
Experimental Analysis of Algorithms
for Coflow Scheduling

Zhen Qiu, Clifford Stein, and Yuan Zhong(B)

Department of IEOR, Columbia University, New York, NY 10027, USA
yz2561@columbia.edu

Abstract. Modern data centers face new scheduling challenges in opti-
mizing job-level performance objectives, where a significant challenge
is the scheduling of highly parallel data flows with a common perfor-
mance goal (e.g., the shuffle operations in MapReduce applications).
Chowdhury and Stoica [6] introduced the coflow abstraction to capture
these parallel communication patterns, and Chowdhury et al. [8] pro-
posed effective heuristics to schedule coflows efficiently. In our previous
paper [18], we considered the strongly NP-hard problem of minimiz-
ing the total weighted completion time of coflows with release dates,
and developed the first polynomial-time scheduling algorithms with
O(1)-approximation ratios.

In this paper, we carry out a comprehensive experimental analysis on
a Facebook trace and extensive simulated instances to evaluate the prac-
tical performance of several algorithms for coflow scheduling, including
our approximation algorithms developed in [18]. Our experiments suggest
that simple algorithms provide effective approximations of the optimal,
and that the performance of the approximation algorithm of [18] is rel-
atively robust, near optimal, and always among the best compared with
the other algorithms, in both the offline and online settings.

1 Introduction

Data-parallel computation frameworks such as MapReduce [9], Hadoop [1,5,19],
Spark [21], Google Dataflow [2], etc., are gaining tremendous popularity as they
become ever more efficient in storing and processing large-scale data sets in
modern data centers. This efficiency is realized largely through massive par-
allelism. Typically, a datacenter job is broken down into smaller tasks, which
are processed in parallel in a computation stage. After being processed, these
tasks produce intermediate data, which may need to be processed further, and
which are transferred between groups of servers across the datacenter network,
in a communication stage. As a result, datacenter jobs often alternate between
computation and communication stages, with parallelism enabling the fast com-
pletion of these large-scale jobs. While this massive parallelism contributes to
efficient data processing, it presents many new challenges for network scheduling.

Research partially supported by NSF grant CCF-1421161.

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 262–277, 2016.
DOI: 10.1007/978-3-319-38851-9 18



Experimental Analysis of Algorithms for Coflow Scheduling 263

In particular, traditional networking techniques focus on optimizing flow-level
performance such as minimizing flow completion times1, and ignore job-level
performance metrics. However, since a computation stage often can only start
after all parallel dataflows within a preceding communication stage have finished
[7,10], all these flows need to finish early to reduce the processing time of the
communication stage, and of the entire job.

To faithfully capture application-level communication requirements,
Chowdhury and Stoica [6] introduced the coflow abstraction, defined to be a col-
lection of parallel flows with a common performance goal. Effective scheduling
heuristics were proposed in [8] to optimize coflow completion times. In our previ-
ous paper [18], we developed scheduling algorithms with constant approximation
ratios for the strongly NP-hard problem of minimizing the total weighted comple-
tion time of coflows with release dates, and conducted preliminary experiments
to examine the practical performance of our approximation algorithms. These
are the first O(1)-approximation algorithms for this problem. In this paper, we
carry out a systematic experimental study on the practical performance of several
coflow scheduling algorithms, including our approximation algorithms developed
in [18]. Similar to [18], the performance metric that we focus on in this paper is
the total weighted coflow completion time. As argued in [18], it is a reasonable
user-oriented performance objective. It is also natural to consider other perfor-
mance objectives, such as the total weighted flow time2, which we leave as future
work. Our experiments are conducted on real-world data gathered from Facebook
and extensive simulated data, where we compare our approximation algorithm
and its modifications to several other scheduling algorithms in an offline setting,
and evaluate their relative performances, and compare them to an LP-based
lower bound. The algorithms that we consider in this paper are characterized by
several main components, such as the coflow order in which the algorithms fol-
low, the grouping of the coflows, and the backfilling rules. We study the impact
of each such component on the algorithm performance, and demonstrate the
robust and near-optimal performance of our approximation algorithm [18] and
its modifications in the offline setting, under the case of zero release times as
well as general release times. We also consider online variants of the offline algo-
rithms, and show that the online version of our approximation algorithm has
near-optimal performance on real-world data and simulated instances.

The rest of this section is organized as follows. In Sect. 1.1, we quickly recall
the problem formulation of coflow scheduling, the approximation algorithm of
[18] as well as its approximation ratio. Section 1.2 gives an overview of the exper-
imental setup and the main findings from our experiments. A brief review of
related works is presented in Sect. 1.3.

1 In this paper, the term “flow” refers to data flows in computer networking, and is
not to be confused with the notion of “flow time,” commonly used in the scheduling
literature.

2 Here “flow time” refers to the length of time from the release time of a coflow to its
completion time, as in scheduling theory.



