
Tractable Pathfinding for the Stochastic
On-Time Arrival Problem

Mehrdad Niknami1(B) and Samitha Samaranayake2

1 Electrical Engineering and Computer Science, UC Berkeley, Berkeley, USA
mniknami@berkeley.edu

2 School of Civil and Environmental Engineering, Cornell University, Ithaca, USA

Abstract. We present a new and more efficient technique for computing
the route that maximizes the probability of on-time arrival in stochas-
tic networks, also known as the path-based stochastic on-time arrival
(SOTA) problem. Our primary contribution is a pathfinding algorithm
that uses the solution to the policy-based SOTA problem—which is of
pseudo-polynomial-time complexity in the time budget of the journey—
as a search heuristic for the optimal path. In particular, we show that
this heuristic can be exceptionally efficient in practice, effectively mak-
ing it possible to solve the path-based SOTA problem as quickly as the
policy-based SOTA problem. Our secondary contribution is the exten-
sion of policy-based preprocessing to path-based preprocessing for the
SOTA problem. In the process, we also introduce Arc-Potentials, a more
efficient generalization of Stochastic Arc-Flags that can be used for both
policy- and path-based SOTA. After developing the pathfinding and pre-
processing algorithms, we evaluate their performance on two different
real-world networks. To the best of our knowledge, these techniques pro-
vide the most efficient computation strategy for the path-based SOTA
problem for general probability distributions, both with and without
preprocessing.

1 Introduction

Modern advances in graph theory and empirical computational power have essen-
tially rendered deterministic point-to-point routing a solved problem. While the
ubiquity of routing and navigation tools in our everyday lives is a testament to
the success and usefulness of deterministic routing technology, inaccurate pre-
dictions remain a fact of life, resulting in missed flights, late arrivals to meetings,
and failure to meet delivery deadlines. Recent research in transportation engi-
neering, therefore, has focused on the collection of traffic data and the incorpora-
tion of uncertainty into traffic models, allowing for the optimization of relevant
reliability metrics desirable for the user.

The point-to-point stochastic on-time arrival problem [1], or SOTA for short,
concerns itself with this reliability aspect of routing. In the SOTA problem, the
network is assumed to have uncertainty in the travel time across each link,
represented by a strictly positive random variable. The objective is then to
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 231–245, 2016.
DOI: 10.1007/978-3-319-38851-9 16

232 M. Niknami and S. Samaranayake

maximize the probability of on-time arrival when traveling between a given
origin-destination pair with a fixed time budget.1 It has been shown that the
SOTA solution can appreciably increase the probability of on-time arrival com-
pared to the classical least expected travel time (LET) path [3], motivating the
search for efficient solutions to this problem.

1.1 Variants

There exist two primary variants of the SOTA problem. The path-based SOTA
problem, which is also referred to as the shortest-path problem with on-time
arrival reliability (SPOTAR) [4], consists of finding the a-priori most reliable
path to the destination. The policy-based SOTA problem, on the other hand,
consists of computing a routing policy—rather than a fixed path—such that,
at every intersection, the choice of the next direction depends on the current
state (i.e., the remaining time budget).2 While a policy-based approach provides
better reliability when online navigation is an option, in some situations it can
be necessary to determine the entire path prior to departure.

The policy-based SOTA problem, which is generally solved in discrete-time,
can be solved via a successive-approximation algorithm, as shown by Fan and
Nie [5]. This approach was subsequently improved by Samaranayake et al. [3] to a
pseudo-polynomial-time label-setting algorithm based on dynamic-programming
with a sequence of speedup techniques and the use of zero-delay convolution [6,7].
It was then demonstrated in Sabran et al. [8] that graph preprocessing techniques
such as Reach [9] and Arc-Flags [10] can be used to further reduce query times
for this problem.

