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Preface

These proceedings contain the papers that were presented at the Third International
Conference on Algorithms for Computational Biology (AlCoB 2016), held in Trujillo,
Spain, during June 21–22, 2016.

The scope of AlCoB includes topics of either theoretical or applied interest, namely:

– Exact sequence analysis
– Approximate sequence analysis
– Pairwise sequence alignment
– Multiple sequence alignment
– Sequence assembly
– Genome rearrangement
– Regulatory motif finding
– Phylogeny reconstruction
– Phylogeny comparison
– Structure prediction
– Compressive genomics
– Proteomics: molecular pathways, interaction networks
– Transcriptomics: splicing variants, isoform inference and quantification, differential

analysis
– Next-generation sequencing: population genomics, metagenomics, metatranscriptomics
– Microbiome analysis
– Systems biology

AlCoB 2016 received 23 submissions. Most papers were reviewed by three Program
Committee members. There were also several external reviewers consulted. After a
thorough and lively discussion phase, the committee decided to accept 13 papers
(which represents an acceptance rate of about 56 %). The conference program included
three invited talks and some presentations of work in progress as well.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

March 2016 María Botón-Fernández
Carlos Martín-Vide

Sergio Santander-Jiménez
Miguel A. Vega-Rodríguez
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The Trees in the Peaks

David Sankoff1(B), Chunfang Zheng1, Eric Lyons2, and Haibao Tang3

1 Department of Mathematics and Statistics, University of Ottawa,
585 King Edward Avenue, Ottawa K1N 6N5, Canada

{sankoff,czhen033}@uottawa.ca
2 School of Plant Science, Bio5 Institute, University of Arizona,

Tucson, AZ 85721, USA
ericlyons@email.arizona.edu

3 Center for Genomics and Biotechnology,
Fujian Agriculture and Forestry University, Fuzhou 350002, China

tanghaibao@gmail.com

http://albuquerque.bioinformatics.uottawa.ca

Abstract. We suggest a gene-tree/species-tree approach to speciation
and whole genome duplication (WGD) to resolve the occurrence of these
events in phylogenetic analysis. We propose a more principled way of
estimating the parameters of gene divergence and fractionation than the
standard mixture of normals analysis. We formulate an algorithm for
resolving data on local peaks in the distributions of duplicate gene simi-
larities for a number of related genomes. Illustrating with a comprehen-
sive analysis of WGD-origin duplicate gene data from six members of the
family Brassicaceae, we discuss the effects of variable evolutionary rates
and data degradation due to fractionation. We introduce the notion of
peak tree, as a template for all gene trees evolving by speciation, WGD
and fractionation.

Keywords: Gene tree · Species tree · Whole genome duplication ·
Algorithms · Mixture of distributions · Brassicaceae

1 Introduction

The investigation of gene trees and species trees furnishes a genomic perspective
on evolution insofar as it requires a complete inventory of the paralogs of the
orthologously related genes in the species under study. This line of study also
requires a different king of algorithm than those familiar from traditional single-
gene based phylogenetics, or even the so-called “phylogenomics” based on large
numbers of concatenated genes using what is basically traditional methodology.
However, gene trees and species trees are each based on a tiny portion of the
genome. In the context of whole genome duplication (WGD) in flowering plants,
we can take the gene-tree/species tree approach to a more comprehensive kind
of genomic data than the usual one-gene-at-a-time focus.

Specifically, we will study the set of
(
N
2

)
+ N gene similarity distributions

within and across N species where WGD has affected one or more of these
c© Springer International Publishing Switzerland 2016
M. Botón-Fernández et al. (Eds.): AlCoB 2016, LNBI 9702, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-38827-4 1



4 D. Sankoff et al.

species. This typically involves many thousands of genes. This paper raises more
technical problems than it solves, but its goal is to show how concepts from
gene-tree theory enable us to better understand genomic history.

We first sketch out a model of gene similarity distribution under random
sequence divergence, speciation and fractionation, leading to a principled treat-
ment of the statistical inference of divergence and fractionation rates and to
speciation and WGD times.

Still lacking an implementation of this methodology, we can nonetheless pro-
ceed with our gene-tree approach by simply identifying local modes or “peaks”
in all the similarity distributions, and translating these into phylogenetically
related paralogous and orthologous entities. We present a rapid algorithm to
resolve these in the case of ideal instances where no data are missing and all
data are mutually compatible.

Finally, we illustrate our approach with six species spanning three genera of
the family Brassicaceae.

2 Distributions of Gene Similarity

2.1 Background

We will discuss the distribution of similarities between homologous genes, accord-
ing to a simple model that takes into account only

– gene mutation by random substitution of nucleotides independently at each
position, and

– random duplicate gene loss after whole genome duplication (WGD).

Moreover, to simplify we treat all genes as having length l, i.e., l positions each
containing one nucleotide.

After speciation, the genes in the two new species diverge independently
according to a rate parameter λ. The simplest model for this divergence is based
on binomial trials for change of nucleotide at each of the l positions of the gene.
A success in the binomial trial at a position is the event that the nucleotide is
the same at time t in both species. The similarity of the pair of orthologous genes
at time t is binomially distributed B[l, p(λ, t)], where p(λ, t) = e−2λt + 1

4 (1 −
e−2λt). As time elapses, p → 1

4 , so that the similarity between genes becomes
indistinguishable from “noise”, since p = 1

4 is characteristic of pairs of random
sequences.

Since we treat all n genes as having l nucleotides, the predicted frequency
distribution of successes is given by Φ[n, λ, t] = nB[l, p]. Inference under this
model is simple. If the empirical frequency distribution of similarities (number
of successes across l trials) is nF , where the mean of F is m, then p̂ = m

l and
λ̂t = − 1

2 log 4m
l −1

3 . If t is known, this gives us an estimate of the mutation rate
constant λ, while if λ is known, this gives us an estimate of the divergence time t.

When a genome undergoes whole genome duplication (WGD), each gene is
duplicated, creating one pair of “paralogous” genes. Over time, the frequency
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Fig. 1. Idealized gene similarity distribution between two species represented by three
events, two WGD and a speciation. The arrows indicated p = exp−λt for the individual
events. The number of gene pairs throughout is 4000. The upper curve represents the
situation where the fractionation rate ρ is zero; the broadening of the part of the
distribution reflecting the earliest event is due to increasing variance with greater age.
The lower curve bounding the shaded area adds the effect of non-zero ρ so that the
earliest event is increasingly hidden by subsequent events. The x-axis in this type of
diagram is often shown in a log scale, scaling linearly with time, so that very early
events appear much farther to the left.

distribution of the similarities between paralogous genes becomes e−ρtΦ[n, λ, t],
where the rate parameter ρ accounts for process of losing (deleting or inactivat-
ing) one of each duplicate gene pair. Note that paralogous genes begin diverging
at a duplication event, while orthologous genes begin diverging at a speciation
event. Inference of ρ and λ, or of t, from frequency data is once again straight-
forward.

Speciation and WGD events can combine in any number of ways in the
history of an evolutionary domain. For example, after speciation, one of the two
sister genomes may undergoes WGD at time t1, where 0 ≤ t1 ≤ t. Here, the
similarities between the 2n pairs of homologs in the two species at time t, will
be distributed as 2e−ρ[t−t1]Φ(λ, t). Again there is no difficulty in inferring the
parameters.

If however after WGD at time 0, a genome undergoes speciation at time
t1, where 0 ≤ t1 ≤ t, then the similarities between the 4n = 2 × 2n pairs of
homologs in the two species at time t, will be distributed as 2e−ρt[Φ(λ, t) +
Φ(λ, t − t1)]. (This distribution is bi-modal when the parameters λ and ρ are
suitably small with respect to t1 and t − t1.) In this model there is no closed
form for the maximum likelihood estimators of the parameters or times. It is the
usual practice to resort to numerical procedures embodied in software such as
Emmix [10] for resolving mixtures of normal distributions.
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Similarly, if after whole genome triplication (WGT), a genome undergoes
speciation at time t1, where 0 ≤ t1 ≤ t, the similarities between the 9n =
3 × 3n pairs of homologs in the two species at time t, will be distributed as
3e−ρt[2Φ(λ, t)+Φ(λ, t− t1)]. The same kind of logic applies to a speciation after
a higher degree polyploidization (whole genome quadruplication, etc.) These
models all have the same inferential complications as the previous one. They
can all also result in bimodal distributions, In the case a genome undergoes
two successive WGD at time 0 and t1, then a speciation at time t2, so that
0 ≤ t1 ≤ t2 ≤ t, the 16n = 4 × 4n pairs of homologs in the two species at time t,
will be distributed as 4e−ρt[2Φ(λ, t) + Φ(λ, t − t1) + Φ(λ, t − t2)]. This can be a
trimodal distribution.

It is important to note that many species in a phylogeny may be related by
the same WGD and speciation events, and the times estimated for these events
should be constrained to be equal. Other events should be constrained to occur
in an order compatible with the phylogeny. Such constraints are not available in
standard statistical mixtures of distributions software.

Our theoretical considerations pertain to the simple model assumed at the
beginning of this section. In practice, various other processes affect the distrib-
ution of similarities so that the number of gene homologs between and within
genomes may be severely reduced from those expected from the model. Within
a group of related organisms, however, the parameter λ tends to have a constant
value, although there are particular cases where it may be substantially lower
[11] or higher [1]. The hypothesis of constant ρ has been investigated in [12].

The broadening of effects of event age and of fractionation on similarity dis-
tributions as time elapses are illustrated in Fig. 1. Eventually, all events become
indistinguishable from noise caused by random gene resemblances, widespread
domain sharing, tandem and near-tandem duplications, gene-order rearrange-
ments, gene conversion and other processes.

It is important to note that methods like Emmix, powerful and flexible as
they may be, are not tailored to the problem of detecting speciation and WGD in
a set of related similarity distributions. For any mixture of normals, Emmix will
identify these components as long as there is enough data. But not every mixture
of normals credibly reflects some sequence of genomic events. More important,
among the

(
N
2

)
+ N gene similarity distributions within and across N species,

there are many constraints that are not handled by software packages, such as
requiring t̂ to be the same for an event in all the distributions that are affected
by it.

Despite these problems with speciation- or WGD-event detection, in this
paper, we will assume constant λ, and we will assume that we can infer p, and
hence the age of an event, simply by identifying the mode, or “peak” of the simi-
larity distribution, without recourse to other estimation procedures. This unfor-
tunately foregoes any attempt at present to pick out events visible as “shoulders”
of other events on the similarity distribution, but it will allow us to validate the
notion that t̂ should be the same for an event for all the distributions in which
it plays a role.



Trees in Peaks 7

2.2 From Peaks to Species Trees and Duplication Gene Trees

There are two observations underlying our method for reconstructing the species
tree and “peaks tree” from a perfect set of inter- and intra-genome comparisons:

– each intra-genome distribution of similarities only has peaks due to all the
WGD in its direct lineage, and

– each inter-genome distribution may contain many peaks due to WGDs, but
only one peak due to speciation, i.e., at the date of the most recent common
ancestor of the two species.

We use these principles one after the other to produce our results. The
pseudocode below assumes a perfect set of inter- and intra-genome comparisons,
namely that all events affecting a between-genome or within-genome comparison
are detected by the kind of inferential statistics mentioned in Sect. 2, and these
comparisons are found in all the genomes affected by the event, and only these,
according to the above principles.

For an event i at time ti, we write (time, genome1, genome2). Each event
time is associated with two genomes, which may be distinct or identical.

Algorithm 1. Construct the tree
Input: A set of genomes G = {g1, g2, . . . , gm},

A set of event times E = {t1, t2, . . . , tn},
Output: A speciation tree in Newick format with duplication nodes

1 for i ← 1 to m do
2 get all the duplicate time(s) Dti for genome i by Algorithm 2

3 for i ← 1 to (m − 1) do
4 for j ← i + 1 to m do
5 get the speciation time St for gi and gj by Algorithm 3

6 split G into Gleft and Gright by Algorithm 4
7 while Gleft or Gright contains ≥ 2 genomes do
8 recursively apply Algorithm 4 to Gleft or Gright

9 return G in the Newick format

Algorithm 2. Get duplication time for a genome
Input: A genome gi

A set of event times E = {t1, t2, . . . , tn},
Output: duplication event(s) Dti for gi

1 Dti ← ∅
2 for j ← 1 to n do
3 if tj : genome1 = gi and tj : genome2 = gi then
4 add tj : time to Dti

5 return Dti
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Algorithm 3. Get speciation time for gi and gj

Input: Two genomes gi and gj ,
Dti and Dtj
A set of event times E = {t1, t2, . . . , tn},

Output: Speciation time St for gi and gj

1 for k ← 1 to n do
2 if tk : genome1 = gi and tk : genome2 = gj then
3 if tk : t /∈ Dti and tk : t /∈ Dtj then
4 St : time ← tk : t
5 St : genome1 ← gi

6 St : genome2 ← gj

7 return St

Algorithm 4. Split a group of genomes into two groups by a SpeciationNode

Input: A set of genomes ψ, can be G or subset of G
a set of speciation times {St1, St2, . . . , Str}, for all pairwise genomes in ψ
Output: A speciationNode and two subsets of ψ, ψleft and ψright.

ψleft ∪ ψright = ψ
1 ψleft ← ∅
2 ψright ← ∅
3 leftGenome = 0
4 rightGenome = 0
5 speciationNode = 0
6 duplicationNode = 0
7 for k ← 1 to r do
8 if Str : time > speciationNode then
9 speciationNode = Str : time

10 leftGenome = Str : genome1
11 rightGenome = Str : genome2

12 for all the duplication times for each genome in ψ do
13 if ∃ a duplication time dt <speciationNode AND all the genomes in ψ

have this duplication time then
14 duplicationNode = dt for each genomes in ψ do
15 remove dt from Dt of this genome

16 for k ← 1 to r do
17 if Str : time = speciationNode and

Str : genome1(/genome2) = leftGenome then
18 Add Str : genome2(/genome1) to ψright

19 if Str : time = speciationNode and
Str : genome1(/genome2) = rightGenome then

20 Add Str : genome2(/genome1) to ψleft

21 return duplicationNode, speciationNode,ψleft, ψright
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3 The Brassicaceae

To illustrate our discussion, we draw on six published genomes in the
Brassicaceae family, three in the genus Brassica: B. rapa (turnip, Chinese cab-
bage) [13], B. oleracea (cabbage, cauliflower) [7] and Raphanus sativus (radish)
[6], two in the genus Arabidopsis: A. lyrata (rock cress) [3] and A. thaliana (thale
cress, mouse-ear cress) [4] and one in the genus Sisymbrium: S. irio (London
rocket) [2]. Figure 2 shows the phylogenetic relationship among the six species:

B. rapa
B. oleracea
R. sativa 
S. irio
A. lyrata
A. thaliana 

whole genome triplication 

whole genome duplications 

Fig. 2. Phylogenetic relationship of six species in the family Brassicaceae, showing
lineages affected by WGD and WGT events.

We extracted genomic data from these species using the database in CoGe
[8,9]. We then used the SynMap routine (with default parameters) on this plat-
form to compare the gene orders of each of the

(
6
2

)
= 15 pairs of genomes. This

procedure implicitly validates the identification of orthologs produced by speci-
ation by detecting collinear arrays of several duplicate pairs in two species with
approximately the same divergence: “syntenic blocks”. Similarly, we did a self-
comparison of five of the six genomes; the sixth one, the Sisymbrium genome,
did not have enough closely spaced duplicate pairs for SynMap to produce par-
alogous syntenic blocks. The distributions of similarities calculated are shown in
Fig. 3. The peaks found in each genome are tabulated in Table 1.

From Fig. 3 and Table 1, we note that the data are not quite “perfect”; the
earliest duplication, detected at 79–80 % in the Arabidopsis self-comparisons,
shows no peaks in the other self-comparisons – there is a shoulder or heavy tail
in the appropriate place in the Brassica self-comparisons, but this is swamped
by the later triplication. The triplication itself is visible in all three Brassica
self-comparisons and in the comparison of B. oleracea and B. rapa, but not in
the weaker signals involving Raphanus. Most of these missing data could be
recovered using statistical means such as those discussed in Sect. 2 involving
constraints instead of relying on identification of peaks.

