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Abstract. With the availability of large amounts of dna data, exact
matching of nucleotide sequences has become an important application in
modern computational biology and in meta-genomics. In the last decade
several efficient solutions for the exact string matching problem have been
developed and most of them are very fast in practical cases. However
when the length of the pattern is short or the alphabet size is small (as
in the case of dna sequences) the problem becomes more difficult to be
solved efficiently. In this paper we review and compare the most efficient
solutions for the online exact matching problem appeared in the latest
years when applied for searching on genome sequences. In addition we
also propose some new variants of an efficient string matching algorithm.
From our experimental results it turns out that the newly presented
variants are very fast in most practical cases.

Keywords: Exact sequence analysis · String matching · Experimental
algorithms · Automata based solution

1 Introduction

In molecular biology, nucleotide sequences are the fundamental information for
each species and a comparison between such sequences is an interesting and basic
problem. Generally biological information is stored in strings of nucleic acids
(dna, rna) or amino acids (proteins). With the availability of large amounts of
dna data, matching of nucleotide sequences has become an important applica-
tion and there is an increasing demand for fast computer methods for analysis
and data retrieval [15]. There are various kinds of comparison tools which pro-
vide aligning and approximate matching (see for instance [15,19]), however most
of them are based on exact matching in order to speed up the process. Moreover
exact string matching is widely used in computational biology for a variety of
other tasks. Thus the need for fast matching algorithms on dna sequences.

In this article we consider the problem of finding all the (possibly overlapping)
occurrences of a pattern P of length m in a text T of length n, both drawn over
an alphabet Σ of size σ. We focus on the case where the text T and the pattern
P are dna sequences over a finite alphabet Σ = {a, c, g, t} of constant size σ = 4.
We are interested here in the problem where the pattern is given first and can
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then be searched in various texts, thus a preprocessing phase is allowed (and in
most cases suggested) on the pattern. This problem is referred in literature as
the exact online string matching problem.

The problem of searching dna sequences has been extensively studied in the
last years and its importance in modern biology has led to produce much works.
In the field of single string matching, Kalsi et al. [13] performed an experimental
comparison of the most efficient algorithms for searching biological sequences. In
addition in [8,11] Faro and Lecroq presented an extensive evaluation of (almost)
all existing exact string matching algorithms (up to 2010) under various condi-
tions, including alphabet of four characters and dna sequences. In 2002 Navarro
and Raffinot presented a comparison [18] of all matching algorithms on biologi-
cal sequences, including multiple pattern matching algorithms. More recently, in
2011, Kouzinopoulos and Margaritis conducted another experimental compari-
son [14] taking into account the most recent solutions.

In recent years a lot of work has been made in this field and several algorithms
can be considered as potential candidates to be among the fastest solutions to
search genome sequences.

In this paper we present a brief survey of the most efficient solutions to
the string matching problem presented in the last few years and compare them
in the task of searching genome sequences. In addition we also present some
efficient variants of one of the previous presented algorithms and compare them,
in terms of running times, in order to evaluate their performances under various
conditions. From our experimental results it turns out that some algorithms
appeared in the latest years are among the fastest solutions for searching genome
sequences. In addition the newly presented variants obtain the best results in
almost all the practical cases.

The paper is organized as follows. In Sect. 2 we review the previous results
known in literature based and describe the latest and most efficient solutions for
searching genome sequences, including the BSDM algorithm. Then in Sect. 3 we
present some new variants of the BSDM algorithm. In Sect. 4 we compare the
newly presented solutions with the most efficient algorithms known in literature.
We draw our conclusions in Sect. 5.

2 Fast Algorithms for Searching Genome Sequences

Basically a string matching algorithm uses a window to scan the text. The size
of this window is equal to the length of the pattern. It first aligns the left ends of
the window and the text. Then it checks if the pattern occurs in the window (this
specific work is called an attempt) and then shifts the window to the right. It
repeats the same procedure again until the right end of the window goes beyond
the right end of the text.

