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Abstract The aim of this paper is to survey noncommutative rings from the view-
point ofmultiplicative ideal theory. Themain classes of rings considered aremaximal
orders, Krull orders (rings), unique factorization rings, generalized Dedekind prime
rings, and hereditary Noetherian prime rings. We report on the description of reflex-
ive ideals in Ore extensions and Rees rings. Further we give necessary and sufficient
conditions (or sufficient conditions) for well-known classes of rings to be maximal
orders, and we propose a polynomial-type generalization of hereditary Noetherian
prime rings.
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1 Introduction

Multiplicative (arithmetic) ideal theory in algebraic number fields originated by
Dedekind was developed by M. Sono, W. Krull, E. Noether, H. Prüfer, E. Artin
during the period 1910–1930. In particular, E. Noether gave an axiomatic founda-
tion on Dedekind’s theory.

In the noncommutative setting, Dedekind–Noether’s ideal theory was first
extended to algebras by A. Speiser, H. Brandt, E. Artin, and H. Hasse (e.g.,
[9, 45, 69] and see also [31]), and then, in [10] K. Asano extended Noether’s
axiomatic foundation to noncommutative rings: Let R be a bounded order in its

E. Akalan (B)
Department of Mathematics, Hacettepe University, Beytepe Campus,
06800 Ankara, Turkey
e-mail: eakalan@hacettepe.edu.tr

H. Marubayashi
Faculty of Sciences and Engineering, Tokushima Bunri University,
Sanuki, Kagawa 769-2193, Japan
e-mail: marubaya@naruto-u.ac.jp

© Springer International Publishing Switzerland 2016
S. Chapman et al. (eds.), Multiplicative Ideal Theory and Factorization Theory,
Springer Proceedings in Mathematics & Statistics 170,
DOI 10.1007/978-3-319-38855-7_1

1



2 E. Akalan and H. Marubayashi

quotient ring Q. Then the set of all fractional R-ideals is a group if and only if the
following three conditions hold:

(a1) R is a bounded maximal order in Q.
(a2) R satisfies the ascending chain conditions on integral ideals.
(a3) Any nonzero prime ideal is maximal,

which is the same axiomatic foundation as one of Noether in case of commutative
domains. Furthermore, he extendedmany important ideal theories to orders satisfying
(a1), (a2) and (a3) which is nowadays called bounded Asano rings (orders) [11, 12].

The aim of this article is to survey noncommutative rings from the viewpoint of
multiplicative ideal theory.

In Sect. 2, we give the definitions ofmaximal orders, Asano, Dedekind, and hered-
itary which are themain topics inmultiplicative ideal theory and give a classical ideal
theory of maximal orders. Furthermore we discuss the maximal order properties of
well-known noncommutative rings such as group rings, polynomial rings, universal
enveloping algebras, and so on.

In Sect. 3, we define the concept of Krull orders in the sense of Chamarie and study
the algebraic structure of Krull orders aswell as the ideal theories of polynomial rings
and Ore–Rees rings over Krull orders.

We give in Sect. 4 an overview of noncommutative unique factorization rings
(UFRs for short) which is one of the important classes of maximal orders.

Section5 contains a generalization of Dedekind and Asano orders which is called
G-Dedekind (or G-Asano) and we give several characterizations of G-Dedekind. We
also consider polynomial rings and Rees rings over G-Dedekind.

Hereditary prime rings are one of the most successful subjects in noncommutative
rings during the years 1960–1970. In Sect. 6, we only discuss the ideal theory in HNP
rings and propose a polynomial-type generalization of HNP rings.

We refer the readers to the books [63, 68] for terminologies not defined in this
article.

Because of the page limit, we do not give the proofs of Propositions and Theorems
and we quote the original papers or books for reader’s convenience.

In the case of commutative rings and monoids we refer the reader to the books
[34, 39] for commutative rings and [41] for monoids.

2 Maximal Orders

Throughout this paper, R is a prime Goldie ring unless otherwise stated with its
quotient ring Q, which is a simple Artinian ring (in other words, R is an order in Q).

In this section, we define the concept of maximal orders in Q and give a classical
ideal theory in maximal orders. Furthermore we give necessary and sufficient con-
ditions (or sufficient conditions) for some well-known noncommutative rings to be
maximal orders.
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Definition 2.1 (1) Orders R and S in Q are equivalent if aRb ⊆ S and cSd ⊆ R
for some units a, b, c, d in Q.
(2) An order is maximal if it is maximal in the set of all equivalent orders.

For a fractional right R-ideal I , Or (I ) = {q ∈ Q | I q ⊆ I}, which is called a
right order of I . It is easy to see that Or (I ) ⊇ R and is equivalent to R. Similarly
for a fractional left R-ideal J , Ol(J ) = {q ∈ Q | q J ⊆ J}, the left order of J ,
which contains R and is equivalent to R. Thus we have the following ideal theoretic
characterizations of maximal orders:

Proposition 2.2 ([63, 68]) Let R be an order in Q. The following conditions are
equivalent:

(1) R is a maximal order in Q.
(2) Ol(J ) = R for all fractional left R-ideals J and Or (I ) = R for all fractional

right R-ideals I .
(3) Ol(A) = R = Or (A) for all fractional R-ideals A.
(4) Ol(A) = R = Or (A) for all nonzero ideals A of R.

For a fractional right R-ideal I , let I ∗ = {q ∈ Q | q I ⊆ R} and for a fractional left
R-ideal J , let J+ = {q ∈ Q | Jq ⊆ R}. If R is a maximal order, then for a fractional
R-ideal A in Q, A∗ = A−1= A+ by Proposition 2.2, here A−1 = {q ∈ Q | AqA ⊆
A}. Thus A∗+ = A+∗, which contains A. If A = A∗∗, then A is called a reflexive
fractional R-ideal in Q (some say a divisorial fractional R-ideal in Q).

Let D(R) = {A | A is a reflexive fractional R-ideal}. For any A, B in D(R),
we define the multiplication “◦” by A ◦ B = (AB)∗∗. Then we have the following
theorem which extends Asano’s result:

Theorem 2.3 ([63, 68]) Suppose R is a maximal order in Q.

