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Chapter 6
When Mathematics Meets Real Objects: How 
Does Creativity Interact with Expertise 
in Problem Solving and Posing?

Florence Mihaela Singer and Cristian Voica

Abstract  The paper analyzes the results of activities undertaken by Mathematics 
students enrolled in a pre-service teacher-training program. Students were given the 
task to describe the way of building a figure from which one could get a box, to 
identify the geometric properties that allow producing the box, and to propose new 
models from which new boxes can be obtained. For creativity analysis, a cognitive 
flexibility framework  has been used, within which students’ cognitive variety, 
cognitive novelty, and their capacity to make changes in cognitive framing are 
analyzed. The analysis of some specific cases led to the conclusion that creativity 
manifestation is conditioned by a certain level of expertise. In the process of building 
a solution for a nonstandard problem, expertise and creativity support and mutually 
develop each other, enabling bridges to the unknown. This interaction leads also to 
an increase in expertise. Moreover, in order to get individual relevant data, the iden-
tification of creativity should take place based on tasks situated in the proximal 
range of the person’s expertise but exceeding his/her actual level of expertise at a time.

Keywords  Mathematical creativity • Modelling • Cognitive flexibility • Expertise

6.1  �Introduction

What is the relationship between expertise and creativity? This is a question that has 
generated lots of controversy in literature over time. Some authors (eg Diezmann 
and Watters 2000) argue that expertise is a precondition for creativity. Other authors 
(eg Craft 2005), accepting the existence of “small c creativity”, say the contrary, 
arguing that because creativity can occur in any person, we must accept a spectrum 
of knowledge – therefore of expertise, in connection with creativity (Craft 2005).
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We started our project with the intention to answer the question: How does 
students’ mathematical creativity manifest in a context in which technology and 
modelling interact with theoretical mathematics? Our study was initiated by the fact 
that we noticed very different behaviors in terms of creativity when placing a group 
of students - prospective mathematics teachers in a context of problem solving and 
problem posing that involves modelling. Thus, while progressing with our analysis, 
another question became dominant, which actually includes the previous one: 
How does creativity interact with expertise in problem solving and posing? As a 
result, we intend to study the link between creativity and expertise in a complex 
situation, which occurs in a context combining problem solving, problem posing, 
and modelling.

6.2  �Framework

6.2.1  �Problem Solving and Problem Posing

In his well-known book How to Solve It, Pólya (1945) identified four steps in solv-
ing a problem: (i) understanding the problem; (ii) developing a plan; (iii) carrying 
out the plan; and (iv) looking back. Subsequently, lots of frameworks have been 
developed for studying the problem solving process (eg Schoenfeld 1992).

We have found a variety of approaches for studying problem posing in the litera-
ture, as well (eg Brown and Walter 2005; Jay and Perkins 1997; Singer et al. 2015). 
In this paper, we accept Silver’s position, stating that problem posing refers to the 
generation of (completely) new problems, and also to the re-formulation/modifica-
tion of given problems (Silver 1994). We specifically address here the context of 
problem modification.

A conceptual cognitive  framework for problem solving, with various applica-
tions in problem posing was developed by Singer and Voica (2013). This framework 
highlights four operational categories: decoding, representing, processing, and 
implementing (Singer and Voica 2013).

6.2.2  �Mathematics Modelling

Mathematical modelling can be seen as a process of translating between the real 
world and mathematics in both directions (Borromeo Ferri 2006). In recent years, 
the following description of an ideal modelling process (according to Blum and 
Leiss 2007) is frequently discussed: starting from a real world situation, this is 
simplified and/or structured: one thus arrives to a real model of the situation. This is 
transposed in a mathematical language, thus generating a mathematical model. 
The processing of the mathematical model leads to some results, which are then 
interpreted and validated into the real situation.

F.M. Singer and C. Voica



77

In the present study, students had to describe mathematically a real object  – 
therefore to build a mathematical model of the real object, and then to extend the 
model so that to design new more complex objects. Using Kaiser and Sriraman’s 
(2006) terminology, this type of task is framed into realistic or applied modelling 
(solving real world problems, understanding of the real world, promotion of model-
ling competencies).

6.2.3  �Creativity

Creativity had long been viewed as a domain-general phenomenon. However, 
recently, new evidence show that creativity is not only domain-specific, but it even 
seems to be task specific within content areas (eg Baer 2012).

There is no consensus concerning the definition of creativity and its framework 
of study; there is no consensus in studying mathematical creativity either. There is 
however certain consensus regarding the difference between (advanced) research 
mathematicians creativity –considered as “extraordinary” or “absolute” creativity, 
and creativity in school mathematics – part of “everyday” or “relative” creativity  
(eg Craft 2003; Lev and Leikin 2013; Sriraman 2005). In addition, “big “C” creativity” 
and “small “c” creativity” are largely discuss (eg Bateson 1999; Gardner 2008).

Usually, creativity is studied starting from Torrance’s tests, which is based on 
four related components: fluency, flexibility, novelty, and elaboration. Starting from 
here, various frameworks for studying creativity have been generated, usually 
adapted to specific types of tasks.

For problem solving context, Leikin (2013) uses multiple-solution tasks as a lens 
to observe creativity. The interplay between individual and expert solution space is 
an expression of creativity and the dimensions of her model are originality, fluency 
and flexibility, which are aggregated into creativity score by a research-based and, 
subsequently refined, scoring technique.

The construct of spaces of discovered properties is at the core of a new frame-
work (Leikin and Elgrabli 2015), advanced to explore the complex relationship 
between creativity and knowledge in the context of an investigation task set in a 
dynamic geometry environment. The discovered properties were assessed from the 
point of view of their novelty, complexity of auxiliary constructions, and the com-
plexity of their proofs.

For problem posing context, Kontorovich and Koichu suggested a framework 
based on four “facets”: resources, heuristics, aptness, and social context in which 
problem posing occurs (Kontorovich and Koichu 2009). A more recent refinement 
of this framework has integrated task organization, knowledge base, problem pos-
ing heuristics and schemes, group dynamics and interactions, and individual consid-
erations of aptness as parameters in analyzing creativity in problem posing situation 
(Kontorovich et al. 2012).

A different approach to creativity, one based on organizational theory, has been 
taken by Voica and Singer (2011, 2013). Their framework relies on the concept of 
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cognitive flexibility. Cognitive flexibility is described by: cognitive variety, cognitive 
novelty, and changes in cognitive framing. Cognitive variety manifests in the 
formulation of different new problems/properties from an input stimulus; cognitive 
novelty captures the innovative aspect in the posed problem – its distance from the 
starting element; while changes in the participant’s mental frame refer to shifts in 
the “on-focus” elements during the problem posing. Thus, cognitive flexibility 
arises as a complex, non-linear interplay between these dimensions. Consequently, 
the construct of cognitive flexibility opens up the possibility to capture different ways 
of being creative, namely through the differing loads on the three dimensions.

