Andrew V. Goldberg
Alexander S. Kulikov (Eds.)

Experimental
Algorithms

15th International Symposium, SEA 2016
St. Petersburg, Russia, June 5-8, 2016
Proceedings

LNCS 9685

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9685

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Andrew V. Goldberg - Alexander S. Kulikov (Eds.)

Experimental
Algorithms

15th International Symposium, SEA 2016
St. Petersburg, Russia, June 5-8, 2016
Proceedings

@ Springer

Editors

Andrew V. Goldberg Alexander S. Kulikov
Amazon.com, Inc. St. Petersburg Department of Steklov
Palo Alto, CA Institute of Mathematics
USA Russian Academy of Sciences
St. Petersburg
Russia
ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-38850-2 ISBN 978-3-319-38851-9 (eBook)

DOI 10.1007/978-3-319-38851-9

Library of Congress Control Number: 2016939104
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the 25 papers presented at SEA 2016, the 15th International
Symposium on Experimental Algorithms, held during June 5-8, 2016, in St. Peters-
burg, Russia. The symposium was organized by the Steklov Mathematical Institute at
St. Petersburg of the Russian Academy of Sciences (PDMI). SEA covers a wide range
of topics in experimental algorithmics, bringing together researchers from algorithm
engineering, mathematical programming, and combinatorial optimization communities.
In addition to the papers, three invited lectures were given by Juliana Freire (New York
University, USA), Haim Kaplan (Tel Aviv University, Israel), and Yurii Nesterov
(Ecole Polytechnique de Louvain, Belgium).

The Program Committee selected the 25 papers presented at SEA 2016 and pub-
lished in these proceedings from the 54 submitted papers. Each submission was
reviewed by at least three Program Committee members, some with the help of
qualified subreferees. We expect the full versions of most of the papers contained in
these proceedings to be submitted for publication in refereed journals.

Many people and organizations contributed to the smooth running and the success
of SEA 2016. In particular our thanks go to:

— All authors who submitted their current research to SEA

— Our reviewers and subreferees who gave input into the decision process

— The members of the Program Committee, who graciously gave their time and
expertise

— The members of the local Organizing Committee, who made the conference
possible

— The EasyChair conference management system for hosting the evaluation process

— Yandex

— The Government of the Russian Federation (Grant 14.750.31.0030)

— Steklov Mathematical Institute at St. Petersburg of the Russian Academy of
Sciences

— Monomax Congresses & Incentives

June 2016 Andrew V. Goldberg
Alexander S. Kulikov

Organization

Program Committee

Ittai Abraham VMware Research, USA

Maxim Babenko Moscow State University, Russia
Daniel Bienstock Columbia University, USA

Daniel Delling Sunnyvale, CA, USA

Paola Festa University of Naples Federico II, Italy
Stefan Funke Universitét Stuttgart, Germany
Andrew V. Goldberg Amazon.com, Inc., USA

Dan Halperin Tel Aviv University, Israel

Michael Juenger Universitdt zu Koln, Germany

Alexander S. Kulikov St. Petersburg Department of Steklov Institute
of Mathematics, Russian Academy of Sciences, Russia

Alberto Marchetti Sapienza University of Rome, Italy
Spaccamela

Petra Mutzel University of Dortmund, Germany

Tomasz Radzik King’s College London, UK

Rajeev Raman University of Leicester, UK

Ilya Razenshteyn CSAIL, MIT, USA

Mauricio Resende Amazon.com, Inc., USA

Peter Sanders Karlsruhe Institute of Technology, Germany

David Shmoys Cornell University, USA

Daniele Vigo Universita di Bologna, Italy

Neal Young University of California, Riverside, USA

Organizing Committee

Asya Gilmanova Monomax Congresses & Incentives, Russia
Ekaterina Ipatova Monomax Congresses & Incentives, Russia
Alexandra Novikova St. Petersburg Department of Steklov Institute

of Mathematics, Russian Academy of Sciences, Russia
Alexander Smal St. Petersburg Department of Steklov Institute

of Mathematics, Russian Academy of Sciences, Russia
Alexander S. Kulikov St. Petersburg Department of Steklov Institute

of Mathematics, Russian Academy of Sciences, Russia

VI Organization

Additional Reviewers

Akhmedov, Maxim
Artamonov, Stepan
Atias, Aviel
Becchetti, Luca
Birgin, Ernesto G.
Bonifaci, Vincenzo
Bokler, Fritz

Botez, Ruxandra
Cetinkaya, Elcin
Ciardo, Gianfranco
de Andrade, Carlos
Dietzfelbinger, Martin
Fischer, Johannes
Fleischman, Daniel
Fogel, Efi

Gog, Simon

Gomez Ravetti, Martin
Gondzio, Jacek
Gongalves, José
Gopalan, Parikshit
Gronemann, Martin
Halperin, Eran
Harchol, Yotam
Hatami, Pooya
Hatano, Kohei
Hiibschle-Schneider, Lorenz
Johnson, David
Karypis, George
Kashin, Andrei
Kleinbort, Michal
Kolesnichenko, Ignat
Karkkdinen, Juha

Lattanzi, Silvio
Luo, Haipeng
Mallach, Sven
Miyazawa, Flavio K.
Mu, Cun
Narodytska, Nina
Pajor, Thomas
Pardalos, Panos
Pascoal, Marta
Pferschy, Ulrich
Pouzyrevsky, Ivan
Prezza, Nicola
Ribeiro, Celso
Rice, Michael
Roytman, Alan
Sagot, Marie-France
Salzman, Oren
Savchenko, Ruslan
Schlechte, Thomas
Schmidt, Daniel
Schobel, Anita
Shamai, Shahar
Solovey, Kiril
Sommer, Christian
Spisla, Christiane
Starikovskaya, Tatiana
Storandt, Sabine
Suk, Tomas
Valladao, Davi
Vatolkin, Igor
Wieder, Udi

Zey, Bernd

Abstracts of Invited Talks

Provenance for Computational
Reproducibility and Beyond

Juliana Freire

New York University, New York, USA

The need to reproduce and verify experiments is not new in science. While result
verification is crucial for science to be self-correcting, improving these results helps
science to move forward. Revisiting and reusing past results — or as Newton once said,
“standing on the shoulders of giants” — is a common practice that leads to practical
progress. The ability to reproduce computational experiments brings a range of benefits
to science, notably it: enables reviewers to test the outcomes presented in papers;
allows new methods to be objectively compared against methods presented in repro-
ducible publications; researchers are able to build on top of previous work directly; and
last but not least, recent studies indicate that reproducibility increases impact, visibility,
and research quality and helps defeat self-deception.

Although a standard in natural science and in Math, where results are accompanied
by formal proofs, reproducibility has not been widely applied for results backed by
computational experiments. Scientific papers published in conferences and journals
often include tables, plots and beautiful pictures that summarize the obtained results,
but that only loosely describe the steps taken to derive them. Not only can the methods
and implementation be complex, but their configuration may require setting many
parameters. Consequently, reproducing the results from scratch is both time-consuming
and error-prone, and sometimes impossible. This has led to a credibility crisis in many
scientific domains. In this talk, we discuss the importance of maintaining detailed
provenance (also referred to as lineage and pedigree) for both data and computations,
and present methods and systems for capturing, managing and using provenance for
reproducibility. We also explore benefits of provenance that go beyond reproducibility
and present emerging applications that leverage provenance to support reflective rea-
soning, collaborative data exploration and visualization, and teaching.

This work was supported in part by the National Science Foundation, a Google
Faculty Research award, the Moore-Sloan Data Science Environment at NYU, IBM
Faculty Awards, NYU School of Engineering and Center for Urban Science and
Progress.

Minimum Cost Flows in Graphs
with Unit Capacities

Haim Kaplan

Tel Aviv University, Tel Aviv, Israel

We consider the minimum cost flow problem on graphs with unit capacities and its
special cases. In previous studies, special purpose algorithms exploiting the fact that
capacities are one have been developed. In contrast, for maximum flow with unit
capacities, the best bounds are proven for slight modifications of classical blocking
flow and push-relabel algorithms.

We show that the classical cost scaling algorithms of Goldberg and Tarjan (for
general integer capacities) applied to a problem with unit capacities achieve or improve
the best known bounds. For weighted bipartite matching we establish a bound of O(/rm
log C) on a slight variation of this algorithm. Here 7 is the size of the smaller side of the
bipartite graph, m is the number of edges, and C is the largest absolute value of an
arc-cost. This simplifies a result of Duan et al. and improves the bound, answering an
open question of Tarjan and Ramshaw. For graphs with unit vertex capacities we
establish a novel O(/nm log (nC)) bound.

This better theoretical understanding of minimum cost flow on one hand, and recent
extensive experimental work on algorithms for maximum flow on the other hand, calls
for further engineering and experimental work on algorithms for minimum cost flow.
I will discuss possible future research along these lines.

Complexity Bounds for Primal-Dual Methods
Minimizing the Model of Objective Function

Yurii Nesterov

CORE/INMA, UCL, Louvain-la-Neuve, Belgium

We provide Frank—Wolfe (Conditional Gradients) method with a convergence analysis
allowing to approach a primal-dual solution of convex optimization problem with
composite objective function. Additional properties of complementary part of the
objective (strong convexity) significantly accelerate the scheme. We also justify a new
variant of this method, which can be seen as a trust-region scheme applying the linear
model of objective function. Our analysis works also for a quadratic model, allowing to
justify the global rate of convergence for a new second-order method. To the best of
our knowledge, this is the first trust-region scheme supported by the worst-case
complexity bound.

Contents

Practical Variable Length Gap Pattern Matching 1
Johannes Bader, Simon Gog, and Matthias Petri

Fast Exact Computation of Isochrones in Road Networks. 17
Moritz Baum, Valentin Buchhold, Julian Dibbelt, and Dorothea Wagner

Dynamic Time-Dependent Route Planning in Road Networks with User
Preferences. 33
Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner

UKP5: A New Algorithm for the Unbounded Knapsack Problem 50
Henrique Becker and Luciana S. Buriol

Lempel-Ziv Decoding in External Memory. 63
Djamal Belazzougui, Juha Kdrkkdinen, Dominik Kempa,
and Simon J. Puglisi

A Practical Method for the Minimum Genus of a Graph: Models and
EXperiments oot e 75
Stephan Beyer, Markus Chimani, Ivo Hedtke, and Michal Kotrbcik

Compact Flow Diagrams for State Sequences. 89
Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Michael Horton,
and Stef Sijben

Practical Dynamic Entropy-Compressed Bitvectors with Applications 105
Joshimar Cordova and Gonzalo Navarro

Accelerating Local Search for the Maximum Independent Set Problem 118
Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz,
Darren Strash, and Renato F. Werneck

Computing Nonsimple Polygons of Minimum Perimeter 134
Sandor P. Fekete, Andreas Haas, Michael Hemmer, Michael Hoffimann,
Irina Kostitsyna, Dominik Krupke, Florian Maurer,
Joseph S.B. Mitchell, Arne Schmidt, Christiane Schmidt,
and Julian Troegel

Sparse Subgraphs for 2-Connectivity in Directed Graphs 150
Loukas Georgiadis, Giuseppe F. Italiano, Aikaterini Karanasiou,
Charis Papadopoulos, and Nikos Parotsidis

Worst-Case-Efficient Dynamic Arrays in Practice 167
Jyrki Katajainen

http://dx.doi.org/10.1007/978-3-319-38851-9_1
http://dx.doi.org/10.1007/978-3-319-38851-9_2
http://dx.doi.org/10.1007/978-3-319-38851-9_3
http://dx.doi.org/10.1007/978-3-319-38851-9_3
http://dx.doi.org/10.1007/978-3-319-38851-9_4
http://dx.doi.org/10.1007/978-3-319-38851-9_5
http://dx.doi.org/10.1007/978-3-319-38851-9_6
http://dx.doi.org/10.1007/978-3-319-38851-9_6
http://dx.doi.org/10.1007/978-3-319-38851-9_7
http://dx.doi.org/10.1007/978-3-319-38851-9_8
http://dx.doi.org/10.1007/978-3-319-38851-9_9
http://dx.doi.org/10.1007/978-3-319-38851-9_10
http://dx.doi.org/10.1007/978-3-319-38851-9_11
http://dx.doi.org/10.1007/978-3-319-38851-9_12

XVI Contents

On the Solution of Circulant Weighing Matrices Problems Using Algorithm

Portfolios on Multi-core Processors 184
llias S. Kotsireas, Panos M. Pardalos, Konstantinos E. Parsopoulos,
and Dimitris Souravlias

Engineering Hybrid DenseZDDs 201
Taito Lee, Shuhei Denzumi, and Kunihiko Sadakane

Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances . .. 217
Stephan S. Lorenzen and Pawel Winter

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 231
Mehrdad Niknami and Samitha Samaranayake

An Experimental Evaluation of Fast Approximation Algorithms for the
Maximum Satisfiability Problem 246
Matthias Poloczek and David P. Williamson

Experimental Analysis of Algorithms for Coflow Scheduling 262
Zhen Qiu, Clifford Stein, and Yuan Zhong

An Empirical Study of Online Packet Scheduling Algorithms. 278
Nourhan Sakr and CIiff Stein

Advanced Multilevel Node Separator Algorithms 294
Peter Sanders and Christian Schulz

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices. .. 310
Julien Subercaze, Christophe Gravier, and Pierre-Olivier Rocher

CHICO: A Compressed Hybrid Index for Repetitive Collections. 326
Daniel Valenzuela

Fast Scalable Construction of (Minimal Perfect Hash) Functions. 339
Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry 353
Moritz von Looz, Mario Wolter, Christoph R. Jacob,
and Henning Meyerhenke

Online Algorithm for Approximate Quantile Queries on Sliding Windows . . . 369
Chun-Nam Yu, Michael Crouch, Ruichuan Chen, and Alessandra Sala

Author Index e 385

http://dx.doi.org/10.1007/978-3-319-38851-9_13
http://dx.doi.org/10.1007/978-3-319-38851-9_13
http://dx.doi.org/10.1007/978-3-319-38851-9_14
http://dx.doi.org/10.1007/978-3-319-38851-9_15
http://dx.doi.org/10.1007/978-3-319-38851-9_16
http://dx.doi.org/10.1007/978-3-319-38851-9_17
http://dx.doi.org/10.1007/978-3-319-38851-9_17
http://dx.doi.org/10.1007/978-3-319-38851-9_18
http://dx.doi.org/10.1007/978-3-319-38851-9_19
http://dx.doi.org/10.1007/978-3-319-38851-9_20
http://dx.doi.org/10.1007/978-3-319-38851-9_21
http://dx.doi.org/10.1007/978-3-319-38851-9_22
http://dx.doi.org/10.1007/978-3-319-38851-9_23
http://dx.doi.org/10.1007/978-3-319-38851-9_24
http://dx.doi.org/10.1007/978-3-319-38851-9_25

Practical Variable Length Gap Pattern Matching

Johannes Bader!, Simon Gog!®™), and Matthias Petri?

! Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany
gog@kit.edu
2 Department of Computing and Information Systems,
The University of Melbourne, VIC 3010, Australia

Abstract. Solving the problem of reporting all occurrences of patterns
containing variable length gaps in an input text T efficiently is important
for various applications in a broad range of domains such as Bioinformat-
ics or Natural Language Processing. In this paper we present an efficient
solution for static inputs which utilizes the wavelet tree of the suffix array.
The algorithm partially traverses the wavelet tree to find matches and
can be easily adapted to several variants of the problem. We explore the
practical properties of our solution in an experimental study where we
compare to online and semi-indexed solutions using standard datasets.
The experiments show that our approach is the best choice for searching
patterns with many gaps in large texts.

1 Introduction

The classical pattern matching problem is to find all occurrences of a pattern P
(of length m) in a text 7 (of length n both drawn from an alphabet X of size o).
The online algorithm of Knuth, Morris and Pratt [10] utilizes a precomputed
table over the pattern to solve the problem in O(n + m) time. Precomputed
indexes over the input text such as suffiz arrays [14] or suffix trees allow matching
in O(m X log n) or O(m) time respectively. In this paper we consider the more
general variable length gap pattern matching problem in which a pattern does
not only consist of characters but also length constrained gaps which match any
character in the text. We formally define the problem as:

Problem 1 Variable Length Gap (VLG) Pattern Matching [5]. Let P be a pattern
consisting of k > 2 subpatterns pg...pg_1, of lengths m = mg ... my_1; drawn
from X and k—1 gap constraints Cy ...Ck_o such that C; = (6;, 4;) with 0 <
0; < A; < n specifies the smallest (9;) and largest (4;) distance between a match
of p; and p; 41 in 7. Find all matches — given as k-tuples (ig . ..4ix_1) where ij is
the starting position for subpattern p; in 7 — such that all gap constraints are
satisfied.

If overlaps between matches are permitted, the number of matching positions
can be polynomial in k + 1. We refer to this problem type as all. In standard

© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 1-16, 2016.
DOI: 10.1007/978-3-319-38851-9_1

2 J. Bader et al.

implementations of reqular expressions overlaps are not permitted' and two
types for variable gap pattern matching are supported. The greedy type (a gap
constraint is written as C; = .{d;, A;}) maximizes while the lazy type (a gap
constraint is written as C; = .{d;, A4;}7) minimizes the characters matched by
gaps. The following example illustrates the three VLG problem types.

Example 1. Given a text 7 = aaabbbbaaabbdbb and a pattern P = ab(1,6)d
consisting of two subpatterns py = “ab” and p1 =“b” and a gap constraint
Co = (1,6). Type “all” returns S,y = {(2,5),(2,6),(2,10),(9,12),(9,13)},
greedy matching results in Sgreeay = {(2,10)} and lazy evaluation Siu., =

{(2,5),(9,12)}.

VLG pattern matching is an important problem which has numerous practi-
cal applications. Traditional Unix utilities such as grep or mutt support VLG
pattern matching on small inputs using regular expression engines. Many areas
of computer science use VLG matching on potentially very large data sets. In
Bioinformatics, Navarro and Raffinot [18] investigate performing VLG pattern
matching in protein databases such as PROSITE [9] where individual protein
site descriptions are expressed as patterns containing variable length gaps. In
Information Retrieval (IR), the proximity of query tokens within a document
can be an indicator of relevance. Metzler and Croft [15] define a language model
which requires finding query terms to occur within a certain window of each
other in documents. In Natural Language Processing (NLP), this concept is
often referred to as collocations of words. Collocations model syntactic elements
or semantic links between words in tasks such as word sense disambiguation [16].
In Machine Translation (MT) systems VLG pattern matching is employed to find
translation rule sets in large text corpora to improve the quality of automated
language translation systems [13].

In this paper, we focus on the offline version of the VLG pattern match-
ing problem. Here, a static input is preprocessed to generate an indexr which
facilitates faster query processing. Our contributions are as follows:

1. We build an index consisting of the wavelet tree over the suffix array and
propose different algorithms to efficiently answer VLG matching queries. The
core algorithms is conceptionally simple and can be easily adjusted to the
three different matching modes outlined above.

2. In essence our WT algorithm is faster than other intersection based
approaches as it allows to combine the sorting and filtering step and does
not require copying of data. Therefore our approach is specially suited for a
large number of subpatterns.

3. We provide a thorough empirical evaluation of our method including a com-
parison to different practical baselines including other index based approaches
like qgram indexes and suffix arrays.

! Te. any two match tuples (ig...ix—1) and (if...is_;) spanning the intervals
[i0,9k—1 + mr—1 — 1] and [if,i,_1 +mk—1 — 1] do not overlap.

Practical Variable Length Gap Pattern Matching 3

2 Background and Related Work

Existing solutions to solving VLG can be categorized into three classes of algo-
rithms. In general the algorithms discussed here perform lazy evaluation, but can
be implemented to also support greedy evaluation. The first category of algo-
rithms build on the classical algorithm of Thompson [20] to construct a finite
automaton to solve the VLG problem used by many regular expression engines.
Let L = Zi:oz A;. The classical automaton requires O (n(Lo + m)) time which
can not be reduced much further [4,5]. The matching process scans 7, transi-
tioning between states in the automaton to find occurrences of P. Algorithms
engineered to solve the VLG problem specifically can achieve better runtime
performance by utilizing bit-parallelism or placing constraints on individual gap
constraints in P [4,6,18]. For example the runtime of Bille and Thorup [4] is
(’)(n(klo% x log k)) time after prepocessing P (w is the word size).

A second class of algorithms take into account the occurrences of each subpat-
tern in P [5,17,19]. The algorithms operate in two stages. First, all occurrences
of each subpattern p € P in 7 are determined. Let a; be the number of occur-
rences of p; in 7 and a = Zf;ol a; be the total number of occurrences of all p;
in 7. The occurrences of each subpattern can be obtained via a classical online
algorithm such as Aho and Corasick [1] (AC), or using an index such as the suffix
array (SA) of 7. The algorithms of Morgante et al. [17,19] require additional
O(a) space to store the occurrences, whereas Bille et al. [5] only requires O(S)

extra space where S = 25;02 0;. The algorithms keep track of, for each p;;1
the occurrences of p; for which C; is satisfied. Similarly to Rahman et al. [19],
the occurrences X; = [zo,...,Zq,—1] of p; are used to satisfy C; = (d;, 4;) by
searching for the next larger (or equal) value for all z; + ¢; in the sorted list
of occurrences of p;;1. Performing this process for all p; and gap constraints
C; can be used to perform lazy evaluation of VGP. While Rahman et al. [19]
consider only AC or SA to identify occurrences of subpatterns, many different
ways to store or determine and search positions exist. For example, the folklore
g-gram index, which explicitly stores the occurrences of all g-grams in 7', can
be used to obtain the occurrences of all subpatterns by performing intersection
of the positional lists of the g-grams each subpattern in P. List compression
affects the performance of the required list intersections and thus provides dif-
ferent time space-trade-offs [11]. Similarly, different list intersection algorithms
can also affect the performance of such a scheme [2].

A combination of schemata one and two use occurrences of subpatterns to
restrict the segments within 7 where efficient online algorithms are used to verify
potential matches. For example, ¢g-gram lists can be intersected until the number
of possible occurrences of P is below a certain threshold. Then an automaton
based algorithm can match P at these locations.

The third category are suffix tree based indexes. In its simplest form,
Lewenstein [12] augments each node of a suffix tree over 7 with multiple gap-r-
tree for all 1 < r < G, where G is the longest gap length which has to be specified
at construction time. If k£ subpatterns are to be supported, the nodes in each gap-
r-tree have to be recursively augmented with additional gap-r-trees at a total

4 J. Bader et al.
space cost of (’)(nka_l) space. Queries are answered in (’)(15—1 mi) time by
traversing the suffix tree from the root, branching into the gapped-r-trees after
the locus of pg is found. Lewenstein [12] further propose different time-space
trade-offs, reducing the space to (’)(nGQk’llogk_1 n) by performing centroid
path decomposition which increases query time to (9(15—1 m; +2F~loglog n)
Bille and Gertz [3] propose a suffix tree based index which requires two ST over
T (ST(T)) and the reverse text (ST(7)) plus a range reporting structure.
Single fixed length gap queries can then be answered by matching po in ST(7)
and the reverse of p; in ST(T%). Then a range reporting structure is used to
find the matching positions in 7.

In practice, Lopez [13] use a combination of (1) intersection precomputation
(2) fast list intersection and (3) enhanced version of Rahman et al. [19] to solve
a restricted version of VGP.

3 VLG Pattern Matching Using the Wavelet Tree
over SA

We first introduce notation which is necessary to describe our algorithms. Let
range I from index £ to r be denoted by [/, r]. A range is considered empty (I =)
if £ > r. We denote the intersection of two ranges Iy = [{o,ro] and I; = [¢1,71]
as Iy N I1 = [max{{y, {1}, min{rg, r1}]. We further define the addition Iy + I; of
two ranges to be [€g + £1,79 + 71]. Shorthands for the left and right border of a
non-empty range I are Ib(I) and rb(I).

Let X; = ®;0,...,%i,0,—1 be the list of starting positions of subpattern p;
in 7. Then for k£ = 2 the solution to the VLG pattern matching problem for
P = po(d, A)p1 are pairs (zo;, 21 ;) such that ([zo:, zo:] + [mo + 6, mg + A]) N
[1,j,21,;] # 0. The generalization to k > 2 subpatterns is straightforward by
checking all £ — 1 constraints. For ease of presentation we will restrict the fol-
lowing explanation to k = 2. Assuming all X; are present in sorted order all
matches can be found in O(ao + a1 + z) time, where z refers to the number of
matches of P in 7. Unfortunately, memory restrictions prohibit the storage of
all possible O(nQ) sorted subpattern lists, but we will see next that the linear
space suffix array can be used to retrieve any unsorted subpattern list.

A suffix 7T[i,n—1] is identified by its starting position ¢ in 7. The suffix array
(SA) contains all suffixes in lexicographically sorted order, i.e. SA[0] points to the
smallest suffix in the text, SA[1] to the second smallest and so on. Figure 1 depicts
the SA for an example text of size n = 32. Using SA and 7 it is easy to determine
all suffixes which start with a certain prefix p by performing binary search.
For example, pg = gt corresponds to the SA-interval [17,21] which contains
suffixes 16, 13,21, 4, 28. Note that the occurrences of the p in SA are not stored
sorted order. Answering a VLG pattern query using SA can be achieved by
first determining the SA-intervals of all subpatterns and next, filtering out all
occurrence tuples which fulfill the gap constraints [19].

Let P = gc(l,2)c containing pg = gc and p; = c. In Example Fig. 1,
the SA-interval of ¢ (SA[9,16]) contains suffixes 26,10,11,19,12,20,1 and 8.

Practical Variable Length Gap Pattern Matching 5

T=a ctagtatctceccgtagtacecgtatacagtts $
SA(T)=312518 0 15 3 2723 6 261011191220 1 8 161321 4 2830241714 2 22 5 9 7 29

Fig. 1. Sample text 7 = actagtatctcccgtagtaccgtatacagtt$ and suffix array (SA)
of T.

Sorting the occurrences of both subpatterns returns in Xo = 4,13,16, 21,28 and
X; = 1,8,10,11,12, 19, 20, 26. Filtering Xy and X; based on Cy = (1,2) pro-
duces tuples (4, 8),(16,19) and (16, 20). The time complexity of this process is
O(Zi:ol a;log a; + z), where the first term (sorting all X;) is independent of z
(the output size) and can dominate if subpatterns occur frequently.

Using a wavelet tree (WT) [8] allows combining the sorting and filtering
process. This enables early termination for text regions which do not contain
all required subpatterns in correct order within the specified gap constraints. A
wavelet tree WT'(X) of a sequence X[0,n — 1] over an alphabet X[0,0 — 1] is
defined as a perfectly balanced binary tree of height H = [logo]. Conceptually
the root node v represents the whole sequence X,, = X. The left (right) child of
the root represents the subsequence X, (X3) which is formed by only considering
symbols of X which are prefixed by a 0-bit(1-bit). In general the i-th node on
level L represents the subsequence X ,, of X which consists of all symbols which
are prefixed by the length L binary string i(;). More precisely the symbols in
the range R(v;,) = [i-27~%, (i+1)- 271 —1]. Figure 2 depicts an example for
X = SA(T). Instead of actually storing X, it is sufficient to store the bitvector
Bi@) which consists of the ¢-th bits of Xi(2>. In connection with a rank structure,
which can answer how many 1-bits occur in a prefix B[0,7 — 1] of bitvector
B[0,n — 1] in constant time using only o(n) extra bits, one is able to reconstruct
all elements in an arbitrary interval [¢,r]: The number of 0-bits (1-bits) left to
¢ corresponds to ¢ in the left (right) child and the number of 0-bits (1-bits) left
to r corresponds to 7’ + 1 in the left (right) child. Figure 2 shows this ezpand
method. The red interval [17,21] in the root node v is expanded to [9,10] in
node vy and [8,10] in node v;. Then to [4,4] in node vgg and [5,5] in node vg;
and so on. Note that WT nodes are only traversed if the interval is not empty
(i.e. £ < r). E.g. [4,4] at vy is split into [3,2] and [1,1]. So the left child vggo
is omitted and the traversal continues with node vgg1. Once a leaf is reached we
can output the element corresponding to its root to leaf path. The wavelet tree
WT(X) uses just n - h+ o(n - h) bits of space.

In our application the initial intervals correspond to the SA-intervals of all
subpatterns p; in P. However, our traversal algorithm only considers the exis-
tence of a SA-interval at a given node and not its size. A non-empty SA-interval
of subpattern p; in a node v, at level L means that p; occurs somewhere in the
text range R(v,) = [z- 2771 (2 +1)-2H~L —1]. Figure 3 shows the text ranges
for each WT node. A node v and its parent edge is marked red (resp. blue) if
subpattern pg’s (resp. p1’s) occurs in the text range R(v).

6 J. Bader et al.

Fig. 2. Wavelet tree built for the suffix array of our example text. The SA-interval
of gt (resp. c) in the root and its expanded intervals in the remaining WT nodes are
marked red (resp. blue). (Color figure online)

3.1 Breadth-First Search Approach

For both subpatterns pg and p;, at each level in the WT, j we iteratively materi-
alize lists Ng and Nf of all WT nodes at level j in which the ranges corresponding
to po and p; occur by expanding the nodes in the lists Ngi1 and Nflfl of the
previous level. Next all nodes v,s in Ng are removed if there is no node v, in
N} such that (R(v,) + [mo + 8, mo + A]) N [R(v,)] # 0 and vice versa. Each list
N;j ~! stores nodes in sorted order according to the beginning of their ranges.
Thus, removing all “invalid” nodes can be performed in (’)(|Ng | 4+ |N/) time.
The following table shows the already filtered list for our running example.

WT level (j) po text ranges (N7) p1 text ranges (NY)

0 [0, 31] [0, 31]

1 [0, 15], [16, 31] [0,15], [16, 31]

2 [0,7],[8, 15], [16, 23], [24,31] [0, 7], 8, 15], [16,23], [24, 31]

3 [4,7],[12, 15], [16, 19], [20, 23]|[8, 11], [12, 15], [16, 19], [20, 23], [24, 27
4 [4,5],[16,17], [20, 21] [8,9], [18, 19], [20, 21], [24, 25]

5 [4,4], 16, 16] [8, 8], [19, 19], [20, 20]

The WT nodes in the table are identified by their text range as shown in Fig. 3.
One example of a removed node is [0, 3] in lists N3 and N} which was expanded
from node [0,7] in Ng and N?. It was removed since there is no text range in
N3 which overlaps with [0, 3] + [2 + 1,2 + 2] = [3, 6]. Figure 3 connects removed
WT nodes with dashed instead of solid edges. Note that all text positions at
the leaf level are the start of a subpattern which fulfills all gap constraints. For

Practical Variable Length Gap Pattern Matching 7

31

000 (L1 [22] [33] (44 (55 (6,6 (7.7 (8,8 [9,9] [10,10](11,11](12,12(13,13](14,14](15,15](16,16][17,17][18,18][19,19][20,20][21,21][22,22][23,23][24,24][25,25][26,26][27,27][28,28][29,20][30,30]

traversed edges skipped edges for pattern GT and C in the WT over the SA

Fig. 3. Wavelet tree nodes with annotated text ranges and path of subpattern iterators.
(Color figure online)

the all variant it just takes (’)(z) time to output the result. The disadvantage of
this BFS approach is that the lists of a whole level have to be kept in memory,
which takes up to n words of space. We will see next that a DFS approach lowers
memory consumption to O(k log n) words.

3.2 Depth-First Search Approach

For each subpattern p; we create a depth-first search iterator it;. The iterator
consists of a stack of (WT node, SA-interval) pairs, which is initialized by the
WT root node and the SA-interval of p;, in case the SA-interval is not empty.
The iterator is invalid, if the stack is empty — this can be checked in constant time
using a method valid(it;). We refer with it;.v to the current WT node of a valid
iterator (which is on top of the stack). A valid iterator can be incremented by
operations next_-down and next_right. Method next_down pops pair (v, [(,7]),
expands SA-interval [¢,r] and pushes the right child of v with its SA-interval
and the left child of v with its SA-interval onto the stack, if the SA-interval is
not empty. That is, we traverse to the leftmost child of it.v which contains p;.
The next_right(it;) operation pops one element from the stack, i.e. we traverse
to the leftmost node in the WT which contains p; and is right of it;.v.

Using these iterators the VLG pattern matching process can be expressed
succinctly in Algorithm 1, which reports the next match. The first line checks,
if both iterators are still valid so that a further match can be reported. Lines 2
and 4 check if the gap constraints are met. If the text range of p;’s iterator is too
far right (Line 2), the iterator of py is moved right in Line 3. Analogously, the
iterator of p; is moved right in Line 5 if the text range of pg’s iterator is too far
right (Line 4). If the gap constrained is met and not both text ranges have size
one (Line 7) we take the iterator which is closer to the root (and break ties by 7)
and refine its range. Finally, if both iterators reach the leaf level a match can be
reported. Since the traversal finds the two leftmost leaf nodes — i.e. positions —
which met the constraint the direct output of (Ib(R(ito.v)), Ib(R(it;.v))) in Line
11 corresponds to the lazy problem type. For lazy Line 12 would move ity to the

8 J. Bader et al.

Algorithm 1. dfs_next_match(ity, ity, mo, Ao, do)

1: while valid(ito) and valid(it1) do
2: if rb(R(ito.v)) +mo+ Ao < W(R(it1.v)) then # gap constraint violated?

3 ity < next_right(ito)

4: else if rb(R(it1.v)) < b(R(ito.v)) + mo + do then # gap constraint violated?
5: it1 — next_right(it1)

6: else # gap constrained fulfilled
7 if not (is_leaf(ito.v) and is_leaf(it1.v)) then

8 @ « argmin,e 1o 13 {{depth(it;.v), i)} # select itr closest to the root
9: ity — next_down(ity) # refine range
10: else

11: report match according to VLG problem type # found match
12: move itg and it; according to VLG problem type and return (ito,it1)

right of ity by calling ity « next_right(ito) until Ib(R(itg.v)) > Wb(R(it1.v)) is
true and no overlapped matches are possible. Type greedy can be implemented by
moving it; in Line 11 as far right as possible within the gap constrains, output
(Ib(R(itg.v)), Ib(R(it1.v))), and again moving ity to the right of it;. Type all
reports the first match in Line 11, then iterates it; as long as it meets the gap
constraint and reports a match if i¢1.v is a leaf. In Line 12 ity is move one step
to the right and it; it reset to its state before line 11.

3.3 Implementation Details

Our representation of the WT requires two rank operations to retrieve the two
child nodes of any tree node. In our DFS approach, k tree iterators partially
traverse the WT. For higher values of k it is likely that the child nodes of a
specific WT node are retrieved multiple times by different iterators. We there-
fore examined the effect of caching the child nodes of a tree node when they are
retrieved for the first time, so any subsequent child retrieval operations can be
answered without performing further rank operations. Unfortunately, this app-
roach resulted in a slowdown of our algorithm by a factor of 3. We conjecture,
that one reason for this slowdown is the additional memory management over-
head (even when using custom allocators) of dynamically allocating and releasing
the cached data. Also, critical portions of the algorithm (being called most fre-
quently) contain more branching and were even inlined before we implemented
the cache. Furthermore, we determined that more than 65 % of tree nodes tra-
versed once were never traversed a second time, so caching children for these
nodes will not yield any run time performance improvements. On average, each
cache entry was accessed less than 2 times after creation. Thus, only very few
rank operations are actually saved. Therefore we do not cache child nodes in our
subsequent empirical evaluation.

Practical Variable Length Gap Pattern Matching 9

4 Empirical Evaluation

In this section we study the practical impact of our proposals by comparing
to standard baselines in different scenarios. Our source code — including base-
lines and dataset details — is publicly available at https://github.com/olydis/
vlg_matching and implemented on top of SDSL [7] data structures. We use three
datasets from different application domains:

— The CC data set is a 371 GiB prefix of a recent 145TiB web crawl from
commoncrawl.org.

— The Kernel data set is a 78 GiB file consisting of the source code of all (332)
Linux kernel versions 2.2.X,2.4.X.Y and 2.6.X.Y downloaded from kernel.org.
This data set is very repetitive as only minor changes exist between subsequent
kernel versions.

— The Dna-Hg38 data set data consisting of the 3.1 GiB Genome Reference Con-
sortium Human Reference 38 in fasta format with all symbol ¢ {A,C, G, T}
removed from the sequence.

We have implemented our BFS and DFS wavelet tree approaches. We omit the
results of the BFS approach, as DFS dominated BFS in both query time and
memory requirement. Our index is denoted by WT-DFS the following. We use
a pointerless WT (wt_int) in combination with a fast rank enabled bitvector
(bit_vector_il). We compare to three baseline implementations:

— RGXP: A “off-the-shelf” automaton based regular expression engine (BOOST
library version 1.58; ECMAScript flag set) which scans the whole text.

— QGRAM-RGXP: A g-gram index (¢ = 3) which stores absolute positions of all
unique 3-grams in the text using Elias-Fano encoding. List intersection is used
to produce candidate positions in 7 and subsequently checked by the RGXP
engine.

— SA-scAN: The plain SA is used as index. The SA-intervals of the subpatterns
are determined, sorted, and filtered as described in earlier. This approach is
similar to that of Rahman et al. [19] while replacing the van Emde Boas tree
by sorting ranges.

All baselines and indexes are implemented using C++11 and compiled using gcc
4.9.1 using all optimizations. The experiments were performed on a machine
with an Intel Xeon E4640 CPU and 148 GiB RAM. The default VLG match-
ing type in our experiments is lazy, which is best suited for proximity search.
Pattern were generated systematically for each data set. We fix the gap con-
straints C; = (d;, A;) between subpatterns to (100, 110) small (Cs), (1000, 1 100)
medium (Chy), or (10000,11000) large (Cr). For each dataset we extract the
200 most common subpatterns of length 3, 5 and 7 (if possible). We form 20
regular expressions for each dataset, k, and gap constraint by selecting from the
set of subpatterns.

Matching Performance for Different Gap Constraint Bands. In our first
experiment we measure the impact of gap constraint size on query time. We

https://github.com/olydis/vlg_matching
https://github.com/olydis/vlg_matching
http://commoncrawl.org
http://kernel.org

10 J. Bader et al.

Table 1. Median query time in milliseconds for fixed m; = 3 and text size 2 GiB
for different gap constraints (100,110) small (Cg), (1000,1100) medium (Chs) or
(10000, 11 000) large (CL) and three data sets.

Method Kernel-2G CC-2G Dna-Hg38-2G

Cs |Cu |CL s o o [cs oum [Cy
k=2
RGXP 6383 | 7891 |18592|2533 |4148 | 17394 |24363|26664 9849

QGRAM-RGXP | 695 2908 | 20775650 2604 |21027|48984|33911| 7711
SA-SCAN 115 114 113 132 130 132 6762 | 6661 |6433

WT-DFs 279 244 347 180 211 277 1704110978 | 8 350
k=4
RGXP 5130 16840 309485076 | 6889 |28931 3402541800 | 24549

QGRAM-RGXP | 1336 8992 |>10° |1284 |9187 |>10° |>10° |>10° |91137
SA-SCAN 247 249 250 284 284 289 |14667 1497114191

WT-DFS 160 164 183 195 201 [232 |19977 12608 | 8506
k=8
RGXP 3243 5089 317962426 |4215 |28943|33126|>10° | >10°

QGRAM-RGXP | 3307 30174 |>10% |2894 |27488|>10° |>10° | >10° |>10°
SA-SCAN 594 |585 |596 | 759 | 761 |765 | 29850|30621 29296

WT-DFS 263 282 228 184 185 179 28343 16707 | 8843
k=16
RGXP 3447 |5278 327822407 14229 33828 37564 >10° |>10°

QGRAM-RGXP | 6843 | 61787 >10° 5967 |65722|>10° |>10° |>10° | >10°
SA-SCAN 1400 1402 1416 |[1714 (1711 | 1690 |56558|62423 55017

WT-DFS 508 507 463 331 331 316 55660 | 26 041 | 9152
k=32
RGXP 3446 |5237 329793673 6041 | 3395724040 >10° |>10°

QGRAM-RGXP | 14732 | >10° | >10° | 11506 >10° |>10° |>10° |>10° | >10°
SA-SCAN 2885 2926 (2924 3573 | 3560 |3562 |82663|92756 81164
WT-DFS 1183 1083 |965 |614 [609 594 | 35495|35212|5501

fix the dataset size to 2 GiB and the subpattern length |p;| = m; = 3; Table1
shows the results for pattern consisting of k = 2!,..., 2% subpatterns. For RGXP,
the complete text is scanned for all bands. However, the size of the underlying
automaton increases with the gap length. Thus, the performance decreases for
larger gaps. The intersection process in QGRAM-RGXP reduces the search space of
RGXP to a portion of the text. There are cases where the search space reduction is
not significant enough to amortize the overhead of the intersection. For example,
the large gaps or the small alphabet test case force QGRAM-RGXP to perform
more work than RGXP. The two SA based solutions, SA-sCAN and WT-DFS, are

Practical Variable Length Gap Pattern Matching 11

Table 2. Median query time in milliseconds for fixed gap constraint (100,110) and
text size 2 GiB for different subpattern lengths m; € 3,5, 7 for three data sets.

Method Kernel-2G CC-2G Dna-Hg38-2G

Cs |Cu |[Cp [Cs oum |G (Cs |ou |
k=2
RGXP 6383 | 7891 |18592|2533 |4148 | 17394 |24363|26664 | 9849

QGRAM-RGXP | 695 2908 20775650 2604 21027 4898433911 |7711
SA-SCAN 115 114 113 132 130 132 6762 |6661 | 6433

WT-DFs 279 244 347 180 211 277 17041 10978 | 8 350
k=4
RGXP 5130 | 6840 309485076 |6889 |28931 3402541800 24549

QGRAM-RGXP | 1336 18992 | >10° | 1284 |9187 |>10° |>10° | >10° |91137
SA-SCAN 247 1249 250 284 284 289 |14667|14971 14191

WT-DFs 160 164 183 195 201 232 1997712608 | 8506
k=38
RGXP 3243 |5089 |31796 2426 4215 28943 33126 >10° |>10°

QGRAM-RGXP | 3307 30174 |>10% |2894 |27488|>10° |>10° | >10° |>10°
SA-SCAN 594 585 596 | 759 761 |765 | 29850|30621 29296

WT-DFS 263 282 228 184 185 179 |28343|16707 8843
k=16
RGXP 3447 5278 327822407 | 4229 |33828|37564|>10° | >10°

QGRAM-RGXP | 6843 | 61787 | >10° 5967 |65722|>10° |>10° |>10° | >10°
SA-SCAN 1400 1402 1416 |1714 |1711 1690 |56558|62423|55017

WT-DFs 508 507 463 331 331 316 55660 | 26 041 | 9152
k=32
RGXP 3446 |5237 329793673 | 6041 |33957|24040 >10° | >10°

QGRAM-RGXP | 14732 | >10° | >10% | 11506|>10° | >10° |>10° | >10° |>10°
SA-SCAN 2885 2926 2924 |3573 3560 3562 82663 92756 81164
WT-DFS 1183 |1083 |965 |614 |609 |594 |35495 35212 5501

considerably faster than scanning the whole text for Kernel and CC. We also
observe the WT-DFS is less dependent on the number of subpatterns k& than SA-
SCAN, since no overhead for copying and explicitly sorting SA ranges is required.
Also WT-DFS profits from larger minimum gap sizes as larger parts of the text
are skipped when gap constraints are violated near the root of the WT. For
Dna-Hg38, small subpattern length of m; = 3 generate large SA intervals which
in turn decrease query performance comparable to processing the complete text.

Matching Performance for Different Subpattern Lengths. In the second
experiment, we measure the impact of subpattern lengths on query time. We fix

12 J. Bader et al.

Table 3. Space usage relative to text size at query time of the different indexes for three
data sets of size 2 GiB, different subpattern lengths m; € 3,5,7 and varying number of
subpatterns k € 2,4, 8,16,32

Method Kernel-2G CC-2G Dna-Hg38-2G
3 /5 7 3 |5 7 3 |5 |7

k=2

RGXP 1.00|1.00 | 1.00|1.00|1.00|1.00|1.00 |1.00| 1.00

QGRAM-RGXP | 7.93|7.937.93|7497.49|749|7.94 |7.94 7.94
SA-SCAN 5.01{5.00|5.00|5.01|5.005.005.20 |4.90 4.88

WT-DFs 5.505.50{5.50 | 5.50|5.50 | 5.50 | 5.41 |5.38|5.38
k=4
RGXP 1.00{1.00|1.00{1.00|1.00|1.00 1.00 |1.00|1.00

QGRAM-RGXP | 7.93|7.937.93|7497.49|749|7.94 |7.94 7.94
SA-SCAN 5.01/5.01{5.00|5.02|5.015.00|5.89 |4.94|4.89

WT-Drs 5.505.50{5.50 | 5.50 | 5.50 | 5.50 | 5.38 |5.38|5.38
k=8
RGXP 1.00/1.00|1.00|1.00|1.00|1.00|1.00 |1.00|1.00

QGRAM-RGXP | 7.93|7.937.93|7497.49|7.49|7.94 |7.94 7.94
SA-SCAN 5.06 | 5.02|5.01|5.06|5.02|5.01|6.57 |5.03 4.91

WT-Drs 5.505.50{5.50 | 5.50 | 5.50 | 5.50 | 5.38 |5.38|5.38
k=16
RGXP 1.00{1.00|1.00{1.00|1.00|1.00 1.00 |1.00|1.00

QGRAM-RGXP | 7.93|7.93|7.93|7.49 749|749 794 |794 794
SA-SCAN 5.2215.09(5.02|5.18|5.095.03|7.86 |5.25|4.94

WT-DFS 5.50]5.505.50 | 5.50 |5.50 | 5.50 | 5.38 |5.38]5.38
k=32
RGXP 1.00{1.00|1.00{1.00|1.00|1.00 1.00 |1.00|1.00

QGRAM-RGXP | 7.93|7.93/7.93|7.49|7.49|7.49|7.94 |7.947.94
SA-SCAN 5.3215.09|5.04 1 5.31|5.11|5.03 | 10.20 | 5.54 | 5.00
WT-DFs 5.50 | 5.50 | 5.50 | 5.50 | 5.50 | 5.50 | 5.38 |5.38 | 5.38

the gap constraint to (100,110) and the data sets size to 2 GiB. Table 2 shows
the results. Larger subpattern length result in smaller SA ranges. Consequently,
query time performance of SA-SCAN and WT-DFS improves. As expected RGXP
performance does not change significantly, as the complete text is scanned irre-
spectively of the subpattern length.

Matching Performance for Different Text Sizes. In this experiment we
explore the dependence of query time on text size. The results are depicted in
Fig. 4. The boxplot summarizes query time for all ks and all gap constraints for a

Practical Variable Length Gap Pattern Matching 13

EPTAANTS. A

1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 32 128 512 2048 8 32 128 512 2048 8 32 128 512 2048

Text Size [MiB|
' QGRAM-RGXP ' RGXP ' SA-SCAN ' WT-DFS

Fig. 4. Average query time dependent on input size for subpattern length m,; = 3.

fixed subpattern length m = 3. As expected, the performance of RGXP increases
linearly with the text size for all datasets. The indexed solutions QGRAM-RGXP
SA-scAN and WT-DFS also show a linear increase with dataset size. We observe
again that the SA based solutions are significantly faster than the RGXP base
methods. For CC and Kernel the difference is one order of magnitude — even for
small input sizes of 8 MiB. We also observe that WT-DFSs is still the method of
choice for the unfavorable case of a small alphabet text with small subpattern
length of m = 3.

Space Usage at Query Time. In addition to run time performance, we eval-
uate the in memory space usage of the different indexes at query time. The
space usage considered is the space of the underlying index structure in addition
to the temporary space required to answer queries. For example, the SA-SCAN
method requires additional space to sort the positions of each subinterval to
perform efficient intersection. Similarly, the QGRAM-RGXP index requires addi-
tional space to store results of intersections for subpatterns larger than q. The
space usage of the different index structures relative to the text size is shown
in Table 3. Clearly RGXP requires only little extra space in addition to the text
to store the regexp automaton. The QGRAM-RCXP requires storing the text, the
compressed ¢g-gram lists, the regexp automaton for verification, and during query
time, g-gram intersection results. The SA-SCAN index requires storing the suf-
fix array (nlogn bits), which requires roughly 4n bytes of space for a text of
size 2 GiB plus the text (n bytes) to determine the subpattern ranges in the
suffix array. Additionally, SA-SCAN requires temporary space to sort subpattern
ranges. Especially for frequent subpatterns, this can be substantial. Consider
the Dna-Hg38 dataset for kK = 32 and m = 3. Here the space usage of SA-SCAN
is 9n, which is roughly twice the size of the index structure. This implies that
SA-SCAN potentially requires large amounts of additional space at query time
which can be prohibitive. The WT-DFs index encodes the suffix array using a

14 J. Bader et al.

wavelet tree. The structure requires nlogn bits of space plus o(nlogn) bits to
efficiently support rank operations. In our setup we use an rank structure which
requires 12.5% of the space of the WT bitvector. In addition, we store the text
to determine the suffix array ranges via forward search. This requires another
nlog o bits which corresponds to n bytes for CC and CC. For this reason the
WT-DFs index is slightly larger than SA-SCAN. We note that the index size of
WT-DFs can be reduced from 5.5n to 4.5n by not including the text explicitly.
The suffix array ranges can still be computed with a logarithmic slowdown if
the WT over the suffix array is augmented with select structures. The select
structure enables access to the inverse suffix array and we can therefore simulate
¥ and LF'. This allows to apply backward search which does not require explicit
access to the original text.

CC-2G Dna-Hg38-2G Kernel-2G
IM — ‘ i ‘
100k — : l
10k — P — : ‘ I
| | | $ =
[
I I I

| | | | | | | | |
QGRAM-RGXP RGXP SA-SCAN WT-DFS QGRAM-RGXP RGXP SA-SCAN WT-DFS QGRAM-RGXP RGXP SA-scAN WT-DFs

._‘
=
|

Query time [ms]
3
1

=
S
|

Fig. 5. Overall runtime performance of all methods for three data sets, accumulating
the performance for all m; € 3,5,7 and Cg, C and Cp, for text size 2 GiB.

Overall Runtime Performance. In a final experiment we explored the whole
parameter space (i.e. k € {21,...,2%}, m; € {3,5,7},C € {Cs,Cr,Cr}) and
summarize the results in Fig. 5. Including also the large subpattern length m; = 5
and m; = 7 results in even bigger query time improvement compared to the RGXP
based approaches: for CC and Kernel SA based method queries can be processed
in about 100 ms while RGXP require 10s on inputs of size 2 GiB. The average
query time for Dna-Hg38 improves with SA based methods from 50s to 5s. The
WT based approach significantly improves the average time for CC and Kernel
and is still the method of choice for Dna-Hg38.

5 Conclusion

In this paper we have shown another virtue of the wavelet tree. Built over the
suffix array its structure allows to speed up variable length gap pattern queries
by combining the sorting and filtering process of suffix array based indexes.
Compared to the traditional intersection process it does not require copying of
data and enables skipping of list regions which can not satisfy the intersection

Practical Variable Length Gap Pattern Matching 15

criteria. We have shown empirically that this process outperforms competing
approaches in many scenarios.

In future work we plan to reduce the space of our index by not storing the
text explicitly and using the wavelet tree augmented with a select structure to
determine the intervals of the subpatterns in the suffix array.

Acknowledgement. We are grateful to Timo Bingmann for profiling our initial imple-
mentation. This work was supported under the Australian Research Council’s Discovery
Projects scheme (project DP140103256) and Deutsche Forschungsgemeinschaft.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333-340 (1975)

2. Baeza-Yates, R.: A fast set intersection algorithm for sorted sequences. In: Sahi-
nalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109,
pp. 400-408. Springer, Heidelberg (2004)

3. Bille, P., Ggrtz, L.L.: Substring range reporting. Algorithmica 69(2), 384-396
(2014)

4. Bille, P., Thorup, M.: Regular expression matching with multi-strings and intervals.
In: Proceedings of SODA, pp. 1297-1308 (2010)

5. Bille, P., Ggrtz, I.L., Vildhgj, H.-W., Wind, D.K.: String matching with variable
length gaps. Theor. Comput. Sci. 443, 25-34 (2012)

6. Fredriksson, K., Grabowski, S.: Efficient algorithms for pattern matching with
general gaps, character classes, and transposition invariance. Inf. Retrieval 11(4),
335-357 (2008)

7. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326-337. Springer, Heidelberg (2014)

8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of SODA, pp. 841-850 (2003)

9. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-
Genevaux, P.S., Pagni, M., Sigrist, C.J.A.: The PROSITE database. Nucleic Acids
Res. 34(suppl 1), D227-D230 (2006)

10. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323-350 (1977)

11. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. Soft. Prac. Exp. 45(1), 1-29 (2015)

12. Lewenstein, M.: Indexing with gaps. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 135-143. Springer, Heidelberg (2011)

13. Lopez, A.: Hierarchical phrase-based translation with suffix arrays. In: Proceedings
of EMNLP-CoNLL, pp. 976-985 (2007)

14. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935-948 (1993)

15. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In:
Proceedings of SIGIR, pp. 472-479 (2005)

16. Mihalcea, R., Tarau, P., Figa, E.: Pagerank on semantic networks, with application
to word sense disambiguation. In: Proceedings of COLING (2004)

16

17.

18.

19.

20.

J. Bader et al.

Morgante, M., Policriti, A., Vitacolonna, N., Zuccolo, A.: Structured motifs search.
J. Comput. Biol. 12(8), 1065-1082 (2005)

Navarro, G., Raffinot, M.: Fast and simple character classes and bounded gaps
pattern matching, with applications to protein searching. J. Comput. Biol. 10(6),
903-923 (2003)

Rahman, M.S., Iliopoulos, C.S., Lee, 1., Mohamed, M., Smyth, W.F.: Finding pat-
terns with variable length gaps or don’t cares. In: Chen, D.Z., Lee, D.T. (eds.)
COCOON 2006. LNCS, vol. 4112, pp. 146-155. Springer, Heidelberg (2006)
Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 419—
422 (1968)

Fast Exact Computation of Isochrones
in Road Networks

Moritz Baum, Valentin Buchhold®), Julian Dibbelt, and Dorothea Wagner

Karlsruhe Institute of Technology, Karlsruhe, Germany
{moritz.baum,valentin.buchhold, julian.dibbelt,dorothea.wagner}@kit.edu

Abstract. We study the problem of computing isochrones in static and
dynamic road networks, where the objective is to identify the boundary
of the region in range from a given source within a certain amount of
time. While there is a wide range of practical applications for this prob-
lem (e.g., urban planning, geomarketing, visualizing the cruising range
of a vehicle), there has been little research on fast algorithms for large,
realistic inputs, and existing approaches tend to compute more informa-
tion than necessary. Our contribution is twofold: (1) We propose a more
compact but sufficient definition of isochrones, based on which, (2) we
provide several easy-to-parallelize, scalable algorithmic approaches for
faster computation. By extensive experimental analysis, we demonstrate
that our techniques enable fast isochrone computation within millisec-
onds even on continental networks, significantly faster than the state-of-
the-art.

1 Introduction

Online map services, navigation systems, and other route planning and location-
based applications have gained wide usage, driven by significant advances [2] in
shortest path algorithms for, e.g., location-to-location, many-to-many, POI, or
kNN queries. Less attention has been given to the fast computation of isochrones,
despite its relevance in urban planning [3,23,24,33,35], geomarketing [17], range
visualization for (electric) vehicles [4,28], and other applications [30].

Interestingly, there is no canonical definition of isochrones in the literature.
A unifying property, however, is the consideration of a range limit (time or some
other limited resource), given only a source location for the query and no specific
target. As a basic approach, a pruned variant of Dijkstra’s algorithm [16] can
be used to compute shortest path distances to all vertices within range. Newer
approaches [18,23,24] still subscribe to the same model (computing distances).
However, for the applications mentioned above it suffices to identify only the
set of vertices or edges within range (and no distances). Moreover, for visualiza-
tion [4] it serves to find just the vertices and edges on the boundary of the range.
Exploiting these observations, we derive new approaches for faster computation
of isochrones.

Supported by the EU FP7 under grant agreement no. 609026 (project MOVE-
SMART).
© Springer International Publishing Switzerland 2016

A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 17-32, 2016.
DOI: 10.1007/978-3-319-38851-9_2

18 M. Baum et al.

Related Work. Despite its low asymptotic complexity, Dijkstra’s algorithm [16]
is too slow in practice. Speedup techniques [2] accelerate online shortest-path
queries with data preprocessed in an offline phase. Many employ overlay
edges (shortcuts) that maintain shortest path distances, allowing queries to
skip parts of the graph. Contraction Hierarchies (CH) [27] contracts vertices
in increasing order of importance, creating shortcuts between yet uncontracted
neighbors. Customizable Route Planning (CRP) [7] adds shortcuts between sep-
arators of a multilevel partition [10,29,31]. As separators are independent of
routing costs, CRP offers fast, dynamic customization of preprocessed data to a
new cost metric (e. g., user preferences, traffic updates). Customizable CH (CCH)
was evaluated in [14,15].

While proposed for point-to-point queries, both CH and CRP can be
extended to other scenarios. Scanning the hierarchy (induced by a vertex
order or multi-level partition, respectively) in a final top-down sweep enables
one-to-all queries: PHAST [5] applies this to CH, GRASP [18] to CRP. For
one-to-many queries, RPHAST [5] and reGRASP [18] restrict the downward
search by initial target selection. POI, kNN, and similar queries are possi-
ble [1,12,19,22,25,26,32].

Since the boundary of an isochrone is not known in advance but part of the
query output, target selection (as in one-to-many queries) or backward searches
(as in [19]) are not directly applicable in our scenario. To the best of our knowl-
edge, the only speedup technique extended to isochrone queries is GRASP.!
However, isoGRASP [18] computes distances to all vertices in range, which is
more than we require. MINE [23] and MINEX [24] consider multimodal networks
(including road and public transit), however, due to the lack of preprocessing,
running times are prohibitively slow, even on instances much smaller than ours.

Our Contribution. We give a compact definition of isochrones that serves the
applications mentioned above, but requires no output of distances (Sect.2). We
propose several techniques that enable fast computation of isochrones and are
easy to parallelize. First, we describe a new algorithm based on CRP (Sect. 3).
Moreover, we present a faster variant of isoGRASP [18], exploiting that distances
are not required (Sect.4). Then, we introduce novel approaches that combine
graph partitions with variants of (R)PHAST (Sect.5). Our experimental eval-
uation (Sect.7) on large, realistic input reveals that our techniques compute
isochrones in a few milliseconds, clearly outperforming the state-of-the-art.

2 Problem Statement and Basic Approach

Let G = (V, E,len) be a directed, weighted graph, representing the road net-
work, with length function len: E — Rx, representing, e. g., travel time. Denote

! Extension of CRP to isochrones is outlined in a patent (US Patent App. 13/649,114;
http://www.google.com/patents/US20140107921), however, in a simpler than our
intended scenario. Furthermore, the approach was neither implemented nor evalu-
ated.

http://www.google.com/patents/US20140107921

Fast Exact Computation of Isochrones in Road Networks 19

by d: V x V = R>q the associated shortest path distance. We assume that G
is strongly connected. Our isochrone problem takes as input a source s € V and
a limit 7 € R>¢. We say that a vertex v € V' is in range if d(s,v) < 7, else it
is out of range. We define the output of the isochrone problem as the set of all
isochrone edges that separate vertices in range from those out of range. Observe
that these are the edges (u,v) € F with exactly one endpoint in range. To dis-
tinguish, we call e outward (isochrone) if and only if d(s,u) < 7,d(s,v) > 7 and
inward (isochrone) if and only if d(s,u) > 7,d(s,v) < 7. This set of edges com-
pactly represents the area in range [4]. However, all approaches presented below
can be modified to serve other output definitions (requiring, e. g., the set of ver-
tices in range); see Sect.6. In what follows, we first describe a basic approach
for the isochrone problem as specified above.? Afterwards, we propose speedup
techniques that employ offline preprocessing on the graph G to quickly answer
online queries consisting of a source s € V' and a limit 7 € R>(. We distinguish
metric-independent preprocessing (must be run when the topology of the input
graph changes) and metric-dependent customization (only the length function
changes).

Basic Approach. Dijkstra’s algorithm [16] computes distances d(s,v) from a
source s to all v € V. It maintains distance labels d(-) for each vertex, ini-
tially set to oo (except d(s) = 0). In each iteration, it extracts a vertex u
with minimum d(u) from a priority queue (initialized with s) and settles it.
At this point, d(u) is final, i.e., d(u) = d(s,u). It then scans all edges (u,v):
If d(u) + len(u,v) < d(v), it updates d(v) accordingly and adds (or updates) v
in the queue. For our problem setting, isoDijkstra can be stopped once the dis-
tance label of the minimum element in the queue exceeds the limit 7 (stopping
criterion). Then, outward isochrone edges are easily determined: We sweep over
all vertices left in the queue, which must be out of range, outputting incident
edges where the other endpoint is in range. Inward isochrone edges can be deter-
mined during the same sweep if we apply the following modification to the graph
search. When settling a vertex u, we also scan incoming edges (v, u). If d(v) = oo,
we insert v into the queue with a key of infinity. Thereby, we guarantee that for
both types of isochrone edges the unreachable endpoint is contained in the queue
when the search terminates.

