
Andrew V. Goldberg
Alexander S. Kulikov (Eds.)

 123

LN
CS

 9
68

5

15th International Symposium, SEA 2016
St. Petersburg, Russia, June 5–8, 2016
Proceedings

Experimental
Algorithms

Lecture Notes in Computer Science 9685

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Andrew V. Goldberg • Alexander S. Kulikov (Eds.)

Experimental
Algorithms
15th International Symposium, SEA 2016
St. Petersburg, Russia, June 5–8, 2016
Proceedings

123

Editors
Andrew V. Goldberg
Amazon.com, Inc.
Palo Alto, CA
USA

Alexander S. Kulikov
St. Petersburg Department of Steklov
Institute of Mathematics

Russian Academy of Sciences
St. Petersburg
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-38850-2 ISBN 978-3-319-38851-9 (eBook)
DOI 10.1007/978-3-319-38851-9

Library of Congress Control Number: 2016939104

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the 25 papers presented at SEA 2016, the 15th International
Symposium on Experimental Algorithms, held during June 5–8, 2016, in St. Peters-
burg, Russia. The symposium was organized by the Steklov Mathematical Institute at
St. Petersburg of the Russian Academy of Sciences (PDMI). SEA covers a wide range
of topics in experimental algorithmics, bringing together researchers from algorithm
engineering, mathematical programming, and combinatorial optimization communities.
In addition to the papers, three invited lectures were given by Juliana Freire (New York
University, USA), Haim Kaplan (Tel Aviv University, Israel), and Yurii Nesterov
(Ecole Polytechnique de Louvain, Belgium).

The Program Committee selected the 25 papers presented at SEA 2016 and pub-
lished in these proceedings from the 54 submitted papers. Each submission was
reviewed by at least three Program Committee members, some with the help of
qualified subreferees. We expect the full versions of most of the papers contained in
these proceedings to be submitted for publication in refereed journals.

Many people and organizations contributed to the smooth running and the success
of SEA 2016. In particular our thanks go to:

– All authors who submitted their current research to SEA
– Our reviewers and subreferees who gave input into the decision process
– The members of the Program Committee, who graciously gave their time and

expertise
– The members of the local Organizing Committee, who made the conference

possible
– The EasyChair conference management system for hosting the evaluation process
– Yandex
– The Government of the Russian Federation (Grant 14.Z50.31.0030)
– Steklov Mathematical Institute at St. Petersburg of the Russian Academy of

Sciences
– Monomax Congresses & Incentives

June 2016 Andrew V. Goldberg
Alexander S. Kulikov

Organization

Program Committee

Ittai Abraham VMware Research, USA
Maxim Babenko Moscow State University, Russia
Daniel Bienstock Columbia University, USA
Daniel Delling Sunnyvale, CA, USA
Paola Festa University of Naples Federico II, Italy
Stefan Funke Universität Stuttgart, Germany
Andrew V. Goldberg Amazon.com, Inc., USA
Dan Halperin Tel Aviv University, Israel
Michael Juenger Universität zu Köln, Germany
Alexander S. Kulikov St. Petersburg Department of Steklov Institute

of Mathematics, Russian Academy of Sciences, Russia
Alberto Marchetti

Spaccamela
Sapienza University of Rome, Italy

Petra Mutzel University of Dortmund, Germany
Tomasz Radzik King’s College London, UK
Rajeev Raman University of Leicester, UK
Ilya Razenshteyn CSAIL, MIT, USA
Mauricio Resende Amazon.com, Inc., USA
Peter Sanders Karlsruhe Institute of Technology, Germany
David Shmoys Cornell University, USA
Daniele Vigo Università di Bologna, Italy
Neal Young University of California, Riverside, USA

Organizing Committee

Asya Gilmanova Monomax Congresses & Incentives, Russia
Ekaterina Ipatova Monomax Congresses & Incentives, Russia
Alexandra Novikova St. Petersburg Department of Steklov Institute

of Mathematics, Russian Academy of Sciences, Russia
Alexander Smal St. Petersburg Department of Steklov Institute

of Mathematics, Russian Academy of Sciences, Russia
Alexander S. Kulikov St. Petersburg Department of Steklov Institute

of Mathematics, Russian Academy of Sciences, Russia

Additional Reviewers

Akhmedov, Maxim
Artamonov, Stepan
Atias, Aviel
Becchetti, Luca
Birgin, Ernesto G.
Bonifaci, Vincenzo
Bökler, Fritz
Botez, Ruxandra
Cetinkaya, Elcin
Ciardo, Gianfranco
de Andrade, Carlos
Dietzfelbinger, Martin
Fischer, Johannes
Fleischman, Daniel
Fogel, Efi
Gog, Simon
Gomez Ravetti, Martin
Gondzio, Jacek
Gonçalves, José
Gopalan, Parikshit
Gronemann, Martin
Halperin, Eran
Harchol, Yotam
Hatami, Pooya
Hatano, Kohei
Hübschle-Schneider, Lorenz
Johnson, David
Karypis, George
Kashin, Andrei
Kleinbort, Michal
Kolesnichenko, Ignat
Kärkkäinen, Juha

Lattanzi, Silvio
Luo, Haipeng
Mallach, Sven
Miyazawa, Flavio K.
Mu, Cun
Narodytska, Nina
Pajor, Thomas
Pardalos, Panos
Pascoal, Marta
Pferschy, Ulrich
Pouzyrevsky, Ivan
Prezza, Nicola
Ribeiro, Celso
Rice, Michael
Roytman, Alan
Sagot, Marie-France
Salzman, Oren
Savchenko, Ruslan
Schlechte, Thomas
Schmidt, Daniel
Schöbel, Anita
Shamai, Shahar
Solovey, Kiril
Sommer, Christian
Spisla, Christiane
Starikovskaya, Tatiana
Storandt, Sabine
Suk, Tomáš
Valladao, Davi
Vatolkin, Igor
Wieder, Udi
Zey, Bernd

VIII Organization

Abstracts of Invited Talks

Provenance for Computational
Reproducibility and Beyond

Juliana Freire

New York University, New York, USA

The need to reproduce and verify experiments is not new in science. While result
verification is crucial for science to be self-correcting, improving these results helps
science to move forward. Revisiting and reusing past results— or as Newton once said,
“standing on the shoulders of giants” — is a common practice that leads to practical
progress. The ability to reproduce computational experiments brings a range of benefits
to science, notably it: enables reviewers to test the outcomes presented in papers;
allows new methods to be objectively compared against methods presented in repro-
ducible publications; researchers are able to build on top of previous work directly; and
last but not least, recent studies indicate that reproducibility increases impact, visibility,
and research quality and helps defeat self-deception.

Although a standard in natural science and in Math, where results are accompanied
by formal proofs, reproducibility has not been widely applied for results backed by
computational experiments. Scientific papers published in conferences and journals
often include tables, plots and beautiful pictures that summarize the obtained results,
but that only loosely describe the steps taken to derive them. Not only can the methods
and implementation be complex, but their configuration may require setting many
parameters. Consequently, reproducing the results from scratch is both time-consuming
and error-prone, and sometimes impossible. This has led to a credibility crisis in many
scientific domains. In this talk, we discuss the importance of maintaining detailed
provenance (also referred to as lineage and pedigree) for both data and computations,
and present methods and systems for capturing, managing and using provenance for
reproducibility. We also explore benefits of provenance that go beyond reproducibility
and present emerging applications that leverage provenance to support reflective rea-
soning, collaborative data exploration and visualization, and teaching.

This work was supported in part by the National Science Foundation, a Google
Faculty Research award, the Moore-Sloan Data Science Environment at NYU, IBM
Faculty Awards, NYU School of Engineering and Center for Urban Science and
Progress.

Minimum Cost Flows in Graphs
with Unit Capacities

Haim Kaplan

Tel Aviv University, Tel Aviv, Israel

We consider the minimum cost flow problem on graphs with unit capacities and its
special cases. In previous studies, special purpose algorithms exploiting the fact that
capacities are one have been developed. In contrast, for maximum flow with unit
capacities, the best bounds are proven for slight modifications of classical blocking
flow and push-relabel algorithms.

We show that the classical cost scaling algorithms of Goldberg and Tarjan (for
general integer capacities) applied to a problem with unit capacities achieve or improve
the best known bounds. For weighted bipartite matching we establish a bound of O(√rm
log C) on a slight variation of this algorithm. Here r is the size of the smaller side of the
bipartite graph, m is the number of edges, and C is the largest absolute value of an
arc-cost. This simplifies a result of Duan et al. and improves the bound, answering an
open question of Tarjan and Ramshaw. For graphs with unit vertex capacities we
establish a novel O(√nm log (nC)) bound.

This better theoretical understanding of minimum cost flow on one hand, and recent
extensive experimental work on algorithms for maximum flow on the other hand, calls
for further engineering and experimental work on algorithms for minimum cost flow.
I will discuss possible future research along these lines.

Complexity Bounds for Primal-Dual Methods
Minimizing the Model of Objective Function

Yurii Nesterov

CORE/INMA, UCL, Louvain-la-Neuve, Belgium

We provide Frank–Wolfe (Conditional Gradients) method with a convergence analysis
allowing to approach a primal-dual solution of convex optimization problem with
composite objective function. Additional properties of complementary part of the
objective (strong convexity) significantly accelerate the scheme. We also justify a new
variant of this method, which can be seen as a trust-region scheme applying the linear
model of objective function. Our analysis works also for a quadratic model, allowing to
justify the global rate of convergence for a new second-order method. To the best of
our knowledge, this is the first trust-region scheme supported by the worst-case
complexity bound.

Contents

Practical Variable Length Gap Pattern Matching . 1
Johannes Bader, Simon Gog, and Matthias Petri

Fast Exact Computation of Isochrones in Road Networks. 17
Moritz Baum, Valentin Buchhold, Julian Dibbelt, and Dorothea Wagner

Dynamic Time-Dependent Route Planning in Road Networks with User
Preferences. 33

Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner

UKP5: A New Algorithm for the Unbounded Knapsack Problem 50
Henrique Becker and Luciana S. Buriol

Lempel-Ziv Decoding in External Memory. 63
Djamal Belazzougui, Juha Kärkkäinen, Dominik Kempa,
and Simon J. Puglisi

A Practical Method for the Minimum Genus of a Graph: Models and
Experiments . 75

Stephan Beyer, Markus Chimani, Ivo Hedtke, and Michal Kotrbčík

Compact Flow Diagrams for State Sequences . 89
Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Michael Horton,
and Stef Sijben

Practical Dynamic Entropy-Compressed Bitvectors with Applications 105
Joshimar Cordova and Gonzalo Navarro

Accelerating Local Search for the Maximum Independent Set Problem 118
Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz,
Darren Strash, and Renato F. Werneck

Computing Nonsimple Polygons of Minimum Perimeter 134
Sándor P. Fekete, Andreas Haas, Michael Hemmer, Michael Hoffmann,
Irina Kostitsyna, Dominik Krupke, Florian Maurer,
Joseph S.B. Mitchell, Arne Schmidt, Christiane Schmidt,
and Julian Troegel

Sparse Subgraphs for 2-Connectivity in Directed Graphs 150
Loukas Georgiadis, Giuseppe F. Italiano, Aikaterini Karanasiou,
Charis Papadopoulos, and Nikos Parotsidis

Worst-Case-Efficient Dynamic Arrays in Practice . 167
Jyrki Katajainen

http://dx.doi.org/10.1007/978-3-319-38851-9_1
http://dx.doi.org/10.1007/978-3-319-38851-9_2
http://dx.doi.org/10.1007/978-3-319-38851-9_3
http://dx.doi.org/10.1007/978-3-319-38851-9_3
http://dx.doi.org/10.1007/978-3-319-38851-9_4
http://dx.doi.org/10.1007/978-3-319-38851-9_5
http://dx.doi.org/10.1007/978-3-319-38851-9_6
http://dx.doi.org/10.1007/978-3-319-38851-9_6
http://dx.doi.org/10.1007/978-3-319-38851-9_7
http://dx.doi.org/10.1007/978-3-319-38851-9_8
http://dx.doi.org/10.1007/978-3-319-38851-9_9
http://dx.doi.org/10.1007/978-3-319-38851-9_10
http://dx.doi.org/10.1007/978-3-319-38851-9_11
http://dx.doi.org/10.1007/978-3-319-38851-9_12

On the Solution of Circulant Weighing Matrices Problems Using Algorithm
Portfolios on Multi-core Processors . 184

Ilias S. Kotsireas, Panos M. Pardalos, Konstantinos E. Parsopoulos,
and Dimitris Souravlias

Engineering Hybrid DenseZDDs . 201
Taito Lee, Shuhei Denzumi, and Kunihiko Sadakane

Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances . . . 217
Stephan S. Lorenzen and Pawel Winter

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 231
Mehrdad Niknami and Samitha Samaranayake

An Experimental Evaluation of Fast Approximation Algorithms for the
Maximum Satisfiability Problem . 246

Matthias Poloczek and David P. Williamson

Experimental Analysis of Algorithms for Coflow Scheduling 262
Zhen Qiu, Clifford Stein, and Yuan Zhong

An Empirical Study of Online Packet Scheduling Algorithms 278
Nourhan Sakr and Cliff Stein

Advanced Multilevel Node Separator Algorithms . 294
Peter Sanders and Christian Schulz

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices . . . 310
Julien Subercaze, Christophe Gravier, and Pierre-Olivier Rocher

CHICO: A Compressed Hybrid Index for Repetitive Collections 326
Daniel Valenzuela

Fast Scalable Construction of (Minimal Perfect Hash) Functions 339
Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry 353
Moritz von Looz, Mario Wolter, Christoph R. Jacob,
and Henning Meyerhenke

Online Algorithm for Approximate Quantile Queries on Sliding Windows . . . 369
Chun-Nam Yu, Michael Crouch, Ruichuan Chen, and Alessandra Sala

Author Index . 385

XVI Contents

http://dx.doi.org/10.1007/978-3-319-38851-9_13
http://dx.doi.org/10.1007/978-3-319-38851-9_13
http://dx.doi.org/10.1007/978-3-319-38851-9_14
http://dx.doi.org/10.1007/978-3-319-38851-9_15
http://dx.doi.org/10.1007/978-3-319-38851-9_16
http://dx.doi.org/10.1007/978-3-319-38851-9_17
http://dx.doi.org/10.1007/978-3-319-38851-9_17
http://dx.doi.org/10.1007/978-3-319-38851-9_18
http://dx.doi.org/10.1007/978-3-319-38851-9_19
http://dx.doi.org/10.1007/978-3-319-38851-9_20
http://dx.doi.org/10.1007/978-3-319-38851-9_21
http://dx.doi.org/10.1007/978-3-319-38851-9_22
http://dx.doi.org/10.1007/978-3-319-38851-9_23
http://dx.doi.org/10.1007/978-3-319-38851-9_24
http://dx.doi.org/10.1007/978-3-319-38851-9_25

Practical Variable Length Gap Pattern Matching

Johannes Bader1, Simon Gog1(B), and Matthias Petri2

1 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany

gog@kit.edu
2 Department of Computing and Information Systems,

The University of Melbourne, VIC 3010, Australia

Abstract. Solving the problem of reporting all occurrences of patterns
containing variable length gaps in an input text T efficiently is important
for various applications in a broad range of domains such as Bioinformat-
ics or Natural Language Processing. In this paper we present an efficient
solution for static inputs which utilizes the wavelet tree of the suffix array.
The algorithm partially traverses the wavelet tree to find matches and
can be easily adapted to several variants of the problem. We explore the
practical properties of our solution in an experimental study where we
compare to online and semi-indexed solutions using standard datasets.
The experiments show that our approach is the best choice for searching
patterns with many gaps in large texts.

1 Introduction

The classical pattern matching problem is to find all occurrences of a pattern P
(of length m) in a text T (of length n both drawn from an alphabet Σ of size σ).
The online algorithm of Knuth, Morris and Pratt [10] utilizes a precomputed
table over the pattern to solve the problem in O

(
n + m

)
time. Precomputed

indexes over the input text such as suffix arrays [14] or suffix trees allow matching
in O

(
m × log n

)
or O

(
m

)
time respectively. In this paper we consider the more

general variable length gap pattern matching problem in which a pattern does
not only consist of characters but also length constrained gaps which match any
character in the text. We formally define the problem as:

Problem 1 Variable Length Gap (VLG) Pattern Matching [5]. Let P be a pattern
consisting of k ≥ 2 subpatterns p0 . . . pk−1, of lengths m = m0 . . . mk−1 drawn
from Σ and k−1 gap constraints C0 . . . Ck−2 such that Ci = 〈δi,Δi〉 with 0 ≤
δi ≤ Δi < n specifies the smallest (δi) and largest (Δi) distance between a match
of pi and pi+1 in T . Find all matches – given as k-tuples 〈i0 . . . ik−1〉 where ij is
the starting position for subpattern pj in T – such that all gap constraints are
satisfied.

If overlaps between matches are permitted, the number of matching positions
can be polynomial in k + 1. We refer to this problem type as all. In standard

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 1–16, 2016.
DOI: 10.1007/978-3-319-38851-9 1

2 J. Bader et al.

implementations of regular expressions overlaps are not permitted1 and two
types for variable gap pattern matching are supported. The greedy type (a gap
constraint is written as Ci = .{δi,Δi}) maximizes while the lazy type (a gap
constraint is written as Ci = .{δi,Δi}?) minimizes the characters matched by
gaps. The following example illustrates the three VLG problem types.

Example 1. Given a text T = aaabbbbaaabbbb and a pattern P = ab〈1, 6〉b
consisting of two subpatterns p0 =“ab” and p1 =“b” and a gap constraint
C0 = 〈1, 6〉. Type “all” returns Sall = {〈2, 5〉, 〈2, 6〉, 〈2, 10〉, 〈9, 12〉, 〈9, 13〉},
greedy matching results in Sgreedy = {〈2, 10〉} and lazy evaluation Slazy =
{〈2, 5〉, 〈9, 12〉}.

VLG pattern matching is an important problem which has numerous practi-
cal applications. Traditional Unix utilities such as grep or mutt support VLG
pattern matching on small inputs using regular expression engines. Many areas
of computer science use VLG matching on potentially very large data sets. In
Bioinformatics, Navarro and Raffinot [18] investigate performing VLG pattern
matching in protein databases such as PROSITE [9] where individual protein
site descriptions are expressed as patterns containing variable length gaps. In
Information Retrieval (IR), the proximity of query tokens within a document
can be an indicator of relevance. Metzler and Croft [15] define a language model
which requires finding query terms to occur within a certain window of each
other in documents. In Natural Language Processing (NLP), this concept is
often referred to as collocations of words. Collocations model syntactic elements
or semantic links between words in tasks such as word sense disambiguation [16].
In Machine Translation (MT) systems VLG pattern matching is employed to find
translation rule sets in large text corpora to improve the quality of automated
language translation systems [13].

In this paper, we focus on the offline version of the VLG pattern match-
ing problem. Here, a static input is preprocessed to generate an index which
facilitates faster query processing. Our contributions are as follows:

1. We build an index consisting of the wavelet tree over the suffix array and
propose different algorithms to efficiently answer VLG matching queries. The
core algorithms is conceptionally simple and can be easily adjusted to the
three different matching modes outlined above.

2. In essence our WT algorithm is faster than other intersection based
approaches as it allows to combine the sorting and filtering step and does
not require copying of data. Therefore our approach is specially suited for a
large number of subpatterns.

3. We provide a thorough empirical evaluation of our method including a com-
parison to different practical baselines including other index based approaches
like qgram indexes and suffix arrays.

1 I.e. any two match tuples 〈i0 . . . ik−1〉 and 〈i′0 . . . i′k−1〉 spanning the intervals
[i0, ik−1 + mk−1 − 1] and [i′0, i

′
k−1 + mk−1 − 1] do not overlap.

Practical Variable Length Gap Pattern Matching 3

2 Background and Related Work

Existing solutions to solving VLG can be categorized into three classes of algo-
rithms. In general the algorithms discussed here perform lazy evaluation, but can
be implemented to also support greedy evaluation. The first category of algo-
rithms build on the classical algorithm of Thompson [20] to construct a finite
automaton to solve the VLG problem used by many regular expression engines.
Let L =

∑k−2
i=0 Δi. The classical automaton requires O

(
n(Lσ + m)

)
time which

can not be reduced much further [4,5]. The matching process scans T , transi-
tioning between states in the automaton to find occurrences of P. Algorithms
engineered to solve the VLG problem specifically can achieve better runtime
performance by utilizing bit-parallelism or placing constraints on individual gap
constraints in P [4,6,18]. For example the runtime of Bille and Thorup [4] is
O

(
n(k log w

w × log k)
)

time after prepocessing P (w is the word size).
A second class of algorithms take into account the occurrences of each subpat-

tern in P [5,17,19]. The algorithms operate in two stages. First, all occurrences
of each subpattern p ∈ P in T are determined. Let αi be the number of occur-
rences of pi in T and α =

∑k−1
i=0 αi be the total number of occurrences of all pi

in T . The occurrences of each subpattern can be obtained via a classical online
algorithm such as Aho and Corasick [1] (AC), or using an index such as the suffix
array (SA) of T . The algorithms of Morgante et al. [17,19] require additional
O

(
α
)

space to store the occurrences, whereas Bille et al. [5] only requires O
(
S

)

extra space where S =
∑k−2

i=0 δi. The algorithms keep track of, for each pi+1

the occurrences of pi for which Ci is satisfied. Similarly to Rahman et al. [19],
the occurrences Xi = [x0, . . . , xαi−1] of pi are used to satisfy Ci = 〈δi,Δi〉 by
searching for the next larger (or equal) value for all xj + δi in the sorted list
of occurrences of pi+1. Performing this process for all pi and gap constraints
Ci can be used to perform lazy evaluation of VGP. While Rahman et al. [19]
consider only AC or SA to identify occurrences of subpatterns, many different
ways to store or determine and search positions exist. For example, the folklore
q-gram index, which explicitly stores the occurrences of all q-grams in T , can
be used to obtain the occurrences of all subpatterns by performing intersection
of the positional lists of the q-grams each subpattern in P. List compression
affects the performance of the required list intersections and thus provides dif-
ferent time space-trade-offs [11]. Similarly, different list intersection algorithms
can also affect the performance of such a scheme [2].

A combination of schemata one and two use occurrences of subpatterns to
restrict the segments within T where efficient online algorithms are used to verify
potential matches. For example, q-gram lists can be intersected until the number
of possible occurrences of P is below a certain threshold. Then an automaton
based algorithm can match P at these locations.

The third category are suffix tree based indexes. In its simplest form,
Lewenstein [12] augments each node of a suffix tree over T with multiple gap-r-
tree for all 1 ≤ r < G, where G is the longest gap length which has to be specified
at construction time. If k subpatterns are to be supported, the nodes in each gap-
r-tree have to be recursively augmented with additional gap-r-trees at a total

4 J. Bader et al.

space cost of O
(
nkGk−1

)
space. Queries are answered in O

(∑k−1
0 mi

)
time by

traversing the suffix tree from the root, branching into the gapped-r-trees after
the locus of p0 is found. Lewenstein [12] further propose different time-space
trade-offs, reducing the space to O

(
nG2k−1 logk−1 n

)
by performing centroid

path decomposition which increases query time to O
(∑k−1

0 mi +2k−1 log log n
)
.

Bille and Gørtz [3] propose a suffix tree based index which requires two ST over
T (ST (T)) and the reverse text (ST (T R)) plus a range reporting structure.
Single fixed length gap queries can then be answered by matching p0 in ST (T)
and the reverse of p1 in ST (T R). Then a range reporting structure is used to
find the matching positions in T .

In practice, Lopez [13] use a combination of (1) intersection precomputation
(2) fast list intersection and (3) enhanced version of Rahman et al. [19] to solve
a restricted version of VGP.

3 VLG Pattern Matching Using the Wavelet Tree
over SA

We first introduce notation which is necessary to describe our algorithms. Let
range I from index � to r be denoted by [�, r]. A range is considered empty (I = ∅)
if � > r. We denote the intersection of two ranges I0 = [�0, r0] and I1 = [�1, r1]
as I0 ∩ I1 = [max{�0, �1},min{r0, r1}]. We further define the addition I0 + I1 of
two ranges to be [�0 + �1, r0 + r1]. Shorthands for the left and right border of a
non-empty range I are lb(I) and rb(I).

Let Xi = xi,0, . . . , xi,αi−1 be the list of starting positions of subpattern pi

in T . Then for k = 2 the solution to the VLG pattern matching problem for
P = p0〈δ,Δ〉p1 are pairs 〈x0,i, x1,j〉 such that ([x0,i, x0,i] + [m0 + δ,m0 + Δ]) ∩
[x1,j , x1,j] 	= ∅. The generalization to k > 2 subpatterns is straightforward by
checking all k − 1 constraints. For ease of presentation we will restrict the fol-
lowing explanation to k = 2. Assuming all Xi are present in sorted order all
matches can be found in O

(
α0 + α1 + z

)
time, where z refers to the number of

matches of P in T . Unfortunately, memory restrictions prohibit the storage of
all possible O

(
n2

)
sorted subpattern lists, but we will see next that the linear

space suffix array can be used to retrieve any unsorted subpattern list.
A suffix T [i, n−1] is identified by its starting position i in T . The suffix array

(SA) contains all suffixes in lexicographically sorted order, i.e. SA[0] points to the
smallest suffix in the text, SA[1] to the second smallest and so on. Figure 1 depicts
the SA for an example text of size n = 32. Using SA and T it is easy to determine
all suffixes which start with a certain prefix p by performing binary search.
For example, p0 = gt corresponds to the SA-interval [17, 21] which contains
suffixes 16, 13, 21, 4, 28. Note that the occurrences of the p in SA are not stored
sorted order. Answering a VLG pattern query using SA can be achieved by
first determining the SA-intervals of all subpatterns and next, filtering out all
occurrence tuples which fulfill the gap constraints [19].

Let P = gc〈1, 2〉c containing p0 = gc and p1 = c. In Example Fig. 1,
the SA-interval of c (SA[9, 16]) contains suffixes 26, 10, 11, 19, 12, 20, 1 and 8.

Practical Variable Length Gap Pattern Matching 5

Fig. 1. Sample text T = actagtatctcccgtagtaccgtatacagtt$ and suffix array (SA)
of T .

Sorting the occurrences of both subpatterns returns in X0 = 4, 13, 16, 21, 28 and
X1 = 1, 8, 10, 11, 12, 19, 20, 26. Filtering X0 and X1 based on C0 = 〈1, 2〉 pro-
duces tuples 〈4, 8〉, 〈16, 19〉 and 〈16, 20〉. The time complexity of this process is
O

(∑k−1
i=0 αilog αi + z

)
, where the first term (sorting all Xi) is independent of z

(the output size) and can dominate if subpatterns occur frequently.
Using a wavelet tree (WT) [8] allows combining the sorting and filtering

process. This enables early termination for text regions which do not contain
all required subpatterns in correct order within the specified gap constraints. A
wavelet tree WT (X) of a sequence X[0, n − 1] over an alphabet Σ[0, σ − 1] is
defined as a perfectly balanced binary tree of height H =
log σ�. Conceptually
the root node v represents the whole sequence Xv = X. The left (right) child of
the root represents the subsequence X0 (X1) which is formed by only considering
symbols of X which are prefixed by a 0-bit(1-bit). In general the i-th node on
level L represents the subsequence Xi(2) of X which consists of all symbols which
are prefixed by the length L binary string i(2). More precisely the symbols in
the range R(vi(2)) = [i ·2H−L, (i+1) ·2H−L −1]. Figure 2 depicts an example for
X = SA(T). Instead of actually storing Xi(2) it is sufficient to store the bitvector
Bi(2) which consists of the �-th bits of Xi(2) . In connection with a rank structure,
which can answer how many 1-bits occur in a prefix B[0, j − 1] of bitvector
B[0, n−1] in constant time using only o(n) extra bits, one is able to reconstruct
all elements in an arbitrary interval [�, r]: The number of 0-bits (1-bits) left to
� corresponds to �′ in the left (right) child and the number of 0-bits (1-bits) left
to r corresponds to r′ + 1 in the left (right) child. Figure 2 shows this expand
method. The red interval [17, 21] in the root node v is expanded to [9, 10] in
node v0 and [8, 10] in node v1. Then to [4, 4] in node v00 and [5, 5] in node v01
and so on. Note that WT nodes are only traversed if the interval is not empty
(i.e. � ≤ r). E.g. [4, 4] at v00 is split into [3, 2] and [1, 1]. So the left child v000
is omitted and the traversal continues with node v001. Once a leaf is reached we
can output the element corresponding to its root to leaf path. The wavelet tree
WT (X) uses just n · h + o(n · h) bits of space.

In our application the initial intervals correspond to the SA-intervals of all
subpatterns pi in P. However, our traversal algorithm only considers the exis-
tence of a SA-interval at a given node and not its size. A non-empty SA-interval
of subpattern pi in a node vx at level L means that pi occurs somewhere in the
text range R(vx) = [x · 2H−L, (x + 1) · 2H−L − 1]. Figure 3 shows the text ranges
for each WT node. A node v and its parent edge is marked red (resp. blue) if
subpattern p0’s (resp. p1’s) occurs in the text range R(v).

6 J. Bader et al.

Fig. 2. Wavelet tree built for the suffix array of our example text. The SA-interval
of gt (resp. c) in the root and its expanded intervals in the remaining WT nodes are
marked red (resp. blue). (Color figure online)

3.1 Breadth-First Search Approach

For both subpatterns p0 and p1, at each level in the WT, j we iteratively materi-
alize lists N j

0 and N j
1 of all WT nodes at level j in which the ranges corresponding

to p0 and p1 occur by expanding the nodes in the lists N j−1
0 and N j−1

1 of the
previous level. Next all nodes vxs in N j

0 are removed if there is no node vy in
N j

1 such that (R(vx) + [m0 + δ,m0 + Δ]) ∩ [R(vy)] 	= ∅ and vice versa. Each list
N j−1

i stores nodes in sorted order according to the beginning of their ranges.
Thus, removing all “invalid” nodes can be performed in O

(
|N j

0 | + |N j
1 |

)
time.

The following table shows the already filtered list for our running example.

WT level (j) p0 text ranges (N j
0) p1 text ranges (N j

1)

0 [0, 31] [0, 31]

1 [0, 15], [16, 31] [0, 15], [16, 31]

2 [0, 7], [8, 15], [16, 23], [24, 31] [0, 7], [8, 15], [16, 23], [24, 31]

3 [4, 7], [12, 15], [16, 19], [20, 23] [8, 11], [12, 15], [16, 19], [20, 23], [24, 27]

4 [4, 5], [16, 17], [20, 21] [8, 9], [18, 19], [20, 21], [24, 25]

5 [4, 4], [16, 16] [8, 8], [19, 19], [20, 20]

The WT nodes in the table are identified by their text range as shown in Fig. 3.
One example of a removed node is [0, 3] in lists N3

0 and N3
1 which was expanded

from node [0, 7] in N2
0 and N2

1 . It was removed since there is no text range in
N3

1 which overlaps with [0, 3] + [2 + 1, 2 + 2] = [3, 6]. Figure 3 connects removed
WT nodes with dashed instead of solid edges. Note that all text positions at
the leaf level are the start of a subpattern which fulfills all gap constraints. For

Practical Variable Length Gap Pattern Matching 7

Fig. 3. Wavelet tree nodes with annotated text ranges and path of subpattern iterators.
(Color figure online)

the all variant it just takes O
(
z
)

time to output the result. The disadvantage of
this BFS approach is that the lists of a whole level have to be kept in memory,
which takes up to n words of space. We will see next that a DFS approach lowers
memory consumption to O

(
k log n

)
words.

3.2 Depth-First Search Approach

For each subpattern pi we create a depth-first search iterator iti. The iterator
consists of a stack of (WT node, SA-interval) pairs, which is initialized by the
WT root node and the SA-interval of pi, in case the SA-interval is not empty.
The iterator is invalid, if the stack is empty – this can be checked in constant time
using a method valid(iti). We refer with iti.v to the current WT node of a valid
iterator (which is on top of the stack). A valid iterator can be incremented by
operations next down and next right. Method next down pops pair (v, [�, r]),
expands SA-interval [�, r] and pushes the right child of v with its SA-interval
and the left child of v with its SA-interval onto the stack, if the SA-interval is
not empty. That is, we traverse to the leftmost child of it.v which contains pi.
The next right(iti) operation pops one element from the stack, i.e. we traverse
to the leftmost node in the WT which contains pi and is right of iti.v.

Using these iterators the VLG pattern matching process can be expressed
succinctly in Algorithm 1, which reports the next match. The first line checks,
if both iterators are still valid so that a further match can be reported. Lines 2
and 4 check if the gap constraints are met. If the text range of p1’s iterator is too
far right (Line 2), the iterator of p0 is moved right in Line 3. Analogously, the
iterator of p1 is moved right in Line 5 if the text range of p0’s iterator is too far
right (Line 4). If the gap constrained is met and not both text ranges have size
one (Line 7) we take the iterator which is closer to the root (and break ties by i)
and refine its range. Finally, if both iterators reach the leaf level a match can be
reported. Since the traversal finds the two leftmost leaf nodes – i.e. positions –
which met the constraint the direct output of 〈lb(R(it0.v)), lb(R(it1.v))〉 in Line
11 corresponds to the lazy problem type. For lazy Line 12 would move it0 to the

8 J. Bader et al.

Algorithm 1. dfs next match(it0, it1,m0,Δ0, δ0)
1: while valid(it0) and valid(it1) do
2: if rb(R(it0.v)) +m0+ Δ0 < lb(R(it1.v)) then # gap constraint violated?
3: it0 ← next right(it0)
4: else if rb(R(it1.v)) < lb(R(it0.v)) + m0 + δ0 then # gap constraint violated?
5: it1 ← next right(it1)
6: else # gap constrained fulfilled
7: if not (is leaf(it0.v) and is leaf(it1.v)) then
8: x ← arg mini∈{0,1}{〈depth(iti.v), i〉} # select itr closest to the root
9: itx ← next down(itx) # refine range

10: else
11: report match according to VLG problem type # found match
12: move it0 and it1 according to VLG problem type and return 〈it0, it1〉

right of it1 by calling it0 ← next right(it0) until lb(R(it0.v)) > lb(R(it1.v)) is
true and no overlapped matches are possible. Type greedy can be implemented by
moving it1 in Line 11 as far right as possible within the gap constrains, output
〈lb(R(it0.v)), lb(R(it1.v))〉, and again moving it0 to the right of it1. Type all
reports the first match in Line 11, then iterates it1 as long as it meets the gap
constraint and reports a match if it1.v is a leaf. In Line 12 it0 is move one step
to the right and it1 it reset to its state before line 11.

3.3 Implementation Details

Our representation of the WT requires two rank operations to retrieve the two
child nodes of any tree node. In our DFS approach, k tree iterators partially
traverse the WT. For higher values of k it is likely that the child nodes of a
specific WT node are retrieved multiple times by different iterators. We there-
fore examined the effect of caching the child nodes of a tree node when they are
retrieved for the first time, so any subsequent child retrieval operations can be
answered without performing further rank operations. Unfortunately, this app-
roach resulted in a slowdown of our algorithm by a factor of 3. We conjecture,
that one reason for this slowdown is the additional memory management over-
head (even when using custom allocators) of dynamically allocating and releasing
the cached data. Also, critical portions of the algorithm (being called most fre-
quently) contain more branching and were even inlined before we implemented
the cache. Furthermore, we determined that more than 65 % of tree nodes tra-
versed once were never traversed a second time, so caching children for these
nodes will not yield any run time performance improvements. On average, each
cache entry was accessed less than 2 times after creation. Thus, only very few
rank operations are actually saved. Therefore we do not cache child nodes in our
subsequent empirical evaluation.

Practical Variable Length Gap Pattern Matching 9

4 Empirical Evaluation

In this section we study the practical impact of our proposals by comparing
to standard baselines in different scenarios. Our source code – including base-
lines and dataset details – is publicly available at https://github.com/olydis/
vlg matching and implemented on top of SDSL [7] data structures. We use three
datasets from different application domains:

– The CC data set is a 371GiB prefix of a recent 145TiB web crawl from
commoncrawl.org.

– The Kernel data set is a 78GiB file consisting of the source code of all (332)
Linux kernel versions 2.2.X, 2.4.X.Y and 2.6.X.Y downloaded from kernel.org.
This data set is very repetitive as only minor changes exist between subsequent
kernel versions.

– The Dna-Hg38 data set data consisting of the 3.1GiB Genome Reference Con-
sortium Human Reference 38 in fasta format with all symbol 	∈ {A,C,G, T}
removed from the sequence.

We have implemented our BFS and DFS wavelet tree approaches. We omit the
results of the BFS approach, as DFS dominated BFS in both query time and
memory requirement. Our index is denoted by WT-dfs the following. We use
a pointerless WT (wt int) in combination with a fast rank enabled bitvector
(bit vector il). We compare to three baseline implementations:

– rgxp: A “off-the-shelf” automaton based regular expression engine (Boost

library version 1.58; ECMAScript flag set) which scans the whole text.
– qgram-rgxp: A q-gram index (q = 3) which stores absolute positions of all

unique 3-grams in the text using Elias-Fano encoding. List intersection is used
to produce candidate positions in T and subsequently checked by the rgxp

engine.
– SA-scan: The plain SA is used as index. The SA-intervals of the subpatterns

are determined, sorted, and filtered as described in earlier. This approach is
similar to that of Rahman et al. [19] while replacing the van Emde Boas tree
by sorting ranges.

All baselines and indexes are implemented using C++11 and compiled using gcc
4.9.1 using all optimizations. The experiments were performed on a machine
with an Intel Xeon E4640 CPU and 148GiB RAM. The default VLG match-
ing type in our experiments is lazy, which is best suited for proximity search.
Pattern were generated systematically for each data set. We fix the gap con-
straints Ci = 〈δi,Δi〉 between subpatterns to 〈100, 110〉 small (CS), 〈1 000, 1 100〉
medium (CM), or 〈10 000, 11 000〉 large (CL). For each dataset we extract the
200 most common subpatterns of length 3, 5 and 7 (if possible). We form 20
regular expressions for each dataset, k, and gap constraint by selecting from the
set of subpatterns.

Matching Performance for Different Gap Constraint Bands. In our first
experiment we measure the impact of gap constraint size on query time. We

https://github.com/olydis/vlg_matching
https://github.com/olydis/vlg_matching
http://commoncrawl.org
http://kernel.org

10 J. Bader et al.

Table 1. Median query time in milliseconds for fixed mi = 3 and text size 2 GiB
for different gap constraints 〈100, 110〉 small (CS), 〈1000, 1100〉 medium (CM) or
〈10 000, 11 000〉 large (CL) and three data sets.

Method Kernel-2G CC-2G Dna-Hg38-2G

CS CM CL CS CM CL CS CM CL

k = 2

rgxp 6 383 7 891 18 592 2 533 4 148 17 394 24 363 26 664 9 849

qgram-rgxp 695 2 908 20 775 650 2 604 21 027 48 984 33 911 7 711

SA-scan 115 114 113 132 130 132 6 762 6 661 6 433

WT-dfs 279 244 347 180 211 277 17 041 10 978 8 350

k = 4

rgxp 5 130 6 840 30 948 5 076 6 889 28 931 34 025 41 800 24 549

qgram-rgxp 1 336 8 992 ≥105 1 284 9 187 ≥105 ≥105 ≥105 91 137

SA-scan 247 249 250 284 284 289 14 667 14 971 14 191

WT-dfs 160 164 183 195 201 232 19 977 12 608 8 506

k = 8

rgxp 3 243 5 089 31 796 2 426 4 215 28 943 33 126 ≥105 ≥105

qgram-rgxp 3 307 30 174 ≥105 2 894 27 488 ≥105 ≥105 ≥105 ≥105

SA-scan 594 585 596 759 761 765 29 850 30 621 29 296

WT-dfs 263 282 228 184 185 179 28 343 16 707 8 843

k = 16

rgxp 3 447 5 278 32 782 2 407 4 229 33 828 37 564 ≥105 ≥105

qgram-rgxp 6 843 61 787 ≥105 5 967 65 722 ≥105 ≥105 ≥105 ≥105

SA-scan 1 400 1 402 1 416 1 714 1 711 1 690 56 558 62 423 55 017

WT-dfs 508 507 463 331 331 316 55 660 26 041 9 152

k = 32

rgxp 3 446 5 237 32 979 3 673 6 041 33 957 24 040 ≥105 ≥105

qgram-rgxp 14 732 ≥105 ≥105 11 506 ≥105 ≥105 ≥105 ≥105 ≥105

SA-scan 2 885 2 926 2 924 3 573 3 560 3 562 82 663 92 756 81 164

WT-dfs 1 183 1 083 965 614 609 594 35 495 35 212 5 501

fix the dataset size to 2GiB and the subpattern length |pi| = mi = 3; Table 1
shows the results for pattern consisting of k = 21, . . . , 25 subpatterns. For rgxp,
the complete text is scanned for all bands. However, the size of the underlying
automaton increases with the gap length. Thus, the performance decreases for
larger gaps. The intersection process in qgram-rgxp reduces the search space of
rgxp to a portion of the text. There are cases where the search space reduction is
not significant enough to amortize the overhead of the intersection. For example,
the large gaps or the small alphabet test case force qgram-rgxp to perform
more work than rgxp. The two SA based solutions, SA-scan and WT-dfs, are

Practical Variable Length Gap Pattern Matching 11

Table 2. Median query time in milliseconds for fixed gap constraint 〈100, 110〉 and
text size 2GiB for different subpattern lengths mi ∈ 3, 5, 7 for three data sets.

Method Kernel-2G CC-2G Dna-Hg38-2G

CS CM CL CS CM CL CS CM CL

k = 2

rgxp 6 383 7 891 18 592 2 533 4 148 17 394 24 363 26 664 9 849

qgram-rgxp 695 2 908 20 775 650 2 604 21 027 48 984 33 911 7 711

SA-scan 115 114 113 132 130 132 6 762 6 661 6 433

WT-dfs 279 244 347 180 211 277 17 041 10 978 8 350

k = 4

rgxp 5 130 6 840 30 948 5 076 6 889 28 931 34 025 41 800 24 549

qgram-rgxp 1 336 8 992 ≥105 1 284 9 187 ≥105 ≥105 ≥105 91 137

SA-scan 247 249 250 284 284 289 14 667 14 971 14 191

WT-dfs 160 164 183 195 201 232 19 977 12 608 8 506

k = 8

rgxp 3 243 5 089 31 796 2 426 4 215 28 943 33 126 ≥105 ≥105

qgram-rgxp 3 307 30 174 ≥105 2 894 27 488 ≥105 ≥105 ≥105 ≥105

SA-scan 594 585 596 759 761 765 29 850 30 621 29 296

WT-dfs 263 282 228 184 185 179 28 343 16 707 8 843

k = 16

rgxp 3 447 5 278 32 782 2 407 4 229 33 828 37 564 ≥105 ≥105

qgram-rgxp 6 843 61 787 ≥105 5 967 65 722 ≥105 ≥105 ≥105 ≥105

SA-scan 1 400 1 402 1 416 1 714 1 711 1 690 56 558 62 423 55 017

WT-dfs 508 507 463 331 331 316 55 660 26 041 9 152

k = 32

rgxp 3 446 5 237 32 979 3 673 6 041 33 957 24 040 ≥105 ≥105

qgram-rgxp 14 732 ≥105 ≥105 11 506 ≥105 ≥105 ≥105 ≥105 ≥105

SA-scan 2 885 2 926 2 924 3 573 3 560 3 562 82 663 92 756 81 164

WT-dfs 1 183 1 083 965 614 609 594 35 495 35 212 5 501

considerably faster than scanning the whole text for Kernel and CC. We also
observe the WT-dfs is less dependent on the number of subpatterns k than SA-

scan, since no overhead for copying and explicitly sorting SA ranges is required.
Also WT-dfs profits from larger minimum gap sizes as larger parts of the text
are skipped when gap constraints are violated near the root of the WT. For
Dna-Hg38, small subpattern length of mi = 3 generate large SA intervals which
in turn decrease query performance comparable to processing the complete text.

Matching Performance for Different Subpattern Lengths. In the second
experiment, we measure the impact of subpattern lengths on query time. We fix

12 J. Bader et al.

Table 3. Space usage relative to text size at query time of the different indexes for three
data sets of size 2 GiB, different subpattern lengths mi ∈ 3, 5, 7 and varying number of
subpatterns k ∈ 2, 4, 8, 16, 32

Method Kernel-2G CC-2G Dna-Hg38-2G

3 5 7 3 5 7 3 5 7

k = 2

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.01 5.00 5.00 5.01 5.00 5.00 5.20 4.90 4.88

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.41 5.38 5.38

k = 4

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.01 5.01 5.00 5.02 5.01 5.00 5.89 4.94 4.89

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.38 5.38 5.38

k = 8

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.06 5.02 5.01 5.06 5.02 5.01 6.57 5.03 4.91

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.38 5.38 5.38

k = 16

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.22 5.09 5.02 5.18 5.09 5.03 7.86 5.25 4.94

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.38 5.38 5.38

k = 32

rgxp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

qgram-rgxp 7.93 7.93 7.93 7.49 7.49 7.49 7.94 7.94 7.94

SA-scan 5.32 5.09 5.04 5.31 5.11 5.03 10.20 5.54 5.00

WT-dfs 5.50 5.50 5.50 5.50 5.50 5.50 5.38 5.38 5.38

the gap constraint to 〈100, 110〉 and the data sets size to 2GiB. Table 2 shows
the results. Larger subpattern length result in smaller SA ranges. Consequently,
query time performance of SA-scan and WT-dfs improves. As expected rgxp

performance does not change significantly, as the complete text is scanned irre-
spectively of the subpattern length.

Matching Performance for Different Text Sizes. In this experiment we
explore the dependence of query time on text size. The results are depicted in
Fig. 4. The boxplot summarizes query time for all ks and all gap constraints for a

Practical Variable Length Gap Pattern Matching 13

Fig. 4. Average query time dependent on input size for subpattern length mi = 3.

fixed subpattern length m = 3. As expected, the performance of rgxp increases
linearly with the text size for all datasets. The indexed solutions qgram-rgxp

SA-scan and WT-dfs also show a linear increase with dataset size. We observe
again that the SA based solutions are significantly faster than the rgxp base
methods. For CC and Kernel the difference is one order of magnitude – even for
small input sizes of 8MiB. We also observe that WT-dfs is still the method of
choice for the unfavorable case of a small alphabet text with small subpattern
length of m = 3.

Space Usage at Query Time. In addition to run time performance, we eval-
uate the in memory space usage of the different indexes at query time. The
space usage considered is the space of the underlying index structure in addition
to the temporary space required to answer queries. For example, the SA-scan

method requires additional space to sort the positions of each subinterval to
perform efficient intersection. Similarly, the qgram-rgxp index requires addi-
tional space to store results of intersections for subpatterns larger than q. The
space usage of the different index structures relative to the text size is shown
in Table 3. Clearly rgxp requires only little extra space in addition to the text
to store the regexp automaton. The qgram-rgxp requires storing the text, the
compressed q-gram lists, the regexp automaton for verification, and during query
time, q-gram intersection results. The SA-scan index requires storing the suf-
fix array (n log n bits), which requires roughly 4n bytes of space for a text of
size 2GiB plus the text (n bytes) to determine the subpattern ranges in the
suffix array. Additionally, SA-scan requires temporary space to sort subpattern
ranges. Especially for frequent subpatterns, this can be substantial. Consider
the Dna-Hg38 dataset for k = 32 and m = 3. Here the space usage of SA-scan

is 9n, which is roughly twice the size of the index structure. This implies that
SA-scan potentially requires large amounts of additional space at query time
which can be prohibitive. The WT-dfs index encodes the suffix array using a

14 J. Bader et al.

wavelet tree. The structure requires n log n bits of space plus o(n log n) bits to
efficiently support rank operations. In our setup we use an rank structure which
requires 12.5% of the space of the WT bitvector. In addition, we store the text
to determine the suffix array ranges via forward search. This requires another
n log σ bits which corresponds to n bytes for CC and CC. For this reason the
WT-dfs index is slightly larger than SA-scan. We note that the index size of
WT-dfs can be reduced from 5.5n to 4.5n by not including the text explicitly.
The suffix array ranges can still be computed with a logarithmic slowdown if
the WT over the suffix array is augmented with select structures. The select
structure enables access to the inverse suffix array and we can therefore simulate
Ψ and LF . This allows to apply backward search which does not require explicit
access to the original text.

Fig. 5. Overall runtime performance of all methods for three data sets, accumulating
the performance for all mi ∈ 3, 5, 7 and CS , CM and CL for text size 2 GiB.

Overall Runtime Performance. In a final experiment we explored the whole
parameter space (i.e. k ∈ {21, . . . , 25}, mi ∈ {3, 5, 7}, C ∈ {CS , CM , CL}) and
summarize the results in Fig. 5. Including also the large subpattern length mi = 5
and mi = 7 results in even bigger query time improvement compared to the rgxp
based approaches: for CC and Kernel SA based method queries can be processed
in about 100 ms while rgxp require 10 s on inputs of size 2GiB. The average
query time for Dna-Hg38 improves with SA based methods from 50 s to 5 s. The
WT based approach significantly improves the average time for CC and Kernel
and is still the method of choice for Dna-Hg38.

5 Conclusion

In this paper we have shown another virtue of the wavelet tree. Built over the
suffix array its structure allows to speed up variable length gap pattern queries
by combining the sorting and filtering process of suffix array based indexes.
Compared to the traditional intersection process it does not require copying of
data and enables skipping of list regions which can not satisfy the intersection

Practical Variable Length Gap Pattern Matching 15

criteria. We have shown empirically that this process outperforms competing
approaches in many scenarios.

In future work we plan to reduce the space of our index by not storing the
text explicitly and using the wavelet tree augmented with a select structure to
determine the intervals of the subpatterns in the suffix array.

Acknowledgement. We are grateful to Timo Bingmann for profiling our initial imple-
mentation. This work was supported under the Australian Research Council’s Discovery
Projects scheme (project DP140103256) and Deutsche Forschungsgemeinschaft.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Baeza-Yates, R.: A fast set intersection algorithm for sorted sequences. In: Sahi-
nalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109,
pp. 400–408. Springer, Heidelberg (2004)

3. Bille, P., Gørtz, I.L.: Substring range reporting. Algorithmica 69(2), 384–396
(2014)

4. Bille, P., Thorup, M.: Regular expression matching with multi-strings and intervals.
In: Proceedings of SODA, pp. 1297–1308 (2010)

5. Bille, P., Gørtz, I.L., Vildhøj, H.W., Wind, D.K.: String matching with variable
length gaps. Theor. Comput. Sci. 443, 25–34 (2012)

6. Fredriksson, K., Grabowski, S.: Efficient algorithms for pattern matching with
general gaps, character classes, and transposition invariance. Inf. Retrieval 11(4),
335–357 (2008)

7. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of SODA, pp. 841–850 (2003)

9. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-
Genevaux, P.S., Pagni, M., Sigrist, C.J.A.: The PROSITE database. Nucleic Acids
Res. 34(suppl 1), D227–D230 (2006)

10. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

11. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. Soft. Prac. Exp. 45(1), 1–29 (2015)

12. Lewenstein, M.: Indexing with gaps. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 135–143. Springer, Heidelberg (2011)

13. Lopez, A.: Hierarchical phrase-based translation with suffix arrays. In: Proceedings
of EMNLP-CoNLL, pp. 976–985 (2007)

14. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

15. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In:
Proceedings of SIGIR, pp. 472–479 (2005)

16. Mihalcea, R., Tarau, P., Figa, E.: Pagerank on semantic networks, with application
to word sense disambiguation. In: Proceedings of COLING (2004)

16 J. Bader et al.

17. Morgante, M., Policriti, A., Vitacolonna, N., Zuccolo, A.: Structured motifs search.
J. Comput. Biol. 12(8), 1065–1082 (2005)

18. Navarro, G., Raffinot, M.: Fast and simple character classes and bounded gaps
pattern matching, with applications to protein searching. J. Comput. Biol. 10(6),
903–923 (2003)

19. Rahman, M.S., Iliopoulos, C.S., Lee, I., Mohamed, M., Smyth, W.F.: Finding pat-
terns with variable length gaps or don’t cares. In: Chen, D.Z., Lee, D.T. (eds.)
COCOON 2006. LNCS, vol. 4112, pp. 146–155. Springer, Heidelberg (2006)

20. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 419–
422 (1968)

Fast Exact Computation of Isochrones
in Road Networks

Moritz Baum, Valentin Buchhold(B), Julian Dibbelt, and Dorothea Wagner

Karlsruhe Institute of Technology, Karlsruhe, Germany
{moritz.baum,valentin.buchhold,julian.dibbelt,dorothea.wagner}@kit.edu

Abstract. We study the problem of computing isochrones in static and
dynamic road networks, where the objective is to identify the boundary
of the region in range from a given source within a certain amount of
time. While there is a wide range of practical applications for this prob-
lem (e. g., urban planning, geomarketing, visualizing the cruising range
of a vehicle), there has been little research on fast algorithms for large,
realistic inputs, and existing approaches tend to compute more informa-
tion than necessary. Our contribution is twofold: (1) We propose a more
compact but sufficient definition of isochrones, based on which, (2) we
provide several easy-to-parallelize, scalable algorithmic approaches for
faster computation. By extensive experimental analysis, we demonstrate
that our techniques enable fast isochrone computation within millisec-
onds even on continental networks, significantly faster than the state-of-
the-art.

1 Introduction

Online map services, navigation systems, and other route planning and location-
based applications have gained wide usage, driven by significant advances [2] in
shortest path algorithms for, e. g., location-to-location, many-to-many, POI, or
kNN queries. Less attention has been given to the fast computation of isochrones,
despite its relevance in urban planning [3,23,24,33,35], geomarketing [17], range
visualization for (electric) vehicles [4,28], and other applications [30].

Interestingly, there is no canonical definition of isochrones in the literature.
A unifying property, however, is the consideration of a range limit (time or some
other limited resource), given only a source location for the query and no specific
target. As a basic approach, a pruned variant of Dijkstra’s algorithm [16] can
be used to compute shortest path distances to all vertices within range. Newer
approaches [18,23,24] still subscribe to the same model (computing distances).
However, for the applications mentioned above it suffices to identify only the
set of vertices or edges within range (and no distances). Moreover, for visualiza-
tion [4] it serves to find just the vertices and edges on the boundary of the range.
Exploiting these observations, we derive new approaches for faster computation
of isochrones.

Supported by the EU FP7 under grant agreement no. 609026 (project MOVE-
SMART).

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 17–32, 2016.
DOI: 10.1007/978-3-319-38851-9 2

18 M. Baum et al.

Related Work. Despite its low asymptotic complexity, Dijkstra’s algorithm [16]
is too slow in practice. Speedup techniques [2] accelerate online shortest-path
queries with data preprocessed in an offline phase. Many employ overlay
edges (shortcuts) that maintain shortest path distances, allowing queries to
skip parts of the graph. Contraction Hierarchies (CH) [27] contracts vertices
in increasing order of importance, creating shortcuts between yet uncontracted
neighbors. Customizable Route Planning (CRP) [7] adds shortcuts between sep-
arators of a multilevel partition [10,29,31]. As separators are independent of
routing costs, CRP offers fast, dynamic customization of preprocessed data to a
new cost metric (e. g., user preferences, traffic updates). Customizable CH (CCH)
was evaluated in [14,15].

While proposed for point-to-point queries, both CH and CRP can be
extended to other scenarios. Scanning the hierarchy (induced by a vertex
order or multi-level partition, respectively) in a final top-down sweep enables
one-to-all queries: PHAST [5] applies this to CH, GRASP [18] to CRP. For
one-to-many queries, RPHAST [5] and reGRASP [18] restrict the downward
search by initial target selection. POI, kNN, and similar queries are possi-
ble [1,12,19,22,25,26,32].

Since the boundary of an isochrone is not known in advance but part of the
query output, target selection (as in one-to-many queries) or backward searches
(as in [19]) are not directly applicable in our scenario. To the best of our knowl-
edge, the only speedup technique extended to isochrone queries is GRASP.1

However, isoGRASP [18] computes distances to all vertices in range, which is
more than we require. MINE [23] and MINEX [24] consider multimodal networks
(including road and public transit), however, due to the lack of preprocessing,
running times are prohibitively slow, even on instances much smaller than ours.

Our Contribution. We give a compact definition of isochrones that serves the
applications mentioned above, but requires no output of distances (Sect. 2). We
propose several techniques that enable fast computation of isochrones and are
easy to parallelize. First, we describe a new algorithm based on CRP (Sect. 3).
Moreover, we present a faster variant of isoGRASP [18], exploiting that distances
are not required (Sect. 4). Then, we introduce novel approaches that combine
graph partitions with variants of (R)PHAST (Sect. 5). Our experimental eval-
uation (Sect. 7) on large, realistic input reveals that our techniques compute
isochrones in a few milliseconds, clearly outperforming the state-of-the-art.

2 Problem Statement and Basic Approach

Let G = (V,E, len) be a directed, weighted graph, representing the road net-
work, with length function len : E → R≥0, representing, e. g., travel time. Denote

1 Extension of CRP to isochrones is outlined in a patent (US Patent App. 13/649,114;
http://www.google.com/patents/US20140107921), however, in a simpler than our
intended scenario. Furthermore, the approach was neither implemented nor evalu-
ated.

http://www.google.com/patents/US20140107921

Fast Exact Computation of Isochrones in Road Networks 19

by d : V × V �→ R≥0 the associated shortest path distance. We assume that G
is strongly connected. Our isochrone problem takes as input a source s ∈ V and
a limit τ ∈ R≥0. We say that a vertex v ∈ V is in range if d(s, v) ≤ τ , else it
is out of range. We define the output of the isochrone problem as the set of all
isochrone edges that separate vertices in range from those out of range. Observe
that these are the edges (u, v) ∈ E with exactly one endpoint in range. To dis-
tinguish, we call e outward (isochrone) if and only if d(s, u) ≤ τ, d(s, v) > τ and
inward (isochrone) if and only if d(s, u) > τ, d(s, v) ≤ τ . This set of edges com-
pactly represents the area in range [4]. However, all approaches presented below
can be modified to serve other output definitions (requiring, e. g., the set of ver-
tices in range); see Sect. 6. In what follows, we first describe a basic approach
for the isochrone problem as specified above.2 Afterwards, we propose speedup
techniques that employ offline preprocessing on the graph G to quickly answer
online queries consisting of a source s ∈ V and a limit τ ∈ R≥0. We distinguish
metric-independent preprocessing (must be run when the topology of the input
graph changes) and metric-dependent customization (only the length function
changes).

Basic Approach. Dijkstra’s algorithm [16] computes distances d(s, v) from a
source s to all v ∈ V . It maintains distance labels d(·) for each vertex, ini-
tially set to ∞ (except d(s) = 0). In each iteration, it extracts a vertex u
with minimum d(u) from a priority queue (initialized with s) and settles it.
At this point, d(u) is final, i. e., d(u) = d(s, u). It then scans all edges (u, v):
If d(u) + len(u, v) < d(v), it updates d(v) accordingly and adds (or updates) v
in the queue. For our problem setting, isoDijkstra can be stopped once the dis-
tance label of the minimum element in the queue exceeds the limit τ (stopping
criterion). Then, outward isochrone edges are easily determined: We sweep over
all vertices left in the queue, which must be out of range, outputting incident
edges where the other endpoint is in range. Inward isochrone edges can be deter-
mined during the same sweep if we apply the following modification to the graph
search. When settling a vertex u, we also scan incoming edges (v, u). If d(v) = ∞,
we insert v into the queue with a key of infinity. Thereby, we guarantee that for
both types of isochrone edges the unreachable endpoint is contained in the queue
when the search terminates.

Partitions. Below, we propose speedup techniques based on graph partitions.
Formally, a (vertex) partition is a family V = {V1, . . . , Vk} of cells Vi ⊆ V , such
that Vi ∩ Vj = ∅ for i
= j and

⋃k
i=1 Vi = V . A (nested) multilevel partition

with L levels is a family Π = {V1, . . . ,VL} of partitions of nested cells, i. e., for
each level � ≤ L and cell V �

i ∈ V�, there is a cell V �+1
j ∈ V�+1 at level � + 1

with V �
i ⊆ V �+1

j . For consistency, we define V0 := {{v} | v ∈ V } (the trivial
partition where each vertex has its own cell) and VL+1 := {V } (the trivial single-
cell partition). An edge (u, v) ∈ E is a boundary edge (u and v are boundary

2 Strictly speaking, isochrone implies time as a resource. While isoline or isocontour
would be more precise, we have settled for the term most common in the literature.

20 M. Baum et al.

vertices) on level �, if u and v are in different cells of V�. Similar to vertex
partitions, we define edge partitions E = {E1, . . . , Ek}, with Ei ∩ Ej = ∅ for
i
= j and

⋃k
i=1 Ei = E. A vertex v ∈ V is distinct (wrt. E) if all its incident

edges belong to the same cell, else v is a boundary vertex or ambiguous.

3 IsoCRP

The three-phase workflow of CRP [7] distinguishes preprocessing and metric
customization. Preprocessing finds a (multilevel) vertex partition of the road
network, inducing for each level � an overlay graph H� containing all boundary
vertices and boundary edges wrt. V�, and shortcut edges between pairs of bound-
ary vertices that belong to the same cell V �

i ∈ V�. Metric customization computes
the lengths of all shortcuts. The basic idea of isoCRP is to run isoDijkstra on the
overlay graphs. Thus, we use shortcuts to skip cells that are entirely in range, but
descend into lower levels in cells that intersect the isochrone frontier, to deter-
mine isochrone edges. There are two major challenges. First, descending into
cells where shortcuts exceed the limit τ is not sufficient (we may miss isochrone
edges that are part of no shortcut, but belong to shortest paths leading into the
cell), so we have to precompute additional information. Second, descents into
cells must be consistent for all boundary vertices (i. e., we have to descend at all
vertices), motivating two-phase queries.

Customization. Along the lines of plain CRP, we obtain shortcut lengths by
running Dijkstra’s algorithm restricted to the respective cell. Additionally, we
make use of the same searches to compute eccentricities for all boundary vertices.
Given a boundary vertex u in a cell V �

i , its (level-�) eccentricity, denoted ecc�(u),
is the maximum finite distance to some v ∈ V �

i in the subgraph induced by V �
i .

This subgraph is not strongly connected in general (i. e., some vertices may be
unreachable), but restricting eccentricities to cells allows fast customization.

At the lowest level, the eccentricity of a boundary vertex u is the distance
label of the last vertex settled in the search from u. To accelerate customization,
previously computed overlays are used to obtain shortcuts on higher levels. We
compute upper bounds on eccentricities for those levels. When settling a vertex v,
we check if the sum of the label d(v) and ecc�−1(v) exceeds the current bound on
ecc�(u) and update it if needed. Shortcuts of a cell are represented as a square
matrix for efficiency, and storing eccentricities adds a single column to them.

To improve data locality and simplify index mapping, vertices are reordered
in descending order of level during preprocessing, breaking ties by cell [7].

Queries. We say that a cell is active if its induced subgraph contains at least
one isochrone edge. Given a source s ∈ V and a limit τ , queries work in two
phases. The first phase determines active cells, while the second phase descends
into active cells to determine isochrone edges. The upward phase runs isoDijkstra
on the search graph consisting of the union of the top-level overlay and all sub-
graphs induced by cells containing s. To determine active cells, we maintain two

Fast Exact Computation of Isochrones in Road Networks 21

flags i(·) (initially false) and o(·) (initially true) per cell and level, to indicate
whether the cell contains at least one vertex that is in or out of range, respec-
tively. When settling a vertex u ∈ V �

i , we set i(V �
i) to true if d(u) ≤ τ . Next, we

check whether d(u) + ecc�(u) ≤ τ . Observe that this condition is not sufficient
to unset o(V �

i), because ecc�(u) was computed in the subgraph of V �
i . If this

subgraph is not strongly connected, d(u)+ecc�(u) is not an upper bound on the
distance to any vertex in V �

i in general. Therefore, when scanning an outgoing
shortcut (u, v) with length ∞ (such shortcuts exist due to the matrix representa-
tion), we also check whether d(v) + ecc�(v) ≤ τ . If the condition holds for u and
all boundary vertices v unreachable from u (wrt. V �

i), we can safely unset o(V �
i).

Toggled flags are final, so we no longer need to perform any checks for them.
After the upward phase finished, cells V �

i that have both i(V �
i) and o(V �

i) set
are active (isochrone edges are only contained in cells with vertices both in and
out of range).

The downward phase has L subphases. In descending order of level, and for
every active cell at the current level �, each subphase runs isoDijkstra restricted
to the respective cell in H�−1. Initially, all boundary vertices are inserted into
the queue with their distance labels according to the previous phase as key.
As before, we check eccentricities on-the-fly to mark active cells for the next
subphase. Isochrone edges are determined at the end of each isoDijkstra search
(see Sect. 2). On overlays, only boundary edges are reported.

Parallelization. For faster customization, cells of each level are processed in
parallel [7]. During queries, the (much more expensive) downward phase is par-
allelized in a natural way, as cells at a certain level can be handled indepen-
dently. We assign cells to threads and synchronize results between subphases.
To reduce the risk of false sharing, we assign blocks of consecutive cells (wrt.
vertex ordering) to the same thread. Moreover, to reduce synchronization over-
head, we process cells on lower levels in a top-down fashion within the same
thread.

4 Faster IsoGRASP

GRASP [18] extends CRP to batched query scenarios by storing for each level-�
boundary vertex, 0 ≤ � < L, (incoming) downward shortcuts from boundary
vertices of its supercell at level � + 1. Customization follows CRP, collecting
downward shortcuts in a separate downward graph H↓. Original isoGRASP [18]
runs Dijkstra’s algorithm on the overlays (as in CRP), marks all in-range top-
level cells, and propagates distances in marked cells from boundary vertices to
those at the levels below in a sweep over the corresponding downward shortcuts.
We accelerate isoGRASP significantly by making use of eccentricities.

Customization. Metric customization of our variant of isoGRASP is similar to
isoCRP, computing shortcuts and eccentricities with Dijkstra’s algorithm as in
Sect. 3. We obtain downward shortcuts in the same Dijkstra searches. We apply

22 M. Baum et al.

edge reduction (removing shortcuts via other boundary vertices) [18] to down-
ward shortcuts, but use the matrix representation for overlay shortcuts.

Queries. As in isoCRP, queries run two phases, with the upward phase being
identical to the one described in Sect. 3. Then, the scanning phase handles levels
from top to bottom in L subphases to process active cells. For an active level-�
cell V �

i , we sweep over its internal vertices (i. e., all vertices of the overlay H�−1

that lie in V �
i and are no level-� boundary vertices). For each internal vertex v,

its incoming downward shortcuts are scanned, obtaining the distance to v. To
determine active cells for the next subphase, we maintain flags i(·) and o(·) as
in isoCRP. This requires checks at all boundary vertices that are unreachable
from v within V �−1

i . We achieve some speedup by precomputing these vertices,
storing them in a separate adjacency array.

Similar to isoCRP, the upward phase reports all (original) isochrone edges
contained in its search graph. For the remaining isochrone edges, we sweep over
internal vertices and their incident edges a second time after processing a cell in
the scanning phase. To avoid duplicates and to ensure that endpoints of examined
edges have correct distances, we skip edges leading to vertices with higher indices.
Both queries and customization are parallelized in the same fashion as isoCRP.

5 IsoPHAST

Preprocessing of PHAST [5] contracts vertices in increasing order of (heuris-
tic) importance, as in the point-to-point technique CH [27]. To contract a
vertex, shortcut edges are added between yet uncontracted neighbors to pre-
serve distances, if necessary. Vertices are assigned levels �(·), initially set to
zero. When contracting u, we set �(v) = max{�(v), �(u) + 1} for each uncon-
tracted neighbor v. Given the set E+ of all shortcuts added during preprocess-
ing, PHAST handles one-to-all queries from some given source s as follows.
During the forward CH search, it runs Dijkstra’s algorithm on G↑ = (V,E↑),
E↑ = {(u, v) ∈ E∪E+ : �(u) < �(v)}. The subsequent downward phase is a linear
sweep over all vertices in descending order of level, reordered accordingly during
preprocessing. For each vertex, it scans its incoming edges in E↓ = {(u, v) ∈
E ∪ E+ : �(u) > �(v)} to update distances. Afterwards, distances from s to all
v ∈ V are known. RPHAST [9] is tailored to one-to-many queries with given
target sets T . It first extracts the relevant subgraph G↓

T that is reachable from
vertices in T by a backward search in G↓ = (V,E↓). Then, it runs the linear
sweep for G↓

T .
Our isoPHAST algorithm builds on (R)PHAST to compute isochrones. Since

the targets are not part of the input, we use graph partitions to restrict the
subgraph that is examined for isochrone edges. Queries work in three phases,
in which we (1) run a forward CH search, (2) determine active cells, and (3)
perform linear sweeps over all active cells as in PHAST. Below, we describe
preprocessing of isoPHAST, before proposing different strategies to determine
active cells.

Fast Exact Computation of Isochrones in Road Networks 23

First, we find a (single-level) partition V = {V1, . . . , Vk} of the road network
and reorder vertices such that boundary vertices (or core vertices) are pushed
to the front, breaking ties by cell (providing the same benefits as in CRP).
Afterwards, we use CH to contract all cell-induced subgraphs, but leave core
vertices uncontracted. Non-core vertices inside cells are reordered according to
their CH levels to enable linear downward sweeps. The output of preprocessing
consists of an upward graph G↑, containing for each cell all edges leading to
vertices of higher level, added shortcuts between core vertices, and all boundary
edges. We also obtain a downward graph G↓ that stores for each non-core vertex
its incoming edges from vertices of higher level. Further steps of preprocessing
depend on the query strategy and are described below.

IsoPHAST-CD. Our first strategy (Core-Dijkstra) performs isoDijkstra on the
core graph to determine active cells. This requires eccentricities for core vertices,
which are obtained during preprocessing as follows. To compute ecc(u) for some
vertex u, we run (as last step of preprocessing) Dijkstra’s algorithm on the
subgraph induced by all core vertices of G↑ in the cell Vi of u, followed by a
linear sweep over the internal vertices of Vi. When processing a vertex v during
this sweep, we update the eccentricity of u to ecc(u) = max{ecc(u), d(v)}.

Queries start by running isoDijkstra from the source in G↑. Within the source
cell, this corresponds to a forward CH search. At core vertices, we maintain
flags i(·) and o(·) to determine active cells (as described in Sect. 3, using an
adjacency array to store unreachable core neighbors as in Sect. 4). If the core is
not reached, only the source cell is set active. Next, we perform for each active
cell a linear sweep over its internal vertices, obtaining distances to all vertices
that are both in range and contained in an active cell.

Isochrone edges crossing cell boundaries are added to the output during
the isoDijkstra search, whereas isochrone edges connecting non-core vertices are
obtained in the linear sweeps as follows. When scanning incident edges of a ver-
tex v, neighbors at higher levels have final distance labels. Moreover, the label
of v is final after scanning incoming edges (u, v) ∈ G↓. Thus, looping through
incoming original edges a second time suffices to find the remaining isochrone
edges. Since original edges (v, u) ∈ E to vertices u at higher levels are not con-
tained in G↓ in general, we add dummy edges of length ∞ to G↓ to ensure that
neighbors in G are also adjacent in G↓.

isoPHAST-CP. Instead of isoDijktra, our second strategy (Core-PHAST) per-
forms a linear sweep over the core. Eccentricities are precomputed after generic
preprocessing as described above. Next, we use CH preprocessing to contract
vertices in the core, and reorder core vertices according to their levels. Finally,
we update G↑ and G↓ by adding core shortcuts.

Queries strictly follow the three-phase pattern discussed above. We first run a
forward CH search in G↑. Then, we determine active cells and compute distances
for all core vertices in a linear sweep over the core. Again, we maintain flags i(·)
and o(·) for core vertices (cf. Section 3) and use an adjacency array storing
unreachable core neighbors (cf. Section 4). To find isochrone edges between core

24 M. Baum et al.

vertices, we insert dummy edges into the core to preserve adjacency. The third
phase (linear sweeps over active cells) is identical to isoPHAST-CD.

isoPHAST-DT. Our third strategy (Distance Table) uses a distance (bounds)
table to accelerate the second phase, determining active cells. Working with
such tables instead of a dedicated core search benefits from edge partitions, since
the unique assignment of edges to cells simplifies isochrone edge retrieval. Given
a partition E = {E1, . . . , Ek} of the edges, the table stores for each pair Ei, Ej

of cells a lower bound d(Ei, Ej) and an upper bound d(Ei, Ej) on the distance
from Ei to Ej , i. e., d(Ei, Ej) ≤ d(u, v) ≤ d(Ei, Ej) for all u ∈ Ei, v ∈ Ej (we
abuse notation, saying u ∈ Ei if u is an endpoint of at least one edge e ∈ Ei).
Given a source s ∈ Ei (if s is ambiguous, pick any cell containing s) and a
limit τ , cells Ej with d(Ei, Ej) ≤ τ < d(Ei, Ej) are set active.

Preprocessing first follows isoPHAST-CP, with three differences: (1) We use
an edge partition instead of a vertex partition; (2) Eccentricities are computed
on the reverse graph, with Dijkstra searches that are not restricted to cells
but stop when all boundary vertices of the current cell are reached; (3) After
computing eccentricities, we recontract the whole graph using a CH order (i. e.,
contraction of core vertices is not delayed), leading to sparser graphs G↑ and G↓.
Afterwards, to quickly compute (not necessarily tight) distance bounds, we run
for each cell Ei a (multi-source) forward CH search in G↑ from all boundary
vertices of Ei. Then, we perform a linear sweep over G↓, keeping track of the
minimum and maximum distance label per target cell. This yields, for all cells,
lower bounds d(Ei, ·), and upper bounds on the distance from boundary vertices
of Ei to each cell. To obtain the desired bounds d(Ei, ·), we increase the latter
values by the (backward) boundary diameter of Ei, i. e., the maximum distance
from any vertex in Ei to a boundary vertex of Ei. This diameter equals the
maximum eccentricity of the boundary vertices of Ei on the reverse graph (which
we computed before). As last step of preprocessing, we extract and store the
relevant search graph G↓

i for each Ei ∈ E . This requires a target selection phase
as in RPHAST for each cell, using all (i. e., distinct and ambiguous) vertices of
a cell as input.

Queries start with a forward CH search in G↑. Then, active cells are deter-
mined in a sweep over one row of the distance table. The third phase performs
a linear sweep over G↓

i for each active cell Ei, obtaining distances to all its ver-
tices. Although vertices can be contained in multiple search graphs, distance
labels do not need to be reinitialized between sweeps, since the source remains
unchanged. To output isochrone edges, we proceed as before, looping through
incoming downward edges twice (again, we add dummy edges to G↓

i for correct-
ness). To avoid duplicates (due to vertices contained in multiple search graphs),
edges in G↓

i have an additional flag to indicate whether the edge belongs to Ei.
Search graphs may share vertices, which increases memory consumption and

slows down queries (e. g., the vertex with maximum level is contained in every
search graph). We use search graph compression, i. e., we store the topmost ver-
tices of the hierarchy (and their incoming edges) in a separate graph G↓

c and

Fast Exact Computation of Isochrones in Road Networks 25

remove them from all G↓
i . During queries, we first perform a linear sweep over G↓

c

(obtaining distances for all v ∈ G↓
c), before processing search graphs of active

cells. The size of G↓
c (more precisely, its number of vertices) is a tuning parameter.

Parallelization. The first preprocessing steps are executed in parallel, namely,
building cell graphs, contracting non-core vertices, inserting dummy edges, and
reordering non-core vertices by level. Afterwards, threads are synchronized, and
G↑ and G↓ are built sequentially. Eccentricities are again computed in parallel.
Since our CH preprocessing is sequential, the core graph is contracted in a single
thread (if needed). Computation of distance bounds is parallelized (if needed).

Considering queries, the first two phases are run sequentially. Both isoDijk-
stra and the forward CH search are difficult to parallelize. Executing PHAST
(on the core) in parallel does not pay off (the core is rather dense, resulting in
many levels). Distance table operations, on the other hand, are very fast, and
parallelization is not necessary. In the third phase, however, active cells can be
assigned to different threads. We store a copy of the graph G↓ once per NUMA
node for faster access during queries. Running the third phase in parallel can
make the second phase of isoPHAST-CP a bottleneck. Therefore, we alter the
way of computing flags i(·) and o(·). When settling a vertex v ∈ Vi, we set i(Vi)
if d(v) ≤ τ , and o(Vi) if d(v) + ecc(v) > τ . Note that these checks are less
accurate (more flags are toggled), but we no longer have to check unreachable
boundary vertices. Correctness of isoPHAST-CP is maintained, as no stopping
criterion is applied and maxv∈Vi

(d(v) + ecc(v)) is a valid upper bound on the
distance to each vertex in Vi. Hence, no active cells are missed.

6 Alternative Outputs

Driven by our primary application, visualizing the cruising range of a vehicle,
we introduced a compact, yet sufficient representation of isochrones. However,
all approaches can be adapted to produce a variety of other outputs, without
increasing their running times significantly. As an example, we modify our algo-
rithms to output a list of all vertices in range (instead of isochrone edges).

Even without further modifications, we can check in constant time if a vertex
is in range after running the query. Consider the (top-level) cell Vi of a vertex v.
If i(Vi) is not set, the cell contains no in-range vertices and v must be out of
range. Similarly, if o(Vi) is not set, v is in range. If both flags are set, we run the
same check for the cell containing v on the level below. If both flags are set for
the cell on level 1 containing v, we check if the distance label of v exceeds the
time limit (since all cells considered are active, the distance label of v is correct).

A simple approach to output the vertices in range performs a sweep over
all vertices and finds those in range as described above. We can do better by
collecting vertices in range on-the-fly. During isoDijkstra searches and when
scanning active cells, we output each scanned vertex that is in range. In the
scanning phase we also add all internal vertices for cells Vi where o(Vi) is not set.

26 M. Baum et al.

7 Experiments

Our code is written in C++ (using OpenMP) and compiled with g++ 4.8.3 -O3.
Experiments were conducted on two 8-core Intel Xeon E5-2670 clocked at
2.6 Ghz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2
cache. Results are checked against a reference implementation (isoDijkstra) for
correctness.

Input and Methodology. Experiments were done on the European road net-
work (with 18 million vertices and 42 million edges) made available for the
9th DIMACS Implementation Challenge [13], using travel times in seconds as
edge lengths.

We implemented CRP following [7], with a matrix-based clique representa-
tion. Our GRASP implementation applies implicit initialization [18] and (down-
ward) shortcut reduction [20]. The CH preprocessing routine follows [27], but
takes priority terms and hop limits from [5]. We use PUNCH [8] to generate
multilevel partitions for isoCRP/isoGRASP, and Buffoon [37] to find single-level
partitions for isoPHAST. Edge partitions are computed following the approach
in [36,38].

We report parallel customization times, and both sequential and parallel
query times. Parallel execution uses all available cores. Customization times
for isoPHAST exclude partitioning, since it is metric-independent. For queries,
reported figures are averages of 1 000 random queries (per individual time
limit τ).

Tuning Parameters. We conducted preliminary studies to obtain reasonable
parameters for partitions and search graph compression. For isoCRP/isoGRASP,
we use the 4-level partition from [6], with maximum cell sizes of 28, 212, 216, 220,
respectively. Although [18] uses 16 levels, resorting to a 4-level partition had only
minor effects in preliminary experiments (similar observations are made in [19]).

For sequential isoPHAST-CD (CP) queries, a partition with k = 212 (211)
cells yields best query times. For fewer cells (i. e., coarser partitions), the third
query phase scans a large portion of the graph and becomes the bottleneck. Using
more fine-grained partitions yields a larger core graph, slowing down the second
query phase. Consequently, fewer cells (k = 256) become favorable when queries
are executed in parallel (as the third phase becomes faster due to parallelization).

For isoPHAST-DT, similar effects occur for different values of k. Moreover,
search graph compression has a major effect on query times (and space consump-
tion). If there are few vertices in G↓

c , then vertices at high levels occur in search
graphs of multiple cells, but large G↓

c cause unnecessary vertex scans. Choosing
k = 214 (212) and |G↓

c | = 216 (213) yields fastest sequential (parallel) queries.

Evaluation. Table 1 summarizes the performance of all algorithms discussed in
this paper, showing figures on customization and queries. We report query times
for medium-range (τ = 100) and long-range time limits (τ = 500, this is the hard-
est limit for most approaches, since it maximizes the number of isochrone edges).

Fast Exact Computation of Isochrones in Road Networks 27

Table 1. Performance of our algorithms. We report parallel customization time and
space consumption (space per additional metric is given in brackets, if it differs). The
table shows the average number of settled vertices (Nmb. settled, in thousands) and
running times of sequential and parallel queries, using time limits τ = 100 and τ = 500.
Best values (except Dijkstra wrt. space) are highlighted in bold.

Algorithm Thr. Custom τ = 100min τ = 500min

Time [s] Space [MiB] Nmb. settled Time [ms] Nmb. settled Time [ms]

isoDijkstra 1 – 646 460 k 68.32 7041 k 1184.06

isoCRP 1 1.70 900 (138) 101 k 15.44 354 k 60.67

isoGRASP 1 2.50 1856 (1094) 120 k 10.06 387 k 37.77

isoPHAST-CD 1 26.11 785 440 k 6.09 1501 k 31.63

isoPHAST-CP 1 1221.84 781 626 k 15.02 2029 k 31.00

isoPHAST-DT 1 1079.11 2935 597 k 9.96 1793 k 24.80

isoCRP 16 1.70 900 (138) 100 k 2.73 354 k 7.86

isoGRASP 16 2.50 1856 (1094) 120 k 2.35 387 k 5.93

isoPHAST-CD 16 38.07 769 918 k 1.61 4578 k 8.22

isoPHAST-CP 16 1432.39 766 944 k 4.47 5460 k 7.86

isoPHAST-DT 16 865.50 1066 914 k 1.74 2979 k 3.80

As expected, techniques based on multilevel overlays provide better customiza-
tion times, while isoPHAST achieves the lowest query times (CD for medium-
range and DT for long-range queries, respectively). Customization of isoCRP
and isoGRASP is very practical (below three seconds). The lightweight pre-
processing of isoPHAST-CD pays off as well, allowing customization in less than
30 s. The comparatively high preprocessing times of isoPHAST-CP and DT are
mainly due to expensive core contraction. Still, metric-dependent preprocessing
is far below half an hour, which is suitable for applications that do not require
real-time metric updates. Compared to isoCRP, isoGRASP requires almost an
order of magnitude of additional space for the downward graph (having about
110 million edges).

Executed sequentially, all approaches take well below 100 ms, which is sig-
nificantly faster than isoDijkstra. The number of settled vertices is considerably
larger for isoPHAST, however, data access is more cache-efficient. IsoPHAST
provides faster queries than the multilevel overlay techniques for both limits,
with the execption of isoPHAST-CP for small ranges (since the whole core graph
is scanned). Again, the performance of isoPHAST-CD is quite notable, providing
the fastest queries for (reasonable) medium-range limits and decent query times
for the long-range limit. Finally, query times of isoPHAST-DT show best scaling
behavior, with lowest running times for hardest queries.

The lower half of Table 1 reports parallel times for the same set of queries.
Note that preprocessing times of isoPHAST change due to different parameter
choices. Most approaches scale very well with the number of threads, provid-
ing a speedup of (roughly) 8 using 16 threads. Note that factors (according to
the table) are much lower for isoPHAST, since we use tailored partitions for
sequential queries. In fact, isoPHAST-DT scales best when run on the same pre-
processed data (speedup of 11), since its sequential workflow (forward CH search,

28 M. Baum et al.

table scan) is very fast. Considering multilevel overlay techniques, isoGRASP
scales worse than isoCRP (speedup of 6.5 compared to 7.7), probably because
it is memory bandwidth bounded (while isoCRP comes with more computa-
tional overhead). Consequently, isoGRASP benefits greatly from storing a copy
of the downward graph on each NUMA node. As one may expect, speedups are
slightly lower for medium-range queries. The isoPHAST approaches yield best
query times, below 2 ms for medium-range queries, and below 4 ms for the long-
range limit. To summarize, all algorithms enable queries fast enough for practical
applications, with speedups of more than two orders of magnitude compared to
isoDijkstra.

Fig. 1. Sequential query times for various time limits, ranging from 10 to (roughly)
4700 min (the diameter of our input graph).

Figure 1 shows how (sequential) query times scale with the time limit. For
comparability, we also show (sequential) query times of original isoGRASP as
described in [18] (computing distances to all in-range vertices, but no isochrone
edges). Running times of all proposed algorithms (except isoDijkstra and original
isoGRASP) follow a characteristic curve. Times first increase with the limit τ
(the isochrone frontier is extended, intersecting more active cells), before drop-
ping again once τ exceeds 500 min (the isochrone reaches the boundary of the
network, decreasing the number of active cells). For τ > 4 710 min, all vertices
are in range, making queries very fast, as there are no active cells. For small τ ,
the multilevel overlay techniques and isoPHAST-CD are fastest. IsoPHAST-CP
is slowed down by the linear sweep over the core graph (taking about 6 ms, inde-
pendent of τ), while isoPHAST-DT suffers from distance bounds not being tight.
However, since Dijkstra’s algorithm does not scale well, isoPHAST-CD becomes
the slowest approach for large τ (while the other isoPHAST techniques bene-
fit from good scaling behavior). Considering multilevel overlays, our isoGRASP
is up to almost twice as fast as isoCRP, providing a decent trade-off between
customization effort and query times. Note that while isoDijkstra is fast enough
for some realistic time limits, it is not robust to user inputs. When executed in

Fast Exact Computation of Isochrones in Road Networks 29

Table 2. Impact of different outputs on the performance of isoCRP, isoGRASP, and a
variant of isoPHAST (CP). We report sequential (seq.) and parallel (par.) query times
as well as output size (# out., in thousands for vertices in range) when computing
isochrone edges and vertices in range.

Algorithm Limit [min] Isochrone edges Vertices in range

out. seq. [ms] par. [ms] # out. seq. [ms] par. [ms]

isoCRP 100 5937 15.44 2.73 460 k 15.83 2.77

500 14718 60.67 7.86 7041 k 76.35 9.26

5000 0 3.42 3.17 18010 k 46.64 6.64

isoGRASP 100 5937 10.06 2.35 460 k 11.07 2.50

500 14718 37.77 5.93 7041 k 56.83 7.57

5000 0 3.08 3.10 18010 k 46.09 6.44

isoPHAST 100 5937 15.02 4.47 460 k 16.40 4.70

500 14718 31.00 7.86 7041 k 49.57 9.67

5000 0 7.96 3.61 18010 k 50.86 7.03

parallel, query times follow the same characteristic curves (not reported in the
figure). The linear sweep in the second phase of isoPHAST-CP becomes slightly
faster, since the core is smaller (due to a different partition).

Alternative Outputs. Table 2 compares query times when computing different
outputs (isochrone edges and vertices in range, respectively). For medium-range
time limits (τ = 100 min), both sequential and parallel query times increase
by less than 10 %. When using long-range limits, where roughly half of the
vertices are in range, sequential and parallel queries are slower by a factor of
about 1.5, but still significantly faster than the original isoGRASP algorithm.
Only when considering the graph diameter as time limit, sequential queries are
significantly slower when computing all vertices in range, since variants reporting
only isochrone edges can already terminate after the (very fast) upward phase.

Table 3. Running times [ms] of
basic one-to-all and one-to-many
building blocks.

Algorithm [our] [9,19]

Dij (1-to-all) 2653.18 –

PHAST 144.16 136.92

GRASP 171.11 169.00

Dij (1-to-many) 7.34 7.43

RPHAST (select) 1.29 1.80

RPHAST (query) 0.16 0.17

Comparison with Related Work. Since we
are not aware of any work solving our com-
pact problem formulation, we cannot com-
pare our algorithms directly to competi-
tors. Hence, to validate the efficiency of our
code, we compare our implementations of
some basic building blocks to original pub-
lications. Table 3 reports running times for
our implementations of Dijkstra’s algorithm,
GRASP, PHAST and RPHAST on one core
of a 4-core Intel Xeon E5-1630v3 clocked at 3.7 GHz, with 128 GiB of DDR4-2133
RAM, 10 MiB of L3 and 256 KiB of L2 cache (chosen as it most closely resembles
the machines used in [9,19]). For comparison, we report running times (as-is)

30 M. Baum et al.

from [9,19]. For the one-to-many scenario, we adopt the methodology from [9],
using a target and ball size of 214. Even when accounting for hardware differences,
running times of our implementations are similar to the original publications.

8 Final Remarks

We proposed a compact definition of isochrones, and introduced a portfolio of
speedup techniques for the resulting isochrone problem. While no single app-
roach is best in all criteria (preprocessing effort, space consumption, query time,
simplicity), the right choice depends on the application. If user-dependent met-
rics are needed, the fast and lightweight customization of isoCRP is favorable.
Fast queries subject to frequent metric updates (e. g., due to real-time traffic)
are enabled by our isoGRASP variant. If customization time below a minute is
acceptable and time limits are low, isoPHAST-CD provides even faster query
times. The other isoPHAST variants show best scaling behavior, making them
suitable for long-range isochrones, or if customizability is not required.

Regarding future work, we are interested in integrating the computation of
eccentricities into microcode [11], an optimization technique to accelerate cus-
tomization of CRP. For isoPHAST, we want to separate metric-independent
preprocessing and metric customization (exploiting, e. g., CCH [14]). We also
explore approaches that do not (explicitly) require a partition of the road net-
work. Another direction of research is the speedup of network Voronoi diagram
computation [21,34], where multiple isochrones are grown simultaneously from
a set of Voronoi generators. We are also interested in extending our speedup
techniques to more involved scenarios, such as multimodal networks.

References

1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: HLDB: location-
based services in databases. In: Proceedings of the 20th ACM SIGSPATIAL Inter-
national Symposium on Advances in Geographic Information Systems (GIS 2012),
pp. 339–348. ACM Press, New York (2012)

2. Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. Tech-
nical report abs/1504.05140, ArXiv e-prints (2015)

3. Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., Timko, I.: Comput-
ing isochrones in multi-modal, schedule-based transport networks. In: Proceedings
of the 16th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (GIS 2008), pp. 78:1–78:2. ACM Press, New York
(2008)

4. Baum, M., Bläsius, T., Gemsa, A., Rutter, I., Wegner, F.: Scalable Isocon-
tour Visualization in Road Networks via Minimum-Link Paths. Technical report
abs/1602.01777, ArXiv e-prints (2016)

5. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: hardware-
accelerated shortest path trees. J. Parallel Distrib. Comput. 73(7), 940–952 (2013)

Fast Exact Computation of Isochrones in Road Networks 31

6. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376–387. Springer, Heidelberg (2011)

7. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning
in road networks. Transportation Science (2015)

8. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning
with natural cuts. In: Proceedings of the 25th International Parallel and Distrib-
uted Processing Symposium (IPDPS 2011), pp. 1135–1146. IEEE Computer Soci-
ety (2011)

9. Delling, D., Goldberg, A.V., Werneck, R.F.: Faster batched shortest paths inroad
networks. In: Proceedings of the 11th Workshop on Algorithmic Approachesfor
Transportation Modeling, Optimization, and Systems (ATMOS 2011). OpenAc-
cessSeries in Informatics, vol. 20, pp. 52–63. OASIcs (2011)

10. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance
multi-level routing. In: The Shortest Path Problem: Ninth DIMACS Implementa-
tion Challenge, DIMACS Book, vol. 74, pp. 73–92. American Mathematical Society
(2009)

11. Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 30–42. Springer, Heidelberg (2013)

12. Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road net-
works. IEEE Trans. Knowl. Data Eng. 27(3), 686–698 (2015)

13. Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Prob-
lem: Ninth DIMACS Implementation Challenge, DIMACS Book, vol. 74. American
Mathematical Society (2009)

14. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282.
Springer, Heidelberg (2014)

15. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. ACM
J. Exp. Algorithmics 21(1), 108–122 (2016)

16. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

17. Efentakis, A., Grivas, N., Lamprianidis, G., Magenschab, G., Pfoser, D.: Isochrones,
traffic and DEMOgraphics. In: Proceedings of the 21st ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems (GIS 2013),
pp. 548–551. ACM Press, New York (2013)

18. Efentakis, A., Pfoser, D.: GRASP. Extending graph separators for the single-source
shortest-path problem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol.
8737, pp. 358–370. Springer, Heidelberg (2014)

19. Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. A unified framework for all shortest-
path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol.
9125, pp. 298–311. Springer, Heidelberg (2015)

20. Efentakis, A., Theodorakis, D., Pfoser, D.: Crowdsourcing computing resources
for shortest-path computation. In: Proceedings of the 20th ACM SIGSPATIAL
International Symposium on Advances in Geographic Information Systems (GIS
2012), pp. 434–437. ACM Press, New York (2012)

21. Erwig, M.: The graph voronoi diagram with applications. Networks 36(3), 156–163
(2000)

22. Foti, F., Waddell, P., Luxen, D.: A generalized computational framework for acces-
sibility: from the pedestrian to the metropolitan scale. In: Proceedings of the

32 M. Baum et al.

4th TRB Conference on Innovations in Travel Modeling. Transportation Research
Board (2012)

23. Gamper, J., Böhlen, M., Cometti, W., Innerebner, M.: Defining isochrones in multi-
modal spatial networks. In: Proceedings of the 20th ACM International Conference
on Information and Knowledge Management (CIKM 2011), pp. 2381–2384. ACM
Press, New York (2011)

24. Gamper, J., Böhlen, M., Innerebner, M.: Scalable computation of isochrones with
network expiration. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol.
7338, pp. 526–543. Springer, Heidelberg (2012)

25. Geisberger, R.: Advanced Route Planning in Transportation Networks. Ph.D. the-
sis, Karlsruhe Institute of Technology (2011)

26. Geisberger, R., Luxen, D., Sanders, P., Neubauer, S., Volker, L.: Fast detour com-
putation for ride sharing. In: Proceedings of the 10th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS
2010). OpenAccess Series in Informatics, vol. 14, pp. 88–99. OASIcs (2010)

27. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

28. Grubwinkler, S., Brunner, T., Lienkamp, M.: Range prediction for EVs via crowd-
sourcing. In: Proceedings of the 10th IEEE International Vehicle Power and Propul-
sion Conference (VPPC 2014), pp. 1–6. IEEE (2014)

29. Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for
shortest-path queries. ACM J. Exp. Algorithmics 13, 1–26 (2008)

30. Innerebner, M., Böhlen, M., Gamper, J.: ISOGA: a system for geographical reach-
ability analysis. In: Liang, S.H.L., Wang, X., Claramunt, C. (eds.) W2GIS 2013.
LNCS, vol. 7820, pp. 180–189. Springer, Heidelberg (2013)

31. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically
structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–
1046 (2002)

32. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-to-
many shortest paths using highway hierarchies. In: Proceedings of the 9th Work-
shop on Algorithm Engineering and Experiments (ALENEX 2007), pp. 36–45.
SIAM (2007)

33. Marciuska, S., Gamper, J.: Determining objects within isochrones in spatial net-
work databases. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010.
LNCS, vol. 6295, pp. 392–405. Springer, Heidelberg (2010)

34. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network
voronoi diagrams: concepts, computational methods, and applications. Int. J.
Geogr. Inf. Sci. 22(9), 965–994 (2008)

35. O’Sullivan, D., Morrison, A., Shearer, J.: Using desktop GIS for the investigation
of accessibility by public transport: an isochrone approach. Int. J. Geogr. Inf. Sci.
14(1), 85–104 (2000)

36. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors
of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)

37. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: Proceed-
ings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX
2012), pp. 16–29. SIAM (2012)

38. Schulz, C.: High Quality Graph Partitioning. Ph.D. thesis, Karlsruhe Institute of
Technology (2013)

Dynamic Time-Dependent Route Planning
in Road Networks with User Preferences

Moritz Baum1, Julian Dibbelt1(B), Thomas Pajor2, and Dorothea Wagner1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{moritz.baum,julian.dibbelt,dorothea.wagner}@kit.edu

2 Cupertino, CA, USA

Abstract. Algorithms for computing driving directions on road net-
works often presume constant costs on each arc. In practice, the current
traffic situation significantly influences the travel time. One can distin-
guish traffic congestion that can be predicted using historical traffic data,
and congestion due to unpredictable events, e. g., accidents. We study
the dynamic and time-dependent route planning problem, which takes
both live traffic and long-term prediction into account. We propose a
practical algorithm that, while robust to user preferences, is able to inte-
grate global changes of the time-dependent metric faster than previous
approaches and allows queries in the order of milliseconds.

1 Introduction

To enable responsive route planning applications on large-scale road networks,
speedup techniques have been proposed [1], employing preprocessing to accelerate
Dijkstra’s shortest-path algorithm [18]. A successful approach [4,9,16,21,28,30]
exploits that road networks have small separators [10,22,27,40,41], comput-
ing coarsened overlays that maintain shortest path distance. An important
aspect [14] in practice is the consideration of traffic patterns and incidents. In
dynamic, time-dependent route planning, costs vary as a function of time [6,19].
These functions are derived from historic knowledge of traffic patterns [39], but
have to be updated to respect traffic incidents or short-term predictions [15]. In
this work, we investigate the challenges that arise when extending a separator-
based overlay approach to the dynamic, time-dependent route planning scenario.

Related Work. In time-dependent route planning, there are two major query
variants: (1) Given the departure time at a source, compute the earliest arrival
time (EA) at the target; (2) compute earliest arrival times for all departure
times of a day (profile search). Dijkstra’s algorithm [18] can be extended to solve
these problems for cost functions with reasonable properties [6,19,38]. However,
functional representations of profiles (typically by piecewise-linear functions) are
quite complex on realistic instances [13]. Many speedup techniques have been

Partially supported by EU grants 288094 (eCOMPASS) and 609026 (MOVE-
SMART).

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 33–49, 2016.
DOI: 10.1007/978-3-319-38851-9 3

34 M. Baum et al.

adapted to time-dependency. Some use (scalar) lower bounds on the travel time
functions to guide the graph search [11,12,37]. TD-CALT [11] yields reasonable
EA query times for approximate solutions, allowing dynamic traffic updates,
but no profile search. TD-SHARC [8] offers profile search on a country-scale net-
work. Time-dependent Contraction Hierarchies (TCH) [2] enable fast EA and
profile searches on continental networks. During preprocessing, TCH computes
overlays by iteratively inserting shortcuts [25] obtained from profile searches.
Piecewise-linear function approximation [29] is used to reduce shortcut com-
plexity, dropping optimality. A multi-phase extension (ATCH) restores exact
results [2]. Time-dependent shortest path oracles described in [33–35] approx-
imate distances in sublinear query time after subquadratic preprocessing. In
practical experiments, however, preprocessing effort is still substantial [31,32].

TCH has been generalized to combined optimization of functional travel time
and scalar, other costs [3], which poses an NP-hard problem. While this hardness
result would of course impact any approach, interestingly, the experiments in [3]
suggest that TCH on its own is not particularly robust against user preferences:
In a scenario that amounts to the avoidance of highways, preprocessing effort
doubles and query performance decreases by an order of magnitude. (Our exper-
iments will confirm this on a non NP-hard formulation of highway avoidance.)

Other works focus on unforeseen dynamic changes (e. g., congestion due to
an accident), often by enabling partial updates of preprocessed data [12,20].
Customizable Route Planning (CRP) [9] offloads most preprocessing effort to
a metric-independent, separator-based phase. Preprocessed data is then cus-
tomized to a given routing metric for the whole network within seconds or
below. This also enables robust integration of user preferences. Customizable
Contraction Hierarchies (CCH) [16] follows a similar approach. However, CRP
and CCH handle only scalar metrics. To the best of our knowledge, non-scalar
metrics for separator-based approaches have only been investigated in the con-
text of electric vehicles (EVCRP) [5], where energy consumption depends on
state-of-charge, but functional complexity is very low. On the other hand, the
use of scalar approaches for handling live traffic information yields inaccurate
results for medium and long distances: Such methods wrongly consider current
traffic even at far away destinations—although it will have dispersed once reach-
ing the destination. For realistic results, a combination of dynamic and time-
dependent (non-scalar, functional) route planning accounts for current traffic,
short-term predictions, and historic knowledge about recurring traffic patterns.

Our Contribution. We carefully extend CRP [9] to time-dependent functions.
As such, we are the first to evaluate partition-based overlays on a challenging
non-scalar metric. To this end, we integrate profile search into CRP’s customiza-
tion phase and compute time-dependent overlays. Unlike EVCRP and TCH, a
näıve implementation fails: Shortcuts on higher-level overlays are too expensive
to be kept in memory (and too expensive to evaluate during queries). To reduce
functional complexity, we approximate overlay arcs. In fact, approximation sub-
ject to a very small error suffices to make our approach practical, in accordance
to theory [23]. The resulting algorithmic framework enables interactive queries

Dynamic Time-Dependent Route Planning with User Preferences 35

with low average and maximum error in a very realistic scenario consisting of
live traffic, short-term traffic predictions, and historic traffic patterns. More-
over, it supports user preferences such as lower maximum driving speeds or the
avoidance of highways. In an extensive experimental setup, we demonstrate that
our approach enables integration of custom updates much faster than previous
approaches, while allowing fast queries that enable interactive applications. It is
also robust to changes in the metric that turn out to be much harder for previous
techniques.

2 Preliminaries

A road network is modeled as a directed graph G = (V,A) with n = |V | ver-
tices and m = |A| arcs, where vertices v ∈ V correspond to intersections and
arcs (u, v) ∈ A to road segments. An s–t-path P (in G) is a sequence Ps,t = [v1 =
s, v2, . . . , vk = t] of vertices such that (vi, vi+1) ∈ A. If s and t coincide, we call P
a cycle. Every arc a has assigned a periodic travel-time function fa : Π → R

+,
mapping departure time within period Π = [0, π] to travel time. Given a depar-
ture time τ at s, the (time-dependent) travel time τ[s,...,t] of an s–t-path is
obtained by consecutive function evaluation, i. e., τ[s,...,vi] = f(vi−1,vi)(τ[s,...,vi−1)).
We assume that functions are piecewise linear and represented by breakpoints.
We denote by |f | the number of breakpoints of a function f . Moreover, we define
fmax as the maximum value of f , i.e., fmax = maxτ∈Π f(τ). Analogously, fmin

is the minimum value of f . A function f is constant if f ≡ c for some c ∈ Π. We
presume that functions fulfill the FIFO property, i. e., for arbitrary σ ≤ τ ∈ Π,
the condition σ + f(σ) ≤ τ + f(τ) holds (waiting at a vertex never pays off).
Unless waiting is allowed at vertices, the shortest-path problem becomes NP-
hard if this condition is not satisfied for all arcs [7,42]. Given two functions f, g,
the link operation is defined as link(f, g) := f + g ◦ (id +f), where id is the
identity function and ◦ is function composition. The result link(f, g) is piecewise
linear again, with at most |f | + |g| breakpoints (namely, at departure times of
breakpoints of f and backward projections of departure times of points of g). We
also define merging of f and g by merge(f, g) := min(f, g). The result of merging
piecewise linear functions is piecewise linear, and the number of breakpoints is
in O(|f |+ |g|) (containing breakpoints of the two original functions and at most
one intersection per linear segment). Linking and merging are implemented by
coordinated linear sweeps over the breakpoints of the corresponding functions.

The (travel-time) profile of a path P = [v1, . . . , vk] is the function fP : Π →
R

+ that maps departure time τ at v1 to travel time on P . Starting at f[v1,v2] =
f(v1,v2), we obtain the desired profile by consecutively applying the link oper-
ation, i. e., f[v1,...,vi] = link(f[v1,...,vi−1], f(vi−1,vi)). Given a set P of s–t-paths,
the corresponding s–t-profile is fP(τ) = minP∈P fP (τ) for τ ∈ Π, i. e., the
minimum profile over all paths in P. The s–t-profile maps departure time to
minimum travel time for the given paths. It is obtained by (iteratively) merging
the respective paths.

A partition of V is a set C = {C1, . . . , Ck} of disjoint vertex sets such
that

⋃k
i=1 Ci = V . More generally, a nested multi-level partition consists of

36 M. Baum et al.

sets {C1, . . . , CL} such that C� is a partition of V for all � ∈ {1, . . . , L}, and
additionally for each cell Ci in C�, � < L, there is a partition C�+1 at level � + 1
containing a cell Cj with Ci ⊆ Cj . We call Cj the supercell of Ci. For consis-
tency, we define C0 = {{v} | v ∈ V } and CL+1 = {V }. Vertices u and v are
boundary vertices on level � if they are in different cells of C�. Accordingly, the
arc (u, v) ∈ A is a boundary arc on level �.

Query Variants and Algorithms. Given a departure time τ and vertices s and t,
an earliest-arrival (EA) query asks for the minimum travel time from s to t
when departing at time τ . Similarly, a latest-departure (LD) query asks for the
minimum travel time of an s–t-path arriving at time τ . A profile query for
given source s and target t asks for the minimum travel time at every possible
departure time τ , i. e., a profile fs,t from s to t (over all s–t-paths in G). EA
queries can be handled by a time-dependent variant of Dijkstra’s algorithm [19],
which we refer to as TD-Dijkstra. It maintains (scalar) arrival time labels d(·) for
each vertex, initially set to τ for the source s (∞ for all other vertices). In each
step, a vertex u with minimum d(u) is extracted from a priority queue (initialized
with s). Then, the algorithm relaxes all outgoing arcs (u, v): if d(u)+f(u,v)(d(u))
improves d(v), it updates d(v) accordingly and adds v to the priority queue
(unless it is already contained). LD queries are handled analogously by running
the algorithm from t, relaxing incoming instead of outgoing arcs, and maintaining
departure time labels.

Profile queries can be solved by Profile-Dijkstra [13], which is based on link-
ing and merging. It generalizes Dijkstra’s algorithm, maintaining s–v profiles fv

at each vertex v ∈ V . Initially, it sets fs ≡ 0, and fv ≡ ∞ for all other vertices.
The algorithm continues along the lines of TD-Dijkstra, using a priority queue
with scalar keys fmin

v . For extracted vertices u, arc relaxations propagate profiles
rather than travel times, computing g := link(fu, f(u,v)) and fv := merge(fv, g)
for outgoing arcs (u, v). As shown by Foschini et al. [23], the number of break-
points of the profile of an s–v-paths can be superpolynomial, and hence, so is
space consumption per vertex label and the running time of Profile-Dijkstra in
the worst case. Accordingly, it is not feasible for large-scale instances, even in
practice [13].

3 Our Approach

We propose Time-Dependent CRP (TDCRP), a speedup technique for time-
dependent route planning allowing fast integration of user-dependent metric
changes. Additionally, we enable current and/or predicted traffic updates with
limited departure time horizon (accounting for the fact that underlying traffic
situations resolve over time). To take historic knowledge of traffic patterns into
account, we use functions of departure time at arcs. This conceptual change has
important consequences: For plain CRP, the topology data structures is fixed
after preprocessing, enabling several micro-optimizations with significant impact

Dynamic Time-Dependent Route Planning with User Preferences 37

on customization and query [9]. In our case, functional complexity is metric-
dependent (influenced by, e. g., user preferences) and has to be handled dynam-
ically during customization. Hence, for adaptation to dynamic time-dependent
scenarios, we require new data structures and algorithmic changes during cus-
tomization. Below, we recap the three-phase workflow of CRP [9] that allows
fast integration of user-dependent routing preferences, describing its extension
to TDCRP along the way. In particular, we incorporate profile queries into the
customization phase to obtain time-dependent shortcuts. Moreover, we adapt
the query phase to efficiently compute time-dependent shortest routes.

3.1 Preprocessing

The (metric-independent) preprocessing step of CRP computes a multi-level
partition of the vertices, with given number L of levels. Several graph partition
algorithms tailored to road networks exist, providing partitions with balanced
cell sizes and small cuts [10,27,40,41]. For each level � ∈ {1, . . . , L}, the respec-
tive partition C� induces an overlay graph H�, containing all boundary vertices
and boundary arcs in C� and shortcut arcs between boundary vertices within
each cell C�

i ∈ C�. We define C0 = {{v} | v ∈ V } and H0 := G for consistency.
Building the overlay, we use the clique matrix representation, storing cliques of
boundary vertices in matrices of contiguous memory [9]. Matrix entries repre-
sent pointers to functions (whose complexity is not known until customization).
This dynamic data structure rules out some optimizations for plain CRP, such
as microcode instructions, that require preallocated ranges of memory for the
metric [9]. To improve locality, all functions are stored in a single array, such that
profiles corresponding to outgoing arcs of a boundary vertex are in contiguous
memory.

3.2 Customization

In the customization phase, costs of all shortcuts (added to the overlay graphs
during preprocessing) are computed. We run profile searches to obtain these
time-dependent costs. In particular, we require, for each boundary vertex u (in
some cell Ci at level � ≥ 1), the time-dependent distances for all τ ∈ Π to all
boundary vertices v ∈ Ci. To this end, we run a profile query on the overlay H�−1.
By design, this query is restricted to subcells of Ci, i. e., cells Cj on level �−1 for
which Cj ⊆ Ci holds. This yields profiles for all outgoing (shortcut) arcs (u, v)
in Ci from u. On higher levels, previously computed overlays are used for faster
computation of shortcuts. Unfortunately, profile queries are expensive in terms
of both running time and space consumption. Below, we describe improvements
to remedy these effects, mostly by tuning the profile searches.

Improvements. The main bottleneck of profile search is performing link and
merge operations, which require linear time in the function size (cf. Sect. 2). To
avoid unnecessary operations, we explicitly compute and store the minimum fmin

and the maximum fmax of a profile f in its corresponding label and in shortcuts

38 M. Baum et al.

of overlays. These values are used for early pruning, avoiding costly link and
merge operations: Before relaxing an arc (u, v), we check whether fmin

u +fmin
(u,v) >

fmax
v , i. e., the minimum of the linked profile exceeds the maximum of the label

at v. If this is the case, the arc (u, v) does not need to be relaxed. Otherwise,
the functions are linked. We distinguish four cases, depending on whether the
first or second function are constant, respectively. If both are constant, linking
becomes trivial (summing up two integers). If one of them is constant, simple
shift operations suffice (we need to distinguish two cases, depending on which
of the two functions is constant). Only if no function is constant, we apply the
link operation.

After linking f(u,v) to fu, we obtain a tentative label f̃v together with its
minimum f̃min

v and maximum f̃max
v . Before merging fv and f̃v, we run additional

checks to avoid unnecessary merge operations. First, we perform bound checks:
If f̃min

v > fmax
v , the function fv remains unchanged (no merge necessary). Note

that this may occur although we checked bounds before linking. Conversely, if
f̃max

v < fmin
v , we simply replace fv by f̃v. If the checks fail, and one of the two

functions is constant, we must merge. But if fv and f̃v are both nonconstant,
one function might still dominate the other. To test this, we do a coordinated
linear-time sweep over the breakpoints of each function, evaluating the current
line segment at the next breakpoint of the other function. If during this test
f̃v(τ) < fv(τ) for any point (τ, ·), we must merge. Otherwise we can avoid the
merge operation and its numerically unstable line segment intersections.

Additionally, we use clique flags: For a vertex v, define its parents as all
direct predecessors on paths contributing to the profile at the current label of v.
For each vertex v of an overlay H�, we add a flag to its label that is true if all
parents of v belong to the same cell at level �. This flag is set to true whenever
the corresponding label fv is replaced by the tentative function f̃v after relaxing
a clique arc (u, v), i. e., the label is set for the first time or the label fv is
dominated by the tentative function f̃v. It is set to false if the vertex label is
partially improved after relaxing a boundary arc. For flagged vertices, we do
not relax outgoing clique arcs, as this cannot possibly improve labels within the
same cell (due to the triangle inequality and the fact that we use full cliques).

Parallelization. Cells on a given level are processed independently, so customiza-
tion can be parallelized naturally, assigning cells to different threads [9]. In our
scenario, however, workload is strongly correlated with the number of time-
dependent arcs in the search graph. It may differ significantly between cells: In
realistic data sets, the distribution of time-dependent arcs is clearly not uniform,
as it depends on the road type (highways vs. side roads) and the area (rural vs.
urban). To balance load, we parallelize per boundary vertex (and not per cell).

Shortcut profiles are written to dynamic containers, as the number of break-
points is not known in advance. Thus, we must prohibit parallel (writing) access
to these data structure. One way to solve this is to make use of locks. However,
this is expensive if many threads try to write profiles at the same time. Instead,
we use thread-local profile containers, i. e., each thread uses its own container to
store profiles. After customization of each level, we synchronize data by copying

Dynamic Time-Dependent Route Planning with User Preferences 39

profiles to the global container sequentially. To improve spatial locality during
queries, we maintain the relative order of profiles wrt. the matrix layout (so
profiles of adjacent vertices are likely to be contiguous in memory). Since rela-
tive order within each thread-local containers is maintained easily (by running
queries accordingly), we can use merge sort when writing profiles to the global
container.

Approximation. On higher levels of the partition, shortcuts represent larger parts
of the graph. Accordingly, they contain more breakpoints and consume more
space. This makes profile searches fail on large graphs due to insufficient mem-
ory, even on modern hardware. Moreover, running time is strongly correlated to
the complexity of profiles. To save space and time, we simplify functions dur-
ing customization. To this end, we use the algorithm of Imai and Iri [29]. For
a maximum (relative or absolute) error bound ε, it computes an approxima-
tion of a given piecewise linear function with minimum number of breakpoints.
In TCH [2], this technique is applied after preprocessing to reduce space con-
sumption. Instead, we use the algorithm to simplify profiles after computing all
shortcuts of a certain level. Therefore, searches on higher levels use approxi-
mated functions from lower levels, leading to slightly less accurate profiles but
faster customization; see Sect. 4. The bound ε is a tuning parameter: Larger val-
ues allow faster customization, but decrease quality. Also, approximation is not
necessarily applied on all levels, but can be restricted to the higher ones. Note
that after approximating shortcuts, the triangle inequality may no longer hold
for the corresponding overlay. This is relevant when using clique flags: They yield
faster profile searches, but slightly decrease quality (additional arc relaxations
may improve shortcut bounds).

3.3 Live Traffic and Short-Term Traffic Predictions

Updates due to, e. g., live traffic, require that we rerun parts of the customization.
Clearly, we only have to run customization for affected cells, i. e., cells containing
arcs for which an update is made. We can do even better if we exploit that live
traffic and short-term updates only affect a limited time horizon. Thus, we do
not propagate updates to boundary vertices that cannot reach an affected arc
before the end of its time horizon.

We assume that short-term updates are partial functions f : [π′, π′′] → R
+,

where π′ ∈ Π and π′′ ∈ Π are the beginning and end of the time horizon, respec-
tively. Let a1 = (u1, v1), . . . , ak = (uk, vk) denote the updated arcs inside some
cell Ci at level �, and let f1, . . . , fk be the corresponding partial functions repre-
senting time horizons. Moreover, let τ be the current point in time. To update Ci

we run, on its induced subgraph, a backward multi-target latest departure (LD)
query from the tails of all updated arcs. In other words, we initially insert the
vertices u1, . . . , uk into the priority queue. For each i ∈ {1, . . . , k}, the label of ui

is set to π′′
i , i. e., the end of the time horizon [π′

i, π
′′
i] of the partial function fi.

Consequently, the LD query computes, for each vertex of the cell Ci, the latest
possible departure time such that some affected arc is reached before the end of

40 M. Baum et al.

its time horizon. Whenever the search reaches a boundary vertex of the cell, it
is marked as affected by the update. We stop the search as soon as the depar-
ture time label of the current vertex is below τ . (Recall that LD visits vertices in
decreasing order of departure time.) Thereby, we ensure that only such boundary
vertices are marked from which an updated arc can be reached in time.

Afterwards, we run profile searches for Ci as in regular customization, but
only from affected vertices. For profiles obtained during the searches, we test
whether they improve the corresponding stored shortcut profile. If so, we add
the affected interval of the profile for which a change occurs to the set of time
horizons of the next level. If shortcuts are approximations, we test whether the
change is significant, i. e., the maximum difference between the profiles exceeds
some bound. We continue the update process on the next level accordingly.

3.4 Queries

The query algorithm makes use of shortcuts computed during customization
to reduce the search space. Given a source s and a target t, the search graph
consists of the overlay graph induced by the top-level partition CL, all overlays
of cells of lower levels containing s or t, and the level-0 cells in the input graph G
that contain s or t. Note that the search graph does not have to be constructed
explicitly, but can be obtained on-the-fly [9]: At each vertex v, one computes the
highest levels �s,v and �v,t of the partition such that v is not in the same cell
of the partition as s or t, respectively (or 0, if v is in the same level-1 cell as s
or t). Then, one relaxes outgoing arcs of v only at level min{�s,v, �v,t} (recall
that H0 = G).

To answer EA queries, we run TD-Dijkstra on this search graph. For faster
queries, we make use of the minimum values fmin

(u,v) stored at arcs: We do not
relax an arc (u, v) if d(u) + fmin

(u,v) does not improve d(v). Thereby, we avoid
costly function evaluation. Note that we do not use clique flags for EA queries,
since we have observed rare but high maximum errors in our implementation
when combined with approximated clique profiles.

To answer profile queries, Profile-Dijkstra can be run on the CRP search
graph, using the same optimizations as described in Sect. 3.2.

4 Experiments

We implemented all algorithms in C++ using g++ 4.8 (flag -O3) as compiler.
Experiments were conducted on a dual 8-core Intel Xeon E5-2670 clocked at
2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache.
We ran customization in parallel (using all 16 threads) and queries sequentially.