In the present study, we use the cognitive-flexibility framework in analyzing 
data. We consider that this framework better corresponds to our case, in which 
communication tasks related to problem solving, problem posing and modeling of 
problem situations occur. By using this framework, we can capture, beyond math-
ematical creativity, implications related to communication and social  interactions 
reflected in problem posers’ cognitive approach.

6.2.4  �Experts Versus Novices

Expertise implies the existence and use of two types of knowledge: explicit knowl-
edge of facts, principia, formulae pertaining to the domain, and implicit knowledge 
of how to operate with them (Sternberg 1998).

Glaser (1999) argued that, because self-monitoring – the ability to observe and, 
if necessary, reshape one’s performance – is a hallmark of expertise, this skill should 
be emphasized in instruction. How to arrive at doing these in the real classroom? 
Although a very tempting concept from the point of view of artificial intelligence, 
the idea of expertise was not very much explored in psychology in relation to educa-
tion. The criteria developed by Glaser (1988) for comparing experts and novices are 
still valid. Glaser characterizes expertise through six features (“generalizations” in 
Glaser’s terminology: knowledge organization and structure, depth of problem rep-
resentation, theory and schema change, proceduralized and goal oriented knowl-
edge, automaticity, and metacognitive self-regulatory skills; because we use these 
features further, we detail them below.

•	 In terms of knowledge structure and organization, the expert has structured infor-
mation items that are integrated into previous knowledge organizations so that 
they are rapidly selected from memory in large units, while novices possess 
punctual knowledge, consisting of isolated elements that display a superficial 
understanding of domain-specific key concepts and terms. (A)

•	 Regarding the complexity of problem-solving representation, the novice solves a 
task starting from its surface features, while the expert makes interferences and 
identifies principles underlying the surface structures. (B)

•	 In changing thinking schemes, the expert amends his/her own knowledge theo-
ries, and develops schemes that facilitate more advanced thinking, while novice 
manifests rigidity in changing a thinking scheme. (C)
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•	 In terms of goal-oriented procedural knowledge, the expert displays functional 
knowledge, while novice possesses information without clearly understanding 
the applicability conditions. (D)

•	 In terms of automation that reduces the concentration of attention, an expert can 
focus attention while alternates between basic capacity and higher levels of strat-
egy and understanding, using automate thinking to achieve good performance, 
while novices have difficulty in sharing attention, they frequently get lost in 
details and are unable to concentrate on essential facts. (E)

•	 Regarding metacognitive capacities of self-regulation, the expert check rapidly 
and intuitively the solution to a problem, proves accuracy in judging its diffi-
culty, in assessing own knowledge and understanding, can ask questions, predict 
the outcome of the work, and use time effectively, while the novice tackles a 
linear approach, without looking ahead, and without controlling timing and work 
outcomes. (F)

6.2.5  �Expertise and Creativity

During this study, we have started by exploring students’ creativity and we came up 
by analyzing the students’ level of expertise. We therefore ask ourselves: what is the 
relationship between these concepts? There are conflicting views about it, depend-
ing on how creativity is defined, but also depending on the domain being surveyed. 
We will further refer to creativity in school mathematics. For Diezmann and Watters, 
for example, for a student to be creative, he/she needs some intellectual autonomy 
and expertise (Diezmann and Watters 2000). Expertise is therefore seen as a neces-
sary precondition for the manifestation of creativity. In his studies, Baer nuanced 
this relationship: he admits as obvious that some degree of expertise is important for 
the expression of creativity, but the question is what kind of expertise is required in 
a particular domain (Baer 1998, 2010).

On the other hand, Craft (2005) admits that every student is capable of creative 
manifestations; the consequence would be that expertise is not absolutely necessary 
for the manifestation of creativity or, at least, that we should accept a spectrum of 
knowledge at different levels.

6.3  �Method

6.3.1  �Sample and Task

The data comes from students in mathematics  – prospective teachers who have 
received the same task during a Mathematics Education course. The task (listed in 
Annex) had two parts. In the first part, students approached a task of communication 
(“telephoned” description of a geometric configuration – Fig. 6.1.) consisting of 
producing a list of instructions based on which an interlocutor who did not have 
access to seeing the configuration have to reproduce it. After finishing this activity, 
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students had to interact with the person “at the other end (of the phone)”, and to 
improve the instruction list taking into account the received feedback and, eventually, 
to validate the new list of instructions with another partner (the validation consisted 
of  that the partner was able to make an object that meets certain geometric 
properties).

In the second part of the task, students explored geometric properties of the 
given configuration, and tried to develop generalizations.

For the first part, students could work in groups of two, while for the second they 
had to work individually. There were students who preferred to work alone for the 
entire task. To solve the task, the students had a period of three weeks. In total, 26 
students responded to this task: they constitute our sample for research.

6.3.2  �A Modeling Context

The task proposed to students involves a modelling process. This is because, in a 
first phase of the task, properties related to the technological process for obtaining 
the box are to be interpreted in mathematical terms; thus one builds the mathemati-
cal model of the real object. In the second phase, this model was faced up with the 
possibility of extension, which allows obtaining new objects of the same category. 
The validation of the new mathematical proposals was made by obtaining geometric 
configurations and the actual construction of new boxes.

In achieving the mathematical model, students were exposed to a context of 
communication and social interaction, which led to the description of the model in 
an implementable technological manner (the students listed the steps of a techno-
logical process). This is another argument for interpreting the task as being a model-
ling one.

6.4  �Results

6.4.1  �What Elements of the Geometrical Configuration  
Were Relevant for Students?

Students’ instruction lists and their recommendations for constructions show that 
they focused on the decomposition of the given figure in certain components. 
We briefly present the elements that students highlight in formulating instructions 

Fig. 6.1  The images 
initially showed to students 
(the box was presented as 
physical object, in the 
classroom)
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for (telephoned) reproduction of the given figure and for obtaining the box. (A 
broader discussion on the results presented in this paragraph is found in Pelczer 
et al. 2015). We have seen a variety of starting approaches. Below, there are a few 
selected. In the issued instruction lists, students frequently showed some networks/
tessellations of the plan, which guided the construction achievement. Most often, 
there is about a network of circles or plane coverage with squares and circles 
inscribed or circumscribed to them. Figure 6.2 shows three configurations that stu-
dents perceived within the initial figure, namely: A) network of circles; B) squares 
and inscribed circles; C) squares and circumscribed circles.

A particular situation occured in the response given by one of the teams who 
used GeoGebra (although this software is not recommended by the curriculum). 
The team Miron & Ana included Fig. 6.3 in their solving. Here, the first figure 
shows a plan coverage with squares and circles inscribed and circumscribed to 
them, while the second figure (“clean and ready to cut”) only highlights a pattern of 
circles.

a b c

Fig. 6.2  Configurations that students perceived within the initial figure: (a) network circles;  
(b) squares and inscribed circles; (c) squares and circumscribed circles

Fig. 6.3  Drawings made by Miron and Ana using GeoGebra
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6.4.2  �What Geometric Properties Do Students Identify?

