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Abstract. We introduce the concept of compactly representing a large
number of state sequences, e.g., sequences of activities, as a flow dia-
gram. We argue that the flow diagram representation gives an intuitive
summary that allows the user to detect patterns among large sets of
state sequences. Simplified, our aim is to generate a small flow diagram
that models the flow of states of all the state sequences given as input.
For a small number of state sequences we present efficient algorithms to
compute a minimal flow diagram. For a large number of state sequences
we show that it is unlikely that efficient algorithms exist. More specifi-
cally, the problem is W [1]-hard if the number of state sequences is taken
as a parameter. We thus introduce several heuristics for this problem.
We argue about the usefulness of the flow diagram by applying the algo-
rithms to two problems in sports analysis. We evaluate the performance
of our algorithms on a football data set and generated data.

1 Introduction

Sensors are tracking the activity and movement of an increasing number of
objects, generating large data sets in many application domains, such as sports
analysis, traffic analysis and behavioural ecology. This leads to the question of
how large sets of sequences of activities can be represented compactly. We intro-
duce the concept of representing the “flow” of activities in a compact way and
argue that this is helpful to detect patterns in large sets of state sequences.

To describe the problem we start by giving a simple example. Consider three
objects (people) and their sequences of states, or activities, during a day. The set
of state sequences T = {τ1, τ2, τ3} are shown in Fig. 1(a). As input we are also
given a set of criteria C = {C1, . . . , Ck}, as listed in Fig. 1(b). Each criterion is a
Boolean function on a single subsequence of states, or a set of subsequences of
states. For example, in the given example the criterion C1 = “eating” is true for
Person 1 at time intervals 7–8 am and 7–9 pm, but false for all other time inter-
vals. Thus, a criterion partitions a sequence of states into subsequences, called
segments. In each segment the criterion is either true or false. A segmentation of
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Person 1 Person 2 Person 3

8-9am cycle to work cycle to workdrive to work
9am-5pm work work work

5-7pm study dinner shop
7-9pm dinner shop dinner

7-8am breakfast breakfastgym

(a) (b)

s C3

C1

C4 t

C2 C6

C1

C6

(c) (d)

8-9am
9am-5pm

5-7pm
7-9pm

7-8am

Person 1

[C2, C3]
[C4, C5]

[C4]
[C1, C7]

[C1, C7]

Person 2

[C2]
[C4, C5]

[C1]
[C6]

[C3]

Person 3

[C2, C3]
[C4, C5]

[C6]
[C1, C7]

[C1, C7]

C1: Eating {breakfast,dinner}

C3: Exercising {gym,cycle to work}
C4: Working or studying
C5: Working for at least 4 hours
C6: Shopping

C2: Commuting {cycle/drive to work}

C7: At least 2 people eating simultaneously

Fig. 1. The input is (a) a set T = {τ1, . . . , τm} of sequences of states and (b) a set of
criteria C = {C1, . . . , , Ck}. (c) The criteria partition the states into a segmentation.
(d) A valid flow diagram for T according to C.

T is a partition of each sequence in T into true segments, which is represented
by the corresponding sequence of criteria. If a criterion C is true for a set of
subsequences, we say they fulfil C. Possible segments of T according to the set C
are shown in Fig. 1(c). The aim is to summarize segmentations of all sequences
efficiently; that is, build a flow diagram F , starting at a start state s and ending
at an end state t, with a small number of nodes such that for each sequence of
states τi, 1 ≤ i ≤ m, there exists a segmentation according to C which appears
as an s–t path in F . A possible flow diagram is shown in Fig. 1(d). This flow
diagram for T according to C can be validated by going through a segmentation
of each object while following a path in F from s to t. For example, for Person 1
the s–t path s → C1 → C2 → C4 → C1 → t is a valid segmentation.

