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1 Institute of Computer Science, University of Osnabrück, Osnabrück, Germany
{stephan.beyer,markus.chimani,ivo.hedtke}@uni-osnabrueck.de

2 Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

kotrbcik@imada.sdu.dk

Abstract. We consider the problem of the minimum genus of a graph, a
fundamental measure of non-planarity. We propose the first formulations
of this problem as an integer linear program (ILP) and as a satisfiabil-
ity problem (SAT). These allow us to develop the first working imple-
mentations of general algorithms for the problem, other than exhaustive
search. We investigate several different ways to speed-up and strengthen
the formulations; our experimental evaluation shows that our approach
performs well on small to medium-sized graphs with small genus, and
compares favorably to other approaches.

1 Introduction

We are concerned with the minimum genus problem, i.e., finding the smallest
g such that a given graph G = (V,E) has an embedding in the orientable sur-
face of genus g. As one of the most important measures of non-planarity, the
minimum genus of a graph is of significant interest in computer science and
mathematics. However, the problem is notoriously difficult from the theoreti-
cal, practical, and also structural perspective. Indeed, its complexity was listed
as one of the 12 most important open problems in the first edition of Garey
and Johnson’s book [22]; Thomassen established its NP-completeness in gen-
eral [36] and for cubic graphs [37]. While the existence of an O(1)-approximation
can currently not be ruled out, there was no general positive result beyond
a trivial O(|V |/g)-approximation until a recent breakthrough by Chekuri and
Sidiropoulos [9]. For graphs with bounded degree, they provide an algorithm that
either correctly decides that the genus of the graph G is greater than g, or embeds
G in a surface of genus at most gO(1) ·(log |V |)O(1). Very recently, Kawarabayashi
and Sidiropoulos [27] showed that the bounded degree assumption can be omit-
ted for the related problem of Euler genus by providing a O(

g256(log |V |)189)-
approximation; however, this does not yield an approximation for orientable
genus.
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Minimum genus is a useful parameter in algorithm design, since, similarly to
the planar case, we can take advantage of the topological structure and design
faster algorithms for graphs of bounded genus. However, these algorithms typi-
cally assume that the input graph is actually embedded in some surface, as for
instance in [7,19]. Therefore, without a practical algorithm providing an embed-
ding in a low-genus surface, these algorithms cannot be effectively implemented.

In the mathematical community, the genus of specific graph families is of
interest ever since Ringel’s celebrated determination of the genus of complete
graphs [34]. Such research often combines numerous different approaches, includ-
ing computer-aided methods, see, e.g., [12,28]. However, in practice it often turns
out that even determining the genus of a single relatively small graph can be
rather difficult as in [5,12,28,29,31]. One of the reasons is the large problem
space—an r-regular graph with n vertices can have [(r − 1)!]n embeddings. It is
known that complete graphs have exponentially many embeddings of minimum
genus; however, the known constructions are nearly symmetric and the problem
becomes much more difficult when the minimum genus does not equal the trivial
bound from Euler’s formula, see, e.g., [28] for more details. While it is conjec-
tured that the genus distribution of a graph—the number of its embeddings into
each orientable surface—is unimodal, very little is known about the structure of
the problem space both in theory and practice.

From a slightly different perspective, it has been known for a long time that
deciding embeddability in a fixed surface is polynomial both for the toroidal
[20] and the general case [17,21]. In fact, the minimum genus is fixed-parameter
tractable as a result of the Robertson-Seymour theorem, since for every surface
there are only finitely many forbidden graph minors, and testing for a fixed
minor needs only polynomial time. While there is a direct linear-time algorithm
deciding embeddability in a fixed surface [26,30], taking any of these algorithms
to practice is very challenging for several reasons. First, the näıve approach of
explicitly testing for each forbidden minor is not viable, since the list of forbidden
minors is known only for the plane and the projective plane, and the number of
minors grows rapidly: for the torus there are already more than 16 000 forbidden
minors [8]. Second, Myrvold and Kocay [33] reviewed existing algorithms to
evaluate their suitability for implementation in order to compute the complete
list of forbidden toroidal minors. Unfortunately, they report that [20] contains a
“fatal flaw”, which also appears in the algorithm in [21], and that the algorithm
in [17] is also “incorrect”. Myrvold and Kocay conclude that “There appears to be
no way to fix these problems without creating algorithms which take exponential
time” [33]. Finally, Mohar’s algorithm [30], even in the simpler toroidal case [25],
is very difficult to implement correctly (see the discussion in [33]). Consequently,
there is currently no correct implementation of any algorithm for the general case
of the problem beyond exhaustive search.