(1) R is a group with the multiplication “◦”.
(2) If R satisfies the ascending chain condition on reflexive ideals of R, then
(i) D(R) is an Abelian group generated by maximal reflexive ideals.
(ii) Any maximal reflexive ideal is a minimal prime ideal (height-1 prime).
(3) The center of R is a completely integrally closed domain.

Theorem 2.3 (3) shows maximal orders are nothing but completely integrally
closed in case of commutative domains.

A fractional R-ideal A is said to be invertible if A∗A = R = AA+. An order in Q
is said to be Asano if each nonzero ideal is invertible, and is said to be Dedekind if it
is Asano and hereditary (see [68] for more detailed results on Asano and Dedekind
orders).

In case of commutative domains, invertible ideal is equivalent to projective. Hence
Dedekind, Asano, and hereditary are all same. However, in the noncommutative
setting, invertible ideal is projective and the converse does not necessarily hold.
Thus Dedekind orders imply Asano and hereditary. The converse implications do
not necessarily hold and there are no implications between Asano and hereditary
(see [63, 68] for such examples). However, if we assume that R is bounded, that
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is any essential one-sided ideal contains a nonzero ideal (this concept is defined by
Asano), then we have

Proposition 2.4 ([56]) Bounded Noetherian Asano orders are Dedekind.

In the rest of this section, we give necessary and sufficient conditions for some
well-known noncommutative rings to be maximal orders (or a sufficient condition
for well-known noncommutative rings to be maximal orders).

Proposition 2.5 (Algebra case) Let Q be a simple Artinian ring with its center F
and R as a subring of Q with its center D. R is called a D-order in Q if the following
two conditions are satisfied:

(i) F is the quotient field of D and Q = FR, that is, R is an order in Q.
(ii) Every element of R is integral over D.
(1) There always exists a maximal D-order by Zorn’s lemma.
(2) If D is a Dedekind domain, then every maximal D-order is a bounded noncom-

mutative Dedekind order [73].
(3) If D is a Krull domain, then every maximal D-order is a bounded noncommu-

tative Krull order ([35, 63], see Sect.3 for the definition of Krull orders).

Let σ be an automorphism of R and δ be a left σ-derivation on R. The non-
commutative polynomial ring R[x;σ, δ] = { f (x) = anxn + · · · + a0 | ai ∈ R} in
an indeterminate x with multiplication : xa = σ(a)x + δ(a) for any a ∈ R is called
an Ore extension.

In [72], Ore defined noncommutative polynomial rings in case R is a skew field
and studied the structure of them. It is easy to see that σ and δ are extended to an
automorphism σ of Q and a left σ-derivation δ on Q. Since Q[x;σ, δ] is a principal
ideal ring, that is, any one-sided ideal is principal [22], it has a quotient ring which
is a simple Artinian ring and so R[x;σ, δ] has a quotient ring which is the same
quotient ring of Q[x;σ, δ].

Let I be an invertible ideal of R with σ(I ) = I . A subring R[I x;σ, δ] =∑∞
n=0

⊕
I nxn of R[x;σ, δ] is called an Ore–Rees ring associated to I , where

I 0x0 = R.

Proposition 2.6 (Ore extensions and Ore–Rees ring) If R is a maximal order in Q,
then so is R[x;σ, δ], and if R is a Noetherian maximal order then so is R[I x;σ, δ]
[23, 47].

Proposition 2.7 (Strongly graded rings) (1) Let S = ∑
n∈Z

⊕
Rn be a strongly Z-

graded ring, where Z is the ring of integers. If R0, the part of degree zero, is a
maximal order, then so is S [65].

(2) Let R be a semiprime Z-graded ring. R is an Asano order if and only if
(i) Every gr-R-ideal is invertible, and
(ii) Every essential gr-maximal ideal is maximal [53].

A commutative Noetherian local ring D is regular if and only if gl.dim(D) < ∞.
If D is regular, then it is a UFD and so it is a maximal order. In noncommutative
setting, we have
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Proposition 2.8 (Rings of finite global dimensions) (1) Any local Noetherian ring
of finite global dimension which is integral over its center is a maximal order [40].
(2) Any Noetherian, prime, AR-ring of finite global dimension with enough invertible
ideals is a maximal order [19].
(3) Let F be a field and R be a Noetherian F-algebra.
(i) If R is Auslander-regular, Cohen–Macaulay and stably free, then R is a maximal
order in its quotient division ring [77].
(ii) If R is a graded ring of finite global dimension such that R is integral over its
center, then R is a maximal order in its quotient division ring [77].

Let T =

(
R V
W S

)

be a ring of Morita contexts which is a prime Goldie ring, where

R and S are prime Goldie rings with the quotient rings Q(R) and Q(S), respec-
tively, V ,W are an (R, S)-bimodule, an (S, R)-bimodule, respectively. It follows that
Q(R)V = V Q(S) and Q(S)W = WQ(R), which are denoted by Q(V ) and Q(W ),

respectively. Then the quotient ring of T is

(
Q(R) Q(V )

Q(W ) Q(S)

)

, denoted by Q(T ). Sim-

ilar to maximal orders, we can define an (R, S)-maximal module in Q(V ) and an
(S, R)-maximal module in Q(W ) (see [7] for the definition of maximal modules).
Put V ∗ = {w̃ ∈ Q(W ) | w̃V ⊆ S} and V+ = {w̃ ∈ Q(W ) | V w̃ ⊆ R}. Similarly we
define W ∗ and W+.

Proposition 2.9 (Rings ofMorita contexts)The following conditions are equivalent:

(1) T is a maximal order in Q(T ).
(2) (i) R and S are maximal orders in Q(R) and Q(S), respectively, and
(ii) V ∗ = W = V+ and W ∗ = V = W+.
(3) (i) V is an (R, S)-maximal module in Q(V ) and W is an (S, R)-maximal module

in Q(W ), and
(ii) V ∗ = W = V+ and W ∗ = V = W+ [7, 66].

As a generalization of universal enveloping algebras, in [15], Bell and Goodearl
defined a PBW extension as follows: An over-ring S of R is called a Poincare–
Birkhoff–Witt extension of R (PBW extension for short) if there exist elements
x1, x2, . . . , xn ∈ S such that

(i) the ordered monomials xv1
1 . . . xvn

n , where vi are non-negative integers, form a
basis for S as a free left R-module,

(ii) xir − r xi ∈ R for each i = 1, . . . , n and any r ∈ R, and
(iii) xi x j − x j xi ∈ R + Rx1 + · · · + Rxn for all i, j = 1, . . . , n.