More interesting is that the peaks at 90 % reflecting the Sisymbrium speci-
ation, known to occur before the Brassica triplication, suggest that speciation
is more recent, since the triplication peak is at 89 %. This apparent conflict is
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Fig. 3. Gene similarity distribution between 15 pairs of genomes in the Brassicaceae
and 5 self comparisons. Local modes (“peaks”) are indicated. Only one of each com-
parison is shown for Arabidopsis, the other is superimposed and indistinguishable.
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Table 1. Peak similarity level, by genome. np: no peak, but one could be found by
mixtures of distribution methods. - : no peak expected. Note peak 3 occurring before
peak 4 due to slow evolutionary rate (λ) of Sisymbrium.

Peak number Description Genome

BR BO RS SI AL AT

1 Alpha duplication [5] np np np np 80 80,79

2 Divergence of genus Arabidopsis 86 86 86,87 88 88-86 88-86

3 Whole genome triplication 89 89 87 - - -

4 Divergence of genus Sisymbrium 90 90 90 90 - -

5 Divergence of genus Raphanus 93 93 93 - - -

6 Speciation of Arabidopsis T & L - - - - 95 95

7 Speciation of B. rapa & B. oleracea 97 97 - - - -

Fig. 4. Peak-tree for the Brassicaceae. Boldface numbers indicate WGD or triplication.
All families of genes descended from the various genome WGD or WGT without any
additional duplications must be formed from this tree with truncations of appropriate
lineages.

clearly ascribable to a slower rate of evolution (lower λ), since the divergence
of Arabidopsis from Sisymbrium also seems to occur more recently (88 %) than
the divergence of Arabidopsis from the Sisymbrium sister genus Brassica (86 %).
Note that the small differences between peak similarities are not insignificant,
given the many thousands of gene pairs involved in these comparisons.
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Were we to fill in the missing peaks, and correct the Sisymbrium times to
account for slower evolution, the data set would be perfect and Algorithm1
would convert it to a species tree with duplication times indicated. This could
be then displayed in the form of Fig. 4. This “peaks tree” represents a general
template for gene families evolving through WGD and fractionation-based gene
loss only. The gene tree for any particular gene family would have exactly the
same form, but with losses of various lineages.

4 Conclusion

We have pointed out connections between gene-tree/species-tree theory and the
study of whole genome duplications in a phylogeny. The “peaks” tree should be a
template for all the gene families proliferating through WGD and speciation only,
where each gene family would simply require pruning of some of the branches of
the tree, due to fractionation of duplicate genes. Despite the shortcomings of our
Brassicaceae analysis, in the ideal case, the peaks tree itself would fill out the
template completely, although no individual gene family is likely to be complete.

Our model and methodology is simplified. We have seen that λ may vary
somewhat for individual lineages, and ρ is probably even more variable. Genomic
processes such as chromosomal rearrangements disrupt gene order and degrade
the recovery of synteny blocks and duplicate gene pairs. These issues should all
be addressed in future work.

Our simplest DNA substitution model assumes equal base frequency and
equal mutation rates. DNA substitution models with more parameters and rate
variation among sites can be readily applied here. For example, one commonly
used distance metric Ks (substitutions per synonymous sites) is typically cal-
culated using more specific codon substitution models. The Ks distance scales
linearly with time and log p.

Despite the need for inference procedures focusing on the parameters λ and
ρ (rather than μ and σ) jointly estimated for a compete set of similarity distri-
butions among N genomes (rather than just one distribution), we have not yet
implemented one, and have resorted to a primitive procedure of peak recognition
in illustrating our model. Nevertheless, applying our concepts to six genomes in
the family Brassicaceae illustrates the potential usefulness of our approach in
understanding multiple WGD in a phylogenetic context.
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Abstract. When studying a biological regulatory network, it is usual
to use boolean network models. In these models, boolean variables rep-
resent the behavior of each component of the biological system. Taking
in account that the size of these state transition models grows expo-
nentially along with the number of components considered, it becomes
important to have tools to minimize such models. In this paper, we relate
bisimulations, which are relations used in the study of automata (general
state transition models) with attractors, which are an important feature
of biological boolean models. Hence, we support the idea that bisimula-
tions can be important tools in the study some main features of boolean
network models. We also discuss the differences between using this app-
roach and other well-known methodologies to study this kind of systems
and we illustrate it with some examples.

Keywords: Biological regulatory networks · Bisimulation · Minimiza-
tion of models

1 Introduction

The term “biological regulatory network” refers to the regulation processes which
occur within a cell. In this environment, there are several biological components
which react with each other (for example, by chemical reactions). More generally,
the occurrence of these regulation processes within a biological system is due to
the fact that the presence of some components in the cell can either induce or
inhibit the production of some other component(s). For instance, this behavior
can be observed when some proteins interact with genes producing mRNA. In
its turn, mRNA induce the production of other proteins and so on.

To study a biological regulatory network, we must take in account that state
variables like the concentration of proteins, mRNA and other components vary
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in a continuous form. Indeed, one of the most precise kind of models used in this
field are those which describe the dynamics of a biological regulatory network
by an ordinary differential equations system (see [5]) that only admits contin-
uous state variables. Usually, these models use sigmoid functions to describe a
positive/negative regulation of a component over another (i.e., to describe that
one component induces/inhibits the production of another). The sigmoid func-
tions which are more often used to describe a positive regulation are the so called
“Hill functions” and depend on parameters θ and n. In this way, it is not difficult
to see that this kind of models admit non linear equations and, therefore, the
resulting ordinary differential equations system is not trivially solved by analytic
methods. Thus, other (more simple) kinds of models are often used in order to
proceed with a preliminary study of the biological system. In this context, the
boolean networks are really useful.

There are many variants of boolean network models, however, the basic idea
of all them is to approach each state variable of the system by a boolean variable
[9]. In this way, it is assigned either the value “1” or “0” to indicate that some
component is present or absent, respectively. Then, for each component i we
define a boolean variable xi and consider a threshold θi. If the concentration
of the component i is above θi we define xi as “1” (present) and otherwise we
define it as “0” (absent).

In a boolean network, a state is a vector (x1, ..., xn) such that each xi is the
boolean variable associated to the component i. There also are some variants of
these boolean approaches which admit more than one threshold associated to
each component: θji . In this case, it is possible to obtain several levels of express-
ibility which are codified using several boolean variables xj

i instead of only xi.
Still, there are other variants as asynchronous boolean networks (see [2]) which
we will more carefully describe in this paper. A boolean network model which
represents the dynamics of a biological system is a digraph in which each vertex
is a vector composed of “0”s and “1”s (which relates to a possible configuration
of the biological system); and each edge relates to a possible transition between
states. We then have a state transition model (automata).

These biological models and their variants are widely used because they are
simple and some features of the original system can be identified by studying
these boolean models. One of the most studied features in biological regulatory
networks is the existence of steady states. By steady state we refer to the values
of the concentration of a cell’s components where the system stabilizes. In par-
ticular, in models which use an ODE system, a steady state corresponds to those
states in which the evolution of the system is null, i.e., corresponds to set all
differential equations to zero. When a steady state exists, it can be either stable
(if little perturbations do not cause the system to evolve into a state far away
from the initial steady state) or unstable (otherwise). Thus, the study of these
characteristics is an important topic in the field of biological systems. Because of
this, discrete models as boolean networks are often used because it is well-known
that steady states are signaled by terminals in asynchronous boolean networks.
Then, it becomes worth to use these models to proceed with a preliminary study.
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We point out that in a biological context, the concept attractor is more often
used than “terminal”. Therefore, we use the term “attractor” instead of “termi-
nal” when we refer to this concept in biological boolean networks.

It is not difficult to see that the number of states of these models grows expo-
nentially with the number of components of the system. For example, a model
which considers 10 components admits 210 states. Because of this, and since the
most of the biological models admits much different components (usually, much
more than 10), it becomes important to both develop tools to minimize these
boolean network models and new ideas to find features like attractor with few
computational cost. In order to do this, we propose to take into account the
ideas already used in automata theory. Although we do not present any new
algorithm, this work paves the way to new approaches to this problem.

In this paper, we apply the concept of bisimulation to propose a new method
to preliminarily study these biological systems. Bisimulations are already used in
several minimization processes. Furthermore, the possibility of combining bisim-
ulation with modal logic which admit modalities (see [1]) turns out that it is a
powerful tool to study state transition systems. The usage of modal logic is pos-
sible due to the possibility of interpreting biological boolean network as Kripke
models. However, in this paper, we will only propose bisimulations to develop
new minimization processes which allow us to find the attractors of boolean
networks and we do not consider any background logic. Thus, given a digraph
(V,E), we say that S ⊆ V × V is a bisimulation if S is not empty, and if it is an
equivalence relation such that:

– If (v, w) ∈ S and (v, v′) ∈ E then there exists w′ ∈ V such that (w,w′) ∈ E
and (v′, w′) ∈ S.

– If (v, w) ∈ S and (w,w′) ∈ E then there exists v′ ∈ V such that (v, v′) ∈ E
and (v′, w′) ∈ S.

Outline. We begin by presenting some definitions and a theorem that relates
attractors with bisimulations. Then, we enhance the difference between minimiz-
ing boolean networks using bisimulation and other known methodologies used in
the study of such systems. Finally, we present some conclusions and directions
to follow.

2 Bisimulations and Attractors

The dynamics within a cell are guided by several components: proteins, RNA,
genes, ribosomes, etc... Each of these components induces or inhibits the produc-
tion/activation of some of the other ones. Thus, it is very difficult to understand
a biological regulatory network and, usually, only some main features are stud-
ied. As referred, one of these features are the steady states. Steady states are
related to the modes of operating of a cell. For instance, in [4], a model for E. coli
with two steady states is presented: one is related to a configuration in which
the organism metabolizes sugar, grows and replicate itself; and the other relates
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to a configuration in which the organism does not metabolize sugar, does not
grow and does not replicate itself.

There exists results which shows that the study of asynchronous boolean
models can be used to identify steady states (see [9]). In practice, each terminal
represents a steady state. We follow with a formal definition of terminal.

Definition 1. Let (V,E) be a graph.
We say that v ∈ V has a transition to w ∈ V and we write v → w, if

(v, w) ∈ E. We write v � w otherwise.
We say that there is a path from v to w if there exist v1, ..., vn ∈ V such

that v → v1, v1 → v2, ..., vn → w.
A Strongly Connected Component (SCC) is a subset A of V such that there

is a path between any two element of A.
A set A is a terminal if it is a SCC and � a ∈ A, v ∈ V \A: a → v.

We point out that, since the biological boolean models represent a finite
number of components of a cell, in this section, we assume that all the considered
digraphs are finite, i.e., for any digraph (V,E), |V | < ∞.

To find the attractors of digraphs, several methodologies can be used. In
[7,10] some methods are presented. However, here, we present some new ideas
that can lead to a new approach on this theme, based in bisimulations. We thus
follow with a definition of a particular class of bisimulations and we present and
prove a theorem that relates this class of bisimulations with attractors.

Definition 2. Let (V,E) be a graph.
We say that B ⊆ V × V is a complete bisimulation if it is a bisimulation and

there exists B ⊆ V such that B = B × B (any two elements of B are related).
We say that a complete bisimulation B is minimal if there is not any other

complete bisimulation B′ such that B′
� B.

Lemma 1. Let (V,E) be a graph, B ⊆ V and B = B × B a minimal complete
bisimulation. For any A � B, ∃ a ∈ A, v ∈ B\A such that a → v.

Proof. Let us assume that there exists A � B such that, for any a ∈ A, v ∈ B\A,
a � v.

In this case, we can easily verify that A × A is an equivalence relation since
all states of A are related. By hypothesis, for any (a, a′) ∈ A × A ⊆ B such
that a → b, there exists some b′ which verifies a′ → b′ and (b, b′) ∈ B. Since
for any a ∈ A, v ∈ B\A, a � v, we can conclude that b, b′ ∈ A and, therefore,
(b, b′) ∈ A × A. Thus, A × A is a complete bisimulation and this contradicts the
minimality of B. �

Theorem 1. Let (V,E) be a graph. B = B × B ⊆ V × V is a minimal complete
bisimulation ⇔ B is a terminal of V .

Proof.
“⇒”
We start by proving that if B is a minimal complete bisimulation, then there

exists a path between any two elements of B. We prove that B is a terminal
afterwards.
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We consider u, v ∈ B. By Lemma 1, we know that there is a transition u → u1

from {u} to B\{u}. If u1 = v, we are done. Otherwise, using Lemma 1 again,
we know that there is a transition from {u, u1} to some u2 ∈ B\{u, u1}. Here,
either u → u2 or u1 → u2. In any case, there is a path from u to u2. Again, if
u2=v we are done. Otherwise, we can continue to apply this procedure till find
a path between u and v (this procedure will end in finite time since we are only
considering finite graphs). As u and v were arbitrary, we can conclude that B is
a SCC.

Finally, if u ∈ B and u → v, then (u, u) ∈ B and, by definition of complete
bisimulation, (v, v) ∈ B. Then v ∈ B and, thus, B is a terminal.

“⇐”
We now assume that B is a terminal of V . We can easily see that B = B ×B

is a equivalence relation since all states are related. We consider (u, v) ∈ B and
u → u′. Since B is a terminal, u′ ∈ B and ∃v′ ∈ B such that v → v′. Furthermore,
(v, v′) ∈ B, by definition and, therefore, B is a complete bisimulation.

Let us assume that B is not minimal, i.e., there is a complete bisimulation
A := A × A � B. Since B is terminal, it is possible to find a path from any
a ∈ A for any b ∈ B\A. Thus, ∃a′ ∈ A, b′ ∈ B\A such that a′ → b′. But this
contradicts the fact of A being bisimulation because b′ /∈ A. �

This theorem can help us to develop a new minimization methodology which
preserves the attractors without even know them. The general idea is to find a
bisimulation B such that any complete bisimulation contained in B is minimal.
Thus, we can compute the “quotient digraph” in order to obtain a minimized
model in which the states of the attractors may be “clustered”. Nevertheless,
these attractors are individually preserved. We follow with two examples in order
better understand how the minimization via bisimulation is made.

In this example, we consider two asynchronous boolean networks models.
In this kind of boolean network, the directed edges representing the transitions
between states are defined according to some boolean equations. However, we
can only update the value of one variable at each time. To simplify, we do not
consider any loops.

For the first example, we pick a purely theoretical model which is presented
in Fig. 1. This example is presented in order to further distinguish two method-
ologies. In this figure, the attractor of the model is enhanced by an orange box.
Although this model is theoretical, it could result from a system comporting
three components (a, b and c) whose state transition is computed by updating
the value of a single component at each time and according to the following
boolean equations: ⎧

⎪⎨

⎪⎩

a := a ∨ b

b := a ∨ (b ⊕ c)
c := (a ⊕ ¬b) ∨ c

In these equations, ⊕ is the XOR boolean operator.
In order to minimize this model, we can find a bisimulation B = {(000,

000), (001, 001), (011, 011), (111, 111), (010, 010), (110, 110), (100, 100), (101, 101),
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Fig. 1. Model with an attractor composed of a single state.

(001, 011), (011, 001), (110, 101), (101, 110), (010, 100), (100, 010)}. It is not diffi-
cult to verify that all complete bisimulation contained in this bisimulation are
minimal. Thus, we can construct the “quotient digraph” by clustering the states
in the same equivalence class. The transitions of the “quotient digraph” are
introduced by the following rule: “If a → b, then, [a] → [b] (where [a] and [b] are
the equivalence classes of a and b, respectively)”. This quotient digraph is then
presented in Fig. 2.

Fig. 2. Quotient digraph of the model in Fig. 1.