Now we give a formal description of the problem. A flow diagram is a node-
labelled DAG containing a source node s and sink node t, and where all other
nodes are labelled with a criterion. Given a set T of sequences of states and
a set of criteria C, the goal is to construct a flow diagram with a minimum
number of nodes, such that a segmentation of each sequence of states in T is
represented, that is, included as an s–t path, in the flow diagram. Furthermore
(when criteria depend on multiple state sequences, e.g. C7 in Fig. 1) we require
that the segmentations represented in the flow diagram are consistent, i.e. can
be jointly realized. The Flow Diagram problem thus requires the segmentations
of each sequence of states and the minimal flow diagram of the segmentations
to be computed. It can be stated as:

Problem 1. Flow Diagram (FD)

Instance: A set of sequences of states T = {τ1, . . . , τm}, each of length at most
n, a set of criteria C = {C1, . . . , Ck} and an integer λ > 2.
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Question: Is there a flow diagram F with ≤ λ nodes, such that for each τi ∈ T ,
there exists a segmentation according to C which appears as an s–t path in F?

Even the small example above shows that there can be considerable space
savings by representing a set of state sequences as a flow diagram. This is not
a lossless representation and comes at a cost. The flow diagram represents the
sequence of flow between states, however, the information about an individual
sequence of states is lost. As we will argue in Sect. 3, paths representing many
segments in the obtained flow diagrams show interesting patterns. We will give
two examples. First we consider segmenting the morphology of formations of
a defensive line of football players during a match (Fig. 4). The obtained flow
diagram provides an intuitive summary of these formations. The second example
models attacking possessions as state sequences. The summary given by the flow
diagram gives intuitive information about differences in attacking tactics.

Properties of Criteria. The efficiency of the algorithms will depend on prop-
erties of the criteria on which the segmentations are based. Here we consider
four cases: (i) general criteria without restrictions; (ii) monotone decreasing
and independent criteria; (iii) monotone decreasing and dependent criteria; and
(iv) fixed criteria. To illustrate the properties we will again use the example in
Fig. 1.

A criterion C is monotone decreasing [8] for a given sequence of states τ that
fulfils C, if all subsequences of τ also fulfil C. For example, if C4 is fulfilled by
a sequence τ then any subsequence τ ′ of τ will also fulfil C4. This is in contrast
to criterion C5 which is not monotone decreasing.

A criterion C is independent if checking whether a subsequence τ ′ of a
sequence τi ∈ T fulfils C can be achieved without reference to any other
sequences τj ∈ T , i �= j. Conversely, C is dependent if checking that a sub-
sequence τ ′ of τi requires reference to other state sequences in T . In the above
example C4 is an example of an independent criterion while C7 is a dependent
criterion since it requires that at least two objects fulfil the criterion at the same
time.

Related Work. To the best of our knowledge compactly representing sequences
of states as flow diagrams has not been considered before. The only related work
we are aware of comes from the area of trajectory analysis. Spatial trajectories
are a special case of state sequences. A spatial trajectory describes the movement
of an object through space over time, where the states are location points, which
may also include additional information such as heading, speed, and tempera-
ture. For a single trajectory a common way to obtain a compact representation
is simplification [10]. Trajectory simplification asks to determine a subset of the
data that represents the trajectory well in terms of the location over time. If the
focus is on characteristics other than the location, then segmentation [1,2,8] is
used to partition a trajectory into a small number of subtrajectories, where each
subtrajectory is homogeneous with respect to some characteristic. This allows a
trajectory to be compactly represented as a sequence of characteristics.
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For multiple trajectories other techniques apply. A large set of trajectories
might contain very unrelated trajectories, hence clustering may be used. Clus-
tering on complete trajectories will not represent information about interest-
ing parts of trajectories; for this clustering on subtrajectories is needed [6,12].
A set of trajectories that forms different groups over time may be captured by
a grouping structure [7]. These approaches also focus on location over time.

For the special case of spatial trajectories, a flow diagram can be illustrated
by a simple example: trajectories of migrating geese, see [9]. The individual
trajectories can be segmented into phases of activities such as directed flight,
foraging and stop overs. This results in a flow diagram containing a path for
the segmentation of each trajectory. More complex criteria can be imagined that
depend on a group of geese, or frequent visits to the same area, resulting in
complex state sequences that are hard to analyze without computational tools.

