
Practical Variable Length Gap Pattern Matching

Johannes Bader1, Simon Gog1(B), and Matthias Petri2

1 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany

gog@kit.edu
2 Department of Computing and Information Systems,

The University of Melbourne, VIC 3010, Australia

Abstract. Solving the problem of reporting all occurrences of patterns
containing variable length gaps in an input text T efficiently is important
for various applications in a broad range of domains such as Bioinformat-
ics or Natural Language Processing. In this paper we present an efficient
solution for static inputs which utilizes the wavelet tree of the suffix array.
The algorithm partially traverses the wavelet tree to find matches and
can be easily adapted to several variants of the problem. We explore the
practical properties of our solution in an experimental study where we
compare to online and semi-indexed solutions using standard datasets.
The experiments show that our approach is the best choice for searching
patterns with many gaps in large texts.

1 Introduction

The classical pattern matching problem is to find all occurrences of a pattern P
(of length m) in a text T (of length n both drawn from an alphabet Σ of size σ).
The online algorithm of Knuth, Morris and Pratt [10] utilizes a precomputed
table over the pattern to solve the problem in O

(
n + m

)
time. Precomputed

indexes over the input text such as suffix arrays [14] or suffix trees allow matching
in O

(
m × log n

)
or O

(
m

)
time respectively. In this paper we consider the more

general variable length gap pattern matching problem in which a pattern does
not only consist of characters but also length constrained gaps which match any
character in the text. We formally define the problem as:

Problem 1 Variable Length Gap (VLG) Pattern Matching [5]. Let P be a pattern
consisting of k ≥ 2 subpatterns p0 . . . pk−1, of lengths m = m0 . . . mk−1 drawn
from Σ and k−1 gap constraints C0 . . . Ck−2 such that Ci = 〈δi,Δi〉 with 0 ≤
δi ≤ Δi < n specifies the smallest (δi) and largest (Δi) distance between a match
of pi and pi+1 in T . Find all matches – given as k-tuples 〈i0 . . . ik−1〉 where ij is
the starting position for subpattern pj in T – such that all gap constraints are
satisfied.

If overlaps between matches are permitted, the number of matching positions
can be polynomial in k + 1. We refer to this problem type as all. In standard

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 1–16, 2016.
DOI: 10.1007/978-3-319-38851-9 1

2 J. Bader et al.

implementations of regular expressions overlaps are not permitted1 and two
types for variable gap pattern matching are supported. The greedy type (a gap
constraint is written as Ci = .{δi,Δi}) maximizes while the lazy type (a gap
constraint is written as Ci = .{δi,Δi}?) minimizes the characters matched by
gaps. The following example illustrates the three VLG problem types.

Example 1. Given a text T = aaabbbbaaabbbb and a pattern P = ab〈1, 6〉b
consisting of two subpatterns p0 =“ab” and p1 =“b” and a gap constraint
C0 = 〈1, 6〉. Type “all” returns Sall = {〈2, 5〉, 〈2, 6〉, 〈2, 10〉, 〈9, 12〉, 〈9, 13〉},
greedy matching results in Sgreedy = {〈2, 10〉} and lazy evaluation Slazy =
{〈2, 5〉, 〈9, 12〉}.

VLG pattern matching is an important problem which has numerous practi-
cal applications. Traditional Unix utilities such as grep or mutt support VLG
pattern matching on small inputs using regular expression engines. Many areas
of computer science use VLG matching on potentially very large data sets. In
Bioinformatics, Navarro and Raffinot [18] investigate performing VLG pattern
matching in protein databases such as PROSITE [9] where individual protein
site descriptions are expressed as patterns containing variable length gaps. In
Information Retrieval (IR), the proximity of query tokens within a document
can be an indicator of relevance. Metzler and Croft [15] define a language model
which requires finding query terms to occur within a certain window of each
other in documents. In Natural Language Processing (NLP), this concept is
often referred to as collocations of words. Collocations model syntactic elements
or semantic links between words in tasks such as word sense disambiguation [16].
In Machine Translation (MT) systems VLG pattern matching is employed to find
translation rule sets in large text corpora to improve the quality of automated
language translation systems [13].

In this paper, we focus on the offline version of the VLG pattern match-
ing problem. Here, a static input is preprocessed to generate an index which
facilitates faster query processing. Our contributions are as follows:

1. We build an index consisting of the wavelet tree over the suffix array and
propose different algorithms to efficiently answer VLG matching queries. The
core algorithms is conceptionally simple and can be easily adjusted to the
three different matching modes outlined above.

2. In essence our WT algorithm is faster than other intersection based
approaches as it allows to combine the sorting and filtering step and does
not require copying of data. Therefore our approach is specially suited for a
large number of subpatterns.

3. We provide a thorough empirical evaluation of our method including a com-
parison to different practical baselines including other index based approaches
like qgram indexes and suffix arrays.