In contrast with the policy-based problem, however, no polynomial-time solu-
tion is known for the general path-based SOTA problem [4]. In the special case
of normally-distributed travel times, Nikolova et al. [11] present an O(nO(log n))-
algorithm for computing exact solutions, while Lim et al. [12] present a poly-
logarithmic-time algorithm for approximation solutions. To allow for more gen-
eral probability distributions, Nie and Wu [4] develop a label-correcting algo-
rithm that solves the problem by utilizing the first-order stochastic dominance
property of paths. While providing a solution method for general distributions,
the performance of this algorithm is still insufficient to be of practical use in many
real-world scenarios; for example, while the stochastic dominance approach pro-
vides a reasonable computation time (on the order of half a minute per instance)
for networks of a few hundred to a thousand vertices, it fails to perform well on
metropolitan road networks, which easily exceed tens of thousands of vertices.
In contrast, our algorithm easily handles networks of tens of thousands of edges
in approximately the same amount of time without any kind of preprocessing.3

1 The target objective can in fact be generalized to utility functions other than the
probability of on-time arrival [2] with little effect on our algorithms, but for our
purposes, we limit our discussion to this scenario.

2 In this article, we only consider time-invariant travel-time distributions. The problem
can be extended to incorporate time-varying distributions as discussed in [3].

3 Parmentier and Meunier [13] have concurrently also developed a similar approach
concerning stochastic shortest paths with risk measures.

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 233

With preprocessing, our techniques further reduce the running time to less than
half a second, making the problem tractable for larger networks.4

1.2 Contributions

Our primary contribution in this article is a practically efficient technique for
solving the path-based SOTA problem, based on the observation that the solu-
tion to the policy-based SOTA problem is in practice itself an extremely efficient
heuristic for solving the path-based problem.

Our secondary contribution is to demonstrate how graph preprocessing can
be used to speed up the computation of the policy heuristic, and thus the opti-
mal path, while maintaining correctness.5 Toward this goal, we present Arc-
Potentials, a more efficient generalization of the existing preprocessing technique
known as Stochastic Arc-Flags that can be used for both policy- and path-based
preprocessing.

After presenting these techniques, we evaluate the performance of our algo-
rithms on two real-world networks while comparing the trade-off between their
scalability (in terms of memory and computation time) and the speedups
achieved. Our techniques, to the best of our knowledge, provide the most efficient
computation strategy for the path-based SOTA problem with general probability
distributions, both with and without preprocessing.

2 Preliminaries

We are given a stochastic network in the form of a directed graph G = (V,E)
where each edge (i, j) ∈ E has an associated probability distribution pij(·) rep-
resenting the travel time across that edge.6 The source is denoted by s ∈ V , the
destination by d ∈ V , and the travel time budget by T ∈ R

+.
For notational simplicity, we present the SOTA problem in continuous-time

throughout this article, with the understanding that the algorithms are applied
after discretization with a time interval of Δt.

Definition 1 (SOTA Policy). Let uij(t) be the probability of arriving at the
destination d with time budget t when first traversing edge (i, j) ∈ E and sub-
sequently following the optimal policy. Let δij > 0 be the minimum travel time
along edge (i, j), i.e. min{τ : pij(τ) > 0}. Then, the on-time arrival probability
ui(t) and the policy (optimal subsequent node) wi(t) at node i, can be defined
via the dynamic programming equations below [1]. Note that Δt must satisfy
Δt ≤ δij ∀(i, j) ∈ E.

4 It should be noted that the largest network we consider only has approximately
71,000 edges and is still much smaller than networks used to benchmark deterministic
shortest path queries, which can have millions of edges [14].

5 As explained later, there is a potential pitfall that must be avoided when the pre-
processed policy is to be used as a heuristic for the path.

6 We assume that at most one edge exists between any pair of nodes in each direction.

234 M. Niknami and S. Samaranayake

uij(t) =
∫ t

δij

uj(t − τ)pij(τ) dτ

ud(·) = 1

ui(t) = max
j: (i,j)∈E

uij(t)

wi(t) = argmax
j: (i,j)∈E

uij(t)

The solution to the policy-based SOTA problem can be obtained by solving
this system of equations using dynamic programming as detailed in [3]. This
requires evaluating a set of convolution integrals. The computation of the policy
us(·) for a source s and time budget T using direct convolution takes O(|E|T 2)
time, as computing us(T) could in the worst case require convolutions of length
O(T) for each edge in the graph. However, by using an online convolution tech-
nique known as zero-delay convolution (ZDC) [6,15], the time complexity can
be reduced to O(|E|T log2 T). Justifications for the results and time complexity,
including details on how to apply ZDC to the SOTA problem, can be found
in [3,7].