When a similarity has been detected a naive check of the occurrence is per-
formed. In order to detect the similarity between the pattern and the text window
efficient algorithms use bit-parallelism or character comparisons. Both techniques
can be improved by using condensed alphabets and hashing.
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In particular the pattern P is arranged using a condensed alphabet. In such
a representation groups of q adjacent characters of the pattern are condensed in
a single character by using a suitable hash function h : Σq → {0, . . . ,max}, for
a constant value max. In practice, the value of q varies with m and the size of
the alphabet and the value of the constant max varies with the memory space
available.

The bit-parallelism technique [1] takes advantage of the intrinsic parallelism
of the bit operations inside a computer word, allowing to cut down the number
of operations that an algorithm performs by a factor up to ω, where ω is the
number of bits in a computer word. This technique is particularly suitable for
simulating non-deterministic automata for a single pattern [1] and for multiple
patterns [3].

In the following sections we briefly review some of the most recent and effi-
cient solutions for the exact string matching problem.

The Backward DAWG Matching Algorithm

One of the first application of the suffix automaton to get optimal pattern match-
ing algorithms on the average was presented in [4]. The algorithm which makes
use of the suffix automaton of the reverse pattern is called Backward-DAWG-
Matching algorithm (BDM). Such algorithm moves a window of size m on the
text. For each new position of the window, the automaton of the reverse of P
is used to search for a factor of P from the right to the left of the window. The
basic idea of the BDM algorithm is that if the backward search failed on a letter
c after the reading of a word u then cu is not a factor of p and moving the begin-
ning of the window just after c is secure. If a suffix of length m is recognized
then an occurrence of the pattern was found.

The Backward Nondeterministic DAWG Matching Algorithm

The BNDM algorithm [17] simulates the suffix automaton for P r (the reverse
of P ) with the bit-parallelism technique, for a given string P of length m. The
bit-parallel representation uses an array B of |Σ| bit-vectors, each of size m,
where the i-th bit of B[c] is set if and only if P [i] = c, for c ∈ Σ, 0 ≤ i < m.
Automaton configurations are then encoded as a bit-vector D of m bits, where
each bit corresponds to a state of the suffix automaton (the initial state does
not need to be represented, as it is always active). In this context the i-th bit of
D is set iff the corresponding state is active. D is initialized to 1m and the first
transition on character c is implemented as D ← (D & B[c]). Any subsequent
transition on character c can be implemented as D ← ((D � 1) & B[c]) .

The BNDM Algorithm works by shifting a window of length m over the text.
Specifically, for each window alignment, it searches the pattern by scanning the
current window backwards and updating the automaton configuration accord-
ingly. Each time a suffix of P r (i.e., a prefix of P ) is found, namely when prior
to the left shift the m-th bit of D & B[c] is set, the window position is recorded.
A search ends when either D becomes zero (i.e., when no further prefixes of P
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can be found) or the algorithm has performed m iterations (i.e., when a match
has been found). The window is then shifted to the start position of the longest
recognized proper prefix.

In [7] an effective variant of the BNDM algorithm was presented. Such vari-
ant, called Forward-BNDM (FBNDM), takes into account the forward character
(i.e. the character which is just after the current window of the text) for com-
puting the shift advancement. This leads to a more efficient solution especially
in the case of short pattern. The FBNDM algorithm has been later improved in
many ways.

The BNDM Algorithm with Extended Shift

Durian et al. presented in [6] another efficient algorithm for simulating the suffix
automaton in the case of long patterns. The algorithm is called BNDM with
eXtended Shift (BXS). The idea is to cut the pattern into �m/ω� consecutive
substrings of length w except for the rightmost piece which may be shorter.
Then the substrings are superimposed getting a superimposed pattern of length
ω. In each position of the superimposed pattern a character from any piece
(in corresponding position) is accepted. Then a modified version of BNDM is
used for searching consecutive occurrences of the superimposed pattern using
bit vectors of length ω but still shifting the pattern by up to m positions. The
main modification in the automaton simulation consists in moving the rightmost
bit, when set, to the first position of the bit array, thus simulating a circular
automaton. Like in several other cases, the BXS algorithm works as a filter
algorithm, thus an additional verification phase is needed when a candidate
occurrence has been located.