264 Z. Qiu et al.

1.1 Coflow Model and Approximation Algorithm

We consider a discrete-time system where n coflows need to be scheduled in
an m × m datacenter network with m inputs and m outputs. For each k ∈
{1, 2, · · · , n}, coflow k is released at time rk, and can be represented by an

m×m matrix D(k) =
(
d
(k)
ij

)m

i,j=1
, where d

(k)
ij is the number of data units (a.k.a.

flow size) that need to be transferred from input i to output j. The network has
the so-called non-blocking switch architecture [3,4,12,16], so that a data unit
that is transferred out of an input is immediately available at the corresponding
output. We also assume that all inputs and outputs have unit capacity. Thus,
in a time slot, each input/output can process at most one data unit; similar
to [18], these restrictions are called matching constraints. Let Ck denote the
completion time of coflow k, which is the time when all data units from coflow k
have finished being transferred. We are interested in developing efficient (offline)
scheduling algorithms that minimize

∑n
k=1 wkCk, the total weighted completion

time of coflows, where wk is a weight parameter associated with coflow k.
A main result of [18] is the following theorem.

Theorem 1 [18]. There exists a deterministic polynomial time 67/3-
approximation algorithm for the coflow scheduling problem, with the objective
of minimizing the total weighted completion time.

The approximation algorithm of [18] consists of two related stages. First, a coflow
order is computed by solving a polynomial-sized interval-indexed linear program
(LP) relaxation, similar to many other scheduling algorithms (see e.g., [11]).
Then, we use this order to derive an actual schedule. To do so, we define a
grouping rule, under which we partition coflows into a polynomial number of
groups, based on the minimum required completion times of the ordered coflows,
and schedule the coflows in the same group as a single coflow optimally, accord-
ing to an integer version of the Birkhoff-von Neumann decomposition theorem.
The detailed description of the algorithm can be found in Algorithm 4 of the
Appendix in [17]. Also see [18] for more details. From now on, the approximation
algorithm of [18] will be referred to as the LP-based algorithm.

1.2 Overview of Experiments

Since our LP-based algorithm consists of an ordering and a scheduling stage,
we are interested in algorithmic variations for each stage and the performance
impact of these variations. More specifically, we examine the impact of different
ordering rules, coflow grouping and backfilling rules, in both the offline and online
settings. Compared with the very preliminary experiments we did in [18], in
this paper we conduct a substantially more comprehensive study by considering
many more ordering and backfilling rules, and examining the performance of
algorithms on general instances in addition to real-world data. We also consider
the offline setting with general release times, and online extensions of algorithms,
which are not discussed in [18].



Experimental Analysis of Algorithms for Coflow Scheduling 265

Workload. Our evaluation uses real-world data, which is a Hive/MapReduce
trace collected from a large production cluster at Facebook [7,8,18], as well as
extensive simulated instances.

For real-world data, we use the same workload as described in [8,18]. collected
on a 3000-machine cluster with 150 racks, so the datacenter in the experiments
can be modeled as a 150 × 150 network switch (and coflows be represented by
150 × 150 matrices). We select the time unit to be 1/128 s (see [18] for details)
so that each port has the capacity of 1MB per time unit. We filter the coflows
based on the number of non-zero flows, which we denote by M ′, and we consider
three collections of coflows, filtered by the conditions M ′ ≥ 25, M ′ ≥ 50 and
M ′ ≥ 100, respectively.

We also consider synthetic instances in addition to the real-world data. For
problem size with k = 160 coflows and m = 16 inputs and outputs, we randomly
generate 30 instances with different numbers of non-zero flows involved in each
coflow. For instances 1–5, each coflow consists of m flows, which represent sparse
coflows. For instances 5–10, each coflow consists of m2 flows, which represent
dense coflows. For instances 11–30, each coflow consists of u flows, where u is
uniformly distributed on {m, · · · ,m2}. Given the number k of flows in each
coflow, k pairs of input and output ports are chosen randomly. For each pair of
(i, j) that is selected, an integer processing requirement di,j is randomly selected
from the uniform distribution on {1, 2, · · · , 100}.

Our main experimental findings are as follows:

– Algorithms with coflow grouping consistently outperform those without group-
ing. Similarly, algorithms that use backfilling consistently outperform those
that do not use backfilling. The benefit of backfilling can be further improved
by using a balanced backfilling rule (see Sect. 3.2 for details).

– The performance of the LP-based algorithm and its extensions is relatively
robust, and among the best compared with those that use other simpler order-
ing rules, in the offline setting.

– In the offline setting with general release times, the magnitude of inter-arrival
times relative to the processing times can have complicated effects on the
performance of various algorithms (see Sect. 4.1 for details).

– The LP-based algorithm can be extended to an online algorithm and has
near-optimal performance.