It is thus desirable to have an effective and correct implementation of a
practical algorithm for the minimum genus. Rather surprisingly, to the best of
our knowledge, the approach to obtain practical algorithms via ILP (integer
linear program) and SAT (satisfiability) solvers has never been attempted for
the minimum genus so far.
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Our contribution. We provide the first ILP and SAT formulations for the mini-
mum genus problem, and discuss several different variants both under theoretical
and practical considerations. Based thereon, we develop the first implementa-
tions of nontrivial general algorithms for the problem. We evaluate these imple-
mentations on benchmark instances widely used in the study of non-planarity
measures for real-world graphs. In conjunction with suitable algorithmic sup-
port via preprocessing and efficient planarity tests, we are for the first time able
to tackle general medium-sized, sparse real-world instances with small genus in
practice. We also compare our implementations to existing approaches, namely
exhaustive search and a tailored algebraic approach for special cases.

2 Minimum Genus ILP and SAT Formulations

Our terminology is standard and consistent with [32]. We consider finite undi-
rected graphs and assume w.l.o.g. that all graphs are simple, connected, and have
minimum degree 3. For each nonnegative integer g, there is, up to homeomor-
phism, a unique orientable surface of genus g and this surface is homeomorphic
to a sphere with g added handles. An embedding of a graph G in a surface S
is a representation of G in S without edge crossings; the minimum genus γ(G)
of a graph G is the minimum genus of an orientable surface into which G has
an embedding. When considering embeddings it is often useful to specify the
orientation in which we traverse an edge. Therefore, we may speak of two arcs
(aka. directed edges, halfedges) that correspond to each edge. For a given graph
G = (V,E), let A = {uv, vu | {u, v} ∈ E} denote the arc set arising from E by
replacing each undirected edge by its two possible corresponding directed arcs.

A rotation at a vertex v is a cyclic order (counter-clockwise) of the neighbors
of v. A rotation system of a graph G is a set of rotations, one for each vertex
of G. Up to mirror images of the surfaces, there is a 1-to-1 correspondence
between rotation systems of G and (cellular) embeddings of G into orientable
surfaces (see [23, Theorem 3.2.3] and [18,24]). Given a rotation system of G, the
corresponding embedding is obtained by face tracing : starting with an unused
arc uv, move along it from u to v and continue with the arc vw, where w is
the vertex after u at the rotation at v. This process stops by computing a face
of the embedding when it re-encounters its initial arc. Repeatedly tracing faces
eventually finds all faces of the embedding.

Euler’s formula asserts that each (cellular) embedding of G in an orientable
surface satisfies |V | − |E| + f = 2 − 2g, where f is the number of the faces
of the embedding, and g is the genus of the underlying surface. It follows that
(i) determining the genus of the underlying surface for a given rotation system
is essentially equivalent to calculating the number of faces; and (ii) finding the
genus of a graph corresponds to maximizing the number of faces over all rotation
systems of the graph. See [32] for more details.

In this section, we describe how to reformulate the minimum genus problem
as an integer linear program (ILP) or a related problem of Boolean satisfiabil-
ity (SAT). Generally, such modeling approaches are known for several planarity
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concepts and non-planarity measures (e.g., crossing number, graph skewness,
upward planarity) and often attain surprisingly strong results. However, for the
minimum genus problem it is at first rather unclear how to capture the topo-
logical nature of the question in simple variables. To the best of our knowledge,
there are no known formulations for this problem up to now.

We first describe the basic concepts of both formulations, and later consider
possible ways to improve them. For convenience, we write [k] := Zk; addition
and subtraction are considered modulo k.