Input Data and Methodology. Our main test instance is the road network of
Western Europe (|V | = 18 million, |A| = 42.2 million), kindly provided
by PTV AG. For this well-established benchmark instance [1], travel time func-
tions were generated synthetically [37]. We also evaluate the subnetwork of

Dynamic Time-Dependent Route Planning with User Preferences 41

Table 1. Customization performance on Europe for varying approximation parame-
ters (ε). We report, per level, the number of breakpoints (bps, in millions) in the
resulting overlay, the percentage of clique arcs that are time-dependent (td.clq.arcs),
average complexity of time-dependent arcs (td.arc.cplx), as well as customization time.
Without approximation, Levels 5 and 6 cannot be computed as they do not fit into
main memory.

ε Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Total

— bps [106] 99.1 398.4 816.4 1 363.4 — — 2 677.4

td.clq.arcs [%] 17.0 52.6 76.0 84.2 — — —

td.arc.cplx 21.0 68.9 189.0 509.3 — — —

time [s] 11.4 52.0 152.9 206.2 — — 375.7

0.01 % bps [106] 75.7 182.7 244.6 240.8 149.3 59.2 952.2

td.clq.arcs [%] 17.0 52.6 76.0 84.2 85.2 82.5 —

td.arc.cplx 16.0 31.6 56.6 90.0 108.6 108.0 —

time [s] 4.5 18.0 32.7 82.1 150.3 151.5 439.1

0.1 % bps [106] 60.7 107.5 111.5 87.9 47.9 17.6 432.9

td.clq.arcs [%] 17.0 52.7 76.0 84.2 85.2 82.5 —

td.arc.cplx 12.9 18.6 25.8 32.8 34.8 32.1 —

time [s] 4.2 16.0 21.4 40.7 62.4 55.0 199.7

1.0 % bps [106] 45.7 58.0 45.6 29.2 14.7 5.4 198.5

td.clq.arcs [%] 17.0 52.7 76.0 84.2 85.2 82.5 —

td.arc.cplx 9.7 10.0 10.6 10.9 10.7 9.8 —

time [s] 4.1 14.1 14.8 22.7 29.6 24.1 109.2

Germany (|V | = 4.7 million, |A| = 10.8 million), where time-dependent data
from historical traffic is available (we extract the 24 h profile of a Tuesday).1 For
partitioning, we use PUNCH [10], which is explicitly developed for road networks
and aims at minimizing the number of boundary arcs. For Europe, we consider
a 6-level partition, with maximum cell sizes 2[4:8:11:14:17:20]. For Germany, we use
a 5-level partition, with cell sizes of 2[4:8:12:15:18]. Compared to plain CRP, we
use partitions with more levels, to allow fine-grained approximation. Computing
the partition took 5 min for Germany, and 23 min for Europe. Given that road
topology changes rarely, this is sufficiently fast in practice.

Evaluating Customization. Table 1 details customization for different approx-
imation parameters ε on the Europe instance. We report, for several choices
of ε and for each level of the partition, figures on the complexity of shortcuts
in the overlays and the parallelized customization time. The first block shows
figures for exact profile computation. Customization had to be aborted after the
fourth level, because the 64 GiB of main memory were not sufficient to store
1 The Germany and Europe instances can be obtained easily for scientific purposes,

see http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php.

http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php

42 M. Baum et al.

Table 2. Query performance on Europe as a trade-off between customization effort
and approximation. For customization, we set different approximation parameters (ε)
and disable (◦) or enable (•) clique flags (Cl.). For the different settings, we report
query performance in terms of number of vertices extracted from the queue, scanned
arcs, evaluated function breakpoints (# Bps), running time, and average and maximum
error, each averaged over 100 000 random queries. As we employ approximation per
level, resulting query errors can be higher than the input parameter.

Customization Query

Approx. ε Cl. Time [s] #Vertices # Arcs # Bps Time [ms] Err. [%]

avg. max.

0.01 % ◦ 1 155.1 3 499 541 091 433 698 14.69 <0.01 0.03

0.01 % • 439.1 3 499 541 090 434 704 14.53 <0.01 0.03

0.10 % ◦ 533.0 3 499 541 088 96 206 7.63 0.04 0.28

0.10 % • 199.7 3 499 541 088 99 345 6.47 0.04 0.29

1.00 % ◦ 284.4 3 499 541 080 67 084 5.66 0.51 3.15

1.00 % • 109.2 3 499 541 058 70 202 5.75 0.54 3.21

the profiles of all vertex labels. For remaining levels, we clearly see the strong
increase in the total number of breakpoints per level. Also, the relative amount
of time-dependent arcs rises with each level, since shortcuts become longer. Cus-
tomization time clearly correlates with profile complexity, from 10 s on the lowest
level, to more then three minutes on the fourth. When approximating, we see
that customization becomes faster for larger values of ε. We apply approxima-
tion to all levels of the partition (using it only on the topmost levels did not
provide significant benefits in preliminary experiments). Recall that higher lev-
els work on approximated shortcuts of previous levels, so ε does not provide
a bound on the error of the shortcuts. We see that even a very small value
(0.01%) yields a massive drop of profile complexity (more than a factor 5 at
Level 4), and immediately allows full customization. For reasonably small values
(ε = 0.1%, ε = 1.0%), we see that customization becomes much faster (less than
two minutes for ε = 1.0%). In particular, this is fast enough for traffic updates.
Even for larger values of ε, the higher levels are far more expensive: This is due
to the increasing amount of time-dependent arcs, slowing down profile search.

Evaluating Customization and Queries. In Table 2, we show query performance
for different values of the approximation parameter ε on the Europe instance.
We also show the effect of using clique flags during customization: they improve
customization performance by about a factor of 2.6, while having a negligible
influence on query results. For each value of ε, we report timings as well as aver-
age and maximum error for 100 000 point-to-point queries. For each query, the
source and target vertex and the departure time were picked uniformly at ran-
dom. Similar to customization, the data shows that query times decrease with
higher approximation ratio. Again, this is due to the smaller number of break-

Dynamic Time-Dependent Route Planning with User Preferences 43

Table 3. Robustness comparison for TCH [2] and TDCRP. For different input
instances, we report timing of metric-dependent preprocessing (always run on 16 cores)
and sequential queries. Query times are averaged over the same 100 000 random queries
as in Table 2.

Network TCH TDCRP

Prepro. [s] Query [ms] Custom. [s] Query [ms]

Europe 1 479 1.37 109 5.75

Europe, bad traffic 7 772 5.87 208 8.01

Europe, avoid highways 8 956 19.54 127 8.29

points in profiles (observe that the number of visited vertices and arcs is almost
identical in all cases). As expected, both average and maximum error clearly
correlate with (but are larger than) ε. There are two reasons for this: As shown
in [24,32,35], query errors not only depend on ε but also on the maximum slope
of any approximated function. Moreover, since we apply approximation per level,
the error bound in [24] applies recursively, leading to a higher theoretical bound.
Still, we observe that even for the parameter choice ε = 1.0%, the maximum
error is very low (about 3 %). Moreover, query times are quite practical for all
values of ε, ranging from 5 ms to 15 ms. In summary, our approach allows query
times that are fast enough for interactive applications, if a reasonable, small
error is allowed. Given that input functions are based on statistical input with
inherent inaccuracy, the error of TDCRP is more than acceptable for realistic
applications.

Evaluating Robustness. We also evaluate robustness of our approach against
dynamic updates and user-dependent custom metrics. The first scenario (bad
traffic) simulates a highly congested graph: for every time-dependent arc in the
Western Europe instance with associated travel-time function f , we replace f
by f ′ defined as f ′(τ) := 2(f(τ) − fmin(τ)) + fmin(τ), while maintaining the
FIFO property on f ′. In the second scenario, we consider user restrictions (avoid
highways). For each scenario, customization and the same set of 100 000 random
queries as before are run on the respective modified instance. (Hence, we do
not remove highways for the second scenario, setting very high costs instead.)
Table 3 compares results of the original instance (Europe) to the modified ones.

Besides our approach, which is run using parameter ε = 1.0 for customization,
we also evaluate TCH [2], the fastest known approach for time-dependent route
planning. All measurements for TCH are based on this freely available imple-
mentation: https://github.com/GVeitBatz/KaTCH. While TCH allows faster
queries on the original instance, we see that running times increase significantly
for the modified ones. Preprocessing time also increases to several hours in both
cases. In the first scenario (bad traffic), this can be explained by a larger number
of paths that are relevant at different points in time (more congested roads need
to be bypassed). Consequently, customization time of TDCRP rises as well but
by a much smaller factor. In the second scenario (avoid highways), the TCH hier-

https://github.com/GVeitBatz/KaTCH

44 M. Baum et al.

archy clearly deteriorates. While TDCRP is quite robust to this change (both
customization and query times increase by less than 50 %), TCH queries slow
down by more than an order of magnitude.

While possibly subject to implementation, our experiment indicates that
underlying vertex orderings of TCH are not robust against less well-behaved
metrics. Similar effects can be shown for scalar Contraction Hierarchies (CH)
on metrics reflecting, e. g., travel distance [9,25]. In summary, TDCRP is much
more robust in both scenarios.

Comparison with Related Work. Finally, Table 4 provides an overview comparing
our results to the most relevant existing approaches for time-dependent route
planning. For the related work, we show measurements in the fastest reported
variant (e. g., if parallelized) but we scale all timings to our hardware as detailed
in Table 5 using a benchmark tool [1] available at http://tpajor.com/projects/.

For TCH and ATCH [2], preprocessing can be further split into node order
computation and contraction. Since it has been shown in [2] that node orders can
be re-used for certain other metrics (e. g., other week days), we report running
times of the contraction as rudimentary customization times. Recall, however,
that our robustness tests in Table 3 suggest that there is a limit to the applica-
bility of such a customization approach based on current TCH orders.

We evaluated our approach on both benchmark instances (Germany, and
Europe) for the two fastest variants (ε = 0.1 and ε = 1.0) and we see that it
competes very well with the previous techniques: While providing query times
similar to the fastest existing approaches, TDCRP has by far the lowest metric-
dependent preprocessing time (i. e., customization time) and a good parallel
speedup (factor 13.9 to 14.2 on Europe for 16 threads). At the same time,
resulting average and maximum errors (due to approximating profiles during
customization) are similar to previous results and low enough for practical pur-
poses. When parallelized, customization of the whole network is fast enough for
regular live-traffic updates: 8 to 16 s on Germany, and 2 to 3 min on Europe.
Note, however, that other approaches are also able to handle live traffic by pro-
viding partial updates of the preprocessed data: For example, by exploiting the
fact that effects of live traffic are locally and temporally limited, FLAT [32]) and
TDCALT [11] achieve partial update times in well below a minute (for 1,000
traffic-affected arcs).

Interestingly, TDCALT’s preprocessing is also quite fast. This could make
it an interesting alternative candidate for our scenario (metric customization);
since it is mostly based on lower bounds and only light contraction, it might
also be fairly robust to sensible, user-defined metrics (unlike TCH, cf. Table 3).
Note, however, that TDCALT on Europe requires a significantly higher approx-
imation to achieve a similar level of query performance (even scaled), yielding
a high maximum error. Furthermore, in the evaluated variant, landmarks are
chosen after the graph contraction routine, making it hard to parallelize the pre-
processing (which also has not been attempted). Additionally, TDCALT allows
no practical profile search on large instances [8,11], making it a less versatile
approach.

http://tpajor.com/projects/

Dynamic Time-Dependent Route Planning with User Preferences 45

T
a
b
le

4
.

C
o
m

p
a
ri

so
n

o
f

ti
m

e-
d
ep

en
d
en

t
sp

ee
d
u
p

te
ch

n
iq

u
es

o
n

in
st

a
n
ce

s
o
f

G
er

m
a
n
y,

a
n
d

E
u
ro

p
e.

W
e

p
re

se
n
t

fi
g
u
re

s
fo

r
va

ri
a
n
ts

o
f

T
D

C
A

L
T

[1
1
],

S
H

A
R

C
[8

],
T

C
H

a
n
d

A
T

C
H

[2
],

F
L
A

T
[3

2
],

a
n
d

T
D

C
R

P
.
F
o
r

b
et

te
r

co
m

p
a
ra

b
il
it
y

a
cr

o
ss

d
iff

er
en

t
h
a
rd

w
a
re

,
w

e
sc

a
le

a
ll

se
q
u
en

ti
a
l
(S

eq
.)

a
n
d

p
a
ra

ll
el

(P
a
r.

)
ti

m
in

g
s

to
o
u
r

m
a
ch

in
e;

se
e

T
a
b
le

5
fo

r
fa

ct
o
rs

.
F
o
r

p
re

p
ro

ce
ss

in
g
,
cu

st
o
m

iz
a
ti

o
n
,
a
n
d

li
v
e

tr
a
ffi

c
u
p
d
a
te

s,
w

e
sh

ow
th

e
n
u
m

b
er

o
f
th

re
a
d
s
u
se

d
(T

h
r.

).
F
o
r
E

A
q
u
er

ie
s,

w
e

p
re

se
n
t
av

er
a
g
e

n
u
m

b
er

s
o
n

q
u
eu

e
ex

tr
a
ct

io
n
s
(#

V
er

t.
),

sc
a
n
n
ed

a
rc

s,
se

q
u
en

ti
a
l
ru

n
n
in

g
ti

m
e

in
m

il
li
se

co
n
d
s,

a
n
d

av
er

a
g
e

a
n
d

m
a
x
im

u
m

re
la

ti
v
e

er
ro

r.

A
lg

o
ri

th
m

In
st

.
T

h
r.

P
re

p
ro

ce
ss

in
g

C
u
st

o
m

iz
a
ti

o
n

T
ra

ffi
c

E
A

Q
u
er

ie
s

P
a
r.

S
p
a
ce

P
a
r.

S
eq

.
S
p
a
ce

P
a
r.

#
V

er
t.

#
A

rc
s

S
eq

.
E

rr
.
[%

]

[h
:m

:s
]

[B
/
n
]
[m

:s
]

[m
:s

]
[B

/
n
]

[m
:s

]
[m

s]
av

g
.

m
a
x
.

T
D

C
A

L
T

G
er

m
a
n
y

1
3
:1

4
5
0

—
—

—
n
/
a

3
1
9
0

1
2

2
5
5

1
.9

3
—

—

T
D

C
A

L
T

-K
1
.1

5
G

er
m

a
n
y

1
3
:1

4
5
0

—
—

—
n
/
a

1
5
9
3

5
3
3
9

0
.6

7
0
.0

5
1
3
.8

4

ec
o

L
-S

H
A

R
C

G
er

m
a
n
y

1
2
8
:0

3
2
1
9

—
—

—
—

2
7
7
6

1
9

0
0
5

2
.2

7
—

—

h
eu

S
H

A
R

C
G

er
m

a
n
y

1
1
:1

4
:0

6
1
3
7

—
—

—
—

8
1
8

1
6
1
1

0
.2

5
n
/
a

0
.6

1

A
T

C
H

(1
.0

)
G

er
m

a
n
y

8
5
:5

0
2
3
9

1
:0

9
6
:5

9
2
3
9

—
5
8
8

7
9
9
3

1
.1

5
—

—

in
ex

.
T

C
H

(0
.1

)
G

er
m

a
n
y

8
5
:5

0
2
8
6

1
:0

9
6
:5

9
2
8
6

—
6
4
2

7
1
3
8

0
.6

5
0
.0

2
0
.1

0

in
ex

.
T

C
H

(2
.5

)
G

er
m

a
n
y

8
5
:5

0
1
7
2

1
:0

9
6
:5

9
1
7
2

—
6
6
8

7
4
2
9

0
.6

7
0
.7

9
2
.4

4

F
L
A

T
/
F
C

A
G

er
m

a
n
y

6
>

1
d
ay

>
1
0

0
0
0

—
—

—
0
:4

4
1

1
2
2

n
/
a

1
.5

1
n
/
a

1
.5

3

T
D

C
R

P
(0

.1
)

G
er

m
a
n
y

1
6

4
:3

3
2
9

0
:1

6
3
:3

0
1
6
6

0
:1

6
2

1
5
2

1
6
7

2
6
3

1
.9

2
0
.0

5
0
.2

5

T
D

C
R

P
(1

.0
)

G
er

m
a
n
y

1
6

4
:3

3
2
9

0
:0

8
1
:4

3
7
7

0
:0

8
2

1
5
2

1
6
7

3
0
5

1
.6

6
0
.6

8
2
.8

5

T
D

C
A

L
T

E
u
ro

p
e

1
2
1
:3

5
6
1

—
—

—
0
:2

2
6
0

9
6
1

3
5
6

5
2
7

4
3
.6

7
—

—

T
D

C
A

L
T

-K
1
.0

5
E

u
ro

p
e

1
2
1
:3

5
6
1

—
—

—
0
:2

2
3
2

4
0
5

n
/
a

2
2
.4

8
0
.0

1
3
.9

4

T
D

C
A

L
T

-K
1
.1

5
E

u
ro

p
e

1
2
1
:3

5
6
1

—
—

—
0
:2

2
6

3
6
5

3
2

7
1
9

3
.3

1
0
.2

6
8
.6

9

ec
o

L
-S

H
A

R
C

E
u
ro

p
e

1
2
:2

7
:0

7
1
9
8

—
—

—
—

1
8

2
8
9

1
6
5

3
8
2

1
3
.7

7
—

—

h
eu

S
H

A
R

C
E

u
ro

p
e

1
7
:5

9
:0

8
1
2
7

—
—

—
—

5
0
3
1

8
4
1
1

1
.0

6
n
/
a

1
.6

0

A
T

C
H

(1
.0

)
E

u
ro

p
e

8
4
2
:2

1
2
0
8

7
:2

6
4
8
:0

7
2
0
8

—
1

2
2
3

2
0

3
3
6

2
.6

8
—

—

in
ex

.
T

C
H

(0
.1

)
E

u
ro

p
e

8
4
2
:2

1
2
3
9

7
:2

6
4
8
:0

7
2
3
9

—
1

7
2
2

2
4

3
8
9

2
.5

0
0
.0

2
0
.1

5

in
ex

.
T

C
H

(2
.5

)
E

u
ro

p
e

8
4
2
:2

1
1
7
5

7
:2

6
4
8
:0

7
1
7
5

—
1

8
7
5

2
6

9
4
8

2
.7

2
0
.4

8
3
.3

7

T
D

C
R

P
(0

.1
)

E
u
ro

p
e

1
6

2
2
:3

3
3
2

3
:2

0
4
7
:1

0
2
3
7

3
:2

0
3

4
9
9

5
4
1

0
8
8

6
.4

7
0
.0

4
0
.2

9

T
D

C
R

P
(1

.0
)

E
u
ro

p
e

1
6

2
2
:3

3
3
2

1
:4

9
2
5
:1

6
1
3
3

1
:4

9
3

4
9
9

5
4
1

0
5
8

5
.7

5
0
.5

4
3
.2

1

46 M. Baum et al.

Table 5. Scaling factors for different machines, used in Table 4. Scores were determined
by a shared Dijkstra implementation [1] on the same graph. These factors have to
be taken with a grain of salt, since Dijkstra’s algorithm is not a good indicator of
cache performance. When scaling on TDCRP performance, instead, we observe a factor
of 2.06–2.18 for the Opteron 2218 (which we have access to), depending on the instance.

Machine Used by Score [ms] Factor

2× 8-core Intel Xeon E5-2670, 2.6 GHz TDCRP 36 582 —

AMD Opteron 2218, 2.6 GHz TDCALT [11], SHARC [8] 101 552 2.78

2× 4-core Intel Xeon X5550, 2.66 GHz TCH, ATCH [2] 39 684 1.08

6-core Intel Xeon E5-2643v3, 3.4 Ghz FLAT/FCA [32] 30 901 0.84

To summarize, we see that TDCRP clearly broadens the state-of-the-art of
time-dependent route planning, handling a wider range of practical requirements
(e. g., fast metric-dependent preprocessing, robustness to user preferences, live
traffic) with a query performance close to the fastest known approaches.

5 Conclusion

In this work, we introduced TDCRP, a separator-based overlay approach for
dynamic, time-dependent route planning. We showed that, unlike its closest com-
petitor (A)TCH, it is robust against user-dependent metric changes, very much
like CRP is more robust than CH. Most importantly, unlike scalar CRP, we
have to deal with time-dependent shortcuts, and a strong increase in functional
complexity on higher levels; To reduce memory consumption, we approximate
the overlay arcs at each level, accelerating customization and query times. As
a result, we obtain an approach that enables fast near-optimal, time-dependent
queries, with quick integration of user preferences, live traffic, and traffic predic-
tions.

There are several aspects of future work. Naturally, we are interested in
alternative customization approaches that avoid label-correcting profile searches.
This could be achieved, e. g., by using kinetic data structures [23], or balanced
contraction [2] within cells. It would be interesting to re-evaluate (A)TCH in
light of Customizable CH [16,17]. Also, while we customized time-dependent
overlay arcs with both historic travel time functions (changes seldom) and user
preferences (changes often) at once, in practice, it might pay off to separate this
into two further phases (yielding a 4-phase approach). Furthermore, one could
aim at exact queries based on approximated shortcuts as in ATCH.

While our approach is customizable, it requires arc cost functions that map
time to time. This allows to model avoidance of highways or driving slower than
the speed limit, but it cannot handle combined linear optimization of (time-
dependent) travel time and, e. g., toll costs. For that, one should investigate the
application of generalized time-dependent objective functions as proposed in [3].

Dynamic Time-Dependent Route Planning with User Preferences 47

Finally, functional complexity growth of time-dependent shortcuts is prob-
lematic, and from what we have seen, it is much stronger than the increase in the
number of corresponding paths. It seems wasteful to apply the heavy machinery
of linking and merging during preprocessing, when time-dependent evaluation
of just a few paths (more than one is generally needed) would give the same
results. This might explain why TDCALT, which is mostly based just on scalar
lower bounds, is surprisingly competitive. So re-evaluation seems fruitful, possi-
bly exploiting insights from [20]. Revisiting hierarchical preprocessing techniques
that are not based on shortcuts [26,36] could also be interesting.

Acknowledgements. We thank Gernot Veit Batz, Daniel Delling, Moritz Kobitzsch,
Felix König, Spyros Kontogiannis, and Ben Strasser for interesting conversations.

References

1. Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks. CoRR
abs/1504.05140 (2015)

2. Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent
travel times with contraction hierarchies. ACM J. Exp. Algorithmics 18(1.4), 1–43
(2013)

3. Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective
functions. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 169–
180. Springer, Heidelberg (2012)

4. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contrac-
tion hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 93–104. Springer, Heidelberg (2013)

5. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric
vehicles. In: SIGSPATIAL 2013, pp. 54–63. ACM Press (2013)

6. Cooke, K., Halsey, E.: The shortest route through a network with time-dependent
internodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)

7. Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with
waiting policies. Networks 44(1), 41–46 (2004)

8. Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)
9. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning

in road networks. Transport. Sci. (2015)
10. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning

with natural cuts. In: IPDPS 2011, pp. 1135–1146. IEEE Computer Society (2011)
11. Delling, D., Nannicini, G.: Core routing on dynamic time-dependent road networks.

Informs J. Comput. 24(2), 187–201 (2012)
12. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Deme-

trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg
(2007)

13. Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K.,
Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimiza-
tion. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)

14. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: A case for time-dependent short-
est path computation in spatial networks. In: SIGSPATIAL 2010, pp. 474–477.
ACM Press (2010)

48 M. Baum et al.

15. Diamantopoulos, T., Kehagias, D., König, F., Tzovaras, D.: Investigating the effect
of global metrics in travel time forecasting. In: ITSC 2013, pp. 412–417. IEEE
(2013)

16. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282.
Springer, Heidelberg (2014)

17. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. J. Exp.
Algorithmics. 21(1), 1.5:1–1.5:49 (2016). doi:10.1145/2886843

18. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

19. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3),
395–412 (1969)

20. Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing.
In: IWCTS 2013, pp. 25:25–25:30. ACM Press (2013)

21. Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. a unified framework for all shortest-
path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol.
9125, pp. 298–311. Springer, Heidelberg (2015)

22. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an
algorithmic lens. In: SIGSPATIAL 2008, pp. 16:1–16:10. ACM Press (2008)

23. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent short-
est paths. Algorithmica 68(4), 1075–1097 (2014)

24. Geisberger, R., Sanders, P.: Engineering time-dependent many-to-many shortest
paths computation. In: ATMOS 2010, pp. 74–87. OASIcs (2010)

25. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

26. Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: ALENEX 2004, pp. 100–111. SIAM (2004)

27. Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: ALENEX
2016, pp. 90–102. SIAM (2016)

28. Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for
shortest-path queries. ACM J. Exp. Algorithmics 13(2.5), 1–26 (2008)

29. Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear func-
tion. J. Inf. Process. 9(3), 159–162 (1986)

30. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically
structured topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–
1046 (2002)

31. Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wag-
ner, D., Zaroliagis, C.: Analysis and experimental evaluation of time-dependent
distance oracles. In: ALENEX 2015, pp. 147–158. SIAM (2015)

32. Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A., Wag-
ner, D., Zaroliagis, C.: Engineering oracles for time-dependent road networks. In:
ALENEX 2016, pp. 1–14. SIAM (2016)

33. Kontogiannis, S., Wagner, D., Zaroliagis, C.: Hierarchical Oracles for Time-
Dependent Networks. CoRR abs/1502.05222 (2015)

34. Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 713–725. Springer, Heidelberg (2014)

35. Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks.
Algorithmica 74(4), 1404–1434 (2015)

36. Maervoet, J., Causmaecker, P.D., Berghe, G.V.: Fast approximation of reach hier-
archies in networks. In: SIGSPATIAL 2014, pp. 441–444. ACM Press (2014)

http://dx.doi.org/10.1145/2886843

Dynamic Time-Dependent Route Planning with User Preferences 49

37. Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* search on
time-dependent road networks. Networks 59, 240–251 (2012)

38. Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks with
time-dependent edge-length. J. ACM 37(3), 607–625 (1990)

39. Pfoser, D., Brakatsoulas, S., Brosch, P., Umlauft, M., Tryfona, N., Tsironis, G.:
Dynamic travel time provision for road networks. In: SIGSPATIAL 2008, pp. 68:1–
68:4. ACM Press (2008)

40. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX
2012, pp. 16–29. SIAM (2012)

41. Schild, A., Sommer, C.: On balanced separators in road networks. In: Bampis, E.
(ed.) SEA 2015. LNCS, vol. 9125, pp. 286–297. Springer, Heidelberg (2015)

42. Sherali, H.D., Ozbay, K., Subramanian, S.: The time-dependent shortest pair of
disjoint paths problem: complexity, models, and algorithms. Networks 31(4), 259–
272 (1998)

UKP5: A New Algorithm for the Unbounded
Knapsack Problem

Henrique Becker(B) and Luciana S. Buriol

Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
{hbecker,buriol}@inf.ufrgs.br

http://ppgc.inf.ufrgs.br/

Abstract. In this paper we present UKP5, a novel algorithm for solving
the unbounded knapsack problem. UKP5 is based on dynamic program-
ming, but implemented in a non traditional way: instead of looking back-
ward for stored values of subproblems, it stores incremental lower bounds
forward. UKP5 uses sparsity, periodicity, and dominance for speeding up
computation. UKP5 is considerably simpler than EDUK2, the state-of-
the-art algorithm for solving the problem. Moreover, it can be naturally
implemented using the imperative paradigm, differently from EDUK2.
We run UKP5 and EDUK2 on a benchmark of hard instances pro-
posed by the authors of EDUK2. The benchmark is composed by 4540
instances, divided into five classes, with instances ranging from small
to large inside each class. Speedups were calculated for each class, and
the overall speedup was calculated as the classes speedups average. The
experimental results reveal that UKP5 outperforms EDUK2, being 47
times faster on the overall average.

Keywords: Unbounded knapsack problem · Dynamic programming ·
Combinatorial optimization

1 Introduction

The unbounded knapsack problem (UKP) is a simpler variation of the well-
known bounded knapsack problem (BKP). UKP allows the allocation of an
unbounded quantity of each item type. The UKP is NP-Hard, and thus has
no known polynomial-time algorithm for solving it. However, it can be solved
by a pseudo-polynomial dynamic programming algorithm. UKP arises in real
world problems mainly as a subproblem of the Bin Packing Problem (BPP) and
Cutting Stock Problem (CSP). Both BPP and CSP are of great importance for
the industry [3], [5,6]. The currently fastest known solver for BPP/CSP [2,3]
uses a column generation technique (introduced in [5]) that needs to solve an
UKP instance as the pricing problem at each iteration of a column generation
approach. The need for efficient algorithms for solving the UKP is fundamental
for the overall performance of the column generation.

Two techniques are often used for solving UKP: dynamic programming (DP)
[1], [4, p. 214], [7, p. 311] and branch and bound (B&B) [10]. The DP approach
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 50–62, 2016.
DOI: 10.1007/978-3-319-38851-9 4

UKP5: A New Algorithm for the UKP 51

has a stable pseudo-polynomial time algorithm linear on the capacity and num-
ber of items. The B&B approach can be less stable. It can be faster than DP on
instances with some characteristics, such as when the remainder of the division
between the weight of the best item by the capacity is small; or the items have a
big efficiency variance. Nonetheless, B&B has always the risk of an exponential
time worst case.

The state-of-the-art solver for the UKP, introduced by [12], is a hybrid solver
that combines DP and B&B. It tries to solve the problem by B&B, and if this
fails to solve the problem quickly, it switches to DP using some data gathered
by the B&B to speed up the process. The solver’s name is PYAsUKP, and it is
an implementation of the EDUK2 algorithm.

1.1 UKP Formal Notation

The following notation of the UKP will be used for the remainder of the paper.
An UKP instance is composed by a capacity c, and a list of n items. Each item
can be referenced by its index in the item list i ∈ {1 . . . n}. Each item i has a
weight value wi, and a profit value pi. A solution is an item multiset, i.e., a set
that allows multiple copies of the same element. The sum of the items weight, or
profit, of a solution s is denoted by ws, or ps. A valid solution s has ws ≤ c. An
optimal solution s∗ is a valid solution with the greatest profit among all valid
solutions. The UKP objective is to find an optimal solution for the given UKP
instance. The mathematical formulation of UKP is:

maximize

n∑

i=1

pixi (1)

subject to
n∑

i=1

wixi ≤ c (2)

xi ∈ N0 (3)

The quantities of each item i in an optimal solution are denoted by xi, and
are restricted to the non-negative integers, as (3) indicates. We assume that the
capacity c, the quantity of items n and the weights of the items wi are positive
integers. The profits of the items pi are positive real numbers.

The efficiency of an item i is the ratio pi

wi
, and is denoted by ei. We use

wmin and wmax to denote the smallest item weight, and the biggest item weight,
respectively. Also, we refer to the item with the lowest weight among the ones
tied with the greatest efficiency as the best item, and the item with the lowest
weight among all items as the smallest item. If two or more items have the same
weight we consider only the one with the best profit (the others can be discarded
without loss to the optimal solution value); if they have the same weight and
profit we consider them the same item.

52 H. Becker and L.S. Buriol

1.2 Dominance

Dominance, in the UKP context, is a technique for discarding items without
affecting the optimal solution value. By this definition, every item that isn’t used
in an optimal solution could be discarded, but this would need the knowledge
of the solution beforehand. Some dominances can be verified in polynomial time
over n, and can speed up the resolution of an NP-Hard problem by reducing
the instance input size. Instances where many items can be excluded by the two
simplest dominances (simple dominance and multiple dominance) are known as
“easy” instances. Research on these two dominances was done to a large extent,
leading to the following statement by Pisinger in 1995 “[...] perhaps too much
effort has previously been used on the solution of easy data instances.” [11, p. 20].

Other two important dominances are collective dominance and threshold
dominance [12]. These two dominances are too time demanding to be applied at
a preprocessing phase, differently from simple and multiple dominances. They
are often integrated in the UKP algorithm, and remove items while the algorithm
executes. The collective dominance needs to know the opt(y) to exclude an item i
with wi = y, where opt(y) is the optimal solution value for a capacity y. The
threshold dominance needs to know the opt(α × wi) to exclude the item i from
capacity y = α × wi onwards, where α is any positive integer.

1.3 Periodicity

A periodicity bound y is an upper capacity bound for the existence of optimal
solutions without the best item. In another words, it’s a guarantee that any
optimal solution for an instance where c ≥ y has at least one copy of the best
item. The periodicity bound is specially useful because it can be applied repeat-
edly. For example, let c = 1000, y = 800 and wb = 25 where b is the best item;
because of c ≥ y we know that any optimal solution has a copy of b, so we can
add one b to the solution and combine with an optimal solution for c = 975;
but 975 is yet bigger than 800, so we can repeat the process until c = 775. This
way, for any UKP instance where c ≤ y we can reduce the instance capacity by
max(1, �(c−y∗)/wb�)×wb. After solving this instance with reduced capacity we
can add max(1, �(c − y∗)/wb�) copies of b to the optimal solution to obtain an
optimal solution for the original instance.

There exist many proposed periodicity bounds, but some are time consuming
(as O(n2) [8]), others depend on specific instance characteristics (as [9][12]).
We used only a UKP5-specific periodicity bound described later and the y∗

bound described in [4, p. 223]. The y∗ is O(1) on an item list ordered by non-
increasing efficiency, and it is generic, being successfully applied on instances of
most classes. Assuming i is the best item, and j is the second most efficient item,
then y∗ = pi/(ei − ej).

1.4 Sparsity

For some UKP instances, not every non-zero capacity value can be obtained by
a linear combination of the items weight. If wmin is small, for example wmin = 1,

UKP5: A New Algorithm for the UKP 53

we have the guarantee that every non-zero capacity has at least one solution with
weight equal to the capacity value. But if wmin is big, for example wmin = 104,
there can be a large number of capacities with no solution comprising weight
equal to the capacity. These capacities have an optimal solution that don’t fill
the capacity completely. The UKP5 exploits sparsity in the sense that it avoids
computing the optimal solution value for those unfulfilled capacities. The array
that stores the optimal solutions value is, therefore, sparse.

2 UKP5: The Proposed Algorithm

UKP5 is inspired by the DP algorithm described by Garfinkel [4, p. 221]. The
name “UKP5” is due to five improvements applied over that algorithm:

1. Symmetry pruning: symmetric solutions are pruned in a more efficient
fashion than in [4];

2. Sparsity: not every position of the optimal solutions value array has to be
computed;

3. Dominated solutions pruning: dominated solutions are pruned;
4. Time/memory tradeoff: the test wi ≤ y from the algorithm in [4] was

removed in cost of more O(wmax) memory;
5. Periodicity: the periodicity check suggested in [4] (but not implemented

there) was adapted and implemented.

A pseudocode of our algorithm is presented in Algorithm1. We have two
main data structures, the arrays g and d, both with dimension c + wmax. The g
is a sparse array where we store solutions profit. If g[y] > 0 then there exists a
non-empty solution s with ws = y and ps = g[y]. The d array stores the index
of the last item used on a solution. If g[y] > 0∧ d[y] = i then the solution s with
ws = y and ps = g[y] has at least one copy of item i. This array makes it trivial
to recover the optimal solution, but its main use is to prune solution symmetry.

Our first loop (lines 4 to 9) simply stores all solutions comprised of a single
item in the arrays g and d. For a moment, let’s ignore lines 12 to 14, and replace
d[y] (at line 16) by n. With these changes, the second loop (between lines 11
and 22) iterates g and when it finds a stored solution (g[y] > 0) it tests n new
solutions (the combinations of the current solution with every item). The new
solutions are stored at g and d, replacing solutions already stored if the new
solution has the same weight but a greater profit value.

When we add the lines 12 to 14 to the algorithm, it stops creating new
solutions from dominated solutions. If a solution s with a smaller weight (ws < y)
has a bigger profit (ps = opt > pt, where wt = y∧pt = g[y]), then s dominates t.
If a solution s dominates t then, for any item i, the s∩{i} solution will dominate
the t ∩ {i} solution. This way, new solutions created from t are guaranteed to
be dominated by the solutions created from s. A whole superset of t can be
discarded without loss to solution optimality.

The change from n to d[y] is based on the algorithm from [4] and it prunes
symmetric solutions. In a naive DP algorithm, if the item multiset {5, 3, 3} is a

54 H. Becker and L.S. Buriol

Algorithm 1. UKP5 – Computation of opt

1: procedure UKP5(n, c, w, p, wmin, wmax)
2: g ← array of c + wmax positions each one initialized with 0
3: d ← array of c + wmax positions each one initialized with n
4: for i ← 1, n do � Stores one-item solutions
5: if g[wi] < pi then
6: g[wi] ← pi

7: d[wi] ← i
8: end if
9: end for

10: opt ← 0
11: for y ← wmin, c do � Can end early because of periodicity check
12: if g[y] ≤ opt then � Handles sparsity and pruning of dominated solutions
13: continue � Ends current iteration and begins the next
14: end if
15: opt ← g[y]
16: for i = 1, d[y] do � Creates new solutions (never symmetric)
17: if g[y + wi] < g[y] + pi then
18: g[y + wi] ← g[y] + pi

19: d[y + wi] ← i
20: end if
21: end for
22: end for
23: return opt
24: end procedure

valid solution, then every permutation of it is reached in different ways, wast-
ing processing time. To avoid computing symmetric solutions, we enforce non-
increasing order of the items index. Any item inserted on a solution s has an
index that is equal to or lower than the index of the last item inserted on s. This
way, solution {10, 3, 5, 3} cannot be reached. However, this is not a problem
because this solution is equal to {10, 5, 3, 3}, and this solution can be reached.

When the two changes are combined, and the items are sorted by non-
increasing efficiency, UKP5 gains in performance. The UKP5 iterates by the
item list only when it finds a non-dominated solution, i.e., g[y] ≥ 0 (line 12).
Non-dominated solutions are more efficient (larger ratio of profit by weight) than
the skipped dominated solutions. Therefore, the UKP5 inner loop (lines 16 to
21) often iterates up to a low d[y] value. Experimental results show that, after
some threshold capacity, the UKP5 inner loop consistently iterates only for a
small fraction of the item list.

The algorithm ends with the optimal solution stored at opt. The solution
assemble phase isn’t described in Algorithm 1, but it’s similar to the one used
by the DP method described in [4, p. 221, Steps 6–8]. Let yopt be a capacity
where g[yopt] = opt. We add a copy of item i = d[yopt] to the solution, then we
add a copy of item j = d[yopt − wi], and so on, until d[0] is reached. This phase

UKP5: A New Algorithm for the UKP 55

has a O(c) time complexity, as the solution can be composed of c copies of an
item i with wi = 1.

A Note About UKP5 Performance. In the computational results section we
will show that UKP5 outperforms PYAsUKP in about two orders of magnitude.
We grant the majority of the algorithm performance to the ability of applying
sparsity, solution dominance and symmetry pruning with almost no overhead.
At each iteration of capacity y sparsity and solution dominance are integrated
in a single constant time test (line 12). This test, when combined with an item
list sorted by non-increasing efficiency, also helps to avoid propagating big index
values for the next positions of d, benefiting the performance of the solution
generation with symmetry pruning (the use of d[y] on line 16).

2.1 Solution Dominance

In this section we will give a more detailed explanation of the workings of the
previously cited solution dominance. We use the minix(s) notation to refer to
the lowest index between the items that compose the solution s. The maxix(s)
notation has analogue meaning.

When a solution t is pruned because s dominates t (lines 12 to 14), some
solutions u, where u � t, are not generated. If s dominates t and u � t, and
maxix(u\t) ≤ minix(t), then u is not generated by UKP5. In other words, if
{3, 2} is dominated, then {3, 2, 2} and {3, 2, 1} are not generated by UKP5, but
{3, 2, 3} or {3, 2, 5} could yet be generated. Ideally, any u where u � t should not
be generated as it will be dominated by a solution u′ where u′

� s anyway. It’s
interesting to note that this happens eventually, as any t∩{i} where i > minix(t)
will be dominated by s ∩ {i} (or by a solution that dominates s ∩ {i}), and at
some point no solution that is a superset of t is generated anymore.

2.2 Implementation Details

With the purpose of making the initial explanation simpler, we have omitted
some steps that are relevant to the algorithm performance, but not essential for
assessing its correctness. A complete overview of the omitted steps is presented
at this section.

All the items are sorted by non-increasing efficiency and, between items with
the same efficiency, by increasing weight. This speed ups the algorithm, but does
not affect its correctness.

The y∗ periodicity bound is computed as in [4, p. 223], and used to reduce
the c value. We further proposed an UKP5-specific periodicity check that was
successfully applied. This periodicity check isn’t used to reduce the c capacity
before starting UKP5, as y∗. The periodicity check is a stopping condition inside
UKP5 main loop (11 and 22). Let y be the value of the variable y at line 11,
and let y′ be the biggest capacity where g[y′] 	= 0∧d[y′] > 1. If at some moment
y > y′ then we can stop the computation and fill the remaining capacity with

56 H. Becker and L.S. Buriol

copies of the first item (item of index 1). This periodicity check works only if
the first item is the best item. If this assumption is false, then the described
condition will never happen, and the algorithm will iterate until y = c as usual.
The algorithm correctness isn’t affected.

There’s an else if test at line 20. If g[y + wi] = g[y] + pi ∧ i < d[y + wi] then
d[y] ← i. This may seem unnecessary, as appears to be an optimization of a rare
case, where two solutions comprised from different item multisets have the same
weight and profit. Nonetheless, without this test, the UKP5 was about 1800
(one thousand and eight hundreds) times slower on some subset-sum instance
datasets.

We iterate only until c − wmin (instead of c, in line 11), as it is the last y
value that can affect g[c]). After this we search for a value greater than opt in
the range g[c − wmin + 1] to g[c] and update opt.

3 Computational Results

In this section we describe the experiments environment, instance sets and
results. We compare our UKP5 implementation, and the EDUK2 implementa-
tion provided by [12] (called PYAsUKP). The used source codes can be found at
https://github.com/henriquebecker91/masters/tree/v0.11. The times reported
were given by the tools themselves and do not count the instance loading time.
The runs external time2 were also captured and no significant discrepancy was
observed. Therefore, we have chosen to use the times reported by PYAsUKP
and UKP5 (as is the common practice). For all instances, the weight, profit and
capacity are integral.

We use the following notation: rand(x, y) means a random integer between
x and y (both inclusive); xn means x as a string concatenated with the value of
variable n as a string. For example: if n = 5000 then 10n = 105000.

3.1 Environment

The computer used on the experiments was an ASUS R552JK-CN159H. The
CPU has four physical cores (Intel Core i7-4700HQ Processor, 6M Cache, 3.40
GHz). The operating system used was Linux 4.3.3-2-ARCH x86 64 GNU/Linux
(i.e. Arch linux). Three of the four cores were isolated using the isolcpus kernel
flag. The taskset utility was used to execute UKP5 and PYAsUKP in parallel

1 The UKP5 implementation is at codes/cpp/ and two versions of PYAsUKP are at
codes/ocaml/. The pyasukp site.tgz is the version used to generate the instances,
and was also available at http://download.gna.org/pyasukp/pyasukpsrc.html.
A more stable version was provided by the authors. This version is in
pyasukp mail.tgz and it was used to solve the instances the results presented in
Table 1. The create * instances.sh scripts inside codes/sh/ were used to generate
the instance datasets.

2 Given by the time application, available at https://www.archlinux.org/packages/
extra/x86 64/time/. The bash internal command was not used.

https://github.com/henriquebecker91/masters/tree/v0.1
http://download.gna.org/pyasukp/pyasukpsrc.html
https://www.archlinux.org/packages/extra/x86_64/time/
https://www.archlinux.org/packages/extra/x86_64/time/

UKP5: A New Algorithm for the UKP 57

on the isolated cores. The computer memory was never completely used (so no
swapping was done). The UKP5 code was compiled with gcc (g++) version 5.3.0
(the -O3 -std=c++11 flags were enabled).

3.2 Instance Sets

The instance sets aim to reproduce the ones described in [12]. The same tool
was used to generate the datasets (PYAsUKP), and the same parameters were
used, otherwise noted the contrary. In Subsect. 5.1.1 Known “hard” instances
of [12] some sets of easy instances are used to allow comparison with MTU2.
However, the authors reported integer overflow problems with MTU2 on harder
instances. With exception of the subset-sum dataset, all datasets have a similar
harder set (Subsect. 5.2.1 New hard UKP instances [12]). Thus, we considered
in the runs only the harder ones. Each instance has a random capacity value
within intervals shown in Table 1. The PYAsUKP parameters -wmin wmin -cap
c -n n were used in all instances generation. We found some small discrepancies
between the formulas presented in [12] and the ones used in PYAsUKP code. We
opted for using the ones from PYAsUKP code, and they are presented below.

Subset-Sum. Instances generated with pi = wi = rand(wmin, wmax). The
majority of the subset-sum instances used in [12] were solved on less than a
centisecond in our experiments. This makes it easy to have imprecise measuring.
Because of this, in this paper, we use a similar dataset, but with each parameter
multiplied by ten. Therefore, we generated 10 instances for each possible com-
bination of: wmin ∈ {103, 5 × 103, 104, 5 × 104, 105}; wmax ∈ {5 × 105, 106} and
n ∈ {103, 2 × 103, 5 × 103, 104}, totaling 400 instances. We do not discriminate
each combination in Table 1 for brevity. The PYAsUKP -form ss -wmax wmax

parameters were used.

Strong Correlation. Instances generated using the following formula: wi =
wmin + i − 1 and pi = wi + α, for a given wmin and α. Note that, except by
the random capacity, all instances with the same α, n, and wmin combination
are equal. The formula doesn’t rely on random numbers. The PYAsUKP -form
chung -step α parameters were used.

Postponed Periodicity. This family of instances is generated by the fol-
lowing method: n distinct weights are generated with rand(wmin, wmax) and
then sorted by increasing order; p1 = w1 + rand(1, 500); and ∀i ∈ [2, n]. pi =
pi−1 + rand(1, 125). The wmax is computed as 10n. The PYAsUKP -form nsds2
-step 500 -wmax wmax parameters were used.

No Collective Dominance. This family of instances is generated by the fol-
lowing method: n distinct weights are generated with rand(wmin, wmax) and
then sorted by increasing order; p1 = pmin + rand(0, 49); and ∀i ∈ [2, n]. pi =

58 H. Becker and L.S. Buriol

�wi×((pi−1/wi−1)+0.01)+rand(1, 10). The given values are: wmin = pmin = n
and wmax = 10n. The PYAsUKP -form hi -pmin pmin -wmax wmax parameters
were used.

SAW. This family of instances is generated by the following method: generate
n random weights between wmin and wmax = 1n with the following property:
∀i ∈ [2, n]. wi mod w1 > 0 (w1 is the smallest weight); sort by increasing order;
then p1 = w1 + α where α = rand(1, 5), and ∀i ∈ [2, n]. pi = rand(li, ui) where
li = max(pi−1, qi), ui = qi + mi, qi = p1 × �wi/w1, and mi = wi mod w1. The
PYAsUKP -form saw -step α -wmax wmax parameters were used.

3.3 Results and Analysis

Table 1 presents the times used by UKP5 and PYAsUKP to solve the instance
classes previously described. No time limit was defined. Figure 1 presents the
same data, in logarithmic scale.

Based on Table 1, except by one instance set that we will talk about later,
we can make two statements: (1) the average time, standard deviation, and
maximal time of UKP5 are always smaller than the PYAsUKP ones; (2) the
minimal PYAsUKP time is always smaller than the UKP5 one.

Let’s begin with the second statement. As EDUK2 uses a branch-and-bound
(B&B) algorithm before resorting to dynamic programming (DP), this is an
expected result. Instances with big capacities and solutions that are composed
by a large quantity of the best item, and a few non-best most efficient items, can
be quickly solved by B&B. Our exception dataset (Strong Correlation, α = 5,
n = 10 and wmin = 10) is exactly this case. As said before, the strong correlation
formula does not make use of random numbers, so all twenty instances of that
dataset have the same items. The only thing that changes is the capacity. All
solutions of this dataset are composed by hundreds of copies of the best item
(that is also the smallest item, making the dataset even easier) and exactly
one non-best item for making better use of the residual capacity (c mod w1).
All other datasets have instances that present the same characteristics, and
because of that, the PYAsUKP minimal time is always close to zero. In Fig. 1
it is possible to observe that there are many instances solved in less than 10 s
by PYAsUKP which took longer for UKP5 to solve. The number of instances
where PYAsUKP was faster than UKP5 by instance class are: Subset-sum: 264
(≈65%); Strong correlation: 60 (25%); Postponed periodicity: 105 (≈13%); No
collective dominance: 259 (≈13%); SAW: 219 (≈20%). This from a total of 4540
instances.

For the instances that are solved by B&B in short time, the DP is not compet-
itive against B&B. The UKP5 can’t compete with PYAsUKP on easy datasets,
as only the time for initializing an array of size c is already greater than the
B&B’s time. Nonetheless, for hard instances of combinatorial problems, B&B is
known to show a bad worst case performance (exponential time). As EDUK2
combines B&B and DP with the intent of getting the strengths of both, and

UKP5: A New Algorithm for the UKP 59

Table 1. Columns n and wmin values must be multiplied by 103 to obtain their true
value. Let T be the set of times reported by UKP5 or EDUK2, then the meaning of
the columns avg, sd, min and max, is, respectively, the arithmetic mean of T , the
standard deviation of T , the minimal value of T and the maximal value of T . The time
unit of the table values is seconds.

Instance desc. UKP5 PYAsUKP

400 inst. per line Subset-sum. Random c between [5 × 106; 107]

n wmin avg sd min max avg sd min max

See section 3.2 0.08 0.20 0.01 1.42 6.39 55.33 0.00 726.34

20 inst. per line Strong correlation. Random c between [20n; 100n]

α n wmin avg sd min max avg sd min max

5 5 10 0.05 0.00 0.05 0.05 2.46 2.81 0.00 6.13

15 0.07 0.00 0.07 0.09 5.84 2.43 0.00 8.82

50 0.20 0.06 0.08 0.24 18.35 12.64 0.00 50.58

5 10 10 0.11 0.01 0.10 0.14 0.00 0.00 0.00 0.01

50 0.49 0.03 0.47 0.60 41.97 33.97 0.00 93.18

110 1.07 0.02 1.05 1.13 147.60 114.39 0.00 342.86

-5 5 10 0.06 0.00 0.06 0.07 5.98 4.02 0.00 11.99

15 0.09 0.00 0.08 0.10 10.37 6.73 0.00 21.00

50 0.21 0.05 0.09 0.24 39.31 30.16 0.00 89.44

-5 10 10 0.19 0.01 0.17 0.21 13.13 12.61 0.00 33.00

50 0.54 0.02 0.52 0.59 82.97 71.22 0.00 206.74

110 1.08 0.02 1.07 1.13 261.61 246.21 0.00 721.89

200 inst. per line Postponed periodicity. Random c between [wmax; 2 × 106]

n wmin avg sd min max avg sd min max

20 20 1.42 0.31 0.55 2.77 17.00 17.05 0.01 63.96

50 20 10.20 1.28 7.91 14.98 208.61 210.72 0.03 828.89

20 50 1.59 0.32 0.96 2.99 27.68 22.79 0.02 100.96

50 50 6.86 1.23 4.46 11.78 233.58 187.91 2.65 682.95

500 inst. per line No collective dominance. Random c between [wmax; 1000n]

n wmin avg sd min max avg sd min max

5 n 0.05 0.01 0.03 0.10 0.78 0.59 0.00 2.66

10 n 0.49 0.15 0.21 1.10 3.38 2.80 0.00 12.31

20 n 0.99 0.19 0.63 2.02 13.08 12.80 0.01 62.12

50 n 4.69 1.22 3.51 13.18 119.18 131.22 0.04 667.42

qtd inst. per line SAW. Random c between [wmax; 10n]

qtd n wmin avg sd min max avg sd min max

200 10 10 0.11 0.01 0.10 0.16 1.88 1.24 0.01 4.73

500 50 5 0.74 0.08 0.66 1.98 4.79 4.22 0.02 17.78

200 50 10 1.01 0.03 0.97 1.27 10.44 9.02 0.03 38.69

200 100 10 14.13 2.96 9.95 21.94 60.58 54.08 0.05 192.04

60 H. Becker and L.S. Buriol

Fig. 1. The times used by UKP5 and PYAsUKP for each instance of each class. The
black dots represent PYAsUKP times. The gray dots represent UKP5 times. The y
axis is the time used to solve an UKP instance, in seconds. The x axis is the instance
index when the instances are sorted by the time PYAsUKP took to solve it. Note that
the y axis is in logarithmic scale.

none of its weaknesses, we found anomalous that this typical B&B behavior was
present in PYAsUKP. We executed PYAsUKP with the -nobb flag, that disables
the use of B&B. The PYAsUKP with disabled B&B had a performance worse
than the one with B&B. For the presented classes, the ratios no-B&B avg time

B&B avg time by
instance class are: Subset-sum: 5.70; Strong correlation: 2.47; Postponed peri-
odicity: 2.61; No collective dominance: 4.58; SAW: 4.07. For almost every indi-
vidual instance no-B&B was worse than B&B (and when no-B&B was better
this was by a small relative difference). Based on this evidence, we conclude that
the PYAsUKP implementation of the EDUK2 DP-phase is responsible for the
larger maximal PYAsUKP times (the time seems exponential but it is instead
pseudo-polynomial with a big constant).

Looking back at the first statement of this section, we can now conclude
that for instances that are hard for B&B, UKP5 clearly outperforms PYAsUKP
DP by a big constant factor. Even considering the instances that PYAsUKP
solves almost instantly (because of B&B), UKP5 is about 47 times faster than
PYAsUKP, in average. If we ignored the advantage given by B&B (giving UKP5
a B&B phase, or removing the one used on EDUK2) this gap would be even
greater.

UKP5: A New Algorithm for the UKP 61

We also compared our results with CPLEX. In [12] the authors presented
results for CPLEX version 10.5, and showed that EDUK2 outperformed CPLEX.
However, CPLEX efficiency has grown a lot in the last versions. Due to this, we
run CPLEX 12.5. For the instances tested, UKP5 outperformed CPLEX 12.5
considerably. For the presented classes, the ratios CPLEX avg time

UKP5 avg time by instance
class are: Subset-sum: 258.11; Strong correlation: 64.14; Postponed periodicity:
12.18; No collective dominance: 16.23; SAW: 120.14. Moreover, we set a time
limit of 1,000 s and a memory limit of 2 GB for CPLEX, while every UKP5 and
PYAsUKP run finished before these limits. The ratios above were computed
considering 1,000 s for the instances that reached the time limit. However, from
4540 instances, in 402 runs the CPLEX reached the time limit. In 8 instances
CPLEX reached the memory limit. We did not compare UKP5 with MTU2 since
PYAsUKP already outperformed it, as shown in [12]. However, in a future work
we intend to reimplement MTU2 to allow the comparison on the hard instances
where it presented overflow problems.

The average UKP5 implementation memory consumption was greater than
the PYAsUKP memory consumption. For each instance class, the UKP5-to-
PYAsUKP memory consumption ratio was: Subset-sum: 10.09; Strong correla-
tion: 2.84; Postponed periodicity: 1.62; No collective dominance: 12.41; SAW:
1.31. However, note that the UKP5 memory consumption worst case is n+2× c
(pseudo-polynomial on n and c). The UKP5 consumed at most ≈1.6GB solving
an instance.

4 Conclusion and Final Remarks

In this work we present UKP5, a new algorithm to solve the Unbounded Knap-
sack Problem based on dynamic programming. UKP5 outperformed PYAsUKP,
the only known implementation of EDUK2, the state-of-the-art algorithm for
solving the problem. When computing the speedups calculated as the ratio of
times between the two algorithms, UKP5 is two orders of magnitude faster on
average, considering the 4540 tested instances.

The core idea of UKP5 is to apply five improvements over a previously pro-
posed dynamic programming algorithm. An analysis on the individual perfor-
mance impact caused by each one of the five UKP5 improvements (see Sect. 2)
will be presented in an extended version of this paper. Future works on the
UKP5 should consider the following unanswered questions: PYAsUKP shows
that the addition of a B&B phase before the DP can give good results, how
could we apply the same idea to UKP5 and how would be the results? How
is the performance of UKP5 applied in real-world instances generated by the
column generation iterations for BPP and CSP?

Acknowledgments. We are very thankful to Vincent Poirriez for providing us the
codes of a stable version of PYAsUKP, and answering our questions about the
paper [12]. We are thankful to the CNPq (Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico) for the financial support.

62 H. Becker and L.S. Buriol

References

1. Andonov, R., Poirriez, V., Rajopadhye, S.: Unbounded knapsack problem:
dynamic programming revisited. Eur. J. Oper. Res. 123(2), 394–407 (2000)

2. Belov, G., Scheithauer, G.: A branch-and-cut-and-price algorithm for one-
dimensional stock cutting and two-dimensional two-stage cutting. Eur. J. Oper.
Res. 171(1), 85–106 (2006)

3. Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems:
mathematical models and exact algorithms. In: Decision Models for Smarter Cities
(2014)

4. Garfinkel, R.S., Nemhauser, G.L.: Integer Programming, vol. 4. Wiley, New York
(1972)

5. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock
problem. Oper. Res. 9(6), 849–859 (1961)

6. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock
problem-Part II. Oper. Res. 11(6), 863–888 (1963)

7. Hu, T.C.: Integer programming and network flows. Technical report, DTIC Doc-
ument (1969)

8. Huang, P.H., Tang, K.: A constructive periodicity bound for the unbounded knap-
sack problem. Oper. Res. Lett. 40(5), 329–331 (2012)

9. Iida, H.: Two topics in dominance relations for the unbounded knapsack problem.
Open Appl. Math. J. 2(1), 16–19 (2008)

10. Martello, S., Toth, P.: An exact algorithm for large unbounded knapsack prob-
lems. Oper. Res. Lett. 9(1), 15–20 (1990)

11. Pisinger, D.: Algorithms for knapsack problems (1995)
12. Poirriez, V., Yanev, N., Andonov, R.: A hybrid algorithm for the unbounded

knapsack problem. Discrete Optim. 6(1), 110–124 (2009)

Lempel-Ziv Decoding in External Memory

Djamal Belazzougui1, Juha Kärkkäinen2(B), Dominik Kempa2,
and Simon J. Puglisi2

1 CERIST, Algiers, Algeria
dbelazzougui@cerist.dz

2 Department of Computer Science, Helsinki Institute for Information
Technology HIIT, University of Helsinki, Helsinki, Finland

{juha.karkkainen,dominik.kempa,simon.puglisi}@cs.helsinki.fi

Abstract. Simple and fast decoding is one of the main advantages of
LZ77-type text encoding used in many popular file compressors such as
gzip and 7zip. With the recent introduction of external memory algo-
rithms for Lempel–Ziv factorization there is a need for external memory
LZ77 decoding but the standard algorithm makes random accesses to the
text and cannot be trivially modified for external memory computation.
We describe the first external memory algorithms for LZ77 decoding,
prove that their I/O complexity is optimal, and demonstrate that they
are very fast in practice, only about three times slower than in-memory
decoding (when reading input and writing output is included in the time).

1 Introduction

The Lempel–Ziv (LZ) factorization [18] is a partitioning of a text string into a
minimal number of phrases consisting of substrings with an earlier occurrence in
the string and of single characters. In LZ77 encoding [20] the repeated phrases are
replaced by a pointer to an earlier occurrence (called the source of the phrase).
It is a fundamental tool for data compression [6,7,15,17] and today it lies at the
heart of popular file compressors (e.g. gzip and 7zip), and information retrieval
systems (see, e.g., [6,10]). Recently the factorization has become the basis for
several compressed full-text self-indexes [5,8,9,16]. Outside of compression, LZ
factorization is a widely used algorithmic tool in string processing: the factoriza-
tion lays bare the repetitive structure of a string, and this can be used to design
efficient algorithms [2,12–14].

One of the main advantages of LZ77 encoding as a compression technique
is a fast and simple decoding: simply replace each pointer to a source by a
copy of the source. However, this requires a random access to the earlier part of
the text. Thus the recent introduction of external memory algorithms for LZ77
factorization [11] raises the question: Is fast LZ77 decoding possible when the text
length exceeds the RAM size? In this paper we answer the question positively
by describing the first external memory algorithms for LZ77 decoding.

This research is partially supported by Academy of Finland through grant 258308
and grant 250345 (CoECGR).

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 63–74, 2016.
DOI: 10.1007/978-3-319-38851-9 5

64 D. Belazzougui et al.

In LZ77 compression, the need for external memory algorithms can be
avoided by using an encoding window of limited size. However, a longer encod-
ing window can improve the compression ratio [6]. Even with a limited window
size, decompression on a machine with a small RAM may require an external
memory algorithm if the compression was done on a machine with a large RAM.
Furthermore, in applications such as text indexing and string processing limiting
the window size is not allowed. While most of these applications do not require
decoding, a fast decoding algorithm is still useful for checking the correctness of
the factorization.

Our Contribution. We show that in the standard external memory model of
computation [19] the I/O complexity of decoding an LZ77-like encoding of a
string of length n over an alphabet of size σ is Θ

(
n

B logσ n logM/B
n

B logσ n

)
, where

M is the RAM size and B is the disk block size in units of Θ(log n) bits. The
lower bound is shown by a reduction from permuting and the upper bound by
describing two algorithms with this I/O complexity.

The first algorithm uses the powerful tools of external memory sorting and
priority queues while the second one relies on plain disk I/O only. Both algo-
rithms are relatively simple and easy to implement. Our implementation uses
the STXXL library [4] for sorting and priority queues.

Our experiments show that both algorithms scale well for large data but the
second algorithm is much faster in all cases. This shows that, while external
memory sorting and priority queues are extremely useful tools, they do have a
significant overhead when their full power is not needed. The faster algorithm
(using a very modest amount of RAM) is only 3–4 times slower than an in-
memory algorithm that has enough RAM to perform the decoding in RAM (but
has to read the input from disk and write the output to disk).

Our algorithms do not need a huge amount of disk space in addition to the
input (factorization) and output (text), but we also describe and implement a
version, which can reduce the additional disk space to less than 3 % of total disk
space usage essentially with no effect on runtime.

2 Basic Definitions

Strings. Throughout we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of |X| =
n symbols drawn from the alphabet [0..σ − 1] for σ = nO(1). For 1 ≤ i ≤ j ≤ n
we write X[i..j] to denote the substring X[i]X[i + 1] . . .X[j] of X. By X[i..j) we
denote X[i..j − 1].

LZ77. The longest previous factor (LPF) at position i in string X is a pair
LPF[i] = (pi, �i) such that pi < i, X[pi..pi +�i) = X[i..i+�i), and �i is maximized.
In other words, X[i..i + �i) is the longest prefix of X[i..n] which also occurs at
some position pi < i in X. There may be more than one potential value of pi,
and we do not care which one is used.

Lempel-Ziv Decoding in External Memory 65

The LZ77 factorization (or LZ77 parsing) of a string X is a greedy, left-to-right
parsing of X into longest previous factors. More precisely, if the jth LZ factor
(or phrase) in the parsing is to start at position i, then LZ[j] = LPF[i] = (pi, �i)
(to represent the jth phrase), and then the (j + 1)th phrase starts at position
i + �i. The exception is the case �i = 0, which happens iff X[i] is the leftmost
occurrence of a symbol in X. In this case LZ[j] = (X[i], 0) (to represent X[i..i])
and the next phrase starts at position i + 1. This is called a literal phrase and
the other phrases are called repeat phrases. For a repeat phrases, the substring
X[pi..pi + �i) is called the source of the phrase X[i..i+ �i). We denote the number
of phrases in the LZ77 parsing of X by z.

LZ77-type Factorization. There are many variations of LZ77 parsing. For exam-
ple, the original LZ77 encoding [20] had only one type of phrase, a (potentially
empty) repeat phrase always followed by a literal character. Many compressors
use parsing strategies that differ from the greedy strategy described above to
optimize compression ratio after entropy compression or to speed up compres-
sion or decompression. The algorithms described in this paper can be easily
adapted for most of them. For purposes of presentation and analysis we make
two assumptions about the parsing:

– All phrases are either literal or repeat phrases as described above.
– The total number of repeat phrases, denoted by zrep, is O(n/ logσ n).

We call this an LZ77-type factorization. The second assumption holds for the
greedy factorization [18] and can always be achieved by replacing too short repeat
phrases with literal phrases. We also assume that the repeat phrases are encoded
using O(log n) bits and the literal phrases using O(log σ) bits. Then the size of
the whole encoding is never more than O(n log σ) bits.

3 On I/O Complexity of LZ Decoding

Given an LZ77-type factorization of a string encoded as described above, the
task of LZ77 decoding is to recover the original string. In this section, we obtain
a lower bound on the I/O complexity of LZ decoding by a reduction from per-
muting.

We do the analysis using the standard external memory model [19] with
RAM size M and disk block size B, both measured in units of Θ(log n) bits. We
are primarily interested in the I/O complexity, i.e., the number of disk blocks
moved between RAM and disk.

Given a sequence x̄ = x1, x2, . . . , xn of n objects of size Θ(log n) bits each
and a permutation π[1..n] of [1..n], the task of permuting is to obtain the
permuted sequence ȳ = y1, y2, . . . , yn = xπ[1], xπ[2], . . . , xπ[n]. Under the mild
assumption that B log(M/B) = Ω(log(n/B)), the I/O complexity of permuting
is Θ

(
n
B logM/B

n
B

)
, the same as the I/O complexity of sorting [1].

We show now that permuting can be reduced to LZ decoding. Let X be the
string obtained from the sequence x̄ by encoding each xi as a string of length

66 D. Belazzougui et al.

h = Θ(logσ n) over the alphabet [0..σ). Let Y be the string obtained in the same
way from the sequence ȳ. Form an LZ77-type factorization of XY by encoding
the first half using literal phrases and the second half using repeat phrases so
that the substring representing yi is encoded by the phrase (hπ[i] + 1 − h, h).
This LZ factorization is easy to construct in O(n/B) I/Os given x̄ and π. By
decoding the factorization we obtain XY and thus ȳ.

Theorem 1. The I/O complexity of decoding an LZ77-type factorization of a
string of length n over an alphabet of size σ is

Ω

(
n

B logσ n
logM/B

n

B logσ n

)
.

Proof. The result follows by the above reduction from permuting a sequence of
Θ(n/ logσ n) objects. ��

For comparison, the worst case I/O complexity of naive LZ decoding is
O(n/ logσ n).

4 LZ Decoding Using EM Sorting and Priority Queue

Our first algorithm for LZ decoding relies on the powerful tools of external
memory sorting and external memory priority queues.

We divide the string X into �n/b� segments of size exactly b (except the last
segment can be smaller). The segments must be small enough to fit in RAM
and big enough to fill at least one disk block. If a phrase or its source overlaps
a segment boundary, the phrase is split so that all phrases and their sources
are completely inside one segment. The number of phrases increases by at most
O(zrep + n/b) because of the splitting.

After splitting, the phrases are divided into three sequences. The sequence
Rfar contains repeat phrases with the source more than b positions before the
phrase (called far repeat phrases) and the sequence Rnear the other repeat phrases
(called near repeat phrases). The sequence L contains all the literal phrases. The
repeat phrases are represented by triples (p, q, �), where p is the starting position
of the source, q is the starting position of the phrase and � is the length. The
literal phrases are represented by pairs (q, c), where q is the phrase position and
c is the character. The sequence Rfar of far repeat phrases is sorted by the source
position. The other two sequences are not sorted, i.e., they remain ordered by
the phrase position.

During the computation, we maintain an external memory priority queue Q
that stores already recovered far repeat phrases. Each such phrase is represented
by a triple (q, �, s), where q and � are as above and s is the phrase as a literal
string. The triples are extracted from the queue in the ascending order of q.
The maximum length of phrases stored in the queue is bounded by a parameter
�max. Longer phrases are split into multiple phrases before inserting them into
the queue.

Lempel-Ziv Decoding in External Memory 67

The string X is recovered one segment at a time in left-to-right order and
each segment is recovered one phrase at a time in left-to-right order. A segment
recovery is done in a (RAM) array Y[0..b) of size b. At any moment in time,
for some i ∈ [0..b], Y[0..i) contains the already recovered prefix of the current
segment and Y[i..b) contains the last b − i characters of the preceding segment.
The next phrase starting at Y[i] is recovered in one of three ways depending on
its type:

– A literal phrase is obtained as the next phrase in the sequence L.
– A near repeat phrase is obtained as the next phrase in the sequence Rnear.

The source of the phrase either starts in Y[0..i) or is contained in Y[i..b), and
is easily recovered in both cases.

– A far repeat phrase is obtained from the priority queue with the full literal
representation.

Once a segment has been fully recovered, we read all the phrases in the
sequence Rfar having the source within the current segment. Since Rfar is ordered
by the source position, this involves a single sequential scan of Rfar over the whole
algorithm. Each such phrase is inserted into the priority queue Q with its literal
representation (splitting the phrase into multiple phrases if necessary).

Theorem 2. A string of length n over an alphabet of size σ can be recovered
from its LZ77 factorization in O

(
n

B logσ n logM/B
n

B logσ n

)
I/Os.

Proof. We set �max = Θ(logσ n) and b = Θ(B logσ n). Then the objects stored in
the priority queue need O(log n + �max log σ) = O(log n) bits each and the total
number of repeat phrases after all splitting is O(zrep+n/ logσ n) = O(n/ logσ n).

Thus sorting the phrases needs O
(

n
B logσ n logM/B

n
B logσ n

)
I/Os. This is also

the I/O complexity of all the external memory priority queue operations [3]. All
other processing is sequential and needs O

(
n

B logσ n

)
I/Os. ��

We have implemented the algorithm using the STXXL library [4] for external
memory sorting and priority queues.

5 LZ Decoding Without Sorting or Priority Queue

The practical performance of the algorithm in the previous section is often
bounded by in-memory computation rather than I/O, at least on a machine
with relatively fast disks. In this section, we describe an algorithm that reduces
computation based on the observation that we do not really need the full power
of external memory sorting and priority queues.

To get rid of sorting, we replace the sorted sequence Rfar with �n/b� unsorted
sequences R1,R2, . . . , where Ri contains all phrases with the source in the ith
segment. In other words, sorting Rfar is replaced with distributing the phrases

68 D. Belazzougui et al.

into R1,R2, If n/b is less than M/B, the distribution can be done in one
pass, since we only need one RAM buffer of size B for each segment. Otherwise,
we group M/B consecutive segments into a supersegment, distribute the phrases
first into supersegments, and then into segments by scanning the supersegment
sequences. If necessary, further layers can be added to the segment hierarchy.
This operation generates the same amount of I/O as sorting but requires less
computation because the segment sequences do not need to be sorted.

In the same way, the priority queue is replaced with �n/b� simple queues.
The queue Qi contains a triple (q, �, s) for each far repeat phrase whose phrase
position is within the ith segment. The order of the phrases in the queue is
arbitrary. Instead of inserting a recovered far repeat phrase into the priority
queue Q it is appended into the appropriate queue Qi. This requires a RAM
buffer of size B for each queue but as above a multi-round distribution can be
used if the number of segments is too large. This approach might not reduce the
I/O compared to the use of a priority queue but it does reduce computation.
Moreover, the simple queue allows the strings s to be of variable sizes and of
unlimited length; thus there is no need to split the phrases except at segment
boundaries.

Since the queues Qi are not ordered by the phrase position, we can no more
recover a segment in a strict left-to-right order, which requires a modification
of the segment recovery procedure. The sequence Rnear of near repeat phrases
is divided into two: Rprev contains the phrases with the source in the preceding
segment and Rsame the ones with the source in the same segment.

As before, the recovery of a segment Xj starts with the previous segment in
the array Y[0..b) and consists of the following steps:

1. Recover the phrases in Rprev (that are in this segment). Note that each source
is in the part of the previous segment that is still untouched.

2. Recover the literal phrases by reading them from L.
3. Recover the far repeat phrases by reading them from Qj (with the full literal

representation).
4. Recover the phrases in Rsame. Note that each source is in the part of the

current segment that has been fully recovered.

After the recovery of the segment, we read all the phrases in Rj and insert them
into the queues Qk with their full literal representations.

We want to minimize the number of segments. Thus we choose the segment
size to occupy at least half of the available RAM and more if the RAM buffers
for the queues Qk do not require all of the other half. It is easy to see that this
algorithm does not generate asymptotically more I/Os than the algorithm of
the previous section. Thus the I/O complexity is O

(
n

B logσ n logM/B
n

B logσ n

)
.

We have implemented the algorithm using standard file I/O (without the help
of STXXL).

Lempel-Ziv Decoding in External Memory 69

6 Reducing Disk Space Usage

The algorithm described in the previous section can adapt to a small RAM by
using short segments, and if necessary, multiple rounds of distribution. However,
reducing the segment size does not affect the disk space usage and the algorithm
will fail if it does not have enough disk space to store all the external memory
data. In this section, we describe how the disk space usage can be reduced.

The idea is to divide the LZ factorization into parts and to process one part at
a time recovering the corresponding part of the text. The first part is processed
with the algorithm of the previous section as if it was the full string. To process
the later parts, a slightly modified algorithm is needed because, although all the
phrases are in the current part, the sources can be in the earlier parts. Thus
we will have the Rj queues for all the segments in the current and earlier parts
but the Qj queues only for the current part. The algorithm processes first all
segments in the previous parts performing the following steps for each segment
Xj :

– Read Xj from disk to RAM.
– Read Rj and for each phrase in Rj create the triple (q, �, s) and write it to

the appropriate queue Qk.

Then the segments of the current part are processed as described in the previous
section.

For each part, the algorithm reads all segments in the preceding parts. The
number of additional I/Os needed for this is O(np/(B logσ n)), where p is the
number of parts. In other respects, the performance of the algorithm remains
essentially the same.

We have implemented this partwise processing algorithm using greedy on-
line partitioning. That is, we make each part as large as possible so that the
peak disk usage does not exceed a given disk space budget. An estimated peak
disk usage is maintained while reading the input. The implementation needs at
least enough disk space to store the input (the factorization) and the output
(the recovered string) but the disk space needed in addition to that can usually
be reduced to a small fraction of the total with just a few parts.

7 Experimental Results

Setup. We performed experiments on a machine equipped with two six-core
1.9 GHz Intel Xeon E5-2420 CPUs with 15 MiB L3 cache and 120 GiB of DDR3
RAM. The machine had 7.2 TiB of disk space striped with RAID0 across four
identical local disks achieving a (combined) transfer rate of about 480 MiB/s.
The STXXL block size as well as the size of buffers in the algorithm based on
plain disk I/O was set to 1 MiB.

The OS was Linux (Ubuntu 12.04, 64bit) running kernel 3.13.0. All programs
were compiled using g++ version 4.7.3 with -O3 -DNDEBUG options. The machine
had no other significant CPU tasks running and only a single thread of execution

70 D. Belazzougui et al.

Table 1. Statistics of data used in the experiments. All files are of size 256GiB. The
value of n/z (the average length of a phrase in the LZ77 factorization) is included as
a measure of repetitiveness.

Name σ n/z

hg.reads 6 52.81

wiki 213 84.26

kernel 229 7767.05

random255 255 4.10

was used for computation. All reported runtimes are wallclock (real) times. In
the experiments with a limited amount of RAM, the machine was rebooted with
a kernel boot flag so that the unused RAM is unavailable even for the OS.

Datasets. For the experiments we used the following files varying in the number
of repetitions and alphabet size (see Table 1 for some statistics):
– hg.reads: a collection of DNA reads (short fragments produced by a sequenc-

ing machine) from 40 human genomes1 filtered from symbols other than
{A, C, G, T, N} and newline;

– wiki: a concatenation of three different English Wikipedia dumps2 in XML
format dated: 2014-07-07, 2014-12-08, and 2015-07-02;

– kernel: a concatenation of ∼16.8 million source files from 510 versions of Linux
kernel3;

– random255: a randomly generated sequence of bytes.

Experiments. In the first experiment we compare the implementation of the new
LZ77 decoding algorithm not using external-memory sorting or priority queue
to a straightforward internal-memory LZ77 decoding algorithm that scans the
input parsing from disk and decodes the text from left to right. All copying of
text from sources to phrases happens in RAM.

We use the latter algorithm as a baseline since it represents a realistic upper
bound on the speed of LZ77 decoding. It needs enough RAM to accommodate
the output text as a whole, and thus we were only able to process prefixes of test
files up to size of about 120 GiB. In the runtime we include the time it takes to
read the parsing from disk (we stream the parsing using a small buffer) and to
write the output text to disk. The new algorithm, being fully external-memory
algorithm, can handle full test instances. The RAM usage of the new algorithm
was limited to 3.5 GiB.

The results are presented in Fig. 1. In nearly all cases the new algorithm
is about three times slower than the baseline. This is due to the fact that in

1 http://www.1000genomes.org/.
2 http://dumps.wikimedia.org/.
3 http://www.kernel.org/.

http://www.1000genomes.org/
http://dumps.wikimedia.org/
http://www.kernel.org/

Lempel-Ziv Decoding in External Memory 71

Fig. 1. Comparison of the new external memory LZ77 decoding algorithm based on
plain disk I/O (“LZ77decode”) with the purely in-RAM decoding algorithm (“Base-
line”). The latter represents an upper bound on the speed of LZ77 decoding. The unit
of decoding speed is MiB of output text decoded per second.

the external memory algorithm each text symbol in a far repeat phrase is read
or written to disk three times: first, when written to a queue Qj as a part of
a recovered phrase, second, when read from Qj , and third, when we write the
decoded text to disk. In comparison, the baseline algorithm transfers each text
symbol between RAM and disk once: when the decoded text is written to disk.
Similarly, while the baseline algorithm usually needs one cache miss to copy the
phrase from the source, the external memory algorithm performs about three
cache misses per phrase: when adding the source of a phrase to Rj , when adding
a literal representation of a phrase into Qj , and when copying the symbols from
Qj into their correct position in the text. The exception of the above behavior
is the highly repetitive kernel testfile that contains many near repeat phrases,
which are processed as efficiently as phrases in the RAM decoding algorithm.

In the second experiment we compare our two algorithms described in Sects. 4
and 5 to each other. For the algorithm based on priority queue we set �max = 16.
The segment size in both algorithms was set to at least half of the available RAM
(and even more if it did not lead to multiple rounds of EM sorting/distribution),
except in the algorithm based on sorting we also need to allocate some RAM
for the internal operations of STXXL priority queue. In all instances we allocate
1 GiB for the priority queue (we did not observe a notable effect on performance
from using more space).

72 D. Belazzougui et al.

Fig. 2. Comparison of the new external memory LZ77 decoding algorithm based on
plain disk I/O (“LZ77decode”) to the algorithm implemented using external memory
sorting and priority queue (“LZ77decode-PQ”). The comparison also includes the algo-
rithm implementing naive approach to LZ77 decoding in external memory. The speed
is given in MiB of output text decoded per second.

In the comparison we also include a naive external-memory decoding algo-
rithm that works essentially the same as baseline RAM algorithm except we
do not require that RAM is big enough to hold the text. Whenever the algo-
rithm requests a symbol outside a window, that symbol is accessed from disk.
We do not explicitly maintain a window of recently decoded text in RAM, and
instead achieve a very similar effect by letting the operating system cache the
recently accessed disk pages. To better visualize the differences in performance,
all algorithms were allowed to use 32 GiB of RAM.

The results are given in Fig. 2. For highly repetitive input (kernel) there is
little difference between the new algorithms, as they both copy nearly all symbols
from the window of recently decoded text. The naive algorithm performs much
worse, but still finishes in reasonable time due to large average length of phrases
(see Table 1).

On the non-repetitive data (hg.reads), the algorithm using external-memory
sorting and priority queue clearly gets slower than the algorithm using plain disk
I/O as the size of input grows. The difference in constant factors is nearly three
for the largest test instance. The naive algorithm maintains acceptable speed
only up to a point where the decoded text is larger than available RAM. At this
point random accesses to disk dramatically slow down the algorithm.

Note also that the speed of our algorithm in Fig. 2 is significantly higher
than in Fig. 1. This is because the larger RAM (32 GiB vs. 3.5 GiB) allows larger
segments, and larger segments mean that more of the repeat phrases are near
repeat phrases which are faster to process than far repeat phrases.

In the third experiment we explore the effect of the technique described in
Sect. 6 aiming at reducing the peak disk space usage of the new algorithm. We
executed the algorithm on 32 GiB prefixes of two testfiles using 3.5 GiB of RAM
and with varying disk space budgets. As shown in Fig. 3, this technique allows
reducing the peak disk space usage to very little over what is necessary to store

Lempel-Ziv Decoding in External Memory 73

Fig. 3. The effect of disk space budget (see Sect. 6) on the speed of the new external-
memory LZ77 decoding algorithm using plain disk I/O. Both testfiles were limited to
32GiB prefixes and the algorithm was allowed to use 3.5 GiB of RAM. The rightmost
data-point on each of the graphs represents a disk space budget sufficient to perform
the decoding in one part.

the input parsing and output text and does not have a significant effect on the
runtime of the algorithm, even on the incompressible random data.

8 Concluding Remarks

We have described the first algorithms for external memory LZ77 decoding. Our
experimental results show that LZ77 decoding is fast in external memory setting
too. The state-of-the-art external memory LZ factorization algorithms are more
than a magnitude slower than our fastest decoding algorithm, see [11].

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988). doi:10.1145/48529.48535

2. Badkobeh, G., Crochemore, M., Toopsuwan, C.: Computing the maximal-exponent
repeats of an overlap-free string in linear time. In: Calderón-Benavides, L.,
González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608,
pp. 61–72. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34109-0 8

3. Brodal, G.S., Katajainen, J.: Worst-case efficient external-memory priority queues.
In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 107–118. Springer,
Heidelberg (1998). doi:10.1007/BFb0054359

4. Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for
XXL data sets. Softw. Pract. Exper. 38(6), 589–637 (2008). doi:10.1002/spe.844

5. Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: Hybrid indexes for repetitive
datasets. Phil. Trans. R. Soc. A 372 (2014). doi:10.1098/rsta.2013.0137

6. Ferragina, P., Manzini, G.: On compressing the textual web. In: Proceedings of
3rd International Conference on Web Search and Web Data Mining (WSDM), pp.
391–400. ACM (2010). doi:10.1145/1718487.1718536

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1007/978-3-642-34109-0_8
http://dx.doi.org/10.1007/BFb0054359
http://dx.doi.org/10.1002/spe.844
http://dx.doi.org/10.1098/rsta.2013.0137
http://dx.doi.org/10.1145/1718487.1718536

74 D. Belazzougui et al.

7. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A
faster grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA
2012. LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-13089-2 23

8. Gagie, T., Gawrychowski, P., Puglisi, S.J.: Faster approximate pattern match-
ing in compressed repetitive texts. In: Asano, T., Nakano, S., Okamoto, Y.,
Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 653–662. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25591-5 67

9. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A
faster grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA
2012. LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28332-1 21

10. Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv factorization for efficient
storage and retrieval of web collections. Proc. VLDB 5(3), 265–273 (2011)

11. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lempel-Ziv parsing in external memory.
In: Proceedings of 2014 Data Compression Conference (DCC), pp. 153–162. IEEE
(2014). doi:10.1109/DCC.2014.78

12. Kolpakov, R., Bana, G., Kucherov, G.: MREPS: efficient and flexible detection
of tandem repeats in DNA. Nucleic Acids Res. 31(13), 3672–3678 (2003). doi:10.
1093/nar/gkg617

13. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of 40th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 596–604. IEEE Computer Society (1999). doi:10.1109/SFFCS.1999.
814634

14. Kolpakov, R., Kucherov, G.: Finding approximate repetitions under haam-
ming distance. Theor. Comput. Sci. 303(1), 135–156 (2003). doi:10.1016/
S0304-3975(02)00448-6

15. Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Pro-
ceedings of 2010 Data Compression Conference (DCC), pp. 239–248 (2010). doi:10.
1109/DCC.2010.29

16. Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-21458-5 6

17. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE
2010. LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16321-0 20

18. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theor.
22(1), 75–81 (1976). doi:10.1109/TIT.1976.1055501

19. Vitter, J.S.: Algorithms and data structures for external memory. Found. Trends
Theoret. Comput. Sci. 2(4), 305–474 (2006). doi:10.1561/0400000014

20. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23(3), 337–343 (1977). doi:10.1109/TIT.1977.1055714

http://dx.doi.org/10.1007/978-3-642-13089-2_23
http://dx.doi.org/10.1007/978-3-642-13089-2_23
http://dx.doi.org/10.1007/978-3-642-25591-5_67
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1109/DCC.2014.78
http://dx.doi.org/10.1093/nar/gkg617
http://dx.doi.org/10.1093/nar/gkg617
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1109/DCC.2010.29
http://dx.doi.org/10.1109/DCC.2010.29
http://dx.doi.org/10.1007/978-3-642-21458-5_6
http://dx.doi.org/10.1007/978-3-642-21458-5_6
http://dx.doi.org/10.1007/978-3-642-16321-0_20
http://dx.doi.org/10.1007/978-3-642-16321-0_20
http://dx.doi.org/10.1109/TIT.1976.1055501
http://dx.doi.org/10.1561/0400000014
http://dx.doi.org/10.1109/TIT.1977.1055714

A Practical Method for the Minimum Genus
of a Graph: Models and Experiments

Stephan Beyer1(B), Markus Chimani1, Ivo Hedtke1(B), and Michal Kotrbč́ık2

1 Institute of Computer Science, University of Osnabrück, Osnabrück, Germany
{stephan.beyer,markus.chimani,ivo.hedtke}@uni-osnabrueck.de

2 Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

kotrbcik@imada.sdu.dk

Abstract. We consider the problem of the minimum genus of a graph, a
fundamental measure of non-planarity. We propose the first formulations
of this problem as an integer linear program (ILP) and as a satisfiabil-
ity problem (SAT). These allow us to develop the first working imple-
mentations of general algorithms for the problem, other than exhaustive
search. We investigate several different ways to speed-up and strengthen
the formulations; our experimental evaluation shows that our approach
performs well on small to medium-sized graphs with small genus, and
compares favorably to other approaches.

1 Introduction

We are concerned with the minimum genus problem, i.e., finding the smallest
g such that a given graph G = (V,E) has an embedding in the orientable sur-
face of genus g. As one of the most important measures of non-planarity, the
minimum genus of a graph is of significant interest in computer science and
mathematics. However, the problem is notoriously difficult from the theoreti-
cal, practical, and also structural perspective. Indeed, its complexity was listed
as one of the 12 most important open problems in the first edition of Garey
and Johnson’s book [22]; Thomassen established its NP-completeness in gen-
eral [36] and for cubic graphs [37]. While the existence of an O(1)-approximation
can currently not be ruled out, there was no general positive result beyond
a trivial O(|V |/g)-approximation until a recent breakthrough by Chekuri and
Sidiropoulos [9]. For graphs with bounded degree, they provide an algorithm that
either correctly decides that the genus of the graph G is greater than g, or embeds
G in a surface of genus at most gO(1) ·(log |V |)O(1). Very recently, Kawarabayashi
and Sidiropoulos [27] showed that the bounded degree assumption can be omit-
ted for the related problem of Euler genus by providing a O

(
g256(log |V |)189

)
-

approximation; however, this does not yield an approximation for orientable
genus.

M. Chimani—Supported by the German Research Foundation (DFG) project CH
897/2-1.

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 75–88, 2016.
DOI: 10.1007/978-3-319-38851-9 6

76 S. Beyer et al.

Minimum genus is a useful parameter in algorithm design, since, similarly to
the planar case, we can take advantage of the topological structure and design
faster algorithms for graphs of bounded genus. However, these algorithms typi-
cally assume that the input graph is actually embedded in some surface, as for
instance in [7,19]. Therefore, without a practical algorithm providing an embed-
ding in a low-genus surface, these algorithms cannot be effectively implemented.

In the mathematical community, the genus of specific graph families is of
interest ever since Ringel’s celebrated determination of the genus of complete
graphs [34]. Such research often combines numerous different approaches, includ-
ing computer-aided methods, see, e.g., [12,28]. However, in practice it often turns
out that even determining the genus of a single relatively small graph can be
rather difficult as in [5,12,28,29,31]. One of the reasons is the large problem
space—an r-regular graph with n vertices can have [(r − 1)!]n embeddings. It is
known that complete graphs have exponentially many embeddings of minimum
genus; however, the known constructions are nearly symmetric and the problem
becomes much more difficult when the minimum genus does not equal the trivial
bound from Euler’s formula, see, e.g., [28] for more details. While it is conjec-
tured that the genus distribution of a graph—the number of its embeddings into
each orientable surface—is unimodal, very little is known about the structure of
the problem space both in theory and practice.

From a slightly different perspective, it has been known for a long time that
deciding embeddability in a fixed surface is polynomial both for the toroidal
[20] and the general case [17,21]. In fact, the minimum genus is fixed-parameter
tractable as a result of the Robertson-Seymour theorem, since for every surface
there are only finitely many forbidden graph minors, and testing for a fixed
minor needs only polynomial time. While there is a direct linear-time algorithm
deciding embeddability in a fixed surface [26,30], taking any of these algorithms
to practice is very challenging for several reasons. First, the näıve approach of
explicitly testing for each forbidden minor is not viable, since the list of forbidden
minors is known only for the plane and the projective plane, and the number of
minors grows rapidly: for the torus there are already more than 16 000 forbidden
minors [8]. Second, Myrvold and Kocay [33] reviewed existing algorithms to
evaluate their suitability for implementation in order to compute the complete
list of forbidden toroidal minors. Unfortunately, they report that [20] contains a
“fatal flaw”, which also appears in the algorithm in [21], and that the algorithm
in [17] is also “incorrect”. Myrvold and Kocay conclude that “There appears to be
no way to fix these problems without creating algorithms which take exponential
time” [33]. Finally, Mohar’s algorithm [30], even in the simpler toroidal case [25],
is very difficult to implement correctly (see the discussion in [33]). Consequently,
there is currently no correct implementation of any algorithm for the general case
of the problem beyond exhaustive search.

It is thus desirable to have an effective and correct implementation of a
practical algorithm for the minimum genus. Rather surprisingly, to the best of
our knowledge, the approach to obtain practical algorithms via ILP (integer
linear program) and SAT (satisfiability) solvers has never been attempted for
the minimum genus so far.

A Practical Method for the Minimum Genus Problem 77

Our contribution. We provide the first ILP and SAT formulations for the mini-
mum genus problem, and discuss several different variants both under theoretical
and practical considerations. Based thereon, we develop the first implementa-
tions of nontrivial general algorithms for the problem. We evaluate these imple-
mentations on benchmark instances widely used in the study of non-planarity
measures for real-world graphs. In conjunction with suitable algorithmic sup-
port via preprocessing and efficient planarity tests, we are for the first time able
to tackle general medium-sized, sparse real-world instances with small genus in
practice. We also compare our implementations to existing approaches, namely
exhaustive search and a tailored algebraic approach for special cases.

2 Minimum Genus ILP and SAT Formulations

Our terminology is standard and consistent with [32]. We consider finite undi-
rected graphs and assume w.l.o.g. that all graphs are simple, connected, and have
minimum degree 3. For each nonnegative integer g, there is, up to homeomor-
phism, a unique orientable surface of genus g and this surface is homeomorphic
to a sphere with g added handles. An embedding of a graph G in a surface S
is a representation of G in S without edge crossings; the minimum genus γ(G)
of a graph G is the minimum genus of an orientable surface into which G has
an embedding. When considering embeddings it is often useful to specify the
orientation in which we traverse an edge. Therefore, we may speak of two arcs
(aka. directed edges, halfedges) that correspond to each edge. For a given graph
G = (V,E), let A = {uv, vu | {u, v} ∈ E} denote the arc set arising from E by
replacing each undirected edge by its two possible corresponding directed arcs.

A rotation at a vertex v is a cyclic order (counter-clockwise) of the neighbors
of v. A rotation system of a graph G is a set of rotations, one for each vertex
of G. Up to mirror images of the surfaces, there is a 1-to-1 correspondence
between rotation systems of G and (cellular) embeddings of G into orientable
surfaces (see [23, Theorem 3.2.3] and [18,24]). Given a rotation system of G, the
corresponding embedding is obtained by face tracing : starting with an unused
arc uv, move along it from u to v and continue with the arc vw, where w is
the vertex after u at the rotation at v. This process stops by computing a face
of the embedding when it re-encounters its initial arc. Repeatedly tracing faces
eventually finds all faces of the embedding.

Euler’s formula asserts that each (cellular) embedding of G in an orientable
surface satisfies |V | − |E| + f = 2 − 2g, where f is the number of the faces
of the embedding, and g is the genus of the underlying surface. It follows that
(i) determining the genus of the underlying surface for a given rotation system
is essentially equivalent to calculating the number of faces; and (ii) finding the
genus of a graph corresponds to maximizing the number of faces over all rotation
systems of the graph. See [32] for more details.

In this section, we describe how to reformulate the minimum genus problem
as an integer linear program (ILP) or a related problem of Boolean satisfiabil-
ity (SAT). Generally, such modeling approaches are known for several planarity

78 S. Beyer et al.

concepts and non-planarity measures (e.g., crossing number, graph skewness,
upward planarity) and often attain surprisingly strong results. However, for the
minimum genus problem it is at first rather unclear how to capture the topo-
logical nature of the question in simple variables. To the best of our knowledge,
there are no known formulations for this problem up to now.

We first describe the basic concepts of both formulations, and later consider
possible ways to improve them. For convenience, we write [k] := Zk; addition
and subtraction are considered modulo k.

2.1 ILP Formulation

Our formulation is based on finding an embedding with the largest number of
faces. Therefore, it statically simulates the face tracing algorithm. Let f̄ be an
upper bound on the attainable number of faces; see Sect. 3 on how to obtain
a simple linear bound. For each i ∈ [f̄], we have a binary variable xi that is
1 iff the i-th face exists and a binary variable ci

a, for each a ∈ A, that is 1
iff arc a is traversed by the i-th face. For each vertex v ∈ V and neighbors
u,w ∈ N(v), u �= w, the binary variable pv

u,w is 1 iff w is the successor of u in
the rotation at v. The ILP formulation then is:

max
∑f̄

i=1
xi (1a)

s.t xi ≤ 1
3

∑

a∈A
ci
a ∀i ∈ [f̄] (1b)

∑f̄

i=1
ci
a=1 ∀a ∈ A (1c)

∑

a∈δ−(v)
ci
a=

∑

a∈δ+(v)
ci
a ∀i ∈ [f̄], v ∈ V (1d)

ci
vw ≥ ci

uv + pv
u,w − 1 ∀i ∈ [f̄], v ∈ V, u �= w ∈ N(v) (1e)

ci
uv ≥ ci

vw + pv
u,w − 1 ∀i ∈ [f̄], v ∈ V, u �= w ∈ N(v) (1f)

∑

w∈N(v),u �=w
pv

u,w=1 ∀v ∈ V, u ∈ N(v) (1g)
∑

u∈N(v),w �=u
pv

u,w=1 ∀v ∈ V,w ∈ N(v) (1h)
∑

u∈U

∑

w∈N(v)\U
pv

u,w ≥ 1 ∀v ∈ V, ∅ �= U � N(v) (1i)

xi∈{0, 1} ∀i ∈ [f̄] (1j)

ci
a∈{0, 1} ∀i ∈ [f̄], a ∈ A (1k)

pv
u,w∈{0, 1} ∀v ∈ V, u �= w ∈ N(v). (1l)

Constraints (1b) ensure that if a face exists, it traverses at least three arcs1;
inversely, each arc is traversed by exactly one face due to (1c). Equalities (1d)
guarantee that at every vertex of a face i, the number of i-traversed incoming

1 For a simple graph, the minimum genus embedding contains no face of length 1 or 2.
On the other hand, we cannot be more specific than the lower bound of 3.

A Practical Method for the Minimum Genus Problem 79

and outgoing arcs is identical. Inequalities (1e) and (1f) ensure that arcs uv
and vw are both in the same face if w is the successor of u in the rotation at v.
Constraints (1g) and (1h) ensure that pv represents a permutation of the vertices
in N(v); (1i) ensures that pv consists of a single cycle. Observe that maximizing
(1a) guarantees that each face index corresponds to at most one facial walk.

2.2 SAT Formulation

To solve the above ILP, we will need to consider its linear relaxation (where
the binary variables are replaced by variables in the interval [0,1]). It is easy
to see that fractional values for the pv matrices lead to very weak dual bounds.
Therefore, we also consider SAT formulations. While general SAT solvers cannot
take advantage of algebraically obtained (lower) bounds, state-of-the-art SAT
solvers are highly tuned to quickly search a vast solution space by sophisticated
branching, backtracking, and learning strategies. This can give them an upper
hand over ILP approaches, in particular when the ILP’s relaxation is weak.

In contrast to the ILP, a SAT problem has no objective function and simply
asks for some satisfying variable assignment. In our case, we construct a SAT
instance to answer the question whether the given graph allows an embedding
with at least f faces. To solve the optimization problem, we iterate the process
for increasing values of f until reaching unsatisfiability. We use the same notation
as before, and construct the SAT formulation around the very same ideas. Each
binary variable is now a Boolean variable instead. While a SAT is typically
given in conjunctive normal form (CNF), we present it here as a conjunction of
separate Boolean formulae (rules) for better readability. Their transformation
into equisatisfiable CNFs is trivial. The SAT formulation is:

¬(ci
a ∧ cj

a) ∀a ∈ A, i �= j ∈ [f] (2a)
∨

a∈A
ci
a ∀i ∈ [f] (2b)

pv
u,w → (ci

uv ↔ ci
vw) ∀v ∈ V, u �= w ∈ N(v), i ∈ [f] (2c)

∨

u∈N(v),u �=w
pv

u,w ∀v ∈ V,w ∈ N(v) (2d)

¬(pv
u,w ∧ pv

u′,w) ∀v ∈ V,w ∈ N(v), u �= u′ ∈ N(v)\{w} (2e)
∨

w∈N(v),w �=u
pv

u,w ∀v ∈ V, u ∈ N(v) (2f)

¬(pv
u,w ∧ pv

u,w′) ∀v ∈ V, u ∈ N(v), w �= w′ ∈ N(v)\{u} (2g)
∨

u∈U,w∈N(v)\U
pv

u,w ∀v ∈ V, ∅ �= U � N(v) (2h)

Rules (2a) and (2b) enforce that each arc is traversed by exactly one face, cf. (1c).
Rule (2c) ensures that the successor is in the same face, cf. (1e)–(1f). Rules (2d)–
(2h) guarantee that pv variables form rotations at v, cf. (1g)–(1i).

80 S. Beyer et al.

2.3 Improvements

There are several potential opportunities to improve upon the above formula-
tions. In pilot studies we investigated their practical ramifications.

Symmetries (ILP). It seems worthwhile to add symmetry-breaking constraints
xi ≥ xi+1 or even

∑
a∈A ci

a ≥
∑

a∈A ci+1
a for all i ∈ [f − 1] to the ILP. Sur-

prisingly, this does not improve the overall running time (and the latter is even
worse by orders of magnitude), and we refrain from using these constraints in
the following.

Vertices of degree 3 (ILP&SAT). Let V3 := {v ∈ V | deg(v) = 3}. Consider a
degree-3 vertex v ∈ V3 with neighbors u0, u1, u2. The only two possible rotations
at v are u0u1u2 and u2u1u0. Hence, we can use a single binary/Boolean variable
pv whose assignment represents this choice.

In the ILP, we remove all pv
u,w variables for v ∈ V3 and replace (1e)–(1i) by

ci
vuk+1

≥ ci
ukv + pv − 1 ∀i ∈ [f], v ∈ V3, k ∈ [3] (3a)

ci
ukv ≥ ci

vuk+1
+ pv − 1 ∀i ∈ [f], v ∈ V3, k ∈ [3] (3b)

ci
vuk

≥ ci
uk+1v − pv ∀i ∈ [f], v ∈ V3, k ∈ [3] (3c)

ci
uk+1v ≥ ci

vuk
− pv ∀i ∈ [f], v ∈ V3, k ∈ [3], (3d)

where u0, u1, u2 denote the arbitrarily but statically ordered neighbors of v ∈ V3.
In the SAT formulation, we analogously replace (2c) by

pv→(ci
ukv ↔ ci

vuk+1
) ∀v ∈ V3, k ∈ [3], i ∈ [f] (4a)

¬pv→(ci
uk+1v ↔ ci

vuk
) ∀v ∈ V3, k ∈ [3], i ∈ [f]. (4b)

As expected, this is faster by orders of magnitude for certain families of
graphs, especially for instances with many degree-3 vertices. On the real world
Rome benchmark set (see Sect. 4), the performance improves by about 10 % for
both the ILP and the SAT formulations, compared to their respective formula-
tions with pv

u,w variables.
This idea can be generalized for vertices v of arbitrary degree d ≥ 4. There

are � := (d − 1)! different rotations. Instead of using O(d2) many variables pv
u,w,

we introduce �log2 �� binary variables and representing the index of the rotation
as a binary number. Since this process is coupled with a substantial trade-off of
more complicated and weaker constraints, we refrain from using it for d ≥ 4.

Binary face representations (SAT). Let i ∈ [f] be a face index, and B(i) the
vector of its binary representation, i.e., i =

∑�
j=0 2j · B(i)j , where � = log2 f�.

We define new Boolean variables bj
a that are true iff arc a is contained in a face

i with B(i)j = 1. In logic formulae, value B(i)j = 1 is mapped to true, 0 to false.

A Practical Method for the Minimum Genus Problem 81

By changing the following clauses of the SAT formulation above, we construct
a new formulation that asks for a solution with at least f faces, because we do
not forbid the usage of binary representations outside of [f].

∨

a∈A

∧

j∈[�]
(bj

a ↔ B(i)j) ∀i ∈ [f] (2b′)

pv
u,w→(bj

uv ↔ bj
vw) ∀v ∈ V \V3, u �= w ∈ N(v), j ∈ [�] (2c′)

pv→(bj
ukv ↔ bj

vuk+1
) ∀v ∈ V3, k ∈ [3], j ∈ [�] (4a′)

¬pv→(bj
uk+1v ↔ bj

vuk
) ∀v ∈ V3, k ∈ [3], j ∈ [�] (4b′)

This variant achieves a more than 100-fold speedup.

2.4 Exponential vs. Polynomial Size Formulations

Observe that the number of inequalities (1i), or rules (2h) respectively, is expo-
nential in the degree of each vertex v. Therefore, we investigate ways to obtain
a polynomial time solution strategy or a polynomially sized formulation.

Efficient Separation. For the ILP we can separate violating constraints (also
known as row generation) using a well-known separation oracle based on mini-
mum cuts (see, e.g., [13, Sect. 7.4]). While this guarantees that only a polynomial-
sized subset of (1i) is used, it is not worthwhile in practice: the separation process
requires a comparably large overhead and state-of-the-art ILP solvers offer a lot
of speed-up techniques that need to be deactivated to separate constraints on
the fly. Overall, this more than doubles the running times compared to a direct
inclusion of all (1i), even if we separate only for vertices with large degrees.

Another option is to use different representations for rotation systems. Here
we discuss an ordering approach and a betweenness approach. Both yield poly-
nomial size formulations.

Ordering Reformulation. For the ordering approach we replace the permutation
variables with variables that attach vertices to specific positions in the rotation.
This is known to be weaker in the realm of ILPs, and we hence concentrate on
the SAT formulation. There, we introduce for any v ∈ V, u ∈ N(v) a Boolean
variable qv

j,u that is true iff u is the j-th vertex in the rotation at v. We do
not use the p variables any longer, replace the old permutation rules (2d)–(2h)
with rules to ensure that each qv is a bijective mapping, and change (2c) to∨

j∈[deg(v)]

(
qv
j,u ∧ qv

j+1,w

)
→ (ci

uv ↔ ci
vw) for all v ∈ V , u �= w ∈ N(v), i ∈ [f].

However, the SAT running times thereby increase 50–100-fold.

Betweenness Reformulation. For the betweenness approach we add the variables
rv
x,y,z for each triple x, y, z ∈ N(v). By rv

x,y,z = 1 (true, respectively) we denote
that y is (somewhere) between x and z in the rotation at v. Here we only describe
the usage of the r variables in the SAT formulation. The usage in the ILP is

82 S. Beyer et al.

analogous. First of all, the cyclicity of a rotation implies the symmetries rv
x,y,z ≡

rv
y,z,x ≡ rv

z,x,y ≡ ¬rv
x,z,y ≡ ¬rv

z,y,x ≡ ¬rv
y,x,z for all {x, y, z} ⊆ N(v). Instead

of ensuring that each pv represents a permutation, we connect the p variables
to the new r variables via pv

u,w ↔
∧

y∈N(v)\{u,w} rv
u,w,y. The rules to model

the betweenness conditions for the neighborhood of a given vertex v are simply
rv
u,w,x ∧ rv

u,x,y → rv
u,w,y ∧ rv

w,x,y for all {u,w, x, y} ⊆ N(v). However, the SAT
running times thereby increase 20–50-fold.

Overall, we conclude that the exponential dependencies of the original for-
mulations are not so much of an issue in practice after all, and the overhead and
weaknesses of polynomial strategies typically seem not worthwhile. However, if
one considers problems with many very high degree vertices where the expo-
nential dependency becomes an issue, the above approaches can be merged very
naturally, leading to an overall polynomial model: Let τ be some fixed constant
threshold value (to be decided upon experimentally). For vertices v of degree at
most τ , we use the original formulation requiring an exponential (in constant τ)
number of constraints over pv. Vertices of degree above τ are handled via the
betweenness reformulation.

3 A Minimum Genus Computation Framework

Before deploying any of our approaches on a given graph, we consider several
preprocessing steps. Since the genus is additive over biconnected components
[1,2], we decompose the input graph G accordingly. We can test γ = 0 by simply
running a linear time planarity test, in our case [4]. Next, we observe that the
genus problem is susceptible to non-planar core reduction [10]: A maximal planar
2-component is defined as a maximal subgraph S ⊂ G that (i) has only two
vertices x, y in common with the rest of the graph, and (ii) S + (x, y) is planar.
The (in our case unweighted) non-planar core (NPC) of G is obtained (in linear
time) by replacing each such maximal planar 2-components by an edge.2 After
these steps we are in general left with a set of simple biconnected (preprocessed)
graphs with minimum degree at least 3, for each of which we want to compute
the genus.

By Euler’s formula, we only have to calculate SAT instances with f ≡ |E| −
|V | mod 2. For increasing number of faces we compute the satisfiability until
we get the first unsatisfiable instance. Such an iteration is clearly not necessary
2 In [10], the validity of such a preprocessing is shown for several non-planarity mea-

sures, namely crossing number, skewness, coarseness, and thickness. Let H be the
NPC of G. We can trivially observe that (A) γ(G) ≤ γ(H), and (B) γ(G) ≥ γ(H). A:
Given an optimal solution for H, we can embed each S onto the surface in place of
its replacement edge, without any crossings. B: Each replaced component S contains
a path connecting its poles that is drawn crossing-free in the optimal embedding of
G; we can planarly draw all of S along this path, and then simplify the embedding
by replacing this locally drawn S by its replacement edge; this gives a solution for
H on the same surface.

A Practical Method for the Minimum Genus Problem 83

in the ILP approach, where our objective function explicitly maximizes f and
we only require an upper bound of f̄ = min{2|E|/3�, |E| − |V |},3 adjusted for
parity.

Table 1. Characteristics of instances and resulting formulations. The graphs from the
Rome (left table) and North (right table) benchmark sets are grouped by their number
of vertices in the given ranges. For each group, we give the averages for the following
values: number of vertices and percentage of degree-3 vertices in the NPC, upper bound
f̄ on the number of faces, number of variables and constraints in the ILP formulation.

range avg. for computation on NPC
|V | |V | %|V3| f̄ #vars #cons

10–40 12.8 64.2 10.0 616.1 3399.5
41–60 18.5 60.3 15.3 1310.7 7639.9
61–80 26.8 59.4 22.5 2624.4 15735.1
81–100 36.4 58.5 30.9 4718.4 28778.3

range avg. for computation on NPC
|V | |V | %|V3| f̄ #vars #cons

10–40 12.6 38.3 17.4 2200.0 102295.9
41–60 24.6 40.3 29.9 4916.7 197577.3
61–80 32.1 43.5 35.5 7741.7 249864.6
81–100 24.3 40.6 34.7 7146.7 632634.6

4 Experimental Evaluation

Our C++ code is compiled with GCC 4.9.2, and runs on a single core of an
AMD Opteron 6386 SE with DDR3 Memory @ 1600 MHz under Debian 8.0. We
use the ILP solver CPLEX 12.6.1, the SAT solver lingeling (improved version
for SMT Competition 2015 by Armin Biere)4, and the Open Graph Drawing
Framework (www.ogdf.net, GPL), and apply a 72 GB memory limit.

Real world graphs. We consider the established Rome [16] and North [15] bench-
mark sets of graphs collected from real-world applications. They are commonly
used in the evaluation of algorithms in graph drawing and non-planarity mea-
sures. We use the ILP and SAT approaches to compute the genera of all 8249
(423) non-planar Rome (North) graphs. Each approach is run with a 30 min time
limit for each graph to compute its genus; we omit 10 (North) instances that
failed due to the memory limitation. Characteristics about the data sets and the
resulting formulations can be found in Table 1.

Figure 1(a) shows the success rate (computations finished within the time
limit) for the Rome graphs, depending on the number of vertices of the input
graph. Both the SAT and ILP approach exhibit comparable numbers, but nearly
always, the success rate of the SAT approach is as good or better than the ILP’s.
However, the differences are statistically not significant. Instances with up to 40
vertices can be solved with a high success rate; our approach degrades heavily

3 First term: each edge lies on at most two faces, each face has size at least 3; second
term: Euler’s formula with genus at least 1.

4 The previous version was the winner of the Sequential Appl. SAT+UNSAT Track of
the SAT competition 2014 [3]. This improved version is even faster.

www.ogdf.net

84 S. Beyer et al.

for graphs with more than 60–70 vertices. However, it is worth noting that even
if the genus is not calculated to provable optimality, we obtain highly nontrivial
bounds on the genus of the graphs in question.

In Fig. 1(b) we see that, given any fixed time limit below 30 min, the SAT
approach solves clearly more instances than the ILP approach. Note that the
curve that corresponds to the solved SAT instances flattens out very quickly.

When we compare the success rates to the density of the NPC (see Fig. 1(c)),
we see the same characteristics as in Fig. 1(a). Both approaches are able to solve
instances with density (i.e., |E|/|V |) up to 1.6 with a high success rate but are
typically not able to obtain provably optimal values for densities above 1.9.

Finally, we compare the average running time of the instances that are solved
by both approaches. Out of the 8249 non-planar Rome graphs we are able to
solve 2571 with SAT and ILP, and additionally 96 (24) more with the SAT
(ILP, respectively). Except for very small graphs, the average running time of
the SAT approach is always at least one or two orders of magnitude lower than
the average running time of the ILP approach, see Fig. 1(d).

Considering the non-planar North graphs, Fig. 1(e) shows that the success
rates of both approaches are again comparable. Again, the differences are sta-
tistically not significant. However, ten instances could not be solved due to the
high memory consumption caused by the exponential number of constraints (1i)
and rules (2h). Since the results for the North graphs are analogous to those for
the Rome graphs, we omit discussing them in detail.

Generally, we observe that the SAT approach is particularly fast to show
the existence of an embedding, but is relatively slow to prove that there is no
embedding with a given number of faces. This is of particular interest for non-
planar graphs that allow a genus-1 embedding, since there the SAT is quick to
find such a solution and need not prove that a lower surface is infeasible. The
SAT’s behavior in fact suggests an easy heuristical approach: if solving the SAT
instance for f faces needs a disproportionally long running time (compared to
the previous iterations for lower face numbers), this typically indicates that it is
an unsatisfiable instance and f − 2 faces is the optimal value.

Comparison to existing genus computations. An evaluation of exhaustive search
algorithms for determining the genus distribution of complete graphs was per-
formed in [35]. Fixing the rotation of the first vertex, it is possible to compute
the genus of distribution the complete graph K7 within 896 h of computation
(112 h on 8 parallel threads). While both our approaches perform significantly
better, there is a notable (and w.r.t. to the above evaluations particularly sur-
prising) difference in their performance: the SAT approach needs one hour to
find and prove the optimal genus; solving the ILP takes only 30 s.

A circulant Cn(S) is the Cayley graph of Zn with generating set S. Conder
and Grande [12] recently characterized all circulants with genus 1 and 2. A crucial
part of the characterization is the determination of the genus of several sporadic
cases where the lower bounds are more problematic. At the same time, these
sporadic cases constitute the main obstacle in both obtaining a simpler proof,
as well as extending the results to higher genera. By far the most difficult case

A Practical Method for the Minimum Genus Problem 85

Fig. 1. Rome Graphs: (a) success rate per |V |, (b) solved instances per given time,
(c) success rate per non-planar core density |E|/|V |, (d) average running time per |V |
where both approaches were successful. North graphs: (e) success rate per |V |.

86 S. Beyer et al.

is proving that the genus of C11(1, 2, 4) is at least 3. The proof takes three pages
of theoretical analysis and eventually resorts to a computational verification of
three subcases, taking altogether around 85 h using the MAGMA computational
algebra system in a nontrivial problem-specific setting. The ILP solver needs
180 h to determine the genus without using any theoretical results or problem-
specific information.

5 Conclusion

The minimum genus problem is very difficult from the mathematical, algorith-
mic, and practical perspective—the problem space is large and seems not to be
well-structured, the existing algorithms are error-prone and/or very difficult to
implement, and only little progress was made on the (practice-oriented) algorith-
mic side. In this paper we have presented the first ILP and SAT formulations,
together with several variants and alternative reformulations, for the problem,
and investigated them in an experimental study. Our approach leads to the
first (even easily!) implementable general-purpose minimum genus algorithms.
Besides yielding practical algorithms for small to medium-sized graphs and small
genus, one of the further advantages of our approach is that the formulations are
adaptable and can be modified to tackle other related problems of interest. For
example, the existence of polyhedral embeddings [32], or embeddings with given
face lengths, say 5 and 6 as in the case of fullerenes (graph-theoretic models of
carbon molecules), see [14].

On the negative side, our implementations cannot deal with too large graphs
without resorting to extensive computational resources. However, this is not very
surprising considering the difficulty of the problem—a fast exact algorithm could
be used to solve several long-standing open problems, such as completing the list
of forbidden toroidal minors. We also see—and hope for—certain similarities to
the progress on exact algorithms for the well-known crossing number problem:
while the first published report [6] was only capable of solving Rome graphs
with 30–40 vertices, it led to a series of improvements that culminated in the
currently strongest variant [11] which is capable to tackle even the largest Rome
graphs.

Acknowledgements. We thank Armin Biere for providing the most recent version
(as of 2015-06-05) of the lingeling SAT solver.

References

1. Archdeacon, D.: The orientable genus is nonadditive. J. Graph Theor. 10(3), 385–
401 (1986)

2. Battle, J., Harary, F., Kodama, Y., Youngs, J.W.T.: Additivity of the genus of a
graph. Bull. Amer. Math. Soc. 68, 565–568 (1962)

3. Belov, A., Diepold, D., Heule, M.J., Järvisalo, M. (eds.): Proceedings of SAT Com-
petition 2014: Solver and Benchmark Descriptions. No. B-2014-2 in Series of Pub-
lications B, Department Of Computer Science, University of Helsinki (2014)

A Practical Method for the Minimum Genus Problem 87

4. Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified O(n) planarity by
edge addition. J. Graph Algorithms Appl. 8(2), 241–273 (2004)

5. Brin, M.G., Squier, C.C.: On the genus of Z3 × Z3 × Z3. Eur. J. Comb. 9(5),
431–443 (1988)

6. Buchheim, C., Ebner, D., Jünger, M., Klau, G.W., Mutzel, P., Weiskircher, R.:
Exact crossing minimization. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS,
vol. 3843, pp. 37–48. Springer, Heidelberg (2006)

7. Cabello, S., Chambers, E.W., Erickson, J.: Multiple-source shortest paths in
embedded graphs. SIAM J. Comput. 42(4), 1542–1571 (2013)

8. Chambers, J.: Hunting for torus obstructions. M.Sc. thesis, University of Victoria
(2002)

9. Chekuri, C., Sidiropoulos, A.: Approximation algorithms for euler genus and
related problems. In: Proceedings of FOCS 2013, pp. 167–176 (2013)

10. Chimani, M., Gutwenger, C.: Non-planar core reduction of graphs. Disc. Math.
309(7), 1838–1855 (2009)

11. Chimani, M., Mutzel, P., Bomze, I.: A new approach to exact crossing minimiza-
tion. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 284–296.
Springer, Heidelberg (2008)

12. Conder, M., Grande, R.: On embeddings of circulant graphs. Electron. J. Comb.
22(2), P2.28 (2015)

13. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimiza-
tion. Wiley, New York (1998)

14. Deza, M., Fowler, P.W., Rassat, A., Rogers, K.M.: Fullerenes as tilings of surfaces.
J. Chem. Inf. Comput. Sci. 40(3), 550–558 (2000)

15. Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu,
F., Vismara, L.: Drawing directed acyclic graphs: an experimental study. Int. J.
Comput. Geom. Appl. 10(6), 623–648 (2000)

16. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An
experimental comparison of four graph drawing algorithms. Comput. Geom. 7(5–
6), 303–325 (1997)

17. Djidjev, H., Reif, J.: An efficient algorithm for the genus problem with explicit
construction of forbidden subgraphs. In: Proceedings of STOC 1991, pp. 337–347.
ACM (1991)

18. Edmonds, J.: A combinatorial representation for polyhedral surfaces. Not. Amer.
Math. Soc. 7, 646 (1960)

19. Erickson, J., Fox, K., Nayyeri, A.: Global minimum cuts in surface embedded
graphs. In: Proceedings of SODA 2012, pp. 1309–1318. SIAM (2012)

20. Filotti, I.S.: An efficient algorithm for determining whether a cubic graph is
toroidal. In: Proceedings of STOC 1978, pp. 133–142. ACM (1978)

21. Filotti, I.S., Miller, G.L., Reif, J.: On determining the genus of a graph in O(V O(G))
steps. In: Proceedings of STOC 1979, pp. 27–37. ACM (1979)

22. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the theory
of NP-completeness. Bell Telephone Laboratories, New York (1979)

23. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley, New York (1987)

24. Heffter, L.: Ueber das Problem der Nachbargebiete. Math. Ann. 38, 477–508 (1891)
25. Juvan, M., Marinček, J., Mohar, B.: Embedding graphs in the torus in linear time.