The Factorized BNDM Algorithm

Cantone et al. presented in [2] an alternative technique, still suitable for bit-
parallelism, to encode the nondeterministic suffix automaton of a given string
in a more compact way. Their encoding is based on factorizations of strings in
which no character occurs more than once in any factor. It turns out that the
nondeterministic automaton can be encoded with k bits, where k is the size of
the factorization. Though in the worst case k = m, on the average k is much
smaller than m, making it possible to encode large automata in a single or
few computer words. As a consequence, their bit-parallel variant of the BNDM,
called Factorized BNDM algorithm (KBNDM) based on such approach tends to
be faster in the case of sufficiently long patterns.

2.1 The Backward SNR DWAG Matching

Faro and Lecroq presented in [9] a fast and simple variant of the BDM algorithm
which does not make use of bit parallelism still using a compact representation
of the underlying automaton. It consist in computing the longest substring of
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the pattern with no repetitions, i.e. in which each character is repeated at most
once, and in constructing the suffix automaton of such a substring. This leads
to a simple encoding and, by convenient alphabet transformations, to quite long
automata. The algorithm is named Backward-SNR-DAWG-Matching (BSDM),
where snr is the acronym of substring with no repetitions.

The main interesting aspect of such technique is that only an integer value
between 0 and m is needed to represent the whole automaton. Since each char-
acter is repeated at most once we need only to maintain the information about
the current active state, if one.

However it turns out that in many practical cases the length of the maximal
snr is not large enough if compared with the size of the pattern. This happens
especially for patterns over small alphabets, as in the case of genome sequences,
or for patterns with characters occurring many times, as in the case of a natural
language text. In order to allow longer snr it is convenient to use a condensed
alphabet whose characters are obtained by combining groups of q characters,
for a fixed value q. It turns out that the length of the maximal snr, though
quite less than m in most cases, is quite larger than the size of a computer word
(which typically is 32 or 64). This leads to larger shift in a suffix automata based
algorithm.

Since BSDM is a filter based algorithm, as in many other cases, a naive test
is needed when a candidate occurrences of the pattern is found.

The Two-Way Shift-And Algorithm

In [5] Durian et al. presented the Two-Way Shift-Or algorithm (TSO) which
extends the original Shift-And algorithm [1] and obtains more effective results
in practical cases. Specifically it uses the same vector B as the Shift-Or algorithm
but traverses the text with a fixed step of m positions. At each step i, an align-
ment window T [i − m + 1...i + m − 1] is inspected. The positions T [i...i + m − 1]
correspond to the end positions of possible matches and at the same time, to
the positions of the state vector D. Inspection starts at the character T [i], and
it proceeds with a pair of characters T [i − j] and T [i + j] until corresponding
bits in D become 1m or j = m holds. In TSO, the testing of the state vector D
is slightly faster, when the bit-vectors are seated to the highest order bits. The
Two-Way Shift-And algorithm (TSA) is the dual of TSO which turns out to be
faster in practical cases, especially when implemented with q enrolling characters
(TSAq).

Such two-way algorithms check text in alignment windows of m consecutive
text positions, thus a mismatch can be detected immediately based on the first
examined text character. In the best case the performance can be O(n/m). On
the other hand in the worst case all text characters except the last characters in
each alignment window are examined twice.

The main problem associated with these solutions is that they are not able
to retrive the positions of the occurrences of the pattern but only its number. A
modification of such solutions which retrieve all positions of the occurrences can
be obtained but with slower performance.
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3 New Improvements of the BSDM Algorithm

In this section we propose some new variants of the BSDM algorithm described
above, which turns out to be one of the best solutions for searching dna
sequences. Specifically we focus on reducing the number of false positives
detected during the searching phase in order to reduce the number of naive
tests. This can be done by using different and more effective hash function in
the implementation of the condensed alphabet. In addition we use an effective
technique recently introduced in [9] consisting in the use of several sliding win-
dows while searching the pattern along the text, and which is able to speed up
the whole process up to a factor of 1.3 under suitable conditions.

