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Abstract. Some of the most efficient heuristics for the Euclidean Steiner
minimal tree problem in the d-dimensional space, d ≥ 2, use Delaunay
tessellations and minimum spanning trees to determine small subsets
of geometrically close terminals. Their low-cost Steiner trees are deter-
mined and concatenated in a greedy fashion to obtain a low cost tree
spanning all terminals. The weakness of this approach is that obtained
solutions are topologically related to minimum spanning trees. To avoid
this and to obtain even better solutions, bottleneck distances are utilized
to determine good subsets of terminals without being constrained by the
topologies of minimum spanning trees. Computational experiments show
a significant solution quality improvement.
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1 Introduction

Given a set of points N = {t1, t2, ..., tn} in the Euclidean d-dimensional space
Rd, d ≥ 2, the Euclidean Steiner minimal tree (ESMT) problem asks for a
shortest connected network T = (V,E), where N ⊆ V . The points of N are called
terminals while the points of S = V \N are called Steiner points. The length |uv|
of an edge (u, v) ∈ E is the Euclidean distance between u and v. The length |T | of
T is the sum of the lengths of the edges in T . Clearly, T must be a tree. It is called
the Euclidean Steiner minimal tree and it is denoted by SMT(N). The ESMT
problem has originally been suggested by Fermat in the 17-th century. Since then
many variants with important applications in the design of transportation and
communication networks and in the VLSI design have been investigated. While
the ESMT problem is one of the oldest optimization problems, it remains an
active research area due to its difficulty, many open questions and challenging
applications. The reader is referred to [4] for the fascinating history of the ESMT
problem.

The ESMT problem is NP-hard [5]. It has been studied extensively in R2 and
a good exact method for solving problem instances with up to 50.000 terminals is
available [13,23]. However, no analytical method can exist for d ≥ 3 [1]. Further-
more, no numerical approximation seems to be able to solve instances with more
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than 15–20 terminals [7–9,14,21]. It is therefore essential to develop good qual-
ity heuristics for the ESMT problem in Rd, d ≥ 3. Several such heuristics have
been proposed in the literature [10,15,17,22]. In particular, [17] builds on the
R2-heuristics [2,20]. They use Delaunay tessellations and Minimum spanning
trees and are therefore referred to as DM-heuristics. The randomized heuristic
suggested in [15] also uses Delaunay tessellations. It randomly selects a prede-
fined portion of simplices in the Delaunay tessellation. It adds a centroid for each
selected simplex as a Steiner point. It then computes the minimum spanning tree
for the terminals and added Steiner points. Local improvements of various kinds
are then applied to improve the quality of the solution. It obtains good solutions
in R2. Only instances with n ≤ 100 are tested and CPU times are around 40
sec. for n = 100. The randomized heuristic is also tested for very small problem
instances (n = 10, d = 3, 4, 5) and for specially structured “sausage” instances
(n < 100, d = 3). It can be expected that the CPU times increase significantly
as d grows since the number of simplices in Delaunay tessellations then grows
exponentially.

The goal of this paper is to improve the DM-heuristic in a deterministic
manner so that the minimum spanning tree bondage is avoided and good qual-
ity solutions for large problem instances can be obtained. Some basic definitions
and a resume of the DM-heuristic is given in the remainder of this section.
Section 2 discusses how bottleneck distances can be utilized to improve the solu-
tions produced by the DM-heuristic. The new heuristic is referred to as the
DB-heuristic as it uses both Delaunay tessellations and Bottleneck distances.
Section 3 describes data structures used for the determination of bottleneck dis-
tances while Sect. 4 gives computational results, including comparisons with the
DM-heuristic.

