
Dynamic Time-Dependent Route Planning
in Road Networks with User Preferences

Moritz Baum1, Julian Dibbelt1(B), Thomas Pajor2, and Dorothea Wagner1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{moritz.baum,julian.dibbelt,dorothea.wagner}@kit.edu

2 Cupertino, CA, USA

Abstract. Algorithms for computing driving directions on road net-
works often presume constant costs on each arc. In practice, the current
traffic situation significantly influences the travel time. One can distin-
guish traffic congestion that can be predicted using historical traffic data,
and congestion due to unpredictable events, e. g., accidents. We study
the dynamic and time-dependent route planning problem, which takes
both live traffic and long-term prediction into account. We propose a
practical algorithm that, while robust to user preferences, is able to inte-
grate global changes of the time-dependent metric faster than previous
approaches and allows queries in the order of milliseconds.

1 Introduction

To enable responsive route planning applications on large-scale road networks,
speedup techniques have been proposed [1], employing preprocessing to accelerate
Dijkstra’s shortest-path algorithm [18]. A successful approach [4,9,16,21,28,30]
exploits that road networks have small separators [10,22,27,40,41], comput-
ing coarsened overlays that maintain shortest path distance. An important
aspect [14] in practice is the consideration of traffic patterns and incidents. In
dynamic, time-dependent route planning, costs vary as a function of time [6,19].
These functions are derived from historic knowledge of traffic patterns [39], but
have to be updated to respect traffic incidents or short-term predictions [15]. In
this work, we investigate the challenges that arise when extending a separator-
based overlay approach to the dynamic, time-dependent route planning scenario.

Related Work. In time-dependent route planning, there are two major query
variants: (1) Given the departure time at a source, compute the earliest arrival
time (EA) at the target; (2) compute earliest arrival times for all departure
times of a day (profile search). Dijkstra’s algorithm [18] can be extended to solve
these problems for cost functions with reasonable properties [6,19,38]. However,
functional representations of profiles (typically by piecewise-linear functions) are
quite complex on realistic instances [13]. Many speedup techniques have been

Partially supported by EU grants 288094 (eCOMPASS) and 609026 (MOVE-
SMART).

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 33–49, 2016.
DOI: 10.1007/978-3-319-38851-9 3

34 M. Baum et al.

adapted to time-dependency. Some use (scalar) lower bounds on the travel time
functions to guide the graph search [11,12,37]. TD-CALT [11] yields reasonable
EA query times for approximate solutions, allowing dynamic traffic updates,
but no profile search. TD-SHARC [8] offers profile search on a country-scale net-
work. Time-dependent Contraction Hierarchies (TCH) [2] enable fast EA and
profile searches on continental networks. During preprocessing, TCH computes
overlays by iteratively inserting shortcuts [25] obtained from profile searches.
Piecewise-linear function approximation [29] is used to reduce shortcut com-
plexity, dropping optimality. A multi-phase extension (ATCH) restores exact
results [2]. Time-dependent shortest path oracles described in [33–35] approx-
imate distances in sublinear query time after subquadratic preprocessing. In
practical experiments, however, preprocessing effort is still substantial [31,32].

TCH has been generalized to combined optimization of functional travel time
and scalar, other costs [3], which poses an NP-hard problem. While this hardness
result would of course impact any approach, interestingly, the experiments in [3]
suggest that TCH on its own is not particularly robust against user preferences:
In a scenario that amounts to the avoidance of highways, preprocessing effort
doubles and query performance decreases by an order of magnitude. (Our exper-
iments will confirm this on a non NP-hard formulation of highway avoidance.)

Other works focus on unforeseen dynamic changes (e. g., congestion due to
an accident), often by enabling partial updates of preprocessed data [12,20].
Customizable Route Planning (CRP) [9] offloads most preprocessing effort to
a metric-independent, separator-based phase. Preprocessed data is then cus-
tomized to a given routing metric for the whole network within seconds or
below. This also enables robust integration of user preferences. Customizable
Contraction Hierarchies (CCH) [16] follows a similar approach. However, CRP
and CCH handle only scalar metrics. To the best of our knowledge, non-scalar
metrics for separator-based approaches have only been investigated in the con-
text of electric vehicles (EVCRP) [5], where energy consumption depends on
state-of-charge, but functional complexity is very low. On the other hand, the
use of scalar approaches for handling live traffic information yields inaccurate
results for medium and long distances: Such methods wrongly consider current
traffic even at far away destinations—although it will have dispersed once reach-
ing the destination. For realistic results, a combination of dynamic and time-
dependent (non-scalar, functional) route planning accounts for current traffic,
short-term predictions, and historic knowledge about recurring traffic patterns.

Our Contribution. We carefully extend CRP [9] to time-dependent functions.
As such, we are the first to evaluate partition-based overlays on a challenging
non-scalar metric. To this end, we integrate profile search into CRP’s customiza-
tion phase and compute time-dependent overlays. Unlike EVCRP and TCH, a
näıve implementation fails: Shortcuts on higher-level overlays are too expensive
to be kept in memory (and too expensive to evaluate during queries). To reduce
functional complexity, we approximate overlay arcs. In fact, approximation sub-
ject to a very small error suffices to make our approach practical, in accordance
to theory [23]. The resulting algorithmic framework enables interactive queries

Dynamic Time-Dependent Route Planning with User Preferences 35

with low average and maximum error in a very realistic scenario consisting of
live traffic, short-term traffic predictions, and historic traffic patterns. More-
over, it supports user preferences such as lower maximum driving speeds or the
avoidance of highways. In an extensive experimental setup, we demonstrate that
our approach enables integration of custom updates much faster than previous
approaches, while allowing fast queries that enable interactive applications. It is
also robust to changes in the metric that turn out to be much harder for previous
techniques.

