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Abstract. The basic operations of a dynamic array are operator[ ],
push back, and pop back. This study is an examination of variations of
dynamic arrays that support these operations at O(1) worst-case cost.
In the literature, many solutions have been proposed, but little informa-
tion is available on their mutual superiority. Most library implementa-
tions only guarantee O(1) amortized cost per operation. Four variations
with good worst-case performance were benchmarked: (1) resizable array
relying on doubling, halving, and incremental copying; (2) level-wise-
allocated pile; (3) sliced array with fixed-capacity slices; and (4) block-
wise-allocated pile. Let |V| denote the size of the values of type V and |V*|
the size of the pointers to values of type V, both measured in bytes. For
an array of n values and a slice of S values, the space requirements of the
considered variations were at most 12|V|n+O(|V*|), 2|V|n+O(|V*| lg n),
|V|(n + S) + O(|V*|n/S), and |V|n + O((|V| + |V*| + |V**|)

√
n) bytes,

respectively. A sliced array that uses a few per cent of extra space turned
out to be a reasonable solution in practice. In general, for worst-case-
efficient variations, the operations were measurably slower than those for
the C++ standard-library implementation. Moreover, slicing can make the
structures fragile, so measures to make them more robust are proposed.

1 Introduction

A one-dimensional array is a fundamental data structure that is needed in
most applications. Its dynamic variant allows growing and shrinkage at one end.
This paper studies practical implementations of dynamic arrays. Several vari-
ations programmed in C++ [22] for the CPH STL [6] (namespace cphstl) are
described and experimentally compared against each other and to the imple-
mentation shipped with the g++ compiler (namespace std). The class tem-
plate std::vector [4, Clause 23.3.6] is a dynamic array that allows random
access to its values using indices and iterators. The main aim of this study was
to avoid some of the drawbacks known for most existing implementations of
std::vector:

– Support operator[ ], push back, and pop back at O(1) worst-case cost
(i.e. instead of O(1) amortized cost per push back).

– Ensure that the memory overhead is never more than a few per cent (instead
of 100 % or more).
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– Make manual space management by the function shrink to fit unnecessary
(i.e. fit the amount of allocated space to the number of elements stored).

– Do not move values because of dynamization (i.e. keep references, pointers,
and iterators to the values valid if possible).

Array. Let x be a variable that names a cell storing a value of type V and let p
be a variable that names a cell storing an address. More specifically, the address
of a value is a pointer to the cell where the value is stored. In the programming
languages like C [13] and C++ [22], the type of p is V*. These concepts are bound
together by the address-of and contents-of operators:

V* operator&(): A call of the address-of operator &x returns the address of the
cell named by x.

V& operator*(): A call of the contents-of operator *p returns a reference to the
value stored at the cell pointed to by p.

Let N be an alias for the type of counters and indices. An array A stores a
sequence of values of the same type V and supports the operations:

construction: Create an array of the given size by allocating space from the
static storage, the stack, or the heap. In the case of the heap, the memory
allocation must be done by calling malloc or operator new[ ].

destruction: If an array is allocated from the static storage or the stack, it will
be destroyed automatically when the end of its enclosing scope is reached.
But, if an array is allocated from the heap, its space must be explicitly
released by calling free or operator delete[ ] after the last use.

operator V*(): Convert the name of an array to a pointer to its first value as,
for example, in the assignment V* p = A.

V& Operator[ ](N i): For an index i, a call of the subscripting operator A[i]
returns *(A + i), i.e. a reference to the value stored at the cell pointed to by
pointer A + i.

The important features of an array are (1) that its size is fixed at construction
time and (2) that its values are stored in a contiguous memory segment. Hence,
the subscripting operator can be supported at constant cost by simple arithmetic,
e.g. by going from the beginning of the array i· |V| bytes forward, where |V|
denotes the size of a value of type V in bytes.