For identifying geometrical properties it is not enough for the students to observe 
the initial configuration because the task statement does not contain data about 
the figure; they need to translate facts related to the technological process into 
a mathematical language. Therefore, in describing the configuration, students had 
to identify dominant perceptual elements of the mathematical model.

For example, students have noticed that to obtain the box, some parts of the 
figure should coincide when overlapped. “Perfect” overlap was expressed in some 
cases through congruence. There are also cases where students retain from overlap-
ping parts of the figure only the equality of their areas: the mathematical property 
identified in this case is “weak” because it does not translate, in mathematical terms, 
the complexities of the real object. In other words, in this case the properties sug-
gested by students do not allow a unique characterization of the given configuration, 
but have degrees of freedom that lead to a broader class of configurations. 
Consequently, two categories of properties that students remark within the given 
configuration occur: strong properties and weak properties.

More precisely

Strong property: is part of a mathematical model that uniquely characterizes the 
initial figure from which the box is obtained. In other words, it is a property 
belonging to a minimal set of necessary and sufficient conditions that ensure 
identical reproduction of the object.

Weak property: expresses mathematical features necessary but not sufficient, of the 
given figure. In other words, it provides a class of possible configurations of the 
given basic elements in which the initial configuration is found, but one can find 
there other configurations as well.

Table 6.1 shows the geometrical properties identified by the students from our 
sample through the model specifications that allow building the box. For the clarity 
of presentation, we organized the students identified properties into 5 categories of 
content. We have also selected some significant comments of students for the char-
acterization of the respective property. They reveal types of constraints identified in 
the mathematical model, which conditioned the making of the box.

Most students identify, in the given configuration, equal circles and regular poly-
gons. Out of these, some remain in the straightedge-and-compass constructability, 
ie they focus on polygons that can be built in this way. Table 6.1 shows separately 
content categories inscribed/circumscribed and regular polygons. Although this 
seems to be a redundancy, because any regular polygon is an inscriptible one, we 
distinguished among these categories because while some students consistently use 
circles to build polygons, others operate with regular polygons without needing the 
support of a circle.
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Table 6.1  Dominant features of the mathematical model used for building the box

Dominants identified by students Weak properties Strong properties

Highlighting  congruence The lateral faces (“lenses”) 
have equal surfaces.

Lateral faces of the box are 
congruent figures.

“When pasting the figure it 
should perfectly 
overlap” – Paul

“The figures formed by the 
intersections of circles are 
all congruent each other – so 
we can put perfectly on each 
other and form the sides of 
the box” – Andreea

The number of “convex 
lens” is even.

Interior arches are congruent 
with each other and are 
congruent with large arcs on 
the circles.

“Because they overlap two 
by two” – Paul

“Interior arches are equal to 
itself – otherwise, bonding 
would not be 
possible” – Catalin

Emphasis on geometric 
transformations

The plane figure has 
“stability” in rotations 
towards the centers of the 
circles – Cristina

Figure axis of symmetry is 
the common chord
“If you fold on the dotted 
line, figures overlap” – Anca

The figure has as a 
symmetry line the centers 
line. – Dana

“It helps to assemble the 
box” – Rodica

The faces of the box have 
symmetry axes. – Madalina

The second circle is a 
translation of the first 
circle – Adriana

The squares used have sides 
equal to the diameter of the 
initial circle – ie one can 
use the circle inscribed in 
the square.

Emphasizing tessellations

Highlighting inscribed/
circumscribed polygons

Some polygons are cyclic. The property of 
inscriptibility essentially 
intervenes in the square.

“In a circle a polygon can 
be inscribed” (Georgeta)

“The Square fits” perfectly 
“in a circle” – Andreea

Emphasis on regular polygons Square Regular polygons can be 
constructed with compass 
and straightedge.

“We can see equidistant 
points corresponding to a 
square” – Catalin

“In fact, the essential 
property in the construction 
of this figure is breaking 
the circle into four equal 
arcs, namely the opportunity 

to build the angle 
p
2
.  

Reformulated, it is 
constructible regular 
polygons” – Miron. (Miron 
states this without being 
asked a generalization at this 
stage.)

“Square is a regular 
polygon” – Gabriela
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6.4.3  �What Changes Do Students Propose to the Initial Figure 
to Get Other Boxes?

The second task proposed to students required from them to alter the initial figure to 
get two new boxes of different shapes. To meet this requirement, students had to 
consider the mathematical model (reached by identifying the properties of the origi-
nal figure), to extend/modify the model, and to validate the new model by effec-
tively obtaining new boxes. Table 6.2 shows the dominants of the mathematical 
models used by the students in our sample to develop other types of boxes, different 
from the original. The dominants are given in terms of geometric properties that 
students perceived as essential in guiding the transfer from the initial object to new 
constructions.

Table 6.2  Dominants of the mathematical model used by students in the generation of new boxes

Dominant used by students
Solution – the 
modified box

Nr of stud 
arriving to 
the solution Comment

Focus on the net of a solid icosahedron 1 Concentration on the 
final product, they 
just keep the idea of 
container.

dodecahedron 1
parallelepiped 1
(regular) octahedron 2
right-regular 
pyramid with 
congruent edges

1

cylinder 1
Plan coverage with regular 
polygons

triangular box 1 Students use 
tessellations with 
squares or equilateral 
triangles.

“spectacle case” box 3
hexagonal box 1
“heart-shaped box” 1

Focus on inscriptibile/
circumscriptibile polygons

regular octagon 1 Metric aspects are 
ignored; for the first 
three cases, the 
common chord is a 
diagonal in polygons, 
not a side.

regular dodecagon 1
regular 16-gon 1
equilateral triangle 1
regular hexagon 1

Emphasis on the use of a 
regular polygon

regular pentagon 2 To achieve the figure, 
students use practical 
tools (ruler to scale, 
protractor, square 
ruler) or technology 
(GeoGebra)

regular hexagon 2
regular octagon 1

Focus on constructability with 
compass and straightedge

regular pentagon and 
hexagon

1 Students presented 
effective (ideal) 
constructions, using 
onlycompass and 
straightedge

regular hexagon and 
octagon

8
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We have identified three types of approaches used by students in modifying the 
initial given figure.

	(a)	 A Theoretical Approach
This approach is characterized by “perfect” figures: the students that adopted 

this approach propose changes related to the idea of regular polygon that can be 
constructed with compass and straightedge. Typically, students who have this 
approach minimally change the initial context, they just change the number of 
sides. In general, these students did not pay attention to the practical purpose of 
the task, focusing on the rigor of the mathematical constructions.