2 Preliminaries

A road network is modeled as a directed graph G = (V,A) with n = |V | ver-
tices and m = |A| arcs, where vertices v ∈ V correspond to intersections and
arcs (u, v) ∈ A to road segments. An s–t-path P (in G) is a sequence Ps,t = [v1 =
s, v2, . . . , vk = t] of vertices such that (vi, vi+1) ∈ A. If s and t coincide, we call P
a cycle. Every arc a has assigned a periodic travel-time function fa : Π → R

+,
mapping departure time within period Π = [0, π] to travel time. Given a depar-
ture time τ at s, the (time-dependent) travel time τ[s,...,t] of an s–t-path is
obtained by consecutive function evaluation, i. e., τ[s,...,vi] = f(vi−1,vi)(τ[s,...,vi−1)).
We assume that functions are piecewise linear and represented by breakpoints.
We denote by |f | the number of breakpoints of a function f . Moreover, we define
fmax as the maximum value of f , i.e., fmax = maxτ∈Π f(τ). Analogously, fmin

is the minimum value of f . A function f is constant if f ≡ c for some c ∈ Π. We
presume that functions fulfill the FIFO property, i. e., for arbitrary σ ≤ τ ∈ Π,
the condition σ + f(σ) ≤ τ + f(τ) holds (waiting at a vertex never pays off).
Unless waiting is allowed at vertices, the shortest-path problem becomes NP-
hard if this condition is not satisfied for all arcs [7,42]. Given two functions f, g,
the link operation is defined as link(f, g) := f + g ◦ (id +f), where id is the
identity function and ◦ is function composition. The result link(f, g) is piecewise
linear again, with at most |f | + |g| breakpoints (namely, at departure times of
breakpoints of f and backward projections of departure times of points of g). We
also define merging of f and g by merge(f, g) := min(f, g). The result of merging
piecewise linear functions is piecewise linear, and the number of breakpoints is
in O(|f |+ |g|) (containing breakpoints of the two original functions and at most
one intersection per linear segment). Linking and merging are implemented by
coordinated linear sweeps over the breakpoints of the corresponding functions.

The (travel-time) profile of a path P = [v1, . . . , vk] is the function fP : Π →
R

+ that maps departure time τ at v1 to travel time on P . Starting at f[v1,v2] =
f(v1,v2), we obtain the desired profile by consecutively applying the link oper-
ation, i. e., f[v1,...,vi] = link(f[v1,...,vi−1], f(vi−1,vi)). Given a set P of s–t-paths,
the corresponding s–t-profile is fP(τ) = minP∈P fP (τ) for τ ∈ Π, i. e., the
minimum profile over all paths in P. The s–t-profile maps departure time to
minimum travel time for the given paths. It is obtained by (iteratively) merging
the respective paths.

A partition of V is a set C = {C1, . . . , Ck} of disjoint vertex sets such
that

⋃k
i=1 Ci = V . More generally, a nested multi-level partition consists of

36 M. Baum et al.

sets {C1, . . . , CL} such that C� is a partition of V for all � ∈ {1, . . . , L}, and
additionally for each cell Ci in C�, � < L, there is a partition C�+1 at level � + 1
containing a cell Cj with Ci ⊆ Cj . We call Cj the supercell of Ci. For consis-
tency, we define C0 = {{v} | v ∈ V } and CL+1 = {V }. Vertices u and v are
boundary vertices on level � if they are in different cells of C�. Accordingly, the
arc (u, v) ∈ A is a boundary arc on level �.

Query Variants and Algorithms. Given a departure time τ and vertices s and t,
an earliest-arrival (EA) query asks for the minimum travel time from s to t
when departing at time τ . Similarly, a latest-departure (LD) query asks for the
minimum travel time of an s–t-path arriving at time τ . A profile query for
given source s and target t asks for the minimum travel time at every possible
departure time τ , i. e., a profile fs,t from s to t (over all s–t-paths in G). EA
queries can be handled by a time-dependent variant of Dijkstra’s algorithm [19],
which we refer to as TD-Dijkstra. It maintains (scalar) arrival time labels d(·) for
each vertex, initially set to τ for the source s (∞ for all other vertices). In each
step, a vertex u with minimum d(u) is extracted from a priority queue (initialized
with s). Then, the algorithm relaxes all outgoing arcs (u, v): if d(u)+f(u,v)(d(u))
improves d(v), it updates d(v) accordingly and adds v to the priority queue
(unless it is already contained). LD queries are handled analogously by running
the algorithm from t, relaxing incoming instead of outgoing arcs, and maintaining
departure time labels.

Profile queries can be solved by Profile-Dijkstra [13], which is based on link-
ing and merging. It generalizes Dijkstra’s algorithm, maintaining s–v profiles fv

at each vertex v ∈ V . Initially, it sets fs ≡ 0, and fv ≡ ∞ for all other vertices.
The algorithm continues along the lines of TD-Dijkstra, using a priority queue
with scalar keys fmin

v . For extracted vertices u, arc relaxations propagate profiles
rather than travel times, computing g := link(fu, f(u,v)) and fv := merge(fv, g)
for outgoing arcs (u, v). As shown by Foschini et al. [23], the number of break-
points of the profile of an s–v-paths can be superpolynomial, and hence, so is
space consumption per vertex label and the running time of Profile-Dijkstra in
the worst case. Accordingly, it is not feasible for large-scale instances, even in
practice [13].

3 Our Approach

We propose Time-Dependent CRP (TDCRP), a speedup technique for time-
dependent route planning allowing fast integration of user-dependent metric
changes. Additionally, we enable current and/or predicted traffic updates with
limited departure time horizon (accounting for the fact that underlying traffic
situations resolve over time). To take historic knowledge of traffic patterns into
account, we use functions of departure time at arcs. This conceptual change has
important consequences: For plain CRP, the topology data structures is fixed
after preprocessing, enabling several micro-optimizations with significant impact

Dynamic Time-Dependent Route Planning with User Preferences 37

on customization and query [9]. In our case, functional complexity is metric-
dependent (influenced by, e. g., user preferences) and has to be handled dynam-
ically during customization. Hence, for adaptation to dynamic time-dependent
scenarios, we require new data structures and algorithmic changes during cus-
tomization. Below, we recap the three-phase workflow of CRP [9] that allows
fast integration of user-dependent routing preferences, describing its extension
to TDCRP along the way. In particular, we incorporate profile queries into the
customization phase to obtain time-dependent shortcuts. Moreover, we adapt
the query phase to efficiently compute time-dependent shortest routes.