1.1 Definitions

SMT(N) is a tree with n − 2 Steiner points, each incident with 3 edges [12].
Steiner points can overlap with adjacent Steiner points or terminals. Terminals
are then incident with exactly 1 edge (possibly of zero-length). Non-zero-length
edges meet at Steiner points at angles that are at least 120◦. If a pair of Steiner
points si and sj is connected by a zero-length edge, then si or sj are also be
connected via a zero-length edge to a terminal and the three non-zero-length
edges incident with si and sj make 120◦ with each other. Any geometric net-
work ST(N) satisfying the above degree conditions is called a Steiner tree. The
underlying undirected graph ST (N) (where the coordinates of Steiner points
are immaterial) is called a Steiner topology. The shortest network with a given
Steiner topology is called a relatively minimal Steiner tree. If ST(N) has no
zero-length edges, then it is called a full Steiner tree (FST). Every Steiner
tree ST(N) can be decomposed into one or more full Steiner subtrees whose
degree 1 points are either terminals or Steiner points overlapping with terminals.
A reasonable approach to find a good suboptimal solution to the ESMT prob-
lem is therefore to identify few subsets N1, N2, ... and their low cost Steiner trees
ST(N1),ST(N2), ... such that a union of some of them, denoted by ST(N), will
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be a good approximation of SMT(N). The selection of the subsets N1, N2, ...
should in particular ensure that |ST(N)| ≤ |MST(N)| where MST(N) is the
minimum spanning tree of N .

A Delaunay tessellation of N in Rd, d ≥ 2, is denoted by DT(N). DT(N) is
a simplicial complex. All its k-simplices, 0 ≤ k ≤ d + 1, are also called k-faces
or faces if k is not essential. In the following, we will only consider k-faces with
1 ≤ k ≤ d + 1, as 0-faces are terminals in N . It is well-known that the minimum
spanning tree MST(N) of N is a subgraph of DT(N) [3]. A face σ of DT(N) is
covered if the subgraph of MST(N) induced by the corners Nσ of σ is a tree.
Corners of Nσ are then also said to be covered.

The Steiner ratio of a Steiner tree ST(N) is defined by

ρ(ST(N)) =
|ST(N)|

|MST(N)|

The Steiner ratio of N is defined by

ρ(N) =
|SMT(N)|
|MST(N)|

It has been observed [23] that for uniformly distributed terminals in a unit square
in R2, ρ(N) typically is between 0.96 and 0.97 corresponding to 3 %–4 % length
reduction of SMT(N) over MST(N). The reduction seems to increase as d grows.
The smallest Steiner ratio over all sets N in Rd is defined by

ρd = inf
N

{ρ(N)}

It has been conjectured [11] that ρ2 =
√

3/2 = 0.866025.... There are problem
instances achieving this Steiner ratio; for example three corners of an equilateral
triangle. Furthermore, ρd seems to decrease as d → ∞. It has also been conjec-
tured that ρd, d ≥ 3 is achieved for infinite sets of terminals. In particular, a
regular 3-sausage in R3 is a sequence of regular d-simplices where consecutive
ones share a regular 2-simplex (equilateral triangle). It has been conjectured that
regular 3-sausages have Steiner ratios decreasing toward 0.7841903733771... as
n → ∞ [21].

Let Nσ ⊆ N denote the corners of a face σ of DT(N). Let ST(Nσ) denote a
Steiner tree spanning Nσ. Let F be a forest whose vertices are a superset of N .
Suppose that terminals of Nσ are in different subtrees of F . The concatenation
of F with ST(Nσ), denoted by F ⊕ ST(Nσ), is a forest obtained by adding to F
all Steiner points and all edges of ST(Nσ).

Let G be a complete weighted graph spanning N . The contraction of G by
Nσ, denoted by G 
 Nσ, is obtained by replacing the vertices in Nσ by a single
vertex nσ. Loops in G 
 Nσ are deleted. Among any parallel edges of G 
 Nσ

incident with nσ, all but the shortest ones are deleted.
Finally, let T = MST(N). The bottleneck contraction of T by Nσ, denoted by

T 
 Nσ, is obtained by replacing the vertices in Nσ by a single vertex nσ. Any
cycles in T 
Nσ are destroyed by removing their longest edges. Hence, T 
Nσ is
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a minimum spanning tree of (N\Nσ)∪{nσ}. Instead of replacing Nσ by nσ, the
vertices of Nσ could be connected by a tree with zero-length edges spanning Nσ.
Any cycles in the resulting tree are destroyed by removing their longest edges.
We use the same notation, T 
 Nσ, to denote the resulting MST on N .