Assumptions. Our work, as with other approaches to both the policy-based and
path-based SOTA problems, makes a number of assumptions about the nature
of the travel time distributions. The three major assumptions are that the travel
time distributions are (1) time invariant, (2) exogenous (not impacted by indi-
vidual routing choices), and (3) independent. The time-invariance assumption—
which prevents accounting for traffic variations throughout the day—can be
relaxed under certain conditions as described in [3]. Furthermore, the exogene-
ity assumption is made even in the case of deterministic shortest path problems.
This leaves the independence assumption as a major concern for this problem.

It might, in fact, be possible to partially relax this assumption [3] to allow for
conditional distributions at the cost of increasing the computation time by a fac-
tor linear in the number of states to be conditioned on. (If we assume the Markov
property for road networks, the number of conditioning states becomes the in-
degree of each vertex, a small enough constant that may make generalizations
in this direction practical.) Nevertheless, we will only focus on the independent
setting and make no claim to have solved the path-based SOTA problem in full
generality, as the problem already lacks efficient solution methods even in this
simplified setting. Our techniques should, however, provide a foundation that
allows for relaxing these assumptions in the future.

3 Path-Based SOTA

In the deterministic setting, efficient solution strategies (from Dijkstra’s algo-
rithm to state-of-the-art solutions) generally exploit the sub-path optimality
property: namely, the fact that any optimal route to a destination node d
that includes some intermediate node i necessarily includes the optimal path
from i to d. Unfortunately, this does not hold in the stochastic setting.

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 235

Algorithm 1. Algorithm for computing the optimal SOTA path
Notation: ∗ is the convolution operator and ‖ is the concatenation operator
for all i ∈ V , 0 ≤ t ≤ T do

Compute the optimal policy’s reliability8 ui(t)

Q ← PriorityQueue()
Q.Push (us(T), ([1.0] , [s])) � Push (reliability, (cost dist., initial path))
while Q is not empty do

(r, (q, P)) ← Q.PopMax() � Extract most reliable path so far
i ← P [|P | − 1] � Get the last node in the path
if i = d then

return P
for all j ∈ E.Neighbors(i) do

Q.Push ((q ∗ uj)[T], (q ∗ E.Cost(i, j), P ‖ [j])) � Append new edge.

return nil � No path found

Furthermore, blind enumeration of all possible paths in the graph is absolutely
intractable for all but the most trivial networks, as the number of simple paths
grows exponentially with the number of nodes in the graph. Naturally, this leads
us to seek a heuristic to guide us toward the optimal path efficiently, while not
compromising its optimality.

3.1 Algorithm

Consider a fixed path P from the source s to node i. Let qP
si(t) be the travel

time distribution along P from node s to node i, i.e., the convolution of the
travel time distributions of every edge in P . Upon arriving at node i at time t,
let the user follow the optimal policy toward d, therefore reaching d from s with
probability density qP

si(t)ui(T − t). The reliability of following path P to node i
and subsequently following the optimal policy toward d is7:

rP
si(T) =

∫ T

0

qP
si(t)ui(T − t) dt

Note that the route from s → i is a fixed path while that from i → d is a policy.
The optimal path is found via the procedure in Algorithm1. Briefly, starting

at the source s, we add the hybrid (path + policy) solution rP
si(T) for each

neighbor i of s to a priority queue. Each of these solutions gives an upper bound
on the solution (success probability). We then dequeue the solution with the
highest upper bound, repeating this process until a path to the destination is
found.

Essentially, Algorithm 1 performs an A∗ search for the destination, using
the policy as a heuristic. While it is obvious that the algorithm would find the
7 The bounds of this integral can be slightly tightened through inclusion of the mini-

mum travel times, but this has been omitted for simplicity.
8 Can be limited to those i and t reachable from s in time T , and can be further sped

up through existing policy preprocessing techniques such as Arc-Flags.

236 M. Niknami and S. Samaranayake

optimal path eventually if the search were allowed to continue indefinitely, it is
less obvious that the first path found will be optimal. We show this by showing
that the policy is an admissible heuristic for the path, and consequently, by the
optimality of A∗ [16], the first returned path must be optimal.