3.1 Preprocessing

The (metric-independent) preprocessing step of CRP computes a multi-level
partition of the vertices, with given number L of levels. Several graph partition
algorithms tailored to road networks exist, providing partitions with balanced
cell sizes and small cuts [10,27,40,41]. For each level � ∈ {1, . . . , L}, the respec-
tive partition C� induces an overlay graph H�, containing all boundary vertices
and boundary arcs in C� and shortcut arcs between boundary vertices within
each cell C�

i ∈ C�. We define C0 = {{v} | v ∈ V } and H0 := G for consistency.
Building the overlay, we use the clique matrix representation, storing cliques of
boundary vertices in matrices of contiguous memory [9]. Matrix entries repre-
sent pointers to functions (whose complexity is not known until customization).
This dynamic data structure rules out some optimizations for plain CRP, such
as microcode instructions, that require preallocated ranges of memory for the
metric [9]. To improve locality, all functions are stored in a single array, such that
profiles corresponding to outgoing arcs of a boundary vertex are in contiguous
memory.

3.2 Customization

In the customization phase, costs of all shortcuts (added to the overlay graphs
during preprocessing) are computed. We run profile searches to obtain these
time-dependent costs. In particular, we require, for each boundary vertex u (in
some cell Ci at level � ≥ 1), the time-dependent distances for all τ ∈ Π to all
boundary vertices v ∈ Ci. To this end, we run a profile query on the overlay H�−1.
By design, this query is restricted to subcells of Ci, i. e., cells Cj on level �−1 for
which Cj ⊆ Ci holds. This yields profiles for all outgoing (shortcut) arcs (u, v)
in Ci from u. On higher levels, previously computed overlays are used for faster
computation of shortcuts. Unfortunately, profile queries are expensive in terms
of both running time and space consumption. Below, we describe improvements
to remedy these effects, mostly by tuning the profile searches.

Improvements. The main bottleneck of profile search is performing link and
merge operations, which require linear time in the function size (cf. Sect. 2). To
avoid unnecessary operations, we explicitly compute and store the minimum fmin

and the maximum fmax of a profile f in its corresponding label and in shortcuts

38 M. Baum et al.

of overlays. These values are used for early pruning, avoiding costly link and
merge operations: Before relaxing an arc (u, v), we check whether fmin

u +fmin
(u,v) >

fmax
v , i. e., the minimum of the linked profile exceeds the maximum of the label

at v. If this is the case, the arc (u, v) does not need to be relaxed. Otherwise,
the functions are linked. We distinguish four cases, depending on whether the
first or second function are constant, respectively. If both are constant, linking
becomes trivial (summing up two integers). If one of them is constant, simple
shift operations suffice (we need to distinguish two cases, depending on which
of the two functions is constant). Only if no function is constant, we apply the
link operation.

After linking f(u,v) to fu, we obtain a tentative label f̃v together with its
minimum f̃min

v and maximum f̃max
v . Before merging fv and f̃v, we run additional

checks to avoid unnecessary merge operations. First, we perform bound checks:
If f̃min

v > fmax
v , the function fv remains unchanged (no merge necessary). Note

that this may occur although we checked bounds before linking. Conversely, if
f̃max

v < fmin
v , we simply replace fv by f̃v. If the checks fail, and one of the two

functions is constant, we must merge. But if fv and f̃v are both nonconstant,
one function might still dominate the other. To test this, we do a coordinated
linear-time sweep over the breakpoints of each function, evaluating the current
line segment at the next breakpoint of the other function. If during this test
f̃v(τ) < fv(τ) for any point (τ, ·), we must merge. Otherwise we can avoid the
merge operation and its numerically unstable line segment intersections.

Additionally, we use clique flags: For a vertex v, define its parents as all
direct predecessors on paths contributing to the profile at the current label of v.
For each vertex v of an overlay H�, we add a flag to its label that is true if all
parents of v belong to the same cell at level �. This flag is set to true whenever
the corresponding label fv is replaced by the tentative function f̃v after relaxing
a clique arc (u, v), i. e., the label is set for the first time or the label fv is
dominated by the tentative function f̃v. It is set to false if the vertex label is
partially improved after relaxing a boundary arc. For flagged vertices, we do
not relax outgoing clique arcs, as this cannot possibly improve labels within the
same cell (due to the triangle inequality and the fact that we use full cliques).

Parallelization. Cells on a given level are processed independently, so customiza-
tion can be parallelized naturally, assigning cells to different threads [9]. In our
scenario, however, workload is strongly correlated with the number of time-
dependent arcs in the search graph. It may differ significantly between cells: In
realistic data sets, the distribution of time-dependent arcs is clearly not uniform,
as it depends on the road type (highways vs. side roads) and the area (rural vs.
urban). To balance load, we parallelize per boundary vertex (and not per cell).

Shortcut profiles are written to dynamic containers, as the number of break-
points is not known in advance. Thus, we must prohibit parallel (writing) access
to these data structure. One way to solve this is to make use of locks. However,
this is expensive if many threads try to write profiles at the same time. Instead,
we use thread-local profile containers, i. e., each thread uses its own container to
store profiles. After customization of each level, we synchronize data by copying

Dynamic Time-Dependent Route Planning with User Preferences 39

profiles to the global container sequentially. To improve spatial locality during
queries, we maintain the relative order of profiles wrt. the matrix layout (so
profiles of adjacent vertices are likely to be contiguous in memory). Since rela-
tive order within each thread-local containers is maintained easily (by running
queries accordingly), we can use merge sort when writing profiles to the global
container.

Approximation. On higher levels of the partition, shortcuts represent larger parts
of the graph. Accordingly, they contain more breakpoints and consume more
space. This makes profile searches fail on large graphs due to insufficient mem-
ory, even on modern hardware. Moreover, running time is strongly correlated to
the complexity of profiles. To save space and time, we simplify functions dur-
ing customization. To this end, we use the algorithm of Imai and Iri [29]. For
a maximum (relative or absolute) error bound ε, it computes an approxima-
tion of a given piecewise linear function with minimum number of breakpoints.
In TCH [2], this technique is applied after preprocessing to reduce space con-
sumption. Instead, we use the algorithm to simplify profiles after computing all
shortcuts of a certain level. Therefore, searches on higher levels use approxi-
mated functions from lower levels, leading to slightly less accurate profiles but
faster customization; see Sect. 4. The bound ε is a tuning parameter: Larger val-
ues allow faster customization, but decrease quality. Also, approximation is not
necessarily applied on all levels, but can be restricted to the higher ones. Note
that after approximating shortcuts, the triangle inequality may no longer hold
for the corresponding overlay. This is relevant when using clique flags: They yield
faster profile searches, but slightly decrease quality (additional arc relaxations
may improve shortcut bounds).