Results, Organization and Hardness. In Sect. 2 we present algorithms for
the Flow Diagram problem using criteria with the properties described above.
These algorithms only run in polynomial time if the number of state sequences
m is constant. Below we observe that this is essentially the best we can hope for
by showing that the problem is W [1]-hard.

Theorem 2. The FD problem is NP-hard. This even holds when only two cri-
teria are used or when the length of every state sequence is 2. Furthermore, for
any 0 < c < 1/4, the FD problem cannot be approximated within factor of c log m
in polynomial time unless NP ⊂ DTIME(mpolylogm).

Also for bounded m the running times of our algorithms is rather high. Again,
we can show that there are good reasons for this.

Theorem 3. The FD problem parameterized in the number of state sequences
is W [1]-hard even when the number of criteria is constant.

Both theorems are proved in the longer version of this paper [5]. Unless W [1] =
FPT , this rules out the existence of algorithms with time complexity of O(f(m)·
(nk)c) for some constant c and any computable function f(m), where m,n and
k are the number of state sequences, the length of the state sequences and the
number of criteria, respectively. To obtain flow diagrams for larger groups of state
sequences we propose two heuristics for the problem in Sect. 2. We experimentally
evaluate the algorithms and heuristics in Sect. 3.

2 Algorithms

In this section, we present algorithms that compute a smallest flow diagram
representing a set of m state sequences of length n for a set of k criteria. First,
we present an algorithm for the general case, followed by a more efficient algo-
rithm for the case of monotone increasing and independent criteria, and then
two heuristic algorithms. The algorithm for monotone increasing and dependent
criteria, and the proofs omitted in this section are in the extended version of
this paper [5].
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2.1 General Criteria

Next, we present a dynamic programming algorithm for finding a smallest flow
diagram. Recall that a node v in the flow diagram represents a criterion Cj that
is fulfilled by a contiguous segment in some of the state sequences. Let τ [i, j],
i ≤ j, denote the subsequence of τ starting at the ith state of τ and ending at
the jth state, where τ [i, i] is the empty sequence. Construct an (n + 1)m grid
of vertices, where a vertex with coordinates (x1, . . . , xm), 0 ≤ x1, . . . , xm ≤ n,
represents (τ1[0, x1], . . . , τm[0, xm]). Construct a prefix graph G as follows:

There is an edge between two vertices v = (x1, . . . , xm) and v′ = (x′
1, . . . , x

′
m),

labeled by some criterion Cj , if and only if, for every i, 1 ≤ i ≤ m, one of the
following two conditions is fulfilled: (1) xi = x′

i, or (2) all remaining τi[xi +1, x′
i]

jointly fulfil Cj . Consider the edge between (x1, x2) = (1, 0) and (x′
1, x

′
2) = (1, 1)

in Fig. 2(b). Here x1 = x′
1 and τ2[x2 + 1, x′

2] fulfils C2.
Finally, define vs to be the vertex in G with coordinates (0, . . . , 0) and add an

additional vertex vt outside the grid, which has an incoming edge from (n, . . . , n).
This completes the construction of the prefix graph G.

(a) (b) (c)

2
3

1

τ1

[C1]
[C3]

[C1]

τ2

[C1, C2]
[C3]

[C2]
s

τ2

τ1
0

0

1

1 2

2 vt

vs

C2

C3

C1

C1

C2

C3 t

Fig. 2. (a) A segmentation of T = {τ1, τ2} according to C = {C1, C2, C3}. (b) The
prefix graph G of the segmentation, omitting all but four of the edges. (c) The resulting
flow diagram generated from the highlighted path in the prefix graph.

Now, a path in G from vs to a vertex v represents a valid segmentation of some
prefix of each state sequence, and defines a flow diagram that describes these
segmentations in the following way: the empty path represents the flow diagram
consisting only of the start node s. Every edge of the path adds one new node to
the flow diagram, labeled by the criterion that the segments fulfil. Additionally,
for each node the flow diagram contains an edge from every node representing a
previous segment, or from s if the node is the first in a segmentation. For a path
leading from vs to vt, the target node t is added to the flow diagram, together
with its incoming edges. This ensures that the flow diagram represents valid
segmentations and that each node represents at least one segment. An example
of this construction is shown in Fig. 2.