Proposition 1 (Admissibility). The solution to policy-based SOTA problem
is an admissible heuristic for the optimal solution to the path-based SOTA prob-
lem using Algorithm1.

Proof. When finding a minimum cost path, an admissible heuristic is a heuristic
that never overestimates the actual cost [17]. In our context, since the goal is
to maximize the reliability (success probability), this corresponds to a heuristic
that never underestimates the reliability of a routing strategy. The reliability of
an optimal SOTA policy clearly provides an upper bound on the reliability of
any fixed path with the same source, destination, and travel budget. (Otherwise,
a better policy would be to simply follow the fixed path irrespective of the time
remaining, contradicting the assumption that the policy is optimal.) Therefore,
the SOTA policy is an admissible heuristic for the optimal SOTA path.

3.2 Analysis

The single dominant factor in this algorithm’s (in)efficiency is the length of the
priority queue (i.e., the number of paths considered by the algorithm), which
in turn depends on the travel time distribution along each road. As long as
the number of paths considered is approximately linear in length of the optimal
path, the path computation time is easily dominated by the policy computation
time, and the algorithm finds the optimal path very quickly. In the worst-case
scenario for the algorithm, the optimal path at a node corresponds to the direc-
tion for the worst policy at that node. Such a scenario, or even one in which
the optimal policy frequently chooses a suboptimal path, could result in a large
(even exponential) running time as well as space usage. However, it is difficult
to imagine this happening in practice. As shown later, experimentally, we came
across very few cases in which the path computation time dominated the policy
computation time, and even in those cases, they were still quite reasonable and
extremely far from such a worst-case scenario. We conjecture that such situations
are extremely unlikely to occur in real-world road networks.

An interesting open problem is to define characteristics (network structure,
shape of distributions, etc.) that guarantee pseudo-polynomial running times in
stochastic networks, similar in nature to the Highway Dimension property [18] in
deterministic networks, which guarantees logarithmic query times when networks
have a low Highway Dimension.

4 Preprocessing

In deterministic pathfinding, preprocessing techniques such as Arc-Flags [10],
reach-based routing [9,19], contraction hierarchies [20], and transit node routing

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 237

[21] have been very successfully used to decrease query times by many orders of
magnitude by exploiting structural properties of road networks. Some of these
approaches allow for pruning the search space based solely on the destination
node, while others also take the source node into account, allowing for better
pruning at the cost of additional preprocessing. The structure of the SOTA
problem, however, makes it more challenging to apply such techniques to it.
Previously, Arc-Flags and Reach have been successfully adapted to the policy-
based problem in [8], resulting in Stochastic Arc-Flags and Directed Reach.
While at first glance one may be tempted to directly apply these algorithms
to the computation of the policy heuristic for the path-based problem, a naive
application of source-dependent pruning (such as Directed Reach or source-based
Arc-Flags) can result in an incorrect solution, as the policy needs to be recom-
puted for source nodes that correspond to different source regions. This effec-
tively limits any preprocessing of the policy heuristic to destination-based (i.e.,
source-independent) techniques such as Stochastic Arc-Flags, precluding the use
of source-based approaches such as Directed Reach for the policy computation.

With sufficient preprocessing resources (as explained in Sect. 5.2), however,
one can improve on this through the direct use of path-based preprocessing—that
is, pruning the graph to include only those edges which may be part of the most
reliable path. This method allows us to simultaneously account for both source
and destination regions, and generally results in a substantial reduction of the
search space on which the policy needs to be computed. However, as path-based
approaches require computing paths between all ≈ |V |2 pairs of vertices in the
graph, this approach may become computationally prohibitive for medium- to
large-scale networks. In such cases, we would then need to either find alternate
approaches (e.g. approximation techniques), or otherwise fall back to the less
aggressive policy-based pruning techniques, which only require computing |V |
separate policies (one per destination).

4.1 Efficient Path-Based Preprocessing

Path-based preprocessing requires finding the optimal paths for each time budget
up to the desired time budget T for all source-destination pairs. Naively, this
can be done by placing Algorithm1 in a loop, executing it for all time budgets
from 1 to T . This requires T times the work of finding the path for a single time
budget, which is clearly prohibitive for any reasonable value of T . However, we
can do far better by observing that many of the computations in the algorithm
are independent of the time budget and can be factored out when the path does
not change with T .