3.3 Live Traffic and Short-Term Traffic Predictions

Updates due to, e. g., live traffic, require that we rerun parts of the customization.
Clearly, we only have to run customization for affected cells, i. e., cells containing
arcs for which an update is made. We can do even better if we exploit that live
traffic and short-term updates only affect a limited time horizon. Thus, we do
not propagate updates to boundary vertices that cannot reach an affected arc
before the end of its time horizon.

We assume that short-term updates are partial functions f : [π′, π′′] → R
+,

where π′ ∈ Π and π′′ ∈ Π are the beginning and end of the time horizon, respec-
tively. Let a1 = (u1, v1), . . . , ak = (uk, vk) denote the updated arcs inside some
cell Ci at level �, and let f1, . . . , fk be the corresponding partial functions repre-
senting time horizons. Moreover, let τ be the current point in time. To update Ci

we run, on its induced subgraph, a backward multi-target latest departure (LD)
query from the tails of all updated arcs. In other words, we initially insert the
vertices u1, . . . , uk into the priority queue. For each i ∈ {1, . . . , k}, the label of ui

is set to π′′
i , i. e., the end of the time horizon [π′

i, π
′′
i] of the partial function fi.

Consequently, the LD query computes, for each vertex of the cell Ci, the latest
possible departure time such that some affected arc is reached before the end of

40 M. Baum et al.

its time horizon. Whenever the search reaches a boundary vertex of the cell, it
is marked as affected by the update. We stop the search as soon as the depar-
ture time label of the current vertex is below τ . (Recall that LD visits vertices in
decreasing order of departure time.) Thereby, we ensure that only such boundary
vertices are marked from which an updated arc can be reached in time.

Afterwards, we run profile searches for Ci as in regular customization, but
only from affected vertices. For profiles obtained during the searches, we test
whether they improve the corresponding stored shortcut profile. If so, we add
the affected interval of the profile for which a change occurs to the set of time
horizons of the next level. If shortcuts are approximations, we test whether the
change is significant, i. e., the maximum difference between the profiles exceeds
some bound. We continue the update process on the next level accordingly.

3.4 Queries

The query algorithm makes use of shortcuts computed during customization
to reduce the search space. Given a source s and a target t, the search graph
consists of the overlay graph induced by the top-level partition CL, all overlays
of cells of lower levels containing s or t, and the level-0 cells in the input graph G
that contain s or t. Note that the search graph does not have to be constructed
explicitly, but can be obtained on-the-fly [9]: At each vertex v, one computes the
highest levels �s,v and �v,t of the partition such that v is not in the same cell
of the partition as s or t, respectively (or 0, if v is in the same level-1 cell as s
or t). Then, one relaxes outgoing arcs of v only at level min{�s,v, �v,t} (recall
that H0 = G).

To answer EA queries, we run TD-Dijkstra on this search graph. For faster
queries, we make use of the minimum values fmin

(u,v) stored at arcs: We do not
relax an arc (u, v) if d(u) + fmin

(u,v) does not improve d(v). Thereby, we avoid
costly function evaluation. Note that we do not use clique flags for EA queries,
since we have observed rare but high maximum errors in our implementation
when combined with approximated clique profiles.

To answer profile queries, Profile-Dijkstra can be run on the CRP search
graph, using the same optimizations as described in Sect. 3.2.

4 Experiments

We implemented all algorithms in C++ using g++ 4.8 (flag -O3) as compiler.
Experiments were conducted on a dual 8-core Intel Xeon E5-2670 clocked at
2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache.
We ran customization in parallel (using all 16 threads) and queries sequentially.

Input Data and Methodology. Our main test instance is the road network of
Western Europe (|V | = 18 million, |A| = 42.2 million), kindly provided
by PTV AG. For this well-established benchmark instance [1], travel time func-
tions were generated synthetically [37]. We also evaluate the subnetwork of

Dynamic Time-Dependent Route Planning with User Preferences 41

Table 1. Customization performance on Europe for varying approximation parame-
ters (ε). We report, per level, the number of breakpoints (bps, in millions) in the
resulting overlay, the percentage of clique arcs that are time-dependent (td.clq.arcs),
average complexity of time-dependent arcs (td.arc.cplx), as well as customization time.
Without approximation, Levels 5 and 6 cannot be computed as they do not fit into
main memory.

ε Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Total

— bps [106] 99.1 398.4 816.4 1 363.4 — — 2 677.4

td.clq.arcs [%] 17.0 52.6 76.0 84.2 — — —

td.arc.cplx 21.0 68.9 189.0 509.3 — — —

time [s] 11.4 52.0 152.9 206.2 — — 375.7

0.01 % bps [106] 75.7 182.7 244.6 240.8 149.3 59.2 952.2

td.clq.arcs [%] 17.0 52.6 76.0 84.2 85.2 82.5 —

td.arc.cplx 16.0 31.6 56.6 90.0 108.6 108.0 —

time [s] 4.5 18.0 32.7 82.1 150.3 151.5 439.1

0.1 % bps [106] 60.7 107.5 111.5 87.9 47.9 17.6 432.9

td.clq.arcs [%] 17.0 52.7 76.0 84.2 85.2 82.5 —

td.arc.cplx 12.9 18.6 25.8 32.8 34.8 32.1 —

time [s] 4.2 16.0 21.4 40.7 62.4 55.0 199.7

1.0 % bps [106] 45.7 58.0 45.6 29.2 14.7 5.4 198.5

td.clq.arcs [%] 17.0 52.7 76.0 84.2 85.2 82.5 —

td.arc.cplx 9.7 10.0 10.6 10.9 10.7 9.8 —

time [s] 4.1 14.1 14.8 22.7 29.6 24.1 109.2

Germany (|V | = 4.7 million, |A| = 10.8 million), where time-dependent data
from historical traffic is available (we extract the 24 h profile of a Tuesday).1 For
partitioning, we use PUNCH [10], which is explicitly developed for road networks
and aims at minimizing the number of boundary arcs. For Europe, we consider
a 6-level partition, with maximum cell sizes 2[4:8:11:14:17:20]. For Germany, we use
a 5-level partition, with cell sizes of 2[4:8:12:15:18]. Compared to plain CRP, we
use partitions with more levels, to allow fine-grained approximation. Computing
the partition took 5 min for Germany, and 23 min for Europe. Given that road
topology changes rarely, this is sufficiently fast in practice.