Hence the length of a path (where length is the number of edges on the path)
equals the number of nodes of the corresponding flow diagram, excluding s and t.
Thus, we find an optimal flow diagram by finding a shortest vs–vt path in G.
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Lemma 4. A smallest flow diagram for a given set of state sequences is repre-
sented by a shortest vs–vt path in G.

Recall that G has (n + 1)m vertices. Each vertex has O(k(n + 1)m) outgoing
edges, thus, G has O(k(n + 1)2m) edges in total. To decide if an edge is present
in G, check if the nonempty segments the edge represents fulfil the criterion.
Thus, we need to perform O(k(n + 1)2m) of these checks. There are m segments
of length at most n, and we assume the cost for checking this is T (m,n). Thus,
the cost of constructing G is O(k(n + 1)2m · T (m,n)), and finding the shortest
path requires O(k(n + 1)2m) time.

Theorem 5. The algorithm described above computes a smallest flow diagram
for a set of m state sequences, each of length at most n, and k criteria in O((n+
1)2mk · T (m,n)) time, where T (m,n) is the time required to check if a set of m
subsequences of length at most n fulfils a criterion.

2.2 Monotone Decreasing and Independent Criteria

If all criteria are decreasing monotone and independent, we can use ideas similar
to those presented in [8] to avoid constructing the full graph. From a given vertex
with coordinates (x1, . . . , xm), we can greedily move as far as possible along the
sequences, since the monotonicity guarantees that this never leads to a solution
that is worse than one that represents shorter segments. For a given criterion Cj ,
we can compute for each τi independently the maximum x′

i such that τi[xi+1, x′
i]

fulfils Cj . This produces coordinates (x′
1, . . . , x

′
m) for a new vertex, which is the

optimal next vertex using Cj . By considering all criteria we obtain k new vertices.
However, unlike the case with a single state sequence, there is not necessarily
one vertex that is better than all others (i.e. largest ending position), since there
is no total order on the vertices. Instead, we consider all vertices that are not
dominated by another vertex, where a vertex p dominates a vertex p′ if each
coordinate of p is at least as large as the corresponding coordinate of p′, and at
least one of p’s coordinates is larger.

Let Vi be the set of vertices of G that are reachable from vs in exactly i
steps, and define M(V ) := {v ∈ V | no vertex u ∈ V dominates v} to be the set
of maximal vertices of a vertex set V . Then a shortest vs–vt path through G can
be computed by iteratively computing M(Vi) for increasing i, until a value of i
is found for which vt ∈ M(Vi). Observe that |M(V )| = O((n + 1)m−1) for any
set V of vertices in the graph. Also note that V0 = M(V0) = vs.

Lemma 6. For each i ∈ {1, . . . , � − 1}, every vertex in M(Vi) is reachable in
one step from a vertex in M(Vi−1). Here, � is the distance from vs to vt.

M(Vi) is computed by computing the farthest reachable vertex for each v ∈
M(Vi−1) and criterion, thus yielding a set Di of O((n + 1)m−1k) vertices. This
set contains M(Vi) by Lemma 6, so we now need to remove all vertices that are
dominated by some other vertex in the set to obtain M(Vi).

We find M(Vi) using a copy of G. Each vertex may be marked as being in
Di or dominated by a vertex in Di. We process the vertices of Di in arbitrary
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order. For a vertex v, if it is not yet marked, we mark it as being in Di. When a
vertex is newly marked, we mark its ≤ m immediate neighbours dominated by
it as being dominated. After processing all vertices, the grid is scanned for the
vertices still marked as being in Di. These vertices are exactly M(Vi).

When computing M(Vi), O((n + 1)m−1k) vertices need to be considered,
and the maximum distance from vs to vt is m(n+1), so the algorithm considers
O(mk(n+1)m) vertices. We improve this bound by a factor m using the following:

Lemma 7. The total size of all Di, for 0 ≤ i ≤ � − 1, is O(k(n + 1)m).