1 I.e. any two match tuples 〈i0 . . . ik−1〉 and 〈i′0 . . . i′k−1〉 spanning the intervals
[i0, ik−1 + mk−1 − 1] and [i′0, i

′
k−1 + mk−1 − 1] do not overlap.

Practical Variable Length Gap Pattern Matching 3

2 Background and Related Work

Existing solutions to solving VLG can be categorized into three classes of algo-
rithms. In general the algorithms discussed here perform lazy evaluation, but can
be implemented to also support greedy evaluation. The first category of algo-
rithms build on the classical algorithm of Thompson [20] to construct a finite
automaton to solve the VLG problem used by many regular expression engines.
Let L =

∑k−2
i=0 Δi. The classical automaton requires O

(
n(Lσ + m)

)
time which

can not be reduced much further [4,5]. The matching process scans T , transi-
tioning between states in the automaton to find occurrences of P. Algorithms
engineered to solve the VLG problem specifically can achieve better runtime
performance by utilizing bit-parallelism or placing constraints on individual gap
constraints in P [4,6,18]. For example the runtime of Bille and Thorup [4] is
O

(
n(k log w

w × log k)
)

time after prepocessing P (w is the word size).
A second class of algorithms take into account the occurrences of each subpat-

tern in P [5,17,19]. The algorithms operate in two stages. First, all occurrences
of each subpattern p ∈ P in T are determined. Let αi be the number of occur-
rences of pi in T and α =

∑k−1
i=0 αi be the total number of occurrences of all pi

in T . The occurrences of each subpattern can be obtained via a classical online
algorithm such as Aho and Corasick [1] (AC), or using an index such as the suffix
array (SA) of T . The algorithms of Morgante et al. [17,19] require additional
O

(
α
)

space to store the occurrences, whereas Bille et al. [5] only requires O
(
S

)

extra space where S =
∑k−2

i=0 δi. The algorithms keep track of, for each pi+1

the occurrences of pi for which Ci is satisfied. Similarly to Rahman et al. [19],
the occurrences Xi = [x0, . . . , xαi−1] of pi are used to satisfy Ci = 〈δi,Δi〉 by
searching for the next larger (or equal) value for all xj + δi in the sorted list
of occurrences of pi+1. Performing this process for all pi and gap constraints
Ci can be used to perform lazy evaluation of VGP. While Rahman et al. [19]
consider only AC or SA to identify occurrences of subpatterns, many different
ways to store or determine and search positions exist. For example, the folklore
q-gram index, which explicitly stores the occurrences of all q-grams in T , can
be used to obtain the occurrences of all subpatterns by performing intersection
of the positional lists of the q-grams each subpattern in P. List compression
affects the performance of the required list intersections and thus provides dif-
ferent time space-trade-offs [11]. Similarly, different list intersection algorithms
can also affect the performance of such a scheme [2].

A combination of schemata one and two use occurrences of subpatterns to
restrict the segments within T where efficient online algorithms are used to verify
potential matches. For example, q-gram lists can be intersected until the number
of possible occurrences of P is below a certain threshold. Then an automaton
based algorithm can match P at these locations.

The third category are suffix tree based indexes. In its simplest form,
Lewenstein [12] augments each node of a suffix tree over T with multiple gap-r-
tree for all 1 ≤ r < G, where G is the longest gap length which has to be specified
at construction time. If k subpatterns are to be supported, the nodes in each gap-
r-tree have to be recursively augmented with additional gap-r-trees at a total

4 J. Bader et al.

space cost of O
(
nkGk−1

)
space. Queries are answered in O

(∑k−1
0 mi

)
time by

traversing the suffix tree from the root, branching into the gapped-r-trees after
the locus of p0 is found. Lewenstein [12] further propose different time-space
trade-offs, reducing the space to O

(
nG2k−1 logk−1 n

)
by performing centroid

path decomposition which increases query time to O
(∑k−1

0 mi +2k−1 log log n
)
.

Bille and Gørtz [3] propose a suffix tree based index which requires two ST over
T (ST (T)) and the reverse text (ST (T R)) plus a range reporting structure.
Single fixed length gap queries can then be answered by matching p0 in ST (T)
and the reverse of p1 in ST (T R). Then a range reporting structure is used to
find the matching positions in T .

In practice, Lopez [13] use a combination of (1) intersection precomputation
(2) fast list intersection and (3) enhanced version of Rahman et al. [19] to solve
a restricted version of VGP.

3 VLG Pattern Matching Using the Wavelet Tree
over SA

We first introduce notation which is necessary to describe our algorithms. Let
range I from index � to r be denoted by [�, r]. A range is considered empty (I = ∅)
if � > r. We denote the intersection of two ranges I0 = [�0, r0] and I1 = [�1, r1]
as I0 ∩ I1 = [max{�0, �1},min{r0, r1}]. We further define the addition I0 + I1 of
two ranges to be [�0 + �1, r0 + r1]. Shorthands for the left and right border of a
non-empty range I are lb(I) and rb(I).