In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 360–363. Springer,
Heidelberg (1995)

88 S. Beyer et al.

26. Kawarabayashi, K., Mohar, B., Reed, B.: A simpler linear time algorithm for
embedding graphs into an arbitrary surface and the genus of graphs of bounded
tree-width. In: Proceedings of FOCS 2008, pp. 771–780 (2008)

27. Kawarabayashi, K., Sidiropoulos, A.: Beyond the euler characteristic: approximat-
ing the genus of general graphs. In: Proceedings of STOC 2015. ACM (2015)

28. Kotrbč́ık, M., Pisanski, T.: Genus of cartesian product of triangles. Electron. J.
Comb. 22(4), P4.2 (2015)

29. Marušič, D., Pisanski, T., Wilson, S.: The genus of the GRAY graph is 7. Eur. J.
Comb. 26(3–4), 377–385 (2005)

30. Mohar, B.: Embedding graphs in an arbitrary surface in linear time. In: Proceedings
of STOC 1996, pp. 392–397. ACM (1996)

31. Mohar, B., Pisanski, T., Škoviera, M., White, A.: The cartesian product of 3 tri-
angles can be embedded into a surface of genus 7. Disc. Math. 56(1), 87–89 (1985)

32. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore (2001)

33. Myrvold, W., Kocay, W.: Errors in graph embedding algorithms. J. Comput. Syst.
Sci. 77(2), 430–438 (2011)

34. Ringel, G.: Map Color Theorem. Springer, Heidelberg (1974)
35. Schmidt, P.: Algoritmické vlastnosti vnoreńı grafov do plôch. B.Sc. thesis, Come-

nius University (2012). In Slovak
36. Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10, 568–

576 (1989)
37. Thomassen, C.: The graph genus problem is NP-complete for cubic graphs. J.

Comb. Theor. Ser. B 69, 52–58 (1997)

Compact Flow Diagrams for State Sequences

Kevin Buchin1(B), Maike Buchin2, Joachim Gudmundsson3, Michael Horton3,
and Stef Sijben2

1 Department of Mathematics and Computer Science,
TU Eindhoven, Eindhoven, The Netherlands

k.a.buchin@tue.nl
2 Department of Mathematics, Ruhr-Universität Bochum, Bochum, Germany

{Maike.Buchin,Stef.Sijben}@ruhr-uni-bochum.de
3 School of Information Technologies, The University of Sydney, Sydney, Australia

{joachim.gudmundsson,michael.horton}@sydney.edu.au

Abstract. We introduce the concept of compactly representing a large
number of state sequences, e.g., sequences of activities, as a flow dia-
gram. We argue that the flow diagram representation gives an intuitive
summary that allows the user to detect patterns among large sets of
state sequences. Simplified, our aim is to generate a small flow diagram
that models the flow of states of all the state sequences given as input.
For a small number of state sequences we present efficient algorithms to
compute a minimal flow diagram. For a large number of state sequences
we show that it is unlikely that efficient algorithms exist. More specifi-
cally, the problem is W [1]-hard if the number of state sequences is taken
as a parameter. We thus introduce several heuristics for this problem.
We argue about the usefulness of the flow diagram by applying the algo-
rithms to two problems in sports analysis. We evaluate the performance
of our algorithms on a football data set and generated data.

1 Introduction

Sensors are tracking the activity and movement of an increasing number of
objects, generating large data sets in many application domains, such as sports
analysis, traffic analysis and behavioural ecology. This leads to the question of
how large sets of sequences of activities can be represented compactly. We intro-
duce the concept of representing the “flow” of activities in a compact way and
argue that this is helpful to detect patterns in large sets of state sequences.

To describe the problem we start by giving a simple example. Consider three
objects (people) and their sequences of states, or activities, during a day. The set
of state sequences T = {τ1, τ2, τ3} are shown in Fig. 1(a). As input we are also
given a set of criteria C = {C1, . . . , Ck}, as listed in Fig. 1(b). Each criterion is a
Boolean function on a single subsequence of states, or a set of subsequences of
states. For example, in the given example the criterion C1 = “eating” is true for
Person 1 at time intervals 7–8 am and 7–9 pm, but false for all other time inter-
vals. Thus, a criterion partitions a sequence of states into subsequences, called
segments. In each segment the criterion is either true or false. A segmentation of
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 89–104, 2016.
DOI: 10.1007/978-3-319-38851-9 7

90 K. Buchin et al.

Person 1 Person 2 Person 3

8-9am cycle to work cycle to workdrive to work
9am-5pm work work work

5-7pm study dinner shop
7-9pm dinner shop dinner

7-8am breakfast breakfastgym

(a) (b)

s C3

C1

C4 t

C2 C6

C1

C6

(c) (d)

8-9am
9am-5pm

5-7pm
7-9pm

7-8am

Person 1

[C2, C3]
[C4, C5]

[C4]
[C1, C7]

[C1, C7]

Person 2

[C2]
[C4, C5]

[C1]
[C6]

[C3]

Person 3

[C2, C3]
[C4, C5]

[C6]
[C1, C7]

[C1, C7]

C1: Eating {breakfast,dinner}

C3: Exercising {gym,cycle to work}
C4: Working or studying
C5: Working for at least 4 hours
C6: Shopping

C2: Commuting {cycle/drive to work}

C7: At least 2 people eating simultaneously

Fig. 1. The input is (a) a set T = {τ1, . . . , τm} of sequences of states and (b) a set of
criteria C = {C1, . . . , , Ck}. (c) The criteria partition the states into a segmentation.
(d) A valid flow diagram for T according to C.

T is a partition of each sequence in T into true segments, which is represented
by the corresponding sequence of criteria. If a criterion C is true for a set of
subsequences, we say they fulfil C. Possible segments of T according to the set C
are shown in Fig. 1(c). The aim is to summarize segmentations of all sequences
efficiently; that is, build a flow diagram F , starting at a start state s and ending
at an end state t, with a small number of nodes such that for each sequence of
states τi, 1 ≤ i ≤ m, there exists a segmentation according to C which appears
as an s–t path in F . A possible flow diagram is shown in Fig. 1(d). This flow
diagram for T according to C can be validated by going through a segmentation
of each object while following a path in F from s to t. For example, for Person 1
the s–t path s → C1 → C2 → C4 → C1 → t is a valid segmentation.

Now we give a formal description of the problem. A flow diagram is a node-
labelled DAG containing a source node s and sink node t, and where all other
nodes are labelled with a criterion. Given a set T of sequences of states and
a set of criteria C, the goal is to construct a flow diagram with a minimum
number of nodes, such that a segmentation of each sequence of states in T is
represented, that is, included as an s–t path, in the flow diagram. Furthermore
(when criteria depend on multiple state sequences, e.g. C7 in Fig. 1) we require
that the segmentations represented in the flow diagram are consistent, i.e. can
be jointly realized. The Flow Diagram problem thus requires the segmentations
of each sequence of states and the minimal flow diagram of the segmentations
to be computed. It can be stated as:

Problem 1. Flow Diagram (FD)

Instance: A set of sequences of states T = {τ1, . . . , τm}, each of length at most
n, a set of criteria C = {C1, . . . , Ck} and an integer λ > 2.

Compact Flow Diagrams for State Sequences 91

Question: Is there a flow diagram F with ≤ λ nodes, such that for each τi ∈ T ,
there exists a segmentation according to C which appears as an s–t path in F?

Even the small example above shows that there can be considerable space
savings by representing a set of state sequences as a flow diagram. This is not
a lossless representation and comes at a cost. The flow diagram represents the
sequence of flow between states, however, the information about an individual
sequence of states is lost. As we will argue in Sect. 3, paths representing many
segments in the obtained flow diagrams show interesting patterns. We will give
two examples. First we consider segmenting the morphology of formations of
a defensive line of football players during a match (Fig. 4). The obtained flow
diagram provides an intuitive summary of these formations. The second example
models attacking possessions as state sequences. The summary given by the flow
diagram gives intuitive information about differences in attacking tactics.

Properties of Criteria. The efficiency of the algorithms will depend on prop-
erties of the criteria on which the segmentations are based. Here we consider
four cases: (i) general criteria without restrictions; (ii) monotone decreasing
and independent criteria; (iii) monotone decreasing and dependent criteria; and
(iv) fixed criteria. To illustrate the properties we will again use the example in
Fig. 1.

A criterion C is monotone decreasing [8] for a given sequence of states τ that
fulfils C, if all subsequences of τ also fulfil C. For example, if C4 is fulfilled by
a sequence τ then any subsequence τ ′ of τ will also fulfil C4. This is in contrast
to criterion C5 which is not monotone decreasing.

A criterion C is independent if checking whether a subsequence τ ′ of a
sequence τi ∈ T fulfils C can be achieved without reference to any other
sequences τj ∈ T , i �= j. Conversely, C is dependent if checking that a sub-
sequence τ ′ of τi requires reference to other state sequences in T . In the above
example C4 is an example of an independent criterion while C7 is a dependent
criterion since it requires that at least two objects fulfil the criterion at the same
time.

Related Work. To the best of our knowledge compactly representing sequences
of states as flow diagrams has not been considered before. The only related work
we are aware of comes from the area of trajectory analysis. Spatial trajectories
are a special case of state sequences. A spatial trajectory describes the movement
of an object through space over time, where the states are location points, which
may also include additional information such as heading, speed, and tempera-
ture. For a single trajectory a common way to obtain a compact representation
is simplification [10]. Trajectory simplification asks to determine a subset of the
data that represents the trajectory well in terms of the location over time. If the
focus is on characteristics other than the location, then segmentation [1,2,8] is
used to partition a trajectory into a small number of subtrajectories, where each
subtrajectory is homogeneous with respect to some characteristic. This allows a
trajectory to be compactly represented as a sequence of characteristics.

92 K. Buchin et al.

For multiple trajectories other techniques apply. A large set of trajectories
might contain very unrelated trajectories, hence clustering may be used. Clus-
tering on complete trajectories will not represent information about interest-
ing parts of trajectories; for this clustering on subtrajectories is needed [6,12].
A set of trajectories that forms different groups over time may be captured by
a grouping structure [7]. These approaches also focus on location over time.

For the special case of spatial trajectories, a flow diagram can be illustrated
by a simple example: trajectories of migrating geese, see [9]. The individual
trajectories can be segmented into phases of activities such as directed flight,
foraging and stop overs. This results in a flow diagram containing a path for
the segmentation of each trajectory. More complex criteria can be imagined that
depend on a group of geese, or frequent visits to the same area, resulting in
complex state sequences that are hard to analyze without computational tools.

Results, Organization and Hardness. In Sect. 2 we present algorithms for
the Flow Diagram problem using criteria with the properties described above.
These algorithms only run in polynomial time if the number of state sequences
m is constant. Below we observe that this is essentially the best we can hope for
by showing that the problem is W [1]-hard.

Theorem 2. The FD problem is NP-hard. This even holds when only two cri-
teria are used or when the length of every state sequence is 2. Furthermore, for
any 0 < c < 1/4, the FD problem cannot be approximated within factor of c log m
in polynomial time unless NP ⊂ DTIME(mpolylogm).

Also for bounded m the running times of our algorithms is rather high. Again,
we can show that there are good reasons for this.

Theorem 3. The FD problem parameterized in the number of state sequences
is W [1]-hard even when the number of criteria is constant.

Both theorems are proved in the longer version of this paper [5]. Unless W [1] =
FPT , this rules out the existence of algorithms with time complexity of O(f(m)·
(nk)c) for some constant c and any computable function f(m), where m,n and
k are the number of state sequences, the length of the state sequences and the
number of criteria, respectively. To obtain flow diagrams for larger groups of state
sequences we propose two heuristics for the problem in Sect. 2. We experimentally
evaluate the algorithms and heuristics in Sect. 3.

2 Algorithms

In this section, we present algorithms that compute a smallest flow diagram
representing a set of m state sequences of length n for a set of k criteria. First,
we present an algorithm for the general case, followed by a more efficient algo-
rithm for the case of monotone increasing and independent criteria, and then
two heuristic algorithms. The algorithm for monotone increasing and dependent
criteria, and the proofs omitted in this section are in the extended version of
this paper [5].

Compact Flow Diagrams for State Sequences 93

2.1 General Criteria

Next, we present a dynamic programming algorithm for finding a smallest flow
diagram. Recall that a node v in the flow diagram represents a criterion Cj that
is fulfilled by a contiguous segment in some of the state sequences. Let τ [i, j],
i ≤ j, denote the subsequence of τ starting at the ith state of τ and ending at
the jth state, where τ [i, i] is the empty sequence. Construct an (n + 1)m grid
of vertices, where a vertex with coordinates (x1, . . . , xm), 0 ≤ x1, . . . , xm ≤ n,
represents (τ1[0, x1], . . . , τm[0, xm]). Construct a prefix graph G as follows:

There is an edge between two vertices v = (x1, . . . , xm) and v′ = (x′
1, . . . , x

′
m),

labeled by some criterion Cj , if and only if, for every i, 1 ≤ i ≤ m, one of the
following two conditions is fulfilled: (1) xi = x′

i, or (2) all remaining τi[xi +1, x′
i]

jointly fulfil Cj . Consider the edge between (x1, x2) = (1, 0) and (x′
1, x

′
2) = (1, 1)

in Fig. 2(b). Here x1 = x′
1 and τ2[x2 + 1, x′

2] fulfils C2.
Finally, define vs to be the vertex in G with coordinates (0, . . . , 0) and add an

additional vertex vt outside the grid, which has an incoming edge from (n, . . . , n).
This completes the construction of the prefix graph G.

(a) (b) (c)

2
3

1

τ1

[C1]
[C3]

[C1]

τ2

[C1, C2]
[C3]

[C2]
s

τ2

τ1
0

0

1

1 2

2 vt

vs

C2

C3

C1

C1

C2

C3 t

Fig. 2. (a) A segmentation of T = {τ1, τ2} according to C = {C1, C2, C3}. (b) The
prefix graph G of the segmentation, omitting all but four of the edges. (c) The resulting
flow diagram generated from the highlighted path in the prefix graph.

Now, a path in G from vs to a vertex v represents a valid segmentation of some
prefix of each state sequence, and defines a flow diagram that describes these
segmentations in the following way: the empty path represents the flow diagram
consisting only of the start node s. Every edge of the path adds one new node to
the flow diagram, labeled by the criterion that the segments fulfil. Additionally,
for each node the flow diagram contains an edge from every node representing a
previous segment, or from s if the node is the first in a segmentation. For a path
leading from vs to vt, the target node t is added to the flow diagram, together
with its incoming edges. This ensures that the flow diagram represents valid
segmentations and that each node represents at least one segment. An example
of this construction is shown in Fig. 2.

Hence the length of a path (where length is the number of edges on the path)
equals the number of nodes of the corresponding flow diagram, excluding s and t.
Thus, we find an optimal flow diagram by finding a shortest vs–vt path in G.

94 K. Buchin et al.

Lemma 4. A smallest flow diagram for a given set of state sequences is repre-
sented by a shortest vs–vt path in G.

Recall that G has (n + 1)m vertices. Each vertex has O(k(n + 1)m) outgoing
edges, thus, G has O(k(n + 1)2m) edges in total. To decide if an edge is present
in G, check if the nonempty segments the edge represents fulfil the criterion.
Thus, we need to perform O(k(n + 1)2m) of these checks. There are m segments
of length at most n, and we assume the cost for checking this is T (m,n). Thus,
the cost of constructing G is O(k(n + 1)2m · T (m,n)), and finding the shortest
path requires O(k(n + 1)2m) time.

Theorem 5. The algorithm described above computes a smallest flow diagram
for a set of m state sequences, each of length at most n, and k criteria in O((n+
1)2mk · T (m,n)) time, where T (m,n) is the time required to check if a set of m
subsequences of length at most n fulfils a criterion.

2.2 Monotone Decreasing and Independent Criteria

If all criteria are decreasing monotone and independent, we can use ideas similar
to those presented in [8] to avoid constructing the full graph. From a given vertex
with coordinates (x1, . . . , xm), we can greedily move as far as possible along the
sequences, since the monotonicity guarantees that this never leads to a solution
that is worse than one that represents shorter segments. For a given criterion Cj ,
we can compute for each τi independently the maximum x′

i such that τi[xi+1, x′
i]

fulfils Cj . This produces coordinates (x′
1, . . . , x

′
m) for a new vertex, which is the

optimal next vertex using Cj . By considering all criteria we obtain k new vertices.
However, unlike the case with a single state sequence, there is not necessarily
one vertex that is better than all others (i.e. largest ending position), since there
is no total order on the vertices. Instead, we consider all vertices that are not
dominated by another vertex, where a vertex p dominates a vertex p′ if each
coordinate of p is at least as large as the corresponding coordinate of p′, and at
least one of p’s coordinates is larger.

Let Vi be the set of vertices of G that are reachable from vs in exactly i
steps, and define M(V) := {v ∈ V | no vertex u ∈ V dominates v} to be the set
of maximal vertices of a vertex set V . Then a shortest vs–vt path through G can
be computed by iteratively computing M(Vi) for increasing i, until a value of i
is found for which vt ∈ M(Vi). Observe that |M(V)| = O((n + 1)m−1) for any
set V of vertices in the graph. Also note that V0 = M(V0) = vs.

Lemma 6. For each i ∈ {1, . . . , � − 1}, every vertex in M(Vi) is reachable in
one step from a vertex in M(Vi−1). Here, � is the distance from vs to vt.

M(Vi) is computed by computing the farthest reachable vertex for each v ∈
M(Vi−1) and criterion, thus yielding a set Di of O((n + 1)m−1k) vertices. This
set contains M(Vi) by Lemma 6, so we now need to remove all vertices that are
dominated by some other vertex in the set to obtain M(Vi).

We find M(Vi) using a copy of G. Each vertex may be marked as being in
Di or dominated by a vertex in Di. We process the vertices of Di in arbitrary

Compact Flow Diagrams for State Sequences 95

order. For a vertex v, if it is not yet marked, we mark it as being in Di. When a
vertex is newly marked, we mark its ≤ m immediate neighbours dominated by
it as being dominated. After processing all vertices, the grid is scanned for the
vertices still marked as being in Di. These vertices are exactly M(Vi).

When computing M(Vi), O((n + 1)m−1k) vertices need to be considered,
and the maximum distance from vs to vt is m(n+1), so the algorithm considers
O(mk(n+1)m) vertices. We improve this bound by a factor m using the following:

Lemma 7. The total size of all Di, for 0 ≤ i ≤ � − 1, is O(k(n + 1)m).

Using this result, we compute all M(Vi) in O((k + m)(n + 1)m) time, since
O(k(n + 1)m) vertices are marked directly, and each of the (n + 1)m vertices is
checked at most m times when a direct successor is marked. One copy of the grid
can be reused for each M(Vi), since each vertex of Di+1 dominates at least one
vertex of M(Vi) and is thus not yet marked while processing Dj for any j ≤ i.

Since the criteria are independent, the farthest reachable point for a given
starting point and criterion can be precomputed for each state sequence sep-
arately. Using the monotonicity we can traverse each state sequence once per
criterion and thus need to test only O(nmk) times whether a subsequence fulfils
a criterion.

Theorem 8. The algorithm described above computes a smallest flow diagram
for m state sequences of length n with k independent and monotone decreasing
criteria in O(mnk · T (1, n) + (k + m)(n + 1)m) time, where T (1, n) is the time
required to check if a subsequence of length at most n fulfils a criterion.

2.3 Heuristics

The hardness results presented in the introduction indicate that it is unlikely
that the performance of the algorithms will be acceptable in practical situa-
tions, except for very small inputs. As such, we investigated heuristics that may
produce usable results that can be computed in reasonable time.

We consider heuristics for monotone decreasing and independent criteria.
These are based on the observation that by limiting Vi, the vertices that are
reachable from vs in i steps, to a fixed size, the complexity of the algorithm can
be controlled. Given that every path in a prefix graph represents a valid flow
diagram, any path chosen in the prefix graph will be valid, though not necessarily
optimal. In the worst case, a vertex that advances along a single state sequence
a single time-step (i.e. advancing only one state) will be selected, and for each
vertex, all k criteria must be evaluated, so O(kmn) vertices may be processed
by the algorithm. We consider two strategies for selecting the vertices in Vi to
retain:

(1) For each vertex in Vi, determine the number of state sequences that are
advanced in step i and retain the top q vertices [sequence heuristic].

(2) For each vertex in Vi, determine the number of time-steps that are
advanced in all state sequences in step i and retain the top q vertices [time-
step heuristic].

96 K. Buchin et al.

In our experiments we use q = 1 since any larger value would immediately
give an exponential worst-case running time.

3 Experiments

The objectives of the experiments were twofold: to determine whether compact
and useful flow diagrams could be produced in real application scenarios; and to
empirically investigate the performance of the algorithms on inputs of varying
sizes. We implemented the algorithms described in Sect. 2 using the Python pro-
gramming language. For the first objective, we considered the application of flow
diagrams to practical problems in football analysis in order to evaluate their use-
fulness. For the second objective, the algorithms were run on generated datasets
of varying sizes to investigate the impact of different parameterisations on the
computation time required to produce the flow diagram and the complexity of
the flow diagram produced.

3.1 Tactical Analysis in Football

Sports teams will apply tactics to improve their performance, and computational
methods to detect, analyse and represent tactics have been the subject of several
recent research efforts [4,11,14,16–18]. Two manifestations of team tactics are
in the persistent and repeated occurrence of spatial formations of players, and
in plays — a coordinated sequence of actions by players. We posited that flow
diagrams would be a useful tool for compactly representing both these manifes-
tations, and we describe the approaches used in this section.

The input for the experiments is a database containing player trajectory and
match event data from four home matches of the Arsenal Football Club from
the 2007/08 season, provided by Prozone Sports Limited [15]. For each player
and match, there is a trajectory comprising a sequence of timestamped location
points in the plane, sampled at 10 Hz and accurate to 10 cm. The origin of the
coordinate system coincides with the centre point of the football pitch and the
longer side of the pitch is parallel to the x-axis — i.e. the pitch is oriented so the
goals are to the left and right. In addition, for each match, there is a log of all
the match events, comprising the type, time-stamp and location of each event.

Defensive Formations. The spatial formations of players in football matches
are known to characterize a team’s tactics [3], and a compact representation
of how formations change over time would be a useful tool for analysis. We
investigated whether a flow diagram could provide such a compact representation
of the defensive formation of a team, specifically to show how the formation
evolves during a phase of play. In our match database, all the teams use a
formation of four defensive players who orient themselves in line across the pitch.
Broadly speaking, the ideal is for the formation to be “flat”, i.e. the players are
positioned in a line parallel to the y-axis. However the defenders will react to
changes circumstances, for example in response to opposition attacks, possibly

Compact Flow Diagrams for State Sequences 97

causing the formation to deform. We constructed the following flow diagram to
analyse the defensive formations used in the football matches in our database.

For each match in the database, the trajectories of the four defensive players
were re-sampled at one-second intervals to extract the point-locations of the
four defenders. The samples were partitioned into sequences T = {τ1, . . . , τm}
corresponding to phases such that a single team was in possession of the ball, and
where the phase began with a goal kick event, or the goalkeeper kicks or throws
the ball from hand. Let τi[j] be the j-th state in the i-th state sequence. Each
τi[j] = (p1, p2, p3, p4), where pi is the location of a player in the plane, such that
the locations are ordered by their y-coordinate: y(pi) ≤ y(pi+1) : i ∈ {1, 2, 3}.

The criteria used to summarise the formations were derived from those pre-
sented by Kim et al. [13]. The angles between pairs of adjacent players (along
the defensive line) were used to compute the formation criteria, see Fig. 3. The
scheme in Kim et al. was extended to allow multiple criteria to be applied where
the angle between pairs of players is close to 10◦. The reason for this was to facil-
itate compact results by allowing for smoothing of small variations in contiguous
time-steps.

The criteria C applied to each state is a triple (x1, x2, x3), computed as fol-
lows. Given two player positions p and q as points in the plane such that y(p) ≤
y(q), let p′ be an arbitrary point on the interior of the half-line from p in the direc-
tion of the positive y-axis, and let ∠p′pq be the angle induced by these points,
and thus denotes the angle between the two player’s positions relative to the goal-
line. Let R(−1) = [−90◦,−5◦), R(0) = (−15◦,+15◦), and R(1) = (+5◦,+90◦]
be three angular ranges. Thus, C =

{
(x1, x2, x3) : x1, x2, x3 ∈ {−1, 0, 1}

}
is the

set of available criteria.
Each state sequence τi ∈ T is segmented according to the criteria set C. A

given state τi[j] = (p1, p2, p3, p4) may satisfy the criteria (and thus have the
formation) (x1, x2, x3) if ∠p′

ipipi+1 ∈ R(xi) for all i ∈ {1, 2, 3}.
The criteria are monotone decreasing and independent, and we ran the corre-

sponding algorithm using randomly selected sets of the state sequences as input.
The size m of the input was increased until the running time exceeded a thresh-
old of 6 h. The algorithm successfully processed up to m = 12 state sequences,
having a total of 112 assigned segments. The resulting flow diagram, Fig. 4, has
a total complexity of 12 nodes and 27 edges.

We believe that the flow diagram provides an intuitive summary of the defen-
sive formation, and several observations are apparent. There appears to be a
preference amongst the teams for the right-back to position himself in advance
of the right centre-half (i.e. the third component of the triple is +1). Further-
more, the (0, 0, 0) triple, corresponding to a “flat back four” is not present in the
diagram. This is typically considered the ideal formation for teams that utilise
the offside trap, and thus may suggest that the defences here are not employ-
ing this tactic. These observations were apparent to the authors as laymen, and
we would expect that a domain expert would be able to extract further useful
insights from the flow diagrams.

98 K. Buchin et al.

Fig. 3. Segmentation of a single state sequence τi. The formation state sequence is
used to compute the segmentation representation, where segments corresponding to
criteria span the state sequence (bottom). The representation of this state sequence in
the movement flow diagram is shaded in Fig. 4.

3

4

2

2
2

2

2

4

2

2s

t

Fig. 4. Flow diagram for formation morphologies of twelve defensive possessions. The
shaded nodes are the segmentation of the state sequence in Fig. 3.

Attacking Plays. In this second experiment, we used a different formulation
to produce flow diagrams to summarise phases of attack. During a match, the
team in possession of the ball regularly attempts to reach a position where they
can take a shot at goal. Teams will typically use a variety of tactics to achieve
such a position, e.g. teams can vary the intensity of an attack by pushing for-
ward, moving laterally, making long passes, or retreating and regrouping. We
modelled attacking possessions as state sequences, segmented according to cri-
teria representing the attacking intensity and tactics employed, and computed
flow diagrams for the possessions. In particular, we were interested in determin-
ing whether differences in tactics employed by teams when playing at home or
away [4] are apparent in the flow diagrams.

We focus on ball events, where a player touches the ball, e.g. passes, touches,
dribbles, headers, and shots at goal. The event sequence for each match was par-
titioned into sequences T = {τ1, . . . , τm} such that each τi is an event sequence

Compact Flow Diagrams for State Sequences 99

where a single team was in possession, and T includes only the sequences that
end with a shot at goal. Let τi[j] be a tuple (p, t, e) where p is the location in the
plane where an event of type e ∈ {touch, pass, dribble, header , shot , clearance}
occurred at time t. We are interested in the movement of the ball between an
event state τi[j] and the next event state τi[j+1], in particular, let dx(τi[j]) (resp.
dy(τi[j])) be the distance in the x-direction (resp. y-direction) between state τi[j]
and the next state. Similarly, let vx(τi[j]) (resp. vy(τi[j])) be the velocity of the
ball in the x-direction (resp. y-direction) between τi[j] and its successor state.
Let ∠τi[j] be the angle defined by the location of τi[j], τi[j + 1] and a point on
the interior of the half-line from the location of τi[j] in the positive y-direction.

Criteria were defined to characterise the movement of the ball — relative to
the goal the team is attacking — between event states in the possession sequence.
The criteria C = {C1, . . . , C8} were defined as follows.

C1: Backward movement (BM): vx(τi[j]) < 1 — a sub-sequence of passes or
touches that move in a defensive direction.

C2: Lateral movement (LM): −5 < vx(τi[j]) < 5 — passes or touches that move
in a lateral direction.

C3: Forward movement (FM): −1 < vx(τi[j]) < 12 — passes or touches that
move in an attacking direction, at a velocity in the range achievable by a
player sprinting, i.e. approximately 12 m/s.

C4: Fast forward movement (FFM): 8 < vx(τi[j]) — passes or touches moving
in an attacking direction at a velocity generally in excess of maximum player
velocity.

C5: Long ball (LB): 30 < dx(τi[j]) — a single pass travelling 30 m in the attack-
ing direction.

C6: Cross-field bal (CFB): 20 < dy(τi[j]) ∧ ∠τi[j] ∈ [−10, 10] ∪ [170, 190] — a
single pass travelling 20 m in the cross-field direction with an angle within
10◦ of the y-axis.

C7: Shot resulting in goal (SG): a successful shot resulting in a goal.
C8: Shot not resulting in goal (SNG): a shot that does not produce a goal.

For a football analyst, the first four criteria are simple movements, and are
not particularly interesting. The last four events are significant: the long ball
and cross-field ball change the locus of attack; and the shot criteria represent
the objective of an attack.

The possession state sequences for the home and visiting teams were seg-
mented according to the criteria and the time-step heuristic algorithm was used
to compute the flow diagrams. The home-team input consisted of 66 sequences
covered by a total of 866 segments, and resulted in a flow diagram with 25 nodes
and 65 edges, see Fig. 5. Similarly, the visiting-team input consisted of 39 state
sequences covered by 358 segments and the output flow diagram complexity was
22 nodes and 47 edges, as shown in Fig. 6.

At first glance, the differences between these flow diagrams may be difficult
to appreciate, however closer inspection reveals several interesting observations.
The s–t paths in the home-team flow diagram tend to be longer than those in
the visiting team’s, suggesting that the home team tends to retain possession of

100 K. Buchin et al.

Fig. 5. Flow diagrams produced for home team. The edge weights are the number of
possessions that span the edge, and the nodes with grey background are event types
that are significant.

the ball for longer, and varies the intensity of attack more often. Moreover, the
nodes for cross-field passes and long-ball passes tend to occur earlier in the s–t
paths in the visiting team’s flow diagram. These are both useful tactics as they
alter the locus of attack, however they also carry a higher risk. This suggests that
the home team is more confident in its ability to maintain possession for long
attack possessions, and will only resort to such risky tactics later in a possession.
Furthermore, the tactics used by the team in possession are also impacted by the
defensive tactics. As Bialkowski et al. [4] found, visiting teams tend to set their
defence deeper, i.e. closer to the goal they are defending. When the visiting team
is in possession, there is thus likely to be more space behind the home team’s
defensive line, and the long ball may appear to be a more appealing tactic.
The observations made from these are consistent with our basic understanding
of football tactics, and suggest that the flow diagrams are interpretable in this
application domain.

Compact Flow Diagrams for State Sequences 101

Fig. 6. Flow diagrams produced for visiting team. The edge weights are the number
of possessions that span the edge, and the nodes with grey background are event types
that are significant.

3.2 Performance Testing

In the second experiment, we used a generator that outputs synthetic state
sequences and segmentations, and tested the performance of the algorithms on
inputs of varying sizes.

The segmentations were generated using Markov-Chain Monte-Carlo sam-
pling. Nodes representing the criteria set of size k were arranged in a ring and a
Markov chain constructed, such that each node had a transition probability of
0.7 to remain at the node, 0.1 to move to the adjacent node, and 0.05 to move
to the node two places away. Segmentations were computed by sampling the
Markov chain starting at a random node. Thus, simulated datasets of arbitrary
size m, state sequence length n, criteria set size k were generated.

We performed two tests on the generated segmentations. In the first, exper-
iments were run on the four algorithms described in Sect. 2 with varying config-
urations of m, n and k to investigate the impact of input size on the algorithm’s
performance. The evaluation metric used was the CPU time required to generate
the flow diagram for the input. In the second test, we compared the total com-
plexity of the output flow diagram produced by the two heuristic algorithms with

102 K. Buchin et al.

Fig. 7. Runtime statistics for generating flow diagram (top), and total complexity of
flow diagrams produced (bottom). Default values of m = 4, n = 4 and k = 10 were
used. The data points are the mean value and the error bars delimit the range of values
over the five trials run for each input size.

the baseline complexity of the flow diagram produced by the exact algorithm for
monotone increasing and independent criteria.

We repeated each experiment five times with different input sequences for
each trial, and the results presented are the mean values of the metrics over the
trials. Limits were set such that the process was terminated if the CPU time
exceeded 1 h, or the memory required exceeded 8 GB.

The results of the first test showed empirically that the exact algorithms have
time and storage complexity consistent with the theoretical worst-case bounds,
Fig. 7 (top). The heuristic algorithms were subsequently run against larger test
data sets to examine the practical limits of the input sizes, and were able to
process larger input — for example, an input of k = 128, m = 32 and n =
1024 was tractable — the trade-off is that the resulting flow diagrams were
suboptimal, though correct, in terms of their total complexity.

For the second test, we investigated the complexity of the flow diagram
induced by inputs of varying parameterisations when using the heuristic algo-
rithms. The objective was to examine how close the complexity was to the

Compact Flow Diagrams for State Sequences 103

optimal complexity produced using an exact algorithm. The inputs exhibited
monotone decreasing and independent criteria, and thus the corresponding algo-
rithm was used to produce the baseline. Figure 7 (bottom) summarises the results
for varying input parameterisations. The complexity of the flow diagrams pro-
duced by the two heuristic algorithms are broadly similar, and increase at worst
linearly as the input size increases. Moreover, while the complexity is not optimal
it appears to remain within a constant factor of the optimal, suggesting that the
heuristic algorithms could produce usable flow diagrams for inputs where the
exact algorithms are not tractable.

4 Concluding Remarks

We introduced flow diagrams as a compact representation of a large number of
state sequences. We argued that this representation gives an intuitive summary
allowing the user to detect patterns among large sets of state sequences, and
gave several algorithms depending on the properties of the segmentation criteria.
These algorithms only run in polynomial time if the number of state sequences
m is constant, which is the best we can hope for given the problem is W [1]-hard.
As a result we considered two heuristics capable of processing large data sets in
reasonable time, however we were unable to give an approximation bound. We
tested the algorithms experimentally to assess the utility of the flow diagram
representation in a sports analysis context, and also analysed the performance
of the algorithms of inputs of varying parameterisations.

References

1. Alewijnse, S.P.A., Buchin, K., Buchin, M., Kölzsch, A., Kruckenberg, H.,
Westenberg, M.: A framework for trajectory segmentation by stable criteria. In:
Proceedings of 22nd ACM SIGSPATIAL/GIS, pp. 351–360. ACM (2014)

2. Aronov, B., Driemel, A., van Kreveld, M.J., Löffler, M., Staals, F.: Segmentation of
trajectories for non-monotone criteria. In: Proceedings of 24th ACM-SIAM SODA,
pp. 1897–1911 (2013)

3. Bialkowski, A., Lucey, P., Carr, G.P.K., Yue, Y., Sridharan, S., Matthews, I.: Iden-
tifying team style in soccer using formations learned from spatiotemporal tracking
data. In: ICDM Workshops, pp. 9–14. IEEE (2014)

4. Bialkowski, A., Lucey, P., Carr, P., Yue, Y., Matthews, I.: Win at home and draw
away: automatic formation analysis highlighting the differences in home and away
team behaviors. In: Proceedings of 8th Annual MIT Sloan Sports Analytics Con-
ference (2014)

5. Buchin, K., Buchin, M., Gudmundsson, J., Horton, M., Sijben, S.: Compact flow
diagrams for state sequences. CoRR, abs/1602.05622 (2016)

6. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting com-
muting patterns by clustering subtrajectories. Int. J. Comput. Geom. Appl. 21(3),
253–282 (2011)

7. Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., Staals, F.: Trajectory
grouping structure. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 219–230. Springer, Heidelberg (2013)

104 K. Buchin et al.

8. Buchin, M., Driemel, A., van Kreveld, M., Sacristan, V.: Segmenting trajectories: a
framework and algorithms using spatiotemporal criteria. J. spat. inf. sci. 3, 33–63
(2011)

9. Buchin, M., Kruckenberg, H., Kölzsch, A.: Segmenting trajectories based on move-
ment states. In: Proceedings of 15th SDH, pp. 15–25. Springer (2012)

10. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deter-
ministic error bounds. VLDB J. 15(3), 211–228 (2006)

11. Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Com-
put. Environ. Urban Syst. 47, 16–27 (2014)

12. Han, C.-S., Jia, S.-X., Zhang, L., Shu, C.-C.: Sub-trajectory clustering algorithm
based on speed restriction. Comput. Eng. 37(7), 219–221 (2011)

13. Kim, H.-C., Kwon, O., Li, K.-J.: Spatial and spatiotemporal analysis of soccer. In:
Proceedings of 19th ACM SIGSPATIAL/GIS, pp. 385–388. ACM (2011)

14. Lucey, P., Bialkowski, A., Carr, G.P.K., Morgan, S., Matthews, I., Sheikh, Y.:
Representing and discovering adversarial team behaviors using player roles. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2013), Portland, pp. 2706–2713. IEEE, June 2013

15. Prozone Sports Ltd: Prozone Sports - Our technology (2015). http://
prozonesports.stats.com/about/technology/

16. Van Haaren, J., Dzyuba, V., Hannosset, S., Davis, J.: Automatically discovering
offensive patterns in soccer match data. In: Fromont, E., De Bie, T., van Leeuwen,
M. (eds.) IDA 2015. LNCS, vol. 9385, pp. 286–297. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-24465-5 25

17. Wang, Q., Zhu, H., Hu, W., Shen, Z., Yao, Y.: Discerning tactical patterns for
professional soccer teams. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD 2015, Sydney, pp.
2197–2206. ACM Press, August 2015

18. Wei, X., Sha, L., Lucey, P., Morgan, S., Sridharan, S.: Large-scale analysis of for-
mations in soccer. In: 2013 International Conference on Digital Image Computing:
Techniques and Applications (DICTA), Hobart, pp. 1–8. IEEE, November 2013

http://prozonesports.stats.com/about/technology/
http://prozonesports.stats.com/about/technology/
http://dx.doi.org/10.1007/978-3-319-24465-5_25

Practical Dynamic Entropy-Compressed
Bitvectors with Applications

Joshimar Cordova(B) and Gonzalo Navarro

Department of Computer Science, CeBiB — Center of Biotechnology
and Bioengineering, University of Chile, Santiago, Chile

{jcordova,gnavarro}@dcc.uchile.cl

Abstract. Compressed data structures provide the same functionality
as their classical counterparts while using entropy-bounded space. While
they have succeeded in a wide range of static structures, which do not
undergo updates, they are less mature in the dynamic case, where the
theory-versus-practice gap is wider. We implement compressed dynamic
bitvectors B using |B|H0(B)+o(|B|) or |B|H0(B)(1+o(1)) bits of space,
where H0 is the zero-order empirical entropy, and supporting queries and
updates in O(w) time on a w-bit word machine. This is the first imple-
mentation that provably achieves compressed space and is also practical,
operating within microseconds. Bitvectors are the basis of most com-
pressed data structures; we explore applications to sequences and graphs.

1 Introduction

Compact data structures have emerged as an attractive solution to reduce the
significant memory footprint of classical data structures, which becomes a more
relevant problem as the amount of available data grows. Such structures aim at
representing the data within almost its entropy space while supporting a rich
set of operations on it. Since their beginnings [12], several compact structures
have been proposed to address a wide spectrum of applications, with important
success stories like ordinal trees with full navigation in less than 2.5 bits [1],
range minimum queries in 2.1 bits per element [7], and full-text indexes using
almost the space of the compressed text [15], among others. Most of the major
practical solutions are implemented in the Succinct Data Structures Library [10],
which offers solid C++ implementations and extensive test datasets.

Most of these implemented structures, however, are static, that is, they do
not support updates to the data once they are built. While dynamic variants
exist for many compact data structures, they are mostly theoretical and their
practicality is yet to be established.

At the core of many compact structures lay simple bitvectors supporting
two important queries: counting the number of bits b up to a given position
(rank) and finding the position of the i-th occurrence of bit b (select). Such
bitvectors enable well-known compact structures like sequences, two-dimensional

Funded by Basal Funds FB0001 and with Fondecyt Grant 1-140796, Conicyt, Chile.

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 105–117, 2016.
DOI: 10.1007/978-3-319-38851-9 8

106 J. Cordova and G. Navarro

grids, graphs, trees, etc. Supporting insertion and deletion of bits in the bitvec-
tors translates into supporting insertion and deletions of symbols, points, edges,
and nodes, in those structures. Very recent work [16] shows that dynamic bitvec-
tors are practical and that compression can be achieved for skewed frequencies of
0 s and 1 s, provided that the underlying dynamic memory allocation is handled
carefully. Furthermore, the authors implement the compressed RAM [13] and
show that it is practical by storing in it a directed graph.

In this paper we build on a theoretical proposal [17] to present the first prac-
tical dynamic bitvector representations whose size is provably entropy-bounded.
A first variant represents B[1, n] in nH0(B) + o(n) bits, where H0 denotes the
zero-order empirical entropy. For bitvectors with few 1 s, a second variant that
uses nH0(B)(1+o(1)) bits is preferable. Both representations carry out updates
and rank/select queries in time O(w) on a w-bit machine. In practice, the times
are just a few microseconds and the compression obtained is considerable. Instead
of using our structure to implement a compressed RAM, we use our bitvectors
to implement (a) a practical dynamic wavelet matrix [5] to handle sequences
of symbols and two-dimensional grids, and (b) a compact dynamic graph that
achieves considerable space savings with competitive edge-insertion times.

Along the way we also describe how we handle the dynamic memory allo-
cation with the aim of reducing RAM fragmentation, and unveil a few related
practical results that had not been mentioned in the literature.

2 Basic Concepts

Given a sequence S[1, n] over the alphabet [1, σ], access(S, i) returns the char-
acter S[i], rankc(S, i) returns the number of occurrences of character c in
S[1, i] and selectc(S, j) returns the position of the j-th occurrence of c. The
(empirical) zero-order entropy of S is defined as H0(S) =

∑
1≤c≤σ

nc

n lg n
nc

,
where c occurs nc times in S, and is a lower bound on the average code
length for any compressor that assigns fixed (variable-length) codes to sym-
bols. When σ = 2 we refer to the sequence as a bitvector B[1, n] and the
entropy becomes H0(B) = m

n lg n
m + n−m

n lg n
n−m , where m = n1. The entropy

decreases when m is closer to 0 or n. In the first case, another useful formula is
H0(B) = m

n (lg n
m + O(1)).

Dynamism is supported by the operations insert(S, i, c), which inserts the
character c before position i in S and moves characters S[i, n] one position to
the right; delete(S, i), which removes character S[i] and moves the characters
S[i + 1, n] one position to the left; and modify(S, i, c), which sets S[i] = c.

Uncompressed (or plain) bitvector representations use n+ o(n) bits, and can
answer queries in O(1) time [3]. Compressed representations reduce the space
to nH0(B) + o(n) bits while retaining the constant query times [24]. Dynamic
bitvectors cannot be that fast, however: queries require Ω(lg n/ lg lg n) time if the
updates are to be handled in O(polylog n) time [8]. Dynamic plain bitvectors
with optimal times O(lg n/ lg lg n) for all the operations exist [23]. Mäkinen
and Navarro [17] presented the first dynamic bitvectors using compressed space,

Practical Dynamic Entropy-Compressed Bitvectors with Applications 107

nH0(B) + o(n) bits, and O(lg n) times. It is possible to improve the times to
the optimal O(lg n/ lg lg n) within compressed space [21], but the solutions are
complicated and unlikely to be practical.

A crucial aspect of the dynamic bitvectors is memory management. When
insertions/deletions occur in the bit sequence, the underlying memory area needs
to grow/shrink appropriately. The classical solution, used in most of the theo-
retical results, is the allocator presented by Munro [18]. Extensive experiments
[16] showed that this allocator can have a drastic impact on the actual mem-
ory footprint of the structure: the standard allocator provided by the operating
system may waste up to 25% of the memory due to fragmentation.

The first implementation of compact dynamic structures we know of is that of
Gerlang [9]. He presents dynamic bitvectors and wavelet trees [11], and uses them
to build a compact dynamic full-text index. However, memory management is
not considered and bitvectors B[1, n] use O(n) bits of space, 3.5n–14n in practice.
A more recent implementation [25] has the same problems and thus is equally
unattractive. Brisaboa et al. [2] also explore plain dynamic bitvectors; they use a
B-tree-like structure where leaves store blocks of bits. While their query/update
times are competitive, the space reported should be read carefully as they do
not consider memory fragmentation. In the context of compact dynamic ordinal
trees, Joannou and Raman [14] present a practical study of dynamic Range Min-
Max trees [21]. Although the space usage is not clear, the times are competitive
and almost as fast as the static implementations [1].

There also exist open-source libraries providing compact dynamic structures.
The ds-vector library [22] provides dynamic bitvectors and wavelet trees, but
their space overhead is large and their wavelet tree is tailored to byte sequences;
memory fragmentation is again disregarded. The compressed data structures
framework Memoria [26] offers dynamic compact bitvectors and ordinal trees,
among other structures. A custom memory allocator is provided to reduce frag-
mentation, but unfortunately the library is not in a stable state yet (as confirmed
by the author of the library).

Klitzke and Nicholson [16] revisit dynamic bitvectors. They present the first
practical implementation of the memory allocation strategy of Munro [18] tai-
lored to using compact data structures, and show that it considerably reduces
memory fragmentation without incurring in performance penalties. They present
plain dynamic bitvectors B[1, n] using only 1.03n bits. For bitvectors with m � n
1 s, they build on general-purpose compressors lz4 and lz4hc to reduce the
space up to 0.06n. However, they lack theoretical guarantees on the compression
achieved. While their work is the best practical result in the literature, the code
and further technical details are unfortunately unavailable due to legal issues (as
confirmed by the first author).

3 Dynamic Entropy-Compressed Bitvectors

In this section we present engineered dynamic bitvectors that achieve zero-order
entropy compression. These are based on the ideas of Mäkinen and Navarro [17],

108 J. Cordova and G. Navarro

but are modified to be more practical. The following general scheme underlies
almost all practical results to date and is used in this work as well. The bitvec-
tor B[1, n] is partitioned into chunks of contiguous bits and a balanced search
tree (we use AVLs) is built where the leaves store these chunks. The actual
partition strategy and storage used in the leaves vary depending on the desired
compression. Each internal node v of the balanced tree stores two fields: v.ones
(v.length) is the number of 1 s (total number of bits) present in the left subtree
of v. The field v.length is used to find a target position i in B: if i ≤ v.length
we descend to the left child, otherwise we descend to the right child and i becomes
i − v.length. This is used to answer access/rank queries and also to find the
target leaf where an update will take place (for rank we add up the v.ones field
whenever we go right). The field v.ones is used to answer select1(B, j) queries:
if j ≤ v.ones the answer is in the left subtree; otherwise we move to the right
child, add v.length to the answer, and j becomes j − v.ones. For select0(B, j)
we proceed analogously, replacing v.ones by v.length−v.ones. The leaves are
sequentially scanned, taking advantage of locality. Section 3.2 assumes the tree
is traversed according to these rules.

3.1 Memory Management

Although Klitzke and Nicholson [16] present and study a practical implementa-
tion of Munro’s allocator [18], the technical details are briefly mentioned and the
implementation is not available. We then provide an alternative implementation
with its details. In Sect. 5, both implementations are shown to be comparable.

Munro’s allocator is tailored to handle small blocks of bits, in particular
blocks whose size lies in the range [L, 2L] for some L = polylog n. It keeps L + 1
linked lists, one for each possible size, with L + 1 pointers to the heads of the
lists. Each list li consists of fixed-length cells of 2L bits where the blocks of i bits
are stored contiguously. In order to allocate a block of i bits we check if there is
enough space in the head cell of li, otherwise a new cell of 2L bits is allocated
and becomes the head cell. To deallocate a block we fill its space with the last
block stored in the head cell of list li; if the head cell no longer stores any block
it is deallocated and returned to the OS. Finally, given that we move blocks
to fill the gaps left by deallocation, back pointers need to be stored from each
block to the external structure that points to the block, to update the pointers
appropriately. Note that in the original proposal a block may span up to two
cells and a cell may contain pieces of up to three different blocks.

Implementation. Blocks are fully stored in a single cell to improve locality. As
in the previous work [16], we only allocate blocks of bytes: L is chosen as a mul-
tiple of 8 and we only handle blocks of size L,L+8, L+16, . . . , 2L, rounding the
requested sizes to the next multiple of 8. The cells occupy T = 2L/8 bytes and are
allocated using the default allocator provided by the system. Doing increments
of 8 bits has two benefits: the total number of allocations is reduced and the
memory pointers returned by our allocator are byte-aligned. The head pointers
and lists li are implemented verbatim. The back pointers are implemented using

Practical Dynamic Entropy-Compressed Bitvectors with Applications 109

a folklore idea: when allocating a block of l bytes we instead allocate l + w/8
bytes and store in the first w bits the address of the pointer to the block, so
that when moving blocks to fill gaps the pointer can be modified. This creates
a strong binding between the external structure and the block, which can be
pointed only from one place. This restriction can be alleviated by storing the
pointer in our structure, in an immutable memory area, and let the external
structures point to the pointer. This requires that the external structures know
that the handle they have for the block is not a pointer to the data but a pointer
to the pointer. In this sense, the memory allocator is not completely transparent.

As a further optimization, given that our dynamic bitvectors are based on
search trees, we will be constantly (de)allocating very small structures represent-
ing the nodes of the trees (eg. 4 words for a AVL node). We use another folklore
strategy for these structures: given that modern operating systems usually pro-
vide 8 MB of stack memory for a running process, we implement an allocator on
top of that memory, avoiding the use of the heap area for these tiny structures;
(de)allocation simply moves the end of the stack.

3.2 Entropy-Based Compression

Our first variant builds on the compression format of Raman et al. [17,24],
modified to be practical. We partition the bitvector B into chunks of Θ(w2)
bits and these become the leaves of an AVL tree. We store the chunks using the
(class, offset) encoding (c, o) [24]: a chunk is further partitioned into blocks of
b = w/2 bits; the class of a block is the number of 1 s it contains and its offset is
the index of the block among all possible blocks of the same class when sorted
lexicographically. A class component requires lg w bits, while the offset of a block
of class k requires lg

(
b
k

)
bits. All class/offset components are concatenated in

arrays C/O, which are stored using our custom memory allocator. The overall
space of this encoding is nH0(B)+o(n) bits [24]. The space overhead of the AVL
tree is O(n/w) bits, since there are O(n/w2) nodes, each requiring Θ(w) bits.
Since w = Ω(lg n), this overhead is o(n). It is important to notice that while
leaves represent Θ(w2) logical bits, the actual space used by the (c, o) encoding
may be considerably smaller. In practice we choose a parameter L′, and all leaves
will store a number of physical bytes in the range [L′, 2L′].

To answer access(B, i)/select(B, j) queries we navigate, using the AVL tree,
to the leaf containing the target position and then decode the blocks sequentially
until the desired position is found. A block is decoded in constant time using
a lookup table that, given a pair (c, o), returns the original b bits of the block.
This table has 2w/2 entries, which is small and can be regarded as program size,
since it does not depend on the data. Note that we only need to decode the
last block; for the previous ones the class component is sufficient to determine
how much to advance in array O. For rank1(B, i) we also need to add up the
class components (i.e., number of 1 s) up to the desired block. Again, this only
requires accessing array C, while O is only read to decode the last block. We
spend O(lg n) time to navigate the tree, O(w) time to traverse the blocks in
the target leaf, and O(w) time to process the last block bitwise. Thus queries

110 J. Cordova and G. Navarro

take O(w) time. In practice we set b = 15, hence the class components require 4
bits (and can be read by pairs from each single byte of C), the (uncompressed)
blocks are 16-bit integers, and the decoding table overhead (which is shared by
all the bitvectors) is only 64 KB.

To handle updates we navigate towards the target leaf and proceed to decom-
press, update, and recompress all the blocks to the right of the update position.
If the number of physical bytes stored in a leaf grows beyond 2L we split it in
two leaves and add a new internal node to be tree; if it shrinks beyond L we
move a single bit from the left or right sibling leaf to the current leaf. If this is
not possible (because both siblings store L physical bytes) we merge the current
leaf with one of its siblings; in either case we perform rotations on the internal
nodes of the tree appropriately to restore the AVL invariant.

Recompressing a block is done using an encoding lookup table that, given
a block of b bits, returns the associated (c, o) encoding. This adds other 64 KB
of memory. To avoid overwriting memory when the physical leaf size grows,
recompression is done by reading the leaf data and writing the updated version
in a separate memory area, which is later copied back to the leaf.

3.3 Compression of Very Sparse Bitvectors

When the number m of 1 s in B is very low, the o(n) term may be significative
compared to nH0(B). In this case we seek a structure whose space depends
mainly on m. We present our second variant (also based on Mäkinen and Navarro
[17]) that requires only m lg n

m +O(m lg lg n
m) bits, while maintaining the O(w)-

time complexities. This space is nH0(B)(1 + o(1)) bits if m = o(n).
The main building blocks is Elias δ-codes [6]. Given a positive integer x, let

|x| denote the length of its binary representation (eg. |7| = 3). The δ-code for
x is obtained by writing ||x|| − 1 zeros followed by the binary representation of
|x| and followed by the binary representation of x without the leading 1 bit. For
example δ(7) = 01111 and δ(14) = 00100110. It follows easily that the length of
the code δ(x) is |δ(x)| = lg x + 2 lg lg x + O(1) bits.

We partition B into chunks containing Θ(w) 1 s. We build an AVL tree where
leaves store the chunks. A chunk is stored using δ-codes for the distance between
pairs of consecutive 1 s. This time the overhead of the AVL tree is O(m) bits. By
using the Jensen inequality on the lengths of the δ-codes it can be shown [17] that
the overall space of the leaves is m lg n

m + O(m lg lg n
m) bits and the redundancy

of the AVL tree is absorbed in the second term. In practice we choose a constant
M and leaves store a number of 1 s in the range [M, 2M]. Within this space we
now show how to answer queries and handle updates in O(w) time.

To answer access(i) we descend to the target leaf and start decoding the
δ-codes sequentially until the desired position is found. Note that each δ-code
represents a run of 0 s terminated with a 1, so as soon as the current run contains
the position i we return the answer. To answer rank(i) we increase the answer
by 1 per δ-code we traverse. Finally, to answer select1(j), when we reach the
target leaf looking for the j-th local 1-bit we decode the first j codes and add

Practical Dynamic Entropy-Compressed Bitvectors with Applications 111

their sum (since they represent the lengths of the runs). Instead, select0(j) is
very similar to the access query.

To handle the insertion of a 0 at position i in a leaf we sequentially search
for the δ-code that contains position i. Let this code be δ(x); we then replace
it by δ(x + 1). To insert a 1, let i′ ≤ x + 1 be the local offset inside the run
0x−11 (represented by the code δ(x)) where the insertion will take place. We
then replace δ(x) by δ(i′)δ(x − i′ + 1) if i′ ≤ x and by δ(x)δ(1) otherwise. In
either case (inserting a 1 or a 0) we copy the remaining δ-codes to the right of the
insertion point. Deletions are handled analogously; we omit the description. If,
after an update, the number of 1 s of a leaf lies outside the interval [M, 2M] we
move a run from a neighbor leaf or perform a split/merge just as in the previous
solution and then perform tree rotations to restore the AVL invariant.

The times for the queries and updates are O(w) provided that δ-codes are
encoded/decoded in constant time. To decode a δ-code we need to find the high-
est 1 in a word (as this will give us the necessary information to decode the rest).
Encoding a number x requires efficiently computing |x| (the length of its binary
representation), which is also the same problem. Modern CPUs provide special
support for this operation; otherwise we can use small precomputed tables. The
rest of the encoding/decoding process is done with appropriate bitwise opera-
tions. Furthermore, the local encoding/decoding is done on sequential memory
areas, which is cache-friendly.

4 Applications

4.1 Dynamic Sequences

The wavelet matrix [5] is a compact structure for sequences S[1, n] over a fixed
alphabet [1, σ], providing support for access(i), rankc(i) and selectc(i) queries.
The main idea is to store lg σ bitvectors Bi defined as follows: let S1 = S and
B1[j] = 1 iff the most significant bit of S1[j] is set. Then S2 is obtained by moving
to the front all characters S1[j] with B1[j] = 0 and moving the rest to the back
(the internal order of front and back symbols is retained). Then B2[j] = 1 iff the
second most significant bit of S2[j] is set, we create S3 by shuffling S2 according
to B2, and so on. This process is repeated lg σ times. We also store lg σ numbers
zj = rank0(Bj , n). The access/rank/select queries on this structure reduce to
O(lg σ) analogous queries on the bitvectors Bj , thus the times are O(lg σ) and
the final space is n lg σ + o(n lg σ) (see the article [5] for more details).

Our results in Sect. 3 enable a dynamic implementation of wavelet matrices
with little effort. The insertion/deletion of a character at position i is imple-
mented by the insertion/deletion of a single bit in each of the bitvectors Bj . For
insertion of c, we insert the highest bit of c in B1[i]. If the bit is a 0, we increase z1
by one and change i to rank0(B1, i); otherwise we change i to z1 + rank1(B1, i).
Then we continue with B2, and so on. Deletion is analogous. Hence all query and
update operations require lg σ O(w)-time operations on our dynamic bitvectors.
By using our uncompressed dynamic bitvectors, we maintain a dynamic string
S[1, n] over a (fixed) alphabet [1, σ] in n lg σ+o(n lg σ) bits, handling queries and

112 J. Cordova and G. Navarro

updates in O(w lg σ) time. An important result [11] states that if the bitvectors
Bj are compressed to their zero-order entropy nH0(Bj), then the overall space
is nH0(S). Hence, by switching to our compressed dynamic bitvectors (in par-
ticular, our first variant) we immediately achieve nH0(S)+o(n lg σ) bits and the
query/update times remain O(w lg σ).

4.2 Dynamic Graphs and Grids

The wavelet matrix has a wide range of applications [19]. One is directed graphs.
Let us provide dynamism to the compact structure of Claude and Navarro [4].
Given a directed graph G(V,E) with n = |V | vertices and e = |E| edges, consider
the adjacency list G[v] of each node v. We concatenate all the adjacency lists in
a single sequence S[1, e] over the alphabet [1, n] and build the dynamic wavelet
matrix on S. Each outdegree dv of vertex v is written as 10dv and appended to
a bitvector B[1, n + e]. The final space is e lg n(1 + o(1)) + O(n) bits.

This representation allows navigating the graph. The outdegree of ver-
tex v is computed as select1(B, v + 1) − select1(B, v) − 1. The j-th neigh-
bor of vertex v is access(S, select1(B, v) − v + j). The edge (v, u) exists iff
ranku(S, select1(B, v + 1) − v − 1) − ranku(S, select1(B, v) − v) = 1. The main
advantage of this representation is that it also enables backwards navigation of
the graph without doubling the space: the indegree of vertex v is rankv(S, e)
and the j-th reverse neighbor of v is select0(B, selectv(S, j)) − selectv(S, j).

To insert an edge (u, v) we insert a 0 at position select1(B, u)+1 to increment
the indegree of u, and then insert in S the character v at position select1(B, u)−
u + 1. Edge deletion is handled in a similar way. We thus obtain O(w lg n) time
to update the edges. Unfortunately, the wavelet matrix does not allow changing
the alphabet size. Despite this, providing edge dynamism is sufficient in several
applications where an upper bound on the number of vertices is known.

This same structure is useful to represent two-dimensional n × n grids with
e points, where we can insert and delete points. It is actually easy to generalize
the grid size to any c × r. Then the space is n lg r(1 + o(1)) + O(n + c) bits. The
static wavelet matrix [5] can count the number of points in a rectangular area in
time O(lg r), and report each such point in time O(lg r) as well. On our dynamic
variant, times become O(w lg r), just like the time to insert/delete points.

5 Experimental Results and Discussion

The experiments were run on a server with 4 Intel Xeon cores (each at 2.4 GHz)
and 96 GB RAM running Linux version 3.2.0-97. All implementations are in C++.

We first reproduce the memory fragmentation stress test [16] using our allo-
cator of Sect. 3.1. The experiment initially creates n chunks holding C bytes.
Then it performs C steps. In the i-th step n/i chunks are randomly chosen and
their memory area is expanded to C + i bytes. We set C = 211 and use the same
settings [16] for our custom allocator: the cell size T is set to 216 and L is set
to 211. Table 1 shows the results. The memory consumption is measured as the

Practical Dynamic Entropy-Compressed Bitvectors with Applications 113

Resident Set Size (RSS),1 which is the actual amount of physical RAM retained
by a running process. Malloc represents the default allocator provided by the
operating system and custom is our implementation. Note that for all the tested
values of n our allocator holds less RAM memory, and in particular for n = 224

(i.e., nC = 32 GB) it saves up to 12 GB. In all cases the CPU times of our allo-
cator are faster than the default malloc. This shows that our implementation is
competitive with the previous one [16], which reports similar space and time.

Table 1. Memory consumption measured as RSS in GBs and CPU time (seconds) for
the RAM fragmentation test.

lg n malloc RSS custom RSS malloc time custom time

18 0.889 0.768 0.668 0.665

19 1.777 1.478 1.360 1.325

20 3.552 2.893 2.719 2.635

21 7.103 5.727 5.409 5.213

22 14.204 11.392 10.811 10.446

23 28.407 22.725 21.870 21.163

24 56.813 45.388 45.115 43.081

Having established that our allocator enables considerable reductions in
RAM fragmentation, we study our practical compressed bitvectors. We gen-
erate random bitvectors of size n = 50 · 223 (i.e., 50 MB) and set individual bits
to 1 with probability p. We consider skewed frequencies p = 0.1, 0.01, and 0.001.
Preliminary testing showed that, for our variant of Sect. 3.2, setting the range
of physical leaf sizes to [211, 212] bytes provided the best results. Table 2 gives
our results for the compression achieved and the time for queries and updates
(averaging insertions and deletions). We achieve 0.3–0.4 bits of redundancy over
the entropy, which is largely explained by the component c of the pairs (c, o):
these add lg(b + 1)/b = 4/15 = 0.27 bits of redundancy, whereas the O array
adds up to nH0(B). The rest of the redundancy is due to the AVL tree nodes
and the space wasted by our memory allocator. For the very sparse bitvectors
(p = 0.001), the impact of this fixed redundancy is very high.

Operation times are measured by timing 105 operations on random positions
of the bitvectors. The queries on our first variant take around 1µs (and even less
for access), whereas the update operations take 8–15μs. The operations become
faster as more compression is achieved.

For the very sparse bitvectors (p = 0.001) we also test our variant of Sect. 3.3.
Preliminary testing showed that enforcing leaves to handle a number of 1 s in
the range [128, 256] provided the best results. The last row of Table 2 shows the
compression and timing results for this structure. As promised in theory, the

1 Measured with https://github.com/mpetri/mem monitor.

https://github.com/mpetri/mem_monitor

114 J. Cordova and G. Navarro

Table 2. Memory used (measured as RSS, in MB, in bits per bit, and in redundancy
over H0(B)) and timing results (in microseconds) for our compressed dynamic bitvec-
tors. The first three rows refer to the variant of Sect. 3.2, and the last to Sect. 3.3.

p MB Bits/n −H0(B) Updates Access Rank Select

0.1 38.57 0.77 0.30 15.08 0.80 1.10 1.20

0.01 21.27 0.43 0.35 10.77 0.60 0.90 1.10

0.001 19.38 0.39 0.38 8.50 0.70 0.90 1.00

∗0.001 1.50 0.03 0.02 5.26 1.38 1.47 1.35

Table 3. Memory usage (MBs) and times (in seconds) for the online construction and
a breadth-first traversal of the DBLP graph to find its weakly connected components.
The data for previous work [16] is a rough approximation.

Structure RSS Ratio Build time Ratio BFS time Ratio

std::vector 22.20 1.00 7.40 1.00 0.06 1.00

Wavelet matrix 4.70 0.21 12.42 1.68 9.34 155.67

Previous [16] 0.30 9.00 30.00

compression achieved by this representation is remarkable, achieving 0.02 bits
of redundancy (its space is much worse on the higher values of p, however). The
query times become slightly over 1µs and the update times are around 5μs.

Finally, we present a single application for the dynamic wavelet matrix and
graphs. We find the weakly connected components of a sample of the DBLP
social graph stored using the dynamic representation of Sect. 4.2 with plain
dynamic bitvectors, that is, they are stored verbatim. We use range [210, 211]
bytes for the leaf sizes.

The sample dataset consists of 317,080 vertices and 1,049,866 edges
taken from https://snap.stanford.edu/data/com-DBLP.html, with edge direc-
tions assigned at random. We build the graph by successive insertions of the
edges. Table 3 shows the memory consumption, the construction time (i.e., insert-
ing all the edges), and the time to perform a breadth-first search of the graph.
Our baseline is a representation of graphs based on adjacency lists implemented
using the std::vector class from the STL library in C++, where each directed
edge (u, v) is also stored as (v, u) to enable backwards navigation. Considerable
space savings are achieved using the dynamic wavelet matrix, 5-fold with respect
to the baseline. The edge insertion times are very competitive, only 70 % slower
than the baseline. The time to perform a full traversal of the graph, however, is
two orders of magnitude slower.

We now briefly make an informal comparison between our results and the
best previous work [16] by extrapolating some numbers.2 For bitvectors with

2 A precise comparison is not possible since their results are not available. We use
their plots as a reference.

https://snap.stanford.edu/data/com-DBLP.html

Practical Dynamic Entropy-Compressed Bitvectors with Applications 115

density p = 0.1 our first variant achieves 77% compression compared to their
85%. For p = 0.01 ours achieves 43% compared to their 35%, and for p = 0.001
our second variant achieves 3% compared to their 6%. In terms of running times
our results handle queries in about 1µs and updates in 8–15μs, while their most
practical variant, based on lz4, handles queries and updates in around 10–25μs.
These results are expected since the encodings we used ((c, o) pairs and δ-codes)
are tailored to answer rank/select queries without the need of full decompres-
sion. Finally, they also implement a compressed dynamic graph (based on com-
pressed RAM and not on compact structures). The rough results (extrapolated
from their own comparison against std::vector) are shown in the last line of
Table 3: they use 50 % more space and 5 times more construction time than our
implementation, but their BFS time is 5 times faster.

6 Conclusions

We have presented the first practical entropy-compressed dynamic bitvectors
with good space/time theoretical guarantees. The structures solve queries in
around a microsecond and handle updates in 5–15µs. An important advantage
compared with previous work [16] is that we do not need to fully decompress the
bit chunks to carry out queries, which makes us an order of magnitude faster.
Another advantage over previous work is the guaranteed zero-order entropy
space, which allows us using bitvectors for representing sequences in zero-order
entropy, and full-text indexes in high-order entropy space [15].

Several improvements are possible. For example, we reported times for query-
ing random positions, but many times we access long contiguous areas of a
sequence. Those can be handled much faster by remembering the last accessed
AVL tree node and block. In the (c, o) encoding, we would access a new byte of C
every 30 operations, and decode a new block of O every 15, which would amount
to at least an order-of-magnitude improvement in query times. For δ-encoded
bitvectors, we would decode a new entry every n/m operations on average.

Another improvement is to allow for faster queries when updates are less
frequent, tending to the fast static query times in the limit. We are studying
policies to turn an AVL subtree into static when it receives no updates for some
time. This would reduce, for example, the performance gap for the BFS traversal
in our graph application once it is built, if further updates are infrequent.

Finally, there exist theoretical proposals [20] to represent dynamic sequences
that obtain the optimal time O(lg n/ lg lg n) for all the operations. This is much
better than the O(w lg σ) time we obtain with dynamic wavelet matrices. An
interesting future work path is to try to turn that solution into a practical
implementation. It has the added benefit of allowing us to update the alphabet,
unlike wavelet matrices.

Our implementation of dynamic bitvectors and the memory allocator are
available at https://github.com/jhcmonroy/dynamic-bitvectors.

https://github.com/jhcmonroy/dynamic-bitvectors

116 J. Cordova and G. Navarro

References

1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proceedings of the 12th ALENEX, pp. 84–97 (2010)

2. Brisaboa, N., de Bernardo, G., Navarro, G.: Compressed dynamic binary relations.
In: Proceedings of the 22nd DCC, pp. 52–61 (2012)

3. Clark, D.: Compact PAT Trees. Ph.D. thesis, Univ. Waterloo, Canada (1996)
4. Claude, F., Navarro, G.: Extended compact web graph representations. In: Elomaa,

T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060,
pp. 77–91. Springer, Heidelberg (2010)

5. Claude, F., Navarro, G., Ordóñez, A.: The wavelet matrix: an efficient wavelet tree
for large alphabets. Inf. Syst. 47, 15–32 (2015)

6. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theor. 21(2), 194–203 (1975)

7. Ferrada, H., Navarro, G.: Improved range minimum queries. In: Proceedings of the
26th DCC, pp. 516–525 (2016)

8. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:
Proceedings of the 21st STOC, pp. 345–354 (1989)

9. Gerlang, W.: Dynamic FM-Index for a Collection of Texts with Application to
Space-efficient Construction of the Compressed Suffix Array. Master’s thesis, Univ.
Bielefeld, Germany (2007)

10. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

11. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of the 14th SODA, pp. 841–850 (2003)

12. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th
FOCS, pp. 549–554 (1989)

13. Jansson, J., Sadakane, K., Sung, W.-K.: CRAM: Compressed Random Access
Memory. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012, Part I. LNCS, vol. 7391, pp. 510–521. Springer, Heidelberg (2012)

14. Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing, R.
(ed.) SEA 2012. LNCS, vol. 7276, pp. 224–235. Springer, Heidelberg (2012)

15. Kärkkäinen, J., Puglisi, S.J.: Fixed block compression boosting in FM-indexes. In:
Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp.
174–184. Springer, Heidelberg (2011)

16. Klitzke, P., Nicholson, P.K.: A general framework for dynamic succinct and com-
pressed data structures. In: Proceedings of the 18th ALENEX, pp. 160–173 (2016)

17. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Trans. Algorithms 4(3), 32–38 (2008)

18. Munro, J.I.: An implicit data structure supporting insertion, deletion, and search
in o(log2 n) time. J. Comput. Syst. Sci. 33(1), 66–74 (1986)

19. Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2–20 (2014)
20. Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. SIAM J.

Comput. 43(5), 1781–1806 (2014)
21. Navarro, G., Sadakane, K.: Fully-Functional static and dynamic succinct trees.

ACM Trans. Algorithms 10(3), 16 (2014)
22. Okanohara, D.: Dynamic succinct vector library. https://code.google.com/archive/

p/ds-vector/. Accessed 30 Jan 2016

https://code.google.com/archive/p/ds-vector/
https://code.google.com/archive/p/ds-vector/

Practical Dynamic Entropy-Compressed Bitvectors with Applications 117

23. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, p. 426. Springer,
Heidelberg (2001)

24. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 43 (2007)

25. Salson, M.: Dynamic fm-index library. http://dfmi.sourceforge.net/. Accessed 30
Jan 2016

26. Smirnov, V.: Memoria library. https://bitbucket.org/vsmirnov/memoria/.
Accessed 30 Jan 2016

http://dfmi.sourceforge.net/
https://bitbucket.org/vsmirnov/memoria/

Accelerating Local Search for the Maximum
Independent Set Problem

Jakob Dahlum1, Sebastian Lamm1, Peter Sanders1, Christian Schulz1,
Darren Strash1(B), and Renato F. Werneck2

1 Institute of Theoretical Informatics,
Karlsruhe Institute of Technology, Karlsruhe, Germany

{dahlum,lamm}@ira.uka.de,
{sanders,christian.schulz,strash}@kit.edu

2 San Francisco, USA
rwerneck@acm.org

Abstract. Computing high-quality independent sets quickly is an
important problem in combinatorial optimization. Several recent algo-
rithms have shown that kernelization techniques can be used to find exact
maximum independent sets in medium-sized sparse graphs, as well as
high-quality independent sets in huge sparse graphs that are intractable
for exact (exponential-time) algorithms. However, a major drawback of
these algorithms is that they require significant preprocessing overhead,
and therefore cannot be used to find a high-quality independent set
quickly.

In this paper, we show that performing simple kernelization tech-
niques in an online fashion significantly boosts the performance of local
search, and is much faster than pre-computing a kernel using advanced
techniques. In addition, we show that cutting high-degree vertices can
boost local search performance even further, especially on huge (sparse)
complex networks. Our experiments show that we can drastically speed
up the computation of large independent sets compared to other state-
of-the-art algorithms, while also producing results that are very close to
the best known solutions.

Keywords: Maximum independent set · Minimum vertex cover · Local
search · Kernelization · Reduction

1 Introduction

The maximum independent set problem is a classic NP-hard problem [13] with
applications spanning many fields, such as classification theory, information
retrieval, computer vision [11], computer graphics [29], map labeling [14] and
routing in road networks [20]. Given a graph G = (V,E), our goal is to compute
a maximum cardinality set of vertices I ⊆ V such that no vertices in I are
adjacent to one another. Such a set is called a maximum independent set (MIS).

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 118–133, 2016.
DOI: 10.1007/978-3-319-38851-9 9

Accelerating Local Search for the Maximum Independent Set Problem 119

1.1 Previous Work

Since the MIS problem is NP-hard, all known exact algorithms for these prob-
lems take exponential time, making large graphs infeasible to solve in practice.
Instead, heuristic algorithms such as local search are used to efficiently compute
high-quality independent sets. For many practical instances, some local search
algorithms even quickly find exact solutions [3,16].

Exact Algorithms. Much research has been devoted to reducing the base
of the exponent for exact branch-and-bound algorithms. One main technique
is to apply reductions, which remove or modify subgraphs that can be solved
simply, reducing the graph to a smaller instance. Reductions have consistently
been used to reduce the running time of exact MIS algorithms [31], with the
current best polynomial-space algorithm having running time O(1.2114n) [7].
These algorithms apply reductions during recursion, only branching when the
graph can no longer be reduced [12]. This resulting graph is called a kernel.

Relatively simple reduction techniques are known to be effective at reducing
graph size in practice [1,8]. Recently, Akiba and Iwata [2] showed that more
advanced reduction rules are also highly effective, finding an exact minimum
vertex cover (and by extension, an exact maximum independent set) on a corpus
of large social networks with up to 3.2 million vertices in less than a second.
However, their algorithm still requires O(1.2210n) time in the worst case, and
its running time has exponential dependence on the kernel size. Since much
larger graph instances have consistently large kernels, they remain intractable
in practice [24]. Even though small benchmark graphs with up to thousands
of vertices have been solved exactly with branch-and-bound algorithms [28,30,
32], many similarly-sized instances remain unsolved [8]. Even a graph on 4,000
vertices was only recently solved exactly, and it required hundreds of machines
in a MapReduce cluster [33]. Heuristic algorithms are clearly still needed in
practice, even for small graphs.

Heuristic Approaches. There are a wide range of heuristics and local search
algorithms for the complementary maximum clique problem [6,15–17,19,27].
These algorithms work by maintaining a single solution and attempt to improve
it through node deletions, insertions, swaps, and plateau search. Plateau search
only accepts moves that do not change the objective function, which is typi-
cally achieved through node swaps—replacing a node by one of its neighbors.
Note that a node swap cannot directly increase the size of the independent set.
A very successful approach for the maximum clique problem has been presented
by Grosso et al. [16]. In addition to plateau search, it applies various diver-
sification operations and restart rules. The iterated local search algorithm of
Andrade et al. [3] is one of the most successful local search algorithms in prac-
tice. On small benchmark graphs requiring hours of computation to solve with
exact algorithms, their algorithm often finds optimal solutions in milliseconds.
However, for huge complex networks such as social networks and Web graphs, it

120 J. Dahlum et al.

is consistently outperformed by other methods [23,24]. We give further details
of this algorithm in Sect. 2.1.

To solve these largest and intractable graphs, Lamm et al. [24] proposed
ReduMIS, an algorithm that uses reduction techniques combined with an evolu-
tionary approach. It finds the exact MIS for many of the benchmarks used by
Akiba and Iwata [2], and consistently finds larger independent sets than other
heuristics. Its major drawback is the significant preprocessing time it takes to
apply reductions and initialize its evolutionary algorithm, especially on larger
instances. Thus, though ReduMIS finds high-quality independent sets faster than
existing methods, it is still slow in practice on huge complex networks. However,
for many of the applications mentioned above, a near-optimal independent set is
not needed in practice. The main goal then is to quickly compute an independent
set of sufficient quality. Hence, to find high-quality independent sets faster, we
need a different approach.

1.2 Our Results

We develop an advanced local search algorithm that quickly computes large inde-
pendent sets by combining iterated local search with reduction rules that reduce
the size of the search space without losing solution quality. By running local
search on the kernel, we significantly boost its performance, especially on huge
sparse networks. In addition to exact kernelization techniques, we also apply
inexact reductions that remove high-degree vertices from the graph. In partic-
ular, we show that cutting a small percentage of high-degree vertices from the
graph minimizes performance bottlenecks of local search, while maintaining high
solution quality. Experiments indicate that our algorithm finds large independent
sets much faster than existing state-of-the-art algorithms, while still remaining
competitive with the best solutions reported in literature.

2 Preliminaries

Let G = (V = {0, . . . , n−1}, E) be an undirected graph with n = |V | nodes and
m = |E| edges. The set N(v) = {u : {v, u} ∈ E} denotes the open neighborhood
of v. We further define the open neighborhood of a set of nodes U ⊆ V to be
N(U) = ∪v∈UN(v) \ U . We similarly define the closed neighborhood as N [v] =
N(v) ∪ {v} and N [U] = N(U) ∪ U . A graph H = (VH , EH) is said to be a
subgraph of G = (V,E) if VH ⊆ V and EH ⊆ E. We call H an induced subgraph
when EH = {{u, v} ∈ E : u, v ∈ VH}. For a set of nodes U ⊆ V , G[U] denotes
the subgraph induced by U .

An independent set is a set I ⊆ V , such that all nodes in I are pairwise
nonadjacent. An independent set is maximal if it is not a subset of any larger
independent set. The maximum independent set problem is that of finding the
maximum cardinality independent set among all possible independent sets. Such
a set is called a maximum independent set (MIS).

Finally, we note the maximum independent set problem is equivalent to the
maximum clique and minimum vertex cover problems. We see this equivalence

Accelerating Local Search for the Maximum Independent Set Problem 121

as follows: Given a graph G = (V,E) and an independent set I ∈ V , V \ I is a
vertex cover and I is a clique in the complement graph (the graph containing all
edges missing in G). Thus, algorithms for any of these problems can also solve
the maximum independent set problem.

2.1 The ARW Algorithm

We now review the local search algorithm by Andrade et al. [3] (ARW) in more
detail, since we use this algorithm in our work. For the independent set problem,
Andrade et al. [3] extended the notion of swaps to (j, k)-swaps, which remove j
nodes from the current solution and insert k nodes. The authors present a fast
linear-time implementation that, given a maximal solution, can find a (1, 2)-swap
or prove that no (1, 2)-swap exists. One iteration of the ARW algorithm consists
of a perturbation and a local search step. The ARW local search algorithm uses
(1, 2)-swaps to gradually improve a single current solution. The simple version of
the local search iterates over all nodes of the graph and looks for a (1, 2)-swap.
By using a data structure that allows insertion and removal operations on nodes
in time proportional to their degree, this procedure can find a valid (1, 2)-swap
in O(m) time, if it exists.

A perturbation step, used for diversification, forces nodes into the solution
and removes neighboring nodes as necessary. In most cases a single node is
forced into the solution; with a small probability the number of forced nodes f
is set to a higher value (f is set to i + 1 with probability 1/2i). Nodes to be
forced into a solution are picked from a set of random candidates, with priority
given to those that have been outside the solution for the longest time. An even
faster incremental version of the algorithm (which we use here) maintains a list
of candidates, which are nodes that may be involved in (1, 2)-swaps. It ensures
a node is not examined twice unless there is some change in its neighborhood.
Furthermore, an external memory version of this algorithm by Liu et al. [25]
runs on graphs that do not fit into memory on a standard machine. The ARW
algorithm is efficient in practice, finding the exact maximum independent sets
orders of magnitude faster than exact algorithms on many benchmark graphs.

3 Techniques for Accelerating Local Search

First, we note that while local search techniques such as ARW perform well
on huge uniformly sparse mesh-like graphs, they perform poorly on complex
networks, which are typically scale-free. We first discuss why local search per-
forms poorly on huge complex networks, then introduce the techniques we use
to address these shortcomings.

The first performance issue is related to vertex selection for perturbation.
Many vertices are always in some MIS. These include, for example, vertices with
degree one. However, ARW treats such vertices like any other. During a pertur-
bation step, these vertices may be forced out of the current solution, causing
extra searching that may not improve the solution.

122 J. Dahlum et al.

The second issue is that high-degree vertices may slow ARW down signif-
icantly. Most internal operations of ARW (including (1,2)-swaps) require tra-
versing the adjacency lists of multiple vertices, which takes time proportional
to their degree. Although high-degree vertices are only scanned if they have at
most one solution neighbor (or belong to the solution themselves), this happens
often in complex networks.

A third issue is caused by the particular implementation. When performing
an (1,2)-swap involving the insertion of a vertex v, the original ARW imple-
mentation (as tested by Andrade et al. [3]) picks a pair of neighbors u,w of v
at random among all valid ones. Although this technically violates that O(m)
worst-case bound (which requires the first such pair to be taken), the effect
is minimal on the small-degree networks. On large complex networks, this can
become a significant bottleneck.

To deal with the third issue, we simply modified the ARW code to limit
the number of valid pairs considered to a small constant (100). Addressing the
first two issues requires more involved techniques (kernelization and high-degree
vertex cutting, respectively), as we discuss next.

3.1 Exact Kernelization

First, we investigate kernelization, a technique known to be effective in practice
for finding an exact minimum vertex cover (and hence, a maximum independent
set) [1,2]. In kernelization, we repeatedly apply reductions to the input graph G
until it cannot be reduced further, producing a kernel K. Even simple reduction
rules can significantly reduce the graph size. Indeed, in some cases K may be
empty—giving an exact solution without requiring any additional steps. We note
that this is the case for many of the graphs in the experiments by Akiba and
Iwata [2]. Furthermore, any solution of K can be extended to a solution of the
input.

The size of the kernel depends entirely on the structure of the input graph.
In many cases, the kernel can be too large, making it intractable to find an exact
maximum independent set in practice (see Sect. 4). In this case “too large” can
mean a few thousand vertices. However, for many graphs, the kernel is still
significantly smaller than the input graph, and even though it is intractable for
exact algorithms, local search algorithms such as ARW have been shown to find
the exact MIS quickly on small benchmark graphs. It therefore stands to reason
that ARW would perform better on a small kernel.

Reductions. We now briefly describe the reduction rules that we consider.
Each of these exact reductions allow us to choose vertices that are in some MIS
by following simple rules. If an MIS is found on the kernel graph K, then each
reduction may be undone, producing an MIS in the original graph.

Reductions of Akiba and Iwata [2]. First, we briefly describe the reductions used
by Akiba and Iwata [2]. Akiba and Iwata use a full suite of advanced reduction
rules, which they show can efficiently solve the minimum vertex cover problem

Accelerating Local Search for the Maximum Independent Set Problem 123

exactly for a variety of real-world instances. We consider all of their reductions
here. Refer to Akiba and Iwata [2] for a thorough discussion, including imple-
mentation details.

Pendant vertices: Any vertex v of degree one, called a pendant, is in some
MIS; therefore, v and its neighbor u can be removed from G.

Vertex folding: For a vertex v with degree two whose neighbors u and w are
not adjacent, either v is in some MIS, or both u and w are in some MIS.
Therefore, we can contract u, v, and w to a single vertex v′ and decide which
vertices are in the MIS later.

Linear Programming: A well-known [26] linear programming relaxation for
the MIS problem with a half-integral solution (i.e., using only values 0, 1/2,
and 1) can be solved using bipartite matching: maximize

∑
v∈V xv such that

∀(u, v) ∈ E, xu + xv ≤ 1 and ∀v ∈ V , xv ≥ 0. Vertices with value 1 must be
in the MIS and can thus be removed from G along with their neighbors. We
use an improved version [18] that computes a solution whose half-integral
part is minimal.

Unconfined [34]: Though there are several definitions of unconfined vertex in
the literature, we use the simple one from Akiba and Iwata [2]. A vertex
v is unconfined when determined by the following simple algorithm. First,
initialize S = {v}. Then find a u ∈ N(S) such that |N(u) ∩ S| = 1 and
|N(u) \ N [S]| is minimized. If there is no such vertex, then v is confined. If
N(u)\N [S] = ∅, then v is unconfined. If N(u)\N [S] is a single vertex w, then
add w to S and repeat the algorithm. Otherwise, v is confined. Unconfined
vertices can be removed from the graph, since there always exists an MIS I
that contains no unconfined vertices.

Twin [34]: Let u and v be vertices of degree three with N(u) = N(v). If G[N(u)]
has edges, then add u and v to I and remove u, v, N(u), N(v) from G.
Otherwise, some vertices in N(u) may belong to some MIS I. We still remove
u, v, N(u) and N(v) from G, and add a new gadget vertex w to G with
edges to u’s two-neighborhood (vertices at a distance 2 from u). If w is in the
computed MIS, then none of u’s two-neighbors are I, and therefore N(u) ⊆ I.
Otherwise, if w is not in the computed MIS, then some of u’s two-neighbors
are in I, and therefore u and v are added to I.

Alternative: Two sets of vertices A and B are set to be alternatives if |A| =
|B| ≥ 1 and there exists an MIS I such that I ∩ (A ∪ B) is either A or B.
Then we remove A and B and C = N(A) ∩ N(B) from G and add edges
from each a ∈ N(A)\C to each b ∈ N(B)\C. Then we add either A or B to
I, depending on which neighborhood has vertices in I. Two structures are
detected as alternatives. First, if N(v) \ {u} induces a complete graph, then
{u} and {v} are alternatives (a funnel). Next, if there is a cordless 4-cycle
a1b1a2b2 where each vertex has at least degree three. Then sets A = {a1, a2}
and B = {b1, b2} are alternatives when |N(A) \ B| ≤ 2, |N(A) \ B| ≤ 2, and
N(A) ∩ N(B) = ∅.

Packing [2]: Given a non-empty set of vertices S, we may specify a packing
constraint

∑
v∈S xv ≤ k, where xv is 0 when v is in some MIS I and

124 J. Dahlum et al.

1 otherwise. Whenever a vertex v is excluded from I (i.e., in the uncon-
fined reduction), we remove xv from the packing constraint and decrease the
upper bound of the constraint by one. Initially, packing constraints are cre-
ated whenever a vertex v is excluded or included into the MIS. The simplest
case for the packing reduction is when k is zero: all vertices must be in I to
satisfy the constraint. Thus, if there is no edge in G[S], S may be added to I,
and S and N(S) are removed from G. Other cases are much more complex.
Whenever packing reductions are applied, existing packing constraints are
updated and new ones are added.

The Reduction of Butenko et al. [8]. We now describe one last reduction that
was not included in the exact algorithm by Akiba and Iwata [2], but was shown
by Butenko et al. [8] to be highly effective on medium-sized graphs derived from
error-correcting codes.

Fig. 1. An isolated
vertex v, in a single
clique of five vertices.

Isolated Vertex Removal: The most relevant reduction
for our purposes is the isolated vertex removal. If a vertex
v forms a single clique C with all its neighbors, then v
is called isolated (simplicial is also used in the literature)
and is always contained in some MIS. To see this, at most
one vertex from C may is an MIS. Either it is v or, if a
neighbor of v is in an MIS, then we select v instead (See
Fig. 1).

When this reduction is applied in practice, vertices
with degree three or higher are often excluded—as check-
ing all pairwise adjacencies of v’s neighbors can be expensive, especially in sparse
representations. Degree zero and pendant vertices can be checked purely by
the number of neighbors, and triangles can be detected by storing neighbors
in increasing order by vertex number and performing a single binary search to
check if v’s neighbors are adjacent.

3.2 Inexact Reductions: Cutting High-Degree Vertices

To further boost local search, we investigate removing (cutting) high-degree ver-
tices outright. This is a natural strategy: intuitively, vertices with very high
degree are unlikely to be in a large independent set (consider a maximum inde-
pendent set of graphs with few high-degree vertices, such as a star graph, or
scale-free networks). In particular, many reduction rules show that low-degree
vertices are in some MIS, and applying them results in a small kernel [24]. Thus,
high-degree vertices are left behind. This is especially true for huge complex
networks considered here, which generally have few high-degree vertices.

Besides intuition, there is much additional evidence to support this strategy.
In particular, the natural greedy algorithm that repeatedly selects low-degree
vertices to construct an independent set is typically within 1 %–10 % of the
maximum independent set size for sparse graphs [3]. Moreover, several success-
ful algorithms make choices that favor low-degree vertices. ReduMIS [24] forces

Accelerating Local Search for the Maximum Independent Set Problem 125

low-degree vertices into an independent set in a multi-level algorithm, giving
high-quality independent sets as a result. Exact branch-and-bound algorithms
order vertices so that vertices of high-degree are considered first during search.
This reduces the search space size initially, at the cost of finding poor initial
independent sets. In particular, optimal and near-optimal independent sets are
typically found after high-degree vertices have been evaluated and excluded from
search; however, it is then much slower to find the remaining solutions, since only
low-degree vertices remain in the search. This slowness can be observed in the
experiments of Batsyn et al. [5], where better initial solutions from local search
significantly speed up exact search.

We consider two strategies for removing high-degree vertices from the graph.
When we cut by absolute degree, we remove the vertices with degree higher
than a threshold. In relative degree cutting, we iteratively remove highest-degree
vertices and their incident edges from the graph. This is the mirror image of the
greedy algorithm that repeatedly selects smallest-degree vertices in the graph
to be in an independent set until the graph is empty. We stop when a fixed
fraction of all vertices is removed. This better ensures that clusters of high-
degree vertices are removed, leaving high-degree vertices that are isolated from
one another, which are more likely to be in large independent sets.

3.3 Putting Things Together

We use reductions and cutting in two ways. First, we explore the standard tech-
nique of producing a kernel in advance, and then run ARW on the kernel. Second,
we investigate applying reductions online as ARW runs.

Preprocessing. Our first algorithm (KerMIS) uses exact reductions in combi-
nation with relative degree cutting. It uses the full set of reductions from Akiba
and Iwata [2], as described in Sect. 3. Note that we do not include isolated vertex
removal, as it was not included in their reductions. After computing a kernel, we
then cut 1 % of the highest-degree vertices using relative degree cutting, breaking
ties randomly. We then run ARW on the resulting graph.

Online. Our second approach (OnlineMIS) applies a set of simple reductions on
the fly. For this algorithm, we use only the isolated vertex removal reduction (for
degrees zero, one, and two), since it does not require the graph to be modified—
we can just mark isolated vertices and their neighbors as removed during local
search. In more detail, we first perform a quick single pass when computing the
initial solution for ARW. We force isolated vertices into the initial solution, and
mark them and their neighbors as removed. Note that this does not result in
a kernel, as this pass may create more isolated vertices. We further mark the
top 1 % of high-degree vertices as removed during this pass. As local search
continues, whenever we check if a vertex can be inserted into the solution, we
check if it is isolated and update the solution and graph similarly to the single
pass. Thus, OnlineMIS kernelizes the graph online as local search proceeds.

126 J. Dahlum et al.

4 Experimental Evaluation

4.1 Methodology

We implemented our algorithms (OnlineMIS, KerMIS), including the kernelization
techniques, using C++ and compiled all code using gcc 4.6.3 with full optimiza-
tions turned on (-O3 flag). We further compiled the original implementations of
ARW and ReduMIS using the same settings. For ReduMIS, we use the same para-
meters as Lamm et al. [24] (convergence parameter μ = 1, 000, 000, reduction
parameter λ = 0.1·|I|, and cutting percentage η = 0.1·|K|). For all instances, we
perform three independent runs of each algorithm. For small instances, we run
each algorithm sequentially with a five-hour wall-clock time limit to compute its
best solution. For huge graphs, with tens of millions of vertices and at least one
billion edges, we use a time limit of 10 h. Each run was performed on a machine
that is equipped with four Octa-Core Intel Xeon E5-4640 processors running at
2.4 GHz. It has 512 GB local memory, 4 × 20 MB L3-Cache and 4 × 8 × 256 KB
L2-Cache.

We consider social networks, autonomous systems graphs, and Web graphs
taken from the 10th DIMACS Implementation Challenge [4], and two additional
large Web graphs, webbase-2001 [22] and wikilinks [21]. We also include road
networks from Andrade et al. [3] and meshes from Sander et al. [29]. The graphs
europe and USA-road are large road networks of Europe [9] and the USA [10].
The instances as-Skitter-big, web-Stanford and libimseti are the hardest
instances from Akiba and Iwata [2]. We further perform experiments on huge
instances with billions of edges taken from the Laboratory of Web Algorith-
mics [22]: it-2004, sk-2005, and uk-2007.

4.2 Accelerated Solutions

We now illustrate the speed improvement over existing heuristic algorithms.
First, we measure the speedup of OnlineMIS over other high-quality heuristic
search algorithms. In particular, in Table 1, we report the maximum speedup
that OnlineMIS compared with the state-of-the-art competitors. We compute
the maximum speedup for an instance as follows. For each solution size i, we
compute the speedup siAlg = tiAlg/tiOnlineMIS of OnlineMIS over algorithm Alg for
that solution size. We then report the maximum speedup smax

Alg = maxi s
i
Alg for

the instance.
As can be seen in Table 1, OnlineMIS always has a maximum speedup greater

than 1 over every other algorithm. We first note that OnlineMIS is significantly
faster than ReduMIS and KerMIS. In particular, on 14 instances, OnlineMIS
achieves a maximum speedup of over 100 over ReduMIS. KerMIS performs only
slightly better than ReduMIS in this regard, with OnlineMIS achieving similar
speedups on 12 instances. Though, on meshes, KerMIS fairs especially poorly.
On these instances, OnlineMIS always finds a better solution than KerMIS
(instances marked with an *), and on the bunny and feline instances, OnlineMIS
achieves a maximum speedup of over 10,000 against KerMIS. Furthermore, on

Accelerating Local Search for the Maximum Independent Set Problem 127

Table 1. For each graph instance, we give the number of vertices n and the number
of edges m. We further give the maximum speedup for OnlineMIS over other heuristic
search algorithms. For each solution size i, we compute the speedup siAlg = tiAlg/t

i
OnlineMIS

of OnlineMIS over algorithm Alg for that solution size. We then report the maximum
speedup smax

Alg = maxi s
i
Alg for the instance. When an algorithm never matches the final

solution quality of OnlineMIS, we give the highest non-infinite speedup and give an *.
A ‘∞’ indicates that all speedups are infinite.

Graph Maximum Speedup of OnlineMIS

Name n m smax
ARW smax

KerMIS smax
ReduMIS

Huge instances:

it-2004 41 291 594 1 027 474 947 4.51 221.26 266.30

sk-2005 50 636 154 1 810 063 330 356.87* 201.68 302.64

uk-2007 105 896 555 1 154 392 916 11.63* 108.13 122.50

Social networks and Web graphs:

amazon-2008 735 323 3 523 472 43.39* 13.75 50.75

as-Skitter-big 1 696 415 11 095 298 355.06* 2.68 7.62

dewiki-2013 1 532 354 33 093 029 36.22* 632.94 1 726.28

enwiki-2013 4 206 785 91 939 728 51.01* 146.58 244.64

eu-2005 862 664 22 217 686 5.52 62.37 217.39

hollywood-2011 2 180 759 114 492 816 4.35 5.51 11.24

libimseti 220 970 17 233 144 15.16* 218.30 1 118.65

ljournal-2008 5 363 260 49 514 271 2.51 3.00 5.33

orkut 3 072 441 117 185 082 1.82* 478.94* 8 751.62*

web-Stanford 281 903 1 992 636 50.70* 29.53 59.31

webbase-2001 118 142 155 854 809 761 3.48 33.54 36.18

wikilinks 25 890 800 543 159 884 3.88 11.54 11.89

youtube 1 134 890 543 159 884 6.83 1.83 7.29

Road networks:

europe 18 029 721 22 217 686 5.57 12.79 14.20

USA-road 23 947 347 28 854 312 7.17 24.41 27.84

Meshes:

buddha 1 087 716 1 631 574 1.16 154.04* 976.10*

bunny 68 790 103 017 3.26 16 616.83* 526.14

dragon 150 000 225 000 2.22* 567.39* 692.60*

feline 41 262 61 893 2.00* 13 377.42* 315.48

gameguy 42 623 63 850 3.23 98.82* 102.03

venus 5 672 8 508 1.17 ∞ 157.78*

128 J. Dahlum et al.

Fig. 2. Convergence plots for sk-2005 (top left), youtube (top right), USA-road (bot-
tom left), and bunny (bottom right).

the venus mesh graph, KerMIS never matches the quality of a single solution
from OnlineMIS, giving infinite speedup. ARW is the closest competitor, where
OnlineMIS only has 2 maximum speedups greater than 100. However, on a fur-
ther 6 instances, OnlineMIS achieves a maximum speedup over 10, and on 11
instances ARW fails to match the final solution quality of OnlineMIS, giving an
effective infinite maximum speedup.

We now give several representative convergence plots in Fig. 2, which illus-
trate the early solution quality of OnlineMIS compared to ARW, the closest
competitor. We construct these plots as follows. Whenever an algorithm finds
a new large independent set I at time t, it reports a tuple (t, |I|); the conver-
gence plots show average values over all three runs. In the non-mesh instances,
OnlineMIS takes a early lead over ARW, though solution quality converges over
time. Lastly, we give the convergence plot for the bunny mesh graph. Reductions
and high-degree cutting aren’t effective on meshes, thus ARW and OnlineMIS
have similar initial solution sizes.

4.3 Time to High-Quality Solutions

We now look at the time it takes an algorithm to find a high-quality solution. We
first determine the largest independent set found by any of the four algorithms,
which represent the best-known solutions [24], and compute how long it takes

Accelerating Local Search for the Maximum Independent Set Problem 129

Table 2. For each algorithm, we give the average time tavg to reach 99.5 % of the best
solution found by any algorithm. The fastest such time for each instance is marked
in bold. We also give the size of the largest solution found by any algorithm and list
the algorithms (abbreviated by first letter) that found this largest solution in the time
limit. A ‘-’ indicates that the algorithm did not find a solution of sufficient quality.

Graph OnlineMIS ARW KerMIS ReduMIS Best IS Best IS

Name tavg tavg tavg tavg Size Algorithms

Huge instances:

it-2004 86.01 327.35 7 892.04 9 448.18 25 620 285 R

sk-2005 152.12 - 10 854.46 16 316.59 30 686 766 K

uk-2007 403.36 3 789.74 23 022.26 26 081.36 67 282 659 K

Social networks and Web graphs:

amazon-2008 0.76 1.26 5.81 15.23 309 794 K, R

as-Skitter-big 1.26 2.70 2.82 8.00 1 170 580 K, R

dewiki-2013 4.10 7.88 898.77 2 589.32 697 923 K

enwiki-2013 10.49 19.26 856.01 1 428.71 2 178 457 K

eu-2005 1.32 3.11 29.01 95.65 452 353 R

hollywood-2011 1.28 1.46 7.06 14.38 523 402 O, A, K, R

libimseti 0.44 0.45 50.21 257.29 127 293 R

ljournal-2008 3.79 8.30 10.20 18.14 2 970 937 K, R

orkut 42.19 49.18 2 024.36 - 839 086 K

web-Stanford 1.58 8.19 3.57 7.12 163 390 R

webbase-2001 144.51 343.86 2 920.14 3 150.05 80 009 826 R

wikilinks 34.40 85.54 348.63 358.98 19 418 724 R

youtube 0.26 0.81 0.48 1.90 857 945 A, K, R

Road networks:

europe 28.22 75.67 91.21 101.21 9 267 811 R

USA-road 44.21 112.67 259.33 295.70 12 428 105 R

Meshes:

buddha 26.23 26.72 119.05 1 699.19 480 853 A

bunny 3.21 9.22 - 70.40 32 349 R

dragon 3.32 4.90 5.18 97.88 66 502 A

feline 1.24 1.27 - 39.18 18 853 R

gameguy 15.13 10.60 60.77 12.22 20 727 R

venus 0.32 0.36 - 6.52 2 684 O, A, R

130 J. Dahlum et al.

Table 3. For each algorithm, we include average solution size and average time tavg
to reach it within a time limit (5 hours for normal graphs, 10 hours for huge graphs).
Solutions in italics indicate the larger solution between ARW and OnlineMIS local
search, bold marks the largest overall solution. A ‘-’ in our indicates that the algorithm
did not find a solution in the time limit.

Graph OnlineMIS ARW KerMIS ReduMIS

Name Avg. tavg Avg. tavg Avg. tavg Avg. tavg

Huge instances:

it-2004 25 610 697 35 324 25 612 993 33 407 25 619 988 35 751 25 620 246 35 645

sk-2005 30 680 869 34 480 30 373 880 11 387 30 686 684 34 923 30 684 867 35 837

uk-2007 67 265 560 35 982 67 101 065 8 702 67 282 347 35 663 67 278 359 35 782

Social networks and Web graphs:

amazon-2008 309 792 6 154 309 791 12 195 309 793 818 309 794 153

as-Skitter-big 1 170 560 7 163 1 170 548 14 017 1 170 580 4 1 170 580 9

dewiki-2013 697 789 17 481 697 669 16 030 697 921 14 070 697 798 17 283

enwiki-2013 2 178 255 13 612 2 177 965 17 336 2 178 436 17 408 2 178 327 17 697

eu-2005 452 296 11 995 452 311 22 968 452 342 5 512 452 353 2 332

hollywood-2011 523 402 33 523 402 101 523 402 9 523 402 17

libimseti 127 288 8 250 127 284 9 308 127 292 102 127 292 16 747

ljournal-2008 2 970 236 428 2 970 887 16 571 2 970 937 36 2 970 937 41

orkut 839 073 17 764 839 001 17 933 839 004 19 765 806 244 34 197

web-Stanford 163 384 5 938 163 382 10 924 163 388 35 163 390 12

webbase-2001 79 998 332 35 240 80 002 845 35 922 80 009 041 30 960 80 009 820 31 954

wikilinks 19 404 530 21 069 19 416 213 34 085 19 418 693 23 133 19 418 724 854

youtube 857 914 < 1 857 945 93 857 945 < 1 857 945 2

Road networks:

Europe 9 267 573 15 622 9 267 587 28 450 9 267 804 27 039 9 267 809 115

USA-road 12 426 557 10 490 12 426 582 31 583 12 427 819 32 490 12 428 099 4 799

Meshes:

buddha 480 795 17 895 480 808 17 906 480 592 16 695 479 905 17 782

bunny 32 283 13 258 32 287 13 486 32 110 14 185 32 344 1 309

dragon 66 501 15 203 66 496 14 775 66 386 16 577 66 447 3 456

feline 18 846 15 193 18 844 10 547 18 732 15 055 18 851 706

gameguy 20 662 6 868 20 674 12 119 20 655 7 467 20 727 191

venus 2 684 507 2 684 528 2 664 9 2 683 74

each algorithm to find an independent set within 99.5% of this size. The results
are shown in Table 2. With a single exception, OnlineMIS is the fastest algorithm
to be within 99.5% of the target solution. In fact, OnlineMIS finds such a solution
at least twice as fast as ARW in 14 instances, and it is almost 10 times faster on
the largest instance, uk-2007. Further, OnlineMIS is orders of magnitude faster
than ReduMIS (by a factor of at least 100 in seven cases). We also see that
KerMIS is faster than ReduMIS in 19 cases, but much slower than OnlineMIS
for all instances. It does eventually find the largest independent set (among
all algorithms) for 10 instances. This shows that the full set of reductions is
not always necessary, especially when the goal is to get a high-quality solution
quickly. It also justifies our choice of cutting: the solution quality of KerMIS
rivals (and sometimes even improves) that of ReduMIS.

Accelerating Local Search for the Maximum Independent Set Problem 131

4.4 Overall Solution Quality

Next, we show that OnlineMIS has high solution quality when given a time
limit for searching (5 hours for normal graphs, 10 hours for huge graphs).
Although long-run quality is not the goal of the OnlineMIS algorithm, in 11
instances OnlineMIS finds a larger independent set than ARW, and in four
instances OnlineMIS finds the largest solution in the time limit. As seen in
Table 3, OnlineMIS also finds a solution within 0.1% of the best solution found by
any algorithm for all graphs. However, in general OnlineMIS finds lower-quality
solutions than ReduMIS, which we believe is from high-degree cutting removing
vertices in large independent sets. Nonetheless, as this shows, even when cutting
out 1% of the vertices, the solution quality remains high.

On eight instances, KerMIS finds a better solution than ReduMIS. How-
ever, kernelization and cutting take a long time (over three hours for sk-2005,
10 h for uk-2007), and therefore KerMIS is much slower to get to a high-quality
solution than OnlineMIS. Thus, our experiments show that the full set of reduc-
tions is not always necessary, especially when the goal is to get a high-quality
solution quickly. This also further justifies our choice of cutting, as the solution
quality of KerMIS remains high. On the other hand, instances as-Skitter-big,
ljournal-2008, and youtube are solved quickly with advanced reduction rules.

5 Conclusion and Future Work

We have shown that applying reductions on the fly during local search leads
to high-quality independent sets quickly. Furthermore, cutting few high-degree
vertices has little effect on the quality of independent sets found during local
search. Lastly, by kernelizing with advanced reduction rules, we can further
speed up local search for high-quality independent sets in the long-run—rivaling
the current best heuristic algorithms for complex networks. Determining which
reductions give a desirable balance between high-quality results and speed is an
interesting topic for future research. While we believe that OnlineMIS gives a
nice balance, it is possible that further reductions may achieve higher-quality
results even faster.

References

1. Faisal Abu-Khzam, N., Michael Fellows, R., Michael Langston, A., Suters, H.W.:
Crown structures for vertex cover kernelization. Theor. Comput. Syst. 41(3), 411–
430 (2007)

2. Akiba, T., Iwata, Y.: Branch-and-reduce exponential/FPT algorithms in practice:
A case study of vertex cover. Theor. Comput. Sci. 609, 211–225 (2016). Part 1

3. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maxi-
mum independent set problem. J. Heuristics 18(4), 525–547 (2012)

4. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.:
Benchmarking for Graph Clustering and Partitioning. In: Alhajj, R., Rokne, J.
(eds.) Encyclopedia of Social Network Analysis and Mining, pp. 73–82. Springer,
Heidelberg (2014)

132 J. Dahlum et al.

5. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.: Improvements to MCS
algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)

6. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem.
Algorithmica 29(4), 610–637 (2001)

7. Bourgeois, N., Escoffier, B., Paschos, V., van Rooij, J.M.: Fast algorithms for max
independent set. Algorithmica 62(1–2), 382–415 (2012)

8. Butenko, S., Pardalos, P., Sergienko, I., Shylo, V., Stetsyuk, P.: Finding maximum
independent sets in graphs arising from coding theory. In: Proceedings of the ACM
Symposium on Applied Computing (SAC 2002), pp. 542–546. ACM (2002)

9. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

10. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: The Shortest Path Problem: 9th
DIMACS Implementation Challenge, vol. 74. AMS (2009)

11. Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomized adaptive search
procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)

12. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010)

13. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of np-completeness. In: Freeman, W.H. (1979)

14. Gemsa, A., Nöllenburg, M., Rutter, I.: Evaluation of labeling strategies for rotating
maps. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp.
235–246. Springer, Heidelberg (2014)

15. Grosso, A., Locatelli, M., Della, F.C.: Combining swaps and node weights in an
adaptive greedy approach for the maximum clique problem. J. Heuristics 10(2),
135–152 (2004)

16. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient
heuristics for the maximum clique problem. J. Heuristics 14(6), 587–612 (2008)

17. Hansen, P., Mladenović, N., Urošević, D.: Variable neighborhood search for the
maximum clique. Discrete Appl. Math. 145(1), 117–125 (2004)

18. Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow.
In: Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, pp. 1749–1761. SIAM (2014)

19. Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the max-
imum clique problem. Inform. Process. Lett. 95(5), 503–511 (2005)

20. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent con-
traction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83–93.
Springer, Heidelberg (2010)

21. Kunegis, J.: KONECT: The Koblenz network collection. In: Proceedings of the
International Conference on World Wide Web Companion (WWW 13), pp. 1343–
1350 (2013)

22. University of Milano Laboratory of Web Algorithms. Datasets
23. Lamm, S., Sanders, P., Schulz, C.: Graph partitioning for independent sets. In:

Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 68–81. Springer, Heidelberg
(2015)

24. Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding near-optimal
independent sets at scale. In: Proceedings of the 18th Workshop on Algorithm
Engineering and Experiments (ALENEX 2016), pp. 138–150 (2016)

25. Liu, Y., Lu, J., Yang, H., Xiao, X., Wei, Z.: Towards maximum independent sets
on massive graphs. Proc. VLDB Endow. 8(13), 2122–2133 (2015)

Accelerating Local Search for the Maximum Independent Set Problem 133

26. Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties and algo-
rithms. Math. Program. 8(1), 232–248 (1975)

27. Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique. J. Arti.
Int. Res. 25, 159–185 (2006)

28. San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved
bit parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013)

29. Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges
using adjacency primitives. ACM Trans. Graph. 27(5), 144:1–144:9 (2008)

30. San Segundo, P., Rodŕıguez-Losada, D., Jiménez, D.: An exact bit-parallel algo-
rithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)

31. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J.
Comput. 6(3), 537–546 (1977)

32. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and
faster branch-and-bound algorithm for finding a maximum clique. In: Rahman,
M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer,
Heidelberg (2010)

33. Xiang, J., Guo, C., Aboulnaga, A.: Scalable maximum clique computation using
mapreduce. In: Proceedings of the IEEE 29th International Conference on Data
Engineering (ICDE 2013), pp. 74–85, April 2013

34. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: A simple
maximum independent set algorithm in degree-3 graphs. Theor. Comput. Sci. 469,
92–104 (2013)

Computing Nonsimple Polygons
of Minimum Perimeter

Sándor P. Fekete1(B), Andreas Haas1, Michael Hemmer1, Michael Hoffmann2,
Irina Kostitsyna3, Dominik Krupke1, Florian Maurer1, Joseph S.B. Mitchell4,

Arne Schmidt1, Christiane Schmidt5, and Julian Troegel1

1 TU Braunschweig, Braunschweig, Germany
s.fekete@tu-bs.de

2 ETH Zurich, Zurich, Switzerland
3 TU Eindhoven, Eindhoven, The Netherlands

4 Stony Brook University, Stony Brook, NY, USA
5 Linköping University, Linköping, Sweden

Abstract. We provide exact and approximation methods for solving
a geometric relaxation of the Traveling Salesman Problem (TSP) that
occurs in curve reconstruction: for a given set of vertices in the plane, the
problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily
simply connected) polygon with shortest possible boundary length. Even
though the closely related problem of finding a minimum cycle cover is
polynomially solvable by matching techniques, we prove how the topo-
logical structure of a polygon leads to NP-hardness of the MPP. On the
positive side, we show how to achieve a constant-factor approximation.

When trying to solve MPP instances to provable optimality by means
of integer programming, an additional difficulty compared to the TSP
is the fact that only a subset of subtour constraints is valid, depending
not on combinatorics, but on geometry. We overcome this difficulty by
establishing and exploiting additional geometric properties. This allows
us to reliably solve a wide range of benchmark instances with up to 600
vertices within reasonable time on a standard machine. We also show
that using a natural geometry-based sparsification yields results that are
on average within 0.5 % of the optimum.

Keywords: Traveling Salesman Problem (TSP) · Minimum Perimeter
Polygon (MPP) · Curve reconstruction · NP-hardness · Exact optimiza-
tion · Integer programming · Computational geometry meets combina-
torial optimization

1 Introduction

For a given set V of points in the plane, the Minimum Perimeter Polygon (MPP)
asks for a polygon P with vertex set V that has minimum possible boundary
length. An optimal solution may not be simply connected, so we are faced with
a geometric relaxation of the Traveling Salesman Problem (TSP).
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 134–149, 2016.
DOI: 10.1007/978-3-319-38851-9 10

Computing Nonsimple Polygons of Minimum Perimeter 135

Fig. 1. A Minimum Perimeter Polygon for an instance with 960 vertices.

The TSP is one of the classic problems of Combinatorial Optimization. NP-
hard even in special cases of geometric instances (such as grid graphs), it has
served as one of the prototypical testgrounds for developing outstanding algo-
rithmic approaches. These include constant-factor approximation methods (such
as Christofides’ 3/2 approximation [6] in the presence of triangle inequality, or
Arora’s [4] and Mitchell’s [20] polynomial-time approximation schemes for geo-
metric instances), as well as exact methods (such as Grötschel’s optimal solution
to a 120-city instance [14] or the award-winning work by Applegate et al. [2] for
solving a 13509-city instance within 10 years of CPU time.) The well-established
benchmark library TSPLIB [23] of TSP instances has become so widely accepted
that it is used as a benchmark for a large variety of other optimization prob-
lems. See the books [15,18] for an overview of various aspects of the TSP and
the books [3,7] for more details on exact optimization.

From a geometric point of view, the TSP asks for a shortest polygonal chain
through a given set of vertices in the plane; as a consequence of triangle inequal-
ity, the result is always a simple polygon of minimum perimeter. Because of
the fundamental role of polygons in geometry, this has made the study of TSP
solutions interesting for a wide range of geometric applications. One such con-
text is geometric shape reconstruction, where the objective is to re-compute the
original curve from a given set of sample points; see Giesen [13], Althaus and
Mehlhorn [1] or Dey et al. [9] for specific examples. However, this only makes
sense when the original shape is known to be simply connected, i.e., bounded
by a single closed curve. More generally, a shape may be multiply connected,
with interior holes. Thus, computing a simple polygon may not yield the desired
answer. Instead, the solution may be a Minimum Perimeter Polygon (MPP):
for a set V of points in the plane, find a not necessarily simple polygon P with
vertex set V , such that the boundary of P has smallest possible length1. See
Fig. 1 for an optimal solution of an instance with 960 points; this also shows the
possibly intricate structure of an MPP.

1 Note that we exclude degenerate holes that consist of only one or two vertices.

136 S.P. Fekete et al.

While the problem MPP2 asks for a cycle cover of the given set of vertices (as
opposed to a single cycle required by the TSP), it is important to note that even
the more general geometry of a polygon with holes imposes some topological
constraints on the structure of boundary cycles; as a consequence, an optimal
2-factor (a minimum-weight cycle cover of the vertices, which can be computed
in polynomial time) may not yield a feasible solution. Fekete et al. [11] gave a
generic integer program for the MPP (and other related problems) that yields
optimal solutions for instances up to 50 vertices. However, the main challenges
were left unresolved. What is the complexity of computing an MPP? Is it possible
to develop constant-factor approximation algorithms? And how can we compute
provably optimal solutions for instances of relevant size?

Our Results
In this paper, we resolve the main open problems related to the MPP.

– We prove that the MPP is NP-hard. This shows that despite of the rela-
tionship to the polynomially solvable problem of finding a minimum 2-factor,
dealing with the topological structure of the involved cycles is computation-
ally difficult.

– We give a 3-approximation algorithm.
– We provide a general IP formulation with O(n2) variables to ensure a valid

solution for the MPP.
– We describe families of cutting planes that significantly reduce the number of

iterations needed to eliminate outer components and holes in holes, leading
to a practically useful formulation.

– We present experimental results for the MPP, solving instances with up to
1000 points in the plane to provable optimality within 30 min of CPU time.

– We also consider a fast heuristic that is based on geometric structure, restrict-
ing the edge set to the Delaunay triangulation. Experiments on structured
random point sets show that solutions are on average only about 0.5 % worse
than the optimum, with vastly superior runtimes.

2 Complexity

Theorem 1. The MPP problem is NP-hard.

The proof is based on a reduction from the Minimum Vertex Cover problem
for planar graphs. Details are omitted for lack of space; see the full version of
the paper [12] for the detailed proof.

3 Approximation

In this section we show that the MPP can be approximated within a factor of
3. Note that we only sketch the general approach, skipping over some details for
lack of space; a full proof is given in the full version of the paper [12].
2 For simplicity, we will also refer to the problem of computing an MPP as “the MPP”.

Computing Nonsimple Polygons of Minimum Perimeter 137

Theorem 2. There exists a polynomial time 3-approximation for the MPP.

Proof. We compute the convex hull, CH(V), of the input set; this takes time
O(n log h), where h is the number of vertices of the convex hull. Note that the
perimeter, |CH(V)|, of the convex hull is a lower bound on the length of an
optimal solution (OPT ≥ |CH(V)|), since the outer boundary of any feasi-
ble solution polygon must enclose all points of V , and the convex hull is the
minimum-perimeter enclosure of V .

Let U ⊆ V be the input points interior to CH(V). If U = ∅, then the optimal
solution is given by the convex hull. If |U | ≤ 2, we claim that an optimal solution
is a simple (nonconvex) polygon, with no holes, on the set V , given by the TSP
tour on V ; since |U | = 2 is a constant, it is easy to compute the optimal solution
in polynomial time, by trying all possible ways of inserting the points of U into
the cycle of the points of V that lie on the boundary of the convex hull, CH(V).

