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Abstract. Indexing text collections to support pattern matching
queries is a fundamental problem in computer science. New challenges
keep arising as databases grow, and for repetitive collections, compressed
indexes become relevant. To successfully exploit the regularities of repet-
itive collections different approaches have been proposed. Some of these
are Compressed Suffix Array, Lempel-Ziv, and Grammar based indexes.

In this paper, we present an implementation of an hybrid index that
combines the effectiveness of Lempel-Ziv factorization with a modular
design. This allows to easily substitute some components of the index,
such as the Lempel-Ziv factorization algorithm, or the pattern matching
machinery.

Our implementation reduces the size up to a 50 % over its predecessor,
while improving query times up to a 15 %. Also, it is able to successfully
index thousands of genomes in a commodity desktop, and it scales up to
multi-terabyte collections, provided there is enough secondary memory.
As a byproduct, we developed a parallel version of Relative Lempel-Ziv
compression algorithm.

1 Introduction

In 1977 Abraham Lempel and Jacob Ziv developed powerful compression algo-
rithms, namely LZ77 and LZ78 [29,30]. Almost forty years from their concep-
tion, they remain central to the data compression community. LZ77 is among
the most effective compressors which also offers extremely good decompression
speed. Those attributes have made it the algorithm of choice for many compres-
sion utilities like zip, gzip, 7zip, lzma, and the GIF image format.

These algorithms are still being actively researched [1,3,10,16], and with the
increasing need to handle ever-growing large databases the Lempel-Ziv family
of algorithms still has a lot to offer.

Repetitive datasets and the challenges on how to index them are actively
researched at least since 2009 [21,22,27]. Canonical examples of such datasets
are biological databases, such as the 1000 Genomes projects, UK10K, 1001 plant
genomes, etc.

Among the different approaches to index repetitive collections, we will focus
in one of the Lempel-Ziv based indexes, the Hybrid Index of Ferrada et al. [7].
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Their approach is very promising, specially to be used in biological databases.
Among the features that make the Hybrid Index attractive, is that it offers a
framework to answer approximate pattern matching queries. Also, by design it
does not stick to any specific (approximate) pattern matching technique. For
instance, if the index was built to align genomic reads to a reference, it could
use a tool like BWA that is highly specialized for this kind of queries (by taking
care of the reverse complements, considering quality scores, specificities of the
sequencing technologies, etc.).

In this paper we present an improved version of that index that achieves up to
a 50% reduction in its space usage, while maintaining or improving query times
up to a 15%. We achieve faster building time than other indexes for repetitive
collections. For collections in the tens of gigabytes, our index can still be built in
a commodity machine. Using a more powerful server, we successfully indexed a
collection of 201 GB in about an hour, and a collection of 2.4 TB in about 12 h.

A key element to achieve those results is that our index does not stick to
a particular Lempel-Ziv factorization. Instead, it accepts the LZ77 parsing as
input, and also a variety of LZ77-like parsings. That allows our index to offer
appealing trade-offs between indexing time, index size, and resource usage during
construction time. As a byproduct, we developed a parallel Relative Lempel-Ziv
parser that can parse 2.4 TB in about 10 h using 24 cores.

The structure of this paper is as follows. In Sect. 2 we briefly discuss previous
work. In particular we discuss relevant aspects and variants of the Lempel-Ziv
parsing. In Sect. 3 we review the fundamental ideas behind the Hybrid Index of
Ferrada et al. In Sect. 4 we present our improvements on the Hybrid Index and
we discuss how it compares with the original proposal. In Sect. 5 we discuss the
practicalities of our implementation. In Sect. 6 we show the experimental behav-
ior of our index. Finally in Sect. 7 we discuss our findings and future research.

2 Related Work

The idea of exploiting repetitiveness to decrease the space requirement of index-
ing data structures can be traced back at least to Kärkkäinen and Ukkonen [17].