	(b)	 A Technological Approach
Students who adopt this approach are not interested in the rigorous construc-

tion of the figure because they have alternative instruments (ruler, protractor, or 
square ruler; graphic computer programs), and the focus is on obtaining the 
final product. For these students, the practical verification (even if there are 
flaws in combining the elements to obtain the product) replaces proof and 
argumentation.

	(c)	 Focus on plane figures, with no analogical 3D transfer
Some students retain from the task only that we want to form “a container”. 

These students went back to their basic knowledge (such as the classical net 
pattern of a cylinder or octahedron), actually neglecting the task constraints.

6.5  �Discussion

6.5.1  �Some General Comments

We will comment on the geometric properties identified by students (Table 6.1) and 
on their perceptual clues in generating new boxes (Table 6.2) from the view of mod-
eling. We note that geometric transformations have not been used to generate new 
configurations: they just remained at the level of the language used by students to 
describe the mathematical model. The properties that highlight the congruence of 
elements of the original figure was obtained by the mathematical translation of a 
technological process (the effective realization of the box), while the students who 
relate to an unfolded net of a solid as a way of generating new “products” seem to 
retain only this aspect – ie that the connection plane-space goes through unfolding 
and make a transfer conditioned by this stereotype.

Most of the students’ proposed changes (18 new proposals) are based on regular 
polygons, constructible with compass and straightedge. In fact, starting from square 
(seen as a regular constructible polygon), students undergo a process of generaliza-
tion and propose in 8 out of the 9 cases, boxes that use regular hexagons and regular 
octagons. For these students, we found a certain automatism: they use an algorithm 
corresponding to a general property (constructability of polygons with compass and 
straightedge).
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Plane tessellation with regular polygons as a dominant feature of the mathemati-
cal model represents a creative potential, yet untrained in the Romanian school. 
Some students retain that, following the instructions indicated by them, a square 
coverage of the plane appears as background. Subsequently, they do coverage plane 
with squares or equilateral triangles and, starting from this background, they pro-
pose new geometric configurations that can lead to obtain boxes.

The weak properties identified by students appear in an incomplete mathematical 
modelling. However, they allow more degrees of freedom, because they can lead to 
a wider class of geometrical configurations: therefore, they have the potential to 
facilitate a more creative approach. Strong properties usually lead to a mathematical 
model very well-articulated. The existence of this model seems to be sufficiently 
rigid to direct the solution and push students towards a theoretical approach. We 
note that, the more theoretically advanced is the mathematical model (as in the case 
of the theorem of characterization of regular constructible polygons), the stronger it 
controls generalizations. As a result, although in this case many potential solutions 
appear, they follow the same pattern, they are in the same equivalence class, so once 
the student has demonstrated mastery of this instrument, his/her results cannot be 
recorded as cognitive variety.

6.5.2  �A Few Case Studies

The sample of students used for this study is relatively small. Therefore, a quantita-
tive analysis would not be relevant. On the other hand, we try to understand the 
relationship between creativity and expertise. Both features can be better captured 
by analyzing individual student responses. Therefore, we further include case stud-
ies in which students discuss how they have responded to the task, from two per-
spectives: proven expertise in the formulation of solutions, and their degree of 
creativity. We will try every time to identify, in student’s cognitive behavior, evi-
dence for the criteria that distinguish between novice and expert, detailed in Sect. 
6.2.4, and the cognitive flexibility components, within the framework used to iden-
tify creativity. In some cases it was possible to make, for a student, clear distinctions 
novice – expert or creative – uncreative. There are also situations where, based on 
available data, we could not make such distinctions.

6.5.2.1  �Case 1 (Emilian)

Emilian identifies the following geometric properties of the given figure: the points 
on the two circles are equidistant, forming two squares; the interior arches are con-
gruent with the “proper” arches; inner arcs do not intersect (except their ends). 
These conditions define the initial geometric configuration, which shows that 
Emilian is able to infer the necessary and sufficient conditions underpinning this 
configuration.
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In modifying the configuration, Emilian first tries to customize to the triangular 
case – this shows specific behavior in problem solving. He realizes that, in this case, 
one of the identified conditions regarding the arcs (condition which is automatically 
checked in the given configuration!) cannot be met. He has a moment of doubt (he 
writes: “I think the box cannot be made, at least not in this way”), then he returns 
and delete/cut out some of these comments. He has a few paragraphs originally 
written, on which he returned and cut out. This behavior, on the type “step back” of 
observing own solving process, is also obvious in the analysis of the list of instruc-
tions. Initially, it contained 13 items; subsequently, based on observations made on 
the person who followed these instructions, the list was reformulated. Even if the 
task did not require (explicitly) this experiment being rebuilt (ie the new list of 
instructions to be proposed to another person), based on the new observations made, 
the list of instructions was changed again. This behavior shows, from a cognitive 
view, that Emilian has the ability to change his thinking schemes. The changes pro-
posed by Emilian – boxes using regular hexagon and regular octagon denote abstract 
mathematical thinking. Even if Emilian do not explain why “skip” over the case of 
polygons with 5 or 7 sides, the fact that he began his analysis with the case of tri-
angle proves understanding of the restrictions imposed by the constructability with 
compass and straightedge. The avoidance of certain numbers shows that Emilian 
possesses structured information (results about constructability with compass and 
straightedge), which he activates in this case. All these bring evidence for the exis-
tence of a certain way of structured organization of knowledge. Emilian obtains the 
figures through constructions made using only compass and straightedge, and 
claims that in the hexagonal box type, he checked his conjecture by building the 
box; thus proving purposely oriented procedural knowledge.

Once the checking made for one of the boxes, Emilian seems convinced that the 
other box fulfills the requirements without any supplementary checking. He thus 
expands the observed properties to the octagonal box, proving metacognitive capac-
ities of self-regulation.

Previous comments show that Emilian proves theoretical expertise: he shows 
abstract thinking, he explicitly identify necessary and sufficient geometrical condi-
tions allowing the construction of the object. In other words, his expertise compels 
him to assume a rigorous mathematical modeling of the object. To what extent does 
he show creativity in solving the task? The fundamental element to which Emilian 
refers is a regular polygon constructible with compass and straightedge. Once this 
frame built (mentally) – shaped by defining geometric properties (ie necessary and 
sufficient), he manages to identify and further modify essential elements (in this 
case – the number of sides of the polygon) and generate new valid configurations; 
this is about the capacity of changing an initial mental frame within the persistence 
of his assumed mathematical model. Emilian includes proof of the impossibility of 
building a triangular box in his response, by the same process. Subsequently, he 
generates boxes of different number of sides (6 and 8). This approach, of inductive 
type (starts with the minimum possible number of sides continues by varying the 
number) suggests that Emilian knows that the generalization process can be contin-
ued. We interpret this behavior as specific to cognitive variety. This shows that 
Emilian approaches creatively the given task.
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6.5.2.2  �Case 2 (Andreea)

The solving proposed by Andreea focuses on the technological process. Her instruc-
tions state, first, the materials necessary to achieve the box construction and are very 
detailed (“make notches using the cutter – but do not cut (!) the arches inside, so we 
can easily bend them”). Unlike Emilian, her constructions use ruler to scale and 
square ruler. This shows that Andreea is not interested in the mathematical “theo-
retical/abstract” aspect of the task, but of the pragmatic ones. She intuitively identi-
fies the geometric properties that allow obtaining the box, which she formulate 
using a common language (such as “so we can put perfectly one on each other and 
form the lateral sides of the box”, “the square perfectly falls in a circle”, etc.). 
Andreea proves a type of goal oriented procedural knowledge.