We now consider a real example. In [3], it is presented a biological system that
regulates the circadian rhythm in a cyanobacteria, i.e. this system models the
biological processes (which are periodic and whose period is 24 h) that regulates
the perception of a day-cycle by an organism. In [3], this system is studied with
a asynchronous boolean network and the attractors of the resulting network are
found and it is studied the robustness of this model. The asynchronous boolean
network used is defined by the boolean equations which follow:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a := ¬s

s := ts

t := a

ts := t ∧ a

This model describes the dynamics of the three phosphorylated forms of Kai
C (using boolean variables t, ts, and s) and the protein Kai A (with a boolean
variable a). These four form are responsible for the core of the cyanobacterial cir-
cadian clock. The referred system is modeled by the presented boolean functions
and the resulting asynchronous boolean network, whose attractor is enhanced
by an orange box, is shown in Fig. 3.

As before, we can find a bisimulation such that all complete bisimu-
lations contained on it are minimal and compute the “quotient digraph”.
Hence, if we consider the following bisimulation B = {(a, b) : a, b ∈
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Fig. 3. Model of the circadian rhythm in a cyanobacteria.

{0110, 0010, 1010, 1111, 0111, 1011, 0101, 0100, 0000, 1000}} ∪ {(a, a) : a ∈
{1110, 1101, 1100, 0011, 0001, 1001}}, the resultant quotient digraph is the one
which is presented in Fig. 4.

Fig. 4. Minimized model for the circadian rhythm in a cyanobacteria.

In both cases, we can see that we obtain a minimized model in which the
attractors are preserved. This is due to the fact that all complete bisimulations
contained in the bisimulation used are minimal.

3 Comparing Bisimulation with Other Reducing Methods

In this section, we compare this method of minimization with other methodolo-
gies which are commonly used in this field. We do this in order to distinguish
our minimizing method from those and we point out some advantages (and dis-
advantages) of our method when comparing to other approaches.

Firstly, we compare our quotient digraph with the hierarchical representa-
tions. This kind of representations sort the states of a model according to their
distance to the attractors. This approach is widely used in the study of systems.
However, the main disadvantage is that one must know a priori which are the
attractors of the model in order to obtain a hierarchical representation. It is not
difficult to see that our method can only get together two states whose distance
to the attractors is the same (since transitions are someway preserved). However
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it only clusters states whose behavior is similar. To illustrate this we call the
minimized model in Fig. 4. In this example, if we consider any state which is not
part of the attractor, we can see that its distance to the attractor is “1”. Despite
this fact, we can see that any two of these states are not clustered because each
one of them presents a different behavior. Actually it may be important to study
these differences in their behavior. Actually, they allow us to discover the longest
possible “path” to the attractor.

Another widely used method to minimize boolean networks and, then, search
for attractors is clustering the SCCs. This allows us to minimize a model and
still preserve the attractors. This is a well-known idea and several other methods
to find attractor where developed after it (for instance, see [10]). On one hand,
the method which we present can clusters sets of states which are not in the
same SCC and, therefore, it clusters states which would not be clustered when
we cluster the SCC’s. For instance, recalling the example in Fig. 2, we can see
that the states 010 and 100 were clustered and were not in the same SCC; on
the other hand, constructing the quotient digraph, it can happen that we do not
cluster all SCC’s. For example, the quotient digraph presented in Fig. 2 still has
a SCC. This is due to the fact that our method can only cluster SCCs which are
terminals. We can see this because, for any SCC which is not a terminal, there
exists some state in the SCC that admits a transition for a state out of that
SCC. Therefore, it may be impossible to find a complete bisimulation to cluster
all its states.

Finally, we point out a last important feature of bisimulations. Since we are
dealing with discrete state transition models (automata), it can be useful to use
modal logic to reason about such models. Hence, it could be useful to obtain
minimization processes which guarantee that all states in a cluster verify the
same modal formulas. Indeed, due to their definition, bisimulations are suitable
to be used with modal logic. More information about this can be found in [1].

4 Conclusions

Bisimulations can be used to obtain to minimize biological boolean models
and, guaranteeing some conditions, the methodology we presented preserves the
attractors. Although we present only the main ideas and some examples of the
application of this method, it can provide the basis for a new minimization algo-
rithm. Actually, in future, we are planing to develop this complete algorithm
which applies these ideas to minimize biological boolean models.

We also evaluated the convenience of using this minimization methodology
when compared with other methods already used. It provides a new way of
looking at biological models and it can be useful in their study. When comparing
with other methods, it has both some advantages and disadvantages. However,
as seen, since it preserves the attractors and, moreover, it can be combined with
a modal logic, we believe that this approach is worth.

In future, we also plan to study how can modal logic fit in these biological
boolean models and, if possible, to find an axiomatization of such systems which
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would allow us to formally prove diverse properties of them. Actually, in contin-
uous models which use ODEs, it was applied a dynamic logic (which integrates
first-order features) proposed by A. Platzer – Differential Dynamic Logic (see
[8]) – to formally reason about them. Some initial work can be found in [6].
We believe that is possible to obtain a similar results in discrete models and, in
particular, in boolean networks.
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Abstract. In this article we present a neutral network based optimal
control synthesis for solving distributed optimal control problems for sys-
tems governed by parabolic differential equations with control and state
constraints and discrete time delay. The optimal control problem is tran-
scribed into nonlinear programming problem which is implemented with
feed forward adaptive critic neural network to find optimal control and
optimal trajectory. The developed simulation method is demonstrated
on the optimal control problem of feeding adaptation of Daphnia model
with diffusion and discrete time delay of nutrient uptake. Results show
that adaptive critic based systematic approaches are promising in obtain-
ing the optimal distributed control with discrete time delays in state and
control variables subject to control and state constraints.

Keywords: Distributed control problem with discrete time delays ·
State and control constraints · Feed-forward neural network · Adaptive
critic synthesis · Numerical examples

1 Introduction

We consider an optimal distributed control problem for systems governed by a
parabolic differential equations, with control and state constraints and discrete
time delay. The problem is motivated by better understanding of real world sys-
tems eventually with the purpose of being able to influence these systems in a
desired way. The scope of this paper is the study of discretization/optimization
methods using neural networks generating controls. We pursue the one-shot
multigrid strategy as proposed in [1]. A one-shot multigrid algorithm means
to solve the optimality system for the state, the adjoint and the control vari-
ables in the multigrid process in parallel. The finite element approximation plays
an important role in the numerical treatment of optimal control problems. This
approach has been extensively studied in the papers e.g. [3,4,9–11] for parabolic
optimal control problems. Through discretization the optimal control problem
c© Springer International Publishing Switzerland 2016
M. Botón-Fernández et al. (Eds.): AlCoB 2016, LNBI 9702, pp. 26–37, 2016.
DOI: 10.1007/978-3-319-38827-4 3
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is transcribed into a finite-dimensional nonlinear programming problem (NLP-
problem). The basic idea of these methods is to apply nonlinear programming
techniques to the resulting finite dimensional optimization problem [2,5,11].
Then neural networks are used as a universal function approximation to solve
finite dimensional optimization problems forward in time with “adaptive critic
designs” [12,15]. For the neural network, a feed forward neural network with
one hidden layer, a steepest descent error backpropagation rule, a hyperbolic
tangent sigmoid transfer function and a linear transfer function were used. The
presented paper extends adaptive critic neural network architecture proposed by
[7] to the optimal distributed control problem for systems governed by a par-
abolic differential equations with control and state constraints and discrete time
delay. This paper is organized as follows. In Sect. 2, optimal distributed control
problems with delays in state and control variables subject to control and state
constraints are introduced. We summarize the necessary optimality conditions
and give a short overview of the basic results including the iterative numerical
methods. In Sect. 3, we discuss the discretization methods for the given optimal
control problem and formulate the resulting nonlinear programming problems.
Section 4 presents a short description of adaptive critic neural network synthesis
for the optimal control problem with delays in state and control variables sub-
ject to control and state constraints. We also present a new algorithm to solve
optimal control problems. In Sect. 5, we present a description of feeding adapta-
tions of Daphnia. We apply the new proposed methods to the model presented
to compare short-term and long-term strategies of nutrients uptake by Daphnia.
Numerical results are also given. Conclusions are being presented in Sect. 6.

2 The Optimal Control Problem

We consider the nonlinear control problem governed by parabolic equations with
delays in state and control variables subject to control and state constraints. Let
x(p, t) ∈ Rn and u(p, t) ∈ Rm denote the state and control variable, respectively
in a given space-time domain Q = [a, b] × [t0, tf ]. The optimal control problem
is to minimize

J (u) =
∫ b

a

g(x(p, tf ))dp (1)

+
∫ b

a

∫ tf

t0

f0(x(p, t), x(p, t − τx), u(p, t), u(p, t − τu))dtdp,

subject to

∂x(p, t)
∂t

= D
∂2x(p, t)

∂p2
+ f(x(p, t), x(p, t − τx), u(p, t), u(p, t − τu)), (2)

∂x(a, t)
∂p

=
∂x(b, t)

∂p
= 0, t ∈ [t0, tf ],

x(p, t) = φs(p, t), u(p, t) = φc(p, t), p ∈ [a, b], t ∈ [t0 − τu, t0],
ψ(x(p, tf )) = 0, c(x(p, t), u(p, t)) ≤ 0, p ∈ [a, b], t ∈ [t0, tf ],
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where τx ≥ 0 and τu ≥ 0 are discrete time delay in the state and control variable,
respectively. The functions g : Rn → R, f0 : R2(n+m) → R, f : R2(n+m) → Rn,
c : Rn+m → Rq and ψ : Rn → Rr, 0 ≤ r ≤ n are assumed to be sufficiently
smooth on appropriate open sets, and the initial conditions φs(p, t), φc(p, t)
are continuous functions. The theory of necessary conditions for the optimal
control problem of form (1) is well developed, see e.g. [5,11]. We introduce an
additional state variable x0(p, t) =

∫ t

0
f0(x(s), x(s − τx), u(s), u(s − τu)ds. Then

the augmented Hamiltonian function for problem (1) is

H(x, xτx
, u, uτu

, λ, μ) =
n∑

j=0

λjfj(x, xτx
, u, uτu

) +
q∑

j=0

μjcj(x, u),

where λ ∈ Rn+1 is the adjoint variable and μ ∈ Rq is a multiplier associated to
the inequality constraints. Assume that τx, τu ≥ 0, (τx, τu) �= (0, 0) and τx

τu
∈ Q

for τu > 0 or τu

τx
∈ Q for τx > 0. Let (x̂, û) be an optimal solution for (1). Then

the necessary optimality condition for (1) implies [5] that there exist a piecewise
continuous and piecewise continuously differentiable adjoint function λ : Q →
Rn+1, a piecewise continuous multiplier function μ : Q → Rq, μ̂(p, t) ≥ 0 and a
multiplier σ ∈ Rr satisfying

∂λ

∂t
= D

∂2λ

∂p2
− ∂H

∂x
(x̂, x̂τx

, û, ûτu
, λ, μ)

− χ[t0,tf −τx]
∂H
∂xτx

(x̂+τx
, x̂, û+τx

, ûτu+τx
, λ+τx

, μ+τx
), (3)

λ(p, tf ) = gx(x̂(p, tf )) + σψx(x̂(p, tf )),
∂λ(a, t)

∂p
=

∂λ(b, t)
∂p

= 0, (4)

0 = −∂H
∂u

(x̂, x̂τx
, û, ûτu

, λ, μ)

− χ[t0,tf −τu]
∂H
∂uτu

(x̂+τu
, x̂τx+τu

, û+τu
, û, λ+τu

, μ+τu
). (5)

Furthermore, the complementary conditions hold, i.e. in p ∈ [a, b], t ∈ [t0, tf ],
μ(p, t) ≥ 0, c(x(p, t), u(p, t)) ≤ 0 and μ(p, t)c(x(p, t), u(p, t)) = 0. Herein,
the subscript x, xτx

, u and uτu
denotes the partial derivative with respect to

x, xτx
, u and uτu

, respectively and x+τx
= x(p, t+τx), xτx+τu

= x(p, t−τx+τu).

3 Discretization of the Optimal Control Problem

The purpose of this section is to develop discretization techniques by which
the distributed control problem (1) are transformed into a nonlinear program-
ming problem (NLP-problem) [1,3,11]. We assume that τu = l τx

k with l, k ∈ N.
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Defining hmax = τx

k gives the maximum interval length for an elementary trans-
formation interval that satisfies τx

hmax
= k ∈ N and τu

hmax
= l ∈ N. The minimum

grid point number for an equidistant discretization mesh Nmin = tf −t0
hmax

. Choose
a natural number K ∈ N and set N = KNmin. Let tj ∈ 〈t0, tf 〉, j = 0, . . . , N,
be an equidistant mesh point with tj = t0 + jht, i = 0, . . . , N , where ht = b−a

N is
a time step and tf = Nh + t0. Assume that the rectangle R = {(p, t) : a ≤ p ≤
b, t0 ≤ t ≤ tf} is subdivided into N by M rectangles with sides ht and hs = b−a

M .
Start at the bottom row, where t = t0, and the solution is x(pi, t0) = φs(pi, t0).
A method for computing the approximations to x(p, t) at grid points in succes-
sive rows {x(pi, tj) : i = 0, 2, . . . , N, j = 0, 2, . . . ,M} will be developed. The
difference formulae for xt(p, t) and xpp(p, t) are

xt(p, t) ≈ x(p, t + ht) − x(p, t)
ht

, xp(p, t) ≈ x(p + hs, t) − x(p, t)
hs

(6)

and

xpp(p, t) ≈ x(p − hs, t) − 2x(p, t) + x(p + hs, t)
h2

s

. (7)

Use the approximation xi,j in Eqs. (6) and (7), which are in turn substituted
into Eq. (2), to obtain

xi,j+1 − xi,j

ht
= D

xi−1,j − 2xi,j + xi+1,j

h2
s

+ fi,j . (8)

Equation (8) is applied to create the (j + 1)th row across the grid, assuming
that approximations in the jth row are known. Let the vectors xij ∈ Rn, uij ∈
Rm, i = 0, . . . , N, j = 0, . . . , M, be an approximation of the state variable and
control variable x(pi, tj), u(pi, tj), respectively at the mesh point (pi, tj). z :=
((xij), (uij), i = 0, . . . , N, j = 0, . . . , M) ∈ RNs , Ns = (n+m)NM, the optimal
control problem is replaced by the following discretized control problem in the
form of nonlinear programming problem with inequality constraints: Minimize

J (z) = hsht

∑

(i,j)

f0(xij , xτxij , uij , uτuij) + hs

∑

(i)

g(xiM ) (9)

subject to

xi,j+1 = xij + htD
xi−1,j − 2xij + xi+1,j

h2
s

+ htfij , x0j = x1j , xNj = xN−1j , (10)

xi,−j = φx(pi, t0 − jh), j = k, . . . , 0, ui,−j = φu(pi, t0 − jh), j = l, . . . , 0,

ψ(xi,N ) = 0, c(xij , uij) ≤ 0, i = 0, . . . , N, j = 0, . . . , M − 1.

In a discrete-time formulation we want to find an admissible control which
minimizes objective function (9). Let us introduce the Lagrangian function for
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the nonlinear optimization problem (9):

L(z, λ, σ, μ) = hsht

∑

(i,j)

f0(xij , xτxij , uij , uτuij) + hs

∑

(i)

g(xiM )

+
∑

(i,j)

λi,j+1(−xi,j+1 + xij + D
xi−1,j − 2xij + xi+1,j

h2
s

+ htfij)

+
∑

(i,j)

μijc(xij , uij) +
∑

(i)

σiψ(xiN )

+
∑

(j)

λ0,j
x0,j+1 − λ0,j

hs
+

∑

(j)

λN,j
xN,j+1 − λN,j

hs
. (11)

The first order optimality conditions of Karush-Kuhn-Tucker for the problem
(9) are:

0 = Lxij
(z, λ, σ, μ) = λi,j+1 − λij + htD

λi−1,j − 2λij + λi+1,j

h2
s

+ htλi,j+1fxij
(xij , xi,j−k, uij , ui,j−l) (12)

+ htλi,j+k+1fxijτx
(xi,j+k, xij , ui,j+k, ui,j−l+k)

+ μijcxij
(xij , uij),

j = 0, . . . , M − k − 1,

0 = Lxij
(z, λ, σ, μ) = λi,j+1 − λij + htD

λi−1,j − 2λij + λi+1,j

h2
s

+ htλi,j+1fxij
(xij , xi,j−k, uij , ui,j−l),

j = M − k, . . . , M − 1,

0 = LxiM
(z, λ, σ, μ) = gxiM

(xim) + σiψxiM
(xiM ) − λiM , λ0j

= λ1j , λNj = λN−1,j (13)
0 = Luij

(z, λ, σ, μ) = htλi,j+1fuij
(xij , xi,j−k, uij , ui,j−l)

+ htλi,j+l+1fuijτu
(xi,j+l, xi,j−k+l, ui,j+l, ui,j)

+ μijcxij
(xij , uij),

j = 0, . . . , M − l − 1 (14)
0 = Luij

(z, λ, σ, μ) = htλi,j+1fuij
(xij , xi,j−k, uij , ui,j−l) + μijcxij

(xij , uij),
j = M − l, . . . , N − 1.