In the string processing community, a full-text index that uses space propor-
tional to that of the compressed text is called a compressed index [25]. The main
strategies are based on the compression of the suffix array, the compression of
the Burrows Wheeler transform, or the use of the Lempel-Ziv parsing. For fur-
ther reading, we refer the reader to a survey covering the theoretical aspects of
compressed full-text indexes [25] and to a recent experimental study [12].

2.1 Repetitive Collections

A pioneer work that formally introduced the challenges of indexing repetitive
collection and that offered a successful solution was the Run Length Compressed
Suffix Array [21,22]. In parallel, in the context of plant genomics, Schneeberger
et al. [27] faced similar challenges, and they solved them by using a q-gram index.
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Full-Text Indexing. Since the publication of the Run Length Compressed
Suffix Array (RLCSA) [21,22], many techniques have been developed to tackle
this problem [24]. Some of them are mainly theoretical works [2,6,11], and some
have been implemented [4,7,19,26]. However, to the best of our knowledge, the
only one that successfully scales to collections in the tens of gigabytes is the
RLCSA.

Bioinformatics Tools. Some indexes are specially tailored for biological data-
bases. One of the foundational works handling large repetitive datasets is
GenomeMapper [27]. Some recent works, like MuGI [5], also take as an input a
reference sequence and a file that informs about the variations present in a set
of sequences corresponding to individuals. Other tools [23,28] consider the input
to be a (multiple) sequence alignment. This assumption, even though natural in
some contexts, restricts the usability of those solutions.

2.2 LZ77

Lempel-Ziv is a family of very powerful compression algorithms that achieve
compression by using a dictionary to encode substrings of the text. Here we
focus on the LZ77 algorithm, in which the dictionary (implicitly) contains all
the substrings of the part of the text that has already been processed.

The compression algorithm consists on two phases: parsing (also called fac-
torization) and encoding. Given a text T [1, N ], a LZ77 valid parsing is a par-
tition of T into z substrings T i (often called phrases or factors) such that
T = T 1T 2 . . . T z, and for all i ∈ [1, z] either there is at least one occurrence
of T i with starting position strictly smaller than |T 1T 2 . . . T i−1|, or T i is the
first occurrence of a single character.

The encoding process represents each phrase T i using a pair (pi, li), where
pi is the position of the previous occurrence of Ti and li = |T i|, for phrases that
are not single characters. When T i = α ∈ Σ, then it is encoded with the pair
(α, 0). We call the latter literal phrases and the former copying phrases.

Decoding LZ77 compressed text is particularly simple and fast: the pairs
(pi, li) are read from left to right, if li = 0, then pi is interpreted as a char and
it is appended to the output, if li �= 0, then li characters are copied from the
position pi to pi + li − 1 and are appended to the current output.

Greedy Parsing. So far we have defined what is a LZ77 valid parsing, but we
have not discussed how to compute such a parsing. Indeed, there are different
possibilities. It is a common agreement in the literature to reserve the name LZ77
for the case when the parsing is a greedy parsing. That is, if we assume that we
have already parsed a prefix of T , T ′ = T 1T 2 . . . T p then the phrase T p+1 must
be the longest substring starting at position |T 1T 2 . . . T p| + 1 such that there
is a previous occurrence of T p+1 in T starting at some position smaller than
|T 1T 2 . . . T p|. There are numerous reasons to choose the greedy parsing. One of
them is that it can be computed in linear time [15]. Another reason is that the
parsing it produces is optimal in the number of phrases [8]. Therefore, if the pairs
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are encoded using any fixed-length encoder, the greedy parsing always produces
the smaller representation. Moreover, various authors [18,29] proved that greedy
parsing achieves asymptotically the (empirical) entropy of the source generating
the input string.

3 Hybrid Index

The Hybrid Index of Ferrada et al. [7] extends the ideas of Kärkkäinen and
Ukkonen [17] to use the Lempel-Ziv parsing as a basis to capture repetitiveness.
This Hybrid Index combines the efficiency of LZ77 with any other index in a
way that can support not only exact matches but also approximate matching.