1.3 Related Work

There has been a great deal of success over the past 20 years on combinatorial
scheduling to minimize average completion time, see e.g., [11,14,15,20], typically
using a linear programming relaxation to obtain an ordering of jobs and then
using that ordering in some other polynomial-time algorithm. There has also
been success in shop scheduling. We do not survey that work here, but note that
traditional shop scheduling is not “concurrent”. In the language of our problem,
that would mean that two flows in the same coflow could not be processed
simultaneously. The recently studied concurrent open shop problem removes



266 Z. Qiu et al.

this restriction and models flows that can be processed in parallel. There is a
close connection between concurrent open shop problem and coflow scheduling
problem. When all coflow matrices are diagonal, coflow scheduling is equivalent
to a concurrent open shop scheduling problem [8,18]. Leung et al. [13] presented
heuristics for the total completion time objective and conducted an empirical
analysis to compare the performance of different heuristics for concurrent open
shop problem. In this paper, we consider a number of heuristics that include
natural extensions of heuristics in [13] to coflow scheduling.

2 Preliminary Background

In [18], we formulated the following interval-indexed linear program (LP) relax-
ation of the coflow scheduling problem, where τl’s are the end points of a set of
geometrically increasing intervals, with τ0 = 0, and τl = 2l−1 for l ∈ {1, 2, . . . , L}.
Here L is such that τL = 2L−1 is an upper bound on the time that all coflows
are finished processing under any optimal algorithm.

(LP ) Minimize
n∑

k=1

wk

L∑
l=1

τl−1x
(k)
l subject to

l∑

u=1

n∑

k=1

m∑

j′=1

d
(k)

ij′ x(k)
u ≤ τl, for i = 1, . . . , m, l = 1, . . . , L; (1)

l∑

u=1

n∑

k=1

m∑

i′=1

d
(k)

i′j x(k)
u ≤ τl, for j = 1, . . . , m, l = 1, . . . , L; (2)

x
(k)
l = 0 if rk+

m∑

j′=1

d
(k)

ij′ > τl or rk+
m∑

i′=1

d
(k)

i′j > τl; (3)

L∑

l=1

x
(k)
l = 1, for k = 1, . . . , n;

x
(k)
l ≥ 0, for k = 1, . . . , n, l = 1, . . . , L.

For each k and l, x
(k)
l can be interpreted as the LP-relaxation of the binary

decision variable which indicates whether coflow k is scheduled to complete
within the interval (τl−1, τl]. Constraints (1) and (2) are the load constraints on
the inputs and outputs, respectively, which state that the total amount of work
completed on each input/output by time τl cannot exceed τl, due to matching
constraints. Contraint (3) takes into account of the release times.

(LP) provides a lower bound on the optimal total weighted completion time
of the coflow scheduling problem. If, instead of being end points of geometrically
increasing time intervals, τl are end points of the discrete time units, then (LP)
becomes exponentially sized (which we refer to as (LP-EXP)), and gives a tighter
lower bound, at the cost of longer running time. (LP) computes an approximated



Experimental Analysis of Algorithms for Coflow Scheduling 267

completion time C̄k =
∑L

l=1 τl−1x̄
(k)
l , for each k, based on which we re-order and

index the coflows in a nondecreasing order of C̄k, i.e.,

C̄1 ≤ C̄2 ≤ . . . ≤ C̄n. (4)

3 Offline Algorithms with Zero Release Time

In this section, we assume that all the coflows are released at time 0. We com-
pare our LP-based algorithm with others that are based on different ordering,
grouping, and backfilling rules.

3.1 Ordering Heuristics

An intelligent ordering of coflows in the ordering stage can substantially reduce
coflow completion times. We consider the following five greedy ordering rules,
in addition to the LP-based order (4), and study how they affect algorithm
performance.

Definition 1. The First in first (FIFO) heuristic orders the coflows arbitrarily
(since all coflows are released at time 0).

Definition 2. The Shortest Total Processing Time first (STPT) heuristic
orders the coflows based on the total amount of processing requirements over
all the ports, i.e.,

∑m
i=1

∑m
j=1 dij.

Definition 3. The Shortest Maximum Processing Time first (SMPT) heuristic
orders the coflows based on the load ρ of the coflows, where ρ = max{ max

i=1,...,m
ηi,

max
j=1,...,m

θj}, ηi = {∑m
j′=1 dij′} is the load on input i, and θj = {∑m

i′=1 di′j} is

the load on output j.

Definition 4. To compute a coflow order, the Smallest Maximum Completion
Time first (SMCT) heuristic treats all inputs and outputs as 2m independent
machines. For each input i, it solves a single-machine scheduling problem where n

jobs are released at time 0, with processing times η
(k)
i , k = 1, 2, · · · , n, where η

(k)
i

is the ith input load of coflow k. The jobs are sequenced in the order of increasing
η
(k)
i , and the completion times C(i)(k) are computed. A similar problem is solved
for each output j, where jobs have processing times θ

(k)
j , and the completion

times C(j)(k) are computed. Finally, the SMCT heuristic computes a coflow
order according to non-decreasing values of C ′(k) = max

i,j
{C(i)(k), C(j)(k)}.

Definition 5. The Earliest Completion Time first (ECT) heuristic generates a
sequence of coflow one at a time; each time it selects as the next coflow the one
that would be completed the earliest3.
3 These completion times depend on the scheduling rule used. Thus, ECT depends

on the underlying scheduling algorithm. In Sect. 3.2, the scheduling algorithms are
described in more detail.