Proposition 2.10 (Enveloping algebras) Let D be a Noetherian integrally closed
domain and g be aLie D-algebrawhich is a finite free D-module. Then the enveloping
algebra U (g) is a maximal order [23].
(2) If R is a maximal order in Q(R), then the PBW extension R < x1, x2, . . . , xn >

is a maximal order [64].
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Proposition 2.11 (Semigroup algebras) Let F be a field and S a submonoid of a
torsion free finitely generated abelian-by-finite group. The semigroup algebra F[S]
is a Noetherian maximal order if and only if the following conditions are satisfied.
(1) S satisfies the ascending chain condition on left and right ideals.
(2) For every minimal prime P in S the semigroup SP is a maximal order with only
one minimal prime ideal.
(3) ∩SP = S, where P runs over all minimal prime ideals of S [49].

3 Krull Orders

Several noncommutative ring theorists defined Krull orders (Krull rings) and studied
the ideal theory and polynomial extensions during the period 1970–1980 [23, 24, 51,
52, 54, 55, 58–61]. However, in case of orders having polynomial identities, these
Krull orders coincide.

In this section, we only give a definition of Krull orders due to Chamarie and
study ideal theory, polynomial extensions, and Ore–Rees rings over Krull orders.

Let F be a right Gabriel topology on R and RF = {q ∈ Q | qF ⊆ R for some
F ∈ F}, which is called the right quotients of R with respect to F . If I is a right
ideal of R, then IF = {q ∈ Q | qF ⊆ I for some F ∈ F} is a right ideal of RF , and
I is said to be F-closed if IF ∩ R = I . Similarly for a left Gabriel topology F ′ on
R we denote the left quotients of R with respect to F ′ by F ′ R (see [79] for Gabriel
topologies and quotients).

We now introduce a special Gabriel topology on R as follows.
Put FR = {F | F is a right ideal such that (r−1 · F)∗ = R for any r ∈ R} which

is a right Gabriel topology on R, where r−1 · F = {a ∈ R | ra ∈ F}. Similarly F ′
R

= {F ′ | F ′ is a left ideal such that (F ′ · r−1)+ = R for any r ∈ R} is a left Gabriel
topology on R.

A right (left) ideal I (J ) of R is called τ -closed if I = IFR ∩ R (J = F ′
R J ∩ R).

An order in Q is said to be τ -Noetherian if it satisfies the ascending chain conditions
on τ -closed left ideals as well as τ -closed right ideals.

Definition 3.1 An order in a simple Artinian ring is called a Krull order (ring) in
the sense of Chamarie [23, 24] if it is a maximal order and τ -Noetherian.

Note that Noetherian maximal orders are Krull orders. We start with ideal theory
between a Krull order and its over-ring.

Proposition 3.2 ([23, 63]) Let R be a Krull order in Q and R′ be an over-ring of R
such that RF = R′ = F ′ R for some right (left) Gabriel topology F(F ′) on R. Then
(1) R′ is a Krull order in Q.
(2) For any fractional right R-ideal I , F ′(I−1) = (I R′)−1 = (IF )−1, where I−1 =
{q ∈ Q | I q I ⊆ I }.
(3) Themap: I −→ IF is a bijection between the set of reflexiveF-closed right ideals
I of R and the set of reflexive right ideals of R′ (I is called reflexive if I = I ∗+).
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Theorem 3.3 (Structure theorem for Krull orders, [63]) Let R be a Krull order in
Q. Then

(1) The center of R is a Krull domain.
(2) Any reflexive prime ideal P is localizable and RP, the localization of R at P is

a local principal ideal ring.
(3) R = ∩RP ∩ S(R), where P ranges over all maximal reflexive ideals and S(R)

=
⋃
{A−1 | A is nonzero ideal of R} is a reflexively simple Krull order in Q.

(4) R has a finite character property, that is, any regular element c ∈ R is a non-unit
in only finitely many of RP .

(5) For any essential right ideal I , I ∗+ = ∩I RP ∩ (I S(R))∗+.

In the remainder of this section, R is an order in Q with an automorphism σ and
a left σ-derivation δ, and put T = Q[x;σ, δ].

We denote the prime spectrum of R by Spec(R) and Spec∗
0(R[x;σ, δ])= {P:

reflexive prime ideals | P ∩ R = (0)}. It is shown in [63] that R is τ -Noetherian if
and only if so is R[x;σ, δ] (in [23], Chamarie proved that R is τ -Noetherian, then
so is R[x;σ, δ]).
Proposition 3.4 ([63]) Suppose R is τ -Noetherian and put S = R[x;σ, δ].
(1) There is a one-to-one correspondence between Spec∗

0(S) and Spec(T) which is
given by: P ′ −→ P = P ′ ∩ S, where P ′ ∈ Spec(T).
(2) If P ∈ Spec∗

0(S), then P is localizable and SP = TP ′ which is a local principal
ideal ring, where P ′ = PT .

A fractional R-ideal a is called σ-stable if σ(a) ⊆ a and it is σ-invariant if σ(a) =
a. An order R is called a σ-maximal order if Ol(a) = R = Ol(a) for any σ-invariant
ideal a of R, and R is a σ-Krull order if it is a σ-maximal order and τ -Noetherian.
Similarly, a fractional R-ideal a is called δ-stable if δ(a) ⊆ a and R is called a δ-
maximal order in Q if Ol(a) = R = Or (a) for any δ-stable ideal a of R. An order
is said to be a δ-Krull order if it is a δ-maximal order and τ -Noetherian.

In case δ = 0 or σ = 1, we denote R[x;σ, δ] by R[x;σ] or R[x; δ], respectively.

Theorem 3.5 ([23, 63]) Let R be an order in Q.

(1) If R is a Krull order, then so is R[x;σ, δ] (there are examples of orders R not
Krull such that R[x;σ, δ] is a Krull order) [1, 62, 67].

(2) R is a σ-Krull order if and only if R[x,σ] is a Krull order.
(3) R is δ-Krull order if and only if R[x; δ] is a Krull order.