Dynamic Array. A dynamic array can grow and shrink at one end after its
construction. The class template std::vector [4, Clause 23.3.6] is parameterized
with two type parameters:

V: the type of the values stored and
A: the type of the allocator used to allocate space and construct a value in that

place, and to destroy a value and deallocate the reserved space.
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The configuration of a dynamic array is specified by two quantities: size, i.e. the
number of values stored, and capacity, i.e. the number of cells allocated for storing
the values. Additionally, std::vector supports iterators that are generalizations
of pointers. In particular, iterator operation begin makes the conversion operator
from the name of an array to the address of its first value superfluous. Let I
be the type of the iterators. Compared to an array, the most important new
operations are the following:

I begin() const: Return an iterator pointing at the first value of A.
I end() const: Return an iterator pointing at the non-existing past-the-end value

of A. If A is empty, then A.begin() ==A.end().
N size( ) const: Get the number of values stored in A.
void resize(N n): Set the number of values stored in A to n.
N capacity( ) const: Get the capacity of A.
void reserve(N N): Set the capacity of A to N.
void push-back(V& const x): Append a copy of x at the end of A.
void pop-back( ): Destroy the last value of A. Precondition: A is not empty.

Often, begin, end, size, and capacity are easy to realize at O(1) worst-case
cost; resize at O(|n − n′|) worst-case cost, n being the old size and n′ the
new size; and reserve at O(n) worst-case cost. In fact, there should be support
for a larger set of operations (move-based push back, copy/move construction,
copy/move assignment, swap, clear), but we will not discuss this boilerplate
code here. An interested reader may consult the source code for details (see
“Software Availability” at the end of the paper).

The following question-answer (Q-A) pair captures our vision.

Q: What is the best way of implementing a dynamic array in a software library?

A: Provide a set of kernels that can be easily extended to a full implementation
with necessary convenience functions, and let the user of the library select the
kernel that suits best for her or his needs.

To realize this vision, the bridge design pattern [23, Sect. 14.4] has been used
when implementing container classes. Each container class provides a large set
of members, which make the use convenient, but only a small kernel is used
in the implementation of these members. By changing the kernel, which is yet
another type parameter, a user can tailor the container to his exact needs, either
related to safety or performance. As to the safety features, we refer to [11] (ref-
erential integrity) and [22, Sect. 13.6] (exception safety). In this paper we focus
on the space efficiency of the kernels and the time efficiency of the operations
operator[ ], push back, and pop back. In the worst-case set-up, the space and
time efficiency have not been examined thoroughly in the past (cf. [11, Ex. 2]).

Amortized Solution. The standard way of dynamizing an array is to use doubling
and halving (see, e.g. [5, Sect. 17.4]). The values are stored in a contiguous mem-
ory segment, but when it becomes full, a new, two times larger segment is allo-
cated and all values are moved to there; finally the old segment is released. When
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the current segment is only one quarter full, a new segment that is half the size
of the old one is allocated and all values are moved to the new segment, and then
the old segment is released. Both push back and pop back have a linear cost in
the worst case, but their amortized cost is O(1) since at least n/2 elements must
be added or n/4 elements must be removed before a reorganization occurs again.
Thus, we can charge the O(n) reorganization cost to these modifying operations
and achieve a constant amortized cost per operation. If the data structure stores
n values, the capacity of the current segment can be as large as 4n and during
the reorganization another segment of size 2n must be allocated before the old
can be released. Thus, in the worst-case scenario, the amount of space reserved
for values can be as high as 6n. Naturally, other space-time trade-offs could be
obtained by applying the reorganizations more frequently.

Worst-Case-Efficient Solutions. One way of deamortizing the above solution
is to let, during a reorganization, two memory segments coexist, call them X

and Y, and to move the values from X to Y incrementally in connection with
the forthcoming modifying operations. Imaginarily, the moves happen instantly.
However, if the index of the accessed value is smaller than the size of X, the value
can be found from there. In connection with every push back, if possible, one
value from the end of X is moved to Y at the same relative position and the new
incoming value is placed at the end of Y. In connection with every pop back,
if possible, two values are moved from the end of X to Y at the same relative
positions and the value at the end of Y is popped out. This is repeated until X
becomes empty, after which it can be released and Y can take its place. Such an
incremental reorganization starts whenever only one segment X exists, and it is
either full (then the size of Y will be twice the size of X) or it is one quarter full
(then the size of Y will be half the size of X).