Evaluating Customization. Table 1 details customization for different approx-
imation parameters ε on the Europe instance. We report, for several choices
of ε and for each level of the partition, figures on the complexity of shortcuts
in the overlays and the parallelized customization time. The first block shows
figures for exact profile computation. Customization had to be aborted after the
fourth level, because the 64 GiB of main memory were not sufficient to store
1 The Germany and Europe instances can be obtained easily for scientific purposes,

see http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php.

http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php

42 M. Baum et al.

Table 2. Query performance on Europe as a trade-off between customization effort
and approximation. For customization, we set different approximation parameters (ε)
and disable (◦) or enable (•) clique flags (Cl.). For the different settings, we report
query performance in terms of number of vertices extracted from the queue, scanned
arcs, evaluated function breakpoints (# Bps), running time, and average and maximum
error, each averaged over 100 000 random queries. As we employ approximation per
level, resulting query errors can be higher than the input parameter.

Customization Query

Approx. ε Cl. Time [s] #Vertices # Arcs # Bps Time [ms] Err. [%]

avg. max.

0.01 % ◦ 1 155.1 3 499 541 091 433 698 14.69 <0.01 0.03

0.01 % • 439.1 3 499 541 090 434 704 14.53 <0.01 0.03

0.10 % ◦ 533.0 3 499 541 088 96 206 7.63 0.04 0.28

0.10 % • 199.7 3 499 541 088 99 345 6.47 0.04 0.29

1.00 % ◦ 284.4 3 499 541 080 67 084 5.66 0.51 3.15

1.00 % • 109.2 3 499 541 058 70 202 5.75 0.54 3.21

the profiles of all vertex labels. For remaining levels, we clearly see the strong
increase in the total number of breakpoints per level. Also, the relative amount
of time-dependent arcs rises with each level, since shortcuts become longer. Cus-
tomization time clearly correlates with profile complexity, from 10 s on the lowest
level, to more then three minutes on the fourth. When approximating, we see
that customization becomes faster for larger values of ε. We apply approxima-
tion to all levels of the partition (using it only on the topmost levels did not
provide significant benefits in preliminary experiments). Recall that higher lev-
els work on approximated shortcuts of previous levels, so ε does not provide
a bound on the error of the shortcuts. We see that even a very small value
(0.01%) yields a massive drop of profile complexity (more than a factor 5 at
Level 4), and immediately allows full customization. For reasonably small values
(ε = 0.1%, ε = 1.0%), we see that customization becomes much faster (less than
two minutes for ε = 1.0%). In particular, this is fast enough for traffic updates.
Even for larger values of ε, the higher levels are far more expensive: This is due
to the increasing amount of time-dependent arcs, slowing down profile search.

Evaluating Customization and Queries. In Table 2, we show query performance
for different values of the approximation parameter ε on the Europe instance.
We also show the effect of using clique flags during customization: they improve
customization performance by about a factor of 2.6, while having a negligible
influence on query results. For each value of ε, we report timings as well as aver-
age and maximum error for 100 000 point-to-point queries. For each query, the
source and target vertex and the departure time were picked uniformly at ran-
dom. Similar to customization, the data shows that query times decrease with
higher approximation ratio. Again, this is due to the smaller number of break-

Dynamic Time-Dependent Route Planning with User Preferences 43

Table 3. Robustness comparison for TCH [2] and TDCRP. For different input
instances, we report timing of metric-dependent preprocessing (always run on 16 cores)
and sequential queries. Query times are averaged over the same 100 000 random queries
as in Table 2.

Network TCH TDCRP

Prepro. [s] Query [ms] Custom. [s] Query [ms]

Europe 1 479 1.37 109 5.75

Europe, bad traffic 7 772 5.87 208 8.01

Europe, avoid highways 8 956 19.54 127 8.29

points in profiles (observe that the number of visited vertices and arcs is almost
identical in all cases). As expected, both average and maximum error clearly
correlate with (but are larger than) ε. There are two reasons for this: As shown
in [24,32,35], query errors not only depend on ε but also on the maximum slope
of any approximated function. Moreover, since we apply approximation per level,
the error bound in [24] applies recursively, leading to a higher theoretical bound.
Still, we observe that even for the parameter choice ε = 1.0%, the maximum
error is very low (about 3 %). Moreover, query times are quite practical for all
values of ε, ranging from 5 ms to 15 ms. In summary, our approach allows query
times that are fast enough for interactive applications, if a reasonable, small
error is allowed. Given that input functions are based on statistical input with
inherent inaccuracy, the error of TDCRP is more than acceptable for realistic
applications.

Evaluating Robustness. We also evaluate robustness of our approach against
dynamic updates and user-dependent custom metrics. The first scenario (bad
traffic) simulates a highly congested graph: for every time-dependent arc in the
Western Europe instance with associated travel-time function f , we replace f
by f ′ defined as f ′(τ) := 2(f(τ) − fmin(τ)) + fmin(τ), while maintaining the
FIFO property on f ′. In the second scenario, we consider user restrictions (avoid
highways). For each scenario, customization and the same set of 100 000 random
queries as before are run on the respective modified instance. (Hence, we do
not remove highways for the second scenario, setting very high costs instead.)
Table 3 compares results of the original instance (Europe) to the modified ones.

Besides our approach, which is run using parameter ε = 1.0 for customization,
we also evaluate TCH [2], the fastest known approach for time-dependent route
planning. All measurements for TCH are based on this freely available imple-
mentation: https://github.com/GVeitBatz/KaTCH. While TCH allows faster
queries on the original instance, we see that running times increase significantly
for the modified ones. Preprocessing time also increases to several hours in both
cases. In the first scenario (bad traffic), this can be explained by a larger number
of paths that are relevant at different points in time (more congested roads need
to be bypassed). Consequently, customization time of TDCRP rises as well but
by a much smaller factor. In the second scenario (avoid highways), the TCH hier-

https://github.com/GVeitBatz/KaTCH

44 M. Baum et al.

archy clearly deteriorates. While TDCRP is quite robust to this change (both
customization and query times increase by less than 50 %), TCH queries slow
down by more than an order of magnitude.