Thus, assume now that |U | ≥ 3. We compute a minimum-weight 2-factor,
denoted by γ(U), on U , which is done in polynomial-time by standard meth-
ods [8]. Now, γ(U) consists of a set of disjoint simple polygonal curves having
vertex set U ; the curves can be nested, with possibly many levels of nesting. We
let F denote the directed nesting forest whose nodes are the cycles (connected
components) of γ(U) and whose directed edges indicate nesting (containment)
of one cycle within another. Because an optimal solution consists of a 2-factor
(an outer cycle, together with a set of cycles, one per hole of the optimal poly-
gon), we know that OPT ≥ |γ(U)|. (In an optimal solution, the nesting forest
corresponding to the set of cycles covering all of V (not just the points U interior
to CH(V)) is simply a single tree that is a star: a root node corresponding to
the outer cycle, and a set of children adjacent to the root node, corresponding
to the boundaries of the holes of the optimal polygon.) If the nesting forest F
for our optimal 2-factor is a set of isolated nodes (i.e., there is no nesting among
the cycles of the optimal 2-factor on U), then our algorithm outputs a polygon
with holes whose outer boundary is the boundary of the convex hull, CH(V),
and whose holes are the (disjoint) polygons given by the cycles of γ(U). In this
case, the total weight of our solution is equal to |CH(V)| + |γ(U)| ≤ 2 · OPT .

Assume now that F has at least one nontrivial tree. We describe a two-
phase process that transforms the set of cycles corresponding to F into a set of
pairwise-disjoint cycles, each defining a simple polygon interior to CH(V), with
no nesting – the resulting simple polygons are disjoint, each having at least 3
vertices from U ⊂ V .

Phase 1 of the process transforms the cycles γ(U) to a set of polygonal
cycles that define weakly simple polygons whose interiors are pairwise disjoint.
(A polygonal cycle β defines a weakly simple polygon Pβ if Pβ is a closed, simply
connected set in the plane with a boundary, ∂Pβ consisting of a finite union of
line segments, whose traversal (e.g., while keeping the region Pβ to one’s left) is
the (counterclockwise) cycle β (which can have line segments that are traversed
twice, once in each direction).) The total length of the cycles at the end of phase 1
is at most 2 times the length of the original cycles, γ(U). Then, phase 2 of the
process transforms these weakly simple cycles into (strongly) simple cycles that

138 S.P. Fekete et al.

define disjoint simple polygons interior to CH(V). Phase 2 only does shortening
operations on the weakly simple cycles; thus, the length of the resulting simple
cycles at the end of phase 2 is at most 2 times the total length of γ(U). Details
of phase 1 and phase 2 processes are given in the full version of the paper. At
the end of phase 2, we have a set of disjoint simple polygons within CH(V),
which serve as the holes of the output polygon, whose total perimeter length is
at most |CH(V)| + 2|γ(U)| ≤ 3 · OPT . ��

4 IP Formulation

4.1 Cutting-Plane Approach

In the following we develop suitable Integer Programs (IPs) for solving the MPP
to provable optimality. The basic idea is to use a binary variable xe ∈ {0, 1}
for any possible edge e ∈ E, with xe = 1 corresponding to e being part of a
solution P if and only if xe = 1. This allows it to describe the objective function
by min

∑
e∈E xece, where ce is the length of e. In addition, we impose a suitable

set of linear constraints on these binary variables, such that they characterize
precisely the set of polygons with vertex set V . The challenge is to pick a set of
constraints that achieve this in a (relatively) efficient manner.

As it turns out (and is discussed in more detail in Sect. 5), there is a significant
set of constraints that correspond to eliminating cycles within proper subsets
S ⊂ V . Moreover, there is an exponential number of relevant subsets S, making
it prohibitive to impose all of these constraints at once. The fundamental idea
of a cutting-plane approach is that much fewer constraints are necessary for
characterizing an optimal solution. To this end, only a relatively small subfamily
of constraints is initially considered, leading to a relaxation. As long as solving
the current relaxation yields a solution that is infeasible for the original problem,
violated constraints are added in a piecemeal fashion, i.e., in iterations.

In the following, these constraints (which are initially omitted, violated by
an optimal solution of the relaxation, then added to eliminate such infeasible
solutions) are called cutting planes or simply cuts, as they remove solutions of a
relaxation that are infeasible for the MPP.

4.2 Basic IP

We start with a basic IP that is enhanced with specific cuts, described in
Sects. 5.2–5.4. We denote by E the set of all edges between two points of V ,
C a set of invalid cycles and δ(v) the set of all edges in E that are incident to
v ∈ V . Then we optimize over the following objective function:

min
∑

e∈E

xece. (1)

Computing Nonsimple Polygons of Minimum Perimeter 139

This is subject to the following constraints:

∀v ∈ V :
∑

e∈δ(v)

xe = 2, (2)

∀C ∈ C :
∑

e∈C

xe ≤ |C| − 1, (3)

xe ∈ {0, 1}. (4)

For the TSP, C is simply the set of all subtours, making identification and
separation straightforward. This is much harder for the MPP, where a subtour
may end up being feasible by forming the boundary of a hole, but may also be
required to connect with other cycles. Therefore, identifying valid inequalities
requires more geometric analysis, such as the following. If we denote by CH the
set of all convex hull points, then a cycle C is invalid if C contains:

1. at least one and at most |CH| − 1 convex hull points. (See Fig. 2(a))
2. all convex hull points but does not enclose all other points. (See Fig. 2(b))
3. no convex hull point but encloses other points. (See Fig. 2(c))

By Ci we denote the set of all invalid cycles with property i. Because there can
be exponentially many invalid cycles, we add constraint (3) in separation steps.

For an invalid cycle with property 1, we use the equivalent cut constraint

∀C ∈ C1 :
∑

e∈δ(C)

xe ≥ 2. (5)

We use constraint (3) if |C| ≤ 2n+1
3 and constraint (5) otherwise, where δ(C)

denotes the “cut” edges connecting a vertex v ∈ C with a vertex v′
∈ C. As
argued by Pferschy and Stanek [22], this technique of dynamic subtour con-
straints (DSC) is useful, as it reduces the number of non-zero coefficients in the
constraint matrix.

Fig. 2. Examples of invalid cycles (red). Black cycles may be valid. (Color figure online)

140 S.P. Fekete et al.

4.3 Initial Edge Set

In order to quickly achieve an initial solution, we sparsify the Θ(n2) input edges
to the O(n) edges of the Delaunay Triangulation, which naturally captures geo-
metric nearest-neighbor properties. If a solution exists, this yields an upper
bound. This technique has already been applied for the TSP by Jünger et al.
[16]. In theory, this may not yield a feasible solution: a specifically designed
example by Dillencourt shows that the Delaunay triangulation may be non-
Hamiltonian [10]; this same example has no feasible solution for the MPP when
restricted to Delaunay edges. We did not observe this behavior in practice.

CPLEX uses this initial solution as an upper bound, allowing it to quickly
discard large solutions in a branch-and-bound manner. As described in Sect. 6,
the resulting bounds are quite good for the MPP.

5 Separation Techniques

5.1 Pitfalls

When separating infeasible cycles, the Basic IP may get stuck in an exponential
number of iterations, due to the following issues. (See Figs. 3–5 for illustrating
examples.)

Problem 1: Multiple outer components containing convex hull points occur that
(despite the powerful subtour constraints) do not get connected, because it is
cheaper to, e.g., integrate subsets of the interior points. Such an instance can
be seen in Fig. 3, where we have two equal components with holes. Since the
two components are separated by a distance greater than the distance between
their outer components and their interior points, the outer components start
to include point subsets of the holes. This results in a potentially exponential
number of iterations.

Problem 2: Outer components that do not contain convex hull points do not
get integrated, because we are only allowed to apply a cycle cut on the outer
component containing the convex hull points. An outer component that does
not contain a convex hull point cannot be prohibited, as it may become a hole
in later iterations. See Fig. 4 for an example in which an exponential number
of iterations is needed until the outer components get connected.

Problem 3: If holes contain further holes, we are only allowed to apply a cycle
cut on the outer hole. This outer hole can often cheaply be modified to fulfill
the cycle cut but not resolve the holes in the hole. An example instance can
be seen in Fig. 5, in which an exponential number of iterations is needed.

The second problem is the most important, as this problem frequently
becomes critical on instances of size 100 and above. Holes in holes rarely occur on
small instances but are problematic on instances of size >200. The first problem
occurs only in a few instances.

In the following we describe three cuts that each solve one of the problems:
The glue cut for the first problem in Sect. 5.2, the tail cut for the second problem
in Sect. 5.3, and the HiH-Cut for the third problem in Sect. 5.4.

Computing Nonsimple Polygons of Minimum Perimeter 141

Fig. 3. (a)–(f) show consecutive iterations when trying to solve an instance using only
constraint (5).

Fig. 4. (a)–(g) show consecutive iterations when trying to solve an instance using only
constraint (3).

Fig. 5. (a)–(g) show consecutive iterations when trying to solve an instance using only
constraint (3).

5.2 Glue Cuts

To separate invalid cycles of property 1 we use glue cuts (GC), based on a curve
RD from one unused convex hull edge to another (see Fig. 6). With X (RD)
denoting the set of edges crossing RD, we can add the following constraint:

∑

e∈X (RD)

xe ≥ 2.

142 S.P. Fekete et al.

Fig. 6. Solving instance from Fig. 3 with a glue cut (red). (a) The red curve needs to
be crossed at least twice; it is found using the Delaunay Triangulation (grey). (b) The
first iteration after using the glue cut. (Color figure online)

Such curves can be found by considering a constrained Delaunay triangula-
tion [5] of the current solution, performing a breadth-first-search starting from
all unused convex hull edges of the triangulation. Two edges are adjacent if they
share a triangle. Used edges are excluded, so our curve will not cross any used
edge. As soon as two different search trees meet, we obtain a valid curve by using
the middle points of the edges (see the red curve in Fig. 6).

For an example, see Fig. 6; as illustrated in Fig. 3, this instance is problematic
in the Basic IP. This can we now be solved in one iteration.

5.3 Tail Cuts

An outer cycle C that does not contain any convex hull points cannot simply
be excluded, as it may become a legal hole later. Such a cycle either has to be
merged with others, or become a hole. For a hole, each curve from the hole to a
point outside of the convex hull must be crossed at least once.

With this knowledge we can provide the following constraint, making use of
a special curve, which we call a tail (see the red path in Fig. 7).

Let RT be a valid tail and X (RT) the edges crossing it. We can express the
constraint in the following form:

∑

e∈X (RT)\δ(C)

xe

︸ ︷︷ ︸
C gets surrounded

+
∑

e∈δ(C)

xe

︸ ︷︷ ︸
C merged

≥ 1.

The tail is obtained in a similar fashion as the curves of the Glue Cuts by
building a constrained Delaunay triangulation and doing a breadth-first search
starting at the edges of the cycle. The starting points are not considered as part
of the curve and thus the curve does not cross any edges of the current solution.

For an example, see Fig. 7; as illustrated in Fig. 4, this instance is problematic
in the Basic IP. This can we now be solved in one iteration. Note that even
though it is possible to cross the tail without making the cycle a hole, this is
more expensive than simply merging it with other cycles.

5.4 Hole-in-Hole Cuts

The difficulty of eliminating holes in holes (Problem 3) is that they may end
up as perfectly legal simple holes, if the outer cycle gets merged with the outer

Computing Nonsimple Polygons of Minimum Perimeter 143

Fig. 7. Solving the instance from Fig. 4 with a tail cut (red line). (a) The red curve
needs to be crossed at least twice or two edges must leave the component. The red curve
is found via the Delaunay Triangulation (grey). (b) The first iteration after using the
tail cut. (Color figure online)

boundary. In that case, every curve from the hole to the convex hull cannot
cross the used edges exactly two times (edges of the hole are ignored). One of
the crossed edges has to be of the exterior cycle, while the other one cannot:
otherwise would again leave the polygon. It also cannot be of an interior cycle,
as it would have leave to leave that cycle again to reach the hole.

Therefore the inner cycle of a hole in hole either has to be merged, or all
curves from it to the convex hull do not have exactly two used edge crossings.
As it is impractical to argue over all curves, we only pick one curve P that
currently crosses exactly two used edges (see the red curve in Fig. 8 with crossed
edges in green).

Because we cannot express the inequality that P is not allowed to be crossed
exactly two times as an linear programming constraint, we use the following
weaker observation. If the cycle of the hole in hole becomes a simple hole, the
crossing of P has to change. Let e1 and e2 be the two used edges that currently
cross P and X (P) the set of all edges crossing P (including unused but no edges
of H). We can express a change on P by

∑

e∈X (P)\{e1,e2}
xe

︸ ︷︷ ︸
new crossing

+ (−xe1 − xe2)︸ ︷︷ ︸
e1 or e2 vanishes

≥ −1.

Together we obtain the following LP constraint for either H being merged or
the crossing of P changing.

∑

e∈δ(VH ,V \VH)

xe

︸ ︷︷ ︸
H merged

+
∑

e∈X (P)\{e1,e2}
xe + (−xe1 − xe2)

︸ ︷︷ ︸
Crossing of P changes

≥ −1.

Again we use a breadth-first search on the constrained Delaunay triangula-
tion starting from the edges of the hole in hole. Unlike the other two cuts we need
to cross used edges. Thus, we get a shortest path search such that the optimal
path primarily has a minimal number of used edges crossed and secondarily has
a minimal number of all edges crossed.

For an example, see Fig. 8; as illustrated in Fig. 3, this instance is problematic
in the Basic IP. This can now be solved in one iteration. The corresponding path

144 S.P. Fekete et al.

Fig. 8. Solving instance from Fig. 5 with hole in hole cut (red line). (a) The red line
needs to be crossed at least two times or two edges must leave the component or one
of the two existing edges (green) must be removed. The red line is built via Delaunay
Triangulation. (b) The first iteration after using the hole in hole cut. (Color figure
online)

is displayed in red and the two crossed edges are highlighted in green. Changing
the crossing of the path is more expensive than simply connecting the hole in
hole to the outer hole and thus the hole in hole gets merged.

6 Experiments

6.1 Implementation

Our implementation uses CPLEX to solve the relevant IPs. Important is also
the geometric side of computation, for which we used the CGAL Arrangements
package [24]. CGAL represents a planar subdivision using a doubly connected
edge list (DCEL), which is ideal for detecting invalid boundary cycles.

6.2 Test Instances

While the TSPLIB is well recognized and offers a good mix of instances with
different structure (ranging from grid-like instances over relatively uniform ran-
dom distribution to highly clustered instances), it is rather sparse. Observing
that the larger TSPLIB instances are all geographic in nature, we designed a
generic approach that yields arbitrarily large and numerous clustered instances.
This is based on illumination maps: A satellite image of a geographic region at
night time displays uneven light distribution. The corresponding brightness val-
ues can be used as a random density function that can be used for sampling (see
Fig. 12). To reduce noise, we cut off brightness values below a certain threshold,
i.e., we set the probability of choosing the respective pixels to zero.

6.3 Results

All experiments were run on an Intel Core i7-4770 CPU clocked at 3.40 GHz
with 16 GB of RAM. We set a 30 min time limit to solve the instances. In Table 1,
all results are displayed for every instance with more than 100 points that we

Computing Nonsimple Polygons of Minimum Perimeter 145

Table 1. The runtime in milliseconds of all variants on the instances of the TSPLib
with more than 100 points, solved within 30 min. The number in the name of an instance
indicates the number of points.

BasicIP +JS+DC+TC+ +JS+TC+ +JS+DC+ +JS+DC+ +DC+TC+

HIHC HIHC HIHC TC HIHC

eil101 - 575 445 - 527 1090

lin105 - 390 359 - 412 931

pr107 550 401 272 346 513 923

pr124 495 348 264 322 355 940

bier127 439 288 270 267 276 476

ch130 - 1758 1802 - 1594 2853

pr136 1505 964 1029 992 950 3001

gr137 - 1262 1361 - 1252 1724

pr144 6276 1028 2926 985 1030 2012

ch150 - 4938 5167 - 5867 7997

kroA150 - 3427 5615 - 3327 7474

kroB150 - 2993 2396 - 2943 5265

pr152 13285 2161 1619 10978 2151 19479

u159 13285 1424 1262 5339 1410 2513

rat195 106030 16188 19780 77216 16117 27580

d198 - 19329 155550 - 19398 41118

kroA200 - 26360 13093 - 26389 11844

kroB200 - 5492 6239 - 5525 15238

gr202 - 4975 7512 - 4304 9670

ts225 18902 7746 9750 7595 7603 60167

tsp225 91423 11600 9741 28756 11531 44297

pr226 - 8498 2800 - 7204 18848

gr229 - 5462 26478 - 10153 25674

gil262 - 23000 22146 - - 72772

pr264 24690 6537 - 6719 6549 23641

a280 22023 3601 3857 3980 3619 12983

pr299 - 16251 355323 - 16173 85789

lin318 - 23863 1511219 - 24035 75312

linhp318 - 23107 1313680 - 23064 79352

rd400 - 111128 92995 - 302363

fl417 - 198013 - - 215210 825808

gr431 - 56716 173609 - 78133 265416

pr439 - 46685 36592 - 48231 273873

pcb442 - 1356796 - - - -

d493 - 359072 - - - 837229

att532 - 217679 256394 - 218665 817096

ali535 - 93771 427800 - 91828 323104

u574 - 371523 199114 - - 1010276

rat575 - 417494 191198 - 580320 934988

p654 - 864066 - - - -

d657 - 455378 253374 - 646148 1352747

gr666 - 366157 - - 670818 -

146 S.P. Fekete et al.

solved within the time limit. The largest instance solved within 30 min is gr666
with 666 points, which took about 6 min. The largest instance solved out of the
TSPLib so far is dsj1000 with 1000 points, solved in about 37 min. In addition,
we generated 30 instances for each size, which were run with a time limit of
30 min.

We observe that even without using glue cuts and jumpstart, we are able to
solve more than 50% of the instances up to about 550 input points. Without the
tail cuts, we hit a wall at 100 points, without the HiH-cut instances, at about 370
input points; see Fig. 9, which also shows the average runtime of all 30 instances
for all variants. Instances exceeding the 30 min time limit are marked with a 30-
minutes timestamp. The figure shows that using jumpstart shortens the runtime
significantly; using the glue cut is almost as fast as the variant without the
glue cut.

Figure 10 shows that medium-sized instances (up to about 450 points) can be
solved in under 5 min. We also show that restricting the edge set to the Delaunay
triangulation edges yields solutions that are about 0.5 % worse on average than
the optimal solution. Generally the solution of the jumpstart gets very close to
the optimal solution until about 530 points. After that, for some larger instances,

Fig. 9. (Left) Success rate for the different variants of using of the cuts, with 30
instances for each input size (y-axis). (Right) The average runtime of the different
variants for all 30 instances. A non-solved instance is interpreted as 30min runtime.

Fig. 10. (Left) The distribution of the runtime within 30 min for the case of using the
jumpstart, glue cuts, tail cuts and HiH-cuts. (Right) The relative gap of the value on
the edges of the Delaunay triangulation to the optimal value. The red area marks the
range between the minimal and maximal gap.

Computing Nonsimple Polygons of Minimum Perimeter 147

Fig. 11. The relative gap of the value on the edges of the Delaunay triangulation to
the optimal value. The red area marks the range between the minimal and maximal
gap. (Color figure online)

Fig. 12. Using a brightness map as a density function for generating clustered point
sets.

we get solutions on the edge set of the Delaunay triangulation that are up to
50% worse than the optimal solution.

7 Conclusions

As discussed in the introduction, considering general instead of simple polygons
corresponds to searching for a shortest cycle cover with a specific topological
constraint: one outside cycle surrounds a set of disjoint and unnested inner cycles.
Clearly, this is only one example of considering specific topological constraints.
Our techniques and results should be applicable, after suitable adjustments, to
other constraints on the topology of cycles. We gave a 3-approximation for the
MPP; we expect that the MPP has a polynomial-time approximation scheme,
base on PTAS techniques [4,20] for geometric TSP, and we will elaborate on this
in a future version of the full paper.

148 S.P. Fekete et al.

There are also various practical aspects that can be explored further. It will
be interesting to evaluate the practical performance of the theoretical approxi-
mation algorithm, not only from a practical perspective, but also to gain some
insight on whether the approximation factor of 3 can be tightened. Pushing the
limits of solvability can also be attempted, e.g., by using more advanced tech-
niques from the TSP context. We can also consider sparsification techniques
other than the Delaunay edges; e.g., the union between the best known tour and
the k-nearest-neighbor edge set (k ∈ {2, 5, 10, 20}) has been applied for TSP
by Land [17], or (see Padberg and Rinaldi [21]) by taking the union of k tours
acquired by Lin’s and Kernighan’s heuristic algorithm [19].

Acknowledgements. We thank Stephan Friedrichs and Melanie Papenberg for help-
ful conversations. Parts of this work were carried out at the 30th Bellairs Winter
Workshop on Computational Geometry (Barbados) in 2015. We thank the workshop
participants and organizers, particularly Erik Demaine. Joseph Mitchell is partially
supported by NSF (CCF-1526406). Irina Kostitsyna is supported by the Netherlands
Organisation for Scientific Research (NWO) under project no. 639.023.208.

References

1. Althaus, E., Mehlhorn, K.: Traveling salesman-based curve reconstruction in poly-
nomial time. SIAM J. Comput. 31(1), 27–66 (2001)

2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: On the solution
of traveling salesman problems. Documenta Mathematica – Journal der
DeutschenMathematiker-Vereinigung, ICM, pp. 645–656 (1998)

3. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Sales-
man Problem: A Computational Study. Princeton Series in Applied Mathematics.
Princeton University Press, Princeton (2007)

4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. J. ACM 45(5), 753–782 (1998)

5. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1–4), 97–108
(1989)

6. Christofides, N.: Worst-case analysis of a new heuristic for the Travelling Sales-
man Problem, Technical report 388, Graduate School of Industrial Administration,
CMU (1976)

7. Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of
Computation. Princeton University Press, Princeton (2012)

8. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, New York (1998)

9. Dey, T.K., Mehlhorn, K., Ramos, E.A.: Curve reconstruction: connecting dots with
good reason. Comput. Geom. 15(4), 229–244 (2000)

10. Dillencourt, M.B.: A non-Hamiltonian, nondegenerate Delaunay triangulation. Inf.
Process. Lett. 25(3), 149–151 (1987)

11. Fekete, S.P., Friedrichs, S., Hemmer, M., Papenberg, M., Schmidt, A.,
Troegel, J.: Area- and boundary-optimal polygonalization of planar point sets.
In: EuroCG 2015, pp. 133–136 (2015)

12. Fekete, S.P., Haas, A., Hemmer, M., Hoffmann, M., Kostitsyna, I., Krupke, D.,
Maurer, F., Mitchell, J.S.B., Schmidt, A., Schmidt, C., Troegel, J.: Computing
nonsimple polygons of minimum perimeter. CoRR, abs/1603.07077 (2016)

Computing Nonsimple Polygons of Minimum Perimeter 149

13. Giesen, J.: Curve reconstruction, the traveling salesman problem and Menger’s
theorem on length. In: Proceedings of 15th Annual Symposium on Computational
Geometry (SoCG), pp. 207–216 (1999)

14. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-
city problem. Math. Program. Study 12, 61–77 (1980)

15. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations.
Springer, New York (2007)

16. Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Hand-
books in Operations Research and Management Science, vol. 7, pp. 225–330 (1995)

17. Land, A.: The solution of some 100-city Travelling Salesman Problems, Technical
report, London School of Economics (1979)

18. Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B.: The Travel-
ing Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley,
Chichester (1985)

19. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21(2), 498–516 (1973)

20. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

21. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)

22. Pferschy, U., Stanek, R.: Generating subtour constraints for the TSP from pure
integer solutions. Department of Statistics and Operations Research, University of
Graz, Technical report (2014)

23. Reinelt, G.: TSPlib - a traveling salesman problem library. ORSA J. Comput. 3(4),
376–384 (1991)

24. Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O.,
Zukerman, B.: 2D arrangements. In: CGAL User and Reference Manual,
4.3rd edn. CGAL Editorial Board (2014)

Sparse Subgraphs for 2-Connectivity
in Directed Graphs

Loukas Georgiadis1, Giuseppe F. Italiano2, Aikaterini Karanasiou1,
Charis Papadopoulos1(B), and Nikos Parotsidis2

1 University of Ioannina, Ioannina, Greece
{loukas,akaranas,charis}@cs.uoi.gr

2 Università di Roma “Tor Vergata”, Rome, Italy
{giuseppe.italiano,nikos.parotsidis}@uniroma2.it

Abstract. Let G be a strongly connected directed graph. We consider
the problem of computing the smallest strongly connected spanning sub-
graph of G that maintains the pairwise 2-vertex-connectivity of G, i.e.,
the 2-vertex-connected blocks of G (2VC-B). We provide linear-time
approximation algorithms for this problem that achieve an approxima-
tion ratio of 6. Based on these algorithms, we show how to approxi-
mate, in linear time, within a factor of 6 the smallest strongly connected
spanning subgraph of G that maintains respectively: both the 2-vertex-
connected blocks and the 2-vertex-connected components of G (2VC-B-
C); all the 2-connectivity relations of G (2C), i.e., both the 2-vertex-
and the 2-edge-connected components and blocks. Moreover, we provide
heuristics that improve the size of the computed subgraphs in practice,
and conduct a thorough experimental study to assess their merits in
practical scenarios.

1 Introduction

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices.
G is strongly connected if there is a directed path from each vertex to every
other vertex. The strongly connected components of G are its maximal strongly
connected subgraphs. A vertex (resp., an edge) of G is a strong articulation
point (resp., a strong bridge) if its removal increases the number of strongly con-
nected components. A digraph G is 2-vertex-connected if it has at least three ver-
tices and no strong articulation points; G is 2-edge-connected if it has no strong
bridges. The 2-vertex- (resp., 2-edge-) connected components of G are its max-
imal 2-vertex- (resp., 2-edge-) connected subgraphs. Let v and w be two dis-
tinct vertices: v and w are 2-vertex-connected (resp., 2-edge-connected), denoted
by v ↔2v w (resp., v ↔2e w), if there are two internally vertex-disjoint
(resp., two edge-disjoint) directed paths from v to w and two internally vertex-
disjoint (resp., two edge-disjoint) directed paths from w to v (a path from v

G.F. Italiano and N. Parotsidis—Partially supported by MIUR under Project
AMANDA.

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 150–166, 2016.
DOI: 10.1007/978-3-319-38851-9 11

Sparse Subgraphs for 2-Connectivity in Directed Graphs 151

Fig. 1. A strongly connected digraph G with a strong bridge (c, f) and a strong articu-
lation point c shown in red (better viewed in color), the 2-vertex-connected components
and blocks of G, and the 2-edge-connected components and blocks of G. Vertex f forms
a trivial 2-edge-connected and 2-vertex-connected block. (Color figure online)

to w and a path from w to v need not be either vertex- or edge- disjoint).
A 2-vertex-connected block (resp., 2-edge-connected block) of a digraph G = (V,E)
is a maximal subset B ⊆ V such that u ↔2v v (resp., u ↔2e v) for all u, v ∈ B.
Note that, as a (degenerate) special case, a 2-vertex- (resp., 2-edge-) connected
block might consist of a singleton vertex only: we denote this as a trivial 2-vertex-
(resp., 2-edge-) connected block. In the following, we will consider only non-trivial
2-vertex- and 2-edge- connected blocks. Since there is no danger of ambiguity, we
will call them simply 2-vertex- and 2-edge-connected blocks.

Differently from undirected graphs, in digraphs 2-vertex and 2-edge con-
nectivity have a much richer and more complicated structure, and indeed 2-
connectivity problems on directed graphs appear to be more difficult than their
undirected counterparts. In particular, in digraphs 2-vertex- (resp., 2-edge-) con-
nected blocks can be different from the 2-vertex- (resp., 2-edge-) connected com-
ponents, i.e., two vertices may be 2-vertex- (resp., 2-edge-) connected but lie
in different 2-vertex- (resp., 2-edge-) connected components (see Fig. 1). This
is not the case for undirected graphs. Moreover, for undirected graphs it has
been known for over 40 years how to compute the 2-edge- and 2-vertex- con-
nected components in linear time [25]. In the case of digraphs, however, it was
shown only recently how to compute the 2-edge- and 2-vertex- connected blocks
in linear time [11,12], and the best current bound for computing the 2-edge-
and the 2-vertex- connected components in digraphs is not even linear, but it is
O(n2) [16].

In this paper we investigate problems where we wish to find a smallest span-
ning subgraph of G (i.e., with minimum number of edges) that maintains cer-
tain 2-connectivity requirements in addition to strong connectivity. Problems

152 L. Georgiadis et al.

of this nature are fundamental in network design, and have several practical
applications [24]. Specifically, we consider computing a smallest strongly con-
nected spanning subgraph of a digraph G that maintains the following proper-
ties: the pairwise 2-vertex-connectivity of G, i.e., the 2-vertex-connected blocks
of G (2VC-B); the 2-vertex-connected components of G (2VC-C); both the 2-
vertex-connected blocks and components of G (2VC-B-C). This complements
our previous study of the edge-connectivity versions of these problems [13], that
we refer to as 2EC-C (maintaining 2-edge-connected components), 2EC-B (main-
taining 2-edge-connected blocks), and 2EC-B-C (maintaining 2-edge-connected
blocks and components). Finally, we also consider computing a smallest span-
ning subgraph of G that maintains all the 2-connectivity relations of G (2C),
that is, simultaneously the 2-vertex-connected and the 2-edge-connected com-
ponents and blocks. Note that all these problems are NP-hard [9,13], so one
can only settle for efficient approximation algorithms. Computing small span-
ning subgraphs is of particular importance when dealing with large-scale graphs,
say graphs having hundreds of million to billion edges. In this framework, one
big challenge is to design linear-time algorithms, since algorithms with higher
running times might be practically infeasible on today’s architectures.

Related Work. Computing a smallest k-vertex-(resp., k-edge-) connected span-
ning subgraph of a given k-vertex- (resp. k-edge-) connected digraph is NP-hard
for any k ≥ 1 (and for k ≥ 2 for undirected graphs) [9]. The case for k = 1 is
to compute a smallest strongly connected spanning subgraph (SCSS) of a given
digraph. This problem was originally studied by Khuller et al. [20], who provided
a polynomial-time algorithm with an approximation guarantee of 1.64. This was
improved to 1.61 by the same authors [21]. Later on, Vetta announced a fur-
ther improvement to 3/2 [27], and Zhao et al. [28] presented a faster linear-time
algorithm at the expense of a larger 5/3-approximation factor. For the smallest
k-edge-connected spanning subgraph (kECSS), Laehanukit et al. [23] gave a ran-
domized (1+1/k)-approximation algorithm. For the smallest k-vertex-connected
spanning subgraph (kVCSS), Cheriyan and Thurimella [4], gave a (1 + 1/k)-
approximation algorithm that runs in O(km2) time. For k = 2, the running
time of Cheriyan and Thurimella’s algorithm was improved to O(m

√
n + n2),

based on a linear-time 3-approximation for 2VCSS [10]. We also note that there
has been extensive work on more general settings where one wishes to approx-
imate minimum-cost subgraphs that satisfy certain connectivity requirements.
See, e.g., [6], and the survey [22]. The previous results on kECSS and kVCSS
immediately imply an approximation ratio smaller than 2 for 2EC-C and 2VC-C
[13,19]. While there has been substantial progress for 2EC-C and 2VC-C, prob-
lems 2EC-B and 2VC-B (i.e., computing sparse subgraphs with the same pairwise
2-edge or 2-vertex connectivity) seem substantially harder. Jaberi [18] was the
first to consider several optimization problems related to 2EC-B and 2VC-B and
proposed approximation algorithms. The approximation ratio in his algorithms,
however, is linear in the number of strong bridges for 2EC-B and in the number
of strong articulation points for 2VC-B, and hence O(n) in the worst case. In [13],
linear-time 4-approximation algorithms for 2EC-B and 2EC-B-C were presented.

Sparse Subgraphs for 2-Connectivity in Directed Graphs 153

It seems thus natural to ask whether one can design linear-time algorithms which
achieve small approximation guarantees for 2VC-B, 2VC-B-C and 2C.

Our Results. In this paper we address this question by presenting practical
approximation algorithms for the 2VC-B, 2VC-B-C and 2C problems. We stress
that the approach in this paper is substantially different from [13], since vertex
connectivity is typically more involved than edge connectivity and requires sev-
eral novel ideas and non-trivial techniques. In particular, differently from [13],
our starting point in this paper is the recent framework for strong connectivity
and 2-connectivity problems in digraphs [14], combined with the notions of diver-
gent spanning trees and low-high orders [15] (defined below). Building on this
new framework, we can obtain sparse certificates also for the 2-vertex-connected
blocks. In our context, a sparse certificate of a strongly connected digraph G is
a strongly connected spanning subgraph C(G) of G with O(n) edges that main-
tains the 2-vertex-connected blocks of G. We show that our constructions achieve
a 6-approximation for 2VC-B in linear time. Then, we extend our algorithms so
that they compute a 6-approximation for 2VC-B-C and 2C. These algorithms
also run in linear time once the 2-vertex and the 2-edge-connected components
of G are available; if not, the current best running time for computing them is
O(n2) [16]. Then we provide efficient implementations of these algorithms that
run very fast in practice. We also present several heuristics that improve the
quality (i.e., the number of edges) of the computed spanning subgraphs. Finally,
we assess how all these algorithms perform in practical scenarios by conducting
a thorough experimental study, and report its main findings.

2 Preliminaries

A flow graph is a digraph such that every vertex is reachable from a distinguished
start vertex. Let G = (V,E) be a strongly connected digraph. For any vertex
s ∈ V , we denote by G(s) = (V,E, s) the corresponding flow graph with start
vertex s; all vertices in V are reachable from s since G is strongly connected.
The dominator relation in G(s) is defined as follows: A vertex u is a dominator
of a vertex w (u dominates w) if every path from s to w contains u; u is a proper
dominator of w if u dominates w and u �= w. The dominator relation in G(s) can
be represented by a rooted tree, the dominator tree D(s), such that u dominates
w if and only if u is an ancestor of w in D(s). If w �= s, we denote by d(w) the
parent of w in D(s). The dominator tree of a flow graph can be computed in
linear time, see, e.g., [2,3]. An edge (u,w) is a bridge in G(s) if all paths from s to
w include (u,w).1 Italiano et al. [17] gave linear-time algorithms for computing
all the strong bridges and all the strong articulation points of a digraph G. Their
algorithms use the dominators and the bridges of flow graphs G(s) and GR(s),
where s is an arbitrary start vertex and GR is the digraph that results from G
after reversing edge directions. A spanning tree T of a flow graph G(s) is a tree

1 Throughout, we use consistently the term bridge to refer to a bridge of a flow graph
G(s) and the term strong bridge to refer to a strong bridge in the original graph G.

154 L. Georgiadis et al.

with root s that contains a path from s to v for all vertices v. Two spanning
trees T1 and T2 rooted at s are edge-disjoint if they have no edge in common. A
flow graph G(s) has two such spanning trees if and only if it has no bridges [26].
Two spanning trees are maximally edge-disjoint if the only edges they have in
common are the bridges of G(s). Two (maximally) edge-disjoint spanning trees
can be computed in linear-time by an algorithm of Tarjan [26], using the disjoint
set union data structure of Gabow and Tarjan [8]. Two spanning trees T1 and
T2 rooted at s are divergent if for all vertices v, the paths from s to v in T1

and T2 share only the dominators of v. A low-high order δ on G(s) is a preorder
of the dominator tree D(s) such for all v �= s, (d(v), v) ∈ E or there are two
edges (u, v) ∈ E, (w, v) ∈ E such that u is less than v (u <δ v), v is less than w
(v <δ w), and w is not a descendant of v in D(s). Every flow graph G(s) has a
pair of maximally edge-disjoint divergent spanning trees and a low-high order,
both computable in linear-time [15].

Let T be a dfs tree of a digraph G rooted at s. For a vertex u, we denote
by loop(u) the set of all descendants x of u in T such that there is a path from
x to u in G containing only descendants of u in T . Since any two vertices in
loop(u) reach each other, loop(u) induces a strongly connected subgraph of G.
Furthermore, loops define a laminar family (i.e., for any two vertices u and v,
we have loop(u) ∩ loop(v) = ∅, or loop(v) ⊆ loop(u), or loop(u) ⊆ loop(v)). The
loop nesting tree L of a strongly connected digraph G with respect to T , is the
tree in which the parent of any vertex v �= s is the nearest proper ancestor u of
v such that v ∈ loop(u). The loop nesting tree can be computed in linear time
[3,26].

3 Approximation Algorithms and Heuristics for 2VC-B

Let G = (V,E) be the input strongly connected digraph. In problem 2VC-B, we
wish to compute a strongly connected spanning subgraph G′ of G that has the
same 2-vertex-connected blocks of G, with as few edges as possible. We consider
the following approach. Start with the empty graph G′ = (V, ∅), and add as few
edges as possible until G′ is guaranteed to have the same 2-vertex-connected
blocks as G. We consider three linear-time algorithms that apply this approach.
The first two are based on the sparse certificates for 2-vertex-connected blocks
from [12,14], which use divergent spanning trees. The third is a new algorithm
that selects the edges of G′ with the help of low-high orders.

Divergent Spanning Trees. We can compute a sparse certificate C(G) for the
2-vertex-connected blocks of a strongly connected digraph G using the algorithm
of [12], which is based on a linear-time construction of two divergent spanning
trees of a flow graph [15]. We refer to this algorithm as DST-B. Let s be an
arbitrarily chosen start vertex in G. Recall that we denote by G(s) the flow
graph with start vertex s, by GR(s) the flow graph obtained from G(s) after
reversing edge directions, and by D(s) and DR(s) the dominator trees of G(s)
and GR(s) respectively. Also, let C(v) and CR(v) be the set of children of v
in D(s) and DR(s) respectively. For each vertex r, let Ck(r) denote the level k

Sparse Subgraphs for 2-Connectivity in Directed Graphs 155

descendants of r, where C0(r) = {r}, C1(r) = C(r), and so on. For each vertex
r �= s that is not a leaf in D(s) we build the auxiliary graph Gr = (Vr, Er) of
r as follows. The vertex set of Gr is Vr = ∪3

k=0C
k(r) and it is partitioned into

a set of ordinary vertices V o
r = C1(r) ∪ C2(r) and a set of auxiliary vertices

V a
r = C0(r) ∪ C3(r). The auxiliary graph Gr results from G by contracting the

vertices in V \Vr as follows. All vertices that are not descendants of r in D(s) are
contracted into r. For each vertex w ∈ C3(r), we contract all descendants of w in
D(s) into w. We use the same definition for the auxiliary graph Gs of s, with the
only difference that we let s be an ordinary vertex. In order to bound the size of
all auxiliary graphs, we eliminate parallel edges during those contractions. We
call an edge e ∈ Er \E a shortcut edge of Gr. That is, a shortcut edge is formed
by the contraction of a part of G into an auxiliary vertex of Gr. Thus, a shortcut
edge is not an original edge of G but corresponds to at least one original edge,
and is adjacent to at least one auxiliary vertex.

Algorithm DST-B selects the edges that are inserted into C(G) in three
phases. During the construction, the algorithm may choose a shortcut edge or a
reverse edge to be inserted into C(G). In this case we insert the associated orig-
inal edge instead. Also, an edge may be selected multiple times, so we remove
multiple occurrences of such edges in a postprocessing step. In the first phase,
we insert into C(G) the edges of two maximally edge-disjoint divergent span-
ning trees, T1(G(s)) and T2(G(s)) of G(s). In the second phase we process the
auxiliary graphs of G(s) that we refer to as the first-level auxiliary graphs. For
each such auxiliary graph H = Gr, we compute two maximally edge-disjoint
divergent spanning trees T1(HR(r)) and T2(HR(r)) of the corresponding reverse
flow graph HR(r) with start vertex r. We insert into C(G) the edges of these two
spanning trees. It can be proved that, at the end of this phase, C(G) induces a
strongly connected spanning subgraph of G. Finally, in the last phase we process
the second-level auxiliary graphs, which are the auxiliary graphs of HR for all
first-level auxiliary graphs H. Let HR

q be a second-level auxiliary graph of HR.
For every strongly connected component S of HR

q \ q, we choose an arbitrary
vertex v ∈ S and compute a spanning tree of S and a spanning tree of SR, and
insert their edges into C(G).

This construction inserts O(n) edges into C(G), and therefore achieves a
constant approximation ratio for 2VC-B. However, due to the use of auxiliary
vertices and two levels of auxiliary graphs, we do not have a good bound for this
constant. (The first-level auxiliary graphs have at most 4n vertices and 4m + n
edges in total [12].) We propose a modification of DST-B, that we call DST-B
modified: For each auxiliary graph, we do not select in C(G) the edges of its two
divergent spanning trees that have only auxiliary descendants. Also, for every
second-level auxiliary graph, during the computation of its strongly connected
components we include the chosen edges that already form a strongly connected
component.

More precisely, algorithm DST-B modified works as follows. In the first two
phases, we try reuse as many edges as possible when we build the divergent
spanning trees of G(s) and of its auxiliary graphs. In the third phase of the con-
struction we need to solve the smallest SCSS problem for each strongly connected

156 L. Georgiadis et al.

component S in the second-level auxiliary graphs Hq after the deletion of the
root vertex q. We do this by running a modified version of the linear-time 5/3-
approximation algorithm of Zhao et al. [28]. The algorithm of Zhao et al. a SCSS
of a strongly connected graph by performing a depth-first search traversal of the
input graph. During the dfs traversal, any cycle that is detected is contracted
into a single vertex. We modify this approach so that we can avoid inserting
new edges into the sparse certificate as follows. Since we only care about the
ordinary vertices in S, we can construct a subgraph of S that contains edges
already added in C(G). We compute the strongly connected components of this
subgraph and contract them. Then we apply the algorithm of Zhao et al. on the
contracted graph of S. Furthermore, during the dfs traversal we give priority to
edges already added in C(G). We can apply a similar idea in the second phase of
the construction as follows. The algorithms of [15] for computing two divergent
spanning trees of a flow graph use the edges of a dfs spanning tree, together with
at most n − 1 other edges. Hence, we can modify the dfs traversal so that we
give priority to edges already added in C(G).

Divergent Spanning Trees and Loop Nesting Trees. An alternative linear-
time algorithm to compute a sparse certificate C(G) for the 2-vertex-connected
blocks can be obtained via loop nesting trees, as described in [14]. As in algorithm
DST-B, we compute two maximally edge-disjoint divergent spanning trees T1 and
T2 of G(s), and insert their edges into C(G). But instead of computing auxiliary
graphs, we compute a loop nesting tree L of G(s) and insert into C(G) the edges
that define L. These are the edges of a dfs tree of G(s), and at most n − 1
additional edges that are required to define the loops of G(s). (See [15,26] for
the details.) Then, we repeat the same process in the reverse direction, i.e., for
GR(s). As shown in [14], a spanning subgraph having the same dominator trees
and loop nesting trees (in both directions) as the digraph G, has the same 2-edge-
and 2-vertex-connected blocks as G. We refer to this algorithm as DLN-B.

Theorem 1. Algorithm DLN-B achieves an approximation ratio of 6, in linear
time, for problem 2VC-B.

Proof. Consider first the “forward” pass of the algorithm. It adds at most 2(n−1)
edges for the two divergent spanning trees, and at most 2(n−1) edges that define
a loop nesting tree of G(s). By [15,26], both these constructions use the edges of
a dfs tree of G(s) and some additional edges. Hence, we can use the same dfs tree
to compute the divergent spanning trees and the loop nesting tree. This gives a
total of at most 3(n − 1) edges. Similarly, the “reverse” pass computes at most
3(n − 1) edges, so algorithm DLN-B selects at most 6(n − 1) edges. Since the
resulting subgraph must be strongly connected, any valid solution to problem
2VC-B has at least n edges, so DLN-B achieves a 6-approximation. By [15,26],
both the computation of a pair of divergent spanning trees and of a loop nesting
tree can be done in linear time, hence DLN-B also runs in linear time. ��

Low-High Orders and Loop Nesting Trees. Now we introduce a new linear-
time construction of a sparse certificate, via low-high orders, that we refer to as

Sparse Subgraphs for 2-Connectivity in Directed Graphs 157

LHL-B. The algorithm consists of two phases. In the first phase, we insert into
C(G) the edges that define the loop nesting trees L and LR of G(s) and GR(s),
respectively, as in algorithm DLN-B. In the second phase, we insert enough edges
so that C(G) (resp., CR(G)) maintains a low-high order of G(s) (resp., GR((s)).
Let δ be a low-high order on G(s). Subgraph C(G) satisfies the low-high order
δ if, for each vertex v �= s, one of the following holds: (a) there are two edges
(u, v) and (w, v) in C(G) such that u <δ v, v <δ w, and w is not a descendant
of v in D(s); (b) (d(v), v) is a strong bridge of G and is contained in C(G); or
(c) (d(v), v) is an edge of G that is contained in C(G), and there is another edge
(u, v) in C(G) such that u <δ v and u �= d(v).

Theorem 2. Algorithm LHL-B is correct and achieves an approximation ratio
of 6 for problem 2VC-B, in linear time.

Proof. By construction, the sparse certificate C(G) computed by LHL-B satisfies
a low-high order δ of G(s). This implies that C(G) contains two divergent span-
ning trees T1 and T2 of G(s) [15]. Moreover, cases (b) and (c) of the construction
ensure that T1 and T2 are maximally edge-disjoint. This is because when case
(a) does not apply for a vertex v, then C(G) contains (d(v), v). Also, d(v) is
the only vertex u that satisfies u <δ v if and only if (d(v), v) is a strong bridge.
Hence, C(G) indeed contains two maximally edge-disjoint divergent spanning
trees of G(s). Similarly, C(G) also contains two maximally edge-disjoint diver-
gent spanning trees of GR(s). So the correctness of LHL-B follows from the fact
that DLN-B is correct.

Next we bound the approximation ratio of LHL-B. The edges selected to
maintain a loop nesting tree L of G(s) contain at least one entering edge for
each vertex v �= s. This means that it remains to include at most one edge for
each vertex v �= s in order to satisfy a low-high order of G(s). The symmetric
arguments holds for the reverse direction as well, so C(G) contains at most
6(n − 1) edges, which gives an approximation ratio of 6. ��

We note that both DLN-B and LHN-B also maintain the 2-edge-connected
blocks of the input digraph. We use this fact in Sect. 4, where we compute a
sparse subgraph that maintains all 2-connectivity relations. We can improve the
solution computed by the above algorithms by using the following filter.

Two Vertex-Disjoint Paths Test. We test if G′ \ (x, y) contains two vertex-
disjoint paths from x to y. If this is the case, then we remove edge (x, y); other-
wise, we keep the edge (x, y) in G′ and proceed with the next edge. For doing so,
we define the modified graph G′′ of G′ after vertex-splitting (see, e.g., [1]): for
each vertex v, replace v by two vertices v+ and v−, and add the edge (v−, v+).
Then, we replace each edge (u,w) in G′ by (u+, v−) in G′′, so v− has the edges
entering v and v+ has the edges leaving v. Now we can test if G′ still has two
vertex-disjoint paths from x to y after deleting (x, y) by running two iterations of
the Ford-Fulkerson augmenting paths algorithm [7] for finding two edge-disjoint
paths on G′′ by treating x+ as the source and y− as the sink. Note that we need
to compute G′′ once for all such tests. If an edge (x, y) is deleted from G′, then

158 L. Georgiadis et al.

we also delete (x+, y−) from G′′. Since G′ has O(n) edges, this test takes O(n)
time per edge, so the total running time is O(n2). We refer to this filter as 2VDP.
In our implementations we applied 2VDP on the outcome of DLN-B in order to
assess our algorithms with a solution close to minimum. For the 2VC-B problem
the algorithm obtained after applying such a filter is called 2VDP-B. In order to
improve the running time of 2VDP in practice, we apply a speed-up heuristic for
trivial edges (x, y): if x belongs to a 2-vertex-connected block and has outdegree
two or y belongs to a 2-vertex-connected block and has indegree two, then (x, y)
must be included in the solution.

4 Approximation Algorithms and Heuristics for 2C

To get an approximate solution for problem 2C, we combine our algorithms for
2VC-B with algorithms that approximate 2VCSS [4,10]. We also take advantage
of the fact that every 2-vertex-connected component is contained in a 2-edge-
connected component. This property suggests the following approach for 2C.
First, we compute the 2-vertex-connected components of G and solve the 2VCSS
problem independently for each such component. Then, we apply one of the
algorithms DLN-B or LHL-B for 2VC-B on G. Since the sparse certificate from
DLN-B or LHL-B also maintain the 2-edge-connected blocks, it remains to include
edges that maintain the 2-edge-connected components of G. We can find these
edges in a condensed graph Ğ defined as follows. Digraph Ğ is formed from G by
contracting each 2-vertex-connected component of G into a single supervertex.
Note that any two 2-vertex-connected components may have at most one vertex
in common: if two such components share a vertex, they are contracted into the
same supervertex. The resulting digraph Ğ is a multigraph since the contractions
can create loops and parallel edges. For any vertex v of G, we denote by v̆ the
supervertex of Ğ that contains v. Every edge (ŭ, v̆) of Ğ is associated with the
corresponding original edge (u, v) of G. Now we describe the main steps of our
algorithm for 2C:

1. Compute the 2-vertex-connected components. Solve independently the 2VCSS
problem for each such component, using the linear-time algorithm of [10].

2. Form the condensed multigraph Ğ, and compute its 2-edge-connected com-
ponents. Solve independently the 2ECSS problem for each such component,
using edge-disjoint spanning trees [13].

3. Execute the DNL-B or LHL-B algorithms on the original graph G and compute
a sparse certificate for the 2-edge- and the 2-vertex-connected blocks.

The solution to the 2C problem consists of the edges selected in each step of
the algorithm. Note that in Step 2, we should allow 2-edge-connected compo-
nents of size two because such a component may correspond to the union of
2-vertex-connected components of the original graph. We consider two versions
of our algorithm, DLN-2C and LHL-2C, depending on the algorithm for the 2VC-B
problem used in Step 3.

Sparse Subgraphs for 2-Connectivity in Directed Graphs 159

Theorem 3. Algorithms DLN-2C and LHL-2C compute a 6-approximation for
problem 2C. Moreover, if the 2-edge- and the 2-vertex- connected components of
G are available, then the algorithms run in linear time.

Proof. Let nv be the number of vertices of G that belong to some 2-vertex-
connected component of G. Also, let n̆ be the number of vertices in Ğ, and
let n̆e be the number of vertices of Ğ that belong to some 2-edge-connected
component of Ğ. By the analysis in the proof of Theorem4, the algorithm for
2VC-B-C selects less than 6(n + nv) edges. For the 2ECSS problems, we can
compute a 2-approximate solution in linear-time as in [13], using edge-disjoint
spanning trees [5,26]. Let C̆ be a 2-edge-connected component of Ğ. We select
an arbitrary vertex v̆ ∈ C̆ as a root and compute two edge-disjoint spanning
trees in the flow graph C̆(v̆) and two edge-disjoint spanning trees in the reverse
flow graph C̆R(v̆). Thus, we select less than 4n̆e edges. Hence, the subgraph
computed by the algorithm has less than 6(n + nc + n̆e) edges.

Now consider any solution to 2C. It has to include 2nc + 2n̆e edges in order
to maintain the 2-vertex and the 2-edge-connected components of G. Moreover,
since the resulting subgraph must be strongly connected, there must be at least
one edge entering each of the n̆− n̆e vertices of Ğ that do not belong in a 2-edge-
connected component of Ğ. Thus, the optimal solution has at least 2nc + n̆e + n̆
edges. Note that n̆c + n̆ ≥ n, so the optimal solution has at least n + nc + n̆e

edges and the approximation ratio of 6 follows.
Finally, we show that all three steps of the algorithms DLN-2C and LHL-2C

run in linear time given the 2-edge- and the 2-vertex- connected components of
G. This is immediate for Steps 1 and 3. In Step 2, we do not need to compute
the 2-edge-connected components of Ğ from scratch, but we can form them from
the 2-edge-connected components of G using contractions. Let C be a 2-edge-
connected component of G. We contract each 2-vertex-connected component of
G contained in C into a single supervertex. Then, the resulting digraph C̆ is a
2-edge-connected component of Ğ. ��

If we wish to improve the quality of the computed solution G′, we can apply
the 2VDP filter, and the analogous 2-edge-disjoint paths filter 2EDP, as follows.
In Step 1, we run the 2VDP filter for the edges computed by the linear-time
algorithm of [10]. This produces a minimal solution for 2VCSS in each 2-vertex-
connected component of G. Similarly, in Step 2, we run the 2EDP filter for the
edges of the edge-disjoint spanning trees computed in each 2-edge-connected
component of Ğ. This produces a minimal solution for 2ECSS in each 2-edge-
connected component of Ğ. Finally, we run the 2VDP filter on the whole G′, but
only consider the edges added in Step 3 of our algorithm, since the edges from
Steps 1 and 2 are needed to maintain the 2-vertex- and the 2-edge-connected
components. We implemented this algorithm, using DLN-B for Step 3, and refer
to it as 2VDP-2C.

Approximation Algorithms and Heuristics for 2VC-B-C. Executing
Steps 1 and 3 of the above algorithm described for 2C, is enough to produce
a certificate for the 2VC-B-C problem. If we use DLN-B or LHL-B for Step 3,

160 L. Georgiadis et al.

then we obtain a 6-approximate solution for 2VC-B-C. We call the correspond-
ing algorithms DLN-B-C and LHL-B-C, respectively.

Theorem 4. There is a polynomial-time algorithm for 2VC-B-C that achieves
an approximation ratio of 6. Moreover, if the 2-vertex-connected components of
G are available, then the algorithm runs in linear time.

Proof. A result in [10] shows that, given a 2-vertex-connected digraph with ν
vertices, we can compute in linear time a 2-vertex-connected spanning subgraph
that has less than 6ν edges. Hence, if nc is the number of vertices that belong
in a 2-vertex-connected component of G, then applying this algorithm to each
2-vertex-connected component selects less than 6nc edges. Finally, we apply the
construction of a sparse certificate for the 2-vertex-connected blocks which selects
at most 6(n − 1) edges by Theorems 1 or 2. Hence, the subgraph computed by
the algorithm has less than 6(n+nc). One the other hand, any solution to 2VC-
B-C has to include at least 2nc edges for the 2-vertex-connected components of
G, and at least n − nc edges in order to obtain a strongly connected subgraph.
Thus, the optimal solution has at least n + nc edges, so the approximation ratio
of 6 follows. ��

As in the 2VC-B and 2C problems, we can improve the quality of the com-
puted solution by applying the 2VDP filter for the edges that connect different
2-vertex-connected components. We implemented this algorithm, using DLN-B
for Step 3, and refer to it as 2VDP-B-C.

5 Experimental Analysis

We implemented the algorithms previously described: 5 for 2VC-B, 3 for 2VC-
B-C, and 3 for 2C, as summarized in Table 1. All implementations were writ-
ten in C++ and compiled with g++ v.4.4.7 with flag -O3. We performed our
experiments on a GNU/Linux machine, with Red Hat Enterprise Server v6.6: a
PowerEdge T420 server 64-bit NUMA with two Intel Xeon E5-2430 v2 proces-
sors and 16 GB of RAM RDIMM memory. Each processor has 6 cores sharing a
15 MB L3 cache, and each core has a 2 MB private L2 cache and 2.50 GHz speed.
In our experiments we did not use any parallelization, and each algorithm ran
on a single core. We report CPU times measured with the getrusage function.
All our running times were averaged over ten different runs.

For the experimental evaluation we use the datasets shown in Table 2. We
measure the quality of the solution computed by algorithm A on problem P
by a quality ratio defined as q(A,P) = δA

avg/δP
avg , where δA

avg is the average
vertex indegree of the subgraph computed by A and δP

avg is a lower bound on
the average vertex indegree of the optimal solution for P. Specifically, for 2VC-B
and 2VC-B-C we define δB

avg = (n+k)/n, where n is the total number of vertices
of the input digraph and k is the number of vertices that belong in (nontrivial)

Sparse Subgraphs for 2-Connectivity in Directed Graphs 161

Table 1. The algorithms considered in our experimental study. The worst-case bounds
refer to a digraph with n vertices and m edges. Running times indicated by † assume
that the 2-vertex-connected components of the input digraph are available; running
times indicated by ‡ assume that also the 2-edge-connected components are available.

Algorithm Problem Technique Time

DST-B 2VC-B Original sparse certificate from [12] based
on divergent spanning trees

O(m + n)

DST-B modified 2VC-B Modified sparse certificate from [12] O(m + n)

DLN-B 2VC-B Sparse certificate from [14] based on
divergent spanning trees and loop nesting
trees

O(m + n)

LHL-B 2VC-B New sparse certificate based on low-high
orders and loop nesting trees

O(m + n)

2VDP-B 2VC-B 2VDP filter applied on the digraph produced
by DLN-B

O(n2)

DLN-B-C 2VC-B-C DST-B combined with the linear-time
2VCSS algorithm of [10]

O(m + n)†

LHL-B-C 2VC-B-C LHL-B combined with the linear-time 2VCSS
algorithm of [10]

O(m + n)†

2VDP-B-C 2VC-B-C 2VDP filter applied on the digraph produced
by DLN-B-C

O(n2)

DLN-2C 2C DLN-B-C combined with the linear-time
2ECSS algorithm using edge-disjoint
spanning trees

O(m + n)‡

LHL-2C 2C LHL-B-C combined with the linear-time
2ECSS algorithm using edge-disjoint
spanning trees

O(m + n)‡

2VDP-2C 2C 2VDP and 2EDP filters applied on the
digraph produced by DLN-2C

O(n2)

2-vertex-connected blocks2. We set a similar lower bound δC
avg for 2C, with the

only difference that k is the number of vertices that belong in (nontrivial) 2-
edge-connected blocks, since every 2-vertex-connected component or block is
contained in a 2-edge-connected block. Note that the quality ratio is an upper
bound of the actual approximation ratio. The smaller the values of q(A,P) (i.e.,
the closer to 1), the better is the approximation obtained by algorithm A for
problem P.

We now report the results of our experiments with all the algorithms con-
sidered for problems 2VC-B and 2C. For the 2VC-B problem, the quality ratio
of the spanning subgraphs computed by the different algorithms is shown in

2 This follows from the fact that in the sparse subgraph the k vertices in blocks must
have indegree at least two, while the remaining n− k vertices must have indegree at
least one, since we seek for a strongly connected spanning subgraph.

162 L. Georgiadis et al.

Table 2. Real-world graphs sorted by file size of their largest SCC; n is the number
of vertices, m the number of edges, and δavg is the average vertex indegree; s∗ is the
number of strong articulation points; δBavg and δCavg are lower bounds on the average
vertex indegree of an optimal solution to 2VC-B and 2C, respectively.

Dataset n m File size δavg s∗ δBavg δCavg Type

Rome99 3353 8859 100KB 2.64 789 1.76 1.76 road network

P2p-Gnutella25 5153 17695 203KB 3.43 1840 1.60 1.60 peer2peer

P2p-Gnutella31 14149 50916 621KB 3.59 5357 1.56 1.56 peer2peer

Web-NotreDame 53968 296228 3,9MB 5.48 9629 1.50 1.50 web graph

Soc-Epinions1 32223 443506 5,3MB 13.76 8194 1.56 1.56 social network

USA-road-NY 264346 733846 11MB 2.77 46476 1.80 1.80 road network

USA-road-BAY 321270 800172 12MB 2.49 84627 1.69 1.69 road network

USA-road-COL 435666 1057066 16MB 2.42 120142 1.68 1.68 road network

Amazon0302 241761 1131217 16MB 4.67 69616 1.74 1.74 prod. co-purchase

WikiTalk 111881 1477893 18MB 13.20 14801 1.45 1.45 social network

Web-Stanford 150532 1576314 22MB 10.47 14801 1.62 1.58 web graph

Amazon0601 395234 3301092 49MB 8.35 69387 1.82 1.82 prod. co-purchase

Web-Google 434818 3419124 50MB 7.86 89838 1.59 1.58 web graph

Web-Berkstan 334857 4523232 68MB 13.50 53666 1.56 1.51 web graph

Table 3 (left) and Fig. 3 (top), while their running times are given and plotted
in Table 4 (left) and Fig. 2 (left), respectively. Similarly, for the 2VC-B-C and 2C
problems, the quality ratio of the spanning subgraphs computed by the different
algorithms is shown in Table 3 (right) and Fig. 3 (bottom), while their running
times are given and plotted in Table 4 (right) and Fig. 2 (right), respectively.

We observe that all our algorithms perform well in terms of the quality of the
solution they compute. Indeed, the quality ratio is less than 2.5 for all algorithms
and inputs. Our modified version of DST-B performs consistently better than
the original version. Also in all cases, LHL-B computed a higher quality solution
than DLN-B. For most inputs, DST-B modified computes a sparser graph than
LHL-B, which is somewhat surprising given the fact that we do not have a good
bound for the (constant) approximation ratio of DST-B modified. On the other
hand, LHL-B is faster than DST-B modified by a factor of 4.15 on average and has
the additional benefit of maintaining both the 2-vertex and the 2-edge-connected
blocks. The 2VDP filter provides substantial improvements of the solution, since
all algorithms that apply this heuristic have consistently better quality ratios
(1.38 on average and always less than 1.87). However, this is paid with much
higher running times, as those algorithms can be even 5 orders of magnitude
slower than the other algorithms.

From the analysis of our experimental data, all algorithms achieve consis-
tently better approximations for road networks than for most of the other graphs
in our data set. This can be explained by taking into account the macroscopic
structure of road networks, which is rather different from other networks. Indeed,

Sparse Subgraphs for 2-Connectivity in Directed Graphs 163

Table 3. Quality ratio q(A,P) of the solutions computed for 2VC-B, 2VC-B-C and 2C.

Dataset DST-B DST-B

modified

DLN-B LHL-B 2VDP-B DLN-B-C LHL-B-C 2VDP-B-C DLN-2C LHL-2C 2VDP-2C

Rome99 1.384 1.363 1.432 1.388 1.170 1.462 1.459 1.199 1.462 1.459 1.198

P2p-Gnutella25 1.726 1.602 1.713 1.568 1.234 1.712 1.568 1.234 1.712 1.568 1.234

P2p-Gnutella31 1.717 1.647 1.732 1.602 1.273 1.732 1.573 1.273 1.732 1.573 1.273

Web-NotreDame 2.072 2.067 2.108 2.085 1.588 2.232 2.149 1.628 2.250 2.180 1.638

Soc-Epinions1 2.082 1.964 2.213 2.027 1.475 2.474 2.411 1.572 2.474 2.411 1.573

USA-road-NY 1.255 1.251 1.371 1.357 1.168 1.376 1.374 1.175 1.376 1.374 1.175

USA-road-BAY 1.315 1.311 1.374 1.365 1.242 1.375 1.379 1.246 1.375 1.379 1.246

USA-road-COL 1.308 1.307 1.354 1.348 1.249 1.357 1.357 1.252 1.357 1.357 1.252

Amazon0302 1.918 1.791 1.849 1.719 1.245 2.020 1.928 1.386 2.032 1.944 1.399

WikiTalk 2.145 2.126 2.281 2.190 1.796 2.454 2.441 1.863 2.454 2.441 1.863

Web-Stanford 2.115 2.019 2.130 2.078 1.572 2.287 2.257 1.622 2.238 2.209 1.584

Amazon0601 1.926 1.793 1.959 1.747 1.196 2.241 2.155 1.278 2.242 2.157 1.279

Web-Google 2.052 2.004 2.083 2.051 1.485 2.306 2.335 1.585 2.338 2.372 1.602

Web-Berkstan 2.302 2.233 2.290 2.275 1.692 2.472 2.492 1.767 2.410 2.431 1.717

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

Ro
m

e9
9

P2
p-

Gn
ut

ell
a2

5

P2
p-

Gn
ut

ell
a3

1

W
eb

-N
ot

re
Da

m
e

So
c-

Ep
ini

on
s1

US
A-

ro
ad

-N
Y

US
A-

ro
ad

-B
AY

US
A-

ro
ad

-C
OL

Am
az

on
03

02
W

iki
Ta

lk
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gle
W

eb
-B

er
ks

ta
n

2VC-B algorithmsDST-B
DST-B modified

DLN-B
LHL-B

2VDP-B

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1+e4 1+e5 1+e6

2VC-B-C and 2C algorithms
DLN-B-C
LHL-B-C

2VDP-B-C
DLN-2C
LHL-2C

2VDP-2C

Fig. 2. The plotted quality ratios taken by Table 3.

164 L. Georgiadis et al.

Table 4. Running times in seconds of the algorithms for 2VC-B, 2VC-B-C and 2C.

Dataset DST-B DST-B

modified

DLN-B LHL-B 2VDP-B DLN-B-C LHL-B-C 2VDP-B-C DLN-2C LHL-2C 2VDP-2C

Rome99 0.014 0.018 0.004 0.005 0.264 0.032 0.034 0.122 0.034 0.036 0.122

P2p-Gnutella25 0.027 0.032 0.008 0.007 1.587 0.042 0.042 0.729 0.051 0.053 0.725

P2p-Gnutella31 0.070 0.094 0.024 0.027 13.325 0.119 0.119 5.613 0.143 0.149 5.422

Web-NotreDame 0.335 0.486 0.059 0.080 97.355 0.491 0.521 27.091 0.573 0.600 27.746

Soc-Epinions1 0.258 0.309 0.089 0.110 92.812 0.606 0.621 54.559 0.602 0.664 54.548

USA-road-NY 1.095 1.402 0.261 0.360 2546.484 2.227 2.337 991.092 2.153 2.415 995.913

USA-road-BAY 1.659 2.152 0.316 0.435 4089.389 2.153 2.298 1429.443 2.296 2.476 1447.318

USA-road-COL 2.439 3.050 0.438 0.603 7739.256 3.770 3.969 3093.258 3.938 4.228 3064.297

Amazon0302 2.101 2.410 0.517 0.675 3503.910 4.708 5.017 2244.856 5.135 5.509 2094.263

WikiTalk 1.777 2.125 0.355 0.473 1158.855 2.179 2.133 943.690 2.203 2.513 924.810

Web-Stanford 1.756 2.395 0.429 0.564 1174.984 2.037 2.313 279.236 2.561 2.487 317.115

Amazon0601 3.532 3.924 1.363 1.605 15349.126 9.793 10.038 8065.680 11.669 11.397 8696.212

Web-Google 4.837 5.467 1.533 1.968 26299.714 9.789 10.172 5095.600 11.535 12.979 5128.337

Web-Berkstan 3.239 5.261 0.690 0.869 6301.410 4.670 4.872 1595.033 5.178 5.601 1546.041

 0.01

 0.1

 1

 10

Ro
m

e9
9

P2
p-

Gn
ut

ell
a2

5

P2
p-

Gn
ut

ell
a3

1

W
eb

-N
ot

re
Da

m
e

So
c-

Ep
ini

on
s1

US
A-

ro
ad

-N
Y

US
A-

ro
ad

-B
AY

US
A-

ro
ad

-C
OL

Am
az

on
03

02
W

iki
Ta

lk
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gle
W

eb
-B

er
ks

ta
n

2VC-B algorithmsDST-B
DST-B modified

DLN-B
LHL-B

Ro
m

e9
9

P2
p-

Gn
ut

ell
a2

5

P2
p-

Gn
ut

ell
a3

1

W
eb

-N
ot

re
Da

m
e

So
c-

Ep
ini

on
s1

US
A-

ro
ad

-N
Y

US
A-

ro
ad

-B
AY

US
A-

ro
ad

-C
OL

Am
az

on
03

02
W

iki
Ta

lk
W

eb
-S

ta
nf

or
d

Am
az

on
06

01

W
eb

-G
oo

gle
W

eb
-B

er
ks

ta
n

2VC-B-C and 2C algorithmsDLN-B-C
LHL-B-C
DLN-2C
LHL-2C

 0.01

 0.1

 1

 10

 100

 1000

 10000

1+e4 1+e5 1+e6

2VC-B algorithms
DST-B

DST-B modified
DLN-B
LHL-B

2VDP-B

1+e4 1+e5 1+e6

2VC-B-C and 2C algorithms
DLN-B-C
LHL-B-C

2VDP-B-C
DLN-2C
LHL-2C

2VDP-2C

Fig. 3. Running times in seconds with respect to the number of edges (in log-log scale)
taken by Table 4. The upper plots get a close-up view of the fastest algorithms by not
considering 2VDP-B, 2VDP-B-C and 2VDP-2C.

road networks are very close to be “undirected”: i.e., whenever there is an edge
(x, y), there is also the reverse edge (y, x) (except for one-way roads). Roughly
speaking, road networks mainly consist of the union of 2-vertex-connected com-
ponents, joined together by strong bridges, and their 2-vertex-connected blocks
coincide with their 2-vertex-connected components. In this setting, a sparse
strongly connected subgraph of the condensed graph will preserve both blocks
and components. On the other hand, such a gain on the solution for the road
networks is balanced at the cost of their additional running time.

Sparse Subgraphs for 2-Connectivity in Directed Graphs 165

In addition, our experiments highlight interesting tradeoffs between practical
performance and quality of the obtained solutions. In particular, the fastest
algorithms for the 2VC-B problem are the ones based on loop-nesting trees (DLN-
B and LHL-B), with LHL-B achieving consistently better solutions than DLN-B.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall Inc., Upper Saddle River (1993)

2. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time.
SIAM J. Comput. 28(6), 2117–2132 (1999)

3. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook,
J.R.: Linear-time algorithms for dominators and other path-evaluation problems.
SIAM J. Comput. 38(4), 1533–1573 (2008)

4. Cheriyan, J., Thurimella, R.: Approximating minimum-size k-connected spanning
subgraphs via matching. SIAM J. Comput. 30(2), 528–560 (2000)

5. Edmonds, J.: Edge-disjoint branchings. In: Rustin, B. (ed.) Combinatorial Algo-
rithms, pp. 91–96. Academic Press, New York (1972)

6. Fakcharoenphol, J., Laekhanukit, B.: An o(log2 k)-approximation algorithm for the
k-vertex connected spanning subgraph problem. In: Proceedings of the 40th ACM
Symposium on Theory of Computing, STOC 2008, pp. 153–158, New York, NY,
USA, ACM (2008)

7. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399–404 (1956)

8. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

10. Georgiadis, L.: Approximating the smallest 2-vertex connected spanning subgraph
of a directed graph. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 13–24. Springer, Heidelberg (2011)

11. Georgiadis, L., Italiano, G.F., Laura, L., Parotsidis, N.: 2-Edge connectivity in
directed graphs. SODA 2015, pp. 1988–2005 (2015)

12. Georgiadis, L., Italiano, G.F., Laura, L., Parotsidis, N.: 2-Vertex connectivity in
directed graphs. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B.
(eds.) ICALP 2015. LNCS, vol. 9134, pp. 605–616. Springer, Heidelberg (2015)

13. Georgiadis, L., Italiano, G.F., Papadopoulos, C., Parotsidis, N.: Approximating the
smallest spanning subgraph for 2-edge-connectivity in directed graphs. In: Bansal,
N., Finocchi, I. (eds.) Algorithms - ESA 2015. LNCS, vol. 9294, pp. 582–594.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3 49

14. Georgiadis, L., Italiano, G.F., Parotsidis, N.: A new framework for strong
connectivity and 2-connectivity in directed graphs. CoRR, November 2015.
arXiv:1511.02913

15. Georgiadis, L., Tarjan, R.E.: Dominator tree certification and divergent spanning
trees. ACM Trans. Algorithms 12(1), 11:1–11:42 (2015)

16. Henzinger, M., Krinninger, S., Loitzenbauer, V.: Finding 2-edge and 2-vertex
strongly connected components in quadratic time. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 713–
724. Springer, Heidelberg (2015)

http://dx.doi.org/10.1007/978-3-662-48350-3_49
http://arxiv.org/abs/1511.02913
http://arXiv.org/abs/1511.02913

166 L. Georgiadis et al.

17. Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articu-
lation points in linear time. Theor. Comput. Sci. 447, 74–84 (2012)

18. Jaberi, R.: Computing the 2-blocks of directed graphs. RAIRO-Theor. Inf. Appl.
49(2), 93–119 (2015)

19. Jaberi, R.: On computing the 2-vertex-connected components of directed graphs.
Discrete Applied Mathematics, (2015, to appear)

20. Khuller, S., Raghavachari, B., Young, N.E.: Approximating the minimum equiva-
lent digraph. SIAM J. Comput. 24(4), 859–872 (1995). Announced at SODA 1994,
177–186

21. Khuller, S., Raghavachari, B., Young, N.E.: On strongly connected digraphs with
bounded cycle length. Discrete Appl. Math. 69(3), 281–289 (1996)

22. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In:
Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuristics. Chapman &
Hall/CRC, Boca Raton (2007)

23. Laekhanukit, B., Oveis Gharan, S., Singh, M.: A rounding by sampling approach to
the minimum size k-arc connected subgraph problem. In: Czumaj, A., Mehlhorn,
K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp.
606–616. Springer, Heidelberg (2012)

24. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity, 1st edn.
Cambridge University Press, New York (2008)

25. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

26. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Informatica
6(2), 171–185 (1976)

27. Vetta, A.: Approximating the minimum strongly connected subgraph via a match-
ing lower bound. In: SODA, pp. 417–426 (2001)

28. Zhao, L., Nagamochi, H., Ibaraki, T.: A linear time 5/3-approximation for the min-
imum strongly-connected spanning subgraph problem. Inf. Process. Lett. 86(2),
63–70 (2003)

Worst-Case-Efficient Dynamic Arrays in Practice

Jyrki Katajainen(B)

Department of Computer Science, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen East, Denmark

jyrki@di.ku.dk

Abstract. The basic operations of a dynamic array are operator[],
push back, and pop back. This study is an examination of variations of
dynamic arrays that support these operations at O(1) worst-case cost.
In the literature, many solutions have been proposed, but little informa-
tion is available on their mutual superiority. Most library implementa-
tions only guarantee O(1) amortized cost per operation. Four variations
with good worst-case performance were benchmarked: (1) resizable array
relying on doubling, halving, and incremental copying; (2) level-wise-
allocated pile; (3) sliced array with fixed-capacity slices; and (4) block-
wise-allocated pile. Let |V| denote the size of the values of type V and |V*|
the size of the pointers to values of type V, both measured in bytes. For
an array of n values and a slice of S values, the space requirements of the
considered variations were at most 12|V|n+O(|V*|), 2|V|n+O(|V*| lg n),
|V|(n + S) + O(|V*|n/S), and |V|n + O((|V| + |V*| + |V**|)√n) bytes,
respectively. A sliced array that uses a few per cent of extra space turned
out to be a reasonable solution in practice. In general, for worst-case-
efficient variations, the operations were measurably slower than those for
the C++ standard-library implementation. Moreover, slicing can make the
structures fragile, so measures to make them more robust are proposed.

1 Introduction

A one-dimensional array is a fundamental data structure that is needed in
most applications. Its dynamic variant allows growing and shrinkage at one end.
This paper studies practical implementations of dynamic arrays. Several vari-
ations programmed in C++ [22] for the CPH STL [6] (namespace cphstl) are
described and experimentally compared against each other and to the imple-
mentation shipped with the g++ compiler (namespace std). The class tem-
plate std::vector [4, Clause 23.3.6] is a dynamic array that allows random
access to its values using indices and iterators. The main aim of this study was
to avoid some of the drawbacks known for most existing implementations of
std::vector:

– Support operator[], push back, and pop back at O(1) worst-case cost
(i.e. instead of O(1) amortized cost per push back).

– Ensure that the memory overhead is never more than a few per cent (instead
of 100 % or more).

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 167–183, 2016.
DOI: 10.1007/978-3-319-38851-9 12

168 J. Katajainen

– Make manual space management by the function shrink to fit unnecessary
(i.e. fit the amount of allocated space to the number of elements stored).

– Do not move values because of dynamization (i.e. keep references, pointers,
and iterators to the values valid if possible).

Array. Let x be a variable that names a cell storing a value of type V and let p
be a variable that names a cell storing an address. More specifically, the address
of a value is a pointer to the cell where the value is stored. In the programming
languages like C [13] and C++ [22], the type of p is V*. These concepts are bound
together by the address-of and contents-of operators:

V* operator&(): A call of the address-of operator &x returns the address of the
cell named by x.

V& operator*(): A call of the contents-of operator *p returns a reference to the
value stored at the cell pointed to by p.

Let N be an alias for the type of counters and indices. An array A stores a
sequence of values of the same type V and supports the operations:

construction: Create an array of the given size by allocating space from the
static storage, the stack, or the heap. In the case of the heap, the memory
allocation must be done by calling malloc or operator new[].

destruction: If an array is allocated from the static storage or the stack, it will
be destroyed automatically when the end of its enclosing scope is reached.
But, if an array is allocated from the heap, its space must be explicitly
released by calling free or operator delete[] after the last use.

operator V*(): Convert the name of an array to a pointer to its first value as,
for example, in the assignment V* p = A.

V& Operator[](N i): For an index i, a call of the subscripting operator A[i]
returns *(A + i), i.e. a reference to the value stored at the cell pointed to by
pointer A + i.

The important features of an array are (1) that its size is fixed at construction
time and (2) that its values are stored in a contiguous memory segment. Hence,
the subscripting operator can be supported at constant cost by simple arithmetic,
e.g. by going from the beginning of the array i· |V| bytes forward, where |V|
denotes the size of a value of type V in bytes.

Dynamic Array. A dynamic array can grow and shrink at one end after its
construction. The class template std::vector [4, Clause 23.3.6] is parameterized
with two type parameters:

V: the type of the values stored and
A: the type of the allocator used to allocate space and construct a value in that

place, and to destroy a value and deallocate the reserved space.

Worst-Case-Efficient Dynamic Arrays in Practice 169

The configuration of a dynamic array is specified by two quantities: size, i.e. the
number of values stored, and capacity, i.e. the number of cells allocated for storing
the values. Additionally, std::vector supports iterators that are generalizations
of pointers. In particular, iterator operation begin makes the conversion operator
from the name of an array to the address of its first value superfluous. Let I
be the type of the iterators. Compared to an array, the most important new
operations are the following:

I begin() const: Return an iterator pointing at the first value of A.
I end() const: Return an iterator pointing at the non-existing past-the-end value

of A. If A is empty, then A.begin() ==A.end().
N size() const: Get the number of values stored in A.
void resize(N n): Set the number of values stored in A to n.
N capacity() const: Get the capacity of A.
void reserve(N N): Set the capacity of A to N.
void push-back(V& const x): Append a copy of x at the end of A.
void pop-back(): Destroy the last value of A. Precondition: A is not empty.

Often, begin, end, size, and capacity are easy to realize at O(1) worst-case
cost; resize at O(|n − n′|) worst-case cost, n being the old size and n′ the
new size; and reserve at O(n) worst-case cost. In fact, there should be support
for a larger set of operations (move-based push back, copy/move construction,
copy/move assignment, swap, clear), but we will not discuss this boilerplate
code here. An interested reader may consult the source code for details (see
“Software Availability” at the end of the paper).

The following question-answer (Q-A) pair captures our vision.

Q: What is the best way of implementing a dynamic array in a software library?

A: Provide a set of kernels that can be easily extended to a full implementation
with necessary convenience functions, and let the user of the library select the
kernel that suits best for her or his needs.

To realize this vision, the bridge design pattern [23, Sect. 14.4] has been used
when implementing container classes. Each container class provides a large set
of members, which make the use convenient, but only a small kernel is used
in the implementation of these members. By changing the kernel, which is yet
another type parameter, a user can tailor the container to his exact needs, either
related to safety or performance. As to the safety features, we refer to [11] (ref-
erential integrity) and [22, Sect. 13.6] (exception safety). In this paper we focus
on the space efficiency of the kernels and the time efficiency of the operations
operator[], push back, and pop back. In the worst-case set-up, the space and
time efficiency have not been examined thoroughly in the past (cf. [11, Ex. 2]).

Amortized Solution. The standard way of dynamizing an array is to use doubling
and halving (see, e.g. [5, Sect. 17.4]). The values are stored in a contiguous mem-
ory segment, but when it becomes full, a new, two times larger segment is allo-
cated and all values are moved to there; finally the old segment is released. When

170 J. Katajainen

the current segment is only one quarter full, a new segment that is half the size
of the old one is allocated and all values are moved to the new segment, and then
the old segment is released. Both push back and pop back have a linear cost in
the worst case, but their amortized cost is O(1) since at least n/2 elements must
be added or n/4 elements must be removed before a reorganization occurs again.
Thus, we can charge the O(n) reorganization cost to these modifying operations
and achieve a constant amortized cost per operation. If the data structure stores
n values, the capacity of the current segment can be as large as 4n and during
the reorganization another segment of size 2n must be allocated before the old
can be released. Thus, in the worst-case scenario, the amount of space reserved
for values can be as high as 6n. Naturally, other space-time trade-offs could be
obtained by applying the reorganizations more frequently.

Worst-Case-Efficient Solutions. One way of deamortizing the above solution
is to let, during a reorganization, two memory segments coexist, call them X

and Y, and to move the values from X to Y incrementally in connection with
the forthcoming modifying operations. Imaginarily, the moves happen instantly.
However, if the index of the accessed value is smaller than the size of X, the value
can be found from there. In connection with every push back, if possible, one
value from the end of X is moved to Y at the same relative position and the new
incoming value is placed at the end of Y. In connection with every pop back,
if possible, two values are moved from the end of X to Y at the same relative
positions and the value at the end of Y is popped out. This is repeated until X
becomes empty, after which it can be released and Y can take its place. Such an
incremental reorganization starts whenever only one segment X exists, and it is
either full (then the size of Y will be twice the size of X) or it is one quarter full
(then the size of Y will be half the size of X).

This solution—which we call a resizable array—is part of computing folklore;
we use it as a baseline for other worst-case-efficient implementations. Because the
two segments coexist in memory, in the worst-case scenario, the amount of extra
space used can be even larger than that needed in the amortized case. Namely,
if X is one quarter full, it can take (1/8)n pop back operations before X will be
released. Therefore, just before X is released, the amount of space allocated for
it is about 8n and the amount of space allocated for Y is about 4n. Based on
this discussion, we can conclude that, in the worst case, the amount of space
allocated for values is upper bounded by 12n and the leading constant in this
bound cannot be improved without changing the reorganization strategy.

As to the space consumption, the folklore solution is far from optimal.
Namely, Brodnik et al. [3] proved that, when memory is to be allocated block-
wise, for a dynamic array of size n, the space bound n + Ω(

√
n) is optimal,

n + O(
√

n) is achievable, and at the same time the operations operator[],
push back and pop back can be supported at O(1) worst-case cost.

Test Set-up. In our experiments we considered the following implementations:
std::vector: This was the standard-library implementation that shipped with

our g++ compiler (version 4.8.4). It stored the values in one segment, push back

Worst-Case-Efficient Dynamic Arrays in Practice 171

relied on doubling, and pop back was a noop—memory was released only at
the time of destruction. Compared to the other alternatives, this version only
supported push back at O(1) amortized cost.

cphstl::resizable array: This solution relied on doubling, halving, and incre-
mental copying as described above.

cphstl::pile: This version implemented the level-wise-allocated pile described
in [9]. The data was split into a logarithmic number of contiguous segments,
values were not moved due to reorganizations, and the three operations of
interest were all supported at O(1) worst-case cost.

cphstl::sliced array: This version imitated the standard-library implementa-
tion of a double-ended queue. It was like a page table where the directory
was implemented as a resizable array and the pages (memory segments) were
arrays of fixed capacity (512 values).

cphstl::space efficient array: This version was as the block-wise-allocated pile
described in [9], but the implementation was simplified by seeing it as a pile
of hashed array trees [20]. This version matched the space and time bounds
proved to be optimal in [3].

These implementations were benchmarked on a laptop computer that had the
following hardware and software specifications at the time of experimentation:

processor: Intel R© CoreTM i5-2520M CPU @ 2.50GHz × 4
word size: 64 bits
L1 instruction cache: 32 KB, 64 B per line, 8-way associative
L1 data cache: 32 KB, 64 B per line, 8-way associative
L2 cache: 256 KB, 64 B per line, 8-way associative
L3 cache: 3.1 MB, 64 B per line, 12-way associative
main memory: 3.8 GB, 8 KB per page
operating system: Ubuntu 14.04 LTS
Linux kernel: 3.13.0-83-generic
compiler: g++ version 4.8.4
compiler options: -O3 -std=c++11 -Wall -DNDEBUG -msse4.2 -mabm

In each test, an array of integers of type int was used as input. The average
running time, the number of value moves, and the amount of space were the
performance indicators considered. In the experiments, only four problem sizes
were considered: 210, 215, 220, and 225. For a problem of size n, each experiment
was repeated 226/n (or 227/n times) and the mean was reported.

2 Motivating Example: Reverse

Consider the function reverse which reverses the order of values in a sequence.
According to the C++ standard [4, Clause 25.3.10], its interface is as follows:

template <typename I>
void reverse(I , I) ;

172 J. Katajainen

The iterators of type I are assumed to be bidirectional or stronger. This interface
forces the algorithm to perform the permutation in-place. For this problem, for
an input of size n, �(3/2)n� is known to be a lower bound for the number of
value moves performed (see, for example, [21, Theorem 11.1]). To surpass this
lower bound, we use a more natural interface:

template <typename S>
void reverse(S&) ;

Now the input is a reference to a sequence of type S. In Fig. 1, we provide
two programs that carry out the reversal. The swap-based implementation is
the one used in most standard-library implementations. However, the move-
based implementation is more interesting. It heavily relies on the fact that the
underlying sequence (1) is space efficient and (2) does not perform any value
moves because of reorganizations. If this is the case, values are just moved once
from one sequence to another and at the end the handles to these sequences are
swapped.

template <typename I>
void reverse(I f , I �) {

while (true) {
i f (f == � or f == - - �) {

return;
}
else {
std : :swap(∗f , ∗�) ;
++f ;

}
}

}

template <typename S>
void reverse(S& s) {

reverse(s .begin() , s .end()) ;
}

template <typename S , typename T>
void reverse_copy(S& in , T& out) {

auto n = in .size() ;
while (n =�== 0) {

- - n ;
out .push_back(std : :move(in [n])) ;
in .pop_back() ;

}
}

template <typename S>
void reverse(S& s) {

S t ;
reverse_copy(s , t) ;
s .swap(t) ;

}

Fig. 1. Swap-based reverse (left) and move-based reverse (right)

A sliced array maintains a resizable array of pointers to contiguous memory
segments, each of the same size. Only the last segment may be partially full.
When cphstl::sliced array is used in the move-based algorithm, one slice
will be non-full from both sequences. When a slice is processed in the input,
it can be released and reused in the output. Of course, both algorithms could
also be run using std::vector. For the swap-based algorithm, there is no space
penalty since the algorithm is fully in-place, but for std::vector the move-
based algorithm will use much more space since the space is released first at the
time of destruction.

Worst-Case-Efficient Dynamic Arrays in Practice 173

Table 1. Characteristics of the two reversal algorithms; n denotes the size of the input
and S the size of a slice used by cpshtl::sliced array; – means that std::vector

does not give any space guarantee; the running times were measured for n = 225

Reverse Array Moves Time/n [ns] Values Pointers

Swap-based Vector 1.5n 0.88 – O(1)

Swap-based Sliced 1.5n 2.25 n + S O(n/S)

Move-based Vector 2n 3.83 – O(1)

Move-based Sliced 1n 5.17 n + 2S O(n/S)

The characteristics of the algorithms for std::vector and cphstl::
sliced array are summarized in Table 1. These simple experiments show the
following: (1) When move assignments are expensive, one should consider using
the move-based reversal algorithm; (2) For std::vector, the subscripting oper-
ator is fast; (3) Reorganizations that move data behind the scenes may harm
the performance.

3 Space Efficiency

In principle, a dynamic array that is asymptotically optimal with respect to
the amount of extra space used is conceptually simple. However, it seems that
the research articles (see, e.g. [3,7,9,11,19]), where such structures have been
proposed, have failed to disseminate this simplicity to the textbook authors since
such a data structure is seldom described in a textbook. Let us make yet another
attempt to capture the essence of such a structure.

Hashed Array Tree. Assume that the maximum capacity of the array is fixed
beforehand; let it be N . A hashed array tree, introduced by Sitarski [20], is a
sliced array where each slice is set to be of size O(

√
N). To make the subscript-

ing operator fast, it is advantageous to let the size be a power of two. Also, the
directory will be of size O(

√
N) (i.e. this extra space is solely used for pointers)

and there will be at most one non-full memory segment of size O(
√

N) (i.e. this
extra space is used for data). From a sliced array this structure inherits the prop-
erty that the values are never moved because of dynamization. If wanted, the
structure could be made fully dynamic by quadrupling and quartering the cur-
rent capacity whenever necessary [14], but after this the performance guarantees
would be amortized, not worst-case.

Pile of Arrays. This data structure was introduced in [9] where it was called a
level-wise-allocated pile; we call it simply cphstl::pile. It took its inspiration
from the binary heap of Williams [24]. Instead of using a single memory segment
for storing the values, the data is split into a logarithmic number of contiguous
memory segments, which increase exponentially in size and of which only the
last may be partially full. In a sense, this is like a binary heap, but each level of

174 J. Katajainen

 0

 50

 100

 150

 200

1×106 3×106 5×106 7×106 9×106

sp
ac

e
ov

er
he

ad
 [

%
]

push_back’s [n]

The amount of extra space in use at a specific time

resizable
vector

pile
sliced

 space efficient

0.1

1.0

1×106 3×106

Fig. 2. The amount of extra space in use after n push back operations for different array
implementations; inside the half circle the curves for the two space-efficient alternatives
are zoomed out

this heap is a separate array. A directory is needed for storing pointers to the
allocated memory segments. Since the size of this directory is only logarithmic,
the space for it can often be allocated statically. In a fully dynamic solution the
directory is implemented as a resizable array. When there are n values, the size
of last non-full memory segment is at most n, so this is an upper bound for
the amount of extra space needed for values. In order to realize the subscripting
operator at O(1) worst-case cost, it must be assumed that the whole-number
logarithm of a positive integer can be computed at O(1) worst-case cost.

Pile of Hashed Array Trees. In [9], this data structure was called a block-wise-
allocated pile; here we call it cphstl::space efficient array. At each level of
a pile, the maximum capacity is fixed. Hence, by implementing each level as a
hashed array tree, we get a dynamic array that needs extra space for at most
O(

√
n) pointers and at most O(

√
n) values, n being the number of values stored.

Space Test. To understand the space efficiency of different array implementations
in practice, we performed a space test where we executed n push back operations
and measured the amount of memory in use at the end. We repeated this for
several values of n. The obtained results are shown in Fig. 2.

More precisely, we measured the memory overhead (i.e. the amount of space
used minus the amount of space used by the input) in per cents. The numbers
varied between one per mill and 200 per cent, the latter meaning that the amount
of memory reserved was large enough to store 3n values. The measurements were
carried out by using an allocator that counted the number of bytes allocated;
it delagated its actual work to std::allocator. During its lifetime, a data

Worst-Case-Efficient Dynamic Arrays in Practice 175

contiguous array

V∗ index_to_address(N i) const {
return A + i ;

}

resizable array

V∗ index_to_address(N i) const {
i f (i < X_size) {

return X + i ;
}
return Y + i ;

}

pile

N whole_number_logarithm(N x) {
asm(”bsr %0, %0\n”

: ”=r”(x)
: ”0” (x)

) ;
return x ;

}

V∗ index_to_address(N i) const {
i f (i < 2) {

return directory [0] + i ;
}
N h= whole_number_logarithm(i) ;
return directory [h] + i − (1 << h) ;

}

sliced array

V∗ index_to_address(N i) const {
return directory [i >> shift] + (i & mask) ;

}

space-efficient array

V∗ index_to_address(N i) const {
i f (i < 2) {

return directory [0] .index_to_address(i) ;
}
N h= whole_number_logarithm(i) ;
N Δ = i− (1 << h) ;
return directory [h] .index_to_address(Δ) ;

}

Fig. 3. Implementation of the index to address function needed by operator[], for
different arrays; the meaning of the class variables should be clear from the context

structure could use several allocators. All these allocators had the same base
and it was this base that was responsible for collecting and reporting the final
counts.

In theory, there is a significant difference between the extra space of O(
√

n)
and O(n) values and/or pointers, but, as seen from the curves in Fig. 2, the
space overhead of n/c pointers, for a large integer c, and much fewer values may
be equally good in practice. For both space-efficient alternatives, the observed
space overhead was less than 4 %, often even less. For the implementations based
on doubling, the space overhead could be as high as 100 %. In the space test,
std::vector and cphstl::pile had exactly the same space overhead for all
values of n. Even in this simple test, for a resizable array, the space overhead
could be as high as 200 %.

4 Subscripting Operator

The key feature of an array is that it supports random access to its values at
constant worst-case cost. Moreover, this operation should be fast because it is
employed so frequently. In all our implementations, the subscripting operator
was implemented in an identical way:

V& operator[] (N i) {
return ∗index_to_address(i) ;

}

176 J. Katajainen

As the name suggests, the function index to address converts the given index
to a pointer to the position where the desired value resizes. In Fig. 3, implemen-
tations of this function are shown for different arrays.

Our preliminary experiments revealed that, for a pile and its space-efficient
variant, the whole-number-logarithm function needed by the index to address
function had to be implemented using inline assembly code. Otherwise, the sub-
scripting operator would have been unacceptably slow.

Sorting Tests. After code tuning, we performed two simple tests that used differ-
ent kinds of arrays in sorting. These benchmarks exercised the subscripting oper-
ator extensively. In the introsort test, we called the standard-library std::sort
routine (introsort [16]) for a sequence of n values. The purpose of this test was
to determine the efficiency of sequential access. In the heapsort test, we called
the standard-library std::partial sort routine (heapsort [24]) for a sequence
of n values. Here the purpose was to determine the efficiency of random access.
In these sorting tests, we measured the overall running time for different values
of n, and we report the average running time per n lg n. In each test, the input
was a random permutation of integers 〈0, 1, . . . , n − 1〉.

The results for introsort are given in Table 2 and those for heapsort in Table 3.
It was expected that more complicated code would have its consequences for the
running times. Compared to std::vector, integer sorting becomes a constant fac-
tor slower with these worst-case-efficient arrays. For a pile and its space-efficient
variant, the cost of computing the whole-number logarithm in connection with
each access is noticeable, even though we implemented it in assembly language.
For all arrays, random access (trusted by heapsort) was significantly slower than
sequential access (mostly used by introsort).

Table 2. Results of the introsort tests; running time per n lg n [ns]

n Vector Resizable Pile Sliced Space efficient

210 3.56 6.18 9.31 8.35 12.0

215 3.56 5.96 8.99 8.05 11.6

220 3.48 5.84 8.80 7.91 11.3

225 3.48 5.79 8.67 7.80 11.2

5 Iterator Operators

An iterator is a generalization of a pointer that specifies a position when tra-
versing a sequence (for an introduction to iterators and iterator categories, see,
e.g. [21, Chapter 10]). Let I be the type of the iterators under consideration and
let Z be the type specifying a distance between two positions. In this review we
concentrate on three operations that have direct counterparts for pointers.

Worst-Case-Efficient Dynamic Arrays in Practice 177

Table 3. Results of the heapsort tests; running time per n lg n [ns]

n Vector Resizable Pile Sliced Space efficient

210 4.83 8.89 17.1 12.5 20.3

215 4.94 8.47 16.6 12.3 19.8

220 7.18 10.7 17.8 15.7 21.8

225 23.5 27.7 33.3 37.0 39.8

V& operator*() const: The deferencing operator has the same semantics as the
contents-of operator for pointers, i.e. it returns a reference to the value stored
at the current position.

I& operator++(): The pre-increment operator has the same semantics as the
corresponding pointer operator, i.e. it returns a reference to an iterator that
points to the successor of the value stored at the current position.

I& operator+=(Z i): The addition-assignment operator is used to move the
iterator to the position that refers to the value that is i positions forward
(or backward if i is negative) from the current position.

Traditionally, the iterator support is provided by implementing two iterator
classes, one for mutable iterators and another for immutable iterators, inside
every container class in the library in question (see, e.g. the implementations
provided in [18]). This leads to a lot of redundant code. Austern [1] proposed
an improvement were the mutable and const versions were implemented in one
generic class. We have gone one step further [8]: We provide one generic iterator
class template that can be used to get both iterator variants for any container
that supports the subscript operator and the function size.

Rank Iterators. In the class template cphstl::rank iterator, we use three
concepts: (1) A rank is an integer which specifies the number of values that
precede a value in the given sequence; (2) An owner is the sequence where
the referred value resizes; (3) A sentinel is a rank of a value whose position is
unspecified. A rank iterator is implemented as a (pointer, rank) pair where the
pointer refers to the owner of the encapsulated value and the rank is the index
of that value within the owner. A sentinel is used for defensive-programming
purposes to perform bounds checking.

178 J. Katajainen

static N constexpr sentinel= std : :
numeric_limits<N>::max() ;

V& operator∗() const {
return (∗owner_p) [rank] ;

}

rank_iterator& operator++ () {
++rank ;
i f (rank == (∗owner_p) .size()) {
rank = sentinel ;

}
return ∗this ;

}

rank_iterator& operator+=(Z n) {
Z new_place= rank ;
i f (rank == sentinel) {
new_place = (∗owner_p) .size() ;

}
new_place += n ;
i f (new_place < 0) {
rank = sentinel ;
return ∗this ;

}
rank = N(new_place) ;
i f (rank ≥ (∗owner_p) .size()) {
rank = sentinel ;

}
return ∗this ;

}

Fig. 4. Implementation of the basic iterator operations for rank iterators; owner p and
rank are the class variables denoting a pointer to the owner and the rank, respectively

For a sequence of type S, the types of its iterators are as follows:

using iterator = cphstl::rank_iterator<S>;
using const_iterator = cphstl::rank_iterator<S const>;

These classes provide the full functionality of a random-access iterator. The
implementations of the three important member functions are given in Fig. 4.

Iterator Tests. When analysing the efficiency of rank iterators, we used two
tests. In the sequential-access iterator test, we initialized an array of size n by
visiting each position once. This iterator test exercised derefencing (operator*)
and successor (operator++) operators. In the random-access iterator test, we also
initialized an array of size n by visiting each position once, but there was a
gap of 617 values between consecutive visits. This iterator test exercised def-
erencing (operator*) and addition-assignment (operator+=) operators. All other
calculations were done using integers (e.g. no iterator comparisons were done).

In our preliminary experiments, we compared the performance of
std::vector and cphstl::contiguous array, of which the latter used our rank
iterators. For these data structures the iterator operations were equally fast, so
our generic rank iterator has only little, if any, overhead.

The results of the iterator tests are given in Tables 4 and 5. As to the
cost of slicing, on an average, even for �n/512	 slices, the time overhead is
about a factor of two. We consider this to be good taking into account that
for cphstl::sliced array the space overhead is never extremely high.

Worst-Case-Efficient Dynamic Arrays in Practice 179

Table 4. Results of the sequential-access iterator tests; running time per n [ns]

n Vector Resizable Pile Sliced Space efficient

215 220 225 0.82 1.50 3.15 1.80 3.99

Table 5. Results of the random-access iterator tests; running time per n [ns]

n Vector Resizable Pile Sliced Space efficient

210 1.54 1.90 3.44 2.72 5.91

215 2.54 2.55 3.20 2.94 5.66

220 10.9 10.9 11.2 11.3 11.4

225 14.4 14.4 14.6 17.2 16.7

6 Modifying Operations

Modification Tests. In the growth test, we executed n push back operations
repeatedly. In the shrinkage test, we created a sequence of size n and then mea-
sured the running time used by n repeated pop back operations. As before, we
measured the overall running time and report the average running time per
operation for different values of n. The obtained results are shown in Tables 6
and 7.

Compared to an amortized solution that kept the difference between the
capacity and size within a permitted range (not discussed earlier), for a resiz-
able array relying on doubling, halving, and incremental copying, the aver-
age cost of push back increased a bit since we could not rely on copying of
values in chunks. Also, when we release memory, pop back is no more free
of cost. On the other hand, cphstl::pile and cphstl::sliced array do
not move any values, so they are faster than cphstl::resizable array. For
cphstl::space efficient array, the relatively large running times are a con-
sequence of complicated code.

Table 6. Results of the growth tests; running time per n [ns]

n Vector Resizable Pile Sliced Space efficient

210 4.23 5.18 5.65 4.65 10.3

215 3.52 6.39 5.16 4.63 7.35

220 4.78 8.48 5.12 4.60 6.92

225 4.15 8.42 4.55 4.58 6.75

180 J. Katajainen

Table 7. Results of the shrinkage tests; running time per n [ns]

n Vector Resizable Pile Sliced Space efficient

210 0.0 3.62 3.08 2.56 8.15

215 0.0 2.99 2.15 2.60 5.55

220 0.0 2.86 2.27 2.41 5.17

225 0.0 2.91 2.11 2.43 5.07

7 Robustness

When our kernels are used to build a container with the same functionality as
std::vector, we cannot be standard compliant in one respect [4, Clause 23.3.6]:
The values are no more stored in a contiguous memory segment. In this section
we consider situations where slicing and slice boundaries can make the structures
fragile. We also describe measures that will make the structures more robust.

Break-Down Tests. In our first malicious experiment, we created many small
arrays and studied at which point the driver crashed. Recall that our test com-
puter had 3.8 GB of main memory. The actual experiment was as follows:

1. Create a new empty array (elements of type int, four bytes each).
2. Insert 220 elements into this array using push back.
3. Remove 220 − 1 elements from this array using pop back.
4. Repeat this until we get an out-of-memory signal.

That is, how many single-element arrays one can have simultaneously in memory,
if the arrays have been bigger at some earlier point in time?

The results obtained varied a bit depending on the memory usage of the
other processes run on the test computer, but the numbers on Table 8 speak
for themselves. In this kind of application environment, the approach of not
releasing allocated memory can have disastrous consequences. To improve the
situation with the sliced array, the slices could be made smaller or the first slice
could be implemented as a resizable array.

Gap-Crossing Tests. Because of slicing, the worst-case running of one individual
push back and pop back depends on the efficiency of memory management. In
the theoretical analysis, we assumed that the allocator operations allocate that
allocates a memory segment and deallocate that releases it have the worst-case

Table 8. Results of the break-down tests; number of repetitions before receiving an
out-of-memory signal

Vector Resizable Pile Sliced Space efficient

804 33 554 432 16 777 216 1 048 448 8 388 473

Worst-Case-Efficient Dynamic Arrays in Practice 181

Table 9. Results of the gap-crossing tests; average running time per (pop back,
push back) pair [ns]; number of identified gaps in brackets

n Vector Resizable Pile Sliced Space efficient

210 4.48 [11] 3.39 [11] 9.48 [10] 46.7 [2] 31.6 [62]

215 4.53 [16] 3.85 [16] 8.16 [15] 47.9 [64] 24.5 [382]

220 4.31 [21] 3.64 [21] 7.60 [20] 49.6 [2 048] 29.6 [2 046]

225 4.30 [26] 3.46 [26] 118 [25] 49.1 [65 536] 24.4 [12 286]

cost of O(1), independent of the size of the processed segment. By running the
instruction-cost micro-benchmark from Bentley’s book [2, Appendix 3], it was
possible to verify that this assumption did not hold in our test environment.

To see whether the memory-management costs are visible when crossing the
gaps between the slices, we carried out one more experiment:

1. Identify where the segment boundaries are.
2. Execute a sequence of push back operations, but after crossing a gap, execute

many additional pairs of pop back and push back operations.
3. Report the average running time per (pop back, push back) pair.

The obtained results (Table 9) should be compared to those for push back
(Table 6) and pop back (Table 7) obtained under non-malicious conditions. Of
the tested arrays, a resizable array was the most robust since it deamortized the
cost of allocations and deallocations over a sequence of modifying operations,
and each of these operations touched at most three elements every time. As the
opposite, for the largest instance, a pile became very slow because it was forced
to allocate and deallocate big chunks of memory repeatedly. The approach used
in a resizable array could be used to make the other structures more robust, too.
Instead of releasing a segment immediately after it becomes empty, some delay
could be introduced so that allocations followed by deallocations were avoided.

8 Discussion

To summarize, a theoretician may think that a solution guaranteeing the worst-
case cost of O(1) per operation and the memory overhead of O(

√
n) would be

preferable since both bounds are optimal. However, based on the results of our
experiments, we have to conclude that, when both the time and space efficiency
are important, a sliced array is a good solution. Our implementation supports all
the basic operations at O(1) worst-case cost, since we used a worst-case-efficient
resizable array to implement the directory, and the observed memory overhead
was less than 2 % when n was large, although asymptotically, when the slice size
is S, extra space may be needed for S values and O(n/S) pointers. In general,
the cutting of the data into slices did not make the operations much slower;
in a sequential scan it was not a problem to skip over �n/S� slice boundaries.

182 J. Katajainen

One reason for inefficiency seems to be the complexity of the formula used for
computing the address of the cell where the requested value is. On the other
hand, when implementating an industry-strength kernel, special measures must
be taken to avoid bad behaviour in situations where subsequent operations are
forced to jump back and forth over slice boundaries.

Software Availability

The programs discussed and benchmarked are available via the home page of
the CPH STL (www.cphstl.dk) in the form of a technical report and a tar file.

Acknowledgements. This work builds on the work of many students who imple-
mented the prototypes of the programs discussed in this paper. From the version-
control system of the CPH STL, I could extract the following names—I thank them all:
Tina A. G. Andersen, Filip Bruman, Marc Framvig-Antonsen, Ulrik Schou Jörgensen,
Mads D. Kristensen [14], Daniel P. Larsen, Andreas Milton Maniotis [8], Bjarke Buur
Mortensen [9,10,15], Michael Neidhardt [17], Jan Presz, Wojciech Sikora-Kobylinski,
Bo Simonsen [11,12,17], Jens Peter Svensson, Mikkel Thomsen, Claus Ullerlund, Bue
Vedel-Larsen, and Christian Wolfgang.

References

1. Austern, M.: Defining iterators and const iterators. C/C++ User’s J. 19(1), 74–79
(2001)

2. Bentley, J.: Programming Pearls, 2nd edn. Addison Wesley Longman Inc., Reading
(2000)

3. Brodnik, A., Carlsson, S., Demaine, E.D., Munro, J.I., Sedgewick, R.D.: Resizable
arrays in optimal time and space. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia,
R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 37–48. Springer, Heidelberg (1999)

4. The C++ Standards Committee: Standard for Programming Language C++. Work-
ing Draft N4296, ISO/IEC (2014)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

6. The CPH STL: Department of Computer Science, University of Copenhagen (2000–
2016). http://cphstl.dk/

7. Goodrich, M.T., Kloss II, J.G.: Tiered vectors: efficient dynamic arrays for rank-
based sequences. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS
1999. LNCS, vol. 1663, pp. 205–216. Springer, Heidelberg (1999)

8. Katajainen, J., Maniotis, A.M.: Conceptual frameworks for constructing iterators
for compound data structures–electronic appendix I: component-iterator and rank-
iterator classes. CPH STL Report 2012–3, Department of Computer Science, Uni-
versity of Copenhagen, Copenhagen (2012)

9. Katajainen, J., Mortensen, B.B.: Experiences with the design and implementation
of space-efficient deques. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A.
(eds.) WAE 2001. LNCS, vol. 2141, pp. 39–50. Springer, Heidelberg (2001)

10. Katajainen, J., Mortensen, B.B.: Experiences with the design and implementa-
tion of space-efficient deques. CPH STL Report 2001–7, Department of Computer
Science, University of Copenhagen, Copenhagen (2001)

www.cphstl.dk
http://cphstl.dk/

Worst-Case-Efficient Dynamic Arrays in Practice 183

11. Katajainen, J., Simonsen, B.: Adaptable component frameworks: using vector

from the C++ standard library as an example. In: Jansson, P., Schupp, S. (eds.)
2009 ACM SIGPLAN Workshop on Generic Programming, pp. 13–24. ACM, New
York (2009)

12. Katajainen, J., Simonsen, B.: Vector framework: electronic appendix. CPH STL
Report 2009–4, Department of Computer Science, University of Copenhagen,
Copenhagen (2009)

13. Kernighan, B.W., Ritchie, D.M.: The C Programming Language, 2nd edn. Prentice
Hall PTR, Englewood Cliffs (1988)

14. Kristensen, M.D.: Vector implementation for the CPH STL. CPH STL Report
2004–2, Department of Computer Science, University of Copenhagen, Copenhagen
(2004)

15. Mortensen, B.B.: The deque class in the Copenhagen STL: first attempt. CPH
STL Report 2001–4, Department of Computer Science, University of Copenhagen,
Copenhagen (2001)

16. Musser, D.R.: Introspective sorting and selection algorithms. Software Pract.
Exper. 27(8), 983–993 (1997)

17. Neidhardt, M., Simonsen, B.: Extending the CPH STL with LEDA APIs. CPH
STL Report 2009–8, Department of Computer Science, University of Copenhagen,
Copenhagen (2009)

18. Plauger, P.J., Stepanov, A.A., Lee, M., Musser, D.R.: The C++ Standard Template
Library. Prentice Hall PTR, Upper Saddle River (2001)

19. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001)

20. Sitarski, E.: Algorithm alley: HATs: hashed array trees: fast variable-length arrays.
Dr. Dobb’s J. 21(11) (1996). http://www.drdobbs.com/database/algorithm-alley/
184409965

21. Stepanov, A.A., Rose, D.E.: From Mathematics to Generic Programming. Pearson
Education Inc., Upper Saddle River (2015)

22. Stroustrup, B.: The C++ Programming Language, 4th edn. Pearson Education Inc.,
Upper Saddle River (2013)

23. Vandervoorde, D., Josuttis, N.M.: C++ Templates: The Complete Guide. Pearson
Education Inc., Boston (2003)

24. Williams, J.W.J.: Algorithm 232: heapsort. Commun. ACM 7(6), 347–348 (1964)

http://www.drdobbs.com/database/algorithm-alley/184409965
http://www.drdobbs.com/database/algorithm-alley/184409965

On the Solution of Circulant Weighing
Matrices Problems Using Algorithm
Portfolios on Multi-core Processors

Ilias S. Kotsireas1, Panos M. Pardalos2, Konstantinos E. Parsopoulos3(B),
and Dimitris Souravlias3

1 Department of Physics and Computer Science,
Wilfrid Laurier University, Waterloo, ON, Canada

ikotsire@wlu.ca
2 Department of Industrial and Systems Engineering,

University of Florida, Gainesville, FL, USA
pardalos@ufl.edu

3 Department of Computer Science and Engineering,
University of Ioannina, Ioannina, Greece

{kostasp,dsouravl}@cse.uoi.gr

Abstract. Research on the existence of specific classes of combinatorial
matrices such as the Circulant Weighing Matrices (CWMs) lies in the
core of diverse theoretical and computational efforts. Modern metaheuris-
tics have proved to be valuable tools for solving such problems. Recently,
parallel Algorithm Portfolios (APs) composed of established search algo-
rithms and sophisticated resource allocation procedures offered signifi-
cant improvements in terms of time efficiency and solution quality. The
present work aims at shedding further light on the latent quality of paral-
lel APs on solving CWM problems. For this purpose, new AP configura-
tions are considered along with specialized procedures that can enhance
their performance. Experimental evaluation is conducted on a compu-
tationally restrictive, yet widely accessible, multi-core processor compu-
tational environment. Statistical analysis is used to reveal performance
trends and extract useful conclusions.

Keywords: Algorithm Portfolios · Circulant Weighing Matrices ·
Computational optimization · Multi-core processors

1 Introduction

Combinatorial matrices are involved in various significant applications rang-
ing from statistical experimentation to coding theory and quantum information
processing [3,8,23]. Special types of combinatorial matrices have been exten-
sively investigated. Circulant Weighing Matrices (CWMs) constitute an impor-
tant class in this framework. The existence of finite or infinite classes of CWMs
has been the core subject in several theoretical works [2,4,9,10,12].

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 184–200, 2016.
DOI: 10.1007/978-3-319-38851-9 13

Algorithm Portfolios for Circulant Weighing Matrices Problems 185

Metaheuristics have proved to be very useful in cases where theoretical
approaches have not provided adequate insight. The application of metaheuris-
tics requires the transformation of the CWM existence problem to a combina-
torial optimization task [6,7,18,19,21,22]. Recently, prevailing metaheuristics
have been used in the Algorithm Portfolios (APs) framework [16,17] for solv-
ing CWM problems in parallel computational environments [28]. Sophisticated
resource allocation schemes based on market trading procedures were used in
those approaches, achieving high standards of performance. The provided results
suggested that APs can remarkably enhance the time performance and quality of
solution of their constituent algorithms in CWM problems [28]. Also, they ver-
ified the domination of trajectory-based approaches against population-based
stochastic algorithms.

The present work aims at extending the previous studies by offering further
insight regarding the performance of interactive and non-interactive parallel APs.
Based on previous findings, the established Tabu Search (TS) algorithm and the
previously unused Iterated Local Search (ILS) approach compose the consid-
ered APs. Additionally, a sequence-comparison scheme that prevents TS from
revisiting classes of equivalent sequences is introduced.

The experimental evaluation of the APs is conducted on a low-specification
parallel hardware, i.e., a common multi-core processor, in contrast to the abun-
dant grid-computing environment of previous studies [28]. The overall perfor-
mance of the APs is investigated in terms of time efficiency and solution quality
on two representative CWM problems. Additionally, the impact of the number
of concurrently running algorithms on the overall performance is investigated.
Diverse homogeneous and heterogeneous APs with various parameter configura-
tions are also considered.

The rest of the paper is structured as follows: Sect. 2 formulates the CWM
problem as a combinatorial optimization task. The employed individual algo-
rithms and APs are described in Sect. 3. Experimental analysis is reported in
Sect. 4, and the paper concludes in Sect. 5.

2 Circulant Weighing Matrices

Circulant Weighing Matrices (CWMs) [4] refer to a special type of combinatorial
matrices. A square n × n matrix W defined as,

W = (wij) , wij ∈ {−1, 0, 1}, i, j = 1, . . . , n,

is a CWM of order n and weight k2, denoted as CW (n, k2), if it satisfies the
condition,

W W� = k In,

where In is the identity matrix of size n, and W� is the transpose of W . Thus, a
CWM is primarily a weighing matrix. Additionally, each row of a CWM, except
the first one, is obtained through a right cyclic shift of its preceding row. Hence,
the complete matrix can be fully defined by its first row. A significant amount

186 I.S. Kotsireas et al.

of research has been devoted to theoretical and experimental investigations on
the existence of CWMs of various orders and weights [1,5,10,29].

Metaheuristics have been employed in cases where theoretical efforts have
been fruitless. In these cases, the problem is solved as a permutation optimization
one, aiming at the detection of the first row of the considered CWM type. The
underlying objective function is based on the concept of Periodic Autocorrelation
Function (PAF) [20]. The defining row of a CWM is a ternary sequence,

x = (x1, x2, . . . , xn) ∈ {−1, 0,+1}n,

of length n, and its PAF values are defined as,

PAF x (s) =
n∑

i=1

xi xi+s, s = 1, 2, . . . ,
⌈n

2

⌉
. (1)

CWMs with zero PAF values have special research interest [19,20,28]. In
addition, it has been proved that admissible sequences have exactly k2 non-zero
components, with k(k + 1)/2 components being equal to +1 and k(k − 1)/2
components assuming the −1 value.

Let S(n,k) be the search space that contains all admissible ternary sequences
that define CWMs of order n and weight k2. Then, the objective function of the
corresponding combinatorial optimization problem is defined as,

min
x∈S(n,k)

f(x) =
�n

2 �∑

s=1

|PAF x (s)| =
�n

2 �∑

s=1

∣
∣
∣
∣
∣

n∑

i=1

xi xi+s

∣
∣
∣
∣
∣
, (2)

where i+s is taken modulo n when i+s > n. Obviously, the global minimizer of
this optimization problem is a sequence with zero PAF values for all s. Experi-
mental evidence has shown that the difficulty of a CW (n, k2) problem increases
with the order n (length of sequence) and, particularly, with the weight k2.

3 Employed Algorithms

In the following paragraphs, we briefly describe the employed individual algo-
rithms as well as the considered APs. For presentation purposes, we assume that
the considered optimization problem is given in the general form,

min
x∈S

f(x),

where S in the corresponding search space.

3.1 Iterated Local Search

Iterated Local Search (ILS) defines a simple and straightforward framework for
probing complex search spaces. Its main requirement is the use of a suitable

Algorithm Portfolios for Circulant Weighing Matrices Problems 187

Table 1. Pseudocode of the ILS algorithms.

Iterated Local Search (ILS)

1 : xini ← GetInitialSequence(S)

2 : x∗ ← LocalSearch(xini)

3 : S∗ ← {x∗}
4 : While (not stopping) Do

5 : If (rand() < ρ) Then

6 : xini ← GetInitialSequence(S∗)

7 : Else

8 : xini ← GetInitialSequence(S)

9 : End If

10 : x∗ ← LocalSearch(xini)

11 : S∗ ← S∗ ∪ {x∗}
12 : End While

13 : xbest ← arg minx∗∈S∗ f(x∗)

14 : Report xbest

local search procedure for the problem at hand. The local search is initiated to
a randomly selected sequence x ini and generates a trajectory that eventually
reaches the nearest local minimizer x ∗. This is achieved by iteratively selecting
downhill moves within the close neighborhood of the current sequence.

In discrete spaces such as the ones in the studied CWM problems, the close
neighborhood of a sequence is defined as the finite set of sequences with the
smallest possible distance from it. Typically, Hamming distance is used for
this purpose. The local search procedure usually scans the whole neighbor-
hood of the current sequence and makes the move with the highest improve-
ment (neighborhood-best strategy). Alternatively, it can make a move to the first
improving sequence found in the neighborhood (first-best strategy). The detected
local minimizer is archived in a set S∗. Then, a new trajectory is started from a
new initial sequence [24].