Let S = R[x;σ] or S = R[x; δ]. We describe all the reflexive fractional S-ideals
in case S is a Krull order.

Proposition 3.6 ([63]) (1) Let S = R[x;σ] and suppose R is a σ-Krull order in Q.
Let P be an ideal of S with P ∩ R �= 0. Then P is a reflexive prime ideal if and
only if P = p[x;σ] for some σ-invariant reflexive ideal p of R which is σ-prime (p
is σ-prime if, for σ-stable ideals a, b, ab ⊆ p implies either a ⊆ p or b ⊆ p).
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(2) Let S = R[x; δ] and suppose R is a δ-Krull order in Q. Let P be an ideal of
S with P ∩ R �= 0. Then P is a reflexive prime ideal if and only if P = p[x; δ] for
some δ-stable reflexive ideal p of R which is δ-prime (p is δ-prime if, for δ-stable
ideals a, b, ab ⊆ p implies either a ⊆ p or b ⊆ p).

By Propositions 3.4 and 3.6, any maximal reflexive ideal P of S is either P ∈
Spec∗

0(S) or P = p[x;σ] for a reflexive σ-prime ideal p of R (in case S = R[x; δ],
P ∈ Spec∗

0(S) or P = p[x; δ] for a reflexive δ-prime ideal p of R).
We denote the set of σ-invariant reflexive fractional R-ideals by Dσ(R) and

by Dδ(R) = {a | a is a δ-stable reflexive fractional R-ideal}. Then Dσ(R) is an
abelian group generated by maximal σ-invariant reflexive ideals of R. Similarly,
Dδ(R) is an abelian group generated by maximal δ-stable reflexive ideals of R.

Thuswehave the followingwhichdescribe all reflexive fractional S-idealsIdeal!sideal@s-
ideal.

Theorem 3.7 ([63]) (1) Suppose R is a σ-Krull order in Q and S = R[x;σ], T =
Q[x;σ]. Then

D(S) ∼= Dσ(R) ⊕ D(T ).

(2) Suppose R is a δ-Krull order in Q and let S = R[x; δ], T = Q[x; δ]. Then

D(S) ∼= Dδ(R) ⊕ D(T ).

Let R be a Krull order in Q. The set of principal fractional R-ideals forms a
subgroup P(R) of D(R), where a fractional R-ideal a is principal if a = aR = Ra
for some a ∈ a. The factor group D(R)/P(R) is called the divisor class group of
R, which is denoted by Cl(R). In case R is a σ-Krull order (δ-Krull order), we can
similarly define Clσ(R) = Dσ(R)/Pσ(R) (Clδ(R) = Dδ(R)/Pδ(R)) which is called
theσ-divisor class group of R (δ-divisor class group of R), respectively,where Pσ(R)

is the subgroup of σ-invariant principal fractional R-ideals (Pδ(R) is the subgroup
of δ-stable principal fractional R-ideals).

Proposition 3.8 ([63]) (1) Suppose R is a σ-Krull order in Q and let S = R[x;σ].
Then the map φ : Dσ(R) −→ D(S) defined by φ(a) = a[x;σ], where a ∈ Dσ(R)

induces an isomorphism: Clσ(R) ∼= Cl(S).
(2) Suppose R is a δ-Krull order in Q and let S = R[x; δ]. Then the map ψ :
Dδ(R) −→ D(S) defined by ψ(a) = a[x; δ], where a ∈ Dδ(R) induces a surjective
map: Clδ(R) −→ Cl(S). If R is a domain, then Clδ(R) ∼= Cl(S).

Let S = R[I x;σ, δ] be an Ore–Rees ring, where R is a Noetherian prime ring as
in Sect. 2. A fractional R-ideal a is called (σ; I )-invariant if Iσ(a) = aI .

An order R is a (σ; I )-maximal order if Ol(a) = R = Or (a) for any (σ; I )-
invariant ideal a of R. If R is a (σ; I )-maximal order, then Dσ;I (R), the set of
all (σ; I )-invariant reflexive fractional R-ideals, is an Abelian group generated by
maximal (σ; I )-invariant reflexive ideals of R (this is proved by standard way).

A fractional R-ideal a is said to be (δ; I )-stable if Iδ(a) ⊆ a and Ia = aI .We can
define a (δ; I )-maximal order in an obvious way and denote the set of all (δ; I )-stable
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reflexive fractional R-ideals by Dδ;I (R). If R is a (δ; I )-maximal order, then Dδ;I (R)

is an Abelian group generated by maximal (δ; I )-stable reflexive ideals of R.
In case δ = 0 or σ = 1, we write R[I x;σ] for R[I x;σ, 0] and R[I x; δ] for

R[I x; 1, δ], respectively. If S is a maximal order (in case δ = 0 or σ = 1), then we
completely describe the structure of reflexive fractional S-ideals as follows:

Theorem 3.9 ([47]) Let R be a Noetherian prime ring and S = R[I x;σ] or S =
R[I x; δ]. Then
(1) In case δ = 0.
(i) S is a maximal order if and only if R is a (σ; I )-maximal order.
(ii) If R is a (σ; I )-maximal order, thenany reflexive fractional S-idealIdeal!sideal@s-
ideal is of the form:

xnwa[I x;σ]

for some a ∈ Dσ;I (R), w ∈ Z(Q(T )), the center of Q(T ), and n is an integer.
(2) In case σ = 1.
(i) S is a maximal order if and only if R is a (δ; I )-maximal order.
(ii) If R is a (δ; I )-maximal order, then any reflexive fractional S-ideal is of the form:

wa[I x; δ]

for some a ∈ Dδ;I (R), w ∈ Z(Q(T )).

Let G be a polycyclic-by-finite group and R[G] be the group ring. A subset
of G is called orbital if it has only finite many distinct G-conjugates. G is called
dihedral free if it contains no orbital subgroup isomorphic to the infinite dihedral
group < a, b ∈ G | aba = b−1, a2 = 1 >.

Proposition 3.10 (Group rings) Let G be a polycyclic-by-finite group. The group
ring R[G] is a prime Krull order if and only if

(i) R is a prime Krull order,
(ii) G has no nontrivial finite normal subgroup, and
(iii) G is dihedral free [17, 18, 20].