3.1 Improved Hash Functions for Condensed Alphabets

As we observed above, most filtering algorithms obtain better performances when
used for searching sequences over large alphabets. When the size of the underly-
ing alphabet is small it is possible to extend it by arranging the pattern P using
a condensed alphabet. In such a representation groups of q adjacent characters
of the pattern are condensed in a single character by using a suitable hash func-
tion h : Σq → {0, . . . ,max}, for a constant value max. In practice, the value of
q varies with m and the size of the alphabet and the value of the constant max
varies with the memory space available.1 Thus a pattern P of length m translates
in a condensed pattern P (q) of length m − q + 1 where, for 0 ≤ i ≤ m − q

P (q)[i] = h(P [i . . i + q − 1]).

The hashing method adopted in standard implementations of condensed
alphabets is based on a shift-and-addition procedure. Specifically, if x ∈ Σq,
with x = x[0 . . q − 1], then h(x) can be efficiently computed by

h(x) =
q−1∑
i=0

((P [i] & M) � k(q − i − 1)) (1)

where k is a constant and M is a bit-mask both dependent on q. In practice k is
set to 	ω/q
 and M is set to 0ω−k1k, where ω is the size of the register used for
hashing q-grams. The hash function shown in (1) has been used, for instance,
in the Hashq algorithm [16] and in the Wu-Manber algorithm [20] for the exact
multiple pattern matching problem.

Depending on the underlying alphabet, better hash function could be adopted
in order to reduce the collisions in the hash value associated with different groups
of characters. For instance the dna alphabet is composed by the four characters
{a, c, g, t}, whose ascii codes are {01000001, 01000011, 01000111, 01010100}.
Using k = 2 and a suitable masking leads to a perfect hashing. However for
larger alphabets or when q is greater than 5 only a resemblance can be used.
1 In our implementation we use a value of max equal to 216 and use a 16-bit register

for each hash value.
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In our analysis we took into account six different hash functions (including
the perfect hash) and evaluated them in terms of number of collisions and per-
formances. Specifically we considered the following set of hash functions, where
we set for simplicity the value of q to 4. However it is easy to extend them to
greater values of the parameter q

1. Shift-Addition (a � 6) + (b � 4) + (c � 2) + d 5 %
2. Short-Shift-Addition (a � 3) + (b � 2) + (c � 1) + d 38 %
3. Addition a + b + c + d 88 %
4. Shift-Substract (a � 6) − (b � 4) − (c � 2) − d 5 %
5. Shift-And (a � 6) and (b � 4) and (c � 2) and d 99 %
6. Shift-Or (a � 6) or (b � 4) or (c � 2) or d 95 %
7. Shift-Xor (a � 6) xor (b � 4) xor (c � 2) xor d 3 %
8. Perfect-Hash (α(a) � 6) + (α(b) � 4) + (α(c) � 2) + α(d) 0 %

Where α(c) = (c and 6) � 1, for each c in the set {a, c, g, t}.
From our analysis it turns out that the hash functions 1. and 3. obtain

up to 5.5% of collisions. When the length of the shift decreases (function 2.) the
number of collisions increases to 38% and reach the percentage of 88% when
the shift is reduced to 0. This percentage rises up to 99.2% for hash functions 5.
and 6. where the bitwise and and or are used in place of arithmetic operations.
However it decreases to 3.2% in the case of function 7. where the bitwise xor is
used. Of course the number of collision is 0 in the case of function 8.

Table 1 shows the evaluation, in terms of running times, of the BSDM4 algo-
rithm when the 8 different hash functions presented above are used. In the table
running times are expressed in milliseconds and has been computed as the mean
of 500 searches on a genome sequence of 5 Mb.2 It turns out that the number
of collisions generated by the hash function partially reflects the performance
of the respective algorithm. However it is also affected by the number of oper-
ations needed for computing the hash value. Thus the variant using function 8.