In its simplest form, ILS generates new trajectories by randomly sampling
new initial sequences in the search space according to a (typically Uniform) dis-
tribution. This is the well-known Random Restarts approach. The most common
stopping criteria are the detection of a prespecified number of local minimiz-
ers or a maximum computational budget in terms of running time or function
evaluations. Although random restarts were shown to be sufficient in various
problems, relevant research suggests that efficiency can be increased if already
detected local minimizers from the set S∗ are exploited during the search [24].
Typically, this refers to the generation of new initial sequences by perturbing
previously detected local minimizers.

The two initialization approaches can also be combined. Naturally, this
scheme introduces new parameters to the algorithm. Specifically, the user needs

188 I.S. Kotsireas et al.

Table 2. Pseudocode of the TS algorithms.

Tabu Search (TS)

1 : TL ← ∅
2 : x ← GetInitialSequence(S)

3 : UpdateTabuList(TL,x)

4 : xbest ← x

5 : While (not stopping) Do

6 : x′ ← ProbeNeighborhood(N(x),TL)

7 : UpdateTabuList(TL,x′)

8 : If (f(x′) < f(xbest)) Then

9 : xbest ← x′

10 : End If

11 : If (trajectory termination) Then

12 : x ← NewInitialSequence(S,xbest, ρ)

13 : End If

14 : End While

15 : Report xbest

to specify a probability ρ ∈ [0, 1] of using perturbation-based restarts as well as
the criteria for selecting the local minimizers from the set S∗.

The ILS algorithm is given in pseudocode in Table 1. Each call of rand()
returns a real-valued random number in the range [0, 1], while the function
GetInitialSequence() implements the sampling procedures for the search space
S and the set S∗. For a comprehensive presentation of ILS the reader is referred
to [24].

3.2 Tabu Search

Tabu Search (TS) is among the most popular and well-studied metaheuris-
tics. Since its formal introduction in [13,14], TS has been applied on numerous
problems spanning various fields of discrete optimization [11,15,26]. The basic
motivation for the development of TS originated from the necessity of search
algorithms to overcome local minimizers. This was achieved by equipping the
algorithms with descent and hill-climbing capabilities.

In descent mode, the local search procedure of TS follows the baseline of the
ILS approach described in the previous section. After the detection of a local
minimizer, the algorithm begins ascending by reversing from downhill to uphill
moves in the neighborhood N(x) of the current sequence x . This continues until
a local maximizer is reached. Subsequently, a new descent phase takes place etc.

In order to avoid retracing the same trajectories, a memory structure that
stores the most recent moves and prevents the algorithm from revisiting them is

Algorithm Portfolios for Circulant Weighing Matrices Problems 189

used in TS. In practice, the memory comprises a finite list structure, also called
tabu list (TL), where the most recently visited sequence replaces the oldest one.

The use of memory cannot fully prevent TS from getting trapped in mislead-
ing trajectories that drive the search away from global minimizers. In such cases,
it is beneficial to restart the algorithm on a new sequence if the current trajec-
tory has not improved the best solution for a prespecified number of iterations
or elapsed time.

Similarly to ILS, new initial sequences can be generated either randomly
within the whole search space S or through perturbations of already detected
local minimizers. The latter approach can be effective in problems where local
minimizers are closely clustered.

A simple form of the TS algorithm is reported in Table 2, where the parameter
ρ ∈ [0, 1] defines the probability of restarting the algorithm on a perturbation of
the best-so-far solution xbest. Other crucial parameters are the size of the tabu
list, stabu, as well as the number of non-improving steps, Tnis, before restarting a
trajectory. Further details on TS and its applications can be found in [11,15,26].

3.3 Algorithm Portfolios

Algorithm Portfolios (APs) [17] define schemes composed of multiple individual
algorithms that share the available computational budget. An AP may consist
of multiple copies of one algorithm with the same or different parameters (homo-
geneous AP) or different algorithms (heterogeneous AP). All the algorithms run
concurrently in either one or multiple processors (CPUs). If a single CPU is used,
the algorithms’ execution is alternated according to a time assignment schedule.
In multi-core or parallel systems, the algorithms share the hardware resources,
i.e., number of available CPUs [16].

Relevant studies have shown that proper resource allocation between the
constituent algorithms can render APs more efficient than the standalone algo-
rithms, both in serial [17] and parallel [16] computational environments. More-
over, information exchange between the algorithms (interactive APs) can be
highly beneficial [25]. Motivated from these studies, a new parallel AP with a
sophisticated time budget allocation scheme that is based on market-trading
procedures was proposed in [27] and successfully applied on the CWM problems
in [28]. The specific AP comprised various search algorithms. Among them, TS
was shown to be the most effective one [28].

The previous studies offered useful insight on the performance of APs on
CWM problems, leaving prosperous ground for further investigation. The AP
in [28] was based on the special trading-based time allocation rather than the
plain interactive AP model. The experimental results offered clear evidence that
trajectory-based approaches were dominant in terms of solution quality. More-
over, the highly-effective TS algorithm was considered only with the neighbor-
hood best strategy, which is an effective but also computationally demanding
approach.

190 I.S. Kotsireas et al.

Another important issue in parallel APs is the effect of the number of algo-
rithms and, consequently, the number of nodes that are concurrently used. The
experiments in [28] were conducted on a computer cluster where a large number
of processors were available. However, it would be interesting to evaluate the APs
also on the widely accessible multi-core processors, which typically offer only a
small number of CPUs to the user. For instance, modern Intel c© i7 processors
consist of 4 actual cores that offer 8 CPUs by using hyper-threading technology1.
Each CPU can concurrently run multiple algorithms in different computation
threads at the cost of slower execution, since the algorithms are alternatively
executed. Given a prespecified running-time budget, it is compelling to investi-
gate whether it is preferable to use small number of algorithms (not exceeding
the number of available CPUs) in order to attain faster execution or use higher
numbers of algorithms (thereby promoting exploration) with slower execution.

Another interesting issue that emanates from previous TS applications is
related to the criteria of accepting a new sequence through comparisons with
the ones stored in TL. The typical comparison has been based solely on the
Hamming distance between the compared sequences, i.e., a pairwise comparison
of their corresponding components. Thus, a new sequence was accepted only if it
had non-zero distance from all stored sequences in TL. Although this approach
adheres to the typical rules applied in various TS applications, it can become
inefficient in CWM problems.

The reason lies on the specific properties of CWM matrices. Specifically, a
given sequence x defines the same CWM with all right-hand shifted sequences
produced from it. In simple words, the sequence x defines a whole class of
sequences that produce the same CWM. These equivalent sequences have non-
zero Hamming distances between them. Thus, the comparison criterion in previ-
ous TS approaches cannot prevent the acceptance of a sequence that is equivalent
with one already included in TL. Tabu lists of large size as in [28] can ameliorate
this deficiency but they impose additional computational burden. For this rea-
son, it is preferable to modify the comparison procedure such that a candidate
new sequence is accepted only if it differs from all sequences in TL as well as
from all their right-hand shifts.

The present work attempts to shed light on the aforementioned issues. The
employed parallel APs are outlined in Table 3. The number of nodes, m, refers to
the number of threads required by the AP and can exceed the number of available
CPUs. The parallel AP is based on a standard master-slave parallelization model,
where the master (node 0) is devoted to book-keeping and information-sharing
between the algorithms. Both homogeneous and heterogeneous APs consisting
of the TS and ILS algorithms are studied. The simple Random Restart variant
of ILS was used, along with the local search described in the previous sections.
Further details for the algorithms are given in the following section.

1 http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.
html.

http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html

Algorithm Portfolios for Circulant Weighing Matrices Problems 191

Table 3. Pseudocode of the parallel Algorithm Portfolio approach with m nodes.

Algorithm Portfolio (m nodes)

Master Node (i = 0)

1 : Initialize (m − 1) slave nodes and assign an algorithm to each one.

2 : xbest ← GetInitialSequence(S)

3 : SendSequence(i,xbest), i = 1, . . . , m − 1

3 : While (nodes still running) Do

4 : GetMessage(i)

5 : If (node i improved xbest) Then

6 : UpdateBest(xbest)

7 : Else If (node i requests best sequence update) Then

8 : SendSequence(i,xbest)

9 : End If

10 : End While

11 : Report xbest

Slave Nodes (i = 1, . . . , m − 1)

1 : Initialize assigned algorithm.

2 : ReceiveSequence(0,xbest)

3 : While (allocated time not exceeded) Do

4 : Execute one iteration of the algorithm.

5 : If (new xbest found) Then

6 : SendSequence(0,xbest)

7 : Else If (best sequence update is needed) Then

8 : RequestSequenceUpdate(0)

9 : End If

10 : End While

11 : Finalize node

4 Experimental Analysis

The experimental analysis consisted of two phases. In the first phase, all algo-
rithms were applied on the representative 33-dimensional CW (33, 25) problem,
in order to statistically analyze their performance. The specific problem was
selected due to its guaranteed solution existence, moderate size, high weight
(k2 = 25), and reasonable convergence times of the algorithms. The second
phase consisted of the application of the best-performing algorithms on the more
challenging 48-dimensional CW (48, 36) problem. This is a well-studied problem
that was used as benchmark in previous studies [28]. The number of sequence
components that assume each value of the set {−1, 0,+1} for both problems is
reported in Table 4.

192 I.S. Kotsireas et al.

Table 4. Details of the considered representative problems.

Problem Length Weight Dim. +1 −1 0

CW (33, 25) 33 25 33 15 10 8

CW (48, 36) 48 36 48 21 15 12

Table 5. Parameter values for the employed algorithms.

Param. Description Value(s)

m number of nodes (threads) {8, 16, 64}
nss neighborhood search strategy {neighb. best (nb), first best (fb)}
stabu tabu list size {5, 10}
Tnis non-improving iterations before restart {100, 1000}
ρ probability of perturbing best solution {0.00, 0.01}
ptype algorithm parameters’ type {fixed (f), random (r)}
Tmax maximum running time 300 s

We considered APs composed solely of TS or ILS algorithms, henceforth
denoted as “TS” or “ILS”, respectively. Also, we considered mixed APs embrac-
ing both algorithms, henceforth denoted as “MIX”. Initially, an extensive exper-
imental study was conducted for all combinations (full factorial design) of the
parameter values reported in Table 5. Specifically, for each portfolio type (TS,
ILS, or MIX), we considered the cases of m = 8, 16, and 64 threads running on
a single processor with 8 CPUs available (note that the number of slave nodes is
m − 1). In TS-based APs all slave nodes were occupied by TS algorithms, while
in ILS-based APs they were devoted to ILS. In MIX APs, the TS algorithm was
assigned to the odd-indexed nodes (1, 3, . . .) and ILS algorithms were running
on even-indexed nodes (2, 4, . . .).

All experiments were conducted on a single-processor Intel c© i7-4770
3.40 GHz machine with 8 GB DDR3 RAM, providing 8 available CPUs under
Ubuntu Linux 14.04. There was no suppression of the operating system pro-
cedures during the runs. For the parallelization, the Open MPI libraries were
used with the GCC 4.8.4 compiler. All source codes were developed in the C
programming language.

In the TS and ILS algorithms, both the neighborhood-best (nb) and first-
best (fb) strategies were considered for neighborhood search. New trajectories
were either initialized on random perturbations of the best-so-far solution with
probability ρ = 0.01 or solely on random new points (denoted as ρ = 0.00). In
the first case, mild perturbations of the best solution were used, consisting of
1 up to 3 distinct random swaps of the sequence’s components.

The TS algorithms require some additional parameters. The tabu list size
stabu in our experiments was set to rather small values, namely 5 and 10. These
values are significantly smaller than in previous studies where it was set equal

Algorithm Portfolios for Circulant Weighing Matrices Problems 193

Table 6. Results for the 3 best-performing approaches per AP type and number of
nodes, as well as for the 5 overall best APs for the CW (33, 25) problem. The “*”
symbol denotes randomized-parameters APs and, if followed by a number, e.g., “*s”,
it denotes that the upper bound of the corresponding randomized parameter is s.

TS-based APs

m nss stabu Tnis ρ ptype Suc.(%) Time Loc. Min.

8 * 5 *100 0.00 r 100.0 24.6(26.4) 14080.9

8 fb 5 100 0.00 f 100.0 26.8(28.2) 17535.1

8 * 10 *100 0.00 r 100.0 32.9(34.4) 10488.2

16 * 5 *100 *0.01 r 100.0 25.7(27.4) 7574.2

16 * 5 *100 0.00 r 100.0 31.6(26.5) 8937.5

16 fb 5 100 0.00 f 100.0 38.4(30.2) 12494.7

64 fb 5 100 0.00 f 100.0 25.0(25.5) 2032.3

64 fb 5 100 0.01 f 100.0 25.5(23.8) 2100.9

64 * 5 100 0.00 r 100.0 29.0(31.8) 2063.8

ILS-based APs

m nss stabu Tnis ρ ptype Suc.(%) Time Loc. Min.

8 nb - - 0.00 f 100.0 11.0(14.6) 32512.7

8 nb - - 0.01 f 100.0 9.6(11.7) 28486.7

8 fb - - 0.00 f 100.0 6.6(4.8) 42418.4

16 fb - - 0.01 f 100.0 2.8(4.3) 8762.9

16 nb - - 0.00 f 100.0 8.5(9.0) 12413.9

16 nb - - 0.01 f 100.0 12.2(11.7) 17587.3

64 fb - - 0.00 f 100.0 4.2(4.5) 3447.3

64 fb - - 0.01 f 100.0 4.3(5.3) 3388.9

64 * - - 0.00 r 100.0 7.7(9.9) 3927.3

MIX APs

m nss stabu Tnis ρ ptype Suc.(%) Time Loc. Min.

8 fb 5 100 0.00 f 100.0 10.3(12.1) 31847.9

8 fb 10 100 0.01 f 100.0 9.9(10.2) 29267.2

8 * 5 *100 *0.01 r 100.0 9.8(12.2) 20060.1

16 fb 5 100 0.01 f 100.0 7.6(11.5) 12508.8

16 fb 10 1000 0.01 f 100.0 8.3(11.8) 12792.8

16 fb 10 100 0.01 f 100.0 7.6(7.5) 11695.5

64 * 10 *1000 0.00 r 100.0 9.9(15.8) 2681.8

64 fb 10 1000 0.00 f 100.0 8.0(6.1) 3318.4

64 fb 5 100 0.00 f 100.0 9.1(7.9) 3967.3

OVERALL BEST APs

Alg. m nss stabu Tnis ρ ptype Suc.(%) Time Loc. Min.

ILS 16 fb - - 0.01 f 100.0 2.8(4.3) 8762.9

ILS 64 fb - - 0.01 f 100.0 4.3(5.3) 3388.9

ILS 64 fb - - 0.00 f 100.0 4.2(4.5) 3447.3

MIX 16 fb 5 100 0.01 f 100.0 7.6(11.5) 12508.8

MIX 16 fb 10 1000 0.01 f 100.0 8.3(11.8) 12792.8

194 I.S. Kotsireas et al.

to the length of the sequences (order of the CWM) [28]. The reduction was
implied by the new scheme for comparisons between the current sequence and the
stored ones in TL, as described in Sect. 3.3. The tolerance Tnis of non-improving
moves before restart was set to 100 and 1000. Larger values of Tnis result in
longer trajectories and, hence, better local exploration around recently visited
minimizers. Smaller values promote global exploration because the algorithm
is restarted more frequently. All combinations of the corresponding parameters
were considered for each AP type.

0 50 100 150 200 250
0

20

40

60

80

100

120

MEAN(TIME)

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N
(T

IM
E

)

TS−f
TS−r
ILS−f
ILS−r
MIX−f
MIX−r

Fig. 1. Mean vs standard deviation of time required per AP type (TS, ILS, MIX) for
fixed (-f) and random (-r) parameters.

In addition to the fixed-parameters APs, randomized-parameters variants
were also studied. In these cases, the algorithms in the AP were allowed to
randomly select new parameter values, among the available ones in Table 5, for
each new trajectory. Thus, there was a total number of 162 different APs in our
experiments. Each AP was independently applied on the CW (33, 25) problem
for a maximum time of Tmax = 300 s. Since the algorithms in the APs involve
stochastic decisions, 25 independent experiments were conducted per AP for
statistical analysis purposes.

For each individual combination of type (TS, ILS, MIX) and number of nodes
(8, 16, 64), the performances of the corresponding APs were pairwisely tested
using the Wilcoxon ranksum test with 0.05 significance level in order to identify
statistically significant differences. The comparisons were primarily based on the
successes of the APs in detecting globally optimal solutions and, secondarily, on
the required running times. Then the APs were sorted according to the achieved
scores.

Algorithm Portfolios for Circulant Weighing Matrices Problems 195

The three best-performing APs per case are reported in Table 6 along with
their parameters. For each reported AP, the percentage of success in detecting
a global minimizer, the mean and standard deviation (in parenthesis) of the
required time in seconds, as well as the mean number of visited local minimizers
per slave node, averaged over the 25 experiments are reported. For the MIX
APs, the parameters stabu and Tnis refer to their constituent TS algorithms.

In a second round of comparisons, all the 162 APs were statistically compared
against each other, aiming at finding the overall best-performing approaches. The
Wilcoxon ranksum test with 0.05 significance level was used also in this case, and
the APs were sorted according to their scores. The five most promising APs are
reported in the lower part of Table 6. Furthermore, Fig. 1 illustrates the mean
value versus the standard deviation of the time required per AP type (TS, ILS,
MIX) for fixed (-f) and random (-r) parameters. Figure 2 shows the average time
required per AP type (TS, ILS, MIX) for 8, 16, and 64 nodes.

Table 6 offers interesting evidence for each AP type. First, we can notice that
the best TS-based APs required higher average running times and visited less
local minimizers than ILS-based and MIX APs. This is also observed in Fig. 1
where TS-based APs occupy the upper-right part of the figure. The observed
time-performance profiles are reasonable, since TS spends a fraction of its com-
putational budget for procedures related to checking and updating the tabu list,
as well as for hill-climbing. Nevertheless, TS was highly effective in detecting
the global minimizer. Also, we can see that the small TL size, stabu = 5, was
dominant in the best-performing TS-based APs because larger tabu lists require
additional comparisons and, consequently, reduce convergence speed. This is also
in line with the dominant Tnis = 100 parameter, which promotes shorter trajec-
tories.

TS ILS MIX
0

10

20

30

40

50

60

70

80

90

100

ALGORITHM

A
V

E
R

A
G

E
 T

IM
E

 (
se

c)

8
16
64

Fig. 2. Average time required per AP type (TS, ILS, MIX) for 8, 16, and 64 nodes.

196 I.S. Kotsireas et al.

Moreover, Table 6 reveals a trend of (almost linear) reduction of the num-
ber of visited minimizers with the number of nodes. This may seem counter-
intuitive, because additional nodes offer higher numbers of concurrent trajec-
tories (although at slower speed in the multi-core processor). However, it can
be explained by the increase of the exploration capabilities of the algorithms,
which lead to faster detection of a global minimizer. The rapid convergence is
also reflected to the declining average execution times in Fig. 2. Thus, the num-
ber of concurrent trajectories seems to be highly beneficial in TS-based APs
despite the possible slowdown in the AP’s execution.

Another interesting observation is that TS-based APs with fixed parameters
(ptype = “f”) profited from the first-best neighborhood search (nss = “fb”). This
is related to the previous comment on the significant time consumed for com-
paring the complete neighborhood of the current sequence with the whole tabu
list. Obviously, making a move directly after a sequence of adequate quality is
detected in the current neighborhood, can spare significant amount of execution
time without reducing effectiveness.

Finally, the results show that APs with randomized parameters can perform
equally well with the ones with fixed parameters, especially when random ini-
tialization is preferred against perturbations of the best solution. The latter can
be a consequence of the inherent ability of TS to visit neighboring sequences
through hill-climbing.

The ILS-based APs achieved the lowest average convergence times as depicted
in Fig. 2. This is reasonable, since ILS exploits its computational budget solely
in descent moves towards the nearest local minimizer. However, there is an inter-
esting effect of the number of nodes on the average running time. As we can see
in Fig. 2, doubling the number of nodes from 8 to 16 results in improved average
time, but further increase to 64 nodes produces negative effects on performance
since the trajectories are significantly slowed down. This verifies the existence
of a trade-off between the number of concurrent trajectories and time efficiency
for the ILS-based APs on multi-core processors.

The three best-performing ILS-based APs show a clear preference to fixed
parameters configuration, as we notice in Table 6. Since ILS does not have an
inherent mechanism for searching neighboring minimizers, there is a balanced
preference between completely random new trajectories and the use of pertur-
bations of the best solution. Also, the neighborhood-best approach seems to be
more beneficial, i.e., ILS prefers to conduct steepest descent to the nearest min-
imizer. The number of visited local minimizers with respect to the employed
nodes shows similar trends with the TS-based APs.

The performance profile of MIX APs combines performance aspects of both
TS and ILS. The effect of the number of nodes on the average running time
appears to follow the same trends with TS, since the running time of the AP
is primarily consumed by the TS algorithms. On the other hand, the number
of visited minimizers is comparable to the ILS-based APs. However, there are
some peculiarities on the parameters of the three best-performing approaches,
as revealed in Table 6.

Algorithm Portfolios for Circulant Weighing Matrices Problems 197

Specifically, we observe that the first-best approach was dominant, obviously
because it enhances the TS algorithms. However, APs with higher TL sizes and
longer trajectories appear more frequently among the best ones, especially for
higher number of nodes. Thus, there seems to be an interesting division of labor
in MIX APs, where TS algorithms offer the AP’s exploitation ability and ILS
undertake the exploration task. Furthermore, perturbation-based initialization
appears to be very competitive to the pure randomized one.

Overall, the synergism between TS and ILS in the MIX approaches seems
to equip the APs with combined dynamics. The extra cost due to the tabu
list-related procedures is counterbalanced by the first-best neighborhood search.
This way, the spared computation time allows for longer trajectories and larger
tabu lists.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5

ALGORITHM

T
IM

E
 (

se
c)

Fig. 3. Boxplots of running time of the best-performing APs on the CW (48, 6) problem.
Green color stands for 64-nodes APs, while red color stands for the 16-nodes APs.
(Color figure online)

In a second round of comparisons, where each AP was compared against all
the rest, three ILS and two MIX approaches were distinguished. As it is reported
in Table 6, all these APs were based on fixed parameters and high number of
nodes. Interestingly, a clear domination of the perturbation-based initialization
of new trajectories is noticed.

The five distinguished approaches were further assessed on the more chal-
lenging CW (48, 36) problem, which has been used as a benchmark in previous
works. The maximum time per experiment for this case was Tmax = 10800 s
(3 h). In all experiments and algorithms, a global minimizer was detected. The

198 I.S. Kotsireas et al.

boxplots of the running time of the APs over 25 experiments is illustrated in
Fig. 3, where the APs appear in the same order as in Table 6.

Wilcoxon ranksum tests with 0.05 significance level showed no significant
differences in terms of running time among them. However, their average times
are favorably compared to those in previous studies [28], although strict com-
parisons would be questionable due to the completely different hardware and
experimental configurations used in the present work. Nevertheless, it is a clear
indication of the potential of the presented APs in solving CWM problems.

5 Conclusions

The present work enriched our insight on the performance of parallel APs on
CWM problems. Enhanced TS- and ILS-based APs were used. Also, mixed APs
composed by both algorithms were considered. Experimentation was focused
on the widely accessible multi-core processor computational environment. Two
representative test problems were used in order to investigate the performance
of the APs as well as the influence of the requested number of nodes (threads),
which defines also the number of the AP’s algorithms, on the time efficiency and
solution quality.

A rich variety of both homogeneous and heterogeneous APs were considered
under various parameter settings, offering useful conclusions. ILS-based APs
were significantly faster than TS-based ones, and they showed different response
when the number of nodes was increased. Fixed parameters were shown to domi-
nate randomized ones. Also, the effect of the time-consuming neighborhood-best
strategy was counterbalanced by smaller tabu lists in TL-based APs. Shorter
trajectories were clearly preferred in TS-based APs. Nevertheless, the best-
performing mixed APs assumed also longer trajectories for the TS constituent
algorithms, since running time was sparred by the ILS constituent algorithms of
the AP.

Future work will consider further refinements of the AP as well as more exten-
sive investigations of the identified trade-offs among their different properties.

Acknowledgements. Research is partially supported by the Paul and Heidi Brown
Preeminent Professorship in Industrial & Systems Engineering, University of Florida.

References

1. Ang, M., Arasu, K., Ma, S., Strassler, Y.: Study of proper circulant weighing
matrices with weigh 9. Discrete Math. 308, 2802–2809 (2008)

2. Arasu, K., Dillon, J., Jungnickel, D., Pott, A.: The solution of the waterloo prob-
lem. J. Comb. Theor. Ser. A 71, 316–331 (1995)

3. Arasu, K., Gulliver, T.: Self-dual codes over fp and weighing matrices. IEEE Trans.
Inf. Theor. 47(5), 2051–2055 (2001)

4. Arasu, K., Gutman, A.: Circulant weighing matrices. Cryptogr. Commun. 2, 155–
171 (2010)

Algorithm Portfolios for Circulant Weighing Matrices Problems 199

5. Arasu, K., Leung, K., Ma, S., Nabavi, A., Ray-Chaudhuri, D.: Determination of
all possible orders of weight 16 circulant weighing matrices. Finite Fields Appl. 12,
498–538 (2006)

6. Chiarandini, M., Kotsireas, I., Koukouvinos, C., Paquete, L.: Heuristic algorithms
for hadamard matrices with two circulant cores. Theoret. Comput. Sci. 407(1–3),
274–277 (2008)

7. Cousineau, J., Kotsireas, I., Koukouvinos, C.: Genetic algorithms for orthogonal
designs. Australas. J. Comb. 35, 263–272 (2006)

8. van Dam, W.: Quantum algorithms for weighing matrices and quadratic residues.
Algorithmica 34, 413–428 (2002)

9. Eades, P.: On the existence of orthogonal designs. Ph.D. thesis, Australian National
University, Canberra (1997)

10. Eades, P., Hain, R.: On circulant weighing matrices. Ars Comb. 2, 265–284 (1976)
11. Gendreau, M., Potvin, J.Y.: Tabu search. In: Gendreau, M., Potvin, J.Y. (eds.)

Handbook of Metaheuristics, pp. 41–59. Springer, New York (2010)
12. Geramita, A., Sebery, J.: Orthogonical Designs: Quadratic Forms and Hadamard

Matrices. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, Inc.,
New York (1979)

13. Glover, F.: Tabu search - part I. ORSA J. Comput. 1, 190–206 (1989)
14. Glover, F.: Tabu search - part II. ORSA J. Comput. 2, 4–32 (1990)
15. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)
16. Gomes, C.P., Selman, B.: Algorithm portfolio design: theory vs. practice. In:

Proceedings of Thirteenth Conference on Uncertainty in Artificial Intelligence, pp.
190–197 (1997)

17. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 27, 51–53 (1997)

18. Kotsireas, I.S., Parsopoulos, K.E., Piperagkas, G.S., Vrahatis, M.N.: Ant-based
approaches for solving autocorrelation problems. In: Dorigo, M., Birattari, M.,
Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS
2012. LNCS, vol. 7461, pp. 220–227. Springer, Heidelberg (2012)

19. Kotsireas, I.: Algorithms and metaheuristics for combinatorial matrices. In:
Pardalos, P., Du, D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Opti-
mization, pp. 283–309. Springer, New York (2013)

20. Kotsireas, I., Koukouvinos, C., Pardalos, P., Shylo, O.: Periodic complementary
binary sequences and combinatorial optimization algorithms. J. Comb. Optim.
20(1), 63–75 (2010)

21. Kotsireas, I., Koukouvinos, C., Pardalos, P., Simos, D.: Competent genetic algo-
rithms for weighing matrices. J. Comb. Optim. 24(4), 508–525 (2012)

22. Kotsireas, I.S., Parsopoulos, K.E., Piperagkas, G.S., Vrahatis, M.N.: Ant-based
approaches for solving autocorrelation problems. In: Dorigo, M., Birattari, M.,
Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS
2012. LNCS, vol. 7461, pp. 220–227. Springer, Heidelberg (2012)

23. Koukouvinos, C., Seberry, J.: Weighing matrices and their applications. J. Stat.
Plan. Infer. 62(1), 91–101 (1997)

24. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and
applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics,
pp. 363–397. Springer, New York (2010)

25. Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for
numerical optimization. IEEE Trans. Evol. Comp. 14(5), 782–800 (2010)

26. Pham, D., Karaboga, D.: Intelligent Optimisation Techniques: Genetic Algorithms,
Tabu Search, Simulated Annealing and Neural Networks. Springer, London (2000)

200 I.S. Kotsireas et al.

27. Souravlias, D., Parsopoulos, K.E., Alba, E.: Parallel algorithm portfolio with mar-
ket trading-based time allocation. In: Proceedings International Conference on
Operations Research 2014 (OR 2014) (2014)

28. Souravlias, D., Parsopoulos, K.E., Kotsireas, I.S.: Circulant weighing matrices: a
demanding challenge for parallel optimization metaheuristics. Optim. Lett. (2015)

29. Strassler, Y.: The classification of circulant weighing matrices of weight 9. Ph.D.
thesis, Bar-Ilan University (1997)

Engineering Hybrid DenseZDDs

Taito Lee1(B), Shuhei Denzumi2(B), and Kunihiko Sadakane2(B)

1 Department of Creative Informatics, Graduate School of Information Science
and Technology, The University of Tokyo, Tokyo, Japan

ri.taito@ci.i.u-tokyo.ac.jp
2 Department of Mathematical Informatics, Graduate School of Information Science

and Technology, The University of Tokyo, Tokyo, Japan
{denzumi,sada}@mist.i.u-tokyo.ac.jp

Abstract. ZDDs (Zero-suppressed Binary Decision Diagrams) [Minato
93] have been proposed to store set families compactly. Though more
compact than other representations, they still use large amount of mem-
ory to support dynamic operations such as taking union and intersec-
tion of set families. DenseZDDs and Hybrid DenseZDDs [Denzumi et al.
2014] have been proposed to compress the size of static and dynamic
ZDDs, respectively. There exist however no implementations of Hybrid
DenseZDDs and their practical performance is unknown. This paper
engineers a practical implementation of Hybrid DenseZDDs. Because of
our new compression algorithm, our new Hybrid DenseZDDs run in rea-
sonable time using little working memory. Experimental results on the
frequent itemset mining problem show that our algorithm uses 33 % of
memory compared with a standard ZDD at the cost of 40 % increase in
running time.

Keywords: Zero-suppressed binary decision diagram · Succinct data
structure

1 Introduction

ZDDs (Zero-suppressed Binary Decision Diagrams) [7] are compact representa-
tions of set families (sets of subsets). ZDDs are variants of BDDs (Binary Deci-
sion Diagrams) [2] which are used to compactly represent Boolean functions. In
this paper we focus on ZDDs; however our techniques can be also applied to
BDDs.

In the area of data mining or combinatorial optimization, it is useful to store
all candidates of solutions because we want to change the objective function in
multi-criterion optimization problems. It is however costly to store the candi-
dates because there is an exponential number of them in some cases. ZDDs can
be used to store such data compactly.

Let S be a set and F be a set family of S, that is, F ⊂ 2S . The ZDD
representing F is a directed acyclic graph in which each source-sink path corre-
sponds to an element of F (its precise definition is given in Sect. 2). By sharing
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 201–216, 2016.
DOI: 10.1007/978-3-319-38851-9 14

202 T. Lee et al.

nodes corresponding to the same subsets of elements of F , The number of nodes
are greatly reduced. More interestingly, because of its canonical form, ZDDs sup-
port efficient set operations such as union and intersection of set families without
extracting shared nodes. It is therefore possible to perform set operations on set
families of exponential size in polynomial time, if the number of nodes of ZDDs
is polynomial. There are many applications of ZDDs [8,10].

Though ZDDs are more compact than other representations, they still require
a large amount of memory. For example, an implementation of ZDD [9] uses
about 28 bytes for each node. Therefore huge main memory is required to rep-
resent large set families, which motivates to compress ZDDs. Implementations
of ZDDs can be classified into three types [3].

– Dynamic: The ZDD can be modified. New nodes can be added to the ZDD.
– Static: The ZDD cannot be modified. Only query operations are supported.
– Freeze-dried: All the information of the ZDD is stored, but it cannot be used

before restoration.

There is a freeze-dried representation of BDDs/ZDDs which compresses a node
into 1–2 bits [4]. A static representation called DenseZDD has been proposed [3],
which uses 1/5 to 1/10 of memory as compared with a dynamic ZDD [9]. In their
paper, Hybrid DenseZDDs are also proposed to support dynamic operations by
combining static DenseZDDs and ordinary dynamic ZDDs. However they gave
only an algorithm to check existence of a node in a Hybrid DenseZDD and
they did not implement it. A direct implementation will not reduce the working
memory because to convert a dynamic ZDD into a static one, it will use the
amount of memory proportional to that of a dynamic ZDD. It is therefore not
clear if the working memory of Hybrid DenseZDDs is smaller than ordinary
ZDDs.

In this paper, we give the first implementation of Hybrid DenseZDDs. Our
new compression algorithm enables us to reduce the working memory. As a
result, Hybrid DenseZDDs use much smaller memory than ordinary ones with
little increase in running time. Our main result is the following theorem:

Theorem 1. Let m and n be the number of DZ-nodes and Z-nodes before com-
pression, respectively, and we refer to the number of DZ-nodes and Z-nodes after
compression as m′ and n′, respectively. The number of nodes including dummy
nodes in the new zero-edge tree is denoted as u. Our algorithm re-compress takes
O(m+n+n′ log n′ +u) time, and uses 3m+o(m)+O(n′(log m′ +log n′)) bits.

Our algorithm is superior to the existing one [3] theoretically and prac-
tically. In theory, the working space of our algorithm is roughly the size of
the compressed representation of a ZDD plus O(n log n), while that of [3] is
O((m + n) log(m + n)). In practice, experimental results on the N-queen, the
frequent itemset mining, and logic function minimization problems are given to
show effectiveness of our algorithm.

Engineering Hybrid DenseZDDs 203

2 Preliminaries

2.1 Zero-Suppressed Binary Decision Diagrams (ZDDs)

A zero-suppressed binary decision diagram (a ZDD) [7] is a variant of a binary
decision diagram [2], suitable for manipulating set families. Let S = {1, 2, . . . , k}
be a set and F be a set family of S. The ZDD representing F is a directed
acyclic graph G having two terminal nodes. Each nonterminal node v has an
integer label index (v) ∈ {1, . . . , k} called the index of v. For any nonterminal
node v, index (v) is larger than the indices of its children. Each nonterminal node
v always has two children, denoted by zero(v) and one(v) and called the 0-child
and 1-child, respectively. The edges from nonterminals to their 0-child (1-child
resp.) are called 0-edges (1-edges resp.). The two terminal nodes are labeled 0
and 1 and called 0-terminal node and 1-terminal node, respectively. We define
triple(v) = 〈index (v), zero(v), one(v)〉, called the attribute triple of v. We define
the size of the graph, denoted by |G|, as the number of its nonterminals. Figure 1
shows an example of a ZDD.

We define the join of families F1, F2 ⊂ S as F1 � F2 = { S1 ∪ S2 |S1 ∈
F1, S2 ∈ F2 }. Then the set family F(v) represented by a node v ∈ G is defined
as follows.

Fig. 1. (Left) The ZDD representing {{4, 3, 2}, {4, 3, 1}, {4, 3}, {4, 2, 1}, {2, 1}, ∅} and
the corresponding DenseZDD. Terminal nodes are denoted by squares, and nontermi-
nal nodes are denoted by circles. The 0-edges are denoted by dotted arrows, and the
1-edges are denoted by solid arrows. (Middle) The zero-edge tree of the corresponding
DenseZDD. Black nodes are dummy nodes. (Right) The one-child array I and the tree
represented by it.

204 T. Lee et al.

Table 1. Basic operations supported by ZDD.

index(v) Returns the index of node v

zero(v) Returns the 0-child of node v

one(v) Returns the 1-child of node v

getnode(i, v0, v1) Generates (or makes a reference to) a node v with index i and two
child nodes v0 = zero(v) and v1 = one(v).

If such a node does not exist, return the 0-terminal node

Definition 1 (set family represented by ZDD). The set family F (v) rep-
resented by a node v of a ZDD G is defined as follows: (1) If v is the 1-terminal
node, F (v) = {∅}, (1) If v is the 0-terminal node, F (v) = ∅, (3) If v is a
nonterminal node, F (v) = ({index (v)} � F (one(v))) ∪ F (zero(v)).

Paths from a node v to the 1-terminal node 1 and elements of F (v) have
one-to-one correspondence. Namely, let v1, v2, v3, . . . , vk be the nodes on the
path from v to 1 such that their 1-edges are on the path. Then the set
{index (v1), index (v2), . . . , index (vk)} is contained in F (v).

In ZDD, we apply the following two reduction rules to obtain the minimal
graph: (a) Zero-suppress rule: A nonterminal node whose 1-child is the 0-terminal
node is removed. (b) Sharing rule: Two or more nonterminal nodes having the
same attribute triple are merged together. If we apply the two reduction rules
as much as possible, then we obtain a canonical form for a given set family.

We can further reduce the size of ZDDs by using a type of attributed edges [11]
named 0-element edges. A 0-element edge is a 1-edge with an empty set flag. This
edge represents the union of the empty set ∅ and the set family represented by
the node pointed to by the edge. To distinguish 0-element edges and normal
1-edges, each nonterminal node v has an ∅-flag empflag(v). If empflag(v) = 1,
the 1-edge from v is an 0-element edge. In the figure, 0-element edges have circles
at their starting points.

Table 1 summarizes basic operations of ZDDs. The operations index (v),
zero(v), and one(v) do not create new nodes. Therefore they can be done on
a static ZDD.

2.2 Succinct Data Structures

For a bit vector B[0..n − 1] ∈ {0, 1}n, we define the following operations:
rankc(B, i) where c ∈ {0, 1} and 0 ≤ i < n is the number of c’s in B[0..i],
and selectc(B, j) where c ∈ {0, 1} and 1 ≤ j ≤ rankc(B,n − 1) is the position of
j-th c from the left in B. These operations are done in constant time using a data
structure called FID of n + o(n) bits on the word-RAM [14]. We also define the
successor succc(B, i) := selectc(B, rankc(B, i) + 1) (the position of the leftmost
c in B[i..n − 1]) and the predecessor predc(B, i) := selectc(B, rankc(B, i)) (the
position of the rightmost c in B[0..i]). In practice, these operations are directly
implemented without using rank and select operations to improve performance.

Engineering Hybrid DenseZDDs 205

An ordered tree T with n nodes can be represented in 2n+o(n) bits such that
many tree operations are done in constant time [13]. The tree T is represented by
a balanced parentheses sequence (BP) U [0..2n−1]. Each node in T is represented
by a pair of parentheses in U . The node is identified with the position of the
open parenthesis. We use the following operations:

– depth(U, v): depth of node v
– parent(U, v): position in U of the parent node of v
– level ancestor(U, v, d): position in U of the ancestor node of v with depth d
– degree(U, v): degree (number of children) of node v
– child(U, v, i): position in U of the i-th child of node v.

They can be done in constant time for static trees and O(log n/ log log n) time
for dynamic trees [13]. There are O(log n) time implementations of static and
dynamic trees [1,5].

3 DenseZDDs

A DenseZDD DZ = 〈U,M, I〉 is a space-efficient data structure representing a
ZDD G [3], and composed of three data structures: a zero-edge tree U , a dummy
node vector M , and a one-child array I.

The spanning tree of ZDD G formed by the 0-edges is called the zero-edge
tree of G. In a zero-edge tree, all 0-edges are reversed and the 0-terminal node
becomes the root of the tree. The preorder rank of each node is used to identify
the node.

We call nodes in the original ZDD as real nodes. We insert dummy nodes on
each 0-edge to guarantee that the depth of every real node v in the zero-edge
tree equals index (v). We define the depth of the 0-terminal node, the root of
this tree, to be 0. We use the balanced parentheses sequence U to encode the
zero-edge tree with dummy nodes. An example of a zero-edge tree and its BP
are shown in Fig. 1. Black circles are dummy nodes and the number next to each
node is its preorder rank.

A bit vector M of the same length as U is used to distinguish dummy nodes
and real nodes. The i-th bit is 1 if and only if the i-th parenthesis of U is ‘(’ and
its corresponding node is a real node. We construct the FID for M .

An integer array to represent the 1-child of each node is called the one-child
array and denoted by I. The i-th element of the array is the preorder rank of the
1-child of the nonterminal node whose preorder rank is i. We negate the value
if the ∅-flag of the node is set.

Among the basic operation of ZDDs, index (v), zero(v), and one(v) are easily
implemented by using succinct data structures, whereas getnode(i, v0, v1) is not
trivial. To support it efficiently, children of a node in the zero-edge tree are
sorted in the order of preorder ranks of their 1-children. Then we can perform a
binary search to find the answer. However, because of this rule, it is difficult to
compute the zero-edge tree in space-efficient manner.

206 T. Lee et al.

Because the above data structure is static, we cannot use it to manipulate
dynamic set families. Denzumi et al. [3] proposed a hybrid scheme to combine
ordinary ZDDs and DenseZDDs to support dynamic operations. If a ZDD has
changed, new nodes are stored as ordinary ZDDs. Children of ordinary ZDD
nodes are in either ordinary ZDDs or DenseZDDs, while children of DenseZDD
nodes are always in DenseZDDs. If the number of ordinary nodes increases, we
compress the data structure. That is, we construct the DenseZDD including all
the nodes and delete ordinary ZDDs. Note that though this scheme is suggested
in their paper, the details are not given. The working memory of their algorithm
is larger than the space used if all the nodes are represented by ordinary ZDDs.
In this paper, we give a space-efficient algorithm for the compress operation.

4 New Algorithms for Hybrid DenseZDDs

In this section, we present a space-efficient algorithm for converting a multi-
rooted Hybrid DenseZDD into a DenseZDD. Our algorithm named re-compress
takes a list of pointers to nodes in a Hybrid DenseZDD as arguments. The
purposes of the arguments are twofold: (1) The pointers show which nodes are
currently used, and other nodes are collected as garbage; (2) Since the point-
ers will change after compression, user programs must know these changes of
pointers. This second purpose is not discussed in their original paper [3].

For the sake of simplicity, we define some terms. We refer to the nodes in
the DenseZDD-section and the ZDD-section as DZ-nodes and Z-nodes, respec-
tively. We denote 0-edges from Z-node v to DZ-node u as junction edges, v
as Z-junction node and u as DZ-junction node. We represent a non-terminal
node v as a 0r-child of zero(v). The numbers of the DZ-nodes and the
Z-nodes are represented as m and n, respectively. The identification number
within [FirstZID, . . . , F irstZID + n − 1] is assigned to each Z-node, where
FirstZID = select1(M,m). The identification number of the node v is denoted
by v̄. The identification number v̄ can be obtained easily from v, and vice versa.
We refer to as T0 and T1 a zero-edge tree of DenseZDD before and after the
compression, respectively. The preorder rank of the node v on zero-edge tree T
is denoted by prerank(T, v). The preorder rank of DZ-node v is calculated as
prerank(T0, v) = rank1(M, v̄).

The algorithm re-compress is composed of three parts; (1) We decide which
nodes should remain after the compression. (2) We define preorder ranks of the
nodes on a new zero-edge tree. (3) We construct a new DenseZDD. Part (3) is
simple and omitted due to lack of space.

4.1 Selection of Nodes to Remain After Compression

First, we determine which nodes should remain after the compression. From root
nodes, which are the input of re-compress, we traverse the Hybrid DenseZDD
in depth-first order and set flags on visited nodes. Two FIDs, dzrefflags and
zrefflags are used to store flags. When we visit a DZ-node v, we set a flag on the

Engineering Hybrid DenseZDDs 207

(prerank(T0, v))-th bit of dzrefflags. When we visit a Z-node u, we set a flag on
the (ū − FirstZID)-th bit of zrefflags. In the same way, the information about
junction nodes is also stored in two FIDs, dzjunctionflags and zjunctionflags.
After traversal, we index these four FIDs.

The direction of the 0-edges in the DenseZDD-section is the opposite to those
in the ZDD-section. Therefore, we must reverse the 0-edges in the ZDD-section
to compress a Hybrid DenseZDD. On traversal of the Hybrid DenseZDD, we
reverse the 0-edges in the ZDD-section. All Z-nodes have a field named ZERO
to store their 0-children, and a field to represent a chaining hash table for getn-
ode. We reuse these fields to reverse the 0-edges for the sake of saving memory.
When the traversal finishes, the ZERO field of a Z-node v stores the first 0r-
child c of v, and the field of c in the hash table stores the sibling node of c. Since
DZ-nodes have no ZERO fields, we use an array dzarray to store the first 0r-child
among the Z-nodes of each DZ-junction node v. In more detail, we store the num-
ber rank1(zjunctionflags, c̄ − FirstZID) as the (rank1(dzjunctionflags, v̄))-th
element of dzarray, where c is the first 0r-child among the Z-nodes of the DZ-
junction node v.

Let m′ and n′ be the number of the DZ-nodes and the Z-nodes that remain
after the compression, respectively. First, we analyze the space complexity for
this operation. Two FIDs dzrefflags and dzjunctionflags use n+o(n) bits, respec-
tively, and zrefflags and zjunctionflags use m + o(m) bits, respectively. The
array dzarray uses n′ log n′ bits at most, since the number of DZ-junction nodes
is n′ at most. In total, we need 2(m + n) + o(m + n) + n′ log n′ bits. Next, let
us consider the time complexity. In the traversal of the Hybrid DenseZDD, we
visit (m′ +n′) nodes and it takes only constant time at each node. Therefore the
time complexity is O(m + n).

4.2 Decision of Preorder Ranks

By the traversal of the Hybrid DenseZDD, we obtained a zero-edge tree T ′ of
m′ + n′ nodes. The new zero-edge tree T1 can be obtained by ordering the
nodes of T ′ under the constraint of DenseZDDs. For simplicity, we refer to as
TDZ a zero-edge tree obtained by removing Z-nodes from T ′. It is self-evident
that TDZ is the zero-edge tree generated by pruning T0 of unused nodes. The
preorder rank of the DZ-node v in TDZ is calculated as prerank(TDZ, v) =
rank1(dzrefflags, prerank(T0, v)) in constant time. For preparation of the algo-
rithm that assigns new preorder ranks, we prove Theorem 2.

Theorem 2. Two nodes v1, v2 are DZ-nodes that remain after compression. It
holds the following equation:

prerank(T0, v1) < prerank(T0, v2) ⇒ prerank(T1, v1) < prerank(T1, v2).

Proof. If v1 is the ancestor of v2, this theorem obviously holds. We consider the
other cases. We here focus on the nodes p1 and p2, which are the child nodes of
the lowest common ancestor of v1 and v2 and the subtrees of which include v1

208 T. Lee et al.

and v2, respectively. We note that it holds prerank(T1, v1) < prerank(T1, v2) if
and only if prerank(T1, p1) < prerank(T1, p2) is satisfied.

The assumption of the theorem indicates index(p1) ≥ index (p2), and we
divide it into the following cases.

1. If index(p1) > index (p2), it obviously holds that prerank(T1, p1) < prerank
(T1, p2).

2. If index(p1) = index (p2), we focus on prerank(T0, one(p1)) and prerank
(T0, one(p2)). We note that it holds prerank(T0, one(p1)) ≥ prerank(T0,
one(p2)) from the assumption.
(a) If prerank(T0, one(p1)) = prerank(T0, one(p2)), it holds that one(p1) =

one(p2) and empflag(one(p1)) > empflag(one(p2)). Therefore, the theo-
rem is obviously satisfied.

(b) If prerank(T0, one(p1)) > prerank(T0, one(p2)). In this case, what we
want to prove is the equation prerank(T1, one(p1)) > prerank(T1,
one(p2)). We regard one(p1) and one(p2) as v2 and v1, respectively, and
repeat the discussion above. After repeating at most k times, where k
indicates the number of items used in the Hybrid DenseZDD, we can
prove the equation prerank(T1, one(p1)) > prerank(T1, one(p2)), since
index (v1) > index (one(p1)) and index (v2) > index (one(p2)) hold, and
the number of nodes whose item index is 1 is at most 1. ��

Theorem 2 implies that we need not order nodes in TDZ to obtain T1.

Calculation of Subtree Sizes. For the efficient assignment of preorder ranks,
it is necessary to obtain the size of each subtree in T ′ efficiently. For this purpose,
we prepare two arrays named zarray1 and starray . The array zarray1 stores the
size of the subtree rooted at each Z-node, and the array starray is the index
used to obtain the size of the subtree rooted at each DZ-node. Algorithms 1 and
2 display how to make zarray1 and starray , and Algorithm 3 exhibits how to
calculate the size of the subtree of T ′ rooted at v. We can execute Algorithm 3
in constant time.

Let us consider the space complexity for zarray1 and starray . The length of
zarray1 is n′ and the length of starray is at most n′, since the number of DZ-
junction nodes is at most n′. The elements of these arrays are within [1, . . . , n′].
Therefore, zarray1 and starray use n′ log n′ and at most n′ log n′ bits, respectively.

Algorithm 1. calcStsize(v): store the size of the subtree of T ′ rooted at v in
zarray1 and return it.
1: stsize ← 1
2: for c: 0r-children of v do
3: stsize ← stsize + calcStsize(c)
4: end for
5: idx ← rank1(zrefflags, v̄ − FirstZID) − 1
6: zarray1 [idx] ← stsize
7: return stsize

Engineering Hybrid DenseZDDs 209

Algorithm 2. makeStsizeIndexes: how to make zarray1 and starray.
1: sum ← 0
2: for i = 1 to number of DZ-junction nodes do
3: v̄ ← select1(zjunctionflags, i) /* v is the i-th DZ-junction node. */
4: for all 0r-children c of v that is a Z-node do
5: sum ← sum + calcStsize(c)
6: end for
7: starray [i − 1] ← sum
8: end for

Algorithm 3. stsize(v): gain the size of the subtree of T ′ rooted at v.
1: if v is a Z-node then
2: return zarray1 [rank1(zrefflags, v̄)]
3: else
4: /* v is a DZ-node. */
5: v rank ← prerank(T0, v)
6: open p ← v̄ /* v’s position in U */
7: close p ← find close(U, open p)
8: last rank ← rank1(M, close p) /* the preorder rank of the last DZ-node in the

subtree rooted at v */
9: from ← rank1(dzjunctionflags, v rank − 1) /* the number of DZ-junction nodes

before v */
10: to ← rank1(dzjunctionflags, last rank − 1) /* the number of DZ-junction nodes

before last */
11: return rank1(dzrefflags, last rank)−rank1(dzrefflags, v rank)+1+starray [to]−

starray [from]
12: end if

The Algorithm 2 takes O(n′) time because we visit all the DZ-junction nodes
and Z-nodes that remain after the compression and it takes constant time at each
node.

Storing Preorder Ranks. We assign numbers from 0 to m′ + n′ − 1 to each
node as the preorder ranks on T1. If we simply use an array to store them,
(m′ +n′) log(m′ +n′) bits are needed. Here, we propose a more efficient way. We
note that m′ is much greater than n′ after compressing the Hybrid DenseZDD
many times.

First, we reuse zarray1, which is the index for the calculation of subtree sizes,
to store the preorder ranks of Z-nodes. The subtree size rooted at Z-node v is
never referred after the assignment of the preorder rank to v. Therefore, we
overwrite the element corresponding to Z-node v with the preorder rank of v.
To do this, n′ log(m′ + n′) bits must be assigned for zarray1 .

Next, we show how to store the preorder ranks of DZ-nodes, which is based
on Theorem 2. To store the preorder ranks of DZ-nodes, we use a FID named
order of length m′ + n′. When a preorder rank r is assigned to a Z-node, we
set a flag on a r-th bit of order . When the assignment of all preorder ranks is

210 T. Lee et al.

Algorithm 4. prank(v): compute the preorder rank of v on T1.
1: if v is a Z-node then
2: return zarray1 [rank1(zrefflags, v̄ − FirstZID)]
3: else
4: /* v is a DZ-node. */
5: return select0(order , prank(TDZ, v))
6: end if

Algorithm 5. lastDZ (v): obtain the lastDZ-node of v.
Require: v is a Z-node
1: r ← zarray2 [rank1(zrefflags, v̄ − FirstZID)]
2: if v is a Z-junction node then
3: v̄� ← select1(dzrefflags, r)
4: return v�

5: else
6: v̄a ← select1(zjunctionflags, r) + FirstZID /* va is the ancestral Z-junction

node of v. */
7: return lastDZ (va)
8: end if

Algorithm 6 . compareSameIndexes(v1, v2): return whether it holds prerank
(v1) < prerank(v2) or not, where index (v1) = index (v2) is satisfied.
1: if Both v1 and v2 are DZ-nodes then
2: return v1 < v2
3: else
4: one1 ← one(v1)
5: one2 ← one(v2)
6: /* The calculation of the preorder ranks of one1 and one2 have been already

done. */
7: if Both one1 and one2 are DZ-nodes then
8: return 〈one1, empflag(one1)〉 > 〈one2, empflag(one2)〉
9: else if Both one1 and one2 are Z-nodes then

10: return 〈prank(one1), empflag(one1)〉 > 〈prank(one2), empflag(one2)〉
11: else if one1 is Z-node then
12: return lastDZ (one1) ≥ one2
13: else
14: /* one2 is a Z-node. */
15: return one1 > lastDZ (one2)
16: end if
17: end if

finished, the number of 1 in order is n′. The preorder rank of the DZ-node v can
be calculated as prerank(T1, v) = select0(order , prerank(TDZ, v)).

Algorithm 4 displays how to obtain the preorder rank of the node v on T1.
Here, we note that we cannot acquire the preorder ranks of DZ-nodes unless the
construction of order is finished.

Engineering Hybrid DenseZDDs 211

Fig. 2. Assignment of the new prerank orders.

Comparing Preorder Ranks. To obtain T1, which is the zero-edge tree
of the DenseZDD after compression, we need to sort the 0r-children of
each node in the descending dictionary order of their triplets 〈index (),
prank(one()), empflag(one())〉. When there are plural child nodes having the
same item index for one parent node, we need to compare prank(one()) for the
0r-children; however, we cannot gain the preorder rank of the DZ-node v on T1,
since the construction of order has not been finished yet.

Now, we discuss how to compare preorder ranks prank(v1) and prank(v2) for
two nodes v1 and v2. When both v1 and v2 are DZ-nodes, we just need to compare
prank(T0, v1) and prank(T0, v2) because of Theorem 2. When both v1 and v2 are
Z-nodes, we can directly calculate prank(v1) and prank(v2) and compare them.
When v1 is a DZ-node and v2 is a Z-node, we compare the two preorder ranks
as follows: First, we find a DZ-node visited just before v2 in the preorder of T1

and name it vlast; next, we compare prank(T0, v1) and prank(T0, vlast). We refer
to vlast as the lastDZ-node of v2.

We prepare an array zarray2 as the index for efficiently calculating the
lastDZ-node of each Z-node. The index zarray2 is the array of size n′, and
its elements corresponds to each Z-node one to one. If a Z-node v is a
Z-junction node, we register the number rank1(dzrefflags, v̄�) as the element cor-
responding to v, where v� is the lastDZ-node of v; otherwise, we store the num-
ber rank1(zjunctionflags , v̄a − FirstZID), where va is the ancestral Z-junction
node of v. The space complexity for zarray2 is O(n′ log(m′ + n′)), since the
elements of zarray2 are within [1, . . . ,max(m′, n′)]. We exhibit the algorithm
for obtaining the lastDZ-node of a Z-node v using zarray2 in Algorithm 5. This
processing can be executed in constant time.

When we initialize zarray2 , we set the number rank1(zjunctionflags, v̄a) as
the element corresponding to a Z-node v, where va is the ancestral Z-junction
node of v. This initialization takes O(n′) time. After this, we store the lastDZ-
node of each Z-junction node while we allocate preorder ranks to all nodes by
traversing T ′. We can determine the lastDZ-node of each Z-junction node v when
the allocation of the preorder rank to v is finished.

The methodology of comparing 〈prank(one()), empflag(one()〉 for the two
nodes v1 and v2 having the same item index are displayed in Algorithm 6. This
comparator can be executed in constant time.

212 T. Lee et al.

Assignment of New Preorder Ranks. We explain the algorithm for allocat-
ing preorder ranks on T1 by taking an example. We display the process of the
traversal in Fig. 2. This figure shows a part of T ′ just after allocating preorder
rank 10 to the node v1.

First, we partition 0r-children nodes of v1 in descending order from the node
having the largest item index. We sort only the Z-nodes v5, v6 and v7 in the order
of larger item indexes, and partition the child nodes while merging DZ-nodes and
Z-nodes. By doing this, we gain the partition as [v2, v3], [v4, v5, v7], [v6]. We note
that, since Z-nodes v5, v6 and v7 are stored in a list, we need to change the
connection of the list at this time. Owing to the statement of Theorem 2, we
allocate 11 as its preorder rank to v2. After setting the preorder ranks on the
subtree rooted at v2, the number (10 + stsize(v2) + 1) will be designated as the
preorder rank of v3.

The node to be traversed next is either one of v4, v5, and v7; however,
we cannot decide it because preorder ranks might not have been assigned
to three nodes one(v4), one(v5) and one(v7) yet. Therefore, we cannot com-
pare their prank(one()) at this time. Thus, we stop the process to these
nodes and save the current state. As the memory for saving the state, we
use lists L1, . . . , Lk initialized empty, where the number k is the item num-
ber of the current Hybrid DenseZDD. Since the item indexes v4, v5, v7 are 4,
we add 〈DZleft,DZright,Znodes, rank, prev, isParent〉 = 〈v4,v4,[v5, v7], 10 +
stsize([v2, v3]) + 1, v1, true〉 to L4, where DZleft and DZright denote the start
and the last of the DZ-nodes the preorder rank allocation of which is deferred,
Znodes the array of Z-nodes the allocation of which is deferred, and rank the
minimum value of preorder rank to be allocated to the nodes. The area prev
and isParent are the storage area for the reconnection of the list of the Z-nodes.
In more detail, prev indicates the parent node or the last Z-node in the pre-
vious partition and isParent is the flag indicating whether prev is the parent
node or not. We pick out the information stored in Li (i = 1, . . . , k) from L1

to Lk and resume the allocation of preorder ranks. Here, it should be noted
that we have already finished the allocation of preorder ranks to the nodes the
item indexes of which are less than i when we pick up the information from Li;
therefore, we can sort the nodes in all the elements of Li by comparing their
pairs 〈prank(one()), empflag(one())〉.

As the elements in zarray2 corresponding to the nodes v5, v7, we store
the last node in the subtree of TDZ rooted at v3, which is the current pro-
visional lastDZ-node of v5 and v7. After that, we allocate preorder rank
(10 + stsize([v2, v3, v4, v5, v7]) + 1) to v6, and store the last node in the sub-
tree of TDZ rooted at v4 as the lastDZ-node of v6 in zarray2 .

In the worst case, the number of elements in L1, . . . , Lk is n′, which is the
number of the Z-nodes that remain after compression. Therefore, L1, . . . , Lk use
O(n′(log m′ + log n′)).

We discuss the time complexity of the algorithm. First, it takes O(n′) time to
initialize zarray2 as mentioned above. Next, while traversing T ′, we visit m′ +n′

nodes, and it takes only constant time at each node except for sorting the nodes.

Engineering Hybrid DenseZDDs 213

Now, let us consider the total time complexity for the sorting. In the algorithm,
we sort the nodes in two steps; (1) We sort only Z-nodes. (2) We merge Z-nodes
and DZ-nodes. It takes O(n′ log n′) time in the worst case at the first step, while
only O(m′ + n′) time at the second step. Therefore, we need O(m′ + n′ log n′)
time for the sorting. Finally, it takes O(m′ + n′) time to index order .

5 Experimental Results

We give some experimental results to show the effectiveness of our Hybrid
DenseZDDs. We compare ours with an efficient implementation of ZDDs [9].
We ran three types of experiments; one is to construct ZDDs representing solu-
tions of the N-queen problem, one is to incorporate our Hybrid DenseZDDs into
the LCM-over-ZDD algorithm [12], which is a fast and space-efficient algorithm
for the frequent itemset mining problem, and the last one is the weak-division
algorithm [6] for converting two-level logic functions to multilevel ones. We used
a Linux machine with 64 GB memory and Intel Xeon CPU E5-2650 (2.60 GHz).
Our algorithm uses single core. We used g++ compiler 4.7.2.

Our algorithm has a parameter θ. Let m and n be the numbers of nodes in
DenseZDD and ordinary ZDD, respectively. We compress the Hybrid DenseZDD
into a static DenseZDD every time n/m > θ. The smaller θ is, the more frequent
the compress operation is used. Therefore the working space is reduced if θ is
small. Our algorithm uses smaller working space than ordinary ones, whereas it
takes more running time. We therefore define a measure improvement ratio to
evaluate effectiveness of our algorithm. Let TA and SA denote the running time
and working space of an algorithm A, respectively. We define the improvement
ratio of our algorithm (A) to an existing one (B) as SB

SA
· TB

TA
. The greater the

value is, the better our algorithm is.

5.1 N-queens

N-queen is a well-known problem of counting the number of solutions for placing
N queens on an N ×N board so that no two queens share the same row, column,
or diagonal. We can solve the problem by using set operations on ZDDs.

Table 2 shows running time and working space of algorithms using ordinary
ZDDs and our Hybrid DenseZDDs. Our algorithm using Hybrid DenseZDDs use
less than 6 % of memory of that using ZDDs, though the running time is about
five to seven times longer. If θ = 0.3, the improvement ratio is 3.06, 3.66, 4.98 for
N = 13, 14, 15, respectively.

5.2 LCM over Hybrid DenseZDD

Frequent itemset mining is the problem to find subsets of a set in database
records whose numbers of occurrences are more than a given threshold (minimum
support). The LCM-over-ZDD algorithm uses a ZDD to store frequent subsets.

214 T. Lee et al.

Table 2. Finding solutions of N-queens. |G| and |F| denote the size of the ZDD and
the number of solutions, respectively.

N 13 14 15

|G|, |F| 204781 73712 911420 365596 4796502 2279184

Time (s) Space (KB) Time (s) Space (KB) Time (s) Space (KB)

ZDD 21.19 1107552 132.40 4644772 1059.05 34566152

θ = 10 64.87 297028 432.89 2181084 3136.46 9045172

5 81.19 288768 516.41 1205464 3670.22 8486984

2 91.17 171440 622.45 594828 4220.90 4370688

1.5 96.50 170668 642.42 569704 4486.29 2444740

1 104.14 99908 636.15 327512 4558.42 2310304

0.8 106.04 95036 641.97 329176 4677.31 2308152

0.5 118.79 91376 752.72 340064 5171.41 2317700

0.3 131.23 58424 776.81 215832 5591.37 1312704

0.1 140.43 54204 764.51 213792 6387.34 1315572

0.05 129.95 54604 780.87 215196 5953.22 1279840

0.01 129.59 54524 766.95 215200 6070.43 1279264

Table 3. LCM over ZDD/Hybrid DenseZDD. |G| and |F| denote the size of the ZDD
and the number of frequent subsets, respectively. The suffix “:t” of the database name
shows the minimum support t.

Database T10I4D100K:2 T40I10D100K:100 T40I10D100K:50

|G|, |F| 3270977 19561715 1132008 70470947 6533076 203738242

Time (s) Space (KB) Time (s) Space (KB) Time (s) Space (KB)

ZDD 8.99 165276 104.53 119116 428.41 330004

θ = 10 18.24 170428 132.89 89964 527.87 312132

5 20.82 182692 128.99 121804 546.75 325460

2 24.73 111328 136.94 90080 532.36 231996

1.5 25.71 185292 129.25 85484 602.92 217220

1 25.25 115404 134.29 73140 540.12 218676

0.8 25.46 125688 129.99 71120 535.57 218624

0.5 27.74 134392 131.36 73860 542.18 232304

0.3 34.93 89672 133.14 74780 583.54 166156

0.1 59.61 72356 139.33 60436 593.77 132544

0.05 95.65 64028 146.91 55912 608.54 110372

0.01 387.15 65504 208.45 59996 929.20 110380

Engineering Hybrid DenseZDDs 215

Table 4. Logic function minimization.

Data set 16-adder col al2 split apex5

Time (s) Space (KB) Time (s) Space (KB) Time (s) Space (KB)

ZDD 12.01 1076564 0.24 38216 0.04 3704

θ = 10 46.05 282884 1.20 2508 0.16 2416

5 48.52 162984 0.82 2132 0.07 2072

2 55.33 90476 2.14 2092 0.12 1904

1.5 62.09 96612 14.51 2164 0.15 1864

1 71.09 95424 17.40 2076 0.18 1856

0.8 76.24 52748 23.20 2088 0.19 1840

0.5 92.26 50828 27.27 2092 0.26 1840

0.3 129.23 50800 37.84 2132 0.36 1860

0.1 253.48 51736 59.48 2256 0.64 1872

0.05 406.65 54004 52.22 3560 0.82 1864

0.01 1529.81 75220 154.86 6392 2.76 1920

We replace the ZDD in the algorithm with our Hybrid DenseZDD. The datasets
are obtained from Frequent Itemset Mining Dataset Repository1.

Table 3 shows the results. For the dataset T10I4D100K with threshold 2,
our Hybrid DenseZDD (θ = 0.3), the working space is reduced about a half
(165276 KB to 89672 KB), at the cost of increase in running time by a factor of
3.88. Therefore the improvement ratio is 0.47. For a larger dataset T40I10D100K,
if the threshold is 50, our Hybrid DenseZDD (θ = 0.05) uses 33 % of memory of
the ZDD, and the running time increases only 40 %. Therefore the improvement
ratio is 2.1.

5.3 Logic Function Minimization

We did experiments of the weak-division algorithm using ZDDs [6] for logic
function minimization. The problem is, given a DNF (disjunctive normal form),
or sum-of-products, of a logic function, to create a multilevel logics which consists
of small number of cubes (products of literals). Because the problem is NP-hard,
the algorithm is heuristic. For example, the function f = abd + abē + abḡ + cd +
cē + ch can be rewritten as f = pd̄ + pe + abḡ + ch where p = ab + c and the
number of cubes is reduced.

We used the data sets in “Collection of Digital Design Benchmarks”2. Table 4
shows the results. For the data 16-adder col, which is the circuit for adding two
16-bit integers, if θ = 2.0, our Hybrid DenseZDD uses about 10 % memory of
ZDD, and running time is about 4.6 times longer. Therefore the improvement

1 http://fimi.ua.ac.be/data/.
2 http://ddd.fit.cvut.cz/prj/Benchmarks/.

http://fimi.ua.ac.be/data/
http://ddd.fit.cvut.cz/prj/Benchmarks/

216 T. Lee et al.

ratio is 2.58. For other inputs, the improvement ratio is low because the problem
size is small.

6 Concluding Remarks

We have given the first implementation of the Hybrid DenseZDDs. The source
codes are available at https://github.com/otita/hdzbdd.git. Our new space-
efficient compression algorithm enables us to reduce the working memory greatly.
Future work is to give an algorithm for compression whose running time depends
only the number of ordinary ZDD nodes.

References

1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proceedings of the 11th Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 84–97. SIAM Press (2010)

2. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C–35(8), 677–691 (1986)

3. Denzumi, S., Kawahara, J., Tsuda, K., Arimura, H., Minato, S.-I., Sadakane, K.:
DenseZDD: a compact and fast index for families of sets. In: Gudmundsson, J.,
Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 187–198. Springer, Heidelberg
(2014)

4. Hansen, E.R., Rao, S.S., Tiedemann, P.: Compressing binary decision diagrams.
In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI
2008), pp. 799–800. ACM (2008)

5. Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing, R.
(ed.) SEA 2012. LNCS, vol. 7276, pp. 224–235. Springer, Heidelberg (2012)

6. Minato, S.: Fast factorization method for implicit cube set representation. IEEE
Trans. Comput. Aided Des. Integr. Circ. Syst. 15(4), 377–384 (1996)

7. Minato, S.-I.: Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In: Proceeding of Design Automation Conference (DAC 1993), pp. 272–277.
IEEE (1993)

8. Minato, S.-I.: Zero-suppressed BDDs and their applications. J. Softw. Tools Tech-
nol. Transf. 3(2), 156–170 (2001)

9. Minato, S.-I.: SAPPORO BDD package. Hokkaido University (2011). unreleased
10. Minato, S.-I., Arimura, H.: Frequent pattern mining and knowledge indexing based

on zero-suppressed BDDs. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS,
vol. 4747, pp. 152–169. Springer, Heidelberg (2007)

11. Minato, S.-I., Ishiura, N., Yajima, S.: Shared binary decision diagram with
attributed edges for efficient boolean function manipulation. In: Proceedings of
the 27th Design Automation Conference (DAC 1990), pp. 52–57. IEEE (1990)

12. Minato, S.-I., Uno, T., Arimura, H.: LCM over ZBDDs: fast generation of very
large-scale frequent itemsets using a compact graph-based representation. In:
Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS
(LNAI), vol. 5012, pp. 234–246. Springer, Heidelberg (2008)

13. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees.
ACM Trans. Algorithms, 10(3) (2014). Article No. 16. doi:10.1145/2601073

14. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms 3(4),
43 (2007)

https://github.com/otita/hdzbdd.git
http://dx.doi.org/10.1145/2601073

Steiner Tree Heuristic in the Euclidean d-Space
Using Bottleneck Distances

Stephan S. Lorenzen and Pawel Winter(B)

Department of Computer Science, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen O, Denmark
stephan.lorenzen@gmail.com, pawel@di.ku.dk

Abstract. Some of the most efficient heuristics for the Euclidean Steiner
minimal tree problem in the d-dimensional space, d ≥ 2, use Delaunay
tessellations and minimum spanning trees to determine small subsets
of geometrically close terminals. Their low-cost Steiner trees are deter-
mined and concatenated in a greedy fashion to obtain a low cost tree
spanning all terminals. The weakness of this approach is that obtained
solutions are topologically related to minimum spanning trees. To avoid
this and to obtain even better solutions, bottleneck distances are utilized
to determine good subsets of terminals without being constrained by the
topologies of minimum spanning trees. Computational experiments show
a significant solution quality improvement.

Keywords: Steiner minimal tree · d-dimensional Euclidean space ·
Heuristic · Bottleneck distances

1 Introduction

Given a set of points N = {t1, t2, ..., tn} in the Euclidean d-dimensional space
Rd, d ≥ 2, the Euclidean Steiner minimal tree (ESMT) problem asks for a
shortest connected network T = (V,E), where N ⊆ V . The points of N are called
terminals while the points of S = V \N are called Steiner points. The length |uv|
of an edge (u, v) ∈ E is the Euclidean distance between u and v. The length |T | of
T is the sum of the lengths of the edges in T . Clearly, T must be a tree. It is called
the Euclidean Steiner minimal tree and it is denoted by SMT(N). The ESMT
problem has originally been suggested by Fermat in the 17-th century. Since then
many variants with important applications in the design of transportation and
communication networks and in the VLSI design have been investigated. While
the ESMT problem is one of the oldest optimization problems, it remains an
active research area due to its difficulty, many open questions and challenging
applications. The reader is referred to [4] for the fascinating history of the ESMT
problem.

The ESMT problem is NP-hard [5]. It has been studied extensively in R2 and
a good exact method for solving problem instances with up to 50.000 terminals is
available [13,23]. However, no analytical method can exist for d ≥ 3 [1]. Further-
more, no numerical approximation seems to be able to solve instances with more
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 217–230, 2016.
DOI: 10.1007/978-3-319-38851-9 15

218 S.S. Lorenzen and P. Winter

than 15–20 terminals [7–9,14,21]. It is therefore essential to develop good qual-
ity heuristics for the ESMT problem in Rd, d ≥ 3. Several such heuristics have
been proposed in the literature [10,15,17,22]. In particular, [17] builds on the
R2-heuristics [2,20]. They use Delaunay tessellations and Minimum spanning
trees and are therefore referred to as DM-heuristics. The randomized heuristic
suggested in [15] also uses Delaunay tessellations. It randomly selects a prede-
fined portion of simplices in the Delaunay tessellation. It adds a centroid for each
selected simplex as a Steiner point. It then computes the minimum spanning tree
for the terminals and added Steiner points. Local improvements of various kinds
are then applied to improve the quality of the solution. It obtains good solutions
in R2. Only instances with n ≤ 100 are tested and CPU times are around 40
sec. for n = 100. The randomized heuristic is also tested for very small problem
instances (n = 10, d = 3, 4, 5) and for specially structured “sausage” instances
(n < 100, d = 3). It can be expected that the CPU times increase significantly
as d grows since the number of simplices in Delaunay tessellations then grows
exponentially.

The goal of this paper is to improve the DM-heuristic in a deterministic
manner so that the minimum spanning tree bondage is avoided and good qual-
ity solutions for large problem instances can be obtained. Some basic definitions
and a resume of the DM-heuristic is given in the remainder of this section.
Section 2 discusses how bottleneck distances can be utilized to improve the solu-
tions produced by the DM-heuristic. The new heuristic is referred to as the
DB-heuristic as it uses both Delaunay tessellations and Bottleneck distances.
Section 3 describes data structures used for the determination of bottleneck dis-
tances while Sect. 4 gives computational results, including comparisons with the
DM-heuristic.

1.1 Definitions

SMT(N) is a tree with n − 2 Steiner points, each incident with 3 edges [12].
Steiner points can overlap with adjacent Steiner points or terminals. Terminals
are then incident with exactly 1 edge (possibly of zero-length). Non-zero-length
edges meet at Steiner points at angles that are at least 120◦. If a pair of Steiner
points si and sj is connected by a zero-length edge, then si or sj are also be
connected via a zero-length edge to a terminal and the three non-zero-length
edges incident with si and sj make 120◦ with each other. Any geometric net-
work ST(N) satisfying the above degree conditions is called a Steiner tree. The
underlying undirected graph ST (N) (where the coordinates of Steiner points
are immaterial) is called a Steiner topology. The shortest network with a given
Steiner topology is called a relatively minimal Steiner tree. If ST(N) has no
zero-length edges, then it is called a full Steiner tree (FST). Every Steiner
tree ST(N) can be decomposed into one or more full Steiner subtrees whose
degree 1 points are either terminals or Steiner points overlapping with terminals.
A reasonable approach to find a good suboptimal solution to the ESMT prob-
lem is therefore to identify few subsets N1, N2, ... and their low cost Steiner trees
ST(N1),ST(N2), ... such that a union of some of them, denoted by ST(N), will

Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances 219

be a good approximation of SMT(N). The selection of the subsets N1, N2, ...
should in particular ensure that |ST(N)| ≤ |MST(N)| where MST(N) is the
minimum spanning tree of N .

A Delaunay tessellation of N in Rd, d ≥ 2, is denoted by DT(N). DT(N) is
a simplicial complex. All its k-simplices, 0 ≤ k ≤ d + 1, are also called k-faces
or faces if k is not essential. In the following, we will only consider k-faces with
1 ≤ k ≤ d + 1, as 0-faces are terminals in N . It is well-known that the minimum
spanning tree MST(N) of N is a subgraph of DT(N) [3]. A face σ of DT(N) is
covered if the subgraph of MST(N) induced by the corners Nσ of σ is a tree.
Corners of Nσ are then also said to be covered.

The Steiner ratio of a Steiner tree ST(N) is defined by

ρ(ST(N)) =
|ST(N)|

|MST(N)|

The Steiner ratio of N is defined by

ρ(N) =
|SMT(N)|
|MST(N)|

It has been observed [23] that for uniformly distributed terminals in a unit square
in R2, ρ(N) typically is between 0.96 and 0.97 corresponding to 3 %–4 % length
reduction of SMT(N) over MST(N). The reduction seems to increase as d grows.
The smallest Steiner ratio over all sets N in Rd is defined by

ρd = inf
N

{ρ(N)}

It has been conjectured [11] that ρ2 =
√

3/2 = 0.866025.... There are problem
instances achieving this Steiner ratio; for example three corners of an equilateral
triangle. Furthermore, ρd seems to decrease as d → ∞. It has also been conjec-
tured that ρd, d ≥ 3 is achieved for infinite sets of terminals. In particular, a
regular 3-sausage in R3 is a sequence of regular d-simplices where consecutive
ones share a regular 2-simplex (equilateral triangle). It has been conjectured that
regular 3-sausages have Steiner ratios decreasing toward 0.7841903733771... as
n → ∞ [21].

Let Nσ ⊆ N denote the corners of a face σ of DT(N). Let ST(Nσ) denote a
Steiner tree spanning Nσ. Let F be a forest whose vertices are a superset of N .
Suppose that terminals of Nσ are in different subtrees of F . The concatenation
of F with ST(Nσ), denoted by F ⊕ ST(Nσ), is a forest obtained by adding to F
all Steiner points and all edges of ST(Nσ).

Let G be a complete weighted graph spanning N . The contraction of G by
Nσ, denoted by G
 Nσ, is obtained by replacing the vertices in Nσ by a single
vertex nσ. Loops in G
 Nσ are deleted. Among any parallel edges of G
 Nσ

incident with nσ, all but the shortest ones are deleted.
Finally, let T = MST(N). The bottleneck contraction of T by Nσ, denoted by

T
 Nσ, is obtained by replacing the vertices in Nσ by a single vertex nσ. Any
cycles in T
Nσ are destroyed by removing their longest edges. Hence, T
Nσ is

220 S.S. Lorenzen and P. Winter

a minimum spanning tree of (N\Nσ)∪{nσ}. Instead of replacing Nσ by nσ, the
vertices of Nσ could be connected by a tree with zero-length edges spanning Nσ.
Any cycles in the resulting tree are destroyed by removing their longest edges.
We use the same notation, T
 Nσ, to denote the resulting MST on N .

1.2 DM-Heuristic in Rd

The DM-heuristic constructs DT(N) and MST(N) in the preprocessing phase.
For corners Nσ of every covered face σ of DT(N) in Rd (and for corners of
some covered d-sausages), a low cost Steiner tree ST(Nσ) is determined using a
heuristic [17] or a numerical approximation of SMT(Nσ) [21]. If full, ST(Nσ) is
stored in a priority queue Q ordered by non-decreasing Steiner ratios. Greedy
concatenation, starting with a forest F of isolated terminals in N , is then used
to form a tree spanning N .

In the postprocessing phase of the DM-heuristic, a fine-tuning is performed.
The topology of F is extended to the full Steiner topology ST (N) by adding
Steiner points overlapping with terminals where needed. The numerical approxi-
mation of [21] is applied to ST (N) in order to approximate the relatively minimal
Steiner tree ST(N) with the Steiner topology ST (N).

1.3 Improvement Motivation

The DM-heuristic returns better Steiner trees than its R2 predecessor [20]. It also
performs well for d ≥ 3. However, both the DM-heuristic and its predecessor rely
on covered faces of DT(N) determined by the MST(N). The Steiner topology
ST (N) of ST(N) is therefore dictated by the topology of the MST(N). This is a
good strategy in many cases but there are also cases where this will exclude good
solutions with Steiner topologies not related to the topology of the MST(N).
Consider for example Steiner trees in Fig. 1. In TDM (Fig. 1a) only covered faces
of DT(N) are considered. By considering some uncovered faces (shaded), a better
Steiner tree TDB can be obtained (Fig. 1b).

We wish to detect useful uncovered faces and include them into the greedy
concatenation. Consider for example the uncovered triangle σ of DT(N) in R2

shown in Fig. 2a. If uncovered faces are excluded, the solution returned will be
the MST(N) (red edges in Fig. 2a). The simplex σ is uncovered but it has a very
good Steiner ratio. As a consequence, if permitted, ST(Nσ) = SMT(Nσ) should
be in the solution yielding as much better ST(n) shown in Fig. 2b.

Some uncovered faces of DT(N) can however be harmful in the greedy con-
catenation even though they seem to be useful in a local sense. For example, use
of the uncovered 2-simplex σ of DT(N) in R2 (Fig. 3a) will lead to a Steiner tree
longer than MST(N) (Fig. 3b) while the ratio ρ(SMT(Nσ)) is lowest among all
faces of DT(N). Hence, we cannot include all uncovered faces of DT(N).

Another issue arising in connection with using only uncovered faces is that
the fraction of covered faces rapidly decreases as d grows. As a consequence, the
number of excluded good Steiner trees increases as d grows.

Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances 221

TDM

ρ(TDM) = 0.976

(a)

TDB

ρ(TDB) = 0.966

(b)

Fig. 1. Uncovered faces of DT(N) can improve solutions. Edges of MST(N) not in
Steiner trees are dashed and red. (Color figure online)

σ

(a) (b)

Fig. 2. ρ(SMT(Nσ)) is very low and SMT(Nσ) should be included in ST(N). (Color
figure online)

σ

(a) (b)

Fig. 3. ρ(SMT(Nσ)) is very low but the inclusion of SMT(Nσ) into ST(N) increases
the length of ST(N) beyond |MST(N)|. (Color figure online)

2 DB-Heuristic in Rd

Let T = MST(N). The bottleneck distance |titj |T between two terminals ti, tj ∈
N is the length of the longest edge on the path from ti to tj in T . Note that
|titj |T = |titj | if (ti, tj) ∈ T .

The bottleneck minimum spanning tree BT (Nσ) of a set of points Nσ ⊆ N
is defined as the minimum spanning tree of the complete graph with Nσ as its
vertices and with the cost of an edge (ti, tj), ti, tj ∈ Nσ, given by |titj |T . If Nσ

222 S.S. Lorenzen and P. Winter

is covered by T , then |BT (Nσ)| = |MST(Nσ)|. Easy proof by induction on the
size of Nσ is omitted. Note that N is covered. Hence, |BT (N)| = |T |.

Consider a Steiner tree ST(Nσ) spanning Nσ ⊆ N . The bottleneck Steiner
ratio βT (ST(Nσ)) is given by:

βT (ST(Nσ)) =
|ST(Nσ)|
|BT (Nσ)|

If Nσ is covered by T , then βT (ST(Nσ)) = ρ(ST(Nσ)). Note that ρT (ST(Nσ))
for the 2-simplex σ in Fig. 3 is very high (even if ST(Nσ) = SMT(Nσ)) because
|BT (Nσ)| is the sum of the lengths of the two red dashed edges shown in Fig. 3b.
Hence, ST(Nσ) will be buried deep in the priority queue QB . In fact, it will
never be extracted from QB as ρT (ST(Nσ)) > 1.

The DB-heuristic consists of three phases: preprocessing, main loop and
postprocessing, see Fig. 5. In the preprocessing phase, the DB-heuristic con-
structs DT(N) and T = MST(N). For corners Nσ of each k-face σ of DT(N),
2 ≤ k ≤ d + 1, a low cost Steiner tree ST(Nσ) is determined using a heuristic
[17] or a numerical approximation of SMT(Nσ) [21]. Each full ST(Nσ) is stored
in a priority queue QB ordered by non-decreasing bottleneck Steiner ratios. If
σ is a 1-face, then ST(Nσ) = SMT(Nσ) is the edge connecting the two corners
of σ. Such ST(Nσ) is added to QB only if its edge is in T . Note that bottleneck
Steiner ratios of these 1-faces are 1.

Let F be the forest of isolated terminals from N . Furthermore, let N0 = N . In
the main loop of the DB-heuristic, a greedy concatenation is applied repeatedly
until F becomes a tree. Consider the i-th loop of the DB-heuristic, i = 1, 2, ...
Let ST(Nσi

) be a Steiner tree with currently smallest bottleneck Steiner ratio
in QB . If a pair of terminals in Nσi

is connected in F , ST(Nσi
) is thrown away.

Otherwise, let F = F ⊕ ST(Nσi
) and T = T
 Nσi

, see Fig. 4(a) where the
|BT (ST(Nσ))| = |e1| + |e2|. Such a bottleneck contraction of T (see Fig. 4(b))
may reduce bottleneck distances between up to O(n2) pairs of terminals. Hence,
bottleneck Steiner ratios of some Steiner trees still in QB need to be updated

e1

e2

σ

(a)

ST(Nσ)

(b)

Fig. 4. The insertion of ST (Nσ)

Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances 223

// Preprocessing

Construct DT(N) and T = MST(N);

Push Steiner trees of all faces of DT(N) onto QB (

except 1-faces not in T)

Let F be the forest on N with no edges.

// Main loop

while (F is not a tree on N) {

ST(Nσ) = Steiner tree in QB with smallest

bottleneck Steiner ratio w.r.t. T;

if (no pair of terminals in Nσ is connected in F) {

F = F ⊕ ST(Nσ);

T = T � Nσ;

}

}

// Postprocessing

Fine -tune F;

return F

Fig. 5. DB-heuristic

either immediately or in a lazy fashion. Note that bottleneck Steiner ratios can-
not decrease. If they increase beyond 1, the corresponding Steiner trees do not
need to be placed back in QB . This is due to the fact that all 1-faces (edges) of
the MST(N) are in QB and have bottleneck Steiner ratios equal to 1. We will
return to the updating of bottleneck Steiner ratios in Sect. 3. Fine-tuning (as in
the DM-heuristic) is applied in the postprocessing phase.

Unlike the DM-heuristic, d-sausages are not used in the DB-heuristic. In the
DB-heuristic all faces of DT(N) are considered. As a consequence, fine-tuning in
the postprocessing will in most cases indirectly generate Steiner trees spanning
terminals in d-sausages if they are good candidates for subtrees of ST(N).

3 Contractions and Bottleneck Distances

As face-spanning Steiner trees are added to F in the main loop of the DB-
heurstic, corners of these faces are bottleneck contracted in the current mini-
mum spanning tree T . Bottleneck contractions will reduce bottleneck distances
between some pairs of terminals. As a consequence, bottleneck Steiner ratios
of face-spanning Steiner trees still in QB will increase. A face-spanning Steiner
tree subsequently extracted from QB will not necessarily have the smallest bot-
tleneck Steiner ratio (unless QB has been rearranged). Hence, appropriate lazy
updating has to be carried out. To summarize, a data structure supporting the
following operations is needed:

– bc(Nσ): corners of a face Nσ ∈ DT(N) are bottleneck contracted in T ,
– bd(p,q): bottleneck distance between p and q in current minimum spanning

tree T is returned,
– QB is maintained as a priority queue ordered by non-decreasing bottleneck

Steiner ratios.

224 S.S. Lorenzen and P. Winter

Maintaining QB could be done by recomputing bottleneck Steiner ratios and
rearranging the entire queue after each contraction. Since there may be as many
as O(n�d/2�) faces in DT(N) [18], this will be too slow.

To obtain better CPU times, a slightly modified version of dynamic rooted
trees [19] maintaining a changing forest of disjoint rooted trees is used. For our
purposes, bc-operations and bd-queries require maintaining a changing minimum
spanning tree T rather than a forest. Dynamic rooted trees support (among
others) the following operations:

– evert(nj): makes nj the root of the tree containing nj .
– link(nj , ni, x): links the tree rooted at nj to a vertex ni in another tree. The

new edge (nj , ni) is assigned the cost x.
– cut(nj): removes the edge from nj to its parent. nj cannot be a root.
– mincost(nj): returns the vertex ni on the path to the root and closest to its

root such that the edge from ni to its parent has minimum cost. nj cannot be
a root.

– cost(nj): returns the cost of the edge from nj to its parent. nj cannot be a
root.

– update(nj , x): adds x to the weight of every edge on the path from nj to the
root.

For our purposes, a maxcost operation replaces mincost. Furthermore, the
update operation is not needed. A root of the minimum spanning tree can be
chosen arbitrarily.

Rooted trees are decomposed into paths (see Fig. 6) represented by bal-
anced binary search trees or biased binary trees. The path decomposition can
be changed by splitting or joining these binary trees.

By appropriate rearrangement of the paths, all above operations can be
implemented using binary search tree operations [19]. Since the update oper-
ation is not needed, the values cost and maxcost can be stored directly with nj .
Depending on whether balanced binary search trees or biased binary trees are
used for the paths, the operations require respectively O(log2 n) and O(log n)
amortized time.

r

Fig. 6. A rooted tree decomposed into paths.

Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances 225

Using dynamic rooted trees to store the minimum spanning tree, bd-queries
and bottleneck contractions can be implemented as shown in Fig. 7. The bd-
query makes ni the new root. Then it finds the vertex nk closest to ni such that
the edge from nk to its parent has maximum cost on the path from nj to ni.
The cost of this edge is returned. The bc-operation starts by running through
all pairs of vertices of Nσ. For each pair ni, nj , ni is made the root of the tree
(evert(ni)) and then the edge with the maximum cost on the path from nj to
ni is found. If ni and nj are connected, the edge is cut away. Having cut away
all connecting edges with maximum cost, the vertices of Nσ are reconnected by
zero-length edges.

// ti and tj are vertices of the minimum spanning tree T

bd(ti,tj) {

evert(ti)

return cost(maxcost(tj))

}

// Nσ = { t1, t2, ..., tk }, k ≥ 2 is a set of corners of a face

of DT(N)
bc(tσ) {

for(i = 1 .. k) {

evert(ti)

for(j = i+1 .. k)

if(ti and tj are connected) cut(maxcost(tj));

}

evert(t1)

for(i = 2 .. k) link(ti−1, ti, 0)

}

Fig. 7. bd-query and bc-operation

When using balanced binary trees, one bd-query takes O((log n)2) amortized
time. Since only faces of DT(N) are considered, the bc-operation performs O(d)
everts and links, O(d2) maxcosts and cuts. Hence, it takes O((d log n)2) time.

In the main loop of the algorithm, Steiner trees of faces of DT(N) are
extracted one by one. A face σ is rejected if some of its corners are already
connected in F . Since the quality of the final solution depends on the quality of
Steiner trees of faces, these trees should have smallest possible bottleneck Steiner
ratios. When a Steiner tree ST (Nσ) is extracted from QB , it is first checked if
ST (Nσ) spans terminals already connected in F . If so, ST (Nσ) is thrown away.
Otherwise, its bottleneck Steiner ratio may have changed since the last time it
was pushed onto QB . Hence, bottleneck Steiner ratio of ST (Nσ) is recomputed.
If it increased since last but is still below 1, ST (Nσ) is pushed back onto QB

(with the new bottleneck Steiner ratio). If the bottleneck Steiner ratio did not
change, ST (Nσ) is used to update F and bottleneck contract T .

226 S.S. Lorenzen and P. Winter

4 Computational Results

The DB-heuristic was tested against the DM-heuristic. Both Steiner ratios and
CPU times were compared. To get reliable Steiner ratio and computational time
comparisons, they were averaged over several runs whenever possible. Further-
more, the results in R2 were compared to the results achieved by the exact
GeoSteiner algorithm [13].

To test and compare the DM- and the DB-heuristic, they were implemented
in C++. The code and instructions on how to run the DM- and DB-heuristics
can be found in the GitHub repository [16]. All tests have been run on a Lenovo
ThinkPad S540 with a 2 GHz Intel Core i7-4510U processor and 8 GB RAM.

The heuristics were tested on randomly generated problem instances of differ-
ent sizes in Rd, d = 2, 3, ..., 6, as well as on library problem instances. Randomly
generated instances were points uniformly distributed in Rd-hypercubes.

The library problem instances consisted of the benchmark instances from the
11-th DIMACS Challenge [6]. More information about these problem instances
can be found on the DIMACS website [6]. For comparing the heuristics with the
GeoSteiner algorithm, we used ESTEIN instances in R2.

Dynamic rooted trees were implemented using AVL trees. The restricted
numerical optimisation heuristic [17] for determining Steiner trees of DT(N)
faces was used in the experiments.

In order to get a better idea of the improvement achieved when using bot-
tleneck distances, the DM-heuristic does not consider covered d-sausages as pro-
posed in [17]. Test runs of the DM-heuristic indicate that the saving when using
d-sausages together with fine-tuning is only around 0.1% for d = 2, 0.05% for
d = 3 and less than 0.01% when d > 3. As will be seen below, the savings
achieved by using bottleneck distances are more significant.

In terms of quality, the DB-heuristic outperforms the DM-heuristic. The
Steiner ratios of obtained Steiner trees reduces by 0.2−0.3% for d = 2, 0.4−0.5%
for d = 3, 0.6−0.7% for d = 4, 0.7−0.8% for d = 5 and 0.8−0.9% for d = 6. This
is a significant improvement for the ESMT problem as will be seen below, when
comparing R2 results to the optimal solutions obtained by the exact GeoSteiner
algorithm [13].

CPU times for both heuristics for d = 2, 3, ..., 6, are shown in Fig. 8. It can be
seen that the improved quality comes at a cost for d ≥ 4. This is due to the fact
that the DB-heuristic constructs low cost Steiner trees for all O(n�d/2�) faces
of DT(N) while the DM-heuristic does it for covered faces only. Later in this
section it will be explored how the Steiner ratios and CPU times are affected if
the DB-heuristic drops some of the faces.

Figure 9 shows how the heuristics and GeoSteiner (GS) performed on
ESTEIN instances in R2. Steiner ratios and CPU times averaged over all 15
ESTEIN instances of the given size, except for n = 10000 which has only
one instance. For the numerical comparisons, see Table 1 in the GitHub repos-
itory [16]. It can be seen that the DB-heuristic produces better solutions than
the DM-heuristic without any significant increase of the computational time.

Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances 227

10 000 20 000

0

0.5

1
d = 2

n

t (sec.)

7 500 15 000

0

5

10

d = 3

n

t (sec.)

1 000 2 000

0

10

20
d = 4

n

t (sec.)

100 200

0

10

20

d = 5

n

t (sec.)

75 150

0

50

100

150

d = 6

n

t (sec.)

Fig. 8. Comparison of the CPU times for the DB-heuristic (blue) and the DM-heuristic
(red) for d = 2, 3, ..., 6. (Color figure online)

It is also worth noticing that the DB-heuristic gets much closer to the optimal
solutions. This may indicate that the DB-heuristic also produces high quality
solutions when d > 2, where optimal solutions are only known for instances with
at most 20 terminals. For the performance of the DB-heuristic on individual R2

instances, see Tables 3–7 in the GitHub repository [16].
The results for ESTEIN instances in R3 are presented in Fig. 10. The green

plot for n = 10 is the average ratio and computational time achieved by
numerical approximation [21]. Once again, the DB-heuristic outperforms the
DM-heuristic when comparing Steiner ratios. However, the running times are

10 20 30 40 50 60 70 80 90 100

250

500

1000

10000

0.968
0.970
0.972
0.974

n

ρ(ST(N))

10 20 30 40 50 60 70 80 90 100

250

500

1000

10000

10−3

100

103

n

t (sec.)

Fig. 9. Averaged ratios and CPU times for ESTEIN instances in R2. DM-heuristic
(red), DB-heuristic (blue), GeoSteiner (green). (Color figure online)

228 S.S. Lorenzen and P. Winter

10 20 30 40 50 60 70 80 90 100

250

500

1000

10000
0.950

0.955

n

ρ(ST(N))

10 20 30 40 50 60 70 80 90 100

250

500

1000

10000

10−3

10−1

101

n

t (sec.)

Fig. 10. Averaged ratio and CPU times for ESTEIN instances in R3. DM-heuristic
(red), DB-heuristic (blue), numerical approximation (green). (Color figure online)

now up to four times worse. For the numerical comparisons, see Table 2 in the
GitHub repository [16]. For the performance of the DB-heuristic on individual
R3 instances, see Tables 8–12 in the GitHub repository [16].

The DB-heuristic starts to struggle when d ≥ 4. This is caused by the num-
ber of faces of DT(N) for which low cost Steiner trees must be determined. The
DB-heuristic was therefore modified to consider only faces with less than k ter-
minals, for k = 3, 4, ..., d + 1. Figure 11 shows the performance of this modified
DBk-heuristic with k = 3, 4, ..., 7, on a set with 100 terminals in R6. Note that
DB7 = DB.

As expected, the DBk-heuristic runs much faster when larger faces of DT(N)
are disregarded. Already the DB4-heuristic seems to be a reasonable alternative
since solutions obtained by DBk-heuristic, 5 ≤ k ≤ 7, are not significantly better.
Surprisingly, the DB6-heuristic performs slightly better than the DB7-heuristic.

DM DB3 DB4 DB5 DB6 DB7

0.905

0.910

0.915

0.920
ρ(ST(N))

Method t

DM 0.4714

DB3 0.6000

DB4 6.0525

DB5 26.2374

DB6 51.3653

DB7 = DB 62.8098

Fig. 11. Results achieved when considering faces of DT(N) with at most k = 3, 4, ..., 7
terminals in the concatenation for d = 6 and n = 100.

Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances 229

This is probably due to the fact that low cost Steiner trees of smaller faces have
fewer Steiner points. This in turn causes the fine-tuning step of the DB6-heuristic
to perform better than is the case for DB7.

5 Summary and Conclusions

The DM-heuristic in Rd [17] was extended to the DB-heuristic that uses bot-
tleneck distances to determine good candidates for low cost Steiner trees. Com-
putational results show a significant improvement in the quality of the Steiner
trees produced by the DB-heuristic.

The CPU times of the DB-heuristic are comparable to the CPU times of the
DM-heuristic in Rd, d = 2, 3. It runs slower for d ≥ 4. However, its CPU times
can be significantly improved by skipping larger faces of DT(N). This results in
only small decrease of the quality of solutions obtained.

References

1. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Com-
put. Geom. 3, 177–191 (1988)

2. Beasley, J.E., Goffinet, F.: A Delaunay triangulation-based heuristic for the Euclid-
ean Steiner problem. Networks 24(4), 215–224 (1994)

3. de Berg, M., Cheong, O., van Krevald, M., Overmars, M.: Computational Geometry
- Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

4. Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the
Euclidean Steiner tree problem. Arch. Hist. Exact Sci. 68, 327–354 (2014)

5. Brazil, M., Zachariasen, M.: Optimal Interconnection Trees in the Plane. Springer,
Cham (2015)

6. DIMACS, ICERM: 11th DIMACS Implementation Challenge: Steiner Tree Prob-
lems (2014). http://dimacs11.cs.princeton.edu/

7. Fampa, M., Anstreicher, K.M.: An improved algorithm for computing Steiner min-
imal trees in Euclidean d-space. Discrete Optim. 5, 530–540 (2008)

8. Fampa, M., Lee, J., Maculan, N.: An overview of exact algorithms for the Euclidean
Steiner tree problem in n-space, Int. Trans. OR (2015)

9. Fonseca, R., Brazil, M., Winter, P., Zachariasen, M.: Faster exact algorithms for
computing Steiner trees in higher dimensional Euclidean spaces. In: Proceedings
of the 11th DIMACS Implementation Challenge, Providence, Rhode Island, USA
(2014). http://dimacs11.cs.princeton.edu/workshop.html

10. do Forte, V.L., Montenegro, F.M.T., de Moura Brito, J.A., Maculan, N.: Iterated
local search algorithms for the Euclidean Steiner tree problem in n dimensions.
Int. Trans. OR (2015)

11. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1),
1–29 (1968)

12. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-
Holland, Amsterdam (1992)

13. Juhl, D., Warme, D.M., Winter, P., Zachariasen, M.: The GeoSteiner software pack-
age for computing Steiner trees in the plane: an updated computational study. In:
Proceedings of the 11th DIMACS Implementation Challenge, Providence, Rhode
Island, USA (2014). http://dimacs11.cs.princeton.edu/workshop.html

http://dimacs11.cs.princeton.edu/
http://dimacs11.cs.princeton.edu/workshop.html
http://dimacs11.cs.princeton.edu/workshop.html

230 S.S. Lorenzen and P. Winter

14. Laarhoven, J.W.V., Anstreicher, K.M.: Geometric conditions for Euclidean Steiner
trees in Rd. Comput. Geom. Theor. Appl. 46(5), 520–531 (2013)

15. Laarhoven, J.W.V., Ohlmann, J.W.: A randomized Delaunay triangulation heuris-
tic for the Euclidean Steiner tree problem in Rd. J. Heuristics 17(4), 353–372
(2011)

16. Lorenzen, S.S., Winter, P.: Code and Data Repository at Github (2016). https://
github.com/StephanLorenzen/ESMT-heuristic-using-bottleneck-distances/blob/
master/README.md

17. Olsen, A., Lorenzen, S. Fonseca, R., Winter, P.: Steiner tree heuristics in Euclidean
d-space. In: Proceedings of the 11th DIMACS Implementation Challenge, Prov-
idence, Rhode Island, USA (2014). http://dimacs11.cs.princeton.edu/workshop.
html

18. Seidel, R.: The upper bound theorem for polytopes: an easy proof of its asymptotic
version. Comp. Geom.-Theor. Appl. 5, 115–116 (1995)

19. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

20. Smith, J.M., Lee, D.T., Liebman, J.S.: An O(n log n) heuristic for Steiner minimal
tree problems on the Euclidean metric. Networks 11(1), 23–39 (1981)

21. Smith, W.D.: How to find Steiner minimal trees in Euclidean d-space. Algorithmica
7, 137–177 (1992)

22. Toppur, B., Smith, J.M.: A sausage heuristic for Steiner minimal trees in three-
dimensional Euclidean space. J. Math. Model. Algorithms 4, 199–217 (2005)

23. Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree
problems: a computational study. In: Du, D.-Z., Smith, J., Rubinstein, J. (eds.)
Advances in Steiner Trees, pp. 81–116. Springer, Dordrecht (2000)

https://github.com/StephanLorenzen/ESMT-heuristic-using-bottleneck-distances/blob/master/README.md
https://github.com/StephanLorenzen/ESMT-heuristic-using-bottleneck-distances/blob/master/README.md
https://github.com/StephanLorenzen/ESMT-heuristic-using-bottleneck-distances/blob/master/README.md
http://dimacs11.cs.princeton.edu/workshop.html
http://dimacs11.cs.princeton.edu/workshop.html

Tractable Pathfinding for the Stochastic
On-Time Arrival Problem

Mehrdad Niknami1(B) and Samitha Samaranayake2

1 Electrical Engineering and Computer Science, UC Berkeley, Berkeley, USA
mniknami@berkeley.edu

2 School of Civil and Environmental Engineering, Cornell University, Ithaca, USA

Abstract. We present a new and more efficient technique for computing
the route that maximizes the probability of on-time arrival in stochas-
tic networks, also known as the path-based stochastic on-time arrival
(SOTA) problem. Our primary contribution is a pathfinding algorithm
that uses the solution to the policy-based SOTA problem—which is of
pseudo-polynomial-time complexity in the time budget of the journey—
as a search heuristic for the optimal path. In particular, we show that
this heuristic can be exceptionally efficient in practice, effectively mak-
ing it possible to solve the path-based SOTA problem as quickly as the
policy-based SOTA problem. Our secondary contribution is the exten-
sion of policy-based preprocessing to path-based preprocessing for the
SOTA problem. In the process, we also introduce Arc-Potentials, a more
efficient generalization of Stochastic Arc-Flags that can be used for both
policy- and path-based SOTA. After developing the pathfinding and pre-
processing algorithms, we evaluate their performance on two different
real-world networks. To the best of our knowledge, these techniques pro-
vide the most efficient computation strategy for the path-based SOTA
problem for general probability distributions, both with and without
preprocessing.

1 Introduction

Modern advances in graph theory and empirical computational power have essen-
tially rendered deterministic point-to-point routing a solved problem. While the
ubiquity of routing and navigation tools in our everyday lives is a testament to
the success and usefulness of deterministic routing technology, inaccurate pre-
dictions remain a fact of life, resulting in missed flights, late arrivals to meetings,
and failure to meet delivery deadlines. Recent research in transportation engi-
neering, therefore, has focused on the collection of traffic data and the incorpora-
tion of uncertainty into traffic models, allowing for the optimization of relevant
reliability metrics desirable for the user.

The point-to-point stochastic on-time arrival problem [1], or SOTA for short,
concerns itself with this reliability aspect of routing. In the SOTA problem, the
network is assumed to have uncertainty in the travel time across each link,
represented by a strictly positive random variable. The objective is then to
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 231–245, 2016.
DOI: 10.1007/978-3-319-38851-9 16

232 M. Niknami and S. Samaranayake

maximize the probability of on-time arrival when traveling between a given
origin-destination pair with a fixed time budget.1 It has been shown that the
SOTA solution can appreciably increase the probability of on-time arrival com-
pared to the classical least expected travel time (LET) path [3], motivating the
search for efficient solutions to this problem.

1.1 Variants

There exist two primary variants of the SOTA problem. The path-based SOTA
problem, which is also referred to as the shortest-path problem with on-time
arrival reliability (SPOTAR) [4], consists of finding the a-priori most reliable
path to the destination. The policy-based SOTA problem, on the other hand,
consists of computing a routing policy—rather than a fixed path—such that,
at every intersection, the choice of the next direction depends on the current
state (i.e., the remaining time budget).2 While a policy-based approach provides
better reliability when online navigation is an option, in some situations it can
be necessary to determine the entire path prior to departure.

The policy-based SOTA problem, which is generally solved in discrete-time,
can be solved via a successive-approximation algorithm, as shown by Fan and
Nie [5]. This approach was subsequently improved by Samaranayake et al. [3] to a
pseudo-polynomial-time label-setting algorithm based on dynamic-programming
with a sequence of speedup techniques and the use of zero-delay convolution [6,7].
It was then demonstrated in Sabran et al. [8] that graph preprocessing techniques
such as Reach [9] and Arc-Flags [10] can be used to further reduce query times
for this problem.

In contrast with the policy-based problem, however, no polynomial-time solu-
tion is known for the general path-based SOTA problem [4]. In the special case
of normally-distributed travel times, Nikolova et al. [11] present an O(nO(log n))-
algorithm for computing exact solutions, while Lim et al. [12] present a poly-
logarithmic-time algorithm for approximation solutions. To allow for more gen-
eral probability distributions, Nie and Wu [4] develop a label-correcting algo-
rithm that solves the problem by utilizing the first-order stochastic dominance
property of paths. While providing a solution method for general distributions,
the performance of this algorithm is still insufficient to be of practical use in many
real-world scenarios; for example, while the stochastic dominance approach pro-
vides a reasonable computation time (on the order of half a minute per instance)
for networks of a few hundred to a thousand vertices, it fails to perform well on
metropolitan road networks, which easily exceed tens of thousands of vertices.
In contrast, our algorithm easily handles networks of tens of thousands of edges
in approximately the same amount of time without any kind of preprocessing.3

1 The target objective can in fact be generalized to utility functions other than the
probability of on-time arrival [2] with little effect on our algorithms, but for our
purposes, we limit our discussion to this scenario.

2 In this article, we only consider time-invariant travel-time distributions. The problem
can be extended to incorporate time-varying distributions as discussed in [3].

3 Parmentier and Meunier [13] have concurrently also developed a similar approach
concerning stochastic shortest paths with risk measures.

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 233

With preprocessing, our techniques further reduce the running time to less than
half a second, making the problem tractable for larger networks.4

1.2 Contributions

Our primary contribution in this article is a practically efficient technique for
solving the path-based SOTA problem, based on the observation that the solu-
tion to the policy-based SOTA problem is in practice itself an extremely efficient
heuristic for solving the path-based problem.

Our secondary contribution is to demonstrate how graph preprocessing can
be used to speed up the computation of the policy heuristic, and thus the opti-
mal path, while maintaining correctness.5 Toward this goal, we present Arc-
Potentials, a more efficient generalization of the existing preprocessing technique
known as Stochastic Arc-Flags that can be used for both policy- and path-based
preprocessing.

After presenting these techniques, we evaluate the performance of our algo-
rithms on two real-world networks while comparing the trade-off between their
scalability (in terms of memory and computation time) and the speedups
achieved. Our techniques, to the best of our knowledge, provide the most efficient
computation strategy for the path-based SOTA problem with general probability
distributions, both with and without preprocessing.

2 Preliminaries

We are given a stochastic network in the form of a directed graph G = (V,E)
where each edge (i, j) ∈ E has an associated probability distribution pij(·) rep-
resenting the travel time across that edge.6 The source is denoted by s ∈ V , the
destination by d ∈ V , and the travel time budget by T ∈ R

+.
For notational simplicity, we present the SOTA problem in continuous-time

throughout this article, with the understanding that the algorithms are applied
after discretization with a time interval of Δt.

Definition 1 (SOTA Policy). Let uij(t) be the probability of arriving at the
destination d with time budget t when first traversing edge (i, j) ∈ E and sub-
sequently following the optimal policy. Let δij > 0 be the minimum travel time
along edge (i, j), i.e. min{τ : pij(τ) > 0}. Then, the on-time arrival probability
ui(t) and the policy (optimal subsequent node) wi(t) at node i, can be defined
via the dynamic programming equations below [1]. Note that Δt must satisfy
Δt ≤ δij ∀(i, j) ∈ E.

4 It should be noted that the largest network we consider only has approximately
71,000 edges and is still much smaller than networks used to benchmark deterministic
shortest path queries, which can have millions of edges [14].

5 As explained later, there is a potential pitfall that must be avoided when the pre-
processed policy is to be used as a heuristic for the path.

6 We assume that at most one edge exists between any pair of nodes in each direction.

234 M. Niknami and S. Samaranayake

uij(t) =
∫ t

δij

uj(t − τ)pij(τ) dτ

ud(·) = 1

ui(t) = max
j: (i,j)∈E

uij(t)

wi(t) = argmax
j: (i,j)∈E

uij(t)

The solution to the policy-based SOTA problem can be obtained by solving
this system of equations using dynamic programming as detailed in [3]. This
requires evaluating a set of convolution integrals. The computation of the policy
us(·) for a source s and time budget T using direct convolution takes O(|E|T 2)
time, as computing us(T) could in the worst case require convolutions of length
O(T) for each edge in the graph. However, by using an online convolution tech-
nique known as zero-delay convolution (ZDC) [6,15], the time complexity can
be reduced to O(|E|T log2 T). Justifications for the results and time complexity,
including details on how to apply ZDC to the SOTA problem, can be found
in [3,7].

Assumptions. Our work, as with other approaches to both the policy-based and
path-based SOTA problems, makes a number of assumptions about the nature
of the travel time distributions. The three major assumptions are that the travel
time distributions are (1) time invariant, (2) exogenous (not impacted by indi-
vidual routing choices), and (3) independent. The time-invariance assumption—
which prevents accounting for traffic variations throughout the day—can be
relaxed under certain conditions as described in [3]. Furthermore, the exogene-
ity assumption is made even in the case of deterministic shortest path problems.
This leaves the independence assumption as a major concern for this problem.

It might, in fact, be possible to partially relax this assumption [3] to allow for
conditional distributions at the cost of increasing the computation time by a fac-
tor linear in the number of states to be conditioned on. (If we assume the Markov
property for road networks, the number of conditioning states becomes the in-
degree of each vertex, a small enough constant that may make generalizations
in this direction practical.) Nevertheless, we will only focus on the independent
setting and make no claim to have solved the path-based SOTA problem in full
generality, as the problem already lacks efficient solution methods even in this
simplified setting. Our techniques should, however, provide a foundation that
allows for relaxing these assumptions in the future.

3 Path-Based SOTA

In the deterministic setting, efficient solution strategies (from Dijkstra’s algo-
rithm to state-of-the-art solutions) generally exploit the sub-path optimality
property: namely, the fact that any optimal route to a destination node d
that includes some intermediate node i necessarily includes the optimal path
from i to d. Unfortunately, this does not hold in the stochastic setting.

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 235

Algorithm 1. Algorithm for computing the optimal SOTA path
Notation: ∗ is the convolution operator and ‖ is the concatenation operator
for all i ∈ V , 0 ≤ t ≤ T do

Compute the optimal policy’s reliability8 ui(t)

Q ← PriorityQueue()
Q.Push (us(T), ([1.0] , [s])) � Push (reliability, (cost dist., initial path))
while Q is not empty do

(r, (q, P)) ← Q.PopMax() � Extract most reliable path so far
i ← P [|P | − 1] � Get the last node in the path
if i = d then

return P
for all j ∈ E.Neighbors(i) do

Q.Push ((q ∗ uj)[T], (q ∗ E.Cost(i, j), P ‖ [j])) � Append new edge.

return nil � No path found

Furthermore, blind enumeration of all possible paths in the graph is absolutely
intractable for all but the most trivial networks, as the number of simple paths
grows exponentially with the number of nodes in the graph. Naturally, this leads
us to seek a heuristic to guide us toward the optimal path efficiently, while not
compromising its optimality.

3.1 Algorithm

Consider a fixed path P from the source s to node i. Let qP
si(t) be the travel

time distribution along P from node s to node i, i.e., the convolution of the
travel time distributions of every edge in P . Upon arriving at node i at time t,
let the user follow the optimal policy toward d, therefore reaching d from s with
probability density qP

si(t)ui(T − t). The reliability of following path P to node i
and subsequently following the optimal policy toward d is7:

rP
si(T) =

∫ T

0

qP
si(t)ui(T − t) dt

Note that the route from s → i is a fixed path while that from i → d is a policy.
The optimal path is found via the procedure in Algorithm1. Briefly, starting

at the source s, we add the hybrid (path + policy) solution rP
si(T) for each

neighbor i of s to a priority queue. Each of these solutions gives an upper bound
on the solution (success probability). We then dequeue the solution with the
highest upper bound, repeating this process until a path to the destination is
found.

Essentially, Algorithm 1 performs an A∗ search for the destination, using
the policy as a heuristic. While it is obvious that the algorithm would find the
7 The bounds of this integral can be slightly tightened through inclusion of the mini-

mum travel times, but this has been omitted for simplicity.
8 Can be limited to those i and t reachable from s in time T , and can be further sped

up through existing policy preprocessing techniques such as Arc-Flags.

236 M. Niknami and S. Samaranayake

optimal path eventually if the search were allowed to continue indefinitely, it is
less obvious that the first path found will be optimal. We show this by showing
that the policy is an admissible heuristic for the path, and consequently, by the
optimality of A∗ [16], the first returned path must be optimal.

Proposition 1 (Admissibility). The solution to policy-based SOTA problem
is an admissible heuristic for the optimal solution to the path-based SOTA prob-
lem using Algorithm1.

Proof. When finding a minimum cost path, an admissible heuristic is a heuristic
that never overestimates the actual cost [17]. In our context, since the goal is
to maximize the reliability (success probability), this corresponds to a heuristic
that never underestimates the reliability of a routing strategy. The reliability of
an optimal SOTA policy clearly provides an upper bound on the reliability of
any fixed path with the same source, destination, and travel budget. (Otherwise,
a better policy would be to simply follow the fixed path irrespective of the time
remaining, contradicting the assumption that the policy is optimal.) Therefore,
the SOTA policy is an admissible heuristic for the optimal SOTA path.

3.2 Analysis

The single dominant factor in this algorithm’s (in)efficiency is the length of the
priority queue (i.e., the number of paths considered by the algorithm), which
in turn depends on the travel time distribution along each road. As long as
the number of paths considered is approximately linear in length of the optimal
path, the path computation time is easily dominated by the policy computation
time, and the algorithm finds the optimal path very quickly. In the worst-case
scenario for the algorithm, the optimal path at a node corresponds to the direc-
tion for the worst policy at that node. Such a scenario, or even one in which
the optimal policy frequently chooses a suboptimal path, could result in a large
(even exponential) running time as well as space usage. However, it is difficult
to imagine this happening in practice. As shown later, experimentally, we came
across very few cases in which the path computation time dominated the policy
computation time, and even in those cases, they were still quite reasonable and
extremely far from such a worst-case scenario. We conjecture that such situations
are extremely unlikely to occur in real-world road networks.

An interesting open problem is to define characteristics (network structure,
shape of distributions, etc.) that guarantee pseudo-polynomial running times in
stochastic networks, similar in nature to the Highway Dimension property [18] in
deterministic networks, which guarantees logarithmic query times when networks
have a low Highway Dimension.

4 Preprocessing

In deterministic pathfinding, preprocessing techniques such as Arc-Flags [10],
reach-based routing [9,19], contraction hierarchies [20], and transit node routing

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 237

[21] have been very successfully used to decrease query times by many orders of
magnitude by exploiting structural properties of road networks. Some of these
approaches allow for pruning the search space based solely on the destination
node, while others also take the source node into account, allowing for better
pruning at the cost of additional preprocessing. The structure of the SOTA
problem, however, makes it more challenging to apply such techniques to it.
Previously, Arc-Flags and Reach have been successfully adapted to the policy-
based problem in [8], resulting in Stochastic Arc-Flags and Directed Reach.
While at first glance one may be tempted to directly apply these algorithms
to the computation of the policy heuristic for the path-based problem, a naive
application of source-dependent pruning (such as Directed Reach or source-based
Arc-Flags) can result in an incorrect solution, as the policy needs to be recom-
puted for source nodes that correspond to different source regions. This effec-
tively limits any preprocessing of the policy heuristic to destination-based (i.e.,
source-independent) techniques such as Stochastic Arc-Flags, precluding the use
of source-based approaches such as Directed Reach for the policy computation.

With sufficient preprocessing resources (as explained in Sect. 5.2), however,
one can improve on this through the direct use of path-based preprocessing—that
is, pruning the graph to include only those edges which may be part of the most
reliable path. This method allows us to simultaneously account for both source
and destination regions, and generally results in a substantial reduction of the
search space on which the policy needs to be computed. However, as path-based
approaches require computing paths between all ≈ |V |2 pairs of vertices in the
graph, this approach may become computationally prohibitive for medium- to
large-scale networks. In such cases, we would then need to either find alternate
approaches (e.g. approximation techniques), or otherwise fall back to the less
aggressive policy-based pruning techniques, which only require computing |V |
separate policies (one per destination).