Andreea identifies a defining property of the initial configuration – namely, that 
the marked points on the two circles determine a square in each. She claims that the 
square “fits perfectly in a circle” (meaning that it is a cyclic polygon), and that this 
applies to any regular polygon; as a result, we can use any regular polygon instead 
of the square, the only changes being that the number of lateral sides of the box 
increases and the box shape changes. In other words, Andreea identifies principles 
underlying the original structure – ie the property that the used polygons should be 
regular.

Andreea proves effectiveness in solving the task. She does not question construc-
tability – as Emilian, but construction: for this, she neglects the details of the figure, 
focusing on the property she found as dominant, and generate (for example) a non-
rigorous drawing, yet very clear in respect to information transmitted (Fig. 6.4). 
This shows that Andreea can develop her thinking schemes by synthesizing 
information.

As evidence of her technological orientation skills, Andreea uses GeoGebra to 
get the figures she suggested. The existence of this universal tool  – GeoGebra 
ensures Andreea that the construction can be made for an arbitrary number of sides 
of regular polygons. Once generated the plane configuration, Andreea seems con-
vinced that the effective realization of the box doesn’t bring any difficulty – it is 
made similarly with the original case. This shows metacognitive capacities of self-
regulation – it is no needed to recheck something that works analogically!

Fig. 6.4  Representation 
made by Andreea to 
explain how to obtain a 
pentagonal box
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Is Andreea creative? We will further analyze this issue, to show that the answer 
is affirmative. Andreea succeeds to understand the properties of the original figure, 
even if sometimes her language is too approximate from a strictly mathematical 
view. For example, she notices that the arches that appear in the initial figure are 
equal, and the common side of the squares determines “congruent arcs on both 
sides” – ie, she notices the symmetry of the figure. Starting from the fact that the 
square is a regular polygon, Andreea says that we can use for the requested con-
struction any regular polygon, but it is difficult to identify the centers of the circle 
describing the inner arcs. This looks as she evolves within a well-defined frame, but 
she does not pay attention to metric details because she can use a tool (GeoGebra) 
for every conceivable situation. Once the frame built, the variations she proposes 
(changing the number of sides of polygons consistently) show capacity of frame 
change.

In her response, Andreea includes only one box  – namely, a pentagonal box. 
However, we concluded that she displays, in fact, cognitive variety: once a property 
with potential for generalization (ie the regularity of the polygons) determined, 
Andreea knows that she can unrestrictedly change the number of points of divi-
sion – ie she can get many (new) models of boxes! She is not “restricted” in the 
construction of these new boxes, as the used instrument (GeoGebra) allows unre-
stricted freedom to vary a parameter of the geometric configuration (ie number of 
sides).

6.5.2.3  �Case 3 (Paul)

Paul is prolific in identifying geometrical properties of the given configuration. He 
sets out 10 geometric properties, some of which are “dependent” (can be deduced 
from the properties listed above) – and, consequently, could be missing. We inter-
pret his desire to formulate more geometric properties than necessary as an argu-
ment for the fact that Paul can change his thinking schemes and to focus in turn on 
some other aspects of the given geometric configuration.

Paul expresses the properties of the given configuration in two language regis-
ters. On the one hand, Paul connects the geometric context of the initial figure with 
a strong mathematical result, such as the theorem of characterization of regular 
polygons constructible with straightedge and compass (ie a regular polygon with n 
sides is built if and only if n pk= 2 P , where the product contains only prime dis-
tinct Fermat numbers). The correlation of these properties with the context (in 
which the constructability with compass and straightedge was not explicitly stated) 
suggests that Paul has a knowledge organization of expert type, because he can 
quickly select, from memory, that specific information which is necessary and use-
ful in solving the current task.

On the other hand, Paul seems that he does not only want to identify and convey 
properties, but he also wants to explain them suggestively. In this respect, he uses 
intuitive descriptions or names, such as “biconvex lens”, “the box resembles to a 
cuboid covered with two blankets bond in the corners”. For Paul, the link between 

6  When Mathematics Meets Real Objects: How Does Creativity Interact…



90

theory and practice is much stronger than for Emilian or Andreea. This is reflected 
in the plasticity of language and in the fact that, unlike other colleagues, he moves 
from the general result (ie the theorem of constructability of a regular polygon) to 
the concrete situation in which the theorem is applied. Paul’s expertise doubles and 
supports his creativity. He is prolific in identifying properties of the given figure, 
which indicates cognitive variety. Moreover, although he does not explicitly state, 
he seems convinced that one can build a box by distorting the initial figure such as 
circles become ellipses (see Fig. 6.5). If this was indeed his intention, Paul shows 
reframing, therefore a high level of creativity.

6.5.2.4  �Case 4 (Dana)

Dana has generated a list of instructions containing eight items. Her instruction list 
starts from two secant circles and from the symmetrical points of the centers of the 
circles to the intersection points. Subsequently, she builds arcs of circles with cen-
ters in these points. Dana’s instructions and comments do not specify whether the 
initial circles are equal, or if quadrilaterals obtained are squares. Dana implicitly 
assumes, however, that these conditions are met. In fact, if we follow her instruction 
list (with the supplementary hypothesis of congruence of the initial circles), we get 
a box in which the base is a rectangle (see Fig. 6.6) Dana is however not aware of 
this fact that could lead her to an immediate generalization; she is focused only on 
the figure and she believes that in this way, she gets squares, regardless of the dis-
tance between the centers of the two circles.

For the initial figure, Dana notes that “the intersection of the two squares is 
another square having as side the radius of the two circles”. She breaks down the 
initial figure into “small” squares (as in Fig. 6.7), and then she generates new 
figures, made of triangles, which keep the “zigzag” pattern.

It seems that Dana retains only surface features of the task (ie a specific pattern 
of squares that cover, in her perception, the initial figure) and uses this pattern for 
another geometric figure  – ie equilateral triangle. Not coincidentally, the figures 

Fig. 6.5  Paul’s drawing, which suggests that he may use an elliptical figure for getting a box

F.M. Singer and C. Voica



91

generated by Dana (as alternatives to the given figure) no longer contain circles or 
circle arcs: Dana identifies only superficially the geometric figure baseline (the 2 
circles have equal radii; we built two symmetrical squares; their intersection is also 
a square; the figure has two symmetry axes), and none of them is about the built 
arches. All this shows that Dana is rather novice in exploring the task.