2.1 ILP Formulation

Our formulation is based on finding an embedding with the largest number of
faces. Therefore, it statically simulates the face tracing algorithm. Let f̄ be an
upper bound on the attainable number of faces; see Sect. 3 on how to obtain
a simple linear bound. For each i ∈ [f̄ ], we have a binary variable xi that is
1 iff the i-th face exists and a binary variable ci

a, for each a ∈ A, that is 1
iff arc a is traversed by the i-th face. For each vertex v ∈ V and neighbors
u,w ∈ N(v), u �= w, the binary variable pv

u,w is 1 iff w is the successor of u in
the rotation at v. The ILP formulation then is:

max
∑f̄

i=1
xi (1a)

s.t xi ≤ 1
3

∑

a∈A
ci
a ∀i ∈ [f̄ ] (1b)

∑f̄

i=1
ci
a=1 ∀a ∈ A (1c)

∑

a∈δ−(v)
ci
a=

∑

a∈δ+(v)
ci
a ∀i ∈ [f̄ ], v ∈ V (1d)

ci
vw ≥ ci

uv + pv
u,w − 1 ∀i ∈ [f̄ ], v ∈ V, u �= w ∈ N(v) (1e)

ci
uv ≥ ci

vw + pv
u,w − 1 ∀i ∈ [f̄ ], v ∈ V, u �= w ∈ N(v) (1f)

∑

w∈N(v),u �=w
pv

u,w=1 ∀v ∈ V, u ∈ N(v) (1g)
∑

u∈N(v),w �=u
pv

u,w=1 ∀v ∈ V,w ∈ N(v) (1h)
∑

u∈U

∑

w∈N(v)\U
pv

u,w ≥ 1 ∀v ∈ V, ∅ �= U � N(v) (1i)

xi∈{0, 1} ∀i ∈ [f̄ ] (1j)

ci
a∈{0, 1} ∀i ∈ [f̄ ], a ∈ A (1k)

pv
u,w∈{0, 1} ∀v ∈ V, u �= w ∈ N(v). (1l)

Constraints (1b) ensure that if a face exists, it traverses at least three arcs1;
inversely, each arc is traversed by exactly one face due to (1c). Equalities (1d)
guarantee that at every vertex of a face i, the number of i-traversed incoming

1 For a simple graph, the minimum genus embedding contains no face of length 1 or 2.
On the other hand, we cannot be more specific than the lower bound of 3.
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and outgoing arcs is identical. Inequalities (1e) and (1f) ensure that arcs uv
and vw are both in the same face if w is the successor of u in the rotation at v.
Constraints (1g) and (1h) ensure that pv represents a permutation of the vertices
in N(v); (1i) ensures that pv consists of a single cycle. Observe that maximizing
(1a) guarantees that each face index corresponds to at most one facial walk.

2.2 SAT Formulation

To solve the above ILP, we will need to consider its linear relaxation (where
the binary variables are replaced by variables in the interval [0,1]). It is easy
to see that fractional values for the pv matrices lead to very weak dual bounds.
Therefore, we also consider SAT formulations. While general SAT solvers cannot
take advantage of algebraically obtained (lower) bounds, state-of-the-art SAT
solvers are highly tuned to quickly search a vast solution space by sophisticated
branching, backtracking, and learning strategies. This can give them an upper
hand over ILP approaches, in particular when the ILP’s relaxation is weak.

In contrast to the ILP, a SAT problem has no objective function and simply
asks for some satisfying variable assignment. In our case, we construct a SAT
instance to answer the question whether the given graph allows an embedding
with at least f faces. To solve the optimization problem, we iterate the process
for increasing values of f until reaching unsatisfiability. We use the same notation
as before, and construct the SAT formulation around the very same ideas. Each
binary variable is now a Boolean variable instead. While a SAT is typically
given in conjunctive normal form (CNF), we present it here as a conjunction of
separate Boolean formulae (rules) for better readability. Their transformation
into equisatisfiable CNFs is trivial. The SAT formulation is:

¬(ci
a ∧ cj

a) ∀a ∈ A, i �= j ∈ [f ] (2a)
∨

a∈A
ci
a ∀i ∈ [f ] (2b)

pv
u,w → (ci

uv ↔ ci
vw) ∀v ∈ V, u �= w ∈ N(v), i ∈ [f ] (2c)

∨

u∈N(v),u �=w
pv

u,w ∀v ∈ V,w ∈ N(v) (2d)

¬(pv
u,w ∧ pv

u′,w) ∀v ∈ V,w ∈ N(v), u �= u′ ∈ N(v)\{w} (2e)
∨

w∈N(v),w �=u
pv

u,w ∀v ∈ V, u ∈ N(v) (2f)

¬(pv
u,w ∧ pv

u,w′) ∀v ∈ V, u ∈ N(v), w �= w′ ∈ N(v)\{u} (2g)
∨

u∈U,w∈N(v)\U
pv

u,w ∀v ∈ V, ∅ �= U � N(v) (2h)

Rules (2a) and (2b) enforce that each arc is traversed by exactly one face, cf. (1c).
Rule (2c) ensures that the successor is in the same face, cf. (1e)–(1f). Rules (2d)–
(2h) guarantee that pv variables form rotations at v, cf. (1g)–(1i).
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2.3 Improvements

There are several potential opportunities to improve upon the above formula-
tions. In pilot studies we investigated their practical ramifications.

