2, where all primes are completely prime.

Anatural open question that arises iswhether there exist other,more exotic, primes
in K[S] for a submonoid S of a finitely generated nilpotent group G of nilpotency
class exceeding 2. In particular, do there exist prime homomorphic images of K[S]
that are not Goldie? Can K[S] have infinite classical Krull dimension?

As mentioned in Sect. 5, prime ideals provide one of the main tools in dealing
with maximal orders, and with related classes of algebras with nice arithmetical
properties. We state some results in this direction.

Theorem 6.6 ([32]) Let S be a submonoid of a finitely generated torsion free nilpo-
tent group. Then the following properties hold.

1. S is a maximal order if and only if K[S] is a maximal order.
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2. If S satisfies the ascending chain condition on right ideals and is a maximal order,
then all elements of S are normal (meaning that aS = Sa for every a ∈ S).

So, in the latter case, the theorem below applies.

Theorem 6.7 ([32]) Let S be a submonoid of a torsion free polycyclic-by-finite
group. Assume that all elements of S are normal. Then the following conditions are
equivalent:

1. K[S] is a Krull domain,
2. S is a Krull order,
3. S/U(S) is an abelian Krull order.

Using the special features of groups of nilpotency class 2, and applying Theo-
rem 6.7, one can prove the following result. Here we define N(S) = {a ∈ S | aS =
Sa}, the submonoid of normal elements of S.

Theorem 6.8 ([39]) Assume that S is a submonoid of a torsion free nilpotent group
of class two. Assume that S is a Krull order. Then

(i) the derived subgroup G′ of the quotient group G of S is contained in S,
(ii) S = N(S),
(iii) S/G′ is a commutative Krull order,
(iv) if G is finitely generated, thenK[S] is aKrull domain for every fieldK;moreover

S is finitely generated and K[S] is right and left Noetherian.

On the other hand, if G′ ⊆ S and S/G′ is a Krull order then S is a Krull order.

So, in some sense, the class of such orders is quite restricted and carries a lot of
commutative flavor. It is an open problem whether there exist maximal orders that
do not satisfy the property N = N(S) and, in higher nilpotency classes whether there
exist Krull orders of this type.
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34. E. Jespers, J. Okniński, Submonoids of polycyclic-by-finite groups and their algebras. Algebras

Represent. Theory 4, 133–153 (2001)
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