Let Xi = xi,0, . . . , xi,αi−1 be the list of starting positions of subpattern pi

in T . Then for k = 2 the solution to the VLG pattern matching problem for
P = p0〈δ,Δ〉p1 are pairs 〈x0,i, x1,j〉 such that ([x0,i, x0,i] + [m0 + δ,m0 + Δ]) ∩
[x1,j , x1,j] 	= ∅. The generalization to k > 2 subpatterns is straightforward by
checking all k − 1 constraints. For ease of presentation we will restrict the fol-
lowing explanation to k = 2. Assuming all Xi are present in sorted order all
matches can be found in O

(
α0 + α1 + z

)
time, where z refers to the number of

matches of P in T . Unfortunately, memory restrictions prohibit the storage of
all possible O

(
n2

)
sorted subpattern lists, but we will see next that the linear

space suffix array can be used to retrieve any unsorted subpattern list.
A suffix T [i, n−1] is identified by its starting position i in T . The suffix array

(SA) contains all suffixes in lexicographically sorted order, i.e. SA[0] points to the
smallest suffix in the text, SA[1] to the second smallest and so on. Figure 1 depicts
the SA for an example text of size n = 32. Using SA and T it is easy to determine
all suffixes which start with a certain prefix p by performing binary search.
For example, p0 = gt corresponds to the SA-interval [17, 21] which contains
suffixes 16, 13, 21, 4, 28. Note that the occurrences of the p in SA are not stored
sorted order. Answering a VLG pattern query using SA can be achieved by
first determining the SA-intervals of all subpatterns and next, filtering out all
occurrence tuples which fulfill the gap constraints [19].

Let P = gc〈1, 2〉c containing p0 = gc and p1 = c. In Example Fig. 1,
the SA-interval of c (SA[9, 16]) contains suffixes 26, 10, 11, 19, 12, 20, 1 and 8.

Practical Variable Length Gap Pattern Matching 5

Fig. 1. Sample text T = actagtatctcccgtagtaccgtatacagtt$ and suffix array (SA)
of T .

Sorting the occurrences of both subpatterns returns in X0 = 4, 13, 16, 21, 28 and
X1 = 1, 8, 10, 11, 12, 19, 20, 26. Filtering X0 and X1 based on C0 = 〈1, 2〉 pro-
duces tuples 〈4, 8〉, 〈16, 19〉 and 〈16, 20〉. The time complexity of this process is
O

(∑k−1
i=0 αilog αi + z

)
, where the first term (sorting all Xi) is independent of z

(the output size) and can dominate if subpatterns occur frequently.
Using a wavelet tree (WT) [8] allows combining the sorting and filtering

process. This enables early termination for text regions which do not contain
all required subpatterns in correct order within the specified gap constraints. A
wavelet tree WT (X) of a sequence X[0, n − 1] over an alphabet Σ[0, σ − 1] is
defined as a perfectly balanced binary tree of height H =
log σ�. Conceptually
the root node v represents the whole sequence Xv = X. The left (right) child of
the root represents the subsequence X0 (X1) which is formed by only considering
symbols of X which are prefixed by a 0-bit(1-bit). In general the i-th node on
level L represents the subsequence Xi(2) of X which consists of all symbols which
are prefixed by the length L binary string i(2). More precisely the symbols in
the range R(vi(2)) = [i ·2H−L, (i+1) ·2H−L −1]. Figure 2 depicts an example for
X = SA(T). Instead of actually storing Xi(2) it is sufficient to store the bitvector
Bi(2) which consists of the �-th bits of Xi(2) . In connection with a rank structure,
which can answer how many 1-bits occur in a prefix B[0, j − 1] of bitvector
B[0, n−1] in constant time using only o(n) extra bits, one is able to reconstruct
all elements in an arbitrary interval [�, r]: The number of 0-bits (1-bits) left to
� corresponds to �′ in the left (right) child and the number of 0-bits (1-bits) left
to r corresponds to r′ + 1 in the left (right) child. Figure 2 shows this expand
method. The red interval [17, 21] in the root node v is expanded to [9, 10] in
node v0 and [8, 10] in node v1. Then to [4, 4] in node v00 and [5, 5] in node v01
and so on. Note that WT nodes are only traversed if the interval is not empty
(i.e. � ≤ r). E.g. [4, 4] at v00 is split into [3, 2] and [1, 1]. So the left child v000
is omitted and the traversal continues with node v001. Once a leaf is reached we
can output the element corresponding to its root to leaf path. The wavelet tree
WT (X) uses just n · h + o(n · h) bits of space.

In our application the initial intervals correspond to the SA-intervals of all
subpatterns pi in P. However, our traversal algorithm only considers the exis-
tence of a SA-interval at a given node and not its size. A non-empty SA-interval
of subpattern pi in a node vx at level L means that pi occurs somewhere in the
text range R(vx) = [x · 2H−L, (x + 1) · 2H−L − 1]. Figure 3 shows the text ranges
for each WT node. A node v and its parent edge is marked red (resp. blue) if
subpattern p0’s (resp. p1’s) occurs in the text range R(v).