1.2 DM-Heuristic in Rd

The DM-heuristic constructs DT(N) and MST(N) in the preprocessing phase.
For corners Nσ of every covered face σ of DT(N) in Rd (and for corners of
some covered d-sausages), a low cost Steiner tree ST(Nσ) is determined using a
heuristic [17] or a numerical approximation of SMT(Nσ) [21]. If full, ST(Nσ) is
stored in a priority queue Q ordered by non-decreasing Steiner ratios. Greedy
concatenation, starting with a forest F of isolated terminals in N , is then used
to form a tree spanning N .

In the postprocessing phase of the DM-heuristic, a fine-tuning is performed.
The topology of F is extended to the full Steiner topology ST (N) by adding
Steiner points overlapping with terminals where needed. The numerical approxi-
mation of [21] is applied to ST (N) in order to approximate the relatively minimal
Steiner tree ST(N) with the Steiner topology ST (N).

1.3 Improvement Motivation

The DM-heuristic returns better Steiner trees than its R2 predecessor [20]. It also
performs well for d ≥ 3. However, both the DM-heuristic and its predecessor rely
on covered faces of DT(N) determined by the MST(N). The Steiner topology
ST (N) of ST(N) is therefore dictated by the topology of the MST(N). This is a
good strategy in many cases but there are also cases where this will exclude good
solutions with Steiner topologies not related to the topology of the MST(N).
Consider for example Steiner trees in Fig. 1. In TDM (Fig. 1a) only covered faces
of DT(N) are considered. By considering some uncovered faces (shaded), a better
Steiner tree TDB can be obtained (Fig. 1b).

We wish to detect useful uncovered faces and include them into the greedy
concatenation. Consider for example the uncovered triangle σ of DT(N) in R2

shown in Fig. 2a. If uncovered faces are excluded, the solution returned will be
the MST(N) (red edges in Fig. 2a). The simplex σ is uncovered but it has a very
good Steiner ratio. As a consequence, if permitted, ST(Nσ) = SMT(Nσ) should
be in the solution yielding as much better ST(n) shown in Fig. 2b.

Some uncovered faces of DT(N) can however be harmful in the greedy con-
catenation even though they seem to be useful in a local sense. For example, use
of the uncovered 2-simplex σ of DT(N) in R2 (Fig. 3a) will lead to a Steiner tree
longer than MST(N) (Fig. 3b) while the ratio ρ(SMT(Nσ)) is lowest among all
faces of DT(N). Hence, we cannot include all uncovered faces of DT(N).

Another issue arising in connection with using only uncovered faces is that
the fraction of covered faces rapidly decreases as d grows. As a consequence, the
number of excluded good Steiner trees increases as d grows.
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TDM

ρ(TDM) = 0.976

(a)

TDB

ρ(TDB) = 0.966

(b)

Fig. 1. Uncovered faces of DT(N) can improve solutions. Edges of MST(N) not in
Steiner trees are dashed and red. (Color figure online)

σ

(a) (b)

Fig. 2. ρ(SMT(Nσ)) is very low and SMT(Nσ) should be included in ST(N). (Color
figure online)

σ

(a) (b)

Fig. 3. ρ(SMT(Nσ)) is very low but the inclusion of SMT(Nσ) into ST(N) increases
the length of ST(N) beyond |MST(N)|. (Color figure online)

2 DB-Heuristic in Rd

Let T = MST(N). The bottleneck distance |titj |T between two terminals ti, tj ∈
N is the length of the longest edge on the path from ti to tj in T . Note that
|titj |T = |titj | if (ti, tj) ∈ T .