268 Z. Qiu et al.

3.2 Scheduling via Birkhoff-Von Neumann Decomposition,
Backfilling and Grouping

The derivation of the actual sequence of schedules in the scheduling stage of our
LP-based algorithm relies on two key ideas: scheduling according to an optimal
(Birkhoff-von Neumann) decomposition, and a suitable grouping of the coflows.
It is reasonable to expect grouping to improve algorithm performance, because it
may consolidate skewed coflow matrices to form more balanced ones that can be
scheduled more efficiently. Thus, we compare algorithms with grouping and those
without grouping to understand its effect. The particular grouping procedure
that we consider here is the same as that in [18] (also see Step 2 of Algorithm 4 of
the Appendix in [17]), and basically groups coflows into geometrically increasing
groups, based on aggregate demand. Coflows of the same group are treated as
a single, aggregated coflow, and this consolidated coflow is scheduled according
to the Birkhoff-von Neumann decomposition (see [18] or Algorithm 5 of the
Appendix in [17]).

Backfilling is a common strategy used in scheduling for computer systems
to increase resource utilization (see, e.g. [8]). While it is difficult to analytically
characterize the performance gain from backfilling in general, we evaluate its
performance impact experimentally. We consider two backfilling rules, described
as follows. Suppose that we are currently scheduling coflow D. The schedules
are computed using the Birkhoff-von Neumann decomposition, which in turn
makes use of a related, augmented matrix D̃, that is component-wise no smaller
than D. The decomposition may introduce unforced idle time, whenever D �= D̃.
When we use a schedule that matches input i to output j to serve the coflow
with Dij < D̃ij , and if there is no more service requirement on the pair of input
i and output j for the coflow, we backfill in order from the flows on the same
pair of ports in the subsequent coflows. When grouping is used, backfilling is
applied to the aggregated coflows. The two backfilling rules that we consider –
which we call backfilling and balanced backfilling – are only distinguished by the
augmentation procedures used, which are, respectively, the augmentation used
in [18] (Step 1 of Algorithm 5 in [17]) and the balanced augmentation described
in Algorithm 1.

The balanced augmentation (Algorithm 1) results in less skewed matrices
than the augmentation step in [18], since it first “spreads out” the unevenness
among the components of a coflow. To illustrate, let

D =

⎛
⎝

10 0 0
10 0 0
10 0 0

⎞
⎠ , B =

⎛
⎝

10 10 10
10 10 10
10 10 10

⎞
⎠ , and C =

⎛
⎝

10 20 0
10 0 20
10 10 10

⎞
⎠ .

Under the balanced augmentation, D is augmented to B and under the augmen-
tation of [18], D is augmented to C.

3.3 Scheduling Algorithms and Metrics

We consider 30 different scheduling algorithms, which are specified by the order-
ing used in the ordering stage, and the actual sequence of schedules used in the



Experimental Analysis of Algorithms for Coflow Scheduling 269

Algorithm 1. Balanced Coflow Augmentation
Data: A single coflow D = (dij)

m
i,j=1.

Result: A matrix D̃ =
(
d̃ij

)m
i,j=1

with equal row and column sums, and D ≤ D̃.

Let ρ be the load of D.
pi ← ρ −∑m

j′=1 dij′ , for i = 1, 2, . . . , m.
qi ← ρ −∑m

i′=1 di′j , for j = 1, 2, . . . , m.
Δ ← mρ −∑m

i=1

∑m
j=1 dij .

d′
ij = �dij + piqi/Δ�.

Augment D′ = (d′
ij) to a matrix D̃ with equal row and column sums (see Step 1

of Algorithm 5 of the Appendix in [17]; also see [18]).

scheduling stage. We consider 6 different orderings described in Sect. 3.1, and
the following 5 cases in the scheduling stage:

– (a) without grouping or backfilling, which we refer to as the base case;
– (b) without grouping but with backfilling;
– (c) without grouping but with balanced backfilling;
– (d) with grouping and with backfilling;
– (e) with grouping and with balanced backfilling.

We will refer to these cases often in the rest of the paper. Our LP-based algorithm
corresponds to the combination of LP-based ordering and case (d).

For ordering, six different possibilities are considered. We use HA to denote
the ordering of coflows by heuristic A, where A is in the set {FIFO, STPT,
SMPT, SMCT, ECT}, and HLP to denote the LP-based coflow ordering. Note
that in [18], we only considered orderings HFIFO,HSMPT and HLP , and cases
(a), (b) and (d) for scheduling, and their performance on the Facebook trace.

(a) Comparison of total weighted comple-
tion times normalized using the base case
(e) for each order

(b) Comparison of 6 orderings with zero
release times on Facebook data.

Fig. 1. Facebook data are filtered by M ′ ≥ 50. Weights are equal.



270 Z. Qiu et al.

3.4 Performance of Algorithms on Real-World Data

We compute the total weighted completion times for all 6 orders in the 5 different
cases (a)–(e) described in Sect. 3.3, through a set of experiments on filtered coflow
data. We present representative comparisons of the algorithms here.