To improve the efficiency of the naive approach in this manner, we make two
observations. First, we observe that, in Algorithm1, only the computation of
the path’s reliability (priority) in the priority queue ever requires knowledge of
the time budget. Crucially, the convolution q ∗ E.Cost(i, j) only depends on the
maximum time budget T for truncation purposes, which is a fixed value. This
means that the travel time distribution of any path under consideration can be
computed once for the maximum time budget, and re-used for all lower time

238 M. Niknami and S. Samaranayake

budgets thereafter. Second, we observe that when a new edge is appended, the
priority of the new path is the inner product of the vector q and (the reverse of)
the vector uj , shifted by T . As noted in the algorithm itself, this quantity in fact
the convolution of the two aforementioned vectors evaluated at T . Thus, when a
new edge is appended, instead of recomputing the inner product, we can simply
convolve the two vectors once, and thereafter look up the results instantly for
other time budgets.

Together, these two observations allow us to compute the optimal paths
for all budgets far faster than would seem naively possible, making path-based
preprocessing a practical option.

4.2 Arc-Potentials

As noted earlier, Arc-Flags, a popular method for graph preprocessing, has been
adapted to the SOTA problem as Stochastic Arc-Flags [8]. Instead of applying
it directly, however, we present Arc-Potentials, a more natural generalization of
Arc-Flags to SOTA that can still be directly applied to the policy- and path-
based SOTA problems alike, while allowing for more efficient preprocessing.

Consider partitioning the graph G into R regions (we choose R = O(log |E|),
described below), where R is tuned to trade off storage space for pruning accu-
racy. In the deterministic setting, Arc-Flags allow us to preprocess and prune
the search space as follows. For every arc (edge) (i, j) ∈ E, Arc-Flags defines a
bit-vector of length R that denotes whether or not this arc belongs to an optimal
path ending at some node in region R. We then pre-compute these Arc-Flags,
and store them for pruning the graph at query time. (This approach has been
extended to the dynamic setting [22] in which the flags are updated with low
recomputation cost after the road network is changed.)

Sabran et al. [8] apply Arc-Flags to the policy-based SOTA problem as fol-
lows: each bit vector is defined to represent whether or not its associated arc
is realizable, meaning that it belongs to an optimal policy to some destination
in the target region associated with each bit. The problem with this approach,
however, is that it requires computing arc-flags for all target budgets (or more,
practically, some ranges of budgets), each of which takes a considerable amount
of space. Instead, we propose a more efficient alternative Definition 2, which we
call Arc-Potentials.

Definition 2 (Arc-Potentials). For a given destination region D, we define
the arc activation potential φij of the edge from node i to node j to be the
minimum time budget at which the arc becomes part of an optimal policy to
some destination d ∈ D.

The Arc-Potentials pruning algorithm only stores the “activation” potential
of every edge. As expected, this implies that for large time budgets, every edge
is potentially active. We could have further generalized the algorithm to allow
for asymptotically exact pruning at relatively low cost by simply storing the
actual potential intervals during which the arc is active, rather than merely
their first activation potential. However, in our experiments this was deemed

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 239

unnecessary as Arc-Potentials were already sufficient for significant pruning in
the time budgets of interest in our networks.

The computation of the set of realizable edges (and nodes) under a given
policy is essentially equivalent to the computation of the policy itself, except that
updates are performed in the reverse order (from the source to the destination).
The activation potentials φ can then be obtained from this set. As with Arc-
Flags, we limit the space complexity to O(|E|R) = O(|E| log |E|) by choosing R
to be proportional log |E|, tuning it as desired to increase the pruning accuracy.
In our experiments, we simply used a rectangular grid of size

√
R × √

R. Note,
however, that the preprocessing time does not depend on R, as the paths between
all ≈ |V |2 pairs of nodes must be eventually computed.