The bottleneck minimum spanning tree BT (Nσ) of a set of points Nσ ⊆ N
is defined as the minimum spanning tree of the complete graph with Nσ as its
vertices and with the cost of an edge (ti, tj), ti, tj ∈ Nσ, given by |titj |T . If Nσ
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is covered by T , then |BT (Nσ)| = |MST(Nσ)|. Easy proof by induction on the
size of Nσ is omitted. Note that N is covered. Hence, |BT (N)| = |T |.

Consider a Steiner tree ST(Nσ) spanning Nσ ⊆ N . The bottleneck Steiner
ratio βT (ST(Nσ)) is given by:

βT (ST(Nσ)) =
|ST(Nσ)|
|BT (Nσ)|

If Nσ is covered by T , then βT (ST(Nσ)) = ρ(ST(Nσ)). Note that ρT (ST(Nσ))
for the 2-simplex σ in Fig. 3 is very high (even if ST(Nσ) = SMT(Nσ)) because
|BT (Nσ)| is the sum of the lengths of the two red dashed edges shown in Fig. 3b.
Hence, ST(Nσ) will be buried deep in the priority queue QB . In fact, it will
never be extracted from QB as ρT (ST(Nσ)) > 1.

The DB-heuristic consists of three phases: preprocessing, main loop and
postprocessing, see Fig. 5. In the preprocessing phase, the DB-heuristic con-
structs DT(N) and T = MST(N). For corners Nσ of each k-face σ of DT(N),
2 ≤ k ≤ d + 1, a low cost Steiner tree ST(Nσ) is determined using a heuristic
[17] or a numerical approximation of SMT(Nσ) [21]. Each full ST(Nσ) is stored
in a priority queue QB ordered by non-decreasing bottleneck Steiner ratios. If
σ is a 1-face, then ST(Nσ) = SMT(Nσ) is the edge connecting the two corners
of σ. Such ST(Nσ) is added to QB only if its edge is in T . Note that bottleneck
Steiner ratios of these 1-faces are 1.

Let F be the forest of isolated terminals from N . Furthermore, let N0 = N . In
the main loop of the DB-heuristic, a greedy concatenation is applied repeatedly
until F becomes a tree. Consider the i-th loop of the DB-heuristic, i = 1, 2, ...
Let ST(Nσi

) be a Steiner tree with currently smallest bottleneck Steiner ratio
in QB . If a pair of terminals in Nσi

is connected in F , ST(Nσi
) is thrown away.

Otherwise, let F = F ⊕ ST(Nσi
) and T = T 
 Nσi

, see Fig. 4(a) where the
|BT (ST(Nσ))| = |e1| + |e2|. Such a bottleneck contraction of T (see Fig. 4(b))
may reduce bottleneck distances between up to O(n2) pairs of terminals. Hence,
bottleneck Steiner ratios of some Steiner trees still in QB need to be updated

e1

e2

σ

(a)

ST(Nσ)

(b)

Fig. 4. The insertion of ST (Nσ)
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// Preprocessing

Construct DT(N) and T = MST(N);

Push Steiner trees of all faces of DT(N) onto QB (

except 1-faces not in T)

Let F be the forest on N with no edges.

// Main loop

while (F is not a tree on N) {

ST(Nσ) = Steiner tree in QB with smallest

bottleneck Steiner ratio w.r.t. T;

if (no pair of terminals in Nσ is connected in F) {

F = F ⊕ ST(Nσ);

T = T � Nσ;

}

}

// Postprocessing

Fine -tune F;

return F

Fig. 5. DB-heuristic

either immediately or in a lazy fashion. Note that bottleneck Steiner ratios can-
not decrease. If they increase beyond 1, the corresponding Steiner trees do not
need to be placed back in QB . This is due to the fact that all 1-faces (edges) of
the MST(N) are in QB and have bottleneck Steiner ratios equal to 1. We will
return to the updating of bottleneck Steiner ratios in Sect. 3. Fine-tuning (as in
the DM-heuristic) is applied in the postprocessing phase.