Figure 1a plots the total weighted completion times as percentages of the base
case (a), for the case of equal weights. Grouping and backfilling both improve the
total weighted completion time with respect to the base case for all 6 orders. In
addition to the reduction in the total weighted completion time from backfilling,
which is up to 7.69 %, the further reduction from grouping is up to 24.27 %, while
the improvement from adopting the balanced backfilling rule is up to 20.31 %.
For 5 non-arbitrary orders (excluding FIFO), scheduling with both grouping and
balanced backfilling (i.e., case (e)) gives the smallest total weighted completion
time.

We then compare the performances of different coflow orderings. Figure 1b
shows the comparison of total weighted completion times evaluated on filtered
coflow data in case (e) where the scheduling stage uses both grouping and bal-
anced backfilling. Compared with HFIFO, all other ordering heuristics reduce
the total weighted completion times of coflows by a ratio between 7.88 and 9.11,
with HLP performing consistently better than other heuristics.

3.5 Cost of Matching

The main difference between our coflow scheduling problem and the well-studied
concurrent open shop problem we discussed in Sect. 1.3 is the presence of match-
ing constraints on paired resources, i.e. inputs and outputs, which is the most
challenging part in the design of approximation algorithms [18]. Since our
approximation algorithm handles matching constraints, it is more complicated
than scheduling algorithms for concurrent open shop problem. We are interested
in how much we lose by imposing these matching constraints.

To do so, we generate two sets of coflow data from the Facebook trace. For
each coflow k, let the coflow matrix D(k) be a diagonal matrix, which indicates
that coflow k only has processing requirement from input i to output i, for
i = 1, . . . ,m. The processing requirement D

(k)
i,i is set to be equal to the sum

of all dataflows of coflow k in the Facebook trace that require processing from
input i. We then construct coflow matrix D̃(k) such that D̃(k) is not diagonal and
has the same row sum and column sum as D(k). The details of the generation is
described as in Algorithm 2.

The diagonal structured coflow matrices can reduce the total completion time
of by a ratio up to 2.09, which indicates the extra processing time introduced
by the matching constraints.

3.6 Performance of Algorithms on General Instances

In previous sections, we present the experimental results of several algorithms on
the Facebook trace. In order to examine the consistency of the performance of



Experimental Analysis of Algorithms for Coflow Scheduling 271

these algorithms, we consider more instances, including examples where certain
algorithms behave badly.

Bad Instances for Greedy Heuristics. We consider the following examples
which illustrate instances on which the ordering heuristics do not perform well.

Example 1. Consider a 2 × 2 network and n coflows with D =
(

10 0
0 0

)
, n

coflows with D =
(

0 0
0 10

)
, and a · n coflows with D =

(
9 0
0 9

)
. The optimal

schedule in this case is to schedule the orders with the smallest total processing
time first, i.e., the schedule is generated according to the STPT rule. The limit
of the ratio

∑n
k=1 Ck(ECT&SMCT&SMPT )

∑n
k=1 Ck(STPT ) is increasing in n and when n → ∞ it

becomes a2+4a+2
a2+2a+2 . This ratio reaches its maximum of

√
2 when a =

√
2.

We can generalize this counterexample to an arbitrary number of inputs and
outputs m. To be more specific, in an m × m network, for j = 1, 2, · · · ,m, we
have n coflows only including flows to be transferred to output j, i.e., dij = 10.
We also have a · n coflows with equal transfer requirement on all pairs of inputs
and outputs, i.e., dij = 9 for i, j = 1, 2, · · · ,m. The ratio

lim
n→∞

∑n
k=1 Ck(ECT&SMCT&SMPT )∑n

k=1 Ck(STPT )
=

a2 + 2ma + m

a2 + 2a + m

has a maximum value of
√

m when a =
√

m. Note that in the generalized
example, we need to consider the matching constraints when we actually schedule
the coflows.

Example 2. Consider a 2 × 2 network and n coflows with D =
(

1 0
0 10

)
, and

a · n coflows with D =
(

10 0
0 0

)
. The optimal schedule in this case is to schedule

the orders with the Smallest Maximum Completion Time first, i.e., the schedule
is generated according to the SMCT rule. The ratio

∑n
k=1 Ck(STPT )

∑n
k=1 Ck(SMCT ) is increasing

in n and when n → ∞ it becomes a2+2a
a2+1 This ratio reaches its maximum of

√
5+1
2

when a =
√
5+1
2 .

This counterexample can be generalized to an arbitrary number of inputs and
outputs m. In an m × m network, for each i = 2, 3, · · · ,m, we have n coflows
with two nonzero entries, d11 = 1 and dii = 10. We also have a · n coflows with
only one zero entry d11 = 10. The limit of the ratio

lim
n→∞

∑n
k=1 Ck(STPT )∑n
k=1 Ck(SMCT )

=
a2 + 2(m − 1)a

a2 + m − 1

has a maximum value of 1/2 +
√

m − 3/4 when a = 1/2 +
√

m − 3/4.