Partitions. Below, we propose speedup techniques based on graph partitions.
Formally, a (vertex) partition is a family ¥V = {V1,..., Vi } of cells V; CV, such
that V; NV; = 0 for i # j and Ule Vi = V. A (nested) multilevel partition
with L levels is a family IT = {V!,... VEI} of partitions of nested cells, i.e., for
each level ¢/ < L and cell Vf € VZ, there is a cell Vf“ e VT at level £+ 1
with V! C Vj“'l. For consistency, we define V° := {{v} | v € V} (the trivial

partition where each vertex has its own cell) and VE+1 := {V'} (the trivial single-
cell partition). An edge (u,v) € F is a boundary edge (u and v are boundary

2 Strictly speaking, isochrone implies time as a resource. While isoline or isocontour
would be more precise, we have settled for the term most common in the literature.

20 M. Baum et al.

vertices) on level ¢, if w and v are in different cells of V*. Similar to vertex
partitions, we define edge partitions & = {En,...,Ey}, with E; N E; = () for
i # j and U§:1 E;, = E. A vertex v € V is distinct (wrt. £) if all its incident
edges belong to the same cell, else v is a boundary vertex or ambiguous.

3 IsoCRP

The three-phase workflow of CRP [7] distinguishes preprocessing and metric
customization. Preprocessing finds a (multilevel) vertex partition of the road
network, inducing for each level £ an overlay graph H* containing all boundary
vertices and boundary edges wrt. V¢, and shortcut edges between pairs of bound-
ary vertices that belong to the same cell Vf € V. Metric customization computes
the lengths of all shortcuts. The basic idea of iso CRP is to run isoDijkstra on the
overlay graphs. Thus, we use shortcuts to skip cells that are entirely in range, but
descend into lower levels in cells that intersect the isochrone frontier, to deter-
mine isochrone edges. There are two major challenges. First, descending into
cells where shortcuts exceed the limit 7 is not sufficient (we may miss isochrone
edges that are part of no shortcut, but belong to shortest paths leading into the
cell), so we have to precompute additional information. Second, descents into
cells must be consistent for all boundary vertices (i. e., we have to descend at all
vertices), motivating two-phase queries.

Customization. Along the lines of plain CRP, we obtain shortcut lengths by
running Dijkstra’s algorithm restricted to the respective cell. Additionally, we
make use of the same searches to compute eccentricities for all boundary vertices.
Given a boundary vertex u in a cell V', its (level-£) eccentricity, denoted eccy(u),
is the maximum finite distance to some v € V;Z in the subgraph induced by Vf.
This subgraph is not strongly connected in general (i.e., some vertices may be
unreachable), but restricting eccentricities to cells allows fast customization.

At the lowest level, the eccentricity of a boundary vertex w is the distance
label of the last vertex settled in the search from u. To accelerate customization,
previously computed overlays are used to obtain shortcuts on higher levels. We
compute upper bounds on eccentricities for those levels. When settling a vertex v,
we check if the sum of the label d(v) and eccy—_1(v) exceeds the current bound on
ecce(u) and update it if needed. Shortcuts of a cell are represented as a square
matrix for efficiency, and storing eccentricities adds a single column to them.

To improve data locality and simplify index mapping, vertices are reordered
in descending order of level during preprocessing, breaking ties by cell [7].

Queries. We say that a cell is active if its induced subgraph contains at least
one isochrone edge. Given a source s € V and a limit 7, queries work in two
phases. The first phase determines active cells, while the second phase descends
into active cells to determine isochrone edges. The upward phase runs isoDijkstra
on the search graph consisting of the union of the top-level overlay and all sub-
graphs induced by cells containing s. To determine active cells, we maintain two

Fast Exact Computation of Isochrones in Road Networks 21

flags i(-) (initially false) and o(:) (initially true) per cell and level, to indicate
whether the cell contains at least one vertex that is in or out of range, respec-
tively. When settling a vertex u € V, we set i(V}) to true if d(u) < 7. Next, we
check whether d(u) + eccg(u) < 7. Observe that this condition is not sufficient
to unset o(V;*), because ecc,(u) was computed in the subgraph of V. If this
subgraph is not strongly connected, d(u) + eccy(w) is not an upper bound on the
distance to any vertex in V, in general. Therefore, when scanning an outgoing
shortcut (u,v) with length oo (such shortcuts exist due to the matrix representa-
tion), we also check whether d(v) + eccy(v) < 7. If the condition holds for u and
all boundary vertices v unreachable from u (wrt. V;*), we can safely unset o(V;).
Toggled flags are final, so we no longer need to perform any checks for them.
After the upward phase finished, cells V! that have both i(V;’) and o(V}’) set
are active (isochrone edges are only contained in cells with vertices both in and
out of range).

The downward phase has L subphases. In descending order of level, and for
every active cell at the current level ¢, each subphase runs isoDijkstra restricted
to the respective cell in Hy_;. Initially, all boundary vertices are inserted into
the queue with their distance labels according to the previous phase as key.
As before, we check eccentricities on-the-fly to mark active cells for the next
subphase. Isochrone edges are determined at the end of each isoDijkstra search
(see Sect. 2). On overlays, only boundary edges are reported.

Parallelization. For faster customization, cells of each level are processed in
parallel [7]. During queries, the (much more expensive) downward phase is par-
allelized in a natural way, as cells at a certain level can be handled indepen-
dently. We assign cells to threads and synchronize results between subphases.
To reduce the risk of false sharing, we assign blocks of consecutive cells (wrt.
vertex ordering) to the same thread. Moreover, to reduce synchronization over-
head, we process cells on lower levels in a top-down fashion within the same
thread.

4 Faster IsoGRASP

GRASP [18] extends CRP to batched query scenarios by storing for each level-¢
boundary vertex, 0 < ¢ < L, (incoming) downward shortcuts from boundary
vertices of its supercell at level ¢ + 1. Customization follows CRP, collecting
downward shortcuts in a separate downward graph H'. Original isoGRASP [18]
runs Dijkstra’s algorithm on the overlays (as in CRP), marks all in-range top-
level cells, and propagates distances in marked cells from boundary vertices to
those at the levels below in a sweep over the corresponding downward shortcuts.
We accelerate isoGRASP significantly by making use of eccentricities.

Customization. Metric customization of our variant of isoGRASP is similar to
isoCRP, computing shortcuts and eccentricities with Dijkstra’s algorithm as in
Sect. 3. We obtain downward shortcuts in the same Dijkstra searches. We apply

22 M. Baum et al.

edge reduction (removing shortcuts via other boundary vertices) [18] to down-
ward shortcuts, but use the matrix representation for overlay shortcuts.

Queries. As in isoCRP, queries run two phases, with the upward phase being
identical to the one described in Sect. 3. Then, the scanning phase handles levels
from top to bottom in L subphases to process active cells. For an active level-¢
cell V¥, we sweep over its internal vertices (i.e., all vertices of the overlay Hy_;
that lie in Vf and are no level-¢ boundary vertices). For each internal vertex v,
its incoming downward shortcuts are scanned, obtaining the distance to v. To
determine active cells for the next subphase, we maintain flags i(-) and o(-) as
in isoCRP. This requires checks at all boundary vertices that are unreachable
from v within Vf_l. We achieve some speedup by precomputing these vertices,
storing them in a separate adjacency array.

Similar to isoCRP, the upward phase reports all (original) isochrone edges
contained in its search graph. For the remaining isochrone edges, we sweep over
internal vertices and their incident edges a second time after processing a cell in
the scanning phase. To avoid duplicates and to ensure that endpoints of examined
edges have correct distances, we skip edges leading to vertices with higher indices.
Both queries and customization are parallelized in the same fashion as isoCRP.

5 IsoPHAST

Preprocessing of PHAST [5] contracts vertices in increasing order of (heuris-
tic) importance, as in the point-to-point technique CH [27]. To contract a
vertex, shortcut edges are added between yet uncontracted neighbors to pre-
serve distances, if necessary. Vertices are assigned levels £(-), initially set to
zero. When contracting u, we set £(v) = max{l(v),f(u) + 1} for each uncon-
tracted neighbor v. Given the set E* of all shortcuts added during preprocess-
ing, PHAST handles one-to-all queries from some given source s as follows.
During the forward CH search, it runs Dijkstra’s algorithm on GT = (V, ET),
E' = {(u,v) € EUE™T: {(u) < £(v)}. The subsequent downward phase is a linear
sweep over all vertices in descending order of level, reordered accordingly during
preprocessing. For each vertex, it scans its incoming edges in E' = {(u,v) €
EUET: l(u) > £(v)} to update distances. Afterwards, distances from s to all
v € V are known. RPHAST [9] is tailored to one-to-many queries with given
target sets 7. It first extracts the relevant subgraph GlT that is reachable from
vertices in T' by a backward search in Gt = (V, E'). Then, it runs the linear
sweep for G%.

Our isoPHAST algorithm builds on (R)PHAST to compute isochrones. Since
the targets are not part of the input, we use graph partitions to restrict the
subgraph that is examined for isochrone edges. Queries work in three phases,
in which we (1) run a forward CH search, (2) determine active cells, and (3)
perform linear sweeps over all active cells as in PHAST. Below, we describe
preprocessing of isoOPHAST, before proposing different strategies to determine
active cells.

Fast Exact Computation of Isochrones in Road Networks 23

First, we find a (single-level) partition V = {V3,..., Vi } of the road network
and reorder vertices such that boundary vertices (or core vertices) are pushed
to the front, breaking ties by cell (providing the same benefits as in CRP).
Afterwards, we use CH to contract all cell-induced subgraphs, but leave core
vertices uncontracted. Non-core vertices inside cells are reordered according to
their CH levels to enable linear downward sweeps. The output of preprocessing
consists of an upward graph G', containing for each cell all edges leading to
vertices of higher level, added shortcuts between core vertices, and all boundary
edges. We also obtain a downward graph G* that stores for each non-core vertex
its incoming edges from vertices of higher level. Further steps of preprocessing
depend on the query strategy and are described below.

IsoPHAST-CD. Our first strategy (Core-Dijkstra) performs isoDijkstra on the
core graph to determine active cells. This requires eccentricities for core vertices,
which are obtained during preprocessing as follows. To compute ecc(u) for some
vertex u, we run (as last step of preprocessing) Dijkstra’s algorithm on the
subgraph induced by all core vertices of G1 in the cell V; of u, followed by a
linear sweep over the internal vertices of V;. When processing a vertex v during
this sweep, we update the eccentricity of u to ecc(u) = max{ecc(u), d(v)}.

Queries start by running isoDijkstra from the source in G'. Within the source
cell, this corresponds to a forward CH search. At core vertices, we maintain
flags i(-) and o(-) to determine active cells (as described in Sect.3, using an
adjacency array to store unreachable core neighbors as in Sect. 4). If the core is
not reached, only the source cell is set active. Next, we perform for each active
cell a linear sweep over its internal vertices, obtaining distances to all vertices
that are both in range and contained in an active cell.

Isochrone edges crossing cell boundaries are added to the output during
the isoDijkstra search, whereas isochrone edges connecting non-core vertices are
obtained in the linear sweeps as follows. When scanning incident edges of a ver-
tex v, neighbors at higher levels have final distance labels. Moreover, the label
of v is final after scanning incoming edges (u,v) € G'. Thus, looping through
incoming original edges a second time suffices to find the remaining isochrone
edges. Since original edges (v,u) € E to vertices u at higher levels are not con-
tained in G' in general, we add dummy edges of length oo to G to ensure that
neighbors in G are also adjacent in G'.

isoPHAST-CP. Instead of isoDijktra, our second strategy (Core-PHAST) per-
forms a linear sweep over the core. Eccentricities are precomputed after generic
preprocessing as described above. Next, we use CH preprocessing to contract
vertices in the core, and reorder core vertices according to their levels. Finally,
we update G and G by adding core shortcuts.

Queries strictly follow the three-phase pattern discussed above. We first run a
forward CH search in G'. Then, we determine active cells and compute distances
for all core vertices in a linear sweep over the core. Again, we maintain flags i(-)
and o) for core vertices (cf. Section3) and use an adjacency array storing
unreachable core neighbors (cf. Section 4). To find isochrone edges between core

24 M. Baum et al.

vertices, we insert dummy edges into the core to preserve adjacency. The third
phase (linear sweeps over active cells) is identical to isoPHAST-CD.

isoPHAST-DT. Our third strategy (Distance Table) uses a distance (bounds)
table to accelerate the second phase, determining active cells. Working with
such tables instead of a dedicated core search benefits from edge partitions, since
the unique assignment of edges to cells simplifies isochrone edge retrieval. Given
a partition & = {E1,..., E} of the edges, the table stores for each pair E;, E;
of cells a lower bound d(E;, E;) and an upper bound d(E;, E;) on the distance
from E; to Ej, i.e., d(E;, E;) < d(u,v) < d(E;, E;) for all u € E;, v € E; (we
abuse notation, saying v € E; if u is an endpoint of at least one edge e € E;).
Given a source s € E; (if s is ambiguous, pick any cell containing s) and a
limit 7, cells E; with d(E;, E;) < 1 < d(E;, E;) are set active.

Preprocessing first follows isoPHAST-CP, with three differences: (1) We use
an edge partition instead of a vertex partition; (2) Eccentricities are computed
on the reverse graph, with Dijkstra searches that are not restricted to cells
but stop when all boundary vertices of the current cell are reached; (3) After
computing eccentricities, we recontract the whole graph using a CH order (i.e.,
contraction of core vertices is not delayed), leading to sparser graphs G and G'*.
Afterwards, to quickly compute (not necessarily tight) distance bounds, we run
for each cell F; a (multi-source) forward CH search in G! from all boundary
vertices of F;. Then, we perform a linear sweep over G', keeping track of the
minimum and maximum distance label per target cell. This yields, for all cells,
lower bounds d(F;, -), and upper bounds on the distance from boundary vertices
of E; to each cell. To obtain the desired bounds d(E;,), we increase the latter
values by the (backward) boundary diameter of E;, i.e., the maximum distance
from any vertex in F; to a boundary vertex of F;. This diameter equals the
maximum eccentricity of the boundary vertices of E; on the reverse graph (which
we computed before). As last step of preprocessing, we extract and store the
relevant search graph Gil for each E; € £. This requires a target selection phase
as in RPHAST for each cell, using all (i.e., distinct and ambiguous) vertices of
a cell as input.

Queries start with a forward CH search in G'T. Then, active cells are deter-
mined in a sweep over one row of the distance table. The third phase performs
a linear sweep over G% for each active cell E;, obtaining distances to all its ver-
tices. Although vertices can be contained in multiple search graphs, distance
labels do not need to be reinitialized between sweeps, since the source remains
unchanged. To output isochrone edges, we proceed as before, looping through
incoming downward edges twice (again, we add dummy edges to Gf for correct-
ness). To avoid duplicates (due to vertices contained in multiple search graphs),
edges in Gf have an additional flag to indicate whether the edge belongs to F;.

Search graphs may share vertices, which increases memory consumption and
slows down queries (e. g., the vertex with maximum level is contained in every
search graph). We use search graph compression, i.e., we store the topmost ver-
tices of the hierarchy (and their incoming edges) in a separate graph G} and

Fast Exact Computation of Isochrones in Road Networks 25

remove them from all Gf . During queries, we first perform a linear sweep over G/,
(obtaining distances for all v € G}), before processing search graphs of active
cells. The size of G} (more precisely, its number of vertices) is a tuning parameter.

Parallelization. The first preprocessing steps are executed in parallel, namely,
building cell graphs, contracting non-core vertices, inserting dummy edges, and
reordering non-core vertices by level. Afterwards, threads are synchronized, and
G and G are built sequentially. Eccentricities are again computed in parallel.
Since our CH preprocessing is sequential, the core graph is contracted in a single
thread (if needed). Computation of distance bounds is parallelized (if needed).

Considering queries, the first two phases are run sequentially. Both isoDijk-
stra and the forward CH search are difficult to parallelize. Executing PHAST
(on the core) in parallel does not pay off (the core is rather dense, resulting in
many levels). Distance table operations, on the other hand, are very fast, and
parallelization is not necessary. In the third phase, however, active cells can be
assigned to different threads. We store a copy of the graph G once per NUMA
node for faster access during queries. Running the third phase in parallel can
make the second phase of iSOPHAST-CP a bottleneck. Therefore, we alter the
way of computing flags i(-) and o(-). When settling a vertex v € V;, we set i(V})
if d(v) < 7, and o(V;) if d(v) + ecc(v) > 7. Note that these checks are less
accurate (more flags are toggled), but we no longer have to check unreachable
boundary vertices. Correctness of isSoOPHAST-CP is maintained, as no stopping
criterion is applied and max,cy;(d(v) + ecc(v)) is a valid upper bound on the
distance to each vertex in V;. Hence, no active cells are missed.

6 Alternative Outputs

Driven by our primary application, visualizing the cruising range of a vehicle,
we introduced a compact, yet sufficient representation of isochrones. However,
all approaches can be adapted to produce a variety of other outputs, without
increasing their running times significantly. As an example, we modify our algo-
rithms to output a list of all vertices in range (instead of isochrone edges).
Even without further modifications, we can check in constant time if a vertex
is in range after running the query. Consider the (top-level) cell V; of a vertex v.
If i(V;) is not set, the cell contains no in-range vertices and v must be out of
range. Similarly, if o(V;) is not set, v is in range. If both flags are set, we run the
same check for the cell containing v on the level below. If both flags are set for
the cell on level 1 containing v, we check if the distance label of v exceeds the
time limit (since all cells considered are active, the distance label of v is correct).
A simple approach to output the vertices in range performs a sweep over
all vertices and finds those in range as described above. We can do better by
collecting vertices in range on-the-fly. During isoDijkstra searches and when
scanning active cells, we output each scanned vertex that is in range. In the
scanning phase we also add all internal vertices for cells V; where o(V;) is not set.

26 M. Baum et al.

7 Experiments

Our code is written in C++ (using OpenMP) and compiled with g++ 4.8.3 -O3.
Experiments were conducted on two 8-core Intel Xeon E5-2670 clocked at
2.6 Ghz, with 64 GiB of DDR3-1600 RAM, 20MiB of L3 and 256 KiB of L2
cache. Results are checked against a reference implementation (isoDijkstra) for
correctness.

Input and Methodology. Experiments were done on the European road net-
work (with 18 million vertices and 42 million edges) made available for the
9th DIMACS Implementation Challenge [13], using travel times in seconds as
edge lengths.

We implemented CRP following [7], with a matrix-based clique representa-
tion. Our GRASP implementation applies implicit initialization [18] and (down-
ward) shortcut reduction [20]. The CH preprocessing routine follows [27], but
takes priority terms and hop limits from [5]. We use PUNCH (8] to generate
multilevel partitions for isoCRP /isoGRASP, and Buffoon [37] to find single-level
partitions for isoPHAST. Edge partitions are computed following the approach
in [36,38].

We report parallel customization times, and both sequential and parallel
query times. Parallel execution uses all available cores. Customization times
for isoPHAST exclude partitioning, since it is metric-independent. For queries,
reported figures are averages of 1 000 random queries (per individual time
limit 7).

Tuning Parameters. We conducted preliminary studies to obtain reasonable
parameters for partitions and search graph compression. For isoCRP /isoGRASP,
we use the 4-level partition from [6], with maximum cell sizes of 28, 212, 216 220
respectively. Although [18] uses 16 levels, resorting to a 4-level partition had only
minor effects in preliminary experiments (similar observations are made in [19]).
For sequential isoPHAST-CD (CP) queries, a partition with k¥ = 212 (211)
cells yields best query times. For fewer cells (i.e., coarser partitions), the third
query phase scans a large portion of the graph and becomes the bottleneck. Using
more fine-grained partitions yields a larger core graph, slowing down the second
query phase. Consequently, fewer cells (k = 256) become favorable when queries
are executed in parallel (as the third phase becomes faster due to parallelization).
For isoPHAST-DT, similar effects occur for different values of k. Moreover,
search graph compression has a major effect on query times (and space consump-
tion). If there are few vertices in G, then vertices at high levels occur in search
graphs of multiple cells, but large G cause unnecessary vertex scans. Choosing
k=2 (2!2) and |G| = 216 (2!3) yields fastest sequential (parallel) queries.

Evaluation. Table 1 summarizes the performance of all algorithms discussed in
this paper, showing figures on customization and queries. We report query times
for medium-range (7 = 100) and long-range time limits (7 = 500, this is the hard-
est limit for most approaches, since it maximizes the number of isochrone edges).

Fast Exact Computation of Isochrones in Road Networks 27

Table 1. Performance of our algorithms. We report parallel customization time and
space consumption (space per additional metric is given in brackets, if it differs). The
table shows the average number of settled vertices (Nmb. settled, in thousands) and
running times of sequential and parallel queries, using time limits 7 = 100 and 7 = 500.
Best values (except Dijkstra wrt. space) are highlighted in bold.

Algorithm Thr. | Custom 7 = 100 min 7 = 500 min
Time [s] | Space [MiB] | Nmb. settled | Time [ms] | Nmb. settled | Time [ms]

isoDijkstra 1 —| 646 460 k 68.32 7041k 1184.06
isoCRP 1 1.70 | 900 (138) 101k 15.44 354k 60.67
isoGRASP 1 2.50 | 1856 (1094) | 120k 10.06 387k 37.77
isoPHAST-CD 1 26.11 785 440k 6.09 1501 k 31.63
isoPHAST-CP 1 1221.84 | 781 626 k 15.02 2029k 31.00
isoPHAST-DT 1 1079.11 | 2935 597k 9.96 1793k 24.80
isoCRP 16 1.70 | 900 (138) 100 k 2.73 354k 7.86
isoGRASP 16 2.50 | 1856 (1094) | 120k 2.35 387k 5.93
isoPHAST-CD | 16 38.07 | 769 918k 1.61 4578 k 8.22
isoPHAST-CP | 16 1432.39 | 766 944 k 4.47 5460 k 7.86
isoPHAST-DT | 16 865.50 | 1066 914k 1.74 2979k 3.80

As expected, techniques based on multilevel overlays provide better customiza-
tion times, while isoPHAST achieves the lowest query times (CD for medium-
range and DT for long-range queries, respectively). Customization of isoCRP
and iSoOGRASP is very practical (below three seconds). The lightweight pre-
processing of iISOPHAST-CD pays off as well, allowing customization in less than
30s. The comparatively high preprocessing times of isoPHAST-CP and DT are
mainly due to expensive core contraction. Still, metric-dependent preprocessing
is far below half an hour, which is suitable for applications that do not require
real-time metric updates. Compared to isoCRP, isoGRASP requires almost an
order of magnitude of additional space for the downward graph (having about
110 million edges).

Executed sequentially, all approaches take well below 100 ms, which is sig-
nificantly faster than isoDijkstra. The number of settled vertices is considerably
larger for isoPHAST, however, data access is more cache-efficient. IsoPHAST
provides faster queries than the multilevel overlay techniques for both limits,
with the execption of isoPHAST-CP for small ranges (since the whole core graph
is scanned). Again, the performance of isoPHAST-CD is quite notable, providing
the fastest queries for (reasonable) medium-range limits and decent query times
for the long-range limit. Finally, query times of isoPHAST-DT show best scaling
behavior, with lowest running times for hardest queries.

The lower half of Table1 reports parallel times for the same set of queries.
Note that preprocessing times of isoOPHAST change due to different parameter
choices. Most approaches scale very well with the number of threads, provid-
ing a speedup of (roughly) 8 using 16 threads. Note that factors (according to
the table) are much lower for isoPHAST, since we use tailored partitions for
sequential queries. In fact, isoPHAST-DT scales best when run on the same pre-
processed data (speedup of 11), since its sequential workflow (forward CH search,

28 M. Baum et al.

table scan) is very fast. Considering multilevel overlay techniques, isSoGRASP
scales worse than isoCRP (speedup of 6.5 compared to 7.7), probably because
it is memory bandwidth bounded (while isoCRP comes with more computa-
tional overhead). Consequently, isSoGRASP benefits greatly from storing a copy
of the downward graph on each NUMA node. As one may expect, speedups are
slightly lower for medium-range queries. The isoPHAST approaches yield best
query times, below 2 ms for medium-range queries, and below 4 ms for the long-
range limit. To summarize, all algorithms enable queries fast enough for practical
applications, with speedups of more than two orders of magnitude compared to
isoDijkstra.

60 isoDijkstra ———

iSOGRASP (orig) —¢—
iSOCRP —%—
iSOGRASP —&—
iSoOPHAST-CD —e—

50

7 o] iSOPHAST-CP L
£ 40 iSOPHAST-DT

(9]

=

£ a
fal

[

=)

3 L

10 30 100 300 1000 3000
Limit [min]

Fig. 1. Sequential query times for various time limits, ranging from 10 to (roughly)
4700 min (the diameter of our input graph).

Figure 1 shows how (sequential) query times scale with the time limit. For
comparability, we also show (sequential) query times of original isoGRASP as
described in [18] (computing distances to all in-range vertices, but no isochrone
edges). Running times of all proposed algorithms (except isoDijkstra and original
isoGRASP) follow a characteristic curve. Times first increase with the limit 7
(the isochrone frontier is extended, intersecting more active cells), before drop-
ping again once 7 exceeds 500 min (the isochrone reaches the boundary of the
network, decreasing the number of active cells). For 7 > 4710 min, all vertices
are in range, making queries very fast, as there are no active cells. For small 7,
the multilevel overlay techniques and isoPHAST-CD are fastest. soPHAST-CP
is slowed down by the linear sweep over the core graph (taking about 6 ms, inde-
pendent of 7), while isoPHAST-DT suffers from distance bounds not being tight.
However, since Dijkstra’s algorithm does not scale well, isoPHAST-CD becomes
the slowest approach for large 7 (while the other isoPHAST techniques bene-
fit from good scaling behavior). Considering multilevel overlays, our isoGRASP
is up to almost twice as fast as isoCRP, providing a decent trade-off between
customization effort and query times. Note that while isoDijkstra is fast enough
for some realistic time limits, it is not robust to user inputs. When executed in

Fast Exact Computation of Isochrones in Road Networks 29

Table 2. Impact of different outputs on the performance of isoCRP, isoGRASP, and a
variant of isoPHAST (CP). We report sequential (seq.) and parallel (par.) query times
as well as output size (# out., in thousands for vertices in range) when computing
isochrone edges and vertices in range.

Algorithm | Limit [min] | Isochrone edges Vertices in range
#out. | seq. [ms] | par. [ms] | # out. |seq. [ms] | par. [ms]
isoCRP 100 5937 | 15.44 2.73 460 k | 15.83 2.77
500 14718 | 60.67 7.86 7041 k| 76.35 9.26
5000 0| 342 3.17 18010 k | 46.64 6.64
isoGRASP | 100 5937 | 10.06 2.35 460 k| 11.07 2.50
500 14718 | 37.77 5.93 7041 k | 56.83 7.57
5000 0| 3.08 3.10 18010 k | 46.09 6.44
isoPHAST | 100 5937 | 15.02 4.47 460 k | 16.40 4.70
500 14718 | 31.00 7.86 7041 k | 49.57 9.67
5000 0| 7.96 3.61 18010 k | 50.86 7.03

parallel, query times follow the same characteristic curves (not reported in the
figure). The linear sweep in the second phase of isoPHAST-CP becomes slightly
faster, since the core is smaller (due to a different partition).

Alternative Outputs. Table2 compares query times when computing different
outputs (isochrone edges and vertices in range, respectively). For medium-range
time limits (7 = 100min), both sequential and parallel query times increase
by less than 10%. When using long-range limits, where roughly half of the
vertices are in range, sequential and parallel queries are slower by a factor of
about 1.5, but still significantly faster than the original iso0GRASP algorithm.
Only when considering the graph diameter as time limit, sequential queries are
significantly slower when computing all vertices in range, since variants reporting
only isochrone edges can already terminate after the (very fast) upward phase.

Comparison with Related Work. Since we Table 3. Running times [ms] of
are not aware of any work solving our com- basic one-to-all and one-to-many
pact problem formulation, we cannot com- building blocks.

pare our algorithms directly to competi- Algorithm ou] | [9,19]
tors. Hence, to validate the efficiency of our Dij (I-to-all) 2653.18 | —
code, we compare our implementations of PHAST 144.16 | 136.92
some basic building blocks to original pub- GRASP 171.11 | 169.00
lications. Table 3 reports running times for Dij (1-to-many) 7.3417.43

. . .. s . RPHAST (select) 1.29 | 1.80
our implementations of Dijkstra’s algorithm, RPHAST (query) 016 017

GRASP, PHAST and RPHAST on one core
of a 4-core Intel Xeon E5-1630v3 clocked at 3.7 GHz, with 128 GiB of DDR4-2133
RAM, 10 MiB of L3 and 256 KiB of L2 cache (chosen as it most closely resembles
the machines used in [9,19]). For comparison, we report running times (as-is)

30 M. Baum et al.

from [9,19]. For the one-to-many scenario, we adopt the methodology from [9],
using a target and ball size of 24, Even when accounting for hardware differences,
running times of our implementations are similar to the original publications.

8 Final Remarks

We proposed a compact definition of isochrones, and introduced a portfolio of
speedup techniques for the resulting isochrone problem. While no single app-
roach is best in all criteria (preprocessing effort, space consumption, query time,
simplicity), the right choice depends on the application. If user-dependent met-
rics are needed, the fast and lightweight customization of iSoCRP is favorable.
Fast queries subject to frequent metric updates (e.g., due to real-time traffic)
are enabled by our isoGRASP variant. If customization time below a minute is
acceptable and time limits are low, iSOPHAST-CD provides even faster query
times. The other isoPHAST variants show best scaling behavior, making them
suitable for long-range isochrones, or if customizability is not required.
Regarding future work, we are interested in integrating the computation of
eccentricities into microcode [11], an optimization technique to accelerate cus-
tomization of CRP. For isoPHAST, we want to separate metric-independent
preprocessing and metric customization (exploiting, e.g., CCH [14]). We also
explore approaches that do not (explicitly) require a partition of the road net-
work. Another direction of research is the speedup of network Voronoi diagram
computation [21,34], where multiple isochrones are grown simultaneously from
a set of Voronoi generators. We are also interested in extending our speedup
techniques to more involved scenarios, such as multimodal networks.

References

1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: HLDB: location-
based services in databases. In: Proceedings of the 20th ACM SIGSPATIAL Inter-
national Symposium on Advances in Geographic Information Systems (GIS 2012),
pp- 339-348. ACM Press, New York (2012)

2. Bast, H., Delling, D., Goldberg, A.V., Miiller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. Tech-
nical report abs/1504.05140, ArXiv e-prints (2015)

3. Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., Timko, I.: Comput-
ing isochrones in multi-modal, schedule-based transport networks. In: Proceedings
of the 16th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (GIS 2008), pp. 78:1-78:2. ACM Press, New York
(2008)

4. Baum, M., Blasius, T., Gemsa, A., Rutter, 1., Wegner, F.: Scalable Isocon-
tour Visualization in Road Networks via Minimum-Link Paths. Technical report
abs/1602.01777, ArXiv e-prints (2016)

5. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: hardware-
accelerated shortest path trees. J. Parallel Distrib. Comput. 73(7), 940-952 (2013)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Fast Exact Computation of Isochrones in Road Networks 31

Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376-387. Springer, Heidelberg (2011)

Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning
in road networks. Transportation Science (2015)

Delling, D., Goldberg, A.V., Razenshteyn, 1., Werneck, R.F.: Graph partitioning
with natural cuts. In: Proceedings of the 25th International Parallel and Distrib-
uted Processing Symposium (IPDPS 2011), pp. 1135-1146. IEEE Computer Soci-
ety (2011)

Delling, D., Goldberg, A.V., Werneck, R.F.: Faster batched shortest paths inroad
networks. In: Proceedings of the 11th Workshop on Algorithmic Approachesfor
Transportation Modeling, Optimization, and Systems (ATMOS 2011). OpenAc-
cessSeries in Informatics, vol. 20, pp. 52-63. OASIcs (2011)

Delling, D., Holzer, M., Miiller, K., Schulz, F., Wagner, D.: High-performance
multi-level routing. In: The Shortest Path Problem: Ninth DIMACS Implementa-
tion Challenge, DIMACS Book, vol. 74, pp. 73-92. American Mathematical Society
(2009)

Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 30—42. Springer, Heidelberg (2013)

Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road net-
works. IEEE Trans. Knowl. Data Eng. 27(3), 686-698 (2015)

Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Prob-
lem: Ninth DIMACS Implementation Challenge, DIMACS Book, vol. 74. American
Mathematical Society (2009)

Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271-282.
Springer, Heidelberg (2014)

Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. ACM
J. Exp. Algorithmics 21(1), 108-122 (2016)

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269-271 (1959)

Efentakis, A., Grivas, N., Lamprianidis, G., Magenschab, G., Pfoser, D.: Isochrones,
traffic and DEMOgraphics. In: Proceedings of the 21st ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems (GIS 2013),
pp. 548-551. ACM Press, New York (2013)

Efentakis, A., Pfoser, D.: GRASP. Extending graph separators for the single-source
shortest-path problem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol.
8737, pp. 358-370. Springer, Heidelberg (2014)

Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. A unified framework for all shortest-
path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol.
9125, pp. 298-311. Springer, Heidelberg (2015)

Efentakis, A., Theodorakis, D., Pfoser, D.: Crowdsourcing computing resources
for shortest-path computation. In: Proceedings of the 20th ACM SIGSPATIAL
International Symposium on Advances in Geographic Information Systems (GIS
2012), pp. 434-437. ACM Press, New York (2012)

Erwig, M.: The graph voronoi diagram with applications. Networks 36(3), 156-163
(2000)

Foti, F., Waddell, P., Luxen, D.: A generalized computational framework for acces-
sibility: from the pedestrian to the metropolitan scale. In: Proceedings of the

32

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

M. Baum et al.

4th TRB Conference on Innovations in Travel Modeling. Transportation Research
Board (2012)

Gamper, J., Bohlen, M., Cometti, W., Innerebner, M.: Defining isochrones in multi-
modal spatial networks. In: Proceedings of the 20th ACM International Conference
on Information and Knowledge Management (CIKM 2011), pp. 2381-2384. ACM
Press, New York (2011)

Gamper, J., Bohlen, M., Innerebner, M.: Scalable computation of isochrones with
network expiration. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol.
7338, pp. 526-543. Springer, Heidelberg (2012)

Geisberger, R.: Advanced Route Planning in Transportation Networks. Ph.D. the-
sis, Karlsruhe Institute of Technology (2011)

Geisberger, R., Luxen, D., Sanders, P., Neubauer, S., Volker, L.: Fast detour com-
putation for ride sharing. In: Proceedings of the 10th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2010). OpenAccess Series in Informatics, vol. 14, pp. 88-99. OASIcs (2010)
Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388-404 (2012)
Grubwinkler, S., Brunner, T., Lienkamp, M.: Range prediction for EVs via crowd-
sourcing. In: Proceedings of the 10th IEEE International Vehicle Power and Propul-
sion Conference (VPPC 2014), pp. 1-6. IEEE (2014)

Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for
shortest-path queries. ACM J. Exp. Algorithmics 13, 1-26 (2008)

Innerebner, M., Bohlen, M., Gamper, J.: ISOGA: a system for geographical reach-
ability analysis. In: Liang, S.H.L., Wang, X., Claramunt, C. (eds.) W2GIS 2013.
LNCS, vol. 7820, pp. 180-189. Springer, Heidelberg (2013)

Jung, S., Pramanik, S.: An efficient path computation model for hierarchically
structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029—
1046 (2002)

Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-to-
many shortest paths using highway hierarchies. In: Proceedings of the 9th Work-
shop on Algorithm Engineering and Experiments (ALENEX 2007), pp. 36-45.
STAM (2007)

Marciuska, S., Gamper, J.: Determining objects within isochrones in spatial net-
work databases. In: Catania, B., Ivanovié, M., Thalheim, B. (eds.) ADBIS 2010.
LNCS, vol. 6295, pp. 392-405. Springer, Heidelberg (2010)

Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network
voronoi diagrams: concepts, computational methods, and applications. Int. J.
Geogr. Inf. Sci. 22(9), 965-994 (2008)

O’Sullivan, D., Morrison, A., Shearer, J.: Using desktop GIS for the investigation
of accessibility by public transport: an isochrone approach. Int. J. Geogr. Inf. Sci.
14(1), 85-104 (2000)

Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors
of graphs. STAM J. Matrix Anal. Appl. 11, 430-452 (1990)

Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: Proceed-
ings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX
2012), pp. 16-29. SIAM (2012)

Schulz, C.: High Quality Graph Partitioning. Ph.D. thesis, Karlsruhe Institute of
Technology (2013)

Dynamic Time-Dependent Route Planning
in Road Networks with User Preferences

Moritz Baum?, Julian Dibbelt!®) Thomas Pajor?, and Dorothea Wagner!

! Karlsruhe Institute of Technology, Karlsruhe, Germany
{moritz.baum, julian.dibbelt,dorothea.wagner}@kit.edu
2 Cupertino, CA, USA

Abstract. Algorithms for computing driving directions on road net-
works often presume constant costs on each arc. In practice, the current
traffic situation significantly influences the travel time. One can distin-
guish traffic congestion that can be predicted using historical traffic data,
and congestion due to unpredictable events, e.g., accidents. We study
the dynamic and time-dependent route planning problem, which takes
both live traffic and long-term prediction into account. We propose a
practical algorithm that, while robust to user preferences, is able to inte-
grate global changes of the time-dependent metric faster than previous
approaches and allows queries in the order of milliseconds.

1 Introduction

To enable responsive route planning applications on large-scale road networks,
speedup techniques have been proposed [1], employing preprocessing to accelerate
Dijkstra’s shortest-path algorithm [18]. A successful approach [4,9,16,21,28,30]
exploits that road networks have small separators [10,22,27,40,41], comput-
ing coarsened overlays that maintain shortest path distance. An important
aspect [14] in practice is the consideration of traffic patterns and incidents. In
dynamic, time-dependent route planning, costs vary as a function of time [6,19].
These functions are derived from historic knowledge of traffic patterns [39], but
have to be updated to respect traffic incidents or short-term predictions [15]. In
this work, we investigate the challenges that arise when extending a separator-
based overlay approach to the dynamic, time-dependent route planning scenario.

Related Work. In time-dependent route planning, there are two major query
variants: (1) Given the departure time at a source, compute the earliest arrival
time (EA) at the target; (2) compute earliest arrival times for all departure
times of a day (profile search). Dijkstra’s algorithm [18] can be extended to solve
these problems for cost functions with reasonable properties [6,19,38]. However,
functional representations of profiles (typically by piecewise-linear functions) are
quite complex on realistic instances [13]. Many speedup techniques have been

Partially supported by EU grants 288094 (eCOMPASS) and 609026 (MOVE-
SMART).
© Springer International Publishing Switzerland 2016

A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 33-49, 2016.
DOI: 10.1007/978-3-319-38851-9_3

34 M. Baum et al.

adapted to time-dependency. Some use (scalar) lower bounds on the travel time
functions to guide the graph search [11,12,37]. TD-CALT [11] yields reasonable
EA query times for approximate solutions, allowing dynamic traffic updates,
but no profile search. TD-SHARC [8] offers profile search on a country-scale net-
work. Time-dependent Contraction Hierarchies (TCH) [2] enable fast EA and
profile searches on continental networks. During preprocessing, TCH computes
overlays by iteratively inserting shortcuts [25] obtained from profile searches.
Piecewise-linear function approximation [29] is used to reduce shortcut com-
plexity, dropping optimality. A multi-phase extension (ATCH) restores exact
results [2]. Time-dependent shortest path oracles described in [33-35] approx-
imate distances in sublinear query time after subquadratic preprocessing. In
practical experiments, however, preprocessing effort is still substantial [31,32].
TCH has been generalized to combined optimization of functional travel time
and scalar, other costs [3], which poses an NP-hard problem. While this hardness
result would of course impact any approach, interestingly, the experiments in [3]
suggest that TCH on its own is not particularly robust against user preferences:
In a scenario that amounts to the avoidance of highways, preprocessing effort
doubles and query performance decreases by an order of magnitude. (Our exper-
iments will confirm this on a non NP-hard formulation of highway avoidance.)
Other works focus on unforeseen dynamic changes (e.g., congestion due to
an accident), often by enabling partial updates of preprocessed data [12,20].
Customizable Route Planning (CRP) [9] offloads most preprocessing effort to
a metric-independent, separator-based phase. Preprocessed data is then cus-
tomized to a given routing metric for the whole network within seconds or
below. This also enables robust integration of user preferences. Customizable
Contraction Hierarchies (CCH) [16] follows a similar approach. However, CRP
and CCH handle only scalar metrics. To the best of our knowledge, non-scalar
metrics for separator-based approaches have only been investigated in the con-
text of electric vehicles (EVCRP) [5], where energy consumption depends on
state-of-charge, but functional complexity is very low. On the other hand, the
use of scalar approaches for handling live traffic information yields inaccurate
results for medium and long distances: Such methods wrongly consider current
traffic even at far away destinations—although it will have dispersed once reach-
ing the destination. For realistic results, a combination of dynamic and time-
dependent (non-scalar, functional) route planning accounts for current traffic,
short-term predictions, and historic knowledge about recurring traffic patterns.

Our Contribution. We carefully extend CRP [9] to time-dependent functions.
As such, we are the first to evaluate partition-based overlays on a challenging
non-scalar metric. To this end, we integrate profile search into CRP’s customiza-
tion phase and compute time-dependent overlays. Unlike EVCRP and TCH, a
naive implementation fails: Shortcuts on higher-level overlays are too expensive
to be kept in memory (and too expensive to evaluate during queries). To reduce
functional complexity, we approximate overlay arcs. In fact, approximation sub-
ject to a very small error suffices to make our approach practical, in accordance
to theory [23]. The resulting algorithmic framework enables interactive queries

Dynamic Time-Dependent Route Planning with User Preferences 35

with low average and maximum error in a very realistic scenario consisting of
live traffic, short-term traffic predictions, and historic traffic patterns. More-
over, it supports user preferences such as lower maximum driving speeds or the
avoidance of highways. In an extensive experimental setup, we demonstrate that
our approach enables integration of custom updates much faster than previous
approaches, while allowing fast queries that enable interactive applications. It is
also robust to changes in the metric that turn out to be much harder for previous
techniques.

2 Preliminaries

A road network is modeled as a directed graph G = (V, A) with n = |V| ver-
tices and m = |A| arcs, where vertices v € V correspond to intersections and
arcs (u,v) € A to road segments. An s—t-path P (in G) is a sequence Ps ; = [v1 =
$,V2, ...,V = t] of vertices such that (v;,v;41) € A. If s and ¢t coincide, we call P
a cycle. Every arc a has assigned a periodic travel-time function f,: II — RT,
mapping departure time within period IT = [0, 7] to travel time. Given a depar-
ture time 7 at s, the (time-dependent) travel time 7f, , of an s—t-path is
obtained by consecutive function evaluation, i.e., (s, . v} = fvi 1,00 (Tls,0i-1))-
We assume that functions are piecewise linear and represented by breakpoints.
We denote by | f| the number of breakpoints of a function f. Moreover, we define
f™aX as the maximum value of f, i.e., f™* = max, ¢z f(7). Analogously, f™in
is the minimum value of f. A function f is constant if f = ¢ for some ¢ € II. We
presume that functions fulfill the FIFO property, i.e., for arbitrary o < 7 € II,
the condition o + f(c) < 7+ f(7) holds (waiting at a vertex never pays off).
Unless waiting is allowed at vertices, the shortest-path problem becomes NP-
hard if this condition is not satisfied for all arcs [7,42]. Given two functions f, g,
the link operation is defined as link(f,g) := f + g o (id+f), where id is the
identity function and o is function composition. The result link(f, g) is piecewise
linear again, with at most |f| 4 |g| breakpoints (namely, at departure times of
breakpoints of f and backward projections of departure times of points of g). We
also define merging of f and g by merge(f, g) := min(f, g). The result of merging
piecewise linear functions is piecewise linear, and the number of breakpoints is
in O(|f]+19]) (containing breakpoints of the two original functions and at most
one intersection per linear segment). Linking and merging are implemented by
coordinated linear sweeps over the breakpoints of the corresponding functions.

The (travel-time) profile of a path P = [vq,...,vg] is the function fp: IT —
R* that maps departure time 7 at v; to travel time on P. Starting at Jior 2] =
fvy,v2), We obtain the desired profile by consecutively applying the link oper-
ation, i.e., fu,,. .. v;] = H0K(flo,,. 0, 1]s foii1,00))- Given a set P of s—t-paths,
the corresponding s—t-profile is fp(r) = minpep fp(7) for 7 € II, i.e., the
minimum profile over all paths in P. The s—t-profile maps departure time to
minimum travel time for the given paths. It is obtained by (iteratively) merging
the respective paths.

A partition of V is a set C = {C4,...,Ck} of disjoint vertex sets such
that Ule C; = V. More generally, a nested multi-level partition consists of

36 M. Baum et al.

sets {C1,...,CL} such that C’ is a partition of V for all £ € {1,...,L}, and
additionally for each cell C; in C’, ¢ < L, there is a partition C**1 at level £ + 1
containing a cell C; with C; C C;. We call C; the supercell of C;. For consis-
tency, we define C% = {{v} | v € V} and CL*! = {V}. Vertices u and v are
boundary vertices on level £ if they are in different cells of C¢. Accordingly, the
arc (u,v) € A is a boundary arc on level £.

Query Variants and Algorithms. Given a departure time 7 and vertices s and ¢,
an earliest-arrival (EA) query asks for the minimum travel time from s to ¢
when departing at time 7. Similarly, a latest-departure (LD) query asks for the
minimum travel time of an s—t-path arriving at time 7. A profile query for
given source s and target ¢ asks for the minimum travel time at every possible
departure time 7, i.e., a profile f,; from s to ¢ (over all s—¢-paths in G). EA
queries can be handled by a time-dependent variant of Dijkstra’s algorithm [19],
which we refer to as T'D-Digkstra. It maintains (scalar) arrival time labels d(-) for
each vertex, initially set to 7 for the source s (0o for all other vertices). In each
step, a vertex u with minimum d(u) is extracted from a priority queue (initialized
with s). Then, the algorithm relazes all outgoing arcs (u, v): if d(u) + f(y,v)(d(u))
improves d(v), it updates d(v) accordingly and adds v to the priority queue
(unless it is already contained). LD queries are handled analogously by running
the algorithm from ¢, relaxing incoming instead of outgoing arcs, and maintaining
departure time labels.

Profile queries can be solved by Profile-Dijkstra [13], which is based on link-
ing and merging. It generalizes Dijkstra’s algorithm, maintaining s—v profiles f,
at each vertex v € V. Initially, it sets fs =0, and f, = oo for all other vertices.
The algorithm continues along the lines of TD-Dijkstra, using a priority queue
with scalar keys f™in. For extracted vertices u, arc relaxations propagate profiles
rather than travel times, computing g := link(fy, f(u,,)) and f, := merge(f., g)
for outgoing arcs (u,v). As shown by Foschini et al. [23], the number of break-
points of the profile of an s—v-paths can be superpolynomial, and hence, so is
space consumption per vertex label and the running time of Profile-Dijkstra in
the worst case. Accordingly, it is not feasible for large-scale instances, even in
practice [13].

3 Our Approach

We propose Time-Dependent CRP (TDCRP), a speedup technique for time-
dependent route planning allowing fast integration of user-dependent metric
changes. Additionally, we enable current and/or predicted traffic updates with
limited departure time horizon (accounting for the fact that underlying traffic
situations resolve over time). To take historic knowledge of traffic patterns into
account, we use functions of departure time at arcs. This conceptual change has
important consequences: For plain CRP, the topology data structures is fixed
after preprocessing, enabling several micro-optimizations with significant impact

Dynamic Time-Dependent Route Planning with User Preferences 37

on customization and query [9]. In our case, functional complexity is metric-
dependent (influenced by, e. g., user preferences) and has to be handled dynam-
ically during customization. Hence, for adaptation to dynamic time-dependent
scenarios, we require new data structures and algorithmic changes during cus-
tomization. Below, we recap the three-phase workflow of CRP [9] that allows
fast integration of user-dependent routing preferences, describing its extension
to TDCRP along the way. In particular, we incorporate profile queries into the
customization phase to obtain time-dependent shortcuts. Moreover, we adapt
the query phase to efficiently compute time-dependent shortest routes.

3.1 Preprocessing

The (metric-independent) preprocessing step of CRP computes a multi-level
partition of the vertices, with given number L of levels. Several graph partition
algorithms tailored to road networks exist, providing partitions with balanced
cell sizes and small cuts [10,27,40,41]. For each level £ € {1,..., L}, the respec-
tive partition C* induces an overlay graph H*, containing all boundary vertices
and boundary arcs in C’ and shortcut arcs between boundary vertices within
each cell Cf € C*. We define C° = {{v} | v € V} and H® := G for consistency.
Building the overlay, we use the clique matrix representation, storing cliques of
boundary vertices in matrices of contiguous memory [9]. Matrix entries repre-
sent pointers to functions (whose complexity is not known until customization).
This dynamic data structure rules out some optimizations for plain CRP, such
as microcode instructions, that require preallocated ranges of memory for the
metric [9]. To improve locality, all functions are stored in a single array, such that
profiles corresponding to outgoing arcs of a boundary vertex are in contiguous
memory.

3.2 Customization

In the customization phase, costs of all shortcuts (added to the overlay graphs
during preprocessing) are computed. We run profile searches to obtain these
time-dependent costs. In particular, we require, for each boundary vertex u (in
some cell C; at level £ > 1), the time-dependent distances for all 7 € IT to all
boundary vertices v € C;. To this end, we run a profile query on the overlay H*~!.
By design, this query is restricted to subcells of Cj, i.e., cells C; on level £—1 for
which C; C C; holds. This yields profiles for all outgoing (shortcut) arcs (u,v)
in C; from w. On higher levels, previously computed overlays are used for faster
computation of shortcuts. Unfortunately, profile queries are expensive in terms
of both running time and space consumption. Below, we describe improvements
to remedy these effects, mostly by tuning the profile searches.

Improvements. The main bottleneck of profile search is performing link and
merge operations, which require linear time in the function size (cf. Sect.2). To
avoid unnecessary operations, we explicitly compute and store the minimum f™i®
and the maximum f™®* of a profile f in its corresponding label and in shortcuts

38 M. Baum et al.

of overlays. These values are used for early pruning, avoiding costly link and
merge operations: Before relaxing an arc (u, v), we check whether fmin 4 fm‘g) >
fmax i e., the minimum of the linked profile exceeds the maximum of the label
at v. If thls is the case, the arc (u,v) does not need to be relaxed. Otherwise,
the functions are linked. We distinguish four cases, depending on whether the
first or second function are constant, respectively. If both are constant, linking
becomes trivial (summing up two mtegerb) If one of them is constant, simple
shift operations suffice (we need to distinguish two cases, depending on which
of the two functions is constant). Only if no function is constant, we apply the
link operation.

After hnklng fuw) to fu, we obtain a tentative label fo together with its

minimum mm and maximum f’maLX Before merging f, and fq,, we run additional

checks to av01d unnecessary merge operations. First, we perform bound checks:
If f{)“i“ > fmaxthe function f, remains unchanged (no merge necessary). Note
that this may occur although we checked bounds before linking. Conversely, if
flmax < fmin - we simply replace f, by f,. If the checks fail, and one of the two
functions is constant, we must merge. But if f, and fv are both nonconstant,
one function might still dominate the other. To test this, we do a coordinated
linear-time sweep over the breakpoints of each function, evaluating the current
line segment at the next breakpoint of the other function. If during this test
fo(T) < fo(7) for any point (7,-), we must merge. Otherwise we can avoid the
merge operation and its numerically unstable line segment intersections.
Additionally, we use clique flags: For a vertex v, define its parents as all
direct predecessors on paths contributing to the profile at the current label of v.
For each vertex v of an overlay H’, we add a flag to its label that is true if all
parents of v belong to the same cell at level £. This flag is set to true whenever
the corresponding label f, is replaced by the tentative function f, after relaxing
a clique arc (u,v), i.e., the label is set for the first time or the label f, is
dominated by the tentative function f,. It is set to false if the vertex label is
partially improved after relaxing a boundary arc. For flagged vertices, we do
not relax outgoing clique arcs, as this cannot possibly improve labels within the
same cell (due to the triangle inequality and the fact that we use full cliques).

Parallelization. Cells on a given level are processed independently, so customiza-
tion can be parallelized naturally, assigning cells to different threads [9]. In our
scenario, however, workload is strongly correlated with the number of time-
dependent arcs in the search graph. It may differ significantly between cells: In
realistic data sets, the distribution of time-dependent arcs is clearly not uniform,
as it depends on the road type (highways vs. side roads) and the area (rural vs.
urban). To balance load, we parallelize per boundary vertex (and not per cell).

Shortcut profiles are written to dynamic containers, as the number of break-
points is not known in advance. Thus, we must prohibit parallel (writing) access
to these data structure. One way to solve this is to make use of locks. However,
this is expensive if many threads try to write profiles at the same time. Instead,
we use thread-local profile containers, i. e., each thread uses its own container to
store profiles. After customization of each level, we synchronize data by copying

Dynamic Time-Dependent Route Planning with User Preferences 39

profiles to the global container sequentially. To improve spatial locality during
queries, we maintain the relative order of profiles wrt. the matrix layout (so
profiles of adjacent vertices are likely to be contiguous in memory). Since rela-
tive order within each thread-local containers is maintained easily (by running
queries accordingly), we can use merge sort when writing profiles to the global
container.

Approximation. On higher levels of the partition, shortcuts represent larger parts
of the graph. Accordingly, they contain more breakpoints and consume more
space. This makes profile searches fail on large graphs due to insufficient mem-
ory, even on modern hardware. Moreover, running time is strongly correlated to
the complexity of profiles. To save space and time, we simplify functions dur-
ing customization. To this end, we use the algorithm of Imai and Iri [29]. For
a maximum (relative or absolute) error bound €, it computes an approxima-
tion of a given piecewise linear function with minimum number of breakpoints.
In TCH [2], this technique is applied after preprocessing to reduce space con-
sumption. Instead, we use the algorithm to simplify profiles after computing all
shortcuts of a certain level. Therefore, searches on higher levels use approxi-
mated functions from lower levels, leading to slightly less accurate profiles but
faster customization; see Sect. 4. The bound ¢ is a tuning parameter: Larger val-
ues allow faster customization, but decrease quality. Also, approximation is not
necessarily applied on all levels, but can be restricted to the higher ones. Note
that after approximating shortcuts, the triangle inequality may no longer hold
for the corresponding overlay. This is relevant when using clique flags: They yield
faster profile searches, but slightly decrease quality (additional arc relaxations
may improve shortcut bounds).

3.3 Live Traffic and Short-Term Traffic Predictions

Updates due to, e. g., live traffic, require that we rerun parts of the customization.
Clearly, we only have to run customization for affected cells, i.e., cells containing
arcs for which an update is made. We can do even better if we exploit that live
traffic and short-term updates only affect a limited time horizon. Thus, we do
not propagate updates to boundary vertices that cannot reach an affected arc
before the end of its time horizon.

We assume that short-term updates are partial functions f: [x',7"] — RT,
where ' € IT and ©” € IT are the beginning and end of the time horizon, respec-
tively. Let a; = (ug,v1),...,ar = (ug,vr) denote the updated arcs inside some
cell C; at level £, and let f1,..., fx be the corresponding partial functions repre-
senting time horizons. Moreover, let T be the current point in time. To update C;
we run, on its induced subgraph, a backward multi-target latest departure (LD)
query from the tails of all updated arcs. In other words, we initially insert the
vertices uq, . .., ux into the priority queue. For each ¢ € {1,...,k}, the label of w;
is set to 7}, i.e., the end of the time horizon [r}, 7}] of the partial function f;.
Consequently, the LD query computes, for each vertex of the cell C;, the latest
possible departure time such that some affected arc is reached before the end of

40 M. Baum et al.

its time horizon. Whenever the search reaches a boundary vertex of the cell, it
is marked as affected by the update. We stop the search as soon as the depar-
ture time label of the current vertex is below 7. (Recall that LD visits vertices in
decreasing order of departure time.) Thereby, we ensure that only such boundary
vertices are marked from which an updated arc can be reached in time.
Afterwards, we run profile searches for C; as in regular customization, but
only from affected vertices. For profiles obtained during the searches, we test
whether they improve the corresponding stored shortcut profile. If so, we add
the affected interval of the profile for which a change occurs to the set of time
horizons of the next level. If shortcuts are approximations, we test whether the
change is significant, i.e., the maximum difference between the profiles exceeds
some bound. We continue the update process on the next level accordingly.

3.4 Queries

The query algorithm makes use of shortcuts computed during customization
to reduce the search space. Given a source s and a target ¢, the search graph
consists of the overlay graph induced by the top-level partition C¥, all overlays
of cells of lower levels containing s or ¢, and the level-0 cells in the input graph G
that contain s or t. Note that the search graph does not have to be constructed
explicitly, but can be obtained on-the-fly [9]: At each vertex v, one computes the
highest levels ¢, , and ¢, ; of the partition such that v is not in the same cell
of the partition as s or ¢, respectively (or 0, if v is in the same level-1 cell as s
or t). Then, one relaxes outgoing arcs of v only at level min{¢s,, ¢, :} (recall
that H° = Q).

To answer EA queries, we run TD-Dijkstra on this search graph. For faster

min

queries, we make use of the minimum values f(uw) stored at arcs: We do not
relax an arc (u,v) if d(u) + fgi‘g) does not improve d(v). Thereby, we avoid
costly function evaluation. Note that we do not use clique flags for EA queries,
since we have observed rare but high maximum errors in our implementation
when combined with approximated clique profiles.

To answer profile queries, Profile-Dijkstra can be run on the CRP search
graph, using the same optimizations as described in Sect. 3.2.

4 Experiments

We implemented all algorithms in C++ using g++ 4.8 (flag -O3) as compiler.
Experiments were conducted on a dual 8-core Intel Xeon E5-2670 clocked at
2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of .3 and 256 KiB of 1.2 cache.
We ran customization in parallel (using all 16 threads) and queries sequentially.

Input Data and Methodology. Our main test instance is the road network of
Western Europe (|V| = 18 million, |A| = 42.2 million), kindly provided
by PTV AG. For this well-established benchmark instance [1], travel time func-
tions were generated synthetically [37]. We also evaluate the subnetwork of

Dynamic Time-Dependent Route Planning with User Preferences 41

Table 1. Customization performance on Europe for varying approximation parame-
ters (¢). We report, per level, the number of breakpoints (bps, in millions) in the
resulting overlay, the percentage of clique arcs that are time-dependent (td.clg.arcs),
average complexity of time-dependent arcs (td.arc.cplx), as well as customization time.
Without approximation, Levels 5 and 6 cannot be computed as they do not fit into
main memory.

€ Lvll |Lvl2 Lvl3 |Lvl4 |Lvl5 |Lvl6 | Total

— [bps [10 99.1 | 398.4]816.4(1363.4] — —|2677.4
td.clq.arcs [%] | 17.0 | 52.6| 76.0 84.2 — — —
td.arc.cplx 21.0 | 68.9/189.0| 509.3 — — —
time [s] 11.4 | 52.0]152.9 | 206.2 — — | 375.7
0.01 % | bps [106] 75.7 | 182.7|244.6| 240.8|149.3| 59.2 | 952.2
td.clq.arcs [%] | 17.0 | 52.6| 76.0 84.2| 85.2| 825 —
td.arc.cplx 16.0 | 31.6| 56.6| 90.0|108.6|108.0 —
time [s] 4.5 | 18.0| 32.7 82.1]150.3|151.5| 439.1
0.1% |bps [10°%] 60.7 | 107.5 | 111.5 87.9| 479 17.6| 4329
td.clg.arcs [%] | 17.0 | 52.7| 76.0| 84.2| 85.2| 82.5 —
td.arc.cplx 12.9 | 18.6| 25.8 32.8| 34.8] 321 —

time [s] 4.2] 16.0| 214 40.7| 62.4| 55.0| 199.7
1.0% | bps [10°] 45.7| 580 456 292 147 54| 1985
td.clq.arcs [%] | 17.0 | 52.7| 76.0 84.2| 85.2| 825 —
td.arc.cplx 9.7 | 10.0| 10.6 10.9| 10.7| 9.8 —
time [s] 4.1 14.1| 14.8 227 29.6| 24.1| 109.2

Germany (|V| = 4.7 million, |A|] = 10.8 million), where time-dependent data
from historical traffic is available (we extract the 24 h profile of a Tuesday).! For
partitioning, we use PUNCH [10], which is explicitly developed for road networks
and aims at minimizing the number of boundary arcs. For Europe, we consider
a 6-level partition, with maximum cell sizes 214:8:11:14:17:20] 'For Germany, we use
a b-level partition, with cell sizes of 2[4:8:12:15:18] " Compared to plain CRP, we
use partitions with more levels, to allow fine-grained approximation. Computing
the partition took 5min for Germany, and 23 min for Europe. Given that road
topology changes rarely, this is sufficiently fast in practice.