Unlike the DM-heuristic, d-sausages are not used in the DB-heuristic. In the
DB-heuristic all faces of DT(N) are considered. As a consequence, fine-tuning in
the postprocessing will in most cases indirectly generate Steiner trees spanning
terminals in d-sausages if they are good candidates for subtrees of ST(N).

3 Contractions and Bottleneck Distances

As face-spanning Steiner trees are added to F in the main loop of the DB-
heurstic, corners of these faces are bottleneck contracted in the current mini-
mum spanning tree T . Bottleneck contractions will reduce bottleneck distances
between some pairs of terminals. As a consequence, bottleneck Steiner ratios
of face-spanning Steiner trees still in QB will increase. A face-spanning Steiner
tree subsequently extracted from QB will not necessarily have the smallest bot-
tleneck Steiner ratio (unless QB has been rearranged). Hence, appropriate lazy
updating has to be carried out. To summarize, a data structure supporting the
following operations is needed:

– bc(Nσ): corners of a face Nσ ∈ DT(N) are bottleneck contracted in T ,
– bd(p,q): bottleneck distance between p and q in current minimum spanning

tree T is returned,
– QB is maintained as a priority queue ordered by non-decreasing bottleneck

Steiner ratios.
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Maintaining QB could be done by recomputing bottleneck Steiner ratios and
rearranging the entire queue after each contraction. Since there may be as many
as O(n�d/2�) faces in DT(N) [18], this will be too slow.

To obtain better CPU times, a slightly modified version of dynamic rooted
trees [19] maintaining a changing forest of disjoint rooted trees is used. For our
purposes, bc-operations and bd-queries require maintaining a changing minimum
spanning tree T rather than a forest. Dynamic rooted trees support (among
others) the following operations:

– evert(nj): makes nj the root of the tree containing nj .
– link(nj , ni, x): links the tree rooted at nj to a vertex ni in another tree. The

new edge (nj , ni) is assigned the cost x.
– cut(nj): removes the edge from nj to its parent. nj cannot be a root.
– mincost(nj): returns the vertex ni on the path to the root and closest to its

root such that the edge from ni to its parent has minimum cost. nj cannot be
a root.

– cost(nj): returns the cost of the edge from nj to its parent. nj cannot be a
root.

– update(nj , x): adds x to the weight of every edge on the path from nj to the
root.

For our purposes, a maxcost operation replaces mincost. Furthermore, the
update operation is not needed. A root of the minimum spanning tree can be
chosen arbitrarily.

Rooted trees are decomposed into paths (see Fig. 6) represented by bal-
anced binary search trees or biased binary trees. The path decomposition can
be changed by splitting or joining these binary trees.

By appropriate rearrangement of the paths, all above operations can be
implemented using binary search tree operations [19]. Since the update oper-
ation is not needed, the values cost and maxcost can be stored directly with nj .
Depending on whether balanced binary search trees or biased binary trees are
used for the paths, the operations require respectively O(log2 n) and O(log n)
amortized time.

r

Fig. 6. A rooted tree decomposed into paths.
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Using dynamic rooted trees to store the minimum spanning tree, bd-queries
and bottleneck contractions can be implemented as shown in Fig. 7. The bd-
query makes ni the new root. Then it finds the vertex nk closest to ni such that
the edge from nk to its parent has maximum cost on the path from nj to ni.
The cost of this edge is returned. The bc-operation starts by running through
all pairs of vertices of Nσ. For each pair ni, nj , ni is made the root of the tree
(evert(ni)) and then the edge with the maximum cost on the path from nj to
ni is found. If ni and nj are connected, the edge is cut away. Having cut away
all connecting edges with maximum cost, the vertices of Nσ are reconnected by
zero-length edges.