This solution—which we call a resizable array—is part of computing folklore;
we use it as a baseline for other worst-case-efficient implementations. Because the
two segments coexist in memory, in the worst-case scenario, the amount of extra
space used can be even larger than that needed in the amortized case. Namely,
if X is one quarter full, it can take (1/8)n pop back operations before X will be
released. Therefore, just before X is released, the amount of space allocated for
it is about 8n and the amount of space allocated for Y is about 4n. Based on
this discussion, we can conclude that, in the worst case, the amount of space
allocated for values is upper bounded by 12n and the leading constant in this
bound cannot be improved without changing the reorganization strategy.

As to the space consumption, the folklore solution is far from optimal.
Namely, Brodnik et al. [3] proved that, when memory is to be allocated block-
wise, for a dynamic array of size n, the space bound n + Ω(

√
n) is optimal,

n + O(
√

n) is achievable, and at the same time the operations operator[ ],
push back and pop back can be supported at O(1) worst-case cost.

Test Set-up. In our experiments we considered the following implementations:
std::vector: This was the standard-library implementation that shipped with

our g++ compiler (version 4.8.4). It stored the values in one segment, push back
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relied on doubling, and pop back was a noop—memory was released only at
the time of destruction. Compared to the other alternatives, this version only
supported push back at O(1) amortized cost.

cphstl::resizable array: This solution relied on doubling, halving, and incre-
mental copying as described above.

cphstl::pile: This version implemented the level-wise-allocated pile described
in [9]. The data was split into a logarithmic number of contiguous segments,
values were not moved due to reorganizations, and the three operations of
interest were all supported at O(1) worst-case cost.

cphstl::sliced array: This version imitated the standard-library implementa-
tion of a double-ended queue. It was like a page table where the directory
was implemented as a resizable array and the pages (memory segments) were
arrays of fixed capacity (512 values).

cphstl::space efficient array: This version was as the block-wise-allocated pile
described in [9], but the implementation was simplified by seeing it as a pile
of hashed array trees [20]. This version matched the space and time bounds
proved to be optimal in [3].

These implementations were benchmarked on a laptop computer that had the
following hardware and software specifications at the time of experimentation:

processor: Intel R© CoreTM i5-2520M CPU @ 2.50GHz × 4
word size: 64 bits
L1 instruction cache: 32 KB, 64 B per line, 8-way associative
L1 data cache: 32 KB, 64 B per line, 8-way associative
L2 cache: 256 KB, 64 B per line, 8-way associative
L3 cache: 3.1 MB, 64 B per line, 12-way associative
main memory: 3.8 GB, 8 KB per page
operating system: Ubuntu 14.04 LTS
Linux kernel: 3.13.0-83-generic
compiler: g++ version 4.8.4
compiler options: -O3 -std=c++11 -Wall -DNDEBUG -msse4.2 -mabm

In each test, an array of integers of type int was used as input. The average
running time, the number of value moves, and the amount of space were the
performance indicators considered. In the experiments, only four problem sizes
were considered: 210, 215, 220, and 225. For a problem of size n, each experiment
was repeated 226/n (or 227/n times) and the mean was reported.

2 Motivating Example: Reverse

Consider the function reverse which reverses the order of values in a sequence.
According to the C++ standard [4, Clause 25.3.10], its interface is as follows:

template <typename I>
void reverse(I , I ) ;
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The iterators of type I are assumed to be bidirectional or stronger. This interface
forces the algorithm to perform the permutation in-place. For this problem, for
an input of size n, �(3/2)n� is known to be a lower bound for the number of
value moves performed (see, for example, [21, Theorem 11.1]). To surpass this
lower bound, we use a more natural interface:

template <typename S>
void reverse(S&) ;