Table 1. Experimental evaluation of the BSDM4 algorithm implemented with 8 differ-
ent hash functions. Running times are expressed in milliseconds and has been computed
as the mean of 500 searches on a genome sequence of 5 Mb.

m 4 8 16 32 64 128 256 512 1024 2048

Func.1 8.41 3.70 2.78 2.35 2.26 2.21 2.15 2.09 2.13 2.12

Func.2 8.82 3.95 3.03 2.63 2.49 2.46 2.38 2.38 2.35 2.36

Func.3 11.08 6.96 6.06 5.77 5.55 5.35 5.14 5.12 4.93 4.81

Func.4 8.32 3.69 2.77 2.36 2.25 2.20 2.14 2.06 2.11 2.12

Func.5 42.51 36.21 27.11 18.62 16.66 17.32 16.84 16.99 17.09 16.84

Func.6 19.58 14.27 11.24 9.09 8.01 7.45 6.73 6.44 6.10 5.98

Func.7 7.96 3.56 2.67 2.35 2.22 2.14 2.06 2.08 2.07 2.06

Func.8 10.93 4.47 3.43 2.92 2.77 2.71 2.62 2.61 2.58 2.58

2 The details of experimental settings can be found in Sect. 4.
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does not obtain the best results since the number of operation is doubled. Best
results are obtained in all cases by the variant using the xor bitwise operation (i.e.
function n.7).

3.2 A Multiple Sliding Windows Variant of the BSDM Algorithm

In this section we describe a multiple windows variant of the BSDM algorithm
which improves the practical performances of the original solution. The general
approach, introduced for the first time in [10], can be seen as a filtering method
which consists in processing k different windows of the text at the same time,
with k ≥ 2.

Suppose P is a pattern of length m and T is a text of length n. Without loss in
generality we can suppose that n can be divided by k, otherwise the rightmost
(nmodk) characters of the text could be associated with the last window (as
described below). Moreover we assume for simplicity that m < n/k and that the
value k is even.

Under the above assumptions the approach can be summarized as follows:
if the algorithm searches for the pattern P in T using a text window of size m,
then partition the text in k/2 partially overlapping substrings, T0, T1, . . . , Tk/2−1,
where Ti is the substring T [2i�n/k� . . 2(i+1)n/k+m−2], for i = 0, . . . , (k−1)/2,
and Tk/2−1 (the last window) is set to T [n − (2n/k) . . n − 1].

Then process simultaneously the k different text windows, w0, w1, . . . , wk−1,
where we set w2i = T [s2i−m+1 . . s2i] (and call them left windows) and w2i+1 =
T [s2i+1 . . s2i+1 + m − 1] (and call them right windows), for i = 0, . . . , (k − 2)/2.

The couple of windows (w2i, w2i+1), for i = 0, . . . , (k − 2)/2, is used to
process the substring of the text Ti. Specifically the window w2i starts from
position s2i = (2n/k)i + m − 1 of T and slides from left to right, while window
w2i+1 starts from position s2i+1 = (2n/k)(i + 1) − 1 of T and slides from right
to left (the window wk−1 starts from position sk−1 = n − m). For each couple
of windows (w2i, w2i+1) the sliding process ends when the window w2i slides
over the window w2i+1, i.e. when s2i > s2i+1 + m − 1. It is easy to prove that
no candidate occurrence is left by the algorithm due to the m − 1 overlapping
characters between adjacent substrings ti and ti+1, for i = 0, . . . , k − 2.

Fig. 1 presents a scheme of the search iteration of the multiple sliding windows
matcher for k = 1, 2 and 4. It has been proved in [10] that this approach can
be applied to all string matching algorithms, including the BSDM algorithm.
Moreover it can be noticed that the worst case time complexity of the original
algorithm does not degrade with the application of the multiple sliding windows
approach.

On the other hand it turns out, when the alphabet is small as in the case
of dna sequences, that the performances of the original algorithm degrade by
applying the new method, since the probability to find mixed candidate positions
increases substantially.
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(C)
︸ ︷︷ ︸

w0

s0 →
︸ ︷︷ ︸

w1

s1←
w2︷ ︸︸ ︷

s2 →
w3︷ ︸︸ ︷

s3←

(B)
︸ ︷︷ ︸

w0

s0 →
w1︷ ︸︸ ︷

s1←

(A)
︸ ︷︷ ︸

w0

s0 →

Fig. 1. A general scheme for the multiple sliding windows approach with (A) a single
window, (B) two windows and (C) four windows (w1 and w2 are overlapping).