272 Z. Qiu et al.

General Instances. We compare total weighted completion time for 6 order-
ings and 5 cases on general simulated instances as described in Sect. 1.2 (details
in Tables 1 to 5 of [17]), normalized with respect to the LP-based ordering in case
(c), which performs best on all of the instances. We have the similar observation
from the general instances that both grouping and backfilling reduce the com-
pletion time. However, under balanced backfilling, grouping does not improve
performance much. Both grouping and balanced backfilling form less skewed
matrices that can be scheduled more efficiently, so when balanced backfilling is
used, the effect of grouping is less pronounced. It is not clear whether case (c)
with balanced backfilling only is in general better than case (e) with both bal-
anced backfilling and grouping, as we have seen Facebook data on which case (e)
gives the best result. As for the performance of the orderings, on the one hand,
we see very close time ratios among all the non-arbitrary orderings on instances
6–30, and a better performance of HECT on sparse instances 1–5 over other
orderings (Table 3, Appendix [17]); on the other hand, there are also instances
where ECT performs poorly (e.g., see Sect. 3.6).

Besides their performance, the running times of the algorithms that we con-
sider are also important. The running time of an algorithm consists of two main
parts; computing the ordering and computing the schedule. On a Macbook Pro
with 2.53 GHz two processor cores and 6 G memory, the five ordering rules,
FIFO, STPT, SMPT, SMCT and ECT, take less than 1 s to compute, whereas
the LP-based order can take up to 90 s. Scheduling with backfilling can be com-
puted in around 1 min, whereas balanced backfilling computes the schedules with
twice the amount of time, because the balanced augmented matrices have more
non-zero entries. Besides improving performance, grouping can also reduce the
running time by up to 90 %.

Algorithm 2. Construction of coflow data
Data: A single diagonal coflow D = (dij)

m
i,j=1.

Result: Another coflow D̃ =
(
d̃ij

)m

i,j=1
, such that row and column sums

of the two matrices are all equal.
Let η(D̃) =

∑m
i,j=1 d̃ij be the sum of all entries in D̃. Similarly,

η(D) =
∑m

i=1 dii.
D̃ ← 0.
while (η(D̃) < η(D)) do

Si ← {i :
∑m

j′=1 D̃ij′ < dii}; Sj ← {j :
∑m

i′=1 D̃i′j < djj}. Randomly
pick i∗ from set Si and j∗ from set Sj . D̃ ← D̃ + pE, where
p = min{di∗i∗ − ∑m

j′=1 D̃i∗j′ , dj∗j∗ − ∑m
i′=1 D̃i′j∗}, Eij = 1 if i = i∗

and j = j∗, and Eij = 0 otherwise.
η ← ∑m

i,j=1 d̃ij
end



Experimental Analysis of Algorithms for Coflow Scheduling 273

4 Offline Algorithms with General Release Times

In this section, we examine the performances of the same class of algorithms and
heuristics as that studied in Sect. 3, when release times can be general. We first
extend descriptions of various heuristics to account for release times.

(a) Comparison of total weighted completion
times normalized using the base case (c) for each
order.

(b) Comparison of 6 orderings with general re-
lease times on Facebook data.

Fig. 2. Facebook data are filtered by M ′ ≥ 50.
Weights are equal.

The FIFO heuristic com-
putes a coflow order accord-
ing to non-decreasing release
time r. (Note that when all
release times are distinct, FIFO
specifies a unique ordering on
coflows, instead of any arbitrary
order in the case of zero release
times.) The STPT heuristic
computes a coflow order accord-
ing to non-decreasing values of∑m

i=1

∑m
j=1 dij + r, the total

amount of processing require-
ments over all the ports plus the
release time. The SMPT heuris-
tic computes a coflow order
according to non-decreasing val-
ues of ρ + r, the sum of
the coflow load and release
time. Similar to the case of
zero release times, the SMCT
heuristic first sequences the
coflows in non-decreasing order
of

∑
j′ dij′ + r on each input i

and
∑

i′ di′j + r on each output
j, respectively, and then com-
putes the completion times C(i)

and C(j), treating each input
and output as independent machines. Finally, the coflow order is computed
according to non-decreasing values of C ′ = maxi,j{C(i), C(j)}. The ECT heuris-
tic generates a sequence of coflows one at a time; each time it selects as the next
coflow the one that has been released and is after the preceding coflow finishes
processing and would be completed the earliest.

We compute the total weighted completion time for 6 orderings (namely, the
LP-based ordering (4) and the orderings from definitions with release times and
cases (b)–(e) (recall the description of these cases at the beginning of Sect. 3.3),
normalized with respect to the LP-based ordering in case (c). The results for
Facebook data are illustrated in Fig. 2a and b. For general instances, we generate
the coflow inter-arrival times from uniform distribution [1, 100]. Performance
ratios can be found in Tables 6 to 9 in the Appendix of [17]. As we can see from
e.g., Fig. 2a, the effects of backfilling and grouping on algorithm performance are



274 Z. Qiu et al.

similar to those noted in Sect. 3.3, where release times are all zero. The STPT
and LP-based orderings STPT appear to perform the best among all the ordering
rules (see Fig. 2b), because the magnitudes of release times have a greater effect
on FIFO, SMPT, SMCT and ECT than they do on STPT.