Remark (1) In the first paragraph of Sect. 3, we did not give the definitions of Krull
rings different from Krull rings due to Chamarie. See [54, 55] for the definition of
�-Krull rings, and see [61] for the definition in the sense of Marubayashi.

It is natural, in a sense, from the viewpoint of multiplicative ideal theory that an
order is a Krull order (ring) if it is a maximal order and satisfies the ascending chain
condition on integral reflexive ideals ([38, 49, 70] for monoids).

In case of rings having polynomial identities, those Krull rings all coincide, which
is proved by using Posner’s theorem [68, 13.6.5].

Krull orders in the sense of Chamarie are Krull orders in the sense of [70] ([63,
Lemma 2.2.3]). However, it is still open whether each reflexive prime ideal of Krull
orders in the sense of [70] is localizable or not, which is important to study the
structure of orders. It is a remarkable result that an order R is Krull in the sense
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of [70] if and only if the monoid of regular elements of R is a Krull monoid
[38, Proposition 5.1].
(2) See [38, 75] for multiplicative ideal theory in noncommutative monoids.

4 Unique Factorization Rings

Noncommutative unique factorization rings were defined by various ring theorists
with two different approaches. In 1963, P.M. Cohn generalized the notion of commu-
tative unique factorization domains (UFD) to noncommutative ringswith an element-
wise approach, [29]. In 1984, A.W. Chatters introduced unique factorization for ele-
ments in the context of Noetherian rings which are not necessarily commutative
with both element-wise approach and ideal theoretic approach, [25], and published a
series of papers on the subject with his co-authors (D.A. Jordan, M.P. Gilchrist, and
D.Wilson). In [1], authors gave a more general definition to noncommutative unique
factorization rings and introduced connections to Krull orders. In this section, we
give a summary of all approaches mentioned above.

A commutative unique factorization domain (UFD) is an integral domain satisfy-
ing the following three conditions (e.g. [81]):

1. Every element of R which is neither zero nor unit is a product of primes.
2. Any two prime factorizations of a given element have same number of factors.
3. The primes occurring in any factorization of a are completely determined by a,
except for their order and for multiplication by units.

In [29], Cohn generalizes the notion of UFD to noncommutative rings by taking
1–3 as starting point. By an integral domain we understand a ring (not necessarily
commutative) in which 1 �= 0, and without zero-divisors. Thus in an integral domain
R, the nonzero elements forma semigroupundermultiplicationwhichwill be denoted
by R∗. Two elements a, b of a ring R are said to be associated, if b = uav, where
u, v are units in R. An irreducible element in R is a non-unit which is not a product
of two non-units. Clearly, if a is irreducible, or unit, or zero, then so is any element
associated to a. Two elements a, b of R are said to be right similar, if R/aR ∼= R/bR,
as right R-modules [48].

Lemma 4.1 ([33]) Two elements in an integral domain are right similar if and only
if they are left similar.

Let a, b ∈ R and consider any factorizations of a and b:

a = u1u2 . . . ur ,

b = v1v2 . . . vs .

These factorizations are said to be isomorphic, if r = s and there is a permutation π
of (1,…,r) such that ui is similar to viπ .
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Proposition 4.2 ([29, Proposition 2.2]) Let a, b be nonzero elements of an integral
domain R which are similar. Then any factorization of a gives rise to an isomorphic
factorization of b.

A factorization of a may be regarded as a chain of cyclic submodules from R to
aR, and by the isomorphism R/aR ∼= R/bR this gives a chain from R to bR, in
which corresponding factors are isomorphic.

Definition 4.3 ([29]) A unique factorization domain (UFD for short) is an integral
domain R such that every non-unit of R∗ has a factorization into irreducibles and
any two factorizations of a given element are isomorphic.

Since in a commutative integral domain R, a and b are associated if and only if
R/aR ∼= R/bR holds, we have the following theorem:

Theorem 4.4 ([29, Theorem 2.3]) A commutative integral domain is a UFD if and
only if it satisfies 1–3 above.

Noncommutative principal ideal domains [48] are given as an example of a non-
commutative UFD. This includes in particular the skew polynomial rings studied by
Ore [72] and the ring of integral quaternions. Moreover, any free associative algebra
is a UFD [29, Theorem 6.3].

In 1984, A.W. Chatters defined unique factorization domains in the context of (not
necessarily commutative) Noetherian rings which also has an equivalent element-
wise definition.

Let R be a prime ring. A height-1 prime ideal of R is a prime ideal P of R such
that P is minimal among nonzero prime ideals of R. An element p of R is completely
prime if pR = Rp is a height-1 prime of R and R/pR is a domain. If I is an ideal
of R then C(I ) is the set of elements of R which are regular (i.e. not zero-divisors)
modulo I . Set C = ⋂ C(P), where P ranges over the height-1 primes of R.

Proposition 4.5 ([25, Proposition 2.1]) Let R be a prime Noetherian ring with at
least one height-1 prime ideal, then the following conditions on R are equivalent:
1. Every height-1 prime of R is of the form pR for some completely prime element
p of R.
2. R is a domain and every nonzero element of R is of the form cp1 p2 . . . pn for some
c ∈ C (as defined above) and for some finite sequence p1, . . . , pn of completely prime
elements of R.

Definition 4.6 ([25]) A Noetherian unique factorization domain (Noetherian UFD
for short) is a Noetherian integral domain which has at least one height-1 prime ideal
and which satisfies the equivalent conditions of Proposition 4.5.

Examples of Noetherian UFDs include Noetherian UFDs of commutative algebra
and also the universal enveloping algebras of solvable Lie algebras.

We can deduce from Sect. 2 that a commutative Noetherian domain is a maximal
order if and only if it is integrally closed. In the case of Noetherian UFDs we have
the following theorem:
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Theorem 4.7 ([25, Theorem 2.10]) Let R be a Noetherian UFD such that every
nonzero prime ideal of R contains a height-1 prime; then R is a maximal order.

The Noetherian UFDs defined as in [25] has one respect which is not analogous
to the commutative case, and that is the existence of Noetherian UFDs R such that
the polynomial ring R[x] is not a UFD. Because of this reason, Chatters and Jordan
gave a more general definition of Noetherian unique factorization rings.