4 Experimental Results

In this section we briefly present experimental evaluations in order to understand
the performances of the newly presented algorithm and to compare it against the
best string matching algorithms for searching genome sequences. In particular
we tested the following algorithms:

– the Backward-Nondeterministic-DAWG-Matching algorithm [17] (BNDMq)
implemented using q-grams and a value of q = 4;

– the Extended Backward-Oracle-Matching algorithm [7] (EBOM);
– the Hashing algorithm [16] (HASHq) implemented using q-grams and a value

of q ∈ {3, 4, 5};
– the Simplified version of the BNDM algorithm [17] (SBNDMq) implemented

using q-grams and a value of q = 4;
– the Forward Simplified version of the BNDM algorithm [7] (FSBNDMq) imple-

mented using q-grams and a value of q = 4;
– the Multiple Windows version of the Forward Simplified BNDM algorithm [10]

(FSBNDM-W4) implemented using 4 sliding windows;
– the Factorized BNDM algorithm [2] (KBNDM);
– the BNDM algorithm with Extended Shift [6] (BXSq) implemented using q-

grams and a value of q = 4;
– The Backward-SNR-DAWG-Matching algorithm [9] using condensed alpha-

bets with groups of q characters, with q ∈ {1, 2, 4, 6, 7} (BSDMq);
– The new BSDM algorithm using condensed alphabets and a shift-xor hash

function, with q ∈ {1, 2, 4, 6, 7} (BSDMqx);
– The Multiple Windows version of the new BSDM algorithm using condensed

alphabets and a shift-and-xor hash function (BSDMqx-w2 and BSDMqx-w4)
implemented using 2 and 4 sliding windows, respectively;

For the sake of completeness we evaluate also the following two string match-
ing algorithms for counting occurrences. They do not report the positions but
only the total number of all occurrences.
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– EPSM: the Exact Packed String Matching algorithm [12];
– TSOq: the Two-Way variant of [5] the Shift-Or algorithm [1] implemented

with a loop unrolling of q characters, with q = 5;

All algorithms have been implemented in the C programming language and
have been tested using the Smart tool3. The experiments were executed locally
on an MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 16 GB RAM
1600 MHz DDR3, 256 KB of L2 Cache and 6 MB of Cache L3. Algorithms have
been compared in terms of running times, including any preprocessing time.

For the evaluation we use the genome sequence provided by the Smart
research tool. Specifically it is a sequence of 4, 638, 690 base pairs of Escherichia
coli, maintained by the Large Canterbury Corpus.4 In all cases the patterns were

Table 2. Experimental results on a genome sequence. Best results have been bold
faced. Running times are expressed in milliseconds. For the algorithms using variable
q-grams we report in brackets the value of q which obtains the best running times. The
EPSM and TSOq algorithms (indicated by a ∗ symbol) are counting algorithm, i.e. it
is able only to count occurrences.

m 4 8 16 32 64 128 256 512 1024 2048

BNDMq 11.14(4) 4.12(4) 3.02(4) 2.41(4) 2.41(4) 2.39(4) 2.23(4) 2.40(4) 2.32(4) 2.33(4)

EBOM 7.74 7.00 5.53 4.01 3.10 2.62 2.38 2.21 2.36 2.65

HASHq 18.31(3) 7.67(3) 4.69(5) 3.32(5) 2.85(5) 2.35(5) 2.57(5) 2.45(5) 2.34(5) 2.30(5)

SBNDMq 10.32(4) 4.00(4) 2.96(4) 2.37(4) 2.39(4) 2.31(4) 2.29(4) 2.34(4) 2.28(4) 2.37(4)

BSDMq 8.43(4) 3.02(6) 2.41(6) 2.42(7) 2.13(7) 1.98(7) 2.01(7) 2.00(7) 2.00(7) 2.00(7)

BXSq 15.34(4) 4.50(4) 3.11(4) 2.39(4) 2.42(4) 2.37(4) 2.40(4) 2.40(4) 2.40(4) 2.41(4)