Now the input is a reference to a sequence of type S. In Fig. 1, we provide
two programs that carry out the reversal. The swap-based implementation is
the one used in most standard-library implementations. However, the move-
based implementation is more interesting. It heavily relies on the fact that the
underlying sequence (1) is space efficient and (2) does not perform any value
moves because of reorganizations. If this is the case, values are just moved once
from one sequence to another and at the end the handles to these sequences are
swapped.

template <typename I>
void reverse(I f , I �) {

while (true) {
i f (f == � or f == - - �) {

return;
}
else {
std : :swap(∗f , ∗�) ;
++f ;

}
}

}

template <typename S>
void reverse(S& s) {

reverse(s .begin() , s .end() ) ;
}

template <typename S , typename T>
void reverse_copy(S& in , T& out) {

auto n = in .size() ;
while (n =�== 0) {

- - n ;
out .push_back(std : :move(in [n ] ) ) ;
in .pop_back() ;

}
}

template <typename S>
void reverse(S& s) {

S t ;
reverse_copy(s , t) ;
s .swap(t) ;

}

Fig. 1. Swap-based reverse (left) and move-based reverse (right)

A sliced array maintains a resizable array of pointers to contiguous memory
segments, each of the same size. Only the last segment may be partially full.
When cphstl::sliced array is used in the move-based algorithm, one slice
will be non-full from both sequences. When a slice is processed in the input,
it can be released and reused in the output. Of course, both algorithms could
also be run using std::vector. For the swap-based algorithm, there is no space
penalty since the algorithm is fully in-place, but for std::vector the move-
based algorithm will use much more space since the space is released first at the
time of destruction.
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Table 1. Characteristics of the two reversal algorithms; n denotes the size of the input
and S the size of a slice used by cpshtl::sliced array; – means that std::vector

does not give any space guarantee; the running times were measured for n = 225

Reverse Array Moves Time/n [ns] Values Pointers

Swap-based Vector 1.5n 0.88 – O(1)

Swap-based Sliced 1.5n 2.25 n + S O(n/S)

Move-based Vector 2n 3.83 – O(1)

Move-based Sliced 1n 5.17 n + 2S O(n/S)

The characteristics of the algorithms for std::vector and cphstl::
sliced array are summarized in Table 1. These simple experiments show the
following: (1) When move assignments are expensive, one should consider using
the move-based reversal algorithm; (2) For std::vector, the subscripting oper-
ator is fast; (3) Reorganizations that move data behind the scenes may harm
the performance.

3 Space Efficiency

In principle, a dynamic array that is asymptotically optimal with respect to
the amount of extra space used is conceptually simple. However, it seems that
the research articles (see, e.g. [3,7,9,11,19]), where such structures have been
proposed, have failed to disseminate this simplicity to the textbook authors since
such a data structure is seldom described in a textbook. Let us make yet another
attempt to capture the essence of such a structure.

Hashed Array Tree. Assume that the maximum capacity of the array is fixed
beforehand; let it be N . A hashed array tree, introduced by Sitarski [20], is a
sliced array where each slice is set to be of size O(

√
N). To make the subscript-

ing operator fast, it is advantageous to let the size be a power of two. Also, the
directory will be of size O(

√
N) (i.e. this extra space is solely used for pointers)

and there will be at most one non-full memory segment of size O(
√

N) (i.e. this
extra space is used for data). From a sliced array this structure inherits the prop-
erty that the values are never moved because of dynamization. If wanted, the
structure could be made fully dynamic by quadrupling and quartering the cur-
rent capacity whenever necessary [14], but after this the performance guarantees
would be amortized, not worst-case.

Pile of Arrays. This data structure was introduced in [9] where it was called a
level-wise-allocated pile; we call it simply cphstl::pile. It took its inspiration
from the binary heap of Williams [24]. Instead of using a single memory segment
for storing the values, the data is split into a logarithmic number of contiguous
memory segments, which increase exponentially in size and of which only the
last may be partially full. In a sense, this is like a binary heap, but each level of
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Fig. 2. The amount of extra space in use after n push back operations for different array
implementations; inside the half circle the curves for the two space-efficient alternatives
are zoomed out

this heap is a separate array. A directory is needed for storing pointers to the
allocated memory segments. Since the size of this directory is only logarithmic,
the space for it can often be allocated statically. In a fully dynamic solution the
directory is implemented as a resizable array. When there are n values, the size
of last non-full memory segment is at most n, so this is an upper bound for
the amount of extra space needed for values. In order to realize the subscripting
operator at O(1) worst-case cost, it must be assumed that the whole-number
logarithm of a positive integer can be computed at O(1) worst-case cost.