While possibly subject to implementation, our experiment indicates that
underlying vertex orderings of TCH are not robust against less well-behaved
metrics. Similar effects can be shown for scalar Contraction Hierarchies (CH)
on metrics reflecting, e. g., travel distance [9,25]. In summary, TDCRP is much
more robust in both scenarios.

Comparison with Related Work. Finally, Table 4 provides an overview comparing
our results to the most relevant existing approaches for time-dependent route
planning. For the related work, we show measurements in the fastest reported
variant (e. g., if parallelized) but we scale all timings to our hardware as detailed
in Table 5 using a benchmark tool [1] available at http://tpajor.com/projects/.

For TCH and ATCH [2], preprocessing can be further split into node order
computation and contraction. Since it has been shown in [2] that node orders can
be re-used for certain other metrics (e. g., other week days), we report running
times of the contraction as rudimentary customization times. Recall, however,
that our robustness tests in Table 3 suggest that there is a limit to the applica-
bility of such a customization approach based on current TCH orders.

We evaluated our approach on both benchmark instances (Germany, and
Europe) for the two fastest variants (ε = 0.1 and ε = 1.0) and we see that it
competes very well with the previous techniques: While providing query times
similar to the fastest existing approaches, TDCRP has by far the lowest metric-
dependent preprocessing time (i. e., customization time) and a good parallel
speedup (factor 13.9 to 14.2 on Europe for 16 threads). At the same time,
resulting average and maximum errors (due to approximating profiles during
customization) are similar to previous results and low enough for practical pur-
poses. When parallelized, customization of the whole network is fast enough for
regular live-traffic updates: 8 to 16 s on Germany, and 2 to 3 min on Europe.
Note, however, that other approaches are also able to handle live traffic by pro-
viding partial updates of the preprocessed data: For example, by exploiting the
fact that effects of live traffic are locally and temporally limited, FLAT [32]) and
TDCALT [11] achieve partial update times in well below a minute (for 1,000
traffic-affected arcs).

Interestingly, TDCALT’s preprocessing is also quite fast. This could make
it an interesting alternative candidate for our scenario (metric customization);
since it is mostly based on lower bounds and only light contraction, it might
also be fairly robust to sensible, user-defined metrics (unlike TCH, cf. Table 3).
Note, however, that TDCALT on Europe requires a significantly higher approx-
imation to achieve a similar level of query performance (even scaled), yielding
a high maximum error. Furthermore, in the evaluated variant, landmarks are
chosen after the graph contraction routine, making it hard to parallelize the pre-
processing (which also has not been attempted). Additionally, TDCALT allows
no practical profile search on large instances [8,11], making it a less versatile
approach.

http://tpajor.com/projects/

Dynamic Time-Dependent Route Planning with User Preferences 45

T
a
b
le

4
.

C
o
m

p
a
ri

so
n

o
f

ti
m

e-
d
ep

en
d
en

t
sp

ee
d
u
p

te
ch

n
iq

u
es

o
n

in
st

a
n
ce

s
o
f

G
er

m
a
n
y,

a
n
d

E
u
ro

p
e.

W
e

p
re

se
n
t

fi
g
u
re

s
fo

r
va

ri
a
n
ts

o
f

T
D

C
A

L
T

[1
1
],

S
H

A
R

C
[8

],
T

C
H

a
n
d

A
T

C
H

[2
],

F
L
A

T
[3

2
],

a
n
d

T
D

C
R

P
.
F
o
r

b
et

te
r

co
m

p
a
ra

b
il
it
y

a
cr

o
ss

d
iff

er
en

t
h
a
rd

w
a
re

,
w

e
sc

a
le

a
ll

se
q
u
en

ti
a
l
(S

eq
.)

a
n
d

p
a
ra

ll
el

(P
a
r.

)
ti

m
in

g
s

to
o
u
r

m
a
ch

in
e;

se
e

T
a
b
le

5
fo

r
fa

ct
o
rs

.
F
o
r

p
re

p
ro

ce
ss

in
g
,
cu

st
o
m

iz
a
ti

o
n
,
a
n
d

li
v
e

tr
a
ffi

c
u
p
d
a
te

s,
w

e
sh

ow
th

e
n
u
m

b
er

o
f
th

re
a
d
s
u
se

d
(T

h
r.

).
F
o
r
E

A
q
u
er

ie
s,

w
e

p
re

se
n
t
av

er
a
g
e

n
u
m

b
er

s
o
n

q
u
eu

e
ex

tr
a
ct

io
n
s
(#

V
er

t.
),

sc
a
n
n
ed

a
rc

s,
se

q
u
en

ti
a
l
ru

n
n
in

g
ti

m
e

in
m

il
li
se

co
n
d
s,

a
n
d

av
er

a
g
e

a
n
d

m
a
x
im

u
m

re
la

ti
v
e

er
ro

r.

A
lg

o
ri

th
m

In
st

.
T

h
r.

P
re

p
ro

ce
ss

in
g

C
u
st

o
m

iz
a
ti

o
n

T
ra

ffi
c

E
A

Q
u
er

ie
s

P
a
r.

S
p
a
ce

P
a
r.

S
eq

.
S
p
a
ce

P
a
r.

#
V

er
t.

#
A

rc
s

S
eq

.
E

rr
.
[%

]

[h
:m

:s
]

[B
/
n
]
[m

:s
]

[m
:s

]
[B

/
n
]

[m
:s

]
[m

s]
av

g
.

m
a
x
.