Evaluating Customization. Table1 details customization for different approx-
imation parameters € on the Europe instance. We report, for several choices
of € and for each level of the partition, figures on the complexity of shortcuts
in the overlays and the parallelized customization time. The first block shows
figures for exact profile computation. Customization had to be aborted after the
fourth level, because the 64 GiB of main memory were not sufficient to store

! The Germany and Europe instances can be obtained easily for scientific purposes,
see http://il1www.iti.uni-karlsruhe.de/resources/roadgraphs.php.

http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php

42 M. Baum et al.

Table 2. Query performance on Europe as a trade-off between customization effort
and approximation. For customization, we set different approximation parameters (¢)
and disable (o) or enable (e) clique flags (Cl.). For the different settings, we report
query performance in terms of number of vertices extracted from the queue, scanned
arcs, evaluated function breakpoints (# Bps), running time, and average and maximum
error, each averaged over 100000 random queries. As we employ approximation per
level, resulting query errors can be higher than the input parameter.

Customization Query
Approx. € | Cl. | Time [s] | # Vertices | # Arcs| # Bps | Time [ms] | Err. [%)]
avg. | max.
0.01%| o 1155.1 3499 | 541091 | 433698 14.69 | <0.01| 0.03
001%| e 439.1 3499 | 541090 | 434 704 14.53 1 <0.01| 0.03
0.10%| o 533.0 3499 | 541088 | 96206 7.63| 0.04] 0.28
0.10%| e 199.7 3499 | 541088 | 99345 6.47| 0.04| 0.29
1.00%| o 284.4 3499 541080 | 67084 5.66| 0.51| 3.15
1.00% | e 109.2 3499 | 541058 | 70202 5.75| 0.54| 3.21

the profiles of all vertex labels. For remaining levels, we clearly see the strong
increase in the total number of breakpoints per level. Also, the relative amount
of time-dependent arcs rises with each level, since shortcuts become longer. Cus-
tomization time clearly correlates with profile complexity, from 10s on the lowest
level, to more then three minutes on the fourth. When approximating, we see
that customization becomes faster for larger values of €. We apply approxima-
tion to all levels of the partition (using it only on the topmost levels did not
provide significant benefits in preliminary experiments). Recall that higher lev-
els work on approximated shortcuts of previous levels, so ¢ does not provide
a bound on the error of the shortcuts. We see that even a very small value
(0.01%) yields a massive drop of profile complexity (more than a factor 5 at
Level 4), and immediately allows full customization. For reasonably small values
(e =0.1%,e =1.0%), we see that customization becomes much faster (less than
two minutes for ¢ = 1.0 %). In particular, this is fast enough for traffic updates.
Even for larger values of ¢, the higher levels are far more expensive: This is due
to the increasing amount of time-dependent arcs, slowing down profile search.

Evaluating Customization and Queries. In Table 2, we show query performance
for different values of the approximation parameter € on the Europe instance.
We also show the effect of using clique flags during customization: they improve
customization performance by about a factor of 2.6, while having a negligible
influence on query results. For each value of €, we report timings as well as aver-
age and maximum error for 100000 point-to-point queries. For each query, the
source and target vertex and the departure time were picked uniformly at ran-
dom. Similar to customization, the data shows that query times decrease with
higher approximation ratio. Again, this is due to the smaller number of break-

Dynamic Time-Dependent Route Planning with User Preferences 43

Table 3. Robustness comparison for TCH [2] and TDCRP. For different input
instances, we report timing of metric-dependent preprocessing (always run on 16 cores)
and sequential queries. Query times are averaged over the same 100 000 random queries
as in Table 2.

Network TCH TDCRP

Prepro. [s] | Query [ms] | Custom. [s] | Query [ms]
Europe 1479 1.37 109 5.75
Europe, bad traffic 7772 5.87 208 8.01
Europe, avoid highways 8956 19.54 127 8.29

points in profiles (observe that the number of visited vertices and arcs is almost
identical in all cases). As expected, both average and maximum error clearly
correlate with (but are larger than) €. There are two reasons for this: As shown
in [24,32,35], query errors not only depend on & but also on the maximum slope
of any approximated function. Moreover, since we apply approximation per level,
the error bound in [24] applies recursively, leading to a higher theoretical bound.
Still, we observe that even for the parameter choice ¢ = 1.0 %, the maximum
error is very low (about 3 %). Moreover, query times are quite practical for all
values of €, ranging from 5ms to 15 ms. In summary, our approach allows query
times that are fast enough for interactive applications, if a reasonable, small
error is allowed. Given that input functions are based on statistical input with
inherent inaccuracy, the error of TDCRP is more than acceptable for realistic
applications.

Evaluating Robustness. We also evaluate robustness of our approach against
dynamic updates and user-dependent custom metrics. The first scenario (bad
traffic) simulates a highly congested graph: for every time-dependent arc in the
Western Europe instance with associated travel-time function f, we replace f
by f' defined as f/(7) := 2(f(7) — f™(7)) + f™"(7), while maintaining the
FIFO property on f’. In the second scenario, we consider user restrictions (avoid
highways). For each scenario, customization and the same set of 100000 random
queries as before are run on the respective modified instance. (Hence, we do
not remove highways for the second scenario, setting very high costs instead.)
Table 3 compares results of the original instance (Europe) to the modified ones.

Besides our approach, which is run using parameter ¢ = 1.0 for customization,
we also evaluate TCH [2], the fastest known approach for time-dependent route
planning. All measurements for TCH are based on this freely available imple-
mentation: https://github.com/GVeitBatz/KaTCH. While TCH allows faster
queries on the original instance, we see that running times increase significantly
for the modified ones. Preprocessing time also increases to several hours in both
cases. In the first scenario (bad traffic), this can be explained by a larger number
of paths that are relevant at different points in time (more congested roads need
to be bypassed). Consequently, customization time of TDCRP rises as well but
by a much smaller factor. In the second scenario (avoid highways), the TCH hier-

https://github.com/GVeitBatz/KaTCH

44 M. Baum et al.

archy clearly deteriorates. While TDCRP is quite robust to this change (both
customization and query times increase by less than 50 %), TCH queries slow
down by more than an order of magnitude.

While possibly subject to implementation, our experiment indicates that
underlying vertex orderings of TCH are not robust against less well-behaved
metrics. Similar effects can be shown for scalar Contraction Hierarchies (CH)
on metrics reflecting, e. g., travel distance [9,25]. In summary, TDCRP is much
more robust in both scenarios.

Comparison with Related Work. Finally, Table 4 provides an overview comparing
our results to the most relevant existing approaches for time-dependent route
planning. For the related work, we show measurements in the fastest reported
variant (e.g., if parallelized) but we scale all timings to our hardware as detailed
in Table 5 using a benchmark tool [1] available at http://tpajor.com/projects/.

For TCH and ATCH [2], preprocessing can be further split into node order
computation and contraction. Since it has been shown in [2] that node orders can
be re-used for certain other metrics (e. g., other week days), we report running
times of the contraction as rudimentary customization times. Recall, however,
that our robustness tests in Table 3 suggest that there is a limit to the applica-
bility of such a customization approach based on current TCH orders.

We evaluated our approach on both benchmark instances (Germany, and
Europe) for the two fastest variants (¢ = 0.1 and € = 1.0) and we see that it
competes very well with the previous techniques: While providing query times
similar to the fastest existing approaches, TDCRP has by far the lowest metric-
dependent preprocessing time (i.e., customization time) and a good parallel
speedup (factor 13.9 to 14.2 on Europe for 16 threads). At the same time,
resulting average and maximum errors (due to approximating profiles during
customization) are similar to previous results and low enough for practical pur-
poses. When parallelized, customization of the whole network is fast enough for
regular live-traffic updates: 8 to 16s on Germany, and 2 to 3min on Europe.
Note, however, that other approaches are also able to handle live traffic by pro-
viding partial updates of the preprocessed data: For example, by exploiting the
fact that effects of live traffic are locally and temporally limited, FLAT [32]) and
TDCALT [11] achieve partial update times in well below a minute (for 1,000
traffic-affected arcs).

Interestingly, TDCALT’s preprocessing is also quite fast. This could make
it an interesting alternative candidate for our scenario (metric customization);
since it is mostly based on lower bounds and only light contraction, it might
also be fairly robust to sensible, user-defined metrics (unlike TCH, cf. Table 3).
Note, however, that TDCALT on Europe requires a significantly higher approx-
imation to achieve a similar level of query performance (even scaled), yielding
a high maximum error. Furthermore, in the evaluated variant, landmarks are
chosen after the graph contraction routine, making it hard to parallelize the pre-
processing (which also has not been attempted). Additionally, TDCALT allows
no practical profile search on large instances [8,11], making it a less versatile
approach.

http://tpajor.com/projects/

45

Dynamic Time-Dependent Route Planning with User Preferences

12°¢ 790|949 8GO TPS|66V € |6F°T |€€T | 91:GC|6¥-T |c€ €e:cc |91 adomy (0'T) JUDAL
6¢°0 [PO'0|LV'9 |8801VG66VE |0C€ |LEC |0T:LV|0C€ |CE €€:ce |91 odomyg| (1°0) JHOAL
LE°€ 87'0[CL'C |8¥69C |GL8T | — GLT |L0:8¥%|9C:L |GLT 1e:cy |8 adomygy| (G'g) HOL "xout
GT'0 |¢0°0/09°C |68€¥C |CCLT | — 6€C |L0:8¥|9¢:L |6€C 1c:cy |8 adomg | (1°0) HOL Xout
— |— [89°C |9¢€0C |€CC T | — 80¢ |L0:8¥%|9¢:L |80C 1c:cy |8 adomy (0T) HOLV
09T [B/W 90T [TTF8 [1€0C — — = | a1 80:6G:L|T adomgy OYVHS 1eq
— |7/ |LLET|C8E 99T|68C 8T |— — |=— |— 861 L0:L.2°C|T adomy| DYYHS-T 090
69'8 9¢°0|1€°€ |6TLC0E 99€9 [¢¢0 — |— | — |19 ge 1T |1 adomy T IM-TITVOAL
v6'¢ |10°0/87°Cg|e/u govce |0 |— — |— |19 ge1C |1 odomy|GO TI-LTVOAL
— |/ |L9°€¥|Lce99€|19609 [cc0 | — | — | — |19 GeI1e |1 adomgy LTIVOdL
G8°C 89°0/99°T |S0€L9T|CSTC (800 |LL €V-T 80:0 |6¢ gev |91 [Auwewen (01) JUDAL
G%'0 |S0°0C6'T |€9¢L9T\2STC (9T:0 99T |0€:€ |9T:0 |6C gey 91 Awewwn (1°0) JUDAL
€47 B/ TGT ®/u ZgIT FF0 | — | — | — 00001</4AepI<l9 Awewon YOI/ IVIA
¥¥'C |64°0/L9°0 |6V L [899 — CLT 699 |60:T |CLT 0g'¢ |8 |Auwewtwdd (¢'7) HOL Xoul
0T°0 |20°0/99°0 [8E€TL |2¥9 — 98¢ 1699 60T |98¢ 0g'¢ |8 |Auwewd (1°0) HOL Xout
— | GI'T €66L 88 | — 6€C [6%:9 60T 6ec |0%:¢ |8 |Auwewwod (0'T) HOLV
19°0 ®/w|Gg’0 [TI9T |18 — — = |/ LT 90:F1:T|T |Aueution OYVHS teq
— |/ |L&'C |S006T 9LLT |— — |— |— |6I¢C €0:87 |1 |[Auewen DYVYHS-T 099
P8'€T/S0°0L90 6€€S |€6GT ®/u | — | — | — |0¢g yre |1 [Auewen e TM-ITVOAL
— 7\ €61 |GGTel 06T€ ®/u | — | — — 0¢ v |1 |[Aueunen LTIVOdL
.xﬁi.m\é [sw] [swa] ([u/g] |[sw] |[stw]|[u/g] |[s:uny]
[9] "1 'Dag [soxy #)10\ #|'Teq |eovdg|'beg |‘reJg leoedg |'Teg
souoN() yofoely,| uorjeziwoysn))| Sursseoordord| Iy, “Jsufy wWyLI0S[y

"I0LI9 SATIR[OI WNWIXRUW PUR 9FRISAR PUR ‘SPUOISSI[[IU Ul S} SUIUUNI [eIjusnbas ‘sore
poutress ‘()10 #) suoljorIlxe onanb uo siequnu afeiose Juesald om ‘sorrenb yif 10, “(*IY],) POs SPeaIl[) JO IoqUINU oY) MOYS om ‘sojepdn
OTJRI) 9AI[pUR ‘UOTjeZIWIO)SNO ‘Bulsseooldaid 10 'S1090r] I0J GO[qR], 99s foulypeur o o) s3urun) ("red) [o[ered pue (‘beg) rerjuenbes e

o[BS oM ‘DIempIRY JULIPIP ssome Ayiqeredwod 103194 104 "JYDAL Pue ‘[z€] IvTId ‘[¢] HOLV pue HOL ‘[8] DUVHS ‘[11] ITVOdL
Jo syuerrea 10j sein3y juesald opp odoing pue ‘Aueurior) jo seoue)sul uo senbrurpe) dnpeads juepuadep-owry jo uostredwio)) *F o[qer,

46 M. Baum et al.

Table 5. Scaling factors for different machines, used in Table 4. Scores were determined
by a shared Dijkstra implementation [1] on the same graph. These factors have to
be taken with a grain of salt, since Dijkstra’s algorithm is not a good indicator of
cache performance. When scaling on TDCRP performance, instead, we observe a factor
of 2.06-2.18 for the Opteron 2218 (which we have access to), depending on the instance.

Machine Used by Score [ms]|Factor
2x 8-core Intel Xeon E5-2670, 2.6 GHz| TDCRP 36 582 —
AMD Opteron 2218, 2.6 GHz TDCALT [11], SHARC [8] 101552 2.78
2x 4-core Intel Xeon X5550, 2.66 GHz TCH, ATCH [2] 39684| 1.08
6-core Intel Xeon E5-2643v3, 3.4 Ghz |FLAT/FCA [32] 30901 0.84

To summarize, we see that TDCRP clearly broadens the state-of-the-art of
time-dependent route planning, handling a wider range of practical requirements
(e. g., fast metric-dependent preprocessing, robustness to user preferences, live
traffic) with a query performance close to the fastest known approaches.

5 Conclusion

In this work, we introduced TDCRP, a separator-based overlay approach for
dynamic, time-dependent route planning. We showed that, unlike its closest com-
petitor (A)TCH, it is robust against user-dependent metric changes, very much
like CRP is more robust than CH. Most importantly, unlike scalar CRP, we
have to deal with time-dependent shortcuts, and a strong increase in functional
complexity on higher levels; To reduce memory consumption, we approximate
the overlay arcs at each level, accelerating customization and query times. As
a result, we obtain an approach that enables fast near-optimal, time-dependent
queries, with quick integration of user preferences, live traffic, and traffic predic-
tions.

There are several aspects of future work. Naturally, we are interested in
alternative customization approaches that avoid label-correcting profile searches.
This could be achieved, e.g., by using kinetic data structures [23], or balanced
contraction [2] within cells. It would be interesting to re-evaluate (A)TCH in
light of Customizable CH [16,17]. Also, while we customized time-dependent
overlay arcs with both historic travel time functions (changes seldom) and user
preferences (changes often) at once, in practice, it might pay off to separate this
into two further phases (yielding a 4-phase approach). Furthermore, one could
aim at exact queries based on approximated shortcuts as in ATCH.

While our approach is customizable, it requires arc cost functions that map
time to time. This allows to model avoidance of highways or driving slower than
the speed limit, but it cannot handle combined linear optimization of (time-
dependent) travel time and, e. g., toll costs. For that, one should investigate the
application of generalized time-dependent objective functions as proposed in [3].

Dynamic Time-Dependent Route Planning with User Preferences 47

Finally, functional complexity growth of time-dependent shortcuts is prob-
lematic, and from what we have seen, it is much stronger than the increase in the
number of corresponding paths. It seems wasteful to apply the heavy machinery
of linking and merging during preprocessing, when time-dependent evaluation
of just a few paths (more than one is generally needed) would give the same
results. This might explain why TDCALT, which is mostly based just on scalar
lower bounds, is surprisingly competitive. So re-evaluation seems fruitful, possi-
bly exploiting insights from [20]. Revisiting hierarchical preprocessing techniques
that are not based on shortcuts [26,36] could also be interesting.

Acknowledgements. We thank Gernot Veit Batz, Daniel Delling, Moritz Kobitzsch,
Felix Konig, Spyros Kontogiannis, and Ben Strasser for interesting conversations.

References

1. Bast, H., Delling, D., Goldberg, A.V., Miiller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. CoRR
abs/1504.05140 (2015)

2. Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent
travel times with contraction hierarchies. ACM J. Exp. Algorithmics 18(1.4), 1-43
(2013)

3. Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective
functions. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 169—
180. Springer, Heidelberg (2012)

4. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contrac-
tion hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 93—104. Springer, Heidelberg (2013)

5. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric
vehicles. In: SIGSPATTAL 2013, pp. 54-63. ACM Press (2013)

6. Cooke, K., Halsey, E.: The shortest route through a network with time-dependent
internodal transit times. J. Math. Anal. Appl. 14(3), 493-498 (1966)

7. Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with

waiting policies. Networks 44(1), 41-46 (2004)

Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60-94 (2011)

9. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning
in road networks. Transport. Sci. (2015)

10. Delling, D., Goldberg, A.V., Razenshteyn, 1., Werneck, R.F.: Graph partitioning
with natural cuts. In: IPDPS 2011, pp. 1135-1146. IEEE Computer Society (2011)

11. Delling, D., Nannicini, G.: Core routing on dynamic time-dependent road networks.
Informs J. Comput. 24(2), 187-201 (2012)

12. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52-65. Springer, Heidelberg
(2007)

13. Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K.,
Mohring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimiza-
tion. LNCS, vol. 5868, pp. 207-230. Springer, Heidelberg (2009)

14. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: A case for time-dependent short-
est path computation in spatial networks. In: SIGSPATIAL 2010, pp. 474-477.
ACM Press (2010)

®

48

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

M. Baum et al.

Diamantopoulos, T., Kehagias, D., Konig, F., Tzovaras, D.: Investigating the effect
of global metrics in travel time forecasting. In: ITSC 2013, pp. 412-417. IEEE
(2013)

Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271-282.
Springer, Heidelberg (2014)

Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. J. Exp.
Algorithmics. 21(1), 1.5:1-1.5:49 (2016). doi:10.1145/2886843

Dijkstra, E:W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269271 (1959)

Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3),
395-412 (1969)

Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing.
In: IWCTS 2013, pp. 25:25-25:30. ACM Press (2013)

Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. a unified framework for all shortest-
path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol.
9125, pp. 298-311. Springer, Heidelberg (2015)

Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an
algorithmic lens. In: SIGSPATIAL 2008, pp. 16:1-16:10. ACM Press (2008)
Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent short-
est paths. Algorithmica 68(4), 1075-1097 (2014)

Geisberger, R., Sanders, P.: Engineering time-dependent many-to-many shortest
paths computation. In: ATMOS 2010, pp. 74-87. OASIcs (2010)

Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388—404 (2012)
Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: ALENEX 2004, pp. 100-111. STAM (2004)
Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: ALENEX
2016, pp. 90-102. SIAM (2016)

Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for
shortest-path queries. ACM J. Exp. Algorithmics 13(2.5), 1-26 (2008)

Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear func-
tion. J. Inf. Process. 9(3), 159-162 (1986)

Jung, S., Pramanik, S.: An efficient path computation model for hierarchically
structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029—
1046 (2002)

Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wag-
ner, D., Zaroliagis, C.: Analysis and experimental evaluation of time-dependent
distance oracles. In: ALENEX 2015, pp. 147-158. SIAM (2015)

Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wag-
ner, D., Zaroliagis, C.: Engineering oracles for time-dependent road networks. In:
ALENEX 2016, pp. 1-14. STAM (2016)

Kontogiannis, S., Wagner, D., Zaroliagis, C.: Hierarchical Oracles for Time-
Dependent Networks. CoRR abs/1502.05222 (2015)

Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 713-725. Springer, Heidelberg (2014)

Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks.
Algorithmica 74(4), 1404-1434 (2015)

Maervoet, J., Causmaecker, P.D., Berghe, G.V.: Fast approximation of reach hier-
archies in networks. In: SIGSPATTAL 2014, pp. 441-444. ACM Press (2014)

http://dx.doi.org/10.1145/2886843

37.

38.

39.

40.

41.

42.

Dynamic Time-Dependent Route Planning with User Preferences 49

Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* search on
time-dependent road networks. Networks 59, 240-251 (2012)

Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks with
time-dependent edge-length. J. ACM 37(3), 607625 (1990)

Pfoser, D., Brakatsoulas, S., Brosch, P., Umlauft, M., Tryfona, N., Tsironis, G.:
Dynamic travel time provision for road networks. In: SIGSPATTAL 2008, pp. 68:1—
68:4. ACM Press (2008)

Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX
2012, pp. 16-29. STAM (2012)

Schild, A., Sommer, C.: On balanced separators in road networks. In: Bampis, E.
(ed.) SEA 2015. LNCS, vol. 9125, pp. 286-297. Springer, Heidelberg (2015)
Sherali, H.D., Ozbay, K., Subramanian, S.: The time-dependent shortest pair of
disjoint paths problem: complexity, models, and algorithms. Networks 31(4), 259—
272 (1998)

UKP5: A New Algorithm for the Unbounded
Knapsack Problem

Henrique Becker®™) and Luciana S. Buriol

Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
{hbecker ,buriol}@inf.ufrgs.br
http://ppgc.inf.ufrgs.br/

Abstract. In this paper we present UKP5, a novel algorithm for solving
the unbounded knapsack problem. UKP5 is based on dynamic program-
ming, but implemented in a non traditional way: instead of looking back-
ward for stored values of subproblems, it stores incremental lower bounds
forward. UKP5 uses sparsity, periodicity, and dominance for speeding up
computation. UKP5 is considerably simpler than EDUK2, the state-of-
the-art algorithm for solving the problem. Moreover, it can be naturally
implemented using the imperative paradigm, differently from EDUK2.
We run UKP5 and EDUK2 on a benchmark of hard instances pro-
posed by the authors of EDUK2. The benchmark is composed by 4540
instances, divided into five classes, with instances ranging from small
to large inside each class. Speedups were calculated for each class, and
the overall speedup was calculated as the classes speedups average. The
experimental results reveal that UKP5 outperforms EDUK2, being 47
times faster on the overall average.

Keywords: Unbounded knapsack problem - Dynamic programming -
Combinatorial optimization

1 Introduction

The unbounded knapsack problem (UKP) is a simpler variation of the well-
known bounded knapsack problem (BKP). UKP allows the allocation of an
unbounded quantity of each item type. The UKP is NP-Hard, and thus has
no known polynomial-time algorithm for solving it. However, it can be solved
by a pseudo-polynomial dynamic programming algorithm. UKP arises in real
world problems mainly as a subproblem of the Bin Packing Problem (BPP) and
Cutting Stock Problem (CSP). Both BPP and CSP are of great importance for
the industry [3], [5,6]. The currently fastest known solver for BPP/CSP [2,3]
uses a column generation technique (introduced in [5]) that needs to solve an
UKP instance as the pricing problem at each iteration of a column generation
approach. The need for efficient algorithms for solving the UKP is fundamental
for the overall performance of the column generation.

Two techniques are often used for solving UKP: dynamic programming (DP)
[1], [4, p- 214], [7, p. 311] and branch and bound (B&B) [10]. The DP approach

© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 50-62, 2016.
DOI: 10.1007/978-3-319-38851-9_4

UKP5: A New Algorithm for the UKP 51

has a stable pseudo-polynomial time algorithm linear on the capacity and num-
ber of items. The B&B approach can be less stable. It can be faster than DP on
instances with some characteristics, such as when the remainder of the division
between the weight of the best item by the capacity is small; or the items have a
big efficiency variance. Nonetheless, B&B has always the risk of an exponential
time worst case.

The state-of-the-art solver for the UKP, introduced by [12], is a hybrid solver
that combines DP and B&B. It tries to solve the problem by B&B, and if this
fails to solve the problem quickly, it switches to DP using some data gathered
by the B&B to speed up the process. The solver’s name is PYAsUKP, and it is
an implementation of the EDUK2 algorithm.

1.1 UKP Formal Notation

The following notation of the UKP will be used for the remainder of the paper.
An UKP instance is composed by a capacity ¢, and a list of n items. Each item
can be referenced by its index in the item list ¢ € {1...n}. Each item ¢ has a
weight value w;, and a profit value p;. A solution is an item multiset, i.e., a set
that allows multiple copies of the same element. The sum of the items weight, or
profit, of a solution s is denoted by wy, or ps. A valid solution s has wy < ¢. An
optimal solution s* is a valid solution with the greatest profit among all valid
solutions. The UKP objective is to find an optimal solution for the given UKP
instance. The mathematical formulation of UKP is:

n

mazimize Zpixi (1)
i=1
n

subject tonixi <c (2)
i=1

x; € Ny (3)

The quantities of each item 4 in an optimal solution are denoted by xz;, and
are restricted to the non-negative integers, as (3) indicates. We assume that the
capacity ¢, the quantity of items n and the weights of the items w; are positive
integers. The profits of the items p; are positive real numbers.

The efficiency of an item ¢ is the ratio %, and is denoted by e;. We use
Winin aNd Wyqe 10 denote the smallest item weight, and the biggest item weight,
respectively. Also, we refer to the item with the lowest weight among the ones
tied with the greatest efficiency as the best item, and the item with the lowest
weight among all items as the smallest item. If two or more items have the same
weight we consider only the one with the best profit (the others can be discarded
without loss to the optimal solution value); if they have the same weight and
profit we consider them the same item.

52 H. Becker and L.S. Buriol

1.2 Dominance

Dominance, in the UKP context, is a technique for discarding items without
affecting the optimal solution value. By this definition, every item that isn’t used
in an optimal solution could be discarded, but this would need the knowledge
of the solution beforehand. Some dominances can be verified in polynomial time
over n, and can speed up the resolution of an NP-Hard problem by reducing
the instance input size. Instances where many items can be excluded by the two
simplest dominances (simple dominance and multiple dominance) are known as
“easy” instances. Research on these two dominances was done to a large extent,
leading to the following statement by Pisinger in 1995 “[...] perhaps too much
effort has previously been used on the solution of easy data instances.” [11, p. 20].

Other two important dominances are collective dominance and threshold
dominance [12]. These two dominances are too time demanding to be applied at
a preprocessing phase, differently from simple and multiple dominances. They
are often integrated in the UKP algorithm, and remove items while the algorithm
executes. The collective dominance needs to know the opt(y) to exclude an item i
with w; = y, where opt(y) is the optimal solution value for a capacity y. The
threshold dominance needs to know the opt(a x w;) to exclude the item ¢ from
capacity y = a X w; onwards, where « is any positive integer.

1.3 Periodicity

A periodicity bound y is an upper capacity bound for the existence of optimal
solutions without the best item. In another words, it’s a guarantee that any
optimal solution for an instance where ¢ > y has at least one copy of the best
item. The periodicity bound is specially useful because it can be applied repeat-
edly. For example, let ¢ = 1000, y = 800 and w;, = 25 where b is the best item;
because of ¢ > y we know that any optimal solution has a copy of b, so we can
add one b to the solution and combine with an optimal solution for ¢ = 975;
but 975 is yet bigger than 800, so we can repeat the process until ¢ = 775. This
way, for any UKP instance where ¢ < y we can reduce the instance capacity by
maz(1, [(c—y*)/wy]) X wp. After solving this instance with reduced capacity we
can add maz(1, [(¢ — y*)/wy]) copies of b to the optimal solution to obtain an
optimal solution for the original instance.

There exist many proposed periodicity bounds, but some are time consuming
(as O(n?) [8]), others depend on specific instance characteristics (as [9][12]).
We used only a UKP5-specific periodicity bound described later and the y*
bound described in [4, p. 223]. The y* is O(1) on an item list ordered by non-
increasing efficiency, and it is generic, being successfully applied on instances of
most classes. Assuming ¢ is the best item, and j is the second most efficient item,

then y* = p;/(e; —e;).

1.4 Sparsity

For some UKP instances, not every non-zero capacity value can be obtained by
a linear combination of the items weight. If w,,;, is small, for example wy,;, = 1,

UKP5: A New Algorithm for the UKP 53

we have the guarantee that every non-zero capacity has at least one solution with
weight equal to the capacity value. But if w,y;, is big, for example w,y,i, = 104,
there can be a large number of capacities with no solution comprising weight
equal to the capacity. These capacities have an optimal solution that don’t fill
the capacity completely. The UKP5 exploits sparsity in the sense that it avoids
computing the optimal solution value for those unfulfilled capacities. The array
that stores the optimal solutions value is, therefore, sparse.

2 UKPS5: The Proposed Algorithm

UKPS5 is inspired by the DP algorithm described by Garfinkel [4, p. 221]. The
name “UKP5” is due to five improvements applied over that algorithm:

1. Symmetry pruning: symmetric solutions are pruned in a more efficient
fashion than in [4];

2. Sparsity: not every position of the optimal solutions value array has to be

computed;

Dominated solutions pruning: dominated solutions are pruned;

4. Time/memory tradeoff: the test w; < y from the algorithm in [4] was
removed in cost of more O(w,,q,) memory;

5. Periodicity: the periodicity check suggested in [4] (but not implemented
there) was adapted and implemented.

©w

A pseudocode of our algorithm is presented in Algorithm 1. We have two
main data structures, the arrays g and d, both with dimension ¢+ wy,q,. The g
is a sparse array where we store solutions profit. If g[y] > 0 then there exists a
non-empty solution s with ws = y and ps = g[y]. The d array stores the index
of the last item used on a solution. If g[y] > 0 Ad[y] = ¢ then the solution s with
ws =y and ps; = g[y] has at least one copy of item 4. This array makes it trivial
to recover the optimal solution, but its main use is to prune solution symmetry.

Our first loop (lines 4 to 9) simply stores all solutions comprised of a single
item in the arrays g and d. For a moment, let’s ignore lines 12 to 14, and replace
d[y] (at line 16) by n. With these changes, the second loop (between lines 11
and 22) iterates g and when it finds a stored solution (g[y] > 0) it tests n new
solutions (the combinations of the current solution with every item). The new
solutions are stored at g and d, replacing solutions already stored if the new
solution has the same weight but a greater profit value.

When we add the lines 12 to 14 to the algorithm, it stops creating new
solutions from dominated solutions. If a solution s with a smaller weight (ws < y)
has a bigger profit (ps = opt > p;, where w; = y Ap; = g[y]), then s dominates t.
If a solution s dominates ¢ then, for any item ¢, the sN{i} solution will dominate
the ¢ N {i} solution. This way, new solutions created from ¢ are guaranteed to
be dominated by the solutions created from s. A whole superset of ¢ can be
discarded without loss to solution optimality.

The change from n to d[y] is based on the algorithm from [4] and it prunes
symmetric solutions. In a naive DP algorithm, if the item multiset {5,3,3} is a

54 H. Becker and L.S. Buriol

Algorithm 1. UKP5 — Computation of opt

1: procedure UKP5(n, ¢, w, p, Wmin, Wmaz)

2: g «— array of ¢ + wmae positions each one initialized with 0
3: d < array of ¢ + wmaz positions each one initialized with n
4: for i — 1,n do > Stores one-item solutions
5: if glw;] < p; then
6: glwi] < pi
7: dw;] — 1
8: end if
9: end for
10: opt — 0
11: for y «— wpin,c do > Can end early because of periodicity check
12: if g[y] < opt then > Handles sparsity and pruning of dominated solutions
13: continue > Ends current iteration and begins the next
14: end if
15: opt — g[y]
16: for i = 1,d[y] do > Creates new solutions (never symmetric)
17: if gly + ws] < gly] + p; then
18: gly + wi] — gly] + ps
19: dly +w;] — @
20: end if
21: end for
22: end for
23: return opt

24: end procedure

valid solution, then every permutation of it is reached in different ways, wast-
ing processing time. To avoid computing symmetric solutions, we enforce non-
increasing order of the items index. Any item inserted on a solution s has an
index that is equal to or lower than the index of the last item inserted on s. This
way, solution {10,3,5,3} cannot be reached. However, this is not a problem
because this solution is equal to {10,5,3, 3}, and this solution can be reached.

When the two changes are combined, and the items are sorted by non-
increasing efficiency, UKP5 gains in performance. The UKP5 iterates by the
item list only when it finds a non-dominated solution, i.e., gly] > 0 (line 12).
Non-dominated solutions are more efficient (larger ratio of profit by weight) than
the skipped dominated solutions. Therefore, the UKP5 inner loop (lines 16 to
21) often iterates up to a low d[y] value. Experimental results show that, after
some threshold capacity, the UKP5 inner loop consistently iterates only for a
small fraction of the item list.

The algorithm ends with the optimal solution stored at opt. The solution
assemble phase isn’t described in Algorithm 1, but it’s similar to the one used
by the DP method described in [4, p. 221, Steps 6-8]. Let y,p: be a capacity
where glyop:] = opt. We add a copy of item ¢ = d[yop¢| to the solution, then we
add a copy of item j = d[yopt — w;], and so on, until d[0] is reached. This phase

UKP5: A New Algorithm for the UKP 55

has a O(c) time complexity, as the solution can be composed of ¢ copies of an
item ¢ with w; = 1.

A Note About UKP5 Performance. In the computational results section we
will show that UKP5 outperforms PYAsUKP in about two orders of magnitude.
We grant the majority of the algorithm performance to the ability of applying
sparsity, solution dominance and symmetry pruning with almost no overhead.
At each iteration of capacity y sparsity and solution dominance are integrated
in a single constant time test (line 12). This test, when combined with an item
list sorted by non-increasing efficiency, also helps to avoid propagating big index
values for the next positions of d, benefiting the performance of the solution
generation with symmetry pruning (the use of d[y] on line 16).

2.1 Solution Dominance

In this section we will give a more detailed explanation of the workings of the
previously cited solution dominance. We use the min;,(s) notation to refer to
the lowest index between the items that compose the solution s. The max;;(s)
notation has analogue meaning.

When a solution ¢ is pruned because s dominates ¢ (lines 12 to 14), some
solutions u, where u 2 t, are not generated. If s dominates ¢ and u 2 ¢, and
maz;,; (u\t) < min,(t), then u is not generated by UKP5. In other words, if
{3,2} is dominated, then {3,2,2} and {3,2,1} are not generated by UKP5, but
{3,2,3} or {3,2,5} could yet be generated. Ideally, any u where u 2 ¢ should not
be generated as it will be dominated by a solution «' where v’ 2 s anyway. It’s
interesting to note that this happens eventually, as any tN{i} where i > min;,(t)
will be dominated by s N {i} (or by a solution that dominates s N {i}), and at
some point no solution that is a superset of ¢ is generated anymore.

2.2 Implementation Details

With the purpose of making the initial explanation simpler, we have omitted
some steps that are relevant to the algorithm performance, but not essential for
assessing its correctness. A complete overview of the omitted steps is presented
at this section.

All the items are sorted by non-increasing efficiency and, between items with
the same efficiency, by increasing weight. This speed ups the algorithm, but does
not affect its correctness.

The y* periodicity bound is computed as in [4, p. 223], and used to reduce
the ¢ value. We further proposed an UKP5-specific periodicity check that was
successfully applied. This periodicity check isn’t used to reduce the ¢ capacity
before starting UKP5, as y*. The periodicity check is a stopping condition inside
UKP5 main loop (11 and 22). Let y be the value of the variable y at line 11,
and let ¢’ be the biggest capacity where g[y’] # 0Ad[y’] > 1. If at some moment
y > y' then we can stop the computation and fill the remaining capacity with

56 H. Becker and L.S. Buriol

copies of the first item (item of index 1). This periodicity check works only if
the first item is the best item. If this assumption is false, then the described
condition will never happen, and the algorithm will iterate until ¥ = ¢ as usual.
The algorithm correctness isn’t affected.

There’s an else if test at line 20. If g[y + w;] = g[y] + pi At < d[y + w;] then
d[y] < i. This may seem unnecessary, as appears to be an optimization of a rare
case, where two solutions comprised from different item multisets have the same
weight and profit. Nonetheless, without this test, the UKP5 was about 1800
(one thousand and eight hundreds) times slower on some subset-sum instance
datasets.

We iterate only until ¢ — wy, (instead of ¢, in line 11), as it is the last y
value that can affect g[c]). After this we search for a value greater than opt in
the range g[c — wiin + 1] to g[c] and update opt.

3 Computational Results

In this section we describe the experiments environment, instance sets and
results. We compare our UKP5 implementation, and the EDUK2 implementa-
tion provided by [12] (called PYAsUKP). The used source codes can be found at
https://github.com/henriquebecker91/masters/tree/v0.1'. The times reported
were given by the tools themselves and do not count the instance loading time.
The runs external time? were also captured and no significant discrepancy was
observed. Therefore, we have chosen to use the times reported by PYAsUKP
and UKP5 (as is the common practice). For all instances, the weight, profit and
capacity are integral.

We use the following notation: rand(z,y) means a random integer between
z and y (both inclusive); 7 means x as a string concatenated with the value of
variable n as a string. For example: if n = 5000 then 107 = 105000.

3.1 Environment

The computer used on the experiments was an ASUS R552JK-CN159H. The
CPU has four physical cores (Intel Core i7-4700HQ Processor, 6M Cache, 3.40
GHz). The operating system used was Linux 4.3.3-2-ARCH x86_64 GNU /Linux
(i.e. Arch linux). Three of the four cores were isolated using the isolcpus kernel
flag. The taskset utility was used to execute UKP5 and PYASUKP in parallel

! The UKP5 implementation is at codes/cpp/ and two versions of PYAsUKP are at
codes/ocaml/. The pyasukp_site.tgz is the version used to generate the instances,
and was also available at http://download.gna.org/pyasukp/pyasukpsrc.html.
A more stable version was provided by the authors. This version is in
pyasukp-mail.tgz and it was used to solve the instances the results presented in
Table 1. The create_*_instances.sh scripts inside codes/sh/ were used to generate
the instance datasets.

2 Given by the time application, available at https://www.archlinux.org/packages/
extra/x86_64/time/. The bash internal command was not used.

https://github.com/henriquebecker91/masters/tree/v0.1
http://download.gna.org/pyasukp/pyasukpsrc.html
https://www.archlinux.org/packages/extra/x86_64/time/
https://www.archlinux.org/packages/extra/x86_64/time/

UKP5: A New Algorithm for the UKP 57

on the isolated cores. The computer memory was never completely used (so no
swapping was done). The UKP5 code was compiled with gee (g++) version 5.3.0
(the -O8 -std=c++11 flags were enabled).

3.2 Instance Sets

The instance sets aim to reproduce the ones described in [12]. The same tool
was used to generate the datasets (PYAsUKP), and the same parameters were
used, otherwise noted the contrary. In Subsect.5.1.1 Known “hard” instances
of [12] some sets of easy instances are used to allow comparison with MTU2.
However, the authors reported integer overflow problems with MTU2 on harder
instances. With exception of the subset-sum dataset, all datasets have a similar
harder set (Subsect.5.2.1 New hard UKP instances [12]). Thus, we considered
in the runs only the harder ones. Each instance has a random capacity value
within intervals shown in Table 1. The PYAsUKP parameters -wmin wy,;, -cap
¢ -n n were used in all instances generation. We found some small discrepancies
between the formulas presented in [12] and the ones used in PYASUKP code. We
opted for using the ones from PYASUKP code, and they are presented below.

Subset-Sum. Instances generated with p; = w; = rand(Wpmin, Wmaz). The
majority of the subset-sum instances used in [12] were solved on less than a
centisecond in our experiments. This makes it easy to have imprecise measuring.
Because of this, in this paper, we use a similar dataset, but with each parameter
multiplied by ten. Therefore, we generated 10 instances for each possible com-
bination of: w,, € {1035 x 103,10%,5 x 104, 10°}; wpmae € {5 x 10,10} and
n € {103,2 x 10%,5 x 103,10*}, totaling 400 instances. We do not discriminate
each combination in Table1 for brevity. The PYASUKP -form ss -wmaz wpmaz
parameters were used.

Strong Correlation. Instances generated using the following formula: w; =
Wmin +1 — 1 and p; = w; + «, for a given w,,;, and a. Note that, except by
the random capacity, all instances with the same «, n, and w;,;;, combination
are equal. The formula doesn’t rely on random numbers. The PYASUKP -form
chung -step o parameters were used.

Postponed Periodicity. This family of instances is generated by the fol-
lowing method: n distinct weights are generated with rand(wmin, Wmaz) and
then sorted by increasing order; py = wy + rand(1,500); and Vi € [2,n]. p; =
pi—1 +rand(1,125). The wyq, is computed as 10m. The PYASUKP -form nsds2
-step 500 -wmax Wy,q. parameters were used.

No Collective Dominance. This family of instances is generated by the fol-
lowing method: n distinct weights are generated with rand(wmin, Wmaz) and
then sorted by increasing order; p1 = pmin + rand(0,49); and Vi € [2,n]. p; =

58 H. Becker and L.S. Buriol

|w; X ((pi—1/wi—1)+0.01) | +rand(1,10). The given values are: Wpin = Pmin = N
and Wye, = 10m. The PYASUKP -form hi -pmin pmin -wmax wpq, parameters
were used.

SAW. This family of instances is generated by the following method: generate
n random weights between w,,;, and wy,q, = 17 with the following property:
Vi € [2,n]. w; mod wy > 0 (w; is the smallest weight); sort by increasing order;
then p1 = wy + a where a = rand(1,5), and Vi € [2,n]. p; = rand(l;,u;) where
l; = max(pi—1,), wi = ¢; + my, ¢ = p1 X |w;/wy |, and m; = w; mod wy. The
PYASUKP -form saw -step a -wmaz wy,q,; parameters were used.

3.3 Results and Analysis

Table 1 presents the times used by UKP5 and PYAsUKP to solve the instance
classes previously described. No time limit was defined. Figurel presents the
same data, in logarithmic scale.

Based on Table 1, except by one instance set that we will talk about later,
we can make two statements: (1) the average time, standard deviation, and
maximal time of UKP5 are always smaller than the PYASUKP ones; (2) the
minimal PYAsUKP time is always smaller than the UKP5 one.

Let’s begin with the second statement. As EDUK2 uses a branch-and-bound
(B&B) algorithm before resorting to dynamic programming (DP), this is an
expected result. Instances with big capacities and solutions that are composed
by a large quantity of the best item, and a few non-best most efficient items, can
be quickly solved by B&B. Our exception dataset (Strong Correlation, o = 5,
n = 10 and wy,;, = 10) is exactly this case. As said before, the strong correlation
formula does not make use of random numbers, so all twenty instances of that
dataset have the same items. The only thing that changes is the capacity. All
solutions of this dataset are composed by hundreds of copies of the best item
(that is also the smallest item, making the dataset even easier) and exactly
one non-best item for making better use of the residual capacity (¢ mod wy).
All other datasets have instances that present the same characteristics, and
because of that, the PYASUKP minimal time is always close to zero. In Fig. 1
it is possible to observe that there are many instances solved in less than 10s
by PYASUKP which took longer for UKP5 to solve. The number of instances
where PYASUKP was faster than UKP5 by instance class are: Subset-sum: 264
(=65 %); Strong correlation: 60 (25 %); Postponed periodicity: 105 (=13 %); No
collective dominance: 259 (~13 %); SAW: 219 (/20 %). This from a total of 4540
instances.

For the instances that are solved by B&B in short time, the DP is not compet-
itive against B&B. The UKP5 can’t compete with PYASUKP on easy datasets,
as only the time for initializing an array of size c is already greater than the
B&B’s time. Nonetheless, for hard instances of combinatorial problems, B&B is
known to show a bad worst case performance (exponential time). As EDUK2
combines B&B and DP with the intent of getting the strengths of both, and

UKP5: A New Algorithm for the UKP 59

Table 1. Columns n and Wy, values must be multiplied by 10% to obtain their true
value. Let T be the set of times reported by UKP5 or EDUK2, then the meaning of
the columns avg, sd, min and mazx, is, respectively, the arithmetic mean of T, the
standard deviation of T, the minimal value of T' and the maximal value of T'. The time
unit of the table values is seconds.

Instance desc. UKP5 PYAsUKP
400 inst. per line Subset-sum. Random ¢ between [5 x 10°%; 107]
n Wmin avg sd min max avg sd min max
See section 3.2 0.08 0.20 0.01 1.42 6.39 55.33 0.00 726.34
20 inst. per line Strong correlation. Random ¢ between [207; 1007]
« n Wmin avg sd min max avg sd min max
5 5 10 0.05 0.00 0.05 0.05 2.46 2.81 0.00 6.13

15 0.07 0.00 0.07 0.09 5.84 2.43 0.00 8.82

50 0.20 0.06 0.08 0.24 18.35 12.64 0.00 50.58

5 10 10 0.11 0.01 0.10 0.14 0.00 0.00 0.00 0.01
50 0.49 0.03 0.47 0.60 41.97 33.97 0.00 93.18

110 1.07 0.02 1.05 1.13 147.60 114.39 0.00 342.86

-5 5 10 0.06 0.00 0.06 0.07 5.98 4.02 0.00 11.99
15 0.09 0.00 0.08 0.10 10.37 6.73 0.00 21.00

50 0.21 0.05 0.09 0.24 39.31 30.16 0.00 89.44

-5 10 10 0.19 0.01 0.17 0.21 13.13 12.61 0.00 33.00
50 0.54 0.02 0.52 0.59 82.97 71.22 0.00 206.74

110 1.08 0.02 1.07 1.13 261.61 246.21 0.00 721.89

200 inst. per line Postponed periodicity. Random ¢ between [wmaz; 2 X 106]

n Wmin avg sd min max avg sd min max
20 20 1.42 0.31 0.55 2.77 17.00 17.05 0.01 63.96
50 20 10.20 1.28 7.91 14.98 208.61 210.72 0.03 828.89
20 50 1.59 0.32 0.96 2.99 27.68 22.79 0.02 100.96

50 50 6.86 1.23 446 11.78 233.58 187.91 2.65 682.95
500 inst. per line No collective dominance. Random ¢ between [wmaqe; 10007]

n Wmin avg sd min max avg sd min max
5 n 0.05 0.01 0.03 0.10 0.78 0.59 0.00 2.66
10 n 0.49 0.15 0.21 1.10 3.38 2.80 0.00 12.31
20 n 0.99 0.19 0.63 2.02 13.08 12.80 0.01 62.12
50 n 4.69 1.22 3,51 13.18 119.18 131.22 0.04 667.42

gtd inst. per line ~ SAW. Random c¢ between [waz; 107]
qtd n Wmin avg sd min max avg sd min max
200 10 10 0.11 0.01 0.10 0.16 1.88 1.24 0.01 4.73
500 50 5 0.74 0.08 0.66 1.98 4.79 4.22 0.02 17.78

200 50 10 1.01 0.03 097 1.27 10.44 9.02 0.03 38.69
200 100 10 1413 296 9.95 21.94 60.58 54.08 0.05 192.04

60 H. Becker and L.S. Buriol

Postponed Periodicity SAW Strong Correlation
1000 - 1000 - 1000 -

100 - 100 - / 100 -

0.1- 0.1 I 0.1-
0.01-@ 0.01- 0.01-
1 1 1 ' 1 1 ' ' ' ™~ 1 [l ' '
0 200 400 600 800 0 300 600 900 0 50 100 150 200 250
Subset Sum No Collective Dominance All Datasets
1000 - ¢ 1000- 1000 -
100 - ’ 100 - 100 -
10- 4 10- = 10-
P 4 -+~
1- 1- 1-
/4
0.1- 9 0.1- y 0.1 -
\-“‘
001- " el " 0.01 ! 001- &
0 100 200 300 400 0 500 1000 1500 2000 0 1000 2000 3000 4000

Fig. 1. The times used by UKP5 and PYASUKP for each instance of each class. The
black dots represent PYASUKP times. The gray dots represent UKP5 times. The y
axis is the time used to solve an UKP instance, in seconds. The x axis is the instance
index when the instances are sorted by the time PYAsUKP took to solve it. Note that
the y axis is in logarithmic scale.

none of its weaknesses, we found anomalous that this typical B&B behavior was
present in PYASUKP. We executed PYAsUKP with the -nobb flag, that disables
the use of B&B. The PYAsUKP with disabled B&B had a performance worse
than the one with B&B. For the presented classes, the ratios %m
instance class are: Subset-sum: 5.70; Strong correlation: 2.47; Postponed peri-
odicity: 2.61; No collective dominance: 4.58; SAW: 4.07. For almost every indi-
vidual instance no-B&B was worse than B&B (and when no-B&B was better
this was by a small relative difference). Based on this evidence, we conclude that
the PYASUKP implementation of the EDUK2 DP-phase is responsible for the
larger maximal PYAsUKP times (the time seems exponential but it is instead
pseudo-polynomial with a big constant).

Looking back at the first statement of this section, we can now conclude
that for instances that are hard for B&B, UKP5 clearly outperforms PYASUKP
DP by a big constant factor. Even considering the instances that PYAsUKP
solves almost instantly (because of B&B), UKP5 is about 47 times faster than
PYASUKP, in average. If we ignored the advantage given by B&B (giving UKP5
a B&B phase, or removing the one used on EDUK2) this gap would be even
greater.

UKP5: A New Algorithm for the UKP 61

We also compared our results with CPLEX. In [12] the authors presented
results for CPLEX version 10.5, and showed that EDUK2 outperformed CPLEX.
However, CPLEX efficiency has grown a lot in the last versions. Due to this, we
run CPLEX 12.5. For the instances tested, UKP5 outperformed CPLEX 12.5
considerably. For the presented classes, the ratios %‘m by instance
class are: Subset-sum: 258.11; Strong correlation: 64.14; Postponed periodicity:
12.18; No collective dominance: 16.23; SAW: 120.14. Moreover, we set a time
limit of 1,000 s and a memory limit of 2 GB for CPLEX, while every UKP5 and
PYASUKP run finished before these limits. The ratios above were computed
considering 1,000 s for the instances that reached the time limit. However, from
4540 instances, in 402 runs the CPLEX reached the time limit. In 8 instances
CPLEX reached the memory limit. We did not compare UKP5 with MTU2 since
PYASUKP already outperformed it, as shown in [12]. However, in a future work
we intend to reimplement MTU2 to allow the comparison on the hard instances
where it presented overflow problems.

The average UKP5 implementation memory consumption was greater than
the PYASUKP memory consumption. For each instance class, the UKP5-to-
PYASUKP memory consumption ratio was: Subset-sum: 10.09; Strong correla-
tion: 2.84; Postponed periodicity: 1.62; No collective dominance: 12.41; SAW:
1.31. However, note that the UKP5 memory consumption worst case is n+2 x ¢
(pseudo-polynomial on n and ¢). The UKP5 consumed at most ~1.6GB solving
an instance.

4 Conclusion and Final Remarks

In this work we present UKP5, a new algorithm to solve the Unbounded Knap-
sack Problem based on dynamic programming. UKP5 outperformed PYASUKP,
the only known implementation of EDUK2, the state-of-the-art algorithm for
solving the problem. When computing the speedups calculated as the ratio of
times between the two algorithms, UKP5 is two orders of magnitude faster on
average, considering the 4540 tested instances.

The core idea of UKPS5 is to apply five improvements over a previously pro-
posed dynamic programming algorithm. An analysis on the individual perfor-
mance impact caused by each one of the five UKP5 improvements (see Sect. 2)
will be presented in an extended version of this paper. Future works on the
UKP5 should consider the following unanswered questions: PYAsUKP shows
that the addition of a B&B phase before the DP can give good results, how
could we apply the same idea to UKP5 and how would be the results? How
is the performance of UKP5 applied in real-world instances generated by the
column generation iterations for BPP and CSP?

Acknowledgments. We are very thankful to Vincent Poirriez for providing us the
codes of a stable version of PYAsUKP, and answering our questions about the
paper [12]. We are thankful to the CNPq (Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico) for the financial support.

62 H. Becker and L.S. Buriol
References
1. Andonov, R., Poirriez, V., Rajopadhye, S.: Unbounded knapsack problem:

10.

11.
12.

dynamic programming revisited. Eur. J. Oper. Res. 123(2), 394-407 (2000)

. Belov, G., Scheithauer, G.: A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting. Eur. J. Oper.
Res. 171(1), 85-106 (2006)

Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems:
mathematical models and exact algorithms. In: Decision Models for Smarter Cities
(2014)

Garfinkel, R.S., Nemhauser, G.L.: Integer Programming, vol. 4. Wiley, New York
(1972)

Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock
problem. Oper. Res. 9(6), 849-859 (1961)

Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock
problem-Part II. Oper. Res. 11(6), 863-888 (1963)

Hu, T.C.: Integer programming and network flows. Technical report, DTIC Doc-
ument (1969)

Huang, P.H., Tang, K.: A constructive periodicity bound for the unbounded knap-
sack problem. Oper. Res. Lett. 40(5), 329-331 (2012)

Tida, H.: Two topics in dominance relations for the unbounded knapsack problem.
Open Appl. Math. J. 2(1), 16-19 (2008)

Martello, S., Toth, P.: An exact algorithm for large unbounded knapsack prob-
lems. Oper. Res. Lett. 9(1), 15-20 (1990)

Pisinger, D.: Algorithms for knapsack problems (1995)

Poirriez, V., Yanev, N.; Andonov, R.: A hybrid algorithm for the unbounded
knapsack problem. Discrete Optim. 6(1), 110-124 (2009)

Lempel-Ziv Decoding in External Memory

Djamal Belazzougui', Juha Kirkkiinen?®™), Dominik Kempa?,
and Simon J. Puglisi?

! CERIST, Algiers, Algeria
dbelazzougui@cerist.dz
2 Department of Computer Science, Helsinki Institute for Information
Technology HIIT, University of Helsinki, Helsinki, Finland
{juha.karkkainen,dominik.kempa,simon.puglisi}@cs.helsinki.fi

Abstract. Simple and fast decoding is one of the main advantages of
LZ77-type text encoding used in many popular file compressors such as
gzip and 7zip. With the recent introduction of external memory algo-
rithms for Lempel-Ziv factorization there is a need for external memory
LZ77 decoding but the standard algorithm makes random accesses to the
text and cannot be trivially modified for external memory computation.
We describe the first external memory algorithms for LZ77 decoding,
prove that their I/O complexity is optimal, and demonstrate that they
are very fast in practice, only about three times slower than in-memory
decoding (when reading input and writing output is included in the time).

1 Introduction

The Lempel-Ziv (LZ) factorization [18] is a partitioning of a text string into a
minimal number of phrases consisting of substrings with an earlier occurrence in
the string and of single characters. In LZ77 encoding [20] the repeated phrases are
replaced by a pointer to an earlier occurrence (called the source of the phrase).
It is a fundamental tool for data compression [6,7,15,17] and today it lies at the
heart of popular file compressors (e.g. gzip and 7zip), and information retrieval
systems (see, e.g., [6,10]). Recently the factorization has become the basis for
several compressed full-text self-indexes [5,8,9,16]. Outside of compression, LZ
factorization is a widely used algorithmic tool in string processing: the factoriza-
tion lays bare the repetitive structure of a string, and this can be used to design
efficient algorithms [2,12-14].

One of the main advantages of LZ77 encoding as a compression technique
is a fast and simple decoding: simply replace each pointer to a source by a
copy of the source. However, this requires a random access to the earlier part of
the text. Thus the recent introduction of external memory algorithms for LZ77
factorization [11] raises the question: Is fast LZ77 decoding possible when the text
length exceeds the RAM size? In this paper we answer the question positively
by describing the first external memory algorithms for LZ77 decoding.

This research is partially supported by Academy of Finland through grant 258308
and grant 250345 (CoECGR).
© Springer International Publishing Switzerland 2016

A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 63-74, 2016.
DOI: 10.1007/978-3-319-38851-9_5

64 D. Belazzougui et al.

In LZ77 compression, the need for external memory algorithms can be
avoided by using an encoding window of limited size. However, a longer encod-
ing window can improve the compression ratio [6]. Even with a limited window
size, decompression on a machine with a small RAM may require an external
memory algorithm if the compression was done on a machine with a large RAM.
Furthermore, in applications such as text indexing and string processing limiting
the window size is not allowed. While most of these applications do not require
decoding, a fast decoding algorithm is still useful for checking the correctness of
the factorization.

Our Contribution. We show that in the standard external memory model of
computation [19] the I/O complexity of decoding an LZT77-like encoding of a

string of length n over an alphabet of size ¢ is © (#&jn logar/ B #&jn) , where

M is the RAM size and B is the disk block size in units of ©(logn) bits. The
lower bound is shown by a reduction from permuting and the upper bound by
describing two algorithms with this I/O complexity.

The first algorithm uses the powerful tools of external memory sorting and
priority queues while the second one relies on plain disk I/O only. Both algo-
rithms are relatively simple and easy to implement. Our implementation uses
the STXXL library [4] for sorting and priority queues.

Our experiments show that both algorithms scale well for large data but the
second algorithm is much faster in all cases. This shows that, while external
memory sorting and priority queues are extremely useful tools, they do have a
significant overhead when their full power is not needed. The faster algorithm
(using a very modest amount of RAM) is only 3—4 times slower than an in-
memory algorithm that has enough RAM to perform the decoding in RAM (but
has to read the input from disk and write the output to disk).

Our algorithms do not need a huge amount of disk space in addition to the
input (factorization) and output (text), but we also describe and implement a
version, which can reduce the additional disk space to less than 3 % of total disk
space usage essentially with no effect on runtime.

2 Basic Definitions

Strings. Throughout we consider a string X = X[1..n] = X[1]X[2]...X[n] of |X| =
n symbols drawn from the alphabet [0..0 — 1] for 0 = n®M. For 1 <i < j<n
we write X[i..j] to denote the substring X[i|X[i + 1] ... X[j] of X. By X[i..j) we
denote X[i..j — 1].

LZ77. The longest previous factor (LPF) at position 4 in string X is a pair
LPF[i] = (ps, ¢;) such that p; < i, X[p;..pi +£;) = X[i..i+¥;), and ¢; is maximized.
In other words, X[i..i 4+ £;) is the longest prefix of X[i..n] which also occurs at
some position p; < i in X. There may be more than one potential value of p;,
and we do not care which one is used.

Lempel-Ziv Decoding in External Memory 65

The LZ77 factorization (or LZ77 parsing) of a string X is a greedy, left-to-right
parsing of X into longest previous factors. More precisely, if the jth LZ factor
(or phrase) in the parsing is to start at position 4, then LZ[j] = LPF[i] = (p;, ¢;)
(to represent the jth phrase), and then the (j + 1)th phrase starts at position
i + ¢;. The exception is the case ¢; = 0, which happens iff X[i] is the leftmost
occurrence of a symbol in X. In this case LZ[j] = (X[i],0) (to represent X[i..i])
and the next phrase starts at position ¢ + 1. This is called a literal phrase and
the other phrases are called repeat phrases. For a repeat phrases, the substring
X[pi.-pi +£;) is called the source of the phrase X[i..i + ¢;). We denote the number
of phrases in the LZ77 parsing of X by z.

LZ7T7-type Factorization. There are many variations of LZ77 parsing. For exam-
ple, the original LZ77 encoding [20] had only one type of phrase, a (potentially
empty) repeat phrase always followed by a literal character. Many compressors
use parsing strategies that differ from the greedy strategy described above to
optimize compression ratio after entropy compression or to speed up compres-
sion or decompression. The algorithms described in this paper can be easily
adapted for most of them. For purposes of presentation and analysis we make
two assumptions about the parsing:

— All phrases are either literal or repeat phrases as described above.
— The total number of repeat phrases, denoted by zyep, is O(n/log, n).

We call this an LZ77-type factorization. The second assumption holds for the
greedy factorization [18] and can always be achieved by replacing too short repeat
phrases with literal phrases. We also assume that the repeat phrases are encoded
using O(logn) bits and the literal phrases using O(logo) bits. Then the size of
the whole encoding is never more than O(nlog o) bits.

3 On I/O Complexity of LZ Decoding

Given an LZ77-type factorization of a string encoded as described above, the
task of LZ77 decoding is to recover the original string. In this section, we obtain
a lower bound on the I/O complexity of LZ decoding by a reduction from per-
muting.

We do the analysis using the standard external memory model [19] with
RAM size M and disk block size B, both measured in units of ©(logn) bits. We
are primarily interested in the I/O complexity, i.e., the number of disk blocks
moved between RAM and disk.

Given a sequence T = x1,Z2,...,Z, of n objects of size ©(logn) bits each
and a permutation w[l..n] of [1..n], the task of permuting is to obtain the
permuted sequence ¥ = Y1,Y2,---,Yn = Tr[1], Tx[2]s- - - > Tx[n]- Under the mild

assumption that Blog(M/B) = 2(log(n/B)), the I/O complexity of permuting
is © (% logy %), the same as the I/O complexity of sorting [1].

We show now that permuting can be reduced to LZ decoding. Let X be the
string obtained from the sequence Z by encoding each x; as a string of length

66 D. Belazzougui et al.

h = O(log, n) over the alphabet [0..0). Let Y be the string obtained in the same
way from the sequence . Form an LZ77-type factorization of XY by encoding
the first half using literal phrases and the second half using repeat phrases so
that the substring representing y; is encoded by the phrase (hw[i] + 1 — h,h).
This LZ factorization is easy to construct in O(n/B) I/Os given T and 7. By
decoding the factorization we obtain XY and thus g.