FS-w4 16.54 5.20 5.05 3.76 4.09 3.61 3.88 3.52 3.34 3.09

FSBNDM-w4 17.10 8.09 4.30 2.99 3.00 2.89 2.94 2.94 2.97 2.95

KBNDM 10.80 8.00 5.88 3.98 3.03 2.91 2.94 2.92 2.97 2.97

TSOq (*) 5.32(5) 3.68(5) 2.88(5) 2.28(5) 1.96(5) - - - - -

EPSM (*) 5.87 3.72 2.50 1.93 1.75 1.72 1.66 1.62 1.65 165

BSDM2x 8.32 7.53 6.80 6.12 5.66 5.24 4.94 4.70 4.46 4.28

BSDM4x 8.09 3.01 2.40 2.21 2.07 2.03 1.96 1.96 1.94 1.94

BSDM6x - 4.79 3.02 2.43 2.15 2.04 2.01 2.00 1.98 2.00

BSDM7x - 6.85 3.10 2.35 2.07 1.96 1.92 1.92 1.92 1.97

BSDM2x-w2 8.94 7.25 6.57 5.82 5.39 5.03 4.70 4.48 4.24 4.09

BSDM2x-w4 9.51 7.27 6.66 5.91 5.52 5.08 4.66 4.42 4.19 4.05

BSDM4x-w2 10.22 3.22 2.54 2.16 2.01 1.96 1.91 1.89 1.86 1.90

BSDM4x-w4 12.72 3.59 2.66 2.25 2.11 2.02 1.96 1.94 1.92 1.95

BSDM6x-w2 - 5.94 3.08 2.40 2.14 2.01 1.99 1.95 1.91 1.97

BSDM6x-w4 - 9.32 3.30 2.36 2.07 1.88 1.85 1.83 1.81 1.84

BSDM7x-w2 - 8.41 3.18 2.29 1.99 1.83 1.82 1.83 1.81 1.84

BSDM7x-w4 - 7.47 3.01 2.30 2.02 1.86 1.85 1.83 1.82 1.88

3 Smart, a String Matching Algorithms Research Tool, by Simone Faro and Thierry
Lecroq, http://www.dmi.unict.it/∼faro/smart.

4 http://www.data-compression.info/Corpora/CanterburyCorpus/.

http://www.dmi.unict.it/~faro/smart
http://www.data-compression.info/Corpora/CanterburyCorpus/
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randomly extracted from the text and the value m was made ranging from 4 to
2048. For each case we reported the mean over the running times of 500 runs.

From experimental results reported in Table 2 it turns out that the BSDMq
algorithm obtains the best results in almost all the cases. In particular the best
running times are obtained with a value of q equal to 7 (for long patterns) and
4 (for short patterns).

Comparing the new presented algorithms against the previous known solu-
tions we can observe that the new BSDMq-w algorithms are the fastest in
most cases, especially for long patterns. We can observe moreover that when the
length of the pattern gets longer, better results are obtained for greater values of
q. The same observation could be done for the number of windows used during
the searching.

Specifically the BSDM algorithm implemented with 7-grams and two sliding
windows obtains the best results when the pattern is longer than 32 characters.
In this cases the BSDMq-w is up to 10% faster than BSDMq and up to 13%
faster than all previous known algorithms.

When the size of the pattern is between 8 and 32 the new BSDMqx algo-
rithms obtain the best results, using 4-grams. In this cases the BSDM4x algo-
rithm is up to 1, 2 times faster than the best among the previous solutions (the
SBNDMq algorithm).

For small patterns (m = 4) the best running time is obtained by the EBOM
algorithm, even if we have to report the good performance of the TSO5 algo-
rithm, although it’s not able to report the positions of the found occurrences.
However, it is interesting to observe that when m = 4 the BSDM4x algorithm
obtains a result which is very close to the best running time.

5 Conclusions and Future Works

In this paper we reviewed the most recent and efficient solutions for searching
exact matching on genome sequences. We also compared such solutions in terms
of running times in order to identify the best solutions for such problem. In
addition we also propose some efficient variants of the BSDM algorithm which
turn out to be competitive with the previous solutions and obtain the best
running times in most practical cases.

From experimental results it turns out that the new presented variants obtain
the best results in most practical cases when tested join real genome sequences.

It will be interesting to investigate if some of the efficient solutions described
above could be generalized also in the case of multiple pattern matching on
genome sequences.
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