Equaitons (12)–(14) represent the discrete version of the necessary condition
(3)–(5) for optimal control problem (1).

4 Adaptive Critic Neural Network for an Optimal
Control Problem with Control and State Constraints

It is well known that a neural network can be used to approximate the smooth
time-invariant functions [6]. Experience has shown that optimization of function-
als over admissible sets of functions made up of linear combinations of relatively
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few basis functions with a simple structure and depending nonlinearly on a set
of “inner” parameters e.g., feedforward neural networks with one hidden layer
and linear output activation units often provides surprisingly good suboptimal
solutions [6].

Let x = [x1, . . . , xn]′ and y = [y1, . . . , ym]′ be the input and output vectors of
the network, respectively. Let V = [v1, . . . , vr]′ be the matrix of synaptic weights
between the input nodes and the hidden units, where vk = [vk0, vk1 . . . , vkn]; vk0

is the bias of the kth hidden unit, and vki is the weight that connects the ith input
node to the kth hidden unit. Let also W = [w1, . . . , wm]′ be the matrix of synap-
tic weights between the hidden and output units, where wj = [wj0, wj1 . . . , wjr];
wj0 is the bias of the jth output unit, and wjk is the weight that connects the
kth hidden unit to the jth output unit. The response of the kth hidden unit is

Algorithm 1. Algorithm to solve the optimal control problem.
Input: Choose t0, tf , a, b, N, M - number of steps, time and space steps

ht, hs εa, εc - stopping tolerance for action and critic neural networks,
respectively, xi,−j = φs(pi, t0 − jht), j = k, . . . , 0,
ui,−j = φc(i, t0 − jht), j = l, . . . , 0 -initial values.

Output: Set of final approximate optimal control û(pi, t0 + jht) = ûij and
optimal trajectory x̂(pi, t0 + (j + 1)ht) = x̂i,j+1, j = 0, . . . , M − 1,
respectively

1 Set the initial weight Wa = (V a, W a), Wc = (V c, W c)
for j ← 0 to M − 1 do

2 for i ← 1 to N − 1 do
3 while erra ≥ εa and errc ≥ εc do
4 for s ← 0 to max(k, l) do
5 Compute ua

i,s+j , μa
i,s+j and λc

i,s+j+1 using action (Wa) and
critic (Wc) neural networks, respectively and xi,s+j+1 by Eq.
(10)

6 Compute λt
ij , ut

ij , and μt
ij using Eqs. (12) and (14)

F(uij , μij) = (Luij (z, λ, σ, μ), −c(xij , uij)) = 0
7 if j = M − 1 then
8 F(ui,M−1, μi,M−1, σi) =

(Lui,M−1(z, λ, σ, μ), −c(xi,M−1, ui,M−1), −ψ(xi,M )) with

λiM = GxiM (xiM ) + σiψxiM (xiM )

9 errc =‖ λt
ij − λc

ij ‖
10 erra =‖ (u, μ)t

ij − (u, μ)a
ij ‖

11 With the data set xij , λt
ij update the weight parameters Wc

12 With the data set xij , (u, μ)t
ij update the weight parameters Wa

13 Set λc
ij = λt

i,j , (u, μ)a
i,j = (u, μ)t

i,j

14 Set λ̂i,j = λt
i,j , (ûi,j , μ̂i,j) = (u, μ)t

i,j

15 Compute x̂i,j+1 using Eq. (10) and ûi,j

16 λ0j = λ1j , λNj = λN−1,j

17 return λ̂i,j , ûi,j , μ̂i,j , x̂i,j+1
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given by zk = tanh (
∑n

i=0 vkixi) , k = 1, . . . , r, where tanh(.) is the activation
function for the hidden units. The response of the jth output unit is given by
yj =

∑r
k=0 wjkzk, j = 1, . . . , m. The multiple layers of neurons with nonlinear

transfer functions allow the network to learn nonlinear and linear relationships
between the input and output vectors. The number of neurons in the input and
output layers is given by the number of input and output variables, respectively.
The multi-layered feed forward network is trained using the steepest descent
error backpropagation rule. We can state the algorithm to solve the optimal
control problem using the adaptive critic and recurrent neural network. In the
Pontryagin’s maximum principle for deriving an optimal control law, the inter-
dependence of the state, costate and control dynamics is made clear. Indeed, the
optimal control û and multiplier μ̂ is given by Eq. (14), while the costate Eqs. (12)
and (13) evolve backward in time and depend on the state and control. The adap-
tive critic neural networks [12] are based on this relationship and consist of two
networks at each node: an action network, the inputs for which are the current
states and its outputs are the corresponding control û and multiplier μ̂, and
the critic network for which the current states are inputs and current costates
are outputs for normalizing the inputs and targets (zero mean and standard
deviations). For detail explanation see [13]. The adaptive critic neural network
procedure of the optimal control problem is summarized in Algorithm1. In the
adaptive critic synthesis, the action and critic network were selected such that
they consist of n+m subnetworks, respectively, each having n−3n−1 structure
(i.e. n neurons in the input layer, 3n neurons in the hidden layer and one neuron
in the output layer). The training procedure for the action and critic networks,
respectively, are given by [12]. From the free terminal condition (ψ(x) ≡ 0) from
Eqs. (12) and (13) we obtain that λ0 = −1 and λiM = 0, i = 1, . . . , N. We use
this observation before proceeding to the actual training of the adaptive critic
neural network. Further discussion and detail explanation of these adaptive critic
methods can be found in [12,13].

5 Model of Feeding Adaptation of Daphnia

The model is described by a system of six delay partial differential equations.
It is derived from the models of the series AQUAMOD [8,14] and modified by
the inclusion of several algae species, diffusion and discrete time delay τ of food
uptake by Daphnia. Four species of algae x2, x3, x4, x5 were considered during the
computations performed. Each algae species are represented by a particular algal
cell (or colony) volume. The volumes were set arbitrarily to (Vi = 50, 500, 2500
and 5000 µm3) to approximate the set of “edible” algal sizes commonly occur-
ring in our reservoirs. The rates at which Daphnia and four algae species con-
sume food are modelled by the Michaelis-Menten function with maximum rates
Ci, Pi, i = 2, . . . , 5, respectively, and half-maximum rates a4, si, i = 2, . . . , 5,
respectively. The algae species respiration rates ri, i = 2, . . . , 5 are also include
in the model. These ecological parameters of algae species are considered as func-
tions of Vi. Functions occurring in the model are given in Table 1. The selectivity
Ei is given by the following formula:
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Table 1. Size-specific parameters of algae.

Vi Algal cell volume [µm3)]

ui = 2 1/3
√

3Vi
4π

Diameter corr. to Vi

Ei(u) = exp(−0.1 (u − ui)
2) Selectivity

Ci(u) = a9Ei(u) Forcing function

Pi = 0.5 − 0.05LOG(Vi) Spec. growth rate [d−1]

ri = 0.02 + 0.002LOG(Vi) Spec. resp. rate of algae [d−1]

si = −5 + 10LOG(Vi) Half sat. constant for P [mg.m−3P]

i = 2, . . . , 5

l1(t) = 0.8 + 0.25cos( 2π
360

t)+ Sedimentation function

0.12cos( 2π
360

2t)

l2(2) = 12 + 10sin( 2π
360

(t + 220)) Water temperature [oC]

l3(t) = 280 + 210sin( 2π
360

(t + 240)) Light intensity [cal.cm−2.day−1]

l4(t) = e(0.09l2(t))

l5(t) = l3(t)
l3(t)+a10

d1(t) = l4(t)l5(t)

d2(t) = a1l1(t)

d3 = a3d4

d4 = a2a4

Ei(u) = exp(−0.1 (u − ui)2), (15)

where u is the value of setal density directly related to the algal diameter for

which selectivity is maximal and ui = 2 1/3

√
3Vi

4π is the diameter corresponding to
each algal cell volume Vi. Because of the nonlinear relationship between diame-
ters and algal cell volume (Vi = 4/3π(ui/2)3) the normal distribution given by
Eq. (15) converts to a shape of a log-normal character. The specific filtration
rate of algae of different sizes (volumes) of the population adapted to a certain
condition (i.e. with certain values) of u becomes Ci(u) = a9 Ei(u), where 0 ≤ a9

is the filtration rate for algae of optimal size, i.e. those which are filtered with
the selectivity factors Ei(ui) = 1.

The following system of partial functional differential equations with discrete
time delay is proposed as a model of simple ecosystem:

∂xi(p, t)
∂t

= Di
∂2xi(p, t)

∂p2
+ Fi (x(p, t), x(p, t − τ), t) , i = 1, . . . , 6, (16)

where

F1 (x(p, t), x(p, t − τ), t) = a7(a8 − x1(p, t))

− d1x1(p, t)
5∑

i=2

Pixi(p, t)
x1(p, t) + si

+ l2

5∑

i=2

rixi(p, t)



34 T. Kmet and M. Kmetova

+ x6(p, t)
5∑

i=2

Cixi(p, t)
(

1 − d4
a4 + xi(p, t)

)
,

Fi (x(p, t), x(p, t − τ), t) =
d1Pix1(p, t)xi(p, t)

x1(p, t) + si
− l2rixi(p, t)

− Eixi(p, t)x6(p, t) − d2xi(p, t) + ai+9a7,

i = 2, . . . , 5,

F6 (x(p, t), x(p, t − τ), t) = d3x6(p, t − τ)
5∑

i=2

Cixi(p, t − τ)
a4 + xi(p, t − τ)

− a5x6(p, t) + a7a6,

with Neumann boundary condition

∂xi

∂p
(0, t) =

∂xi

∂p
(1, t) = 0 (17)

and initial conditions

xi (p, t) = φi (p, t) ≥ 0, 0 ≤ p ≤ 1, t ∈ 〈−τ, 0〉 , i = 1, . . . , 6. (18)

Here t denotes the time, p represents the spatial location, Di are the diffusion
coefficients and xi(t, p), i=1,. . . ,6 are the concentration of phosphorus, four
species of algae and zooplankton, respectively at time t and in spatial location
p. The constant τ stands for the discrete time delay in uptake of algal species
by Daphnia.

5.1 Optimization of Feeding Adaptation

In this section we are interested in the ability of Daphnia to adapt both the
filtration area and filter density to the amount and size structure of the food
particles of the (algae) population. We assume that the filtration in the aquatic
filter feeders is an optimal process of maximal feeding strategy. We will investi-
gate two strategies [8]:

(1) Instantaneous maximal biomass production as a goal function (local opti-
mality), i.e.

ẋ6 = F6(x, u, t) → max

for all t, under the constraints

u ∈ 〈umin, umax〉.
In the case of strategy (1), we maximize the following function

J(u) =
5∑

i=2

a9Ei(u)d3xi

xi + a4
.
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(2) Integral maximal biomass production as a goal function (global optimality),
i.e.

J (û) =
∫ b

a

∫ tf

0

x6(p, t) dtdp

under the constraints

u ∈ 〈umin, umax〉.
In the case of strategy (2), we have the following optimal control problem: to
find a function û(p, t), for which the goal function J (u) attains its maximum. In
the adaptive critic synthesis, the critic and action network were selected in a way
that they consist of six and two subnetworks, respectively, each having 6-18-1
structure (i.e. six neurons in the input layer, eighteen neurons in the hidden layer
and one neuron in the output layer).
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Fig. 1. Adaptive critic neural network simulation of optimal trajectory x̄2(p, t) and
x̂2(p, t) with initial condition ψs(t) = (0.1, 0.1, 0.2, 0.8, 0.4, 0.5, 0.6, 0.7, .1) cos(2πp) for
t ∈ [−1, 0].

The proposed adaptive critic neural network is able to meet the convergence
tolerance values we chose, leading to satisfactory simulation results. The MAT-
LAB simulations show that the proposed neural network is able to solve the non-
linear optimal control problem with state and control constraints. Our results are
quite similar to those obtained in [8]. The results of numerical solutions (Figs. 1
and 2) have shown that the optimal trajectories x̃(p, t) and x̂(p, t) based on a
short and long-term perspective, respectively are different. When û(p, t) is opti-
mal then J (û(p, t)) ≥ J(ũ(p, t)). The numerical results show that for the initial
conditions considered the total biomass for the short-term perspective is smaller
than the biomass for the long-term perspective, i.e. J (û(p, t)) > J(ũ(p, t)). The
higher biomass of zooplankton is obtained in case of integral formulation points
towards the assumption that the organisms do better if not reacting only to
the immediate changes, but having developed mechanisms consistent with more
long-term consideration. The numerical solutions show that in the case of opti-
mal strategies û(p, t)), ũ(p, t) we have different time trajectories and all species
of algae are able to survive.
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Fig. 2. Adaptive critic neural network simulation of optimal trajectory x̄6(p, t) and
x̂6(p, t) with initial condition ψs(t) = (0.1, 0.1, 0.2, 0.8, 0.4, 0.5, 0.6, 0.7, .1) cos(2πp) for
t ∈ [−1, 0].

6 Conclusion

In this paper, the algorithm of neural networks based solution of parabolic
distributed optimal control problems was presented. To better illustrate these
advances in computational optimization, we gave a detailed description of dis-
cretization of distributed optimal control problems by finite differences and
solved by means of time-space multigrid techniques, where co-state variable was
approximated by feed forward neural networks. To illustrate the algorithm we
considered a feeding adaptation of filter feeders of Daphnia. We formulated,
analysed and solved a distributed optimal control problem related to the optimal
uptake of nutrient by Daphnia. The numerical simulations by using MATLAB
have shown that the adaptive critic neural network is able to solve the nonlinear
optimal control problem with control and state constraints. Numerical simula-
tions have also shown that in the case of local and global optimal strategies,
respectively, we have different time trajectories and varying filter density as a
result of a local and global optimality, which explains the adaptation of filter
feeders of Daphnia.

Acknowledgments. The paper was worked out as a part of the solution of the sci-
entific project number KEGA 010UJS-4/2014.
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Abstract. There has been much progress in recent years towards build-
ing larger and larger computational models for biochemical networks,
driven by advances both in high throughput data techniques, and in
computational modeling and simulation. Such models are often given as
unstructured lists of species and interactions between them, making it
very difficult to understand the logicome of the network, i.e. the logi-
cal connections describing the activation of its key nodes. The problem
we are addressing here is to predict whether these key nodes will get
activated at any point during a fixed time interval (even transiently),
depending on their initial activation status. We solve the problem in
terms of a Boolean network over the key nodes, that we call the logi-
come of the biochemical network. The main advantage of the logicome
is that it allows the modeler to focus on a well-chosen small set of key
nodes, while abstracting away from the rest of the model, seen as bio-
chemical implementation details of the model. We validate our results by
showing that the interpretation of the obtained logicome is in line with
literature-based knowledge of the EGFR signalling pathway.