Given the text to be indexed T , a LZ77 parsing of T consisting of z phrases,
and also the maximum length M of a query pattern and the maximum number
of mismatches K, the Hybrid Index is a data structure using space proportional
to z and to M that supports approximate string matching queries. That is, it is
able to find all the positions i in T such that ed(T [i, |P | − 1], P [1, |P | − 1]) ≤ K
for a given query pattern P , where ed(x, y) stands for the edit distance between
strings x and y.

Let us adopt the following definitions [7,17]: A primary occurrence is an
(exact or approximate) occurrence of P in T that spans two or more phrases.
A secondary match is an (exact or approximate) occurrence of P in T that is
entirely contained in one phrase. Kärkkäinen and Ukkonen [17] noted that every
secondary match is an exact copy of a previous (secondary or primary) match.
Therefore, the pattern matching procedure can be done in two stages: first all
the primary occurrences are identified, then, using the structure of the LZ77
parse, all the secondary matches can be discovered.

3.1 Kernelization to Find Primary Occurrences

Conceptually, the kernel string aims to get rid of large repetitions in the input
text, and extract only the non-repetitive areas. To do that, it extracts the char-
acters in the neighborhoods of the phrase boundaries, while discarding most of
the content of large phrases.

More formally, given the LZ77 parsing of T , the kernel text KM,K is defined
as the concatenation of characters within distance M +K −1 from their nearest
phrase boundaries. Characters not contiguous in T are separated in KM,K by
K + 1 copies of a special separator #. It is important to note that for any
substring of T with length at most M + K that crosses a phrase boundary in
the LZ77 parse of T , there is a corresponding and equal substring in KM,K .

To be able to map the positions from the kernel text to the original text the
Hybrid Index uses two sorted lists with the phrase boundaries. LT stores the
phrase boundaries in T and LKM,K

stores the list of phrase boundaries in KM,K .
The kernel text does not need to be stored explicitly; what is required is the

ability to query it and, for that reason, the Hybrid Index stores an index IM,K
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that supports the desired queries on KM,K (e.g. exact and approximate pattern
matching).

By construction of KM,K , it is guaranteed that all the primary matches of
P occur in KM,K . However, there are also some secondary matches that may
appear on KM,K . When a query pattern P , |P | ≤ M is given the first step is
to query the index IM,K to find all the matches of P in KM,K . These are all
the potential primary occurrences. They are mapped to T using L and LM .
Those matches that do not overlap a phrase boundary are discarded. For queries
of length one, special care is taken with matches that corresponds to the first
occurrence of the character [7].

3.2 Reporting Secondary Occurrences

The secondary occurrences are reported using 2-sided range reporting [7]. The
idea is that, once the positions of the primary occurrences are known, the parsing
information is used to discover the secondary matches. Instead of looking for
theoretically optimal data structures to solve this problem, the Hybrid Index
proposes a simple and practical way to solve it.

Each phrase (pos, len) of the LZ77 parsing can be expressed as triplets
(x, y) → w where (x = pos, y = pos + len) is said to be the source, and w
is the position in the text that is encoded with such phrase. The sources are
sorted by the x coordinate, and the sorted x values are stored in an array X .
The corresponding w positions are stored in an array W. The values of the y
coordinates are not explicitly stored. However, a position-only Range Maximum
Query [9] data structure is stored for the y values.

The 2-sided recursive reporting procedure works as follows: For a given pri-
mary occurrence in position pos, the goal is to find all the phrases whose source
entirely contains (pos, pos + |P | − 1). To do that the first step is to look for the
position of the predecessor of pos in X . The second step is to do a range maxi-
mum query of the y values in that range. Even though y is not stored explicitly,
it can be easily computed [7]. If that value is smaller than pos + |P | − 1 the
search stops. If the y value is equal or larger than pos + |P | − 1, it corresponds
to a phrase that contains the primary position. Then, the procedure recurses on
the two intervals that are induced by it. For further details we refer the reader
to the Hybrid Index paper [7].