Using this result, we compute all M(Vi) in O((k + m)(n + 1)m) time, since
O(k(n + 1)m) vertices are marked directly, and each of the (n + 1)m vertices is
checked at most m times when a direct successor is marked. One copy of the grid
can be reused for each M(Vi), since each vertex of Di+1 dominates at least one
vertex of M(Vi) and is thus not yet marked while processing Dj for any j ≤ i.

Since the criteria are independent, the farthest reachable point for a given
starting point and criterion can be precomputed for each state sequence sep-
arately. Using the monotonicity we can traverse each state sequence once per
criterion and thus need to test only O(nmk) times whether a subsequence fulfils
a criterion.

Theorem 8. The algorithm described above computes a smallest flow diagram
for m state sequences of length n with k independent and monotone decreasing
criteria in O(mnk · T (1, n) + (k + m)(n + 1)m) time, where T (1, n) is the time
required to check if a subsequence of length at most n fulfils a criterion.

2.3 Heuristics

The hardness results presented in the introduction indicate that it is unlikely
that the performance of the algorithms will be acceptable in practical situa-
tions, except for very small inputs. As such, we investigated heuristics that may
produce usable results that can be computed in reasonable time.

We consider heuristics for monotone decreasing and independent criteria.
These are based on the observation that by limiting Vi, the vertices that are
reachable from vs in i steps, to a fixed size, the complexity of the algorithm can
be controlled. Given that every path in a prefix graph represents a valid flow
diagram, any path chosen in the prefix graph will be valid, though not necessarily
optimal. In the worst case, a vertex that advances along a single state sequence
a single time-step (i.e. advancing only one state) will be selected, and for each
vertex, all k criteria must be evaluated, so O(kmn) vertices may be processed
by the algorithm. We consider two strategies for selecting the vertices in Vi to
retain:

(1) For each vertex in Vi, determine the number of state sequences that are
advanced in step i and retain the top q vertices [sequence heuristic].

(2) For each vertex in Vi, determine the number of time-steps that are
advanced in all state sequences in step i and retain the top q vertices [time-
step heuristic].
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In our experiments we use q = 1 since any larger value would immediately
give an exponential worst-case running time.

3 Experiments

The objectives of the experiments were twofold: to determine whether compact
and useful flow diagrams could be produced in real application scenarios; and to
empirically investigate the performance of the algorithms on inputs of varying
sizes. We implemented the algorithms described in Sect. 2 using the Python pro-
gramming language. For the first objective, we considered the application of flow
diagrams to practical problems in football analysis in order to evaluate their use-
fulness. For the second objective, the algorithms were run on generated datasets
of varying sizes to investigate the impact of different parameterisations on the
computation time required to produce the flow diagram and the complexity of
the flow diagram produced.

3.1 Tactical Analysis in Football

Sports teams will apply tactics to improve their performance, and computational
methods to detect, analyse and represent tactics have been the subject of several
recent research efforts [4,11,14,16–18]. Two manifestations of team tactics are
in the persistent and repeated occurrence of spatial formations of players, and
in plays — a coordinated sequence of actions by players. We posited that flow
diagrams would be a useful tool for compactly representing both these manifes-
tations, and we describe the approaches used in this section.

The input for the experiments is a database containing player trajectory and
match event data from four home matches of the Arsenal Football Club from
the 2007/08 season, provided by Prozone Sports Limited [15]. For each player
and match, there is a trajectory comprising a sequence of timestamped location
points in the plane, sampled at 10 Hz and accurate to 10 cm. The origin of the
coordinate system coincides with the centre point of the football pitch and the
longer side of the pitch is parallel to the x-axis — i.e. the pitch is oriented so the
goals are to the left and right. In addition, for each match, there is a log of all
the match events, comprising the type, time-stamp and location of each event.

Defensive Formations. The spatial formations of players in football matches
are known to characterize a team’s tactics [3], and a compact representation
of how formations change over time would be a useful tool for analysis. We
investigated whether a flow diagram could provide such a compact representation
of the defensive formation of a team, specifically to show how the formation
evolves during a phase of play. In our match database, all the teams use a
formation of four defensive players who orient themselves in line across the pitch.
Broadly speaking, the ideal is for the formation to be “flat”, i.e. the players are
positioned in a line parallel to the y-axis. However the defenders will react to
changes circumstances, for example in response to opposition attacks, possibly
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causing the formation to deform. We constructed the following flow diagram to
analyse the defensive formations used in the football matches in our database.