4.1 Efficient Path-Based Preprocessing

Path-based preprocessing requires finding the optimal paths for each time budget
up to the desired time budget T for all source-destination pairs. Naively, this
can be done by placing Algorithm1 in a loop, executing it for all time budgets
from 1 to T . This requires T times the work of finding the path for a single time
budget, which is clearly prohibitive for any reasonable value of T . However, we
can do far better by observing that many of the computations in the algorithm
are independent of the time budget and can be factored out when the path does
not change with T .

To improve the efficiency of the naive approach in this manner, we make two
observations. First, we observe that, in Algorithm1, only the computation of
the path’s reliability (priority) in the priority queue ever requires knowledge of
the time budget. Crucially, the convolution q ∗ E.Cost(i, j) only depends on the
maximum time budget T for truncation purposes, which is a fixed value. This
means that the travel time distribution of any path under consideration can be
computed once for the maximum time budget, and re-used for all lower time

238 M. Niknami and S. Samaranayake

budgets thereafter. Second, we observe that when a new edge is appended, the
priority of the new path is the inner product of the vector q and (the reverse of)
the vector uj , shifted by T . As noted in the algorithm itself, this quantity in fact
the convolution of the two aforementioned vectors evaluated at T . Thus, when a
new edge is appended, instead of recomputing the inner product, we can simply
convolve the two vectors once, and thereafter look up the results instantly for
other time budgets.

Together, these two observations allow us to compute the optimal paths
for all budgets far faster than would seem naively possible, making path-based
preprocessing a practical option.

4.2 Arc-Potentials

As noted earlier, Arc-Flags, a popular method for graph preprocessing, has been
adapted to the SOTA problem as Stochastic Arc-Flags [8]. Instead of applying
it directly, however, we present Arc-Potentials, a more natural generalization of
Arc-Flags to SOTA that can still be directly applied to the policy- and path-
based SOTA problems alike, while allowing for more efficient preprocessing.

Consider partitioning the graph G into R regions (we choose R = O(log |E|),
described below), where R is tuned to trade off storage space for pruning accu-
racy. In the deterministic setting, Arc-Flags allow us to preprocess and prune
the search space as follows. For every arc (edge) (i, j) ∈ E, Arc-Flags defines a
bit-vector of length R that denotes whether or not this arc belongs to an optimal
path ending at some node in region R. We then pre-compute these Arc-Flags,
and store them for pruning the graph at query time. (This approach has been
extended to the dynamic setting [22] in which the flags are updated with low
recomputation cost after the road network is changed.)

Sabran et al. [8] apply Arc-Flags to the policy-based SOTA problem as fol-
lows: each bit vector is defined to represent whether or not its associated arc
is realizable, meaning that it belongs to an optimal policy to some destination
in the target region associated with each bit. The problem with this approach,
however, is that it requires computing arc-flags for all target budgets (or more,
practically, some ranges of budgets), each of which takes a considerable amount
of space. Instead, we propose a more efficient alternative Definition 2, which we
call Arc-Potentials.

Definition 2 (Arc-Potentials). For a given destination region D, we define
the arc activation potential φij of the edge from node i to node j to be the
minimum time budget at which the arc becomes part of an optimal policy to
some destination d ∈ D.

The Arc-Potentials pruning algorithm only stores the “activation” potential
of every edge. As expected, this implies that for large time budgets, every edge
is potentially active. We could have further generalized the algorithm to allow
for asymptotically exact pruning at relatively low cost by simply storing the
actual potential intervals during which the arc is active, rather than merely
their first activation potential. However, in our experiments this was deemed

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 239

unnecessary as Arc-Potentials were already sufficient for significant pruning in
the time budgets of interest in our networks.

The computation of the set of realizable edges (and nodes) under a given
policy is essentially equivalent to the computation of the policy itself, except that
updates are performed in the reverse order (from the source to the destination).
The activation potentials φ can then be obtained from this set. As with Arc-
Flags, we limit the space complexity to O(|E|R) = O(|E| log |E|) by choosing R
to be proportional log |E|, tuning it as desired to increase the pruning accuracy.
In our experiments, we simply used a rectangular grid of size

√
R ×

√
R. Note,

however, that the preprocessing time does not depend on R, as the paths between
all ≈ |V |2 pairs of nodes must be eventually computed.

5 Experimental Results

We evaluated the performance of our algorithms on two real-world test net-
works: a small San Francisco network with 2643 nodes and 6588 edges for which
real-world travel-time data was available as a Gaussian mixture model [23], and
a second (relatively larger) Luxembourg network with 30647 nodes and 71655
edges for which travel-time distributions were synthesized from road speed lim-
its, as real-world data was unavailable. The algorithms were implemented in
C++ (2003) and executed on a cluster of 1.9 GHz AMD OpteronTM 6168 CPUs.
The SOTA queries were executed on a single CPU and the preprocessing was
performed in parallel as explained below.

The SOTA policies were computed as explained in [3,7] using zero-delay con-
volution with a discretization interval of Δt = 1 s.9 To generate random problem
instances, we independently picked a source and a destination node uniformly
at random from the graph and computed the least expected travel-time (LET)
path between them. We then evaluated our pathfinding algorithm for budgets
chosen uniformly at random from the 5th to 95th percentile of LET path travel
times (those of practical interest) on 10, 000 San Francisco and 1000 Luxembourg
problems instances.

First, we discuss the speed of our pathfinding algorithm, and afterward, we
evaluate the effectiveness and scalability of our preprocessing strategies.

5.1 Evaluation

We first evaluate the performance of our path-based SOTA algorithm without
any graph preprocessing. Experimental results, as can be seen in Fig. 1, show
that the run time of our solution is dominated by the time taken to obtain the
solution to the policy-based SOTA problem, which functions as a search heuristic
for the optimal path.

The stochastic-dominance (SD) approach [4], which to our knowledge is the
fastest published solution for the path-based SOTA problem with general prob-
ability distributions, takes, on average, between 7 and 18 s (depending on the
9 Recall that we must have Δt ≤ min(i,j)∈E δij , which is ≈ 1 s for our networks.

240 M. Niknami and S. Samaranayake

Fig. 1. Running time of the pathfinding algorithm as a function of the travel time
budget for random unpruned (i.e., non-preprocessed) instantiations of each network.
We can see that the path computation time is dominated by the policy computation
time, effectively reducing the path-based SOTA problem to the policy-based SOTA
problem in terms of computation time.

variance of the link travel time distributions) to compute the optimal path for
100 time-step budgets. For comparison, our algorithm solves for paths on the
San Francisco network with budgets of up to 1400 s (= 1400 time-steps) in ≈ 7 s,
even achieving query times below 1 s for budgets less than 550 s without any pre-
processing at all. Furthermore, it also handles most queries on the 71655-edge
Luxembourg network in ≈ 10 s (almost all of them in 20 s), where the network
and time budgets are more than an order of magnitude larger than the 2950-edge
network handled by the SD approach in the same amount of time.

Of course, this speedup—which increases more dramatically with the problem
size—is hardly surprising or coincidental; indeed, it is quite fundamental to the
nature of the algorithm: by drawing on the optimal policy as an upper bound
(and quite often an accurate one) for the reliability of the final path, it has a
very clear and fundamental informational advantage over any search algorithm
that lacks any knowledge of the final solution. This allows the algorithm to direct
itself toward the final path in an intelligent manner.

It is, however, less clear and more difficult to see how one might compare
the performance of our generic discrete-time approach with Gaussian-restricted,
continuous-time approaches [12,24]. Such approaches operate under drastically
different assumptions and, in the case of [12], use approximation techniques,
which we have yet to employ for additional performance improvements. When the
true travel times cannot be assumed to follow Gaussian distributions, however,
our method, to the best of our knowledge, presents the most efficient means for
solving the path-based SOTA problem.

As we show next, combining our algorithm with preprocessing techniques
allows us to achieve even further reductions in query time, making it more
tractable for industrial applications on appropriately sized networks.

Preprocessing. Figure 2 demonstrates policy-based and path-based preprocessing
using Arc-Potentials for two random San Francisco and Luxembourg problem

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 241

instances. As can be seen in the figure, path-based preprocessing is in general
much more effective than policy-based preprocessing.

Fig. 2. Policy- vs. path-based pruning for random instances of San Francisco (T =
837 s, source at top) and Luxembourg (T = 3165 s, source at bottom). Light-gray
edges are pruned from the graph and blue edges belong to the optimal path, whereas
red edges belong to (sub-optimal) paths that were on the queue at the termination of
the algorithm. (Color figure online)

Figure 3, summarized in Table 1, shows how the computation times scale with
the preprocessing parameters. As expected, path-based preprocessing performs
much better than purely policy-based preprocessing, and both become faster as
we use more fine-grained regions. Nevertheless, we see that the majority of the
speedup is achieved via a small number of regions, implying that preprocessing
can be very effective even with low amounts of storage. (For example, for a
17 × 17 grid in Luxembourg, this amounts to 71655 × 172 ≈ 21M floats.)

242 M. Niknami and S. Samaranayake

Fig. 3. Running time of pathfinding algorithm as a function of the time budget for
each network. Red dots represent the computation time of the policy, and blue crosses
represent the computation of the path using that policy. (Color figure online)

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 243

Table 1. The average query time with both policy-based and path-based pruning
at various grid sizes and time budgets on the San Francisco network (left) and the
Luxembourg network (right). We can see that in both cases, most of the speedup
occurs at low granularity (and thus low space requirements).

Grid/ Time budget (seconds)
Pruning 800 1000 1200 1400 1600

Unpruned 1.81 3.00 4.10 5.11 5.23

10 × 10, policy 0.30 0.69 1.11 1.66 1.72

26 × 26, policy 0.17 0.40 0.63 0.93 0.97

10 × 10, path 0.11 0.38 0.63 0.87 0.90

26 × 26, path 0.02 0.04 0.06 0.07 0.08

Grid/ Time budget (seconds)
Pruning 1500 2000 2500 3000 3500

Unpruned 0.54 1.29 3.53 6.27 9.95

17 × 17, policy 0.25 0.83 2.31 4.57 7.97

34 × 34, policy 0.21 0.71 2.09 3.79 7.07

17 × 17, path 0.03 0.06 0.09 0.13 0.18

34 × 34, path 0.02 0.04 0.06 0.08 0.12

5.2 Scalability

Path-based preprocessing requires routing between all ≈ |V |2 pairs of vertices,
which is quadratic in the size of the network and intractable for moderate size
networks. In practice, this meant that we had to preprocess every region lazily
(i.e. on-demand), which on our CPUs took 9000 CPU-hours. It is therefore obvi-
ous that this becomes intractable for large networks, leaving policy-based pre-
processing as the only option. One possible approach for large-scale path-based
preprocessing might be to consider the boundary of each region rather than its
interior [8]. While currently uninvestigated, such techniques may prove to be
extremely useful in practice, and are potentially fruitful topics for future explo-
ration.

6 Conclusion and Future Work

We have presented an algorithm for solving the path-based SOTA problem by
first solving the easier policy-based SOTA problem and then using its solution
as a search heuristic. We have also presented two approaches for preprocessing
the underlying network to speed up computation of the search heuristic and
path query, including a generalization of the Arc-Flags preprocessing algorithm
that we call Arc-Potentials. We have furthermore applied and implemented these
algorithms on moderate-sized transportation networks and demonstrated their
potential for high efficiency in real-world networks.

While unobserved in practice, there remains the possibility that our algorithm
may perform poorly on stochastic networks in which the optimal policy is a poor
heuristic for the path reliability. Proofs in this direction have remained elusive,
and determining whether such scenarios can occur in realistic networks remains
an important step for future research. In the absence of theoretical advances,
however, our algorithm provides a more tractable alternative to the state-of-the-
art techniques for solving the path-based SOTA problem.

While our approach is tractable for larger networks than were possible with
previous solutions, it does not scale well enough to be used with regional or

244 M. Niknami and S. Samaranayake

continental sized networks that modern deterministic shortest path algorithms
can handle with ease. In the future, we hope to investigate how our policy-
based approach might be combined with other techniques such as the first-order
stochastic dominance [4] and approximation methods such approximate Arc-
Flags [8] for further speedup, and to also look into algorithms that allow for
at least a partial relaxation of the independence assumption. We hope that our
techniques will provide a strong basis for even better algorithms to tackle this
problem for large-scale networks in the foreseeable future.

References

1. Fan, Y., Robert Kalaba, J.E., Moore, I.I.: Arriving on time. J. Optim. Theor. Appl.
127(3), 497–513 (2005)

2. Flajolet, A., Blandin, S., Jaillet, P.: Robust adaptive routing under uncertainty
(2014). arXiv:1408.3374

3. Samaranayake, S., Blandin, S., Bayen, A.: A tractable class of algorithms for reli-
able routing in stochastic networks. Transp. Res. Part C 20(1), 199–217 (2012)

4. Nie, Y.M., Wu, X.: Shortest path problem considering on-time arrival probability.
Trans. Res. Part B Methodol. 43(6), 597–613 (2009)

5. Fan, Y., Nie, Y.: Optimal routing for maximizing travel time reliability. Netw.
Spat. Econ. 6(3–4), 333–344 (2006)

6. Dean, B.C.: Speeding up stochastic dynamic programming with zero-delay convo-
lution. Algorithmic Oper. Res. 5(2), 96 (2010)

7. Samaranayake, S., Blandin, S., Bayen, A.: Speedup techniques for the stochastic
on-time arrival problem. In: ATMOS, pp. 83–96 (2012)

8. Sabran, G., Samaranayake, S., Bayen, A.: Precomputation techniques for the sto-
chastic on-time arrival problem. In: SIAM, ALENEX, pp. 138–146 (2014)

9. Gutman, R.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: ALENEX/ANALC, pp. 100–111 (2004)

10. Hilger, M., Köhler, E., Möhring, R., Schilling, H.: Fast point-to-point shortest path
computations with Arc-Flags. Ninth DIMACS Implementation Challenge 74, 41–
72 (2009)

11. Nikolova, E., Kelner, J.A., Brand, M., Mitzenmacher, M.: Stochastic shortest paths
via quasi-convex maximization. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 552–563. Springer, Heidelberg (2006)

12. Lim, S., Sommer, C., Nikolova, E., Rus, D.: Practicalroute planning under delay
uncertainty: stochastic shortest path queries. Robot. Sci. Syst. 8(32), 249–256
(2013)

13. Parmentier, A., Meunier, F.: Stochastic shortest paths and risk measures (2014).
arXiv:1408.0272

14. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

15. Gardner, W.G.: Efficient convolution without input/output delay. In: Audio engi-
neering society convention 97. Audio Engineering Society (1994)

16. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality
of A∗. J. ACM (JACM) 32(3), 505–536 (1985)

17. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall
Inc., London (1995). ISBN 0-13-103805-2

http://arxiv.org/abs/1408.3374
http://arxiv.org/abs/1408.0272

Tractable Pathfinding for the Stochastic On-Time Arrival Problem 245

18. Abraham, I., Fiat, A., Goldberg, A., Werneck, R.: Highway dimension, short-
est paths, and provably efficient algorithms. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 782–793. Society for
Industrial and Applied Mathematics (2010)

19. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A∗: efficient point-to-point short-
est path algorithms. In: ALENEX, vol. 6, pp. 129–143. SIAM (2006)

20. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA
2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

21. Bast, H., Funke, S., Matijevic, D.: Transit: ultrafast shortest-path queries with
linear-time preprocessing. In: 9th DIMACS Implementation Challenge [1] (2006)

22. D’Angelo, G., Frigioni, D., Vitale, C.: Dynamic arc-flags in road networks. In:
Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 88–99.
Springer, Heidelberg (2011)

23. Hunter, T., Abbeel, P., Bayen, A.M.: The path inference filter: model-based low-
latency map matching of probe vehicle data. In: Frazzoli, E., Lozano-Perez, T.,
Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. STAR, vol. 86, pp.
591–607. Springer, Heidelberg (2013)

24. Lim, S., Balakrishnan, H., Gifford, D., Madden, S., Rus, D.: Stochastic motion
planning and applications to traffic. Int. J. Robot. Res. 3–13 (2010)

An Experimental Evaluation of Fast
Approximation Algorithms for the Maximum

Satisfiability Problem

Matthias Poloczek(B) and David P. Williamson

School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY 14853, USA
{poloczek,davidpwilliamson}@cornell.edu

Abstract. We evaluate the performance of fast approximation algo-
rithms for MAX SAT on the comprehensive benchmark sets from the
SAT and MAX SAT contests. Our examination of a broad range of algo-
rithmic techniques reveals that greedy algorithms offer particularly strik-
ing performance, delivering very good solutions at low computational
cost. Interestingly, their relative ranking does not follow their worst case
behavior. Johnson’s deterministic algorithm is constantly better than
the randomized greedy algorithm of Poloczek et al. [31], but in turn is
outperformed by the derandomization of the latter: this 2-pass algorithm
satisfies more than 99% of the clauses for instances stemming from indus-
trial applications. In general it performs considerably better than non-
oblivious local search, Tabu Search, WalkSat, and several state-of-the-art
complete and incomplete solvers, while being much faster. But the 2-pass
algorithm does not achieve the excellent performance of Spears’ com-
putationally intense simulated annealing. Therefore, we propose a new
hybrid algorithm that combines the strengths of greedy algorithms and
stochastic local search to provide outstanding solutions at high speed:
in our experiments its performance is as good as simulated annealing,
achieving an average loss with respect to the best known value of less
that 0.5 %, while its speed is comparable to the greedy algorithms.

1 Introduction

In the maximum satisfiability problem (MAX SAT) we are given a set of clauses
over Boolean variables and want to find an assignment that satisfies a maximum
number of clauses. Besides its prominent role in theoretical computer science,
in particular in the hardness of approximation, this problem has been studied
intensely due to its large variety of applications that spread across computer
science, mathematical logic, and artificial intelligence. In general, encoding a
problem as a possibly unsatisfiable CNF formula allows us to handle inconsisten-
cies stemming from incomplete and/or noisy data, or to deal with contradictory
objectives, where no solution can satisfy all constraints: an example for the for-
mer scenario arises in the study of protein interaction [37]; the latter task occurs
for instance in assigning resources (e.g., [24], also see [25] for a comprehensive list
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 246–261, 2016.
DOI: 10.1007/978-3-319-38851-9 17

Fast Approximation Algorithms for MAX SAT 247

of MAX SAT formulations). The recent increase in applications of MAX SAT
has been fueled by the progress on scalable algorithms that allow solving larger
instances than before [22].

We conduct an extensive experimental evaluation of fast approximation algo-
rithms, many of which provide provable guarantees on how far their solution may
deviate from the optimum. The first class of algorithms under consideration are
greedy algorithms that have a particularly simple design: they perform one or two
passes over the variables and decide each variable by looking only at the clauses
that it appears in. Johnson’s algorithm [7,8,13] satisfies at least 2

3Opt clauses,
where Opt is the number of clauses satisfied by an optimal assignment. The
randomized greedy algorithm [30,32] and the deterministic 2-pass algorithm [31]
both achieve 3

4Opt (the former in expectation); all these guarantees hold for any
input.

Our primary goal is to explore how these algorithms perform on clause sets
that arise in real-world applications, given that their development was driven
by rather theoretical considerations [30,36]. Therefore we examine them with
respect to the quality of their solutions and their running time on the instances
of the SAT (sc) and MAX SAT (ms) contests in 2015 and 2014 [3–5,12]. Addi-
tional categories of these benchmark sets are random instances and crafted
instances. Our experiments reveal a superb performance of the greedy algorithms
on the industrial benchmarks. All algorithms satisfy a much higher fraction of
the clauses than their respective worst case guarantees: for the category sc-app

of application instances Johnson’s algorithms satisfies 98.7% and the 2-pass
algorithm even 99.5% of the clauses on average.

In the light of these results the average fraction of 97.4% achieved by the
randomized greedy algorithm is somewhat unexpected, given its superior worst
case performance compared to Johnson’s algorithm – in this case designing an
algorithm with a considerably improved guarantee did not lead to better results
in practice.

The local search paradigm is known to yield practical algorithms for
MAX SAT, many of which build on algorithmic ideas originally developed to
solve large SAT instances (cp. Sect. 7 in the survey of Gu, Purdom, Franco,
and Wah [11]). We studied a variety of these methods in order to contrast our
results for greedy algorithms. In the course of our examination we both con-
firmed and extended observations made by Pankratov and Borodin [28] in their
comprehensive study. They reported a good performance of non-oblivious local
search [18] for random instances, which we confirm. Interestingly, we noticed that
the 2-pass algorithm produces equally good solutions in much shorter time for
these instances. Furthermore, Pankratov and Borodin proposed a combination
of non-oblivious local search with Tabu Search, which provides a deterministic
strategy to escape local optima, and showed that it obtains very good results
for instances from the MAX SAT 2007 competition. At first glance, our experi-
ments did not confirm this: on the industrial benchmark sc-app their algorithm
satisfied merely 90.5% of the clauses on average. A closer examination revealed
an explanation for this mediocre performance (see Sect. 3.1).

248 M. Poloczek and D.P. Williamson

Of particular interest is Spears’ simulated annealing [34] that was found
in [28] and also in our study to produce excellent solutions in all benchmark
categories. However, the downside of this method is its extremely high compu-
tational cost, which becomes especially evident in contrast to greedy algorithms:
Johnson’s algorithm for example solved even the largest instance of the bench-
mark sets, that contains about 14,000,000 variables in 56,000,000 clauses, in less
than ten seconds, whereas simulated annealing exceeded the time limit of 120 s
already for instances with 26,000 variables in less than 100,000 clauses.

Therefore, we propose a new hybrid algorithm that combines the strengths
of both paradigms: our algorithm achieves the outstanding quality of Spears’
algorithm while preserving the speed of a greedy algorithm: for example, it
satisfies 99.75% of the clauses in 4.7 s averaged over the instances of the sc-

app category, whereas simulated annealing obtains a 99.77%-average in 104.9 s.
Moreover, our algorithm is easy to implement.

Finally, we also measure the performance of our algorithm with respect
to the “best known value” (see Sect. 6). The hybrid algorithm achieves more
than 99.5% on average of the best known value and presents itself as an
“all-rounder” that delivers excellent approximative solutions for all types of
MAX SAT instances. Moreover, it proves to be very robust in the sense that its
worst relative performance seen for any industrial instance is a “loss” of 1.88%
with respect to the best known value; the largest loss over all 2032 benchmark
instances is only 3.18% and attained for a crafted formula.

The Structure of the Article. Our selection of algorithms and the related
work are presented in Sect. 2. Then we evaluate the performance of greedy algo-
rithms and local search methods on benchmark instances in Sect. 3. In Sect. 4
we propose two algorithms that obtain excellent solutions at low computational
cost. Section 5 describes our experiences with two modifications of greedy algo-
rithms. Here we witness a curious phenomenon that illustrates the pitfalls when
exploiting theoretical observations in practice. Section 6 examines the perfor-
mance of the algorithms relative to the “best known value”. Our conclusions are
given in Sect. 7.

2 The Selected Algorithms and Related Work

We describe our selection of approximation algorithms in closer detail and moti-
vate our choices. First we present the greedy algorithms and their derivatives;
they can all be implemented in linear time (see [32] for details). Then we describe
the methods that utilize (stochastic) local search, before we present our selection
of complete solvers for MAX SAT.

Our Performance Metric. In our experiments we measure the ratio of clauses
that an algorithm has satisfied divided by the total number of clauses in the
instance. This measure is known as totality ratio or performance ratio. For ran-
domized algorithms we take the mean over ten iterations, unless stated other-
wise. For comparison, note that the performance indicator of an approximation

Fast Approximation Algorithms for MAX SAT 249

algorithm typically used in theoretical computer science is the approximation
ratio, where we divide by the optimum instead of the total number of clauses.
However, the approximation ratio is impractical, since for many instances no
optimal assignment is known. We point out that the totality ratio lower-bounds
the approximation ratio, hence if the totality ratio is close to one, then the
approximation ratio is as well.

A Simple Variant of Johnson’s Algorithm. Johnson’s greedy algorithm [13]
(in the following abbreviated as JA) from 1974 was the first approximation algo-
rithm for MAX SAT. We use the following slightly simpler version proposed
in [29]; both variants guarantee a 2

3 -approximation [7,29]. This deterministic
algorithm considers the variables in a fixed order x1, . . . , xn. In order to decide xi,
the algorithm iterates over all clauses that contain xi and are not satisfied by
the setting of x1, . . . , xi−1. These clauses are partitioned into disjoint sets P1,
P2, N1, and N2 as follows: if xi has a positive sign in clause c, then c is contained
in P1 if xi is the last unfixed variable in c and in P2 otherwise. If xi occurs with
negative sign in c, the clause is analogously either added to N1 or N2. Then the
algorithm sets xi = 1 if 2 · |P1| + |P2| ≥ 2 · |N1| + |N2|, and xi = 0 otherwise.

The Randomized Greedy Algorithm. Poloczek and Schnitger [30] gave a
greedy algorithm (RG) that also considers the variables in a fixed order, but makes
carefully biased random decisions to achieve a worst case guarantee of 3

4 . We use
the following elegant assignment probabilities suggested by van Zuylen [38]: the
algorithm determines P1, P2, N1, and N2 as above, and then sets xi = 1 with
probability |P1|+|P2|−|N1|

|P2|+|N2| and to zero otherwise (see [32] for more details).

The2-PassAlgorithm.The2-pass algorithm(2Pass) is a derandomization of RG
and proposed in [31]. It performs two passes over the input. During the first pass
it computes an assignment probability σi for each variable xi, but does not fix any
variable yet: when considering xi, it pretends that x1, . . . , xi−1 were fixed indepen-
dently according to their respective assignment probability, and then chooses σi

similarly to the probability used by RG. Afterwards, in a second pass over the vari-
ables, this virtual random assignment is derandomized via the method of condi-
tional expectations to achieve a 3

4 -approximation deterministically.

Non-oblivious Local Search. Khanna, Motwani, Sudan, and Vazirani [18]
proposed non-oblivious local search for MAX SAT (NOLS). Starting from an
arbitrary assignment b it searches the 1-flip environment of b for a better solution,
where the 1-flip environment of b consists of all assignments where exactly one
variable is flipped with respect to b. The value of an assignment is assessed by
the following objective function: if k is the maximum clause length, then let Si

for 0 ≤ i ≤ k be the number of clauses for which exactly i literals evaluate to one
under some assignment b. Then the objective value of b is

∑k
i=0 ci ·Si, where the

coefficient ci is defined recursively as c0 = 0 and ci = Δi + ci−1 for i ≥ 1 with
Δi = 1

(k−i+1)·(k
i−1)

·
∑k−i

j=0

(
k
j

)
. Non-oblivious local search flips in each iteration

the variable of largest gain according to this function and stops if no variable
offers a positive gain. Thus, NOLS does not look greedily in direction of the

250 M. Poloczek and D.P. Williamson

assignment satisfying a maximum number of clauses. Khanna et al. showed that
it satisfies a (1 − 2−k)-fraction of all clauses if all clauses have length exactly k,
and hence performs better than the local search that simply tries to maximize
the number of satisfied clauses. In [28] NOLS has an excellent performance if the
total number of flips is limited.

Tabu Search. In each iteration Tabu Search first invokes non-oblivious local
search to find a locally optimal assignment (according to the underlying objective
function). If there are unsatisfied clauses, it tries to improve this solution in a
second stage. To this end, it maintains the so called taboo list, that contains the
last t variables that were flipped, and repeatedly applies the following rules (in
the given order): If there is a variable x such that flipping x increases the number
of satisfied clauses, then it flips the variable with maximum gain. Otherwise
it determines the (possibly negative) gain for each variable that appears in an
unsatisfied clause. Then it flips the best such variable that is not contained in the
taboo list. If all these variables are listed, the algorithm flips the variable that was
least recently flipped. All ties are broken arbitrarily. It is important to note that
the second rule might flip variables with negative gain, i.e. it allows for a decrease
in satisfied clauses. If an assignment is obtained that is better than the one found
by the first stage, then the algorithm starts a new iteration beginning with non-
oblivious local search on this assignment. If the second stage fails to construct a
better assignment within t steps, then Tabu Search terminates. Following [23,28],
we set t to the number of variables in the instance.

Pankratov and Borodin [28] found a good performance of NOLS+TS for their
benchmark instances, where it performed better than WalkSat and was compa-
rable to Spears’ simulated annealing.

Remark. For the sake of completeness we mention two natural extensions of these
local search algorithms. The effects of restarting the local search algorithms mul-
tiple times were studied in [28] with different initial assignments drawn uniformly
at random. While this increases the already large running time even further, the
authors report that it only improved the returned solution if the number of
variables was small, the reason apparently being that “good initializations are
not very dense.” They also studied the effects of lengthening the taboo list in
order to allow a more exhaustive exploration of the search space. However, they
found that this variation did not yield a larger number of satisfied clauses despite
increasing the running time further. Therefore, we do not include these variants
in our examination.

Simulated Annealing. We examine the following stochastic local search
method due to Spears [34] called SA in the sequel. Starting with an arbitrary
assignment, in each iteration it considers all variables according to a fixed
ordering. For every variable xi it computes the change δi in satisfied clauses
if the variable were flipped. Then the variable is flipped with probability p
that depends on δi and a noise parameter called the temperature T : Spears
set p = 1/(1 + e−δi/T). The intention is that initially the temperature T is high
and the algorithm is likely to flip a variable even if this worsens the assignment.

Fast Approximation Algorithms for MAX SAT 251

After each iteration the temperature is cooled down, and hence the algorithm
explores the solution space in a more goal-oriented way. We use the parameters
proposed by Spears that were also used in [28]: the initial temperature of 0.3
is multiplied by e−1/n in each iteration, where n is the number of variables.
The search terminates when the temperature drops below 0.01. Note that the
running time is O(n2), where the constant factor is comparable to the greedy
algorithms.

WalkSat and Dist. Selman, Kautz, and Cohen [33] studied the following ran-
dom walk. Given an assignment to the variables, their algorithm chooses an
unsatisfied clause and flips one of its literals, thereby satisfying the respective
clause. If there still is an unsatisfied clause the algorithm iterates. Both the selec-
tion of the clause and of the literal give rise to various heuristics developed over
the last decades. In our evaluation we study the latest release of WalkSat [17]
with default settings. Pankratov and Borodin [28] found that WalkSat performed
well for random 3CNF formulae, but was outperformed for their benchmark
instances by Tabu Search and by Spears’ simulated annealing.

We also evaluate a local search called Dist that was developed by Cai, Luo,
Thornton, and Su [6]. For the type of MAX SAT instances we consider, where all
clauses are unweighted, Dist performs a random walk similar to WalkSat and
employs a sophisticated heuristic to select the next variable to flip. Dist was
found to be among the best incomplete solvers for the ms-crafted and ms-

random categories at the MAX SAT 2014 contest. Our evaluation confirms a
great performance on these two categories, but on the corresponding sets of the
SAT competitions and on all industrial instances it is considerably worse. That
is why we omit Dist in this evaluation. Our findings are reported in the full
version of this paper.

Open-WBO, Clasp, EvaSolver, and AHMAXSAT-LS. For the algorithms
discussed so far one can be sure to have found an optimal assignment only if it
satisfies all clauses. The goal of complete solvers is to certify the optimality of
their assignments even if the clause set is unsatisfiable.

We tested three solvers that were among the best in the ms-app category
at the MAX SAT competitions, since industrial instances are our primary inter-
est. These solvers utilize unsatisfiable core strategies, that seem particularly
successful for instances stemming from industrial applications. The first solver,
Open-WBO [20–22], was developed by Martins, Manquinho, and Lynce and ranked
among the best in the ms-app category both in 2015 and 2014. It has a modular
design that allows the user to substitute the underlying SAT-solver: we chose
Glucose 3.0, following a recommendation of Martins [19]. The second solver
is Clasp [16], an award-winning answer set solver based on work by Andres,
Gebser, Kaminski, Kaufmann, Romero, and Schaub [2,9,10]. It features a large
variety of optimization strategies that are useful for MAX SAT instances (see
their articles and the source code for details). We experimented with various
parameter settings and algorithms, following suggestions of Kaufmann [15], and
report our results for two complementary strategies that performed best. The
third candidate, EvaSolver [26], was developed by Narodytska and Bacchus and

252 M. Poloczek and D.P. Williamson

is a refinement of [27]. This solver employs an alternative approach to express
the subproblems arising for a core-guided strategy. EvaSolverwas awarded “the
best non-portfolio solver” at the MAX SAT 2014 competition.

These solvers are unmatched in the discipline of providing certified optimal
solutions for industrial instances. However, this comes at the expense of out-
putting no solution at all more often than not in our evaluation. In particular,
we found the instances from the SAT competitions out of reach. Therefore, fol-
lowing suggestions of Kaufmann [15] and Martins [19], we also tested simpler
strategies of their respective solvers, for example based on branch-and-bound or
linear search, that return some solution in most cases, albeit a sub-optimal one.

Complementing the above selection, we also evaluated AHMAXSAT-LS 1.55
(AHMSLS) by Abramé and Habet [1]. This sophisticated branch-and-bound based
algorithm uses local search pre-processing and was the best complete solver on
crafted and random instances at the MAX SAT competitions in 2015 and 2014.

Complete solvers aim for a certificate of optimality, and therefore have a
much larger conceptual complexity than the algorithms above. We observed
that the core-guided solvers do not output any solution for a large fraction of
the instances, while those relying on simpler and faster methods had a mediocre
performance in terms of “average fraction of satisfied clauses”. That is why we
omit the complex solvers in this evaluation and report their experimental results
in the full version of this paper.

3 The Experimental Results

The benchmark instances were taken from the SAT Competitions and the
MAX SAT evaluations in 2015 and 2014 [3–5,12]. Our focus is on the collec-
tions stemming from industrial applications, called sc-app and ms-app. They
contain 300 and 55 instances respectively that encode problems arising for exam-
ple in formal verification of processors, attacks on cryptographic algorithms, or
transportation planning. Furthermore, the sets sc-crafted and ms-crafted

contain 300 and 402 clause sets, originating for example from instances of maxi-
mum cut, graph isomorphism, or clique coloring. The last category of benchmark
instances are random formulae, the crucial parameter being the ratio of clauses
to variables: a larger ratio implies that the optimal assignment satisfies a smaller
fraction of clauses. sc-random contains 225 randomly generated CNFs formulae
with a low ratio, ms-random contains 750 instances with a very high ratio. The
main distinguishing trait of ms-crafted and ms-random is that most of these
instances are highly unsatisfiable, i.e. no algorithm can obtain a large fraction
of the clauses. Summing up, our evaluation comprises over 2000 instances in six
categories; we will omit 156 uncategorized clause sets from [12] in the sequel.

The sizes of the instances vary a lot: the smallest has 27 variables in 48
clauses, whereas the largest contains 14 million variables in over 53 million
clauses. The mean values over the two industrial sets are roughly half a mil-
lion variables and two million clauses. Moreover, the sc sets contain much
larger instances than their ms counterparts. The benchmark instances are all
unweighted, although repeating clauses allows for implicit weighting.

Fast Approximation Algorithms for MAX SAT 253

For our evaluation the algorithms were implemented in C++ using GCC 4.7.2.
All experiments ran under Debian wheezy on a Dell Precision 490 workstation
(Intel Xeon 5140 2.33 GHz with 8 GB RAM). Since the local search methods
and the complete solvers can take a very long time to terminate, we set a time
limit of 120 s, after which the best assignment found so far (or its value resp.) is
returned.

3.1 The Greedy Algorithms

The greedy algorithms produced solutions of high quality at very low computa-
tional cost in our experimental evaluation. The loss compared to the respective
best algorithm is never larger than a few percent for any of the benchmark cate-
gories. The randomized greedy algorithm (RG) never left more than five percent
of the clauses unsatisfied on average, except for the highly unsatisfiable instances
of ms-crafted and ms-random. Together with Johnson’s algorithm (JA), RG
is the fastest algorithm in our selection. The average fraction of clauses satis-
fied by JA is larger than RG’s for all sets; looking more closely, we see that JA
obtained a better solution than RG for almost all instances individually, which is
somewhat surprising given the superior worst case guarantee of RG.

Therefore, it is even more interesting that the deterministic 2-pass algorithm
(2Pass), that is a derandomization of RG and in particular relies on the same algo-
rithmic techniques, outperforms JA (and RG) on all categories. On the instances
from the SAT Competition it even satisfies more than 99% of the clauses on aver-
age. Its running time is about three times larger than for JA, and 2Pass computes
a better solution than JA in three out of every four instances. The results are
summarized in Table 1.

3.2 The Local Search Methods

The random walks of WalkSat typically converged quickly, making it the fastest
local search variant in our line-up. We confirm the observation of [28] that
WalkSat performs well on random instances: for sc-random it found very

Table 1. The performance of greedy algorithms

RG JA 2Pass

%sat ∅time %sat ∅time %sat ∅time

sc-app 97.42 0.38 s 98.71 0.38 s 99.48 1.11 s

ms-app 95.69 0.25 s 97.97 0.23 s 98.08 0.63 s

sc-crafted 97.40 0.17 s 98.37 0.17 s 99.04 0.46 s

ms-crafted 80.33 0.00 s 82.69 0.00 s 82.97 0.00 s

sc-random 97.58 1.39 s 98.72 1.38 s 99.19 5.38 s

ms-random 84.61 0.00 s 87.30 0.00 s 88.09 0.00 s

254 M. Poloczek and D.P. Williamson

good assignments (98.7%) and its running times were particularly short. For
the application benchmarks WalkSat’s performance exhibited a large discrep-
ancy: its average fraction of satisfied clauses for sc-app was only slightly worse
than RG, while the average running time of about two seconds was rather high.
But for the ms-app instances it merely averaged 89.9% of satisfied clauses, which
is significantly worse than any of the greedy algorithms.

The second candidate is the combination of non-oblivious local search with
Tabu Search (NOLS+TS), as suggested by Pankratov and Borodin [28]; we started
it from a random assignment. Its forte were the random instances, where it
was comparable to JA, and it also performed well on ms-crafted. But on
the application-based benchmarks it showed a poor performance: it only aver-
aged 90.5% for sc-app and 83.6% for ms-app, which surprises because of its
good performance reported in [28].

A closer examination reveals that NOLS+TS satisfied 98.9% of the clauses on
average for the sc-app benchmark, if it finished before the timeout. For sc-

crafted we observed a similar effect (98.4%); on the ms-app the time bound
was always violated. NOLS+TS returns the best assignment it has found in any
iteration, if its running time exceeds the time limit; hence we interpret our
findings that the escape strategy of Tabu Search (with the parameters suggested
in Sect. 2) does not find a good solution quickly for two thirds of the sc-app

instances.
Therefore, we looked at non-oblivious local search, where the initial assign-

ment was either random or obtained by 2Pass. The latter combination gave
better results, therefore we focus on it in this exposition: 2Pass+NOLS achieved
a higher mean fraction of satisfied clauses than WalkSat and NOLS+TS. However,
comparing it to 2Pass, it turns out that the improvement obtained by the addi-
tional local search stage itself is marginal and comes at a high computational
cost. For the instances of sc-app the average running time was increased by a
factor of 40, for ms-app even by a factor of 130 compared to 2Pass.

Spears’ simulated annealing (SA) finds excellent assignments, achieving the
peak fraction of satisfied clauses over all benchmarks: for example, its average
fraction of satisfied clauses is 99.8% for sc-app and 99.4% for ms-app. However,
these results come at a extremely high computational cost; in our experiments
SA almost constantly violated the time bound.

In this context another series of experiments is noteworthy: when we set the
time bound of SA for each instance individually to the time that 2Pass needed to
obtain its solution for that instance1, then the average fraction of satisfied clauses
of SA was decreased significantly: for example, for the sc-app category its mean
fraction of satisfied clauses dropped to 99.28%, whereas 2Pass achieved 99.48%.
Our empirical data for local search based algorithms is summarized in Table 2.

1 This analysis technique was proposed by Pankratov and Borodin [28] and is called
“normalization”.

Fast Approximation Algorithms for MAX SAT 255

Table 2. The performance of local search methods

NOLS+TS 2Pass+NOLS SA WalkSat

%sat ∅time %sat ∅time %sat ∅time %sat ∅time

sc-app 90.53 93.59 s 99.54 45.14 s 99.77 104.88 s 96.50 2.16 s

ms-app 83.60 120.14 s 98.24 82.68 s 99.39 120.36 s 89.90 0.48 s

sc-crafted 92.56 61.07 s 99.07 22.65 s 99.72 70.07 s 98.37 0.66s

ms-crafted 84.18 0.65 s 83.47 0.01 s 85.12 0.47 s 82.56 0.06 s

sc-random 97.68 41.51 s 99.25 40.68 s 99.81 52.14 s 98.77 0.94 s

ms-random 88.24 0.49 s 88.18 0.00 s 88.96 0.02 s 87.35 0.06 s

4 A Hybrid Algorithm that Achieves Excellent
Performance at Low Cost

Among the algorithms considered so far, Spears’ simulated annealing produced
the best solutions. But given that the greedy algorithms were not far off in terms
of satisfied clauses and only needed a fraction of the running time, the question
is if it is possible to improve their solutions while preserving their speed.

Therefore, we combine the deterministic 2-pass algorithm with ten rounds of
simulated annealing (ShortSA); in particular, we utilize the last ten rounds of
Spears’ algorithm, during which the temperature is low and hence the random
walk is very goal-oriented. Here it is advantageous that below the hood both
algorithms are very similar, in particular they consider the variables one-by-one
and iterate for each variable over its set of clauses. Thus, the implementation
of our hybrid variant requires very little additional effort. To the best of our
knowledge, the combination of a greedy algorithm with only a few steps of sim-
ulated annealing is novel; in particular, the rationale and characteristics differ
from using a greedy algorithm to produce a starting solution for local search, as
it is common for example for TSP [14]. Moreover, our experiments demonstrate
that using the 2-pass algorithm to provide an initial solution in standard local
search for MAX SAT does not achieve both goals simultaneously (cp. Sect. 3.2).

The empirical running time of our linear-time algorithm scales even better
than expected, averaging at 4.7 s for sc-app and 3.9 s for ms-app. Therefore its
speed is comparable to the greedy algorithms and much faster than NOLS or SA;
the latter took 104.88 s and 120.38 s respectively on average for these sets.

In terms of satisfied clauses our hybrid algorithm achieves the excellent per-
formance of SA: for the sc-app category 2Pass+ShortSAsatisfies 97.75% of the
clauses, and hence the difference to SA is only marginal (0.02%). Also for the
other categories the additional local search stage essentially closes the gap, the
maximum difference being 0.4% for ms-crafted. Like SA, it dominates strictly
the other algorithms on the overwhelming majority of the instances.

In order to study the effect of the initial assignment provided by 2Pass, we
contrasted the performance of our hybrid algorithm by starting ShortSA from
the all-zero assignment. It turns out that the 2Pass assignment bridges about

256 M. Poloczek and D.P. Williamson

Table 3. Comparison of the hybrid algorithm with 2Pass, SA, and ShortSA

2Pass+ShortSA SA ShortSA 2Pass

%sat ∅time %sat ∅time %sat ∅time %sat ∅time

sc-app 99.75 4.72 s 99.77 104.88 s 99.63 3.60 s 99.48 1.11 s

ms-app 99.20 3.29 s 99.39 120.36 s 99.68 2.45 s 98.08 0.63 s

sc-crafted 99.56 2.20 s 99.72 70.07 s 99.55 1.74 s 99.04 0.46 s

ms-crafted 84.69 0.00 s 85.12 0.47 s 84.63 0.00 s 82.97 0.00 s

sc-random 99.71 19.60 s 99.81 52.14 s 99.57 14.18 s 99.19 5.38 s

ms-random 88.84 0.00 s 88.96 0.02 s 88.67 0.00 s 88.09 0.00 s

half of the gap between ShortSA and SA, which reveals ShortSA to be another
practical algorithm with excellent performance; typically, it is slightly worse
than 2Pass+ShortSAand SA, with the notable exception that it beats all others
on the 55 instances of ms-app. We refer to Table 3 for a summary. In Sect. 6 we
compare these algorithms relative to the best known value and also examine the
reliability of our algorithm.

5 Two Variants of Greedy Algorithms

Since Johnson’s algorithm performs very well for the benchmark instances of
sc-app, we wonder if we can improve the quality of its solutions further with-
out sacrificing its main advantages: its speed and conceptual simplicity. In this
section we discuss two ideas and make a curious observation about the structure
of some of the benchmark instances.

5.1 Random Variable Orders

Replacing the lexicographical variable order by a random permutation seems
to be a promising direction. This modification is also motivated by a result of
Costello, Shapira, and Tetali [8]: they proved that this modification improves
the expected approximation ratio of Johnson’s algorithm by a small constant.
Thus, for every instance there is a substantial number of orderings for which the
algorithm performs better than in the worst case.

Therefore, we examined Johnson’s algorithm and the randomized greedy
algorithm for variable orders that were drawn uniformly at random among all
permutations; for instance, such a random order can be computed efficiently via
the Fisher-Yates-Shuffle. In the sequel these variants are denoted by JARO and
RGRO respectively. Since RG and JA are typically about three times faster than
the deterministic 2-pass algorithm and roughly ten to twelve times faster than
our new variants derived from the 2-pass algorithm, we restarted the algorithms
ten times on each instance. Testing a non-negligible fraction of the set of possible
permutations would run counter to our primary design goals.

Fast Approximation Algorithms for MAX SAT 257

The behavior we witnessed on the industrial benchmark instances came as
a surprise: not only did the random variable order fail to improve the average
performance; it became even worse! In particular, the average fraction of satis-
fied clauses for the sc-app instances dropped from 98.7% to 97.8%, when the
lexicographical variable order was replaced by a permutation drawn uniformly
at random. For the randomized greedy algorithm the decrease was even big-
ger: 96.0% instead of 97.4%. We observed the same effect for the instances of
ms-app: for Johnson’s algorithm the average fraction of satisfied clauses changed
from 98.0% to 95.8%, and from 95.7% to 92.8% for the randomized greedy
algorithm.

An explanation for this odd phenomenon seems to be the origin of these
instances: they stem from industrial applications, and apparently the respective
encodings cause a lexicographical variable order to be advantageous. Accord-
ingly, one would not expect such a structure to emerge for clause sets that are
created randomly. And indeed, averaged over the instances of sc-random and
ms-random the mean fractions of satisfied clauses for JA and JARO differed by
less than 0.01%; the same holds for RG and RGRO. Therefore we wonder: can
we obtain an improvement by picking the best sampled variable order? Appar-
ently, the random formulae are very symmetric, since best order sampled by
JARO was only better by 0.06% than the mean over all ten random permuta-
tions; in case of RGRO it was only 0.12%. Only for ms-crafted this modification
yielded an improvement, as RGRO and JARO both gained about 1%: thus, the best
order of JARO typically was better than 2Pass, but still worse than our hybrid
algorithm.

5.2 Multiple Restarts of the Randomized Greedy Algorithm

A single run of the randomized greedy algorithm comes at very cheap computa-
tional cost, both in time and memory consumption: among the algorithms under
consideration, Johnson’s algorithm and the randomized greedy algorithm have
the lowest running time, which reflects their extremely efficient design. There-
fore, we wonder if one can obtain a better solution by running the randomized
greedy algorithm several times on each instance and returning the best solution.
Again we set the number of repetitions to ten.

Our findings suggest that even with multiple restarts RG cannot compete
with the other algorithms: the relative improvement of the best found assign-
ment over the instance-specific sample mean was only 0.07% on average over
the 300 instances of sc-app; the largest relative improvement for any of these
instances was 0.6%. Finally, we remark that the randomized greedy algorithm
with multiple repetitions still typically performs worse than Johnson’s algorithm:
for example, of the 300 instances of sc-app JA found in 273 cases an assignment
that was better than the best found in any repetition of RG. The behavior found
for the other benchmark sets is similar, in case of the ms-app category Johnson’s
algorithm was even better on all inputs.

258 M. Poloczek and D.P. Williamson

6 The Performance Relative to the Best Known Value

In our evaluation we report the totality ratio, which equals the average number
of satisfied clauses divided by the total number of clauses in the instance. The
reason is that the value of an optimal assignment is not known for a large part of
the testbed. We point out that restricting the evaluation to instances where the
optimum has been determined would incorporate an inherent measurement bias:
usually the optimum is known for an unsatisfiable formula only if a complete
solver was able to provide a proof of optimality. However, it seems that the
latter obtain a certified optimal assignment only for certain types of instances
(this aspect is discussed in detail in the full version of this paper). To the best of
our knowledge, there is no complete understanding what structural properties
make a MAX SAT instance solvable. Thus, the interpretation of such a restricted
evaluation would be limited.

In this section we give an “educated guess” of the approximation ratio, where
we estimate an unknown optimum of an instance by the best known value. This
is the best solution returned by any algorithm. Here we include the complete
solvers, that are particularly good at industrial instances, and Dist that is excel-
lent on ms-crafted and ms-random. Further, if a certified optimum is listed
on the websites of the SAT or MAX SAT competitions, then we use that value.

We focus on the algorithms with best overall performance in our evaluation:
our hybrid algorithm (2Pass+ShortSA), Spears’ simulated annealing (SA), the
short SA (ShortSA), and the 2-pass algorithm (2Pass). The relative performance
ratios are summarized in Table 4. We recall that for the instances of ms-crafted
and ms-random typically no algorithm came close to satisfying all clauses (e.g.,
Table 3). The performance of the aforementioned algorithms relative to the best
known value, however, is close to one: these values are highlighted. Note that the
average running times have not changed with respect to Table 3 and are given
for completeness.

We note that our new algorithm achieves an average relative performance
of more than 99.5%: that is, the “loss” with respect to the best known value
is 0.46% when averaging over the whole set of instances, and only 0.30% when
restricting ourselves to the application-based instances of sc-app and ms-app.

Table 4. The Performances relative to the best known optimum

2Pass+ShortSA SA ShortSA 2Pass

%sat ∅time %sat ∅time %sat ∅time %sat ∅time

sc-app 99.79 4.72 s 99.81 104.88 s 99.67 3.60 s 99.52 1.11 s

ms-app 99.22 3.29 s 99.41 120.36 s 99.70 2.45 s 98.10 0.63 s

sc-crafted 99.61 2.20 s 99.77 70.07 s 99.60 1.74 s 99.09 0.46 s

ms-crafted 98.93 0.00 s 99.42 0.47 s 98.86 0.00 s 96.94 0.00 s

sc-random 99.82 19.60 s 99.92 52.14 s 99.68 14.18 s 99.31 5.38 s

ms-random 99.65 0.00 s 99.78 0.02 s 99.46 0.00 s 98.83 0.00 s

Fast Approximation Algorithms for MAX SAT 259

Furthermore, our algorithm turns out to be very reliable and does not allow
for large outliers: the worst relative performance for any industrial instance is
a “loss” of 1.88% with respect to the best known value; the largest loss over
all 2032 benchmark instances is 3.18% and attained for a crafted formula.

7 Conclusions

We found the performance of simple greedy algorithms and their derivatives on
benchmark instances stemming from industrial applications to be impressive. In
particular, the achieved performance ratios were much better than the respec-
tive worst case guarantees of the algorithms let us expect. Their approximation
ratios are known to be tight, i.e. there are inputs for which the performance
of the algorithm is not better. But apparently the approximation ratio is not
a useful indicator for the worst case performance on the benchmark instances
we considered. On the one hand, for none of the instances the experimentally
found performance was nearly as bad as in the worst case. On the other hand,
Johnson’s algorithm that has a relatively bad worst case behavior dominated
the randomized greedy algorithm.

Therefore, in order to bridge the gap between theory and practice, it seems
interesting to study and also design approximation algorithms for MAX SAT
from a “non-worst case” perspective. More specifically, we wonder if ideas from
the “smoothed analysis” devised by Spielman and Teng can be applied to this
end (see their survey [35] for examples).

Moreover, we propose a hybrid algorithm that achieves an excellent perfor-
mance at low running time, paralleling the accuracy of the much more costly
simulated annealing. In particular, its average “loss” relative to the best known
assignment is only 0.46% over all instances and 0.30% for industrial instances.
Therefore, our algorithm reliably produces excellent solutions for all types of
MAX SAT instances. Note that the number of rounds for the stochastic local
search allows a trade-off between speed and quality, and we leave it to future
work to fine-tune this parameter.

Our comparison of Johnson’s algorithm with either a lexicographical or a
random variable order indicates that instances have some inner semantics that
significantly affect the performance of greedy algorithms. Therefore, an interest-
ing direction would be to identify parameters of the input that allow a better
prediction of the algorithms’ practical performance. Subsequently, this structure
could be exploited to design fast algorithms tailored for specific applications.

Acknowledgments. The authors would like to thank Allan Borodin for his valuable
comments, and Benjamin Kaufmann and Ruben Martins for their help with optimizing
the parameters of their solvers for our setting.

The first author was supported by the Alexander von Humboldt Foundation within
the Feodor Lynen program, and by NSF grant CCF-1115256, and AFOSR grants
FA9550-15-1-0038 and FA9550-12-1-0200. The second author was supported by NSF
grant CCF-1115256.

260 M. Poloczek and D.P. Williamson

References

1. Abrame, A., Habet, D.: Ahmaxsat: Description and evaluation of a branch and
bound Max-SAT solver. J. Satisfiability, Boolean Model. Comput. 9, 89–128 (2015).
www.lsis.org/habetd/Djamal Habet/MaxSAT.html. Accessed on 02 Feb 2016

2. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based opti-
mization in clasp. In: ICLP 2012, pp. 211–221 (2012)

3. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2014: Ninth Max-SAT
evaluation. www.maxsat.udl.cat/14/. Accessed on 12 Jan 2016

4. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2015: Tenth Max-SAT
evaluation. www.maxsat.udl.cat/15/. Accessed on 02 Feb 2016

5. Belov, A., Diepold, D., Heule, M.J., Järvisalo, M.: Proc. of SAT COMPETI-
TION 2014: Solver and Benchmark Descriptions (2014). http://satcompetition.
org/edacc/sc14/. Accessed on 28 Jan 2016

6. Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial MaxSAT.
In: AAAI, pp. 2623–2629 (2014). the code is available at http://lcs.ios.ac.cn/caisw/
MaxSAT.html. Accessed on 25 Jan 2016

7. Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for max-
imum satisfiability. J. Comput. Syst. Sci. 58, 622–640 (1999)

8. Costello, K.P., Shapira, A., Tetali, P.: Randomized greedy: new variants of some
classic approximation algorithms. In: SODA, pp. 647–655 (2011)

9. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp
Series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS,
vol. 9345, pp. 368–383. Springer, Heidelberg (2015)

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-criteria optimization
in answer set programming. In: ICLP, pp. 1–10 (2011)

11. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability
(SAT) problem: A survey. In: Satisfiability Problem: Theory and Applications, pp.
19–152 (1996)

12. Heule, M., Weaver, S. (eds.): SAT 2015. LNCS, vol. 9340. Springer, Heidelberg
(2015)

13. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

14. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study in
local optimization. Local Search Comb. Optim. 1, 215–310 (1997)

15. Kaufmann, B.: Personal communication
16. Kaufmann, B.: Clasp: A conflict-driven nogood learning answer set solver (version

3.1.3). http://www.cs.uni-potsdam.de/clasp/. Accessed on 28 Jan 2016
17. Kautz, H.: Walksat (version 51). www.cs.rochester.edu/u/kautz/walksat/, see the

source code for further references. Accessed on 27 Jan 2016
18. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.V.: On syntactic versus compu-

tational views of approximability. SIAM J. Comput. 28(1), 164–191 (1998)
19. Martins, R.: Personal communication
20. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-

straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Heidelberg (2014)

21. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: An open source version of
the MaxSAT solver WBO (version 1.3.0). http://sat.inesc-id.pt/open-wbo/index.
html. Accessed on 25 Jan 2016

https://www.lsis.org/habetd/Djamal_Habet/MaxSAT.html
www.maxsat.udl.cat/14/
www.maxsat.udl.cat/15/
http://satcompetition.org/edacc/sc14/
http://satcompetition.org/edacc/sc14/
http://lcs.ios.ac.cn/caisw/MaxSAT.html
http://lcs.ios.ac.cn/caisw/MaxSAT.html
http://www.cs.uni-potsdam.de/clasp/
www.cs.rochester.edu/u/kautz/walksat/
http://sat.inesc-id.pt/open-wbo/index.html
http://sat.inesc-id.pt/open-wbo/index.html

Fast Approximation Algorithms for MAX SAT 261

22. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Heidelberg (2014)

23. Mastrolilli, M., Gambardella, L.M.: MAX-2-SAT: How good is Tabu Search in the
worst-case? In: AAAI, pp. 173–178 (2004)

24. Miyazaki, S., Iwama, K., Kambayashi, Y.: Database queries as combinatorial opti-
mization problems. In: CODAS, pp. 477–483 (1996)

25. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534
(2013)

26. Narodytska, N., Bacchus, F.: EvaSolver. https://www.cse.unsw.edu.au/ninan/.
Accessed on 04 Jan 2016

27. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: AAAI 2014, pp. 2717–2723 (2014)

28. Pankratov, D., Borodin, A.: On the relative merits of simple local search methods
for the MAX-SAT problem. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 223–236. Springer, Heidelberg (2010)

29. Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: Demetrescu, C.,
Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidel-
berg (2011)

30. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX
SAT. In: SODA, pp. 656–663 (2011)

31. Poloczek, M., Schnitger, G., Williamson, D.P., van Zuylen, A.: Greedy algorithms
for the maximum satisfiability problem: Simple algorithms and inapproximability
bounds, In Submission

32. Poloczek, M., Williamson, D.P., van Zuylen, A.: On some recent approximation
algorithms for MAX SAT. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol.
8392, pp. 598–609. Springer, Heidelberg (2014)

33. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing.
In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Chal-
lenge, pp. 521–532 (1993)

34. Spears, W.M.: Simulated annealing for hard satisfiability problems. In: Cliques,
Coloring and Satisfiability: Second DIMACS Implementation Challenge, pp. 533–
558 (1993)

35. Spielman, D.A., Teng, S.: Smoothed analysis: an attempt to explain the behavior
of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)

36. Williamson, D.P.: Lecture notes in approximation algorithms, Fall 1998. IBM
Research Report RC 21409, IBM Research (1999)

37. Zhang, Y., Zha, H., Chu, C.H., Ji, X.: Protein interaction interference as a Max-Sat
problem. In: Proceedings of the IEEE CVPR 2005 Workshop on Computer Vision
Methods for Bioinformatics (2005)

38. van Zuylen, A.: Simpler 3/4-approximation algorithms for MAX SAT. In: Solis-
Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 188–197. Springer,
Heidelberg (2012)

https://www.cse.unsw.edu.au/ninan/

Experimental Analysis of Algorithms
for Coflow Scheduling

Zhen Qiu, Clifford Stein, and Yuan Zhong(B)

Department of IEOR, Columbia University, New York, NY 10027, USA
yz2561@columbia.edu

Abstract. Modern data centers face new scheduling challenges in opti-
mizing job-level performance objectives, where a significant challenge
is the scheduling of highly parallel data flows with a common perfor-
mance goal (e.g., the shuffle operations in MapReduce applications).
Chowdhury and Stoica [6] introduced the coflow abstraction to capture
these parallel communication patterns, and Chowdhury et al. [8] pro-
posed effective heuristics to schedule coflows efficiently. In our previous
paper [18], we considered the strongly NP-hard problem of minimiz-
ing the total weighted completion time of coflows with release dates,
and developed the first polynomial-time scheduling algorithms with
O(1)-approximation ratios.

In this paper, we carry out a comprehensive experimental analysis on
a Facebook trace and extensive simulated instances to evaluate the prac-
tical performance of several algorithms for coflow scheduling, including
our approximation algorithms developed in [18]. Our experiments suggest
that simple algorithms provide effective approximations of the optimal,
and that the performance of the approximation algorithm of [18] is rel-
atively robust, near optimal, and always among the best compared with
the other algorithms, in both the offline and online settings.

1 Introduction

Data-parallel computation frameworks such as MapReduce [9], Hadoop [1,5,19],
Spark [21], Google Dataflow [2], etc., are gaining tremendous popularity as they
become ever more efficient in storing and processing large-scale data sets in
modern data centers. This efficiency is realized largely through massive par-
allelism. Typically, a datacenter job is broken down into smaller tasks, which
are processed in parallel in a computation stage. After being processed, these
tasks produce intermediate data, which may need to be processed further, and
which are transferred between groups of servers across the datacenter network,
in a communication stage. As a result, datacenter jobs often alternate between
computation and communication stages, with parallelism enabling the fast com-
pletion of these large-scale jobs. While this massive parallelism contributes to
efficient data processing, it presents many new challenges for network scheduling.

Research partially supported by NSF grant CCF-1421161.

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 262–277, 2016.
DOI: 10.1007/978-3-319-38851-9 18

Experimental Analysis of Algorithms for Coflow Scheduling 263

In particular, traditional networking techniques focus on optimizing flow-level
performance such as minimizing flow completion times1, and ignore job-level
performance metrics. However, since a computation stage often can only start
after all parallel dataflows within a preceding communication stage have finished
[7,10], all these flows need to finish early to reduce the processing time of the
communication stage, and of the entire job.

To faithfully capture application-level communication requirements,
Chowdhury and Stoica [6] introduced the coflow abstraction, defined to be a col-
lection of parallel flows with a common performance goal. Effective scheduling
heuristics were proposed in [8] to optimize coflow completion times. In our previ-
ous paper [18], we developed scheduling algorithms with constant approximation
ratios for the strongly NP-hard problem of minimizing the total weighted comple-
tion time of coflows with release dates, and conducted preliminary experiments
to examine the practical performance of our approximation algorithms. These
are the first O(1)-approximation algorithms for this problem. In this paper, we
carry out a systematic experimental study on the practical performance of several
coflow scheduling algorithms, including our approximation algorithms developed
in [18]. Similar to [18], the performance metric that we focus on in this paper is
the total weighted coflow completion time. As argued in [18], it is a reasonable
user-oriented performance objective. It is also natural to consider other perfor-
mance objectives, such as the total weighted flow time2, which we leave as future
work. Our experiments are conducted on real-world data gathered from Facebook
and extensive simulated data, where we compare our approximation algorithm
and its modifications to several other scheduling algorithms in an offline setting,
and evaluate their relative performances, and compare them to an LP-based
lower bound. The algorithms that we consider in this paper are characterized by
several main components, such as the coflow order in which the algorithms fol-
low, the grouping of the coflows, and the backfilling rules. We study the impact
of each such component on the algorithm performance, and demonstrate the
robust and near-optimal performance of our approximation algorithm [18] and
its modifications in the offline setting, under the case of zero release times as
well as general release times. We also consider online variants of the offline algo-
rithms, and show that the online version of our approximation algorithm has
near-optimal performance on real-world data and simulated instances.

The rest of this section is organized as follows. In Sect. 1.1, we quickly recall
the problem formulation of coflow scheduling, the approximation algorithm of
[18] as well as its approximation ratio. Section 1.2 gives an overview of the exper-
imental setup and the main findings from our experiments. A brief review of
related works is presented in Sect. 1.3.

1 In this paper, the term “flow” refers to data flows in computer networking, and is
not to be confused with the notion of “flow time,” commonly used in the scheduling
literature.

2 Here “flow time” refers to the length of time from the release time of a coflow to its
completion time, as in scheduling theory.

264 Z. Qiu et al.

1.1 Coflow Model and Approximation Algorithm

We consider a discrete-time system where n coflows need to be scheduled in
an m × m datacenter network with m inputs and m outputs. For each k ∈
{1, 2, · · · , n}, coflow k is released at time rk, and can be represented by an

m×m matrix D(k) =
(
d
(k)
ij

)m

i,j=1
, where d

(k)
ij is the number of data units (a.k.a.

flow size) that need to be transferred from input i to output j. The network has
the so-called non-blocking switch architecture [3,4,12,16], so that a data unit
that is transferred out of an input is immediately available at the corresponding
output. We also assume that all inputs and outputs have unit capacity. Thus,
in a time slot, each input/output can process at most one data unit; similar
to [18], these restrictions are called matching constraints. Let Ck denote the
completion time of coflow k, which is the time when all data units from coflow k
have finished being transferred. We are interested in developing efficient (offline)
scheduling algorithms that minimize

∑n
k=1 wkCk, the total weighted completion

time of coflows, where wk is a weight parameter associated with coflow k.
A main result of [18] is the following theorem.

Theorem 1 [18]. There exists a deterministic polynomial time 67/3-
approximation algorithm for the coflow scheduling problem, with the objective
of minimizing the total weighted completion time.

The approximation algorithm of [18] consists of two related stages. First, a coflow
order is computed by solving a polynomial-sized interval-indexed linear program
(LP) relaxation, similar to many other scheduling algorithms (see e.g., [11]).
Then, we use this order to derive an actual schedule. To do so, we define a
grouping rule, under which we partition coflows into a polynomial number of
groups, based on the minimum required completion times of the ordered coflows,
and schedule the coflows in the same group as a single coflow optimally, accord-
ing to an integer version of the Birkhoff-von Neumann decomposition theorem.
The detailed description of the algorithm can be found in Algorithm 4 of the
Appendix in [17]. Also see [18] for more details. From now on, the approximation
algorithm of [18] will be referred to as the LP-based algorithm.

1.2 Overview of Experiments

Since our LP-based algorithm consists of an ordering and a scheduling stage,
we are interested in algorithmic variations for each stage and the performance
impact of these variations. More specifically, we examine the impact of different
ordering rules, coflow grouping and backfilling rules, in both the offline and online
settings. Compared with the very preliminary experiments we did in [18], in
this paper we conduct a substantially more comprehensive study by considering
many more ordering and backfilling rules, and examining the performance of
algorithms on general instances in addition to real-world data. We also consider
the offline setting with general release times, and online extensions of algorithms,
which are not discussed in [18].

Experimental Analysis of Algorithms for Coflow Scheduling 265

Workload. Our evaluation uses real-world data, which is a Hive/MapReduce
trace collected from a large production cluster at Facebook [7,8,18], as well as
extensive simulated instances.

For real-world data, we use the same workload as described in [8,18]. collected
on a 3000-machine cluster with 150 racks, so the datacenter in the experiments
can be modeled as a 150 × 150 network switch (and coflows be represented by
150 × 150 matrices). We select the time unit to be 1/128 s (see [18] for details)
so that each port has the capacity of 1MB per time unit. We filter the coflows
based on the number of non-zero flows, which we denote by M ′, and we consider
three collections of coflows, filtered by the conditions M ′ ≥ 25, M ′ ≥ 50 and
M ′ ≥ 100, respectively.

We also consider synthetic instances in addition to the real-world data. For
problem size with k = 160 coflows and m = 16 inputs and outputs, we randomly
generate 30 instances with different numbers of non-zero flows involved in each
coflow. For instances 1–5, each coflow consists of m flows, which represent sparse
coflows. For instances 5–10, each coflow consists of m2 flows, which represent
dense coflows. For instances 11–30, each coflow consists of u flows, where u is
uniformly distributed on {m, · · · ,m2}. Given the number k of flows in each
coflow, k pairs of input and output ports are chosen randomly. For each pair of
(i, j) that is selected, an integer processing requirement di,j is randomly selected
from the uniform distribution on {1, 2, · · · , 100}.

Our main experimental findings are as follows:

– Algorithms with coflow grouping consistently outperform those without group-
ing. Similarly, algorithms that use backfilling consistently outperform those
that do not use backfilling. The benefit of backfilling can be further improved
by using a balanced backfilling rule (see Sect. 3.2 for details).

– The performance of the LP-based algorithm and its extensions is relatively
robust, and among the best compared with those that use other simpler order-
ing rules, in the offline setting.

– In the offline setting with general release times, the magnitude of inter-arrival
times relative to the processing times can have complicated effects on the
performance of various algorithms (see Sect. 4.1 for details).

– The LP-based algorithm can be extended to an online algorithm and has
near-optimal performance.

1.3 Related Work

There has been a great deal of success over the past 20 years on combinatorial
scheduling to minimize average completion time, see e.g., [11,14,15,20], typically
using a linear programming relaxation to obtain an ordering of jobs and then
using that ordering in some other polynomial-time algorithm. There has also
been success in shop scheduling. We do not survey that work here, but note that
traditional shop scheduling is not “concurrent”. In the language of our problem,
that would mean that two flows in the same coflow could not be processed
simultaneously. The recently studied concurrent open shop problem removes

266 Z. Qiu et al.

this restriction and models flows that can be processed in parallel. There is a
close connection between concurrent open shop problem and coflow scheduling
problem. When all coflow matrices are diagonal, coflow scheduling is equivalent
to a concurrent open shop scheduling problem [8,18]. Leung et al. [13] presented
heuristics for the total completion time objective and conducted an empirical
analysis to compare the performance of different heuristics for concurrent open
shop problem. In this paper, we consider a number of heuristics that include
natural extensions of heuristics in [13] to coflow scheduling.

2 Preliminary Background

In [18], we formulated the following interval-indexed linear program (LP) relax-
ation of the coflow scheduling problem, where τl’s are the end points of a set of
geometrically increasing intervals, with τ0 = 0, and τl = 2l−1 for l ∈ {1, 2, . . . , L}.
Here L is such that τL = 2L−1 is an upper bound on the time that all coflows
are finished processing under any optimal algorithm.

(LP) Minimize
n∑

k=1

wk

L∑

l=1

τl−1x
(k)
l subject to

l∑

u=1

n∑

k=1

m∑

j′=1

d
(k)

ij′ x(k)
u ≤ τl, for i = 1, . . . , m, l = 1, . . . , L; (1)

l∑

u=1

n∑

k=1

m∑

i′=1

d
(k)

i′j x(k)
u ≤ τl, for j = 1, . . . , m, l = 1, . . . , L; (2)

x
(k)
l = 0 if rk+

m∑

j′=1

d
(k)

ij′ > τl or rk+
m∑

i′=1

d
(k)

i′j > τl; (3)

L∑

l=1

x
(k)
l = 1, for k = 1, . . . , n;

x
(k)
l ≥ 0, for k = 1, . . . , n, l = 1, . . . , L.

For each k and l, x
(k)
l can be interpreted as the LP-relaxation of the binary

decision variable which indicates whether coflow k is scheduled to complete
within the interval (τl−1, τl]. Constraints (1) and (2) are the load constraints on
the inputs and outputs, respectively, which state that the total amount of work
completed on each input/output by time τl cannot exceed τl, due to matching
constraints. Contraint (3) takes into account of the release times.

(LP) provides a lower bound on the optimal total weighted completion time
of the coflow scheduling problem. If, instead of being end points of geometrically
increasing time intervals, τl are end points of the discrete time units, then (LP)
becomes exponentially sized (which we refer to as (LP-EXP)), and gives a tighter
lower bound, at the cost of longer running time. (LP) computes an approximated

Experimental Analysis of Algorithms for Coflow Scheduling 267

completion time C̄k =
∑L

l=1 τl−1x̄
(k)
l , for each k, based on which we re-order and

index the coflows in a nondecreasing order of C̄k, i.e.,

C̄1 ≤ C̄2 ≤ . . . ≤ C̄n. (4)

3 Offline Algorithms with Zero Release Time

In this section, we assume that all the coflows are released at time 0. We com-
pare our LP-based algorithm with others that are based on different ordering,
grouping, and backfilling rules.

3.1 Ordering Heuristics

An intelligent ordering of coflows in the ordering stage can substantially reduce
coflow completion times. We consider the following five greedy ordering rules,
in addition to the LP-based order (4), and study how they affect algorithm
performance.

Definition 1. The First in first (FIFO) heuristic orders the coflows arbitrarily
(since all coflows are released at time 0).

Definition 2. The Shortest Total Processing Time first (STPT) heuristic
orders the coflows based on the total amount of processing requirements over
all the ports, i.e.,

∑m
i=1

∑m
j=1 dij.

Definition 3. The Shortest Maximum Processing Time first (SMPT) heuristic
orders the coflows based on the load ρ of the coflows, where ρ = max{ max

i=1,...,m
ηi,

max
j=1,...,m

θj}, ηi = {
∑m

j′=1 dij′} is the load on input i, and θj = {
∑m

i′=1 di′j} is

the load on output j.

Definition 4. To compute a coflow order, the Smallest Maximum Completion
Time first (SMCT) heuristic treats all inputs and outputs as 2m independent
machines. For each input i, it solves a single-machine scheduling problem where n

jobs are released at time 0, with processing times η
(k)
i , k = 1, 2, · · · , n, where η

(k)
i

is the ith input load of coflow k. The jobs are sequenced in the order of increasing
η
(k)
i , and the completion times C(i)(k) are computed. A similar problem is solved
for each output j, where jobs have processing times θ

(k)
j , and the completion

times C(j)(k) are computed. Finally, the SMCT heuristic computes a coflow
order according to non-decreasing values of C ′(k) = max

i,j
{C(i)(k), C(j)(k)}.

Definition 5. The Earliest Completion Time first (ECT) heuristic generates a
sequence of coflow one at a time; each time it selects as the next coflow the one
that would be completed the earliest3.
3 These completion times depend on the scheduling rule used. Thus, ECT depends

on the underlying scheduling algorithm. In Sect. 3.2, the scheduling algorithms are
described in more detail.

268 Z. Qiu et al.

3.2 Scheduling via Birkhoff-Von Neumann Decomposition,
Backfilling and Grouping

The derivation of the actual sequence of schedules in the scheduling stage of our
LP-based algorithm relies on two key ideas: scheduling according to an optimal
(Birkhoff-von Neumann) decomposition, and a suitable grouping of the coflows.
It is reasonable to expect grouping to improve algorithm performance, because it
may consolidate skewed coflow matrices to form more balanced ones that can be
scheduled more efficiently. Thus, we compare algorithms with grouping and those
without grouping to understand its effect. The particular grouping procedure
that we consider here is the same as that in [18] (also see Step 2 of Algorithm 4 of
the Appendix in [17]), and basically groups coflows into geometrically increasing
groups, based on aggregate demand. Coflows of the same group are treated as
a single, aggregated coflow, and this consolidated coflow is scheduled according
to the Birkhoff-von Neumann decomposition (see [18] or Algorithm 5 of the
Appendix in [17]).

Backfilling is a common strategy used in scheduling for computer systems
to increase resource utilization (see, e.g. [8]). While it is difficult to analytically
characterize the performance gain from backfilling in general, we evaluate its
performance impact experimentally. We consider two backfilling rules, described
as follows. Suppose that we are currently scheduling coflow D. The schedules
are computed using the Birkhoff-von Neumann decomposition, which in turn
makes use of a related, augmented matrix D̃, that is component-wise no smaller
than D. The decomposition may introduce unforced idle time, whenever D �= D̃.
When we use a schedule that matches input i to output j to serve the coflow
with Dij < D̃ij , and if there is no more service requirement on the pair of input
i and output j for the coflow, we backfill in order from the flows on the same
pair of ports in the subsequent coflows. When grouping is used, backfilling is
applied to the aggregated coflows. The two backfilling rules that we consider –
which we call backfilling and balanced backfilling – are only distinguished by the
augmentation procedures used, which are, respectively, the augmentation used
in [18] (Step 1 of Algorithm 5 in [17]) and the balanced augmentation described
in Algorithm 1.

The balanced augmentation (Algorithm 1) results in less skewed matrices
than the augmentation step in [18], since it first “spreads out” the unevenness
among the components of a coflow. To illustrate, let

D =

⎛

⎝
10 0 0
10 0 0
10 0 0

⎞

⎠ , B =

⎛

⎝
10 10 10
10 10 10
10 10 10

⎞

⎠ , and C =

⎛

⎝
10 20 0
10 0 20
10 10 10

⎞

⎠ .

Under the balanced augmentation, D is augmented to B and under the augmen-
tation of [18], D is augmented to C.

3.3 Scheduling Algorithms and Metrics

We consider 30 different scheduling algorithms, which are specified by the order-
ing used in the ordering stage, and the actual sequence of schedules used in the

Experimental Analysis of Algorithms for Coflow Scheduling 269

Algorithm 1. Balanced Coflow Augmentation
Data: A single coflow D = (dij)

m
i,j=1.

Result: A matrix D̃ =
(
d̃ij

)m
i,j=1

with equal row and column sums, and D ≤ D̃.

Let ρ be the load of D.
pi ← ρ −

∑m
j′=1 dij′ , for i = 1, 2, . . . , m.

qi ← ρ −
∑m

i′=1 di′j , for j = 1, 2, . . . , m.
Δ ← mρ −

∑m
i=1

∑m
j=1 dij .

d′
ij = �dij + piqi/Δ�.

Augment D′ = (d′
ij) to a matrix D̃ with equal row and column sums (see Step 1

of Algorithm 5 of the Appendix in [17]; also see [18]).

scheduling stage. We consider 6 different orderings described in Sect. 3.1, and
the following 5 cases in the scheduling stage:

– (a) without grouping or backfilling, which we refer to as the base case;
– (b) without grouping but with backfilling;
– (c) without grouping but with balanced backfilling;
– (d) with grouping and with backfilling;
– (e) with grouping and with balanced backfilling.

We will refer to these cases often in the rest of the paper. Our LP-based algorithm
corresponds to the combination of LP-based ordering and case (d).

For ordering, six different possibilities are considered. We use HA to denote
the ordering of coflows by heuristic A, where A is in the set {FIFO, STPT,
SMPT, SMCT, ECT}, and HLP to denote the LP-based coflow ordering. Note
that in [18], we only considered orderings HFIFO,HSMPT and HLP , and cases
(a), (b) and (d) for scheduling, and their performance on the Facebook trace.

(a) Comparison of total weighted comple-
tion times normalized using the base case
(e) for each order

(b) Comparison of 6 orderings with zero
release times on Facebook data.

Fig. 1. Facebook data are filtered by M ′ ≥ 50. Weights are equal.

270 Z. Qiu et al.

3.4 Performance of Algorithms on Real-World Data

We compute the total weighted completion times for all 6 orders in the 5 different
cases (a)–(e) described in Sect. 3.3, through a set of experiments on filtered coflow
data. We present representative comparisons of the algorithms here.

Figure 1a plots the total weighted completion times as percentages of the base
case (a), for the case of equal weights. Grouping and backfilling both improve the
total weighted completion time with respect to the base case for all 6 orders. In
addition to the reduction in the total weighted completion time from backfilling,
which is up to 7.69 %, the further reduction from grouping is up to 24.27 %, while
the improvement from adopting the balanced backfilling rule is up to 20.31 %.
For 5 non-arbitrary orders (excluding FIFO), scheduling with both grouping and
balanced backfilling (i.e., case (e)) gives the smallest total weighted completion
time.

We then compare the performances of different coflow orderings. Figure 1b
shows the comparison of total weighted completion times evaluated on filtered
coflow data in case (e) where the scheduling stage uses both grouping and bal-
anced backfilling. Compared with HFIFO, all other ordering heuristics reduce
the total weighted completion times of coflows by a ratio between 7.88 and 9.11,
with HLP performing consistently better than other heuristics.

3.5 Cost of Matching

The main difference between our coflow scheduling problem and the well-studied
concurrent open shop problem we discussed in Sect. 1.3 is the presence of match-
ing constraints on paired resources, i.e. inputs and outputs, which is the most
challenging part in the design of approximation algorithms [18]. Since our
approximation algorithm handles matching constraints, it is more complicated
than scheduling algorithms for concurrent open shop problem. We are interested
in how much we lose by imposing these matching constraints.

To do so, we generate two sets of coflow data from the Facebook trace. For
each coflow k, let the coflow matrix D(k) be a diagonal matrix, which indicates
that coflow k only has processing requirement from input i to output i, for
i = 1, . . . ,m. The processing requirement D

(k)
i,i is set to be equal to the sum

of all dataflows of coflow k in the Facebook trace that require processing from
input i. We then construct coflow matrix D̃(k) such that D̃(k) is not diagonal and
has the same row sum and column sum as D(k). The details of the generation is
described as in Algorithm 2.

The diagonal structured coflow matrices can reduce the total completion time
of by a ratio up to 2.09, which indicates the extra processing time introduced
by the matching constraints.

3.6 Performance of Algorithms on General Instances

In previous sections, we present the experimental results of several algorithms on
the Facebook trace. In order to examine the consistency of the performance of

Experimental Analysis of Algorithms for Coflow Scheduling 271

these algorithms, we consider more instances, including examples where certain
algorithms behave badly.

Bad Instances for Greedy Heuristics. We consider the following examples
which illustrate instances on which the ordering heuristics do not perform well.

Example 1. Consider a 2 × 2 network and n coflows with D =
(

10 0
0 0

)
, n

coflows with D =
(

0 0
0 10

)
, and a · n coflows with D =

(
9 0
0 9

)
. The optimal

schedule in this case is to schedule the orders with the smallest total processing
time first, i.e., the schedule is generated according to the STPT rule. The limit
of the ratio

∑n
k=1 Ck(ECT&SMCT&SMPT)

∑n
k=1 Ck(STPT) is increasing in n and when n → ∞ it

becomes a2+4a+2
a2+2a+2 . This ratio reaches its maximum of

√
2 when a =

√
2.

We can generalize this counterexample to an arbitrary number of inputs and
outputs m. To be more specific, in an m × m network, for j = 1, 2, · · · ,m, we
have n coflows only including flows to be transferred to output j, i.e., dij = 10.
We also have a · n coflows with equal transfer requirement on all pairs of inputs
and outputs, i.e., dij = 9 for i, j = 1, 2, · · · ,m. The ratio

lim
n→∞

∑n
k=1 Ck(ECT&SMCT&SMPT)

∑n
k=1 Ck(STPT)

=
a2 + 2ma + m

a2 + 2a + m

has a maximum value of
√

m when a =
√

m. Note that in the generalized
example, we need to consider the matching constraints when we actually schedule
the coflows.

Example 2. Consider a 2 × 2 network and n coflows with D =
(

1 0
0 10

)
, and

a · n coflows with D =
(

10 0
0 0

)
. The optimal schedule in this case is to schedule

the orders with the Smallest Maximum Completion Time first, i.e., the schedule
is generated according to the SMCT rule. The ratio

∑n
k=1 Ck(STPT)

∑n
k=1 Ck(SMCT) is increasing

in n and when n → ∞ it becomes a2+2a
a2+1 This ratio reaches its maximum of

√
5+1
2

when a =
√
5+1
2 .

This counterexample can be generalized to an arbitrary number of inputs and
outputs m. In an m × m network, for each i = 2, 3, · · · ,m, we have n coflows
with two nonzero entries, d11 = 1 and dii = 10. We also have a · n coflows with
only one zero entry d11 = 10. The limit of the ratio

lim
n→∞

∑n
k=1 Ck(STPT)

∑n
k=1 Ck(SMCT)

=
a2 + 2(m − 1)a

a2 + m − 1

has a maximum value of 1/2 +
√

m − 3/4 when a = 1/2 +
√

m − 3/4.

272 Z. Qiu et al.

General Instances. We compare total weighted completion time for 6 order-
ings and 5 cases on general simulated instances as described in Sect. 1.2 (details
in Tables 1 to 5 of [17]), normalized with respect to the LP-based ordering in case
(c), which performs best on all of the instances. We have the similar observation
from the general instances that both grouping and backfilling reduce the com-
pletion time. However, under balanced backfilling, grouping does not improve
performance much. Both grouping and balanced backfilling form less skewed
matrices that can be scheduled more efficiently, so when balanced backfilling is
used, the effect of grouping is less pronounced. It is not clear whether case (c)
with balanced backfilling only is in general better than case (e) with both bal-
anced backfilling and grouping, as we have seen Facebook data on which case (e)
gives the best result. As for the performance of the orderings, on the one hand,
we see very close time ratios among all the non-arbitrary orderings on instances
6–30, and a better performance of HECT on sparse instances 1–5 over other
orderings (Table 3, Appendix [17]); on the other hand, there are also instances
where ECT performs poorly (e.g., see Sect. 3.6).

Besides their performance, the running times of the algorithms that we con-
sider are also important. The running time of an algorithm consists of two main
parts; computing the ordering and computing the schedule. On a Macbook Pro
with 2.53 GHz two processor cores and 6 G memory, the five ordering rules,
FIFO, STPT, SMPT, SMCT and ECT, take less than 1 s to compute, whereas
the LP-based order can take up to 90 s. Scheduling with backfilling can be com-
puted in around 1 min, whereas balanced backfilling computes the schedules with
twice the amount of time, because the balanced augmented matrices have more
non-zero entries. Besides improving performance, grouping can also reduce the
running time by up to 90 %.

Algorithm 2. Construction of coflow data
Data: A single diagonal coflow D = (dij)

m
i,j=1.

Result: Another coflow D̃ =
(
d̃ij

)m

i,j=1
, such that row and column sums

of the two matrices are all equal.
Let η(D̃) =

∑m
i,j=1 d̃ij be the sum of all entries in D̃. Similarly,

η(D) =
∑m

i=1 dii.
D̃ ← 0.
while (η(D̃) < η(D)) do

Si ← {i :
∑m

j′=1 D̃ij′ < dii}; Sj ← {j :
∑m

i′=1 D̃i′j < djj}. Randomly
pick i∗ from set Si and j∗ from set Sj . D̃ ← D̃ + pE, where
p = min{di∗i∗ −

∑m
j′=1 D̃i∗j′ , dj∗j∗ −

∑m
i′=1 D̃i′j∗}, Eij = 1 if i = i∗

and j = j∗, and Eij = 0 otherwise.
η ←

∑m
i,j=1 d̃ij

end

Experimental Analysis of Algorithms for Coflow Scheduling 273

4 Offline Algorithms with General Release Times

In this section, we examine the performances of the same class of algorithms and
heuristics as that studied in Sect. 3, when release times can be general. We first
extend descriptions of various heuristics to account for release times.

(a) Comparison of total weighted completion
times normalized using the base case (c) for each
order.

(b) Comparison of 6 orderings with general re-
lease times on Facebook data.

Fig. 2. Facebook data are filtered by M ′ ≥ 50.
Weights are equal.

The FIFO heuristic com-
putes a coflow order accord-
ing to non-decreasing release
time r. (Note that when all
release times are distinct, FIFO
specifies a unique ordering on
coflows, instead of any arbitrary
order in the case of zero release
times.) The STPT heuristic
computes a coflow order accord-
ing to non-decreasing values of∑m

i=1

∑m
j=1 dij + r, the total

amount of processing require-
ments over all the ports plus the
release time. The SMPT heuris-
tic computes a coflow order
according to non-decreasing val-
ues of ρ + r, the sum of
the coflow load and release
time. Similar to the case of
zero release times, the SMCT
heuristic first sequences the
coflows in non-decreasing order
of

∑
j′ dij′ + r on each input i

and
∑

i′ di′j + r on each output
j, respectively, and then com-
putes the completion times C(i)

and C(j), treating each input
and output as independent machines. Finally, the coflow order is computed
according to non-decreasing values of C ′ = maxi,j{C(i), C(j)}. The ECT heuris-
tic generates a sequence of coflows one at a time; each time it selects as the next
coflow the one that has been released and is after the preceding coflow finishes
processing and would be completed the earliest.

We compute the total weighted completion time for 6 orderings (namely, the
LP-based ordering (4) and the orderings from definitions with release times and
cases (b)–(e) (recall the description of these cases at the beginning of Sect. 3.3),
normalized with respect to the LP-based ordering in case (c). The results for
Facebook data are illustrated in Fig. 2a and b. For general instances, we generate
the coflow inter-arrival times from uniform distribution [1, 100]. Performance
ratios can be found in Tables 6 to 9 in the Appendix of [17]. As we can see from
e.g., Fig. 2a, the effects of backfilling and grouping on algorithm performance are

274 Z. Qiu et al.

similar to those noted in Sect. 3.3, where release times are all zero. The STPT
and LP-based orderings STPT appear to perform the best among all the ordering
rules (see Fig. 2b), because the magnitudes of release times have a greater effect
on FIFO, SMPT, SMCT and ECT than they do on STPT.

By comparing Figs. 1b and 2b, we see that ECT performs much worse than it
does with common release times. This occurs because with general release times,
ECTonly schedules a coflowafter a preceding coflow completes, so it does not back-
fill. While we have kept the ECT ordering heuristic simple and reasonable to com-
pute, no backfilling implies larger completion times, hence the worse performance.

4.1 Convergence of Heuristics with Respect to Release Times

(a) Number of flows is 16

(b) Number of flows is uniform in
[16, 256]

(c) Number of flows is 256

Fig. 3. Comparison of total weighted
completion times with respect to the
upper bound of inter-arrival time for each
order on general instances. Network size is
16. Number of Coflow is 160.

In order to have a better understand-
ing of release times, we scale the release
times of the coflows and observe the
impact of release time distribution on
the performance of different heuristics.
For general instances, recall that we
generated the inter-arrival times with
an upper bound of 100. Here we also
consider inter-arrival time distributions
that are uniform over [0, 0], [0, 25],
[0, 50], [0, 200], [0, 400], [0, 800] and
[0, 1600], respectively. We compute the
total weighted completion time with
the adjusted release times in each case
for 250 samples and take the aver-
age ratio with respect to the LP-based
order.

As we can see from Fig. 3a to c,
all the heuristics converge to FIFO as
the inter-arrival time increases. This is
reasonable as the release times domi-
nate the ordering when they are large.
The speed of convergence is higher in
Fig. 3a where the coflow matrices in the
instance are sparse and release times
are more influential in all heuristics. On
the contrary, when the coflow matri-
ces are dense, release times weigh less
in heuristics, which converge slower to
FIFO as shown in Fig. 3c. We also note
that for heuristics other than FIFO,
the relative performance of an order-
ing heurstic with respect to the LP-
based order may deteriorate and then

Experimental Analysis of Algorithms for Coflow Scheduling 275

improve, as we increase the inter-arrival times. This indicates that when inter-
arrival times are comparable to the coflow sizes, they can have a significant
impact on algorithm performance and the order obtained.

5 Online Algorithms

We have discussed the experimental results of our LP-based algorithm and sev-
eral heuristics in the offline setting, where the complete information of coflows
is revealed at time 0. In reality, information on coflows (i.e., flow sizes) is often
only revealed at their release times, i.e., in an online fashion. It is then natural to
consider online modifications of the offline algorithms considered in earlier sec-
tions. We proceed as follows. For the ordering stage, upon each coflow arrival, we
re-order the coflows according to their remaining processing requirements. We
consider all six ordering rules described in Sect. 3. For example, the LP-based
order is modified upon each coflow arrival, by re-solving the (LP) using the
remaining coflow sizes (and the newly arrived coflow) at the time. We describe
the online algorithm with LP-based ordering in Algorithm 3. For the scheduling
stage, we use case (c) the balanced backfilling rule without grouping, because of
its good performance in the offline setting.

Algorithm 3. Online LP-based Approximation

Data: Coflows
(
d
(k)
ij

)m

i,j=1
with different release times, for k = 1, . . . , n.

Result: A scheduling algorithm that uses at most a polynomial number
of different matchings.

– Step 1: Given na coflows in the system, na ≤ n, solve the linear program
(LP). Let an optimal solution be given by x̄

(k)
l , for l = 1, 2, . . . , L and

k = 1, 2, . . . , na. Compute the approximated completion time C̄k by

C̄k =
L∑

l=1

τl−1x̄
(k)
l .

Order and index the coflows according to

C̄1 ≤ C̄2 ≤ . . . ≤ C̄na
.

– Step 2: Schedule the coflows in order using the Birkhoff-von Neumann
decomposition (see [18] or Algorithm 5 of the Appendix in [17])) until an
release of a new coflow. Update the job requirement with the remaining
job for each coflow in the system and go back to Step 1.

We compare the performance of the online algorithms and we compare the
online algorithms to the offline algorithms. We improve the time ratio for all
the orderings except FIFO by allowing re-ordering and preemption in the online
algorithm compared with the static offline version. Note that we do not preempt

276 Z. Qiu et al.

with FIFO order. While several ordering heuristics perform as well as LP-based
ordering in the online algorithms, a natural question to ask is how close HA’s
are to the optimal, where A ∈ {STPT, SMPT, SMCT,ECT,LP}. In order to
get a tight lower bound of the coflow scheduling problem, we solve (LP-EXP)
for sparse instances. Since it is extremely time consuming to solve (LP-EXP) for
dense instances, we consider a looser lower bound, which is computed as follows.
We first aggregate the job requirement on each input and output and solve a
single machine scheduling problem for the total weighted completion time, on
each input/output. The lower bound is obtained by taking the maximum of the
results (see the last column of Table 11, [17]). The ratio of the lower bound over
the weighted completion time under HLP is in the range of 0.91 to 0.97, which
indicates that it provides a good approximation of the optimal.

6 Conclusion

Fig. 4. Comparison of total weighted com-
pletion times with respect to the base case
for each order under the offline and online
algorithms. Data are filtered by M ′ ≥ 50.
Weights are equal.

We have performed comprehensive
experiments to evaluate different
scheduling algorithms for the prob-
lem of minimizing the total weighted
completion time of coflows in a dat-
acenter network. We also general-
ize our algorithms to an online ver-
sion for them to work in real-time.
For additional interesting directions
in experimental analysis of coflow
scheduling algorithms, we would like
to come up with structured approx-
imation algorithms that take into
consideration other metrics and the
addition of other realistic constraints, such as precedence constraints, and dis-
tributed algorithms that are more suitable for implementation in a data cen-
ter. These new algorithms can be used to design other implementable, practical
algorithms.

Acknowledgment. Yuan Zhong would like to thank Mosharaf Chowdhury and Ion
Stoica for numerous discussions on the coflow scheduling problem, and for sharing the
Facebook data.

References

1. Apache hadoop. http://hadoop.apache.org
2. Google dataflow. https://www.google.com/events/io
3. Alizadeh, M., Yang, S., Sharif, M., Katti, S., McKeown, N., Prabhakar, B., Shenker,

S.: pfabric: Minimal near-optimal datacenter transport. SIGCOMM Comput. Com-
mun. Rev. 43(4), 435–446 (2013)

http://hadoop.apache.org
https://www.google.com/events/io

Experimental Analysis of Algorithms for Coflow Scheduling 277

4. Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Towards predictable data-
center networks. SIGCOMM Comput. Commun. Rev. 41(4), 242–253 (2011)

5. Borthakur, D.: The hadoop distributed file system: Architecture and design.
Hadoop Project Website (2007)

6. Chowdhury, M., Stoica, I.: Coflow: A networking abstraction for cluster applica-
tions. In: HotNets-XI, pp. 31–36 (2012)

7. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data
transfers in computer clusters with orchestra. SIGCOMM Comput. Commun. Rev.
41(4), 98–109 (2011)

8. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient coflow scheduling with Varys. In:
SIGCOMM (2014)

9. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: OSDI, p. 10 (2004)

10. Dogar, F., Karagiannis, T., Ballani, H., Rowstron, A.: Decentralized task-aware
scheduling for data center networks. Technical Report MSR-TR–96 2013

11. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms. Math. Oper. Res.
22(3), 513–544 (1997)

12. Kang, N., Liu, Z., Rexford, J., Walker, D.: Optimizing the “one big switch” abstrac-
tion in software-defined networks. In: CoNEXT, pp. 13–24 (2013)

13. Leung, J.Y., Li, H., Pinedo, M.: Order scheduling in an environment with dedicated
resources in parallel. J. Sched. 8(5), 355–386 (2005)

14. Phillips, C.A., Stein, C., Wein, J.: Minimizing average completion time in the
presence of release dates. Math. Program. 82(1–2), 199–223 (1998)

15. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer,
New York (2008)

16. Popa, L., Krishnamurthy, A., Ratnasamy, S., Stoica, I.: Faircloud: Sharing the
network in cloud computing. In: HotNets-X, pp. 22:1–22:6 (2011)

17. Qiu, Z., Stein, C., Zhong, Y.: Experimental analysis of algorithms for coflow
scheduling. arXiv (2016). http://arxiv.org/abs/1603.07981

18. Qiu, Z., Stein, C., Zhong, Y.: Minimizing the total weighted completion time of
coflows in datacenter networks. In: ACM Symposium on Parallelism in Algorithms
and Architectures, pp. 294–303 (2015)

19. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: MSST, pp. 1–10 (2010)

20. Skutella, M.: List scheduling in order of α-points on a single machine. In: Bampis,
E., Jansen, K., Kenyon, C. (eds.) Efficient Approximation and Online Algorithms.
LNCS, vol. 3484, pp. 250–291. Springer, Heidelberg (2006)

21. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI, p. 2 (2012)

http://arxiv.org/abs/1603.07981

An Empirical Study of Online Packet
Scheduling Algorithms

Nourhan Sakr(B) and Cliff Stein

Industrial Engineering and Operations Research,
Columbia University, New York, NY 10027, USA
n.sakr@columbia.edu, cliff@ieor.columbia.edu

Abstract. This work studies online scheduling algorithms for buffer
management, develops new algorithms, and analyzes their performances.
Packets arrive at a release time r, with a non-negative weight w and an
integer deadline d. At each time step, at most one packet is scheduled.
The modified greedy (MG) algorithm is 1.618-competitive for the objec-
tive of maximizing the sum of weights of packets sent, assuming agreeable
deadlines. We analyze the empirical behavior of MG in a situation with
arbitrary deadlines and demonstrate that it is at a disadvantage when
frequently preferring maximum weight packets over early deadline ones.
We develop the MLP algorithm, which remedies this problem whilst
mimicking the behavior of the offline algorithm. Our comparative analy-
sis shows that, although the competitive ratio of MLP is not as good as
that of MG, it performs better in practice. We validate this by simulating
the behavior of both algorithms under a spectrum of parameter settings.
Finally, we propose the design of three additional algorithms, which may
help in improving performance in practice.

1 Introduction

Efficient buffer management at a network router is a critical issue that motivates
the online packet scheduling problem. Kesselman et al. [13] introduce a buffer
management delay model and give algorithms to minimize end-to-end delay. We
adopt a similar model to analyze the empirical behavior of the modified greedy
(MG) algorithm introduced in [12], and propose new algorithms that do not have
as strong worst-case guarantees, yet perform better in our simulated settings.

Model. For simplicity, we investigate a network router with two nodes. Studying
a two node router is a first step towards understanding more complicated and
realistic models.In Sect. 7, we briefly discuss possible model modifications. At
each integer time step, packets are buffered upon arrival at the source node,
then at most one packet is chosen from the buffer to be sent to the target node.
A packet (r, d, w) arrives at a release date r, has a non-negative weight w, and
needs to be sent by an integer deadline d. A packet not sent by time d expires,

N. Sakr—Supported in part by NSF grant CCF-1421161.
C. Stein—Supported in part by NSF grant CCF-1421161.

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 278–293, 2016.
DOI: 10.1007/978-3-319-38851-9 19

An Empirical Study of Online Packet Scheduling Algorithms 279

and is dropped from the buffer. The objective of a packet-scheduling algorithm
A is to maximize its weighted throughput, ζA, defined as the total weight of
packets sent by A. It is easy to relate our model to an online version of the
classical offline unit-job scheduling problem where the input is a set of n unit-
length jobs, each specified by a similar triple (r, d, w) and the objective is to
maximize weighted throughput, i.e. the total weight of jobs that are processed
before their deadlines.

Parameters. We will typically be generating our input according to some type
of distribution. Let T denote the number of time steps during which the system
can generate arriving packets, and let λ denote an arrival rate. We choose values
for T and λ from a predefined set. Then at each integer time step t = 1, . . . , T ,
we generate the number of arriving packets according to a Poisson distribution
with rate λ. For each arriving packet, we set r = t and generate w from a uniform
(integer) distribution U(1, wmax). To find d, we first generate τ , a time to expire,
from a uniform (integer) distribution U(0, dmax), and set d = r + τ . We call this
Model 1. We also consider a bimodal distribution for τ with weights p and 1−p,
respectively, for two distinct distributions centered on different means and call
this Model 2. Although a network may induce correlations between packets, we
use i.i.d. distributions as a first step in modeling the behavior of our algorithms.

In order to evaluate the performance of an online scheduling algorithm (A),
we use an offline algorithm (OFF) for comparison, which given all future arrivals
and packet characteristics, is able to statically find the optimal solution (e.g.
using maximum-weight bipartite matching). Its solution gives the highest possi-
ble throughput the system can achieve. The online algorithm is k-competitive if
ζA on any instance is at least 1/k of ζOFF on this instance. The smallest k for
which an algorithm is k-competitive is called the competitive ratio [3]. According
to [11], k will be at most 2 for any algorithm that uses a static priority policy. In
this paper, we will simulate the online algorithm and evaluate the ratio ζA/ζOFF .
The average of these ratios across each batch of simulations will be denoted by
ρA, where A is the corresponding online algorithm.

Related Work. The literature is rich with works that acknowledge the importance
of buffermanagement and present algorithms aiming at better router performance.
Motivated by [7,13] gives a randomized algorithm, RMIX, while [4] proves that it
remains e

e−1 -competitive against an adaptive-online adversary. Many researchers
attempt to design algorithms with improved competitive ratios. The best lower
bound on the competitive ratio of deterministic algorithms is the golden ratio
φ [5,11]. A simple greedy algorithm that schedules a maximum-weight pending
packet for an arbitrary deadline instance is 2-competitive [11,13]. Chrobak et al. [8]
introduce the first deterministic algorithm to have a competitive ratio strictly less
than 2, namely 1.939. Li et al. [15] use the idea of dummy packets in order to design
the DP algorithm with competitive ratio at most 1.854. Independently, [10] gives
a 1.828-competitive algorithm. Further research considers natural restrictions on
packet deadlineswith hopes of improving the competitive ratio.One type of restric-
tion is the agreeable deadline model considered in [12], i.e. deadlines are (weakly)

280 N. Sakr and C. Stein

increasing in their release times. Motivated by a more general greedy algorithm,
EDFα [7], that schedules the earliest-deadline pending packet with weight at least
1/α of the maximum-weight pending packet, [12] develop the MG algorithm which
we describe in Sect. 2.

Our Contribution. We observe that while MG is φ-competitive for the case of
agreeable deadlines, it may not be the best option to apply in practice. We
demonstrate the undesirable performance of MG under certain scenarios, e.g.
frequently preferring maximum weight (late deadline) packets over early dead-
line ones. Our proposed MLP algorithm remedies this drawback, as it outper-
forms MG on most simulated instances. However, we are able to develop hard
instances to prove that MLP does not provide better worst-case guarantees,
whereas on those instances MG would produce the same results as an offline
solution. Contrasting the advantages of MG and MLP motivates us to explore
further algorithmic adjustments which may improve performance, at least in
practice, as supported by our preliminary analysis. Finally, we justify that a
two-node model with an infinite buffer is a sufficient model for our analysis.
Moreover, extending the model to multiple nodes or imposing a threshold on
the capacity of the buffer does not significantly alter the performance of the
online algorithms.

2 Modified Greedy Algorithm (MG)

MG is a φ-competitive deterministic online algorithm for the agreeable deadline
model [12]. It focuses on two packets at each time step: the earliest deadline non-
dominated packet e (i.e. maximum weight among all earliest-deadline packets)
and the maximum weight non-dominated packet h (i.e. earliest deadline among
all maximum-weight packets in the buffer). Packet e is chosen if we ≥ wh

φ (φ ≈
1.618) and packet h is chosen otherwise. While [12] consider an agreeable deadline
model, we relax this assumption and explore MG in a more general setting.

MG Analysis. Although MG has the best competitive ratio among deterministic
online algorithms, we believe that by better understanding MG, we can improve
on it in practice. Intuitively, if MG, at early stages, chooses packets with longer
deadlines (due to higher weights) over those with early deadlines, then as time
passes, many early packets expire while most of the heavy later-deadline packets
will have already been sent. Therefore, the algorithm may resort to choosing
packets with even smaller weights, thereby wasting an opportunity to send a
higher weight packet that has already expired. We, hence, explore the decisions
made by MG by observing its relative frequency of choosing h over e.

In order to consider a diverse set of instances, we set T to 200 and define
ranges [0.7,20], [1,20] and [1,40] for λ, wmax and dmax, respectively. Under the
assumptions of Model 1, we run a batch of 200 simulations each for 8000 sampled
parameter combinations. Given each parameter combination, we calculate the
relative frequency of choosing h over e and average the frequencies over λ to
obtain the empirical probability of P (wh > 1.618we), denoted by ψ.

An Empirical Study of Online Packet Scheduling Algorithms 281

Fig. 1. ψ vs. wmax, colored by dmax (See
[16] for colored figure)

We suspect that when ψ is high,
especially if h expires at later dead-
lines, MG will be at a major disadvan-
tage. Figure 1 plots ψ vs. wmax, where
each curve corresponds to a fixed level
for dmax. In general, ψ increases with
wmax and dmax. The decreasing curve
slope implies that ψ is more sensitive to
lower values of wmax. Further analysis
shows that at any level of wmax, MG
will choose h over e at most 66 % of the
time. We also observe that regardless
the average number of packets in the
buffer, if wmax is small (≤3), the event
of interest occurs at most 40 % of the
time.

From this probability analysis, we
conclude that unless wmax or λ is small,
MG tends to choose packet h too fre-
quently. To show that this property may “fire back”, we construct Scenario 1,
forcing MG to favor later deadlines. We reuse the data of the generated packets
above and adjust the weight of each packet by multiplying it by its deadline. We
let MG run on the new data and plot ρMG against different parameters. Figure 2
depicts lower ratios for the new dataset. While ρMG originally increased with λ,
it now decreases with λ and dmax. wmax does not affect the performance much.
A gradient boosted tree predictive model for ρMG (i.e. a sequence of decision
tree models where the next model is built upon the residuals of the previous one)
shows that dmax is the most important factor under Scenario 1, as it explains
30 % of the variability in the model.

(a) ρMG vs. λ (b) ρMG vs. dmax

Fig. 2. Performance of MG under Scenario 1

282 N. Sakr and C. Stein

3 Mini LP Algorithm (MLP)

Description. In light of the previous analysis, we develop a new online algorithm
that is more likely to send early deadline packets. The mini LP algorithm (MLP)
runs a “mini” assignment LP at each time step in order to find the optimal
schedule for the current content of the buffer, assuming no more arrivals. If nt

is the number of packets in the buffer at current time t, we search for the packet
with the latest deadline (dt,max) and set a timeline from t̂ = 0 to dt,max − t. We
then solve the following optimization problem, where wi is the weight of packet
i and xit̂ equals 1 if packet i is sent at time t̂ and 0 otherwise:

min
∑

i,t̂

wixit̂

s.t.
∑

i

xit̂ ≤ 1 t̂ = 0, . . . , dt,max − t

∑

t̂

xit̂ ≤ 1 i = 1, . . . , nt

xit̂ ≥ 0 i = 1, . . . , nt

MLP then uses the optimal solution to send the packet that receives the first
assignment, i.e. the packet i for which xi0 = 1, while the rest of the schedule is
ignored and recomputed in subsequent time steps.

3.1 Initial Analysis

Similar to the MG analysis, we compute ρMLP and are interested in its behavior
as the load varies. A way to measure load is to define the average number of
packets in the buffer as n̄, which is a byproduct of λ. We expect a higher ρMLP

at low n̄, since the online algorithm would not have many packets to choose from
and hence, is more likely to choose the same packet as the offline algorithm at
each time step. However, we expect ρMLP to decrease as n̄ increases, since the
discrepancy between online and offline solutions increases. To test this, we sample
parameter combinations from T ∈ [100, 500], λ ∈ [0.7, 20] and wmax, dmax ∈
[1, 20], and run a batch of 1000 simulations per combination.

Fig. 3. ρMLP vs. n̄

In Fig. 3, ρMLP exhibits an inter-
esting behavior with respect to n̄:
it starts at a very high value (≈1),
decreases as expected with increas-
ing n̄ until eventually it rises again,
thereby forming a dip, and finally
converges to 1. Our claim is true
at first, when λ is relatively low, as
the first range for λ is quite sensi-
tive (λ = 2.3 vs. 2.8 makes a dif-
ference). However, when λ increases,
the problem loses its sensitivity. An
explanation for such behavior may

An Empirical Study of Online Packet Scheduling Algorithms 283

be that as n̄ increases (with increasing λ), we are more likely to have multiple
packets achieving maximum weight, in which case both the online and offline
algorithms are likely to choose those packets and have less discrepancy between
their choices, especially if the weight or deadline ranges are not wide. We con-
clude that when the system is heavily or lightly loaded, both algorithms perform
well. The dip happens in the interesting area. Consequently, we will investigate
how the dip moves and the effect that parameter choices will have on it.

3.2 Parameter Effect on MLP Behavior

Changing the parameters to generate different graphs did not change the struc-
ture of the dip-shaped graph that we have seen in Fig. 3. Nonetheless, the dip
gets narrower/wider and/or shifts to the left/right, as parameters change. In
this section, we will only focus on a restricted range for the values of λ, namely
0.7 to 10. However, we believe that the restriction does not mask any interest-
ing results, since MLP converges at higher values of λ, as we have seen before.
Therefore, a heavily loaded system is not significant for our analysis.

Arrival Rates. The graph inevitably depends on λ, as it directly affects n̄, i.e.
the x-axis. However, λ does not have a direct effect on the shape of the graph. By
tuning the range for λ, we are able to “zoom in” onto the dip area and monitor
the behavior more accurately where the system is neither lightly nor heavily
loaded. The range for such sensitive values is on average between 1.3 and 4.2.
Figure 4a zooms in on the dip where λ is most sensitive.

Weight Ranges. The range of the weights moves the dip to the right (left), as
it gets narrower (wider). Very narrow ranges (i.e. low values for wmax) are the
most influential. As wmax increases, its impact decreases. In fact, this result

(a) λ focuses on sensitive values
(b) wmax reflects narrow weight ranges

(c) longer T (d) smaller dmax

Fig. 4. ρMLP vs. n̄

284 N. Sakr and C. Stein

seems intuitive and one can see an example in Fig. 4b where the weight range
is designed to be very narrow (wmax is set at 2). Some experimentation led us
to the explanation of this phenomenon: When there are few options for weights,
both algorithms converge together. For instance, if weights are only 1 and 2, then
the higher the n̄, the more likely we will have packets of weight 2. In this case,
both algorithms find the optimal choice to be the packet with the higher weight
(we don’t have much choice here so it must be 2). Hence, both behave alike.
We note that it is not in particular the range of distinct weights that has this
effect but rather the number of distinct weights available, i.e. choosing between
weights 1 and 2 vs. 100 and 200, would depict the same behavior.

Time Period and Deadline Range. T and dmax have a combined effect. Figure 4c
and d give two examples: Allowing a longer timeline T results in a second but
higher dip and slows down convergence, such that suddenly higher values of λ
become slightly more interesting. Meanwhile, lower dmax values (combined with
shorter T ’s) result in a sharp dip as well as much faster convergence to 1.

3.3 Influence of Maximum-Weight Packets

The motivation of MLP was mainly to remedy the drawback we observed for MG
when later deadline packets are preferred. Therefore, it is essential to verify that
MLP outperforms MG under Scenario 1. In fact, one-sided 99 % confidence inter-
vals (CI) imply that ρMG is at most 91.98 % while ρMLP is at most 96.28 %. The
difference in performance between both algorithms increases with λ. Figure 5a
shows the behavior of ρ against n̄ for both algorithms. While MLP is not influ-
enced by n̄ under this scenario, the performance of MG gets worse as n̄ increases.
A 99 % two-sided CI for ρMLP

ρMG
, denoted by ρ̂, is (1.0443, 1.0552), implying that

MLP produces a total weight at least 4.43 % more than that of MG under this
scenario. Better performance is observed with higher T or lower dmax, but wmax

does not seem to influence the algorithms’ performances.

(a) ρ vs. n̄ under Scenario 1 (b) ρ vs. λ under Scenario 2

Fig. 5. ρMLP (red) and ρMG(green) (See [16] for colored figure)

An Empirical Study of Online Packet Scheduling Algorithms 285

4 Comparative Analysis

In this section, we contrast the behavior of MG and MLP under a spectrum of
parameter settings. We are interested in the behavior of the ratios against our
parameters and expect MLP to perform better in our simulations. The general
procedure for our simulations is based on sampling parameter combinations from
a predefined parameter space. We impose the following parameter range restric-
tions: T ∈ (50, 750), λ ∈ (0.5, 50), wmax ∈ (2, 50) and dmax ∈ (1, 50) (Scenario
2). For each combination, we run MG, MLP (5 times each) and the offline algo-
rithm in order to obtain values for ρMG, ρMLP , as well as ρ̂ = ζMLP

ζMG
. Detailed

steps for simulations are given in the full version of the paper [16].

4.1 Ratio Behavior w.r.t. Model Parameters

Comparing ρMLP and ρMG against values of λ implies that on average MLP
outperforms MG (Fig. 5). As λ increases, both algorithms perform better. A 99 %
one-sided CI for ρMG is (0, 0.9734), implying that we are 99 % confident that ζMG

is at most 97.34 % of ζOFF , while the one-sided CI for ρMLP is (0, 0.9926). In fact,
MG produces a wider spread of the ratios. All else constant, the performance
of each algorithm improves with higher T , lower dmax or higher n̄, whereas it is
not influenced by the values of wmax. Relevant graphs are presented in [16].

Figure 6a plots ρ̂ vs. λ, colored by T . For very small λ’s, MLP and MG may
perform similarly. In some cases, MG outperforms MLP, regardless of the value
of T . However, for large λ, MLP tends to outperform MG. A 99 % two-sided CI
for ρ̂ is (1.0188, 1.0216), implying that we are 99 % confident that ζMLP is at
least 1.88 % more than ζMG. However, both algorithms have similar performance
as the upper bound of the CI shows that ζMLP is at most 2.16 % more. Whether
this is beneficial depends on the use case as well as time constraints (see Sect. 5).
In [16], we present a brief analysis where we construct gradient booted tree
predictive models on the ratios for inference purposes.

(a) under Scenario 2 (b) under Scenario 3

Fig. 6. ρ̂ vs. λ and colored by T (See [16] for colored figure)

286 N. Sakr and C. Stein

Fig. 7. ρMLP (red) and ρMG(green) vs. λ under Scenario 3 (See [16] for colored figure)

4.2 Changing the Distribution of τ

So far, we have only considered uniform distributions, however, real inputs are
more complicated. Here we make one step towards modeling more realistic inputs
and assume τ that follows a bimodal distribution of two distinct peaks (recall
Model 2); with probability p, τ is N(2, 0.52) and with probability 1 − p, τ is
N(8, 0.752). We restrict our parameters to the following ranges: T ∈ (100, 300),
λ ∈ (0.7, 6), wmax ∈ (2, 7) and p ∈ (0.75, 0.95) (Scenario 3). We choose a bimodal
distribution because these distributions are often hard for scheduling algorithms.
Indeed, we see that the results for Scenario 3 are slightly different.

While MG performs worse with increasing λ, ρMLP improves with λ and still
outperforms ρMG (Fig. 7).The graph for ρMLP resembles a dip-shaped graph,
yet we find this dip to be entirely above the confidence interval of ρMG. All
else constant, neither algorithm is influenced greatly by any of the parameters
T , dmax or p. Figure 6 plots ρ̂ vs. λ, where lighter points correspond to longer
T ’s. For very small λ, MLP and MG perform similarly. In some cases, MG
outperforms MLP, regardless of the value of T . However, for large λ, a 95 % CI
shows that MLP outperforms MG by at least 2.80 % and at most 3.30 %.

5 Hard Instances

The previous analysis implies that MLP outperforms MG. An index plot (Fig. 8)
of ρ shows that, for the same instances, MLP not only outperforms MG, but also
gives a ratio of 1 for most instances that are hard for MG. However, it would be
incorrect to conclude that MLP always has a better competitive ratio than MG.
In fact, we are able to create hard instances for MLP where it performs worse
than MG. A small example is given in Table 1.

An Empirical Study of Online Packet Scheduling Algorithms 287

Fig. 8. Index plot of ρMLP (red) and
ρMG(green) (See [16] for colored figure)

For w2 > w1, we can easily see
that MLP is 2-competitive, while ρMG

on those instances is 1. However, such
worst-case instances may be rare and
our results show that MLP performs
better on a varied set of data. On the
other hand, MG, which bases its deci-
sions on a single comparison, is simpler
than MLP which solves an LP at each
time step. In our experiments, MLP was
as much as 140 times slower than MG.
In the next section, we consider some
modifications to take advantage of the
strengths of both approaches.

Table 1. Hard instance for MLP

Packet(r, d, w) MLP MG Offline

(1, 1, w1) Assign to t = 1

(1, 2, w2) Assign to t = 1 Assign to t = 1

(2, 2, w2) Assign to t = 2 Assign to t = 2 Assign to t = 2

Throughput w1 + w2 2w2 2w2

6 Algorithm Modifications

In an attempt to find faster solutions, we introduce some possible algorithmic
modifications. Preliminary results show slight performance improvement when
these modifications are applied. However, more analysis is needed to verify the
results and choose the best parameters for improvement.

6.1 The Mix and Match Algorithm (MM)

Algorithm. The Mix and Match Algorithm (MM) combines both MG and MLP.
At each time step, MM chooses to either run MG or MLP-according to n̄. If n̄
is high, then by previous analysis, MG and MLP each converges to 1 (assuming
Model 1), and MM runs MG, as it is faster and has a competitive ratio that is
as good as that of MLP. If n̄ is low, MM runs MLP, as it is more accurate and
the running time is also small since n̄ is low. To distinguish between “high” and
“low”, we define a threshold N̄ . Although MM suffers from the same limitations
as MLP, it might still be preferred due to its smaller computation time.

288 N. Sakr and C. Stein

(a) N̄ = 5 (b) N̄ = 20

Fig. 9. Average ζMM over average ζMG vs. n̄

Simulation. We set T to 200 and define ranges [0.7,15], [1,30], [1,23] and [5,20] for
λ, wmax, dmax and N̄ , respectively. We compare ζMM under different values of
N̄ . We also average ζMM , use the same simulations to run MG and average ζMG.
We take the ratio of both averages and plot it against n̄ (Fig. 9). Preliminary
results show that for small n̄, the algorithm, at higher N̄ , does slightly worse
than at lower N̄ . However, the opposite is true for large n̄.