Definition 4.8 ([27]) A ring R will be called a Noetherian unique factorisation ring
(Noetherian UFR, for short) if R is a prime Noetherian ring such that every nonzero
prime ideal of R contains a nonzero principal prime ideal.

The class of Noetherian UFRs includes all Noetherian UFDs as defined in [25]. If
D is the division algebra of rational quaternions and R = D[x] then R is aNoetherian
UFR and (x2 + 1)R is a height-1 prime of R, but R is not a Noetherian UFD because
R/(x2 + 1)R is not a domain.

Following are some of the important results obtained by Chatters and Jordan.

Theorem 4.9 ([27]) If R is a Noetherian UFR then R is a maximal order.

Theorem 4.10 ([27]) If R is a Noetherian UFR then R[x] is a Noetherian UFR.

Let R[x;σ] and R[x; δ] be defined as in Sect. 2. Then;

Theorem 4.11 ([27]) Let R be a Noetherian UFR with an automorphism of finite
order. Then R[x;σ] is a Noetherian UFR.

Theorem 4.12 ([27]) Let R be a Noetherian UFR and let δ be a derivation of R
such that every nonzero δ-prime ideal contains a nonzero principal δ-ideal. Then
R[x; δ] is a Noetherian UFR.

However, if R is a Noetherian UFR in the sense of [27], then R[x;σ] and R[x; δ]
are not necessarily Noetherian UFRs in the sense of [27].

Let G be a polycyclic-by-finite group. A plinth in G is a torsion-free abelian
orbital subgroup H of G such that H ⊗Z Q is an irreducible QT -module for every
subgroup T of a finite index in NG(H), where Q is the field of rationals. The plinth
H is centric if its centralizer CG(H) has a finite index in G. We denote by �(G)

the FC-subgroup, that is �(G) = {g ∈ G : |G : CG(g)| < ∞}, where CG(g) is the
centralizer of g in G.

Proposition 4.13 ([17, 26]) Let R be a commutative ring and G be a polycyclic-by-
finite group. Then R[G] is a Noetherian UFR in the sense of [27] if and only if

(1) R is a UFD,
(2) G has no nontrivial finite normal subgroup,
(3) G is dihedral free, and
(4) Every plinth of G is centric.

Proposition 4.14 ([17, 26]) Let R be a commutative ring and G be a polycyclic-
by-finite group. Then R[G] is a UFD in the sense of [25] if and only if
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(1) R is a UFD,
(2) G is torsion free,
(3) All plinths of G are central, and
(4) G/�(G) is torsion free.

Let S be a monoid with a polycyclic-by-finite group of quotients G. S is called
normalizing if every element in S is normal, that is, cS = Sc for all c ∈ S and S is
called UF-monoid if every prime ideal of S contains a principal prime ideal P , that
is, P = Sr = r S for some r ∈ S as one in [27].

Proposition 4.15 ([50]) Let S be a normalizing monoid with a torsion-free
polycyclic-by-finite group of quotients G and let K be a field. Assume that S satisfies
the ascending chain condition on left and right ideals. Then the semigroup algebra
K [S] is a Noetherian UFR in the sense of [27] if and only if K [G] is a Noetherian
UFR in the sense of [27] and S is a UF-monoid.

In [28] Chatters, Gilchrist and Wilson developed a theory of noncommutative
UFRs without the Noetherian condition.

Let R be an associative ring with identity element. An element x of R is normal if
x R = Rx . A principal ideal of R is an ideal of the form x R for some normal element
x of R. Let R be a prime ring, a prime element of R is a nonzero normal element p
such that pR is a prime ideal.

Definition 4.16 ([28]) A ring R is called a unique factorization ring (UFR for short)
if every nonzero prime ideal of R contains a prime element.

If R is a UFR as in [28] then the set of principal ideals of R is closed under finite
intersections and satisfies the ascending chain condition, and the polynomial ring
over R in an arbitrary number of central indeterminates is also a UFR. Restricting
to the case of UFRs which satisfy a polynomial identity (PI) gives several genuinely
noncommutative examples such as trace rings of generic matrix rings [21], the ring
of n by n matrices over a commutative Dedekind domain of finite class number
n; and the group ring R[G] where R is any UFR which satisfies a PI and G is a
torsion-free abelian group which satisfies the ascending chain condition for cyclic
subgroups [28].

Another definition of unique factorization rings and its connections toKrull orders
are given in Abbasi et al. [1]. Noetherian UFRs in the sense of [27] are Krull orders
in the sense of Marubayashi [61] by [1, Proposition 1.9], and Krull orders in the
sense of [61] are Krull orders in the sense of Chamarie [24]. Existence of examples
of Krull orders which are not Krull orders in the sense of [61] and being natural that
UFRs are closed under the polynomial extensions were the motivation of the authors
of [1] to give a new definition of UFRs.

Definition 4.17 ([1]) Let R be a τ -Noetherian order with an automorphism σ in a
simple Artinian ring Q. Then R is called a σ-unique factorization ring (a σ-UFR for
short) if any σ-prime ideal P of R such that P = P∗+ or P=+∗P is principal.

In case σ is the identity mapping on R, R is said to be a UFR.
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It turns out [63] that R is a UFR in the sense of [1] if and only if
(i) R is a maximal order and
(ii) Any reflexive ideal is principal.

Noetherian UFRs in the sense of [27] are UFRs in the sense of [1], however the
converse is not true in general (see [1] for examples). Furthermore, we have the
following:

Proposition 4.18 ([1]) Let R be a UFR in the sense of [1]. Then R is a Noetherian
UFR in the sense of [27] if and only if RN is a simple ring, where N is Ore set
consisting of all normal elements in R.

Let δ be a derivation on R. Replacing σ-prime ideals by δ-prime ideals, we can
naturally define δ-UFRs. Of course, if R is a UFR in the sense of [1], then R is a
σ-UFR and δ-UFR, and we have the following characterizations:

Proposition 4.19 ([1]) (1) R is a σ-UFR if and only if R[x;σ] is a UFR in the sense
of [1].
(2) If R is a δ-UFR, then R[x; δ] is a UFR in the sense of [1]. In case R is a domain,
the converse is also true.

In [1], they obtained the following characterizations of group ring R[G] (inde-
pendent on [26]).