5 Experimental Results

We evaluated the performance of our algorithms on two real-world test net-
works: a small San Francisco network with 2643 nodes and 6588 edges for which
real-world travel-time data was available as a Gaussian mixture model [23], and
a second (relatively larger) Luxembourg network with 30647 nodes and 71655
edges for which travel-time distributions were synthesized from road speed lim-
its, as real-world data was unavailable. The algorithms were implemented in
C++ (2003) and executed on a cluster of 1.9 GHz AMD OpteronTM 6168 CPUs.
The SOTA queries were executed on a single CPU and the preprocessing was
performed in parallel as explained below.

The SOTA policies were computed as explained in [3,7] using zero-delay con-
volution with a discretization interval of Δt = 1 s.9 To generate random problem
instances, we independently picked a source and a destination node uniformly
at random from the graph and computed the least expected travel-time (LET)
path between them. We then evaluated our pathfinding algorithm for budgets
chosen uniformly at random from the 5th to 95th percentile of LET path travel
times (those of practical interest) on 10, 000 San Francisco and 1000 Luxembourg
problems instances.

First, we discuss the speed of our pathfinding algorithm, and afterward, we
evaluate the effectiveness and scalability of our preprocessing strategies.

5.1 Evaluation

We first evaluate the performance of our path-based SOTA algorithm without
any graph preprocessing. Experimental results, as can be seen in Fig. 1, show
that the run time of our solution is dominated by the time taken to obtain the
solution to the policy-based SOTA problem, which functions as a search heuristic
for the optimal path.

The stochastic-dominance (SD) approach [4], which to our knowledge is the
fastest published solution for the path-based SOTA problem with general prob-
ability distributions, takes, on average, between 7 and 18 s (depending on the
9 Recall that we must have Δt ≤ min(i,j)∈E δij , which is ≈ 1 s for our networks.

240 M. Niknami and S. Samaranayake

Fig. 1. Running time of the pathfinding algorithm as a function of the travel time
budget for random unpruned (i.e., non-preprocessed) instantiations of each network.
We can see that the path computation time is dominated by the policy computation
time, effectively reducing the path-based SOTA problem to the policy-based SOTA
problem in terms of computation time.

variance of the link travel time distributions) to compute the optimal path for
100 time-step budgets. For comparison, our algorithm solves for paths on the
San Francisco network with budgets of up to 1400 s (= 1400 time-steps) in ≈ 7 s,
even achieving query times below 1 s for budgets less than 550 s without any pre-
processing at all. Furthermore, it also handles most queries on the 71655-edge
Luxembourg network in ≈ 10 s (almost all of them in 20 s), where the network
and time budgets are more than an order of magnitude larger than the 2950-edge
network handled by the SD approach in the same amount of time.

Of course, this speedup—which increases more dramatically with the problem
size—is hardly surprising or coincidental; indeed, it is quite fundamental to the
nature of the algorithm: by drawing on the optimal policy as an upper bound
(and quite often an accurate one) for the reliability of the final path, it has a
very clear and fundamental informational advantage over any search algorithm
that lacks any knowledge of the final solution. This allows the algorithm to direct
itself toward the final path in an intelligent manner.

It is, however, less clear and more difficult to see how one might compare
the performance of our generic discrete-time approach with Gaussian-restricted,
continuous-time approaches [12,24]. Such approaches operate under drastically
different assumptions and, in the case of [12], use approximation techniques,
which we have yet to employ for additional performance improvements. When the
true travel times cannot be assumed to follow Gaussian distributions, however,
our method, to the best of our knowledge, presents the most efficient means for
solving the path-based SOTA problem.

As we show next, combining our algorithm with preprocessing techniques
allows us to achieve even further reductions in query time, making it more
tractable for industrial applications on appropriately sized networks.

Preprocessing. Figure 2 demonstrates policy-based and path-based preprocessing
using Arc-Potentials for two random San Francisco and Luxembourg problem

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 241

instances. As can be seen in the figure, path-based preprocessing is in general
much more effective than policy-based preprocessing.