T
D

C
A

L
T

G
er

m
a
n
y

1
3
:1

4
5
0

—
—

—
n
/
a

3
1
9
0

1
2

2
5
5

1
.9

3
—

—

T
D

C
A

L
T

-K
1
.1

5
G

er
m

a
n
y

1
3
:1

4
5
0

—
—

—
n
/
a

1
5
9
3

5
3
3
9

0
.6

7
0
.0

5
1
3
.8

4

ec
o

L
-S

H
A

R
C

G
er

m
a
n
y

1
2
8
:0

3
2
1
9

—
—

—
—

2
7
7
6

1
9

0
0
5

2
.2

7
—

—

h
eu

S
H

A
R

C
G

er
m

a
n
y

1
1
:1

4
:0

6
1
3
7

—
—

—
—

8
1
8

1
6
1
1

0
.2

5
n
/
a

0
.6

1

A
T

C
H

(1
.0

)
G

er
m

a
n
y

8
5
:5

0
2
3
9

1
:0

9
6
:5

9
2
3
9

—
5
8
8

7
9
9
3

1
.1

5
—

—

in
ex

.
T

C
H

(0
.1

)
G

er
m

a
n
y

8
5
:5

0
2
8
6

1
:0

9
6
:5

9
2
8
6

—
6
4
2

7
1
3
8

0
.6

5
0
.0

2
0
.1

0

in
ex

.
T

C
H

(2
.5

)
G

er
m

a
n
y

8
5
:5

0
1
7
2

1
:0

9
6
:5

9
1
7
2

—
6
6
8

7
4
2
9

0
.6

7
0
.7

9
2
.4

4

F
L
A

T
/
F
C

A
G

er
m

a
n
y

6
>

1
d
ay

>
1
0

0
0
0

—
—

—
0
:4

4
1

1
2
2

n
/
a

1
.5

1
n
/
a

1
.5

3

T
D

C
R

P
(0

.1
)

G
er

m
a
n
y

1
6

4
:3

3
2
9

0
:1

6
3
:3

0
1
6
6

0
:1

6
2

1
5
2

1
6
7

2
6
3

1
.9

2
0
.0

5
0
.2

5

T
D

C
R

P
(1

.0
)

G
er

m
a
n
y

1
6

4
:3

3
2
9

0
:0

8
1
:4

3
7
7

0
:0

8
2

1
5
2

1
6
7

3
0
5

1
.6

6
0
.6

8
2
.8

5

T
D

C
A

L
T

E
u
ro

p
e

1
2
1
:3

5
6
1

—
—

—
0
:2

2
6
0

9
6
1

3
5
6

5
2
7

4
3
.6

7
—

—

T
D

C
A

L
T

-K
1
.0

5
E

u
ro

p
e

1
2
1
:3

5
6
1

—
—

—
0
:2

2
3
2

4
0
5

n
/
a

2
2
.4

8
0
.0

1
3
.9

4

T
D

C
A

L
T

-K
1
.1

5
E

u
ro

p
e

1
2
1
:3

5
6
1

—
—

—
0
:2

2
6

3
6
5

3
2

7
1
9

3
.3

1
0
.2

6
8
.6

9

ec
o

L
-S

H
A

R
C

E
u
ro

p
e

1
2
:2

7
:0

7
1
9
8

—
—

—
—

1
8

2
8
9

1
6
5

3
8
2

1
3
.7

7
—

—

h
eu

S
H

A
R

C
E

u
ro

p
e

1
7
:5

9
:0

8
1
2
7

—
—

—
—

5
0
3
1

8
4
1
1

1
.0

6
n
/
a

1
.6

0

A
T

C
H

(1
.0

)
E

u
ro

p
e

8
4
2
:2

1
2
0
8

7
:2

6
4
8
:0

7
2
0
8

—
1

2
2
3

2
0

3
3
6

2
.6

8
—

—

in
ex

.
T

C
H

(0
.1

)
E

u
ro

p
e

8
4
2
:2

1
2
3
9

7
:2

6
4
8
:0

7
2
3
9

—
1

7
2
2

2
4

3
8
9

2
.5

0
0
.0

2
0
.1

5

in
ex

.
T

C
H

(2
.5

)
E

u
ro

p
e

8
4
2
:2

1
1
7
5

7
:2

6
4
8
:0

7
1
7
5

—
1

8
7
5

2
6

9
4
8

2
.7

2
0
.4

8
3
.3

7

T
D

C
R

P
(0

.1
)

E
u
ro

p
e

1
6

2
2
:3

3
3
2

3
:2

0
4
7
:1

0
2
3
7

3
:2

0
3

4
9
9

5
4
1

0
8
8

6
.4

7
0
.0

4
0
.2

9

T
D

C
R

P
(1

.0
)

E
u
ro

p
e

1
6

2
2
:3

3
3
2

1
:4

9
2
5
:1

6
1
3
3

1
:4

9
3

4
9
9

5
4
1

0
5
8

5
.7

5
0
.5

4
3
.2

1

46 M. Baum et al.

Table 5. Scaling factors for different machines, used in Table 4. Scores were determined
by a shared Dijkstra implementation [1] on the same graph. These factors have to
be taken with a grain of salt, since Dijkstra’s algorithm is not a good indicator of
cache performance. When scaling on TDCRP performance, instead, we observe a factor
of 2.06–2.18 for the Opteron 2218 (which we have access to), depending on the instance.

Machine Used by Score [ms] Factor

2× 8-core Intel Xeon E5-2670, 2.6 GHz TDCRP 36 582 —

AMD Opteron 2218, 2.6 GHz TDCALT [11], SHARC [8] 101 552 2.78

2× 4-core Intel Xeon X5550, 2.66 GHz TCH, ATCH [2] 39 684 1.08

6-core Intel Xeon E5-2643v3, 3.4 Ghz FLAT/FCA [32] 30 901 0.84

To summarize, we see that TDCRP clearly broadens the state-of-the-art of
time-dependent route planning, handling a wider range of practical requirements
(e. g., fast metric-dependent preprocessing, robustness to user preferences, live
traffic) with a query performance close to the fastest known approaches.

5 Conclusion

In this work, we introduced TDCRP, a separator-based overlay approach for
dynamic, time-dependent route planning. We showed that, unlike its closest com-
petitor (A)TCH, it is robust against user-dependent metric changes, very much
like CRP is more robust than CH. Most importantly, unlike scalar CRP, we
have to deal with time-dependent shortcuts, and a strong increase in functional
complexity on higher levels; To reduce memory consumption, we approximate
the overlay arcs at each level, accelerating customization and query times. As
a result, we obtain an approach that enables fast near-optimal, time-dependent
queries, with quick integration of user preferences, live traffic, and traffic predic-
tions.

There are several aspects of future work. Naturally, we are interested in
alternative customization approaches that avoid label-correcting profile searches.
This could be achieved, e. g., by using kinetic data structures [23], or balanced
contraction [2] within cells. It would be interesting to re-evaluate (A)TCH in
light of Customizable CH [16,17]. Also, while we customized time-dependent
overlay arcs with both historic travel time functions (changes seldom) and user
preferences (changes often) at once, in practice, it might pay off to separate this
into two further phases (yielding a 4-phase approach). Furthermore, one could
aim at exact queries based on approximated shortcuts as in ATCH.