Theorem 1. The I/O complexity of decoding an LZ77-type factorization of a
string of length n over an alphabet of size o is

2 s 1og s 5 5
Blog,n gM/BBlog(,n '

Proof. The result follows by the above reduction from permuting a sequence of
O(n/log, n) objects. O

For comparison, the worst case I/O complexity of naive LZ decoding is
O(n/log, n).

4 LZ Decoding Using EM Sorting and Priority Queue

Our first algorithm for LZ decoding relies on the powerful tools of external
memory sorting and external memory priority queues.

We divide the string X into [n/b] segments of size exactly b (except the last
segment can be smaller). The segments must be small enough to fit in RAM
and big enough to fill at least one disk block. If a phrase or its source overlaps
a segment boundary, the phrase is split so that all phrases and their sources
are completely inside one segment. The number of phrases increases by at most
O(2rep + 1/b) because of the splitting.

After splitting, the phrases are divided into three sequences. The sequence
Rear contains repeat phrases with the source more than b positions before the
phrase (called far repeat phrases) and the sequence Ry,ea; the other repeat phrases
(called near repeat phrases). The sequence L contains all the literal phrases. The
repeat phrases are represented by triples (p, ¢, £), where p is the starting position
of the source, ¢ is the starting position of the phrase and ¢ is the length. The
literal phrases are represented by pairs (g, ¢), where ¢ is the phrase position and
c is the character. The sequence Rg,, of far repeat phrases is sorted by the source
position. The other two sequences are not sorted, i.e., they remain ordered by
the phrase position.

During the computation, we maintain an external memory priority queue Q
that stores already recovered far repeat phrases. Each such phrase is represented
by a triple (g, ¢, s), where ¢ and ¢ are as above and s is the phrase as a literal
string. The triples are extracted from the queue in the ascending order of g.
The maximum length of phrases stored in the queue is bounded by a parameter
lmax- Longer phrases are split into multiple phrases before inserting them into
the queue.

Lempel-Ziv Decoding in External Memory 67

The string X is recovered one segment at a time in left-to-right order and
each segment is recovered one phrase at a time in left-to-right order. A segment
recovery is done in a (RAM) array Y[0..b) of size b. At any moment in time,
for some ¢ € [0..0], Y[0..7) contains the already recovered prefix of the current
segment and Y[i..b) contains the last b — i characters of the preceding segment.
The next phrase starting at Y[i] is recovered in one of three ways depending on
its type:

— A literal phrase is obtained as the next phrase in the sequence L.

— A near repeat phrase is obtained as the next phrase in the sequence Rjcar.
The source of the phrase either starts in Y[0..7) or is contained in Y[i..b), and
is easily recovered in both cases.

— A far repeat phrase is obtained from the priority queue with the full literal
representation.

Once a segment has been fully recovered, we read all the phrases in the
sequence Rg,, having the source within the current segment. Since Rg,, is ordered
by the source position, this involves a single sequential scan of Rg,, over the whole
algorithm. Each such phrase is inserted into the priority queue Q with its literal
representation (splitting the phrase into multiple phrases if necessary).

Theorem 2. A string of length n over an alphabet of size o can be recovered

from its LZ77 factorization in O (#gan logys s #gan) I/0s.

Proof. We set £y = O(log, n) and b = @(Blog, n). Then the objects stored in
the priority queue need O(logn + fpax log o) = O(logn) bits each and the total
number of repeat phrases after all splitting is O(zyep+n/log, n) = O(n/log, n).

Thus sorting the phrases needs O (ﬁgan logys s #&JJ I/Os. This is also
the I/O complexity of all the external memory priority queue operations [3]. All

other processing is sequential and needs O () I/0s. a

n
Blog, n

We have implemented the algorithm using the STXXL library [4] for external
memory sorting and priority queues.

5 LZ Decoding Without Sorting or Priority Queue

The practical performance of the algorithm in the previous section is often
bounded by in-memory computation rather than I/O, at least on a machine
with relatively fast disks. In this section, we describe an algorithm that reduces
computation based on the observation that we do not really need the full power
of external memory sorting and priority queues.

To get rid of sorting, we replace the sorted sequence Rg,, with [n/b] unsorted
sequences Ry, Rs, ..., where R; contains all phrases with the source in the ith
segment. In other words, sorting Rg,, is replaced with distributing the phrases

68 D. Belazzougui et al.

into Ry,Ra,.... If n/b is less than M/B, the distribution can be done in one
pass, since we only need one RAM buffer of size B for each segment. Otherwise,
we group M /B consecutive segments into a supersegment, distribute the phrases
first into supersegments, and then into segments by scanning the supersegment
sequences. If necessary, further layers can be added to the segment hierarchy.
This operation generates the same amount of I/O as sorting but requires less
computation because the segment sequences do not need to be sorted.

In the same way, the priority queue is replaced with [n/b] simple queues.
The queue Q; contains a triple (g, ¢, s) for each far repeat phrase whose phrase
position is within the ith segment. The order of the phrases in the queue is
arbitrary. Instead of inserting a recovered far repeat phrase into the priority
queue Q it is appended into the appropriate queue Q;. This requires a RAM
buffer of size B for each queue but as above a multi-round distribution can be
used if the number of segments is too large. This approach might not reduce the
I/O compared to the use of a priority queue but it does reduce computation.
Moreover, the simple queue allows the strings s to be of variable sizes and of
unlimited length; thus there is no need to split the phrases except at segment
boundaries.

Since the queues Q; are not ordered by the phrase position, we can no more
recover a segment in a strict left-to-right order, which requires a modification
of the segment recovery procedure. The sequence Ryea of near repeat phrases
is divided into two: Ry contains the phrases with the source in the preceding
segment and Rgame the ones with the source in the same segment.

As before, the recovery of a segment X; starts with the previous segment in
the array Y[0..b) and consists of the following steps:

1. Recover the phrases in Rpev (that are in this segment). Note that each source
is in the part of the previous segment that is still untouched.

2. Recover the literal phrases by reading them from L.

3. Recover the far repeat phrases by reading them from Q; (with the full literal
representation).

4. Recover the phrases in Rgame. Note that each source is in the part of the
current segment that has been fully recovered.

After the recovery of the segment, we read all the phrases in R; and insert them
into the queues Qj with their full literal representations.

We want to minimize the number of segments. Thus we choose the segment
size to occupy at least half of the available RAM and more if the RAM buffers
for the queues Qj, do not require all of the other half. It is easy to see that this
algorithm does not generate asymptotically more I/Os than the algorithm of

the previous section. Thus the I/O complexity is O (#gan logys s #gan)'

We have implemented the algorithm using standard file I/O (without the help
of STXXL).

Lempel-Ziv Decoding in External Memory 69

6 Reducing Disk Space Usage

The algorithm described in the previous section can adapt to a small RAM by
using short segments, and if necessary, multiple rounds of distribution. However,
reducing the segment size does not affect the disk space usage and the algorithm
will fail if it does not have enough disk space to store all the external memory
data. In this section, we describe how the disk space usage can be reduced.

The idea is to divide the LZ factorization into parts and to process one part at
a time recovering the corresponding part of the text. The first part is processed
with the algorithm of the previous section as if it was the full string. To process
the later parts, a slightly modified algorithm is needed because, although all the
phrases are in the current part, the sources can be in the earlier parts. Thus
we will have the R; queues for all the segments in the current and earlier parts
but the Q; queues only for the current part. The algorithm processes first all
segments in the previous parts performing the following steps for each segment
in

— Read X; from disk to RAM.
— Read R; and for each phrase in R; create the triple (¢, ¢, s) and write it to
the appropriate queue Q.

Then the segments of the current part are processed as described in the previous
section.

For each part, the algorithm reads all segments in the preceding parts. The
number of additional I/Os needed for this is O(np/(Blog, n)), where p is the
number of parts. In other respects, the performance of the algorithm remains
essentially the same.

We have implemented this partwise processing algorithm using greedy on-
line partitioning. That is, we make each part as large as possible so that the
peak disk usage does not exceed a given disk space budget. An estimated peak
disk usage is maintained while reading the input. The implementation needs at
least enough disk space to store the input (the factorization) and the output
(the recovered string) but the disk space needed in addition to that can usually
be reduced to a small fraction of the total with just a few parts.

7 Experimental Results

Setup. We performed experiments on a machine equipped with two six-core
1.9 GHz Intel Xeon E5-2420 CPUs with 15 MiB L3 cache and 120 GiB of DDR3
RAM. The machine had 7.2 TiB of disk space striped with RAIDO across four
identical local disks achieving a (combined) transfer rate of about 480 MiB/s.
The STXXL block size as well as the size of buffers in the algorithm based on
plain disk I/O was set to 1 MiB.

The OS was Linux (Ubuntu 12.04, 64bit) running kernel 3.13.0. All programs
were compiled using g++ version 4.7.3 with -03 -DNDEBUG options. The machine
had no other significant CPU tasks running and only a single thread of execution

70 D. Belazzougui et al.

Table 1. Statistics of data used in the experiments. All files are of size 256 GiB. The
value of n/z (the average length of a phrase in the LZ77 factorization) is included as
a measure of repetitiveness.

Name o |n/z
hg.reads 6 52.81
wiki 213 |84.26
kernel 229 | 7767.05
random255 | 255 | 4.10

was used for computation. All reported runtimes are wallclock (real) times. In
the experiments with a limited amount of RAM, the machine was rebooted with
a kernel boot flag so that the unused RAM is unavailable even for the OS.

Datasets. For the experiments we used the following files varying in the number
of repetitions and alphabet size (see Table 1 for some statistics):

— hg.reads: a collection of DNA reads (short fragments produced by a sequenc-
ing machine) from 40 human genomes' filtered from symbols other than
{A,C,G,T,N} and newline;

— wiki: a concatenation of three different English Wikipedia dumps? in XML
format dated: 2014-07-07, 2014-12-08, and 2015-07-02;

— kernel: a concatenation of ~16.8 million source files from 510 versions of Linux
kernel?;

— random255: a randomly generated sequence of bytes.

Ezxperiments. In the first experiment we compare the implementation of the new
LZ77 decoding algorithm not using external-memory sorting or priority queue
to a straightforward internal-memory LZ77 decoding algorithm that scans the
input parsing from disk and decodes the text from left to right. All copying of
text from sources to phrases happens in RAM.

We use the latter algorithm as a baseline since it represents a realistic upper
bound on the speed of LZ77 decoding. It needs enough RAM to accommodate
the output text as a whole, and thus we were only able to process prefixes of test
files up to size of about 120 GiB. In the runtime we include the time it takes to
read the parsing from disk (we stream the parsing using a small buffer) and to
write the output text to disk. The new algorithm, being fully external-memory
algorithm, can handle full test instances. The RAM usage of the new algorithm
was limited to 3.5 GiB.

The results are presented in Fig.1. In nearly all cases the new algorithm
is about three times slower than the baseline. This is due to the fact that in

! http://www.1000genomes.org/.
2 http://dumps.wikimedia.org/.
3 http://www.kernel.org/.

http://www.1000genomes.org/
http://dumps.wikimedia.org/
http://www.kernel.org/

Lempel-Ziv Decoding in External Memory 71

hg.reads wiki
192 - < Baseline (RAM) 192 - < Baseline (RAM)
® LZ77decode (EM) ® L[Z77decode (EM)
m160 W 160 |
E“” 128 128 -
?3 96 - 96 -
(=%
» 64 oo—® ———e¢ — o 64 7'.//
32 32
0 T T T T T T T T 0 T T T T T T T T
0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256
kernel random255
48 A
640 ¢ Baseline (RAM) < Baseline (RAM)
® LZ77decode (EM) 40 ® LZ77decode (EM)
— 7% @0—0——0\0
g " 512 3 |
38 O e ¥
5]
% 256 16 -
128 - N 7\'—0\0\.\.
0 0

0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256
Input size [GiB] Input size [GiB]

Fig. 1. Comparison of the new external memory LZ77 decoding algorithm based on
plain disk I/O (“LZ77decode”) with the purely in-RAM decoding algorithm (“Base-
line”). The latter represents an upper bound on the speed of LZ77 decoding. The unit
of decoding speed is MiB of output text decoded per second.

the external memory algorithm each text symbol in a far repeat phrase is read
or written to disk three times: first, when written to a queue Q; as a part of
a recovered phrase, second, when read from Q;, and third, when we write the
decoded text to disk. In comparison, the baseline algorithm transfers each text
symbol between RAM and disk once: when the decoded text is written to disk.
Similarly, while the baseline algorithm usually needs one cache miss to copy the
phrase from the source, the external memory algorithm performs about three
cache misses per phrase: when adding the source of a phrase to R;, when adding
a literal representation of a phrase into Q;, and when copying the symbols from
Q; into their correct position in the text. The exception of the above behavior
is the highly repetitive kernel testfile that contains many near repeat phrases,
which are processed as efficiently as phrases in the RAM decoding algorithm.

In the second experiment we compare our two algorithms described in Sects. 4
and 5 to each other. For the algorithm based on priority queue we set £;,.x = 16.
The segment size in both algorithms was set to at least half of the available RAM
(and even more if it did not lead to multiple rounds of EM sorting/distribution),
except in the algorithm based on sorting we also need to allocate some RAM
for the internal operations of STXXL priority queue. In all instances we allocate
1 GiB for the priority queue (we did not observe a notable effect on performance
from using more space).

72 D. Belazzougui et al.

hg.reads kernel
192 | © LZ77decode 768 | © LZ77decode
O LZ77decode—PQ O LZ77decode—PQ
—— 160 - A Naive 640 - A Naive
S| 128 512 4
—_ i O
B 96 - 384
Q
Q.
2] 64 - 256 -
32 4 128 4
0 /V'—‘ T T T T T T T 0 T T T T T T T T
0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256
Input size [GiB] Input size [GiB]

Fig. 2. Comparison of the new external memory LZ77 decoding algorithm based on
plain disk I/O (“LZ77decode”) to the algorithm implemented using external memory
sorting and priority queue (“LZ77decode-PQ”). The comparison also includes the algo-
rithm implementing naive approach to LZ77 decoding in external memory. The speed
is given in MiB of output text decoded per second.

In the comparison we also include a naive external-memory decoding algo-
rithm that works essentially the same as baseline RAM algorithm except we
do not require that RAM is big enough to hold the text. Whenever the algo-
rithm requests a symbol outside a window, that symbol is accessed from disk.
We do not explicitly maintain a window of recently decoded text in RAM, and
instead achieve a very similar effect by letting the operating system cache the
recently accessed disk pages. To better visualize the differences in performance,
all algorithms were allowed to use 32 GiB of RAM.

The results are given in Fig. 2. For highly repetitive input (kernel) there is
little difference between the new algorithms, as they both copy nearly all symbols
from the window of recently decoded text. The naive algorithm performs much
worse, but still finishes in reasonable time due to large average length of phrases
(see Table1).

On the non-repetitive data (hg.reads), the algorithm using external-memory
sorting and priority queue clearly gets slower than the algorithm using plain disk
I/0O as the size of input grows. The difference in constant factors is nearly three
for the largest test instance. The naive algorithm maintains acceptable speed
only up to a point where the decoded text is larger than available RAM. At this
point random accesses to disk dramatically slow down the algorithm.

Note also that the speed of our algorithm in Fig.2 is significantly higher
than in Fig. 1. This is because the larger RAM (32 GiB vs. 3.5 GiB) allows larger
segments, and larger segments mean that more of the repeat phrases are near
repeat phrases which are faster to process than far repeat phrases.

In the third experiment we explore the effect of the technique described in
Sect. 6 aiming at reducing the peak disk space usage of the new algorithm. We
executed the algorithm on 32 GiB prefixes of two testfiles using 3.5 GiB of RAM
and with varying disk space budgets. As shown in Fig. 3, this technique allows
reducing the peak disk space usage to very little over what is necessary to store

Lempel-Ziv Decoding in External Memory 73

hg.reads random255

96 20
80 A 16 4

m

° °
= 48 Hee e ? °® °
b5 8

&S 32 4
16 41
0 T T T T T 0 T T T T T T T

100.0 100.2 100.4 100.6 100.8 101.0 100 110 120 130 140 150 160 170 180
Disk space usage [% of (input + output)] Disk space usage [% of (input + output)]

Fig. 3. The effect of disk space budget (see Sect.6) on the speed of the new external-
memory LZ77 decoding algorithm using plain disk I/O. Both testfiles were limited to
32 GiB prefixes and the algorithm was allowed to use 3.5 GiB of RAM. The rightmost
data-point on each of the graphs represents a disk space budget sufficient to perform
the decoding in one part.

the input parsing and output text and does not have a significant effect on the
runtime of the algorithm, even on the incompressible random data.

8 Concluding Remarks

We have described the first algorithms for external memory LZ77 decoding. Our
experimental results show that LZ77 decoding is fast in external memory setting
too. The state-of-the-art external memory LZ factorization algorithms are more
than a magnitude slower than our fastest decoding algorithm, see [11].

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116-1127 (1988). doi:10.1145/48529.48535

2. Badkobeh, G., Crochemore, M., Toopsuwan, C.: Computing the maximal-exponent
repeats of an overlap-free string in linear time. In: Calderén-Benavides, L.,
Gonzélez-Caro, C., Chévez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608,
pp. 61-72. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34109-0_-8

3. Brodal, G.S., Katajainen, J.: Worst-case efficient external-memory priority queues.
In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 107-118. Springer,
Heidelberg (1998). doi:10.1007/BFb0054359

4. Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for
XXL data sets. Softw. Pract. Exper. 38(6), 589-637 (2008). doi:10.1002/spe.844

5. Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: Hybrid indexes for repetitive
datasets. Phil. Trans. R. Soc. A 372 (2014). doi:10.1098/rsta.2013.0137

6. Ferragina, P., Manzini, G.: On compressing the textual web. In: Proceedings of
3rd International Conference on Web Search and Web Data Mining (WSDM), pp.
391-400. ACM (2010). doi:10.1145/1718487.1718536

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1007/978-3-642-34109-0_8
http://dx.doi.org/10.1007/BFb0054359
http://dx.doi.org/10.1002/spe.844
http://dx.doi.org/10.1098/rsta.2013.0137
http://dx.doi.org/10.1145/1718487.1718536

74

7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D. Belazzougui et al.

. Gagie, T., Gawrychowski, P., Kéarkkidinen, J., Nekrich, Y., Puglisi, S.J.: A
faster grammar-based self-index. In: Dediu, A.-H., Martin-Vide, C. (eds.) LATA
2012. LNCS, vol. 7183, pp. 240-251. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-13089-2_23

. Gagie, T., Gawrychowski, P., Puglisi, S.J.: Faster approximate pattern match-
ing in compressed repetitive texts. In: Asano, T., Nakano, S., Okamoto, Y.,
Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 653-662. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25591-5_67

. Gagie, T., Gawrychowski, P., Karkkainen, J., Nekrich, Y., Puglisi, S.J.: A

faster grammar-based self-index. In: Dediu, A.-H., Martin-Vide, C. (eds.) LATA

2012. LNCS, vol. 7183, pp. 240-251. Springer, Heidelberg (2012). doi:10.1007/

978-3-642-28332-1_21

Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv factorization for efficient

storage and retrieval of web collections. Proc. VLDB 5(3), 265-273 (2011)

Kaérkkéinen, J., Kempa, D., Puglisi, S.J.: Lempel-Ziv parsing in external memory.

In: Proceedings of 2014 Data Compression Conference (DCC), pp. 153-162. IEEE

(2014). doi:10.1109/DCC.2014.78

Kolpakov, R., Bana, G., Kucherov, G.: MREPS: efficient and flexible detection

of tandem repeats in DNA. Nucleic Acids Res. 31(13), 3672-3678 (2003). doi:10.

1093 /nar/gkg617

Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.

In: Proceedings of 40th Annual Symposium on Foundations of Computer Science

(FOCS), pp. 596-604. IEEE Computer Society (1999). doi:10.1109/SFFCS.1999.

814634

Kolpakov, R., Kucherov, G.: Finding approximate repetitions under haam-

ming distance. Theor. Comput. Sci. 303(1), 135-156 (2003). doi:10.1016/

S0304-3975(02)00448-6

Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Pro-

ceedings of 2010 Data Compression Conference (DCC), pp. 239248 (2010). doi:10.

1109/DCC.2010.29

Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Giancarlo, R., Manzini, G.

(eds.) CPM 2011. LNCS, vol. 6661, pp. 41-54. Springer, Heidelberg (2011). doi:10.

1007/978-3-642-21458-5_6

Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes

for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE

2010. LNCS, vol. 6393, pp. 201-206. Springer, Heidelberg (2010). doi:10.1007/

978-3-642-16321-0-20

Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theor.

22(1), 75-81 (1976). doi:10.1109/TIT.1976.1055501

Vitter, J.S.: Algorithms and data structures for external memory. Found. Trends

Theoret. Comput. Sci. 2(4), 305-474 (2006). doi:10.1561,/0400000014

Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Trans. Inf. Theor. 23(3), 337-343 (1977). doi:10.1109/TIT.1977.1055714

http://dx.doi.org/10.1007/978-3-642-13089-2_23
http://dx.doi.org/10.1007/978-3-642-13089-2_23
http://dx.doi.org/10.1007/978-3-642-25591-5_67
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1109/DCC.2014.78
http://dx.doi.org/10.1093/nar/gkg617
http://dx.doi.org/10.1093/nar/gkg617
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1109/DCC.2010.29
http://dx.doi.org/10.1109/DCC.2010.29
http://dx.doi.org/10.1007/978-3-642-21458-5_6
http://dx.doi.org/10.1007/978-3-642-21458-5_6
http://dx.doi.org/10.1007/978-3-642-16321-0_20
http://dx.doi.org/10.1007/978-3-642-16321-0_20
http://dx.doi.org/10.1109/TIT.1976.1055501
http://dx.doi.org/10.1561/0400000014
http://dx.doi.org/10.1109/TIT.1977.1055714

A Practical Method for the Minimum Genus
of a Graph: Models and Experiments

Stephan Beyer!®), Markus Chimani', Ivo Hedtke!®), and Michal Kotrbéik?

! Institute of Computer Science, University of Osnabriick, Osnabriick, Germany
{stephan.beyer,markus.chimani,ivo.hedtke}@uni-osnabrueck.de
2 Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark
kotrbcik@imada.sdu.dk

Abstract. We consider the problem of the minimum genus of a graph, a
fundamental measure of non-planarity. We propose the first formulations
of this problem as an integer linear program (ILP) and as a satisfiabil-
ity problem (SAT). These allow us to develop the first working imple-
mentations of general algorithms for the problem, other than exhaustive
search. We investigate several different ways to speed-up and strengthen
the formulations; our experimental evaluation shows that our approach
performs well on small to medium-sized graphs with small genus, and
compares favorably to other approaches.

1 Introduction

We are concerned with the minimum genus problem, i.e., finding the smallest
g such that a given graph G = (V| F) has an embedding in the orientable sur-
face of genus g. As one of the most important measures of non-planarity, the
minimum genus of a graph is of significant interest in computer science and
mathematics. However, the problem is notoriously difficult from the theoreti-
cal, practical, and also structural perspective. Indeed, its complexity was listed
as one of the 12 most important open problems in the first edition of Garey
and Johnson’s book [22]; Thomassen established its NP-completeness in gen-
eral [36] and for cubic graphs [37]. While the existence of an O(1)-approximation
can currently not be ruled out, there was no general positive result beyond
a trivial O(|V|/g)-approximation until a recent breakthrough by Chekuri and
Sidiropoulos [9]. For graphs with bounded degree, they provide an algorithm that
either correctly decides that the genus of the graph G is greater than g, or embeds
G in a surface of genus at most g™ - (log |V|)?). Very recently, Kawarabayashi
and Sidiropoulos [27] showed that the bounded degree assumption can be omit-
ted for the related problem of Euler genus by providing a O(g?*%(log |V])'%9)-
approximation; however, this does not yield an approximation for orientable
genus.

M. Chimani—Supported by the German Research Foundation (DFG) project CH
897/2-1.
© Springer International Publishing Switzerland 2016

A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 75-88, 2016.
DOI: 10.1007/978-3-319-38851-9_6

76 S. Beyer et al.

Minimum genus is a useful parameter in algorithm design, since, similarly to
the planar case, we can take advantage of the topological structure and design
faster algorithms for graphs of bounded genus. However, these algorithms typi-
cally assume that the input graph is actually embedded in some surface, as for
instance in [7,19]. Therefore, without a practical algorithm providing an embed-
ding in a low-genus surface, these algorithms cannot be effectively implemented.

In the mathematical community, the genus of specific graph families is of
interest ever since Ringel’s celebrated determination of the genus of complete
graphs [34]. Such research often combines numerous different approaches, includ-
ing computer-aided methods, see, e.g., [12,28]. However, in practice it often turns
out that even determining the genus of a single relatively small graph can be
rather difficult as in [5,12,28,29,31]. One of the reasons is the large problem
space—an r-regular graph with n vertices can have [(r — 1)!]™ embeddings. It is
known that complete graphs have exponentially many embeddings of minimum
genus; however, the known constructions are nearly symmetric and the problem
becomes much more difficult when the minimum genus does not equal the trivial
bound from Euler’s formula, see, e.g., [28] for more details. While it is conjec-
tured that the genus distribution of a graph—the number of its embeddings into
each orientable surface—is unimodal, very little is known about the structure of
the problem space both in theory and practice.

From a slightly different perspective, it has been known for a long time that
deciding embeddability in a fized surface is polynomial both for the toroidal
[20] and the general case [17,21]. In fact, the minimum genus is fixed-parameter
tractable as a result of the Robertson-Seymour theorem, since for every surface
there are only finitely many forbidden graph minors, and testing for a fixed
minor needs only polynomial time. While there is a direct linear-time algorithm
deciding embeddability in a fixed surface [26,30], taking any of these algorithms
to practice is very challenging for several reasons. First, the naive approach of
explicitly testing for each forbidden minor is not viable, since the list of forbidden
minors is known only for the plane and the projective plane, and the number of
minors grows rapidly: for the torus there are already more than 16 000 forbidden
minors [8]. Second, Myrvold and Kocay [33] reviewed existing algorithms to
evaluate their suitability for implementation in order to compute the complete
list of forbidden toroidal minors. Unfortunately, they report that [20] contains a
“fatal flaw”, which also appears in the algorithm in [21], and that the algorithm
in [17] is also “incorrect”. Myrvold and Kocay conclude that “There appears to be
no way to fix these problems without creating algorithms which take exponential
time” [33]. Finally, Mohar’s algorithm [30], even in the simpler toroidal case [25],
is very difficult to implement correctly (see the discussion in [33]). Consequently,
there is currently no correct implementation of any algorithm for the general case
of the problem beyond exhaustive search.

It is thus desirable to have an effective and correct implementation of a
practical algorithm for the minimum genus. Rather surprisingly, to the best of
our knowledge, the approach to obtain practical algorithms via ILP (integer
linear program) and SAT (satisfiability) solvers has never been attempted for
the minimum genus so far.

A Practical Method for the Minimum Genus Problem 77

Our contribution. We provide the first ILP and SAT formulations for the mini-
mum genus problem, and discuss several different variants both under theoretical
and practical considerations. Based thereon, we develop the first implementa-
tions of nontrivial general algorithms for the problem. We evaluate these imple-
mentations on benchmark instances widely used in the study of non-planarity
measures for real-world graphs. In conjunction with suitable algorithmic sup-
port via preprocessing and efficient planarity tests, we are for the first time able
to tackle general medium-sized, sparse real-world instances with small genus in
practice. We also compare our implementations to existing approaches, namely
exhaustive search and a tailored algebraic approach for special cases.

2 Minimum Genus ILP and SAT Formulations

Our terminology is standard and consistent with [32]. We consider finite undi-
rected graphs and assume w.l.o.g. that all graphs are simple, connected, and have
minimum degree 3. For each nonnegative integer g, there is, up to homeomor-
phism, a unique orientable surface of genus g and this surface is homeomorphic
to a sphere with g added handles. An embedding of a graph G in a surface S
is a representation of G in S without edge crossings; the minimum genus v(G)
of a graph G is the minimum genus of an orientable surface into which G has
an embedding. When considering embeddings it is often useful to specify the
orientation in which we traverse an edge. Therefore, we may speak of two arcs
(aka. directed edges, halfedges) that correspond to each edge. For a given graph
G=(V,E), let A= {uv,vu | {u,v} € E} denote the arc set arising from E by
replacing each undirected edge by its two possible corresponding directed arcs.

A rotation at a vertex v is a cyclic order (counter-clockwise) of the neighbors
of v. A rotation system of a graph G is a set of rotations, one for each vertex
of G. Up to mirror images of the surfaces, there is a 1-to-1 correspondence
between rotation systems of G and (cellular) embeddings of G into orientable
surfaces (see [23, Theorem 3.2.3] and [18,24]). Given a rotation system of G, the
corresponding embedding is obtained by face tracing: starting with an unused
arc uv, move along it from u to v and continue with the arc vw, where w is
the vertex after u at the rotation at v. This process stops by computing a face
of the embedding when it re-encounters its initial arc. Repeatedly tracing faces
eventually finds all faces of the embedding.

Euler’s formula asserts that each (cellular) embedding of G in an orientable
surface satisfies |V| — |E| + f = 2 — 2g, where f is the number of the faces
of the embedding, and g is the genus of the underlying surface. It follows that
(i) determining the genus of the underlying surface for a given rotation system
is essentially equivalent to calculating the number of faces; and (ii) finding the
genus of a graph corresponds to maximizing the number of faces over all rotation
systems of the graph. See [32] for more details.

In this section, we describe how to reformulate the minimum genus problem
as an integer linear program (ILP) or a related problem of Boolean satisfiabil-
ity (SAT). Generally, such modeling approaches are known for several planarity

78 S. Beyer et al.

concepts and non-planarity measures (e.g., crossing number, graph skewness,
upward planarity) and often attain surprisingly strong results. However, for the
minimum genus problem it is at first rather unclear how to capture the topo-
logical nature of the question in simple variables. To the best of our knowledge,
there are no known formulations for this problem up to now.

We first describe the basic concepts of both formulations, and later consider
possible ways to improve them. For convenience, we write [k] := Zj; addition
and subtraction are considered modulo k.

2.1 ILP Formulation

Our formulation is based on finding an embedding with the largest number of
faces. Therefore, it statically simulates the face tracing algorithm. Let f be an
upper bound on the attainable number of faces; see Sect.3 on how to obtain
a simple linear bound. For each i € [f], we have a binary variable z; that is
1 iff the i-th face exists and a binary variable ¢, for each a € A, that is 1
iff arc a is traversed by the i-th face. For each vertex v € V and neighbors
u,w € N(v),u # w, the binary variable pj, ,, is 1 iff w is the successor of u in

the rotation at v. The ILP formulation then is:

1 . o

st oz < 3 ZaeA cl Vi € [f] (1b)
Z{I_l =1 Va e A (1c)
Zaeﬁ_(v) C“:Zae5+(v) . Yiel[fllveV (1d)
Cow = Cop + Dy — 1 Vie[flveViuFweNw) (o)
CZUZCwa—i—pZ’w—l Vi € [f],v € V,u#w € N(v) (1f)
ZweN(v)’#w Py =1 Yo € V,u € N(v) (1g)
ZueN(v),w;éu Pow=1 Yo € V,w € N(v) (1h)
voo> C i

ZueU ZweN(v)\Up“’“’ >1 YveV,0#UC N(v) (1i)
z;€{0,1} Vi € [f] (1)
ce{0,1} Vie [fl,ae A (1k)
Po.w€L0, 1} Yo € V,u # w € N(v). (11)

Constraints (1b) ensure that if a face exists, it traverses at least three arcs';
inversely, each arc is traversed by exactly one face due to (1c). Equalities (1d)

guarantee that at every vertex of a face i, the number of i-traversed incoming

! For a simple graph, the minimum genus embedding contains no face of length 1 or 2.
On the other hand, we cannot be more specific than the lower bound of 3.

A Practical Method for the Minimum Genus Problem 79

and outgoing arcs is identical. Inequalities (le) and (1f) ensure that arcs ww
and vw are both in the same face if w is the successor of u in the rotation at v.
Constraints (1g) and (1h) ensure that p” represents a permutation of the vertices
in N(v); (1i) ensures that p¥ consists of a single cycle. Observe that maximizing
(1a) guarantees that each face index corresponds to at most one facial walk.

2.2 SAT Formulation

To solve the above ILP, we will need to consider its linear relaxation (where
the binary variables are replaced by variables in the interval [0,1]). It is easy
to see that fractional values for the p” matrices lead to very weak dual bounds.
Therefore, we also consider SAT formulations. While general SAT solvers cannot
take advantage of algebraically obtained (lower) bounds, state-of-the-art SAT
solvers are highly tuned to quickly search a vast solution space by sophisticated
branching, backtracking, and learning strategies. This can give them an upper
hand over ILP approaches, in particular when the ILP’s relaxation is weak.

In contrast to the ILP, a SAT problem has no objective function and simply
asks for some satisfying variable assignment. In our case, we construct a SAT
instance to answer the question whether the given graph allows an embedding
with at least f faces. To solve the optimization problem, we iterate the process
for increasing values of f until reaching unsatisfiability. We use the same notation
as before, and construct the SAT formulation around the very same ideas. Each
binary variable is now a Boolean variable instead. While a SAT is typically
given in conjunctive normal form (CNF), we present it here as a conjunction of
separate Boolean formulae (rules) for better readability. Their transformation
into equisatisfiable CNF's is trivial. The SAT formulation is:

(g Neh) Va e Ayi#jelf] (2a)
AV Vi € [f] (2b)
pz}wﬂ(cZUHcf}w) Yo e Viu#w e N(v),i € [f] (2¢)
\/ueN(w#w Pl Yo € V,w € N(v) (2d)
(P A P) Vo € V,w € N(v),u #u' € N(v)\{w} (2e)
\/weN(v%w;éu P Vv e V,u € N(v) (2f)
(P N Pt Yo € Viu e N(v),w #w' € Nw)\{u} (2g)
v C
\/UGU’MEN@)\U DY Yo eV,0#U C N(v) (2h)

Rules (2a) and (2b) enforce that each arc is traversed by exactly one face, cf. (1c).
Rule (2¢) ensures that the successor is in the same face, cf. (1e)—(1f). Rules (2d)-
(2h) guarantee that p” variables form rotations at v, cf. (1g)—(1i).

80 S. Beyer et al.

2.3 Improvements

There are several potential opportunities to improve upon the above formula-
tions. In pilot studies we investigated their practical ramifications.

Symmetries (ILP). It seems worthwhile to add symmetry-breaking constraints
T; > xiyq oreven yo o ch >3 it for all i € [f — 1] to the ILP. Sur-
prisingly, this does not improve the overall running time (and the latter is even
worse by orders of magnitude), and we refrain from using these constraints in
the following.

Vertices of degree 8 (ILPE&SAT). Let Va3 := {v €V | deg(v) = 3}. Consider a
degree-3 vertex v € V3 with neighbors ug, u1, us. The only two possible rotations
at v are upuiug and uguqug. Hence, we can use a single binary /Boolean variable
p¥ whose assignment represents this choice.

In the ILP, we remove all p;, ,, variables for v € V3 and replace (le)—(1i) by

ciukﬂ >ch o, +p'—1 Vielfl,ve Vs kel3 (3a)
Gy > Chp +9" =1 Vi€ [flve Vs kel3) (3b)
Coup = Cuprqv — P Vi € [f],v € Vs, k € [3] (3c)
Crpsrv = Couy — P Vi € [f],v € Vs, k € [3], (3d)

where ug, u1, us denote the arbitrarily but statically ordered neighbors of v € V3.
In the SAT formulation, we analogously replace (2¢) by

p“—>(czkv — cf}UHI) Yo € Vs, k € [3],i € [f] (4a)
P (Clpyro © Chuy) YV E Va k€ (3]0 € [f]. (4b)

As expected, this is faster by orders of magnitude for certain families of
graphs, especially for instances with many degree-3 vertices. On the real world
Rome benchmark set (see Sect. 4), the performance improves by about 10 % for
both the ILP and the SAT formulations, compared to their respective formula-
tions with py, ,, variables.

This idea can be generalized for vertices v of arbitrary degree d > 4. There
are ¢ := (d— 1)! different rotations. Instead of using O(d*) many variables p, ,,,
we introduce [log, o] binary variables and representing the index of the rotation
as a binary number. Since this process is coupled with a substantial trade-off of
more complicated and weaker constraints, we refrain from using it for d > 4.

Binary face representations (SAT). Let i € [f] be a face index, and B(¢) the
vector of its binary representation, i.e., i = Zﬁ-:o 27 - B(i);, where £ = |log, f].
We define new Boolean variables b) that are true iff arc a is contained in a face

i with B(7); = 1. In logic formulae, value B(7); = 1 is mapped to true, 0 to false.

A Practical Method for the Minimum Genus Problem 81

By changing the following clauses of the SAT formulation above, we construct
a new formulation that asks for a solution with at least f faces, because we do
not forbid the usage of binary representations outside of [f].

j PN -\ . /
V. /\jem(ba B(i);) Vi € [f] (2b/)
Pz,w—)(bfw e b%w) Vo € V\V37u #w e N(U)uj € [6] (2C/)
P = bl < bl Vo € Vs, k€ [3],] €[] (42")
R G Vo € Vs, k€3]] €[] (4b")

This variant achieves a more than 100-fold speedup.

2.4 Exponential vs. Polynomial Size Formulations

Observe that the number of inequalities (1i), or rules (2h) respectively, is expo-
nential in the degree of each vertex v. Therefore, we investigate ways to obtain
a polynomial time solution strategy or a polynomially sized formulation.

Efficient Separation. For the ILP we can separate violating constraints (also
known as row generation) using a well-known separation oracle based on mini-
mum cuts (see, e.g., [13, Sect. 7.4]). While this guarantees that only a polynomial-
sized subset of (1i) is used, it is not worthwhile in practice: the separation process
requires a comparably large overhead and state-of-the-art ILP solvers offer a lot
of speed-up techniques that need to be deactivated to separate constraints on
the fly. Overall, this more than doubles the running times compared to a direct
inclusion of all (1i), even if we separate only for vertices with large degrees.

Another option is to use different representations for rotation systems. Here
we discuss an ordering approach and a betweenness approach. Both yield poly-
nomial size formulations.

Ordering Reformulation. For the ordering approach we replace the permutation
variables with variables that attach vertices to specific positions in the rotation.
This is known to be weaker in the realm of ILPs, and we hence concentrate on
the SAT formulation. There, we introduce for any v € V,u € N(v) a Boolean
variable g7, that is true iff u is the j-th vertex in the rotation at v. We do
not use the p variables any longer, replace the old permutation rules (2d)—(2h)
with rules to ensure that each ¢V is a bijective mapping, and change (2¢) to
\/je[deg(v)](q;”u NGYi1) — (¢, < dy) forallv e V,u#we N(v), i € [f].
However, the SAT running times thereby increase 50—-100-fold.

Betweenness Reformulation. For the betweenness approach we add the variables
T4 4. for each triple z,y,z € N(v). By 7 , . = 1 (true, respectively) we denote
that y is (somewhere) between x and z in the rotation at v. Here we only describe

the usage of the r variables in the SAT formulation. The usage in the ILP is

82 S. Beyer et al.

analogous. First of all, the cyclicity of a rotation implies the symmetries r; , ., =

Tyow = Togy = Moy =18, =y, forall {z,y,2} C N(v). Instead
of ensuring that each p¥ represents a permutation, we connect the p variables
to the new r variables via py , < /\yeN(v)\{u’w} Tww,y- Lhe rules to model
the betweenness conditions for the neighborhood of a given vertex v are simply
Towae NTozy = Towy N Twzy for all {u,w,z,y} € N(v). However, the SAT
running times thereby increase 20-50-fold.

Overall, we conclude that the exponential dependencies of the original for-
mulations are not so much of an issue in practice after all, and the overhead and
weaknesses of polynomial strategies typically seem not worthwhile. However, if
one considers problems with many very high degree vertices where the expo-
nential dependency becomes an issue, the above approaches can be merged very
naturally, leading to an overall polynomial model: Let 7 be some fixed constant
threshold value (to be decided upon experimentally). For vertices v of degree at
most 7, we use the original formulation requiring an exponential (in constant 7)
number of constraints over p¥. Vertices of degree above 7 are handled via the
betweenness reformulation.

3 A Minimum Genus Computation Framework

Before deploying any of our approaches on a given graph, we consider several
preprocessing steps. Since the genus is additive over biconnected components
[1,2], we decompose the input graph G accordingly. We can test v = 0 by simply
running a linear time planarity test, in our case [4]. Next, we observe that the
genus problem is susceptible to non-planar core reduction [10]: A mazimal planar
2-component is defined as a maximal subgraph S C G that (i) has only two
vertices x,y in common with the rest of the graph, and (ii) S + (x,y) is planar.
The (in our case unweighted) non-planar core (NPC') of G is obtained (in linear
time) by replacing each such maximal planar 2-components by an edge.? After
these steps we are in general left with a set of simple biconnected (preprocessed)
graphs with minimum degree at least 3, for each of which we want to compute
the genus.

By Euler’s formula, we only have to calculate SAT instances with f = |E| —
|V| mod 2. For increasing number of faces we compute the satisfiability until
we get the first unsatisfiable instance. Such an iteration is clearly not necessary

2 In [10], the validity of such a preprocessing is shown for several non-planarity mea-
sures, namely crossing number, skewness, coarseness, and thickness. Let H be the
NPC of G. We can trivially observe that (A) v(G) < y(H), and (B) v(G) > v(H). A:
Given an optimal solution for H, we can embed each S onto the surface in place of
its replacement edge, without any crossings. B: Each replaced component S contains
a path connecting its poles that is drawn crossing-free in the optimal embedding of
G; we can planarly draw all of S along this path, and then simplify the embedding
by replacing this locally drawn S by its replacement edge; this gives a solution for
H on the same surface.

A Practical Method for the Minimum Genus Problem 83

in the ILP approach, where our objective function explicitly maximizes f and
we only require an upper bound of f = min{|2|E|/3],|E| — |V|},® adjusted for
parity.

Table 1. Characteristics of instances and resulting formulations. The graphs from the
Rome (left table) and North (right table) benchmark sets are grouped by their number
of vertices in the given ranges. For each group, we give the averages for the following
values: number of vertices and percentage of degree-3 vertices in the NPC, upper bound
f on the number of faces, number of variables and constraints in the ILP formulation.

range | avg. for computation on NPC range | avg. for computation on NPC
VI [IV] %|Vs|| f |#vars #cons VI [IV] %|Vs|| f |#vars #cons
10-40 [12.8 64.2{10.0f 616.1 3399.5 10-40 (12.6 38.3|17.4|2200.0 102295.9
41-60 |18.5 60.3|15.3|1310.7 7639.9 41-60 |24.6 40.3|29.9|4916.7 197577.3
61-80 |26.8 59.4|22.5|2624.4 15735.1 61-80 |32.1 43.5(35.5|7741.7 249864.6
81-100|36.4 58.5(30.9(4718.4 28778.3 81-100|24.3 40.6|34.7|7146.7 632634.6

4 Experimental Evaluation

Our C++ code is compiled with GCC 4.9.2, and runs on a single core of an
AMD Opteron 6386 SE with DDR3 Memory @ 1600 MHz under Debian 8.0. We
use the ILP solver CPLEX 12.6.1, the SAT solver lingeling (improved version
for SMT Competition 2015 by Armin Biere)*, and the Open Graph Drawing
Framework (www.ogdf.net, GPL), and apply a 72 GB memory limit.

Real world graphs. We consider the established Rome [16] and North [15] bench-
mark sets of graphs collected from real-world applications. They are commonly
used in the evaluation of algorithms in graph drawing and non-planarity mea-
sures. We use the ILP and SAT approaches to compute the genera of all 8249
(423) non-planar Rome (North) graphs. Each approach is run with a 30 min time
limit for each graph to compute its genus; we omit 10 (North) instances that
failed due to the memory limitation. Characteristics about the data sets and the
resulting formulations can be found in Table 1.

Figure1(a) shows the success rate (computations finished within the time
limit) for the Rome graphs, depending on the number of vertices of the input
graph. Both the SAT and ILP approach exhibit comparable numbers, but nearly
always, the success rate of the SAT approach is as good or better than the ILP’s.
However, the differences are statistically not significant. Instances with up to 40
vertices can be solved with a high success rate; our approach degrades heavily

3 First term: each edge lies on at most two faces, each face has size at least 3; second
term: Euler’s formula with genus at least 1.

4 The previous version was the winner of the Sequential Appl. SAT+UNSAT Track of
the SAT competition 2014 [3]. This improved version is even faster.

www.ogdf.net

84 S. Beyer et al.

for graphs with more than 60-70 vertices. However, it is worth noting that even
if the genus is not calculated to provable optimality, we obtain highly nontrivial
bounds on the genus of the graphs in question.

In Fig. 1(b) we see that, given any fixed time limit below 30 min, the SAT
approach solves clearly more instances than the ILP approach. Note that the
curve that corresponds to the solved SAT instances flattens out very quickly.

When we compare the success rates to the density of the NPC (see Fig. 1(c)),
we see the same characteristics as in Fig. 1(a). Both approaches are able to solve
instances with density (i.e., |E|/|V|) up to 1.6 with a high success rate but are
typically not able to obtain provably optimal values for densities above 1.9.

Finally, we compare the average running time of the instances that are solved
by both approaches. Out of the 8249 non-planar Rome graphs we are able to
solve 2571 with SAT and ILP, and additionally 96 (24) more with the SAT
(ILP, respectively). Except for very small graphs, the average running time of
the SAT approach is always at least one or two orders of magnitude lower than
the average running time of the ILP approach, see Fig. 1(d).

Considering the non-planar North graphs, Fig. 1(e) shows that the success
rates of both approaches are again comparable. Again, the differences are sta-
tistically not significant. However, ten instances could not be solved due to the
high memory consumption caused by the exponential number of constraints (1i)
and rules (2h). Since the results for the North graphs are analogous to those for
the Rome graphs, we omit discussing them in detail.

Generally, we observe that the SAT approach is particularly fast to show
the existence of an embedding, but is relatively slow to prove that there is no
embedding with a given number of faces. This is of particular interest for non-
planar graphs that allow a genus-1 embedding, since there the SAT is quick to
find such a solution and need not prove that a lower surface is infeasible. The
SAT’s behavior in fact suggests an easy heuristical approach: if solving the SAT
instance for f faces needs a disproportionally long running time (compared to
the previous iterations for lower face numbers), this typically indicates that it is
an unsatisfiable instance and f — 2 faces is the optimal value.

Comparison to existing genus computations. An evaluation of exhaustive search
algorithms for determining the genus distribution of complete graphs was per-
formed in [35]. Fixing the rotation of the first vertex, it is possible to compute
the genus of distribution the complete graph K7 within 896h of computation
(112h on 8 parallel threads). While both our approaches perform significantly
better, there is a notable (and w.r.t. to the above evaluations particularly sur-
prising) difference in their performance: the SAT approach needs one hour to
find and prove the optimal genus; solving the ILP takes only 30s.

A circulant C,(S) is the Cayley graph of Z,, with generating set S. Conder
and Grande [12] recently characterized all circulants with genus 1 and 2. A crucial
part of the characterization is the determination of the genus of several sporadic
cases where the lower bounds are more problematic. At the same time, these
sporadic cases constitute the main obstacle in both obtaining a simpler proof,
as well as extending the results to higher genera. By far the most difficult case

T I T
100 oog poe o # instances) 300
" —=— success SAT %
% 75 |- —o— success ILP 225 g
g 2
= 50 150 %
xe =
25 | 75
10 20 30 40 50 60 70 80 9 100
(a) input graph |V] (Rome)
g ‘ ‘ 100 800
+ 2000 |- R @ 75 600 9
= Q =
= O +
T o0 Z 50 400 %
= B 1= "
3 25 200
B
o I I I bod Bt hod bod ()
0 10 20 30 1.6 1.8 2 2.2
(b) time in min. (Rome) (c) NPC density (Rome)
— = Q ‘
g 10% | X o[200
® = o PAR P o "
~ B 6P 2 Po0q” N d O] F b4 # 1)
e 10% | ? o RoET Y 7 1150 &
g F Ay’ =
= T . d +
10k Rl e g \ 100 Z
s 10° |3 AR E
S o\
2
! | \ \ \ | | \ o
10 20 30 40 50 60 70 80 90 100
(d) input graph |V| (Rome)
|80
0 5
@ 160 o
: g
: |0z
= 20 ¥
10 20 30 40 50 60 70 80 90 100

A Practical Method for the Minimum Genus Problem

(e) input graph |V| (North)

85

Fig. 1. Rome Graphs: (a) success rate per |V|, (b) solved instances per given time,
(c) success rate per non-planar core density |E|/|V], (d) average running time per |V|
where both approaches were successful. North graphs: (e) success rate per |V].

86 S. Beyer et al.

is proving that the genus of Cy1(1,2,4) is at least 3. The proof takes three pages
of theoretical analysis and eventually resorts to a computational verification of
three subcases, taking altogether around 85h using the MAGMA computational
algebra system in a nontrivial problem-specific setting. The ILP solver needs
180 h to determine the genus without using any theoretical results or problem-
specific information.

5 Conclusion

The minimum genus problem is very difficult from the mathematical, algorith-
mic, and practical perspective—the problem space is large and seems not to be
well-structured, the existing algorithms are error-prone and/or very difficult to
implement, and only little progress was made on the (practice-oriented) algorith-
mic side. In this paper we have presented the first ILP and SAT formulations,
together with several variants and alternative reformulations, for the problem,
and investigated them in an experimental study. Our approach leads to the
first (even easily!) implementable general-purpose minimum genus algorithms.
Besides yielding practical algorithms for small to medium-sized graphs and small
genus, one of the further advantages of our approach is that the formulations are
adaptable and can be modified to tackle other related problems of interest. For
example, the existence of polyhedral embeddings [32], or embeddings with given
face lengths, say 5 and 6 as in the case of fullerenes (graph-theoretic models of
carbon molecules), see [14].

On the negative side, our implementations cannot deal with too large graphs
without resorting to extensive computational resources. However, this is not very
surprising considering the difficulty of the problem—a fast exact algorithm could
be used to solve several long-standing open problems, such as completing the list
of forbidden toroidal minors. We also see—and hope for—certain similarities to
the progress on exact algorithms for the well-known crossing number problem:
while the first published report [6] was only capable of solving Rome graphs
with 30-40 vertices, it led to a series of improvements that culminated in the
currently strongest variant [11] which is capable to tackle even the largest Rome
graphs.

Acknowledgements. We thank Armin Biere for providing the most recent version
(as of 2015-06-05) of the lingeling SAT solver.

References

1. Archdeacon, D.: The orientable genus is nonadditive. J. Graph Theor. 10(3), 385—
401 (1986)

2. Battle, J., Harary, F., Kodama, Y., Youngs, J.W.T.: Additivity of the genus of a
graph. Bull. Amer. Math. Soc. 68, 565-568 (1962)

3. Belov, A., Diepold, D., Heule, M.J., Jarvisalo, M. (eds.): Proceedings of SAT Com-
petition 2014: Solver and Benchmark Descriptions. No. B-2014-2 in Series of Pub-
lications B, Department Of Computer Science, University of Helsinki (2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

A Practical Method for the Minimum Genus Problem 87

Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified O(n) planarity by
edge addition. J. Graph Algorithms Appl. 8(2), 241-273 (2004)

Brin, M.G., Squier, C.C.: On the genus of Z3 x Z3 x Zz. Eur. J. Comb. 9(5),
431-443 (1988)

Buchheim, C., Ebner, D., Jinger, M., Klau, G.W., Mutzel, P., Weiskircher, R.:
Exact crossing minimization. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS,
vol. 3843, pp. 37-48. Springer, Heidelberg (2006)

Cabello, S., Chambers, E.W., Erickson, J.: Multiple-source shortest paths in
embedded graphs. SIAM J. Comput. 42(4), 1542-1571 (2013)

Chambers, J.: Hunting for torus obstructions. M.Sc. thesis, University of Victoria
(2002)

Chekuri, C., Sidiropoulos, A.: Approximation algorithms for euler genus and
related problems. In: Proceedings of FOCS 2013, pp. 167-176 (2013)

Chimani, M., Gutwenger, C.: Non-planar core reduction of graphs. Disc. Math.
309(7), 1838-1855 (2009)

Chimani, M., Mutzel, P., Bomze, I.: A new approach to exact crossing minimiza-
tion. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 284-296.
Springer, Heidelberg (2008)

Conder, M., Grande, R.: On embeddings of circulant graphs. Electron. J. Comb.
22(2), P2.28 (2015)

Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimiza-
tion. Wiley, New York (1998)

Deza, M., Fowler, P.W., Rassat, A., Rogers, K.M.: Fullerenes as tilings of surfaces.
J. Chem. Inf. Comput. Sci. 40(3), 550-558 (2000)

Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu,
F., Vismara, L.: Drawing directed acyclic graphs: an experimental study. Int. J.
Comput. Geom. Appl. 10(6), 623-648 (2000)

Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An
experimental comparison of four graph drawing algorithms. Comput. Geom. 7(5—
6), 303-325 (1997)

Djidjev, H., Reif, J.: An efficient algorithm for the genus problem with explicit
construction of forbidden subgraphs. In: Proceedings of STOC 1991, pp. 337-347.
ACM (1991)

Edmonds, J.: A combinatorial representation for polyhedral surfaces. Not. Amer.
Math. Soc. 7, 646 (1960)

Erickson, J., Fox, K., Nayyeri, A.: Global minimum cuts in surface embedded
graphs. In: Proceedings of SODA 2012, pp. 1309-1318. SIAM (2012)

Filotti, I.S.: An efficient algorithm for determining whether a cubic graph is
toroidal. In: Proceedings of STOC 1978, pp. 133-142. ACM (1978)

Filotti, I.S., Miller, G.L., Reif, J.: On determining the genus of a graph in O(VO<G))
steps. In: Proceedings of STOC 1979, pp. 27-37. ACM (1979)

Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the theory
of NP-completeness. Bell Telephone Laboratories, New York (1979)

Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley, New York (1987)

Heffter, L.: Ueber das Problem der Nachbargebiete. Math. Ann. 38, 477-508 (1891)
Juvan, M., Marincek, J., Mohar, B.: Embedding graphs in the torus in linear time.
In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 360-363. Springer,
Heidelberg (1995)

88

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

S. Beyer et al.

Kawarabayashi, K., Mohar, B., Reed, B.: A simpler linear time algorithm for
embedding graphs into an arbitrary surface and the genus of graphs of bounded
tree-width. In: Proceedings of FOCS 2008, pp. 771-780 (2008)

Kawarabayashi, K., Sidiropoulos, A.: Beyond the euler characteristic: approximat-
ing the genus of general graphs. In: Proceedings of STOC 2015. ACM (2015)
Kotrbéik, M., Pisanski, T.: Genus of cartesian product of triangles. Electron. J.
Comb. 22(4), P4.2 (2015)

Marusié¢, D., Pisanski, T., Wilson, S.: The genus of the GRAY graph is 7. Eur. J.
Comb. 26(3—4), 377-385 (2005)

Mohar, B.: Embedding graphs in an arbitrary surface in linear time. In: Proceedings
of STOC 1996, pp. 392-397. ACM (1996)

Mohar, B., Pisanski, T., Skoviera, M., White, A.: The cartesian product of 3 tri-
angles can be embedded into a surface of genus 7. Disc. Math. 56(1), 87-89 (1985)
Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore (2001)
Myrvold, W., Kocay, W.: Errors in graph embedding algorithms. J. Comput. Syst.
Sci. 77(2), 430-438 (2011)

Ringel, G.: Map Color Theorem. Springer, Heidelberg (1974)

Schmidt, P.: Algoritmické vlastnosti vnoreni grafov do ploch. B.Sc. thesis, Come-
nius University (2012). In Slovak

Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10, 568—
576 (1989)

Thomassen, C.: The graph genus problem is NP-complete for cubic graphs. J.
Comb. Theor. Ser. B 69, 52-58 (1997)

Compact Flow Diagrams for State Sequences

Kevin Buchin'®) | Maike Buchin?, Joachim Gudmundsson®, Michael Horton?,
and Stef Sijben?

! Department of Mathematics and Computer Science,
TU Eindhoven, Eindhoven, The Netherlands
k.a.buchin@tue.nl
2 Department of Mathematics, Ruhr-Universitit Bochum, Bochum, Germany
{Maike.Buchin,Stef.Sijben}@ruhr-uni-bochum.de
3 School of Information Technologies, The University of Sydney, Sydney, Australia
{joachim.gudmundsson,michael.horton}@sydney.edu.au

Abstract. We introduce the concept of compactly representing a large
number of state sequences, e.g., sequences of activities, as a flow dia-
gram. We argue that the flow diagram representation gives an intuitive
summary that allows the user to detect patterns among large sets of
state sequences. Simplified, our aim is to generate a small flow diagram
that models the flow of states of all the state sequences given as input.
For a small number of state sequences we present efficient algorithms to
compute a minimal flow diagram. For a large number of state sequences
we show that it is unlikely that efficient algorithms exist. More specifi-
cally, the problem is W[1]-hard if the number of state sequences is taken
as a parameter. We thus introduce several heuristics for this problem.
We argue about the usefulness of the flow diagram by applying the algo-
rithms to two problems in sports analysis. We evaluate the performance
of our algorithms on a football data set and generated data.

1 Introduction

Sensors are tracking the activity and movement of an increasing number of
objects, generating large data sets in many application domains, such as sports
analysis, traffic analysis and behavioural ecology. This leads to the question of
how large sets of sequences of activities can be represented compactly. We intro-
duce the concept of representing the “flow” of activities in a compact way and
argue that this is helpful to detect patterns in large sets of state sequences.

To describe the problem we start by giving a simple example. Consider three
objects (people) and their sequences of states, or activities, during a day. The set
of state sequences 7 = {71, 72,73} are shown in Fig. 1(a). As input we are also
given a set of criteria C = {C1, ..., Cy}, as listed in Fig. 1(b). Each criterion is a
Boolean function on a single subsequence of states, or a set of subsequences of
states. For example, in the given example the criterion C; = “eating” is true for
Person 1 at time intervals 7-8 am and 7-9 pm, but false for all other time inter-
vals. Thus, a criterion partitions a sequence of states into subsequences, called
segments. In each segment the criterion is either true or false. A segmentation of

© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 89-104, 2016.
DOI: 10.1007/978-3-319-38851-9_7

90 K. Buchin et al.

Person 1 Person 2 Person 3 C: Eating {l‘)reakfast,dimller}
— Cy: Commuting {cycle/drive to work}
7-8am | breakfast & breakfast C3: Exercising {gym,cycle to work}
8-9am | cycle to work drive to work cycle to work Cy: Working or studying
9am-5pm work work work C5: Working for at least 4 hours

5-Tpm study dinner shop Cg: Shopping

7-9pm dinner shop dinner C7: At least 2 people eating simultaneously

(a) (b)
Person 1 Person 2 Person 3 @

7-8am | [C4,C7] (Cs] [Cy, C7] ‘

8-9am | [C2,Cs) [Cs] [Cs, Cs) @ @ @ °
9am-spm | [C1,Cs] [C,Cs] [Ca,C5) \ ‘

5-Tpm [C4] [C1] [C6) @ @ @

7-9pm | [Cy,Cy] (Cs) [C1,C]

() (d)

Fig. 1. The input is (a) a set 7 = {71,...,7m } of sequences of states and (b) a set of
criteria C = {C1,...,,Ck}. (c) The criteria partition the states into a segmentation.
(d) A valid flow diagram for 7 according to C.

7T is a partition of each sequence in 7 into true segments, which is represented
by the corresponding sequence of criteria. If a criterion C' is true for a set of
subsequences, we say they fulfil C. Possible segments of 7 according to the set C
are shown in Fig. 1(c). The aim is to summarize segmentations of all sequences
efficiently; that is, build a flow diagram F, starting at a start state s and ending
at an end state ¢, with a small number of nodes such that for each sequence of
states 7, 1 < ¢ < m, there exists a segmentation according to C which appears
as an s—t path in F. A possible flow diagram is shown in Fig.1(d). This flow
diagram for 7 according to C can be validated by going through a segmentation
of each object while following a path in F from s to ¢. For example, for Person 1
the s—t path s - C; — Cy — C4y — C7 — t is a valid segmentation.

Now we give a formal description of the problem. A flow diagram is a node-
labelled DAG containing a source node s and sink node ¢, and where all other
nodes are labelled with a criterion. Given a set 7 of sequences of states and
a set of criteria C, the goal is to construct a flow diagram with a minimum
number of nodes, such that a segmentation of each sequence of states in 7 is
represented, that is, included as an s—t path, in the flow diagram. Furthermore
(when criteria depend on multiple state sequences, e.g. C7 in Fig. 1) we require
that the segmentations represented in the flow diagram are consistent, i.e. can
be jointly realized. The Flow Diagram problem thus requires the segmentations
of each sequence of states and the minimal flow diagram of the segmentations
to be computed. It can be stated as:

Problem 1. Flow Diagram (FD)

Instance: A set of sequences of states 7 = {71, ..., Tm }, each of length at most
n, a set of criteria C = {C1,...,Cy} and an integer A > 2.

Compact Flow Diagrams for State Sequences 91

Question: Is there a flow diagram F with < X nodes, such that for each 7; € T,
there exists a segmentation according to C which appears as an s—t path in F?