Future Work. Further analysis are needed to set the optimal choice for N̄ . We
may want to look at the percentage of times the algorithm chose to run MG over
MLP in order to monitor time complexity. Another idea would be to take hard
instances of MG into consideration and explore how to derive conditions such
that the algorithm switches to MLP in such cases.

6.2 The Learning Modified Greedy Algorithm (LMG)

Algorithm. MG and MLP are memoryless [12], i.e. the assignment of packets at
time t uses no information about assignments at times t′ < t. We introduce a
non-memoryless modification to MG. Recall that MG compares we to wh

φ . In the
learning MG (LMG) algorithm, we try to make use of the past performance of
MG, in order to replace φ by a more suitable divisor. If f defines the frequency of
learning, then every f steps, we calculate the throughput at the current divisor,
φ∗. Then we search for a divisor, φbetter, which lies in the vicinity of φ∗, but
yields higher throughput using the previous data. The procedure is given below:

Step 0. Set the frequency of learning, f , i.e. the time window needed to define
a learning epoch. Then run MG and use the following procedure every f steps
in order to replace the divisor, φ, by a sequence of better divisors as follows:

1. Generate a sequence of divisors φi’s starting at the current divisor φ∗ and
having jumps of ±0.05, without going below 1 or above 2.5. For instance, if
φ∗ = 1.62, we generate the sequence: 1.02, 1.07, . . . , 1.57, 1.62, 1.67, . . . , 2.47.

An Empirical Study of Online Packet Scheduling Algorithms 289

Table 2. Examples of choosing φbetter

Throughput/φi 1.57 φ∗ = 1.62 1.67 1.72 φbetter

Case 1 2 4 4 2 1.62

Case 2 2 4 2 6 1.62

Case 3 6 4 5 7 1.72

Case 4 4 4 4 4 1.62

Case 5 6 4 3 7 1.57

2. Start with the throughput associated with φ∗ and move left in our generated
sequence. At each φi, we calculate the throughput of MG on the previous
data. We keep moving to subsequent divisors as long as there is an increase
in throughput. Next, we do the same with divisors to the right. Given a left
endpoint and a right one, we choose the divisor associated with the higher
throughput and denote it by φbetter. Some toy examples are shown in Table 2.
For simplicity, we only observe the weighted throughput for 4 values of φ.

3. The new divisor φ∗
new is given by a smoothed average of φ∗ with φbetter, i.e.

for some α ∈ [0, 1],
φ∗

new = αφ∗ + (1 − α)φbetter.

Simulation. We use the same parameter space as in Sect. 6.1. We set f =
max(0.1 ∗ T, 30

min(1,λ)) and for simplicity, α = 0.5. The choice for α in general
must ensure that the process of finding an optimal divisor φ does not generate
a jumpy sequence of divisors. Our analysis for 8000 sampled scenarios shows
that LMG outperforms MG 83.3 % of the time. The range of the improvement
is [−0.6 %, 2.8 %], implying that LMG brings as much as 2.8 % increase in the
ratio over MG. Performance is worse when the sequence of φ∗

new’s is around
1.618, implying that LMG is picking up on noise and should not change the
divisor.

Future Work. One can avoid this noise by statistically testing and justifying
the significance of changing the divisor. In terms of time complexity, LMG is
not slower than MG, as it can be done while the regular process is running.
Finally, no direct conclusion is made about a threshold on the number of packets
beyond which LMG is particularly effective. Further analysis could yield such a
conclusion, thereby indicating the instances for which LMG should be used.

6.3 The Second Max Algorithm (SMMG)

Algorithm. Inspired by the dummy packet (DP) algorithm discussed in [15] for
cases of non-agreeable deadlines, we realize the importance of extending the
comparison to a pool of more than two packets. The key idea in SMMG is to
prevent the influence a single heavy packet may have on subsequent steps of
the algorithm. We try to find an early-deadline packet that is sufficiently large

290 N. Sakr and C. Stein

compared to the heaviest packet. We set a value for p ∈ (0, 1) and the iterations
are as follows:

1. If MG chooses e, send e and STOP.
2. Else find the earliest second largest packet in the buffer, denoted by s.
3. If ds < dh and ws ≥ max(we, p ∗ wh), send s. Else send h.

The intuition here is that sending packet e is always a good choice, so we need
no modification. However, we limit over-choosing packet h by finding the earliest
second-largest packet s. The concern is that keeping s in the buffer may bias
the choice of the packets. Hence, we send s, if its weight is significant enough,
in order to eliminate its influence and keep the possibility of sending h for a
subsequent iteration (as h expires after s). To evaluate that ws is significant
enough, we verify that it exceeds we (otherwise, we should have sent e), as well
as p ∗ wh, a proportion of wh. Note that for instance, if p = 0.95, it means that
SMMG is very conservative allowing the fewest modifications to MG.

Simulation. We use the same parameter space as in Sect. 6.1 and try values for
p as follows: 0.65, 0.75, 0.85, 0.95. Figure 10 plots the improvement of SMMG
over MG (ρMG - ρSMMG) vs. n̄, colored by p. As expected, the lower the value
of p, the bigger the deviation from MG. At very low n̄, we see that applying
SMMG is not useful, however, as n̄ increases, the improvement remains positive.
At all values of p, the improvement is at its highest when n̄ is between 8 and
12 packets. Hence, SMMG is useful when n̄ is in the vicinity of the interval
between 4 and 17. Whether this is a significant result depends on the nature of
our problem. Even if p = 0.95, the minimum improvement within that interval
is around 0.8 %. However, the maximum improvement is 1.5 % among all our
simulations.

7 Model Discussion

The two-node model with no buffer limitations clearly does not capture all
aspects of realistic network models. Thus, in this section, we will consider a
multi-node model and also the case of finite buffer capacity.

Multi-node Model. In our analysis, we only considered the source and the target
nodes. In order to understand multi-node systems, we consider first a three node
system, that is a system of two tandem queues and see how the throughput
behaves. Assume the arrival rate at node 1 is λ1 and that each packet has to
be sent to node 2 then reach node 3 by its deadline. Some packets are lost at
node 1, as they expire before being sent. Node 2 will, hence, have less traffic. We
assume as before that we can send at most one packet per node at each time step.
Within this framework, we are interested in knowing whether this setup results
in a deterministic online algorithm of better performance. Our simulation shows
that node 2 either has the same throughput as node 1 or lower. After tracing
packets, it turns out that this is a logical result because node 2 only receives

An Empirical Study of Online Packet Scheduling Algorithms 291

Fig. 10. (ρMG - ρSMMG) vs. n̄, colored by p (See [16] for colored figure)

packets from node 1. The packet will either expire at stage 2 or go through to
node 3. So the throughput can only be at most the same as that of node 1.

The following minor adjustment slightly improves the performance at node 2:
Each arriving packet has a deadline to reach node 3, denoted by d. We introduce
a temporary deadline for that packet to reach node 2 by d − 1. This modifica-
tion guarantees that we only send packets to node 2 if after arriving at node 2
there is at least one more time unit left to its expiration in order to give the
packet a chance to reach node 3. Here is a trivial example: A packet arrives with
deadline 7, i.e. it should arrive at node 3 by 7. Before the adjustment it was
possible for this packet at time 7 to be still at node 1 and move to node 2, then
be expired at node 2 and get lost. After the adjustment, this packet will have
a deadline of 6 for node 2. So if by time 6, the packet hasn’t been sent yet, it
gets deleted from the buffer of node 1 (one time step before its actual deadline).
This adjustment improved the throughput of node 2 to be almost equal to that
of node 1 because the arrival rate at node 2 is at most 1 (at most one packet
is sent from node 1 at each time step). So node 2 is usually making a trivial
decision of sending the only packet it has in its buffer. In conclusion, our model
implicitly imposes a restriction on the maximum possible throughput at internal
nodes, hence, making the multi-node model, where only one packet is sent at
each time step, an uninteresting problem. In Sect. 8, we give, however, a few
future directions for more interesting extensions.

292 N. Sakr and C. Stein

Fig. 11. b/λ vs. λ

Finiteness of Buffer. Throughout this
paper, we chose not to put any restric-
tions on the buffer capacity and therefore
we now look to verify whether the finite-
ness of the buffer has a major effect on the
algorithm performance and its bounds.
We run a set of experiments where, given
λ ∈ [2, 100], we find the corresponding
buffer size b, such that the probability of
exceeding b is one in a million. We create
an index plot for the ratio of b/λ (Fig. 11) and conclude that imposing a buffer
size is unnecessary. Even when λ = 100, the buffer size needs to be about 1.53
as much, i.e. 153. Furthermore, for the interesting values of λ used throughout
this report, a buffer size of around 30 would be more than sufficient. We con-
clude that imposing a capacity limit on the buffer is not necessary as choosing
a reasonable buffer size should not affect the algorithm’s performance.

8 Conclusion

In this paper, we consider several old and new packet scheduling algorithms. By
analyzing the empirical behavior of MG, we observe that MG chooses packet
h over e too frequently. We therefore develop a new algorithm, MLP, which
mimics the offline algorithm and gives higher attention to early deadline packets.
We then show that on a wide variety of data, including uniform and bimodal
distributions, MLP is slower, but has a better empirical competitive ratio than
MG (in contrast to the worst-case analysis where MG has a better competitive
ratio).

We then propose three new algorithms that may offer an improvement in
empirical performance, as they combine features of both algorithms. MM, at
each time step, chooses between using MG or MLP in order to make a decision
on the packet to send. LMG learns from past behavior to correct the divisor used
in MG, while SMMG is motivated by the idea of influential packets in extending
the comparison to a pool of three packets, namely e, h and s. The improvements
for these algorithms are small, yet encouraging for further analysis. Moreover, it
is important to consider extensions for the network model and run the algorithms
on one where induced correlations are captured by more realistic distributions
that are not i.i.d. Contrasting the behavior of any of the algorithms mentioned
in this paper on an actual router, rather than a simulated environment, would
also be important to consider.

Several interesting future directions remain. One important extension would
be a multi-node model. We showed how the straightforward extension does not
yield much insight but other extensions may be more interesting. For example,
one could have nodes that process at different rates; this would prevent the first
node from being an obvious bottleneck. Another possibility is to allow feedback,
that is, if a packet expires somewhere in the multi-node system, it could return
to the source to be resent. A final possibility is for each packet to have a vector

An Empirical Study of Online Packet Scheduling Algorithms 293

of deadlines, one per node, so that different nodes could be the bottleneck at
different times.

Acknowledgments. The authors would like to thank Dr. Shokri Z. Selim and
Javid Ali.

References

1. Albers, S., Schmidt, M.: On the performance of greedy algorithms in packet buffer-
ing. SIAM J. Comput. (SICOMP) 35(2), 278–304 (2005)

2. Andelman, N., Mansour, Y., Zhu, A.: Competitive queuing polices for QoS
switches. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 761–770 (2003)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

4. Bienkowski, M., Chrobak, M., Jeż, �L.: Randomized algorithms for buffer man-
agement with 2-bounded delay. In: Bampis, E., Skutella, M. (eds.) WAOA 2008.
LNCS, vol. 5426, pp. 92–104. Springer, Heidelberg (2009)

5. Chin, F.Y.L., Fung, S.P.Y.: Online scheduling with partial job values: does time-
sharing or randomization help? Algorithmica 37(3), 149–164 (2003)

6. Chin, F.Y.L., Fung, S.P.Y.: Improved competitive algorithms for online scheduling
with partial job values. Theor. Comput. Sci. 325(3), 467–478 (2004)

7. Chin, F.Y.L., Chrobak, M., Fung, S.P.Y., Jawor, W., Sgall, J., Tichy, T.: Online
competitive algorithms for maximizing weighted throughput of unit jobs. J. Dis-
crete Algorithms 4(2), 255–276 (2006)

8. Chrobak, M., Jawor, W., Sgall, J., Tichý, T.: Improved online algorithms for buffer
management in QoS switches. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS,
vol. 3221, pp. 204–215. Springer, Heidelberg (2004)

9. Englert, M., Westermann, M.: Lower and upper bounds on FIFO buffer manage-
ment in QoS switches. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol.
4168, pp. 352–363. Springer, Heidelberg (2006)

10. Englert, M., Westermann, M.: Considering suppressed packets improves buffer
management in QoS switches. In: Proceedings of 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 209–218 (2007)

11. Hajek, B.: On the competitiveness of online scheduling of unit-length packets with
hard deadlines in slotted time. In: Proceedings of the 2001 Conference on Infor-
mation Sciences and Systems (CISS), pp. 434–438 (2001)

12. Jeż, �L., Li, F., Sethuraman, J., Stein, C.: Online scheduling of packets with agree-
able deadlines. ACM Trans. Algorithms (TALG) 9(1), 5 (2012)

13. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. SIAM J. Comput. (SICOMP)
33(3), 563–583 (2004)

14. Kesselman, A., Mansour, Y., van Stee, R.: Improved competitive guarantees for
QoS buffering. Algorithmica 43, 63–80 (2005)

15. Li, F., Sethuraman, J., Stein, C.: Better online buffer management. In: Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
199–208 (2007)

16. Sakr, N., Stein, C.: An empirical study of online packet scheduling algorithms.
Draft on arXiv under Computer Science: Data Structures and Algorithms. http://
arxiv.org/abs/1603.07947

http://arxiv.org/abs/1603.07947
http://arxiv.org/abs/1603.07947

Advanced Multilevel Node Separator Algorithms

Peter Sanders and Christian Schulz(B)

Karlsruhe Institute of Technology, Karlsruhe, Germany
{sanders,christian.schulz}@kit.edu

Abstract. A node separator of a graph is a subset S of the nodes such
that removing S and its incident edges divides the graph into two dis-
connected components of about equal size. In this work, we introduce
novel algorithms to find small node separators in large graphs. With
focus on solution quality, we introduce novel flow-based local search algo-
rithms which are integrated in a multilevel framework. In addition, we
transfer techniques successfully used in the graph partitioning field. This
includes the usage of edge ratings tailored to our problem to guide the
graph coarsening algorithm as well as highly localized local search and
iterated multilevel cycles to improve solution quality even further. Exper-
iments indicate that flow-based local search algorithms on its own in a
multilevel framework are already highly competitive in terms of separa-
tor quality. Adding additional local search algorithms further improves
solution quality. Our strongest configuration almost always outperforms
competing systems while on average computing 10% and 62 % smaller
separators than Metis and Scotch, respectively.

1 Introduction

Given a graph G = (V,E), the node separator problem asks to find three disjoint
subsets V1, V2 and S of the node set, such that there are no edges between
V1 and V2 and V = V1 ∪ V2 ∪ S. The objective is to minimize the size of the
separator S or depending on the application the weight of its nodes while V1

and V2 are balanced. Note that removing the set S from the graph results in at
least two connected components. There are many algorithms that rely on small
node separators. For example, small balanced separators are a popular tool in
divide-and-conquer strategies [3,21,23], are useful to speed up the computations
of shortest paths [9,11,34] or are necessary in scientific computing to compute
fill reducing orderings with nested dissection algorithms [15].

Finding a balanced node separator on general graphs is NP-hard even if the
maximum node degree is three [6,14]. Hence, one relies on heuristic and approx-
imation algorithms to find small node separators in general graphs. The most
commonly used method to tackle the node separator problem on large graphs
in practice is the multilevel approach. During a coarsening phase, a multilevel
algorithm reduces the graph size by iteratively contracting nodes and edges until
the graph is small enough to compute a node separator by some other algorithm.

This paper is a short version of the TR [31].

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 294–309, 2016.
DOI: 10.1007/978-3-319-38851-9 20

Advanced Multilevel Node Separator Algorithms 295

A node separator of the input graph is then constructed by successively trans-
ferring the solution to the next finer graph and applying local search algorithms
to improve the current solution.

Current solvers are typically more than fast enough for most applications but
lack high solution quality. For example in VLSI design [3,21], node separators
are computed once and even small improvements in the objective can have a
large impact on production costs. Another important example in which high
quality node separators are important are speedup techniques for shortest-path
computations in road networks, e.g. customizable contraction hierarchies [11].
Here, smaller node separators yield better node orderings which in turn are
repeatedly used to answer shortest path queries. The costs for the computation
of the node separator are then amortized over a large amount of shortest path
queries. Moreover, high quality node separators can be useful for benchmarking
purposes and provide useful upper bounds. Hence, we focus on solution quality
in this work.

The remainder of the paper is organized as follows. We begin in Sect. 2 by
introducing basic concepts and by summarizing related work. Our main contri-
butions are presented in Sect. 3 where we transfer techniques previously used
for the graph partitioning problem to the node separator problem and introduce
novel flow based local search algorithms for the problem that can be used in
a multilevel framework. This includes edge ratings to guide a graph coarsening
algorithm within a multilevel framework, highly localized local search to improve
a node separator and iterated multilevel cycles to improve solution quality even
further. Experiments in Sect. 4 indicate that our algorithms consistently provide
excellent node separators and outperform other state-of-the-art algorithms over
varying graphs. Finally, we conclude with Sect. 5. All of our algorithms have
been implemented in the open source graph partitioning package KaHIP [30]
and will be made available within this framework.

2 Preliminaries

2.1 Basic Concepts

In the following we consider an undirected graph G = (V = {0, . . . , n−1}, E, c, ω)
with node weights c : V → R≥0, edge weights ω : E → R>0, n = |V |, and
m = |E|. We extend c and ω to sets, i.e., c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=∑

e∈E′ ω(e). Γ (v) := {u : {v, u} ∈ E} denotes the neighbors of a node v. The
degree d(v) of a node v is the number of its neighbors. A set C ⊂ V of a graph is
called closed node set if there are no connections from C to V \ C, i.e. for every
node u ∈ C an edge (u, v) ∈ E implies that v ∈ C as well. A graph S = (V ′, E′)
is said to be a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ ×V ′). We call
S an induced subgraph when E′ = E∩(V ′ ×V ′). For a set of nodes U ⊆ V , G[U]
denotes the subgraph induced by U . We define multiple partitioning problems.
The graph partitioning problem asks for blocks of nodes V1,. . . ,Vk that partition
V , i.e., V1∪· · ·∪Vk = V and Vi∩Vj = ∅ for i 	= j. A balancing constraint demands
that ∀i ∈ {1, . . . , k} : c(Vi) ≤ Lmax := (1+ε)�c(V)/k for some parameter ε ≥ 0.

296 P. Sanders and C. Schulz

In this case, the objective is often to minimize the total cut
∑

i<j |Eij | where
Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. The set of cut edges is also called edge
separator. A node v ∈ Vi that has a neighbor w ∈ Vj , i 	= j, is a boundary
node. An abstract view of the partitioned graph is the so called quotient graph,
where nodes represent blocks and edges are induced by connectivity between
blocks. The node separator problem asks to find blocks, V1, V2 and a separator
S that partition V such that there are no edges between the blocks. Again, a
balancing constraint demands c(Vi) ≤ (1 + ε)�c(V)/2. However, there is no
balancing constraint on the separator S. The objective is to minimize the size
of the separator c(S). Note that removing the set S from the graph results in
at least two connected components and that the blocks Vi itself do not need to
be connected components. By default, our initial inputs will have unit edge and
node weights. However, the results in this paper are easily transferable to node
and edge weighted problems.

A matching M ⊆ E is a set of edges that do not share any common nodes, i.e.
the graph (V,M) has maximum degree one. Contracting an edge {u, v} means
to replace the nodes u and v by a new node x connected to the former neigh-
bors of u and v. We set c(x) = c(u) + c(v). If replacing edges of the form
{u,w} , {v, w} would generate two parallel edges {x,w}, we insert a single edge
with ω({x,w}) = ω({u,w})+ω({v, w}). Uncontracting an edge e undos its con-
traction. In order to avoid tedious notation, G will denote the current state of
the graph before and after a (un)contraction unless we explicitly want to refer
to different states of the graph.

The multilevel approach consists of three main phases. In the contraction
(coarsening) phase, we iteratively identify matchings M ⊆ E and contract the
edges in M . Contraction should quickly reduce the size of the input and each
computed level should reflect the global structure of the input network. Con-
traction is stopped when the graph is small enough so that the problem can be
solved by some other potentially more expensive algorithm. In the local search
(or uncoarsening) phase, matchings are iteratively uncontracted. After uncon-
tracting a matching, the local search algorithm moves nodes to decrease the size
of the separator or to improve balance of the block while keeping the size of the
separator. The succession of movements is based on priorities called gain, i.e.,
the decrease in the size of the separator. The intuition behind the approach is
that a good solution at one level of the hierarchy will also be a good solution on
the next finer level thus local search will quickly find a good solution.

2.2 Related Work

There has been a huge amount of research on graph partitioning so that we
refer the reader to [4,7] for most of the material in this area. Here, we focus on
issues closely related to our main contributions and previous work on the node
separator problem. Lipton and Tarjan [22] provide the planar separator theorem
stating that on planar graphs one can always find a separator S in linear time
that satisfies |S| ∈ O(

√
|V |) and |Vi| ≤ 2|V |/3 (i = 1, 2). For more balanced

cases, the problem remains NP-hard [13] even on planar graphs.

Advanced Multilevel Node Separator Algorithms 297

For general graphs there exist several heuristics to compute small node sepa-
rators. A common and simple method is to derive a node separator from an edge
separator [28,33] which is usually computed by a multilevel graph partitioning
algorithm. Clearly, taking the boundary nodes of the edge separator in one block
of the partition yields a node separator. Since one is interested in a small sepa-
rator, one can use the smaller set of boundary nodes. A better method has been
first described by Pothen et al. [28]. The method employs the set of cut edges
of the partition and computes the smallest node separator that can be found by
using a subset of the boundary nodes. The main idea is to compute a subset
S of the boundary nodes such that each cut edge is incident to at least one of
the nodes in S (a vertex cover). A problem of the method is that the graph
partitioning problem with edge cut as objective has a different combinatorial
structure compared to the node separator problem. This makes it unlikely to
find high quality solutions with that approach.

Metis [19] and Scotch [26] use a multilevel approach to obtain a node separa-
tor. After contraction, both algorithms compute a node separator on the coarsest
graph using a greedy algorithm. This separator is then transferred level-by-level,
dropping non-needed nodes on each level and applying a Fiduccia-Mattheyses
(FM) style local search. Previous versions of Metis and Scotch also included the
capability to compute a node separator from an edge separator.

Recently, Hamann and Strasser [17] presented a max-flow based algorithm
specialized for road networks. Their main focus is not on node separators. They
focus on a different formulation of the problem, i.e. the edge-cut version graph
partitioning problem. More precisely, Hamann and Strasser find Pareto solutions
in terms of edge cut versus balance instead of specifying the allowed amount of
imbalance in advance and finding the best solution satisfying the constraint.
Their work also includes an algorithm to derive node separators, again in a
different formulation of the problem, i.e. node separator size versus balance. We
cannot make meaningful comparisons since the paper does not contain data on
separator quality and the implementation of the algorithm is not available.

Hager et al. [16] recently proposed a multilevel approach for medium sized
graphs using continuous bilinear quadratic programs and a combination of those
with local search algorithms. However, a different formulation of the problem is
investigated, i.e. the solver enforces upper and lower bounds to the block sizes
which makes the results incomparable to our results.

LaSalle and Karypis [20] present a shared-memory parallel algorithm to com-
pute node separators used to compute fill reducing orderings. Within a multilevel
approach they evaluate different local search algorithms indicating that a com-
bination of greedy local search with a segmented FM algorithm can outperform
serial FM algorithms. We compare the solution quality of our algorithm against
the data presented there in our experimental section (see Sect. 4).

3 Advanced Multilevel Algorithms for Node Separators

We now present our core innovations. In brevity, the novelties of our algorithm
include edge ratings during coarsening to compute graph hierarchies that fulfill

298 P. Sanders and C. Schulz

the needs of the node separator problem and a combination of localized local
search with flow problems to improve the size of the separator. In addition, we
transfer a concept called iterative multilevel scheme previously used in graph
partitioning to further improve the solution quality. The description of our algo-
rithm in this section follows the multilevel scheme. We start with the description
of the edge ratings that we use during coarsening, continue with the description
of the algorithm used to compute an initial node separator on the coarsest level
and then describe local search algorithms as well as other techniques.

3.1 Coarsening

Before we explain the matching algorithm that we use in our system, we present
the general two-phase procedure which was already used in multiple graph parti-
tioning frameworks [18,25,29]. The two-phase approach makes contraction more
systematic by separating two issues: A rating function and a matching algo-
rithm. A rating function indicates how much sense it makes to contract an edge
based on local information. A matching algorithm tries to maximize the sum of
the ratings of the contracted edges looking at the global structure of the graph.
While the rating function allows a flexible characterization of what a “good”
contracted graph is, the simple, standard definition of the matching problem
allows to reuse previously developed algorithms for weighted matching. Note
that we can use the same edge rating functions as in the graph partitioning case
but also can define new ones since the problem structure of the node separator
problem is different.

We use the Global Path Algorithm (GPA) which runs in near linear time
to compute matchings. GPA was proposed in [24] as a synthesis of the Greedy
Algorithm and the Path Growing Algorithm [12]. We choose this algorithm since
in [18] it gives empirically considerably better results than Sorted Heavy Edge
Matching, Heavy Edge Matching or Random Matching [32]. GPA scans the edges
in order of decreasing weight but rather than immediately building a matching,
it first constructs a collection of paths and even length cycles. Afterwards, opti-
mal solutions are computed for each of these paths and cycles using dynamic
programming.

Edge Ratings for Node Separator Problems. We want to guide the contraction
algorithm so that coarse levels in the graph hierarchy still contain small node
separators if present in the input problem. This way we can provide a good
starting point for the initial node separator routine. There are a lot of possibil-
ities that we have tried. The most important edge rating functions for an edge
e = {u, v} ∈ E are the following:

exp*(e) = ω(e)/(d(u)d(v))

exp**(e) = ω(e)2/(d(u)d(v))
max(e) = 1/max{d(u), d(v)}
log(e) = 1/ log(d(u)d(v))

Advanced Multilevel Node Separator Algorithms 299

The first two ratings have already been successfully used in the graph partition-
ing field. To give an intuition behind these ratings, we have to characterize the
properties of “good” matchings for the purpose of contraction in a multilevel
algorithm for the node separator problem. Our main objective is to find a small
node separator on the coarsest graph. A matching should contain a large number
of edges, e.g. being maximal, so that there are only few levels in the hierarchy
and the algorithm can converge quickly. In order to represent the input on the
coarser levels, we want to find matchings such that the graph after contrac-
tion has somewhat uniform node weights and small node degrees. In addition,
we want to keep nodes having a small degree since they are potentially good
separators. Uniform node weights are also helpful to achieve a balanced node
separator on coarser levels and makes local search algorithms more effective. We
also included ratings that do not contain the edge weight of the graph since
intuitively a matching does not have to care about large edge weights – they do
not show up in the objective of the node separator problem.

3.2 Initial Node Separators

We stop coarsening as soon as the graph has less than ten thousand nodes. Our
approach first computes an edge separator and then derives a node separator
from that. More precisely, we partition the coarsest graph into two blocks using
KaFFPa [30]. We then look at the bipartite graph induced by the set of cut edges
including the given node weights. Our goal is to select a minimum weight node
separator in that graph. As a side note, this corresponds to finding a minimum
weight vertex cover in the bipartite graph. Also note that this is similar to the
approach of Pothen et al. [28], however we integrate node weights. To solve the
problem, we put all of the nodes of the bipartite graph into the initial separator
S and use the flow-based technique defined below to select the smallest separator
contained in that subgraph. Since our algorithms are randomized, we repeat the
overall procedure twenty five times and pick the smallest node separator that we
have found.

3.3 Local Search

Localized Local Search. In graph partitioning it has been shown that higher local-
ization of local search can improve solution quality [25,33]. Hence, we develop a
novel localized algorithm for the node separator problem that starts local search
only from a couple of selected separator nodes. Our localized local search proce-
dure is based on the FM scheme. Before we explain our approach to localization,
we present a commonly used FM-variant for completeness.

For each of the two blocks V1, V2 under consideration, a priority queue of sep-
arator nodes eligible to move is kept. The priority is based on the gain concept,
i.e. the decrease in the objective function value when the separator node is moved
into that block. More precisely, if a node v ∈ S would be moved to V1, then the
neighbors of v that are in V2 have to be moved into the separator. Hence, in this
case the gain of the node is the weight of v minus the weight of the nodes that

300 P. Sanders and C. Schulz

have to be added to the separator. The gain value in the other case (moving v
into to V2) is similar. After the algorithm computed both gain values it chooses
the largest gain value such that moving the node does not violate the balance
constraint and performs the movement. Each node is moved at most once out of
the separator within a single local search. The queues are initialized randomly
with the separator nodes. After a node is moved, newly added separator nodes
become eligible for movement (and hence are added to the priority queues). The
moved node itself is not eligible for movement anymore and is removed from the
priority queue. Note that the movement can change the gain of current separator
nodes. Hence, gains of adjacent nodes are updated.

There are different possibilities to select a block to which a node shall be
moved. The most common variant of the classical FM-algorithm alternates
between both blocks. After a stopping criterion is applied, the smallest feasi-
ble node separator found is reconstructed (among ties choose the node separator
that has better balance). This is called roll back. We have two strategies to
balance blocks. The first strategy tries to create a balanced situation without
increasing the size of the separator. It always selects the queue of the heavier
block and uses the same roll back mechanism as before. The second strategy
allows to increase the size of the node separator. It also selects a node from the
queue of the heavier block, but the roll back mechanism recreates the node sepa-
rator having the best balance (among ties we choose the smaller node separator).

Our approach to localization works as follows. Previous local search methods
were initialized with all separator nodes, i.e. all separator nodes are eligible for
movement at the beginning. In contrast, our method is repeatedly initialized
only with a subset of the separator nodes (the precise amount of nodes in the
subset is a tuning parameter). Intuitively, this introduces a larger amount of
diversification and boosts the algorithms ability to climb out of local minima.

The algorithm is organized in rounds. One round works as follows. Instead of
putting all separator nodes directly into the priority queues, we put the current
separator nodes into a todo list T . Subsequently, we begin local search starting
with a random subset S of the todo list T . We select the subset S by repeatedly
picking a random node v from T . We add v to S if it still is a separator node and
has not been moved by a previous local search in that round. Either way, v is
removed from the todo list. Our localized search is restricted to the movement of
nodes that have not been touched by a previous local search during the round.
This assures that each node is moved at most once out of the separator during
a round of the algorithm and avoids cyclic local search. By default our local
search routine first uses classic local search (including balancing) to get close to
a good solution and afterwards uses localization to improve the result further.
We repeat this until no further improvement is found.

We now give intuition why localization of local search boosts the algorithms
ability to climb out of local minima. Consider a situation in which a node separa-
tor is locally optimal in the sense that at least two node movements are necessary
until moving a node out of the separator with positive gain is possible. Recall
that classical local search is initialized with all separator nodes (in this case all

Advanced Multilevel Node Separator Algorithms 301

of them have negative gain values). It then starts to move nodes with negative
gain at multiple places of the graph. When it finally moves nodes with positive
gain the separator is already much worse than the input node separator. Hence,
the movement of these positive gain nodes does not yield an improvement with
respect to the given input partition. On the other hand, a localized local search
that starts close to the nodes with positive gain, can find the positive gain nodes
by moving only a small number of nodes with negative gain. Since it did not
move as many negative gain nodes as the classical local search, it may still find
an improvement with respect to the input.

Maximum Flows as Local Search. We define the node-capacitated flow problem
F = (VF , EF) that we solve to improve a given node separator as follows. First
we introduce a few notations. Given a set of nodes A ⊂ V , we define its border
∂A := {u ∈ A | ∃(u, v) ∈ E : v 	∈ A}. The set ∂1A := ∂A∩V1 is called left border
of A and the set ∂2A := ∂A ∩ V2 is called right border of A. An A induced flow
problem F is the node induced subgraph G[A] with ∞ as edge-capacities and the
node weights of the graph as node-capacities. Additionally there are two nodes
s, t that are connected to the border of A. More precisely, s is connected to all
left border nodes ∂1A and all right border nodes ∂2A are connected to t. These
new edges get capacity ∞.

s t

A

S

G
V ∗
1

V ∗
2

Fig. 1. The construction of an A
induced flow problem F is shown. Two
BFS are started to define the area A
– one into the block on the left hand
side and one into the block on the right
hand side. A solution of the flow prob-
lem yields the smallest node separator
that can be found within the area. The
area A is chosen so that each node sep-
arator being found in it yields a feasible
separator for the original problem.

Note that the additional edges are
directed. F has the balance property if
each (s, t)-flow induces a balanced node
separator in G, i.e. the blocks Vi fulfill
the balancing constraint. The basic idea
is to construct a flow problem F having
the balance property.

We now explain how we find such a
subgraph. We start by setting A to S
and extend it by performing two breadth
first searches (BFS). The first BFS is ini-
tialized with the current separator nodes
S and only looks at nodes in block V1.
The same is done during the second BFS
with the difference that we now look at
nodes from block V2. Each node touched
by any of the BFS is added to A. The
first BFS is stopped as soon as the size of
the newly added nodes would exceed Lmax − c(V2) − c(S). Similarly, the sec-
ond BFS is stopped as soon as the size of the newly added nodes would exceed
Lmax − c(V1) − c(S).

A solution of the A induced flow problem yields a valid node separator of the
original graph: First, since all edges in our flow network have capacity ∞ and the
separator S is contained in the problem, a maximum flow yields a separator S′,
VF = V ′

1 ∪ V ′
2 ∪ S′, in the flow network that separates s ∈ V ′

1 from t ∈ V ′
2 . Since

there is a one-to-one mapping between the nodes of our flow problem and the

302 P. Sanders and C. Schulz

nodes of the input graph, we directly obtain a separator in the original network
V = V ∗

1 ∪ V ∗
2 ∪ S′. Additionally, the node separator computed by our method

fulfills the balance constraint – presuming that the input solution is balanced.
To see this, we consider the size of V ∗

1 . We can bound the size of this block by
assuming that all of the nodes that have been touched by the second BFS get
assigned to V ∗

1 (including the old separator S). However, in this case the balance
constraint is still fulfilled c(V ∗

1) ≤ c(V1) + c(S) + Lmax − c(V1) − c(S) = Lmax.
The same holds for the opposite direction. Note that the separator is always
smaller or equal to the input separator since S is contained in the construction.

To solve the node-capacitated flow problem F , we transform it into a flow
problem H without node-capacities. We use a standard technique [1]: first we
insert the source and the sink into our model. Then, for each node u in our flow
problem F that is not the source or the sink, we introduce two nodes u1 and
u2 in VH which are connected by a directed edge (u1, u2) ∈ EH with an edge-
capacity set to the node-capacity of the current node. For an edge (u, v) ∈ EF
not involving the source or the sink, we insert (u2, v1) into EH with capacity ∞.
If u is the source s, we insert (s, v1) and if v is the sink, we insert (u2, t) into
EH. In both cases we use capacity ∞.

Larger Flow Problems and Better Balanced Node Separators. The definition of
the flow problem to improve a node separator requires that each cut in the flow
problem corresponds to a balanced node separator in the original graph. We
now simplify this definition and stop the BFSs if the size of the touched nodes
exceeds (1 + α)Lmax − c(Vi) − c(S) with α ≥ 0. We then solve the flow problem
and check afterwards if the corresponding node separator is balanced. If this is
the case, we accept the node separator and continue. If this is not the case, we
set α := α/2 and repeat the procedure. After ten unsuccessful iterations, we set
α = 0. Additionally, we stop the process if the flow value corresponds to the
separator weight of the input separator.

We apply heuristics to extract a better balanced node separator from the
solved max-flow problem. Picard and Queyranne [27] made the observation that
one (s, t)-max-flow contains information about all minimum (s, t)-cuts in the
graph (however, finding the most balanced minimum cut is NP-hard [5]). We
follow the heuristic approach of [29] and extract better balanced (s, t)-cuts from
the given maximum flow in H. This results in better balanced separators in the
node-capacitated problem F and hence in better balanced node separators for
our original problem. To be more precise, Picard and Queyranne have shown
that each closed node set in the residual graph of a maximum (s, t)-flow that
contains the source s but not the sink induces a minimum s-t cut. Observe
that a cycle in the residual graph cannot contain a node of both, a closed node
set and its complement. Hence, Picard and Queyranne compactify the residual
network by contracting all strongly connected components. Afterwards, their
algorithm tries to find the most balanced minimum cut by enumeration. In [29],
we find better balanced cuts heuristically. First a random topological order of
the strongly connected component graph is computed. This is then scanned in
reverse order. By subsequently adding strongly connected components several

Advanced Multilevel Node Separator Algorithms 303

closed node sets are obtained, each inducing a minimum s-t cut. The closed
node set with the best occurred balance among multiple runs of the algorithm
with different topological orders is returned. An example closed node set and
the scanning algorithm is shown in Fig. 2.

3.4 Miscellanea

sweepclosed node set

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

Fig. 2. Left: the set C = {a, d, e, f}
is a closed node set since no edge is
starting in C and ending in V \C.
Right: using a reverse topological
ordering of a DAG one can output
multiple closed node sets.

An easy way to obtain high quality node sep-
arators is to use a multilevel algorithm mul-
tiple times using different random seeds and
use the best node separator that has been
found. However, instead of performing a full
restart, one can use the information that has
already been obtained. In the graph parti-
tioning context, the notion of iterated multi-
level schemes (V-cycles) has been introduced
by Walshaw [36] and later has been aug-
mented to more complex cycles [29]. Here,
one transfers a solution of a previous multi-
level cycle down the hierarchy and uses it as
initial solution. More precisely, this can be
done by not contracting any cut edge.

We transfer this technique to the node
separator problem as follows. One can inter-
pret a node separator as a three way partition V1, V2, S. Hence, to obtain an
iterated multilevel scheme for the node separator problem, our matching algo-
rithm is not allowed to match any edge that runs between Vi and S (i = 1, 2).
Hence, when contraction is done, every edge leaving the separator will remain
and we can transfer the node separator down in the hierarchy. Thus a given node
separator can be used as initial node separator of the coarsest graph (having the
same balance and size as the node separator of the finest graph). This ensures
non-decreasing quality, if the local search algorithm guarantees no worsening.
To increase diversification during coarsening in later V-cycles we pick a random
edge rating of the ones described above.

4 Experiments

Methodology. We have implemented the algorithm described above within the
KaHIP framework using C++ and compiled all algorithms using gcc 4.63 with
full optimization’s turned on (-O3 flag). We integrated our algorithms in KaHIP
v0.71 and compare ourselves against Metis 5.1 and Scotch 6.0.4 using the quality
option that has focus on solution quality instead of running time. Our new codes
will be included into the KaHIP graph partitioning framework. We perform
ten repetitions of each algorithm using different random seeds for initialization.
When presenting the imbalance of a node separator, we report the maximum

304 P. Sanders and C. Schulz

block size divided by �|V |/2. Not that this value can be smaller than one.
Each run was made on a machine that has four Octa-Core Intel Xeon E5-4640
processors running at 2.4 GHz. It has 512 GB local memory, 20 MB L3-Cache
and 8x256 KB L2-Cache. Our main objective is the cardinality of node separators
|S| on the input graph. In our experiments, we use ε = 20% since this is the
default value for node separators in Metis. We mostly present two kinds of views
on the data: average values and minimum values as well as plots that show the
ratios of the quality achieved by the algorithms. When further averaging over
multiple instances, we use the geometric mean in order to give every instance
the same influence on the final score.

Algorithm Configuration. We performed a number of experiments to evaluate the
influence and choose the parameters of our algorithms. We mark the instances
that have also been used for the parameter tuning in Appendix A with a * and
exclude these graphs when we report average values over multiple instances in
comparisons with our competitors. However, our full algorithm is not too sen-
sitive about the precise choice with most of the parameters. In general, using
more sophisticated edge ratings improves solution quality slightly and improves
partitioning speed over using edge weight. We exclude further experiments from
the main text and use the exp∗ edge rating function as a default since it has
a slight advantage in our preliminary experiments. In later iterated multilevel
cycles, we pick one of the other ratings at random to introduce more diversifica-
tion. Indeed, increasing the number of V-cycles reduces the objective function.
We fixed the number of V-cycles to three. By default, we use the better balanced
minimum cut heuristic in our node separator algorithm since it keeps the node
separator cardinality and improves balance. In the localized local search algo-
rithm, we set the size of the random subset of separator nodes from which local
search is started |S| to five.

Instances. We use graphs from various sources to test our algorithm. We use all
34 graphs from Chris Walshaw’s benchmark archive [35]. Graphs derived from
sparse matrices have been taken from the Florida Sparse Matrix Collection [8].
We also use graphs from the 10th DIMACS Implementation Challenge [2] web-
site. Here, rggX is a random geometric graph with 2X nodes where nodes repre-
sent random points in the unit square and edges connect nodes whose Euclidean
distance is below 0.55

√
ln n/n. The graph delX is a Delaunay triangulation of 2X

random points in the unit square. The graphs af shell9, thermal2, nlr and
nlpkkt240 are from the matrix and the numeric section of the DIMACS bench-
mark set. The graphs europe and deu are large road networks of Europe and
Germany taken from [10]. Due to large running time of our algorithm, we exclude
the graph nlpkkt240 from general comparisons and only use our full algorithm
to compute a result. Basic properties of the graphs under consideration can be
found in Appendix A, Table 2.

Advanced Multilevel Node Separator Algorithms 305

4.1 Separator Quality

We now assess the size of node separators derived by our algorithms and by other
state-of-the-art tools, i.e. Metis and Scotch as well as the data recently presented
by LaSalle and Karypis [20]. We use multiple configurations of our algorithm to
estimate the influence of the multiplicative factor α that controls the size of
the flow problems solved during uncoarsening and to see the effect of adding
local search. The algorithms named Flowα use only flows during uncoarsening
as local search with a multiplicative factor α. Algorithms labeled LSFlowα start
on each level with local search and localized local search until no improvement
is found and afterwards perform flow based local search with a multiplicative
factor α. Table 1 summarizes the results of the experiments. We present detailed
per instances results in terms of separator size and balance as well as running
times in the technical report [31].

Table 1. Avg. increase in separa-
tor size over LSFlow1, avg. running
times of the different algorithms and
relative number of instances with a
separator smaller or equal to Metis
(# ≤Metis).

Algorithm Avg. Inc. tavg[s] # ≤Metis

Metis 10.3% 0.12 -

Scotch 62.2% 0.23 0%

Flow0 3.3% 17.72 89%

Flow0.5 0.1% 38.21 96%

Flow1 0.3% 47.81 94%

LSFlow0 1.5% 28.61 96%

LSFlow0.5 −0.1% 49.08 94%

LSFlow1 - 58.50 96%

We now summarize the results. First
of all, only using flow-based local search
during uncoarsening is already highly com-
petitive, even for small flow problems with
α = 0. On average, Flow0 computes 6.7 %
smaller separators than Metis and 57 %
than Scotch. It computes a smaller or
equally sized separator than Metis in 89 %
of the cases and than Scotch in every case.
However, it also needs more time to com-
pute a result. This is due to the large flow
problems that have to be solved. Increasing
the value of α, i.e. searching for separators
in larger areas around the initial separator,
improves the objective further at the cost
of running time. For example, increasing α to 0.5 reduces the average size of
the computed separator by 3.2 %, but also increases the running time by more
than a factor 2 on average. Using even larger values of α > 1 did not further
improve the result so that we do not include the data here. Adding non-flow-
based local search also helps to improve the size of the separator. For example,
it improves the separator size by 1.8 % when using α = 0. However, the impact
of non-flow-based local search decreases for larger values of α.

The strongest configuration of our algorithm is LSFlow1. It computes smaller
or equally sized separators than Metis in all but two cases and than Scotch
in every case. On average, separators are 10.3 % smaller than the separators
computed by Metis and 62.2 % than the ones computed by Scotch. Figure 3
shows the average improvement ratios over Metis and Scotch on a per instance
basis, sorted by absolute value of improvement. The largest improvement over
Metis was obtained on the road network europe where our separator is a factor

306 P. Sanders and C. Schulz

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

R
at

io

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

R
at

io

Fig. 3. Improvement of LSFlow1 per instance over Metis (left) and Scotch (right) sorted

by absolute value of ratio avg. |S| by [Metis | Scotch]
avg. |S| by LSFlow1

.

2.3 smaller whereas the largest improvement over Scotch is on add32 where our
separator is a factor 12 smaller. On G2 circuit Metis computes a 19.9 % smaller
separator which is the largest improvement of Metis over our algorithm.

We now compare the size of our separators against the recently published
data by LaSalle and Karypis [20]. The networks used therein that are publicly
available are auto, nlr, del24 and nlpkkt240. On these graphs our strongest
configuration computes separators that are 10.7 %, 10.0 %, 20.1 % and 27.1 %
smaller than their best configuration (Greedy+Segmented FM), respectively.

5 Conclusion

In this work, we derived algorithms to find small node separators in large graphs.
We presented a multilevel algorithm that employs novel flow-based local search
algorithms and transferred techniques successfully used in the graph partition-
ing field to the node separator problem. This includes the usage of edge ratings
tailored to our problem to guide the graph coarsening algorithm as well as highly
localized local search and iterated multilevel cycles to improve solution quality
even further. Experiments indicate that using flow-based local search algorithms
as only local search algorithm in a multilevel framework is already highly com-
petitive in terms of separator quality.

Important future work includes shared-memory parallelization of our algo-
rithms, e.g. currently most of the running time in our algorithm is consumed
by the max-flow solver so that a parallel solver will speed up computations. In
addition, it is possible to define a simple evolutionary algorithm for the node sep-
arator problem by transferring the iterated multilevel scheme to multiple input
separators. This will likely result in even better solutions.

Advanced Multilevel Node Separator Algorithms 307

A Benchmark Set A

Table 2. Basic properties of the instances used for evaluation.

Graph n m Graph n m

Small Walshaw Graphs UF Graphs

add20 2 395 7 462 cop20k A* 99 843 1 262 244

data 2 851 15 093 2cubes sphere* 101 492 772 886

3elt 4 720 13 722 thermomech TC 102 158 304 700

uk 4 824 6 837 cfd2 123 440 1 482 229

add32 4 960 9 462 boneS01 127 224 3 293 964

bcsstk33 8 738 291 583 Dubcova3 146 689 1 744 980

whitaker3 9 800 28 989 bmwcra 1 148 770 5 247 616

crack 10 240 30 380 G2 circuit 150 102 288 286

wing nodal* 10 937 75 488 c-73 169 422 554 926

fe 4elt2 11 143 32 818 shipsec5 179 860 4 966 618

vibrobox 12 328 165 250 cont-300 180 895 448 799

bcsstk29* 13 992 302 748 Large Walshaw Graphs

4elt 15 606 45 878 598a 110 971 741 934

fe sphere 16 386 49 152 fe ocean 143 437 409 593

cti 16 840 48 232 144 144 649 1 074 393

memplus 17 758 54 196 wave 156 317 1 059 331

cs4 22 499 43 858 m14b 214 765 1 679 018

bcsstk30 28 924 1 007 284 auto 448 695 3 314 611

bcsstk31 35 588 572 914 Large Other Graphs

fe pwt 36 519 144 794 del23 ≈8.4M ≈25.2M

bcsstk32 44 609 985 046 del24 ≈16.7M ≈50.3M

fe body 45 087 163 734 rgg23 ≈8.4M ≈63.5M

t60k* 60 005 89 440 rgg24 ≈16.7M ≈132.6M

wing 62 032 121 544 deu ≈4.4M ≈5.5M

brack2 62 631 366 559 eur ≈18.0M ≈22.2M

finan512* 74 752 261 120 af shell9 ≈504K ≈8.5M

fe tooth 78 136 452 591 thermal2 ≈1.2M ≈3.7M

fe rotor 99 617 662 431 nlr ≈4.2M ≈12.5M

nlpkkt240 ≈27.9M ≈373M

308 P. Sanders and C. Schulz

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and
applications (1993)

2. Bader, D., Kappes, A., Meyerhenke, H., Sanders, P., Schulz, C., Wagner, D.: Bench-
marking for graph clustering and partitioning. In: Alhajj, R., Rokne, J. (eds.)
Encyclopedia of Social Network Analysis and Mining. Springer, New York (2014)

3. Bhatt, S.N., Leighton, F.T.: A framework for solving vlsi graph layout problems.
J. Comput. Syst. Sci. 28(2), 300–343 (1984)

4. Bichot, C., Siarry, P. (eds.): Graph Partitioning. Wiley, New York (2011)
5. Bonsma, P.: Most balanced minimum cuts. Discrete Appl. Math. 158(4), 261–276

(2010)
6. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-

hard. Inf. Process. Lett. 42(3), 153–159 (1992)
7. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances

in graph partitioning. In: Algorithm Engineering – Selected Topics, to app.,
arXiv:1311.3144 (2014)

8. Davis, T.: The University of Florida Sparse Matrix Collection
9. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance

multi-level routing. In: The Shortest Path Problem: Ninth DIMACS Implementa-
tion Challenge, vol. 74, pp. 73–92 (2009)

10. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning
algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS,
vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

11. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282.
Springer, Heidelberg (2014)

12. Drake, D., Hougardy, S.: A simple approximation algorithm for the weighted
matching problem. Inf. Process. Lett. 85, 211–213 (2003)

13. Fukuyama, J.: NP-completeness of the planar separator problems. J. Graph Algo-
rithms Appl. 10(2), 317–328 (2006)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. WH Freeman &
Co., San Francisco (2002)

15. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal. 10(2), 345–363 (1973)

16. Hager, W.W., Hungerford, J.T., Safro, I.: A multilevel bilinear programming algo-
rithm for the vertex separator problem. Technical report (2014)

17. Hamann, M., Strasser, B.: Graph bisection with pareto-optimization. In: Proceed-
ings of the Eighteenth Workshop on Algorithm Engineering and Experiments,
ALENEX 2016, pp. 90–102. SIAM (2016)

18. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph
partitioner. In: Proceedings of the 24th International Parallal and Distributed
Processing Symposium, pp. 1–12 (2010)

19. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

20. LaSalle, D., Karypis, G.: Efficient nested dissection for multicore architectures.
In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp.
467–478. Springer, Heidelberg (2015)

21. Leiserson, C.E.: Area-efficient graph layouts. In: 21st Symposium on Foundations
of Computer Science, pp. 270–281. IEEE (1980)

http://arxiv.org/abs/1311.3144
http://arXiv.org/abs/1311.3144

Advanced Multilevel Node Separator Algorithms 309

22. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.
Math. 36(2), 177–189 (1979)

23. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
Comput. 9(3), 615–627 (1980)

24. Maue, J., Sanders, P.: Engineering algorithms for approximate weighted matching.
In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 242–255. Springer,
Heidelberg (2007)

25. Osipov, V., Sanders, P.: n-Level graph partitioning. In: Berg, M., Meyer, U. (eds.)
ESA 2010, Part I. LNCS, vol. 6346, pp. 278–289. Springer, Heidelberg (2010)

26. Pellegrini, F.: Scotch Home Page. http://www.labri.fr/pelegrin/scotch
27. Picard, J.C., Queyranne, M.: On the structure of all minimum cuts in a network

and applications. Math. Program. Stud. 13, 8–16 (1980)
28. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors

of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)
29. Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In:

Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480.
Springer, Heidelberg (2011)

30. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph parti-
tioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA
2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013)

31. Sanders, P., Schulz, C.: Advanced Multilevel Node Separator Algorithms. Technical
report. arXiv:1509.01190 (2016)

32. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance
scientific simulations. In: Dongarra, J., et al. (eds.) CRPC Parallel Computing
Handbook. Morgan Kaufmann, San Francisco (2000)

33. C. Schulz. High Quality Graph Partititioning. Ph.D. thesis, Karlsruhe Institute of
Technology (2013)

34. Schulz, F., Wagner, D., Zaroliagis, C.D.: Using multi-level graphs for timetable
information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002.
LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)

35. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multi-
level optimisation approach to graph-partitioning. J. Global Optim. 29(2), 225–241
(2004)

36. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Ann.
Oper. Res. 131(1), 325–372 (2004)

http://www.labri.fr/pelegrin/scotch
http://arxiv.org/abs/1509.01190

A Merging Heuristic for the Rectangle
Decomposition of Binary Matrices

Julien Subercaze(B), Christophe Gravier, and Pierre-Olivier Rocher

Université de Lyon, UJM-Saint-Etienne CNRS, UMR5516,
Laboratoire Hubert Curien, 42023 Saint-Etienne, France

{julien.subercaze,christophe.gravier,
pierreolivier.rocher}@univ-st-etienne.fr

Abstract. In this paper we present a linear-time and linear-space algo-
rithm for the decomposition of binary images into rectangles. Our con-
tribution is a two-stage algorithm. In the first stage we compute a

1
min(h,w)

-approximation for the largest rectangle starting at each point
of the matrix. In the second stage the algorithm walks through the
matrix, alternatively stacking, merging or removing encountered rectan-
gles. Through an experimental evaluation, we show that our algorithm
outperforms state-of-the-art linear-time algorithms for small to medium-
sized rectilinear polygons.

1 Introduction

Rectangle Decomposition of Binary Matrices (RDBM) is a family of problems
that has practical applications in various domains such as pattern recognition,
video encoding, image processin and VLSI design. The common goal is these
problems is to find the best decomposition of a binary matrix intro a set of
rectangles that forms a partition of its 1-entries. Different criteria may be subject
to optimization in this family of problems, the two most representative problems
being DBMR-MinLines [4,6,7,9,12] and DBMR-MinRect.

In this paper we discuss the Rectangle Decomposition of Binary Matrices
problem (DBMR-MinRect). This problem is of the utmost practical inter-
est for moment computation, compression, pattern recognition [14] or multi-
modal video encoding [11]. The optimal solution has been independently proved
by [2,3,8,10] with a time complexity of O(n2.5). It was later shown [1] that this
solution can be computed in O(n

3
2 logn). However due to the complexity of the

required datastructures, existing implementations uses the alternative solution
in O(n2.5) [14]. Unfortunately, it is hardly suitable for near-real time applica-
tions like streaming of dynamic video content, since computation time goes over
a second for a single 4 K picture.

The main contributions of the paper are twofold: First, we present a linear
time and space approximation of the largest rectangle starting in each point,
using dynamic programming. Second, we present WSRM, a linear time and space
heuristic for the DBMR-MinRect problem using the previous approximation

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 310–325, 2016.
DOI: 10.1007/978-3-319-38851-9 21

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices 311

as input. We rely on a linked matrix structure to ensure the linearity of the
algorithm. We evaluate WSRM through extensive experiments against the state-
of-the-art linear time algorithm.

Our experimental comparison shows that WSRM performs better decom-
position than the state of the art linear heuristic for rectilinear with a small to
medium number of vertices. We also show that both heuristics have different
strengths and weaknesses and that their complementary use is a suitable alter-
native to the expensive optimal algorithm. An open-source implementation of
our algorithm is available under the Apache 2 license.

The paper is organized as follows. Section 2 presents the problem definition as
well as the related work. In Sect. 3 we describe the first stage of the algorithm that
computes an approximated value of the largest rectangle starting in every point
of the binary matrix. Section 4 presents the second stage of the algorithm that
makes a linear walk in the matrix to stack, merge and/or remove the processed
rectangles. Section 5 gives implementation details and presents the complexity
analysis. Section 6 presents the experimental evaluation. Section 7 concludes.

2 DBRM-MinRect

In this section, we present the problem definition, its optimal solution, and finally
heuristics of the DBRM-MinRect problem. Let M be a (0, 1)-matrix of size
m× n. Let H = {1, 2, . . . , n− 1, n} and W = {1, 2, . . . ,m− 1,m}. A non-empty
subset Rt,l,b,r of M is said to be a rectangle (a set of (i, j) ∈ W ×H) if there are
l, r ∈ W and b, t ∈ H such as:

⎧
⎪⎨

⎪⎩

Rt,l,b,r = {(i, j) : b ≤ i ≤ t, l ≤ j ≤ r}
r∑

i=l

t∑

j=b

R[i][j] = (|r − l| + 1) × (|b − t| + 1) (1)

For each rectangle Rt,l,b,r, R[t][l] (respectively R[b][r]) is the upper-left
(respectively bottom-right) corner of the rectangle.

The DBMR-MinRect problem is therefore to find a minimal set of rectan-
gles R, such as R is a partition of the binary matrix M , wich can be formulated
as follows:

argmin(|R|) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R =
K⋃

k=1

Rk, with Rk a rectangle of M

Ri ∩ Rj = ∅ for i �= j
K∑

k=1

Rk
r∑

i=Rk
l l

Rk
t∑

j=Rk
b

Rk[i][j] =
m∑

i=0

n∑

j=0

M [i][j]

(2)

Figure 1 provides an illustration of the DBMR-MinRect problem. It is
important to note that this problem is focused on finding a minimal partition of

312 J. Subercaze et al.

(a) A rectilinear polygon in a binary
matrix.

0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0
0 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(b) A minimal decomposition of the
binary matrix representing the image.

Fig. 1. Illustration of a solution (b) to the DBMR-MinRect problem applied to the
binary matrix (a).

the binary matrix into rectangles. It should not be confused with the rectangle
coverage problem [5], in which rectangles in the decomposition can overlap.

2.1 Optimal Solution to the RDBM-MinRect Problem

The optimal solution for rectilinear polygons with holes has been independently
proven by [2,3,8,10]. This optimal solution is in Theorem 1 and proofs can be
found in the aforementioned works.

Theorem 1. Optimal solution for the RDBM-MinRect problem. An orthog-
onal polygon can be minimally partitioned into N − L − H+1 rectangles, where
N is the number of vertices with interior angle greater than 180 degrees. H is the
number of holes and L is the maximum number of non-intersecting chords that
can be drawn either horizontally or vertically between reflex vertices. (Theorem
rephrased from [3]).

Corollary 1. From Eq. (2) and Theroem (1), argmin(|R|) = N − L − H + 1.

This result is not trivial and was found by investigating a dual problem of the
RDBM-MinRect problem in the field of computational geometry [1]. However,
[1] provides a proof that an optimal algorithm is in the PTIME complexity
class. [2,8,10] exhibited independently an optimal polynomial-time algorithm
running in O(n

3
2 × log(n)). We refer to this algorithm leading to the optimal

solution as the Bipartite Graph-based Decomposition (GBD). The outline of
the GBD algorithm is as follows:

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices 313

1. List all chords for concave vertices, and create their bipartite graphs.
2. The maximum independent set of nodes gives the extremity of chords to keep

for decomposing the polygon.
3. For remaining subpolygons, choose a chord of arbitrary direction.

Unfortunately, like in the RDBM-MinLines problem, this complexity prevents
scalability for near real-time applications. This primarily encompasses image
processing, and especially video processing applications, in which the binary
matrix dimensions are not negligible and where the running time must be limited
to a dozen of milliseconds. Thus, subsequent efforts focused on finding heuristics
for this problem.

2.2 Heuristics for the RDBM-MinRect Problem

From 1985, most of the efforts on developing heuristics have been made by the
image processing community. The major application was compacity of binary
images: by encoding the set R instead of the m × n-dimension bits sequence,
new algorithms to the RDBM-MinRect problem have been developed. In 2012,
[14] provided an exhaustive study in the light of image processing applications.
It presents four heuristics known so far, which are outlined below.

Image Block Representation (IBR). The IBR method [13] is an improve-
ment over the trivial row segmentation [14]. The principle follows the RS method,
with the extension that it merges identical adjacent lines. If two consecutive lines
contain intervals with the same bounds, they are merged. While keeping a lin-
ear complexity and being an improvement over the RS method, the IBR still
generates an unecessary amount of rectangles in most cases. IBR was identified
as the best heuristic by [14] for tasks where a lower complexity prevails over an
optimal decomposition.

Quad Tree Decomposition (QTD). QTD is a hierarchical decomposition
in which the output of the decomposition is a quad tree data structure. The
algorithm divides the matrix recursively in four quadrants until each quadrant
contains only 1-entries. The decomposition only contains squares, and often lead
to absurd results.

Morphological Decomposition (MED). MED relies on a mask, usually of
size 3 × 3, applied on all pixels. If the 3 × 3 neighborhood centered on a given
pixel contains only 1-entries, the pixel stay 1, and is set to 0 otherwise. The
algorithm erodes a rectilinear polygon until all pixels are set to 0 in the binary
matrix. This process presents a higher bound and a higher complexity than
the previous algorithms. The Distance-Transform Decomposition (DTD) [14]
enhances slightly the running time but presents similar complexity.

In order to give an insight on the complexity, advantages and disadvantages
of each approach, we provide a synoptic view of all methods in Table 1.

314 J. Subercaze et al.

Table 1. Synoptic view of existing methods for the RDBM-MinRect problem
(GBD is an optimal solution, while other methods are approximations.)

Method Complexity Analysis
Cons Pros

RS O(n) max rectangle height is
1 pixel

Fastest

IBR O(n) sub-optimal Near fastest
QTD O(n × log2(n)) squares only, possibly

absurd results
The highest compression

ratio
MED O(n2) sub-optimal, slowest -
DTD O(n2) sub-optimal, slow Results similar to MED
BGD O(n

3
2 × log(n)) Complexity Optimal solution

Assuming M a w× l (0− 1)-matrix whose decomposition results in k rectan-
gles, hence O(n) means (w × l)-time.

3 Approximating Largest Area

The underlying idea of our algorithm is to perform a greedy walk in the matrix
by successively removing the largest encountered rectangles. The walker con-
siders rectangles starting from their upper left corners. It validates the current
rectangle by visiting all its point. If a larger rectangle is encountered the current
one is stacked and the walker validates the largest one. For this purpose, this
greedy walker requires as input a matrix containing the largest rectangle starting
(upper left) in each point. In this section, we present an existing solution and its
limitations and we devise an adapted algorithm that matches our requirements.
Considering each point of the binary matrix as the upper left corner of a rec-
tangle, our goal is to compute the size of the largest rectangle for each point.
Figure 2 depicts the expected result on the example matrix.

A solution for computing the largest rectangles in linear time has been pro-
posed by M. Gallotta1, based on the observation that the largest rectangle will
always touch a 0 on all four sides. The proposed solution is implemented using
three Dynamic Programming relations (DP later in this document). Unfortu-
nately this method only computes the largest rectangles to which each point
belongs and does not output the largest rectangle starting at each point in the
left-to-right and top-to-bottom directions.

Inspired by the approach of Gallotta, we devise a linear-time algorithm that
computes an approximated largest rectangle for each point in the matrix by using
four DPs. The idea is to maximize one dimension of the rectangle, i.e. height
or width and find the corresponding value for the other dimension. For a point
of coordinates (x, y), h1(x, y) × w2(x, y) is the area of the rectangle for which
the height is maximized, whereas h2(x, y) ×w1(x, y) is the area of the rectangle
where the width is maximized. We detail here first the DPs maximizing height
1 https://olympiad.cs.uct.ac.za/old/camp1 2009/day2 camp1 2009 solutions.pdf.

https://olympiad.cs.uct.ac.za/old/camp1_2009/day2_camp1_2009_solutions.pdf

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices 315

(a) A rectilinear polygon in a binary image.

0 0 0 0 0 0 0 0 0 0
0 0 0 8 4 0 0 0 0 0
0 0 0 6 3 0 0 0 0 0
0 0 0 10 8 12 8 4 0 0
0 0 0 5 4 10 6 3 0 0
0 0 0 0 0 8 4 2 0 0
0 0 0 0 0 6 3 1 0 0
0 12 10 8 6 4 2 0 0 0
0 6 5 4 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0

(b) Area of the largest rectangle considering each
point as the upper left corner of a rectangle

Fig. 2. Illustration of the largest area starting in each point

and width, given an n × m matrix:

h1(x, y) =

{
0 if x = 0 or matrix(x, y) = 0
h1(x − 1, y) + 1 otherwise

w1(x, y) =

{
0 if y = 0 or matrix(x, y) = 0
w1(x, y − 1) + 1 otherwise

We compute the allowed width (w2) for a rectangle maximizing the height
(h = h1). The idea is that for a point (x, y), a lower bound of the width of
the rectangle of height h1(x, y) is given by argminj=y...y1 [w1(x, j)]. y1 is the
coordinate of the last 1-entry, starting at y and going down.

Conversely, the same applies for the computation of the height h2 corre-
sponding to the maximized width w1.

area(x, y) = max(h1(x, y) × w2(x, y), h2(x, y) × w1(x, y)) (3)

The area computed in Eq. 3 is a 1
min(h,w) -approximation, where h and w are

the height and width of the optimal rectangle. By using four DPs, each requiring
one pass over the matrix and one additional matrix for storage. Complexity of
this stage is linear, for both time and space.

4 Walk, Stack, Remove and Merge (WSRM)

The principle of the second stage of algorithm is to walk through the matrix and
to successively remove the encountered rectangles in a greedy manner. The walk
starts from the upper left of the matrix. Whenever a rectangle is encountered

316 J. Subercaze et al.

(due to the preprocessing described in stage one), the walker walks through this
rectangle to check if all its points are present in the matrix. If a larger rectangle
is encountered, the previous rectangle is stacked, as well as the position of the
walker. If the rectangle is fully validated, i.e. the walker walks through all its
points, these latters are removed from the matrix. The walker restarts at the
position stored before stacking the rectangle. The process stops when the matrix
is empty. The algorithm has four main operations:

Walk. The walker goes from left to right, top to bottom. The walker ensures
the presence of every point of the current rectangle. If a point is missing,
dimensions of the current rectangle are updated accordingly.

Stack. If the walker reaches a point that is the beginning of a rectangle larger
than the current one, the current one is stacked and its size is updated.

Remove. When the current rectangle has been validated by the walker, it is
removed from the matrix.

Merge. The merge occurs when the last two removed rectangles are suitable for
merge. In order to ensure linearity, candidates for merge are not looked for
in the whole set of removed rectangles. Only the last two removed rectangles
are considered for merging.

Algorithm 1 presents the main loops of the WSRM algorithm. In the follow-
ing, we first detail a run of the algorithm on the example presented along this
paper (Fig. 2) to introduce the global principles of the algorithm. We detail in
another subsection particular cases and behaviour of the algorithm. The func-
tion resizeOrRemove has been omitted from Algorithm 1 and will be presented
in Sect. 4.2.

4.1 Example

Figures 4 and 5 depicts the key steps of the algorithm on a sample matrix.
The dotted green boundaries indicate the position of the walker. The rectangle
delimited with the dashed blue line is the rectangle on top of the stack, i.e. the
one being validated by the walker. Light greyed-out parts have been validated
by the walker. Dark greyed indicates parts of stacked rectangles that have not
yet been validated. Red arrows show the movement of the walker.

The algorithm starts at step (a) with the first non zero point which is (2, 4).
At this point, the maximal area computed in the previous step is equal to 8. The
rectangle has a width of 2 and a height of 4. The walker goes rightward through
the current rectangle until it reaches the third line of the rectangle at step (b).

The walker is at (4, 4) where the area is equal to 10, greater than the one of
the current rectangle in the stack. Since the last line is reached (see more details
in Sect. 4.2), the height of the rectangle on the top of the stack is resized to 2 (2
lines have been validated by the walker). The previous rectangle is resized and a
new rectangle of area 10 is stacked. The walker continues walking until reaching
position (4, 6).

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices 317

Algorithm 1. Outline of the WSRM algorithm
Data: Binary Matrix M
Result: List L of non overlapping rectangles ri such as ∪iri = M
stack ← ∅, rectangles ← ∅, area ← 0
while M �= ∅ do

if stack = ∅ then
stackAndWalk()

else
if currentpointarea ≤ area then

if current point is continuous with previous point then
decrease counter value
if current rectangle is validated then

remove rectangle
end

else
resizeOrRemove()

end

else
stackAndWalk()

end

end

end
Function stackAndWalk()

Stack new rectangle starting at the current point
area ← currentarea
Walk to next element

At step (c) the walker encounters a point having a larger associated area.
The previously applied process is again executed and a new rectangle of width
3 and height 4 is stacked.

The walker goes through the whole rectangle until reaching coordinates (7, 8)
at step (d). Since the rectangle has been validated by the walker, it is safely
removed from the matrix and added into the list of removed rectangles. Now the
rectangle starting in (4, 4) is on top of the stack, its width had been updated to
2. The last position of the walker was kept in the column P of the stack and was
in (4, 5). As the current rectangle starts in (4, 4), the first line has been validated
by the walker, its current position is then updated to the beginning of the next
line in (5, 4).

The walker validates the last two points (5, 4) and (5, 5) of the current rec-
tangle which is removed at step (e) and added in the list of removed rectangles.

The current rectangle is then the first stacked rectangle, starting in (2, 4),
which has been resized at the end of step (a) to a width of 2. Since the last
position of the walker is at the end of the rectangle, this latter is fully validated
and can be removed at step (f). The two last removed rectangles are starting
on the same column, they have same width and are next to each other (i.e.
no gap), therefore they are valid candidates for the merging that takes place

318 J. Subercaze et al.

at step (g). The walker is now set to the next non zero element in the matrix,
which is at coordinates (8, 2) and a new rectangle is stacked. The walker then
validates the current rectangle when it reaches (9, 7) at step (h), this rectangle
is then removed. The matrix is empty, the algorithm returns the list of removed
rectangles.

4.2 Algorithm Details

1 1 1 0
1 1 1 0
0 1 1 0
0 1 1 0

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

(a)

1 1 1 0
1 1 1 0
0 1 1 0
0 1 1 0

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

(b)

Fig. 3. The width of the
current rectangle in (a) is
resized when a largest rec-
tangle is encountered (b)
(Color figure online)

As we discussed in the previous example, different
situations may occur whenever a new rectangle is
stacked or when a rectangle is removed and poped
from the stack. In this subsection we detail the
different cases encountered in the resizeOrRemove
method introduced in Algorithm 1.

Stack on First Line. The case where a potential
largest rectangle is encountered by the walker on
the first line of the current rectangle is the simplest
case of stacking in our algorithm. Figure 3 presents
an example of such a situation. In this figure, as
well as in all this whole subsection, the dashed blue
rectangle represents the current rectangle, the full
green line delimits the current position of the walker
and finally the dotted red line shows the next largest
rectangle.

In this case, WSRM resizes the current rectan-
gle to the validated width. The current rectangle
will not reach its full size except if the part only
in red (coordinates (3, 2) to (4, 2)) has already been
removed from the matrix. However this situation cannot be known in advance
when the largest rectangle is encountered. Therefore the decision to resize the
current rectangle width to the currently validated width is safe and allows a
later merge with the new largest rectangle. When the current rectangle (dashed,
blue) appears again on top the stack, after other rectangles have been popped,
the rectangle is simply removed and can be merged with the previous removed
rectangle, when possible.

Stack at the Beginning of a Line. The same principle applies when the
largest rectangle is encountered at the beginning of a line of the current rectangle.
In this case, the height of the rectangle is resized to the size that has been
validated by the walker. Figure 6 depicts such a situation.

General Case. If a larger rectangle is found in the middle of a line of the
current rectangle, one cannot resize the rectangle, since the validated width is
greater on the above line. Figure 7(a) depicts such an example.

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices 319

0 0 0 0 0 0 0 0 0 0
0 0 0 8 4 0 0 0 0 0
0 0 0 6 1 0 0 0 0 0
0 0 0 10 8 12 8 4 0 0
0 0 0 5 4 10 6 3 0 0
0 0 0 0 0 8 4 2 0 0
0 0 0 0 0 6 3 1 0 0
0 12 10 8 6 4 2 0 0 0
0 6 5 4 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Stack
Corner W H L P
(2,4) 2 4 (2,4) (2,4)

Removed rectangles
Corner Width Height

- - -

0 0 0 0 0 0 0 0 0 0
0 0 0 8 4 0 0 0 0 0
0 0 0 6 1 0 0 0 0 0
0 0 0 10 8 12 8 4 0 0
0 0 0 5 4 10 6 3 0 0
0 0 0 0 0 8 4 2 0 0
0 0 0 0 0 6 3 1 0 0
0 12 10 8 6 4 2 0 0 0
0 6 5 4 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Stack
Corner W H L P
(4,4) 5 2 (4,4) (4,4)
(2,4) 2 2 (3,4) (3,5)

Removed rectangles
Corner Width Height

- - -

0 0 0 0 0 0 0 0 0 0
0 0 0 8 4 0 0 0 0 0
0 0 0 6 1 0 0 0 0 0
0 0 0 10 8 12 8 4 0 0
0 0 0 5 4 10 6 3 0 0
0 0 0 0 0 8 4 2 0 0
0 0 0 0 0 6 3 1 0 0
0 12 10 8 6 4 2 0 0 0
0 6 5 4 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Stack
Corner W H L P
(4,6) 3 4 (4,6) (4,6)
(4,4) 2 2 (4,4) (4,5)
(2,4) 2 2 (3,4) (3,5)

Removed rectangles
Corner Width Height

- - -

0 0 0 0 0 0 0 0 0 0
0 0 0 8 4 0 0 0 0 0
0 0 0 6 1 0 0 0 0 0
0 0 0 10 8 12 8 4 0 0
0 0 0 5 4 10 6 3 0 0
0 0 0 0 0 8 4 2 0 0
0 0 0 0 0 6 3 1 0 0
0 12 10 8 6 4 2 0 0 0
0 6 5 4 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

Stack
Corner W H L P
(4,4) 2 2 (4,4) (4,5)
(2,4) 2 2 (3,4) (3,5)

Removed rectangles
Corner Width Height
(4,6) 3 4

 (a)

 (b)

 (d)

 (c)

Fig. 4. First four key steps of WSRM on the example figure. L and P columns are
detailed in Sect. 5. (Color figure online)

320 J. Subercaze et al.

0 0 0 0 0 0 0 0 0 0

0 0 0 10 8 12 8 4 0 0
0 0 0 5 4 10 6 3 0 0
0 0 0 0 0 8 4 2 0 0
0 0 0 0 0 6 3 1 0 0
0 12 10 8 6 4 2 0 0 0
0 6 5 4 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Stack
Corner W H L P
(2,4) 2 2 (3,4) (3,5)

Removed rectangles
Corner Width Height
(4,4) 2 2
(4,6) 3 4

0 0 0 0 0 0 0 0 0 0
0 0 0 8 4 0 0 0 0 0
0 0 0 6 1 0 0 0 0 0
0 0 0 10 8 12 8 4 0 0
0 0 0 5 4 10 6 3 0 0
0 0 0 0 0 8 4 2 0 0
0 0 0 0 0 6 3 1 0 0
0 12 10 8 6 4 2 0 0 0
0 6 5 4 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Stack
Corner W H L P

Removed rectangles
Corner Width Height
(2,4) 2 2
(4,4) 2 2
(4,6) 3 4

0 0 0 0 0 0 0 0 0 0
0 0 0 8 4 0 0 0 0 0
0 0 0 6 1 0 0 0 0 0
0 0 0 10 8 12 8 4 0 0
0 0 0 5 4 10 6 3 0 0
0 0 0 0 0 8 4 2 0 0
0 0 0 0 0 6 3 1 0 0
0 12 10 8 6 4 2 0 0 0
0 6 5 4 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Stack
Corner W H L P

Removed rectangles
Corner Width Height
(2,4) 2 2
(4,6) 3 4

0 0 0 0 0 0 0 0 0 0
0 0 0 8 4 0 0 0 0 0
0 0 0 6 1 0 0 0 0 0
0 0 0 10 8 12 8 4 0 0
0 0 0 5 4 10 6 3 0 0
0 0 0 0 0 8 4 2 0 0
0 0 0 0 0 6 3 1 0 0
0 12 10 8 6 4 2 0 0 0
0 6 5 4 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Stack
Corner W H L P

 (8,2) 6 2 (8,2) (8,2)

Removed rectangles
Corner Width Height
(8,2) 6 2
(2,4) 2 2
(4,6) 3 4

 (f)

 (e)

 (h)

 (g)

0 0 0 8 4 0 0 0 0 0
0 0 0 6 1 0 0 0 0 0

Fig. 5. Laste four key steps of WSRM on the example figure. L and P columns are
detailed in Sect. 5 (Color figure online)

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices 321

1 1 0 0
1 1 1 1
1 1 1 1

⎛

⎜
⎝

⎞

⎟
⎠

(a)

1 1 0 0
1 1 1 1
1 1 1 1

⎛

⎜
⎝

⎞

⎟
⎠

(b)

Fig. 6. Resizing current rectangle

When stacking the new rectangle,
no resizing takes place. After removal
of the new largest rectangle (and oth-
ers if required), the validated part
of the dashed blue rectangle may be
larger or smaller than the resized
non validated part. For instance in
Fig. 7(b), the gray part has been vali-
dated by the walker and does not form
a rectangle. Figure 7(c) shows the final decomposition. At this point, the algo-
rithm will cut the validated part into two rectangles depending on their ratio.
The cut may be taken either in a horizontal or vertical way. In Fig. 7(b) one can
choose to cut horizontally under the first line or vertically after the first point.
In both cases, two rectangles of area 2 and 3 would be obtained. The largest rec-
tangle being already validated with the horizontal cut, this latter will be chosen
by the algorithm. The motivation is to favor the cut where the largest rectangle
has been validated by the walker.

1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(a)

1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(b)

1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(c)

Fig. 7. General case, the new largest rectangle starts in the middle of a line. (Color
figure online)

5 Implementation

WSRM is a two-stage algorithm. Implementing the first stage in linear time does
not present any noticeable difficulty. However the implementation of the second
stage in linear time requires dedicated data structures that are presented in this
section. We also present a time and space complexity analysis of the algorithm.
Deeper implementation details and can be found in the source code2.

5.1 Data Structure

The main idea of the second stage of WSRM is to visit each point of the matrix
only once in order to ensure linearity. For the walking operation, the walker must

2 http://www.github.com/jsubercaze/wsrm.

http://www.github.com/jsubercaze/wsrm

322 J. Subercaze et al.

reach its next element in O(1). Using a flag to set points to visited would result
in a O(n) algorithm. Figure 7(b) shows such an example. The walker (in green)
has no element after him, however the naive implementation would revisit points
from the already removed rectangle. Moreover, storing 0’s is of no use and results
in a waste of memory. We therefore introduce a data structure inspired by the
two dimensional doubly linked list representation for sparse matrices. Our data
structure is as follows. Each nonzero is represented by:

– Its coordinates x, y in the original matrix.
– The dimension width, height, area of the rectangle starting in this point.

These values have been computed during the first stage.
– Four pointers to link to previous and next elements in the horizontal and

vertical directions.

[Root]

8 4
6 3
10 8 12 8 4
5 4 10 6 3

8 4 2
6 3 1

12 10 8 6 4 2
6 5 4 3 2 1

Fig. 8. Root element points to the next
available value. Dashed arrows points to
next elements.

Hence, walk and remove are then
constant-time operations. The Root
element, depicted in Fig. 8 has its
next horizontal pointer linking to the
first nonzero in the matrix. When
this pointer is null, the algorithm
terminates.

The second subtlety in the imple-
mentation is to ensure the linearity
after the removal of a rectangle or
when reaching the end of the line of
the current rectangle. Both are linked
to the same issue. For instance when
validating a rectangle, for example at
the step (c) of Fig. 4, the walker is first
at the coordinate (4, 6) of area 12, it then walks two steps to the right to (4, 8)
and then should go to the next line on coordinates (5, 6), of area 10. The point
(4, 8) has the following pointers:

– Horizontal next : (5, 4) of area 5
– Horizontal previous (4, 7) of area 8
– Vertical next : (4, 8) of area 3
– Vertical previous : null

The beginning of the next line is directly reachable from the point at the
beginning of the current line with its downward pointer. Consequently, a pointer
to the starting point of the current line is maintained for the rectangle on top
of the stack. This pointer is denoted L in Figs. 4 and 5. In a similar manner, the
pointer P denotes the current position of the walker. This pointer is used when
a rectangle is removed to restore the walker position and to possibly decide the
cut as described in Sect. 4.2.

We show that the two stages of the algorithm exhibit linear complexity for
both time and space. The case of the first stage is trivial. In the second stage, the

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices 323

Table 2. Overview of the complexity analysis of the algorithm.

Operation Time Space

Stage one
Computing 4 DPs 2-pass of the matrix: O(n) Store two matrices: O(n)
Stage two
Sparse Matrix construction in one pass n�=0 × (4 ptr + 5 int)
Walk visit each nonzero: O(n) -
Stack at most n/2 elts: O(n) ≤ n/2 elements: O(n)
Merge at most n/2 elts: O(n) -
Remove each nonzero is removed: O(n) -
Overall O(n) O(n)

10 15 20 25 30

10

20

30

40

50

60

70

Sides of the random rectilinear polygons

D
is

tr
ib

ut
io

n
(%

ag
e)

WSRM < IBR

WSRM = IBR

WSRM > IBR

Fig. 9. Decomposition quality comparison between WSRM and IBR, depending on the
number of poylgons’ sides. The sign < indicates a better decomposition, i.e. a lower
number of rectangles.

walker goes once through every point. Each operation has a linear complexity.
Considering the space complexity, WSMR requires a matrix in which each point
has four pointers to its neighbours. For the worst case (chessboard), the size of
the stack reaches its maximum with n/2 rectangles. Table 2 gives an overview of
the complexity for each stage and operation.

324 J. Subercaze et al.

6 Evaluation

We evaluated our algorithm against its direct competitor, Image Block Represen-
tation (IBR), and against the optimal algorithm GBD. For a global comparison
of the different algorithms, we once again refer the reader to the well-documented
state-of-the-art by [14].

In order to evaluate the performance of the algorithms, we generated ran-
dom rectilinear polygons of arbitrary edges. [15] developed an Inflate-Cut
approach that generates random rectilinear polygons of a fixed number of edges.
We generated random rectilinear polygons for a growing number of sides, from
8 to 25. For each number of sides, 50 000 random polygons have been generated.

In a first experiment we compared the decomposition quality of the two
approaches, i.e. the number of rectangles outputted by both algorithms. Figure 9
shows the decomposition quality depending on the number of sides of the random
polygons. When the number of sides is smaller than 22, WSRM outperforms
IBR in 30 % of the cases. Both algorithms perform similarly, 60 % of the time
for small rectilinear polygons. This value decreases to 30 % when the number of
sides grows, whereas the IBR’s performance increases with the number of sides.
An equal distribution is reached for 22 sided rectilinear polygons. Afterwards,
IBR presents a better decomposition. Taking the best decomposition of both
heuristics leads to the optimal decomposition for over 90 % of the pictures.

10 15 20 25

2

3

4

Sides of the rectilinear polygons

Si
de

s
ra

ti
o

:
la

rg
es

t
by

sm
al

le
st

IBR
WSRM

Fig. 10. Sides ratio of the decomposed rec-
tangles, largest side by smallest.

In a second experiment, we com-
pared the ratio of the rectangles’
largest sides to their smallest for
the two algorithms. The IBR algo-
rithm proceeds in row scanning man-
ner that favors a large ratio. Again,
for this experiment, 50 000 random
rectilinear polygons have been gen-
erated for each number of sides.
As expected, IBR outputs rectan-
gles with a large ratio (See Fig. 10).
The ratio starts over 2 for 8 sided
rectilinear polygons and is increasing
over 4 for 25 sided rectilinear poly-
gons. On the other side, WSRM out-
puts decompositions whose rectan-
gles’ sides ratio is lower, starting at 1.9 and slowly reaching 2.5 for 25 sided
polygons. WSRM performs for this criterion a better decomposition than IBR,
regardless of the number of sides.

7 Conclusion

In this paper we presented WSRM, a two-stage algorithm that performs rectan-
gle decomposition of rectilinear polygons. Both space and time complexities of

A Merging Heuristic for the Rectangle Decomposition of Binary Matrices 325

the algorithm are linear in the number of elements of the binary input matrix. We
also presented implementation details regarding the required data structures to
maintain linearity. Evaluation showed that WSRM outperforms IBR for decom-
posing rectilinear polygons with less than 25 sides. The evaluation also highlighed
that the sides of the rectangles obtained using WSRM are in the much lower
ratio than the ones outputted by IBR.

References

1. Eppstein, D.: Graph-theoretic solutions to computational geometry problems.
In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 1–16. Springer,
Heidelberg (2010)

2. Ferrari, L., Sankar, P.V., Sklansky, J.: Minimal rectangular partitions of digitized
blobs. Comput. Graph. Image Process. 28(1), 58–71 (1984)

3. Gao, D., Wang, Y.: Decomposing document images by heuristic search. In: Yuille,
A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679,
pp. 97–111. Springer, Heidelberg (2007)

4. Gonzalez, T., Zheng, S.-Q.: Bounds for partitioning rectilinear polygons. In: 1st
Symposium on Computational Geometry, pp. 281–287. ACM (1985)

5. Levcopoulos, C.: Improved bounds for covering general polygons with rectangles.
In: Nori, K.V. (ed.) Foundations of Software Technology and Theoretical Computer
Science. LNCS, vol. 287, pp. 95–102. Springer, Heidelberg (1987)

6. Lingas, A., Pinter, R.Y., Rivest, R.L., Shamir, A.: Minimum edge length partition-
ing of rectilinear polygons. In: Proceeding of 20th Allerton Conference Communi-
cation Control and Computing, pp. 53–63 (1982)

7. Liou, W.T., Tan, J.J., Lee, R.C.: Minimum partitioning simple rectilinear poly-
gons in o (n log log n)-time. In: Proceedings of the Fifth Annual Symposium on
Computational Geometry, pp. 344–353. ACM (1989)

8. Lipski, W., Lodi, E., Luccio, F., Mugnai, C., Pagli, L.: On two dimensional data
organization ii. Fundamenta Informaticae 2(3), 245–260 (1979)

9. Nahar, S., Sahni, S.: Fast algorithm for polygon decomposition. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 7(4), 473–483 (1988)

10. Ohtsuki, T.: Minimum dissection of rectilinear regions. In: Proceeding IEEE Sym-
posium on Circuits and Systems, Rome, pp. 1210–1213 (1982)

11. Rocher, P.-O., Gravier, C., Subercaze, J., Preda, M.: Video stream transmodality.
In: Cordeiro, J., Hammoudi, S., Maciaszek, L., Camp, O., Filipe, J. (eds.) ICEIS
2014. LNBIP, vol. 227, pp. 361–378. Springer, Heidelberg (2015)

12. Soltan, V., Gorpinevich, A.: Minimum dissection of a rectilinear polygon with
arbitrary holes into rectangles. Discrete Comput. Geom. 9(1), 57–79 (1993)

13. Spiliotis, I.M., Mertzios, B.G.: Real-time computation of two-dimensional moments
on binary images using image block representation. IEEE Trans. Image Process.
7(11), 1609–1615 (1998)

14. Suk, T., Höschl IV, C., Flusser, J.: Decomposition of binary images a survey and
comparison. Pattern Recogn. 45(12), 4279–4291 (2012)

15. Tomás, A.P., Bajuelos, A.L.: Generating Random Orthogonal Polygons. In:
Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003.
LNCS (LNAI), vol. 3040, pp. 364–373. Springer, Heidelberg (2004)

CHICO: A Compressed Hybrid Index
for Repetitive Collections

Daniel Valenzuela(B)

Department of Computer Science,
Helsinki Institute for Information Technology HIIT,

University of Helsinki, Helsinki, Finland
dvalenzu@cs.helsinki.fi

Abstract. Indexing text collections to support pattern matching
queries is a fundamental problem in computer science. New challenges
keep arising as databases grow, and for repetitive collections, compressed
indexes become relevant. To successfully exploit the regularities of repet-
itive collections different approaches have been proposed. Some of these
are Compressed Suffix Array, Lempel-Ziv, and Grammar based indexes.

In this paper, we present an implementation of an hybrid index that
combines the effectiveness of Lempel-Ziv factorization with a modular
design. This allows to easily substitute some components of the index,
such as the Lempel-Ziv factorization algorithm, or the pattern matching
machinery.

Our implementation reduces the size up to a 50 % over its predecessor,
while improving query times up to a 15%. Also, it is able to successfully
index thousands of genomes in a commodity desktop, and it scales up to
multi-terabyte collections, provided there is enough secondary memory.
As a byproduct, we developed a parallel version of Relative Lempel-Ziv
compression algorithm.

1 Introduction

In 1977 Abraham Lempel and Jacob Ziv developed powerful compression algo-
rithms, namely LZ77 and LZ78 [29,30]. Almost forty years from their concep-
tion, they remain central to the data compression community. LZ77 is among
the most effective compressors which also offers extremely good decompression
speed. Those attributes have made it the algorithm of choice for many compres-
sion utilities like zip, gzip, 7zip, lzma, and the GIF image format.

These algorithms are still being actively researched [1,3,10,16], and with the
increasing need to handle ever-growing large databases the Lempel-Ziv family
of algorithms still has a lot to offer.

Repetitive datasets and the challenges on how to index them are actively
researched at least since 2009 [21,22,27]. Canonical examples of such datasets
are biological databases, such as the 1000 Genomes projects, UK10K, 1001 plant
genomes, etc.

Among the different approaches to index repetitive collections, we will focus
in one of the Lempel-Ziv based indexes, the Hybrid Index of Ferrada et al. [7].
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 326–338, 2016.
DOI: 10.1007/978-3-319-38851-9 22

CHICO: A Compressed Hybrid Index for Repetitive Collections 327

Their approach is very promising, specially to be used in biological databases.
Among the features that make the Hybrid Index attractive, is that it offers a
framework to answer approximate pattern matching queries. Also, by design it
does not stick to any specific (approximate) pattern matching technique. For
instance, if the index was built to align genomic reads to a reference, it could
use a tool like BWA that is highly specialized for this kind of queries (by taking
care of the reverse complements, considering quality scores, specificities of the
sequencing technologies, etc.).

In this paper we present an improved version of that index that achieves up to
a 50% reduction in its space usage, while maintaining or improving query times
up to a 15%. We achieve faster building time than other indexes for repetitive
collections. For collections in the tens of gigabytes, our index can still be built in
a commodity machine. Using a more powerful server, we successfully indexed a
collection of 201 GB in about an hour, and a collection of 2.4 TB in about 12 h.

A key element to achieve those results is that our index does not stick to
a particular Lempel-Ziv factorization. Instead, it accepts the LZ77 parsing as
input, and also a variety of LZ77-like parsings. That allows our index to offer
appealing trade-offs between indexing time, index size, and resource usage during
construction time. As a byproduct, we developed a parallel Relative Lempel-Ziv
parser that can parse 2.4 TB in about 10 h using 24 cores.

The structure of this paper is as follows. In Sect. 2 we briefly discuss previous
work. In particular we discuss relevant aspects and variants of the Lempel-Ziv
parsing. In Sect. 3 we review the fundamental ideas behind the Hybrid Index of
Ferrada et al. In Sect. 4 we present our improvements on the Hybrid Index and
we discuss how it compares with the original proposal. In Sect. 5 we discuss the
practicalities of our implementation. In Sect. 6 we show the experimental behav-
ior of our index. Finally in Sect. 7 we discuss our findings and future research.

2 Related Work

The idea of exploiting repetitiveness to decrease the space requirement of index-
ing data structures can be traced back at least to Kärkkäinen and Ukkonen [17].

In the string processing community, a full-text index that uses space propor-
tional to that of the compressed text is called a compressed index [25]. The main
strategies are based on the compression of the suffix array, the compression of
the Burrows Wheeler transform, or the use of the Lempel-Ziv parsing. For fur-
ther reading, we refer the reader to a survey covering the theoretical aspects of
compressed full-text indexes [25] and to a recent experimental study [12].

2.1 Repetitive Collections

A pioneer work that formally introduced the challenges of indexing repetitive
collection and that offered a successful solution was the Run Length Compressed
Suffix Array [21,22]. In parallel, in the context of plant genomics, Schneeberger
et al. [27] faced similar challenges, and they solved them by using a q-gram index.

328 D. Valenzuela

Full-Text Indexing. Since the publication of the Run Length Compressed
Suffix Array (RLCSA) [21,22], many techniques have been developed to tackle
this problem [24]. Some of them are mainly theoretical works [2,6,11], and some
have been implemented [4,7,19,26]. However, to the best of our knowledge, the
only one that successfully scales to collections in the tens of gigabytes is the
RLCSA.

Bioinformatics Tools. Some indexes are specially tailored for biological data-
bases. One of the foundational works handling large repetitive datasets is
GenomeMapper [27]. Some recent works, like MuGI [5], also take as an input a
reference sequence and a file that informs about the variations present in a set
of sequences corresponding to individuals. Other tools [23,28] consider the input
to be a (multiple) sequence alignment. This assumption, even though natural in
some contexts, restricts the usability of those solutions.

2.2 LZ77

Lempel-Ziv is a family of very powerful compression algorithms that achieve
compression by using a dictionary to encode substrings of the text. Here we
focus on the LZ77 algorithm, in which the dictionary (implicitly) contains all
the substrings of the part of the text that has already been processed.

The compression algorithm consists on two phases: parsing (also called fac-
torization) and encoding. Given a text T [1, N], a LZ77 valid parsing is a par-
tition of T into z substrings T i (often called phrases or factors) such that
T = T 1T 2 . . . T z, and for all i ∈ [1, z] either there is at least one occurrence
of T i with starting position strictly smaller than |T 1T 2 . . . T i−1|, or T i is the
first occurrence of a single character.

The encoding process represents each phrase T i using a pair (pi, li), where
pi is the position of the previous occurrence of Ti and li = |T i|, for phrases that
are not single characters. When T i = α ∈ Σ, then it is encoded with the pair
(α, 0). We call the latter literal phrases and the former copying phrases.

Decoding LZ77 compressed text is particularly simple and fast: the pairs
(pi, li) are read from left to right, if li = 0, then pi is interpreted as a char and
it is appended to the output, if li �= 0, then li characters are copied from the
position pi to pi + li − 1 and are appended to the current output.

Greedy Parsing. So far we have defined what is a LZ77 valid parsing, but we
have not discussed how to compute such a parsing. Indeed, there are different
possibilities. It is a common agreement in the literature to reserve the name LZ77
for the case when the parsing is a greedy parsing. That is, if we assume that we
have already parsed a prefix of T , T ′ = T 1T 2 . . . T p then the phrase T p+1 must
be the longest substring starting at position |T 1T 2 . . . T p| + 1 such that there
is a previous occurrence of T p+1 in T starting at some position smaller than
|T 1T 2 . . . T p|. There are numerous reasons to choose the greedy parsing. One of
them is that it can be computed in linear time [15]. Another reason is that the
parsing it produces is optimal in the number of phrases [8]. Therefore, if the pairs

CHICO: A Compressed Hybrid Index for Repetitive Collections 329

are encoded using any fixed-length encoder, the greedy parsing always produces
the smaller representation. Moreover, various authors [18,29] proved that greedy
parsing achieves asymptotically the (empirical) entropy of the source generating
the input string.

3 Hybrid Index

The Hybrid Index of Ferrada et al. [7] extends the ideas of Kärkkäinen and
Ukkonen [17] to use the Lempel-Ziv parsing as a basis to capture repetitiveness.
This Hybrid Index combines the efficiency of LZ77 with any other index in a
way that can support not only exact matches but also approximate matching.

Given the text to be indexed T , a LZ77 parsing of T consisting of z phrases,
and also the maximum length M of a query pattern and the maximum number
of mismatches K, the Hybrid Index is a data structure using space proportional
to z and to M that supports approximate string matching queries. That is, it is
able to find all the positions i in T such that ed(T [i, |P | − 1], P [1, |P | − 1]) ≤ K
for a given query pattern P , where ed(x, y) stands for the edit distance between
strings x and y.

Let us adopt the following definitions [7,17]: A primary occurrence is an
(exact or approximate) occurrence of P in T that spans two or more phrases.
A secondary match is an (exact or approximate) occurrence of P in T that is
entirely contained in one phrase. Kärkkäinen and Ukkonen [17] noted that every
secondary match is an exact copy of a previous (secondary or primary) match.
Therefore, the pattern matching procedure can be done in two stages: first all
the primary occurrences are identified, then, using the structure of the LZ77
parse, all the secondary matches can be discovered.

3.1 Kernelization to Find Primary Occurrences

Conceptually, the kernel string aims to get rid of large repetitions in the input
text, and extract only the non-repetitive areas. To do that, it extracts the char-
acters in the neighborhoods of the phrase boundaries, while discarding most of
the content of large phrases.

More formally, given the LZ77 parsing of T , the kernel text KM,K is defined
as the concatenation of characters within distance M +K −1 from their nearest
phrase boundaries. Characters not contiguous in T are separated in KM,K by
K + 1 copies of a special separator #. It is important to note that for any
substring of T with length at most M + K that crosses a phrase boundary in
the LZ77 parse of T , there is a corresponding and equal substring in KM,K .

To be able to map the positions from the kernel text to the original text the
Hybrid Index uses two sorted lists with the phrase boundaries. LT stores the
phrase boundaries in T and LKM,K

stores the list of phrase boundaries in KM,K .
The kernel text does not need to be stored explicitly; what is required is the

ability to query it and, for that reason, the Hybrid Index stores an index IM,K

330 D. Valenzuela

that supports the desired queries on KM,K (e.g. exact and approximate pattern
matching).

By construction of KM,K , it is guaranteed that all the primary matches of
P occur in KM,K . However, there are also some secondary matches that may
appear on KM,K . When a query pattern P , |P | ≤ M is given the first step is
to query the index IM,K to find all the matches of P in KM,K . These are all
the potential primary occurrences. They are mapped to T using L and LM .
Those matches that do not overlap a phrase boundary are discarded. For queries
of length one, special care is taken with matches that corresponds to the first
occurrence of the character [7].

3.2 Reporting Secondary Occurrences

The secondary occurrences are reported using 2-sided range reporting [7]. The
idea is that, once the positions of the primary occurrences are known, the parsing
information is used to discover the secondary matches. Instead of looking for
theoretically optimal data structures to solve this problem, the Hybrid Index
proposes a simple and practical way to solve it.

Each phrase (pos, len) of the LZ77 parsing can be expressed as triplets
(x, y) → w where (x = pos, y = pos + len) is said to be the source, and w
is the position in the text that is encoded with such phrase. The sources are
sorted by the x coordinate, and the sorted x values are stored in an array X .
The corresponding w positions are stored in an array W. The values of the y
coordinates are not explicitly stored. However, a position-only Range Maximum
Query [9] data structure is stored for the y values.

The 2-sided recursive reporting procedure works as follows: For a given pri-
mary occurrence in position pos, the goal is to find all the phrases whose source
entirely contains (pos, pos + |P | − 1). To do that the first step is to look for the
position of the predecessor of pos in X . The second step is to do a range maxi-
mum query of the y values in that range. Even though y is not stored explicitly,
it can be easily computed [7]. If that value is smaller than pos + |P | − 1 the
search stops. If the y value is equal or larger than pos + |P | − 1, it corresponds
to a phrase that contains the primary position. Then, the procedure recurses on
the two intervals that are induced by it. For further details we refer the reader
to the Hybrid Index paper [7].

4 CHICO: Beyond Greedy LZ77

When we described the LZ77 algorithm in Sect. 2.2, we first used a general
description of the LZ parsing. We noted that in the description of the Hybrid
Index the parsing strategy is not specified, and indeed, it does not affect the work-
ing of the index. Therefore, the index works the same way with any LZ77 valid
parsing where the phrases are either single characters (literal phrases, or pairs
(pos, len) representing a reference to a previously occurring substring (copying
phrases).

CHICO: A Compressed Hybrid Index for Repetitive Collections 331

The greedy parsing is usually the chosen scheme because it produces the
minimum number of phrases. This produces the smallest possible output if a
plain encoding is used. If other encoding schemes are allowed, it has been proven
that the greedy parsing does not imply the smallest output anymore. Moreover,
different parsing algorithms exists that provide bit-optimality for a wide variety
of encoders [8].

4.1 Reducing the Number of Phrases

It is useful to note that all the phrases shorter than 2M are entirely contained
in the kernel text. Occurrences that are entirely contained in such phrases are
found using the index of the kernel string IM,K . Then they are discarded, just
to be rediscovered later by the recursive reporting procedure.

To avoid this redundancy we modify the parsing in a way that phrases smaller
than 2M are avoided. First we need to accept that literal phrases (those pairs
(α, 0) such that α ∈ Σ) can be used not only to represent characters but also to
hold longer strings (s, 0), s ∈ Σ∗.

To actually reduce the number of phrases in the recursive data structure we
designed a phrase merging procedure. The phrase merging procedures receives
a LZ77 parsing of a text, and produces a parsing with less phrases, using literal
phrases longer than one character. The procedure works as follows. It reads
the phrases in order, and when it finds a copying phrase (pos, len) such that
len < 2M , it is transformed into a literal phrase (T [pos, pos + len − 1], 0). That
is, a literal phrase that decodes to the same string. If two literal phrases (s1, 0)
and (s2, 0) are consecutive, they are merged into (s1 ◦ s2, 0) where ◦ denotes
string concatenation. It is clear that the output parsing decodes to the same
text as the input parsing. Moreover, the output parsing produce the same kernel
text KM,K as the input parsing.

Because the number of phrases after the phrase merging procedure is
strictly smaller, the space needed for the recursive reporting data structure
also decreases. In addition, the search space for the recursive reporting queries
shrinks.

4.2 Finding the Occurrences

We extend the definition of primary occurrences as follows: A primary occurrence
is an (exact or approximate) occurrence of P in T that either crosses one or more
phrase boundary, or it lies entirely within a literal phrase. To ensure that every
occurrence is reported once and only once we store a bitmap F [1..z] such that
F [i] = 1 if the i-th phrase is a literal phrase and F [i] = 0 otherwise.

Hence, when a query pattern P is processed, first IM,K is used to find poten-
tial primary occurrence. Then the only occurrences to be discarded are those
that lie entirely within copying phrases. Using this approach, there is also no
need to handle a special case for queries of length one.

332 D. Valenzuela

4.3 RLZ: A Faster Building Algorithm

A classical way to reduce the parsing time of the LZ77 algorithm is to use
a smaller dictionary. For instance, the sliding window approach constrains the
parsing algorithm to look for matches only in the ω last positions of the processed
text. This approach is used in the popular gzip program.

A recent approach that presents a different modification to the LZ77 algo-
rithm is the Relative Lempel-Ziv algorithm (RLZ) [20]. Here, the dictionary is
not a prefix of the text. Instead, the dictionary is a different text that is pro-
vided separately. We note that while the sliding window approach still generates
a LZ77 valid parsing, the RLZ algorithm does not. Therefore, the former one is
a valid input for the Hybrid Index, while the second is not.

To make the RLZ algorithm compatible with the Hybrid Index, a natural way
would be to prepend the reference to the input text. In that way, the first phrase
would be an exact copy of the reference. We mark this phrase as a literal phrase
to ensure all its contents goes to the kernel text. One caveat of this approach is
that if the reference is compressible we would not exploit it. An alternative way
to modify the RLZ algorithm without having this trouble is as follows: We parse
the input text using the traditional RLZ algorithm, to obtain a parse PT . Then,
we parse the reference using the LZ77 greedy parsing, to obtain a parse PR. It
is easy to see that PR ◦ PT is a LZ77 valid parsing of R ◦ T .

5 Implementation

We implemented the index in C++, relying on the Succinct Data Structure
Library 2.0.3 (SDSL) [12] for most succinct data structures, such as the RMQ [9]
data structure on the Y array.

We encoded the phrase boundaries LT , LK,M and the x-values of the sources
in the X array using SDSL elias delta codes implementation. Following the ideas
of the original Hybrid Index we did not implement specialized data structure
for predecessor queries on arrays X and LK,M . Instead, we sampled these arrays
and perform binary searches to find the predecessors.

For the index of the kernel text IK,M we used a SDSL implementation of the
FM-Index. As that FM-Index does not support approximate searches natively,
we decided to exclude those queries in our experimental study.

For further details, the source code of our implementation is publicly available
at https://www.cs.helsinki.fi/u/dvalenzu/software/.

5.1 LZ77

To offer different trade-offs we included alternative modules for LZ77 factoriza-
tion, all of them specialized in repetitive collections. The default construction
algorithm of the index uses LZscan [14], an in-memory algorithm that computes
the LZ77 greedy parsing.

To handle larger inputs, we also included an external memory algorithm
called EM-LZscan [16]. An important feature is that it allows the user to
specify the amount of memory that the algorithm is allowed to use.

https://www.cs.helsinki.fi/u/dvalenzu/software/

CHICO: A Compressed Hybrid Index for Repetitive Collections 333

5.2 Relative Lempel-Ziv

The third parser that we included is our own version of Relative Lempel-Ziv
RLZ. Our implementation is based on the Relative Lempel-Ziv of Hoobin
et al. [13]. This algorithm uses the suffix array of the reference and then it
uses it to compute the parsing of the input text.

Our implementation differs in two aspects with the original algorithm. The
first (explained in Sect. 4.3) is that the reference itself is also represented using
LZ77. To compute the LZ77 parsing of the reference we use the KKP algo-
rithm [15]. The second difference is that instead of using an arbitrary reference,
we restrict ourselves to use a prefix of the input text. In that way there is no
need to modify the input text by prepending the reference (see Sect. 4.3).

5.3 Parallel Relative Lempel-Ziv

We implemented a fourth parser, PRLZ, which is a parallel version of RLZ.
This is a simple yet effective parallelization of our RLZ implementation. The
first step of the algorithm is to build the suffix array of the reference. This is
done sequentially. Then, instead of processing the text sequentially, we split it
into chunks and process them in parallel. Each chunk is assigned to a different
thread and the thread computes the RLZ parsing of its assigned chunk using the
reference. This is easily implemented using OpenMP. Using a moderate number
of chunks (e.g. the number of available processors) we expect similar compression
ratios to those achieved by a sequential RLZ implementation.

6 Experimental Results

We used collections of different kinds and sizes to evaluate our index in practice.
In the first round of experiments we used some repetitive collections from the
pizzachilli repetitive corpus1.

Einstein:All versions of Wikipedia page of Albert Einstein up to November 10,
2006. Total size is 446 MB.

Cere: 37 sequences of Saccharomyces Cerevisiae. Total size is 440 MB.
Para: 36 sequences of Saccharomyces Paradoxus. Total size is 410 MB.
Influenza: 78, 041 sequences of Haemophilus Influenzae. Total size is 148 MB.
Coreutils: Source code from all 5.x versions of the coreutils package. Total size

is 196 MB.

We extracted 1000 random patterns of size 50 and 100 from each collection to
evaluate the indexes. In addition, we generated two large collections using data
from the 1000 genomes project:

CHR21: 2000 versions of Human Chromosome 21. Total size 90 GB.

1 http://pizzachili.dcc.uchile.cl/.

http://pizzachili.dcc.uchile.cl/

334 D. Valenzuela

CHR14: 2000 versions of Human Chromosome 14. Total size 201 GB.
CHR1...5: 2000 versions of Human Chromosomes 1, 2, 3, 4 and 5. Total size 2.4 TB.

To demonstrate the efficiency of our index, we ran most of our experiments
in a commodity computer. This machine has 16 GB of RAM and 500 GB of hard
drive. The operative system is Ubuntu 14.04.3. The code was compiled using gcc
4.8.4 with full optimization.

In our first round of experiments we compared CHICO with the original
Hybrid Index on some collections of the pizzachilli corpus. As the size of those
collections is moderate, we ran our index using the in-memory version of LZscan.
We also compared with the LZ77 Index of Kreft and Navarro [19], and with
RLCSA [21,22], with sampling parameters 128 and 1024. To illustrate how small
can be the RLCSA, we also show the space usage of the RLCSA without the
samples. This version of the RLCSA can only count the number of occurrences
but cannot find them.

The results are presented in Tables 1 and 2. First we observe that the con-
struction time of our index dominates every other alternative. This is possible
as we use a highly engineered LZ parsing algorithm [14]. As expected, our index
is consistently smaller and faster than the original Hybrid Index. Also it is com-
petitive with other alternatives for repetitive collections.

6.1 Larger Collections

The next experiment considered the 90 GB collection CHR21. None of the com-
petitors were able to index the collection in the machine we were using. As
the input text greatly exceeded the available RAM, we studied different parsing
strategies using external memory.

Table 1. Construction time in seconds and size of the resulting index in bytes per
character for moderate-sized collections.

HI CHICO LZ77-Index RLCSA128 RLCSA1024 RLCSAmin

Time Size Time Size Time Size Time Size Time Size Size
Influenza 204.1 0.0795 30.1 0.0572 40.8 0.0458 64.3 0.0959 63.9 0.0462 0.039
Coreutils 393.1 0.1136 32.9 0.0508 49.9 0.0792 139.2 0.1234 134.1 0.0737 0.066
Einstein 98.9 0.0033 63.5 0.0019 95.3 0.0019 389.0 0.0613 347.5 0.0097 0.002
Para 1065.7 0.0991 33.8 0.0577 157.3 0.0539 232.0 0.1598 217.3 0.1082 0.100
Cere 620.3 0.0767 42.6 0.0517 175.1 0.0376 264.9 0.1366 268.0 0.0850 0.077

Table 2. Time in milliseconds to find all the occurrences of a query pattern of length 50
and 100. Times were computed as average of 1000 query patterns randomly extracted
from the collection.

HI CHICO LZ77-Index RLCSA128 RLCSA1024
|P | = 50 |P | = 100 |P | = 50 |P | = 100 |P | = 50 |P | = 100 |P | = 50 |P | = 100 |P | = 50 |P | = 100

Influenza 43.51 7.63 42.39 7.20 20.01 48.72 2.54 1.01 57.21 25.16
Coreutils 28.17 2.24 26.92 1.79 10.43 20.07 0.86 0.14 16.08 0.78
Einstein 18.65 11.41 16.43 9.45 23.03 34.90 3.28 2.55 30.94 22.66
Para 2.56 1.55 2.38 1.34 14.37 32.31 0.14 0.15 1.54 1.23
Cere 3.07 1.80 2.88 1.58 13.81 33.31 0.15 0.17 1.95 1.68

CHICO: A Compressed Hybrid Index for Repetitive Collections 335

Table 3. Different parsing algorithms to index collection CHR21, 90 GB. The first row
shows the results for EM-LZ, which computes the LZ77 greedy parsing. The next rows
show the results for the RLZ parsing using prefixes of size 500MB and 1 GB. The size of
the index is expressed in bytes per char, the building times are expressed in minutes,
and the query times are expressed in milliseconds. Query times were computed as
average of 1000 query patterns randomly extracted from the collection.

Size(bpc) Build time(min) Query time (ms)

|P | = 50 |P | = 70

EM-LZ 0.00126 4647 18.16 14.90

RLZ0.5GB 0.0060 143 55.28 46.67

RLZ1GB 0.0047 65 50.30 40.72

The first setting tested was using the EM-LZscan algorithm to compute the
greedy parsing. We ran it allowing a maximum usage of 10 GB of RAM. We also
tried the RLZ parser using as reference prefixes of sizes 500 MB and 1 GB. For
each of the resulting indexes, we measure the query time as the average over
1000 query patterns. The results are presented in Table 3.

Table 3 shows the impact of choosing different parsing algorithms to build the
index. We can see different trade-offs between building time and the resulting
index: EM-LZ generates the greedy parsing and is indeed the one that generates
the smaller index: 0.00126 bytes per character. The building time to achieve that
is more than 70 h. On the other hand, the RLZ parser is able to compute the
index in about 10 h. As expected, using RLZ instead of the greedy parsing results
in a larger index. However, the compression ratio is still good enough and the
resulting index fits comfortably in RAM.

Table 4. Results using RLZ and PRLZ to parse CHR14, a 201GB collection. Query
times were computed as average of 1000 query patterns randomly extracted from the
collection.

Size (bpc) Build time (min) Query Time (ms)

LZ parsing Others P=50 P=70

RLZ1GB 0.00656 308 51 225.43 178.47

PRLZ1GB 0.00658 22 55 224.04 181.21

Table 5. Results using PRLZ to parse CHR1...5, a collection of 2.4 TB of data. Query
times were computed as average of 1000 query patterns randomly extracted from the
collection.

Size (bpc) Build time (min) Query Time

LZ parsing Others P=50 (ms) P=70 (ms)

PRLZ10GB 0.000233 600 191 61.20 36.38

336 D. Valenzuela

The next test was on CHR14, a 201 GB collection that we could no longer
process in the same commodity computer. We indexed it in a large server,
equipped with 48 cores, 12 TB of hard disk, and 1.5 TB of RAM. We compared
the RLZ and PRLZ parsers. The results are shown in Table 4.

We can see that the parallelization had almost no impact in the size of the
index, but that the indexing time decreased considerably. In the parallel version
about 20 min where spent parsing the input, and 55 min building the index. In
all the previous settings, the building time was largely dominated by the parsing
procedure.

Finally, to demonstrate the scalability of our approach, we indexed CHR1...5,
a 2.4 TB collection. For this collection we only run the fastest parsing, and the
results can be seen in Table 5.

7 Conclusions

We have presented an improved version of the Hybrid Index of Ferrada et al.,
that achieves up to a 50% reduction in its space usage, while also improving
the query times. By using state of the art Lempel-Ziv parsing algorithms we
achieved different trade-offs between building time and space usage: When the
collections size is moderate, we could compare to available implementations, and
ours achieved the fastest building time. For collections in the tens of gigabytes,
our index can still be built in a commodity machine. Finally, we developed a
parallel Relative Lempel-Ziv parser to be run in a more powerful machine. In
that setting, we indexed a 201 GB collection in about an hour and a 2.4 TB
collection in about 12 h.

Some of our parsing schemes worked effectively in the genomic collections,
because a prefix of the collection is a natural reference for the RLZ algorithm. For
future developments, we will study alternatives such as artificial references [13],
so that the index can be equally effective in different contexts.

We also plan to build a version specialized for read alignment. To that end,
it is not enough to replace the kernel index by an approximate pattern matching
index: Read aligners must consider different factors, such as base quality scores,
reverse complements, among other aspects that are relevant to manage genomic
data.

Acknowledgments. Many thanks to Travis Gagie, Simon Puglisi, Veli Mäkinen,
Dominik Kempa and Juha Kärkkäinen for insightful discussions. The author is funded
by Academy of Finland grant 284598 (CoECGR).

References

1. Al-Hafeedh, A., Crochemore, M., Ilie, L., Kopylova, E., Smyth, W.F., Tischler,
G., Yusufu, M.: A comparison of index-based Lempel-Ziv LZ77 factorization algo-
rithms. ACM Comput. Surv. (CSUR) 45(1), 5 (2012)

CHICO: A Compressed Hybrid Index for Repetitive Collections 337

2. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.)
CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Heidelberg (2015)

3. Belazzougui, D., Puglisi, S.J.: Range predecessor and Lempel-Ziv parsing. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SIAM (2016) (to appear)

4. Claude, F., Fariña, A., Mart́ınez-Prieto, M., Navarro, G.: Indexes for highly repet-
itive document collections. In: Proceedings of the 20th ACM International Con-
ference on Information and Knowledge Management (CIKM), pp. 463–468. ACM
(2011)

5. Danek, A., Deorowicz, S., Grabowski, S.: Indexing large genome collections on a
PC. PLoS ONE 9(10), e109384 (2014)

6. Do, H.H., Jansson, J., Sadakane, K., Sung, W.K.: Fast relative Lempel-Ziv self-
index for similar sequences. Theor. Comput. Sci. 532, 14–30 (2014)

7. Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: Hybrid indexes for repetitive
datasets. Philos. Trans. R. Soc. A 372, 20130137 (2014)

8. Ferragina, P., Nitto, I., Venturini, R.: On the bit-complexity of Lempel-Ziv com-
pression. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 768–777. Society for Industrial and Applied Mathematics
(2009)

9. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

10. Fischer, J., Gagie, T., Gawrychowski, P., Kociumaka, T.: Approximating LZ77 via
small-space multiple-pattern matching. In: Bansal, N., Finocchi, I. (eds.) Algo-
rithms - ESA 2015. LNCS, vol. 9294, pp. 533–544. Springer, Heidelberg (2015)

11. Gagie, T., Puglisi, S.J.: Searching and indexing genomic databases via kerneliza-
tion. Front. Bioeng. Biotechnol. 3(12) (2015)

12. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

13. Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv factorization for efficient
storage and retrieval of web collections. Proc. VLDB Endow. 5(3), 265–273 (2011)

14. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In: Boni-
faci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol.
7933, pp. 139–150. Springer, Heidelberg (2013)

15. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization:
simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 189–200. Springer, Heidelberg (2013)

16. Karkkainen, J., Kempa, D., Puglisi, S.J.: Lempel-Ziv parsing in external memory.
In: Data Compression Conference (DCC), pp. 153–162. IEEE (2014)

17. Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In: Proceedings of the 3rd South American Workshop
on String Processing (WSP 1996). Citeseer (1996)

18. Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM J. Comput. 29(3), 893–911 (2000)

19. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013)

20. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010)

338 D. Valenzuela

21. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of individ-
ual genomes. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 121–137.
Springer, Heidelberg (2009)

22. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

23. Na, J.C., Park, H., Crochemore, M., Holub, J., Iliopoulos, C.S., Mouchard, L.,
Park, K.: Suffix tree of alignment: an efficient index for similar data. In: Lecroq,
T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 337–348. Springer,
Heidelberg (2013)

24. Navarro, G.: Indexing highly repetitive collections. In: Arumugam, S., Smyth, W.F.
(eds.) IWOCA 2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012)

25. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1), article 2 (2007)

26. Navarro, G., Ordóñez, A.: Faster compressed suffix trees for repetitive collections.
ACM J. Exp. Alg. 21(1), article 1.8 (2016)

27. Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S.,
Kohlbacher, O., Weigel, D.: Simultaneous alignment of short reads against multiple
genomes. Genome Biol. 10, R98 (2009)

28. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with applica-
tions in genome research. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(2), 375–388
(2014)

29. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

30. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

Fast Scalable Construction
of (Minimal Perfect Hash) Functions

Marco Genuzio1, Giuseppe Ottaviano2, and Sebastiano Vigna1(B)

1 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
vigna@di.unimi.it

2 Facebook, Menlo Park, USA

Abstract. Recent advances in random linear systems on finite fields
have paved the way for the construction of constant-time data structures
representing static functions and minimal perfect hash functions using
less space with respect to existing techniques. The main obstruction for
any practical application of these results is the cubic-time Gaussian elim-
ination required to solve these linear systems: despite they can be made
very small, the computation is still too slow to be feasible.