For each match in the database, the trajectories of the four defensive players
were re-sampled at one-second intervals to extract the point-locations of the
four defenders. The samples were partitioned into sequences T = {τ1, . . . , τm}
corresponding to phases such that a single team was in possession of the ball, and
where the phase began with a goal kick event, or the goalkeeper kicks or throws
the ball from hand. Let τi[j] be the j-th state in the i-th state sequence. Each
τi[j] = (p1, p2, p3, p4), where pi is the location of a player in the plane, such that
the locations are ordered by their y-coordinate: y(pi) ≤ y(pi+1) : i ∈ {1, 2, 3}.

The criteria used to summarise the formations were derived from those pre-
sented by Kim et al. [13]. The angles between pairs of adjacent players (along
the defensive line) were used to compute the formation criteria, see Fig. 3. The
scheme in Kim et al. was extended to allow multiple criteria to be applied where
the angle between pairs of players is close to 10◦. The reason for this was to facil-
itate compact results by allowing for smoothing of small variations in contiguous
time-steps.

The criteria C applied to each state is a triple (x1, x2, x3), computed as fol-
lows. Given two player positions p and q as points in the plane such that y(p) ≤
y(q), let p′ be an arbitrary point on the interior of the half-line from p in the direc-
tion of the positive y-axis, and let ∠p′pq be the angle induced by these points,
and thus denotes the angle between the two player’s positions relative to the goal-
line. Let R(−1) = [−90◦,−5◦), R(0) = (−15◦,+15◦), and R(1) = (+5◦,+90◦]
be three angular ranges. Thus, C =

{
(x1, x2, x3) : x1, x2, x3 ∈ {−1, 0, 1}

}
is the

set of available criteria.
Each state sequence τi ∈ T is segmented according to the criteria set C. A

given state τi[j] = (p1, p2, p3, p4) may satisfy the criteria (and thus have the
formation) (x1, x2, x3) if ∠p′

ipipi+1 ∈ R(xi) for all i ∈ {1, 2, 3}.
The criteria are monotone decreasing and independent, and we ran the corre-

sponding algorithm using randomly selected sets of the state sequences as input.
The size m of the input was increased until the running time exceeded a thresh-
old of 6 h. The algorithm successfully processed up to m = 12 state sequences,
having a total of 112 assigned segments. The resulting flow diagram, Fig. 4, has
a total complexity of 12 nodes and 27 edges.

We believe that the flow diagram provides an intuitive summary of the defen-
sive formation, and several observations are apparent. There appears to be a
preference amongst the teams for the right-back to position himself in advance
of the right centre-half (i.e. the third component of the triple is +1). Further-
more, the (0, 0, 0) triple, corresponding to a “flat back four” is not present in the
diagram. This is typically considered the ideal formation for teams that utilise
the offside trap, and thus may suggest that the defences here are not employ-
ing this tactic. These observations were apparent to the authors as laymen, and
we would expect that a domain expert would be able to extract further useful
insights from the flow diagrams.
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Fig. 3. Segmentation of a single state sequence τi. The formation state sequence is
used to compute the segmentation representation, where segments corresponding to
criteria span the state sequence (bottom). The representation of this state sequence in
the movement flow diagram is shaded in Fig. 4.

3

4

2

2
2

2

2

4

2

2s

t

Fig. 4. Flow diagram for formation morphologies of twelve defensive possessions. The
shaded nodes are the segmentation of the state sequence in Fig. 3.