Even the small example above shows that there can be considerable space
savings by representing a set of state sequences as a flow diagram. This is not
a lossless representation and comes at a cost. The flow diagram represents the
sequence of flow between states, however, the information about an individual
sequence of states is lost. As we will argue in Sect. 3, paths representing many
segments in the obtained flow diagrams show interesting patterns. We will give
two examples. First we consider segmenting the morphology of formations of
a defensive line of football players during a match (Fig.4). The obtained flow
diagram provides an intuitive summary of these formations. The second example
models attacking possessions as state sequences. The summary given by the flow
diagram gives intuitive information about differences in attacking tactics.

Properties of Criteria. The efficiency of the algorithms will depend on prop-
erties of the criteria on which the segmentations are based. Here we consider
four cases: (i) general criteria without restrictions; (ii) monotone decreasing
and independent criteria; (iii) monotone decreasing and dependent criteria; and
(iv) fixed criteria. To illustrate the properties we will again use the example in
Fig. 1.

A criterion C' is monotone decreasing [8] for a given sequence of states 7 that
fulfils C, if all subsequences of 7 also fulfil C'. For example, if C} is fulfilled by
a sequence T then any subsequence 7 of 7 will also fulfil Cy. This is in contrast
to criterion C5 which is not monotone decreasing.

A criterion C is independent if checking whether a subsequence 7 of a
sequence 7; € 7 fulfils C' can be achieved without reference to any other
sequences 7; € 7,1 # j. Conversely, C is dependent if checking that a sub-
sequence 7' of 7; requires reference to other state sequences in 7. In the above
example Cy is an example of an independent criterion while C7 is a dependent
criterion since it requires that at least two objects fulfil the criterion at the same
time.

Related Work. To the best of our knowledge compactly representing sequences
of states as flow diagrams has not been considered before. The only related work
we are aware of comes from the area of trajectory analysis. Spatial trajectories
are a special case of state sequences. A spatial trajectory describes the movement
of an object through space over time, where the states are location points, which
may also include additional information such as heading, speed, and tempera-
ture. For a single trajectory a common way to obtain a compact representation
is simplification [10]. Trajectory simplification asks to determine a subset of the
data that represents the trajectory well in terms of the location over time. If the
focus is on characteristics other than the location, then segmentation [1,2,8] is
used to partition a trajectory into a small number of subtrajectories, where each
subtrajectory is homogeneous with respect to some characteristic. This allows a
trajectory to be compactly represented as a sequence of characteristics.

92 K. Buchin et al.

For multiple trajectories other techniques apply. A large set of trajectories
might contain very unrelated trajectories, hence clustering may be used. Clus-
tering on complete trajectories will not represent information about interest-
ing parts of trajectories; for this clustering on subtrajectories is needed [6,12].
A set of trajectories that forms different groups over time may be captured by
a grouping structure [7]. These approaches also focus on location over time.

For the special case of spatial trajectories, a flow diagram can be illustrated
by a simple example: trajectories of migrating geese, see [9]. The individual
trajectories can be segmented into phases of activities such as directed flight,
foraging and stop overs. This results in a flow diagram containing a path for
the segmentation of each trajectory. More complex criteria can be imagined that
depend on a group of geese, or frequent visits to the same area, resulting in
complex state sequences that are hard to analyze without computational tools.

Results, Organization and Hardness. In Sect.2 we present algorithms for
the Flow Diagram problem using criteria with the properties described above.
These algorithms only run in polynomial time if the number of state sequences
m is constant. Below we observe that this is essentially the best we can hope for
by showing that the problem is W[1]-hard.

Theorem 2. The FD problem is NP-hard. This even holds when only two cri-
teria are used or when the length of every state sequence is 2. Furthermore, for

any 0 < ¢ < 1/4, the FD problem cannot be approzimated within factor of clogm
in polynomial time unless NP C DTTM E(mpPeesm),

Also for bounded m the running times of our algorithms is rather high. Again,
we can show that there are good reasons for this.

Theorem 3. The FD problem parameterized in the number of state sequences
is W[1]-hard even when the number of criteria is constant.

Both theorems are proved in the longer version of this paper [5]. Unless W[1] =
FPT, this rules out the existence of algorithms with time complexity of O(f(m)-
(nk)¢) for some constant ¢ and any computable function f(m), where m,n and
k are the number of state sequences, the length of the state sequences and the
number of criteria, respectively. To obtain flow diagrams for larger groups of state
sequences we propose two heuristics for the problem in Sect. 2. We experimentally
evaluate the algorithms and heuristics in Sect. 3.

2 Algorithms

In this section, we present algorithms that compute a smallest flow diagram
representing a set of m state sequences of length n for a set of k criteria. First,
we present an algorithm for the general case, followed by a more efficient algo-
rithm for the case of monotone increasing and independent criteria, and then
two heuristic algorithms. The algorithm for monotone increasing and dependent
criteria, and the proofs omitted in this section are in the extended version of
this paper [5].

Compact Flow Diagrams for State Sequences 93

2.1 General Criteria

Next, we present a dynamic programming algorithm for finding a smallest flow
diagram. Recall that a node v in the flow diagram represents a criterion C; that
is fulfilled by a contiguous segment in some of the state sequences. Let 7[i, j],
1 < j, denote the subsequence of 7 starting at the ith state of 7 and ending at
the jth state, where 7[i,4] is the empty sequence. Construct an (n + 1)™ grid

of vertices, where a vertex with coordinates (z1,...,Zm), 0 < z1,..., 2y, < n,
represents (71[0, 1], ..., Tm[0, Zm]). Construct a prefix graph G as follows:
There is an edge between two vertices v = (21, ...,2,) and v’ = (2, ..., 2,,),

labeled by some criterion Cj, if and only if, for every i, 1 < i < m, one of the
following two conditions is fulfilled: (1) z; = =, or (2) all remaining 7;[x; + 1, z7]
jointly fulfil C;. Consider the edge between (z1,x2) = (1,0) and (2}, z5) = (1,1)
in Fig.2(b). Here 21 = 2} and mo[x2 + 1, 24] fulfils Cs.

Finally, define v4 to be the vertex in G with coordinates (0, ...,0) and add an
additional vertex v; outside the grid, which has an incoming edge from (n, ..., n).
This completes the construction of the prefix graph G.

T1 T2 t @

[C1] [Co]
2| [C4] [C1,C) e‘.@ e
3] [Gs] [Cs])

(©)

Fig. 2. (a) A segmentation of 7 = {71, 72} according to C = {C1,C2,Cs}. (b) The
prefix graph G of the segmentation, omitting all but four of the edges. (¢) The resulting
flow diagram generated from the highlighted path in the prefix graph.

Now, a path in G from v, to a vertex v represents a valid segmentation of some
prefix of each state sequence, and defines a flow diagram that describes these
segmentations in the following way: the empty path represents the flow diagram
consisting only of the start node s. Every edge of the path adds one new node to
the flow diagram, labeled by the criterion that the segments fulfil. Additionally,
for each node the flow diagram contains an edge from every node representing a
previous segment, or from s if the node is the first in a segmentation. For a path
leading from vs to v, the target node ¢ is added to the flow diagram, together
with its incoming edges. This ensures that the flow diagram represents valid
segmentations and that each node represents at least one segment. An example
of this construction is shown in Fig. 2.

Hence the length of a path (where length is the number of edges on the path)
equals the number of nodes of the corresponding flow diagram, excluding s and t.
Thus, we find an optimal flow diagram by finding a shortest vs—v; path in G.

94 K. Buchin et al.

Lemma 4. A smallest flow diagram for a given set of state sequences is repre-
sented by a shortest vs—v; path in G.

Recall that G has (n 4 1)™ vertices. Each vertex has O(k(n + 1)™) outgoing
edges, thus, G has O(k(n + 1)?™) edges in total. To decide if an edge is present
in G, check if the nonempty segments the edge represents fulfil the criterion.
Thus, we need to perform O(k(n + 1)2™) of these checks. There are m segments
of length at most n, and we assume the cost for checking this is T'(m,n). Thus,
the cost of constructing G is O(k(n + 1)?™ - T(m,n)), and finding the shortest
path requires O(k(n + 1)?™) time.

Theorem 5. The algorithm described above computes a smallest flow diagram
for a set of m state sequences, each of length at most n, and k criteria in O((n+
1)2mk - T(m,n)) time, where T(m,n) is the time required to check if a set of m
subsequences of length at most n fulfils a criterion.

2.2 Monotone Decreasing and Independent Criteria

If all criteria are decreasing monotone and independent, we can use ideas similar
to those presented in [8] to avoid constructing the full graph. From a given vertex
with coordinates (1, ..., 2,), we can greedily move as far as possible along the
sequences, since the monotonicity guarantees that this never leads to a solution
that is worse than one that represents shorter segments. For a given criterion Cj,
we can compute for each 7; independently the maximum = such that = [x;+1, 2]
fulfils C;. This produces coordinates (21, ...,z},) for a new vertex, which is the
optimal next vertex using C;. By considering all criteria we obtain k new vertices.
However, unlike the case with a single state sequence, there is not necessarily
one vertex that is better than all others (i.e. largest ending position), since there
is no total order on the vertices. Instead, we consider all vertices that are not
dominated by another vertex, where a vertex p dominates a vertex p’ if each
coordinate of p is at least as large as the corresponding coordinate of p’, and at
least one of p’s coordinates is larger.

Let V; be the set of vertices of G that are reachable from v in exactly 4
steps, and define M (V) := {v € V | no vertex u € Vdominates v} to be the set
of maximal vertices of a vertex set V. Then a shortest vs—v; path through G can
be computed by iteratively computing M (V;) for increasing ¢, until a value of i
is found for which v; € M(V;). Observe that |[M (V)| = O((n + 1)™~1) for any
set V' of vertices in the graph. Also note that Vy = M (V) = vs.

Lemma 6. For each i € {1,...,£ — 1}, every vertex in M(V;) is reachable in
one step from a vertex in M(V;_1). Here, { is the distance from vs to vy.

M(V;) is computed by computing the farthest reachable vertex for each v €
M (V;_1) and criterion, thus yielding a set D; of O((n + 1)™~'k) vertices. This
set contains M (V;) by Lemma 6, so we now need to remove all vertices that are
dominated by some other vertex in the set to obtain M (V;).

We find M(V;) using a copy of G. Each vertex may be marked as being in
D; or dominated by a vertex in D;. We process the vertices of D; in arbitrary

Compact Flow Diagrams for State Sequences 95

order. For a vertex v, if it is not yet marked, we mark it as being in D;. When a
vertex is newly marked, we mark its < m immediate neighbours dominated by
it as being dominated. After processing all vertices, the grid is scanned for the
vertices still marked as being in D;. These vertices are exactly M (V}).

When computing M (V;), O((n + 1)™~1k) vertices need to be considered,
and the maximum distance from v to v; is m(n+ 1), so the algorithm considers
O(mk(n+1)™) vertices. We improve this bound by a factor m using the following:

Lemma 7. The total size of all D;, for 0 <i<{¢—1, is O(k(n+1)™).

Using this result, we compute all M(V;) in O((k + m)(n + 1)™) time, since
O(k(n 4+ 1)™) vertices are marked directly, and each of the (n + 1)™ vertices is
checked at most m times when a direct successor is marked. One copy of the grid
can be reused for each M (V;), since each vertex of D;; dominates at least one
vertex of M(V;) and is thus not yet marked while processing D; for any j < 1.

Since the criteria are independent, the farthest reachable point for a given
starting point and criterion can be precomputed for each state sequence sep-
arately. Using the monotonicity we can traverse each state sequence once per
criterion and thus need to test only O(nmk) times whether a subsequence fulfils
a criterion.

Theorem 8. The algorithm described above computes a smallest flow diagram
for m state sequences of length n with k independent and monotone decreasing
criteria in O(mnk - T(1,n) + (k + m)(n+ 1)™) time, where T(1,n) is the time
required to check if a subsequence of length at most n fulfils a criterion.

2.3 Heuristics

The hardness results presented in the introduction indicate that it is unlikely
that the performance of the algorithms will be acceptable in practical situa-
tions, except for very small inputs. As such, we investigated heuristics that may
produce usable results that can be computed in reasonable time.

We consider heuristics for monotone decreasing and independent criteria.
These are based on the observation that by limiting V;, the vertices that are
reachable from v, in ¢ steps, to a fixed size, the complexity of the algorithm can
be controlled. Given that every path in a prefix graph represents a valid flow
diagram, any path chosen in the prefix graph will be valid, though not necessarily
optimal. In the worst case, a vertex that advances along a single state sequence
a single time-step (i.e. advancing only one state) will be selected, and for each
vertex, all k criteria must be evaluated, so O(kmn) vertices may be processed
by the algorithm. We consider two strategies for selecting the vertices in V; to
retain:

(1) For each vertex in V;, determine the number of state sequences that are
advanced in step ¢ and retain the top g vertices [sequence heuristic].

(2) For each vertex in V;, determine the number of time-steps that are
advanced in all state sequences in step 7 and retain the top ¢ vertices [time-
step heuristic].

96 K. Buchin et al.

In our experiments we use ¢ = 1 since any larger value would immediately
give an exponential worst-case running time.

3 Experiments

The objectives of the experiments were twofold: to determine whether compact
and useful flow diagrams could be produced in real application scenarios; and to
empirically investigate the performance of the algorithms on inputs of varying
sizes. We implemented the algorithms described in Sect. 2 using the Python pro-
gramming language. For the first objective, we considered the application of flow
diagrams to practical problems in football analysis in order to evaluate their use-
fulness. For the second objective, the algorithms were run on generated datasets
of varying sizes to investigate the impact of different parameterisations on the
computation time required to produce the flow diagram and the complexity of
the flow diagram produced.

3.1 Tactical Analysis in Football

Sports teams will apply tactics to improve their performance, and computational
methods to detect, analyse and represent tactics have been the subject of several
recent research efforts [4,11,14,16-18]. Two manifestations of team tactics are
in the persistent and repeated occurrence of spatial formations of players, and
in plays — a coordinated sequence of actions by players. We posited that flow
diagrams would be a useful tool for compactly representing both these manifes-
tations, and we describe the approaches used in this section.

The input for the experiments is a database containing player trajectory and
match event data from four home matches of the Arsenal Football Club from
the 2007/08 season, provided by Prozone Sports Limited [15]. For each player
and match, there is a trajectory comprising a sequence of timestamped location
points in the plane, sampled at 10 Hz and accurate to 10 cm. The origin of the
coordinate system coincides with the centre point of the football pitch and the
longer side of the pitch is parallel to the z-axis — i.e. the pitch is oriented so the
goals are to the left and right. In addition, for each match, there is a log of all
the match events, comprising the type, time-stamp and location of each event.

Defensive Formations. The spatial formations of players in football matches
are known to characterize a team’s tactics [3], and a compact representation
of how formations change over time would be a useful tool for analysis. We
investigated whether a flow diagram could provide such a compact representation
of the defensive formation of a team, specifically to show how the formation
evolves during a phase of play. In our match database, all the teams use a
formation of four defensive players who orient themselves in line across the pitch.
Broadly speaking, the ideal is for the formation to be “flat”, i.e. the players are
positioned in a line parallel to the y-axis. However the defenders will react to
changes circumstances, for example in response to opposition attacks, possibly

Compact Flow Diagrams for State Sequences 97

causing the formation to deform. We constructed the following flow diagram to
analyse the defensive formations used in the football matches in our database.

For each match in the database, the trajectories of the four defensive players
were re-sampled at one-second intervals to extract the point-locations of the
four defenders. The samples were partitioned into sequences 7 = {11,...,Tm}
corresponding to phases such that a single team was in possession of the ball, and
where the phase began with a goal kick event, or the goalkeeper kicks or throws
the ball from hand. Let 7;[j] be the j-th state in the i-th state sequence. Each
7:l4] = (p1, P2, P3,p4), where p; is the location of a player in the plane, such that
the locations are ordered by their y-coordinate: y(p;) < y(pi+1) : ¢ € {1,2,3}.

The criteria used to summarise the formations were derived from those pre-
sented by Kim et al. [13]. The angles between pairs of adjacent players (along
the defensive line) were used to compute the formation criteria, see Fig. 3. The
scheme in Kim et al. was extended to allow multiple criteria to be applied where
the angle between pairs of players is close to 10°. The reason for this was to facil-
itate compact results by allowing for smoothing of small variations in contiguous
time-steps.

The criteria C applied to each state is a triple (1, z2,x3), computed as fol-
lows. Given two player positions p and ¢ as points in the plane such that y(p) <
y(q), let p’ be an arbitrary point on the interior of the half-line from p in the direc-
tion of the positive y-axis, and let Zp’pq be the angle induced by these points,
and thus denotes the angle between the two player’s positions relative to the goal-
line. Let R(—1) = [-90°,—5°), R(0) = (—15°,+15°), and R(1) = (+5°,+90°]
be three angular ranges. Thus, C = {(asl,xg,zg) D xq, 29,23 € {—1,0, 1}} is the
set of available criteria.

Each state sequence 7; € 7 is segmented according to the criteria set C. A
given state 7;[j] = (p1,p2,p3,p4) may satisfy the criteria (and thus have the
formation) (z1,x9,x3) if Zpipipiy1 € R(x;) for all ¢ € {1,2,3}.

The criteria are monotone decreasing and independent, and we ran the corre-
sponding algorithm using randomly selected sets of the state sequences as input.
The size m of the input was increased until the running time exceeded a thresh-
old of 6h. The algorithm successfully processed up to m = 12 state sequences,
having a total of 112 assigned segments. The resulting flow diagram, Fig. 4, has
a total complexity of 12 nodes and 27 edges.

We believe that the flow diagram provides an intuitive summary of the defen-
sive formation, and several observations are apparent. There appears to be a
preference amongst the teams for the right-back to position himself in advance
of the right centre-half (i.e. the third component of the triple is +1). Further-
more, the (0,0,0) triple, corresponding to a “flat back four” is not present in the
diagram. This is typically considered the ideal formation for teams that utilise
the offside trap, and thus may suggest that the defences here are not employ-
ing this tactic. These observations were apparent to the authors as laymen, and
we would expect that a domain expert would be able to extract further useful
insights from the flow diagrams.

98 K. Buchin et al.

1{ 2{ 3(4{ 5{ 6{ 7{ 8{ 9i 10i
(-1,-1,+1)
(-1,0,+1)
(-1,+1,+1)
(0,-1,+1)
(0,0,+1)
(0,+1,+1)

(+1,-1,+1)
(+1,0,+1)

Criteria

0 1 2 3 4 5 6 7 8 9 10
Trajectory Timestep

Fig. 3. Segmentation of a single state sequence 7;. The formation state sequence is
used to compute the segmentation representation, where segments corresponding to
criteria span the state sequence (bottom). The representation of this state sequence in
the movement flow diagram is shaded in Fig. 4.

Fig. 4. Flow diagram for formation morphologies of twelve defensive possessions. The
shaded nodes are the segmentation of the state sequence in Fig. 3.

Attacking Plays. In this second experiment, we used a different formulation
to produce flow diagrams to summarise phases of attack. During a match, the
team in possession of the ball regularly attempts to reach a position where they
can take a shot at goal. Teams will typically use a variety of tactics to achieve
such a position, e.g. teams can vary the intensity of an attack by pushing for-
ward, moving laterally, making long passes, or retreating and regrouping. We
modelled attacking possessions as state sequences, segmented according to cri-
teria representing the attacking intensity and tactics employed, and computed
flow diagrams for the possessions. In particular, we were interested in determin-
ing whether differences in tactics employed by teams when playing at home or
away [4] are apparent in the flow diagrams.

We focus on ball events, where a player touches the ball, e.g. passes, touches,
dribbles, headers, and shots at goal. The event sequence for each match was par-
titioned into sequences 7 = {1, ...,7m} such that each 7; is an event sequence

Compact Flow Diagrams for State Sequences 99

where a single team was in possession, and 7 includes only the sequences that
end with a shot at goal. Let ;[j] be a tuple (p, ¢, e) where p is the location in the
plane where an event of type e € {touch, pass, dribble, header, shot, clearance}
occurred at time t. We are interested in the movement of the ball between an
event state 7;[j] and the next event state 7;[j+1], in particular, let d,(7;[j]) (resp.
dy(7;[4])) be the distance in the z-direction (resp. y-direction) between state 7;[j]
and the next state. Similarly, let v, (7;[j]) (resp. vy(7;[j])) be the velocity of the
ball in the a-direction (resp. y-direction) between 7;[j] and its successor state.
Let Z7;[j] be the angle defined by the location of ;[j], 7;[j + 1] and a point on
the interior of the half-line from the location of 7;[j] in the positive y-direction.

Criteria were defined to characterise the movement of the ball — relative to
the goal the team is attacking — between event states in the possession sequence.
The criteria C = {C4,...,Cgs} were defined as follows.

C1: Backward movement (BM): v,(7;[j]) < 1 — a sub-sequence of passes or
touches that move in a defensive direction.

Cy: Lateral movement (LM): —5 < v, (7;[j]) < b — passes or touches that move
in a lateral direction.

Cs: Forward movement (FM): —1 < wv,(7;[j]) < 12 — passes or touches that
move in an attacking direction, at a velocity in the range achievable by a
player sprinting, i.e. approximately 12m/s.

Cy: Fast forward movement (FFM): 8 < v,(7;[j]) — passes or touches moving
in an attacking direction at a velocity generally in excess of maximum player
velocity.

C5: Long ball (LB): 30 < dy(7;[j]) — a single pass travelling 30 m in the attack-
ing direction.

Cs: Cross-field bal (CFB): 20 < dy(m:[j]) A £7:[j] € [-10,10] U [170,190] — a
single pass travelling 20m in the cross-field direction with an angle within
10° of the y-axis.

C7: Shot resulting in goal (SG): a successful shot resulting in a goal.

Cs: Shot not resulting in goal (SNG): a shot that does not produce a goal.

For a football analyst, the first four criteria are simple movements, and are
not particularly interesting. The last four events are significant: the long ball
and cross-field ball change the locus of attack; and the shot criteria represent
the objective of an attack.

The possession state sequences for the home and visiting teams were seg-
mented according to the criteria and the time-step heuristic algorithm was used
to compute the flow diagrams. The home-team input consisted of 66 sequences
covered by a total of 866 segments, and resulted in a flow diagram with 25 nodes
and 65 edges, see Fig. 5. Similarly, the visiting-team input consisted of 39 state
sequences covered by 358 segments and the output flow diagram complexity was
22 nodes and 47 edges, as shown in Fig. 6.

At first glance, the differences between these flow diagrams may be difficult
to appreciate, however closer inspection reveals several interesting observations.
The s—t paths in the home-team flow diagram tend to be longer than those in
the visiting team’s, suggesting that the home team tends to retain possession of

100 K. Buchin et al.

Fig. 5. Flow diagrams produced for home team. The edge weights are the number of
possessions that span the edge, and the nodes with grey background are event types
that are significant.

the ball for longer, and varies the intensity of attack more often. Moreover, the
nodes for cross-field passes and long-ball passes tend to occur earlier in the s—¢
paths in the visiting team’s flow diagram. These are both useful tactics as they
alter the locus of attack, however they also carry a higher risk. This suggests that
the home team is more confident in its ability to maintain possession for long
attack possessions, and will only resort to such risky tactics later in a possession.
Furthermore, the tactics used by the team in possession are also impacted by the
defensive tactics. As Bialkowski et al. [4] found, visiting teams tend to set their
defence deeper, i.e. closer to the goal they are defending. When the visiting team
is in possession, there is thus likely to be more space behind the home team’s
defensive line, and the long ball may appear to be a more appealing tactic.
The observations made from these are consistent with our basic understanding
of football tactics, and suggest that the flow diagrams are interpretable in this
application domain.

Compact Flow Diagrams for State Sequences 101

M —» LB

<

BM _io

2 » CFB > LM

Fig. 6. Flow diagrams produced for visiting team. The edge weights are the number
of possessions that span the edge, and the nodes with grey background are event types
that are significant.

3.2 Performance Testing

In the second experiment, we used a generator that outputs synthetic state
sequences and segmentations, and tested the performance of the algorithms on
inputs of varying sizes.

The segmentations were generated using Markov-Chain Monte-Carlo sam-
pling. Nodes representing the criteria set of size k were arranged in a ring and a
Markov chain constructed, such that each node had a transition probability of
0.7 to remain at the node, 0.1 to move to the adjacent node, and 0.05 to move
to the node two places away. Segmentations were computed by sampling the
Markov chain starting at a random node. Thus, simulated datasets of arbitrary
size m, state sequence length n, criteria set size k were generated.

We performed two tests on the generated segmentations. In the first, exper-
iments were run on the four algorithms described in Sect. 2 with varying config-
urations of m, n and k to investigate the impact of input size on the algorithm’s
performance. The evaluation metric used was the CPU time required to generate
the flow diagram for the input. In the second test, we compared the total com-
plexity of the output flow diagram produced by the two heuristic algorithms with

102 K. Buchin et al.

10 peeepe et 10— 10* ———————
;@ 103} E 10° ¥ 10°f]
g 102 ¢ g 102 3 102 E p
z 10 g 10! = 1o
§ 1000 0 o o o o ﬁ 10° E 10°
bl -1 bt -1 bt -1
glO!—ITII 111 50 z 107}

E 102} — g 102 < 102
g P : St e
107 F i { l g 10 z
104 -4 10 T

Criteria Set Size k

2 4 6 8 10121416 1820

Number of State Sequences m

2 4 6 8101214161820

23456789
State Sequence Length n

m—a General Criteria

»— Monotone Decreasing and Independent Criteria

—y

A—a

Segment Heuristic
Timestep Heuristic

Number of State Sequences m

(log2)

Number of State Sequences m
(logz)

160 160 2500
£ 140 £ 140 =
w .
ié 120 %;; 120 ézooo
& 100 S 100 S 1500}
g 80 E 80 £
g 60 g 00 P 1000¢
S 40 8 4 a
g E 5z 500t
2 20 2 20 2
& T T3 25 25 27 25 29210 O3 2T 37352527 25 29210 5 ot 25 28 27 2 29510

State Sequence Length n
(log)

Fig. 7. Runtime statistics for generating flow diagram (top), and total complexity of
flow diagrams produced (bottom). Default values of m = 4, n = 4 and k = 10 were
used. The data points are the mean value and the error bars delimit the range of values
over the five trials run for each input size.

the baseline complexity of the flow diagram produced by the exact algorithm for
monotone increasing and independent criteria.

We repeated each experiment five times with different input sequences for
each trial, and the results presented are the mean values of the metrics over the
trials. Limits were set such that the process was terminated if the CPU time
exceeded 1h, or the memory required exceeded 8 GB.

The results of the first test showed empirically that the exact algorithms have
time and storage complexity consistent with the theoretical worst-case bounds,
Fig.7 (top). The heuristic algorithms were subsequently run against larger test
data sets to examine the practical limits of the input sizes, and were able to
process larger input — for example, an input of £ = 128, m = 32 and n =
1024 was tractable — the trade-off is that the resulting flow diagrams were
suboptimal, though correct, in terms of their total complexity.

For the second test, we investigated the complexity of the flow diagram
induced by inputs of varying parameterisations when using the heuristic algo-
rithms. The objective was to examine how close the complexity was to the

Compact Flow Diagrams for State Sequences 103

optimal complexity produced using an exact algorithm. The inputs exhibited
monotone decreasing and independent criteria, and thus the corresponding algo-
rithm was used to produce the baseline. Figure 7 (bottom) summarises the results
for varying input parameterisations. The complexity of the flow diagrams pro-
duced by the two heuristic algorithms are broadly similar, and increase at worst
linearly as the input size increases. Moreover, while the complexity is not optimal
it appears to remain within a constant factor of the optimal, suggesting that the
heuristic algorithms could produce usable flow diagrams for inputs where the
exact algorithms are not tractable.

4 Concluding Remarks

We introduced flow diagrams as a compact representation of a large number of
state sequences. We argued that this representation gives an intuitive summary
allowing the user to detect patterns among large sets of state sequences, and
gave several algorithms depending on the properties of the segmentation criteria.
These algorithms only run in polynomial time if the number of state sequences
m is constant, which is the best we can hope for given the problem is WW[1]-hard.
As a result we considered two heuristics capable of processing large data sets in
reasonable time, however we were unable to give an approximation bound. We
tested the algorithms experimentally to assess the utility of the flow diagram
representation in a sports analysis context, and also analysed the performance
of the algorithms of inputs of varying parameterisations.

References

1. Alewijnse, S.P.A., Buchin, K., Buchin, M., Koélzsch, A., Kruckenberg, H.,
Westenberg, M.: A framework for trajectory segmentation by stable criteria. In:
Proceedings of 22nd ACM SIGSPATIAL/GIS, pp. 351-360. ACM (2014)

2. Aronov, B., Driemel, A., van Kreveld, M.J., Loffler, M., Staals, F.: Segmentation of
trajectories for non-monotone criteria. In: Proceedings of 24th ACM-SIAM SODA,
pp. 1897-1911 (2013)

3. Bialkowski, A., Lucey, P., Carr, G.P.K., Yue, Y., Sridharan, S., Matthews, I.: Iden-
tifying team style in soccer using formations learned from spatiotemporal tracking
data. In: ICDM Workshops, pp. 9-14. IEEE (2014)

4. Bialkowski, A., Lucey, P., Carr, P., Yue, Y., Matthews, I.: Win at home and draw
away: automatic formation analysis highlighting the differences in home and away
team behaviors. In: Proceedings of 8th Annual MIT Sloan Sports Analytics Con-
ference (2014)

5. Buchin, K., Buchin, M., Gudmundsson, J., Horton, M., Sijben, S.: Compact flow
diagrams for state sequences. CoRR, abs/1602.05622 (2016)

6. Buchin, K., Buchin, M., Gudmundsson, J., Loffler, M., Luo, J.: Detecting com-
muting patterns by clustering subtrajectories. Int. J. Comput. Geom. Appl. 21(3),
253-282 (2011)

7. Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., Staals, F.: Trajectory
grouping structure. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 219-230. Springer, Heidelberg (2013)

104

10.

11.

12.

13.

14.

15.

16.

17.

18.

K. Buchin et al.

Buchin, M., Driemel, A., van Kreveld, M., Sacristan, V.: Segmenting trajectories: a
framework and algorithms using spatiotemporal criteria. J. spat. inf. sci. 3, 33-63
(2011)

Buchin, M., Kruckenberg, H., Kolzsch, A.: Segmenting trajectories based on move-
ment states. In: Proceedings of 15th SDH, pp. 15-25. Springer (2012)

Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deter-
ministic error bounds. VLDB J. 15(3), 211-228 (2006)

Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Com-
put. Environ. Urban Syst. 47, 16-27 (2014)

Han, C.-S.,; Jia, S.-X., Zhang, L., Shu, C.-C.: Sub-trajectory clustering algorithm
based on speed restriction. Comput. Eng. 37(7), 219-221 (2011)

Kim, H.-C., Kwon, O., Li, K.-J.: Spatial and spatiotemporal analysis of soccer. In:
Proceedings of 19th ACM SIGSPATIAL/GIS, pp. 385-388. ACM (2011)

Lucey, P., Bialkowski, A., Carr, G.P.K., Morgan, S., Matthews, I., Sheikh, Y.:
Representing and discovering adversarial team behaviors using player roles. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2013), Portland, pp. 2706-2713. IEEE, June 2013

Prozone Sports Ltd: Prozone Sports - Our technology (2015). http://
prozonesports.stats.com/about /technology/

Van Haaren, J., Dzyuba, V., Hannosset, S., Davis, J.: Automatically discovering
offensive patterns in soccer match data. In: Fromont, E., De Bie, T., van Leeuwen,
M. (eds.) IDA 2015. LNCS, vol. 9385, pp. 286-297. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-24465-5_25

Wang, Q., Zhu, H., Hu, W., Shen, Z., Yao, Y.: Discerning tactical patterns for
professional soccer teams. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD 2015, Sydney, pp.
2197-2206. ACM Press, August 2015

Wei, X., Sha, L., Lucey, P., Morgan, S., Sridharan, S.: Large-scale analysis of for-
mations in soccer. In: 2013 International Conference on Digital Image Computing;:
Techniques and Applications (DICTA), Hobart, pp. 1-8. IEEE, November 2013

http://prozonesports.stats.com/about/technology/
http://prozonesports.stats.com/about/technology/
http://dx.doi.org/10.1007/978-3-319-24465-5_25

Practical Dynamic Entropy-Compressed
Bitvectors with Applications

Joshimar Cordova®® and Gonzalo Navarro

Department of Computer Science, CeBiB — Center of Biotechnology
and Bioengineering, University of Chile, Santiago, Chile
{jcordova,gnavarro}@dcc.uchile.cl

Abstract. Compressed data structures provide the same functionality
as their classical counterparts while using entropy-bounded space. While
they have succeeded in a wide range of static structures, which do not
undergo updates, they are less mature in the dynamic case, where the
theory-versus-practice gap is wider. We implement compressed dynamic
bitvectors B using |B|Ho(B)+o0(|B|) or |B|Ho(B)(1+40(1)) bits of space,
where Hy is the zero-order empirical entropy, and supporting queries and
updates in O(w) time on a w-bit word machine. This is the first imple-
mentation that provably achieves compressed space and is also practical,
operating within microseconds. Bitvectors are the basis of most com-
pressed data structures; we explore applications to sequences and graphs.

1 Introduction

Compact data structures have emerged as an attractive solution to reduce the
significant memory footprint of classical data structures, which becomes a more
relevant problem as the amount of available data grows. Such structures aim at
representing the data within almost its entropy space while supporting a rich
set of operations on it. Since their beginnings [12], several compact structures
have been proposed to address a wide spectrum of applications, with important
success stories like ordinal trees with full navigation in less than 2.5 bits [1],
range minimum queries in 2.1 bits per element [7], and full-text indexes using
almost the space of the compressed text [15], among others. Most of the major
practical solutions are implemented in the Succinct Data Structures Library [10],
which offers solid C++ implementations and extensive test datasets.

Most of these implemented structures, however, are static, that is, they do
not support updates to the data once they are built. While dynamic variants
exist for many compact data structures, they are mostly theoretical and their
practicality is yet to be established.

At the core of many compact structures lay simple bitvectors supporting
two important queries: counting the number of bits b up to a given position
(rank) and finding the position of the i-th occurrence of bit b (select). Such
bitvectors enable well-known compact structures like sequences, two-dimensional

Funded by Basal Funds FB0001 and with Fondecyt Grant 1-140796, Conicyt, Chile.

© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 105-117, 2016.
DOI: 10.1007/978-3-319-38851-9._8

106 J. Cordova and G. Navarro

grids, graphs, trees, etc. Supporting insertion and deletion of bits in the bitvec-
tors translates into supporting insertion and deletions of symbols, points, edges,
and nodes, in those structures. Very recent work [16] shows that dynamic bitvec-
tors are practical and that compression can be achieved for skewed frequencies of
0s and 1s, provided that the underlying dynamic memory allocation is handled
carefully. Furthermore, the authors implement the compressed RAM [13] and
show that it is practical by storing in it a directed graph.

In this paper we build on a theoretical proposal [17] to present the first prac-
tical dynamic bitvector representations whose size is provably entropy-bounded.
A first variant represents B[1,n] in nHy(B) + o(n) bits, where H, denotes the
zero-order empirical entropy. For bitvectors with few 1s, a second variant that
uses nHy(B)(1+ 0(1)) bits is preferable. Both representations carry out updates
and rank/select queries in time O(w) on a w-bit machine. In practice, the times
are just a few microseconds and the compression obtained is considerable. Instead
of using our structure to implement a compressed RAM, we use our bitvectors
to implement (a) a practical dynamic wavelet matrix [5] to handle sequences
of symbols and two-dimensional grids, and (b) a compact dynamic graph that
achieves considerable space savings with competitive edge-insertion times.

Along the way we also describe how we handle the dynamic memory allo-
cation with the aim of reducing RAM fragmentation, and unveil a few related
practical results that had not been mentioned in the literature.

2 Basic Concepts

Given a sequence S[1,n] over the alphabet [1,0], access(S,4) returns the char-
acter S[i|, rank.(S,i) returns the number of occurrences of character ¢ in
S[1,4] and select.(S,j) returns the position of the j-th occurrence of ¢. The
(empirical) zero-order entropy of S is defined as Ho(S) = > .., 2 lg -,
where ¢ occurs n. times in S, and is a lower bound on the average code
length for any compressor that assigns fixed (variable-length) codes to sym-
bols. When o = 2 we refer to the sequence as a bitvector B[l,n| and the
entropy becomes Ho(B) = ™ lg = + "™ |g " where m = n;. The entropy

decreases when m is closer to 0 or n. In the first case, another useful formula is
Ho(B) = 2 (1g 2 + O(1)).

Dynamism is supported by the operations insert(S,i,c), which inserts the
character ¢ before position i in S and moves characters S[i,n] one position to
the right; delete(S,i), which removes character S[i] and moves the characters
S[i + 1,n] one position to the left; and modify(S, i, c), which sets S[i] = c.

Uncompressed (or plain) bitvector representations use n + o(n) bits, and can
answer queries in O(1) time [3]. Compressed representations reduce the space
to nHy(B) + o(n) bits while retaining the constant query times [24]. Dynamic
bitvectors cannot be that fast, however: queries require 2(lgn/lglgn) time if the
updates are to be handled in O(polylogn) time [8]. Dynamic plain bitvectors
with optimal times O(lgn/lglgn) for all the operations exist [23]. Mékinen
and Navarro [17] presented the first dynamic bitvectors using compressed space,

Practical Dynamic Entropy-Compressed Bitvectors with Applications 107

nHo(B) 4 o(n) bits, and O(lgn) times. It is possible to improve the times to
the optimal O(lgn/lglgn) within compressed space [21], but the solutions are
complicated and unlikely to be practical.

A crucial aspect of the dynamic bitvectors is memory management. When
insertions/deletions occur in the bit sequence, the underlying memory area needs
to grow/shrink appropriately. The classical solution, used in most of the theo-
retical results, is the allocator presented by Munro [18]. Extensive experiments
[16] showed that this allocator can have a drastic impact on the actual mem-
ory footprint of the structure: the standard allocator provided by the operating
system may waste up to 25 % of the memory due to fragmentation.

The first implementation of compact dynamic structures we know of is that of
Gerlang [9]. He presents dynamic bitvectors and wavelet trees [11], and uses them
to build a compact dynamic full-text index. However, memory management is
not considered and bitvectors B[1, n] use O(n) bits of space, 3.5n—14n in practice.
A more recent implementation [25] has the same problems and thus is equally
unattractive. Brisaboa et al. [2] also explore plain dynamic bitvectors; they use a
B-tree-like structure where leaves store blocks of bits. While their query/update
times are competitive, the space reported should be read carefully as they do
not consider memory fragmentation. In the context of compact dynamic ordinal
trees, Joannou and Raman [14] present a practical study of dynamic Range Min-
Max trees [21]. Although the space usage is not clear, the times are competitive
and almost as fast as the static implementations [1].

There also exist open-source libraries providing compact dynamic structures.
The ds-vector library [22] provides dynamic bitvectors and wavelet trees, but
their space overhead is large and their wavelet tree is tailored to byte sequences;
memory fragmentation is again disregarded. The compressed data structures
framework Memoria [26] offers dynamic compact bitvectors and ordinal trees,
among other structures. A custom memory allocator is provided to reduce frag-
mentation, but unfortunately the library is not in a stable state yet (as confirmed
by the author of the library).

Klitzke and Nicholson [16] revisit dynamic bitvectors. They present the first
practical implementation of the memory allocation strategy of Munro [18] tai-
lored to using compact data structures, and show that it considerably reduces
memory fragmentation without incurring in performance penalties. They present
plain dynamic bitvectors B[1,n| using only 1.03n bits. For bitvectors with m < n
1s, they build on general-purpose compressors 1z4 and 1lz4hc to reduce the
space up to 0.06n. However, they lack theoretical guarantees on the compression
achieved. While their work is the best practical result in the literature, the code
and further technical details are unfortunately unavailable due to legal issues (as
confirmed by the first author).

3 Dynamic Entropy-Compressed Bitvectors

In this section we present engineered dynamic bitvectors that achieve zero-order
entropy compression. These are based on the ideas of Mékinen and Navarro [17],

108 J. Cordova and G. Navarro

but are modified to be more practical. The following general scheme underlies
almost all practical results to date and is used in this work as well. The bitvec-
tor B[1,n] is partitioned into chunks of contiguous bits and a balanced search
tree (we use AVLs) is built where the leaves store these chunks. The actual
partition strategy and storage used in the leaves vary depending on the desired
compression. Each internal node v of the balanced tree stores two fields: v.ones
(v.length) is the number of 1s (total number of bits) present in the left subtree
of v. The field v.length is used to find a target position ¢ in B: if ¢ < v.length
we descend to the left child, otherwise we descend to the right child and 7 becomes
i — v.length. This is used to answer access/rank queries and also to find the
target leaf where an update will take place (for rank we add up the v.ones field
whenever we go right). The field v.ones is used to answer selecty (B, j) queries:
if 7 < v.ones the answer is in the left subtree; otherwise we move to the right
child, add v.length to the answer, and j becomes j — v.ones. For selecty(B,j)
we proceed analogously, replacing v.ones by v.length—v.ones. The leaves are
sequentially scanned, taking advantage of locality. Section 3.2 assumes the tree
is traversed according to these rules.

3.1 Memory Management

Although Klitzke and Nicholson [16] present and study a practical implementa-
tion of Munro’s allocator [18], the technical details are briefly mentioned and the
implementation is not available. We then provide an alternative implementation
with its details. In Sect. 5, both implementations are shown to be comparable.

Munro’s allocator is tailored to handle small blocks of bits, in particular
blocks whose size lies in the range [L, 2L] for some L = polylogn. It keeps L+ 1
linked lists, one for each possible size, with L + 1 pointers to the heads of the
lists. Each list I; consists of fixed-length cells of 2L bits where the blocks of i bits
are stored contiguously. In order to allocate a block of 7 bits we check if there is
enough space in the head cell of I;, otherwise a new cell of 2L bits is allocated
and becomes the head cell. To deallocate a block we fill its space with the last
block stored in the head cell of list I;; if the head cell no longer stores any block
it is deallocated and returned to the OS. Finally, given that we move blocks
to fill the gaps left by deallocation, back pointers need to be stored from each
block to the external structure that points to the block, to update the pointers
appropriately. Note that in the original proposal a block may span up to two
cells and a cell may contain pieces of up to three different blocks.

Implementation. Blocks are fully stored in a single cell to improve locality. As
in the previous work [16], we only allocate blocks of bytes: L is chosen as a mul-
tiple of 8 and we only handle blocks of size L, L+8, L+ 16, ...,2L, rounding the
requested sizes to the next multiple of 8. The cells occupy T' = 2L /8 bytes and are
allocated using the default allocator provided by the system. Doing increments
of 8 bits has two benefits: the total number of allocations is reduced and the
memory pointers returned by our allocator are byte-aligned. The head pointers
and lists [; are implemented verbatim. The back pointers are implemented using

Practical Dynamic Entropy-Compressed Bitvectors with Applications 109

a folklore idea: when allocating a block of | bytes we instead allocate I + w/8
bytes and store in the first w bits the address of the pointer to the block, so
that when moving blocks to fill gaps the pointer can be modified. This creates
a strong binding between the external structure and the block, which can be
pointed only from one place. This restriction can be alleviated by storing the
pointer in our structure, in an immutable memory area, and let the external
structures point to the pointer. This requires that the external structures know
that the handle they have for the block is not a pointer to the data but a pointer
to the pointer. In this sense, the memory allocator is not completely transparent.

As a further optimization, given that our dynamic bitvectors are based on
search trees, we will be constantly (de)allocating very small structures represent-
ing the nodes of the trees (eg. 4 words for a AVL node). We use another folklore
strategy for these structures: given that modern operating systems usually pro-
vide 8 MB of stack memory for a running process, we implement an allocator on
top of that memory, avoiding the use of the heap area for these tiny structures;
(de)allocation simply moves the end of the stack.

3.2 Entropy-Based Compression

Our first variant builds on the compression format of Raman et al. [17,24],
modified to be practical. We partition the bitvector B into chunks of ©(w?)
bits and these become the leaves of an AVL tree. We store the chunks using the
(class, offset) encoding (¢, 0) [24]: a chunk is further partitioned into blocks of
b = w/2 bits; the class of a block is the number of 1s it contains and its offset is
the index of the block among all possible blocks of the same class when sorted
lexicographically. A class component requires lg w bits, while the offset of a block
of class k requires lg (2) bits. All class/offset components are concatenated in
arrays C/O, which are stored using our custom memory allocator. The overall
space of this encoding is nHy(B)+o(n) bits [24]. The space overhead of the AVL
tree is O(n/w) bits, since there are O(n/w?) nodes, each requiring ©(w) bits.
Since w = 2(lgn), this overhead is o(n). It is important to notice that while
leaves represent ©(w?) logical bits, the actual space used by the (c,0) encoding
may be considerably smaller. In practice we choose a parameter L', and all leaves
will store a number of physical bytes in the range [L’,2L/].

To answer access(B,1)/select(B, j) queries we navigate, using the AVL tree,
to the leaf containing the target position and then decode the blocks sequentially
until the desired position is found. A block is decoded in constant time using
a lookup table that, given a pair (c,0), returns the original b bits of the block.
This table has 2%/2 entries, which is small and can be regarded as program size,
since it does not depend on the data. Note that we only need to decode the
last block; for the previous ones the class component is sufficient to determine
how much to advance in array O. For rank;(B,i) we also need to add up the
class components (i.e., number of 1s) up to the desired block. Again, this only
requires accessing array C, while O is only read to decode the last block. We
spend O(lgn) time to navigate the tree, O(w) time to traverse the blocks in
the target leaf, and O(w) time to process the last block bitwise. Thus queries

110 J. Cordova and G. Navarro

take O(w) time. In practice we set b = 15, hence the class components require 4
bits (and can be read by pairs from each single byte of C'), the (uncompressed)
blocks are 16-bit integers, and the decoding table overhead (which is shared by
all the bitvectors) is only 64 KB.

To handle updates we navigate towards the target leaf and proceed to decom-
press, update, and recompress all the blocks to the right of the update position.
If the number of physical bytes stored in a leaf grows beyond 2L we split it in
two leaves and add a new internal node to be tree; if it shrinks beyond L we
move a single bit from the left or right sibling leaf to the current leaf. If this is
not possible (because both siblings store L physical bytes) we merge the current
leaf with one of its siblings; in either case we perform rotations on the internal
nodes of the tree appropriately to restore the AVL invariant.

Recompressing a block is done using an encoding lookup table that, given
a block of b bits, returns the associated (¢, 0) encoding. This adds other 64 KB
of memory. To avoid overwriting memory when the physical leaf size grows,
recompression is done by reading the leaf data and writing the updated version
in a separate memory area, which is later copied back to the leaf.

3.3 Compression of Very Sparse Bitvectors

When the number m of 1s in B is very low, the o(n) term may be significative
compared to nHy(B). In this case we seek a structure whose space depends
mainly on m. We present our second variant (also based on Méakinen and Navarro
[17]) that requires only mlg 7=+ O(mlglg) bits, while maintaining the O(w)-
time complexities. This space is nHo(B)(1 4 o(1)) bits if m = o(n).

The main building blocks is Elias d-codes [6]. Given a positive integer x, let
|z| denote the length of its binary representation (eg. |7| = 3). The d-code for
x is obtained by writing ||z|| — 1 zeros followed by the binary representation of
|z| and followed by the binary representation of & without the leading 1 bit. For
example §(7) = 01111 and §(14) = 00100110. It follows easily that the length of
the code d(x) is |d(x)| =1gz + 21glgx + O(1) bits.

We partition B into chunks containing ©(w) ' s. We build an AVL tree where
leaves store the chunks. A chunk is stored using d-codes for the distance between
pairs of consecutive 1s. This time the overhead of the AVL tree is O(m) bits. By
using the Jensen inequality on the lengths of the d-codes it can be shown [17] that
the overall space of the leaves is mlg 7= + O(mlglg ;+) bits and the redundancy
of the AVL tree is absorbed in the second term. In practice we choose a constant
M and leaves store a number of 1s in the range [M,2M]. Within this space we
now show how to answer queries and handle updates in O(w) time.

To answer access(i) we descend to the target leaf and start decoding the
0-codes sequentially until the desired position is found. Note that each J-code
represents a run of 0s terminated with a 1, so as soon as the current run contains
the position ¢ we return the answer. To answer rank(i) we increase the answer
by 1 per d-code we traverse. Finally, to answer select;(j), when we reach the
target leaf looking for the j-th local 1-bit we decode the first j codes and add

Practical Dynamic Entropy-Compressed Bitvectors with Applications 111

their sum (since they represent the lengths of the runs). Instead, selecty(j) is
very similar to the access query.

To handle the insertion of a 0 at position i in a leaf we sequentially search
for the d-code that contains position . Let this code be d(z); we then replace
it by 6(x + 1). To insert a 1, let i/ < x + 1 be the local offset inside the run
02~!1 (represented by the code §(x)) where the insertion will take place. We
then replace 6(x) by §(i')0(x — i’ + 1) if i’ < x and by §(x)d(1) otherwise. In
either case (inserting a 1 or a 0) we copy the remaining d-codes to the right of the
insertion point. Deletions are handled analogously; we omit the description. If,
after an update, the number of 1s of a leaf lies outside the interval [M,2M] we
move a run from a neighbor leaf or perform a split/merge just as in the previous
solution and then perform tree rotations to restore the AVL invariant.

The times for the queries and updates are O(w) provided that J-codes are
encoded/decoded in constant time. To decode a d-code we need to find the high-
est 1in a word (as this will give us the necessary information to decode the rest).
Encoding a number « requires efficiently computing |z| (the length of its binary
representation), which is also the same problem. Modern CPUs provide special
support for this operation; otherwise we can use small precomputed tables. The
rest of the encoding/decoding process is done with appropriate bitwise opera-
tions. Furthermore, the local encoding/decoding is done on sequential memory
areas, which is cache-friendly.

4 Applications

4.1 Dynamic Sequences

The wavelet matrix [5] is a compact structure for sequences S[1,n] over a fixed
alphabet [1, o], providing support for access(i), rank.(i) and select.(i) queries.
The main idea is to store lgo bitvectors B; defined as follows: let S; = S and
Bj[j] = 1iff the most significant bit of S [j] is set. Then S is obtained by moving
to the front all characters S[j] with By[j] = 0 and moving the rest to the back
(the internal order of front and back symbols is retained). Then Bs[j] = 1 iff the
second most significant bit of Ss[j] is set, we create S by shuffling S5 according
to By, and so on. This process is repeated 1g o times. We also store lg ¢ numbers
zj = ranko(Bj,n). The access/rank/select queries on this structure reduce to
O(lgo) analogous queries on the bitvectors Bj, thus the times are O(lgo) and
the final space is nlgo + o(nlg o) (see the article [5] for more details).

Our results in Sect. 3 enable a dynamic implementation of wavelet matrices
with little effort. The insertion/deletion of a character at position ¢ is imple-
mented by the insertion/deletion of a single bit in each of the bitvectors B;. For
insertion of ¢, we insert the highest bit of ¢ in By [i]. If the bit is a 0, we increase z;
by one and change i to ranky (B, 1); otherwise we change i to zq + rank;(Bi,1).
Then we continue with By, and so on. Deletion is analogous. Hence all query and
update operations require g o O(w)-time operations on our dynamic bitvectors.
By using our uncompressed dynamic bitvectors, we maintain a dynamic string
S[1,n] over a (fixed) alphabet [1, 0] in nlgo+4o(nlgo) bits, handling queries and

112 J. Cordova and G. Navarro

updates in O(wlgo) time. An important result [11] states that if the bitvectors
B; are compressed to their zero-order entropy nHo(B;), then the overall space
is nHy(S). Hence, by switching to our compressed dynamic bitvectors (in par-
ticular, our first variant) we immediately achieve nHy(S)+o(nlg o) bits and the
query/update times remain O(wlg o).

4.2 Dynamic Graphs and Grids

The wavelet matrix has a wide range of applications [19]. One is directed graphs.
Let us provide dynamism to the compact structure of Claude and Navarro [4].
Given a directed graph G(V, E) with n = |V| vertices and e = | E| edges, consider
the adjacency list G[v] of each node v. We concatenate all the adjacency lists in
a single sequence S[1,e] over the alphabet [1,7n] and build the dynamic wavelet
matrix on S. Each outdegree d,, of vertex v is written as 10% and appended to
a bitvector B[1,n + e]. The final space is elgn(1 + o(1)) + O(n) bits.

This representation allows navigating the graph. The outdegree of ver-
tex v is computed as select;(B,v + 1) — select;(B,v) — 1. The j-th neigh-
bor of vertex v is access(S, select;(B,v) — v + j). The edge (v,u) exists iff
rank, (S, select1(B,v + 1) — v — 1) — rank,(S, select;(B,v) — v) = 1. The main
advantage of this representation is that it also enables backwards navigation of
the graph without doubling the space: the indegree of vertex v is rank, (S, e)
and the j-th reverse neighbor of v is selecto(B, select, (S, j)) — select, (S, 7).

To insert an edge (u, v) we insert a 0 at position select; (B, u)+1 to increment
the indegree of u, and then insert in S the character v at position selecty (B, u) —
u+ 1. Edge deletion is handled in a similar way. We thus obtain O(wlgn) time
to update the edges. Unfortunately, the wavelet matrix does not allow changing
the alphabet size. Despite this, providing edge dynamism is sufficient in several
applications where an upper bound on the number of vertices is known.

This same structure is useful to represent two-dimensional n x n grids with
e points, where we can insert and delete points. It is actually easy to generalize
the grid size to any ¢ x r. Then the space is nlgr(1 4 o(1)) + O(n + ¢) bits. The
static wavelet matrix [5] can count the number of points in a rectangular area in
time O(lgr), and report each such point in time O(lgr) as well. On our dynamic
variant, times become O(wlgr), just like the time to insert/delete points.

5 Experimental Results and Discussion

The experiments were run on a server with 4 Intel Xeon cores (each at 2.4 GHz)
and 96 GB RAM running Linux version 3.2.0-97. All implementations are in C++.

We first reproduce the memory fragmentation stress test [16] using our allo-
cator of Sect.3.1. The experiment initially creates n chunks holding C bytes.
Then it performs C steps. In the i-th step n/i chunks are randomly chosen and
their memory area is expanded to C +1 bytes. We set C' = 2'! and use the same
settings [16] for our custom allocator: the cell size T is set to 216 and L is set
to 2'1. Table 1 shows the results. The memory consumption is measured as the

Practical Dynamic Entropy-Compressed Bitvectors with Applications 113

Resident Set Size (RSS),! which is the actual amount of physical RAM retained
by a running process. Malloc represents the default allocator provided by the
operating system and custom is our implementation. Note that for all the tested
values of n our allocator holds less RAM memory, and in particular for n = 224
(i.e., nC = 32 GB) it saves up to 12GB. In all cases the CPU times of our allo-
cator are faster than the default malloc. This shows that our implementation is
competitive with the previous one [16], which reports similar space and time.

Table 1. Memory consumption measured as RSS in GBs and CPU time (seconds) for
the RAM fragmentation test.

lgn |malloc RSS | custom RSS |malloc time | custom time
18 10.889 0.768 0.668 0.665

19 | 1.777 1.478 1.360 1.325

20 |3.552 2.893 2.719 2.635

21 | 7.103 5.727 5.409 5.213

22 | 14.204 11.392 10.811 10.446

23 | 28.407 22.725 21.870 21.163

24 | 56.813 45.388 45.115 43.081

Having established that our allocator enables considerable reductions in
RAM fragmentation, we study our practical compressed bitvectors. We gen-
erate random bitvectors of size n = 50 - 223 (i.e., 50 MB) and set individual bits
to 1 with probability p. We consider skewed frequencies p = 0.1,0.01, and 0.001.
Preliminary testing showed that, for our variant of Sect. 3.2, setting the range
of physical leaf sizes to [2!,2!2] bytes provided the best results. Table?2 gives
our results for the compression achieved and the time for queries and updates
(averaging insertions and deletions). We achieve 0.3-0.4 bits of redundancy over
the entropy, which is largely explained by the component ¢ of the pairs (c,0):
these add lg(b + 1)/b = 4/15 = 0.27 bits of redundancy, whereas the O array
adds up to nHy(B). The rest of the redundancy is due to the AVL tree nodes
and the space wasted by our memory allocator. For the very sparse bitvectors
(p = 0.001), the impact of this fixed redundancy is very high.

Operation times are measured by timing 10° operations on random positions
of the bitvectors. The queries on our first variant take around 1 ps (and even less
for access), whereas the update operations take 8-15 us. The operations become
faster as more compression is achieved.

For the very sparse bitvectors (p = 0.001) we also test our variant of Sect. 3.3.
Preliminary testing showed that enforcing leaves to handle a number of 1s in
the range [128,256] provided the best results. The last row of Table 2 shows the
compression and timing results for this structure. As promised in theory, the

! Measured with https://github.com/mpetri/mem_monitor.

https://github.com/mpetri/mem_monitor

114 J. Cordova and G. Navarro

Table 2. Memory used (measured as RSS, in MB, in bits per bit, and in redundancy
over Ho(B)) and timing results (in microseconds) for our compressed dynamic bitvec-
tors. The first three rows refer to the variant of Sect. 3.2, and the last to Sect. 3.3.

D MB | Bits/n| —Ho(B) | Updates | Access | Rank | Select
0.1 38.570.77 10.30 15.08 0.80 1.10 |1.20
0.01 21.2710.43 0.35 10.77 0.60 0.90 |1.10
0.001 | 19.38]0.39 0.38 8.50 0.70 0.90 |1.00
x0.001 | 1.50 |0.03 0.02 5.26 1.38 1.47 |1.35

Table 3. Memory usage (MBs) and times (in seconds) for the online construction and
a breadth-first traversal of the DBLP graph to find its weakly connected components.
The data for previous work [16] is a rough approximation.

Structure RSS | Ratio | Build time | Ratio | BF'S time | Ratio
std::vector 22.201.00 |7.40 1.00 |0.06 1.00

Wavelet matrix | 4.70 |0.21 |12.42 1.68 9.34 155.67
Previous [16] 0.30 9.00 30.00

compression achieved by this representation is remarkable, achieving 0.02 bits
of redundancy (its space is much worse on the higher values of p, however). The
query times become slightly over 1 s and the update times are around 5 us.

Finally, we present a single application for the dynamic wavelet matrix and
graphs. We find the weakly connected components of a sample of the DBLP
social graph stored using the dynamic representation of Sect.4.2 with plain
dynamic bitvectors, that is, they are stored verbatim. We use range [2!0,21]
bytes for the leaf sizes.

The sample dataset consists of 317,080 vertices and 1,049,866 edges
taken from https://snap.stanford.edu/data/com-DBLP.html, with edge direc-
tions assigned at random. We build the graph by successive insertions of the
edges. Table 3 shows the memory consumption, the construction time (i.e., insert-
ing all the edges), and the time to perform a breadth-first search of the graph.
Our baseline is a representation of graphs based on adjacency lists implemented
using the std::vector class from the STL library in C++, where each directed
edge (u,v) is also stored as (v,u) to enable backwards navigation. Considerable
space savings are achieved using the dynamic wavelet matrix, 5-fold with respect
to the baseline. The edge insertion times are very competitive, only 70 % slower
than the baseline. The time to perform a full traversal of the graph, however, is
two orders of magnitude slower.

We now briefly make an informal comparison between our results and the
best previous work [16] by extrapolating some numbers.? For bitvectors with

2 A precise comparison is not possible since their results are not available. We use
their plots as a reference.

https://snap.stanford.edu/data/com-DBLP.html

Practical Dynamic Entropy-Compressed Bitvectors with Applications 115

density p = 0.1 our first variant achieves 77 % compression compared to their
85 %. For p = 0.01 ours achieves 43 % compared to their 35 %, and for p = 0.001
our second variant achieves 3 % compared to their 6 %. In terms of running times
our results handle queries in about 1 ws and updates in 8-15 us, while their most
practical variant, based on 1z4, handles queries and updates in around 10-25 pus.
These results are expected since the encodings we used ((¢, 0) pairs and d-codes)
are tailored to answer rank/select queries without the need of full decompres-
sion. Finally, they also implement a compressed dynamic graph (based on com-
pressed RAM and not on compact structures). The rough results (extrapolated
from their own comparison against std::vector) are shown in the last line of
Table 3: they use 50 % more space and 5 times more construction time than our
implementation, but their BFS time is 5 times faster.

6 Conclusions

We have presented the first practical entropy-compressed dynamic bitvectors
with good space/time theoretical guarantees. The structures solve queries in
around a microsecond and handle updates in 5-15us. An important advantage
compared with previous work [16] is that we do not need to fully decompress the
bit chunks to carry out queries, which makes us an order of magnitude faster.
Another advantage over previous work is the guaranteed zero-order entropy
space, which allows us using bitvectors for representing sequences in zero-order
entropy, and full-text indexes in high-order entropy space [15].