6 J. Bader et al.

Fig. 2. Wavelet tree built for the suffix array of our example text. The SA-interval
of gt (resp. c) in the root and its expanded intervals in the remaining WT nodes are
marked red (resp. blue). (Color figure online)

3.1 Breadth-First Search Approach

For both subpatterns p0 and p1, at each level in the WT, j we iteratively materi-
alize lists N j

0 and N j
1 of all WT nodes at level j in which the ranges corresponding

to p0 and p1 occur by expanding the nodes in the lists N j−1
0 and N j−1

1 of the
previous level. Next all nodes vxs in N j

0 are removed if there is no node vy in
N j

1 such that (R(vx) + [m0 + δ,m0 + Δ]) ∩ [R(vy)] 	= ∅ and vice versa. Each list
N j−1

i stores nodes in sorted order according to the beginning of their ranges.
Thus, removing all “invalid” nodes can be performed in O

(
|N j

0 | + |N j
1 |

)
time.

The following table shows the already filtered list for our running example.

WT level (j) p0 text ranges (N j
0) p1 text ranges (N j

1)

0 [0, 31] [0, 31]

1 [0, 15], [16, 31] [0, 15], [16, 31]

2 [0, 7], [8, 15], [16, 23], [24, 31] [0, 7], [8, 15], [16, 23], [24, 31]

3 [4, 7], [12, 15], [16, 19], [20, 23] [8, 11], [12, 15], [16, 19], [20, 23], [24, 27]

4 [4, 5], [16, 17], [20, 21] [8, 9], [18, 19], [20, 21], [24, 25]

5 [4, 4], [16, 16] [8, 8], [19, 19], [20, 20]

The WT nodes in the table are identified by their text range as shown in Fig. 3.
One example of a removed node is [0, 3] in lists N3

0 and N3
1 which was expanded

from node [0, 7] in N2
0 and N2

1 . It was removed since there is no text range in
N3

1 which overlaps with [0, 3] + [2 + 1, 2 + 2] = [3, 6]. Figure 3 connects removed
WT nodes with dashed instead of solid edges. Note that all text positions at
the leaf level are the start of a subpattern which fulfills all gap constraints. For

Practical Variable Length Gap Pattern Matching 7

Fig. 3. Wavelet tree nodes with annotated text ranges and path of subpattern iterators.
(Color figure online)

the all variant it just takes O
(
z
)

time to output the result. The disadvantage of
this BFS approach is that the lists of a whole level have to be kept in memory,
which takes up to n words of space. We will see next that a DFS approach lowers
memory consumption to O

(
k log n

)
words.

3.2 Depth-First Search Approach

For each subpattern pi we create a depth-first search iterator iti. The iterator
consists of a stack of (WT node, SA-interval) pairs, which is initialized by the
WT root node and the SA-interval of pi, in case the SA-interval is not empty.
The iterator is invalid, if the stack is empty – this can be checked in constant time
using a method valid(iti). We refer with iti.v to the current WT node of a valid
iterator (which is on top of the stack). A valid iterator can be incremented by
operations next down and next right. Method next down pops pair (v, [�, r]),
expands SA-interval [�, r] and pushes the right child of v with its SA-interval
and the left child of v with its SA-interval onto the stack, if the SA-interval is
not empty. That is, we traverse to the leftmost child of it.v which contains pi.
The next right(iti) operation pops one element from the stack, i.e. we traverse
to the leftmost node in the WT which contains pi and is right of iti.v.

Using these iterators the VLG pattern matching process can be expressed
succinctly in Algorithm 1, which reports the next match. The first line checks,
if both iterators are still valid so that a further match can be reported. Lines 2
and 4 check if the gap constraints are met. If the text range of p1’s iterator is too
far right (Line 2), the iterator of p0 is moved right in Line 3. Analogously, the
iterator of p1 is moved right in Line 5 if the text range of p0’s iterator is too far
right (Line 4). If the gap constrained is met and not both text ranges have size
one (Line 7) we take the iterator which is closer to the root (and break ties by i)
and refine its range. Finally, if both iterators reach the leaf level a match can be
reported. Since the traversal finds the two leftmost leaf nodes – i.e. positions –
which met the constraint the direct output of 〈lb(R(it0.v)), lb(R(it1.v))〉 in Line
11 corresponds to the lazy problem type. For lazy Line 12 would move it0 to the

8 J. Bader et al.

Algorithm 1. dfs next match(it0, it1,m0,Δ0, δ0)
1: while valid(it0) and valid(it1) do
2: if rb(R(it0.v)) +m0+ Δ0 < lb(R(it1.v)) then # gap constraint violated?
3: it0 ← next right(it0)
4: else if rb(R(it1.v)) < lb(R(it0.v)) + m0 + δ0 then # gap constraint violated?
5: it1 ← next right(it1)
6: else # gap constrained fulfilled
7: if not (is leaf(it0.v) and is leaf(it1.v)) then
8: x ← arg mini∈{0,1}{〈depth(iti.v), i〉} # select itr closest to the root
9: itx ← next down(itx) # refine range