Attacking Plays. In this second experiment, we used a different formulation
to produce flow diagrams to summarise phases of attack. During a match, the
team in possession of the ball regularly attempts to reach a position where they
can take a shot at goal. Teams will typically use a variety of tactics to achieve
such a position, e.g. teams can vary the intensity of an attack by pushing for-
ward, moving laterally, making long passes, or retreating and regrouping. We
modelled attacking possessions as state sequences, segmented according to cri-
teria representing the attacking intensity and tactics employed, and computed
flow diagrams for the possessions. In particular, we were interested in determin-
ing whether differences in tactics employed by teams when playing at home or
away [4] are apparent in the flow diagrams.

We focus on ball events, where a player touches the ball, e.g. passes, touches,
dribbles, headers, and shots at goal. The event sequence for each match was par-
titioned into sequences T = {τ1, . . . , τm} such that each τi is an event sequence
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where a single team was in possession, and T includes only the sequences that
end with a shot at goal. Let τi[j] be a tuple (p, t, e) where p is the location in the
plane where an event of type e ∈ {touch, pass, dribble, header , shot , clearance}
occurred at time t. We are interested in the movement of the ball between an
event state τi[j] and the next event state τi[j+1], in particular, let dx(τi[j]) (resp.
dy(τi[j])) be the distance in the x-direction (resp. y-direction) between state τi[j]
and the next state. Similarly, let vx(τi[j]) (resp. vy(τi[j])) be the velocity of the
ball in the x-direction (resp. y-direction) between τi[j] and its successor state.
Let ∠τi[j] be the angle defined by the location of τi[j], τi[j + 1] and a point on
the interior of the half-line from the location of τi[j] in the positive y-direction.

Criteria were defined to characterise the movement of the ball — relative to
the goal the team is attacking — between event states in the possession sequence.
The criteria C = {C1, . . . , C8} were defined as follows.

C1: Backward movement (BM): vx(τi[j]) < 1 — a sub-sequence of passes or
touches that move in a defensive direction.

C2: Lateral movement (LM): −5 < vx(τi[j]) < 5 — passes or touches that move
in a lateral direction.

C3: Forward movement (FM): −1 < vx(τi[j]) < 12 — passes or touches that
move in an attacking direction, at a velocity in the range achievable by a
player sprinting, i.e. approximately 12 m/s.

C4: Fast forward movement (FFM): 8 < vx(τi[j]) — passes or touches moving
in an attacking direction at a velocity generally in excess of maximum player
velocity.

C5: Long ball (LB): 30 < dx(τi[j]) — a single pass travelling 30 m in the attack-
ing direction.

C6: Cross-field bal (CFB): 20 < dy(τi[j]) ∧ ∠τi[j] ∈ [−10, 10] ∪ [170, 190] — a
single pass travelling 20 m in the cross-field direction with an angle within
10◦ of the y-axis.

C7: Shot resulting in goal (SG): a successful shot resulting in a goal.
C8: Shot not resulting in goal (SNG): a shot that does not produce a goal.

For a football analyst, the first four criteria are simple movements, and are
not particularly interesting. The last four events are significant: the long ball
and cross-field ball change the locus of attack; and the shot criteria represent
the objective of an attack.

The possession state sequences for the home and visiting teams were seg-
mented according to the criteria and the time-step heuristic algorithm was used
to compute the flow diagrams. The home-team input consisted of 66 sequences
covered by a total of 866 segments, and resulted in a flow diagram with 25 nodes
and 65 edges, see Fig. 5. Similarly, the visiting-team input consisted of 39 state
sequences covered by 358 segments and the output flow diagram complexity was
22 nodes and 47 edges, as shown in Fig. 6.

At first glance, the differences between these flow diagrams may be difficult
to appreciate, however closer inspection reveals several interesting observations.
The s–t paths in the home-team flow diagram tend to be longer than those in
the visiting team’s, suggesting that the home team tends to retain possession of
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Fig. 5. Flow diagrams produced for home team. The edge weights are the number of
possessions that span the edge, and the nodes with grey background are event types
that are significant.