4 CHICO: Beyond Greedy LZ77

When we described the LZ77 algorithm in Sect. 2.2, we first used a general
description of the LZ parsing. We noted that in the description of the Hybrid
Index the parsing strategy is not specified, and indeed, it does not affect the work-
ing of the index. Therefore, the index works the same way with any LZ77 valid
parsing where the phrases are either single characters (literal phrases, or pairs
(pos, len) representing a reference to a previously occurring substring (copying
phrases).
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The greedy parsing is usually the chosen scheme because it produces the
minimum number of phrases. This produces the smallest possible output if a
plain encoding is used. If other encoding schemes are allowed, it has been proven
that the greedy parsing does not imply the smallest output anymore. Moreover,
different parsing algorithms exists that provide bit-optimality for a wide variety
of encoders [8].

4.1 Reducing the Number of Phrases

It is useful to note that all the phrases shorter than 2M are entirely contained
in the kernel text. Occurrences that are entirely contained in such phrases are
found using the index of the kernel string IM,K . Then they are discarded, just
to be rediscovered later by the recursive reporting procedure.

To avoid this redundancy we modify the parsing in a way that phrases smaller
than 2M are avoided. First we need to accept that literal phrases (those pairs
(α, 0) such that α ∈ Σ) can be used not only to represent characters but also to
hold longer strings (s, 0), s ∈ Σ∗.

To actually reduce the number of phrases in the recursive data structure we
designed a phrase merging procedure. The phrase merging procedures receives
a LZ77 parsing of a text, and produces a parsing with less phrases, using literal
phrases longer than one character. The procedure works as follows. It reads
the phrases in order, and when it finds a copying phrase (pos, len) such that
len < 2M , it is transformed into a literal phrase (T [pos, pos + len − 1], 0). That
is, a literal phrase that decodes to the same string. If two literal phrases (s1, 0)
and (s2, 0) are consecutive, they are merged into (s1 ◦ s2, 0) where ◦ denotes
string concatenation. It is clear that the output parsing decodes to the same
text as the input parsing. Moreover, the output parsing produce the same kernel
text KM,K as the input parsing.

Because the number of phrases after the phrase merging procedure is
strictly smaller, the space needed for the recursive reporting data structure
also decreases. In addition, the search space for the recursive reporting queries
shrinks.

4.2 Finding the Occurrences

We extend the definition of primary occurrences as follows: A primary occurrence
is an (exact or approximate) occurrence of P in T that either crosses one or more
phrase boundary, or it lies entirely within a literal phrase. To ensure that every
occurrence is reported once and only once we store a bitmap F [1..z] such that
F [i] = 1 if the i-th phrase is a literal phrase and F [i] = 0 otherwise.

Hence, when a query pattern P is processed, first IM,K is used to find poten-
tial primary occurrence. Then the only occurrences to be discarded are those
that lie entirely within copying phrases. Using this approach, there is also no
need to handle a special case for queries of length one.
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4.3 RLZ: A Faster Building Algorithm

A classical way to reduce the parsing time of the LZ77 algorithm is to use
a smaller dictionary. For instance, the sliding window approach constrains the
parsing algorithm to look for matches only in the ω last positions of the processed
text. This approach is used in the popular gzip program.

A recent approach that presents a different modification to the LZ77 algo-
rithm is the Relative Lempel-Ziv algorithm (RLZ) [20]. Here, the dictionary is
not a prefix of the text. Instead, the dictionary is a different text that is pro-
vided separately. We note that while the sliding window approach still generates
a LZ77 valid parsing, the RLZ algorithm does not. Therefore, the former one is
a valid input for the Hybrid Index, while the second is not.