Dana retains only one aspect – namely, that in the end, we obtain a container. The 
background she identified, consisting of matching squares arranged diagonally, sug-
gests the use of figures previously known, representing the unfolded net of some 
regular polyhedron (octahedron and icosahedron).

We can say that Dana denotes cognitive novelty because her chosen changes are 
significantly far from the initial context. However, she thus slides out of the problem 
frame due to insufficient understanding of the geometric properties of the given 
figure (her generated construction leads to circumscribed rhombuses and inscribed 
rectangles, missing the condition of equal circles). At a careful analysis, we note 
that, in fact, she exploits a simple regular easily identifiable pattern. This is a rele-
vant case for the situation that creativity does not advance too much because exper-
tise is missing (in the Glaser’s sense). Apparently, this is in contradiction with the 
fact that Dana is a student with high academic results. Perhaps her learning is often 
a surface one, based on memorization and not on depth analysis of mathematical 
contexts – but we do not have more data to advance this hypothesis.

Fig. 6.6  The figure 
generated following Dana’s 
instructions

Fig. 6.7  Dana’s patterns identified in the initial figure and applied to the figure she generated
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6.5.2.5  �Case 5 (Georgeta)

The structure generated by Georgeta differs from those of all his colleagues. All the 
other students in our sample have generated a list of instructions specifying (and 
numbering) the steps. Georgeta has designed its instructions as a descriptive prose. 
Many of her instructions are non-essential and unclear. For example, there are indi-
cations of the colors to be used for certain details of figure and comments like “com-
mon part of the two circles must be quite large, but smaller than the radius”. By this, 
she proves superficial understanding of key concepts and terms. Georgeta believes 
that the defining geometrical property of the given configuration is that “in a circle 
can be inscribed any geometric figure, more exactly, polygons”. These statements 
have shown us that she is novice. As a change from the original, Georgeta proposes 
the drawing of Fig. 6.8, in which an unfolded cylinder appears. She insists that it 
causes a box,  while it has no other geometric properties compared to the initial 
context.

With the proposed change, Georgeta depart significantly from the given pattern. 
Is this evidence of cognitive novelty? We incline to think it is not.

6.5.2.6  �Case 6 (Cristina)

Cristina’s instruction list starts from the description of three special “preliminary” 
constructions with compass and straightedge: the midpoint of a segment, the per-
pendicular from a point on a line, the circle inscribed in a square. Her instructions 
contain 11 items: most of them are synthetically formulated. Cristina gives in her 
instruction list “milestones” – brief indications to verify the construction accuracy. 
This ability to synthesize the information transmitted, but also to keep a protective 
attitude towards the reader, proves the goal oriented procedural knowledge – which 
is guiding the solver.

Cristina equally proves synthetic when she identifies geometrical properties of 
the given configuration: they refer to invariance through symmetries and rotations. 
These properties are seen in relation to the final object (the box); for example, 
the symmetry to the common chord is the condition that “causes the box to have 

Fig. 6.8  The change 
proposed by Georgeta
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walls – when bending the box, the walls have to overlap”. The element through 
which Cristina seems to modify the initial configuration is the coverage of the plane 
with figures of the same shape. For the given figure, the background she perceives 
is a tessellation with congruent squares. Cristina keeps this tessellation as a way 
of generating a new box (Fig. 6.9a) or use a tessellation with equilateral triangles 
(Fig. 6.9b).

Cristina keeps a method similar to that of her instruction list for drawing the 
inside arcs. More precisely, these are arcs of the circles circumscribed to squares or 
equilateral triangles from the tessellation. Cristina works with a weaker condition: 
in the second proposal, the arcs are no longer symmetrical towards the common 
chord, and this is why the sides of the box do not perfectly match. In principle, this 
weakening of a condition could allow a bigger number of possible solutions (at the 
expense of object’s “perfection”). Could this be an evidence for creativity?

The weakening of conditions is actually a gap in her response, to the extent that 
she is not aware of the consequences: she actually did not realize the implications, 
even if she made the box and so checked that it can be built. Specifically, Cristina is 
unaware that in the new construction, the sides of the box do no longer “perfectly” 
overlap, as happens in the initial model.

6.5.2.7  �Case 7 (Adelina)

Adelina preferred to solve alone the whole task (not in a team of two, as most of her 
colleagues did). Her list of instructions contains 10 items; the language used is not 
mathematically rigorous, but instructions can be easily followed. Her instructions 
are focused on obtaining the figure, not on getting the box: once the figure drawn, 

Fig. 6.9  Cristina’s drawings for getting new boxes
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Adelina believes that her mission was accomplished. Adelina identifies only two 
geometric properties of the initial configuration, namely: 1. quadrilateral deter-
mined by the points of intersection of the two circles of the figure and the centers of 
the circles is a square; 2. the circles have been divided into four equal parts.

Even if the mathematical model described by Adelina is incomplete (it does not 
say anything about the inner circle arcs), her instruction list shows that she internal-
ized the context and can give directions to complete its reproduction. This shows us 
that Adelina displays functional knowledge.

To change the initial figure, Adelina proposes the models shown in Fig. 6.10.
Adelina achieved a first product resulting from a correct mathematical modeling, 

whose shape is found even among usual items around us (a spectacle case), although 
she does not mentioned this as such. The utility of the obtained product indicates 
transfer capacities (Gardner 1993). The second product obtained – also by a correct 
mathematical modeling, has, in addition, aesthetic value. The fact that these new 
objects have practical and aesthetic values is another argument for her procedural 
functional knowledge. Compared to its peers, Adelina proposes very different mod-
els. So we can say that she denotes cognitive novelty. For her both new models, she 
keeps the same background (easily to identify congruent squares) and the same way 
of building arches (parts of the circumscribed circles to such squares). Adelina 
evolves within a well-defined framework and manages to make substantial changes 
to it, while keeping it consistent.

6.5.2.8  �Case 8 (Anca)

Anca has generated a list of six initial instructions. In her instructions, she implicitly 
assumes that the person to follow the list knows some mathematical concepts, at 
least at a basic level (eg perpendicular lines, reflective symmetry of a point, square 
circumscribed to a circle, etc.). At the end of this list, Anca includes a commentary 

Fig. 6.10  Adelina’s proposals for new boxes
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under the title “philosophy of the instructions,” in which she claims the construction 
accuracy. She also includes extensive comments on the difficulties faced by people 
to whom he proposed making the box: some of these difficulties arise from misun-
derstandings on mathematical concepts. The fact that Anca redesigned not just the 
lists of instructions, but the entire solution to the task as a whole (she asked to resub-
mit a new version of solving the whole task, because she believed that she can better 
explain how to solve it) shows, on the one hand, her capacity of changing thinking 
schemes, and, on the other hand, she proves metacognitive capacities of self-
regulation. Anca prefers to describe metrically the geometric properties of the given 
configuration: she expresses the lengths of the various segments as function of the 
radius of the initial circles (Fig. 6.11).