// ti and tj are vertices of the minimum spanning tree T

bd(ti,tj) {

evert(ti)

return cost(maxcost(tj))

}

// Nσ = { t1, t2, ..., tk }, k ≥ 2 is a set of corners of a face

of DT(N)
bc(tσ) {

for(i = 1 .. k) {

evert(ti)

for(j = i+1 .. k)

if(ti and tj are connected) cut(maxcost(tj));

}

evert(t1)

for(i = 2 .. k) link(ti−1, ti, 0)

}

Fig. 7. bd-query and bc-operation

When using balanced binary trees, one bd-query takes O((log n)2) amortized
time. Since only faces of DT(N) are considered, the bc-operation performs O(d)
everts and links, O(d2) maxcosts and cuts. Hence, it takes O((d log n)2) time.

In the main loop of the algorithm, Steiner trees of faces of DT(N) are
extracted one by one. A face σ is rejected if some of its corners are already
connected in F . Since the quality of the final solution depends on the quality of
Steiner trees of faces, these trees should have smallest possible bottleneck Steiner
ratios. When a Steiner tree ST (Nσ) is extracted from QB , it is first checked if
ST (Nσ) spans terminals already connected in F . If so, ST (Nσ) is thrown away.
Otherwise, its bottleneck Steiner ratio may have changed since the last time it
was pushed onto QB . Hence, bottleneck Steiner ratio of ST (Nσ) is recomputed.
If it increased since last but is still below 1, ST (Nσ) is pushed back onto QB

(with the new bottleneck Steiner ratio). If the bottleneck Steiner ratio did not
change, ST (Nσ) is used to update F and bottleneck contract T .
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4 Computational Results

The DB-heuristic was tested against the DM-heuristic. Both Steiner ratios and
CPU times were compared. To get reliable Steiner ratio and computational time
comparisons, they were averaged over several runs whenever possible. Further-
more, the results in R2 were compared to the results achieved by the exact
GeoSteiner algorithm [13].

To test and compare the DM- and the DB-heuristic, they were implemented
in C++. The code and instructions on how to run the DM- and DB-heuristics
can be found in the GitHub repository [16]. All tests have been run on a Lenovo
ThinkPad S540 with a 2 GHz Intel Core i7-4510U processor and 8 GB RAM.

The heuristics were tested on randomly generated problem instances of differ-
ent sizes in Rd, d = 2, 3, ..., 6, as well as on library problem instances. Randomly
generated instances were points uniformly distributed in Rd-hypercubes.

The library problem instances consisted of the benchmark instances from the
11-th DIMACS Challenge [6]. More information about these problem instances
can be found on the DIMACS website [6]. For comparing the heuristics with the
GeoSteiner algorithm, we used ESTEIN instances in R2.

Dynamic rooted trees were implemented using AVL trees. The restricted
numerical optimisation heuristic [17] for determining Steiner trees of DT(N)
faces was used in the experiments.

In order to get a better idea of the improvement achieved when using bot-
tleneck distances, the DM-heuristic does not consider covered d-sausages as pro-
posed in [17]. Test runs of the DM-heuristic indicate that the saving when using
d-sausages together with fine-tuning is only around 0.1% for d = 2, 0.05% for
d = 3 and less than 0.01% when d > 3. As will be seen below, the savings
achieved by using bottleneck distances are more significant.

In terms of quality, the DB-heuristic outperforms the DM-heuristic. The
Steiner ratios of obtained Steiner trees reduces by 0.2−0.3% for d = 2, 0.4−0.5%
for d = 3, 0.6−0.7% for d = 4, 0.7−0.8% for d = 5 and 0.8−0.9% for d = 6. This
is a significant improvement for the ESMT problem as will be seen below, when
comparing R2 results to the optimal solutions obtained by the exact GeoSteiner
algorithm [13].