While our approach is customizable, it requires arc cost functions that map
time to time. This allows to model avoidance of highways or driving slower than
the speed limit, but it cannot handle combined linear optimization of (time-
dependent) travel time and, e. g., toll costs. For that, one should investigate the
application of generalized time-dependent objective functions as proposed in [3].

Dynamic Time-Dependent Route Planning with User Preferences 47

Finally, functional complexity growth of time-dependent shortcuts is prob-
lematic, and from what we have seen, it is much stronger than the increase in the
number of corresponding paths. It seems wasteful to apply the heavy machinery
of linking and merging during preprocessing, when time-dependent evaluation
of just a few paths (more than one is generally needed) would give the same
results. This might explain why TDCALT, which is mostly based just on scalar
lower bounds, is surprisingly competitive. So re-evaluation seems fruitful, possi-
bly exploiting insights from [20]. Revisiting hierarchical preprocessing techniques
that are not based on shortcuts [26,36] could also be interesting.

Acknowledgements. We thank Gernot Veit Batz, Daniel Delling, Moritz Kobitzsch,
Felix König, Spyros Kontogiannis, and Ben Strasser for interesting conversations.

References

1. Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. CoRR
abs/1504.05140 (2015)

2. Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent
travel times with contraction hierarchies. ACM J. Exp. Algorithmics 18(1.4), 1–43
(2013)

3. Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective
functions. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 169–
180. Springer, Heidelberg (2012)

4. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contrac-
tion hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 93–104. Springer, Heidelberg (2013)

5. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric
vehicles. In: SIGSPATIAL 2013, pp. 54–63. ACM Press (2013)

6. Cooke, K., Halsey, E.: The shortest route through a network with time-dependent
internodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)

7. Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with
waiting policies. Networks 44(1), 41–46 (2004)

8. Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)
9. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning

in road networks. Transport. Sci. (2015)
10. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning

with natural cuts. In: IPDPS 2011, pp. 1135–1146. IEEE Computer Society (2011)
11. Delling, D., Nannicini, G.: Core routing on dynamic time-dependent road networks.

Informs J. Comput. 24(2), 187–201 (2012)
12. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Deme-

trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg
(2007)

13. Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K.,
Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimiza-
tion. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)

14. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: A case for time-dependent short-
est path computation in spatial networks. In: SIGSPATIAL 2010, pp. 474–477.
ACM Press (2010)

48 M. Baum et al.

15. Diamantopoulos, T., Kehagias, D., König, F., Tzovaras, D.: Investigating the effect
of global metrics in travel time forecasting. In: ITSC 2013, pp. 412–417. IEEE
(2013)

16. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282.
Springer, Heidelberg (2014)

17. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. J. Exp.
Algorithmics. 21(1), 1.5:1–1.5:49 (2016). doi:10.1145/2886843

18. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

19. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3),
395–412 (1969)

20. Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing.
In: IWCTS 2013, pp. 25:25–25:30. ACM Press (2013)

21. Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. a unified framework for all shortest-
path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol.
9125, pp. 298–311. Springer, Heidelberg (2015)

22. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an
algorithmic lens. In: SIGSPATIAL 2008, pp. 16:1–16:10. ACM Press (2008)

23. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent short-
est paths. Algorithmica 68(4), 1075–1097 (2014)

24. Geisberger, R., Sanders, P.: Engineering time-dependent many-to-many shortest
paths computation. In: ATMOS 2010, pp. 74–87. OASIcs (2010)

25. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

26. Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: ALENEX 2004, pp. 100–111. SIAM (2004)

27. Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: ALENEX
2016, pp. 90–102. SIAM (2016)

28. Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for
shortest-path queries. ACM J. Exp. Algorithmics 13(2.5), 1–26 (2008)

29. Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear func-
tion. J. Inf. Process. 9(3), 159–162 (1986)

30. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically
structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–
1046 (2002)

31. Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wag-
ner, D., Zaroliagis, C.: Analysis and experimental evaluation of time-dependent
distance oracles. In: ALENEX 2015, pp. 147–158. SIAM (2015)

32. Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wag-
ner, D., Zaroliagis, C.: Engineering oracles for time-dependent road networks. In:
ALENEX 2016, pp. 1–14. SIAM (2016)

33. Kontogiannis, S., Wagner, D., Zaroliagis, C.: Hierarchical Oracles for Time-
Dependent Networks. CoRR abs/1502.05222 (2015)

34. Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 713–725. Springer, Heidelberg (2014)

35. Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks.
Algorithmica 74(4), 1404–1434 (2015)

36. Maervoet, J., Causmaecker, P.D., Berghe, G.V.: Fast approximation of reach hier-
archies in networks. In: SIGSPATIAL 2014, pp. 441–444. ACM Press (2014)

http://dx.doi.org/10.1145/2886843

Dynamic Time-Dependent Route Planning with User Preferences 49

37. Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* search on
time-dependent road networks. Networks 59, 240–251 (2012)

38. Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks with
time-dependent edge-length. J. ACM 37(3), 607–625 (1990)

39. Pfoser, D., Brakatsoulas, S., Brosch, P., Umlauft, M., Tryfona, N., Tsironis, G.:
Dynamic travel time provision for road networks. In: SIGSPATIAL 2008, pp. 68:1–
68:4. ACM Press (2008)

40. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX
2012, pp. 16–29. SIAM (2012)

41. Schild, A., Sommer, C.: On balanced separators in road networks. In: Bampis, E.
(ed.) SEA 2015. LNCS, vol. 9125, pp. 286–297. Springer, Heidelberg (2015)

42. Sherali, H.D., Ozbay, K., Subramanian, S.: The time-dependent shortest pair of
disjoint paths problem: complexity, models, and algorithms. Networks 31(4), 259–
272 (1998)

	Dynamic Time-Dependent Route Planning in Road Networks with User Preferences
	1 Introduction
	2 Preliminaries
	3 Our Approach
	3.1 Preprocessing
	3.2 Customization
	3.3 Live Traffic and Short-Term Traffic Predictions
	3.4 Queries

	4 Experiments
	5 Conclusion
	References