Pile of Hashed Array Trees. In [9], this data structure was called a block-wise-
allocated pile; here we call it cphstl::space efficient array. At each level of
a pile, the maximum capacity is fixed. Hence, by implementing each level as a
hashed array tree, we get a dynamic array that needs extra space for at most
O(

√
n) pointers and at most O(

√
n) values, n being the number of values stored.

Space Test. To understand the space efficiency of different array implementations
in practice, we performed a space test where we executed n push back operations
and measured the amount of memory in use at the end. We repeated this for
several values of n. The obtained results are shown in Fig. 2.

More precisely, we measured the memory overhead (i.e. the amount of space
used minus the amount of space used by the input) in per cents. The numbers
varied between one per mill and 200 per cent, the latter meaning that the amount
of memory reserved was large enough to store 3n values. The measurements were
carried out by using an allocator that counted the number of bytes allocated;
it delagated its actual work to std::allocator. During its lifetime, a data



Worst-Case-Efficient Dynamic Arrays in Practice 175

contiguous array

V∗ index_to_address(N i) const {
return A + i ;

}

resizable array

V∗ index_to_address(N i) const {
i f (i < X_size) {

return X + i ;
}
return Y + i ;

}

pile

N whole_number_logarithm(N x) {
asm(”bsr %0, %0\n”

: ”=r”(x)
: ”0” (x)

) ;
return x ;

}

V∗ index_to_address(N i) const {
i f (i < 2) {

return directory [0 ] + i ;
}
N h= whole_number_logarithm(i) ;
return directory [h ] + i − (1 << h) ;

}

sliced array

V∗ index_to_address(N i) const {
return directory [i >> shift ] + (i & mask) ;

}

space-efficient array

V∗ index_to_address(N i) const {
i f (i < 2) {

return directory [ 0 ] .index_to_address(i) ;
}
N h= whole_number_logarithm(i) ;
N Δ = i− (1 << h) ;
return directory [h ] .index_to_address(Δ) ;

}

Fig. 3. Implementation of the index to address function needed by operator[ ], for
different arrays; the meaning of the class variables should be clear from the context

structure could use several allocators. All these allocators had the same base
and it was this base that was responsible for collecting and reporting the final
counts.

In theory, there is a significant difference between the extra space of O(
√

n)
and O(n) values and/or pointers, but, as seen from the curves in Fig. 2, the
space overhead of n/c pointers, for a large integer c, and much fewer values may
be equally good in practice. For both space-efficient alternatives, the observed
space overhead was less than 4 %, often even less. For the implementations based
on doubling, the space overhead could be as high as 100 %. In the space test,
std::vector and cphstl::pile had exactly the same space overhead for all
values of n. Even in this simple test, for a resizable array, the space overhead
could be as high as 200 %.

4 Subscripting Operator

The key feature of an array is that it supports random access to its values at
constant worst-case cost. Moreover, this operation should be fast because it is
employed so frequently. In all our implementations, the subscripting operator
was implemented in an identical way:

V& operator[ ] (N i) {
return ∗index_to_address(i) ;

}
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As the name suggests, the function index to address converts the given index
to a pointer to the position where the desired value resizes. In Fig. 3, implemen-
tations of this function are shown for different arrays.

Our preliminary experiments revealed that, for a pile and its space-efficient
variant, the whole-number-logarithm function needed by the index to address
function had to be implemented using inline assembly code. Otherwise, the sub-
scripting operator would have been unacceptably slow.