Typically, the quantitative metric approach of a configuration is a barrier to gen-
eralization/transfer because quantitative information limits the chance of identified 
generic properties. Anca proposes three modifications to the initial configuration: 
she replaces squares with regular octagons, with regular dodecagon, respectively 
with regular 16-gons. For the new situations, she explains how regular polygons can 
be built with straightedge and compass (mainly building bisectors of angles, but she 
does not perform the constructions, including only schematic representations of 
them). Anca possesses goal oriented procedural knowledge.

We note that Anca manages to overcome the “barrier” of metric results and iden-
tifies a property with potential for generalization – ie “square is a regular polygon.” 
Perhaps, she sees regular polygons in quantitative context (lengths of sides and 
measures of angles), not in a qualitative one (invariance over symmetries and rota-
tions). The focus on a particular property of the initial configuration, which allows 
generalization shows that Anca may overcome interferences and identify principles 
underlying the surface structures. We may ask where her “jump over hexagon” 
comes from – ie why Anca, unlike the majority of students who have generalized 
based on the idea of a regular polygon did not consider the case of hexagon. A pos-
sible answer is suggested by the way she imagine the new boxes (Fig. 6.12). Anca 
keeps as invariant the configuration of two equal circles that intersect over arches of 
90°. She then divides each of these circles in a same number of congruent arcs, such 
as the intersection points of circles to be the dividing points. Therefore, her self-
imposed restriction (the relative position of the two circles) requires dividing the 
number of points to be multiple of 4.

Fig. 6.11  Notations made 
by Anca for the metric 
description of the initial 
configuration
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Anca is thoughtless in tracing the arcs of the circle. She proposes a construction 
described in metric terms that he believes is generally applicable (Fig. 6.13), but 
which cannot be applied in all the described cases. Because of this, the “lenses” 
Anca obtained shows no symmetry and the boxes imagined do not close “perfectly” 
(as in Cristina’s case).

Anca evolves in a well-defined cognitive frame and makes changes in this frame, 
varying the number of sides of polygons. She also proves cognitive variety – by 
her new generated models. Anca identifies a general process of obtaining new 
configurations – namely, for a given configuration, doubling the number of points of 
division by building bisectors of angles. In this way, the idea that implicitly appears 
is that the number of sides may vary indefinitely – which is another argument for 
cognitive variety.

6.5.2.9  �Case 9 (Miron)

Miron’s instruction list begins with mentioning a list of the necessary materials and 
continues in some detail (eg: he mentions the fact that two distinct points determine 
a line, and lists basic compass and straightedge constructions, such as drawing a 
segment determined by two points). The proper list of instructions contains 14 
items. The instructions contain milestones  – indications on how the solver can 

Fig. 6.12  Anca’s imagined configurations for her new boxes

Fig. 6.13  The construction 
pattern of the inner circle 
arcs indicated by Anca
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verify his/her construction. Miron proves very synthetic in identifying the essential 
elements of the given figure:

In fact, the essential property in the construction of this figure is the possibility of breaking 
the circle into four equal arcs, namely the opportunity to build the angle π/2. Reformulated, 
it is about constructible regular polygons.

He thus proves that he can mobilize thinking schemes, easily moving from the 
original context to a generalized representation of it. He recalls the theorem about 
regular polygons constructible with straightedge and compass (“A regular polygon 
with n sides is constructive Û = ¼n p p pk

r2 1 2 ,  where pi  are distinct prime 
Fermat numbers- ie 2 12m + ”), proving that he can rapidly select from memory 
items of structured information when needed. Miron notes that the square obviously 
satisfies the theorem conditions, but the instruction list for the initial figure are 
specific to this case and are not useful in the generalizations that follow. Miron’s 
proposed new cases are those of a regular hexagon and regular octagon. He presents 
the constructions steps in a highly synthetic and generalized formulation:

•	 We choose n equally-spaced points on the circle (how exactly to do that depends on n, 
but it is always possible).

•	 For any two consecutive, we build another circle that contains them and has the same 
radius as the initial (a compass and straightedge elementary construction in at most 
four steps).

•	 We now have a “star” with n corners inside the initial circle. We choose any of the other 
circles and repeat the procedure (of the construction of another “star” inside it).

•	 We reached the desired figure that can be cut.

When putting the construction into act, he uses GeoGebra to make the “classi-
cal” compass and straightedge construction (to specify the division of a circle into 
n equal arcs). The technology in this case is just a good instrument (it has accuracy 
and shortens time) that replaces physical objects such as paper, straightedge and 
compass, keeping all valences of the ideal construction.

He alternates schemes and procedures which he combines in a manner that 
focuses on optimization and getting results simultaneously. Miron proves metacog-
nitive capacity of self-regulation, high transfer capacity and, in general, the type of 
expertise of a mathematician.

Comparing to how another student (Andreea) used GeoGebra, we can see that 
Miron – with mathematics expertise, used the software as only a support to enhance 
and concentrate the force of the theory, while Andreea – with a rather pragmatic 
expertise uses the facilities of the software in actual construction without questioning 
the geometric accuracy. Figure 6.14 shows the images used by Miron to construct 
the regular octagon-based box.

He does no need to identify the initial figure geometric properties that allow the 
construction of the box (of the type: symmetry, congruency) because he internalized 
a general scheme available for construction. This scheme  – the constructability 
theorem – offers the individual cases to perform the initial construction and the 
pattern that allows generalization. In these circumstances, we can ask how creative 
is a solution induced by the in-depth knowledge of a strong theorem. Perhaps the 
given context is not enough challenging for him to provoke creativity.

6  When Mathematics Meets Real Objects: How Does Creativity Interact…



98

6.5.3  �Comparative Remarks

We will look in more detail into the cases presented above.
Emilian, Andrei and Paul proved validated task-related expertise because their 

cognitive behavior allowed checking the assumed criteria that confront expert-
novice abilities. However, their type of expertise is manifested in different ways: 
Emilian proves metacognitive capacity for self-regulation and general use of 
problem-solving tactics; Andreea is a practitioner expert type focused on a techno-
logical approach, showing high procedural and goal-oriented knowledge; Paul 
proved stronger transfer skill for making connections between theory and practice 
than Emilian and Andreea, and has developed a meta-cognitive capacity to explain 
the identified properties using suggestive expressions.

We note that in all these three cases, students manifested a creative behavior:
Emilian firstly investigates the case of a box with a triangular base, he identifies 

arguments by showing the impossibility of construction, and then he generalizes. 
Andreea includes a single new model box (pentagonal). She however indicates a 
construction with potential of generalization, performed with a “universal” instru-
ment – GeoGebra: she is confident that this process will work for any number of 
sides, and therefore she does not need to include other cases. Paul is prolific in 
identifying properties, showing cognitive variety. Through drawings, he suggests a 
substantial change frame, because he finally replaces circles with ellipses. Paul 
recalls a general result, regarding the polygon constructability with straightedge and 
compass; once identified the theoretical background, he particularizes the theorem 
and provides two new constructions.