the ball for longer, and varies the intensity of attack more often. Moreover, the
nodes for cross-field passes and long-ball passes tend to occur earlier in the s–t
paths in the visiting team’s flow diagram. These are both useful tactics as they
alter the locus of attack, however they also carry a higher risk. This suggests that
the home team is more confident in its ability to maintain possession for long
attack possessions, and will only resort to such risky tactics later in a possession.
Furthermore, the tactics used by the team in possession are also impacted by the
defensive tactics. As Bialkowski et al. [4] found, visiting teams tend to set their
defence deeper, i.e. closer to the goal they are defending. When the visiting team
is in possession, there is thus likely to be more space behind the home team’s
defensive line, and the long ball may appear to be a more appealing tactic.
The observations made from these are consistent with our basic understanding
of football tactics, and suggest that the flow diagrams are interpretable in this
application domain.
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Fig. 6. Flow diagrams produced for visiting team. The edge weights are the number
of possessions that span the edge, and the nodes with grey background are event types
that are significant.

3.2 Performance Testing

In the second experiment, we used a generator that outputs synthetic state
sequences and segmentations, and tested the performance of the algorithms on
inputs of varying sizes.

The segmentations were generated using Markov-Chain Monte-Carlo sam-
pling. Nodes representing the criteria set of size k were arranged in a ring and a
Markov chain constructed, such that each node had a transition probability of
0.7 to remain at the node, 0.1 to move to the adjacent node, and 0.05 to move
to the node two places away. Segmentations were computed by sampling the
Markov chain starting at a random node. Thus, simulated datasets of arbitrary
size m, state sequence length n, criteria set size k were generated.

We performed two tests on the generated segmentations. In the first, exper-
iments were run on the four algorithms described in Sect. 2 with varying config-
urations of m, n and k to investigate the impact of input size on the algorithm’s
performance. The evaluation metric used was the CPU time required to generate
the flow diagram for the input. In the second test, we compared the total com-
plexity of the output flow diagram produced by the two heuristic algorithms with
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Fig. 7. Runtime statistics for generating flow diagram (top), and total complexity of
flow diagrams produced (bottom). Default values of m = 4, n = 4 and k = 10 were
used. The data points are the mean value and the error bars delimit the range of values
over the five trials run for each input size.

the baseline complexity of the flow diagram produced by the exact algorithm for
monotone increasing and independent criteria.

We repeated each experiment five times with different input sequences for
each trial, and the results presented are the mean values of the metrics over the
trials. Limits were set such that the process was terminated if the CPU time
exceeded 1 h, or the memory required exceeded 8 GB.

The results of the first test showed empirically that the exact algorithms have
time and storage complexity consistent with the theoretical worst-case bounds,
Fig. 7 (top). The heuristic algorithms were subsequently run against larger test
data sets to examine the practical limits of the input sizes, and were able to
process larger input — for example, an input of k = 128, m = 32 and n =
1024 was tractable — the trade-off is that the resulting flow diagrams were
suboptimal, though correct, in terms of their total complexity.

For the second test, we investigated the complexity of the flow diagram
induced by inputs of varying parameterisations when using the heuristic algo-
rithms. The objective was to examine how close the complexity was to the
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optimal complexity produced using an exact algorithm. The inputs exhibited
monotone decreasing and independent criteria, and thus the corresponding algo-
rithm was used to produce the baseline. Figure 7 (bottom) summarises the results
for varying input parameterisations. The complexity of the flow diagrams pro-
duced by the two heuristic algorithms are broadly similar, and increase at worst
linearly as the input size increases. Moreover, while the complexity is not optimal
it appears to remain within a constant factor of the optimal, suggesting that the
heuristic algorithms could produce usable flow diagrams for inputs where the
exact algorithms are not tractable.

4 Concluding Remarks

We introduced flow diagrams as a compact representation of a large number of
state sequences. We argued that this representation gives an intuitive summary
allowing the user to detect patterns among large sets of state sequences, and
gave several algorithms depending on the properties of the segmentation criteria.
These algorithms only run in polynomial time if the number of state sequences
m is constant, which is the best we can hope for given the problem is W [1]-hard.
As a result we considered two heuristics capable of processing large data sets in
reasonable time, however we were unable to give an approximation bound. We
tested the algorithms experimentally to assess the utility of the flow diagram
representation in a sports analysis context, and also analysed the performance
of the algorithms of inputs of varying parameterisations.
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