By comparing Figs. 1b and 2b, we see that ECT performs much worse than it
does with common release times. This occurs because with general release times,
ECTonly schedules a coflowafter a preceding coflow completes, so it does not back-
fill. While we have kept the ECT ordering heuristic simple and reasonable to com-
pute, no backfilling implies larger completion times, hence the worse performance.

4.1 Convergence of Heuristics with Respect to Release Times

(a) Number of flows is 16

(b) Number of flows is uniform in
[16, 256]

(c) Number of flows is 256

Fig. 3. Comparison of total weighted
completion times with respect to the
upper bound of inter-arrival time for each
order on general instances. Network size is
16. Number of Coflow is 160.

In order to have a better understand-
ing of release times, we scale the release
times of the coflows and observe the
impact of release time distribution on
the performance of different heuristics.
For general instances, recall that we
generated the inter-arrival times with
an upper bound of 100. Here we also
consider inter-arrival time distributions
that are uniform over [0, 0], [0, 25],
[0, 50], [0, 200], [0, 400], [0, 800] and
[0, 1600], respectively. We compute the
total weighted completion time with
the adjusted release times in each case
for 250 samples and take the aver-
age ratio with respect to the LP-based
order.

As we can see from Fig. 3a to c,
all the heuristics converge to FIFO as
the inter-arrival time increases. This is
reasonable as the release times domi-
nate the ordering when they are large.
The speed of convergence is higher in
Fig. 3a where the coflow matrices in the
instance are sparse and release times
are more influential in all heuristics. On
the contrary, when the coflow matri-
ces are dense, release times weigh less
in heuristics, which converge slower to
FIFO as shown in Fig. 3c. We also note
that for heuristics other than FIFO,
the relative performance of an order-
ing heurstic with respect to the LP-
based order may deteriorate and then



Experimental Analysis of Algorithms for Coflow Scheduling 275

improve, as we increase the inter-arrival times. This indicates that when inter-
arrival times are comparable to the coflow sizes, they can have a significant
impact on algorithm performance and the order obtained.

5 Online Algorithms

We have discussed the experimental results of our LP-based algorithm and sev-
eral heuristics in the offline setting, where the complete information of coflows
is revealed at time 0. In reality, information on coflows (i.e., flow sizes) is often
only revealed at their release times, i.e., in an online fashion. It is then natural to
consider online modifications of the offline algorithms considered in earlier sec-
tions. We proceed as follows. For the ordering stage, upon each coflow arrival, we
re-order the coflows according to their remaining processing requirements. We
consider all six ordering rules described in Sect. 3. For example, the LP-based
order is modified upon each coflow arrival, by re-solving the (LP) using the
remaining coflow sizes (and the newly arrived coflow) at the time. We describe
the online algorithm with LP-based ordering in Algorithm 3. For the scheduling
stage, we use case (c) the balanced backfilling rule without grouping, because of
its good performance in the offline setting.

Algorithm 3. Online LP-based Approximation

Data: Coflows
(
d
(k)
ij

)m

i,j=1
with different release times, for k = 1, . . . , n.

Result: A scheduling algorithm that uses at most a polynomial number
of different matchings.

– Step 1: Given na coflows in the system, na ≤ n, solve the linear program
(LP). Let an optimal solution be given by x̄

(k)
l , for l = 1, 2, . . . , L and

k = 1, 2, . . . , na. Compute the approximated completion time C̄k by

C̄k =
L∑

l=1

τl−1x̄
(k)
l .

Order and index the coflows according to

C̄1 ≤ C̄2 ≤ . . . ≤ C̄na
.

– Step 2: Schedule the coflows in order using the Birkhoff-von Neumann
decomposition (see [18] or Algorithm 5 of the Appendix in [17])) until an
release of a new coflow. Update the job requirement with the remaining
job for each coflow in the system and go back to Step 1.

We compare the performance of the online algorithms and we compare the
online algorithms to the offline algorithms. We improve the time ratio for all
the orderings except FIFO by allowing re-ordering and preemption in the online
algorithm compared with the static offline version. Note that we do not preempt



276 Z. Qiu et al.

with FIFO order. While several ordering heuristics perform as well as LP-based
ordering in the online algorithms, a natural question to ask is how close HA’s
are to the optimal, where A ∈ {STPT, SMPT, SMCT,ECT,LP}. In order to
get a tight lower bound of the coflow scheduling problem, we solve (LP-EXP)
for sparse instances. Since it is extremely time consuming to solve (LP-EXP) for
dense instances, we consider a looser lower bound, which is computed as follows.
We first aggregate the job requirement on each input and output and solve a
single machine scheduling problem for the total weighted completion time, on
each input/output. The lower bound is obtained by taking the maximum of the
results (see the last column of Table 11, [17]). The ratio of the lower bound over
the weighted completion time under HLP is in the range of 0.91 to 0.97, which
indicates that it provides a good approximation of the optimal.