Symmetries (ILP). It seems worthwhile to add symmetry-breaking constraints
xi ≥ xi+1 or even

∑
a∈A ci

a ≥ ∑
a∈A ci+1

a for all i ∈ [f − 1] to the ILP. Sur-
prisingly, this does not improve the overall running time (and the latter is even
worse by orders of magnitude), and we refrain from using these constraints in
the following.

Vertices of degree 3 (ILP&SAT). Let V3 := {v ∈ V | deg(v) = 3}. Consider a
degree-3 vertex v ∈ V3 with neighbors u0, u1, u2. The only two possible rotations
at v are u0u1u2 and u2u1u0. Hence, we can use a single binary/Boolean variable
pv whose assignment represents this choice.

In the ILP, we remove all pv
u,w variables for v ∈ V3 and replace (1e)–(1i) by

ci
vuk+1

≥ ci
ukv + pv − 1 ∀i ∈ [f ], v ∈ V3, k ∈ [3] (3a)

ci
ukv ≥ ci

vuk+1
+ pv − 1 ∀i ∈ [f ], v ∈ V3, k ∈ [3] (3b)

ci
vuk

≥ ci
uk+1v − pv ∀i ∈ [f ], v ∈ V3, k ∈ [3] (3c)

ci
uk+1v ≥ ci

vuk
− pv ∀i ∈ [f ], v ∈ V3, k ∈ [3], (3d)

where u0, u1, u2 denote the arbitrarily but statically ordered neighbors of v ∈ V3.
In the SAT formulation, we analogously replace (2c) by

pv→(ci
ukv ↔ ci

vuk+1
) ∀v ∈ V3, k ∈ [3], i ∈ [f ] (4a)

¬pv→(ci
uk+1v ↔ ci

vuk
) ∀v ∈ V3, k ∈ [3], i ∈ [f ]. (4b)

As expected, this is faster by orders of magnitude for certain families of
graphs, especially for instances with many degree-3 vertices. On the real world
Rome benchmark set (see Sect. 4), the performance improves by about 10 % for
both the ILP and the SAT formulations, compared to their respective formula-
tions with pv

u,w variables.
This idea can be generalized for vertices v of arbitrary degree d ≥ 4. There

are � := (d − 1)! different rotations. Instead of using O(d2) many variables pv
u,w,

we introduce �log2 �� binary variables and representing the index of the rotation
as a binary number. Since this process is coupled with a substantial trade-off of
more complicated and weaker constraints, we refrain from using it for d ≥ 4.

Binary face representations (SAT). Let i ∈ [f ] be a face index, and B(i) the
vector of its binary representation, i.e., i =

∑�
j=0 2j · B(i)j , where � = 
log2 f�.

We define new Boolean variables bj
a that are true iff arc a is contained in a face

i with B(i)j = 1. In logic formulae, value B(i)j = 1 is mapped to true, 0 to false.
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By changing the following clauses of the SAT formulation above, we construct
a new formulation that asks for a solution with at least f faces, because we do
not forbid the usage of binary representations outside of [f ].

∨

a∈A

∧

j∈[�]
(bj

a ↔ B(i)j) ∀i ∈ [f ] (2b′)

pv
u,w→(bj

uv ↔ bj
vw) ∀v ∈ V \V3, u �= w ∈ N(v), j ∈ [�] (2c′)

pv→(bj
ukv ↔ bj

vuk+1
) ∀v ∈ V3, k ∈ [3], j ∈ [�] (4a′)

¬pv→(bj
uk+1v ↔ bj

vuk
) ∀v ∈ V3, k ∈ [3], j ∈ [�] (4b′)

This variant achieves a more than 100-fold speedup.

2.4 Exponential vs. Polynomial Size Formulations

Observe that the number of inequalities (1i), or rules (2h) respectively, is expo-
nential in the degree of each vertex v. Therefore, we investigate ways to obtain
a polynomial time solution strategy or a polynomially sized formulation.