10: else
11: report match according to VLG problem type # found match
12: move it0 and it1 according to VLG problem type and return 〈it0, it1〉

right of it1 by calling it0 ← next right(it0) until lb(R(it0.v)) > lb(R(it1.v)) is
true and no overlapped matches are possible. Type greedy can be implemented by
moving it1 in Line 11 as far right as possible within the gap constrains, output
〈lb(R(it0.v)), lb(R(it1.v))〉, and again moving it0 to the right of it1. Type all
reports the first match in Line 11, then iterates it1 as long as it meets the gap
constraint and reports a match if it1.v is a leaf. In Line 12 it0 is move one step
to the right and it1 it reset to its state before line 11.

3.3 Implementation Details

Our representation of the WT requires two rank operations to retrieve the two
child nodes of any tree node. In our DFS approach, k tree iterators partially
traverse the WT. For higher values of k it is likely that the child nodes of a
specific WT node are retrieved multiple times by different iterators. We there-
fore examined the effect of caching the child nodes of a tree node when they are
retrieved for the first time, so any subsequent child retrieval operations can be
answered without performing further rank operations. Unfortunately, this app-
roach resulted in a slowdown of our algorithm by a factor of 3. We conjecture,
that one reason for this slowdown is the additional memory management over-
head (even when using custom allocators) of dynamically allocating and releasing
the cached data. Also, critical portions of the algorithm (being called most fre-
quently) contain more branching and were even inlined before we implemented
the cache. Furthermore, we determined that more than 65 % of tree nodes tra-
versed once were never traversed a second time, so caching children for these
nodes will not yield any run time performance improvements. On average, each
cache entry was accessed less than 2 times after creation. Thus, only very few
rank operations are actually saved. Therefore we do not cache child nodes in our
subsequent empirical evaluation.

Practical Variable Length Gap Pattern Matching 9

4 Empirical Evaluation

In this section we study the practical impact of our proposals by comparing
to standard baselines in different scenarios. Our source code – including base-
lines and dataset details – is publicly available at https://github.com/olydis/
vlg matching and implemented on top of SDSL [7] data structures. We use three
datasets from different application domains:

– The CC data set is a 371GiB prefix of a recent 145TiB web crawl from
commoncrawl.org.

– The Kernel data set is a 78GiB file consisting of the source code of all (332)
Linux kernel versions 2.2.X, 2.4.X.Y and 2.6.X.Y downloaded from kernel.org.
This data set is very repetitive as only minor changes exist between subsequent
kernel versions.

– The Dna-Hg38 data set data consisting of the 3.1GiB Genome Reference Con-
sortium Human Reference 38 in fasta format with all symbol 	∈ {A,C,G, T}
removed from the sequence.

We have implemented our BFS and DFS wavelet tree approaches. We omit the
results of the BFS approach, as DFS dominated BFS in both query time and
memory requirement. Our index is denoted by WT-dfs the following. We use
a pointerless WT (wt int) in combination with a fast rank enabled bitvector
(bit vector il). We compare to three baseline implementations:

– rgxp: A “off-the-shelf” automaton based regular expression engine (Boost

library version 1.58; ECMAScript flag set) which scans the whole text.
– qgram-rgxp: A q-gram index (q = 3) which stores absolute positions of all

unique 3-grams in the text using Elias-Fano encoding. List intersection is used
to produce candidate positions in T and subsequently checked by the rgxp

engine.
– SA-scan: The plain SA is used as index. The SA-intervals of the subpatterns

are determined, sorted, and filtered as described in earlier. This approach is
similar to that of Rahman et al. [19] while replacing the van Emde Boas tree
by sorting ranges.

All baselines and indexes are implemented using C++11 and compiled using gcc
4.9.1 using all optimizations. The experiments were performed on a machine
with an Intel Xeon E4640 CPU and 148GiB RAM. The default VLG match-
ing type in our experiments is lazy, which is best suited for proximity search.
Pattern were generated systematically for each data set. We fix the gap con-
straints Ci = 〈δi,Δi〉 between subpatterns to 〈100, 110〉 small (CS), 〈1 000, 1 100〉
medium (CM), or 〈10 000, 11 000〉 large (CL). For each dataset we extract the
200 most common subpatterns of length 3, 5 and 7 (if possible). We form 20
regular expressions for each dataset, k, and gap constraint by selecting from the
set of subpatterns.