Sorting Tests. After code tuning, we performed two simple tests that used differ-
ent kinds of arrays in sorting. These benchmarks exercised the subscripting oper-
ator extensively. In the introsort test, we called the standard-library std::sort
routine (introsort [16]) for a sequence of n values. The purpose of this test was
to determine the efficiency of sequential access. In the heapsort test, we called
the standard-library std::partial sort routine (heapsort [24]) for a sequence
of n values. Here the purpose was to determine the efficiency of random access.
In these sorting tests, we measured the overall running time for different values
of n, and we report the average running time per n lg n. In each test, the input
was a random permutation of integers 〈0, 1, . . . , n − 1〉.

The results for introsort are given in Table 2 and those for heapsort in Table 3.
It was expected that more complicated code would have its consequences for the
running times. Compared to std::vector, integer sorting becomes a constant fac-
tor slower with these worst-case-efficient arrays. For a pile and its space-efficient
variant, the cost of computing the whole-number logarithm in connection with
each access is noticeable, even though we implemented it in assembly language.
For all arrays, random access (trusted by heapsort) was significantly slower than
sequential access (mostly used by introsort).

Table 2. Results of the introsort tests; running time per n lg n [ns]

n Vector Resizable Pile Sliced Space efficient

210 3.56 6.18 9.31 8.35 12.0

215 3.56 5.96 8.99 8.05 11.6

220 3.48 5.84 8.80 7.91 11.3

225 3.48 5.79 8.67 7.80 11.2

5 Iterator Operators

An iterator is a generalization of a pointer that specifies a position when tra-
versing a sequence (for an introduction to iterators and iterator categories, see,
e.g. [21, Chapter 10]). Let I be the type of the iterators under consideration and
let Z be the type specifying a distance between two positions. In this review we
concentrate on three operations that have direct counterparts for pointers.
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Table 3. Results of the heapsort tests; running time per n lg n [ns]

n Vector Resizable Pile Sliced Space efficient

210 4.83 8.89 17.1 12.5 20.3

215 4.94 8.47 16.6 12.3 19.8

220 7.18 10.7 17.8 15.7 21.8

225 23.5 27.7 33.3 37.0 39.8

V& operator*( ) const: The deferencing operator has the same semantics as the
contents-of operator for pointers, i.e. it returns a reference to the value stored
at the current position.

I& operator++( ): The pre-increment operator has the same semantics as the
corresponding pointer operator, i.e. it returns a reference to an iterator that
points to the successor of the value stored at the current position.

I& operator+=(Z i): The addition-assignment operator is used to move the
iterator to the position that refers to the value that is i positions forward
(or backward if i is negative) from the current position.

Traditionally, the iterator support is provided by implementing two iterator
classes, one for mutable iterators and another for immutable iterators, inside
every container class in the library in question (see, e.g. the implementations
provided in [18]). This leads to a lot of redundant code. Austern [1] proposed
an improvement were the mutable and const versions were implemented in one
generic class. We have gone one step further [8]: We provide one generic iterator
class template that can be used to get both iterator variants for any container
that supports the subscript operator and the function size.

Rank Iterators. In the class template cphstl::rank iterator, we use three
concepts: (1) A rank is an integer which specifies the number of values that
precede a value in the given sequence; (2) An owner is the sequence where
the referred value resizes; (3) A sentinel is a rank of a value whose position is
unspecified. A rank iterator is implemented as a (pointer, rank) pair where the
pointer refers to the owner of the encapsulated value and the rank is the index
of that value within the owner. A sentinel is used for defensive-programming
purposes to perform bounds checking.
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static N constexpr sentinel= std : :
numeric_limits<N>::max() ;

V& operator∗() const {
return (∗owner_p) [rank ] ;

}

rank_iterator& operator++ () {
++rank ;
i f (rank == (∗owner_p) .size() ) {
rank = sentinel ;

}
return ∗this ;

}

rank_iterator& operator+=(Z n) {
Z new_place= rank ;
i f (rank == sentinel) {
new_place = (∗owner_p) .size() ;

}
new_place += n ;
i f (new_place < 0) {
rank = sentinel ;
return ∗this ;

}
rank = N(new_place) ;
i f (rank ≥ (∗owner_p) .size() ) {
rank = sentinel ;

}
return ∗this ;

}

Fig. 4. Implementation of the basic iterator operations for rank iterators; owner p and
rank are the class variables denoting a pointer to the owner and the rank, respectively

For a sequence of type S, the types of its iterators are as follows:

using iterator = cphstl::rank_iterator<S>;
using const_iterator = cphstl::rank_iterator<S const>;

These classes provide the full functionality of a random-access iterator. The
implementations of the three important member functions are given in Fig. 4.