CPU times for both heuristics for d = 2, 3, ..., 6, are shown in Fig. 8. It can be
seen that the improved quality comes at a cost for d ≥ 4. This is due to the fact
that the DB-heuristic constructs low cost Steiner trees for all O(n�d/2�) faces
of DT(N) while the DM-heuristic does it for covered faces only. Later in this
section it will be explored how the Steiner ratios and CPU times are affected if
the DB-heuristic drops some of the faces.

Figure 9 shows how the heuristics and GeoSteiner (GS) performed on
ESTEIN instances in R2. Steiner ratios and CPU times averaged over all 15
ESTEIN instances of the given size, except for n = 10000 which has only
one instance. For the numerical comparisons, see Table 1 in the GitHub repos-
itory [16]. It can be seen that the DB-heuristic produces better solutions than
the DM-heuristic without any significant increase of the computational time.
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Fig. 8. Comparison of the CPU times for the DB-heuristic (blue) and the DM-heuristic
(red) for d = 2, 3, ..., 6. (Color figure online)

It is also worth noticing that the DB-heuristic gets much closer to the optimal
solutions. This may indicate that the DB-heuristic also produces high quality
solutions when d > 2, where optimal solutions are only known for instances with
at most 20 terminals. For the performance of the DB-heuristic on individual R2

instances, see Tables 3–7 in the GitHub repository [16].
The results for ESTEIN instances in R3 are presented in Fig. 10. The green

plot for n = 10 is the average ratio and computational time achieved by
numerical approximation [21]. Once again, the DB-heuristic outperforms the
DM-heuristic when comparing Steiner ratios. However, the running times are
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Fig. 9. Averaged ratios and CPU times for ESTEIN instances in R2. DM-heuristic
(red), DB-heuristic (blue), GeoSteiner (green). (Color figure online)
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Fig. 10. Averaged ratio and CPU times for ESTEIN instances in R3. DM-heuristic
(red), DB-heuristic (blue), numerical approximation (green). (Color figure online)

now up to four times worse. For the numerical comparisons, see Table 2 in the
GitHub repository [16]. For the performance of the DB-heuristic on individual
R3 instances, see Tables 8–12 in the GitHub repository [16].

The DB-heuristic starts to struggle when d ≥ 4. This is caused by the num-
ber of faces of DT(N) for which low cost Steiner trees must be determined. The
DB-heuristic was therefore modified to consider only faces with less than k ter-
minals, for k = 3, 4, ..., d + 1. Figure 11 shows the performance of this modified
DBk-heuristic with k = 3, 4, ..., 7, on a set with 100 terminals in R6. Note that
DB7 = DB.

As expected, the DBk-heuristic runs much faster when larger faces of DT(N)
are disregarded. Already the DB4-heuristic seems to be a reasonable alternative
since solutions obtained by DBk-heuristic, 5 ≤ k ≤ 7, are not significantly better.
Surprisingly, the DB6-heuristic performs slightly better than the DB7-heuristic.

DM DB3 DB4 DB5 DB6 DB7

0.905

0.910

0.915

0.920
ρ(ST(N))

Method t

DM 0.4714

DB3 0.6000

DB4 6.0525

DB5 26.2374

DB6 51.3653

DB7 = DB 62.8098

Fig. 11. Results achieved when considering faces of DT(N) with at most k = 3, 4, ..., 7
terminals in the concatenation for d = 6 and n = 100.
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This is probably due to the fact that low cost Steiner trees of smaller faces have
fewer Steiner points. This in turn causes the fine-tuning step of the DB6-heuristic
to perform better than is the case for DB7.

5 Summary and Conclusions

The DM-heuristic in Rd [17] was extended to the DB-heuristic that uses bot-
tleneck distances to determine good candidates for low cost Steiner trees. Com-
putational results show a significant improvement in the quality of the Steiner
trees produced by the DB-heuristic.

The CPU times of the DB-heuristic are comparable to the CPU times of the
DM-heuristic in Rd, d = 2, 3. It runs slower for d ≥ 4. However, its CPU times
can be significantly improved by skipping larger faces of DT(N). This results in
only small decrease of the quality of solutions obtained.
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