Dana and Georgeta behave as novices. The properties they identified with respect 
to the initial configuration are weak properties. Dana identifies a pattern and appears 
to extend this pattern to generate new boxes. Georgeta relates to unfolding a solid 
and proposes as a new model an unfolded net of a cylinder. At a first view, Dana and 
Georgeta seem more creative because their proposals are significantly far from the 
initial model. They yet focus on superficial aspects, such as a simple pattern of 

Fig. 6.14  Miron’s images obtained using GeoGebra
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squares distribution and/or the idea of container, and this lack of consistency shows 
that, in fact, they do not behave mathematically creative.

It would be expected that weak properties, allowing more degrees of freedom, 
have the potential to facilitate a more creative approach. However, we found that 
they actually lead to an insufficiently consolidated frame (probably caused by an 
insufficient level of expertise), instead of leading to spectacular generalizations.

The above comments suggest the conclusion that expertise seems to be a precon-
dition for creativity. We will show that this statement should be at least nuanced.

The data available for Cristina, Adelina and Anca did not allowed us to consider 
them experts in every sense of the word. Rather, they have a moderate level of 
expertise, having characteristics of expert behavior, but also novice features. For 
example, Cristina is not aware of the consequences of weakening some require-
ments; Adelina shows a superficial understanding of some of the concepts used; and 
Anca based her constructions on metric inputs, but which may not apply in certain 
situations. We classified the proposals of the three students as creative. Cristina 
proposes two new boxes, totally different proving cognitive variety. Adelina’s pro-
posals have functional and aesthetic valences, and are very different from all the 
other proposals. Anca suggests a construction of a generalized manner that allows 
many more new products, thus showing cognitive variety.

Therefore Cristina, Anca and Adelina behave creatively. It seems that a 
rather moderate level of expertise allows expression of their creativity.

To verify this hypothesis, we consider the case of Miron. Obviously, Miron is the 
expert par excellence. He summarizes, in his solving, the problem nature, he quickly 
selects items he needs from memory, and “closes” the problem by applying a gen-
eral result that solves a whole class of problems of the same type. Moreover, he 
“hijacks” a tool like GeoGebra using it for a compass and straightedge construction, 
and including it in his theoretical approach.

In his case, his high level of expertise as related to the task practically cancels the 
problem. In this case, it becomes legitimate to ask if does make sense to put the 
question of a creative answer in Miron’s case Why did this question arise? Because 
Miron, by mastering powerful mathematical tools, manages to reduce a problem 
that for others is complex to schemes automatically activated. For this reason, 
because the solution is based on results already known to him, his creative contribu-
tion is at most in appropriately correlating concepts and procedures, ie in small 
changes well controlled within a cognitive frame clearly emphasized from the 
beginning. Meanwhile, cognitive novelty, and cognitive variety are practically 
undetectable. As a result, we believe that, in the Miron’s case, we cannot detect 
creativity on this task. We make the assumption that facing more complex tasks that 
would require a higher level of expertise, Miron could be highly creative. This 
hypothesis was confirmed by the information later obtained about him, beyond this 
task. We learned that Miron is already included in a mathematics research program 
and that he has already published original results.
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Therefore, the determination of creativity should happen at a level that exceeds 
the person’s expertise at that moment. It appears as a corollary that creativity is not 
an absolute parameter. The manifestation of creativity depends on the context, as 
confirmed by other studies.

6.6  �Conclusions

In this paper, we have studied how students’ creativity manifests in a complex con-
text that involves modeling, problem solving and problem posing. A first conclusion 
refers to how students use the defining elements perceived in an initial given figure. 
We have seen that these elements are further used for generalization and transfer. 
So, the way in which students perceive the initial figure is fundamental for solving 
the task and for posing new coherent modifications.

A second conclusion refers to the relationship creativity – expertise. The students 
that seemed more creative at a first sight, proving that they are novices in the domain, 
produced either non-functional or inappropriate objects. Conversely, students who 
showed a high degree of expertise utilized strong mathematical results (such as 
constructability with compass and straightedge) and made incremental changes by 
varying a simple parameter (in our example, the number of sides of regular 
polygons).

The analysis of some specific cases led to the conclusion that creativity manifes-
tation is conditioned by a certain level of expertise. In the process of building a 
solution for a nonstandard problem, expertise and creativity support each other and 
enable bridges to the unknown, mutually developing each other. This interaction 
leads also to an increase in expertise.

We have seen that, because contextualization, it is practically not possible to find 
tasks that would allow discerning creativity for a broad range of skills. If the task is 
at a cognitive level accessible to a majority, a person with high level of expertise will 
make appeal to tools that automatize the response; if the task is challenging for a 
person with a high level of expertise, then it is not cognitively accessible to a larger 
sample, in order to make comparisons.

We unravel from here that a possible method of training excelling students is 
through practicing tasks appropriate to their level of mathematical abilities, but con-
taining nonstandard challenging components, in order to train metacognitive self-
regulation capabilities through creative leaps.

Therefore, to create the context in which a student can advance, it is necessary to 
determine the type of task for which he/she manifests expertise and to integrate this 
task in a challenging context. Our study shows that this approach seems to work for 
advanced students. Further research will focus on a methodology to check if it may 
work for students of any level.
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�Annex

�The Given Task

From the figure below one can get a “fantasy box” [a.n. the box was presented 
“physically” by the teacher].

 

	I.	 The first two questions constitute a group task (2 people). For this part, the group 
members will receive the same score.

	1.	 Write specific instructions for constructing this figure. The instructions will 
contain only words, no drawings, diagrams or pictures.

	2.	 Give these instructions to another person who does not know what you want 
to achieve. Ask that person to follow instructions. Do not interact with that 
person, do not give indications, or help. Note (or record) what happens. If the 
person has difficulty in representing the figure, or something unforeseen hap-
pens, it’s OK: this only shows that your instructions are not enough precise 
and should be reviewed. You will not be penalized if the first set of instruc-
tions is not quite accurate.

	(a)	 Write a report as detailed as possible (but no longer than 3 pages!) about 
what happened;

	(b)	 Write a revised instruction list and possibly repeat the experiment with 
another person.

	II.	 Answer the following 3 questions individually.

	3.	 What geometric properties are used in the construction of this box? Explain 
your answer.

	4.	 The fantasy-box has a “squared” shape ☺. How could you modify the origi-
nal drawing to get boxes of other shapes? Build two new figures and make 
sure you can get boxes starting from the figures you indicated.

	5.	 Do the proposed figures above use other geometric properties than the ones 
of the original box? Explain your answer, and if it is yes, please specify 
which are these properties.
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