Iterator Tests. When analysing the efficiency of rank iterators, we used two
tests. In the sequential-access iterator test, we initialized an array of size n by
visiting each position once. This iterator test exercised derefencing (operator*)
and successor (operator++) operators. In the random-access iterator test, we also
initialized an array of size n by visiting each position once, but there was a
gap of 617 values between consecutive visits. This iterator test exercised def-
erencing (operator*) and addition-assignment (operator+=) operators. All other
calculations were done using integers (e.g. no iterator comparisons were done).

In our preliminary experiments, we compared the performance of
std::vector and cphstl::contiguous array, of which the latter used our rank
iterators. For these data structures the iterator operations were equally fast, so
our generic rank iterator has only little, if any, overhead.

The results of the iterator tests are given in Tables 4 and 5. As to the
cost of slicing, on an average, even for �n/512	 slices, the time overhead is
about a factor of two. We consider this to be good taking into account that
for cphstl::sliced array the space overhead is never extremely high.
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Table 4. Results of the sequential-access iterator tests; running time per n [ns]

n Vector Resizable Pile Sliced Space efficient

215 220 225 0.82 1.50 3.15 1.80 3.99

Table 5. Results of the random-access iterator tests; running time per n [ns]

n Vector Resizable Pile Sliced Space efficient

210 1.54 1.90 3.44 2.72 5.91

215 2.54 2.55 3.20 2.94 5.66

220 10.9 10.9 11.2 11.3 11.4

225 14.4 14.4 14.6 17.2 16.7

6 Modifying Operations

Modification Tests. In the growth test, we executed n push back operations
repeatedly. In the shrinkage test, we created a sequence of size n and then mea-
sured the running time used by n repeated pop back operations. As before, we
measured the overall running time and report the average running time per
operation for different values of n. The obtained results are shown in Tables 6
and 7.

Compared to an amortized solution that kept the difference between the
capacity and size within a permitted range (not discussed earlier), for a resiz-
able array relying on doubling, halving, and incremental copying, the aver-
age cost of push back increased a bit since we could not rely on copying of
values in chunks. Also, when we release memory, pop back is no more free
of cost. On the other hand, cphstl::pile and cphstl::sliced array do
not move any values, so they are faster than cphstl::resizable array. For
cphstl::space efficient array, the relatively large running times are a con-
sequence of complicated code.

Table 6. Results of the growth tests; running time per n [ns]

n Vector Resizable Pile Sliced Space efficient

210 4.23 5.18 5.65 4.65 10.3

215 3.52 6.39 5.16 4.63 7.35

220 4.78 8.48 5.12 4.60 6.92

225 4.15 8.42 4.55 4.58 6.75
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Table 7. Results of the shrinkage tests; running time per n [ns]

n Vector Resizable Pile Sliced Space efficient

210 0.0 3.62 3.08 2.56 8.15

215 0.0 2.99 2.15 2.60 5.55

220 0.0 2.86 2.27 2.41 5.17

225 0.0 2.91 2.11 2.43 5.07

7 Robustness

When our kernels are used to build a container with the same functionality as
std::vector, we cannot be standard compliant in one respect [4, Clause 23.3.6]:
The values are no more stored in a contiguous memory segment. In this section
we consider situations where slicing and slice boundaries can make the structures
fragile. We also describe measures that will make the structures more robust.