Keywords: Biomodeling · Boolean network · Logicome · EGFR path-
way · ODE models

1 Introduction

One of the central topics of interest in systems biology is to identify the function-
alities of a living cell and to understand how the huge number of interactions
within a cell facilitate such functionalities. The set of complex and involved
interactions lead to obtaining a large number of collected experimental data as
well as complex networks. These broad sources of information can prove to be
very useful in providing a realistic life picture of the phenomenon under study,
but can also make it difficult to analyze the system and can cause inaccuracy in
predicting the system’s behavior. Identifying the main players within a network
and understanding how they activate each other can help to overcome these
difficulties.

There have been many studies on the logical modelling of biological net-
works; for example, [4–6,30] discuss the correspondence between Boolean net-
works and ODEs; for an introduction to Boolean networks and ODEs we refer
c© Springer International Publishing Switzerland 2016
M. Botón-Fernández et al. (Eds.): AlCoB 2016, LNBI 9702, pp. 38–49, 2016.
DOI: 10.1007/978-3-319-38827-4 4
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to [13,14] respectively. Fuzzy logic was used in [19] to yield the logical mod-
els corresponding to the biological networks. As a different approach, [27] build
the Boolean logic models by training a literature-based prior knowledge network
against biochemical data. These studies mainly proposed approaches where the
full understanding of the biological aspects of the phenomenon under study
was crucial and the goal was to obtain a mathematical model reproducing that
understanding. Our study goes in the reverse direction: it starts from an existing
mathematical model and aims to obtain an abstract, high-level understanding of
the functionality of the biological network underlying the model. Our goal is to
obtain a logical description of the activation conditions between the key nodes
of the network; even in the case when one starts from a detailed biological model
going towards the mathematical model, our reverse engineering approach brings
a new higher-level understanding of the functionality of the biological model we
started from. The result of our approach is formulated as a Boolean network
whose nodes are the key species we focus on; we coin the term logicome to name
this network.

Extracting a Boolean network model from a given ODE-based model is a
well-studied topic with many different solutions, see, e.g., [30] for a recent new
solution and a good overview of the topic. Typically, the Boolean network model
is seen as a companion of the ODE-based model, compensating for the lack of
detailed kinetic-level data for the model, or allowing for alternative global analy-
sis of model dynamics, such as attractor- or multi-stability- analysis, see [30].
A key step going from an ODE model to its corresponding Boolean network
model is the discretization scheme allowing to replace continuous variables with
their corresponding 0/1 variables. This is typically done by sampling the numer-
ical integration of the continuous variables at different time points and by dis-
cretizing their values at those points. This leads to the dynamics of the Boolean
model being interpreted in terms of discrete time series reflecting the behavior of
the original ODE model. Our approach is coarser: we aim to capture the activa-
tion of the key nodes of the model over the whole time interval (to be thought of
as much larger than those involved in the discretization of ODE models). This
includes capturing the transient activation of a node over that interval, even
if at the extremities of the interval the node may be inactive. The result is a
Boolean network that accompanies the starting ODE model in terms of describ-
ing asynchronous cause-effect relationships among its key nodes over a fixed time
interval.

As a case study we focus on the EGFR (epidermal growth factor receptor)
signaling pathway. Epidermal growth factors are key players in cell proliferation,
survival, migration and differentiation. EGFR signaling also has a major role in
EGFR-dependent signal transduction, see [29]. Therefore, understanding their
behavior is crucial in any cancer related studies, see [20]. For more information
on EGFR signaling pathways we refer to [2,29,32].

This paper is organized as follows. In Sect. 2, we present our methodology to
infer the logicome of biochemical networks. In Sect. 3, we introduce the case study
we used in this paper. In Sect. 4 we present the results of applying the method
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to the case study and analyze the produced results and finally we conclude with
some discussions in Sect. 5. All the models and data files used in this paper can
be found at: http://combio.abo.fi/research/logicome-models-2/.

2 Methodology

In this section we present our method to infer the logicome of an ODE-based
model. The steps are described in a generic way – their detailed implementation
is up to the modeler and it depends on the case study. In the next section we
discuss one particular way in which we used this method in the case of the EGFR
pathway.

Step 1 – Setup. We start with an ODE model for a biochemical network. We
assume also to have a set of “key nodes” whose influences over each others’
activation we aim to capture. The choice of the key nodes from among the
variables of the ODE model depends on the modeler and on the network
under study.

Step 2 – Discretization. To be able to describe the logicome of a network
in terms of Boolean network, we need to translate continuous simulation
data to a Boolean, “on/off”-based language. Therefore, as the second step we
incorporate a discretization algorithm into our method. Many discretization
methods exist, see for example [18,26]. In this study our discretization step is
based on a threshold-based approach in which we assign “1” to a species if at
any time during the simulation its value is above a given threshold, and “0”
otherwise. The precise choice of the threshold depends on the network under
study.

Step 3 – Simulation. We simulate all possible knock-out mutants; in other
words, all models where the key species are turned on/off in all possible
combinations. We then apply to each simulation result the discretization step
to obtain the Boolean results corresponding to each mutant. In this way we
produce a truth table describing the output of each simulation as a Boolean
function with the key nodes as its Boolean variables. Translating the input
Boolean values of the key nodes to absolute numerical values to be used in
the simulation can be done in several different ways, depending on the case
study. For example, the 0 value for a Boolean key node may be translated
to value 0 for the corresponding variable(s) in the knock-out mutant, while
value 1 may be translated to the threshold value chosen for that variable in
Step 2. The other, non-key nodes get the same initial values as in the original
model.

Step 4 – Logicome generation. In this step we generate the logicome corre-
sponding to the given biochemical network from the produced truth table in
the previous step. Different algorithms can be used to implement this step,
see for example [1,11,16,21]. In this paper we use the Logic Friday tool which
incorporates the Espresso algorithm proposed in [21].

http://combio.abo.fi/research/logicome-models-2/
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3 Case-Study: The EGFR Pathway

We focus in this paper on a signaling network that is strongly associated with the
development of cancer processes: the EGFR signaling pathway. In the following
subsections we provide a brief biological background and some computational
details of this model.

3.1 Biological Background

The epidermal growth factor receptor (EGFR) pathway regulates several impor-
tant cellular processes including cell proliferation, survival, differentiation and
development, see [20]. Because of its association with the various types of can-
cer processes, this pathway is a widely investigated signal transduction system.
The EGFR pathway can be seen as a union of several smaller pathways, also
called modules, see [3,31]. The proteins situated at the intersection between
these modules are called interface species. The analysis presented in [10] identi-
fies the locations of oncogenes and essential components of the EGFR signaling
cascade that define most of the interface regions. Our model is adopted from
[31] that uses the model originally presented in [28] and implements it in the
stochastic pi-calculus language together with the results identified by [10]. We
follow the approach of [31] and their modularization of the EGFR signaling path-
way in the following 7 modules: EGF, Grb2, Ras-Shc-Dependent /Independent,
Raf, MEK, and ERK. These modules communicate with each other through
the following 8 interface species: (EGF-EGFR*)2-GAP, (EGF-EGFR*)2-GAP-
Grb2-Sos, (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos, Ras-GTP, Ras-GTP*, MEK-
PP, Raf* and ERK-PP. We adopt these interface species as the key nodes in our
approach.

We briefly describe the functionality of the EGFR pathway focusing mainly
on the signal propagation within the interface species, as suggested in [10]; the
modules of the pathway are considered as black-boxes communicating to each
other through the interface species. The EGFR is situated on the extracel-
lular surface of the cell and signal transduction begins upon binding of lig-
and EGF (epidermal growth factor) to EGFR. The EGF-bounded receptor
induces dimerization and autophosphorylation of several members of intracel-
lular domains, which leads to the recruiting of several cytoplasmic enzymes and
adaptor proteins. This initiates to the activation of two principal pathways, one
Shc-dependent and another Shc-independent, that play a significant role in the
activation of downstream signaling processes like hydrolyzation of Ras-GDP and
activation of Ras-GTP that follows by dissociation of Ras-GTP from the recep-
tor complex. Further dissociation of Ras-GTP makes it inactive and promotes
the intrinsic activity of Ras protein regulated by the GTPase activating protein
(GAP) that is involved in several crucial cellular processes see [10,24]. It is
assumed that the dissociated Ras-GTP molecule causes phosphorylation of the
Raf protein that in-turn double phosphorylates MEK (turning it to MEK-PP)
and ERK (turning it to ERK-PP) proteins. The final result of the signaling
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cascade is the double phosphorylated ERK-PP that further regulates a number
of transcription factors and essential proteins for cell differentiation and growth.

A systematic analysis of control mechanisms (including positive/negative
feedback loops) underlying EGFR pathway are presented in [10,31]. We aim
to represent the functional relationships associated with the interface species
through a Boolean network – the logicome of the EGFR signaling pathway.

3.2 Mathematical Model, Simulation and Discretization

We associated a mass-action ODE-based model, see [8,14], to the reaction based
model of [10]. Each of the 103 variable molecular species of the model in [10]
gets a variable in our mathematical model. We wrote the reaction-based model
of the EGFR pathway in the COPASI software, see [9], and used its feature
to automatically generate the mass-action-based system of ordinary differential
equations associated to the model. We call the resulting model our basic model.

Following the approach of [31], we simulated in COPASI this model for an
EGF stimulus of 4981 molecules/pl which is enough to phosphorylate 50000
EGF-receptors. The simulation was run for 6000 s and the time series results of
each interface species were collected.

For our method we are interested in analyzing all knock-out mutants where
the interface species are active/inactive in all possible combinations. In the
knock-out mutants the initial values of the inactive interface species are set
to the value 0, while the active interface species are set to a specific threshold
value of 1% of that species’ maximum value in the simulation of the basic model
up to 6000 s. Since we considered 8 interface species, we have 256 = 28 knock-out
mutant simulations.

3.3 Generating the Logicome

Each knock-out mutant can be seen as a particular truth assignment over the
8 Boolean variables standing for the interface species. The results of the 256
knock-out simulations were discretized as follows.

Collecting the outputs of all knock-out mutants can be done in the form of
a Boolean function with 8 inputs and 8 outputs.

We used the LogicFriday software to generate the Boolean function associated
to the EGFR pathway based on the Boolean table collected above. We then
used the 5 types of Boolean gates illustrated in Fig. 1 to generate the logicome
associated to the EGFR signaling pathway.

(a) (b) (c) (d) (e)

Fig. 1. The Boolean gates for the logical outcome: (a) AND : AB, (b) OR : A + B,
(c) NOT : A, (d) NAND: AB, (e) NOR : A + B, where we denote the negation of A with
A, the disjunction of A and B with A + B, and the conjunction of A and B with AB.
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4 Results

The interface species are denoted in the logicome as the nodes of the Boolean
network in the way explained in Table 1. The Boolean functions generated as
the result of the steps described in Sect. 3 are shown in Table 2. We repeated the
same experiment where we set the initial values of the active key nodes to 10 %
(rather than 1 %) of their maximum value in the simulation of the basic model;
the corresponding Boolean formulation is presented in Table 3.

Table 1. The notation used for the interface species in the Boolean network.

Node Interface species

G0 (EGF-EGFR*)2-GAP

G1 Raf*

G2 MEK-PP

G3 Ras-GTP*

G4 ERK-PP

G5 (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos

G6 Ras-GTP

G7 (EGF-EGFR*)2-GAP-Grb2-Sos

Table 2 shows G1 as getting activated in all knock-out models and thus,
being set to constant 1. This means that for all combinations of active/inactive
key nodes (even those where G1 is initialized as inactive), G1 gets eventually
activated in the time interval [0, 6000] sec. This can be interpreted as G1 being
insensitive to (relatively) small changes in the levels of the other key nodes;
indeed, all the key nodes are 0 in the basic model, leading to activation of G1;
setting the initial values of the key nodes to 1 % of their maximum level in the
basic model does not change the situation. This result also suggests that in the
case of small perturbations in the initial values of key nodes, the activation of G1

is driven by other factors, outside the set of key nodes. The situation is different
if we look into bigger changes in the initial values of the key nodes, e.g., setting
them to 10 % of their maximum values in the basic model; as shown in Table 3,
G1 is in this case non-constant and influencing the behavior of G6. In Table 3, we
observe that the activation of G1 depends on the key nodes G3, G5 and G6 – this
is consistent with the results reported in [25].

Another interesting observation of the logicome in Table 2 is that all key
nodes get activated in the case of G3 starts inactive and G5 starts active. The
same observation is found in the results obtained for the threshold of 10 %, see
Table 3, and even for 20 % and 30 % see Tables 4 and 5. This is consistent with
the observation of [7,10,23,31] about the role played by the shc*-dependent
component (denoted by G5) and the Ras subfamily protein (denoted by G3) in
the activation of several pathway components, including all of our key nodes.
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Table 2. The Boolean functions describing the logicome of the EGFR signaling path-
way for the threshold of 1 %. An overline over a variable’s name denotes its negation,
the plus denotes disjunction, while the concatenation of two variables denotes their
conjunction.

Boolean functions

G0 := G3 + G5 + G0G4 + G4G7 + G0G6G7;

G1 := 1;

G2 := G2 + G3 + G5 + G6;

G3 := G0 + G2 + G3 + G4 + G5 + G6 + G7;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G3 + G5 + G0G6 + G6G7;

G7 := G3 + G5

Table 3. The Boolean functions describing the logicome of the EGFR signaling path-
way for the threshold of 10 %.

Boolean functions

G0 := G5 + G0G3G4 + G3G4G6 + G0G3G7 + G3G4G7;

G1 := G3 + G5 + G6;

G2 := G2 + G3 + G5 + G6;

G3 := G0 + G2 + G3 + G5 + G6 + G7;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G5 + G0G3 + G1G3 + G0G6 + G3G6 + G3G7 + G6G7;

G7 := G3G5 + G3G6 + G3G7 + G0G5G6 + G0G5G7 + G5G6G7

It is also interesting to note that the EGFR signaling pathway has an internal
mechanism for compensating the potential failure of G5 by G7. Based on [7,10,
31], G0 mediates the activation of both G5 and G7; in case G5 fails while G3

remains inactive then G7 gets activated and this is enough to activate all key
nodes. This is seen in Table 3, if G0 = G3 = G5 = G7 = 1, then all key nodes
get activated.

4.1 Sensitivity to the Numerical Setup of the Model

To investigate the sensitivity of our method to changes in the numerical setups of
the underlying ODE model, we re-ran all simulations for different values of EGF
and EGFR. We first experimented with different concentrations of EGF stimulus
keeping the same EGFR concentration of 50000 molecules and then with different
concentrations of EGFR keeping the same EGF stimulus of 4981 molecules. We
observe that the obtained logicomes are almost identical to the previous result
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Table 4. The Boolean functions describing the logicome of the EGFR signaling path-
way for the threshold of 20 %.

Boolean functions

G0 := G5 + G0G3G4 + G3G4G6 + G0G3G7 + G3G4G7;

G1 := G3 + G5 + G6;

G2 := G2 + G3 + G5 + G6;

G3 := G0 + G2 + G3 + G5 + G6 + G7;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G5 + G0G3 + G1G3 + G0G6 + G3G6 + G3G7 + G6G7;

G7 := G3G5 + G3G6 + G3G7 + G0G5G7 + G5G6G7

Table 5. The Boolean functions describing the logicome of the EGFR signaling path-
way for the threshold of 30 %.

Boolean functions

G0 := G5 + G0G3G4 + G3G4G6 + G0G3G7 + G3G4G7;

G1 := G3 + G5 + G6;

G2 := G2 + G3 + G5 + G6;

G3 := G0 + G3 + G5 + G6 + G7 + G1G2 + G2G4;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G5 + G0G3 + G1G3 + G0G6 + G3G6 + G3G7 + G6G7;

G7 := G3G5 + G3G6 + G3G7 + G0G5G7 + G5G6G7

presented in Table 2. To investigate the sensitivity of our method to different
threshold criteria, we repeated the experiments above with a threshold value of
30% of each interface species’ maximum value. By comparing results, we note
that the logicome results obtained with the threshold value of 10 %, 20 %, and
30 % (see Tables 3, 4, and 5) are much more complex than the previous one.