Fig. 2. Policy- vs. path-based pruning for random instances of San Francisco (T =
837 s, source at top) and Luxembourg (T = 3165 s, source at bottom). Light-gray
edges are pruned from the graph and blue edges belong to the optimal path, whereas
red edges belong to (sub-optimal) paths that were on the queue at the termination of
the algorithm. (Color figure online)

Figure 3, summarized in Table 1, shows how the computation times scale with
the preprocessing parameters. As expected, path-based preprocessing performs
much better than purely policy-based preprocessing, and both become faster as
we use more fine-grained regions. Nevertheless, we see that the majority of the
speedup is achieved via a small number of regions, implying that preprocessing
can be very effective even with low amounts of storage. (For example, for a
17 × 17 grid in Luxembourg, this amounts to 71655 × 172 ≈ 21M floats.)

242 M. Niknami and S. Samaranayake

Fig. 3. Running time of pathfinding algorithm as a function of the time budget for
each network. Red dots represent the computation time of the policy, and blue crosses
represent the computation of the path using that policy. (Color figure online)

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 243

Table 1. The average query time with both policy-based and path-based pruning
at various grid sizes and time budgets on the San Francisco network (left) and the
Luxembourg network (right). We can see that in both cases, most of the speedup
occurs at low granularity (and thus low space requirements).

Grid/ Time budget (seconds)
Pruning 800 1000 1200 1400 1600

Unpruned 1.81 3.00 4.10 5.11 5.23

10 × 10, policy 0.30 0.69 1.11 1.66 1.72

26 × 26, policy 0.17 0.40 0.63 0.93 0.97

10 × 10, path 0.11 0.38 0.63 0.87 0.90

26 × 26, path 0.02 0.04 0.06 0.07 0.08

Grid/ Time budget (seconds)
Pruning 1500 2000 2500 3000 3500

Unpruned 0.54 1.29 3.53 6.27 9.95

17 × 17, policy 0.25 0.83 2.31 4.57 7.97

34 × 34, policy 0.21 0.71 2.09 3.79 7.07

17 × 17, path 0.03 0.06 0.09 0.13 0.18

34 × 34, path 0.02 0.04 0.06 0.08 0.12

5.2 Scalability

Path-based preprocessing requires routing between all ≈ |V |2 pairs of vertices,
which is quadratic in the size of the network and intractable for moderate size
networks. In practice, this meant that we had to preprocess every region lazily
(i.e. on-demand), which on our CPUs took 9000 CPU-hours. It is therefore obvi-
ous that this becomes intractable for large networks, leaving policy-based pre-
processing as the only option. One possible approach for large-scale path-based
preprocessing might be to consider the boundary of each region rather than its
interior [8]. While currently uninvestigated, such techniques may prove to be
extremely useful in practice, and are potentially fruitful topics for future explo-
ration.

6 Conclusion and Future Work

We have presented an algorithm for solving the path-based SOTA problem by
first solving the easier policy-based SOTA problem and then using its solution
as a search heuristic. We have also presented two approaches for preprocessing
the underlying network to speed up computation of the search heuristic and
path query, including a generalization of the Arc-Flags preprocessing algorithm
that we call Arc-Potentials. We have furthermore applied and implemented these
algorithms on moderate-sized transportation networks and demonstrated their
potential for high efficiency in real-world networks.

While unobserved in practice, there remains the possibility that our algorithm
may perform poorly on stochastic networks in which the optimal policy is a poor
heuristic for the path reliability. Proofs in this direction have remained elusive,
and determining whether such scenarios can occur in realistic networks remains
an important step for future research. In the absence of theoretical advances,
however, our algorithm provides a more tractable alternative to the state-of-the-
art techniques for solving the path-based SOTA problem.

While our approach is tractable for larger networks than were possible with
previous solutions, it does not scale well enough to be used with regional or

244 M. Niknami and S. Samaranayake

continental sized networks that modern deterministic shortest path algorithms
can handle with ease. In the future, we hope to investigate how our policy-
based approach might be combined with other techniques such as the first-order
stochastic dominance [4] and approximation methods such approximate Arc-
Flags [8] for further speedup, and to also look into algorithms that allow for
at least a partial relaxation of the independence assumption. We hope that our
techniques will provide a strong basis for even better algorithms to tackle this
problem for large-scale networks in the foreseeable future.