Matching Performance for Different Gap Constraint Bands. In our first
experiment we measure the impact of gap constraint size on query time. We

https://github.com/olydis/vlg_matching
https://github.com/olydis/vlg_matching
http://commoncrawl.org
http://kernel.org

10 J. Bader et al.

Table 1. Median query time in milliseconds for fixed mi = 3 and text size 2 GiB
for different gap constraints 〈100, 110〉 small (CS), 〈1000, 1100〉 medium (CM) or
〈10 000, 11 000〉 large (CL) and three data sets.

Method Kernel-2G CC-2G Dna-Hg38-2G

CS CM CL CS CM CL CS CM CL

k = 2

rgxp 6 383 7 891 18 592 2 533 4 148 17 394 24 363 26 664 9 849

qgram-rgxp 695 2 908 20 775 650 2 604 21 027 48 984 33 911 7 711

SA-scan 115 114 113 132 130 132 6 762 6 661 6 433

WT-dfs 279 244 347 180 211 277 17 041 10 978 8 350

k = 4

rgxp 5 130 6 840 30 948 5 076 6 889 28 931 34 025 41 800 24 549

qgram-rgxp 1 336 8 992 ≥105 1 284 9 187 ≥105 ≥105 ≥105 91 137

SA-scan 247 249 250 284 284 289 14 667 14 971 14 191

WT-dfs 160 164 183 195 201 232 19 977 12 608 8 506

k = 8

rgxp 3 243 5 089 31 796 2 426 4 215 28 943 33 126 ≥105 ≥105

qgram-rgxp 3 307 30 174 ≥105 2 894 27 488 ≥105 ≥105 ≥105 ≥105

SA-scan 594 585 596 759 761 765 29 850 30 621 29 296

WT-dfs 263 282 228 184 185 179 28 343 16 707 8 843

k = 16

rgxp 3 447 5 278 32 782 2 407 4 229 33 828 37 564 ≥105 ≥105

qgram-rgxp 6 843 61 787 ≥105 5 967 65 722 ≥105 ≥105 ≥105 ≥105

SA-scan 1 400 1 402 1 416 1 714 1 711 1 690 56 558 62 423 55 017

WT-dfs 508 507 463 331 331 316 55 660 26 041 9 152

k = 32

rgxp 3 446 5 237 32 979 3 673 6 041 33 957 24 040 ≥105 ≥105

qgram-rgxp 14 732 ≥105 ≥105 11 506 ≥105 ≥105 ≥105 ≥105 ≥105

SA-scan 2 885 2 926 2 924 3 573 3 560 3 562 82 663 92 756 81 164

WT-dfs 1 183 1 083 965 614 609 594 35 495 35 212 5 501

fix the dataset size to 2GiB and the subpattern length |pi| = mi = 3; Table 1
shows the results for pattern consisting of k = 21, . . . , 25 subpatterns. For rgxp,
the complete text is scanned for all bands. However, the size of the underlying
automaton increases with the gap length. Thus, the performance decreases for
larger gaps. The intersection process in qgram-rgxp reduces the search space of
rgxp to a portion of the text. There are cases where the search space reduction is
not significant enough to amortize the overhead of the intersection. For example,
the large gaps or the small alphabet test case force qgram-rgxp to perform
more work than rgxp. The two SA based solutions, SA-scan and WT-dfs, are

Practical Variable Length Gap Pattern Matching 11

Table 2. Median query time in milliseconds for fixed gap constraint 〈100, 110〉 and
text size 2GiB for different subpattern lengths mi ∈ 3, 5, 7 for three data sets.

Method Kernel-2G CC-2G Dna-Hg38-2G

CS CM CL CS CM CL CS CM CL

k = 2

rgxp 6 383 7 891 18 592 2 533 4 148 17 394 24 363 26 664 9 849

qgram-rgxp 695 2 908 20 775 650 2 604 21 027 48 984 33 911 7 711

SA-scan 115 114 113 132 130 132 6 762 6 661 6 433

WT-dfs 279 244 347 180 211 277 17 041 10 978 8 350

k = 4

rgxp 5 130 6 840 30 948 5 076 6 889 28 931 34 025 41 800 24 549

qgram-rgxp 1 336 8 992 ≥105 1 284 9 187 ≥105 ≥105 ≥105 91 137

SA-scan 247 249 250 284 284 289 14 667 14 971 14 191

WT-dfs 160 164 183 195 201 232 19 977 12 608 8 506

k = 8

rgxp 3 243 5 089 31 796 2 426 4 215 28 943 33 126 ≥105 ≥105

qgram-rgxp 3 307 30 174 ≥105 2 894 27 488 ≥105 ≥105 ≥105 ≥105

SA-scan 594 585 596 759 761 765 29 850 30 621 29 296

WT-dfs 263 282 228 184 185 179 28 343 16 707 8 843

k = 16

rgxp 3 447 5 278 32 782 2 407 4 229 33 828 37 564 ≥105 ≥105

qgram-rgxp 6 843 61 787 ≥105 5 967 65 722 ≥105 ≥105 ≥105 ≥105

SA-scan 1 400 1 402 1 416 1 714 1 711 1 690 56 558 62 423 55 017

WT-dfs 508 507 463 331 331 316 55 660 26 041 9 152

k = 32

rgxp 3 446 5 237 32 979 3 673 6 041 33 957 24 040 ≥105 ≥105

qgram-rgxp 14 732 ≥105 ≥105 11 506 ≥105 ≥105 ≥105 ≥105 ≥105

SA-scan 2 885 2 926 2 924 3 573 3 560 3 562 82 663 92 756 81 164

WT-dfs 1 183 1 083 965 614 609 594 35 495 35 212 5 501

considerably faster than scanning the whole text for Kernel and CC. We also
observe the WT-dfs is less dependent on the number of subpatterns k than SA-