In this paper we describe in detail a number of heuristics and pro-
gramming techniques to speed up the resolution of these systems by sev-
eral orders of magnitude, making the overall construction competitive
with the standard and widely used MWHC technique, which is based on
hypergraph peeling. In particular, we introduce broadword programming
techniques for fast equation manipulation and a lazy Gaussian elimina-
tion algorithm. We also describe a number of technical improvements to
the data structure which further reduce space usage and improve lookup
speed.

Our implementation of these techniques yields a minimal perfect hash
function data structure occupying 2.24 bits per element, compared to
2.68 for MWHC-based ones, and a static function data structure which
reduces the multiplicative overhead from 1.23 to 1.03.

1 Introduction

Static functions are data structures designed to store arbitrary mappings from
finite sets to integers; that is, given a set of n pairs (ki, vi) where ki ∈ S ⊆
U, |S| = n and vi ∈ 2b, a static function will retrieve vi given ki in constant time.
Closely related are minimal perfect hash functions (MPHFs), where only the set
S of ki’s is given, and the data structure produces an injective numbering S → n.
While these tasks can be easily implemented using hash tables, static functions
and MPHFs are allowed to return any value if the queried key is not in the
original set S; this relaxation enables to break the information-theoretical lower
bound of storing the set S. In fact, constructions for static functions achieve
just O(nb) bits space and MPHFs O(n) bits space, regardless of the size of
the keys. This makes static functions and MPHFs powerful techniques when
handling, for instance, large sets of strings, and they are important building
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 339–352, 2016.
DOI: 10.1007/978-3-319-38851-9 23

340 M. Genuzio et al.

blocks of space-efficient data structures such as (compressed) full-text indexes [7],
monotone MPHFs [3,5], Bloom filter-like data structures [8], and prefix-search
data structures [4].

An important line of research, both theoretical and practical, involves lower-
ing the multiplicative constants in the big-O space bounds, while keeping feasible
construction times. In this paper we build on recent advances in random linear
systems theory, and in perfect hash data structures [14,22], to achieve practi-
cal static functions with the lowest space bounds so far, and construction time
comparable with widely used techniques. The new results, however, require solv-
ing linear systems rather than a simple depth-first visit of a hypergraph, as it
happens in current state-of-the-art solutions.

Since we aim at structures that can manage billions of keys, the main chal-
lenge in making such structures usable is taming the cubic running time of
Gaussian elimination at construction time. To this purpose, we introduce novel
techniques based on broadword programming [18] and a lazy version of structured
Gaussian elimination. We obtain data structures that are significantly smaller
than widely used hypergraph-based constructions, while maintaining or improv-
ing the lookup times and providing still feasible construction time.

All implementations discussed in this paper are distributed as free software
as part of the Sux4J project (http://sux4j.di.unimi.it/).

2 Notation and Tools

We use von Neumann’s definition and notation for natural numbers, identifying
n with { 0, 1, . . . , n − 1 }, so 2 = { 0, 1 } and 2b is the set of b-bit numbers.

Model and Assumptions. Our model of computation is a unit-cost word RAM
with word size w. We assume that n = |S| = O(2cw) for some constant c, so
that constant-time static data structures depending on |S| can be used.

Hypergraphs. An r-hypergraph on a vertex set V is a subset E of
(
V
r

)
, the set

of subsets of V of cardinality r. An element of E is called an edge. The k-core
of a hypergraph is its maximal induced subgraph having degree at least k.

A hypergraph is peelable if it is possible to sort its edges in a list so that for
each edge there is a vertex that does not appear in following elements of the list.
A hypergraph is peelable if and only if it has an empty 2-core. It is orientable
if it is possible to associate with each hyperedge a distinct vertex. Clearly, a
peelable hypergraph is orientable, but the converse is not necessarily true.

3 Background and Related Work

Linear Functions and MWHC. Most static function constructions work by
finding a linear function that satisfies the requirements. For simplicity start with
the special case of functions with binary values, that is vi ∈ F2 (the field with
two elements); the task is to find a vector w ∈ Fm

2 such that for each i

hθ(ki)T w = vi (1)

http://sux4j.di.unimi.it/

Fast Scalable Construction of (Minimal Perfect Hash) Functions 341

where hθ is a function U → Fm
2 from a suitable family H indexed by θ. To

make the lookup constant-time, we add the additional constraint that hθ(k)
has a constant number r of ones, and that the positions of these ones can be
computed in constant time. Then, with a slight abuse of notation, we can write
hθ,j to be the position of the j-th nonzero element, and hence the lookup just
becomes

whθ,0(ki) + · · · + whθ,r−1(ki) = vi. (2)

It is clear that, if such a function exists, the data structure just requires to
store w and θ. Note that if hθ is fixed, just writing down the n equations above
yields a linear system: stacking the row vectors hθ(ki)T into a matrix H and the
values vi into the vector v, we are looking to solve the equation

Hw = v. (3)

A sufficient condition for the solution w to exist is that the matrix H has full
rank. To generalize to the case where vi ∈ Fb

2 is a b-bit integer, just replace
v with the n × b matrix V obtained by stacking the vi’s as rows, and w by a
m × b matrix. Full rank of H is still a sufficient condition for the solvability of
HW = V . It remains to show how to pick the number of variables m, and the
functions hθ, so that H has full rank.

In their seminal paper [20], Majewski, Wormald, Havas and Czech (MWHC
hereinafter) introduced the first static function construction that can be
described using the framework above. They pick as H the set of functions
U → Fm

2 whose values have exactly r ones, that is, hθ(k) is the vector with
r ones in positions hθ,j(k) for j ∈ r, using the same notation above. If the func-
tions are picked uniformly at random, the r-uples

(
hθ,0(k), . . . , hθ,r−1(k)

)
can

be seen as edges of a random hypergraph with m nodes. When m > crn for a
suitable cr, with high probability the hypergraph is peelable, and the peeling
process triangulates the associated linear system; in other words, we have both
a probabilistic guarantee that the system is solvable, and that the solution can
be found in linear time. The constant cr depends on the degree r, which attains
its minimum at r = 3, c3 ≈ 1.23. The family H can be substituted with a smaller
set where the parameter θ can be represented with a sublinear number of bits,
so the overall space is 1.23bn + o(n) bits. In practice, hθ,j(k) will be simply a
hash function with random seed θ, which can be represented in O(1) bits.

MPHFs. Chazelle et al. [12], unaware of the MWHC construction, proposed it
independently, but also noted that as a side-effect of the peeling process each
hyperedge can be assigned an unique node; that is, each key can be assigned
injectively an integer in m. We just need to store which of the r nodes of the
hyperedge is the assigned one to obtain a perfect hash function S → m, and
this can be done in cr�log r�n + o(n) bits. To make it perfect, that is, S → n,
it is possible to add a ranking structure. Again, the best r is 3, which yields
theoretically a 2.46n + o(n) data structure [10].

HEM. Botelho et al. [10] introduced a practical external-memory algorithm
called Heuristic External Memory (HEM) to construct MPHFs for sets that are

342 M. Genuzio et al.

too large to store their hypergraph in memory. They replace each key with a
signature of Θ(log n) bits computed with a random hash function, and check
that no collision occurs. The signatures are then sorted and divided into small
chunks based on their most significant bits, and a separate function is computed
for each chunk with the approach described above (using a local seed). The
representations of the chunk functions are then concatenated into a single array
and their offsets (i.e., for each chunk, the position of the start of the chunk in
the global array) are stored separately.

Cache-Oblivious Constructions. As an alternative to HEM, in [2] the authors
propose cache-oblivious algorithms that use only scanning and sorting to peel
hypergraphs and compute the corresponding structures. The main advantage is
that of avoiding the cost of accessing the offset array of HEM without sacrificing
scalability.

CHD. Finally, specifically for the purpose of computing MPFHs Belazzougui
et al. [6] introduced a completely different construction, called CHD (compressed
hash-and-displace), which, at the price of increasing the expected construction
time makes it possible, in theory, to reach the information-theoretical lower
bound of ≈1.44 bits per key.

Beyond Hypergraphs. The MWHC construction for static functions can be
improved: Dietzfelbinger and Pagh [14] introduced a new construction that
allows to make the constant in front of the nb space bound for static func-
tions arbitrarily small ; by Calkin’s theorem, a constant βr exists such that if
m > βrn and the rows of the matrix H are just drawn at random from vectors
of weight r then H has full rank with high probability. Contrary to cr which
has a finite minimum, βr vanishes quickly as r increases, thus the denser the
rows, the closer m can be to n. For example, if r = 3, β3 ≈ 1.12 < c3 ≈ 1.23.
Unlike MWHC’s linear-time peeling algorithm, general matrix inversion requires
superquadratic time (O(n3) with Gaussian elimination); to obtain a linear-time
algorithm, they shard the set S into small sets using a hash function, and com-
pute the static functions on each subset independently; the actual construction is
rather involved, to account for some corner cases (note that the HEM algorithm
described above is essentially a practical simplified version of this scheme).

The authors also notice that solvability of the system implies that the corre-
sponding hypergraph is orientable, thus making it possible to construct minimal
perfect hash functions. Later works [13,15,16] further improve the thresholds
for solvability and orientability: less than 1.09 for r = 3, and less than 1.03 for
r = 4.

4 Squeezing Space

In this paper, we combine a number of new results and techniques to provide
improved constructions. Our data structure is based on the HEM construc-
tion [10]: the key set is randomly sharded into chunks of expected constant
size, and then the (minimal perfect hash) function is computed independently

Fast Scalable Construction of (Minimal Perfect Hash) Functions 343

on each chunk. Instead of using a vertex/edge ratio that guarantees peelability,
however, we choose a lower one that still guarantees orientability and solvabil-
ity of the associated linear system (with high probability). Losing peelability
implies that we have to use Gaussian elimination to solve the linear system, but
since the chunks have constant size the overall construction is linear-time (plus
an O(n log n) step to sort the signatures, which is actually a small part of the
execution time in practice). We also describe improvements to the HEM data
structure in Sect. 7.

First of all, we use the orientability thresholds in [13], which are shown
to be the same as those of XORSAT solvability; for example, when a random
3-hypergraph has a vertex/edge ratio c > 1.09, it contains a nonempty 2-core
(i.e., a maximal subgraph all whose vertices have degree at least 2), but the
hypergraph is orientable and the incidence matrix has full rank. We can thus
extend the MWHC technique to 3-hypergraphs with a nonempty 2-core: after
the peeling procedure, we simply solve the equations specified by the 2-core.
The main obstacle to this approach, before the results described in this paper,
was that construction time was two orders of magnitude slower than that of the
MWHC construction [1], making the whole construction unusable in practice.
In Michael Rink’s Ph.D. thesis [22] these considerations are described in some
detail.

Moreover, since recently Goerdt and Falke have proved a result analogous
to XORSAT for modulo-3 systems [17],1 we can also obtain an orientation of
a random 3-hypergraph using the generalized selfless algorithm [13], and then
solve the modulo-3 linear system induced by the orientation to obtain a perfect
hash function. Both procedures have some controlled probability of failure. In
case such a failure occurs, we generate a new hypergraph. We then show how to
manage the ranking part essentially with no space cost.

5 Broadword Programming for Row Operations

Our first step towards a practical solution by Gaussian elimination is broadword
programming [18] (a.k.a. SWAR—“SIMD in A Register”), a set of techniques
to process simultaneously multiple values by packing them into machine words
of w bits and performing the computations on the whole words. In theoretical
succinct data structures it is common to assume that w = Θ(log n) and reduce
to subproblems of size O(w), whose results can be precomputed into sublinear-
sized tables and looked up in constant time. For practical values of n, however,
these tables are far from negligible; in this case broadword algorithms are usu-
ally sufficient to compute the same functions in constant or near-constant time
without having to store a lookup table.

For our problem, the inner loop of the Gaussian elimination is entirely com-
posed of row operations: given vectors x and y, and a scalar α, compute x + αy.
1 Technically, the proof in the paper is for k > 15, but the author claim that the result

can be proved for k ≥ 3 with the same techniques, and in practice we never needed
more than two attempts to generate a solvable system.

344 M. Genuzio et al.

It is trivial to perform this operation w elements at a time when the field is F2,
which is the case for static functions computation: we can just pack one element
per bit, and since the scalar can be only 1 the sum is just a bitwise XOR x ^ y,
using the C notation. For MPHFs, instead, the field is F3, which requires more
sophisticated algorithms. First, we can encode each element {0, 1, 2} into 2 bits,
thus fitting w/2 elements into a word. The scalar α can be only 1 or −1, so we
can treat the cases x + y and x − y separately.

For the addition, we can start by simply adding x and y. When elements on
both sides are smaller than 2, there’s nothing to do: the result will be smaller
than 3. When however at least one of the two is 2 and the other one is not 0, we
need to subtract 3 from the result to bring it back to the canonical representation
in [0 . . 3). Note that when the two sides are both 2 the result overflows its 2 bits
(102+102 = 1002), but since addition and subtraction modulo 2w are associative
we can imagine that the operation is performed independently on each 2-bit
element, as long as the final result fits into 2 bits. Thus we need to compute a
mask that is 3 wherever the results is at least 3, and then subtract it from x+y.

uint64_t add_mod3_step2(uint64_t x, uint64_t y) {

uint64_t xy = x | y;

// Set MSB if (x or y == 2) and (x or y == 1).

uint64_t mask = (xy << 1) & xy;

// Set MSB if (x == 2) and (y == 2).

mask |= x & y;

// The MSB of each 2-bit element is now set

// iff the result is >= 3. Clear the LSBs.

mask &= 0x5555555555555555 << 1;

// Now turn the elements with MSB set into 3.

mask |= mask >> 1;

return x + y - mask;

}

Subtraction is very similar. We begin by subtracting elementwise y from 3,
which does not cause any carry since all the elements are strictly smaller than
3. The resulting elements are thus at least 1. We can now proceed to compute
x+ y with the same case analysis as before, except now the right-hand elements
are in [1 . . 3] so the conditions for the mask are slightly different.

uint64_t sub_mod3_step2(uint64_t x, uint64_t y) {

// y = 3 - y.

y = 0xFFFFFFFFFFFFFFFF - y;

// Now y > 0

// Set MSB if x == 2.

uint64_t mask = x;

// Set MSB if (x == 2 and y >= 2) or (y == 3).

mask |= ((x | y) << 1) & y;

mask &= 0x5555555555555555 << 1;

mask |= mask >> 1;

return x + y - mask;

}

Fast Scalable Construction of (Minimal Perfect Hash) Functions 345

Both addition and subtraction take just 10 arithmetic operations, and on
modern 64-bit CPUs they can process vectors of 32 elements at a time.

Finally, when performing back substitution we will need to compute row-
matrix multiplications, where a row is given by the coefficients of an equation
and the matrix contains the solutions computed so far.

In the field F2, this can be achieved by iterating on the ones of the row, and
adding up the corresponding b-bit rows in the right-hand matrix. The ones can
iterate by finding the LSB of the current row word, and deleting it with the
standard broadword trick x = x & - x.

For MPHFs, instead, the field is F3 but the matrix of solutions is a vector, so
the product is just a scalar product. To compute it, we use the following broad-
word algorithm that computes the scalar product of two vectors represented as
64-bit words.

uint64_t prod_mod3_step2(uint64_t x, uint64_t y) {

uint64_t high = x & 0xAAAAAAAAAAAAAAAA;

uint64_t low = x & 0x5555555555555555;

// Make every 10 into a 11 and zero everything else.

uint64_t high_shift = high >> 1;

// Exchange ones with twos , and make 00 into 11.

uint64_t t = (y ^ (high | high_shift))

& (x | high_shift | low << 1);

return popcount(t & 0xAAAAAAAAAAAAAAAA) * 2

+ popcount(t & 0x5555555555555555);

}

The expression computing t takes care of placing in a given position a value
equivalent to the product of the associated positions in x and y (this can be
easily check with a case-by-case analysis). We remark that in some cases we
actually use 3 as equivalent to zero. At that point, the last lines compute the
contribution of each product (popcount() returns the number of bit in a word
that are set). Note that the results has still to be reduced modulo 3.

6 Lazy Gaussian Elimination

Even if armed with broadword algorithms, solving by Gaussian elimination sys-
tems of the size of a HEM chunk (thousands of equations and variables) would
be prohibitively slow, making construction of our data structures an order of
magnitude slower than the standard MWHC technique.

Structured Gaussian elimination aims at reducing the number of operations
in the solution of a linear system by trying to isolate a number of variables
appearing in a large number of equations, and then rewrite the rest of the sys-
tem using just those variables. It is a heuristics developed in the context of
computations of discrete logarithms, which require the solution of large sparse
systems [19,21]. The standard formulation requires the selection of a fraction
(chosen arbitrarily) of variables that appear in a large number of equations, and
then a number of loosely defined refinement steps.

346 M. Genuzio et al.

We describe here a new parameterless version of structured Gauss elimina-
tion, which we call lazy Gaussian elimination. This heuristics turned out to be
extremely effective on our systems, reducing the size of the system to be solved
by standard elimination to around 4 % of the original one.

Consider a system of equations on some field. At any time a variable can be
active, idle, or solved and an equation can be sparse or dense. Initially, all equa-
tions are sparse and all variables are idle. We will modify the system maintaining
the following invariants:

– dense equations do not contain idle variables;
– an equation can contain at most one solved variable;
– a solved variable appears in exactly one dense equation.

Our purpose is to modify the system so that all equations are dense, trying to
minimize the number of active variables (or, equivalently, maximize the num-
ber of solved variables). At that point, values for the active variables can be
computed by standard Gaussian elimination on the dense equations that do not
contain solved variables, and solved variables can be computed easily from the
values assigned to active variables.

The weight of a variable is the number of sparse equations in which it appears.
The priority of a sparse equation is the number of idle variables in the equation.
Lazy Gaussian elimination keeps equations in a min-priority queue, and performs
the following actions:

1. If there is a sparse equation of priority zero that contains some variables, it
is made dense. If there are no variables, the equation is either an identity,
in which case it is discarded, or it is impossible, in which case the system is
unsolvable and the procedure stops.

2. If there is a sparse equation of priority one, the only idle variable in the
equation becomes solved, and the equation becomes dense. The equation is
then used to eliminate the solved variable from all other equations.

3. Otherwise, the idle variable appearing in the largest number of sparse equa-
tions becomes active.

Note that if the system is solvable the procedure always completes—in the worst
case, by making all idle variables active (and thus all equations dense).

Two observations are in order:

– The weight of an idle variable never changes, as in step 2 we eliminate the
solved variable and modify the coefficients of active variables only. This means
that we can simply sort initially (e.g., by countsort) the variables by the
number of equations in which they appear, and pick idle variables in that
order at step 3.

– We do not actually need a priority queue for equations: simply, when an equa-
tion becomes of priority zero or one, it is moved to the left or right side,
respectively, of a deque that we check in the first step.

Thus, the only operations requiring superlinear time are the eliminations per-
formed in step 2, and the final Gaussian elimination on the dense equations,
which we compute, however, using broadword programming.

Fast Scalable Construction of (Minimal Perfect Hash) Functions 347

7 Data Structure Improvements

Improving HEM. Our HEM version uses on-disk bucket sorting to speed up
construction: keys are first divided into 256 on-disk physical chunks, depending
on the highest bits of their hash value (we use Jenkins’s SpookyHash). The on-
disk chunks are then loaded in memory and sorted, and virtual chunks of the
desired size are computed either splitting or merging physical chunks. Since we
store a 192-bit hash plus a 64-bit value for each key, we can guarantee that the
amount of memory used that depends on the number of keys cannot exceed one
bit per key (beside the structure to be computed).

Eliminating the Ranking Structure. In the case of minimal perfect hash-
ing, we can further speed up the structure and reduce space by getting rid of
the ranking structure that is necessary to make minimal the perfect hashing
computed by the system of equations.

In the standard HEM construction, the number of vertices associated to a
chunk of size s is given by �cs�, where c is a suitable constant, and the offset
information contains the partial sums of such numbers.

We will use a different approach: the number of vertices associated with the
chunk will be �c(S + s)� − �cS�, where S is the number of elements stored in
previous chunks. The difference to �cs� is at most one, but using our approach we
can compute, given S and s, the number of vertices associated with the chunk.

Thus, instead of storing the offset information, we will store for each chunk
the number S of elements stored in previous chunks. The value can be used as a
base for the ranking inside the chunk: this way, the ranking structure is no longer
necessary, reducing space and the number of memory accesses. When r = 3, as
it is customary we can use two bits for each value, taking care of using the value
3, instead of 0, for the vertex associated to a hyperedge. As a result, ranking
requires just counting the number of nonzero pairs in the values associated with
a chunk, which can be performed again by broadword programming:

int count_nonzero_pairs (uint64_t x) {

return popcount ((x | x >> 1) & 0x5555555555555555);

}

Compacting Offsets and Seeds. After removing the ranking structure, it is
only left to store the partial sums of the number of keys per chunk, and the seed
used for the chunk hash function. This is the totality of the overhead imposed
by the HEM data structure with respect to constructing the function over the
whole input set at once.

Instead of storing these two numbers separately, we combine them into a
single 64-bit integer. The main observation that allows us to do so is that due to
the extremely high probability of finding a good seed for each chunk, few random
bits are necessary to store it: we can just use the same sequence of seeds for each
chunk, and store the number of failed attempts before the successful one. In our
experiments this number is distributed geometrically and never greater than 24.
If we are storing n keys, 64 − �log n� bits are available for the seed, which are
more than sufficient for any realistic n.

348 M. Genuzio et al.

8 Experimental Results

We performed experiments in Java using two datasets derived from the eu-2015
crawls gathered by BUbiNG [9] on an Intel R© CoreTM i7-4770 CPU @3.40 GHz
(Haswell). The smaller dataset is the list of hosts (11 264 052 keys, ≈22 B/key),
while the larger dataset is the list of pages (1 070 557 254 keys, ≈80 B/key). The
crawl data is publicly available at the LAW website.2

Besides the final performance figures (which depends on the chosen chunk
size), it is interesting to see how the measures of interest vary with the chunk
size. In Fig. 1 we show how the number of bits per element, construction time
and lookup time vary with the chunk size for r = 3. Note that in the case of
minimal perfect hash functions we show the actual number of bits per key. In
the case of general static function, we build a function mapping each key to its
ordinal position and report the number of additional bits per key used by the
algorithm.

As chunks gets larger, the number of bits per key slightly decreases (as the
impact of the offset structure is better amortized); at the same time:

– construction time increases because the Gaussian elimination process is super-
linear (very sharply after chunk size 211);

– in the case of minimal perfect hash functions, larger chunks cause the rank
function to do more work linearly with the chunk size, and indeed lookup time
increases sharply in this case;

– in the case of static functions, chunks larger than 210 yield a slightly improved
lookup time as the offset array becomes small enough to fit in the L3 cache.

In Table 1, we show the lookup and construction time of our “best choice”
chunk size, 210, with respect to the data reported in [1] for the same space usage
(i.e., additional 1.10 b/key), and to the C code for the CHD technique made
available by the authors (http://cmph.sourceforge.net/) when λ = 3, in which
case the number of bits per key is almost identical to ours. We remark that in
the case of CHD for the larger dataset we had to use different hardware, as the
memory available (16 GB) was not sufficient to complete the construction, in
spite of the final result being just 3 GB.

Table 1. A comparison of per-key construction and evaluation time, r = 3. CHD is
from [6], ADR is from [1].

eu-2015-host eu-2015 ADR

MPHF SF CHD MPHF SF CHD SF

Lookup (ns) 186 210 408 499 438 1030 ?

Construction (µs) 1.61 1.12 0.98 2.45 1.73 3.53 270

2 http://law.di.unimi.it/.

http://cmph.sourceforge.net/
http://law.di.unimi.it/

Fast Scalable Construction of (Minimal Perfect Hash) Functions 349

Fig. 1. Size in bits per element, and construction and lookup time in microseconds for
the eu-2015 and eu-2015-host datasets when r = 3.

Table 2. Per-key construction and evaluation time of static functions, r = 4.

eu-2015-host eu-2015 ADR

Lookup (ns) 236 466 ?

Construction (µs) 1.75 2.6 ≈2000

350 M. Genuzio et al.

Table 3. Increase in construction time for r = 3 using just pre-peeling (P), broadword
computation (B), lazy Gaussian elimination (G) or a combination.

BG GP G BP B P None

+13 % +57 % +98 % +296% +701 % +2218 % +5490 %

In the case of static function, we can build data structures about two hun-
dred times faster than what was previously possible [1] (the data displayed is
on a dataset with 107 elements; lookup time was not reported). To give our
reader an idea of the contribution of each technique we use, Table 3 shows the
increase in construction time using any combination of the peeling phase (which
is technically not necessary—we could just solve the system), broadword com-
putation instead of a standard sparse system representation, and lazy instead
of standard Gaussian elimination. The combination of our techniques brings a
fifty-fold increase in speed (our basic speed is already fourfould that of [1], likely
because our hardware is more recent).

In the case of MPHFs, we have extremely competitive lookup speed (twice
that of CHD) and much better scalability. At small size, performing the con-
struction entirely in main memory, as CHD does, is an advantage, but as soon
as the dataset gets large our approach scales much better. We also remark that
our code is a highly abstract Java implementation based on strategies that turn
objects into bit vectors at runtime: any kind of object can thus be used as key.
A tight C implementation able to hash only byte arrays, such as that of CHD,
would be significantly faster. Indeed, from the data reported in [2] we can esti-
mate that it would be about twice as fast.

The gap in speed is quite stable with respect to the key size: testing the same
structures with very short (less than 8 bytes) random keys provides of course
faster lookup, but the ratio between the lookup times remain the same.

Finally, one must consider that CHD, at the price of a much greater con-
struction time, can further decrease its space usage, but just a 9 % decrease in
space increases construction time by an order of magnitude, which makes the
tradeoff unattractive for large datasets.

With respect to our previous peeling-based implementations, we increase con-
struction time by ≈50 % (SF) and ≈100 % (MPHF), at the same time decreasing
lookup time.

In Table 2 we report timings for the case r = 4 (the construction time for [1]
has been extrapolated, as the authors do not provide timings for this case).
Additional space required now is just ≈3 % (as opposed to ≈10 % when r = 3).
The main drawbacks are the slower construction time (as the system becomes
denser) and the slower lookup time (as more memory has to be accessed). Larger
values of r are not interesting as the marginal gain in space becomes negligible.

Fast Scalable Construction of (Minimal Perfect Hash) Functions 351

9 Further Applications

Static functions are a basic building block of monotone minimal perfect hash
functions [5], data structures for weak prefix search [4], and so on. Replacing the
common MWHC implementation of these building blocks with our improved
construction will automatically decrease the space used and the lookup time in
these data structures.

We remark that an interesting application of static functions is the almost
optimal storage of static approximate dictionaries. By encoding as a static func-
tion the mapping from a key to a b-bit signature generated by a random hash
function, one can answer to the question “x ∈ X?” in constant time, with false
positive rate 2−b, using (when r = 4) just 1.03 nb bits; the lower bound is nb [11].

10 Conclusions

We have discussed new practical data structures for static functions and mini-
mal perfect hash functions. Both scale to billion keys, and both improve signifi-
cantly lookup speed with respect to previous constructions. In particular, we can
build static functions based on Gaussian elimination two orders of magnitude
faster than previous approaches, thanks to a combination of broadword program-
ming and a new, parameterless lazy approach to the solution of sparse system.
We expect that these structure will eventually replace the venerable MWHC
approach as a scalable method with high-performance lookup.

References

1. Aumüller, M., Dietzfelbinger, M., Rink, M.: Experimental variations of a theo-
retically good retrieval data structure. In: Fiat, A., Sanders, P. (eds.) ESA 2009.
LNCS, vol. 5757, pp. 742–751. Springer, Heidelberg (2009)

2. Belazzougui, D., Boldi, P., Ottaviano, G., Venturini, R., Vigna, S.: Cache-oblivious
peeling of random hypergraphs. In: 2014 Data Compression Conference (DCC
2014), pp. 352–361. IEEE (2014)

3. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
searching a sorted table with O(1) accesses. In: Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Mathematics (SODA), pp. 785–794. ACM,
New York (2009)

4. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Fast prefix search in little space,
with applications. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 427–438. Springer, Heidelberg (2010)

5. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Theory and practice of monotone
minimal perfect hashing. ACM J. Exp. Algorithm. 16(3), 3.2:1–3.2:26 (2011)

6. Belazzougui, D., Botelho, F.C., Dietzfelbinger, M.: Hash, displace, and compress.
In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 682–693. Springer,
Heidelberg (2009)

7. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 748–759.
Springer, Heidelberg (2011)

352 M. Genuzio et al.

8. Belazzougui, D., Venturini, R.: Compressed static functions with applications. In:
SODA, pp. 229–240 (2013)

9. Boldi, P., Marino, A., Santini, M., Vigna, S.: BUbiNG: massive crawling for
the masses. In: Proceedings of the Companion Publication of the 23rd Interna-
tional Conference on World Wide Web Companion, WWW Companion 2014,
pp. 227–228. International World Wide Web Conferences Steering Committee
(2014)

10. Botelho, F.C., Pagh, R., Ziviani, N.: Practical perfect hashing in nearly optimal
space. Inf. Syst. 38(1), 108–131 (2013)

11. Carter, L., Floyd, R., Gill, J., Markowsky, G., Wegman, M.: Exact and approximate
membership testers. In: Proceedings of Symposium on Theory of Computation
(STOC 1978), pp. 59–65. ACM Press (1978)

12. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: an efficient
data structure for static support lookup tables. In: Munro, J.I. (ed.) Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2004, pp. 30–39. SIAM (2004)

13. Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink,
M.: Tight thresholds for cuckoo hashing via XORSAT. In: Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 213–225. Springer, Heidelberg (2010)

14. Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approxi-
mate membership (extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 385–396. Springer, Heidelberg (2008)

15. Fountoulakis, N., Panagiotou, K.: Sharp load thresholds for cuckoo hashing.
Random Struct. Algorithms 41(3), 306–333 (2012)

16. Frieze, A.M., Melsted, P.: Maximum matchings in random bipartite graphs and the
space utilization of cuckoo hash tables. Random Struct. Algorithms 41(3), 334–364
(2012)

17. Goerdt, A., Falke, L.: Satisfiability thresholds beyond k−XORSAT. In: Hirsch,
E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353,
pp. 148–159. Springer, Heidelberg (2012)

18. Knuth, D.E.: The Art of Computer Programming. Pre-Fascicle 1A. Draft of Section
7.1.3: Bitwise Tricks and Techniques (2007)

19. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite
fields. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 109–133. Springer, Heidelberg (1991)

20. Majewski, B.S., Wormald, N.C., Havas, G., Czech, Z.J.: A family of perfect hashing
methods. Comput. J. 39(6), 547–554 (1996)

21. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic signif-
icance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS,
vol. 209, pp. 224–314. Springer, Heidelberg (1985)

22. Rink, M.: Thresholds for matchings in random bipartite graphs with applications
to hashing-based data structures. Ph.D. thesis, Technische Universität Ilmenau
(2015)

Better Partitions of Protein Graphs
for Subsystem Quantum Chemistry

Moritz von Looz1(B), Mario Wolter2, Christoph R. Jacob2,
and Henning Meyerhenke1

1 Institute of Theoretical Informatics Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

{moritz.looz-corswarem,meyerhenke}@kit.edu
2 Institute of Physical and Theoretical Chemistry,

TU Braunschweig, Braunschweig, Germany
{m.wolter,c.jacob}@tu-braunschweig.de

Abstract. Determining the interaction strength between proteins and
small molecules is key to analyzing their biological function. Quantum-
mechanical calculations such as Density Functional Theory (DFT) give
accurate and theoretically well-founded results. With common imple-
mentations the running time of DFT calculations increases quadrati-
cally with molecule size. Thus, numerous subsystem-based approaches
have been developed to accelerate quantum-chemical calculations. These
approaches partition the protein into different fragments, which are
treated separately. Interactions between different fragments are approxi-
mated and introduce inaccuracies in the calculated interaction energies.

To minimize these inaccuracies, we represent the amino acids and
their interactions as a weighted graph in order to apply graph parti-
tioning. None of the existing graph partitioning work can be directly
used, though, due to the unique constraints in partitioning such protein
graphs. We therefore present and evaluate several algorithms, partially
building upon established concepts, but adapted to handle the new con-
straints. For the special case of partitioning a protein along the main
chain, we also present an efficient dynamic programming algorithm that
yields provably optimal results. In the general scenario our algorithms
usually improve the previous approach significantly and take at most a
few seconds.

1 Introduction

Context. The biological role of proteins is largely determined by their inter-
actions with other proteins and small molecules. Quantum-chemical methods,
such as Density Functional Theory (DFT), provide an accurate description of
these interactions based on quantum mechanics. A major drawback of DFT is its
time complexity, which has been shown to be cubic with respect to the protein
size in the worst case [4,17]. For special cases this complexity can be reduced
to being linear [9,20]. DFT implementations used for calculations on proteins

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 353–368, 2016.
DOI: 10.1007/978-3-319-38851-9 24

354 M. von Looz et al.

are in between these bounds and typically show quadratic behavior with signifi-
cant constant factors, rendering proteins bigger than a few hundred amino acids
prohibitively expensive to compute [4,17].

To mitigate the computational cost, quantum-chemical subsystem methods
have been developed [12,15]. In such approaches, large molecules are separated
into fragments (= subsystems) which are then treated individually. A common
way to deal with individual fragments is to assume that they do not interact with
each other. The error this introduces for protein–protein or protein–molecule
interaction energies (or for other local molecular properties of interest) depends
on the size and location of fragments: A partition that cuts right through the
strongest interaction in a molecule will give worse results than one that carefully
avoids this. It should also be considered that a protein consists of a main chain
(also called backbone) of amino acids. This main chain folds into 3D-secondary-
structures, stabilized by non-bonding interactions (those not on the backbone)
between the individual amino acids. These different connection types (backbone
vs non-backbone) have different influence on the interaction energies.

Motivation. Subsystem methods are very powerful in quantum chemistry [12,15]
but so far require manual cuts with chemical insight to achieve good parti-
tions [18]. Currently, when automating the process, domain scientists typically
cut every X amino acids along the main chain (which we will call the naive
approach in the following). This gives in general suboptimal and unpredictable
results.

By considering amino acids as nodes connected by edges weighted with the
expected error in the interaction energies, one can construct (dense) graphs rep-
resenting the proteins. Graph partitions with a light cut, i. e. partitions of the
vertex set whose inter-fragment edges have low total weight, should then corre-
spond to a low error for interaction energies. A general solution to this problem
has high significance, since it is applicable to any subsystem-based method and
since it will enable such calculations on larger systems with controlled accuracy.
Yet, while several established graph partitioning algorithms exist, none of them
is directly applicable to our problem scenarios due to additional domain-specific
optimization constraints (which are outlined in Sect. 2).

Contributions. For the first of two problem scenarios, the special case of con-
tinuous fragments along the main chain, we provide in Sect. 4 a dynamic pro-
gramming (DP) algorithm. We prove that it yields an optimal solution with a
worst-case time complexity of O(n2 · maxSize).

For the general protein partitioning problem, we provide three algorithms
using established partitioning concepts, now equipped with techniques for adher-
ing to the new constraints (see Sect. 5): (i) a greedy agglomerative method,
(ii) a multilevel algorithm with Fiduccia-Mattheyses [8] refinement, and (iii) a
simple postprocessing step that “repairs” traditional graph partitions.

Our experiments (Sect. 6) use several protein graphs representative for DFT
calculations. Their number of nodes is rather small (up to 357), but they are com-
plete graphs. The results show that our algorithms are usually better in quality

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry 355

than the naive approach. While none of the new algorithms is consistently the
best one, the DP algorithm can be called most robust since it is always better in
quality than the naive approach. A meta algorithm that runs all single algorithms
and picks the best solution would still take only about ten seconds per instance
and improve the naive approach on average by 13.5% to 20%, depending on
the imbalance. In the whole quantum-chemical workflow the total partitioning
time of this meta algorithm is still small. Further experiments and visualizations
omitted due to space constraints can be found in the full version [28].

2 Problem Description

Given an undirected connected graph G = (V,E) with n nodes and m edges, a
set of k disjoint non-empty node subsets V1, V2, ...Vk is called a k-partition of G
if the union of the subsets yields V (V =

⋃
1≤i≤k Vi). We denote partitions with

the letter Π and call the subsets fragments in this paper.
Let w(u, v) be the weight of edge {u, v} ∈ E, or 1 in an unweighted graph.

Then, the cut weight of a graph partition is the sum of the weights of edges with
endpoints in different subsets: cutweight(Π,G) =

∑
u∈Vi,v∈Vj ,i �=j,Vi,Vj∈Π w(u, v).

The largest fragment’s size should not exceed maxSize := (1 + ε) · �n/k�, where
ε is the so-called imbalance parameter. A partition is balanced iff ε = 0.

Given a graph G = (V,E) and k ∈ N≥2, graph partitioning is often defined as
the problem of finding a k-partition with minimum cut weight while respecting
the constraint of maximum imbalance ε. This problem is NP-hard [10] for gen-
eral graphs and values of ε. For the case of ε = 0, no polynomial time algorithm
can deliver a constant factor approximation guarantee unless P equals NP [1].

2.1 Protein Partitioning

We represent a protein as a weighted undirected graph. Nodes represent amino
acids, edges represent bonds or other interactions. (Note that our graphs are
different from protein interaction networks [23].) Edge weights are determined
both by the strength of the bond or interaction and the importance of this edge
to the protein function. Such a graph can be constructed from the geometrical
structure of the protein using chemical heuristics whose detailed discussion is
beyond our scope. Partitioning into fragments yields faster running time for DFT
since the time required for a fragment is quadratic in its size. The cut weight
of a partition corresponds to the total error caused by dividing this protein into
fragments. A balanced partition is desirable as it maximizes this acceleration
effect. However, relaxing the constraint with a small ε > 0 makes sense as this
usually helps in obtaining solutions with a lower error.

Note that the positions on the main chain define an ordering of the nodes.
From now on we assume the nodes to be numbered along the chain.

356 M. von Looz et al.

New Constraints. Established graph partitioning tools using the model of the
previous section cannot be applied directly to our problem since protein parti-
tioning introduces additional constraints and an incompatible scenario due to
chemical idiosyncrasies:

(a) Excerpt from a partition where the
gap constraint is violated, since nodes
4 and 6 (counting clockwise from the
upper left) are in the green fragment,
but node 5 is in the blue fragment.

(b) Excerpt from a partition where the
charge constraint is violated. Nodes 3
and 13 are charged, indicated by the
white circles, but are both in the blue
fragment.

Fig. 1. Examples of violated gap and charge constraints, with fragments represented
by colors. (Color figure online)

– The first constraint is caused by so-called cap molecules added for the sub-
system calculation. These cap molecules are added at fragment boundaries
(only in the DFT, not in our graph) to obtain chemically meaningful frag-
ments. This means for the graph that if node i and node i + 2 belong to the
same fragment, node i + 1 must also belong to that fragment. Otherwise the
introduced cap molecules will overlap spatially and therefore not represent a
chemically meaningful structure. We call this the gap constraint. Figure 1a
shows an example where the gap constraint is violated.

– More importantly, some graph nodes can have a charge. It is difficult to obtain
robust convergence in quantum-mechanical calculations for fragments with
more than one charge. Therefore, together with the graph a (possibly empty)
list of charged nodes is given and two charged nodes must not be in the same
fragment. This is called the charge constraint. Figure 1b shows an example
where the charge constraint is violated.

We consider here two problem scenarios (with different chemical inter-
pretations) in the context of protein partitioning:

– Partitioning along the main chain: The main chain of a protein gives a
natural structure to it. We thus consider a scenario where partition fragments
are forced to be continuous on the main chain. This minimizes the number of
cap molecules necessary for the simulation and has the additional advantage
of better comparability with the naive partition.
Formally, the problem can be stated like this: Given a graph G = (V,E) with
ascending node IDs according to the node’s main chain position, an integer

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry 357

k and a maximum imbalance ε, find a k-partition with minimum cut weight
such that vj ∈ Vi ∧ vj + l ∈ Vi → vj + 1 ∈ Vi, 1 ≤ j ≤ n, l ∈ N

+, 1 ≤ i ≤ k and
which respects the balance, gap, and charge constraints.

– General protein partitioning: The general problem does not require con-
tinuous fragments on the main chain, but also minimizes the cut weight while
adhering to the balance, gap, and charge constraints.

3 Related Work

3.1 General-Purpose Graph Partitioning

General-purpose graph partitioning tools only require the adjacency information
of the graph and no additional problem-related information. For special inputs
(very small n or k = 2 and small cuts) sophisticated methods from mathematical
programming [11] or using branch-and-bound [5] are feasible – and give provably
optimal results. To be of general practical use, in particular for larger instances,
most widely used tools employ local heuristics within a multilevel approach,
though (see the survey by Buluc et al. [2]).

The multilevel metaheuristic, popularized for graph partitioning in the mid-
1990s [14], is a powerful technique and consists of three phases: First, one com-
putes a hierarchy of graphs G0, . . . , Gl by recursive coarsening in the first phase.
Gl ought to be small in size, but topologically similar to the input graph G0.
A very good initial solution for Gl is computed in the second phase. After that,
the recursive coarsening is undone and the solution prolongated to the next-finer
level. In this final phase, in successive steps, the respective prolongated solution
on each level is improved using local search.

A popular local search algorithm for the third phase of the multilevel process
is based on the method by Fiduccia and Mattheyses (FM) [8] (many others exist,
see [2]). The main idea of FM is to exchange nodes between blocks in the order
of the cost reductions possible, while maintaining a balanced partition. After
every node has been moved once, the solution with the best cost improvement
is chosen. Such a phase is repeated several times, each running in time O(m).

3.2 Methods for Subsystem Quantum Chemistry

While this work is based on the molecular fractionation with conjugate cap
(MFCC) scheme [13,30], several more sophisticated approaches have been devel-
oped which allow to decrease the size of the error in subsystem quantum-
mechanical calculations [6,7,15]. The general idea is to reintroduce the interac-
tions missed by the fragmentation of the supermolecule. A prominent example
is the frozen density embedding (FDE) approach [15,16,29]. All these methods
strongly depend on the underlying fragmentation of the supermolecule and it is
therefore desirable to minimize the error in the form of the cut weight itself. Thus,
the implementation shown in this paper is applicable to all quantum-chemical
subsystem methods needing molecule fragments as an input.

358 M. von Looz et al.

4 Solving Main Chain Partitioning Optimally

As discussed in the introduction, a protein consists of a main chain, which is
folded to yield its characteristic spatial structure. Aligning a partition along
the main chain uses the locality information in the node order and mini-
mizes the number of cap molecules necessary for a given number of fragments.
The problem description from Sect. 2 – finding fragments with continuous node
IDs – is equivalent to finding a set of k − 1 delimiter nodes vd1 , vd2 , ...vdk−1 that
separate the fragments. Note that this is not a vertex separator, instead the
delimiter nodes induce a set of cut edges due to the continuous node IDs. More
precisely, delimiter node vdj

belongs to fragment j, 1 ≤ j ≤ k − 1.
Consider the delimiter nodes in ascending order. Given the node vd2 , the

optimal placement of node vd1 only depends on edges among nodes u < vd2 ,
since all edges {u, v} from nodes u < vd2 to nodes v > vd2 are cut no matter
where vd1 is placed. Placing node vd2 thus induces an optimal placement for vd1 ,
using only information from edges to nodes u < vd2 . With this dependency of
the positions of vd1 and vd2 , placing node vd3 similarly induces an optimal choice
for vd2 and vd1 , using only information from nodes smaller than vd3 . The same
argument can be continued inductively for nodes vd4 . . . vdk

.
Algorithm 1 is our dynamic-programming-based solution to the main chain

partitioning problem. It uses the property stated above to iteratively compute
the optimal placement of vdj−1 for all possible values of vdj

. Finding the optimal
placements of vd1 , . . . vdj−1 given a delimiter vdj

at node i is equivalent to the
subproblem of partitioning the first i nodes into j fragments, for increasing values
of i and j. If n nodes and k fragments are reached, the desired global solution
is found. We allocate (Line 3) and fill an n × k table partCut with the optimal
values for the subproblems. More precisely, the table entry partCut[i][j] denotes
the minimum cut weight of a j-partition of the first i nodes:

Lemma 1. After the execution of Algorithm 1, partCut[i][j] contains the mini-
mum cut value for a continuous j-partition of the first i nodes. If such a partition
is impossible, partCut[i][j] contains ∞.

We prove the lemma after describing the algorithm. After the initialization of
data structures in Lines 2 and 3, the initial values are set in Line 4: A partition
consisting of only one fragment has a cut weight of zero.

All further partitions are built from a predecessor partition and a new frag-
ment. A j-partition Πi,j of the first i nodes consists of the jth fragment and a
(j − 1)-partition with fewer than i nodes. A valid predecessor partition of Πi,j

is a partition Πl,j−1 of the first l nodes, with l between i − maxSize and i − 1.
Node charges have to be taken into account when compiling the set of valid
predecessors. If a backwards search for Πi,j from node i encounters two charged
nodes a and b with a < b, all valid predecessors of Πi,j contain at least node a
(Line 7).

The additional cut weight induced by adding a fragment containing the nodes
[l + 1, i] to a predecessor partition Πl,j−1 is the weight sum of edges connecting

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry 359

Algorithm 1. Main Chain Partitioning with Dynamic Programming
Input: Graph G = (V, E), fragment count k, bool list isCharged, imbalance ε
Output: partition Π

1 maxSize= �|V |/k� · (1 + ε);
2 allocate empty partition Π;
3 partCut[i][j] = ∞, ∀i ∈ [1, n], ∀j ∈ [1, k];

/* initialize empty table partCut with n rows and k columns */

4 partCut[i][1] = 0, ∀i ∈ [1, maxSize];
5 for 1 ≤ i ≤ n do
6 windowStart = max(i − maxSize, 1);
7 if necessary, increase windowStart so that [windowStart, i] contains at most

one charged node;
8 compute column i of cut cost table c;
9 for 2 ≤ j ≤ k do

10 partCut[i][j] = minl∈[windowStart,i] partCut[l][j − 1] + c[l][i];
11 pred[i][j] = argminl∈[windowStart,i] partCut[l][j − 1] + c[l][i];

12 end

13 end
14 i = n;
15 for j = k; j ≥ 2; j− = 1 do
16 nextI = pred[i][j];
17 assign nodes between nextI and i to fragment Πj ;
18 i = nextI ;

19 end
20 return Π

nodes in [1, l] to nodes in [l+1, i]: c[l][i] =
∑

{u,v}∈E,u∈[1,l],v∈[l+1,i] w(u, v). Line 8
computes this weight difference for the current node i and all valid predecessors l.

For each i and j, the partition Πi,j with the minimum cut weight is then
found in Line 10 by iterating backwards over all valid predecessor partitions and
selecting the one leading to the minimum cut. To reconstruct the partition, we
store the predecessor in each step (Line 11). If no partition with the given values
is possible, the corresponding entry in partCut remains at ∞.

After the table is filled, the resulting minimum cut weight is at partCut[n][k],
the corresponding partition is found by following the predecessors (Line 16).

We are now ready to prove Lemma 1 and the algorithm’s correctness and
time complexity.

Proof (of Lemma 1). By induction over the number of partitions j.
Base Case: j = 1,∀i. A 1-partition is a continuous block of nodes. The cut

value is zero exactly if the first i nodes contain at most one charge and i is not
larger than maxSize. This cut value is written into partCut in Lines 3 and 4 and
not changed afterwards.

Inductive Step: j − 1 → j. Let i be the current node: A cut-minimal j-partition
Πi,j for the first i nodes contains a cut-minimal (j − 1)-partition Πi′,j−1 with

360 M. von Looz et al.

continuous node blocks. If Πi′,j−1 were not minimum, we could find a better
partition Π ′

i′,j−1 and use it to improve Πi,j , a contradiction to Πi,j being cut-
minimal. Due to the induction hypothesis, partCut[l][j−1] contains the minimum
cut value for all node indices l, which includes i′. The loop in Line 10 iterates
over possible predecessor partitions Πl,j−1 and selects the one leading to the
minimum cut after node i. Given that partitions for j − 1 are cut-minimal, the
partition whose weight is stored in partCut[i][j] is cut-minimal as well.

If no allowed predecessor partition with a finite weight exists, partCut[i][j]
remains at infinity.
�

Theorem 1. Algorithm 1 computes the optimal main chain partition in time
O(n2 · maxSize).

Proof. The correctness in terms of optimality follows directly from Lemma 1. We
thus continue with establishing the time complexity. The nested loops in Lines 5
and 9 require O(n · k) iterations in total. Line 7 is executed n times and has a
complexity of maxSize. At Line 10 in the inner loop, up to maxSize predecessor
partitions need to be evaluated, each with two constant time table accesses.
Computing the cut weight column c[·][i] for fragments ending at node i (Line 8)
involves summing over the edges of O(maxSize) predecessors, each having at
most O(n) neighbors. Since the cut weights constitute a reverse prefix sum, the
column c[·][i] can be computed in O(n · maxSize) time by iterating backwards.
Line 8 is executed n times, leading to a total complexity of O(n2 · maxSize).
Following the predecessors and assigning nodes to fragments is possible in linear
time, thus the O(n2 · maxSize) to compile the cut cost table dominates the
running time.
�

5 Algorithms for General Protein Partitioning

As discussed in Sect. 2, one cannot use general-purpose graph partitioning pro-
grams due to the new constraints required by the DFT calculations. Moreover,
if the constraint of the previous section is dropped, the DP-based algorithm is
not optimal in general any more. Thus, we propose three algorithms for the gen-
eral problem in this section: The first two, a greedy agglomerative method and
Multilevel-FM, build on existing graph partitioning knowledge but incorporate the
new constraints directly into the optimization process. The third one is a simple
postprocessing repair procedure that works in many cases. It takes the output of
a traditional graph partitioner and fixes it so as to fulfill the constraints.

5.1 Greedy Agglomerative Algorithm

The greedy agglomerative approach, shown in Algorithm 2, is similar in spirit
to Kruskal’s MST algorithm and to approaches proposed for clustering graphs
with respect to the objective function modularity [3]. It initially sorts edges by
weight and puts each node into a singleton fragment. Edges are then considered

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry 361

Algorithm 2. Greedy Agglomerative Algorithm
Input: Graph G = (V, E), fragment count k, list charged, imbalance ε
Output: partition Π

1 sort edges by weight, descending;
2 Π = create one singleton partition for each node;
3 chargedPartitions = partitions containing a charged node;
4 maxSize= �|V |/k� · (1 + ε);
5 for edge {u, v} do
6 allowed = True;
7 if Π[u] ∈ chargedPartitions and Π[v] ∈ chargedPartitions then
8 allowed = False;
9 end

10 if |Π[u]| + |Π[v]| > maxSize then
11 allowed = False;
12 end
13 for node x ∈ Π[u] ∪ Π[v] do
14 if x + 2 ∈ Π[u] ∪ Π[v] and x + 1
∈ Π[u] ∪ Π[v] then
15 allowed = False;
16 end

17 end
18 if allowed then
19 merge Π[u] and Π[v];
20 update chargedPartitions;

21 end
22 if number of fragments in Π equals k then
23 break;
24 end

25 end
26 return Π

iteratively with the heaviest first; the fragments belonging to the incident nodes
are merged if no constraints are violated. This is repeated until no edges are left
or the desired fragment count is achieved.

The initial edge sorting takes O(m log m) time. Initializing the data struc-
tures is possible in linear time. The main loop (Line 5) has at most m iterations.
Checking the size and charge constraints is possible in constant time by keeping
arrays of fragment sizes and charge states. The time needed for checking the
gaps and merging is linear in the fragment size and thus at most O(maxSize).

The total time complexity of the greedy algorithm is thus:

T (Greedy) ∈ O(m · max {maxSize, log m}).

5.2 Multilevel Algorithm with Fiduccia-Mattheyses Local Search

Algorithm 3 is similar to existing multilevel partitioners using non-binary (i. e.
k > 2) Fiduccia-Mattheyses (FM) local search. Our adaptation incorporates the

362 M. von Looz et al.

Algorithm 3. Multilevel-FM
Input: Graph G = (V, E), fragment count k, list charged, imbalance ε, [Π ′]
Output: partition Π

1 G0, . . . , Gl = hierarchy of coarsened Graphs, G0 = G;
2 Πl = partition Gl with region growing or recursive bisection;
3 for 0 ≤ i < l do
4 uncoarsen Gi from Gi+1;
5 Πi = projected partition from Πi+1;
6 rebalance Πi, possibly worsen cut weight;

/* Local improvements */

7 gain = NaN;
8 repeat
9 oldcut = cut(Π ′

i, G);
10 Π ′

i = Fiduccia-Mattheyses-Step of Πi with constraints;
11 gain = cut(Π ′

i, G) - oldcut;

12 until gain == 0 ;

13 end

constraints throughout the whole partitioning process, though. First a hierarchy
of graphs G0, G1, . . . Gl is created by recursive coarsening (Line 1). The edges
contracted during coarsening are chosen with a local matching strategy. An edge
connecting two charged nodes stays uncontracted, thus ensuring that a fragment
contains at most one charged node even in the coarsest partitioning phase. The
coarsest graph is then partitioned into Πl using region growing or recursive
bisection. If an optional input partition Π ′ is given, it is used as a guideline
during coarsening and replaces Πl if it yields a better cut. We execute both our
greedy and DP algorithm and use the partition with the better cut as input
partition Π ′ for the multilevel algorithm.

After obtaining a partition for the coarsest graph, the graph is iteratively
uncoarsened and the partition projected to the next finer level. We add a rebal-
ancing step at each level (Line 6), since a non-binary FM step does not guaran-
tee balanced partitions if the input is imbalanced. A Fiduccia-Mattheyses step
is then performed to yield local improvements (Line 10): For a partition with k
fragments, this non-binary FM step consists of one priority queue for each frag-
ment. Each node v is inserted into the priority queue of its current fragment, the
maximum gain (i. e. reduction in cut weight when v is moved to another frag-
ment) is used as key. While at least one queue is non-empty, the highest vertex of
the largest queue is moved if the constraints are still fulfilled, and the movement
recorded. After all nodes have been moved, the partition yielding the minimum
cut is taken. In our variant, nodes are only moved if the charge constraint stays
fulfilled.

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry 363

5.3 Repair Procedure

As already mentioned, traditional graph partitioners produce in general solutions
that do not adhere to the constraints for protein partitioning. To be able to use
existing tools, however, we propose a simple repair procedure for an existing
partition which possibly does not fulfill the charge, gap, or balance constraints.
To this end, Algorithm 4 performs one sweep over all nodes (Line 6) and checks
for every node v whether the constraints are violated at this point. If they are
and v has to be moved, an FM step is performed: Among all fragments that
could possibly receive v, the one minimizing the cut weight is selected. If no
suitable target fragment exists, a new singleton fragment is created. Note that
due to the local search, this step can lead to more than k fragments, even if a
partition with k fragments is possible.

The cut weight table allocated in Line 1 takes O(n · k + m) time to create.
Whether a constraint is violated can be checked in constant time per node by
counting the number of nodes and charges observed for each fragment. A node
needs to be moved when at least one charge or at least maxSize nodes have
already been encountered in the same fragment. Finding the best target partition
(Line 13) takes O(k) iterations, updating the cut weight table after moving a
node v is linear in the degree deg(v) of v. The total time complexity of a repair
step is thus: O(n · k + m + n · k +

∑
v deg(v)) = O(n · k + m).

6 Experiments

6.1 Settings

We evaluate our algorithms on graphs derived from several proteins and compare
the resulting cut weight. As main chain partitioning is a special case of general
protein partitioning, the solutions generated by our dynamic programming algo-
rithm are valid solutions of the general problem, though perhaps not optimal.
Other algorithms evaluated are Algorithms 2 (Greedy), 3 (Multilevel), and the
external partitioner KaHiP [25], used with the repair step discussed in Sect. 5.3.
The algorithms are implemented in C++ and Python using the NetworKit tool
suite [26], the source code is available from a hg repository1.

We use graphs derived from five common proteins, covering the most frequent
structural properties. Ubiquitin [24] and the Bubble Protein [21] are rather small
proteins with 76 and 64 amino acids, respectively. Due to their biological func-
tions, their overall size and their diversity in the contained structural features,
they are commonly used as test cases for quantum-chemical subsystem meth-
ods [18]. The Green Fluorescent Protein (GFP) [22] plays a crucial role in the
bioluminescence of marine organisms and is widely expressed in other organisms
as a fluorescent label for microscopic techniques. Like the latter one, Bacteri-
orhodopsin (bR) [19] and the Fenna-Matthews-Olson protein (FMO) [27] are
large enough to render quantum-chemical calculations on the whole proteins

1 https://algohub.iti.kit.edu/parco/NetworKit/NetworKit-chemfork/.

https://algohub.iti.kit.edu/parco/NetworKit/NetworKit-chemfork/

364 M. von Looz et al.

Algorithm 4. Repairing a partition
Input: Graph G = (V, E), k-partition Π, list charged, imbalance ε
Output: partition Π ′

1 cutWeight[i][j] = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ k;
2 for edge {u, v} in E do
3 cutWeight[u][Π(u)]+ = w(u, v);
4 cutWeight[v][Π(v)]+ = w(u, v);

5 end
6 for node v in V do

/* Check whether node can stay */

7 if charge violated or size violated or gap of size 1 then
8 Ψ = set of allowed target fragments;
9 if Ψ is empty then

10 create new fragment for v;
11 end
12 else

/* Fiduccia-Mattheyses-step: To minimize the cut weight,

move the node to the fragment to which it has the

strongest connection */

13 target = argmaxi∈Ψ{cutWeight[v][i]};
14 move v to target;

15 end
16 update charge counter, size counter and cutWeight;

17 end

18 end

practically infeasible. Yet, investigating them with quantum-chemical methods
is key to understanding the photochemical processes they are involved in. The
graphs derived from the latter three proteins have 225, 226 and 357 nodes, respec-
tively. They are complete graphs with weighted n(n − 1)/2 edges. All instances
can be found in the mentioned hg repository in folder input/.

In our experiments we partition the graphs into fragments of different sizes
(i. e. we vary the fragment number k). The small proteins ubiquitin and bubble
are partitioned into 2, 4, 6 and 8 fragments, leading to fragments of average size
8–38. The other proteins are partitioned into 8, 12, 16, 20 and 24 fragments,
yielding average sizes between 10 and 45. As maximum imbalance, we use values
for ε of 0.1 and 0.2. While this may be larger than usual values of ε in graph
partitioning, fragment sizes in our case are comparably small and an imbalance
of 0.1 is possibly reached with the movement of a single node.

On these proteins, the running time of all partitioning implementations is on
the order of a few seconds on a commodity laptop, we therefore omit detailed
time measurements.

Charged Nodes. Depending on the environment, some of the amino acids are
charged. As discussed in Sect. 2, at most one charge is allowed per fragment.
We repeatedly sample �0.8 · k random charged nodes among the potentially

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry 365

charged, under the constraint that a valid main chain partition is still possible.
To smooth out random effects, we perform 20 runs with different random nodes
charged. Introducing charged nodes may cause the naive partition to become
invalid. In these cases, we use the repair procedure on the invalid naive partition
and compare the cut weights of other algorithms with the cut weight of the
repaired naive partition.

6.2 Results

For the uncharged scenario, Fig. 2 shows a comparison of cut weights for dif-
ferent numbers of fragments and a maximum imbalance of 0.1. The cut weight
is up to 34.5 % smaller than with the naive approach (or 42.8 % with ε = 0.2).
The best algorithm choice depends on the protein: For ubiquitin, green fluores-
cent protein, and Fenna-Matthew-Olson protein, the external partitioner KaHiP
in combination with the repair step described in Sect. 5.3 gives the lowest cut
weight when averaged over different fragment sizes. For the bubble protein, the
multilevel algorithm from Sect. 5.2 gives on average the best result, while for
bacteriorhodopsin, the best cut weight is achieved by the dynamic programming
(DP) algorithm. The DP algorithm is always as least as good as the naive app-
roach. This already follows from Theorem 1, as the naive partition is aligned
along the main chain and thus found by DP in case it is optimal. DP is the only
algorithm with this property, all others perform worse than the naive approach
for at least one combination of parameters.

The general intuition that smaller fragment sizes leave less room for improve-
ments compared to the naive solution is confirmed by our experimental results.
While the general trend is similar and the best choice of algorithm depends
on the protein, the cut weight is usually more clearly improved. Moreover, a
meta algorithm that executes all single algorithms and picks their best solu-
tion yields average improvements (geometric mean) of 13.5%, 16%, and 20%
for ε = 0.1, 0.2, and 0.3, respectively, compared to the naive reference. Such a
meta algorithm requires only about ten seconds per instance, negligible in the
whole DFT workflow.

Randomly charging nodes changes the results only insignificantly. The nec-
essary increase in cut weight for the algorithm’s solutions is likely compensated
by a similar increase in the naive partition due to the necessary repairs. Further
experimental results can be found in the full version [28].

7 Conclusions

Partitioning protein graphs for subsystem quantum-chemistry is a new problem
with unique constraints which general-purpose graph partitioning algorithms
were unable to handle. We have provided several algorithms for this problem and
proved the optimality of one in the special case of partitioning along the main
chain. With our algorithms chemists are now able to address larger problems in
an automated manner with smaller error. Larger proteins, in turn, in connection

366 M. von Looz et al.

2 4 6 8
0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Ubiquitin

ML

Greedy

KaHiP

DP

2 4 6 8
0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Bubble

8 12 16 20 24
k

Bacteriorhodopsin

8 12 16 20 24
0.6

0.7

0.8

0.9

1

1.1

1.2

k

cu
t

w
ei

g
h
t

Green Fluorescent Protein

8 12 16 20 24
k

Fenna-Matthews-Olson

Fig. 2. Comparison of partitions given by several algorithms and proteins, for ε = 0.1.
The partition quality is measured by the cut weight in comparison to the naive solution.

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry 367

with a reasonable imbalance, may provide more opportunities for improving the
quality of the naive solution further.

References

1. Andreev, K., Racke, H.: Balanced graph partitioning. Theor. Comput. Syst. 39(6),
929–939 (2006)

2. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning. Accepted as Chapter in AlgorithmEngineering, Overview Paper
concerning the DFG SPP 1307 (2016). Preprint available at http://arxiv.org/abs/
1311.3144

3. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. rev. E 70(6), 066111 (2004)

4. Cramer, C.J.: Essentials of Computational Chemistry. Wiley, New York (2002)
5. Delling, D., Fleischman, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.:

An exact combinatorial algorithm for minimum graph bisection. Math. Program.
153(2), 417–458 (2015)

6. Fedorov, D.G., Kitaura, K.: Extending the power of quantum chemistry to large
systems with the fragment molecular orbital method. J. Phys. Chem. A 111, 6904–
6914 (2007)

7. Fedorov, D.G., Nagata, T., Kitaura, K.: Exploring chemistry with the fragment
molecular orbital method. Phys. Chem. Chem. Phys. 14, 7562–7577 (2012)

8. Fiduccia, C., Mattheyses, R.: A linear time heuristic for improving network par-
titions. In: Proceedings of the 19th ACM/IEEE Design Automation Conference,
Las Vegas, NV, pp. 175–181, June 1982

9. Guerra, C.F., Snijders, J.G., te Velde, G., Baerends, E.J.: Towards an order-N
DFT method. Theor. Chem. Acc. 99, 391 (1998)

10. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete prob-
lems. In: Proceedings of the 6th Annual ACM Symposium on Theory of Computing
(STOC 1974), pp. 47–63. ACM Press (1974)

11. Ghaddar, B., Anjos, M.F., Liers, F.: A branch-and-cut algorithm based on semidefi-
nite programming for the minimum k-partition problem. Ann. OR 188(1), 155–174
(2011)

12. Gordon, M.S., Fedorov, D.G., Pruitt, S.R., Slipchenko, L.V.: Fragmentation meth-
ods: a route to accurate calculations on large systems. Chem. Rev. 112, 632–672
(2012)

13. He, X., Zhu, T., Wang, X., Liu, J., Zhang, J.Z.H.: Fragment quantum mechanical
calculation of proteins and its applications. Acc. Chem. Res. 47, 2748–2757 (2014)

14. Hendrickson, B., Leland, R.: A multi-level algorithm for partitioning graphs. In:
Proceedings Supercomputing 1995, p. 28. ACM Press (1995)

15. Jacob, C.R., Neugebauer, J.: Subsystem density-functional theory. WIREs Com-
put. Mol. Sci. 4, 325–362 (2014)

16. Jacob, C.R., Visscher, L.: A subsystem density-functional theory approach for the
quantumchemical treatment of proteins. J. Chem. Phys. 128, 155102 (2008)

17. Jensen, F.: Introduction to Computational Chemistry, 2nd edn. Wiley, Chichester
(2007)

18. Kiewisch, K., Jacob, C.R., Visscher, L.: Quantum-chemical electron densities of
proteins and of selected protein sites from subsystem density functional theory. J.
Chem. Theory Comput. 9, 2425–2440 (2013)

http://arxiv.org/abs/1311.3144
http://arxiv.org/abs/1311.3144

368 M. von Looz et al.

19. Lanyi, J.K., Schobert, B.: Structural changes in the l photointermediate of bacte-
riorhodopsin. J. Mol. Biol. 365(5), 1379–1392 (2007)

20. Ochsenfeld, C., Kussmann, J., Lambrecht, D.S.: Linear-scaling methods in quan-
tum chemistry. In: Lipkowitz, K.B., Cundari, T.R., Boyd, D.B. (eds.) Reviews in
Computational Chemistry, vol. 23, pp. 1–82. Wiley-VCH, New York (2007)

21. Olsen, J.G., Flensburg, C., Olsen, O., Bricogne, G., Henriksen, A.: Solving the
structure of the bubble protein using the anomaloussulfur signal from single-crystal
in-house CuKα diffractiondata only. Acta Crystallogr. Sect. D 60(2), 250–255
(2004)

22. Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., Remington, S.J.:
Crystal structure of the aequorea victoria green fluorescent protein. Science
273(5280), 1392–1395 (1996)

23. Pavlopoulos, G.A., Secrier, M., Moschopoulos, C.N., Soldatos, T.G., Kossida, S.,
Aerts, J., Schneider, R., Bagos, P.G.: Using graph theory to analyze biological
networks. BioData Min. 4(1), 1–27 (2011)

24. Ramage, R., Green, J., Muir, T.W., Ogunjobi, O.M., Love, S., Shaw, K.: Syn-
thetic, structural and biological studies of the ubiquitin system: the total chemical
synthesis of ubiquitin. Biochem. J. 299(1), 151–158 (1994)

25. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph parti-
tioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA
2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013)

26. Staudt, C., Sazonovs, A., Meyerhenke, H.: NetworKit: an interactive tool suite for
high-performance networkanalysis. CoRR, abs/1403.3005 (2014)

27. Tronrud, D.E., Allen, J.P.: Reinterpretation of the electron density at the site
of the eighth bacteriochlorophyll in the fmo protein from pelodictyon phaeum.
Photosynth. Res. 112(1), 71–74 (2012)

28. von Looz, M., Wolter, M., Jacob, C.,Meyerhenke, H.: Better partitions of protein
graphs for subsystem quantum chemistry. Technical Report 5, Karlsruhe Insti-
tute of Technology (KIT), 3 (2016). http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000052814

29. Wesolowski, T.A., Weber, J.: Kohn-Sham equations with constrained electron den-
sity: an iterative evaluation of the ground-state electron density of interaction
molecules. Chem. Phys. Lett. 248, 71–76 (1996)

30. Zhang, D.W., Zhang, J.Z.H.: Molecular fractionation with conjugate caps for full
quantummechanical calculation of protein-molecule interaction energy. J. Chem.
Phys. 119, 3599–3605 (2003)

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052814
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052814

Online Algorithm for Approximate Quantile
Queries on Sliding Windows

Chun-Nam Yu1(B), Michael Crouch2, Ruichuan Chen3, and Alessandra Sala2

1 Bell Labs, Murray Hill, USA
chun-nam.yu@nokia.com

2 Bell Labs, Dublin, Ireland
3 Bell Labs, Stuttgart, Germany

Abstract. Estimating statistical information about the most recent
parts of a stream is an important problem in network and cloud moni-
toring. Modern cloud infrastructures generate in high volume and high
velocity various measurements on CPU, memory and storage utiliza-
tion, and also different types of application specific metrics. Tracking
the quantiles of these measurements in a fast and space-efficient manner
is an essential task in monitoring the health of the overall system. There
are space-efficient algorithms for estimating approximate quantiles under
the “sliding window” model of streams. However, they are slow in query
time, which makes them less desirable for monitoring applications. In this
paper we extend the popular Greenwald-Khanna algorithm for approxi-
mating quantiles in the unbounded stream model into the sliding window
model, getting improved runtime guarantees over the existing algorithm
for this problem. These improvements are confirmed by experiment.

1 Introduction

Existing cloud monitoring systems, e.g. Openstack Ceilometer, Openstack Mon-
asca, and Ganglia, all adopt a similar architecture: an agent deployed at each
cloud node collects local performance metrics, which are then sent via a mes-
sage bus to a backend database for analytics. The database I/O and the bus
bandwidth to the database, however, are the primary obstacles to scalability.

By developing lighter-weight algorithms for on-the-fly statistical summaries
of large volumes of data, we hope to enable improved anomaly detection and
system monitoring applications. We first attempted implementing the Arasu and
Manku (AM) algorithm [1] for storing approximate rank information on windows
of each stream of system metrics; however, this algorithm was designed primarily
to minimize memory space usage. In testing, the amount of processing overhead
for each element was prohibitive, particularly for query-intensive workloads.

In this paper, we design and test a more suitable algorithm for approxi-
mate quantile/rank reconstruction on sliding time windows. Inspired by the
“Greenwald-Khanna (GK) algorithm”[5] for unbounded streams, we design a
sliding window algorithm that can answer queries about the last W time units
for any W up to a configurable threshold. We perform explicit analysis of the
c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 369–384, 2016.
DOI: 10.1007/978-3-319-38851-9 25

370 C.-N. Yu et al.

time required by the GK algorithm and AM algorithm for processing input ele-
ments and answering queries; in the literature these algorithms have typically
been analyzed for space performance. We present an algorithm which provides
asymptotically improved processing and query time over the AM algorithm.

Both the AM algorithm and our algorithm use the GK algorithm as a sub-
routine; on “natural” streams, previous experiments [1] have demonstrated that
the GK algorithm typically uses asymptotically less space and processing time
than its worst-case analysis would suggest (it maintains O(1ε) elements instead
of O(1ε log εn)). We reanalyze our algorithm and the AM algorithm under this
assumption, and find that the query time improvement is still significant, but
that the insertion time improvement is much more modest.

We then perform an experimental comparison of our algorithm and the AM
algorithm on two real data sets and four synthetic data sets, testing a range of
approximation accuracies and window lengths. The experimental data confirmed
that our algorithm offers a significant improvement on per-query performance.
The improvement on the time required for processing each inserted element is
more modest, supporting the version of our analysis performed assuming the
experimentally-supported behavior of the GK algorithm.

Our algorithm yields significant improvements in processing time for query-
intense workloads. This comes at the expense of the provable worst-case accuracy
and space guarantees of the AM algorithm. However, our experimental tests
indicate that we achieve comparable accuracy and space performance for every
data set we have tested.

2 Streaming Quantile Algorithms

We begin by defining the problem of ε-approximate quantiles. We then briefly
define the Greenwald-Khanna (GK) algorithm [5] for approximate quantiles,
because our algorithm adapts the GK algorithm to the sliding window setting.
We define the rank of an element x in a stream S as

rank(x) �
∣
∣{s ∈ S | x ≤ s}

∣
∣. (1)

Definition 1. In the ε-approximate quantiles problem, we are given an accuracy
parameter ε and then we read a stream of n numeric elements; after this stream,
we are given a query parameter φ ∈ [0, 1], and we must output some x such that:

rank(x) ∈ (φ ± ε)n (2)

(Equivalently, we could think of the query parameter as a “target rank” r0, in
which case our goal is rank(x) ∈ r0 ± εn.)

The survey [2] contains an excellent summary of the history of quantile
approximation algorithms; we are interested in those with small memory usage.
The most relevant approach for our analysis is a deterministic approximation
algorithm using space O(1ε log n), called the “GK algorithm” for its authors,
Greenwald and Khanna [5]. Our work adapts the GK algorithm to the setting
of sliding window streams (Sect. 3), so we review the algorithm here.

Online Algorithm for Approximate Quantile Queries on Sliding Windows 371

The GK algorithm stores an ordered list of values from the stream; for each
value v stored, we can quickly calculate two values r−(v), r+(v) which bound
the true rank rank(v) within a range εn:

r−(v) ≤ rank(v) ≤ r+ ≤ r−(v) + εn (3)

In order to reconstruct good rank approximations, we will also require that the
set {v1, . . . , vi, . . . , vk} of stored values is “sufficiently dense”: for all i we require

r−(vi) ≤ r−(vi+1) ≤ r−(vi) + εn (4)

It is shown in [5] that maintaining such a list, and deleting as many elements
as possible while preserving invariants (3) and (4), suffices to answer the ε-
approximate quantile problem using storage equal to O(1ε log εn) stream ele-
ments.

It would be possible to store the rank bounds of each vi directly; however,
whenever a new element x was read, we would need to update these values for
every vi > x. The main idea of the GK algorithm is to instead store “local”
information about rank.

2.1 GK Algorithm

The GK algorithm maintains a sorted list S of triples si = (vi, gi,Δi) where:

– vi is a value from the input stream; v1 ≤ v2 ≤ · · · ≤ v|S|.
– gi is r−(vi) − r−(vi−1) (the difference in minimum rank between neighbors).
– Δi is r+(vi) − r−(vi) (the uncertainty in the rank of vi).

Input. When a new value x is read, if x is the smallest or largest value seen
so far, we insert the bucket (x, 1, 0) at the beginning or end of S respectively.
Otherwise, we locate the largest vi < x, and insert the bucket (x, 1, gi + Δi − 1)
as si+1.

Compression. After every
⌊

1
2ε

⌋
insertions, there is a compression pass; we

iterate through tuples in increasing order of i, “merging” every pair of adjacent
tuples where gi + gi+1 + Δi+1 ≤ 2εn according to the rule:

merge
(
(vi, gi,Δi), (vi+1, gi+1,Δi+1)

)
= (vi+1, gi + gi+1,Δi+1) (5)

The first and last tuples are never merged.

Query. Note that

r−(vi) =
∑

j≤i

gj r+(vi) = Δi +
∑

j≤i

gj (6)

To query for an element of approximate rank r, we return vi for the smallest i
such that r−(vi) ≥ r − εn. The merge criterion guarantees that such an element
always exists, and that r+(vi) ≤ r + εn.

372 C.-N. Yu et al.

Fact 2 ([5]). The GK Algorithm solves the ε-approximate quantile problem using
the memory space required to store O(1ε log εn) stream elements.

The GK algorithm is very efficient in terms of space and processing time
in practice, but only works for calculating quantiles on the entire history of
the data stream. Several later works further developed quantile algorithms in
this model [3,10,11]; however, for system monitoring purposes (and many other
applications) we are interested in keeping an analysis of recent items up to date,
while discarding the effects of older items.

3 Sliding Windows and Exponential Histograms

The sliding window model, introduced by Datar et al. [4], allows us to model
infinite data streams when our goal is to compute properties of the most recent
data. We are given a “window length” W before reading the stream, and queries
are always intended to reflect the W most recently read elements.1

Quantile approximation in the sliding window model was first addressed by
Lin et al. [6], who achieved space usage O(log(εW)

ε + 1
ε2). Arasu and Manku [1]

(AM) improved this to O(1ε log2 1
ε log(εW)), but in our application testing the

time it required to process each element was too large; briefly, it replicates a win-
dow of length W into O(log 1/ε) copies with subwindows of different sizes. Both
of these algorithms are based on splitting the window into smaller subwindows
and using GK sketches to summarize each subwindow. Mousavi and Zaniolo
were able to provide improved runtime for the related problem of estimating
equi-depth histograms [7,8], but that problem is more restricted [7].

We instead test an adaptation of the original GK algorithm, using a sliding
window algorithm called exponential histograms [4]. An exponential histogram is
a data structure for the problem of maintaining the number of non-zero elements
seen in the last W elements of a stream.

3.1 Exponential Histograms

An exponential histogram (EH) maintains a sorted list A of contiguous intervals;
each interval ai = (ti, di, ki) where:

– ti is the timestamp when the interval begins; t1 ≤ t2 ≤ · · · ≤ t|A|.
– ai covers the interval of observations from ti to ti + di.
– ti + di < ti+1.
– ki is the count of nonzero observations over the interval (and a power of 2).

Input. Whenever a new observation is seen at time t, the interval (t, 0, 1) is
added as the last entry in A.
1 For convenience of analysis we treat W as fixed; however, like many algorithms in this

model, ours is easily adapted to answer queries about any window size w ≤ W . For
applications, W can thus be thought of as the maximum history length of interest.

Online Algorithm for Approximate Quantile Queries on Sliding Windows 373

Compression. Whenever there are more than 1/ε intervals containing a partic-
ular count k, pairs of intervals are merged by replacing (ti, di, k), (ti+1, di+1, k)
with (ti, ti+1 − ti + di+1, 2k). These merges occur from “most recent” to “least
recent”; intuitively, older elements are thus kept in intervals of progressively
larger counts (and coarser time resolution).

When t2 ≤ t − W for the current time t, the first interval (t1, d1, k1) is
discarded. This ensures that at any time t, we are storing a set of intervals which
fall entirely within the “active window” of the last W elements, plus possibly an
interval which falls partly inside and partly outside the active window.

Query. Let C be the number of nonzero elements seen during the last W obser-
vations. We then have that C satisfies

|A|∑

i=2

ki ≤ C ≤
|A|∑

i=1

ki (7)

The merge rule guarantees that the fraction of elements in the partial box
(and thus the approximation uncertainty) is O(1/ε) fraction of the total. We
then have

Fact 3 ([4]). The exponential histogram algorithm maintains a (1 + ε) approxi-
mation of the number of nonzero elements seen in the last W inputs, using space
O(1ε log W).

4 Algorithm

The GK algorithm stored tuples (vi, gi,Δi), where vi was a stream element and
gi, Δi were integers. We wish to replace gi and Δi, so that we know the rank of
vi only considering the window of active elements. We do this below, replacing
the gi and Δi counters with exponential histograms.

We also wish to ensure that each vi value corresponds to an element still
within the active window. We will exploit the connection between gi and vi: in the
original algorithm, the gi counter stores the number of observations which have
been merged into the tuple (vi, gi,Δi), and vi is the largest of those observations.

4.1 EH-with-max

We first describe a modified version of the EH structure, which will not only
maintain a count of how many elements have been seen by the gi structure, but
be able to return one of the largest of these elements.

Let an EH-with-max structure be an exponential histogram (Sect. 3.1),
modified in the following ways:

374 C.-N. Yu et al.

– Each interval ai also stores a value vi, which is the numerically largest value
seen during that interval. This value is updated in the obvious ways.

– The structure supports an additional query operation, returning an approxi-
mate maximum max|A|

i=2 vi.

Fact 4. The “approximate maximum” operation returns an element larger than
all but some ε fraction of the nonzero elements in the active window.

4.2 Our Algorithm

Our algorithm is a list of pairs (Gi,Di), where Gi is an EH-with-max structure
and Di is an EH structure. At time t, we let:

– vi(t) denote the approximate maximum value from Gi at time t;
– gi(t) denote the count of Gi at time t;
– Δi(t) denote the count of Di at time t.

Here we use ε1 for the approximation factor of the underlying GK algorithm,
and approximation factor ε2 for all Gi and Di.

We define two helper operations, merge and tail.

merge: The merge operation combines two EH structures. We follow
Papapetrou et al. [9]’s technique for merging exponential histogram structures –
before merging, we replace each interval (ti, di, ki) with appropriately weighted
endpoints (ti, 1, ki/2) and (ti + di, 1, ki/2). We take the union of the resulting
lists, and perform EH compression as normal.

For worst-case inputs the resulting aggregation can have additively increasing
error [9]; however, as in that reference, we found that this problem did not arise
in practice.

tail: The tail operation takes an EH structure and removes the last bucket
a|A| (containing the most recent non-zero observation).

Input. When reading a value v, we add a new pair after the largest i such
that vi(t) < v. The G structure of the new tuple is an EH-with-max sketch
containing the single point v at time t. The D structure of the new tuple is
merge(Di, tail(Gi)).

Compression. The compression operation is described in Algorithm 1.

Query. To query for an element of approximate rank r, we find the smallest i
such that

∑
j gi(t) ≥ r + ε1W , and return maxj≤i vi(t).

Online Algorithm for Approximate Quantile Queries on Sliding Windows 375

Algorithm 1. COMPRESS(), s the size of sketch
for i from s − 2 to 0 do

Let j be the index of larger of vi and vi+1

if gi(t) + gi+1(t) + Δj(t) < 2ε1W then
gi+1 = merge(gi, gi+1)
vi+1 = vj

Δi+1 = Δj

Delete tuple (vi, gi, Δi)
end if

end for

5 Correctness

The simplifications in the merging condition (and our definition of EH merg-
ing) allowed us improved runtime performance and decreased development and
maintenance cost, but they come at some cost of the ease of formal analysis of
our algorithm. In particular, the approximation error for the EH sketches Gi,Di

can increase after each merge, from ε to 2ε + ε2 in the worst case. In practice
we observe that the merge operation we use for EH sketches perform excellently,
and the approximation error of the EH sketches hardly increases at all after mul-
tiple merges during the run of the algorithm. In the correctness analysis below
we give error bounds on quantile queries conditional on the approximation error
of the EH sketches at query time t. If an improved merge procedure with better
approximation guarantee is available, it can be directly applied to our sliding
window GK algorithm to improve the approximation bound.

We use Gi, Di to refer to the sets of elements being tracked by the EH
sketches Gi and Di, and Gi(t), Di(t) to refer to their values at time t. We make
the following assumption on the approximation quality of the EH sketches. At
query time t, for all i

(1 − ε′
2)gi(t) ≤ |Gi(t)| ≤ (1 + ε′

2)gi(t) (8)
|Di(t)| ≤ (1 + ε′

2)Δi(t) (9)

Here gi(t) and Δi(t) refer to the approximate counts from EH sketches while
|Gi(t)| and |Di(t)| are the exact answers. Notice we use ε′

2 to differentiate against
the precision parameter ε2 for Gi and Di, as the actual approximation error ε′

2

can become bigger than ε2 after multiple merging of EH sketches (although it
rarely happens in practice).

We also assume vi(t) is the approximate maximum of the elements tracked
by the EH sketch Gi, such that at least 1 − ε′

2 fraction of elements in Gi(t) are
less than or equal to vi(t).

Theorem 5. Correctness of Quantile: The query procedure returns a value v
with rank between (q − (ε1 + 2ε′

2))W and (q + (ε1 + 2ε′
2))W .

376 C.-N. Yu et al.

Proof. See Appendix.

This result shows that our algorithm incurs only an extra error of 2ε′
2 from the

use of approximate counting, compared to the GK algorithm in the unbounded
stream model.

6 Analysis

Our key design consideration was improving on the per-update time complexity
of the AM algorithm. To the authors’ knowledge there is not an explicit amor-
tized run-time analysis of the AM algorithm or even of the GK algorithm in the
research literature; these are thus included.

6.1 Arasu-Manku Time Analysis

The GK algorithm [5] maintains approximate quantile summaries on an
unbounded stream of elements. The AM algorithm [1] uses GK algorithm
sketches as building blocks to perform sliding window quantile summaries. We
thus begin by analyzing the GK algorithm.

Lemma 6. The GK algorithm [5], reading N elements, has amortized update
time complexity O(log N) and query complexity O(log 1

ε + log log εN).

Proof. The GK algorithm maintains a sorted list of tuples, and iterates through
the list performing a compression operation once every 1

2ε insertions. If the list
maintained contains s tuples, insertion can thus be done in time O(log s); the
compression operation requires amortized time O(εs).

For worst-case inputs, the list may contain s = O(1ε log εN) tuples [5], yield-
ing an amortized time complexity of O

(
log(1ε log εN) + log εN

)
= O(log N).

Queries are performed by accessing the sorted list of s tuples, and thus require
space O(log s) = O(log 1

ε + log log εN). ��

Note that for inputs seen in practice, experiments indicate that the GK list
typically contains s = O(1ε) tuples [1], yielding amortized input time and query
time of O(log 1

ε). In an attempt to understand how the algorithms are likely to
perform in practice, we will analyze the quantile-finding algorithms using both
the worst-case bound and the experimentally supported bound.

Theorem 7. The Arasu-Manku Algorithm [1] with error parameter ε and
window length W has amortized update time O(log 1

ε log W) and query time
O(1ε log 1

ε).

Proof. The reader should see [1] for a full description of their algorithm. Briefly,
it keeps sketches of the active window at each of L = �log2

4
ε � + 1 levels. (Over

the range of 0.001 ≤ ε ≤ 0.05 tested in our experiments, L ranges from 8 to 13;
avoiding this factor is the key to our runtime improvement).

Online Algorithm for Approximate Quantile Queries on Sliding Windows 377

For each level � in 0 ≤ � < L, the active window is partitioned into 4
ε2�

blocks, each containing n� = εW
4 2� elements. Within the most recent block at

each level, a GK sketch is maintained with error parameter ε� = ε
4L2L−�. Using

the analysis of the GK algorithm above and ignoring constant factors, we find
worst-case amortized update time

L−1∑

�=0

log n� = O(
L−1∑

�=0

log εW2�) = O(L2 + L log εW)

= O(log2 1
ε + log 1

ε log εW) = O(log 1
ε log W) ��

Blocks which are not the newest on each level are maintained only as sum-
mary structures (simple lists of quantiles), each requiring space O(1ε). Performing
a query can require accessing one block at each level, and merging the lists can be
done in linear time; we thus find a worst-case query time of O(L

ε) = O(1ε log 1
ε).

Via a similar analysis we find

Theorem 8. Assuming the experimentally derived [1] GK space usage of O(1ε),
the Arasu-Manku algorithm [1] has amortized update time O(log 1

ε log log 1
ε) for

randomly ordered inputs.

6.2 Our Time Analysis

Our algorithm takes advantage of the O(1) amortized update time of exponential
histograms [4].

Theorem 9. Our algorithm has worst-case update time O(log log W + ε log W)
and query time O(log log W).

Proof. Again, assume the algorithm maintains s tuples. On reading an input,
we must find the appropriate EH structure, in time O(log s), and update it, in
time O(1). We also perform a linear-time compression sweep every O(1ε) inputs.
Our algorithm thus has total amortized update time O(log s + εs).

The top level of our algorithm is a GK structure on the W live elements,
plus possibly some expired elements. Any expired elements which are part of
the structure will be removed when found; thus, any slowdown due to expired
elements is limited to amortized O(1). For the remaining elements, substituting
s = O(log W) from Lemma 6, we find amortized time O(log log W + ε log W).

Querying our structure requires a simple binary search through the sorted
list of EH structures, which is time O(log s) = O(log log W), and a query of the
value of the EH structure, which is time O(1) [4]. ��

Similarly, we find

Theorem 10. Assuming the experimentally derived [1] GK space usage of O(1ε),
our algorithm has amortized update time O(log 1

ε) and query time O(log log 1
ε)

for randomly ordered inputs.

378 C.-N. Yu et al.

Worst-case Experimental

Insertion Query Insertion Query

Arasu-Manku log 1
ε
log W 1

ε
log 1

ε
log 1

ε
log log 1

ε
1
ε
log 1

ε

Our Algorithm log log W + ε log W log log W log 1
ε

log log 1
ε

Fig. 1. Summary of the time complexity of operations in the two algorithms. The
“experimental” column performs the analysis assuming the experimental observation
of [1] that the GK algorithm appears to use space O(1

ε
) for randomly-ordered inputs.

Figure 1 summarizes the time complexity results of this section. Our algo-
rithm does provide improved asymptotic complexity in insertion operations, but
particularly striking is the removal of the 1

ε factor in the query complexity. The
improvement in insertion complexity is significant in the worst-case analysis, but
amounts to only a factor of log log 1

ε under experimentally-supported assump-
tions about the behavior of the GK algorithm; thus, we would expect the gain
in insertion times to be modest in practice.

7 Experiments

We implemented our sliding window GK algorithm (SW-GK) and compared it
against the approach from [1] (AM). We expected our algorithm to demonstrate
improved processing and query time, particularly for small values of ε. Both algo-
rithms were implemented in C++; experiments were run on an AMD Opteron
2.1 GHz CPU server with 128 Gb of memory running Redhat Linux Server 6.4.

The algorithms were compared on two real datasets and four synthetic
datasets. The first real dataset was a set of Cassandra database object read
time data; it notably had a long tail and a lot of outliers. The second dataset is
from the set of numbered minor planets from the Minor Planet Center2 and con-
tains the right ascension of different celestial objects. The four synthetic datasets
were generated from a normal distribution, from a uniform distribution on the
interval [0,1], and from Pareto distributions with tail index α = 1 and α = 3,
for evaluating the algorithms under a diverse set of distributions. All datasets
contained 107 entries.

We confirmed our expectation that our algorithm’s runtime would grow more
slowly than AM’s as ε decreases. Figure 2 shows the CPU time of maintaining
SW-GK and AM on the Cassandra dataset (inserts only, no queries) for varying
values of W and ε. For W = 104 and W = 105, SW-GK runs faster than AM for
most settings of ε. For W = 106, AM is faster except for the highest precision
ε = 0.001. Overall, both algorithms are reasonably fast and use on average less
than 200 s to process 107 stream elements, i.e., less than 0.02 ms to process each
element. Time performance was similar on the other data sets (omitted for lack
of space).

2 http://www.minorplanetcenter.net/iau/ECS/MPCAT-OBS/MPCAT-OBS.html.

http://www.minorplanetcenter.net/iau/ECS/MPCAT-OBS/MPCAT-OBS.html

Online Algorithm for Approximate Quantile Queries on Sliding Windows 379

Fig. 2. CPU time without query of
SW-GK and AM on the Cassandra
dataset

Fig. 3. Query time of SW-GK and AM
on the Cassandra dataset

Our algorithm showed an even more dramatic improvement in query time.
We simulated a query-heavy workload by running quantile queries from 1% up
to 100% in 1% increments every 2000 stream elements. SW-GK is an order of
magnitude faster than AM on query time, and close to 2 orders of magnitude
faster on the highest precision 0.001 (Fig. 3). AM is slow because it needs to
pool the quantile query results from many small GK sketches and then combine
them by sorting. The query time complexity of SW-GK is similar to standard
GK because the only major difference in the query function is the replacement
of counts with EH counting (which answers count queries in constant time). The
query time is fairly independent of window size for both algorithms. SW-GK is
clearly the method of choice if query time is a concern. Again, performance was
similar on the other data sets.

We also verified that our algorithm offers comparable space and accuracy
performance to the AM algorithm. Figure 4 shows the average space usage on
the Cassandra dataset, in terms of the number of tuples stored (sampled every

Fig. 4. Space usage of SW-GK and AM
on the Cassandra dataset

Fig. 5. Maximum relative error of SW-
GK and AM on the Cassandra dataset

380 C.-N. Yu et al.

2000 iterations). Each tuple contains 3 integer/float values (4 bytes each). We
can see that except for the largest window size 106, SW-GK uses less or roughly
the same amount of space as AM. Figure 5 shows the maximum error of SW-GK
and AM for different precision and window sizes. We achieve better accuracy for
small ε, though both algorithms are well within the ε bound.

Figure 6 shows the space usage, maximum relative error, CPU time and query
time of SW-GK and AM on all 6 datasets, for ε = 0.01 and W = 105. We can
see that the results of both SW-GK and AM are very stable across the different
datasets. The same is true for other settings of ε and W (not shown here due to
space limitations).

7.1 Sorted Inputs

Because of the GK algorithm’s improved space behavior on randomly ordered
inputs, we tested the effect of ordered inputs on both algorithms. Figure 7 shows
the space usage, maximum relative error, CPU time and query time on the Cas-
sandra dataset sorted in ascending, descending and original order. SW-GK uses
slightly more space in the sorted datasets compared to the original order, while
AM stays constant. The maximum error stays constant for SW-GK, while AM
has slight smaller error for the sorted datasets. Both algorithms run a little bit
faster on the sorted datasets than the original ordering. Overall both algorithms
have fairly consistent performance across different ordering of observations.

d1 d2 d3 d4 d5 d6

N
um

be
r o

f t
up

le
s

0
20

00
0

50
00

0

d1 d2 d3 d4 d5 d6

SW−GK
AM

M
ax

im
um

 R
el

at
iv

e
Er

ro
r

0.
00

0
0.

00
4

0.
00

8

d1 d2 d3 d4 d5 d6C
PU

 T
im

e
(in

 s
ec

) w
/o

 q
ue

ry

0
20

40

d1 d2 d3 d4 d5 d6

Q
ue

ry
 T

im
e

(in
 s

ec
)

0
10

0
20

0

Fig. 6. Space, maximum relative error,
CPU time and query time of SW-
GK and AM on several datasets.
d1:Cassandra, d2:Normal, d3:Pareto1,
d4:Pareto3, d5:Uniform, d6:Planet

SW−GK AM

asecnd
descend
original

N
um

be
r o

f t
up

le
s

0
20

00
0

50
00

0

SW−GK AM

M
ax

im
um

 R
el

at
iv

e
Er

ro
r

0.
00

0
0.

00
2

0.
00

4

SW−GK AM

C
PU

 T
im

e(
in

 s
ec

) w
/o

 q
ue

ry

0
10

30
50

SW−GK AM

Q
ue

ry
 T

im
e

(in
 s

ec
)

0
50

15
0

25
0

Fig. 7. Space, maximum relative error,
CPU time and query time of SW-GK
and AM on Cassandra data in ascend-
ing, descending, and original order

8 Conclusions

We have designed a sliding window algorithm for histogram maintenance with
improved query time behavior, making it more suitable than the existing

Online Algorithm for Approximate Quantile Queries on Sliding Windows 381

algorithm for applications such as system monitoring. Experimental comparison
confirms that our algorithm provides competitive space usage and approximation
error, while improving the runtime and query time.

Appendix: Correctness Analysis

Proof of Theorem5

We use Gi, Di to refer to the sets of elements being tracked by the EH sketches Gi

and Di. We can define Gi and Di as the value-timestamp pairs {(v, t), (v′, t′), . . .}
of all elements ever added to the EH sketches Gi and Di. We use Gi(t) and Di(t)
to denote the set of value-timestamp pairs in Gi and Di that has not expired at
time t. We can think of Gi(t) and Di(t) as exact versions of the EH sketches Gi

and Di, and they are useful in establishing our correctness claims.
We state without proof the following two claims:

Claim 1: At all time t, the set of Gi(t)’s partition the set of all observations in
the current window [t − W, t].

Claim 2: At all time t, for all i, Di(t) ⊆ ∪j>iGj(t).

Claim 1 is true because all elements inserted started out as singleton sets of
Gi(t), and subsequent merging in COMPRESS always preserves the disjointness of
the Gi(t) and never drops any elements. Claim 2 is true because by the insertion
rule, at the time of insertion Di(t) is constructed from merging some Gi+1(t)
and Di+1(t). By unrolling this argument, Di+1(t) is constructed from Gj(t) and
Dj(t) with j > i + 1. Since Di(t) starts as an empty set initially and none of
the insertion and merge operations we do reorder the sets Gi(t), the elements in
Di(t) have to come from the sets Gj(t) for j > i.

Lemma 11. At all t, for all i, all elements in ∪j>iGj(t)\Di(t) have values
greater than or equal to vi(t).

Proof. We prove this by induction on t, and show that the statement is preserved
after INSERT, expiration, and COMPRESS. As the base case for induction, the
statement clearly holds initially before any COMPRESS operation, when all Gj are
singletons and Dj are empty.

We assume at time t, an element is inserted, then an expiring element is
deleted, then the timestamp increments.

INSERT: Suppose an observation v is inserted at time t between (vi−1,
Gi−1,Di) and (vi, Gi,Di). We insert the new tuple (v,EH(v, t), merge
(Di, tail(Gi))) into our summary. Here EH(v, t) refers to the EH sketch with a
single element v added at time t. In the set notation, this corresponds to inserting
(v,G = {(v, t)},D = (Gi\{vi}) ∪ Di).

We assume the statement holds before insertion of v. For r < i, before
insertion we know elements in ∪j>rGj(t)\Dr(t) are all greater than or equal
to vr by the inductive hypothesis. After insertion the new set becomes

382 C.-N. Yu et al.

(∪j>rGj(t)\Dr(t))∪{(v, t)}, which maintains the statement because by the inser-
tion rule we know vr ≤ v for all r < i.

For r ≥ i, insertion of v does not change the set ∪j>rGj(t)\Dr(t) at all, so
the statement continues to hold.

At the newly inserted tuple v, we know v < vi, and all elements in
∪j>iGj(t)\Di(t) are greater than or equal to vi by the inductive hypothesis.
So all elements in ∪j>iGj(t)\Di(t) are greater than v.

At v, the set in the statement becomes

∪j≥i Gj(t)\((Gi(t)\{vi}) ∪ Di(t))
=(∪j>iGj(t)\Di(t)) ∪ {vi}

All elements in this set are greater than or equal to v, so the statement holds
for v as well.

EXPIRE: When the timestamp increments to t + 1, one of the elements v
expires. Pick any vi, the expiring element v can be in any one of the following 3
sets:

1. ∪j≤iGj(t)
2. Di(t)
3. ∪j>iGj(t)\Di(t)

By Claims 1 and 2, these 3 sets are disjoint and contain all observations in
the current window. Assuming v �= vi, if v comes from set 1, then ∪j≤iGj(t + 1)
decrease by 1 but does not affect the set ∪j>iGj(t+1)\Di(t+1) in our statement.
If v comes from set 2, then ∪j>iGj(t + 1)\Di(t + 1) remains unchanged as v is
contained in both Di(t) and ∪j>iGj(t) (Claim 2). If v comes from set 3, then
∪j>iGj(t + 1)\Di(t + 1) decreases by 1, the number of elements greater than vi

decreases by 1. The statement still holds in all these cases.
If v = vi is the expiring element, then at t + 1 there is another observation

v′ in the EH Gi that becomes the maximum element in Gi. But we know v′ ≤
vi as vi is the maximum element in Gi before expiration, so the elements in
∪j>iGj(t + 1)\Di(t + 1) which are greater than vi are also greater than v′, and
the statement holds.

COMPRESS: Suppose the COMPRESS step merges two tuples (vi−1, Gi−1,Di−1)
and (vi, Gi,Di). For r > i, this does not affect the set ∪j>rGj(t)\Dr(t). For
r < i − 1, this does not affect the set ∪j>rGj(t)\Dr(t) as the deletion of Gi−1

is compensated by setting Gi = Gi−1 ∪ Gi. For r = i, if vi = max(vi−1, vi) then
the set ∪j>iGj(t)\Di(t) does not change. Since vi does not change either the
statement holds after merging.

If vi−1 = max(vi−1, vi) (which is possible with inversion), then by inductive
hypothesis we know ∪j>i−1Gj(t)\Di−1(t) contains elements that are greater than
or equal to vi−1. After merging by setting vi = vi−1,Gi = Gi−1 ∪ Gi,Di =
Di−1, the set in the statement becomes ∪j>iGj(t)\Di−1(t), which is a subset of
∪j>i−1Gj(t)\Di−1(t). Therefore all elements in it are greater than or equal to
vi−1 after merging. ��

Online Algorithm for Approximate Quantile Queries on Sliding Windows 383

Lemma 12. At all time t, for all i, at least 1 − ε′
2 fraction of elements in the

set ∪j≤iGj(t) have values less than or equal to maxj≤i vj(t).

Proof. For each individual Gj(t), by the property of tracking approximate max-
imum by our EH sketch Gj , 1− ε′

2 fraction of the elements in Gj(t) are less than
vj(t).

Taking union over Gj(t) and maximum over vj(t), we obtain the lemma. ��

Theorem 5. Correctness of Quantile: The query procedure returns a value v
with rank between (q − (ε1 + 2ε′

2))W and (q + (ε1 + 2ε′
2))W .

Proof. We maintain the invariant: at all time t, for all i

gi(t) + Δi(t) ≤ 2ε1W. (10)

The function QUANTILE returns v = maxj≤i vi(t), where i is the minimum
index such that

∑
j≤i gj(t) ≥ (q − ε1)W . Suppose v = vp, p ≤ i.

By Lemma 12, there are at least (1 − ε′
2)

∑
j≤i |Gj(t)| elements less than or

equal to vi(t) (and hence v). Now

(1 − ε′
2)

∑
j≤i |Gj(t)|

≥
∑

j≤i |Gj(t)| − ε′
2W [as

∑
j≤i |Gj(t)| ≤ W]

≥ (1 − ε′
2)

∑
j≤i gj(t) − ε′

2W [by Eq. 8]
≥

∑
j≤i gj(t) − 2ε′

2W [as
∑

j≤i gj(t) ≤ W]
≥ (q − ε1)W − 2ε′

2W
= (q − (ε1 + 2ε′

2))W

Therefore v has minimum rank of (q − (ε1 + 2ε′
2))W .

By Lemma 11, there are at least
∑

j>p |Gj(t)|−|Dp(t)| elements greater than
or equal to v = vp. The maximum rank of v is

W − (
∑

j>p |Gj(t)| − |Dp(t)|)
=

∑
j≤p |Gj(t)| + |Dp(t)| [

∑
j |Gj(t)| = W]

=
∑

j<p |Gj(t)| + |Gp(t)| + |Dp(t)|
≤ (1 + ε′

2)
∑

j<p gj(t)
+(1 + ε′

2)(gp(t) + Δp(t))
≤ (1+ε′

2)(q−ε1)W +(1+ε′
2)(2ε1W)

≤ (q + (ε1 + ε′
2 + ε1ε

′
2))W

≤ (q + (ε1 + 2ε′
2))W [since ε1 < 1]

The inequality from the third last line comes from the invariant in Eq. 10 and the
fact that i ≥ p is the minimum index with

∑
j≤i gj(t) ≥ (q−ε1)W , so

∑
j<p gj(t)

has to be strictly less than (q − ε1)W . Therefore v = vp has maximum rank of
(q + (ε1 + 2ε′

2))W . Together with the minimum rank of v, this shows v gives an
(ε1 + 2ε′

2)-approximation to the quantile query problem on the qth quantile. ��

384 C.-N. Yu et al.

References

1. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows.
In: PODS, pp. 286–296. ACM (2004)

2. Buragohain, C., Suri, S.: Quantiles on streams. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems, pp. 2235–2240. Springer, New York (2009)

3. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

4. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. SIAM J. Comput. 31(6), 1794–1813 (2002)

5. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile sum-
maries. In: ACM SIGMOD Record, vol. 30, pp. 58–66. ACM (2001)

6. Lin, X., Hongjun, L., Jian, X., Yu, J.X.: Continuously maintaining quantile sum-
maries of the most recent n elements over a data stream. In: ICDE, pp. 362–373.
IEEE (2004)

7. Mousavi, H., Zaniolo, C.: Fast and accurate computation of equi-depth histograms
over data streams. In: EDBT, pp. 69–80. ACM (2011)

8. Mousavi, H., Zaniolo, C.: Fast computation of approximate biased histograms on
sliding windows over data streams. In: SSDBM, p. 13. ACM (2013)

9. Papapetrou, O., Garofalakis, M., Deligiannakis, A.: Sketch-based querying of dis-
tributed sliding-window data streams. Proc. VLDB Endowment 5(10), 992–1003
(2012)

10. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: new
aggregation techniques for sensor networks. In: SenSys, pp. 239–249. ACM (2004)

11. Zhang, Q., Wang, W.: A fast algorithm for approximate quantiles in high speed
data streams. In: SSDBM, p. 29. IEEE (2007)

Author Index

Bader, Johannes 1
Baum, Moritz 17, 33
Becker, Henrique 50
Belazzougui, Djamal 63
Beyer, Stephan 75
Buchhold, Valentin 17
Buchin, Kevin 89
Buchin, Maike 89
Buriol, Luciana S. 50

Chen, Ruichuan 369
Chimani, Markus 75
Cordova, Joshimar 105
Crouch, Michael 369

Dahlum, Jakob 118
Denzumi, Shuhei 201
Dibbelt, Julian 17, 33

Fekete, Sándor P. 134

Genuzio, Marco 339
Georgiadis, Loukas 150
Gog, Simon 1
Gravier, Christophe 310
Gudmundsson, Joachim 89

Haas, Andreas 134
Hedtke, Ivo 75
Hemmer, Michael 134
Hoffmann, Michael 134
Horton, Michael 89

Italiano, Giuseppe F. 150

Jacob, Christoph R. 353

Karanasiou, Aikaterini 150
Kärkkäinen, Juha 63
Katajainen, Jyrki 167
Kempa, Dominik 63
Kostitsyna, Irina 134
Kotrbčík, Michal 75

Kotsireas, Ilias S. 184
Krupke, Dominik 134

Lamm, Sebastian 118
Lee, Taito 201
Lorenzen, Stephan S. 217

Maurer, Florian 134
Meyerhenke, Henning 353
Mitchell, Joseph S.B. 134

Navarro, Gonzalo 105
Niknami, Mehrdad 231

Ottaviano, Giuseppe 339

Pajor, Thomas 33
Papadopoulos, Charis 150
Pardalos, Panos M. 184
Parotsidis, Nikos 150
Parsopoulos, Konstantinos E. 184
Petri, Matthias 1
Poloczek, Matthias 246
Puglisi, Simon J. 63

Qiu, Zhen 262

Rocher, Pierre-Olivier 310

Sadakane, Kunihiko 201
Sakr, Nourhan 278
Sala, Alessandra 369
Samaranayake, Samitha 231
Sanders, Peter 118, 294
Schmidt, Arne 134
Schmidt, Christiane 134
Schulz, Christian 118, 294
Sijben, Stef 89
Souravlias, Dimitris 184
Stein, Cliff 278
Stein, Clifford 262
Strash, Darren 118
Subercaze, Julien 310

Troegel, Julian 134

Valenzuela, Daniel 326
Vigna, Sebastiano 339
von Looz, Moritz 353

Wagner, Dorothea 17, 33
Werneck, Renato F. 118

Williamson, David P. 246
Winter, Pawel 217
Wolter, Mario 353

Yu, Chun-Nam 369

Zhong, Yuan 262

386 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Provenance for Computational Reproducibility and Beyond
	Minimum Cost Flows in Graphs with Unit Capacities
	Complexity Bounds for Primal-Dual Methods Minimizing the Model of Objective Function

	Contents
	Practical Variable Length Gap Pattern Matching
	1 Introduction
	2 Background and Related Work
	3 VLG Pattern Matching Using the Wavelet Tree over SA
	3.1 Breadth-First Search Approach
	3.2 Depth-First Search Approach
	3.3 Implementation Details

	4 Empirical Evaluation
	5 Conclusion
	References

	Fast Exact Computation of Isochrones in Road Networks
	1 Introduction
	2 Problem Statement and Basic Approach
	3 IsoCRP
	4 Faster IsoGRASP
	5 IsoPHAST
	6 Alternative Outputs
	7 Experiments
	8 Final Remarks
	References

	Dynamic Time-Dependent Route Planning in Road Networks with User Preferences
	1 Introduction
	2 Preliminaries
	3 Our Approach
	3.1 Preprocessing
	3.2 Customization
	3.3 Live Traffic and Short-Term Traffic Predictions
	3.4 Queries

	4 Experiments
	5 Conclusion
	References

	UKP5: A New Algorithm for the Unbounded Knapsack Problem
	1 Introduction
	1.1 UKP Formal Notation
	1.2 Dominance
	1.3 Periodicity
	1.4 Sparsity

	2 UKP5: The Proposed Algorithm
	2.1 Solution Dominance
	2.2 Implementation Details

	3 Computational Results
	3.1 Environment
	3.2 Instance Sets
	3.3 Results and Analysis

	4 Conclusion and Final Remarks
	References

	Lempel-Ziv Decoding in External Memory
	1 Introduction
	2 Basic Definitions
	3 On I/O Complexity of LZ Decoding
	4 LZ Decoding Using EM Sorting and Priority Queue
	5 LZ Decoding Without Sorting or Priority Queue
	6 Reducing Disk Space Usage
	7 Experimental Results
	8 Concluding Remarks
	References

	A Practical Method for the Minimum Genus of a Graph: Models and Experiments
	1 Introduction
	2 Minimum Genus ILP and SAT Formulations
	2.1 ILP Formulation
	2.2 SAT Formulation
	2.3 Improvements
	2.4 Exponential vs. Polynomial Size Formulations

	3 A Minimum Genus Computation Framework
	4 Experimental Evaluation
	5 Conclusion
	References

	Compact Flow Diagrams for State Sequences
	1 Introduction
	2 Algorithms
	2.1 General Criteria
	2.2 Monotone Decreasing and Independent Criteria
	2.3 Heuristics

	3 Experiments
	3.1 Tactical Analysis in Football
	3.2 Performance Testing

	4 Concluding Remarks
	References

	Practical Dynamic Entropy-Compressed Bitvectors with Applications
	1 Introduction
	2 Basic Concepts
	3 Dynamic Entropy-Compressed Bitvectors
	3.1 Memory Management
	3.2 Entropy-Based Compression
	3.3 Compression of Very Sparse Bitvectors

	4 Applications
	4.1 Dynamic Sequences
	4.2 Dynamic Graphs and Grids

	5 Experimental Results and Discussion
	6 Conclusions
	References

	Accelerating Local Search for the Maximum Independent Set Problem
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Preliminaries
	2.1 The ARW Algorithm

	3 Techniques for Accelerating Local Search
	3.1 Exact Kernelization
	3.2 Inexact Reductions: Cutting High-Degree Vertices
	3.3 Putting Things Together

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Accelerated Solutions
	4.3 Time to High-Quality Solutions
	4.4 Overall Solution Quality

	5 Conclusion and Future Work
	References

	Computing Nonsimple Polygons of Minimum Perimeter
	1 Introduction
	2 Complexity
	3 Approximation
	4 IP Formulation
	4.1 Cutting-Plane Approach
	4.2 Basic IP
	4.3 Initial Edge Set

	5 Separation Techniques
	5.1 Pitfalls
	5.2 Glue Cuts
	5.3 Tail Cuts
	5.4 Hole-in-Hole Cuts

	6 Experiments
	6.1 Implementation
	6.2 Test Instances
	6.3 Results

	7 Conclusions
	References

	Sparse Subgraphs for 2-Connectivity in Directed Graphs
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithms and Heuristics for 2VC-B
	4 Approximation Algorithms and Heuristics for 2C
	5 Experimental Analysis
	References

	Worst-Case-Efficient Dynamic Arrays in Practice
	1 Introduction
	2 Motivating Example: Reverse
	3 Space Efficiency
	4 Subscripting Operator
	5 Iterator Operators
	6 Modifying Operations
	7 Robustness
	8 Discussion
	References

	On the Solution of Circulant Weighing Matrices Problems Using Algorithm Portfolios on Multi-core Processors
	1 Introduction
	2 Circulant Weighing Matrices
	3 Employed Algorithms
	3.1 Iterated Local Search
	3.2 Tabu Search
	3.3 Algorithm Portfolios

	4 Experimental Analysis
	5 Conclusions
	References

	Engineering Hybrid DenseZDDs
	1 Introduction
	2 Preliminaries
	2.1 Zero-Suppressed Binary Decision Diagrams (ZDDs)
	2.2 Succinct Data Structures

	3 DenseZDDs
	4 New Algorithms for Hybrid DenseZDDs
	4.1 Selection of Nodes to Remain After Compression
	4.2 Decision of Preorder Ranks

	5 Experimental Results
	5.1 N-queens
	5.2 LCM over Hybrid DenseZDD
	5.3 Logic Function Minimization

	6 Concluding Remarks
	References

	Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances
	1 Introduction
	1.1 Definitions
	1.2 DM-Heuristic in Rd
	1.3 Improvement Motivation

	2 DB-Heuristic in Rd
	3 Contractions and Bottleneck Distances
	4 Computational Results
	5 Summary and Conclusions
	References

	Tractable Pathfinding for the Stochastic On-Time Arrival Problem
	1 Introduction
	1.1 Variants
	1.2 Contributions

	2 Preliminaries
	3 Path-Based SOTA
	3.1 Algorithm
	3.2 Analysis

	4 Preprocessing
	4.1 Efficient Path-Based Preprocessing
	4.2 Arc-Potentials

	5 Experimental Results
	5.1 Evaluation
	5.2 Scalability

	6 Conclusion and Future Work
	References

	An Experimental Evaluation of Fast Approximation Algorithms for the Maximum Satisfiability Problem
	1 Introduction
	2 The Selected Algorithms and Related Work
	3 The Experimental Results
	3.1 The Greedy Algorithms
	3.2 The Local Search Methods

	4 A Hybrid Algorithm that Achieves Excellent Performance at Low Cost
	5 Two Variants of Greedy Algorithms
	5.1 Random Variable Orders
	5.2 Multiple Restarts of the Randomized Greedy Algorithm

	6 The Performance Relative to the Best Known Value
	7 Conclusions
	References

	Experimental Analysis of Algorithms for Coflow Scheduling
	1 Introduction
	1.1 Coflow Model and Approximation Algorithm
	1.2 Overview of Experiments
	1.3 Related Work

	2 Preliminary Background
	3 Offline Algorithms with Zero Release Time
	3.1 Ordering Heuristics
	3.2 Scheduling via Birkhoff-Von Neumann Decomposition, Backfilling and Grouping
	3.3 Scheduling Algorithms and Metrics
	3.4 Performance of Algorithms on Real-World Data
	3.5 Cost of Matching
	3.6 Performance of Algorithms on General Instances

	4 Offline Algorithms with General Release Times
	4.1 Convergence of Heuristics with Respect to Release Times

	5 Online Algorithms
	6 Conclusion
	References

	An Empirical Study of Online Packet Scheduling Algorithms
	1 Introduction
	2 Modified Greedy Algorithm (MG)
	3 Mini LP Algorithm (MLP)
	3.1 Initial Analysis
	3.2 Parameter Effect on MLP Behavior
	3.3 Influence of Maximum-Weight Packets

	4 Comparative Analysis
	4.1 Ratio Behavior w.r.t. Model Parameters
	4.2 Changing the Distribution of

	5 Hard Instances
	6 Algorithm Modifications
	6.1 The Mix and Match Algorithm (MM)
	6.2 The Learning Modified Greedy Algorithm (LMG)
	6.3 The Second Max Algorithm (SMMG)

	7 Model Discussion
	8 Conclusion
	References

	Advanced Multilevel Node Separator Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Related Work

	3 Advanced Multilevel Algorithms for Node Separators
	3.1 Coarsening
	3.2 Initial Node Separators
	3.3 Local Search
	3.4 Miscellanea

	4 Experiments
	4.1 Separator Quality

	5 Conclusion
	A Benchmark Set A
	References

	A Merging Heuristic for the Rectangle Decomposition of Binary Matrices
	1 Introduction
	2 DBRM-MinRect
	2.1 Optimal Solution to the RDBM-MinRect Problem
	2.2 Heuristics for the RDBM-MinRect Problem

	3 Approximating Largest Area
	4 Walk, Stack, Remove and Merge (WSRM)
	4.1 Example
	4.2 Algorithm Details

	5 Implementation
	5.1 Data Structure

	6 Evaluation
	7 Conclusion
	References

	CHICO: A Compressed Hybrid Index for Repetitive Collections
	1 Introduction
	2 Related Work
	2.1 Repetitive Collections
	2.2 LZ77

	3 Hybrid Index
	3.1 Kernelization to Find Primary Occurrences
	3.2 Reporting Secondary Occurrences

	4 CHICO: Beyond Greedy LZ77
	4.1 Reducing the Number of Phrases
	4.2 Finding the Occurrences
	4.3 RLZ: A Faster Building Algorithm

	5 Implementation
	5.1 LZ77
	5.2 Relative Lempel-Ziv
	5.3 Parallel Relative Lempel-Ziv

	6 Experimental Results
	6.1 Larger Collections

	7 Conclusions
	References

	Fast Scalable Construction of (Minimal Perfect Hash) Functions
	1 Introduction
	2 Notation and Tools
	3 Background and Related Work
	4 Squeezing Space
	5 Broadword Programming for Row Operations
	6 Lazy Gaussian Elimination
	7 Data Structure Improvements
	8 Experimental Results
	9 Further Applications
	10 Conclusions
	References

	Better Partitions of Protein Graphs for Subsystem Quantum Chemistry
	1 Introduction
	2 Problem Description
	2.1 Protein Partitioning

	3 Related Work
	3.1 General-Purpose Graph Partitioning
	3.2 Methods for Subsystem Quantum Chemistry

	4 Solving Main Chain Partitioning Optimally
	5 Algorithms for General Protein Partitioning
	5.1 Greedy Agglomerative Algorithm
	5.2 Multilevel Algorithm with Fiduccia-Mattheyses Local Search
	5.3 Repair Procedure

	6 Experiments
	6.1 Settings
	6.2 Results

	7 Conclusions
	References

	Online Algorithm for Approximate Quantile Queries on Sliding Windows
	1 Introduction
	2 Streaming Quantile Algorithms
	2.1 GK Algorithm

	3 Sliding Windows and Exponential Histograms
	3.1 Exponential Histograms

	4 Algorithm
	4.1 EH-with-max
	4.2 Our Algorithm

	5 Correctness
	6 Analysis
	6.1 Arasu-Manku Time Analysis
	6.2 Our Time Analysis

	7 Experiments
	7.1 Sorted Inputs

	8 Conclusions
	References

	Author Index