4.2 Incomplete Availability of the Knock-Out Mutants

In the way we described our method in Sects. 2 and 3, we implicitly assume the
full availability of the simulation results of all knock-out mutant models. We
considered the case when the data on several knock-out mutants is in fact not
available and compared the results to the case when all data is available. We
considered the simulations results of only 186 knock-out mutants and assumed
that the data on the other 70 knock-out mutants is unavailable. We used the
threshold value of 1 % and the numerical setups of EGF and EGFR as 4981 and
50000 molecules, respectively.
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Table 6. The Boolean functions associated with the logicome of the model where the
data of 70 knockout mutants are not available. The result is almost identical to that in
Table 2 where all data was available, showing that the method in this case was robust
to missing data.

Boolean functions

G0 := G3 + G5 + G0G4 + G4G7 + G0G6G7;

G1 := 1;

G2 := G2 + G3 + G5 + G6;

G3 := G2 + G3 + G4 + G5 + G6 + G7;

G4 := G2 + G3 + G4 + G6 + G0G5G7;

G5 := G0G5 + G3G5 + G3G6 + G5G6 + G5G7 + G0G3G7;

G6 := G3 + G5 + G0G6 + G6G7;

G7 := G3 + G5

The result obtained in this case is shown in the Table 6 and it is almost the
same as the result in Table 2 obtained by using the full data. This shows that in
this case the logicome extraction method was robust to the missing data; this
may of course be different for other models and for other missing data.

5 Discussion

We propose in this article an addition to the rich field of logic modeling of
biological networks, see, e.g., [4,15,19]. We start from a mathematical model
of the network, taking advantage of the growing availability of mathematical
models. The logicome approach proposed in this article allows the modeler to
focus on a selected set of key nodes, important for the network under study,
while abstracting away from the rest of the network; the output is a description
of their influence on each other (even transient) activation over a fixed time
interval.

The bottom-up modeling approaches (e.g., large-scale modeling [17], auto-
matic knowledge extraction [22], data-driven network construction [12], etc.)
have been very popular due to their ability to provide a very detailed picture,
to explain the data, and to reproduce the behaviour of the phenomenon under
study. The logicome is a companion to such detailed models; it gives a more
abstract, systematic and objective description of the functionalities of the model.
This is especially relevant in the case of big models built from many different
sub-models and for which a full global “blueprint” does not exist. The logicome
aims to be such a blueprint, deduced a-posteriori, based on an existing detailed
view of the model.

The output of the logicome approach depends on the numerical setup of
the method: both on the numerical setup of the basic mathematical model, and
on the choice of the threshold values in the discretization step. This is natural
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since the method is dependent on the numerical ODE-based simulations of the
basic model and of the knock-out mutants; this suggests choosing an already
well-fitted and -validated model for the network under study. The choice of the
threshold value is in fact a decision on how a species of the model can be labeled
as ‘active’; we suggested using a percentage of the maximum value reached by
that species in the simulation of the basic model, but other choices may also be
appropriate depending on the case study.

The computational efficiency of the method is dependent on the number of
key nodes selected in the analysis: with more key nodes selected, exponentially
more knock-out mutant models should be analyzed. Eliminating some of the
knock-out mutants is possible, and the result of the method will be in this case
an only-partial description of the logical dependencies between the key nodes.
On the other hand, the method scales up very well in the size of the basic model:
as long as the ODE-based models may be simulated efficiently, the method will
be practical; this means that networks with thousands of nodes may be analyzed,
as long as the number of key nodes n is so that it remains practical to run 2n

simulations.
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Abstract. Pairwise ordered tree alignment are combinatorial objects
that appear in RNA secondary structure comparison. However, the usual
representation of tree alignments as supertrees is ambiguous, i.e. two dis-
tinct supertrees may induce identical sets of matches between identical
pairs of trees. This ambiguity is uninformative, and detrimental to any
probabilistic analysis. In this work, we consider tree alignments up to
equivalence. Our first result is a precise asymptotic enumeration of tree
alignments, obtained from a context-free grammar by means of basic
analytic combinatorics. Our second result focuses on alignments between
two given ordered trees. By refining our grammar to align specific trees,
we obtain a decomposition scheme for the space of alignments, and use
it to design an efficient dynamic programming algorithm for sampling
alignments under the Gibbs-Boltzmann probability distribution. This
generalizes existing tree alignment algorithms, and opens the door for a
probabilistic analysis of the space of suboptimal RNA secondary struc-
tures alignments.

Keywords: Tree alignment · RNA secondary structure · Dynamic pro-
gramming

1 Introduction

Tree alignments are the natural analog of sequence alignments, and have been
introduced by Jiang et al. [10] to model and quantify the similarity between two
(ordered1) trees. Initially proposed as an alternative to tree-edit distance, the
tree alignment model has proven more robust, allowing for the inclusion of com-
plex local operations [2], and for being generalized to multiple input trees [9].
Consequently, tree alignment has been used in a wide array of applicative con-
texts, especially RNA Bioinformatics [8], where RNA secondary structures align-
ments can be encoded by tree alignments. The minimal cost tree alignment
between two trees of size n1 and n2, under classic insertion/deletion/(mis)-match

1 In this work, unless explicitly specified, all trees will be rooted and ordered.
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operations, can be computed using dynamic programming (DP). The current
best algorithms have a worst-case time and space complexity respectively in
O(n1n2(n1 + n2)2) and O(n1n2(n1 + n2)) [10] algorithms, and an average-case
time and space complexity (on uniformly drawn instances) in O(n1n2) [7].

In the context of sequence alignments, the enumeration of alignments has
been the object of much interest in Computational Biology [1,5,13]. Alignments
between two sequences over an alphabet Σ can be encoded as sequences over
an extended alphabet Σa, representing insertions, deletions and (mis)matches
(e.g. Σ = {a, b}, Σa = {(a,−), (−, b), (a, b), (a, a), (b, a), (b, b)}). Many sequences
over Σa are equivalent if one considers only (mis)matches of the alignments, i.e.
they align sequences of same length and induce the same sets of matched posi-
tions (e.g. (a,−), (−, b) and (−, b), (a,−)). It is a natural problem to enumer-
ate distinct sequence alignments for two sequences of cumulative length n [15,
p. 188]. Beyond purely theoretical considerations, the decompositions introduced
for enumerating distinct sequence alignments were adapted into DP algorithms,
e.g. for probabilistic alignment based on expectation maximization [4], or to
compute Gibbs-Boltzmann measures of reliability [14].

In the present work, we consider similar questions on tree alignments. We
are first interested in counting distinct tree alignments, i.e. enumerating, up to
equivalence, ordered trees whose vertices are labeled in Σa (called supertrees
from now on). For trees, the notion of equivalence of alignments generalizes
that of sequence alignments, i.e. two alignments are equivalent when they align
the same pairs of trees, and induce the same sets of (mis)matched positions.
Unfortunately, contrasting with the case of sequence alignments, existing DP
algorithms for computing an optimal tree alignment [2,10,12] cannot be easily
adapted into enumeration schemes for tree alignments up to equivalence. This
additional difficulty is due to the existence of ambiguities of different nature.

Our main contribution is a grammar for (distinct) tree alignments, which
provably generates a single representative for each equivalence class. We use the
symbolic method [6] to obtain the generating function of tree alignments, and
asymptotic equivalents for various statistics of interest can easily be derived,
such as the average number of alignments over trees of total size n. Finally,
and, perhaps more importantly from an applied point of view, the grammar can
be transformed into an unambiguous and complete DP algorithm for aligning
two input trees. The resulting algorithm has the same asymptotic worst-case
and average-case complexities, up to reasonable constants, as the current best
– ambiguous – algorithm [2,10]. The main interest of such an algorithm is that
it opens immediately the way to new applications for the tree alignment model,
including a critical assessment of the reliability of optimal alignments, either
obtained by counting co-optimal alignments, or by sampling suboptimal align-
ments according to a Gibbs-Boltzmann distribution (see [11] for an example of
this approach for the RNA folding problem).

In Sect. 2 we introduce the main definitions about trees, supertrees and tree
alignments. In Sect. 3, we provide a grammar that generates all tree alignments.
In Sect. 4.1 we analyze this grammar from an enumerative point of view and give
precise results on the number of alignments of fixed size. Finally, in Sect. 4.2 we
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show how to transform the tree alignments grammar into a dynamic program-
ming algorithm to sample tree alignments between two specified trees. A long
version with proofs is available on arXiv or HAL [3].

2 Definitions

Trees and supertrees. Let Σ be an alphabet. A tree T on Σ is a rooted plane
tree whose vertices are labeled by elements of Σ. We denote by VT the set of
vertices of T . We remove a non-root vertex v from a tree T by contracting the
edge between v and its parent u, that keeps its label. Removing the root r of a
tree consists in creating a forest composed of the subtrees rooted at the children
of r. We denote the operation of removing a vertex v from T by T − v.

We denote by Σa the alphabet defined by Σa = (Σ ∪ {−})2 − {(−,−)}. An
element (x, y) ∈ Σa is an insertion (resp. deletion, match) if y = − (resp. x = −,
(x, y) ∈ Σ2). A supertree A is a tree on Σa; a vertex of A is an insertion (resp.
deletion, match) if its label is an insertion (resp. deletion, match). The size of a
supertree A is the number of its insertions and deletions, plus twice the number
of its matches. A superforest is an ordered sequence of supertrees.

Given a supertree A on Σ, we define two forests π1(A) and π2(A) as follows:
π1(A) (resp. π2(A)) is obtained by (1) iteratively removing all insertion (resp.
deletions) of A, in an arbitrary order, and (2) replacing the label (x, y) of each
remaining vertex by x (resp. y). We refer to Fig. 1 for an illustration. We extend
the notations π1 and π2 on vertices: for a non-insertion (resp. non-deletion)
vertex v of A, we denote by π1(v) (resp. π2(v)) the corresponding vertex in
π1(A) (resp. π2(A)). A vertex x of π1(A) such that π−1

1 (x) is an insertion (resp.
match) is said to be inserted (resp. matched) in A. Similarly, a vertex y of π2(A)
such that π−1

2 (y) is a deletion (resp. match) is said to be deleted (resp. matched)
in A.

Tree alignments. As forests π1(A) and π2(A) are embedded into the supertree
A, the latter implicitly defines an alignment between the forests π1(A) and
π2(A), i.e. a set of correspondences between vertices of π1(A) and π2(A), that
is consistent with the structure of both forests [10]. We refer to Fig. 1 for an
illustration.

We now turn to the central notion of equivalent alignments, i.e. alignments
of identical pairs of trees, that contain exactly the same set of matched vertices.
Given a supertree A, representing an alignment between two trees S = π1(A) and
T = π2(A), the set of matches of A is formed by the elements (x, y) of VS × VT

such that π−1
1 (x) = π−1

2 (y) (i.e. there exists a vertex v of A such that π1(v) = x
and π2(v) = y). Two supertrees A1 and A2 are equivalent if π1(A1) = π1(A2),
π2(A1) = π2(A2), and the sets of matches of A1 and A2 are identical (see Fig. 2
for an illustration).

A tree alignment is then defined as an equivalence class over supertrees with
respect to the above-defined equivalence relation, for which π1(A) and π2(A) are
trees. The notion of forest alignment is similarly defined when π1(A) and π2(A)
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Fig. 1. A supertree A1 with alphabet Σ = {A, C, G, U}, and the associated trees
S = π1(A1) and T = π2(A1). The alignment of S and T defined by A is composed of
two pairs of matched (A, A) and (U, A), indicated by dashed arrows.
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Fig. 2. Two non-equivalent supertrees, representing two different tree alignments. How-
ever, the supertree A1 from Fig. 1 and the supertree A2 are equivalent.

are not restricted to trees. Given a set S of tree (resp. forest) alignments, a set T
of supertrees (resp. superforests) is said to be representative of S if it contains
exactly one supertree (resp. superforest) for each alignment (i.e. equivalence
classes of supertrees and forests) in S. Tree alignments will now be the focus of
our work.

3 A Grammar for Tree Alignments

In this section, we describe a context-free grammar for a set A of supertrees that
is representative of the set of all tree alignments.

We first define some basic operations on supertrees and superforests:

– The (ordered) concatenation of two (super)forests A and B is denoted by
A ◦ B. It creates a new superforest beginning by the supertrees of A, and
ending by the supertrees of B.

– Given two disjoint sets T1 and T2 of supertrees or superforests, we denote by
T1 ⊕ T2 their (disjoint) union.

– For any superforest A and a, b ∈ Σ, InsRoot (A, a) (resp. DelRoot (A, b),
MatchRoot (A, a, b)) denotes the supertree whose root is the vertex (a,−)
(resp. (−, b), (a, b)) and whose children are the supertrees in A, ordered with
the same order that they have in A.
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A = V
∅ ⊕ TI ⊕ TD ⊕ InsRoot (FI ◦ TD )1()

TI = InsRoot (FI) , FI = {empty superforest} ⊕ InsRoot (FI) ◦ FI (2)

TD = DelRoot (FD) , FD = {empty superforest} ⊕ DelRoot (FD) ◦ FD (3)

V
∅ = V

↑ ⊕ InsRoot (VH )4()

V
↑ = MatchRoot (HID,∅,∅) ⊕ DelRoot

(
FD ◦ V

↑ ◦ FD

)
(5)

VH = FI ◦ VH ⊕ V
∅ ◦ FI ⊕ DelRoot (HID,LR,∅) ◦ FI (6)

For every ν, M, M ′ with ν ∈ {ID,D} and M, M ′ ∈ {∅, LR,R}:

Hν,M,M′ =
⊕

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{empty superforest} if (M, M ′) = (∅,∅)

TI ◦ Hν,M,M′ if ν �= D and if M �= LR
TD ◦ HD,M,M′ if M ′ �= LR

V∅ ◦ H
1,1

M,M′

InsRoot (HID,∅,LR) ◦ H
1,+

M,M′

DelRoot (HD,LR,∅) ◦ H
+,1

M,M′

(7)

For every M, M ′ ∈ {∅, LR,R} and i, j ∈ {1,+}:

H
i,j

M,M′ = HID,α(M),α(M′) ⊕

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FI if M = ∅ and M ′ = R
FI if M = ∅, M ′ = LR and j = +

FD if M = R and M ′ = ∅

FD if M = LR, M ′ = ∅ and i = +

∅ otherwise

(8)

where α(∅) = ∅ and α(LR) = α(R) = R.

Fig. 3. A context-free grammar for A, a representative set of all tree alignments.

– We naturally extend these operators to a set T of supertrees or superforests:
InsRoot (T) =

⊕

A∈T,a∈Σ

InsRoot (A, a), DelRoot (T) =
⊕

A∈T,a∈Σ

DelRoot (A, a),

MatchRoot (T) =
⊕

A∈T,(a,b)∈Σ2

MatchRoot (A, a, b).

Our grammar is described in Fig. 3, and illustrated in Fig. 4. The start symbol
is A and the terminal states are the empty superforests of Eqs. (2), (3), (7).

Theorem 1. The set of supertrees A generated by the grammar (1)–(8) is rep-
resentative of the set of all tree alignments; i.e. A contains exactly one supertree
for each equivalence class of supertrees.

The key ingredient to prove Theorem 1 stems from the following (semantic)
properties for the classes of supertrees and forests that appear in the grammar:

1. Supertrees in TI (resp. TD) contain only insertion (resp. deletion) vertices.
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HID,∅,∅

∗ ∗
� ⊕

V↑

∗

V↑ ∗ ∗∗∗ ∗

� ⊕ ⊕
ε

⊕ ⊕ ⊕

and M �= LR
if M ′ �= LR

∗
HD,M,M′

� ⊕ ⊕

VH VH
∗

HD,LR,∅

∗
∗ ∗

if (M,M ′) = (∅,∅) if ν �= D

∗
Hν,M,M′ V∅ H HD,LR,∅

∗

HID,∅,LR

∗∗
H HHν,M,M ′

V∅ ∗∗

� ⊕
V∅ V↑

∗

VH

� ⊕ ⊕ ⊕
A V∅ ∗ ∗

∗

∗ ∗ ∗

Fig. 4. A schematic illustration of the grammar for tree alignments.