To make the RLZ algorithm compatible with the Hybrid Index, a natural way
would be to prepend the reference to the input text. In that way, the first phrase
would be an exact copy of the reference. We mark this phrase as a literal phrase
to ensure all its contents goes to the kernel text. One caveat of this approach is
that if the reference is compressible we would not exploit it. An alternative way
to modify the RLZ algorithm without having this trouble is as follows: We parse
the input text using the traditional RLZ algorithm, to obtain a parse PT . Then,
we parse the reference using the LZ77 greedy parsing, to obtain a parse PR. It
is easy to see that PR ◦ PT is a LZ77 valid parsing of R ◦ T .

5 Implementation

We implemented the index in C++, relying on the Succinct Data Structure
Library 2.0.3 (SDSL) [12] for most succinct data structures, such as the RMQ [9]
data structure on the Y array.

We encoded the phrase boundaries LT , LK,M and the x-values of the sources
in the X array using SDSL elias delta codes implementation. Following the ideas
of the original Hybrid Index we did not implement specialized data structure
for predecessor queries on arrays X and LK,M . Instead, we sampled these arrays
and perform binary searches to find the predecessors.

For the index of the kernel text IK,M we used a SDSL implementation of the
FM-Index. As that FM-Index does not support approximate searches natively,
we decided to exclude those queries in our experimental study.

For further details, the source code of our implementation is publicly available
at https://www.cs.helsinki.fi/u/dvalenzu/software/.

5.1 LZ77

To offer different trade-offs we included alternative modules for LZ77 factoriza-
tion, all of them specialized in repetitive collections. The default construction
algorithm of the index uses LZscan [14], an in-memory algorithm that computes
the LZ77 greedy parsing.

To handle larger inputs, we also included an external memory algorithm
called EM-LZscan [16]. An important feature is that it allows the user to
specify the amount of memory that the algorithm is allowed to use.

https://www.cs.helsinki.fi/u/dvalenzu/software/


CHICO: A Compressed Hybrid Index for Repetitive Collections 333

5.2 Relative Lempel-Ziv

The third parser that we included is our own version of Relative Lempel-Ziv
RLZ. Our implementation is based on the Relative Lempel-Ziv of Hoobin
et al. [13]. This algorithm uses the suffix array of the reference and then it
uses it to compute the parsing of the input text.

Our implementation differs in two aspects with the original algorithm. The
first (explained in Sect. 4.3) is that the reference itself is also represented using
LZ77. To compute the LZ77 parsing of the reference we use the KKP algo-
rithm [15]. The second difference is that instead of using an arbitrary reference,
we restrict ourselves to use a prefix of the input text. In that way there is no
need to modify the input text by prepending the reference (see Sect. 4.3).

5.3 Parallel Relative Lempel-Ziv

We implemented a fourth parser, PRLZ, which is a parallel version of RLZ.
This is a simple yet effective parallelization of our RLZ implementation. The
first step of the algorithm is to build the suffix array of the reference. This is
done sequentially. Then, instead of processing the text sequentially, we split it
into chunks and process them in parallel. Each chunk is assigned to a different
thread and the thread computes the RLZ parsing of its assigned chunk using the
reference. This is easily implemented using OpenMP. Using a moderate number
of chunks (e.g. the number of available processors) we expect similar compression
ratios to those achieved by a sequential RLZ implementation.

6 Experimental Results

We used collections of different kinds and sizes to evaluate our index in practice.
In the first round of experiments we used some repetitive collections from the
pizzachilli repetitive corpus1.

Einstein:All versions of Wikipedia page of Albert Einstein up to November 10,
2006. Total size is 446 MB.

Cere: 37 sequences of Saccharomyces Cerevisiae. Total size is 440 MB.
Para: 36 sequences of Saccharomyces Paradoxus. Total size is 410 MB.
Influenza: 78, 041 sequences of Haemophilus Influenzae. Total size is 148 MB.
Coreutils: Source code from all 5.x versions of the coreutils package. Total size

is 196 MB.