scan, since no overhead for copying and explicitly sorting SA ranges is required.
Also WT-dfs profits from larger minimum gap sizes as larger parts of the text
are skipped when gap constraints are violated near the root of the WT. For
Dna-Hg38, small subpattern length of mi = 3 generate large SA intervals which
in turn decrease query performance comparable to processing the complete text.

Matching Performance for Different Subpattern Lengths. In the second
experiment, we measure the impact of subpattern lengths on query time. We fix

12 J. Bader et al.

Table 3. Space usage relative to text size at query time of the different indexes for three
data sets of size 2 GiB, different subpattern lengths mi ∈ 3, 5, 7 and varying number of
subpatterns k ∈ 2, 4, 8, 16, 32

Method Kernel-2G CC-2G Dna-Hg38-2G

3 5 7 3 5 7 3 5 7

k = 2

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.01 5.00 5.00 5.01 5.00 5.00 5.20 4.90 4.88

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.41 5.38 5.38

k = 4

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.01 5.01 5.00 5.02 5.01 5.00 5.89 4.94 4.89

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.38 5.38 5.38

k = 8

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.06 5.02 5.01 5.06 5.02 5.01 6.57 5.03 4.91

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.38 5.38 5.38

k = 16

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.22 5.09 5.02 5.18 5.09 5.03 7.86 5.25 4.94

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.38 5.38 5.38

k = 32

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.32 5.09 5.04 5.31 5.11 5.03 10.20 5.54 5.00

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.38 5.38 5.38

the gap constraint to 〈100, 110〉 and the data sets size to 2GiB. Table 2 shows
the results. Larger subpattern length result in smaller SA ranges. Consequently,
query time performance of SA-scan and WT-dfs improves. As expected rgxp

performance does not change significantly, as the complete text is scanned irre-
spectively of the subpattern length.

Matching Performance for Different Text Sizes. In this experiment we
explore the dependence of query time on text size. The results are depicted in
Fig. 4. The boxplot summarizes query time for all ks and all gap constraints for a

Practical Variable Length Gap Pattern Matching 13

Fig. 4. Average query time dependent on input size for subpattern length mi = 3.

fixed subpattern length m = 3. As expected, the performance of rgxp increases
linearly with the text size for all datasets. The indexed solutions qgram-rgxp

SA-scan and WT-dfs also show a linear increase with dataset size. We observe
again that the SA based solutions are significantly faster than the rgxp base
methods. For CC and Kernel the difference is one order of magnitude – even for
small input sizes of 8MiB. We also observe that WT-dfs is still the method of
choice for the unfavorable case of a small alphabet text with small subpattern
length of m = 3.

Space Usage at Query Time. In addition to run time performance, we eval-
uate the in memory space usage of the different indexes at query time. The
space usage considered is the space of the underlying index structure in addition
to the temporary space required to answer queries. For example, the SA-scan

method requires additional space to sort the positions of each subinterval to
perform efficient intersection. Similarly, the qgram-rgxp index requires addi-
tional space to store results of intersections for subpatterns larger than q. The
space usage of the different index structures relative to the text size is shown
in Table 3. Clearly rgxp requires only little extra space in addition to the text
to store the regexp automaton. The qgram-rgxp requires storing the text, the
compressed q-gram lists, the regexp automaton for verification, and during query
time, q-gram intersection results. The SA-scan index requires storing the suf-
fix array (n log n bits), which requires roughly 4n bytes of space for a text of
size 2GiB plus the text (n bytes) to determine the subpattern ranges in the
suffix array. Additionally, SA-scan requires temporary space to sort subpattern
ranges. Especially for frequent subpatterns, this can be substantial. Consider
the Dna-Hg38 dataset for k = 32 and m = 3. Here the space usage of SA-scan

is 9n, which is roughly twice the size of the index structure. This implies that
SA-scan potentially requires large amounts of additional space at query time
which can be prohibitive. The WT-dfs index encodes the suffix array using a

14 J. Bader et al.

wavelet tree. The structure requires n log n bits of space plus o(n log n) bits to
efficiently support rank operations. In our setup we use an rank structure which
requires 12.5% of the space of the WT bitvector. In addition, we store the text
to determine the suffix array ranges via forward search. This requires another
n log σ bits which corresponds to n bytes for CC and CC. For this reason the
WT-dfs index is slightly larger than SA-scan. We note that the index size of
WT-dfs can be reduced from 5.5n to 4.5n by not including the text explicitly.
The suffix array ranges can still be computed with a logarithmic slowdown if
the WT over the suffix array is augmented with select structures. The select
structure enables access to the inverse suffix array and we can therefore simulate
Ψ and LF . This allows to apply backward search which does not require explicit
access to the original text.