Break-Down Tests. In our first malicious experiment, we created many small
arrays and studied at which point the driver crashed. Recall that our test com-
puter had 3.8 GB of main memory. The actual experiment was as follows:

1. Create a new empty array (elements of type int, four bytes each).
2. Insert 220 elements into this array using push back.
3. Remove 220 − 1 elements from this array using pop back.
4. Repeat this until we get an out-of-memory signal.

That is, how many single-element arrays one can have simultaneously in memory,
if the arrays have been bigger at some earlier point in time?

The results obtained varied a bit depending on the memory usage of the
other processes run on the test computer, but the numbers on Table 8 speak
for themselves. In this kind of application environment, the approach of not
releasing allocated memory can have disastrous consequences. To improve the
situation with the sliced array, the slices could be made smaller or the first slice
could be implemented as a resizable array.

Gap-Crossing Tests. Because of slicing, the worst-case running of one individual
push back and pop back depends on the efficiency of memory management. In
the theoretical analysis, we assumed that the allocator operations allocate that
allocates a memory segment and deallocate that releases it have the worst-case

Table 8. Results of the break-down tests; number of repetitions before receiving an
out-of-memory signal

Vector Resizable Pile Sliced Space efficient

804 33 554 432 16 777 216 1 048 448 8 388 473



Worst-Case-Efficient Dynamic Arrays in Practice 181

Table 9. Results of the gap-crossing tests; average running time per (pop back,
push back) pair [ns]; number of identified gaps in brackets

n Vector Resizable Pile Sliced Space efficient

210 4.48 [11] 3.39 [11] 9.48 [10] 46.7 [2] 31.6 [62]

215 4.53 [16] 3.85 [16] 8.16 [15] 47.9 [64] 24.5 [382]

220 4.31 [21] 3.64 [21] 7.60 [20] 49.6 [2 048] 29.6 [2 046]

225 4.30 [26] 3.46 [26] 118 [25] 49.1 [65 536] 24.4 [12 286]

cost of O(1), independent of the size of the processed segment. By running the
instruction-cost micro-benchmark from Bentley’s book [2, Appendix 3], it was
possible to verify that this assumption did not hold in our test environment.

To see whether the memory-management costs are visible when crossing the
gaps between the slices, we carried out one more experiment:

1. Identify where the segment boundaries are.
2. Execute a sequence of push back operations, but after crossing a gap, execute

many additional pairs of pop back and push back operations.
3. Report the average running time per (pop back, push back) pair.

The obtained results (Table 9) should be compared to those for push back
(Table 6) and pop back (Table 7) obtained under non-malicious conditions. Of
the tested arrays, a resizable array was the most robust since it deamortized the
cost of allocations and deallocations over a sequence of modifying operations,
and each of these operations touched at most three elements every time. As the
opposite, for the largest instance, a pile became very slow because it was forced
to allocate and deallocate big chunks of memory repeatedly. The approach used
in a resizable array could be used to make the other structures more robust, too.
Instead of releasing a segment immediately after it becomes empty, some delay
could be introduced so that allocations followed by deallocations were avoided.

8 Discussion

To summarize, a theoretician may think that a solution guaranteeing the worst-
case cost of O(1) per operation and the memory overhead of O(

√
n) would be

preferable since both bounds are optimal. However, based on the results of our
experiments, we have to conclude that, when both the time and space efficiency
are important, a sliced array is a good solution. Our implementation supports all
the basic operations at O(1) worst-case cost, since we used a worst-case-efficient
resizable array to implement the directory, and the observed memory overhead
was less than 2 % when n was large, although asymptotically, when the slice size
is S, extra space may be needed for S values and O(n/S) pointers. In general,
the cutting of the data into slices did not make the operations much slower;
in a sequential scan it was not a problem to skip over �n/S� slice boundaries.
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One reason for inefficiency seems to be the complexity of the formula used for
computing the address of the cell where the requested value is. On the other
hand, when implementating an industry-strength kernel, special measures must
be taken to avoid bad behaviour in situations where subsequent operations are
forced to jump back and forth over slice boundaries.

Software Availability

The programs discussed and benchmarked are available via the home page of
the CPH STL (www.cphstl.dk) in the form of a technical report and a tar file.
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