We extracted 1000 random patterns of size 50 and 100 from each collection to
evaluate the indexes. In addition, we generated two large collections using data
from the 1000 genomes project:

CHR21: 2000 versions of Human Chromosome 21. Total size 90 GB.

1 http://pizzachili.dcc.uchile.cl/.

http://pizzachili.dcc.uchile.cl/
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CHR14: 2000 versions of Human Chromosome 14. Total size 201 GB.
CHR1...5: 2000 versions of Human Chromosomes 1, 2, 3, 4 and 5. Total size 2.4 TB.

To demonstrate the efficiency of our index, we ran most of our experiments
in a commodity computer. This machine has 16 GB of RAM and 500 GB of hard
drive. The operative system is Ubuntu 14.04.3. The code was compiled using gcc
4.8.4 with full optimization.

In our first round of experiments we compared CHICO with the original
Hybrid Index on some collections of the pizzachilli corpus. As the size of those
collections is moderate, we ran our index using the in-memory version of LZscan.
We also compared with the LZ77 Index of Kreft and Navarro [19], and with
RLCSA [21,22], with sampling parameters 128 and 1024. To illustrate how small
can be the RLCSA, we also show the space usage of the RLCSA without the
samples. This version of the RLCSA can only count the number of occurrences
but cannot find them.

The results are presented in Tables 1 and 2. First we observe that the con-
struction time of our index dominates every other alternative. This is possible
as we use a highly engineered LZ parsing algorithm [14]. As expected, our index
is consistently smaller and faster than the original Hybrid Index. Also it is com-
petitive with other alternatives for repetitive collections.

6.1 Larger Collections

The next experiment considered the 90 GB collection CHR21. None of the com-
petitors were able to index the collection in the machine we were using. As
the input text greatly exceeded the available RAM, we studied different parsing
strategies using external memory.

Table 1. Construction time in seconds and size of the resulting index in bytes per
character for moderate-sized collections.

HI CHICO LZ77-Index RLCSA128 RLCSA1024 RLCSAmin

Time Size Time Size Time Size Time Size Time Size Size
Influenza 204.1 0.0795 30.1 0.0572 40.8 0.0458 64.3 0.0959 63.9 0.0462 0.039
Coreutils 393.1 0.1136 32.9 0.0508 49.9 0.0792 139.2 0.1234 134.1 0.0737 0.066
Einstein 98.9 0.0033 63.5 0.0019 95.3 0.0019 389.0 0.0613 347.5 0.0097 0.002
Para 1065.7 0.0991 33.8 0.0577 157.3 0.0539 232.0 0.1598 217.3 0.1082 0.100
Cere 620.3 0.0767 42.6 0.0517 175.1 0.0376 264.9 0.1366 268.0 0.0850 0.077

Table 2. Time in milliseconds to find all the occurrences of a query pattern of length 50
and 100. Times were computed as average of 1000 query patterns randomly extracted
from the collection.

HI CHICO LZ77-Index RLCSA128 RLCSA1024
|P | = 50 |P | = 100 |P | = 50 |P | = 100 |P | = 50 |P | = 100 |P | = 50 |P | = 100 |P | = 50 |P | = 100

Influenza 43.51 7.63 42.39 7.20 20.01 48.72 2.54 1.01 57.21 25.16
Coreutils 28.17 2.24 26.92 1.79 10.43 20.07 0.86 0.14 16.08 0.78
Einstein 18.65 11.41 16.43 9.45 23.03 34.90 3.28 2.55 30.94 22.66
Para 2.56 1.55 2.38 1.34 14.37 32.31 0.14 0.15 1.54 1.23
Cere 3.07 1.80 2.88 1.58 13.81 33.31 0.15 0.17 1.95 1.68
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Table 3. Different parsing algorithms to index collection CHR21, 90 GB. The first row
shows the results for EM-LZ, which computes the LZ77 greedy parsing. The next rows
show the results for the RLZ parsing using prefixes of size 500 MB and 1 GB. The size of
the index is expressed in bytes per char, the building times are expressed in minutes,
and the query times are expressed in milliseconds. Query times were computed as
average of 1000 query patterns randomly extracted from the collection.