Proposition 4.20 ([1]) Let R be a UFR in the sense of [1] and G be a polycyclic-
by-finite group. Then R[G] is a UFR in the sense of [1] if and only if
(1) G has no nontrivial finite normal subgroup, and
(2) G is dihedral free.

Proposition 4.21 ([1]) Let R be a Noetherian UFR in the sense of [27] and G be
a polycyclic-by-finite group. Then R[G] is a Noetherian UFR in the sense of [27] if
and only if
(1) G has no nontrivial finite normal subgroup,
(2) G is dihedral free, and
(3) every plinth of G is centric.

We refer the readers to [76] for more examples and detailed survey of unique
factorization rings.

5 G-Dedekind Prime Rings

The class of rings in which every reflexive (fractional) R-ideal (right or left) is
invertible was first defined by Cozzens and Sandomierski in [30] with the name RI-
orders. In [2], following the commutative version of the theory, Akalan characterized
the class of rings in which (AB)∗ = B∗A∗ is satisfied for all R-ideals A, B and gave
the name Generalized Dedekind prime rings (G-Dedekind prime, for short) to this



Multiplicative Ideal Theory in Noncommutative Rings 15

class of rings. It turns out that in a G-Dedekind prime ring every reflexive R-ideal is
invertible and therefore is an RI-order.

The class of G-Dedekind prime rings is a broad class including both the class of
Dedekind prime rings and the class of Noetherian UFRs [27]. Moreover, Noetherian
maximal orders with gld≤ 2 are examples of G-Dedekind prime rings. This assertion
follows from Bass’ characterization of Noetherian rings with gld ≤ 2 as rings over
whichduals of finitely generatedmodules are projective (see [30] and [14, Proposition
5.2]).

Definition 5.1 ([2]) A prime Noetherian maximal order satisfying (AB)∗ = B∗A∗
for all R-ideals A and B, is called a generalized Dedekind prime ring (G-Dedekind
prime ring).

As we have mentioned in Sect. 2 (Theorem 2.3), the set D(R) of all reflexive R-
ideals becomes anAbelian groupwithmultiplication “◦”.We denote the divisor class
group of R by Cl(R) = D(R)/P(R) where P(R) is the subgroup of D(R) which
consists of principal R-ideals, and the Picard group of R by Pic(R) = I nv(R)/P(R)

where I nv(R) is the group of invertible R-ideals.

Theorem 5.2 ([2, Theorem 3.1])For an order R, the following conditions are equiv-
alent:
(1) A∗∗A∗ = R and A+A++ = R for each R-ideal A.
(2) R is a maximal order and (AB)∗ = B∗A∗ for all R-ideals A and B of R.
(3) R is a maximal order and the product of reflexive R-ideals is reflexive.
(4) R is a maximal order and D(R) is a group with the usual product.
(5) R is a maximal order and every reflexive R-ideal is invertible.
(6) R is a maximal order and Cl(R) = Pic(R).

In [8, 80], many examples of commutative maximal orders with reflexive ideals
which are not invertible are given. Following is a noncommutative example of a
prime Noetherian maximal order with a reflexive ideal which is not invertible.

Example 5.3 By [16, Example 35] there exists a prime Noetherian smooth PI ring
R which is also a maximal order with a unique height one prime ideal P which is
not a projective R-module on either side. This height one prime ideal P is maximal
reflexive by [3, Theorem 3.1]. However since P is not projective, it is not invertible.

The class of G-Dedekind prime rings is closed under the formation of n × n full
matrix rings and moreover if R is a G-Dedekind prime ring then so is the ring eRe
where e is an idempotent such that ReR = R. Thus, being a G-Dedekind prime ring
is a Morita invariant.

Theorem 5.4 ([2, Theorem 5.4]) If R is a PI G-Dedekind prime ring then so is the
polynomial ring R[x].

In [4], Akalan showed that the PI condition can be waived from Theorem 5.4.

Theorem 5.5 ([2, Theorem 6.2]) If R is a PI G-Dedekind prime ring then so is the
Rees ring R[I x] where I is an invertible ideal of R.
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InMarubayashi et al. [67], authors use the terminology “generalized Asano prime
rings” for “generalized Dedekind prime rings”. Let σ be an automorphism of R, they
call R a σ-generalized Asano prime ring (a σ-G-Asano prime ring for short) if it is
a σ-Krull prime ring whose σ-invariant reflexive R-ideals are invertible. In case σ is
identity, R is said to be a G-Asano prime ring.

Theorem 5.6 ([67, Theorem 2.8]) Let R be an order in Q. R is a σ-G-Asano prime
ring if and only if R[x;σ] is a G-Asano prime ring.

Definition 5.7 ([46]) A ring R is called δ-generalized Asano prime ring if R is a
δ-Krull prime ring whose δ-stable reflexive R-ideals are invertible.

Theorem 5.8 ([46, Theorem 2.6]) Let R be an order in Q. Then R is a δ-generalized
Asano prime ring if and only if S = R[x; δ] is a generalized Asano prime ring.

A generalized Asano prime ring is a Krull prime ring, but the converse of this
does not necessarily hold [67] and [36, Example 1.10].

6 Hereditary Noetherian Prime Rings (HNP Rings)
and a Generalization of HNP Rings

Hereditary Noetherian prime rings (HNP for short) are a very interesting class of
rings and a lot of research has been done on them, especially for 1960–1990. In 1960,
Auslander and Goldman found an example of HNP rings which is not Dedekind in
crossed product algebras [13]. Since then, in case of algebras, Harada had studied
the structure of HNP rings including ideal theory [42–44]. In 1970, Eisenbud and
Robson studied the ideal theory of HNP rings which are not necessarily algebras.
In this section, we mainly discuss the ideal theory in HNP rings and propose a
polynomial-type generalization of HNP rings.

One of the important results on HNP rings is that the invertible ideals in an HNP
ring generate an Abelian group as in Dedekind orders, which is obtained under the
condition: every ideal is projective (left and right projective). The followings are the
key propositions to prove this result.

Proposition 6.1 ([32, Proposition 2.1]) Let R be an order in a simple Artinian ring
such that each ideal of R is projective. Then every invertible ideal of R is a product
of maximal invertible ideals (ideals maximal amongst the invertible ideals).