Fig. 5. Overall runtime performance of all methods for three data sets, accumulating
the performance for all mi ∈ 3, 5, 7 and CS , CM and CL for text size 2 GiB.

Overall Runtime Performance. In a final experiment we explored the whole
parameter space (i.e. k ∈ {21, . . . , 25}, mi ∈ {3, 5, 7}, C ∈ {CS , CM , CL}) and
summarize the results in Fig. 5. Including also the large subpattern length mi = 5
and mi = 7 results in even bigger query time improvement compared to the rgxp
based approaches: for CC and Kernel SA based method queries can be processed
in about 100 ms while rgxp require 10 s on inputs of size 2GiB. The average
query time for Dna-Hg38 improves with SA based methods from 50 s to 5 s. The
WT based approach significantly improves the average time for CC and Kernel
and is still the method of choice for Dna-Hg38.

5 Conclusion

In this paper we have shown another virtue of the wavelet tree. Built over the
suffix array its structure allows to speed up variable length gap pattern queries
by combining the sorting and filtering process of suffix array based indexes.
Compared to the traditional intersection process it does not require copying of
data and enables skipping of list regions which can not satisfy the intersection

Practical Variable Length Gap Pattern Matching 15

criteria. We have shown empirically that this process outperforms competing
approaches in many scenarios.

In future work we plan to reduce the space of our index by not storing the
text explicitly and using the wavelet tree augmented with a select structure to
determine the intervals of the subpatterns in the suffix array.

Acknowledgement. We are grateful to Timo Bingmann for profiling our initial imple-
mentation. This work was supported under the Australian Research Council’s Discovery
Projects scheme (project DP140103256) and Deutsche Forschungsgemeinschaft.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Baeza-Yates, R.: A fast set intersection algorithm for sorted sequences. In: Sahi-
nalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109,
pp. 400–408. Springer, Heidelberg (2004)

3. Bille, P., Gørtz, I.L.: Substring range reporting. Algorithmica 69(2), 384–396
(2014)

4. Bille, P., Thorup, M.: Regular expression matching with multi-strings and intervals.
In: Proceedings of SODA, pp. 1297–1308 (2010)

5. Bille, P., Gørtz, I.L., Vildhøj, H.W., Wind, D.K.: String matching with variable
length gaps. Theor. Comput. Sci. 443, 25–34 (2012)

6. Fredriksson, K., Grabowski, S.: Efficient algorithms for pattern matching with
general gaps, character classes, and transposition invariance. Inf. Retrieval 11(4),
335–357 (2008)

7. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of SODA, pp. 841–850 (2003)

9. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-
Genevaux, P.S., Pagni, M., Sigrist, C.J.A.: The PROSITE database. Nucleic Acids
Res. 34(suppl 1), D227–D230 (2006)

10. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

11. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. Soft. Prac. Exp. 45(1), 1–29 (2015)

12. Lewenstein, M.: Indexing with gaps. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 135–143. Springer, Heidelberg (2011)

13. Lopez, A.: Hierarchical phrase-based translation with suffix arrays. In: Proceedings
of EMNLP-CoNLL, pp. 976–985 (2007)

14. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

15. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In:
Proceedings of SIGIR, pp. 472–479 (2005)

16. Mihalcea, R., Tarau, P., Figa, E.: Pagerank on semantic networks, with application
to word sense disambiguation. In: Proceedings of COLING (2004)

16 J. Bader et al.

17. Morgante, M., Policriti, A., Vitacolonna, N., Zuccolo, A.: Structured motifs search.
J. Comput. Biol. 12(8), 1065–1082 (2005)

18. Navarro, G., Raffinot, M.: Fast and simple character classes and bounded gaps
pattern matching, with applications to protein searching. J. Comput. Biol. 10(6),
903–923 (2003)

19. Rahman, M.S., Iliopoulos, C.S., Lee, I., Mohamed, M., Smyth, W.F.: Finding pat-
terns with variable length gaps or don’t cares. In: Chen, D.Z., Lee, D.T. (eds.)
COCOON 2006. LNCS, vol. 4112, pp. 146–155. Springer, Heidelberg (2006)

20. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 419–
422 (1968)

	Practical Variable Length Gap Pattern Matching
	1 Introduction
	2 Background and Related Work
	3 VLG Pattern Matching Using the Wavelet Tree over SA
	3.1 Breadth-First Search Approach
	3.2 Depth-First Search Approach
	3.3 Implementation Details

	4 Empirical Evaluation
	5 Conclusion
	References