Size(bpc) Build time(min) Query time (ms)

|P | = 50 |P | = 70

EM-LZ 0.00126 4647 18.16 14.90

RLZ0.5GB 0.0060 143 55.28 46.67

RLZ1GB 0.0047 65 50.30 40.72

The first setting tested was using the EM-LZscan algorithm to compute the
greedy parsing. We ran it allowing a maximum usage of 10 GB of RAM. We also
tried the RLZ parser using as reference prefixes of sizes 500 MB and 1 GB. For
each of the resulting indexes, we measure the query time as the average over
1000 query patterns. The results are presented in Table 3.

Table 3 shows the impact of choosing different parsing algorithms to build the
index. We can see different trade-offs between building time and the resulting
index: EM-LZ generates the greedy parsing and is indeed the one that generates
the smaller index: 0.00126 bytes per character. The building time to achieve that
is more than 70 h. On the other hand, the RLZ parser is able to compute the
index in about 10 h. As expected, using RLZ instead of the greedy parsing results
in a larger index. However, the compression ratio is still good enough and the
resulting index fits comfortably in RAM.

Table 4. Results using RLZ and PRLZ to parse CHR14, a 201 GB collection. Query
times were computed as average of 1000 query patterns randomly extracted from the
collection.

Size (bpc) Build time (min) Query Time (ms)

LZ parsing Others P=50 P=70

RLZ1GB 0.00656 308 51 225.43 178.47

PRLZ1GB 0.00658 22 55 224.04 181.21

Table 5. Results using PRLZ to parse CHR1...5, a collection of 2.4 TB of data. Query
times were computed as average of 1000 query patterns randomly extracted from the
collection.

Size (bpc) Build time (min) Query Time

LZ parsing Others P=50 (ms) P=70 (ms)

PRLZ10GB 0.000233 600 191 61.20 36.38
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The next test was on CHR14, a 201 GB collection that we could no longer
process in the same commodity computer. We indexed it in a large server,
equipped with 48 cores, 12 TB of hard disk, and 1.5 TB of RAM. We compared
the RLZ and PRLZ parsers. The results are shown in Table 4.

We can see that the parallelization had almost no impact in the size of the
index, but that the indexing time decreased considerably. In the parallel version
about 20 min where spent parsing the input, and 55 min building the index. In
all the previous settings, the building time was largely dominated by the parsing
procedure.

Finally, to demonstrate the scalability of our approach, we indexed CHR1...5,
a 2.4 TB collection. For this collection we only run the fastest parsing, and the
results can be seen in Table 5.

7 Conclusions

We have presented an improved version of the Hybrid Index of Ferrada et al.,
that achieves up to a 50% reduction in its space usage, while also improving
the query times. By using state of the art Lempel-Ziv parsing algorithms we
achieved different trade-offs between building time and space usage: When the
collections size is moderate, we could compare to available implementations, and
ours achieved the fastest building time. For collections in the tens of gigabytes,
our index can still be built in a commodity machine. Finally, we developed a
parallel Relative Lempel-Ziv parser to be run in a more powerful machine. In
that setting, we indexed a 201 GB collection in about an hour and a 2.4 TB
collection in about 12 h.

Some of our parsing schemes worked effectively in the genomic collections,
because a prefix of the collection is a natural reference for the RLZ algorithm. For
future developments, we will study alternatives such as artificial references [13],
so that the index can be equally effective in different contexts.

We also plan to build a version specialized for read alignment. To that end,
it is not enough to replace the kernel index by an approximate pattern matching
index: Read aligners must consider different factors, such as base quality scores,
reverse complements, among other aspects that are relevant to manage genomic
data.

Acknowledgments. Many thanks to Travis Gagie, Simon Puglisi, Veli Mäkinen,
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by Academy of Finland grant 284598 (CoECGR).
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