6 Conclusion

Fig. 4. Comparison of total weighted com-
pletion times with respect to the base case
for each order under the offline and online
algorithms. Data are filtered by M ′ ≥ 50.
Weights are equal.

We have performed comprehensive
experiments to evaluate different
scheduling algorithms for the prob-
lem of minimizing the total weighted
completion time of coflows in a dat-
acenter network. We also general-
ize our algorithms to an online ver-
sion for them to work in real-time.
For additional interesting directions
in experimental analysis of coflow
scheduling algorithms, we would like
to come up with structured approx-
imation algorithms that take into
consideration other metrics and the
addition of other realistic constraints, such as precedence constraints, and dis-
tributed algorithms that are more suitable for implementation in a data cen-
ter. These new algorithms can be used to design other implementable, practical
algorithms.

Acknowledgment. Yuan Zhong would like to thank Mosharaf Chowdhury and Ion
Stoica for numerous discussions on the coflow scheduling problem, and for sharing the
Facebook data.

References

1. Apache hadoop. http://hadoop.apache.org
2. Google dataflow. https://www.google.com/events/io
3. Alizadeh, M., Yang, S., Sharif, M., Katti, S., McKeown, N., Prabhakar, B., Shenker,

S.: pfabric: Minimal near-optimal datacenter transport. SIGCOMM Comput. Com-
mun. Rev. 43(4), 435–446 (2013)

http://hadoop.apache.org
https://www.google.com/events/io


Experimental Analysis of Algorithms for Coflow Scheduling 277

4. Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Towards predictable data-
center networks. SIGCOMM Comput. Commun. Rev. 41(4), 242–253 (2011)

5. Borthakur, D.: The hadoop distributed file system: Architecture and design.
Hadoop Project Website (2007)

6. Chowdhury, M., Stoica, I.: Coflow: A networking abstraction for cluster applica-
tions. In: HotNets-XI, pp. 31–36 (2012)

7. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data
transfers in computer clusters with orchestra. SIGCOMM Comput. Commun. Rev.
41(4), 98–109 (2011)

8. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient coflow scheduling with Varys. In:
SIGCOMM (2014)

9. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: OSDI, p. 10 (2004)

10. Dogar, F., Karagiannis, T., Ballani, H., Rowstron, A.: Decentralized task-aware
scheduling for data center networks. Technical Report MSR-TR–96 2013

11. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms. Math. Oper. Res.
22(3), 513–544 (1997)

12. Kang, N., Liu, Z., Rexford, J., Walker, D.: Optimizing the “one big switch” abstrac-
tion in software-defined networks. In: CoNEXT, pp. 13–24 (2013)

13. Leung, J.Y., Li, H., Pinedo, M.: Order scheduling in an environment with dedicated
resources in parallel. J. Sched. 8(5), 355–386 (2005)

14. Phillips, C.A., Stein, C., Wein, J.: Minimizing average completion time in the
presence of release dates. Math. Program. 82(1–2), 199–223 (1998)

15. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer,
New York (2008)

16. Popa, L., Krishnamurthy, A., Ratnasamy, S., Stoica, I.: Faircloud: Sharing the
network in cloud computing. In: HotNets-X, pp. 22:1–22:6 (2011)

17. Qiu, Z., Stein, C., Zhong, Y.: Experimental analysis of algorithms for coflow
scheduling. arXiv (2016). http://arxiv.org/abs/1603.07981

18. Qiu, Z., Stein, C., Zhong, Y.: Minimizing the total weighted completion time of
coflows in datacenter networks. In: ACM Symposium on Parallelism in Algorithms
and Architectures, pp. 294–303 (2015)

19. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: MSST, pp. 1–10 (2010)

20. Skutella, M.: List scheduling in order of α-points on a single machine. In: Bampis,
E., Jansen, K., Kenyon, C. (eds.) Efficient Approximation and Online Algorithms.
LNCS, vol. 3484, pp. 250–291. Springer, Heidelberg (2006)

21. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI, p. 2 (2012)

http://arxiv.org/abs/1603.07981

	Experimental Analysis of Algorithms for Coflow Scheduling
	1 Introduction
	1.1 Coflow Model and Approximation Algorithm
	1.2 Overview of Experiments
	1.3 Related Work

	2 Preliminary Background
	3 Offline Algorithms with Zero Release Time
	3.1 Ordering Heuristics
	3.2 Scheduling via Birkhoff-Von Neumann Decomposition, Backfilling and Grouping
	3.3 Scheduling Algorithms and Metrics
	3.4 Performance of Algorithms on Real-World Data
	3.5 Cost of Matching
	3.6 Performance of Algorithms on General Instances

	4 Offline Algorithms with General Release Times
	4.1 Convergence of Heuristics with Respect to Release Times

	5 Online Algorithms
	6 Conclusion
	References