Efficient Separation. For the ILP we can separate violating constraints (also
known as row generation) using a well-known separation oracle based on mini-
mum cuts (see, e.g., [13, Sect. 7.4]). While this guarantees that only a polynomial-
sized subset of (1i) is used, it is not worthwhile in practice: the separation process
requires a comparably large overhead and state-of-the-art ILP solvers offer a lot
of speed-up techniques that need to be deactivated to separate constraints on
the fly. Overall, this more than doubles the running times compared to a direct
inclusion of all (1i), even if we separate only for vertices with large degrees.

Another option is to use different representations for rotation systems. Here
we discuss an ordering approach and a betweenness approach. Both yield poly-
nomial size formulations.

Ordering Reformulation. For the ordering approach we replace the permutation
variables with variables that attach vertices to specific positions in the rotation.
This is known to be weaker in the realm of ILPs, and we hence concentrate on
the SAT formulation. There, we introduce for any v ∈ V, u ∈ N(v) a Boolean
variable qv

j,u that is true iff u is the j-th vertex in the rotation at v. We do
not use the p variables any longer, replace the old permutation rules (2d)–(2h)
with rules to ensure that each qv is a bijective mapping, and change (2c) to∨

j∈[deg(v)]

(
qv
j,u ∧ qv

j+1,w

) → (ci
uv ↔ ci

vw) for all v ∈ V , u �= w ∈ N(v), i ∈ [f ].
However, the SAT running times thereby increase 50–100-fold.

Betweenness Reformulation. For the betweenness approach we add the variables
rv
x,y,z for each triple x, y, z ∈ N(v). By rv

x,y,z = 1 (true, respectively) we denote
that y is (somewhere) between x and z in the rotation at v. Here we only describe
the usage of the r variables in the SAT formulation. The usage in the ILP is
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analogous. First of all, the cyclicity of a rotation implies the symmetries rv
x,y,z ≡

rv
y,z,x ≡ rv

z,x,y ≡ ¬rv
x,z,y ≡ ¬rv

z,y,x ≡ ¬rv
y,x,z for all {x, y, z} ⊆ N(v). Instead

of ensuring that each pv represents a permutation, we connect the p variables
to the new r variables via pv

u,w ↔ ∧
y∈N(v)\{u,w} rv

u,w,y. The rules to model
the betweenness conditions for the neighborhood of a given vertex v are simply
rv
u,w,x ∧ rv

u,x,y → rv
u,w,y ∧ rv

w,x,y for all {u,w, x, y} ⊆ N(v). However, the SAT
running times thereby increase 20–50-fold.

Overall, we conclude that the exponential dependencies of the original for-
mulations are not so much of an issue in practice after all, and the overhead and
weaknesses of polynomial strategies typically seem not worthwhile. However, if
one considers problems with many very high degree vertices where the expo-
nential dependency becomes an issue, the above approaches can be merged very
naturally, leading to an overall polynomial model: Let τ be some fixed constant
threshold value (to be decided upon experimentally). For vertices v of degree at
most τ , we use the original formulation requiring an exponential (in constant τ)
number of constraints over pv. Vertices of degree above τ are handled via the
betweenness reformulation.

3 A Minimum Genus Computation Framework

Before deploying any of our approaches on a given graph, we consider several
preprocessing steps. Since the genus is additive over biconnected components
[1,2], we decompose the input graph G accordingly. We can test γ = 0 by simply
running a linear time planarity test, in our case [4]. Next, we observe that the
genus problem is susceptible to non-planar core reduction [10]: A maximal planar
2-component is defined as a maximal subgraph S ⊂ G that (i) has only two
vertices x, y in common with the rest of the graph, and (ii) S + (x, y) is planar.
The (in our case unweighted) non-planar core (NPC ) of G is obtained (in linear
time) by replacing each such maximal planar 2-components by an edge.2 After
these steps we are in general left with a set of simple biconnected (preprocessed)
graphs with minimum degree at least 3, for each of which we want to compute
the genus.