References

1. Fan, Y., Robert Kalaba, J.E., Moore, I.I.: Arriving on time. J. Optim. Theor. Appl.
127(3), 497–513 (2005)

2. Flajolet, A., Blandin, S., Jaillet, P.: Robust adaptive routing under uncertainty
(2014). arXiv:1408.3374

3. Samaranayake, S., Blandin, S., Bayen, A.: A tractable class of algorithms for reli-
able routing in stochastic networks. Transp. Res. Part C 20(1), 199–217 (2012)

4. Nie, Y.M., Wu, X.: Shortest path problem considering on-time arrival probability.
Trans. Res. Part B Methodol. 43(6), 597–613 (2009)

5. Fan, Y., Nie, Y.: Optimal routing for maximizing travel time reliability. Netw.
Spat. Econ. 6(3–4), 333–344 (2006)

6. Dean, B.C.: Speeding up stochastic dynamic programming with zero-delay convo-
lution. Algorithmic Oper. Res. 5(2), 96 (2010)

7. Samaranayake, S., Blandin, S., Bayen, A.: Speedup techniques for the stochastic
on-time arrival problem. In: ATMOS, pp. 83–96 (2012)

8. Sabran, G., Samaranayake, S., Bayen, A.: Precomputation techniques for the sto-
chastic on-time arrival problem. In: SIAM, ALENEX, pp. 138–146 (2014)

9. Gutman, R.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: ALENEX/ANALC, pp. 100–111 (2004)

10. Hilger, M., Köhler, E., Möhring, R., Schilling, H.: Fast point-to-point shortest path
computations with Arc-Flags. Ninth DIMACS Implementation Challenge 74, 41–
72 (2009)

11. Nikolova, E., Kelner, J.A., Brand, M., Mitzenmacher, M.: Stochastic shortest paths
via quasi-convex maximization. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 552–563. Springer, Heidelberg (2006)

12. Lim, S., Sommer, C., Nikolova, E., Rus, D.: Practicalroute planning under delay
uncertainty: stochastic shortest path queries. Robot. Sci. Syst. 8(32), 249–256
(2013)

13. Parmentier, A., Meunier, F.: Stochastic shortest paths and risk measures (2014).
arXiv:1408.0272

14. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

15. Gardner, W.G.: Efficient convolution without input/output delay. In: Audio engi-
neering society convention 97. Audio Engineering Society (1994)

16. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality
of A∗. J. ACM (JACM) 32(3), 505–536 (1985)

17. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall
Inc., London (1995). ISBN 0-13-103805-2

http://arxiv.org/abs/1408.3374
http://arxiv.org/abs/1408.0272

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 245

18. Abraham, I., Fiat, A., Goldberg, A., Werneck, R.: Highway dimension, short-
est paths, and provably efficient algorithms. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 782–793. Society for
Industrial and Applied Mathematics (2010)

19. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A∗: efficient point-to-point short-
est path algorithms. In: ALENEX, vol. 6, pp. 129–143. SIAM (2006)

20. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA
2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

21. Bast, H., Funke, S., Matijevic, D.: Transit: ultrafast shortest-path queries with
linear-time preprocessing. In: 9th DIMACS Implementation Challenge [1] (2006)

22. D’Angelo, G., Frigioni, D., Vitale, C.: Dynamic arc-flags in road networks. In:
Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 88–99.
Springer, Heidelberg (2011)

23. Hunter, T., Abbeel, P., Bayen, A.M.: The path inference filter: model-based low-
latency map matching of probe vehicle data. In: Frazzoli, E., Lozano-Perez, T.,
Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. STAR, vol. 86, pp.
591–607. Springer, Heidelberg (2013)

24. Lim, S., Balakrishnan, H., Gifford, D., Madden, S., Rus, D.: Stochastic motion
planning and applications to traffic. Int. J. Robot. Res. 3–13 (2010)

	Tractable Pathfinding for the Stochastic On-Time Arrival Problem
	1 Introduction
	1.1 Variants
	1.2 Contributions

	2 Preliminaries
	3 Path-Based SOTA
	3.1 Algorithm
	3.2 Analysis

	4 Preprocessing
	4.1 Efficient Path-Based Preprocessing
	4.2 Arc-Potentials

	5 Experimental Results
	5.1 Evaluation
	5.2 Scalability

	6 Conclusion and Future Work
	References