2. FI (resp. FD) is the set of superforests formed by supertrees of TI (resp. TD).
3. For μ ∈ {∅, ↑}, Vμ is representative of the set of alignments A with at least

one match, such that, if μ =↑, then the root of π1(A) is matched.
4. VH is representative of the set of forest alignments A with at least one match,

such that π2(A) is a tree.
5. For ν ∈ {ID,D} and (M,M ′) ∈ {∅, LR,R}2, Hν,M,M ′ is representative of the

set of superforests A such that
– if π1(A) 	= ∅ and ν = D, then the first tree of π1(A) is matched in A;
– if M = R, then the last tree of π1(A) is matched in A (so π1(A) 	= ∅);
– if M ′ = R, then the last tree of π2(A) is matched in A (so π2(A) 	= ∅);
– if M = LR, then the first and last trees in π1(A) are matched in A (so

π1(A) has at least two trees);
– if M ′ = LR, then the first and last trees in π2(A) are matched in A (so

π2(A) has at least two trees).
6. For i, j ∈ {1,+}2, H i,j

M,M ′ is representative of superforests A′ such that
– there exists a superforest A such that A ◦ A′ ∈ HD,M,M ′ ;
– if i = 1 (resp. +), π1(A) is a tree (resp. a forest with at least two trees);
– if j = 1 (resp. +), π2(A) is a tree (resp. a forest with at least two trees).

These properties can be verified recursively through a tedious analysis of the
grammar, and imply quite straightforwardly that A contains one and exactly
one supertree per equivalence class of supertrees.

Remark 1. For sequences alignments, a grammar generating a representative
set of sequence alignments can be easily adapted from the grammar generating
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all sequences over Σa, e.g. by preventing any occurrence of a deletion to imme-
diately precede an insertion. Our grammar for tree alignments is constructed
on the same principle: insertions are preferred to deletions. However, unlike
sequences, the two-dimensional nature of the trees seems to forbid an explicit
characterization of the representative elements, and seems to intrinsically man-
date intricate combinatorial constructs/grammars. Note that our grammar, while
complex, remains amenable to efficient computations (Sect. 4).

4 Applications

4.1 Enumerating Tree Alignments

For the sake of simplicity, we will restrict our attention to |Σ| = 1, i.e. the
alphabet is restricted to a single letter. The general case follows easily, and will
be described in an extended version of the paper.

For a family F of superforests, we define a bivariate ordinary generating
function

F (t, z) =
∑

n≥0, k≥0

fn,k tn zk

where fn,k is the number of superforests in F of size n with k matches.
Using the symbolic method [6], one classically translates the specification

described by Eqs. (1)–(8) into a system of functional equations relating the gen-
erating functions of the sets of supertrees and forests. To that purpose, classes of
objects are replaced by their generating function, disjoint unions (resp. concate-
nations) of two sets of supertrees are replaced by additions (resp. multiplications)
of their generating functions, the addition of a root translates into a multipli-
cation by a monomial tz (resp. t) if the root represents a match (resp. inser-
tion/deletion), and empty superforests and sets translate into 1 and 0 respec-
tively. The grammar is context-free, so the resulting system is algebraic and can
be solved to yield the following characterization result.

Theorem 2. The generating functions T (t, z) and F (t, z) of tree and forest
alignments, whose size and number of matches are marked by t and z respec-
tively, satisfy

T (t, z) =
(

t2 + t − t2z +
t√

1 − 4t

)
F (t, z), (9)

(tzC(t)2−t2C(t)2+2t)F (t, z)2+(t2C(t)4−2tC(t)2−1)F (t, z)+C(t)2 = 0, (10)

where C(t) = (1 − √
1 − 4t)/2t is the generating function of Catalan numbers.

Solving the quadratic Eq. (10) leads to an explicit formula for FA (and hence
TA), details of which are omitted due to space constraints. Nonetheless, these
explicit expressions can be used to compute an asymptotic estimate using a
transfer theorem [6, Cor.VI.1 p. 392].

Theorem 3. The number of tree alignments of size n is asymptotically equiva-
lent to κ × n−3/2 × 6n, where κ =

√
2(3 − √

3)/(24
√

π).
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Corollary 1. The average number of tree alignments for a random pair of trees
of cumulative size n is κ′ × 1.5n, where κ′ =

√
2(3 − √

3)/6.

Similar techniques can be used to characterize the distribution of the
number of matches in a random tree alignment. A direct application of
[6, Theorem 9.12 p. 676] indeed gives the following.

Proposition 2. Let mn be the random variable that counts the number of
matches in a uniformly-drawn random tree alignment. The variable mn follows
a Normal law of mean E(mn) ∼ n/6 and variance V(mn) ∼ n/6.

4.2 Sampling Alignments Between Two Given Trees

We now consider two fixed trees S and T , and consider the task of sampling
a tree alignment A such that π1(A) = S and π2(A) = T , with respect to the
Gibbs-Boltzmann probability distribution. This can be used to assess the sta-
bility of a prediction. We refer the interested reader to our introduction for
examples of further motivation and possible applications.

Preliminaries. Let TS,T be the set of all supertrees A such that π1(A) = S and
π2(A) = T , and AS,T be a representative set of TS,T . In other words, AS,T can
be interpreted as the set of all alignments between S and T . For any supertree
A ∈ TS,T , we define its edit score s(A) as the sum of the number of insertions,
deletions and mismatches (that is, matches (x, y) such that x 	= y).2

For a given positive constant kθ, the partition function ZS,T of AS,T and the
Gibbs-Boltzmann probability Pr(A) of an alignment A ∈ AS,T are defined as

ZS,T =
∑

A∈AS,T

e−s(A)/kθ, Pr(A) =
e−s(A)/kθ

ZS,T
.

When kθ tends to 0, this distribution tends to the uniform distribution over
supertrees of minimum edit score, while, when kθ tends to +∞, it tends toward
the uniform distribution over AS,T .

We consider the following problem: given two trees S and T , and a posi-
tive constant kθ, design a sampling algorithm for alignments between S and T
under the Gibbs-Boltzmann probability distribution. This problem generalizes
the classic combinatorial optimization problem of computing a tree alignment
between S and T having minimum edit score.

To address this problem, we rely on dynamic programming, by the approach
described, among others, in [11] for RNA folding. We begin by adapting the
grammar introduced in Sect. 3 into a grammar for AS,T , then detail how this
grammar leads to an efficient sampling algorithm.

2 The present results can be trivially extended to any edit scoring system that is a
positive linear combination of the numbers of insertions, deletions and matches.
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A grammar for AS,T . In order to guarantee that each supertree A indeed aligns
two input trees S and T (namely π1(A) = S and π2(A) = T ), we need to restrict
which rules in the grammar can be used, conditionally to which trees and forests
are currently being generated. To that purpose, we introduce, for each set S in
the previous grammar, an indexed version S[u,v] which denotes the restriction of
S to alignments between u and v two forests in S and T .

Slightly abusing previous notations, we denote by a(u) the tree whose root
is a vertex a and whose (forest of) children is u. Finally, for every tree/forest X,
Ins(X) (resp. Del(X)) represents the supertree/superforest obtained from X by
inserting (resp. deleting) each of its elements. If X is empty, Ins(X) and Del(X)
denote the empty superforest. The grammar for AS,T is described in Fig. 5.

Theorem 4. Let S and T be non-empty trees. The set of supertrees AS,T gener-
ated by grammar (11)–(18) is representative of TS,T the tree alignments between
S and T .

Applications to dynamic programming. The grammar defined by Eqs. (11)–(18)
is a decomposition scheme for the alignments between S and T . It can easily be
transformed into an algorithm for computing the partition function ZS,T . Indeed,
ZS,T is simply a weighted sum over all possible supertrees of AS,T , which is a
set generated by the grammar. Now consider the image of the grammar as a set
of numerical equations, obtained by syntactically replacing:

– The operators (⊕, ◦) with (
∑

,×) respectively;
– The empty set ∅ with 0;
– Inserted/Deleted trees/forests Ins(X) and Del(X) with e−|X|/kθ,
– Match MatchRoot (V, a, a) events with V , ∀a ∈ Σ and any expression V ;
– Insertion InsRoot (V, a) events, deletion DelRoot (V, a) events, and mismatch

MatchRoot (V, a, b) events with e−1/kθ × V , ∀a 	= b ∈ Σ and any V .

Theorem 4 immediately implies that the resulting set is a dynamic programming
scheme that computes ZS,T instead of AS,T .

Moreover, each non-terminal term of the modified grammar now contains the
partition function of the set of supertrees associated to this non-terminal term
in the set-theoretic grammar, e.g. a term VH[a(u) ◦ X, b(v)]. This information
can then be used to define an algorithm to sample supertrees from AS,T under
the Gibbs-Boltzmann distribution, following the recursive method for random
generation [16].

To do so, it suffices to reinterpret the grammar defined by Eqs. (11)–(18) as
a branching process: each ⊕ operator is replaced by a branching operator that,
instead of joining sets of supertrees into a larger set of supertrees, chooses one of
the sets according to the weight of its partition function. For instance, assume
we have a grammar rule U = V ⊕ W : the sampling algorithm will select one
of the sets V,W , with V being chosen with probability ZV /(ZV + ZW ), and W
with probability ZW /(ZV + ZW ), provided that ZV , ZW and ZX have been
previously computed. Recursive calls will then result into a supertree, which is
provably randomly generated under the Gibbs-Boltzmann distribution.
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Fig. 5. A grammar for AS,T , a representative set of all tree alignments between two
fixed trees S and T .

Theorem 5. Let S and T be two trees of respective sizes nS and nT . The above-
defined branching process adapted from grammar (11)–(18) defines an algorithm
that samples a supertree from AS,T under the Gibbs-Boltzmann distribution. The
worst-case time and space complexities of the algorithm are in O(nS nT (nS +
nT )2), while the average-case time and space complexities are in O(nS nT ).

The correctness of the algorithm immediately follows from Theorem 4. Its
complexities are identical to [7,10] since the structure of the DP scheme
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essentially remains the same; only the number of DP tables is increased (by
a constant factor). This implies that our algorithm, while solving a much more
general problem, retains the same asymptotic complexity (up to constants) than
the current tree alignment algorithms that are limited to computing a single
optimal tree alignment.

5 Conclusion and Discussion

Following a classical line of research in string algorithms, we introduced the
notion of equivalence for tree alignments, and described a context-free grammar
for a representative set of all possible alignments. We also showed how this
grammar can be used to derive asymptotic properties of alignments, and design
an efficient dynamic programming sampling algorithm for alignments between
two given trees.

From an applied point of view, our results allow to sample optimal, as well as
suboptimal, tree alignments for a pair of given trees under the Gibbs-Boltzmann
distribution; following the program outlined in [11], we are currently using this
algorithm to revisit the alignment of RNA structures.

Our proposed grammar for tree alignments is more complex than the gram-
mars used to generate a representative set of sequence alignments, although
dynamic programming for computing optimal sequences and trees alignments
are very similar. This is due to the fact that it is particularly hard to charac-
terize a representative set of tree alignments (see Remark 1). It thus remains
an open problem to design a representative set of tree alignment that would be
amenable to enumeration using a simpler grammar. However, it is important to
remark that, despite its apparent complexity, our grammar leads to algorithms
with an asymptotic complexity of the same order than existing optimization
algorithms.

From a theoretical point of view, we believe that tree alignments as defined
in this work form an interesting combinatorial family whose properties deserve
to be explored in depth. More generally, it would be interesting to characterize
the conditions under which an instance-agnostic grammar, enumerating a search
space, could be adapted into a decomposition for a specific instance. Such a the-
ory, at the confluence of enumerative combinatorics and algorithmic design, could
provide another principled ways to design dynamic-programming algorithms.
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Abstract. Ligand-protein docking is an optimization problem based
on predicting the position of a ligand with the lowest binding energy
in the active site of the receptor. Molecular docking problems are tra-
ditionally tackled with single-objective, as well as with multi-objective
approaches, to minimize the binding energy. In this paper, we propose a
novel multi-objective formulation that considers: the Root Mean Square
Deviation (RMSD) difference in the coordinates of ligands and the bind-
ing (intermolecular) energy, as two objectives to evaluate the quality of
the ligand-protein interactions. To determine the kind of Pareto front
approximations that can be obtained, we have selected a set of represen-
tative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and
MOEA/D. Their performances have been assessed by applying two main
quality indicators intended to measure convergence and diversity of the
fronts. In addition, a comparison with LGA, a reference single-objective
evolutionary algorithm for molecular docking (AutoDock) is carried out.
In general, SMPSO shows the best overall results in terms of energy and
RMSD (value lower than 2Å for successful docking results). This new
multi-objective approach shows an improvement over the ligand-protein
docking predictions that could be promising in in silico docking stud-
ies to select new anticancer compounds for therapeutic targets that are
multidrug resistant.

Keywords: Molecular docking · Multi-objective optimization · Nature
inspired metaheuristics · Algorithm comparison

1 Introduction

Ligand-protein docking is an optimization problem which aims at predicting the
position of a small molecule (ligand) to a receptor (macromolecule) with the goal
of finding the ligand position to the receptor with a minimum binding energy.
Molecular docking problem has been tackled with single-objective algorithms,
to minimize the binding energy [11], as well as with multi-objective approaches,
to minimize the intermolecular energy Einter (energy interaction between lig-
and and the target) and the intramolecular energy Eintra (the internal energy
compound) [4].
c© Springer International Publishing Switzerland 2016
M. Botón-Fernández et al. (Eds.): AlCoB 2016, LNBI 9702, pp. 65–77, 2016.
DOI: 10.1007/978-3-319-38827-4 6
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In this regard, a number of studies based on the application of multi-objective
algorithms to the ligand-protein docking have been proposed. A first attempt
was carried out in 2006 by Oduguwa et al. [15], in which three evolutionary
multi-objective algorithms (NSGA-II, PAES, and SPEA) were applied to eval-
uate three objectives such as the Einter, Eintra and shape complementarities
on three molecular complexes. Grosdidier et al. [5] proposed a new hybrid evo-
lutionary algorithm called EADock that optimizes two different energy score
functions that evaluate the Einter, Eintra and the solvation free energy. In 2008,
Janson et al. [7] designed a parallel multi-objective algorithm using AutoDock
3.05 energy function, called ClustMPSO, minimizing as objectives the Einter and
Eintra when dealing with six molecular complexes. In the same year, Boisson
et al. [1] implemented a parallel evolutionary bi-objective model based on opti-
mizing two objectives: the sum of Einter and Eintra and a surface term for the
docking of six instances. Sandoval-Perez et al. [16] used the implementation of
NSGA-II provided by the jMetal framework to optimize bound and non-bound
energy terms of ligand/receptor as objectives applied to four docking instances.
Gu et al. [6] developed a new multi-objective approach based on optimizing the
solutions generated by an aggregated scoring function that includes terms from
force-field, empirical and knowledge-based scoring functions.

In all these previous publications, a series of different multi-objectives formu-
lations have been proposed that focus on energy scoring function. However, they
do not consider guiding the search with a new objective when the co-crystallized
ligand is known, which could complement the traditional energy function.

With this motivation, we propose in this work a novel multi-objective app-
roach consisting minimizing: (1) the binding energy (the unbound and bound
energy terms of the ligand/receptor complex), and (2) the Root-Mean-Square-
Deviation (RMSD) score, when the co-crystallized ligand pose is known. These
two main objectives have been used to evaluate the quality of the ligand-protein
interactions. With this aim, we compare and analyze the performance of four
multi-objective metaheuristics when solving 11 flexible ligand-receptor docking
complexes taken from the AutoDock 4.2 benchmark [12]. This dataset includes
flexible ligands with different sizes and flexible side-chains of HIV-protease recep-
tors for more realistic results. The algorithms used in this study are: Nondom-
inated Sorting Genetic Algorithm II (NSGA-II) [2], Speed Modulation Multi-
Objective Particle Swarm Optimization (SMPSO) [13], Third Evolution Step
of Generalized Differential Evolution (GDE3) [8], and Multi-Objective Evolu-
tionary Algorithm Based on Decomposition (MOEA/D) [18]. These algorithms
constitute a varied set of evolutionary and difference-vector multi-objective tech-
niques representative of the state of the art, performing different learning pro-
cedures and inducing different behaviors in terms of convergence and diversity.