Several improvements are possible. For example, we reported times for query-
ing random positions, but many times we access long contiguous areas of a
sequence. Those can be handled much faster by remembering the last accessed
AVL tree node and block. In the (¢, 0) encoding, we would access a new byte of C'
every 30 operations, and decode a new block of O every 15, which would amount
to at least an order-of-magnitude improvement in query times. For d-encoded
bitvectors, we would decode a new entry every n/m operations on average.

Another improvement is to allow for faster queries when updates are less
frequent, tending to the fast static query times in the limit. We are studying
policies to turn an AVL subtree into static when it receives no updates for some
time. This would reduce, for example, the performance gap for the BFS traversal
in our graph application once it is built, if further updates are infrequent.

Finally, there exist theoretical proposals [20] to represent dynamic sequences
that obtain the optimal time O(lgn/lglgn) for all the operations. This is much
better than the O(wlgo) time we obtain with dynamic wavelet matrices. An
interesting future work path is to try to turn that solution into a practical
implementation. It has the added benefit of allowing us to update the alphabet,
unlike wavelet matrices.

Our implementation of dynamic bitvectors and the memory allocator are
available at https://github.com/jhcmonroy/dynamic-bitvectors.

https://github.com/jhcmonroy/dynamic-bitvectors

116 J. Cordova and G. Navarro
References
1. Arroyuelo, D., Canovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

In: Proceedings of the 12th ALENEX, pp. 84-97 (2010)

. Brisaboa, N., de Bernardo, G., Navarro, G.: Compressed dynamic binary relations.

In: Proceedings of the 22nd DCC, pp. 52-61 (2012)

. Clark, D.: Compact PAT Trees. Ph.D. thesis, Univ. Waterloo, Canada (1996)
. Claude, F., Navarro, G.: Extended compact web graph representations. In: Elomaa,

T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060,
pp- 77-91. Springer, Heidelberg (2010)

. Claude, F., Navarro, G., Ordéiiez, A.: The wavelet matrix: an efficient wavelet tree

for large alphabets. Inf. Syst. 47, 15-32 (2015)

. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.

Inf. Theor. 21(2), 194-203 (1975)

. Ferrada, H., Navarro, G.: Improved range minimum queries. In: Proceedings of the

26th DCC, pp. 516-525 (2016)

. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:

Proceedings of the 21st STOC, pp. 345-354 (1989)

Gerlang, W.: Dynamic FM-Index for a Collection of Texts with Application to
Space-efficient Construction of the Compressed Suffix Array. Master’s thesis, Univ.
Bielefeld, Germany (2007)

Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326-337. Springer, Heidelberg (2014)

Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of the 14th SODA, pp. 841-850 (2003)

Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th
FOCS, pp. 549-554 (1989)

Jansson, J., Sadakane, K., Sung, W.-K.: CRAM: Compressed Random Access
Memory. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012, Part I. LNCS, vol. 7391, pp. 510-521. Springer, Heidelberg (2012)
Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing, R.
(ed.) SEA 2012. LNCS, vol. 7276, pp. 224-235. Springer, Heidelberg (2012)
Karkkéinen, J., Puglisi, S.J.: Fixed block compression boosting in FM-indexes. In:
Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp.
174-184. Springer, Heidelberg (2011)

Klitzke, P., Nicholson, P.K.: A general framework for dynamic succinct and com-
pressed data structures. In: Proceedings of the 18th ALENEX, pp. 160-173 (2016)
Mékinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Trans. Algorithms 4(3), 32-38 (2008)

Munro, J.I.: An implicit data structure supporting insertion, deletion, and search
in o(log2 n) time. J. Comput. Syst. Sci. 33(1), 66-74 (1986)

Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2-20 (2014)
Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. STAM J.
Comput. 43(5), 1781-1806 (2014)

Navarro, G., Sadakane, K.: Fully-Functional static and dynamic succinct trees.
ACM Trans. Algorithms 10(3), 16 (2014)

Okanohara, D.: Dynamic succinct vector library. https://code.google.com/archive/
p/ds-vector/. Accessed 30 Jan 2016

https://code.google.com/archive/p/ds-vector/
https://code.google.com/archive/p/ds-vector/

23.

24.

25.

26.

Practical Dynamic Entropy-Compressed Bitvectors with Applications 117

Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, p. 426. Springer,
Heidelberg (2001)

Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 43 (2007)

Salson, M.: Dynamic fm-index library. http://dfmi.sourceforge.net/. Accessed 30
Jan 2016

Smirnov, V.: Memoria library. https://bitbucket.org/vsmirnov/memoria/.
Accessed 30 Jan 2016

http://dfmi.sourceforge.net/
https://bitbucket.org/vsmirnov/memoria/

Accelerating Local Search for the Maximum
Independent Set Problem

Jakob Dahlum!, Sebastian Lamm!, Peter Sanders!, Christian Schulz’,
Darren Strash’®) | and Renato F. Werneck?

! Institute of Theoretical Informatics,
Karlsruhe Institute of Technology, Karlsruhe, Germany
{dahlum,lamm}@ira.uka.de,
{sanders,christian.schulz,strash}@kit.edu
2 San Francisco, USA

rverneck@acm.org

Abstract. Computing high-quality independent sets quickly is an
important problem in combinatorial optimization. Several recent algo-
rithms have shown that kernelization techniques can be used to find exact
maximum independent sets in medium-sized sparse graphs, as well as
high-quality independent sets in huge sparse graphs that are intractable
for exact (exponential-time) algorithms. However, a major drawback of
these algorithms is that they require significant preprocessing overhead,
and therefore cannot be used to find a high-quality independent set
quickly.

In this paper, we show that performing simple kernelization tech-
niques in an online fashion significantly boosts the performance of local
search, and is much faster than pre-computing a kernel using advanced
techniques. In addition, we show that cutting high-degree vertices can
boost local search performance even further, especially on huge (sparse)
complex networks. Our experiments show that we can drastically speed
up the computation of large independent sets compared to other state-
of-the-art algorithms, while also producing results that are very close to
the best known solutions.

Keywords: Maximum independent set - Minimum vertex cover * Local
search - Kernelization - Reduction

1 Introduction

The maximum independent set problem is a classic NP-hard problem [13] with
applications spanning many fields, such as classification theory, information
retrieval, computer vision [11], computer graphics [29], map labeling [14] and
routing in road networks [20]. Given a graph G = (V, E), our goal is to compute
a maximum cardinality set of vertices Z C V such that no vertices in Z are
adjacent to one another. Such a set is called a mazimum independent set (MIS).

© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 118-133, 2016.
DOI: 10.1007/978-3-319-38851-9_9

Accelerating Local Search for the Maximum Independent Set Problem 119

1.1 Previous Work

Since the MIS problem is NP-hard, all known exact algorithms for these prob-
lems take exponential time, making large graphs infeasible to solve in practice.
Instead, heuristic algorithms such as local search are used to efficiently compute
high-quality independent sets. For many practical instances, some local search
algorithms even quickly find exact solutions [3,16].

Exact Algorithms. Much research has been devoted to reducing the base
of the exponent for exact branch-and-bound algorithms. One main technique
is to apply reductions, which remove or modify subgraphs that can be solved
simply, reducing the graph to a smaller instance. Reductions have consistently
been used to reduce the running time of exact MIS algorithms [31], with the
current best polynomial-space algorithm having running time O(1.2114™) [7].
These algorithms apply reductions during recursion, only branching when the
graph can no longer be reduced [12]. This resulting graph is called a kernel.

Relatively simple reduction techniques are known to be effective at reducing
graph size in practice [1,8]. Recently, Akiba and Iwata [2] showed that more
advanced reduction rules are also highly effective, finding an exact minimum
vertex cover (and by extension, an exact maximum independent set) on a corpus
of large social networks with up to 3.2 million vertices in less than a second.
However, their algorithm still requires O(1.2210™) time in the worst case, and
its running time has exponential dependence on the kernel size. Since much
larger graph instances have consistently large kernels, they remain intractable
in practice [24]. Even though small benchmark graphs with up to thousands
of vertices have been solved exactly with branch-and-bound algorithms [28, 30,
32], many similarly-sized instances remain unsolved [8]. Even a graph on 4,000
vertices was only recently solved exactly, and it required hundreds of machines
in a MapReduce cluster [33]. Heuristic algorithms are clearly still needed in
practice, even for small graphs.

Heuristic Approaches. There are a wide range of heuristics and local search
algorithms for the complementary maximum clique problem [6,15-17,19,27].
These algorithms work by maintaining a single solution and attempt to improve
it through node deletions, insertions, swaps, and plateau search. Plateau search
only accepts moves that do not change the objective function, which is typi-
cally achieved through node swaps—replacing a node by one of its neighbors.
Note that a node swap cannot directly increase the size of the independent set.
A very successful approach for the maximum clique problem has been presented
by Grosso et al. [16]. In addition to plateau search, it applies various diver-
sification operations and restart rules. The iterated local search algorithm of
Andrade et al. [3] is one of the most successful local search algorithms in prac-
tice. On small benchmark graphs requiring hours of computation to solve with
exact algorithms, their algorithm often finds optimal solutions in milliseconds.
However, for huge complex networks such as social networks and Web graphs, it

120 J. Dahlum et al.

is consistently outperformed by other methods [23,24]. We give further details
of this algorithm in Sect. 2.1.

To solve these largest and intractable graphs, Lamm et al. [24] proposed
ReduMIS, an algorithm that uses reduction techniques combined with an evolu-
tionary approach. It finds the exact MIS for many of the benchmarks used by
Akiba and Iwata [2], and consistently finds larger independent sets than other
heuristics. Its major drawback is the significant preprocessing time it takes to
apply reductions and initialize its evolutionary algorithm, especially on larger
instances. Thus, though ReduMIS finds high-quality independent sets faster than
existing methods, it is still slow in practice on huge complex networks. However,
for many of the applications mentioned above, a near-optimal independent set is
not needed in practice. The main goal then is to quickly compute an independent
set of sufficient quality. Hence, to find high-quality independent sets faster, we
need a different approach.

1.2 Our Results

We develop an advanced local search algorithm that quickly computes large inde-
pendent sets by combining iterated local search with reduction rules that reduce
the size of the search space without losing solution quality. By running local
search on the kernel, we significantly boost its performance, especially on huge
sparse networks. In addition to exact kernelization techniques, we also apply
inexact reductions that remove high-degree vertices from the graph. In partic-
ular, we show that cutting a small percentage of high-degree vertices from the
graph minimizes performance bottlenecks of local search, while maintaining high
solution quality. Experiments indicate that our algorithm finds large independent
sets much faster than existing state-of-the-art algorithms, while still remaining
competitive with the best solutions reported in literature.

2 Preliminaries

Let G = (V =1{0,...,n—1}, E) be an undirected graph with n = |V| nodes and
m = |E| edges. The set N(v) = {u : {v,u} € E'} denotes the open neighborhood
of v. We further define the open neighborhood of a set of nodes U C V to be
N(U) = Uyeu N(v) \ U. We similarly define the closed neighborhood as N[v] =
N@w)U {v} and N[U] = N(U)UU. A graph H = (Vg, Eg) is said to be a
subgraph of G = (V,E) it Vg CV and Ey C E. We call H an induced subgraph
when Ey = {{u,v} € E : u,v € Vg}. For a set of nodes U C V, G[U] denotes
the subgraph induced by U.

An independent set is a set Z C V, such that all nodes in Z are pairwise
nonadjacent. An independent set is mazimal if it is not a subset of any larger
independent set. The mazimum independent set problem is that of finding the
maximum cardinality independent set among all possible independent sets. Such
a set is called a mazimum independent set (MIS).

Finally, we note the maximum independent set problem is equivalent to the
mazimum clique and minimum vertex cover problems. We see this equivalence

Accelerating Local Search for the Maximum Independent Set Problem 121

as follows: Given a graph G = (V, E) and an independent set Z € V, V\Z is a
vertex cover and 7 is a clique in the complement graph (the graph containing all
edges missing in G). Thus, algorithms for any of these problems can also solve
the maximum independent set problem.

2.1 The ARW Algorithm

We now review the local search algorithm by Andrade et al. [3] (ARW) in more
detail, since we use this algorithm in our work. For the independent set problem,
Andrade et al. [3] extended the notion of swaps to (j, k)-swaps, which remove j
nodes from the current solution and insert k& nodes. The authors present a fast
linear-time implementation that, given a maximal solution, can find a (1, 2)-swap
or prove that no (1, 2)-swap exists. One iteration of the ARW algorithm consists
of a perturbation and a local search step. The ARW local search algorithm uses
(1,2)-swaps to gradually improve a single current solution. The simple version of
the local search iterates over all nodes of the graph and looks for a (1, 2)-swap.
By using a data structure that allows insertion and removal operations on nodes
in time proportional to their degree, this procedure can find a valid (1, 2)-swap
in O(m) time, if it exists.

A perturbation step, used for diversification, forces nodes into the solution
and removes neighboring nodes as necessary. In most cases a single node is
forced into the solution; with a small probability the number of forced nodes f
is set to a higher value (f is set to i + 1 with probability 1/2¢). Nodes to be
forced into a solution are picked from a set of random candidates, with priority
given to those that have been outside the solution for the longest time. An even
faster incremental version of the algorithm (which we use here) maintains a list
of candidates, which are nodes that may be involved in (1,2)-swaps. It ensures
a node is not examined twice unless there is some change in its neighborhood.
Furthermore, an external memory version of this algorithm by Liu et al. [25]
runs on graphs that do not fit into memory on a standard machine. The ARW
algorithm is efficient in practice, finding the exact maximum independent sets
orders of magnitude faster than exact algorithms on many benchmark graphs.

3 Techniques for Accelerating Local Search

First, we note that while local search techniques such as ARW perform well
on huge uniformly sparse mesh-like graphs, they perform poorly on complex
networks, which are typically scale-free. We first discuss why local search per-
forms poorly on huge complex networks, then introduce the techniques we use
to address these shortcomings.

The first performance issue is related to vertex selection for perturbation.
Many vertices are always in some MIS. These include, for example, vertices with
degree one. However, ARW treats such vertices like any other. During a pertur-
bation step, these vertices may be forced out of the current solution, causing
extra searching that may not improve the solution.

122 J. Dahlum et al.

The second issue is that high-degree vertices may slow ARW down signif-
icantly. Most internal operations of ARW (including (1,2)-swaps) require tra-
versing the adjacency lists of multiple vertices, which takes time proportional
to their degree. Although high-degree vertices are only scanned if they have at
most one solution neighbor (or belong to the solution themselves), this happens
often in complex networks.

A third issue is caused by the particular implementation. When performing
an (1,2)-swap involving the insertion of a vertex v, the original ARW imple-
mentation (as tested by Andrade et al. [3]) picks a pair of neighbors u,w of v
at random among all valid ones. Although this technically violates that O(m)
worst-case bound (which requires the first such pair to be taken), the effect
is minimal on the small-degree networks. On large complex networks, this can
become a significant bottleneck.

To deal with the third issue, we simply modified the ARW code to limit
the number of valid pairs considered to a small constant (100). Addressing the
first two issues requires more involved techniques (kernelization and high-degree
vertex cutting, respectively), as we discuss next.

3.1 Exact Kernelization

First, we investigate kernelization, a technique known to be effective in practice
for finding an exact minimum vertex cover (and hence, a maximum independent
set) [1,2]. In kernelization, we repeatedly apply reductions to the input graph G
until it cannot be reduced further, producing a kernel K. Even simple reduction
rules can significantly reduce the graph size. Indeed, in some cases K may be
empty—giving an exact solution without requiring any additional steps. We note
that this is the case for many of the graphs in the experiments by Akiba and
Iwata [2]. Furthermore, any solution of K can be extended to a solution of the
input.

The size of the kernel depends entirely on the structure of the input graph.
In many cases, the kernel can be too large, making it intractable to find an exact
maximum independent set in practice (see Sect.4). In this case “too large” can
mean a few thousand vertices. However, for many graphs, the kernel is still
significantly smaller than the input graph, and even though it is intractable for
exact algorithms, local search algorithms such as ARW have been shown to find
the exact MIS quickly on small benchmark graphs. It therefore stands to reason
that ARW would perform better on a small kernel.

Reductions. We now briefly describe the reduction rules that we consider.
Each of these exact reductions allow us to choose vertices that are in some MIS
by following simple rules. If an MIS is found on the kernel graph K, then each
reduction may be undone, producing an MIS in the original graph.

Reductions of Akiba and Iwata [2]. First, we briefly describe the reductions used
by Akiba and Iwata [2]. Akiba and Iwata use a full suite of advanced reduction
rules, which they show can efficiently solve the minimum vertex cover problem

Accelerating Local Search for the Maximum Independent Set Problem 123

exactly for a variety of real-world instances. We consider all of their reductions
here. Refer to Akiba and Iwata [2] for a thorough discussion, including imple-
mentation details.

Pendant vertices: Any vertex v of degree one, called a pendant, is in some
MIS; therefore, v and its neighbor v can be removed from G.

Vertex folding: For a vertex v with degree two whose neighbors v and w are
not adjacent, either v is in some MIS, or both u and w are in some MIS.
Therefore, we can contract u, v, and w to a single vertex v' and decide which
vertices are in the MIS later.

Linear Programming: A well-known [26] linear programming relaxation for
the MIS problem with a half-integral solution (i.e., using only values 0, 1/2,
and 1) can be solved using bipartite matching: maximize), , 2, such that
V(u,v) € E, 2y + 2, <1 and Yv € V, x,, > 0. Vertices with value 1 must be
in the MIS and can thus be removed from G along with their neighbors. We
use an improved version [18] that computes a solution whose half-integral
part is minimal.

Unconfined [34]: Though there are several definitions of unconfined vertex in
the literature, we use the simple one from Akiba and Iwata [2]. A vertex
v is unconfined when determined by the following simple algorithm. First,
initialize S = {v}. Then find a v € N(S) such that |[N(u) N S| = 1 and
|N(u)\ N[S]| is minimized. If there is no such vertex, then v is confined. If
N(u)\N[S] = 0, then v is unconfined. If N (u)\N[S] is a single vertex w, then
add w to S and repeat the algorithm. Otherwise, v is confined. Unconfined
vertices can be removed from the graph, since there always exists an MIS 7
that contains no unconfined vertices.

Twin [34]: Let u and v be vertices of degree three with N(u) = N(v). If G[N(u)]
has edges, then add w and v to Z and remove u, v, N(u), N(v) from G.
Otherwise, some vertices in N (u) may belong to some MIS Z. We still remove
u, v, N(u) and N(v) from G, and add a new gadget vertex w to G with
edges to u’s two-neighborhood (vertices at a distance 2 from u). If w is in the
computed MIS, then none of u’s two-neighbors are Z, and therefore N (u) C 7.
Otherwise, if w is not in the computed MIS, then some of u’s two-neighbors
are in Z, and therefore v and v are added to Z.

Alternative: Two sets of vertices A and B are set to be alternatives if |A| =
|B] > 1 and there exists an MIS Z such that Z N (A U B) is either A or B.
Then we remove A and B and C = N(A) N N(B) from G and add edges
from each a € N(A)\ C to each b € N(B)\ C. Then we add either A or B to
Z, depending on which neighborhood has vertices in Z. Two structures are
detected as alternatives. First, if N(v) \ {u} induces a complete graph, then
{u} and {v} are alternatives (a funnel). Next, if there is a cordless 4-cycle
a1byazbe where each vertex has at least degree three. Then sets A = {a1, a2}
and B = {b1, by} are alternatives when |[N(A4)\ B| <2, |[N(A) \ B| < 2, and
N(A)NN(B) =0.

Packing [2]: Given a non-empty set of vertices S, we may specify a packing
constraint ZUGS r, < k, where x, is 0 when v is in some MIS Z and

124 J. Dahlum et al.

1 otherwise. Whenever a vertex v is excluded from Z (i.e., in the uncon-
fined reduction), we remove z,, from the packing constraint and decrease the
upper bound of the constraint by one. Initially, packing constraints are cre-
ated whenever a vertex v is excluded or included into the MIS. The simplest
case for the packing reduction is when k is zero: all vertices must be in Z to
satisfy the constraint. Thus, if there is no edge in G[S], S may be added to Z,
and S and N(S) are removed from G. Other cases are much more complex.
Whenever packing reductions are applied, existing packing constraints are
updated and new ones are added.

The Reduction of Butenko et al. [8]. We now describe one last reduction that
was not included in the exact algorithm by Akiba and Iwata [2], but was shown
by Butenko et al. [8] to be highly effective on medium-sized graphs derived from

error-correcting codes.
v
Isolated Vertex Removal: The most relevant reduction

for our purposes is the isolated vertex remowval. If a vertex
v forms a single clique C' with all its neighbors, then v
is called isolated (simplicial is also used in the literature)
and is always contained in some MIS. To see this, at most
one vertex from C may is an MIS. Either it is v or, if a

neighbor of v is in an MIS, then we select v instead (See Fig-1. An isolated
Fig.1). vertex v, in a single

When this reduction is applied in practice, vertices clique of five vertices.

with degree three or higher are often excluded—as check-

ing all pairwise adjacencies of v’s neighbors can be expensive, especially in sparse
representations. Degree zero and pendant vertices can be checked purely by
the number of neighbors, and triangles can be detected by storing neighbors
in increasing order by vertex number and performing a single binary search to
check if v’s neighbors are adjacent.

3.2 Inexact Reductions: Cutting High-Degree Vertices

To further boost local search, we investigate removing (cutting) high-degree ver-
tices outright. This is a natural strategy: intuitively, vertices with very high
degree are unlikely to be in a large independent set (consider a maximum inde-
pendent set of graphs with few high-degree vertices, such as a star graph, or
scale-free networks). In particular, many reduction rules show that low-degree
vertices are in some MIS, and applying them results in a small kernel [24]. Thus,
high-degree vertices are left behind. This is especially true for huge complex
networks considered here, which generally have few high-degree vertices.
Besides intuition, there is much additional evidence to support this strategy.
In particular, the natural greedy algorithm that repeatedly selects low-degree
vertices to construct an independent set is typically within 1%-10% of the
maximum independent set size for sparse graphs [3]. Moreover, several success-
ful algorithms make choices that favor low-degree vertices. ReduMIS [24] forces

Accelerating Local Search for the Maximum Independent Set Problem 125

low-degree vertices into an independent set in a multi-level algorithm, giving
high-quality independent sets as a result. Exact branch-and-bound algorithms
order vertices so that vertices of high-degree are considered first during search.
This reduces the search space size initially, at the cost of finding poor initial
independent sets. In particular, optimal and near-optimal independent sets are
typically found after high-degree vertices have been evaluated and excluded from
search; however, it is then much slower to find the remaining solutions, since only
low-degree vertices remain in the search. This slowness can be observed in the
experiments of Batsyn et al. [5], where better initial solutions from local search
significantly speed up exact search.

We consider two strategies for removing high-degree vertices from the graph.
When we cut by absolute degree, we remove the vertices with degree higher
than a threshold. In relative degree cutting, we iteratively remove highest-degree
vertices and their incident edges from the graph. This is the mirror image of the
greedy algorithm that repeatedly selects smallest-degree vertices in the graph
to be in an independent set until the graph is empty. We stop when a fixed
fraction of all vertices is removed. This better ensures that clusters of high-
degree vertices are removed, leaving high-degree vertices that are isolated from
one another, which are more likely to be in large independent sets.

3.3 Putting Things Together

We use reductions and cutting in two ways. First, we explore the standard tech-
nique of producing a kernel in advance, and then run ARW on the kernel. Second,
we investigate applying reductions online as ARW runs.

Preprocessing. Our first algorithm (KerMIS) uses exact reductions in combi-
nation with relative degree cutting. It uses the full set of reductions from Akiba
and Iwata [2], as described in Sect. 3. Note that we do not include isolated vertex
removal, as it was not included in their reductions. After computing a kernel, we
then cut 1 % of the highest-degree vertices using relative degree cutting, breaking
ties randomly. We then run ARW on the resulting graph.

Online. Our second approach (OnlineMIS) applies a set of simple reductions on
the fly. For this algorithm, we use only the isolated vertex removal reduction (for
degrees zero, one, and two), since it does not require the graph to be modified—
we can just mark isolated vertices and their neighbors as removed during local
search. In more detail, we first perform a quick single pass when computing the
initial solution for ARW. We force isolated vertices into the initial solution, and
mark them and their neighbors as removed. Note that this does not result in
a kernel, as this pass may create more isolated vertices. We further mark the
top 1% of high-degree vertices as removed during this pass. As local search
continues, whenever we check if a vertex can be inserted into the solution, we
check if it is isolated and update the solution and graph similarly to the single
pass. Thus, OnlineMIS kernelizes the graph online as local search proceeds.

126 J. Dahlum et al.

4 Experimental Evaluation

4.1 Methodology

We implemented our algorithms (OnlineMIS, KerMIS), including the kernelization
techniques, using C++ and compiled all code using gce 4.6.3 with full optimiza-
tions turned on (-03 flag). We further compiled the original implementations of
ARW and ReduMIS using the same settings. For ReduMIS, we use the same para-
meters as Lamm et al. [24] (convergence parameter p = 1,000,000, reduction
parameter A = 0.1-|Z|, and cutting percentage n = 0.1-|K]). For all instances, we
perform three independent runs of each algorithm. For small instances, we run
each algorithm sequentially with a five-hour wall-clock time limit to compute its
best solution. For huge graphs, with tens of millions of vertices and at least one
billion edges, we use a time limit of 10 h. Each run was performed on a machine
that is equipped with four Octa-Core Intel Xeon E5-4640 processors running at
2.4 GHz. It has 512 GB local memory, 4 x 20 MB L3-Cache and 4 x 8 x 256 KB
L2-Cache.

We consider social networks, autonomous systems graphs, and Web graphs
taken from the 10th DIMACS Implementation Challenge [4], and two additional
large Web graphs, webbase-2001 [22] and wikilinks [21]. We also include road
networks from Andrade et al. [3] and meshes from Sander et al. [29]. The graphs
europe and USA-road are large road networks of Europe [9] and the USA [10].
The instances as-Skitter-big, web-Stanford and libimseti are the hardest
instances from Akiba and Iwata [2]. We further perform experiments on huge
instances with billions of edges taken from the Laboratory of Web Algorith-
mics [22]: 1t-2004, sk-2005, and uk-2007.

4.2 Accelerated Solutions

We now illustrate the speed improvement over existing heuristic algorithms.
First, we measure the speedup of OnlineMIS over other high-quality heuristic
search algorithms. In particular, in Table 1, we report the maximum speedup
that OnlineMIS compared with the state-of-the-art competitors. We compute
the maximum speedup for an instance as follows. For each solution size i, we
compute the speedup sfMg = ti\lg/t6n|ineM|s of OnlineMIS over algorithm Alg for
that solution size. We then report the maximum speedup spia* = max; sp, for
the instance.

As can be seen in Table 1, OnlineMIS always has a maximum speedup greater
than 1 over every other algorithm. We first note that OnlineMIS is significantly
faster than ReduMIS and KerMIS. In particular, on 14 instances, OnlineMIS
achieves a maximum speedup of over 100 over ReduMIS. KerMIS performs only
slightly better than ReduMIS in this regard, with OnlineMIS achieving similar
speedups on 12 instances. Though, on meshes, KerMIS fairs especially poorly.
On these instances, OnlineMIS always finds a better solution than KerMIS
(instances marked with an *), and on the bunny and feline instances, OnlineMIS
achieves a maximum speedup of over 10,000 against KerMIS. Furthermore, on

Accelerating Local Search for the Maximum Independent Set Problem 127

Table 1. For each graph instance, we give the number of vertices n and the number
of edges m. We further give the maximum speedup for OnlineMIS over other heuristic
search algorithms. For each solution size i, we compute the speedup sfMg = thg/t%n“nemS
of OnlineMIS over algorithm Alg for that solution size. We then report the maximum
speedup spg" = max; sfMg for the instance. When an algorithm never matches the final
solution quality of OnlineMIS, we give the highest non-infinite speedup and give an *.

A ‘o0’ indicates that all speedups are infinite.

Graph Maximum Speedup of OnlineMIS
Name n m SARW SKerMIS SReduMIS
Huge instances:
it-2004 41291594 1027474947 4.51 221.26 266.30
sk-2005 50636 154 1810063330 356.87* 201.68 302.64
uk-2007 105896 555 1154392916 11.63* 108.13 122.50
Social networks and Web graphs:
amazon-2008 735323 3523472 43.39* 13.75 50.75
as-Skitter-big 1696415 11095298 355.06* 2.68 7.62
dewiki-2013 1532354 33093029 36.22* 632.94 1726.28
enwiki-2013 4206785 91939728 51.01%* 146.58 244.64
eu-2005 862 664 22217686 5.52 62.37 217.39
hollywood-2011 2180759 114492816 4.35 5.51 11.24
libimseti 220970 17233144 15.16% 21830 1118.65
1ljournal-2008 5363260 49514271 2.51 3.00 5.33
orkut 3072441 117185082 1.82% 478.94* 8751.62*
web-Stanford 281903 1992636 50.70* 29.53 59.31
webbase-2001 118142155 854809761 3.48 33.54 36.18
wikilinks 25890800 543159884 3.88 11.54 11.89
youtube 1134890 543159884 6.83 1.83 7.29
Road networks:
europe 18029721 22217686 5.57 12.79 14.20
USA-road 23947347 28854312 7.17 24.41 27.84
Meshes:
buddha 1087716 1631574 1.16 154.04* 976.10*
bunny 68 790 103017 3.26 16616.83* 526.14
dragon 150000 225000 2.22*% 567.39% 692.60*
feline 41262 61893 2.00% 13377.42* 315.48
gameguy 42623 63 850 3.23 98.82* 102.03

venus 5672 8508 1.17 00 157.78*

128 J. Dahlum et al.

3.071e7 sk-2005 . 858000, - youtube
3.06 I Joke .[857800 ;
~ : '
3.05) o 857600
,
» 3.04 4 » 857400
N K N
g 3.03 § 857200
5 3.02 : 5 857000 :
[} " o
8301 : v ReduMIS & 856800 H v ReduMIS
— KerMIS . — KerMIS
3.00) . 856600 x
ARW . ARW
299 i ==+ OnlineMIS 856400 -* ==+ OnlineMIS
2.98 i 856200 i
10! 10° 10° 10” 10° 107" 10° 10! 10° 10°
Time [s] Time [s]
1.051e7 USA-road 35000 bunny
1.24 semtY IF 300000
B
.

1.230 gt 25000
) N)
N g N
@122 @ 20000

J

S . S
51211 5 15000
8 ReduMIS 8 | ReduMIS

1.20 — KerMIS 10000 — KerMIS

1.19 ARW 5000 ARW

= OnlineMIS | === OnlineMIS
1.18 : o : :
10! 10° 10° 10* 10° 107 10° 10! 10° 10° 10* 10°
Time [s] Time [s]

Fig. 2. Convergence plots for sk-2005 (top left), youtube (top right), USA-road (bot-
tom left), and bunny (bottom right).

the venus mesh graph, KerMIS never matches the quality of a single solution
from OnlineMIS, giving infinite speedup. ARW is the closest competitor, where
OnlineMIS only has 2 maximum speedups greater than 100. However, on a fur-
ther 6 instances, OnlineMIS achieves a maximum speedup over 10, and on 11
instances ARW fails to match the final solution quality of OnlineMIS, giving an
effective infinite maximum speedup.

We now give several representative convergence plots in Fig.2, which illus-
trate the early solution quality of OnlineMIS compared to ARW, the closest
competitor. We construct these plots as follows. Whenever an algorithm finds
a new large independent set I at time ¢, it reports a tuple (¢, |I]); the conver-
gence plots show average values over all three runs. In the non-mesh instances,
OnlineMIS takes a early lead over ARW, though solution quality converges over
time. Lastly, we give the convergence plot for the bunny mesh graph. Reductions
and high-degree cutting aren’t effective on meshes, thus ARW and OnlineMIS
have similar initial solution sizes.

4.3 Time to High-Quality Solutions

We now look at the time it takes an algorithm to find a high-quality solution. We
first determine the largest independent set found by any of the four algorithms,
which represent the best-known solutions [24], and compute how long it takes

Accelerating Local Search for the Maximum Independent Set Problem

129

Table 2. For each algorithm, we give the average time tq.4 to reach 99.5 % of the best
solution found by any algorithm. The fastest such time for each instance is marked
in bold. We also give the size of the largest solution found by any algorithm and list
the algorithms (abbreviated by first letter) that found this largest solution in the time
limit. A ‘-’ indicates that the algorithm did not find a solution of sufficient quality.

Graph OnlineMIS ARW KerMIS ReduMIS Best IS Best IS
Name tave tave tave tave Size Algorithms
Huge instances:
it-2004 86.01 327.35 7892.04 9448.18 25620285 R
sk-2005 152.12 - 10854.46 16316.59 30686 766 K
uk-2007 403.36 3789.74 23022.26 26081.36 67282659 K
Social networks and Web graphs:
amazon-2008 0.76 1.26 5.81 15.23 309 794 K, R
as-Skitter-big 1.26 2.70 2.82 8.00 1170580 K, R
dewiki-2013 4.10 7.88 898.77 2589.32 697923 K
enwiki-2013 10.49 19.26 856.01 1428.71 2178457 K
eu-2005 1.32 3.11 29.01 95.65 452 353 R
hollywood-2011 1.28 1.46 7.06 14.38 523402 O, A, K, R
libimseti 0.44 0.45 50.21 257.29 127293 R
1ljournal-2008 3.79 8.30 10.20 18.14 2970937 K, R
orkut 42.19 49.18 2024.36 - 839 086 K
web-Stanford 1.58 8.19 3.57 7.12 163390 R
webbase-2001 144.51 343.86 2920.14 3150.05 80009826 R
wikilinks 34.40 85.54 348.63 358.98 19418724 R
youtube 0.26 0.81 0.48 1.90 857945 A K, R
Road networks:
europe 28.22 75.67 91.21 101.21 9267811 R
USA-road 44.21 112.67 259.33 295.70 12428105 R
Meshes:
buddha 26.23 26.72 119.05 1699.19 480853 A
bunny 3.21 9.22 - 70.40 32349 R
dragon 3.32 4.90 5.18 97.88 66 502 A
feline 1.24 1.27 - 39.18 18 853 R
gameguy 15.13 10.60 60.77 12.22 20727 R
venus 0.32 0.36 - 6.52 2684 O, A, R

130 J. Dahlum et al.

Table 3. For each algorithm, we include average solution size and average time tg.4
to reach it within a time limit (5 hours for normal graphs, 10 hours for huge graphs).
Solutions in italics indicate the larger solution between ARW and OnlineMIS local
search, bold marks the largest overall solution. A ‘-’ in our indicates that the algorithm
did not find a solution in the time limit.

Graph OnlineMIS ARW KerMIS ReduMIS
Name Avg. tavg Avg. tavg Avg. tavg Avg. tavg
Huge instances:
it-2004 25610697 35324 25612993 33407 25619988 35751 25620246 35645
sk-2005 380680869 34480 30373880 11387 30686684 34923 30684867 35837
uk-2007 67265560 35982 67101065 8702 67282347 35663 67278359 35782
Social networks and Web graphs:
amazon-2008 809792 6154 309791 12195 309793 818 309794 153
as-Skitter-big 1170560 7163 1170548 14017 1170580 4 1170580 9
dewiki-2013 697789 17481 697669 16030 697921 14070 697798 17283
enwiki-2013 2178255 13612 2177965 17336 2178436 17408 2178327 17697
eu-2005 452296 11995 452311 22968 452 342 5512 452 353 2332
hollywood-2011 523 402 33 523402 101 523 402 9 523 402 17
libimseti 127288 8250 127284 9308 127 292 102 127292 16747
1journal-2008 2970236 428 2970887 16571 2970937 36 2970937 41
orkut 839073 17764 839001 17933 839004 19765 806244 34197
web-Stanford 163 384 5938 163382 10924 163 388 35 163 390 12
webbase-2001 79998332 35240 80002845 35922 80009041 30960 80009820 31954
wikilinks 19404530 21069 19416213 34085 19418693 23133 19418724 854
youtube 857914 <1 857 945 93 857945 <1 857945 2
Road networks:

Europe 9267573 15622 9267587 28450 9267804 27039 9267809 115
USA-road 12426557 10490 12426582 31583 12427819 32490 12428099 4799
Meshes:

buddha 480795 17895 480808 17906 480592 16695 479905 17782
bunny 32283 13258 32287 13486 32110 14185 32344 1309
dragon 66501 15203 66496 14775 66386 16577 66 447 3456
feline 18846 15193 18844 10547 18732 15055 18 851 706
gameguy 20662 6868 20674 12119 20655 7467 20727 191
venus 2684 507 2684 528 2664 9 2683 74

each algorithm to find an independent set within 99.5% of this size. The results
are shown in Table 2. With a single exception, OnlineMIS is the fastest algorithm
to be within 99.5% of the target solution. In fact, OnlineMIS finds such a solution
at least twice as fast as ARW in 14 instances, and it is almost 10 times faster on
the largest instance, uk-2007. Further, OnlineMIS is orders of magnitude faster
than ReduMIS (by a factor of at least 100 in seven cases). We also see that
KerMIS is faster than ReduMIS in 19 cases, but much slower than OnlineMIS
for all instances. It does eventually find the largest independent set (among
all algorithms) for 10 instances. This shows that the full set of reductions is
not always necessary, especially when the goal is to get a high-quality solution
quickly. It also justifies our choice of cutting: the solution quality of KerMIS
rivals (and sometimes even improves) that of ReduMIS.

Accelerating Local Search for the Maximum Independent Set Problem 131

4.4 Overall Solution Quality

Next, we show that OnlineMIS has high solution quality when given a time
limit for searching (5 hours for normal graphs, 10 hours for huge graphs).
Although long-run quality is not the goal of the OnlineMIS algorithm, in 11
instances OnlineMIS finds a larger independent set than ARW, and in four
instances OnlineMIS finds the largest solution in the time limit. As seen in
Table 3, OnlineMIS also finds a solution within 0.1% of the best solution found by
any algorithm for all graphs. However, in general OnlineMIS finds lower-quality
solutions than ReduMIS, which we believe is from high-degree cutting removing
vertices in large independent sets. Nonetheless, as this shows, even when cutting
out 1% of the vertices, the solution quality remains high.

On eight instances, KerMIS finds a better solution than ReduMIS. How-
ever, kernelization and cutting take a long time (over three hours for sk-2005,
10 h for uk-2007), and therefore KerMIS is much slower to get to a high-quality
solution than OnlineMIS. Thus, our experiments show that the full set of reduc-
tions is not always necessary, especially when the goal is to get a high-quality
solution quickly. This also further justifies our choice of cutting, as the solution
quality of KerMIS remains high. On the other hand, instances as-Skitter-big,
1ljournal-2008, and youtube are solved quickly with advanced reduction rules.

5 Conclusion and Future Work

We have shown that applying reductions on the fly during local search leads
to high-quality independent sets quickly. Furthermore, cutting few high-degree
vertices has little effect on the quality of independent sets found during local
search. Lastly, by kernelizing with advanced reduction rules, we can further
speed up local search for high-quality independent sets in the long-run—rivaling
the current best heuristic algorithms for complex networks. Determining which
reductions give a desirable balance between high-quality results and speed is an
interesting topic for future research. While we believe that OnlineMIS gives a
nice balance, it is possible that further reductions may achieve higher-quality
results even faster.

References

1. Faisal Abu-Khzam, N., Michael Fellows, R., Michael Langston, A., Suters, H.-W.:
Crown structures for vertex cover kernelization. Theor. Comput. Syst. 41(3), 411—
430 (2007)

2. Akiba, T., Iwata, Y.: Branch-and-reduce exponential/FPT algorithms in practice:
A case study of vertex cover. Theor. Comput. Sci. 609, 211-225 (2016). Part 1

3. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maxi-
mum independent set problem. J. Heuristics 18(4), 525-547 (2012)

4. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.:
Benchmarking for Graph Clustering and Partitioning. In: Alhajj, R., Rokne, J.
(eds.) Encyclopedia of Social Network Analysis and Mining, pp. 73-82. Springer,
Heidelberg (2014)

132

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

J. Dahlum et al.

Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.: Improvements to MCS
algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397-416 (2014)
Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem.
Algorithmica 29(4), 610-637 (2001)

Bourgeois, N., Escoffier, B., Paschos, V., van Rooij, J.M.: Fast algorithms for max
independent set. Algorithmica 62(1-2), 382-415 (2012)

Butenko, S., Pardalos, P., Sergienko, I., Shylo, V., Stetsyuk, P.: Finding maximum
independent sets in graphs arising from coding theory. In: Proceedings of the ACM
Symposium on Applied Computing (SAC 2002), pp. 542-546. ACM (2002)
Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117-139. Springer, Heidelberg (2009)
Demetrescu, C., Goldberg, A.V., Johnson, D.S.: The Shortest Path Problem: 9th
DIMACS Implementation Challenge, vol. 74. AMS (2009)

Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomized adaptive search
procedure for maximum independent set. Oper. Res. 42(5), 860-878 (1994)
Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010)

Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of np-completeness. In: Freeman, W.H. (1979)

Gemsa, A., Néllenburg, M., Rutter, I.: Evaluation of labeling strategies for rotating
maps. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp.
235-246. Springer, Heidelberg (2014)

Grosso, A., Locatelli, M., Della, F.C.: Combining swaps and node weights in an
adaptive greedy approach for the maximum clique problem. J. Heuristics 10(2),
135-152 (2004)

Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient
heuristics for the maximum clique problem. J. Heuristics 14(6), 587-612 (2008)
Hansen, P., Mladenovié¢, N., UroSevié¢, D.: Variable neighborhood search for the
maximum clique. Discrete Appl. Math. 145(1), 117-125 (2004)

Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow.
In: Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, pp. 1749-1761. STAM (2014)

Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the max-
imum clique problem. Inform. Process. Lett. 95(5), 503-511 (2005)

Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent con-
traction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83-93.
Springer, Heidelberg (2010)

Kunegis, J.: KONECT: The Koblenz network collection. In: Proceedings of the
International Conference on World Wide Web Companion (WWW 13), pp. 1343—
1350 (2013)

University of Milano Laboratory of Web Algorithms. Datasets

Lamm, S., Sanders, P., Schulz, C.: Graph partitioning for independent sets. In:
Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 68-81. Springer, Heidelberg
(2015)

Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding near-optimal
independent sets at scale. In: Proceedings of the 18th Workshop on Algorithm
Engineering and Experiments (ALENEX 2016), pp. 138-150 (2016)

Liu, Y., Lu, J., Yang, H., Xiao, X., Wei, Z.: Towards maximum independent sets
on massive graphs. Proc. VLDB Endow. 8(13), 2122-2133 (2015)

26.

27.

28.

29.

30.

31.

32.

33.

34.

Accelerating Local Search for the Maximum Independent Set Problem 133

Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties and algo-
rithms. Math. Program. 8(1), 232-248 (1975)

Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique. J. Arti.
Int. Res. 25, 159-185 (2006)

San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved
bit parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467-479 (2013)
Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges
using adjacency primitives. ACM Trans. Graph. 27(5), 144:1-144:9 (2008)

San Segundo, P., Rodriguez-Losada, D., Jiménez, D.: An exact bit-parallel algo-
rithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571-581 (2011)
Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. STAM J.
Comput. 6(3), 537-546 (1977)

Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and
faster branch-and-bound algorithm for finding a maximum clique. In: Rahman,
M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191-203. Springer,
Heidelberg (2010)

Xiang, J., Guo, C., Aboulnaga, A.: Scalable maximum clique computation using
mapreduce. In: Proceedings of the IEEE 29th International Conference on Data
Engineering (ICDE 2013), pp. 74-85, April 2013

Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: A simple
maximum independent set algorithm in degree-3 graphs. Theor. Comput. Sci. 469,
92-104 (2013)

Computing Nonsimple Polygons
of Minimum Perimeter

Sandor P. Fekete! ™) Andreas Haas', Michael Hemmer!, Michael Hoffmann?,
Irina Kostitsyna®, Dominik Krupke!, Florian Maurer', Joseph S.B. Mitchell*,
Arne Schmidt!, Christiane Schmidt®, and Julian Troegel®

L TU Braunschweig, Braunschweig, Germany
s.fekete@tu-bs.de
2 ETH Zurich, Zurich, Switzerland
3 TU Eindhoven, Eindhoven, The Netherlands
4 Stony Brook University, Stony Brook, NY, USA
5 Linképing University, Linképing, Sweden

Abstract. We provide exact and approximation methods for solving
a geometric relaxation of the Traveling Salesman Problem (TSP) that
occurs in curve reconstruction: for a given set of vertices in the plane, the
problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily
simply connected) polygon with shortest possible boundary length. Even
though the closely related problem of finding a minimum cycle cover is
polynomially solvable by matching techniques, we prove how the topo-
logical structure of a polygon leads to NP-hardness of the MPP. On the
positive side, we show how to achieve a constant-factor approximation.

When trying to solve MPP instances to provable optimality by means
of integer programming, an additional difficulty compared to the TSP
is the fact that only a subset of subtour constraints is valid, depending
not on combinatorics, but on geometry. We overcome this difficulty by
establishing and exploiting additional geometric properties. This allows
us to reliably solve a wide range of benchmark instances with up to 600
vertices within reasonable time on a standard machine. We also show
that using a natural geometry-based sparsification yields results that are
on average within 0.5 % of the optimum.

Keywords: Traveling Salesman Problem (TSP) - Minimum Perimeter
Polygon (MPP) - Curve reconstruction + NP-hardness - Exact optimiza-
tion - Integer programming - Computational geometry meets combina-
torial optimization

1 Introduction

For a given set V of points in the plane, the Minimum Perimeter Polygon (MPP)
asks for a polygon P with vertex set V' that has minimum possible boundary
length. An optimal solution may not be simply connected, so we are faced with
a geometric relaxation of the Traveling Salesman Problem (TSP).

© Springer International Publishing Switzerland 2016

A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 134-149, 2016.
DOI: 10.1007/978-3-319-38851-9_10

Computing Nonsimple Polygons of Minimum Perimeter 135

Fig. 1. A Minimum Perimeter Polygon for an instance with 960 vertices.

The TSP is one of the classic problems of Combinatorial Optimization. NP-
hard even in special cases of geometric instances (such as grid graphs), it has
served as one of the prototypical testgrounds for developing outstanding algo-
rithmic approaches. These include constant-factor approximation methods (such
as Christofides’ 3/2 approximation [6] in the presence of triangle inequality, or
Arora’s [4] and Mitchell’s [20] polynomial-time approximation schemes for geo-
metric instances), as well as exact methods (such as Grotschel’s optimal solution
to a 120-city instance [14] or the award-winning work by Applegate et al. [2] for
solving a 13509-city instance within 10 years of CPU time.) The well-established
benchmark library TSPLIB [23] of T'SP instances has become so widely accepted
that it is used as a benchmark for a large variety of other optimization prob-
lems. See the books [15,18] for an overview of various aspects of the TSP and
the books [3,7] for more details on exact optimization.

From a geometric point of view, the TSP asks for a shortest polygonal chain
through a given set of vertices in the plane; as a consequence of triangle inequal-
ity, the result is always a simple polygon of minimum perimeter. Because of
the fundamental role of polygons in geometry, this has made the study of TSP
solutions interesting for a wide range of geometric applications. One such con-
text is geometric shape reconstruction, where the objective is to re-compute the
original curve from a given set of sample points; see Giesen [13], Althaus and
Mehlhorn [1] or Dey et al. [9] for specific examples. However, this only makes
sense when the original shape is known to be simply connected, i.e., bounded
by a single closed curve. More generally, a shape may be multiply connected,
with interior holes. Thus, computing a simple polygon may not yield the desired
answer. Instead, the solution may be a Minimum Perimeter Polygon (MPP):
for a set V of points in the plane, find a not necessarily simple polygon P with
vertex set V, such that the boundary of P has smallest possible length!. See
Fig. 1 for an optimal solution of an instance with 960 points; this also shows the
possibly intricate structure of an MPP.

! Note that we exclude degenerate holes that consist of only one or two vertices.

136 S.P. Fekete et al.

While the problem MPP? asks for a cycle cover of the given set of vertices (as
opposed to a single cycle required by the TSP), it is important to note that even
the more general geometry of a polygon with holes imposes some topological
constraints on the structure of boundary cycles; as a consequence, an optimal
2-factor (a minimum-weight cycle cover of the vertices, which can be computed
in polynomial time) may not yield a feasible solution. Fekete et al. [11] gave a
generic integer program for the MPP (and other related problems) that yields
optimal solutions for instances up to 50 vertices. However, the main challenges
were left unresolved. What is the complexity of computing an MPP? Is it possible
to develop constant-factor approximation algorithms? And how can we compute
provably optimal solutions for instances of relevant size?

Our Results
In this paper, we resolve the main open problems related to the MPP.

— We prove that the MPP is NP-hard. This shows that despite of the rela-
tionship to the polynomially solvable problem of finding a minimum 2-factor,
dealing with the topological structure of the involved cycles is computation-
ally difficult.

— We give a 3-approximation algorithm.

— We provide a general IP formulation with O(n?) variables to ensure a valid
solution for the MPP.

— We describe families of cutting planes that significantly reduce the number of
iterations needed to eliminate outer components and holes in holes, leading
to a practically useful formulation.

— We present experimental results for the MPP, solving instances with up to
1000 points in the plane to provable optimality within 30 min of CPU time.

— We also consider a fast heuristic that is based on geometric structure, restrict-
ing the edge set to the Delaunay triangulation. Experiments on structured
random point sets show that solutions are on average only about 0.5 % worse
than the optimum, with vastly superior runtimes.

2 Complexity

Theorem 1. The MPP problem is NP-hard.

The proof is based on a reduction from the Minimum Vertex Cover problem
for planar graphs. Details are omitted for lack of space; see the full version of
the paper [12] for the detailed proof.

3 Approximation

In this section we show that the MPP can be approximated within a factor of
3. Note that we only sketch the general approach, skipping over some details for
lack of space; a full proof is given in the full version of the paper [12].

2 For simplicity, we will also refer to the problem of computing an MPP as “the MPP”.

Computing Nonsimple Polygons of Minimum Perimeter 137

Theorem 2. There exists a polynomial time 3-approximation for the MPP.

Proof. We compute the convex hull, CH(V), of the input set; this takes time
O(nlogh), where h is the number of vertices of the convex hull. Note that the
perimeter, |CH(V)|, of the convex hull is a lower bound on the length of an
optimal solution (OPT > |CH(V)]|), since the outer boundary of any feasi-
ble solution polygon must enclose all points of V, and the convex hull is the
minimum-perimeter enclosure of V.

Let U C V be the input points interior to CH (V). If U = &, then the optimal
solution is given by the convex hull. If |U| < 2, we claim that an optimal solution
is a simple (nonconvex) polygon, with no holes, on the set V', given by the TSP
tour on V; since |U| = 2 is a constant, it is easy to compute the optimal solution
in polynomial time, by trying all possible ways of inserting the points of U into
the cycle of the points of V' that lie on the boundary of the convex hull, CH (V).

Thus, assume now that |U| > 3. We compute a minimum-weight 2-factor,
denoted by ~(U), on U, which is done in polynomial-time by standard meth-
ods [8]. Now, «v(U) consists of a set of disjoint simple polygonal curves having
vertex set U; the curves can be nested, with possibly many levels of nesting. We
let F' denote the directed nesting forest whose nodes are the cycles (connected
components) of v(U) and whose directed edges indicate nesting (containment)
of one cycle within another. Because an optimal solution consists of a 2-factor
(an outer cycle, together with a set of cycles, one per hole of the optimal poly-
gon), we know that OPT > |y(U)|. (In an optimal solution, the nesting forest
corresponding to the set of cycles covering all of V' (not just the points U interior
to CH(V)) is simply a single tree that is a star: a root node corresponding to
the outer cycle, and a set of children adjacent to the root node, corresponding
to the boundaries of the holes of the optimal polygon.) If the nesting forest F’
for our optimal 2-factor is a set of isolated nodes (i.e., there is no nesting among
the cycles of the optimal 2-factor on U), then our algorithm outputs a polygon
with holes whose outer boundary is the boundary of the convex hull, CH(V),
and whose holes are the (disjoint) polygons given by the cycles of v(U). In this
case, the total weight of our solution is equal to |CH(V)|+ |[y(U)| < 2-OPT.

Assume now that F' has at least one nontrivial tree. We describe a two-
phase process that transforms the set of cycles corresponding to F' into a set of
pairwise-disjoint cycles, each defining a simple polygon interior to CH(V'), with
no nesting — the resulting simple polygons are disjoint, each having at least 3
vertices from U C V.

Phase 1 of the process transforms the cycles v(U) to a set of polygonal
cycles that define weakly simple polygons whose interiors are pairwise disjoint.
(A polygonal cycle 8 defines a weakly simple polygon Pg if Pg is a closed, simply
connected set in the plane with a boundary, dPg consisting of a finite union of
line segments, whose traversal (e.g., while keeping the region Pg to one’s left) is
the (counterclockwise) cycle 8 (which can have line segments that are traversed
twice, once in each direction).) The total length of the cycles at the end of phase 1
is at most 2 times the length of the original cycles, 4(U). Then, phase 2 of the
process transforms these weakly simple cycles into (strongly) simple cycles that

138 S.P. Fekete et al.

define disjoint simple polygons interior to CH (V). Phase 2 only does shortening
operations on the weakly simple cycles; thus, the length of the resulting simple
cycles at the end of phase 2 is at most 2 times the total length of v(U). Details
of phase 1 and phase 2 processes are given in the full version of the paper. At
the end of phase 2, we have a set of disjoint simple polygons within CH (V),
which serve as the holes of the output polygon, whose total perimeter length is
at most |[CH (V)| +2|v(U)| <3-OPT. a

4 IP Formulation

4.1 Cutting-Plane Approach

In the following we develop suitable Integer Programs (IPs) for solving the MPP
to provable optimality. The basic idea is to use a binary variable z, € {0,1}
for any possible edge e € E, with z. = 1 corresponding to e being part of a
solution P if and only if . = 1. This allows it to describe the objective function
by min) . zcce, Where ¢ is the length of e. In addition, we impose a suitable
set of linear constraints on these binary variables, such that they characterize
precisely the set of polygons with vertex set V. The challenge is to pick a set of
constraints that achieve this in a (relatively) efficient manner.

As it turns out (and is discussed in more detail in Sect. 5), there is a significant
set of constraints that correspond to eliminating cycles within proper subsets
S C V. Moreover, there is an exponential number of relevant subsets S, making
it prohibitive to impose all of these constraints at once. The fundamental idea
of a cutting-plane approach is that much fewer constraints are necessary for
characterizing an optimal solution. To this end, only a relatively small subfamily
of constraints is initially considered, leading to a relaxation. As long as solving
the current relaxation yields a solution that is infeasible for the original problem,
violated constraints are added in a piecemeal fashion, i.e., in iterations.

In the following, these constraints (which are initially omitted, violated by
an optimal solution of the relaxation, then added to eliminate such infeasible
solutions) are called cutting planes or simply cuts, as they remove solutions of a
relaxation that are infeasible for the MPP.

4.2 Basic IP

We start with a basic IP that is enhanced with specific cuts, described in
Sects. 5.2-5.4. We denote by E the set of all edges between two points of V,
C a set of invalid cycles and d(v) the set of all edges in E that are incident to
v € V. Then we optimize over the following objective function:

min Z TeCe. (1)

eclE

Computing Nonsimple Polygons of Minimum Perimeter 139

This is subject to the following constraints:

Vwev: > wm.=2, (2)

e€d(v)
VCeC: Y x <[C|—1, (3)
ecC
z. € {0,1}. (4)

For the TSP, C is simply the set of all subtours, making identification and
separation straightforward. This is much harder for the MPP, where a subtour
may end up being feasible by forming the boundary of a hole, but may also be
required to connect with other cycles. Therefore, identifying valid inequalities
requires more geometric analysis, such as the following. If we denote by CH the
set of all convex hull points, then a cycle C is invalid if C' contains:

1. at least one and at most |[CH| — 1 convex hull points. (See Fig.2(a))
2. all convex hull points but does not enclose all other points. (See Fig.2(b))
3. no convex hull point but encloses other points. (See Fig. 2(c))

By C; we denote the set of all invalid cycles with property ¢. Because there can
be exponentially many invalid cycles, we add constraint (3) in separation steps.

For an invalid cycle with property 1, we use the equivalent cut constraint

Vel :) me>2 (5)
e€d(C)

We use constraint (3) if |C| < 2%t and constraint (5) otherwise, where §(C)
denotes the “cut” edges connecting a vertex v € C with a vertex v’ € C. As
argued by Pferschy and Stanek [22], this technique of dynamic subtour con-
straints (DSC) is useful, as it reduces the number of non-zero coefficients in the
constraint matrix.

R

/\\I

Q 5

) Invalid cycle of type 1 (b) Invalid cycle of (¢) Invalid cycle of
type 2 type 3

Fig. 2. Examples of invalid cycles (red). Black cycles may be valid. (Color figure online)

140 S.P. Fekete et al.

4.3 Initial Edge Set

In order to quickly achieve an initial solution, we sparsify the ©(n?) input edges
to the O(n) edges of the Delaunay Triangulation, which naturally captures geo-
metric nearest-neighbor properties. If a solution exists, this yields an upper
bound. This technique has already been applied for the TSP by Jiinger et al.
[16]. In theory, this may not yield a feasible solution: a specifically designed
example by Dillencourt shows that the Delaunay triangulation may be non-
Hamiltonian [10]; this same example has no feasible solution for the MPP when
restricted to Delaunay edges. We did not observe this behavior in practice.

CPLEX uses this initial solution as an upper bound, allowing it to quickly
discard large solutions in a branch-and-bound manner. As described in Sect. 6,
the resulting bounds are quite good for the MPP.

5 Separation Techniques

5.1 Pitfalls

When separating infeasible cycles, the Basic IP may get stuck in an exponential
number of iterations, due to the following issues. (See Figs.3-5 for illustrating
examples.)

Problem 1: Multiple outer components containing convex hull points occur that
(despite the powerful subtour constraints) do not get connected, because it is
cheaper to, e.g., integrate subsets of the interior points. Such an instance can
be seen in Fig. 3, where we have two equal components with holes. Since the
two components are separated by a distance greater than the distance between
their outer components and their interior points, the outer components start
to include point subsets of the holes. This results in a potentially exponential
number of iterations.

Problem 2: Outer components that do not contain convex hull points do not
get integrated, because we are only allowed to apply a cycle cut on the outer
component containing the convex hull points. An outer component that does
not contain a convex hull point cannot be prohibited, as it may become a hole
in later iterations. See Fig. 4 for an example in which an exponential number
of iterations is needed until the outer components get connected.

Problem 3: If holes contain further holes, we are only allowed to apply a cycle
cut on the outer hole. This outer hole can often cheaply be modified to fulfill
the cycle cut but not resolve the holes in the hole. An example instance can
be seen in Fig. 5, in which an exponential number of iterations is needed.

The second problem is the most important, as this problem frequently
becomes critical on instances of size 100 and above. Holes in holes rarely occur on
small instances but are problematic on instances of size >200. The first problem
occurs only in a few instances.

In the following we describe three cuts that each solve one of the problems:
The glue cut for the first problem in Sect. 5.2, the tail cut for the second problem
in Sect. 5.3, and the HiH-Cut for the third problem in Sect. 5.4.

Computing Nonsimple Polygons of Minimum Perimeter 141

jage] jage] 8] 8] ng UCI

gl (s M e [R5

(d) (e) ()

Fig. 3. (a)—(f) show consecutive iterations when trying to solve an instance using only
constraint (5).

EI; 8]
o n n n n

(a) (b) (c) ()

o P i

(e) (f) (8)

Fig. 4. (a)—(g) show consecutive iterations when trying to solve an instance using only
constraint (3).

Fig. 5. (a)—(g) show consecutive iterations when trying to solve an instance using only
constraint (3).

5.2 Glue Cuts

To separate invalid cycles of property 1 we use glue cuts (GC), based on a curve
Rp from one unused convex hull edge to another (see Fig.6). With X' (Rp)
denoting the set of edges crossing Rp, we can add the following constraint:

142 S.P. Fekete et al.

(a) (b)

Fig. 6. Solving instance from Fig. 3 with a glue cut (red). (a) The red curve needs to
be crossed at least twice; it is found using the Delaunay Triangulation (grey). (b) The
first iteration after using the glue cut. (Color figure online)

Such curves can be found by considering a constrained Delaunay triangula-
tion [5] of the current solution, performing a breadth-first-search starting from
all unused convex hull edges of the triangulation. Two edges are adjacent if they
share a triangle. Used edges are excluded, so our curve will not cross any used
edge. As soon as two different search trees meet, we obtain a valid curve by using
the middle points of the edges (see the red curve in Fig. 6).

For an example, see Fig. 6; as illustrated in Fig. 3, this instance is problematic
in the Basic IP. This can we now be solved in one iteration.

5.3 Tail Cuts

An outer cycle C' that does not contain any convex hull points cannot simply
be excluded, as it may become a legal hole later. Such a cycle either has to be
merged with others, or become a hole. For a hole, each curve from the hole to a
point outside of the convex hull must be crossed at least once.

With this knowledge we can provide the following constraint, making use of
a special curve, which we call a tail (see the red path in Fig. 7).