By Euler’s formula, we only have to calculate SAT instances with f ≡ |E| −
|V | mod 2. For increasing number of faces we compute the satisfiability until
we get the first unsatisfiable instance. Such an iteration is clearly not necessary
2 In [10], the validity of such a preprocessing is shown for several non-planarity mea-

sures, namely crossing number, skewness, coarseness, and thickness. Let H be the
NPC of G. We can trivially observe that (A) γ(G) ≤ γ(H), and (B) γ(G) ≥ γ(H). A:
Given an optimal solution for H, we can embed each S onto the surface in place of
its replacement edge, without any crossings. B: Each replaced component S contains
a path connecting its poles that is drawn crossing-free in the optimal embedding of
G; we can planarly draw all of S along this path, and then simplify the embedding
by replacing this locally drawn S by its replacement edge; this gives a solution for
H on the same surface.
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in the ILP approach, where our objective function explicitly maximizes f and
we only require an upper bound of f̄ = min{
2|E|/3�, |E| − |V |},3 adjusted for
parity.

Table 1. Characteristics of instances and resulting formulations. The graphs from the
Rome (left table) and North (right table) benchmark sets are grouped by their number
of vertices in the given ranges. For each group, we give the averages for the following
values: number of vertices and percentage of degree-3 vertices in the NPC, upper bound
f̄ on the number of faces, number of variables and constraints in the ILP formulation.

range avg. for computation on NPC
|V | |V | %|V3| f̄ #vars #cons

10–40 12.8 64.2 10.0 616.1 3399.5
41–60 18.5 60.3 15.3 1310.7 7639.9
61–80 26.8 59.4 22.5 2624.4 15735.1
81–100 36.4 58.5 30.9 4718.4 28778.3

range avg. for computation on NPC
|V | |V | %|V3| f̄ #vars #cons

10–40 12.6 38.3 17.4 2200.0 102295.9
41–60 24.6 40.3 29.9 4916.7 197577.3
61–80 32.1 43.5 35.5 7741.7 249864.6
81–100 24.3 40.6 34.7 7146.7 632634.6

4 Experimental Evaluation

Our C++ code is compiled with GCC 4.9.2, and runs on a single core of an
AMD Opteron 6386 SE with DDR3 Memory @ 1600 MHz under Debian 8.0. We
use the ILP solver CPLEX 12.6.1, the SAT solver lingeling (improved version
for SMT Competition 2015 by Armin Biere)4, and the Open Graph Drawing
Framework (www.ogdf.net, GPL), and apply a 72 GB memory limit.

Real world graphs. We consider the established Rome [16] and North [15] bench-
mark sets of graphs collected from real-world applications. They are commonly
used in the evaluation of algorithms in graph drawing and non-planarity mea-
sures. We use the ILP and SAT approaches to compute the genera of all 8249
(423) non-planar Rome (North) graphs. Each approach is run with a 30 min time
limit for each graph to compute its genus; we omit 10 (North) instances that
failed due to the memory limitation. Characteristics about the data sets and the
resulting formulations can be found in Table 1.

Figure 1(a) shows the success rate (computations finished within the time
limit) for the Rome graphs, depending on the number of vertices of the input
graph. Both the SAT and ILP approach exhibit comparable numbers, but nearly
always, the success rate of the SAT approach is as good or better than the ILP’s.
However, the differences are statistically not significant. Instances with up to 40
vertices can be solved with a high success rate; our approach degrades heavily

3 First term: each edge lies on at most two faces, each face has size at least 3; second
term: Euler’s formula with genus at least 1.

4 The previous version was the winner of the Sequential Appl. SAT+UNSAT Track of
the SAT competition 2014 [3]. This improved version is even faster.

www.ogdf.net


84 S. Beyer et al.

for graphs with more than 60–70 vertices. However, it is worth noting that even
if the genus is not calculated to provable optimality, we obtain highly nontrivial
bounds on the genus of the graphs in question.

In Fig. 1(b) we see that, given any fixed time limit below 30 min, the SAT
approach solves clearly more instances than the ILP approach. Note that the
curve that corresponds to the solved SAT instances flattens out very quickly.

When we compare the success rates to the density of the NPC (see Fig. 1(c)),
we see the same characteristics as in Fig. 1(a). Both approaches are able to solve
instances with density (i.e., |E|/|V |) up to 1.6 with a high success rate but are
typically not able to obtain provably optimal values for densities above 1.9.

Finally, we compare the average running time of the instances that are solved
by both approaches. Out of the 8249 non-planar Rome graphs we are able to
solve 2571 with SAT and ILP, and additionally 96 (24) more with the SAT
(ILP, respectively). Except for very small graphs, the average running time of
the SAT approach is always at least one or two orders of magnitude lower than
the average running time of the ILP approach, see Fig. 1(d).