Proposition 6.2 ([32, Proposition 2.2]) Let R be an order in a simple Artinian ring
such that each ideal of R is projective. Then each maximal ideal of R is either
idempotent or invertible.

Afinite set of distinct idempotentmaximal idealsM1, . . . , Mn such thatOr (M1) =
Ol(M2), . . . , Or (Mn) = Ol(M1) is called a cycle. An invertible maximal ideal is
considered to be a trivial case of a cycle.
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Theorem 6.3 ([32, Theorem 2.6]) Let R be an order in a simple Artinian ring such
that each ideal of R is projective. Then each maximal invertible ideal of R is the
intersection of a cycle.

Theorem 6.4 ([32, Theorem 2.9]) Let R be an order in a simple Artinian ring such
that each ideal of R is projective. Then the invertible ideals of R generate an Abelian
group.

An ideal A is called eventually idempotent if Ak is idempotent for some k ≥ 1.

Proposition 6.5 ([32, Proposition 4.5])Let R be anHNP ring and A be an ideal of R
which is not contained in any invertible ideal. Then A is eventually idempotent. More
precisely, there are only a finite number of idempotent ideals M1, . . . , Mk containing
A and Ak = (M1 ∩ · · · ∩ Mk)

k is idempotent. (see [37] for more detail results on
eventually idempotent.)

Theorem 6.6 ([32, Theorem 4.2]) Let R be an HNP ring and I an ideal of R. Then
I = X A, where X is an invertible ideal and A is an eventually idempotent ideal.

Let A be a right ideal of R. The subring I(A) = {r ∈ R|r A ⊆ A} of R is called
the idealizer of A in R. A is said to be generative if RA = R. The idealizer is one
of the powerful tools to study HNP rings.

Theorem 6.7 ([74, Theorem 5.3]) Let R be an HNP ring and A be an essential right
ideal which is generative. Then I(A) is an HNP ring if and only if A is semimaximal,
that is, A is a finite intersection of maximal right ideals.

Theorem 6.8 ([74, Theorem 6.3]) The following conditions on an HNP ring R are
equivalent.

(1) R is contained in and is equivalent to a Dedekind prime ring.
(2) R has finitely many idempotent ideals.
(3) R has finitely many idempotent maximal ideals.
(4) R is obtained as an iterated idealizer from a Dedekind prime ring.

It was an interesting question that anyHNP ring has only finitelymany idempotent
ideals or not. In [78], they obtained examples of HNP rings in which there are infinite
many idempotent maximal ideals.

A right ideal A is called isomaximal if R/A is a finite direct sum of isomorphic
simple modules. In case A is isomaximal and generative, we have the following
correspondence between Spec(R) and Spec(S), where S = I(A).

Theorem 6.9 ([68, Theorem 5.6.11]) Let R be an HNP ring, A be a gener-
ative isomaximal right ideal and S = I(A). Then there is a set embedding φ:
{P ∈ Spec(R)|P � A} → Spec(S) given by P → P ∩ S. This preserves idempo-
tence and invertibility. Further:
(1) If there is no nonzero prime ideal P of R with P ⊆ A, then there is only one
nonzero prime of S not in the image of φ, that is, A, which is idempotent.
(2) If there is a (necessarily unique) nonzero prime ideal P ⊆ A, then there are
exactly two nonzero primes of S not in the image of φ, A and, say A′. Both are
idempotent and A′ is an isomaximal generative left ideal of R containing P.



18 E. Akalan and H. Marubayashi

We refer the readers to [57, 68] for more information about ideal theory in HNP
rings.

Finally we discuss the ideal theory of polynomial rings over an HNP ring and
propose a generalization of HNP rings. Let R be an HNP ring and S = R[x] be the
polynomial ring. Then S is not necessarily an HNP ring. In fact S is an HNP ring if
and only if R = Q.

Note: any one sided reflexive ideal of S is projective since gl.dim(S) ≤ 2.
Let A be a nonzero ideal of S such that A = A∗+ or A = A+∗, equivalently, A is

right projective or A is left projective. Then we have the following [5]:
(a) If a = A ∩ R �= (0), then A = a[x].
(b) If A ∩ R = (0), then A = Ba[x] for an invertible ideal B of S and an ideal a
of R.

In both cases, A is left and right projective.
These properties suggest us to define the following which are, in some sense, a

polynomial-type generalization of HNP rings.

Definition 6.10 ([6]) (1) A τ -Noetherian primeGoldie ring R is called a generalized
HNP ring (a G-HNP ring for short) if each ideal A with A = A∗+ or A = A+∗ is left
and right projective.
(2) A G-HNP ring is said to be a strongly G-HNP ring if each essential right (left)
ideal I (J ) with I = I ∗+(J = J+∗) is right (left) projective, respectively.

If R is an HNP ring, then R[x] is a strongly G-HNP ring. The following is a
structure theorem for G-HNP rings (compare with Theorem 3.3).

Theorem 6.11 (Structure theorem for G-HNP rings, [6]) Let R be a G-HNP ring.
Then

(1) any maximal invertible ideal P is localizable and RP is a semi-local HNP ring.
(2) R = ∩RP ∩ S(R), where P ranges over all maximal invertible ideals of R and

S(R) is a G-HNP ring with no invertible ideals.
(3) R has a finite character property.

We end the paper with the following questions.
Let σ be an automorphism of R and δ be a left σ-derivation on R.

Question 6.12 (1) What are necessary and sufficient conditions for R[x;σ, δ] to be
a G-HNP ring and describe all projective ideals of R[x;σ, δ].
(2) Let I be an invertible ideal of R. What are necessary and sufficient conditions for
R[I x;σ, δ] to be a G-HNP ring and describe all projective ideals of R[I x;σ, δ].

Let H be a monoid with quotient group Q. By adopting dual basis lemma for pro-
jective modules [68, (3.5.2)], we can define the concept of right hereditary monoids
as follows: H is right hereditary if I I ∗ = Ol(I ) for any right ideal I of H , where
I ∗ = {q ∈ Q|q I ⊆ H}. Similarly we can define left hereditary monoids.

Question 6.13 Is it possible to obtain ideal theories (as ones in HNP rings) in left
and right hereditary monoids?
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23. M. Chamarie, Anneaux de Krull non commutatifs, Thèse, Uni. de Lyon, 1981
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