Let Ry be a valid tail and X (Ryr) the edges crossing it. We can express the
constraint in the following form:

Yo me+ Y we>L

e€X(R1)\6(C) ecdo(C)
———
C gets surrounded C merged

The tail is obtained in a similar fashion as the curves of the Glue Cuts by
building a constrained Delaunay triangulation and doing a breadth-first search
starting at the edges of the cycle. The starting points are not considered as part
of the curve and thus the curve does not cross any edges of the current solution.

For an example, see Fig. 7; as illustrated in Fig. 4, this instance is problematic
in the Basic IP. This can we now be solved in one iteration. Note that even
though it is possible to cross the tail without making the cycle a hole, this is
more expensive than simply merging it with other cycles.

5.4 Hole-in-Hole Cuts

The difficulty of eliminating holes in holes (Problem 3) is that they may end
up as perfectly legal simple holes, if the outer cycle gets merged with the outer

Computing Nonsimple Polygons of Minimum Perimeter 143

RS

peereriey
. .
rpf B 11 f j
)

(a)

Fig. 7. Solving the instance from Fig.4 with a tail cut (red line). (a) The red curve
needs to be crossed at least twice or two edges must leave the component. The red curve
is found via the Delaunay Triangulation (grey). (b) The first iteration after using the
tail cut. (Color figure online)

boundary. In that case, every curve from the hole to the convex hull cannot
cross the used edges exactly two times (edges of the hole are ignored). One of
the crossed edges has to be of the exterior cycle, while the other one cannot:
otherwise would again leave the polygon. It also cannot be of an interior cycle,
as it would have leave to leave that cycle again to reach the hole.

Therefore the inner cycle of a hole in hole either has to be merged, or all
curves from it to the convex hull do not have exactly two used edge crossings.
As it is impractical to argue over all curves, we only pick one curve P that
currently crosses exactly two used edges (see the red curve in Fig. 8 with crossed
edges in green).

Because we cannot express the inequality that P is not allowed to be crossed
exactly two times as an linear programming constraint, we use the following
weaker observation. If the cycle of the hole in hole becomes a simple hole, the
crossing of P has to change. Let e; and es be the two used edges that currently
cross P and X' (P) the set of all edges crossing P (including unused but no edges
of H). We can express a change on P by

Z Te+ (—Tey — Te,) > —1.
—_———

c€X(P)\{e1,e2} ey or eg vanishes

new crossing

Together we obtain the following LP constraint for either H being merged or
the crossing of P changing.

Z Te+ Z Te + (—Tey — Xe,) > —1.

e€d(Vu,V\VH) ecX(P)\{e1,e2}

H merged Crossing of P changes

Again we use a breadth-first search on the constrained Delaunay triangula-
tion starting from the edges of the hole in hole. Unlike the other two cuts we need
to cross used edges. Thus, we get a shortest path search such that the optimal
path primarily has a minimal number of used edges crossed and secondarily has
a minimal number of all edges crossed.

For an example, see Fig. 8; as illustrated in Fig. 3, this instance is problematic
in the Basic IP. This can now be solved in one iteration. The corresponding path

144 S.P. Fekete et al.

Fig. 8. Solving instance from Fig.5 with hole in hole cut (red line). (a) The red line
needs to be crossed at least two times or two edges must leave the component or one
of the two existing edges (green) must be removed. The red line is built via Delaunay
Triangulation. (b) The first iteration after using the hole in hole cut. (Color figure
online)

is displayed in red and the two crossed edges are highlighted in green. Changing
the crossing of the path is more expensive than simply connecting the hole in
hole to the outer hole and thus the hole in hole gets merged.

6 Experiments

6.1 Implementation

Our implementation uses CPLEX to solve the relevant IPs. Important is also
the geometric side of computation, for which we used the CGAL Arrangements
package [24]. CGAL represents a planar subdivision using a doubly connected
edge list (DCEL), which is ideal for detecting invalid boundary cycles.

6.2 Test Instances

While the TSPLIB is well recognized and offers a good mix of instances with
different structure (ranging from grid-like instances over relatively uniform ran-
dom distribution to highly clustered instances), it is rather sparse. Observing
that the larger TSPLIB instances are all geographic in nature, we designed a
generic approach that yields arbitrarily large and numerous clustered instances.
This is based on illumination maps: A satellite image of a geographic region at
night time displays uneven light distribution. The corresponding brightness val-
ues can be used as a random density function that can be used for sampling (see
Fig. 12). To reduce noise, we cut off brightness values below a certain threshold,
i.e., we set the probability of choosing the respective pixels to zero.

6.3 Results

All experiments were run on an Intel Core i7-4770 CPU clocked at 3.40 GHz
with 16 GB of RAM. We set a 30 min time limit to solve the instances. In Table 1,
all results are displayed for every instance with more than 100 points that we

Computing Nonsimple Polygons of Minimum Perimeter 145

Table 1. The runtime in milliseconds of all variants on the instances of the TSPLib
with more than 100 points, solved within 30 min. The number in the name of an instance

indicates the number of points.

BasiclP | +JS+DC+H+TC+ | +JS+TC+ | +JS4+DC+ | +JS+DC+ | +DCHTC+

HIHC HIHC HIHC TC HIHC
€il101 - 575 445 - 527 1090
lin105 - 390 359 - 412 931
prl07 550 401 272 346 513 923
prl24 495 348 264 322 355 940
bier127 439 288 270 267 276 476
ch130 - 1758 1802 - 1594 2853
prl36 1505 964 1029 992 950 3001
grl37 - 1262 1361 - 1252 1724
prld4 6276 1028 2926 985 1030 2012
ch150 - 4938 5167 - 5867 7997
kroA150 - 3427 5615 - 3327 7474
kroB150 - 2993 2396 - 2943 5265
prls52 13285 2161 1619 10978 2151 19479
uld9 13285 1424 1262 5339 1410 2513
rat195 | 106030 16188 19780 77216 16117 27580
d198 - 19329 155550 - 19398 41118
kroA200 - 26360 13093 - 26389 11844
kroB200 - 5492 6239 - 5525 15238
gr202 - 4975 7512 - 4304 9670
ts225 18902 7746 9750 7595 7603 60167
tsp225 91423 11600 9741 28756 11531 44297
pr226 - 8498 2800 - 7204 18848
gr229 - 5462 26478 - 10153 25674
gil262 - 23000 22146 - - 72772
pr264 24690 6537 - 6719 6549 23641
a280 22023 3601 3857 3980 3619 12983
pr299 - 16251 355323 - 16173 85789
lin318 - 23863 1511219 - 24035 75312
linhp318 - 23107 1313680 - 23064 79352
rd400 - 111128 92995 - 302363
fl417 - 198013 - - 215210 825808
gr431 - 56716 173609 - 78133 265416
pr439 - 46685 36592 - 48231 273873
pcb442 - 1356796 - - - -
d493 - 359072 - - - 837229
att532 - 217679 256394 - 218665 817096
ali535 - 93771 427800 - 91828 323104
ub74 - 371523 199114 - - 1010276
rat575 - 417494 191198 - 580320 934988
p654 - 864066 - - - -
d657 - 455378 253374 - 646148 1352747
gr666 - 366157 - - 670818 -

146 S.P. Fekete et al.

solved within the time limit. The largest instance solved within 30 min is gr666
with 666 points, which took about 6 min. The largest instance solved out of the
TSPLib so far is dsj1000 with 1000 points, solved in about 37 min. In addition,
we generated 30 instances for each size, which were run with a time limit of
30 min.

We observe that even without using glue cuts and jumpstart, we are able to
solve more than 50 % of the instances up to about 550 input points. Without the
tail cuts, we hit a wall at 100 points, without the HiH-cut instances, at about 370
input points; see Fig. 9, which also shows the average runtime of all 30 instances
for all variants. Instances exceeding the 30 min time limit are marked with a 30-
minutes timestamp. The figure shows that using jumpstart shortens the runtime
significantly; using the glue cut is almost as fast as the variant without the
glue cut.

Figure 10 shows that medium-sized instances (up to about 450 points) can be
solved in under 5 min. We also show that restricting the edge set to the Delaunay
triangulation edges yields solutions that are about 0.5 % worse on average than
the optimal solution. Generally the solution of the jumpstart gets very close to
the optimal solution until about 530 points. After that, for some larger instances,

600

Input Size
w
5
8
Time in min

100 ’:|
[
BasICIP JSGCTCHIHC JSTCHIHC JSGCHIHC — JSGCTC — GCTCHIHC Point size

H95% - 100% solved 1 50% - 94% solved —BASCIP —ISGCTCHIHC —JSTCHIHC —ISGCHIHC —JSGCTC —GCTC HIHC

Fig. 9. (Left) Success rate for the different variants of using of the cuts, with 30
instances for each input size (y-axis). (Right) The average runtime of the different
variants for all 30 instances. A non-solved instance is interpreted as 30 min runtime.

30 - 5 + - 4,0% —Average gap
., Ve

Time in min

Point size

Fig. 10. (Left) The distribution of the runtime within 30 min for the case of using the
jumpstart, glue cuts, tail cuts and HiH-cuts. (Right) The relative gap of the value on
the edges of the Delaunay triangulation to the optimal value. The red area marks the
range between the minimal and maximal gap.

Computing Nonsimple Polygons of Minimum Perimeter 147

4,0% —Average gap

3,5%

3,0% = | BER 1
2,5%

2,0%) BER |
1,5%

1,0% I A |
0,5% WWMMW\W
0,0%

n O un o
M w1 0

n O N O 1 O N O N O nu O unu O n O v O un O
O M 10 00 O M W 0 O M N 0 O M W1 X O M N O
F H H d N NN oo NS S T LN non

Fig. 11. The relative gap of the value on the edges of the Delaunay triangulation to
the optimal value. The red area marks the range between the minimal and maximal
gap. (Color figure online)

(a) Earth by night (b) A sampled instance

Fig. 12. Using a brightness map as a density function for generating clustered point
sets.

we get solutions on the edge set of the Delaunay triangulation that are up to
50 % worse than the optimal solution.

7 Conclusions

As discussed in the introduction, considering general instead of simple polygons
corresponds to searching for a shortest cycle cover with a specific topological
constraint: one outside cycle surrounds a set of disjoint and unnested inner cycles.
Clearly, this is only one example of considering specific topological constraints.
Our techniques and results should be applicable, after suitable adjustments, to
other constraints on the topology of cycles. We gave a 3-approximation for the
MPP; we expect that the MPP has a polynomial-time approximation scheme,
base on PTAS techniques [4,20] for geometric TSP, and we will elaborate on this
in a future version of the full paper.

148 S.P. Fekete et al.

There are also various practical aspects that can be explored further. It will
be interesting to evaluate the practical performance of the theoretical approxi-
mation algorithm, not only from a practical perspective, but also to gain some
insight on whether the approximation factor of 3 can be tightened. Pushing the
limits of solvability can also be attempted, e.g., by using more advanced tech-
niques from the TSP context. We can also consider sparsification techniques
other than the Delaunay edges; e.g., the union between the best known tour and
the k-nearest-neighbor edge set (k € {2,5,10,20}) has been applied for TSP
by Land [17], or (see Padberg and Rinaldi [21]) by taking the union of k tours
acquired by Lin’s and Kernighan’s heuristic algorithm [19].

Acknowledgements. We thank Stephan Friedrichs and Melanie Papenberg for help-
ful conversations. Parts of this work were carried out at the 30th Bellairs Winter
Workshop on Computational Geometry (Barbados) in 2015. We thank the workshop
participants and organizers, particularly Erik Demaine. Joseph Mitchell is partially
supported by NSF (CCF-1526406). Irina Kostitsyna is supported by the Netherlands
Organisation for Scientific Research (NWO) under project no. 639.023.208.

References

1. Althaus, E., Mehlhorn, K.: Traveling salesman-based curve reconstruction in poly-
nomial time. SIAM J. Comput. 31(1), 27-66 (2001)

2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: On the solution
of traveling salesman problems. Documenta Mathematica — Journal der
DeutschenMathematiker-Vereinigung, ICM, pp. 645-656 (1998)

3. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Sales-
man Problem: A Computational Study. Princeton Series in Applied Mathematics.
Princeton University Press, Princeton (2007)

4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. J. ACM 45(5), 753-782 (1998)

5. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1-4), 97-108

1989

6. E}hris‘zoﬁdes, N.: Worst-case analysis of a new heuristic for the Travelling Sales-
man Problem, Technical report 388, Graduate School of Industrial Administration,
CMU (1976)

7. Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of
Computation. Princeton University Press, Princeton (2012)

8. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, New York (1998)

9. Dey, T.K., Mehlhorn, K., Ramos, E.A.: Curve reconstruction: connecting dots with
good reason. Comput. Geom. 15(4), 229-244 (2000)

10. Dillencourt, M.B.: A non-Hamiltonian, nondegenerate Delaunay triangulation. Inf.
Process. Lett. 25(3), 149-151 (1987)

11. Fekete, S.P., Friedrichs, S., Hemmer, M., Papenberg, M., Schmidt, A.,
Troegel, J.: Area- and boundary-optimal polygonalization of planar point sets.
In: EuroCG 2015, pp. 133-136 (2015)

12. Fekete, S.P., Haas, A., Hemmer, M., Hoffmann, M., Kostitsyna, 1., Krupke, D.,
Maurer, F., Mitchell, J.S.B., Schmidt, A., Schmidt, C., Troegel, J.: Computing
nonsimple polygons of minimum perimeter. CoRR, abs/1603.07077 (2016)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Computing Nonsimple Polygons of Minimum Perimeter 149

Giesen, J.: Curve reconstruction, the traveling salesman problem and Menger’s
theorem on length. In: Proceedings of 15th Annual Symposium on Computational
Geometry (SoCG), pp. 207-216 (1999)

Grotschel, M.: On the symmetric travelling salesman problem: solution of a 120-
city problem. Math. Program. Study 12, 61-77 (1980)

Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations.
Springer, New York (2007)

Jiinger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Hand-
books in Operations Research and Management Science, vol. 7, pp. 225-330 (1995)
Land, A.: The solution of some 100-city Travelling Salesman Problems, Technical
report, London School of Economics (1979)

Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B.: The Travel-
ing Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley,
Chichester (1985)

Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21(2), 498-516 (1973)

Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput. 28(4), 1298-1309 (1999)

Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. STAM Rev. 33(1), 60-100 (1991)
Pferschy, U., Stanek, R.: Generating subtour constraints for the TSP from pure
integer solutions. Department of Statistics and Operations Research, University of
Graz, Technical report (2014)

Reinelt, G.: TSPIib - a traveling salesman problem library. ORSA J. Comput. 3(4),
376-384 (1991)

Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O.,
Zukerman, B.: 2D arrangements. In: CGAL User and Reference Manual,
4.3rd edn. CGAL Editorial Board (2014)

Sparse Subgraphs for 2-Connectivity
in Directed Graphs

Loukas Georgiadis!, Giuseppe F. Italiano?, Aikaterini Karanasiou®,

Charis Papadopoulos'®) | and Nikos Parotsidis?

! University of Ioannina, Ioannina, Greece
{loukas,akaranas,charis}@cs.uoi.gr
2 Universita di Roma “Tor Vergata”, Rome, Italy
{giuseppe.italiano,nikos.parotsidis}@uniroma2.it

Abstract. Let G be a strongly connected directed graph. We consider
the problem of computing the smallest strongly connected spanning sub-
graph of G that maintains the pairwise 2-vertex-connectivity of G, i.e.,
the 2-vertex-connected blocks of G (2VC-B). We provide linear-time
approximation algorithms for this problem that achieve an approxima-
tion ratio of 6. Based on these algorithms, we show how to approxi-
mate, in linear time, within a factor of 6 the smallest strongly connected
spanning subgraph of G that maintains respectively: both the 2-vertex-
connected blocks and the 2-vertex-connected components of G (2VC-B-
C); all the 2-connectivity relations of G (2C), i.e., both the 2-vertex-
and the 2-edge-connected components and blocks. Moreover, we provide
heuristics that improve the size of the computed subgraphs in practice,
and conduct a thorough experimental study to assess their merits in
practical scenarios.

1 Introduction

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices.
G is strongly connected if there is a directed path from each vertex to every
other vertex. The strongly connected components of G are its maximal strongly
connected subgraphs. A vertex (resp., an edge) of G is a strong articulation
point (resp., a strong bridge) if its removal increases the number of strongly con-
nected components. A digraph G is 2-vertez-connected if it has at least three ver-
tices and no strong articulation points; G is 2-edge-connected if it has no strong
bridges. The 2-vertez- (resp., 2-edge-) connected components of G are its max-
imal 2-vertex- (resp., 2-edge-) connected subgraphs. Let v and w be two dis-
tinct vertices: v and w are 2-vertez-connected (resp., 2-edge-connected), denoted
by v <9, w (resp., v <3 w), if there are two internally vertex-disjoint
(resp., two edge-disjoint) directed paths from v to w and two internally vertex-
disjoint (resp., two edge-disjoint) directed paths from w to v (a path from v

G.F. Italiano and N. Parotsidis—Partially supported by MIUR under Project
AMANDA.
© Springer International Publishing Switzerland 2016

A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 150-166, 2016.
DOI: 10.1007/978-3-319-38851-9_11

Sparse Subgraphs for 2-Connectivity in Directed Graphs 151

2ECC(G) 2ECB(G)

Fig. 1. A strongly connected digraph G with a strong bridge (¢, f) and a strong articu-
lation point ¢ shown in red (better viewed in color), the 2-vertex-connected components
and blocks of GG, and the 2-edge-connected components and blocks of G. Vertex f forms
a trivial 2-edge-connected and 2-vertex-connected block. (Color figure online)

to w and a path from w to v need not be either vertex- or edge- disjoint).
A 2-vertez-connected block (resp., 2-edge-connected block) of a digraph G = (V, E)
is a maximal subset B C V such that u <o, v (resp., u <9 v) for all u,v € B.
Note that, as a (degenerate) special case, a 2-vertex- (resp., 2-edge-) connected
block might consist of a singleton vertex only: we denote this as a trivial 2-vertex-
(resp., 2-edge-) connected block. In the following, we will consider only non-trivial
2-vertex- and 2-edge- connected blocks. Since there is no danger of ambiguity, we
will call them simply 2-vertex- and 2-edge-connected blocks.

Differently from undirected graphs, in digraphs 2-vertex and 2-edge con-
nectivity have a much richer and more complicated structure, and indeed 2-
connectivity problems on directed graphs appear to be more difficult than their
undirected counterparts. In particular, in digraphs 2-vertex- (resp., 2-edge-) con-
nected blocks can be different from the 2-vertex- (resp., 2-edge-) connected com-
ponents, i.e., two vertices may be 2-vertex- (resp., 2-edge-) connected but lie
in different 2-vertex- (resp., 2-edge-) connected components (see Fig.1). This
is not the case for undirected graphs. Moreover, for undirected graphs it has
been known for over 40 years how to compute the 2-edge- and 2-vertex- con-
nected components in linear time [25]. In the case of digraphs, however, it was
shown only recently how to compute the 2-edge- and 2-vertex- connected blocks
in linear time [11,12], and the best current bound for computing the 2-edge-
and the 2-vertex- connected components in digraphs is not even linear, but it is
O(n?) [16].

In this paper we investigate problems where we wish to find a smallest span-
ning subgraph of G (i.e., with minimum number of edges) that maintains cer-
tain 2-connectivity requirements in addition to strong connectivity. Problems

152 L. Georgiadis et al.

of this nature are fundamental in network design, and have several practical
applications [24]. Specifically, we consider computing a smallest strongly con-
nected spanning subgraph of a digraph G that maintains the following proper-
ties: the pairwise 2-vertex-connectivity of G, i.e., the 2-vertex-connected blocks
of G (2VC-B); the 2-vertex-connected components of G (2VC-C); both the 2-
vertex-connected blocks and components of G (2VC-B-C). This complements
our previous study of the edge-connectivity versions of these problems [13], that
we refer to as 2EC-C (maintaining 2-edge-connected components), 2EC-B (main-
taining 2-edge-connected blocks), and 2EC-B-C (maintaining 2-edge-connected
blocks and components). Finally, we also consider computing a smallest span-
ning subgraph of G that maintains all the 2-connectivity relations of G (2C),
that is, simultaneously the 2-vertex-connected and the 2-edge-connected com-
ponents and blocks. Note that all these problems are NP-hard [9,13], so one
can only settle for efficient approximation algorithms. Computing small span-
ning subgraphs is of particular importance when dealing with large-scale graphs,
say graphs having hundreds of million to billion edges. In this framework, one
big challenge is to design linear-time algorithms, since algorithms with higher
running times might be practically infeasible on today’s architectures.

Related Work. Computing a smallest k-vertex-(resp., k-edge-) connected span-
ning subgraph of a given k-vertex- (resp. k-edge-) connected digraph is NP-hard
for any k > 1 (and for & > 2 for undirected graphs) [9]. The case for k = 1 is
to compute a smallest strongly connected spanning subgraph (SCSS) of a given
digraph. This problem was originally studied by Khuller et al. [20], who provided
a polynomial-time algorithm with an approximation guarantee of 1.64. This was
improved to 1.61 by the same authors [21]. Later on, Vetta announced a fur-
ther improvement to 3/2 [27], and Zhao et al. [28] presented a faster linear-time
algorithm at the expense of a larger 5/3-approximation factor. For the smallest
k-edge-connected spanning subgraph (kECSS), Lachanukit et al. [23] gave a ran-
domized (14 1/k)-approximation algorithm. For the smallest k-vertex-connected
spanning subgraph (kVCSS), Cheriyan and Thurimella [4], gave a (1 + 1/k)-
approximation algorithm that runs in O(km?) time. For k = 2, the running
time of Cheriyan and Thurimella’s algorithm was improved to O(m+/n + n?),
based on a linear-time 3-approximation for 2VCSS [10]. We also note that there
has been extensive work on more general settings where one wishes to approx-
imate minimum-cost subgraphs that satisfy certain connectivity requirements.
See, e.g., [6], and the survey [22]. The previous results on kECSS and kVCSS
immediately imply an approximation ratio smaller than 2 for 2EC-C and 2VC-C
[13,19]. While there has been substantial progress for 2EC-C and 2VC-C, prob-
lems 2EC-B and 2VC-B (i.e., computing sparse subgraphs with the same pairwise
2-edge or 2-vertex connectivity) seem substantially harder. Jaberi [18] was the
first to consider several optimization problems related to 2EC-B and 2VC-B and
proposed approximation algorithms. The approximation ratio in his algorithms,
however, is linear in the number of strong bridges for 2EC-B and in the number
of strong articulation points for 2VC-B, and hence O(n) in the worst case. In [13],
linear-time 4-approximation algorithms for 2EC-B and 2EC-B-C were presented.

Sparse Subgraphs for 2-Connectivity in Directed Graphs 153

It seems thus natural to ask whether one can design linear-time algorithms which
achieve small approximation guarantees for 2VC-B, 2VC-B-C and 2C.

Our Results. In this paper we address this question by presenting practical
approximation algorithms for the 2VC-B, 2VC-B-C and 2C problems. We stress
that the approach in this paper is substantially different from [13], since vertex
connectivity is typically more involved than edge connectivity and requires sev-
eral novel ideas and non-trivial techniques. In particular, differently from [13],
our starting point in this paper is the recent framework for strong connectivity
and 2-connectivity problems in digraphs [14], combined with the notions of diver-
gent spanning trees and low-high orders [15] (defined below). Building on this
new framework, we can obtain sparse certificates also for the 2-vertex-connected
blocks. In our context, a sparse certificate of a strongly connected digraph G is
a strongly connected spanning subgraph C(G) of G with O(n) edges that main-
tains the 2-vertex-connected blocks of G. We show that our constructions achieve
a 6-approximation for 2VC-B in linear time. Then, we extend our algorithms so
that they compute a 6-approximation for 2VC-B-C and 2C. These algorithms
also run in linear time once the 2-vertex and the 2-edge-connected components
of GG are available; if not, the current best running time for computing them is
O(n?) [16]. Then we provide efficient implementations of these algorithms that
run very fast in practice. We also present several heuristics that improve the
quality (i.e., the number of edges) of the computed spanning subgraphs. Finally,
we assess how all these algorithms perform in practical scenarios by conducting
a thorough experimental study, and report its main findings.

2 Preliminaries

A flow graph is a digraph such that every vertex is reachable from a distinguished
start vertex. Let G = (V, E) be a strongly connected digraph. For any vertex
s € V, we denote by G(s) = (V, E, s) the corresponding flow graph with start
vertex s; all vertices in V' are reachable from s since G is strongly connected.
The dominator relation in G(s) is defined as follows: A vertex u is a dominator
of a vertex w (u dominates w) if every path from s to w contains u; v is a proper
dominator of w if u dominates w and u # w. The dominator relation in G(s) can
be represented by a rooted tree, the dominator tree D(s), such that u dominates
w if and only if u is an ancestor of w in D(s). If w # s, we denote by d(w) the
parent of w in D(s). The dominator tree of a flow graph can be computed in
linear time, see, e.g., [2,3]. An edge (u, w) is a bridge in G(s) if all paths from s to
w include (u,w).! Ttaliano et al. [17] gave linear-time algorithms for computing
all the strong bridges and all the strong articulation points of a digraph G. Their
algorithms use the dominators and the bridges of flow graphs G(s) and G®(s),
where s is an arbitrary start vertex and G is the digraph that results from G
after reversing edge directions. A spanning tree T' of a flow graph G(s) is a tree

! Throughout, we use consistently the term bridge to refer to a bridge of a flow graph
G(s) and the term strong bridge to refer to a strong bridge in the original graph G.

154 L. Georgiadis et al.

with root s that contains a path from s to v for all vertices v. Two spanning
trees 11 and 15 rooted at s are edge-disjoint if they have no edge in common. A
flow graph G(s) has two such spanning trees if and only if it has no bridges [26].
Two spanning trees are maximally edge-disjoint if the only edges they have in
common are the bridges of G(s). Two (maximally) edge-disjoint spanning trees
can be computed in linear-time by an algorithm of Tarjan [26], using the disjoint
set union data structure of Gabow and Tarjan [8]. Two spanning trees 77 and
T rooted at s are divergent if for all vertices v, the paths from s to v in T}
and T, share only the dominators of v. A low-high order § on G(s) is a preorder
of the dominator tree D(s) such for all v # s, (d(v),v) € E or there are two
edges (u,v) € E, (w,v) € E such that u is less than v (u <5 v), v is less than w
(v <5 w), and w is not a descendant of v in D(s). Every flow graph G(s) has a
pair of maximally edge-disjoint divergent spanning trees and a low-high order,
both computable in linear-time [15].

Let T be a dfs tree of a digraph G rooted at s. For a vertex u, we denote
by loop(u) the set of all descendants x of w in T such that there is a path from
z to u in G containing only descendants of u in 7. Since any two vertices in
loop(u) reach each other, loop(u) induces a strongly connected subgraph of G.
Furthermore, loops define a laminar family (i.e., for any two vertices u and v,
we have loop(u) N loop(v) = 0, or loop(v) C loop(u), or loop(u) C loop(v)). The
loop mesting tree L of a strongly connected digraph G with respect to T, is the
tree in which the parent of any vertex v # s is the nearest proper ancestor u of
v such that v € loop(u). The loop nesting tree can be computed in linear time
[3,26].

3 Approximation Algorithms and Heuristics for 2VC-B

Let G = (V, E) be the input strongly connected digraph. In problem 2VC-B, we
wish to compute a strongly connected spanning subgraph G’ of G that has the
same 2-vertex-connected blocks of G, with as few edges as possible. We consider
the following approach. Start with the empty graph G’ = (V,0), and add as few
edges as possible until G’ is guaranteed to have the same 2-vertex-connected
blocks as G. We consider three linear-time algorithms that apply this approach.
The first two are based on the sparse certificates for 2-vertex-connected blocks
from [12,14], which use divergent spanning trees. The third is a new algorithm
that selects the edges of G’ with the help of low-high orders.

Divergent Spanning Trees. We can compute a sparse certificate C'(G) for the
2-vertex-connected blocks of a strongly connected digraph G using the algorithm
of [12], which is based on a linear-time construction of two divergent spanning
trees of a flow graph [15]. We refer to this algorithm as DST-B. Let s be an
arbitrarily chosen start vertex in G. Recall that we denote by G(s) the flow
graph with start vertex s, by G¥(s) the flow graph obtained from G(s) after
reversing edge directions, and by D(s) and D*(s) the dominator trees of G(s)
and G%(s) respectively. Also, let C(v) and CF(v) be the set of children of v
in D(s) and DF(s) respectively. For each vertex r, let C*(r) denote the level k

Sparse Subgraphs for 2-Connectivity in Directed Graphs 155

descendants of 7, where C°(r) = {r}, C'(r) = C(r), and so on. For each vertex
r # s that is not a leaf in D(s) we build the auziliary graph G, = (V., E;) of
r as follows. The vertex set of G, is V. = Uj_,C*(r) and it is partitioned into
a set of ordinary vertices V2 = C*(r) U C?(r) and a set of auziliary vertices
V& = C%r) U C3(r). The auxiliary graph G, results from G by contracting the
vertices in V'\ V. as follows. All vertices that are not descendants of in D(s) are
contracted into r. For each vertex w € C3(r), we contract all descendants of w in
D(s) into w. We use the same definition for the auxiliary graph G of s, with the
only difference that we let s be an ordinary vertex. In order to bound the size of
all auxiliary graphs, we eliminate parallel edges during those contractions. We
call an edge e € E, \ E a shortcut edge of G,.. That is, a shortcut edge is formed
by the contraction of a part of GG into an auxiliary vertex of G,.. Thus, a shortcut
edge is not an original edge of G but corresponds to at least one original edge,
and is adjacent to at least one auxiliary vertex.

Algorithm DST-B selects the edges that are inserted into C(G) in three
phases. During the construction, the algorithm may choose a shortcut edge or a
reverse edge to be inserted into C'(G). In this case we insert the associated orig-
inal edge instead. Also, an edge may be selected multiple times, so we remove
multiple occurrences of such edges in a postprocessing step. In the first phase,
we insert into C(G) the edges of two maximally edge-disjoint divergent span-
ning trees, T1(G(s)) and T2(G(s)) of G(s). In the second phase we process the
auxiliary graphs of G(s) that we refer to as the first-level auziliary graphs. For
each such auxiliary graph H = G,, we compute two maximally edge-disjoint
divergent spanning trees T} (H®(r)) and To(H®(r)) of the corresponding reverse
flow graph H%(r) with start vertex r. We insert into C'(G) the edges of these two
spanning trees. It can be proved that, at the end of this phase, C(G) induces a
strongly connected spanning subgraph of G. Finally, in the last phase we process
the second-level auziliary graphs, which are the auxiliary graphs of H for all
first-level auxiliary graphs H. Let H, f be a second-level auxiliary graph of H™.
For every strongly connected component S of H f‘ \ ¢, we choose an arbitrary
vertex v € S and compute a spanning tree of S and a spanning tree of S, and
insert their edges into C(G).

This construction inserts O(n) edges into C(G), and therefore achieves a
constant approximation ratio for 2VC-B. However, due to the use of auxiliary
vertices and two levels of auxiliary graphs, we do not have a good bound for this
constant. (The first-level auxiliary graphs have at most 4n vertices and 4m + n
edges in total [12].) We propose a modification of DST-B, that we call DST-B
modified: For each auxiliary graph, we do not select in C(G) the edges of its two
divergent spanning trees that have only auxiliary descendants. Also, for every
second-level auxiliary graph, during the computation of its strongly connected
components we include the chosen edges that already form a strongly connected
component.

More precisely, algorithm DST-B modified works as follows. In the first two
phases, we try reuse as many edges as possible when we build the divergent
spanning trees of G(s) and of its auxiliary graphs. In the third phase of the con-
struction we need to solve the smallest SCSS problem for each strongly connected

156 L. Georgiadis et al.

component S in the second-level auxiliary graphs H, after the deletion of the
root vertex g. We do this by running a modified version of the linear-time 5/3-
approximation algorithm of Zhao et al. [28]. The algorithm of Zhao et al. a SCSS
of a strongly connected graph by performing a depth-first search traversal of the
input graph. During the dfs traversal, any cycle that is detected is contracted
into a single vertex. We modify this approach so that we can avoid inserting
new edges into the sparse certificate as follows. Since we only care about the
ordinary vertices in S, we can construct a subgraph of S that contains edges
already added in C(G). We compute the strongly connected components of this
subgraph and contract them. Then we apply the algorithm of Zhao et al. on the
contracted graph of S. Furthermore, during the dfs traversal we give priority to
edges already added in C'(G). We can apply a similar idea in the second phase of
the construction as follows. The algorithms of [15] for computing two divergent
spanning trees of a flow graph use the edges of a dfs spanning tree, together with
at most n — 1 other edges. Hence, we can modify the dfs traversal so that we
give priority to edges already added in C(G).

Divergent Spanning Trees and Loop Nesting Trees. An alternative linear-
time algorithm to compute a sparse certificate C(G) for the 2-vertex-connected
blocks can be obtained via loop nesting trees, as described in [14]. As in algorithm
DST-B, we compute two maximally edge-disjoint divergent spanning trees 77 and
T of G(s), and insert their edges into C'(G). But instead of computing auxiliary
graphs, we compute a loop nesting tree L of G(s) and insert into C(G) the edges
that define L. These are the edges of a dfs tree of G(s), and at most n — 1
additional edges that are required to define the loops of G(s). (See [15,26] for
the details.) Then, we repeat the same process in the reverse direction, i.e., for
G*(s). As shown in [14], a spanning subgraph having the same dominator trees
and loop nesting trees (in both directions) as the digraph G, has the same 2-edge-
and 2-vertex-connected blocks as G. We refer to this algorithm as DLN-B.

Theorem 1. Algorithm DLN-B achieves an approzimation ratio of 6, in linear
time, for problem 2VC-B.

Proof. Consider first the “forward” pass of the algorithm. It adds at most 2(n—1)
edges for the two divergent spanning trees, and at most 2(n—1) edges that define
a loop nesting tree of G(s). By [15,26], both these constructions use the edges of
a dfs tree of G(s) and some additional edges. Hence, we can use the same dfs tree
to compute the divergent spanning trees and the loop nesting tree. This gives a
total of at most 3(n — 1) edges. Similarly, the “reverse” pass computes at most
3(n — 1) edges, so algorithm DLN-B selects at most 6(n — 1) edges. Since the
resulting subgraph must be strongly connected, any valid solution to problem
2VC-B has at least n edges, so DLN-B achieves a 6-approximation. By [15,26],
both the computation of a pair of divergent spanning trees and of a loop nesting
tree can be done in linear time, hence DLN-B also runs in linear time. O

Low-High Orders and Loop Nesting Trees. Now we introduce a new linear-
time construction of a sparse certificate, via low-high orders, that we refer to as

Sparse Subgraphs for 2-Connectivity in Directed Graphs 157

LHL-B. The algorithm consists of two phases. In the first phase, we insert into
C(G) the edges that define the loop nesting trees L and L¥ of G(s) and G¥(s),
respectively, as in algorithm DLN-B. In the second phase, we insert enough edges
so that C(G) (resp., C®(G)) maintains a low-high order of G(s) (resp., GE((s)).
Let 6 be a low-high order on G(s). Subgraph C(G) satisfies the low-high order
4 if, for each vertex v # s, one of the following holds: (a) there are two edges
(u,v) and (w,v) in C(G) such that u <5 v, v <s w, and w is not a descendant
of v in D(s); (b) (d(v),v) is a strong bridge of G and is contained in C(G); or
(c) (d(v),v) is an edge of G that is contained in C'(G), and there is another edge
(u,v) in C(G) such that u <s v and u # d(v).

Theorem 2. Algorithm LHL-B is correct and achieves an approximation ratio
of 6 for problem 2VC-B, in linear time.

Proof. By construction, the sparse certificate C'(G) computed by LHL-B satisfies
a low-high order § of G(s). This implies that C(G) contains two divergent span-
ning trees 71 and T» of G(s) [15]. Moreover, cases (b) and (c) of the construction
ensure that 77 and T, are maximally edge-disjoint. This is because when case
(a) does not apply for a vertex v, then C(G) contains (d(v),v). Also, d(v) is
the only vertex w that satisfies u <s v if and only if (d(v),v) is a strong bridge.
Hence, C(G) indeed contains two maximally edge-disjoint divergent spanning
trees of G(s). Similarly, C(G) also contains two maximally edge-disjoint diver-
gent spanning trees of G®(s). So the correctness of LHL-B follows from the fact
that DLN-B is correct.

Next we bound the approximation ratio of LHL-B. The edges selected to
maintain a loop nesting tree L of G(s) contain at least one entering edge for
each vertex v # s. This means that it remains to include at most one edge for
each vertex v # s in order to satisfy a low-high order of G(s). The symmetric
arguments holds for the reverse direction as well, so C(G) contains at most
6(n — 1) edges, which gives an approximation ratio of 6. O

We note that both DLN-B and LHN-B also maintain the 2-edge-connected
blocks of the input digraph. We use this fact in Sect. 4, where we compute a
sparse subgraph that maintains all 2-connectivity relations. We can improve the
solution computed by the above algorithms by using the following filter.

Two Vertex-Disjoint Paths Test. We test if G’ \ (x,y) contains two vertex-
disjoint paths from z to y. If this is the case, then we remove edge (x,y); other-
wise, we keep the edge (z,y) in G’ and proceed with the next edge. For doing so,
we define the modified graph G of G’ after vertex-splitting (see, e.g., [1]): for
each vertex v, replace v by two vertices v and v~, and add the edge (v—,v™).
Then, we replace each edge (u,w) in G’ by (u,v™) in G”, so v~ has the edges
entering v and v™ has the edges leaving v. Now we can test if G’ still has two
vertex-disjoint paths from z to y after deleting (x, y) by running two iterations of
the Ford-Fulkerson augmenting paths algorithm [7] for finding two edge-disjoint
paths on G” by treating T as the source and 5~ as the sink. Note that we need
to compute G” once for all such tests. If an edge (z,y) is deleted from G’, then

158 L. Georgiadis et al.

we also delete (z1,y™) from G”. Since G’ has O(n) edges, this test takes O(n)
time per edge, so the total running time is O(n?). We refer to this filter as 2VDP.
In our implementations we applied 2VDP on the outcome of DLN-B in order to
assess our algorithms with a solution close to minimum. For the 2VC-B problem
the algorithm obtained after applying such a filter is called 2VDP-B. In order to
improve the running time of 2VDP in practice, we apply a speed-up heuristic for
trivial edges (x,y): if belongs to a 2-vertex-connected block and has outdegree
two or y belongs to a 2-vertex-connected block and has indegree two, then (z,y)
must be included in the solution.

4 Approximation Algorithms and Heuristics for 2C

To get an approximate solution for problem 2C, we combine our algorithms for
2VC-B with algorithms that approximate 2VCSS [4,10]. We also take advantage
of the fact that every 2-vertex-connected component is contained in a 2-edge-
connected component. This property suggests the following approach for 2C.
First, we compute the 2-vertex-connected components of G and solve the 2VCSS
problem independently for each such component. Then, we apply one of the
algorithms DLN-B or LHL-B for 2VC-B on G. Since the sparse certificate from
DLN-B or LHL-B also maintain the 2-edge-connected blocks, it remains to include
edges that maintain the 2-edge-connected components of G. We can find these
edges in a condensed graph G defined as follows. Digraph G is formed from G by
contracting each 2-vertex-connected component of G into a single supervertex.
Note that any two 2-vertex-connected components may have at most one vertex
in common: if two such components share a vertex, they are contracted into the
same supervertex. The resulting digraph Gisa multigraph since the contractions
can create loops and parallel edges. For any vertex v of GG, we denote by ¥ the
supervertex of G that contains v. Every edge (u,9) of G is associated with the
corresponding original edge (u,v) of G. Now we describe the main steps of our
algorithm for 2C:

1. Compute the 2-vertex-connected components. Solve independently the 2VCSS
problem for each such component, using the linear-time algorithm of [10].

2. Form the condensed multigraph é, and compute its 2-edge-connected com-
ponents. Solve independently the 2ECSS problem for each such component,
using edge-disjoint spanning trees [13].

3. Execute the DNL-B or LHL-B algorithms on the original graph G’ and compute
a sparse certificate for the 2-edge- and the 2-vertex-connected blocks.

The solution to the 2C problem consists of the edges selected in each step of
the algorithm. Note that in Step 2, we should allow 2-edge-connected compo-
nents of size two because such a component may correspond to the union of
2-vertex-connected components of the original graph. We consider two versions
of our algorithm, DLN-2C and LHL-2C, depending on the algorithm for the 2VC-B
problem used in Step 3.

Sparse Subgraphs for 2-Connectivity in Directed Graphs 159

Theorem 3. Algorithms DLN-2C and LHL-2C compute a 6-approximation for
problem 2C. Moreover, if the 2-edge- and the 2-vertex- connected components of
G are available, then the algorithms run in linear time.

Proof. Let n, be the number of vertices of G that belong to some 2-vertex-
connected component of G. Also, let 7 be the number of vertices in é, and
let i1, be the number of vertices of G that belong to some 2-edge-connected
component of G. By the analysis in the proof of Theorem 4, the algorithm for
2VC-B-C selects less than 6(n + n,) edges. For the 2ECSS problems, we can
compute a 2-approximate solution in linear-time as in [13], using edge-disjoint
spanning trees [5,26]. Let C be a 2-edge-connected component of G. We select
an arbitrary vertex o € C' as a root and compute two edge-disjoint spanning
trees in the flow graph C(¥) and two edge-disjoint spanning trees in the reverse
flow graph C’R(ﬁ). Thus, we select less than 4n. edges. Hence, the subgraph
computed by the algorithm has less than 6(n + n. + 7.) edges.

Now consider any solution to 2C. It has to include 2n. + 271, edges in order
to maintain the 2-vertex and the 2-edge-connected components of G. Moreover,
since the resulting subgraph must be strongly connected, there must be at least
one edge entering each of the n —n. vertices of G that do not belong in a 2-edge-
connected component of G. Thus, the optimal solution has at least 2n, +n. +n
edges. Note that n. + 7 > n, so the optimal solution has at least n + n. + n.
edges and the approximation ratio of 6 follows.

Finally, we show that all three steps of the algorithms DLN-2C and LHL-2C
run in linear time given the 2-edge- and the 2-vertex- connected components of
G. This is immediate for Steps 1 and 3. In Step 2, we do not need to compute
the 2-edge-connected components of G from scratch, but we can form them from
the 2-edge-connected components of G using contractions. Let C' be a 2-edge-
connected component of G. We contract each 2-vertex-connected component of
G contained in C into a single supervertex. Then, the resulting digraph Cisa
2-edge-connected component of G. g

If we wish to improve the quality of the computed solution G’, we can apply
the 2VDP filter, and the analogous 2-edge-disjoint paths filter 2EDP, as follows.
In Step 1, we run the 2VDP filter for the edges computed by the linear-time
algorithm of [10]. This produces a minimal solution for 2VCSS in each 2-vertex-
connected component of G. Similarly, in Step 2, we run the 2EDP filter for the
edges of the edge-disjoint spanning trees computed in each 2-edge-connected
component of G. This produces a minimal solution for 2ECSS in each 2-edge-
connected component of G. Finally, we run the 2VDP filter on the whole G’, but
only consider the edges added in Step 3 of our algorithm, since the edges from
Steps 1 and 2 are needed to maintain the 2-vertex- and the 2-edge-connected
components. We implemented this algorithm, using DLN-B for Step 3, and refer
to it as 2VDP-2C.

Approximation Algorithms and Heuristics for 2VC-B-C. Executing
Steps 1 and 3 of the above algorithm described for 2C, is enough to produce
a certificate for the 2VC-B-C problem. If we use DLN-B or LHL-B for Step 3,

160 L. Georgiadis et al.

then we obtain a 6-approximate solution for 2VC-B-C. We call the correspond-
ing algorithms DLN-B-C and LHL-B-C, respectively.

Theorem 4. There is a polynomial-time algorithm for 2VC-B-C that achieves
an approximation ratio of 6. Moreover, if the 2-vertex-connected components of
G are available, then the algorithm runs in linear time.

Proof. A result in [10] shows that, given a 2-vertex-connected digraph with v
vertices, we can compute in linear time a 2-vertex-connected spanning subgraph
that has less than 6v edges. Hence, if n. is the number of vertices that belong
in a 2-vertex-connected component of G, then applying this algorithm to each
2-vertex-connected component selects less than 6n. edges. Finally, we apply the
construction of a sparse certificate for the 2-vertex-connected blocks which selects
at most 6(n — 1) edges by Theorems 1 or 2. Hence, the subgraph computed by
the algorithm has less than 6(n + n.). One the other hand, any solution to 2VC-
B-C has to include at least 2n. edges for the 2-vertex-connected components of
G, and at least n — n, edges in order to obtain a strongly connected subgraph.
Thus, the optimal solution has at least n 4 n. edges, so the approximation ratio
of 6 follows. O

As in the 2VC-B and 2C problems, we can improve the quality of the com-
puted solution by applying the 2VDP filter for the edges that connect different
2-vertex-connected components. We implemented this algorithm, using DLN-B
for Step 3, and refer to it as 2VDP-B-C.

5 Experimental Analysis

We implemented the algorithms previously described: 5 for 2VC-B, 3 for 2VC-
B-C, and 3 for 2C, as summarized in Table1. All implementations were writ-
ten in C++ and compiled with g++ v.4.4.7 with flag -03. We performed our
experiments on a GNU/Linux machine, with Red Hat Enterprise Server v6.6: a
PowerEdge T420 server 64-bit NUMA with two Intel Xeon E5-2430 v2 proces-
sors and 16 GB of RAM RDIMM memory. Each processor has 6 cores sharing a
15 MB L3 cache, and each core has a 2 MB private L2 cache and 2.50 GHz speed.
In our experiments we did not use any parallelization, and each algorithm ran
on a single core. We report CPU times measured with the getrusage function.
All our running times were averaged over ten different runs.

For the experimental evaluation we use the datasets shown in Table 2. We
measure the quality of the solution computed by algorithm A on problem P
by a quality ratio defined as q(A,P) = 64,,/00,,, where &4, is the average
vertex indegree of the subgraph computed by A and 67;,9 is a lower bound on
the average vertex indegree of the optimal solution for P. Specifically, for 2VC-B
and 2VC-B-C we define 65, = (n+k)/n, where n is the total number of vertices
of the input digraph and k is the number of vertices that belong in (nontrivial)

Sparse Subgraphs for 2-Connectivity in Directed Graphs 161

Table 1. The algorithms considered in our experimental study. The worst-case bounds
refer to a digraph with n vertices and m edges. Running times indicated by t assume
that the 2-vertex-connected components of the input digraph are available; running
times indicated by I assume that also the 2-edge-connected components are available.

Algorithm Problem | Technique Time

DST-B 2VC-B | Original sparse certificate from [12] based O(m+n)
on divergent spanning trees

DST-B modified | 2VC-B | Modified sparse certificate from [12] O(m+n)

DLN-B 2VC-B | Sparse certificate from [14] based on O(m +n)
divergent spanning trees and loop nesting
trees

LHL-B 2VC-B | New sparse certificate based on low-high O(m+n)
orders and loop nesting trees

2VDP-B 2VC-B | 2VDP filter applied on the digraph produced | O(n?)
by DLN-B

DLN-B-C 2VC-B-C | DST-B combined with the linear-time O(m + n)f
2VCSS algorithm of [10]

LHL-B-C 2VC-B-C | LHL-B combined with the linear-time 2VCSS | O(m + n)}
algorithm of [10]

2VDP-B-C 2VC-B-C | 2VDP filter applied on the digraph produced | O(n?)
by DLN-B-C

DLN-2C 2C DLN-B-C combined with the linear-time O(m +n)}
2ECSS algorithm using edge-disjoint
spanning trees

LHL-2C 2C LHL-B-C combined with the linear-time O(m + n)*
2ECSS algorithm using edge-disjoint
spanning trees

2VDP-2C 2C 2VDP and 2EDP filters applied on the O(n?)
digraph produced by DLN-2C

2-vertex-connected blocks®. We set a similar lower bound 5acvg for 2C, with the
only difference that k is the number of vertices that belong in (nontrivial) 2-
edge-connected blocks, since every 2-vertex-connected component or block is
contained in a 2-edge-connected block. Note that the quality ratio is an upper
bound of the actual approximation ratio. The smaller the values of ¢(4, P) (i.e.,
the closer to 1), the better is the approximation obtained by algorithm A for
problem P.

We now report the results of our experiments with all the algorithms con-
sidered for problems 2VC-B and 2C. For the 2VC-B problem, the quality ratio
of the spanning subgraphs computed by the different algorithms is shown in

2 This follows from the fact that in the sparse subgraph the k vertices in blocks must
have indegree at least two, while the remaining n — k vertices must have indegree at
least one, since we seek for a strongly connected spanning subgraph.

162 L. Georgiadis et al.

Table 2. Real-world graphs sorted by file size of their largest SCC; n is the number
of vertices, m the number of edges, and a4 is the average vertex indegree; s* is the
number of strong articulation points; 6;31,9 and 5(5’;9 are lower bounds on the average
vertex indegree of an optimal solution to 2VC-B and 2C, respectively.

Dataset n m File size | dqvg | s* 5fvg 6acvg Type
Rome99 3353 | 8859 100KB |2.64 |789 1.76 | 1.76 | road network

P2p-Gnutella25 | 5153 17695 203KB |3.43 | 1840 1.60 | 1.60 | peer2peer
P2p-Gnutella3l | 14149 | 50916 621 KB |3.59 |5357 1.56 | 1.56 | peer2peer
‘Web-NotreDame | 53968 | 296228 | 3,9MB |5.48 | 9629 1.50 | 1.50 | web graph
Soc-Epinions1 32223 | 443506 |5,3MB |13.76 | 8194 1.56 | 1.56 | social network
USA-road-NY 264346 | 733846 | 11MB |2.77 |46476 |1.80 | 1.80 | road network
USA-road-BAY |321270|800172 |12MB |2.49 | 84627 |1.69 |1.69 | road network
USA-road-COL | 435666 | 1057066 | 16 MB | 2.42 | 120142 | 1.68 | 1.68 | road network
Amazon0302 241761 | 1131217 | 16 MB | 4.67 | 69616 |1.74 | 1.74 | prod. co-purchase
WikiTalk 111881 | 1477893 | 18 MB | 13.20 | 14801 | 1.45 | 1.45 | social network
‘Web-Stanford 150532 | 1576314 | 22 MB | 10.47 | 14801 |1.62 | 1.58 | web graph
Amazon0601 395234 | 3301092 | 49MB | 8.35 | 69387 |1.82 | 1.82 | prod. co-purchase
Web-Google 434818 | 3419124 | 50MB | 7.86 | 89838 |1.59 | 1.58 | web graph
Web-Berkstan 334857 | 4523232 | 68 MB | 13.50 | 53666 | 1.56 | 1.51 | web graph

Table 3 (left) and Fig.3 (top), while their running times are given and plotted
in Table4 (left) and Fig. 2 (left), respectively. Similarly, for the 2VC-B-C and 2C
problems, the quality ratio of the spanning subgraphs computed by the different
algorithms is shown in Table3 (right) and Fig.3 (bottom), while their running
times are given and plotted in Table4 (right) and Fig. 2 (right), respectively.

We observe that all our algorithms perform well in terms of the quality of the
solution they compute. Indeed, the quality ratio is less than 2.5 for all algorithms
and inputs. Our modified version of DST-B performs consistently better than
the original version. Also in all cases, LHL-B computed a higher quality solution
than DLN-B. For most inputs, DST-B modified computes a sparser graph than
LHL-B, which is somewhat surprising given the fact that we do not have a good
bound for the (constant) approximation ratio of DST-B modified. On the other
hand, LHL-B is faster than DST-B modified by a factor of 4.15 on average and has
the additional benefit of maintaining both the 2-vertex and the 2-edge-connected
blocks. The 2VDP filter provides substantial improvements of the solution, since
all algorithms that apply this heuristic have consistently better quality ratios
(1.38 on average and always less than 1.87). However, this is paid with much
higher running times, as those algorithms can be even 5 orders of magnitude
slower than the other algorithms.

From the analysis of our experimental data, all algorithms achieve consis-
tently better approximations for road networks than for most of the other graphs
in our data set. This can be explained by taking into account the macroscopic
structure of road networks, which is rather different from other networks. Indeed,

Sparse Subgraphs for 2-Connectivity in Directed Graphs

163

Table 3. Quality ratio q(A, P) of the solutions computed for 2VC-B, 2VC-B-C and 2C.

Dataset DST-B|DST-B |DLN-B|LHL-B|2VDP-B|DLN-B-C|LHL-B-C|2VDP-B-C|DLN-2C|LHL-2C |2VDP-2C
modified
Rome99 1.384 |1.363 1.432 [1.388 |1.170 1.462 1.459 1.199 1.462 |1.459 |1.198
P2p-Gnutella25 |[1.726 [1.602 1.713 [1.568 [1.234 |1.712 1.568 1.234 1.712 |1.568 |1.234
P2p-Gnutella3l |1.717 |1.647 1.732 |1.602 |1.273 1.732 1.573 1.273 1.732 |1.573 |1.273
‘Web-NotreDame |2.072 |2.067 2.108 |2.085 |1.588 |2.232 2.149 1.628 2.250 [2.180 |1.638
Soc-Epinions1 2.082 [1.964 2.213 |2.027 |1.475 |2.474 2.411 1.572 2.474 |2.411 |1.573
USA-road-NY 1.255 |1.251 1.371 [1.357 |1.168 1.376 1.374 1.175 1.376 |1.374 |1.175
USA-road-BAY |1.315 |1.311 1.374 |1.365 |1.242 1.375 1.379 1.246 1.375 |1.379 |1.246
USA-road-COL |1.308 |1.307 1.354 |1.348 |1.249 1.357 1.357 1.252 1.357 |1.357 |1.252
Amazon0302 1.918 |1.791 1.849 |1.719 |1.245 |2.020 1.928 1.386 2.032 |1.944 |1.399
WikiTalk 2.145 |2.126 2.281 |2.190 |1.796 |2.454 2.441 1.863 2.454 [2.441 |1.863
‘Web-Stanford 2.115 |2.019 2.130 [2.078 |1.572 |2.287 2.257 1.622 2.238 [2.209 |1.584
Amazon0601 1.926 |1.793 1.959 [1.747 |1.196 |2.241 2.155 1.278 2.242 |2.157 |1.279
‘Web-Google 2.052 |2.004 2.083 |2.051 |1.485 |2.306 2.335 1.585 2.338 |2.372 |1.602
‘Web-Berkstan 2.302 |2.233 2.290 |2.275 |1.692 |2.472 2.492 1.767 2.410 |2.431 |1.717
4 o q';"@ NI SOS
g Ny S £ FS Y SSeL
9 < g & F5y & SO
> S S S § 839 & $£2850
8«‘,” 9 & g & LPE B0
] ' & 4] N X X RSN
L\ QY s FE & ST
IDIST B T T T T T L T T T T T T
B —+— .
24| DST-B modifie 2VC-B algorithms _
DLN-
L LHL-B _
22 2VDP-B
2 - -
18 B
16 B
14 | B
12 B
1 1 1 1
T T T
DLN-B-C)
24 | LHL-B-C 2VC-B-C and 2C algorithms i
’ 2VDP-B-C
DLN-2C
22+ LHL-2C 4
2VDP-2C
2 - -
18 | B
16 | B
14 | B
12 B
1 1 1 1

1+ed 1+eb5 1+e6

Fig. 2. The plotted quality ratios taken by Table 3.

164

L. Georgiadis et al.

Table 4. Running times in seconds of the algorithms for 2VC-B, 2VC-B-C and 2C.

Dataset DST-B|DST-B |DLN-B|LHL-B|2VDP-B DLN-B-C|LHL-B-C|2VDP-B-C|DLN-2C|LHL-2C|2VDP-2C
modified
Rome99 0.014 |0.018 0.004 |0.005 |0.264 0.032 0.034 0.122 0.034 |0.036 |0.122
P2p-Gnutella25 [0.027 (0.032 0.008 |0.007 |1.587 0.042 0.042 0.729 0.051 |0.053 |0.725
P2p-Gnutella3l [0.070 |0.094 0.024 |0.027 |13.325 0.119 0.119 5.613 0.143 |0.149 |5.422
‘Web-NotreDame|0.335 |0.486 0.059 |0.080 |97.355 0.491 0.521 27.091 0.573 |0.600 |27.746
Soc-Epinions1 0.258 |0.309 0.089 |0.11092.812 0.606 0.621 54.559 0.602 |0.664 |54.548
USA-road-NY 1.095 |1.402 0.261 |0.360 |2546.484 |2.227 2.337 991.092 [2.153 |2.415 |995.913
USA-road-BAY |1.659 [2.152 0.316 |0.435 4089.389 |2.153 2.298 1429.443 |2.296 |2.476 |1447.318
USA-road-COL |2.439 [3.050 0.438 |0.603|7739.256 |3.770 3.969 |3093.258 |3.938 (4.228 3064.297
Amazon0302 2.101 |2.410 0.517 |0.6753503.910 |4.708 5.017 2244.856 |5.135 |5.509 [2094.263
WikiTalk 1.777 |2.125 0.355 {0.473 |1158.855 |2.179 2.133 943.690 |2.203 |[2.513 |924.810
‘Web-Stanford 1.756 |2.395 0.429 |0.564 |1174.984 |2.037 2.313 279.236 |2.561 |2.487 |317.115
Amazon0601 3.532 |3.924 1.363 |1.605|15349.126/9.793 10.038 |8065.680(11.669 [11.397|8696.212
Web-Google 4.837 |5.467 1.533 |1.968 |26299.714|9.789 10.172 |5095.600 11.535 {12.979|5128.337
‘Web-Berkstan 3.239 |5.261 0.690 |0.869 6301.410 |4.670 4.872 1595.033 |5.178 |5.601 |1546.041
£ & &5 oy S o 5 NN
QE’@ & & $ 5 K Yé” S §§§ ¢ Q-“g & & & @é?/ §Y§\; § ng s\é\g’v‘iﬁéﬁ
10 bsT.8modted —— 2VC-B algorithms FOHee S 2VC-B-C and 2C algorithms 1
e i A

T
2VC-B algorithms
10000

DST-B —+—
DST-B modified ——
DLN-B

1000

100

Fig. 3. Running times in seconds with respect to the number of edges (in log-log scale)
taken by Table4. The upper plots get a close-up view of the fastest algorithms by not

considering 2VDP-B, 2VDP-B-C and 2VDP-2C.

road networks are very close to be “undirected”: i.e., whenever there is an edge
(z,y), there is also the reverse edge (y,) (except for one-way roads). Roughly
speaking, road networks mainly consist of the union of 2-vertex-connected com-
ponents, joined together by strong bridges, and their 2-vertex-connected blocks
coincide with their 2-vertex-connected components. In this setting, a sparse
strongly connected subgraph of the condensed graph will preserve both blocks
and components. On the other hand, such a gain on the solution for the road
networks is balanced at the cost of their additional running time.

Sparse Subgraphs for 2-Connectivity in Directed Graphs 165

In addition, our experiments highlight interesting tradeoffs between practical

performance and quality of the obtained solutions. In particular, the fastest
algorithms for the 2VC-B problem are the ones based on loop-nesting trees (DLN-
B and LHL-B), with LHL-B achieving consistently better solutions than DLN-B.

References

10.

11.

12.

13.

14.

15.

16.

. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall Inc., Upper Saddle River (1993)

Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time.
STAM J. Comput. 28(6), 2117-2132 (1999)

Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook,
J.R.: Linear-time algorithms for dominators and other path-evaluation problems.
SIAM J. Comput. 38(4), 1533-1573 (2008)

Cheriyan, J., Thurimella, R.: Approximating minimum-size k-connected spanning
subgraphs via matching. STAM J. Comput. 30(2), 528-560 (2000)

Edmonds, J.: Edge-disjoint branchings. In: Rustin, B. (ed.) Combinatorial Algo-
rithms, pp. 91-96. Academic Press, New York (1972)

Fakcharoenphol, J., Laekhanukit, B.: An o(log2 k)-approximation algorithm for the
k-vertex connected spanning subgraph problem. In: Proceedings of the 40th ACM
Symposium on Theory of Computing, STOC 2008, pp. 153-158, New York, NY,
USA, ACM (2008)

Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399-404 (1956)

Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci. 30(2), 209—221 (1985)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

Georgiadis, L.: Approximating the smallest 2-vertex connected spanning subgraph
of a directed graph. In: Demetrescu, C., Halldérsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 13-24. Springer, Heidelberg (2011)

Georgiadis, L., Italiano, G.F., Laura, L., Parotsidis, N.: 2-Edge connectivity in
directed graphs. SODA 2015, pp. 1988-2005 (2015)

Georgiadis, L., Italiano, G.F., Laura, L., Parotsidis, N.: 2-Vertex connectivity in
directed graphs. In: Halldérsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B.
(eds.) ICALP 2015. LNCS, vol. 9134, pp. 605-616. Springer, Heidelberg (2015)
Georgiadis, L., Italiano, G.F., Papadopoulos, C., Parotsidis, N.: Approximating the
smallest spanning subgraph for 2-edge-connectivity in directed graphs. In: Bansal,
N., Finocchi, I. (eds.) Algorithms - ESA 2015. LNCS, vol. 9294, pp. 582-594.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3-49

Georgiadis, L., Italiano, G.F., Parotsidis, N.: A new framework for strong
connectivity and 2-connectivity in directed graphs. CoRR, November 2015.
arXiv:1511.02913

Georgiadis, L., Tarjan, R.E.: Dominator tree certification and divergent spanning
trees. ACM Trans. Algorithms 12(1), 11:1-11:42 (2015)

Henzinger, M., Krinninger, S., Loitzenbauer, V.: Finding 2-edge and 2-vertex
strongly connected components in quadratic time. In: Halldérsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 713—
724. Springer, Heidelberg (2015)

http://dx.doi.org/10.1007/978-3-662-48350-3_49
http://arxiv.org/abs/1511.02913
http://arXiv.org/abs/1511.02913

166

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

L. Georgiadis et al.

Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articu-
lation points in linear time. Theor. Comput. Sci. 447, 74-84 (2012)

Jaberi, R.: Computing the 2-blocks of directed graphs. RAIRO-Theor. Inf. Appl.
49(2), 93-119 (2015)

Jaberi, R.: On computing the 2-vertex-connected components of directed graphs.
Discrete Applied Mathematics, (2015, to appear)

Khuller, S., Raghavachari, B., Young, N.E.: Approximating the minimum equiva-
lent digraph. SIAM J. Comput. 24(4), 859-872 (1995). Announced at SODA 1994,
177-186

Khuller, S., Raghavachari, B., Young, N.E.: On strongly connected digraphs with
bounded cycle length. Discrete Appl. Math. 69(3), 281-289 (1996)

Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In:
Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuristics. Chapman &
Hall/CRC, Boca Raton (2007)

Laekhanukit, B., Oveis Gharan, S., Singh, M.: A rounding by sampling approach to
the minimum size k-arc connected subgraph problem. In: Czumaj, A., Mehlhorn,
K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp.
606-616. Springer, Heidelberg (2012)

Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity, 1st edn.
Cambridge University Press, New York (2008)

Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146-160 (1972)

Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Informatica
6(2), 171-185 (1976)

Vetta, A.: Approximating the minimum strongly connected subgraph via a match-
ing lower bound. In: SODA, pp. 417-426 (2001)

Zhao, L., Nagamochi, H., Ibaraki, T.: A linear time 5/3-approximation for the min-
imum strongly-connected spanning subgraph problem. Inf. Process. Lett. 86(2),
63-70 (2003)

Worst-Case-Efficient Dynamic Arrays in Practice

Jyrki Katajainen®™9

Department of Computer Science, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen East, Denmark
jyrki@di.ku.dk

Abstract. The basic operations of a dynamic array are operator|],
push_back, and pop-back. This study is an examination of variations of
dynamic arrays that support these operations at O(1) worst-case cost.
In the literature, many solutions have been proposed, but little informa-
tion is available on their mutual superiority. Most library implementa-
tions only guarantee O(1) amortized cost per operation. Four variations
with good worst-case performance were benchmarked: (1) resizable array
relying on doubling, halving, and incremental copying; (2) level-wise-
allocated pile; (3) sliced array with fixed-capacity slices; and (4) block-
wise-allocated pile. Let [V| denote the size of the values of type V and |V*|
the size of the pointers to values of type V, both measured in bytes. For
an array of n values and a slice of S values, the space requirements of the
considered variations were at most 12|V|n+O(|V*|), 2|V|n+O(|V*|1gn),
[VI(n +5) + O(|V*|n/S), and [VIn + O(([V| + [V¥| + [V**[)y/n) bytes,
respectively. A sliced array that uses a few per cent of extra space turned
out to be a reasonable solution in practice. In general, for worst-case-
efficient variations, the operations were measurably slower than those for
the C++ standard-library implementation. Moreover, slicing can make the
structures fragile, so measures to make them more robust are proposed.

1 Introduction

A one-dimensional array is a fundamental data structure that is needed in
most applications. Its dynamic variant allows growing and shrinkage at one end.
This paper studies practical implementations of dynamic arrays. Several vari-
ations programmed in C++ [22] for the CPH STL [6] (namespace cphstl) are
described and experimentally compared against each other and to the imple-
mentation shipped with the g++ compiler (namespace std). The class tem-
plate std::vector [4, Clause23.3.6] is a dynamic array that allows random
access to its values using indices and iterators. The main aim of this study was
to avoid some of the drawbacks known for most existing implementations of
std::vector:

— Support operator[]|, push_back, and pop-back at O(1) worst-case cost
(i.e. instead of O(1) amortized cost per push_back).

— Ensure that the memory overhead is never more than a few per cent (instead
of 100 % or more).

© Springer International Publishing Switzerland 2016

A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 167-183, 2016.
DOI: 10.1007/978-3-319-38851-9_12

168 J. Katajainen

— Make manual space management by the function shrink to_fit unnecessary
(i.e. fit the amount of allocated space to the number of elements stored).

— Do not move values because of dynamization (i.e. keep references, pointers,
and iterators to the values valid if possible).

Array. Let x be a variable that names a cell storing a value of type V and let p
be a variable that names a cell storing an address. More specifically, the address
of a value is a pointer to the cell where the value is stored. In the programming
languages like C [13] and C++ [22], the type of p is V*. These concepts are bound
together by the address-of and contents-of operators:

V* operator&(): A call of the address-of operator &x returns the address of the
cell named by x.

V& operatorx(): A call of the contents-of operator *p returns a reference to the
value stored at the cell pointed to by p.

Let N be an alias for the type of counters and indices. An array A stores a
sequence of values of the same type V and supports the operations:

construction: Create an array of the given size by allocating space from the
static storage, the stack, or the heap. In the case of the heap, the memory
allocation must be done by calling malloc or operator new(].

destruction: If an array is allocated from the static storage or the stack, it will
be destroyed automatically when the end of its enclosing scope is reached.
But, if an array is allocated from the heap, its space must be explicitly
released by calling free or operator delete[] after the last use.

operator V*(): Convert the name of an array to a pointer to its first value as,
for example, in the assignment V* p = A.

V& Operator[J(N i): For an index i, a call of the subscripting operator A[i]
returns *(A+1), i.e. a reference to the value stored at the cell pointed to by
pointer A+1.

The important features of an array are (1) that its size is fixed at construction
time and (2) that its values are stored in a contiguous memory segment. Hence,
the subscripting operator can be supported at constant cost by simple arithmetic,
e.g. by going from the beginning of the array i- |V| bytes forward, where |V
denotes the size of a value of type V in bytes.

Dynamic Array. A dynamic array can grow and shrink at one end after its
construction. The class template std: : vector [4, Clause 23.3.6] is parameterized
with two type parameters:

V: the type of the values stored and
A: the type of the allocator used to allocate space and construct a value in that
place, and to destroy a value and deallocate the reserved space.

Worst-Case-Efficient Dynamic Arrays in Practice 169

The configuration of a dynamic array is specified by two quantities: size, i.e. the
number of values stored, and capacity, i.e. the number of cells allocated for storing
the values. Additionally, std: : vector supports iterators that are generalizations
of pointers. In particular, iterator operation begin makes the conversion operator
from the name of an array to the address of its first value superfluous. Let 7
be the type of the iterators. Compared to an array, the most important new
operations are the following:

7 begin() const: Return an iterator pointing at the first value of A.

7 end() const: Return an iterator pointing at the non-existing past-the-end value
of A. If A is empty, then A.begin() ==A.end().

N size() const: Get the number of values stored in A.

void resize(N n): Set the number of values stored in A to n.

N capacity() const: Get the capacity of A.

void reserve(N N): Set the capacity of A to N.

void push-back(V& const x): Append a copy of x at the end of A.

void pop-back(): Destroy the last value of A. Precondition: A is not empty.

Often, begin, end, size, and capacity are easy to realize at O(1) worst-case
cost; resize at O(|Jn — n'|) worst-case cost, n being the old size and n’ the
new size; and reserve at O(n) worst-case cost. In fact, there should be support
for a larger set of operations (move-based push_back, copy/move construction,
copy/move assignment, swap, clear), but we will not discuss this boilerplate
code here. An interested reader may consult the source code for details (see
“Software Availability” at the end of the paper).
The following question-answer (Q-A) pair captures our vision.

Q: What is the best way of implementing a dynamic array in a software library?

A: Provide a set of kernels that can be easily extended to a full implementation
with necessary convenience functions, and let the user of the library select the
kernel that suits best for her or his needs.

To realize this vision, the bridge design pattern [23, Sect.14.4] has been used
when implementing container classes. Each container class provides a large set
of members, which make the use convenient, but only a small kernel is used
in the implementation of these members. By changing the kernel, which is yet
another type parameter, a user can tailor the container to his exact needs, either
related to safety or performance. As to the safety features, we refer to [11] (ref-
erential integrity) and [22, Sect. 13.6] (exception safety). In this paper we focus
on the space efficiency of the kernels and the time efficiency of the operations
operator[], push_back, and pop_back. In the worst-case set-up, the space and
time efficiency have not been examined thoroughly in the past (cf. [11, Ex. 2]).

Amortized Solution. The standard way of dynamizing an array is to use doubling
and halving (see, e.g. [5, Sect. 17.4]). The values are stored in a contiguous mem-
ory segment, but when it becomes full, a new, two times larger segment is allo-
cated and all values are moved to there; finally the old segment is released. When

170 J. Katajainen

the current segment is only one quarter full, a new segment that is half the size
of the old one is allocated and all values are moved to the new segment, and then
the old segment is released. Both push_back and pop-back have a linear cost in
the worst case, but their amortized cost is O(1) since at least n/2 elements must
be added or n/4 elements must be removed before a reorganization occurs again.
Thus, we can charge the O(n) reorganization cost to these modifying operations
and achieve a constant amortized cost per operation. If the data structure stores
n values, the capacity of the current segment can be as large as 4n and during
the reorganization another segment of size 2n must be allocated before the old
can be released. Thus, in the worst-case scenario, the amount of space reserved
for values can be as high as 6n. Naturally, other space-time trade-offs could be
obtained by applying the reorganizations more frequently.

Worst-Case-Efficient Solutions. One way of deamortizing the above solution
is to let, during a reorganization, two memory segments coexist, call them X
and Y, and to move the values from X to Y incrementally in connection with
the forthcoming modifying operations. Imaginarily, the moves happen instantly.
However, if the index of the accessed value is smaller than the size of X, the value
can be found from there. In connection with every push_back, if possible, one
value from the end of X is moved to Y at the same relative position and the new
incoming value is placed at the end of Y. In connection with every pop_back,
if possible, two values are moved from the end of X to Y at the same relative
positions and the value at the end of Y is popped out. This is repeated until X
becomes empty, after which it can be released and Y can take its place. Such an
incremental reorganization starts whenever only one segment X exists, and it is
either full (then the size of Y will be twice the size of X) or it is one quarter full
(then the size of Y will be half the size of X).

This solution—which we call a resizable array—is part of computing folklore;
we use it as a baseline for other worst-case-efficient implementations. Because the
two segments coexist in memory, in the worst-case scenario, the amount of extra
space used can be even larger than that needed in the amortized case. Namely,
if X is one quarter full, it can take (1/8)n pop_back operations before X will be
released. Therefore, just before X is released, the amount of space allocated for
it is about 8n and the amount of space allocated for Y is about 4n. Based on
this discussion, we can conclude that, in the worst case, the amount of space
allocated for values is upper bounded by 12n and the leading constant in this
bound cannot be improved without changing the reorganization strategy.

As to the space consumption, the folklore solution is far from optimal.
Namely, Brodnik et al. [3] proved that, when memory is to be allocated block-
wise, for a dynamic array of size n, the space bound n + 2(y/n) is optimal,
n 4+ O(y/n) is achievable, and at the same time the operations operator|],
push_back and pop-back can be supported at O(1) worst-case cost.

Test Set-up. In our experiments we considered the following implementations:

std: :vector: This was the standard-library implementation that shipped with
our g++ compiler (version 4.8.4). It stored the values in one segment, push_back

Worst-Case-Efficient Dynamic Arrays in Practice 171

relied on doubling, and pop_back was a noop—memory was released only at
the time of destruction. Compared to the other alternatives, this version only
supported push_back at O(1) amortized cost.

cphstl::resizable_array: This solution relied on doubling, halving, and incre-
mental copying as described above.

cphstl::pile: This version implemented the level-wise-allocated pile described
in [9]. The data was split into a logarithmic number of contiguous segments,
values were not moved due to reorganizations, and the three operations of
interest were all supported at O(1) worst-case cost.

cphstl::sliced array: This version imitated the standard-library implementa-
tion of a double-ended queue. It was like a page table where the directory
was implemented as a resizable array and the pages (memory segments) were
arrays of fixed capacity (512 values).

cphstl: :space_efficient_array: This version was as the block-wise-allocated pile
described in [9], but the implementation was simplified by seeing it as a pile
of hashed array trees [20]. This version matched the space and time bounds
proved to be optimal in [3].

These implementations were benchmarked on a laptop computer that had the
following hardware and software specifications at the time of experimentation:

processor: Intel® Core™ i5-2520M CPU @ 2.50GHz x 4
word size: 64 bits

L; instruction cache: 32 KB, 64 B per line, 8-way associative
L; data cache: 32KB, 64 B per line, 8-way associative

Lo cache: 256 KB, 64 B per line, 8-way associative

L3 cache: 3.1 MB, 64 B per line, 12-way associative

main memory: 3.8 GB, 8 KB per page

operating system: Ubuntu 14.04 LTS

Linux kernel: 3.13.0-83-generic

compiler: g++ version 4.8.4

compiler options: -03 -std=c++11 -Wall -DNDEBUG -msse4.2 -mabm

In each test, an array of integers of type int was used as input. The average
running time, the number of value moves, and the amount of space were the
performance indicators considered. In the experiments, only four problem sizes
were considered: 210, 215 220 and 22°. For a problem of size n, each experiment
was repeated 226/n (or 227 /n times) and the mean was reported.

2 DMotivating Example: Reverse
Consider the function reverse which reverses the order of values in a sequence.
According to the C++ standard [4, Clause 25.3.10], its interface is as follows:

template <typename 7>
void reverse(Z, Z);

172 J. Katajainen

The iterators of type Z are assumed to be bidirectional or stronger. This interface
forces the algorithm to perform the permutation in-place. For this problem, for
an input of size n, [(3/2)n] is known to be a lower bound for the number of
value moves performed (see, for example, [21, Theorem 11.1]). To surpass this
lower bound, we use a more natural interface:

template <typename S>

void reverse(S&);

Now the input is a reference to a sequence of type §. In Fig. 1, we provide
two programs that carry out the reversal. The swap-based implementation is
the one used in most standard-library implementations. However, the move-
based implementation is more interesting. It heavily relies on the fact that the
underlying sequence (1) is space efficient and (2) does not perform any value
moves because of reorganizations. If this is the case, values are just moved once
from one sequence to another and at the end the handles to these sequences are
swapped.

template <typename 7> template <typename S, typename 7>
void reverse(Z £, 7 () { void reverse_copy(S& in, T& out) {
while (true) { auto n = in.size();
if (f=/(Corf=--4){ while (n = 0) {
return; --n;
out.push_back(std::move(in[n]));
else { in.pop_back();
std::swap(xf, *{); }
415 }
}
} template <typename S>
} void reverse(S& s) {
St;
template <typename S> reverse_copy(s, t);
{ s.swap(t);

void reverse(S& s)
reverse(s.begin(), s.end());

}

Fig. 1. Swap-based reverse (left) and move-based reverse (right)

A sliced array maintains a resizable array of pointers to contiguous memory
segments, each of the same size. Only the last segment may be partially full.
When cphstl::sliced_array is used in the move-based algorithm, one slice
will be non-full from both sequences. When a slice is processed in the input,
it can be released and reused in the output. Of course, both algorithms could
also be run using std: :vector. For the swap-based algorithm, there is no space
penalty since the algorithm is fully in-place, but for std::vector the move-
based algorithm will use much more space since the space is released first at the
time of destruction.

Worst-Case-Efficient Dynamic Arrays in Practice 173

Table 1. Characteristics of the two reversal algorithms; n denotes the size of the input
and S the size of a slice used by cpshtl::sliced_array; — means that std::vector
does not give any space guarantee; the running times were measured for n = 22°

Reverse Array | Moves | Time/n [ns] | Values | Pointers
Swap-based | Vector | 1.5n | 0.88 - 0(1)
Swap-based | Sliced | 1.5n |2.25 n+S |O(n/S)
Move-based | Vector | 2n 3.83 - O(1)
Move-based | Sliced | 1n 5.17 n+2S|0(n/S)

The characteristics of the algorithms for std::vector and cphstl::
sliced_array are summarized in Table 1. These simple experiments show the
following: (1) When move assignments are expensive, one should consider using
the move-based reversal algorithm; (2) For std: :vector, the subscripting oper-
ator is fast; (3) Reorganizations that move data behind the scenes may harm
the performance.

3 Space Efficiency

In principle, a dynamic array that is asymptotically optimal with respect to
the amount of extra space used is conceptually simple. However, it seems that
the research articles (see, e.g. [3,7,9,11,19]), where such structures have been
proposed, have failed to disseminate this simplicity to the textbook authors since
such a data structure is seldom described in a textbook. Let us make yet another
attempt to capture the essence of such a structure.

Hashed Array Tree. Assume that the maximum capacity of the array is fixed
beforehand; let it be N. A hashed array tree, introduced by Sitarski [20], is a
sliced array where each slice is set to be of size O(\/ﬁ). To make the subscript-
ing operator fast, it is advantageous to let the size be a power of two. Also, the
directory will be of size O(v/N) (i.e. this extra space is solely used for pointers)
and there will be at most one non-full memory segment of size O(v/N) (i.e. this
extra space is used for data). From a sliced array this structure inherits the prop-
erty that the values are never moved because of dynamization. If wanted, the
structure could be made fully dynamic by quadrupling and quartering the cur-
rent capacity whenever necessary [14], but after this the performance guarantees
would be amortized, not worst-case.

Pile of Arrays. This data structure was introduced in [9] where it was called a
level-wise-allocated pile; we call it simply cphstl::pile. It took its inspiration
from the binary heap of Williams [24]. Instead of using a single memory segment
for storing the values, the data is split into a logarithmic number of contiguous
memory segments, which increase exponentially in size and of which only the
last may be partially full. In a sense, this is like a binary heap, but each level of

174 J. Katajainen

The amount of extra space in use at a specific time

T
resizable ——8——
vector ----- - ‘

..... Hmmmmm
e

S
=
I+
-
=
2 ‘i++++
o HE
@ ' ta,
% h"‘h
a, "+
2
5%10° 7x10° 9x10°

#push_back’s [n]

Fig. 2. The amount of extra space in use after n push_back operations for different array
implementations; inside the half circle the curves for the two space-efficient alternatives
are zoomed out

this heap is a separate array. A directory is needed for storing pointers to the
allocated memory segments. Since the size of this directory is only logarithmic,
the space for it can often be allocated statically. In a fully dynamic solution the
directory is implemented as a resizable array. When there are n values, the size
of last non-full memory segment is at most n, so this is an upper bound for
the amount of extra space needed for values. In order to realize the subscripting
operator at O(1) worst-case cost, it must be assumed that the whole-number
logarithm of a positive integer can be computed at O(1) worst-case cost.

Pile of Hashed Array Trees. In [9], this data structure was called a block-wise-
allocated pile; here we call it cphstl: :space_efficient_array. At each level of
a pile, the maximum capacity is fixed. Hence, by implementing each level as a
hashed array tree, we get a dynamic array that needs extra space for at most
O(+/n) pointers and at most O(y/n) values, n being the number of values stored.

Space Test. To understand the space efficiency of different array implementations
in practice, we performed a space test where we executed n push_back operations
and measured the amount of memory in use at the end. We repeated this for
several values of n. The obtained results are shown in Fig. 2.

More precisely, we measured the memory overhead (i.e. the amount of space
used minus the amount of space used by the input) in per cents. The numbers
varied between one per mill and 200 per cent, the latter meaning that the amount
of memory reserved was large enough to store 3n values. The measurements were
carried out by using an allocator that counted the number of bytes allocated;
it delagated its actual work to std::allocator. During its lifetime, a data

Worst-Case-Efficient Dynamic Arrays in Practice 175

"
contighious artay Vx index_to_address(N i) const {

Vi index_to_address(N i) const { if (1<2){
return A + i; return directory[0] + i;
} }
N h =whole_number_logarithm(i);
resizable array return directory[h] + i — (1 << h);
}

Vx index_to_address(N i) const {
if (1 < X_size) {

return X + i: sliced array

} Vs index_to_address(N i) const {
return Y + i; return directory[i >> shift] + (i & mask);
} }
pile space-efficient array
N whole_number_logarithm(N x) { Vx index_to_address(N i) const {
asm("bsr %0, %0\n” if (i<2){
2 7=r” (x) return directory[0].index_to_address(i);
. 7’077 (X) }
); N h=whole_number_logarithm(i);
return x; N A=i—(1<<h);
} return directory|h].index_to_address(A);
}

Fig. 3. Implementation of the index_to_address function needed by operator|], for
different arrays; the meaning of the class variables should be clear from the context

structure could use several allocators. All these allocators had the same base
and it was this base that was responsible for collecting and reporting the final
counts.

In theory, there is a significant difference between the extra space of O(y/n)
and O(n) values and/or pointers, but, as seen from the curves in Fig.2, the
space overhead of n/c pointers, for a large integer ¢, and much fewer values may
be equally good in practice. For both space-efficient alternatives, the observed
space overhead was less than 4 %, often even less. For the implementations based
on doubling, the space overhead could be as high as 100 %. In the space test,
std::vector and cphstl::pile had exactly the same space overhead for all
values of n. Even in this simple test, for a resizable array, the space overhead
could be as high as 200 %.

4 Subscripting Operator

The key feature of an array is that it supports random access to its values at
constant worst-case cost. Moreover, this operation should be fast because it is
employed so frequently. In all our implementations, the subscripting operator
was implemented in an identical way:

V& operator| | (N i) {
return sindex_to_address(i);

}

176 J. Katajainen

As the name suggests, the function index_to_address converts the given index
to a pointer to the position where the desired value resizes. In Fig. 3, implemen-
tations of this function are shown for different arrays.

Our preliminary experiments revealed that, for a pile and its space-efficient
variant, the whole-number-logarithm function needed by the index_to_address
function had to be implemented using inline assembly code. Otherwise, the sub-
scripting operator would have been unacceptably slow.

Sorting Tests. After code tuning, we performed two simple tests that used differ-
ent kinds of arrays in sorting. These benchmarks exercised the subscripting oper-
ator extensively. In the introsort test, we called the standard-library std: :sort
routine (introsort [16]) for a sequence of n values. The purpose of this test was
to determine the efficiency of sequential access. In the heapsort test, we called
the standard-library std: :partial_sort routine (heapsort [24]) for a sequence
of n values. Here the purpose was to determine the efficiency of random access.
In these sorting tests, we measured the overall running time for different values
of n, and we report the average running time per nlgn. In each test, the input
was a random permutation of integers (0,1,...,n — 1).

The results for introsort are given in Table 2 and those for heapsort in Table 3.
It was expected that more complicated code would have its consequences for the
running times. Compared to std: :vector, integer sorting becomes a constant fac-
tor slower with these worst-case-efficient arrays. For a pile and its space-efficient
variant, the cost of computing the whole-number logarithm in connection with
each access is noticeable, even though we implemented it in assembly language.
For all arrays, random access (trusted by heapsort) was significantly slower than
sequential access (mostly used by introsort).

Table 2. Results of the introsort tests; running time per nlgn [ns]

n | Vector | Resizable | Pile | Sliced | Space efficient
2101356 |6.18 9.31/8.35 |12.0
2151356 | 5.96 8.99/8.05 |11.6
2201348 | 5.84 8.80(7.91 |11.3
2751348 |5.79 8.677.80 |11.2

5 Iterator Operators

An iterator is a generalization of a pointer that specifies a position when tra-
versing a sequence (for an introduction to iterators and iterator categories, see,
e.g. [21, Chapter 10]). Let T be the type of the iterators under consideration and
let Z be the type specifying a distance between two positions. In this review we
concentrate on three operations that have direct counterparts for pointers.

Worst-Case-Efficient Dynamic Arrays in Practice 177

Table 3. Results of the heapsort tests; running time per nlgn [ns]

n | Vector | Resizable | Pile | Sliced | Space efficient
2101483 [8.89 17.1/12.5 | 20.3
2151494 847 16.6]12.3 |19.8
2201718 10.7 17.8]15.7 |21.8
2751235 | 27.7 33.3/37.0 39.8

V& operator*() const: The deferencing operator has the same semantics as the
contents-of operator for pointers, i.e. it returns a reference to the value stored
at the current position.

T& operator++(): The pre-increment operator has the same semantics as the
corresponding pointer operator, i.e. it returns a reference to an iterator that
points to the successor of the value stored at the current position.

7& operator+=(Z i): The addition-assignment operator is used to move the
iterator to the position that refers to the value that is i positions forward
(or backward if i is negative) from the current position.

Traditionally, the iterator support is provided by implementing two iterator
classes, one for mutable iterators and another for immutable iterators, inside
every container class in the library in question (see, e.g. the implementations
provided in [18]). This leads to a lot of redundant code. Austern [1] proposed
an improvement were the mutable and const versions were implemented in one
generic class. We have gone one step further [8]: We provide one generic iterator
class template that can be used to get both iterator variants for any container
that supports the subscript operator and the function size.

Rank Iterators. In the class template cphstl::rank iterator, we use three
concepts: (1) A rank is an integer which specifies the number of values that
precede a value in the given sequence; (2) An owner is the sequence where
the referred value resizes; (3) A sentinel is a rank of a value whose position is
unspecified. A rank iterator is implemented as a (pointer, rank) pair where the
pointer refers to the owner of the encapsulated value and the rank is the index
of that value within the owner. A sentinel is used for defensive-programming
purposes to perform bounds checking.

178 J. Katajainen

static N constexpr sentinel =std:: rank_iterator& operator+=(Z n) {
numeric_limits<N>:max(); Z new_place = rank;
if (rank = sentinel) {

W operator() const { new_place = (kowner_p).size();

return (xowner_p) [rank]; }

Y new_place += n;
rank_iterator& operator++ () { if (new_place < 0) {
“++rank; rank = sentinel;

if (rank = (xowner_p).size()) { return *this;
rank = sentinel; }
} rank = N(new_place);
return *this; if (rank > (xowner_p).size()) {
} rank = sentinel;
}
return xthis;
}

Fig. 4. Implementation of the basic iterator operations for rank iterators; owner_p and
rank are the class variables denoting a pointer to the owner and the rank, respectively

For a sequence of type S, the types of its iterators are as follows:

using iterator = cphstl:rank_iterator<S>;
using const_iterator = cphstl::rank_iterator<$ const>;

These classes provide the full functionality of a random-access iterator. The
implementations of the three important member functions are given in Fig. 4.

Iterator Tests. When analysing the efficiency of rank iterators, we used two
tests. In the sequential-access iterator test, we initialized an array of size n by
visiting each position once. This iterator test exercised derefencing (operator*)
and successor (operator++) operators. In the random-access iterator test, we also
initialized an array of size n by visiting each position once, but there was a
gap of 617 values between consecutive visits. This iterator test exercised def-
erencing (operator*) and addition-assignment (operator+=) operators. All other
calculations were done using integers (e.g. no iterator comparisons were done).

In our preliminary experiments, we compared the performance of
std: :vector and cphstl::contiguous_array, of which the latter used our rank
iterators. For these data structures the iterator operations were equally fast, so
our generic rank iterator has only little, if any, overhead.

The results of the iterator tests are given in Tables4 and 5. As to the
cost of slicing, on an average, even for [n/512] slices, the time overhead is
about a factor of two. We consider this to be good taking into account that
for cphstl::sliced_array the space overhead is never extremely high.

Worst-Case-Efficient Dynamic Arrays in Practice 179

Table 4. Results of the sequential-access iterator tests; running time per n [ns]

n Vector | Resizable | Pile | Sliced | Space efficient
29220 2% 10.82 | 1.50 3.15/1.80 |3.99

Table 5. Results of the random-access iterator tests; running time per n [ns]

n | Vector | Resizable | Pile | Sliced | Space efficient
2101154 |1.90 3.44(2.72 |5.91
21519254 255 3.202.94 | 5.66
2201109 |10.9 11.2]11.3 |114
2% 144 144 14.6|17.2 |16.7

6 Modifying Operations

Modification Tests. In the growth test, we executed m push_back operations
repeatedly. In the shrinkage test, we created a sequence of size n and then mea-
sured the running time used by n repeated pop_back operations. As before, we
measured the overall running time and report the average running time per
operation for different values of n. The obtained results are shown in Tables 6
and 7.

Compared to an amortized solution that kept the difference between the
capacity and size within a permitted range (not discussed earlier), for a resiz-
able array relying on doubling, halving, and incremental copying, the aver-
age cost of push back increased a bit since we could not rely on copying of
values in chunks. Also, when we release memory, pop_back is no more free
of cost. On the other hand, cphstl::pile and cphstl::sliced_array do
not move any values, so they are faster than cphstl::resizable_array. For
cphstl: :space_efficient_array, the relatively large running times are a con-
sequence of complicated code.

Table 6. Results of the growth tests; running time per n [ns|

n | Vector | Resizable | Pile | Sliced | Space efficient

2101423 5.18 5.654.65 |10.3
2151352 6.39 5.164.63 |7.35
2201478 8.48 5.124.60 |6.92

2251415 | 8.42 455 4.58 |6.75

180 J. Katajainen

Table 7. Results of the shrinkage tests; running time per n [ns]

n | Vector | Resizable | Pile | Sliced | Space efficient
21010.0 3.62 3.082.56 |8.15
2% 10.0 2.99 2.15/2.60 |5.55
2%2010.0 2.86 227241 |5.17
2%510.0 2.91 2.112.43 |5.07

7 Robustness

When our kernels are used to build a container with the same functionality as
std: :vector, we cannot be standard compliant in one respect [4, Clause 23.3.6):
The values are no more stored in a contiguous memory segment. In this section
we consider situations where slicing and slice boundaries can make the structures
fragile. We also describe measures that will make the structures more robust.

Break-Down Tests. In our first malicious experiment, we created many small
arrays and studied at which point the driver crashed. Recall that our test com-
puter had 3.8 GB of main memory. The actual experiment was as follows:

1. Create a new empty array (elements of type int, four bytes each).
2. Insert 220 elements into this array using push_back.

3. Remove 220 — 1 elements from this array using pop_back.

4. Repeat this until we get an out-of-memory signal.

That is, how many single-element arrays one can have simultaneously in memory,
if the arrays have been bigger at some earlier point in time?

The results obtained varied a bit depending on the memory usage of the
other processes run on the test computer, but the numbers on Table8 speak
for themselves. In this kind of application environment, the approach of not
releasing allocated memory can have disastrous consequences. To improve the
situation with the sliced array, the slices could be made smaller or the first slice
could be implemented as a resizable array.

Gap-Crossing Tests. Because of slicing, the worst-case running of one individual
push_back and pop_back depends on the efficiency of memory management. In
the theoretical analysis, we assumed that the allocator operations allocate that
allocates a memory segment and deallocate that releases it have the worst-case

Table 8. Results of the break-down tests; number of repetitions before receiving an
out-of-memory signal

Vector | Resizable | Pile Sliced Space efficient
804 33554432 | 16777216 | 1048448 | 8388473

Worst-Case-Efficient Dynamic Arrays in Practice 181

Table 9. Results of the gap-crossing tests; average running time per (pop-back,
push_back) pair [ns]|; number of identified gaps in brackets

n | Vector | Resizable | Pile Sliced Space efficient
21914.48 [11]3.39 [11] |9.48 [10] | 46.7 [2] 31.6 [62]

2151 4.53 [16] | 3.85 [16] |8.16 [15] | 47.9 [64] 24.5 [382]

220 14.31 [21] | 3.64 [21] |7.60 [20] | 49.6 [2048] | 29.6 [2046]
225 14.30 [26] | 3.46 [26] | 118 [25] | 49.1 [65536] | 24.4 [12 286]

cost of O(1), independent of the size of the processed segment. By running the
instruction-cost micro-benchmark from Bentley’s book [2, Appendix 3], it was
possible to verify that this assumption did not hold in our test environment.

To see whether the memory-management costs are visible when crossing the
gaps between the slices, we carried out one more experiment:

1. Identify where the segment boundaries are.

2. Execute a sequence of push_back operations, but after crossing a gap, execute
many additional pairs of pop_back and push_back operations.

3. Report the average running time per (pop_back, push_back) pair.

The obtained results (Table9) should be compared to those for push_back
(Table6) and pop-back (Table7) obtained under non-malicious conditions. Of
the tested arrays, a resizable array was the most robust since it deamortized the
cost of allocations and deallocations over a sequence of modifying operations,
and each of these operations touched at most three elements every time. As the
opposite, for the largest instance, a pile became very slow because it was forced
to allocate and deallocate big chunks of memory repeatedly. The approach used
in a resizable array could be used to make the other structures more robust, too.
Instead of releasing a segment immediately after it becomes empty, some delay
could be introduced so that allocations followed by deallocations were avoided.

8 Discussion

To summarize, a theoretician may think that a solution guaranteeing the worst-
case cost of O(1) per operation and the memory overhead of O(y/n) would be
preferable since both bounds are optimal. However, based on the results of our
experiments, we have to conclude that, when both the time and space efficiency
are important, a sliced array is a good solution. Our implementation supports all
the basic operations at O(1) worst-case cost, since we used a worst-case-efficient
resizable array to implement the directory, and the observed memory overhead
was less than 2 % when n was large, although asymptotically, when the slice size
is S, extra space may be needed for S values and O(n/S) pointers. In general,
the cutting of the data into slices did not make the operations much slower;
in a sequential scan it was not a problem to skip over |n/S| slice boundaries.

182 J. Katajainen

One reason for inefficiency seems to be the complexity of the formula used for
computing the address of the cell where the requested value is. On the other
hand, when implementating an industry-strength kernel, special measures must
be taken to avoid bad behaviour in situations where subsequent operations are
forced to jump back and forth over slice boundaries.

Software Availability

The programs discussed and benchmarked are available via the home page of
the CPH STL (www.cphstl.dk) in the form of a technical report and a tar file.

Acknowledgements. This work builds on the work of many students who imple-
mented the prototypes of the programs discussed in this paper. From the version-
control system of the CPH STL, I could extract the following names—I thank them all:
Tina A. G. Andersen, Filip Bruman, Marc Framvig-Antonsen, Ulrik Schou Jorgensen,
Mads D. Kristensen [14], Daniel P. Larsen, Andreas Milton Maniotis [8], Bjarke Buur
Mortensen [9,10,15], Michael Neidhardt [17], Jan Presz, Wojciech Sikora-Kobylinski,
Bo Simonsen [11,12,17], Jens Peter Svensson, Mikkel Thomsen, Claus Ullerlund, Bue
Vedel-Larsen, and Christian Wolfgang.

References

1. Austern, M.: Defining iterators and const iterators. C/C++ User’s J. 19(1), 74-79
(2001)

2. Bentley, J.: Programming Pearls, 2nd edn. Addison Wesley Longman Inc., Reading
(2000)

3. Brodnik, A., Carlsson, S., Demaine, E.D., Munro, J.I., Sedgewick, R.D.: Resizable
arrays in optimal time and space. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia,
R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 37-48. Springer, Heidelberg (1999)

4. The C++ Standards Committee: Standard for Programming Language C++. Work-
ing Draft N4296, ISO/IEC (2014)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

6. The CPH STL: Department of Computer Science, University of Copenhagen (2000
2016). http://cphstl.dk/

7. Goodrich, M.T., Kloss II, J.G.: Tiered vectors: efficient dynamic arrays for rank-
based sequences. In: Dehne, F.; Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS
1999. LNCS, vol. 1663, pp. 205-216. Springer, Heidelberg (1999)

8. Katajainen, J., Maniotis, A.M.: Conceptual frameworks for constructing iterators
for compound data structures—electronic appendix I: component-iterator and rank-
iterator classes. CPH STL Report 2012-3, Department of Computer Science, Uni-
versity of Copenhagen, Copenhagen (2012)

9. Katajainen, J., Mortensen, B.B.: Experiences with the design and implementation
of space-efficient deques. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A.
(eds.) WAE 2001. LNCS, vol. 2141, pp. 39-50. Springer, Heidelberg (2001)

10. Katajainen, J., Mortensen, B.B.: Experiences with the design and implementa-
tion of space-efficient deques. CPH STL Report 2001-7, Department of Computer
Science, University of Copenhagen, Copenhagen (2001)

www.cphstl.dk
http://cphstl.dk/

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Worst-Case-Efficient Dynamic Arrays in Practice 183

Katajainen, J., Simonsen, B.: Adaptable component frameworks: using vector
from the C++ standard library as an example. In: Jansson, P., Schupp, S. (eds.)
2009 ACM SIGPLAN Workshop on Generic Programming, pp. 13-24. ACM, New
York (2009)

Katajainen, J., Simonsen, B.: Vector framework: electronic appendix. CPH STL
Report 20094, Department of Computer Science, University of Copenhagen,
Copenhagen (2009)

Kernighan, B.W., Ritchie, D.M.: The C Programming Language, 2nd edn. Prentice
Hall PTR, Englewood Cliffs (1988)

Kristensen, M.D.: Vector implementation for the CPH STL. CPH STL Report
2004-2, Department of Computer Science, University of Copenhagen, Copenhagen
(2004)

Mortensen, B.B.: The deque class in the Copenhagen STL: first attempt. CPH
STL Report 2001-4, Department of Computer Science, University of Copenhagen,
Copenhagen (2001)

Musser, D.R.: Introspective sorting and selection algorithms. Software Pract.
Exper. 27(8), 983-993 (1997)

Neidhardt, M., Simonsen, B.: Extending the CPH STL with LEDA APIs. CPH
STL Report 2009-8, Department of Computer Science, University of Copenhagen,
Copenhagen (2009)

Plauger, P.J., Stepanov, A.A., Lee, M., Musser, D.R.: The C++ Standard Template
Library. Prentice Hall PTR, Upper Saddle River (2001)

Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426-437.
Springer, Heidelberg (2001)

Sitarski, E.: Algorithm alley: HATs: hashed array trees: fast variable-length arrays.
Dr. Dobb’s J. 21(11) (1996). http://www.drdobbs.com/database/algorithm-alley /
184409965

Stepanov, A.A., Rose, D.E.: From Mathematics to Generic Programming. Pearson
Education Inc., Upper Saddle River (2015)

Stroustrup, B.: The C++ Programming Language, 4th edn. Pearson Education Inc.,
Upper Saddle River (2013)

Vandervoorde, D., Josuttis, N.M.: C++ Templates: The Complete Guide. Pearson
Education Inc., Boston (2003)

Williams, J.W.J.: Algorithm 232: heapsort. Commun. ACM 7(6), 347-348 (1964)

http://www.drdobbs.com/database/algorithm-alley/184409965
http://www.drdobbs.com/database/algorithm-alley/184409965

On the Solution of Circulant Weighing
Matrices Problems Using Algorithm
Portfolios on Multi-core Processors

Ilias S. Kotsireas!, Panos M. Pardalos?, Konstantinos E. Parsopoulos®),

and Dimitris Souravlias®

! Department of Physics and Computer Science,
Wilfrid Laurier University, Waterloo, ON, Canada
ikotsire@wlu.ca
2 Department of Industrial and Systems Engineering,
University of Florida, Gainesville, FL, USA
pardalos@ufl.edu
3 Department of Computer Science and Engineering,
University of loannina, Ioannina, Greece
{kostasp,dsouravl}@cse.uoi.gr

Abstract. Research on the existence of specific classes of combinatorial
matrices such as the Circulant Weighing Matrices (CWMs) lies in the
core of diverse theoretical and computational efforts. Modern metaheuris-
tics have proved to be valuable tools for solving such problems. Recently,
parallel Algorithm Portfolios (APs) composed of established search algo-
rithms and sophisticated resource allocation procedures offered signifi-
cant improvements in terms of time efficiency and solution quality. The
present work aims at shedding further light on the latent quality of paral-
lel APs on solving CWM problems. For this purpose, new AP configura-
tions are considered along with specialized procedures that can enhance
their performance. Experimental evaluation is conducted on a compu-
tationally restrictive, yet widely accessible, multi-core processor compu-
tational environment. Statistical analysis is used to reveal performance
trends and extract useful conclusions.

Keywords: Algorithm Portfolios - Circulant Weighing Matrices -
Computational optimization - Multi-core processors

1 Introduction

Combinatorial matrices are involved in various significant applications rang-
ing from statistical experimentation to coding theory and quantum information
processing [3,8,23]. Special types of combinatorial matrices have been exten-
sively investigated. Circulant Weighing Matrices (CWMs) constitute an impor-
tant class in this framework. The existence of finite or infinite classes of CWMs
has been the core subject in several theoretical works [2,4,9,10,12].

© Springer International Publishing Switzerland 2016

A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 184-200, 2016.
DOI: 10.1007/978-3-319-38851-9_13

Algorithm Portfolios for Circulant Weighing Matrices Problems 185

Metaheuristics have proved to be very useful in cases where theoretical
approaches have not provided adequate insight. The application of metaheuris-
tics requires the transformation of the CWM existence problem to a combina-
torial optimization task [6,7,18,19,21,22]. Recently, prevailing metaheuristics
have been used in the Algorithm Portfolios (APs) framework [16,17] for solv-
ing CWM problems in parallel computational environments [28]. Sophisticated
resource allocation schemes based on market trading procedures were used in
those approaches, achieving high standards of performance. The provided results
suggested that APs can remarkably enhance the time performance and quality of
solution of their constituent algorithms in CWM problems [28]. Also, they ver-
ified the domination of trajectory-based approaches against population-based
stochastic algorithms.

The present work aims at extending the previous studies by offering further
insight regarding the performance of interactive and non-interactive parallel APs.
Based on previous findings, the established Tabu Search (TS) algorithm and the
previously unused Iterated Local Search (ILS) approach compose the consid-
ered APs. Additionally, a sequence-comparison scheme that prevents TS from
revisiting classes of equivalent sequences is introduced.

The experimental evaluation of the APs is conducted on a low-specification
parallel hardware, i.e., a common multi-core processor, in contrast to the abun-
dant grid-computing environment of previous studies [28]. The overall perfor-
mance of the APs is investigated in terms of time efficiency and solution quality
on two representative CWM problems. Additionally, the impact of the number
of concurrently running algorithms on the overall performance is investigated.
Diverse homogeneous and heterogeneous APs with various parameter configura-
tions are also considered.

The rest of the paper is structured as follows: Sect.2 formulates the CWM
problem as a combinatorial optimization task. The employed individual algo-
rithms and APs are described in Sect.3. Experimental analysis is reported in
Sect. 4, and the paper concludes in Sect. 5.

2 Circulant Weighing Matrices

Circulant Weighing Matrices (CWMs) [4] refer to a special type of combinatorial
matrices. A square n X n matrix W defined as,

W:(U}Z‘j), U)ijE{—l,O,l}, ,j=1,...,n,

is a CWM of order n and weight k*, denoted as CW (n,k?), if it satisfies the
condition,
WWT =kI,,

where I, is the identity matrix of size n, and W is the transpose of W. Thus, a
CWM is primarily a weighing matriz. Additionally, each row of a CWM, except
the first one, is obtained through a right cyclic shift of its preceding row. Hence,
the complete matrix can be fully defined by its first row. A significant amount

186 1.S. Kotsireas et al.

of research has been devoted to theoretical and experimental investigations on
the existence of CWMs of various orders and weights [1,5,10,29].
Metaheuristics have been employed in cases where theoretical efforts have
been fruitless. In these cases, the problem is solved as a permutation optimization
one, aiming at the detection of the first row of the considered CWM type. The
underlying objective function is based on the concept of Periodic Autocorrelation
Function (PAF) [20]. The defining row of a CWM is a ternary sequence,

T =(r1,22,...,2,) € {—1,0,+1}",

of length n, and its PAF values are defined as,

PAF Zmzxz_,_s, s=1,2,..., [ﬂ (1)

CWMs with zero PAF values have special research interest [19,20,28]. In
addition, it has been proved that admissible sequences have exactly k? non-zero
components, with k(k + 1)/2 components being equal to +1 and k(k — 1)/2
components assuming the —1 value.

Let S¢, k) be the search space that contains all admissible ternary sequences
that define CWMs of order n and weight k2. Then, the objective function of the
corresponding combinatorial optimization problem is defined as,

K (%]
min f(z) =Y |PAF.(s)| =

TES(n,k) — p

: (2)

E Z; xz-{-s

where i+ s is taken modulo n when ¢4 s > n. Obviously, the global minimizer of
this optimization problem is a sequence with zero PAF values for all s. Experi-
mental evidence has shown that the difficulty of a CW (n, k?) problem increases
with the order n (length of sequence) and, particularly, with the weight k2.

3 Employed Algorithms

In the following paragraphs, we briefly describe the employed individual algo-
rithms as well as the considered APs. For presentation purposes, we assume that
the considered optimization problem is given in the general form,

min f(e),

zeS

where S in the corresponding search space.

3.1 Iterated Local Search

Iterated Local Search (ILS) defines a simple and straightforward framework for
probing complex search spaces. Its main requirement is the use of a suitable

Algorithm Portfolios for Circulant Weighing Matrices Problems 187

Table 1. Pseudocode of the ILS algorithms.

Iterated Local Search (ILS)

1: Tini < GetlnitialSequence(S)

2 a* «— LocalSearch(xini)

3: S* — {x"}

4: While (not stopping) Do

5: If (rand() < p) Then

6 : Tini < GetlnitialSequence(S™)
7 Else

8 : Tini — GetInitialSequence(S)
9: End If
10 : ™ «— LocalSearch(in;)
11 : S*— ST u{z"}
12 End While
13: Thest < arg Ming=cg+ f(ax*)
14 : Report Thest

local search procedure for the problem at hand. The local search is initiated to
a randomly selected sequence xj,; and generates a trajectory that eventually
reaches the nearest local minimizer «*. This is achieved by iteratively selecting
downhill moves within the close neighborhood of the current sequence.

In discrete spaces such as the ones in the studied CWM problems, the close
neighborhood of a sequence is defined as the finite set of sequences with the
smallest possible distance from it. Typically, Hamming distance is used for
this purpose. The local search procedure usually scans the whole neighbor-
hood of the current sequence and makes the move with the highest improve-
ment (neighborhood-best strategy). Alternatively, it can make a move to the first
improving sequence found in the neighborhood (first-best strategy). The detected
local minimizer is archived in a set S*. Then, a new trajectory is started from a
new initial sequence [24].

In its simplest form, ILS generates new trajectories by randomly sampling
new initial sequences in the search space according to a (typically Uniform) dis-
tribution. This is the well-known Random Restarts approach. The most common
stopping criteria are the detection of a prespecified number of local minimiz-
ers or a maximum computational budget in terms of running time or function
evaluations. Although random restarts were shown to be sufficient in various
problems, relevant research suggests that efficiency can be increased if already
detected local minimizers from the set S* are exploited during the search [24].
Typically, this refers to the generation of new initial sequences by perturbing
previously detected local minimizers.

The two initialization approaches can also be combined. Naturally, this
scheme introduces new parameters to the algorithm. Specifically, the user needs

188 1.S. Kotsireas et al.

Table 2. Pseudocode of the TS algorithms.

Tabu Search (TS)

1: TL— 0

2: x — GetlInitialSequence(S)

3: UpdateTabuList(TL, x)

4 : Thest — L

5: While (not stopping) Do

6 : @’ « ProbeNeighborhood(N (x), TL)
7: UpdateTabuList(TL, x")

8 : If (f(z') < f(@best)) Then

9: Thest — T’
10 : End If
11: If (trajectory termination) Then
12 : x — NewlnitialSequence (S, Tvest, p)
13 : End If
14 : End While
15 : Report Thest

to specify a probability p € [0,1] of using perturbation-based restarts as well as
the criteria for selecting the local minimizers from the set S*.

The ILS algorithm is given in pseudocode in Table 1. Each call of rand()
returns a real-valued random number in the range [0,1], while the function
GetlnitialSequence() implements the sampling procedures for the search space
S and the set S*. For a comprehensive presentation of ILS the reader is referred
to [24].

3.2 Tabu Search

Tabu Search (TS) is among the most popular and well-studied metaheuris-
tics. Since its formal introduction in [13,14], TS has been applied on numerous
problems spanning various fields of discrete optimization [11,15,26]. The basic
motivation for the development of TS originated from the necessity of search
algorithms to overcome local minimizers. This was achieved by equipping the
algorithms with descent and hill-climbing capabilities.

In descent mode, the local search procedure of TS follows the baseline of the
ILS approach described in the previous section. After the detection of a local
minimizer, the algorithm begins ascending by reversing from downhill to uphill
moves in the neighborhood N () of the current sequence . This continues until
a local maximizer is reached. Subsequently, a new descent phase takes place etc.

In order to avoid retracing the same trajectories, a memory structure that
stores the most recent moves and prevents the algorithm from revisiting them is

Algorithm Portfolios for Circulant Weighing Matrices Problems 189

used in TS. In practice, the memory comprises a finite list structure, also called
tabu list (TL), where the most recently visited sequence replaces the oldest one.

The use of memory cannot fully prevent TS from getting trapped in mislead-
ing trajectories that drive the search away from global minimizers. In such cases,
it is beneficial to restart the algorithm on a new sequence if the current trajec-
tory has not improved the best solution for a prespecified number of iterations
or elapsed time.

Similarly to ILS, new initial sequences can be generated either randomly
within the whole search space S or through perturbations of already detected
local minimizers. The latter approach can be effective in problems where local
minimizers are closely clustered.

A simple form of the TS algorithm is reported in Table 2, where the parameter
p €]0,1] defines the probability of restarting the algorithm on a perturbation of
the best-so-far solution xpest. Other crucial parameters are the size of the tabu
list, Stabu, as well as the number of non-improving steps, Tyis, before restarting a
trajectory. Further details on TS and its applications can be found in [11,15,26].

3.3 Algorithm Portfolios

Algorithm Portfolios (APs) [17] define schemes composed of multiple individual
algorithms that share the available computational budget. An AP may consist
of multiple copies of one algorithm with the same or different parameters (homo-
geneous AP) or different algorithms (heterogeneous AP). All the algorithms run
concurrently in either one or multiple processors (CPUs). If a single CPU is used,
the algorithms’ execution is alternated according to a time assignment schedule.
In multi-core or parallel systems, the algorithms share the hardware resources,
i.e., number of available CPUs [16].

Relevant studies have shown that proper resource allocation between the
constituent algorithms can render APs more efficient than the standalone algo-
rithms, both in serial [17] and parallel [16] computational environments. More-
over, information exchange between the algorithms (interactive APs) can be
highly beneficial [25]. Motivated from these studies, a new parallel AP with a
sophisticated time budget allocation scheme that is based on market-trading
procedures was proposed in [27] and successfully applied on the CWM problems
in [28]. The specific AP comprised various search algorithms. Among them, TS
was shown to be the most effective one [28].

The previous studies offered useful insight on the performance of APs on
CWM problems, leaving prosperous ground for further investigation. The AP
in [28] was based on the special trading-based time allocation rather than the
plain interactive AP model. The experimental results offered clear evidence that
trajectory-based approaches were dominant in terms of solution quality. More-
over, the highly-effective TS algorithm was considered only with the neighbor-
hood best strategy, which is an effective but also computationally demanding
approach.

190 1.S. Kotsireas et al.

Another important issue in parallel APs is the effect of the number of algo-
rithms and, consequently, the number of nodes that are concurrently used. The
experiments in [28] were conducted on a computer cluster where a large number
of processors were available. However, it would be interesting to evaluate the APs
also on the widely accessible multi-core processors, which typically offer only a
small number of CPUs to the user. For instance, modern Intel© i7 processors
consist of 4 actual cores that offer 8 CPUs by using hyper-threading technology!.
Each CPU can concurrently run multiple algorithms in different computation
threads at the cost of slower execution, since the algorithms are alternatively
executed. Given a prespecified running-time budget, it is compelling to investi-
gate whether it is preferable to use small number of algorithms (not exceeding
the number of available CPUs) in order to attain faster execution or use higher
numbers of algorithms (thereby promoting exploration) with slower execution.

Another interesting issue that emanates from previous TS applications is
related to the criteria of accepting a new sequence through comparisons with
the ones stored in TL. The typical comparison has been based solely on the
Hamming distance between the compared sequences, i.e., a pairwise comparison
of their corresponding components. Thus, a new sequence was accepted only if it
had non-zero distance from all stored sequences in TL. Although this approach
adheres to the typical rules applied in various TS applications, it can become
inefficient in CWM problems.

The reason lies on the specific properties of CWM matrices. Specifically, a
given sequence x defines the same CWM with all right-hand shifted sequences
produced from it. In simple words, the sequence x defines a whole class of
sequences that produce the same CWM. These equivalent sequences have non-
zero Hamming distances between them. Thus, the comparison criterion in previ-
ous T'S approaches cannot prevent the acceptance of a sequence that is equivalent
with one already included in TL. Tabu lists of large size as in [28] can ameliorate
this deficiency but they impose additional computational burden. For this rea-
son, it is preferable to modify the comparison procedure such that a candidate
new sequence is accepted only if it differs from all sequences in TL as well as
from all their right-hand shifts.

The present work attempts to shed light on the aforementioned issues. The
employed parallel APs are outlined in Table 3. The number of nodes, m, refers to
the number of threads required by the AP and can exceed the number of available
CPUs. The parallel AP is based on a standard master-slave parallelization model,
where the master (node 0) is devoted to book-keeping and information-sharing
between the algorithms. Both homogeneous and heterogencous APs consisting
of the TS and ILS algorithms are studied. The simple Random Restart variant
of ILS was used, along with the local search described in the previous sections.
Further details for the algorithms are given in the following section.

! http://www.intel.com/content /www /us/en/processors/core/ core-i7-processor.
html.

http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html

Algorithm Portfolios for Circulant Weighing Matrices Problems 191

Table 3. Pseudocode of the parallel Algorithm Portfolio approach with m nodes.

Algorithm Portfolio (m nodes)
Master Node (i = 0)

Initialize (m — 1) slave nodes and assign an algorithm to each one.

Thest — GetlInitial Sequence(S)
SendSequence(i, Tbest), 1 = 1,...,m —1
While (nodes still running) Do
GetMessage(t)
If (node ¢ improved @pest) Then
Update Best(@pest)
Else If (node ¢ requests best sequence update) Then
SendSequence(i, Tuest)
End If
End While
Report @pest
Slave Nodes (i =1,...,m —1)

Initialize assigned algorithm.

© 00 J O U bW W N

—_ =
= o

ReceiveSequence(0, Tpest)
While (allocated time not exceeded) Do
Execute one iteration of the algorithm.
If (new @pest found) Then
SendSequence(0, Toest)
Else If (best sequence update is needed) Then
RequestSequenceUpdate(0)
End If
End While

Finalize node

© 00 J O U b= W N

—_ =
= o

4 Experimental Analysis

The experimental analysis consisted of two phases. In the first phase, all algo-
rithms were applied on the representative 33-dimensional C'W (33, 25) problem,
in order to statistically analyze their performance. The specific problem was
selected due to its guaranteed solution existence, moderate size, high weight
(k? = 25), and reasonable convergence times of the algorithms. The second
phase consisted of the application of the best-performing algorithms on the more
challenging 48-dimensional C'W (48, 36) problem. This is a well-studied problem
that was used as benchmark in previous studies [28]. The number of sequence
components that assume each value of the set {—1,0,+1} for both problems is
reported in Table 4.

192 1.S. Kotsireas et al.

Table 4. Details of the considered representative problems.

Problem Length | Weight | Dim. | +1|—1 |0
CW(33,25) | 33 25 33 15 |10 @ 8
CW (48, 36) | 48 36 48 21 |15 |12

Table 5. Parameter values for the employed algorithms.

Param. | Description Value(s)

m number of nodes (threads) {8,16,64}

nss neighborhood search strategy {neighb. best (nb), first best (fb)}
Stabu | tabu list size {5,10}

This non-improving iterations before restart | {100, 1000}

P probability of perturbing best solution | {0.00,0.01}

Ptype | algorithm parameters’ type {fixed (f), random (r)}

Trnax maximum running time 300s

We considered APs composed solely of TS or ILS algorithms, henceforth
denoted as “T'S” or “ILS”, respectively. Also, we considered mixed APs embrac-
ing both algorithms, henceforth denoted as “MIX”. Initially, an extensive exper-
imental study was conducted for all combinations (full factorial design) of the
parameter values reported in Table 5. Specifically, for each portfolio type (TS,
ILS, or MIX), we considered the cases of m = 8, 16, and 64 threads running on
a single processor with 8 CPUs available (note that the number of slave nodes is
m — 1). In TS-based APs all slave nodes were occupied by TS algorithms, while
in ILS-based APs they were devoted to ILS. In MIX APs, the TS algorithm was
assigned to the odd-indexed nodes (1,3,...) and ILS algorithms were running
on even-indexed nodes (2,4,...).

All experiments were conducted on a single-processor Intel® i7-4770
3.40 GHz machine with 8 GB DDR3 RAM, providing 8 available CPUs under
Ubuntu Linux 14.04. There was no suppression of the operating system pro-
cedures during the runs. For the parallelization, the Open MPI libraries were
used with the GCC 4.8.4 compiler. All source codes were developed in the C
programming language.

In the TS and ILS algorithms, both the neighborhood-best (nb) and first-
best (fb) strategies were considered for neighborhood search. New trajectories
were either initialized on random perturbations of the best-so-far solution with
probability p = 0.01 or solely on random new points (denoted as p = 0.00). In
the first case, mild perturbations of the best solution were used, consisting of
1 up to 3 distinct random swaps of the sequence’s components.

The TS algorithms require some additional parameters. The tabu list size
Stabu 1N our experiments was set to rather small values, namely 5 and 10. These
values are significantly smaller than in previous studies where it was set equal

Algorithm Portfolios for Circulant Weighing Matrices Problems 193

Table 6. Results for the 3 best-performing approaches per AP type and number of
nodes, as well as for the 5 overall best APs for the CW (33,25) problem. The “*”
symbol denotes randomized-parameters APs and, if followed by a number, e.g., “*s”,
it denotes that the upper bound of the corresponding randomized parameter is s.

TS-based APs

m | nss | Stabu | Tnis | P Piype | Suc.(%) | Time Loc. Min.
8 * |5 |*100 |0.00 |r 100.0 | 24.6(26.4) | 14080.9
8 |fb |5 100 0.00 |f 100.0 26.8(28.2) | 17535.1
8 | * 10 *100 1 0.00 |r 100.0 32.9(34.4) | 10488.2
16 |* |5 | *100 |*0.01|r 100.0 | 25.7(27.4) | 7574.2
16 | * 5 *100 1 0.00 |r 100.0 31.6(26.5) | 8937.5
16 |fb |5 100 0.00 |f 100.0 38.4(30.2) | 12494.7
64 |[fb |5 100 0.00 |f 100.0 25.0(25.5) | 2032.3
64 |[fb |5 100 0.01 |f 100.0 25.5(23.8) | 2100.9
64 | * 5 100 0.00 |r 100.0 29.0(31.8) | 2063.8
ILS-based APs
m | nss | Stabu | Tnis | P Ptype | Suc.(%) | Time Loc. Min.
8 |nb |- - 0.00 |f 100.0 11.0(14.6) | 32512.7
8 'nb |- - 0.01 |f 100.0 9.6(11.7) |28486.7
8 |fb |- - 0.00 |f 100.0 6.6(4.8) 42418.4
16 |fb |- - 0.01 |f 100.0 2.8(4.3) 8762.9
16 |nb |- - 0.00 |f 100.0 8.5(9.0) 12413.9
16 |nb |- - 0.01 |f 100.0 12.2(11.7) | 17587.3
64 |[fb |- - 0.00 |f 100.0 4.2(4.5) 3447.3
64 |[fb |- - 0.01 |f 100.0 4.3(5.3) 3388.9
64 | * - - 0.00 |r 100.0 7.7(9.9) 3927.3
MIX APs
m | nss | Stabu | Tnis | P Ptype | Suc.(%) | Time Loc. Min.
8 |fb |5 100 0.00 |f 100.0 10.3(12.1) | 31847.9
fb |10 100 0.01 |f 100.0 9.9(10.2) |29267.2
* 5 *100 | *0.01 |r 100.0 9.8(12.2) | 20060.1
16 |fb |5 100 0.01 |f 100.0 7.6(11.5) |12508.8
16 |fb |10 1000 |0.01 |f 100.0 8.3(11.8) |12792.8
16 |fb |10 100 0.01 |f 100.0 7.6(7.5) 11695.5
64 | * 10 *1000 1 0.00 |r 100.0 9.9(15.8) 2681.8
64 |fb |10 1000 |0.00 |f 100.0 8.0(6.1) 3318.4
64 |[fb |5 100 0.00 |f 100.0 9.1(7.9) 3967.3
OVERALL BEST APs
Alg. | m | nss | Stabu | This | P Ptype | Suc.(%) | Time Loc. Min.
ILS 16 |fb |- - 0.01 | f 1000 | 2.8(4.3) | 8762.9
ILS |64 |fb |- - 0.01 |f 100.0 4.3(5.3) 3388.9
ILS |64 [fb |- - 0.00 |f 100.0 4.2(4.5) 3447.3
MIX |16 |[fb |5 100 0.01 |f 100.0 7