Considering the non-planar North graphs, Fig. 1(e) shows that the success
rates of both approaches are again comparable. Again, the differences are sta-
tistically not significant. However, ten instances could not be solved due to the
high memory consumption caused by the exponential number of constraints (1i)
and rules (2h). Since the results for the North graphs are analogous to those for
the Rome graphs, we omit discussing them in detail.

Generally, we observe that the SAT approach is particularly fast to show
the existence of an embedding, but is relatively slow to prove that there is no
embedding with a given number of faces. This is of particular interest for non-
planar graphs that allow a genus-1 embedding, since there the SAT is quick to
find such a solution and need not prove that a lower surface is infeasible. The
SAT’s behavior in fact suggests an easy heuristical approach: if solving the SAT
instance for f faces needs a disproportionally long running time (compared to
the previous iterations for lower face numbers), this typically indicates that it is
an unsatisfiable instance and f − 2 faces is the optimal value.

Comparison to existing genus computations. An evaluation of exhaustive search
algorithms for determining the genus distribution of complete graphs was per-
formed in [35]. Fixing the rotation of the first vertex, it is possible to compute
the genus of distribution the complete graph K7 within 896 h of computation
(112 h on 8 parallel threads). While both our approaches perform significantly
better, there is a notable (and w.r.t. to the above evaluations particularly sur-
prising) difference in their performance: the SAT approach needs one hour to
find and prove the optimal genus; solving the ILP takes only 30 s.

A circulant Cn(S) is the Cayley graph of Zn with generating set S. Conder
and Grande [12] recently characterized all circulants with genus 1 and 2. A crucial
part of the characterization is the determination of the genus of several sporadic
cases where the lower bounds are more problematic. At the same time, these
sporadic cases constitute the main obstacle in both obtaining a simpler proof,
as well as extending the results to higher genera. By far the most difficult case
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Fig. 1. Rome Graphs: (a) success rate per |V |, (b) solved instances per given time,
(c) success rate per non-planar core density |E|/|V |, (d) average running time per |V |
where both approaches were successful. North graphs: (e) success rate per |V |.
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is proving that the genus of C11(1, 2, 4) is at least 3. The proof takes three pages
of theoretical analysis and eventually resorts to a computational verification of
three subcases, taking altogether around 85 h using the MAGMA computational
algebra system in a nontrivial problem-specific setting. The ILP solver needs
180 h to determine the genus without using any theoretical results or problem-
specific information.

5 Conclusion

The minimum genus problem is very difficult from the mathematical, algorith-
mic, and practical perspective—the problem space is large and seems not to be
well-structured, the existing algorithms are error-prone and/or very difficult to
implement, and only little progress was made on the (practice-oriented) algorith-
mic side. In this paper we have presented the first ILP and SAT formulations,
together with several variants and alternative reformulations, for the problem,
and investigated them in an experimental study. Our approach leads to the
first (even easily!) implementable general-purpose minimum genus algorithms.
Besides yielding practical algorithms for small to medium-sized graphs and small
genus, one of the further advantages of our approach is that the formulations are
adaptable and can be modified to tackle other related problems of interest. For
example, the existence of polyhedral embeddings [32], or embeddings with given
face lengths, say 5 and 6 as in the case of fullerenes (graph-theoretic models of
carbon molecules), see [14].

On the negative side, our implementations cannot deal with too large graphs
without resorting to extensive computational resources. However, this is not very
surprising considering the difficulty of the problem—a fast exact algorithm could
be used to solve several long-standing open problems, such as completing the list
of forbidden toroidal minors. We also see—and hope for—certain similarities to
the progress on exact algorithms for the well-known crossing number problem:
while the first published report [6] was only capable of solving Rome graphs
with 30–40 vertices, it led to a series of improvements that culminated in the
currently strongest variant [11] which is capable to tackle even the largest Rome
graphs.
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nius University (2012). In Slovak
36. Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10, 568–

576 (1989)
37. Thomassen, C.: The graph genus problem is NP-complete for cubic graphs. J.

Comb. Theor. Ser. B 69, 52–58 (1997)


	A Practical Method for the Minimum Genus of a Graph: Models and Experiments
	1 Introduction
	2 Minimum Genus ILP and SAT Formulations
	2.1 ILP Formulation
	2.2 SAT Formulation
	2.3 Improvements
	2.4 Exponential vs. Polynomial Size Formulations

	3 A Minimum Genus Computation Framework
	4 Experimental Evaluation
	5 Conclusion
	References