This paper is organized as follows: Sect. 2 describes the molecular dock-
ing problem from a multi-objective formulation. Studied algorithms are briefly
described in Sect. 3. Section 4 reports the experimentation methodology and
Sect. 5 analyzes the results obtained. Finally, Sect. 6 contains concluding remarks
and future lines of research.
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2 The Problem: Multi-objective Docking

A multi-objective optimization problem is characterized by two spaces: the deci-
sion and the objective spaces. The former involves all the possible feasible solu-
tions, and the latter includes their corresponding objective values.

Decision space. The main objective in the molecular docking problem is to find
an optimized conformation between the ligand (L) and the receptor (R) that
results in the lowest binding energy. The ligand-receptor interaction is evaluated
by an energy function calculated through three components representing degrees
of freedom: (1) the translation of the ligand molecule, involving the three axis
values (x, y, z) in cartesian coordinate space; (2) the ligand orientation, modeled
as a four variables quaternion including the angle slope (θ); and (3) the flexibil-
ities, represented by the free rotation of torsion (dihedral angles) of the ligand
and sidechains of the receptor. Each problem solution for AutoDock and jMetal
(the tools we have used) is encoded by a real-value vector of 7 + n variables,
in which the first three values correspond to the ligand translation, the next
four values correspond to the ligand and/or macromolecule orientation, and the
remaining n values are the ligand torsion dihedral angles. Furthermore, in order
to allow a rapid evaluation of the energy conformations, a grid-based method-
ology is implemented. The energy interaction is calculated and assigned to each
grid point and is evaluated to obtain the energy of a given ligand pose [12].

Objective space. Our bi-objective formulation consists of: the Einter and the
RMSD score. The Einter is the energy function as used in Autodock, that is
calculated as follows:

Einter = QR−L
bound + QR−L

unbound (1)

QR−L
bound and QR−L

bound are the states of bound and unbound of the ligand-receptor
complex, respectively.

Q = Wvdw

∑

i,j

(
Aij

r12ij

− Bij

r6ij
) + Whbond

∑

i,j

E(t)

(
Cij

r12ij

− Dij

r10ij

)

+ Welec

∑

i,j

qiqj

ε(rij)rij
+ Wsol

∑

i,j

(SiVj + SjVi)e(−r2
ij/2σ2) (2)

Each pair of energetic evaluation terms includes evaluations (Q) of disper-
sion/repulsion (vdw), hydrogen bonds (hbond), electrostatics (elec) and desolva-
tion (sol). Weights Wvdw, Whbond, Wconf , Welec, and Wsol of Eq. 2 are constants
for Van der Waals, hydrogen bonds, torsional forces, electrostatic interactions
and desolvation, respectively. rij represents the interatomic distance, Aij and
Bij in the first term are Lennard-Jones parameters taken from the Amber force
field. Similarly, Cij and Dij in the second term are Lennard-Jones parameters
for maximum well depth of potential energies between two atoms, and E(t)
represents the angle-dependent directionality. The third term uses a Coulomb
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approach for electrostatics. Finally, the fourth term is calculated from the vol-
ume (V ) of the atoms that are surrounding a given atom weighted by S, and an
exponential term which involves atom distances. An extended explanation of all
these variables can be found in [12].

The RMSD is a measure of similarity between the real ligand position in
the receptor and the computed position of the docking ligand, that takes into
account symmetry, partial symmetry (e.g. symmetry within a rotatable branch)
and near-symmetry in a simple heuristic way. Ideally, the lower RMSD score the
better solution is. A ligand-receptor docking solution with a RMSD score below
2Å is considered as a solution with high docking accuracy. It is worth noting
that other docking solutions can be returned with higher RMSD scores and low
values of Einter, indicating that other possible interaction ligand sites should be
considered. The RMSD score for two identical structures a and b is defined as
follows:

RMSDab = max(RMSD
′
ab, RMSD

′
ba), with RMSD

′
ab =

√
1
N

∑

i

min
j

rij
2

(3)
The sum is over all N heavy atoms in structure a, the minimum is over all

atoms in structure a with the same element type as atom i in structure b.

3 Algorithms

We have included in our study four algorithms which are representative of the
state-of-the-art in the multi-objective optimization field. A brief description of
each one of them is given next:

NSGA-II: NSGA-II [2] is a generational genetic algorithm, which uses the
typical genetic operators (selection, crossover and mutation) to obtain new indi-
viduals from the original population. To promote convergence, a non-dominated
sorting procedure based on Pareto ranking is used, while the crowding distance
density estimator is applied to foster the diversity of the set of found solutions.

GDE3: The Generalized Differential Evolution (GDE) algorithm [8] is based on
NSGA-II, but the genetic mutation and selection operators are replaced by their
differential evolution counterparts. Furthermore, GDE3 modifies the crowding
distance of NSGA-II as well to generate a better distributed set of solutions.

SMPSO: SMPSO [13] is a multi-objective particle swarm optimization algo-
rithm. Its main feature is the limitation of the particle speed to allow new effec-
tive particle positions to be produced when the speed becomes too high. SMPSO
uses the polynomial mutation as the turbulence factor and an external archive
that stores the non-dominated solutions found during the search.
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MOEA/D: MOEA/D [18] has become the typical representative
decomposition-based multi-objective algorithm, where a multi-objective prob-
lem is decomposed into a set of single-objective subproblems that then optimized
simultaneously. In this study we have used the variant MOEA/D-DE [9], which
applies differential evolution as variation operators. This algorithm also applies
a polynomial mutation operator to improve its search capability.

In short, we have selected the most widely used algorithm in the field (NSGA-
II), a solver based in differential evolution (GDE3), a PSO (SMPSO) and an
algorithm based on decomposition (MOEA/D).

4 Experimentation

In this section, we include the selected benchmark problems, the experimentation
methodology we have followed, and the parameter settings of the algorithms.

4.1 Benchmark Problems

In this study, we have selected a benchmark composed of 11 complexes having
receptor and ligand flexibility. The selection of these complexes has been moti-
vated as they are actually difficult docking problems containing a wide range of
ligand sizes (from small to large inhibitors). The receptors of these complexes have
a tunnel-shaped active site that wraps around a peptidomimetic inhibitor [12]. The
receptor is a dimer whose subunits are bridged by an arginine-aspartate salt bridge
at the end of the tunnel. The docking studies performed with these instances in [12]
to test the energy function of AutoDock 4.2 demonstrated that the most difficult
problems are thosewhich involve smaller ligands.This is due to theflexibility added
to the receptor side-chains (ARG-8) that increases the space of ligand interaction.
These instances have been taken from thePDBdatabase1 and they have been prop-
erly prepared for the docking simulations.‘

Table 1 summarizes the set of problems selected showing the PDB accession
code, the X-ray crystal structures names and the structure resolution (Å). For
all instances, the torsional degrees of freedom (flexibility) for ligands and macro-
molecules are 10 and 6, respectively, selecting those torsions that allow the fewest
number of atoms to move around the ligand core. Therefore, the total number
of solution variables (n) is 23 (3 for translation, 4 for rotation quaternion, and
16 for torsional degrees).

4.2 Methodology

For this work, we have carried out a thorough experimentation consisting in per-
forming 30 independent runs for each combination of algorithm and molecular
instance. From these executions, we have calculated the median and interquar-
tile range (IQR) as measures of central tendency and statistical dispersion,

1 In URL: http://www.rcsb.org/pdb/home/home.do.

http://www.rcsb.org/pdb/home/home.do
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Table 1. The accession codes, the X-ray crystal structure and resolution taken from
PDB database are presented.

PDB Code Protein-ligand complexes Resolution (Å)

1AJV HIV-1 protease/AHA006 2.00

1AJX HIV-1 protease/AHA001 2.00

1BV9 HIV-1 protease/α-D-glucose 2.20

1D4K HIV-1 protease/Macrocyclic peptidomimetic inhibitor 8 1.85

1G2K HIV-1 protease/AHA047 1.95

1HIV HIV-1 protease/U75875 2.00

1HPX HIV-1 protease/KNI-272 2.00

1HTF HIV-1 protease/GR126045 2.20

1HTG HIV-1 protease/GR137615 2.00

1HVH HIV-1 protease/Q8261 1.80

2UPJ HIV-1 protease/U100313 3.00

respectively. We have considered two quality indicators to assess the algo-
rithm performance: Hypervolume (IHV ) and Unary Additive Epsilon Indicator
(Iε+) [3]. The first indicator takes into account both convergence and diversity,
whereas the second one (Iε+) gives a measure of the convergence degree of the
obtained Pareto front approximations. In this sense, it is worth noting that we
are dealing with a real-world optimization problem, and therefore the true Pareto
fronts to calculate these two metrics are not known. To cope with this issue, we
have generated a reference Pareto front for each instance by combining all the
non-dominated solutions computed in all the executions of all the algorithms.

As mentioned, we have used the implementation of the four algorithms stud-
ied provided in the jMetalCpp framework [10] in combination with AutoDock 4.2
to evaluate the new generated solutions. To cope with the high computational
requirements needed by carry out our experiments, we have used the Condor2

system, a middleware platform managing close to 400 cores that acts as a dis-
tributed task scheduler (each task dealing with one independent run).

4.3 Parameter Setup

The selected algorithms have been configured with a population size of 150
individuals (particles in the case of SMPSO). The stopping condition has been
set to compute a number of 1,500,000 function evaluations. These values were
chosen because they are the default settings used by AutoDock and they have
been used in other studies [14].

Each algorithm has been configured using the parameter setup recommended
in the research study where it was proposed, and these parameters are used as

2 In URL: http://research.cs.wisc.edu/htcondor/.

http://research.cs.wisc.edu/htcondor/
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default in the jMetal framework. In particular, SBX crossover and polynomial
mutation are the variation operators used in NSGA-II. The distribution indexes
for both operators are ηc = 20 for crossover, and ηm = 20 for mutation. The
crossover probability is pc = 0.9 and the mutation probability is pm = 1/n,
being n the number of decision variables of the tackled problem. NSGA-II applies
binary tournament selection. In the case of GDE3 (variant rand/1/bin), the two
DE control parameters μ and Cr take a value of 0.5, whereas in MOEA/D μ is
set to 0.5 and Cr is set to 1.0. Both MOEA/D and SMPSO use the polynomial
mutation with the same settings applied in NSGA-II. In SMPSO, the acceleration
coefficients ϕ1 and ϕ2 are set to 1.5, the inertia weight is W = 0.9, and the
polynomial mutation is applied to one sixth of the particles in the swarm.

5 Results

This section is devoted to presenting and analyzing the results obtained in our
study. We start by assessing the performance of the algorithms and then they
are compared with the values of a single-objective approach.

5.1 Performance Comparisons

We start our analysis by discussing the results yielded by applying the IHV indi-
cator. Let us remind that this indicator is the sum of the contributed volume of
each point of a front in respect to a reference point, and the higher the conver-
gence and diversity degrees of a front, the higher its IHV value. Table 2 shows the
median and interquartile range of the computed solutions for IHV quality indica-
tors for the set of 11 docking instances and the four algorithms being compared.
According to these results, SMPSO achieves the best IHV values in all the eleven
considered problems and MOEA/D is the second best performing technique. We
have to note that many cells have a IHV value equal to zero; this happens when
all the points of the produced fronts are beyond the limits of the reference point.
This happens in most of the problems in all the algorithms excepting SMPSO,
which indicates we are facing a very hard optimization problem.

Table 2. Median and interquartile range of IHV for each algorithm and instance. Best
and second best median results have dark and light gray backgrounds, respectively.

NSGAII SMPSO GDE3 MOEAD
1AJV 0.00e + 000.0e+00 3.51e − 014.0e−02 0.00e + 000.0e+00 0.00e + 002.9e−01
1AJX 0.00e + 000.0e+00 5.52e − 012.0e−02 0.00e + 000.0e+00 7.47e − 036.8e−01
1D4K 0.00e + 000.0e+00 4.93e − 011.3e−01 0.00e + 000.0e+00 0.00e + 000.0e+00
1G2K 0.00e + 000.0e+00 3.32e − 013.3e−02 0.00e + 000.0e+00 0.00e + 004.1e−01
1HIV 0.00e + 000.0e+00 5.96e − 011.3e−01 0.00e + 000.0e+00 0.00e + 000.0e+00
1HPX 0.00e + 000.0e+00 2.04e − 011.8e−01 1.27e − 016.5e−01 0.00e + 001.1e−01
1HTF 0.00e + 000.0e+00 5.26e − 021.3e−01 0.00e + 004.6e−03 2.78e − 023.3e−01
1HTG 0.00e + 000.0e+00 3.51e − 025.6e−02 0.00e + 000.0e+00 0.00e + 001.9e−01
1HVH 0.00e + 000.0e+00 7.67e − 013.7e−02 0.00e + 000.0e+00 5.31e − 017.7e−01
1VB9 0.00e + 000.0e+00 7.34e − 016.5e−02 0.00e + 000.0e+00 0.00e + 001.4e−01
2UPJ 0.00e + 000.0e+00 5.86e − 019.8e−02 0.00e + 000.0e+00 1.90e − 015.8e−01
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Table 3. Median and interquartile range of Iε+ for each algorithm and instance. Best
and second best median results have dark and light gray backgrounds, respectively.

NSGAII SMPSO GDE3 MOEAD
1AJV 5.23e + 001.2e+00 5.60e − 019.8e−02 5.00e + 001.0e+00 3.87e + 004.4e+00
1AJX 3.43e + 002.4e+00 2.61e − 017.2e−02 1.49e + 003.3e−01 1.01e + 002.0e+00
1D4K 8.06e + 002.7e+00 4.56e − 011.4e−01 8.56e + 005.7e−01 4.65e + 002.8e+00
1G2K 4.28e + 001.4e+00 5.71e − 011.2e−01 3.93e + 001.3e+00 2.69e + 003.6e+00
1HIV 5.12e + 001.2e+00 2.63e − 012.1e−01 4.69e + 001.4e+00 4.07e + 001.6e+00
1HPX 1.42e + 013.6e+00 6.32e − 012.8e−01 6.71e − 011.1e+01 1.03e + 011.3e+01
1HTF 1.76e + 005.5e−01 9.30e − 013.0e−01 1.13e + 008.0e−01 7.94e − 019.2e−01
1HTG 7.48e + 007.1e−01 9.63e − 016.6e−02 6.82e + 008.7e−01 5.03e + 006.4e+00
1HVH 5.94e + 001.5e+00 1.34e − 012.7e−02 4.93e + 001.7e+00 4.16e − 012.1e+00
1VB9 8.59e + 002.4e+00 1.33e − 015.6e−02 7.85e + 001.3e+00 7.04e + 004.9e+00
2UPJ 3.42e + 002.4e+00 3.03e − 016.6e−02 3.56e + 001.1e+00 7.64e − 012.7e+00

Table 4. Average Friedman’s rankings with Holm’s Adjusted p-values (α = 0.05) of
compared algorithms (SMPSO, GDE3, MOEA/D, and NSGA-II) for the test set of
11 docking instances. Symbol * indicates the control algorithm and column at right
contains the overall ranking of positions with regards to IHV and Iε+.

Hypervolume (HV) Epsilon (Iε+)

Algorithm FriRank HolmAp Algorithm FriRank HolmAp

*SMPSO 1.02 - *SMPSO 1.09 -

MOEA/D 2.68 2.24e-03 MOEA/D 2.00 9.87e-02

GDE3 3.09 1.45e-04 GDE3 3.09 2.79e-04

NSGA-II 3.22 5.21e-05 NSGA-II 3.81 7.25e-07

A similar behavior can be observed in Table 3 with regards to Iε+, which is
a convergence measure. According to these results, SMPSO obtains the best Iε+

values in ten out of the eleven problems, while MOEA/D gets the best value in
one problem (1HTF) and the second best in all of them but 1HPX.

In order to provide these results with statistical meaning (in this study
α = 0.05), non-parametric statistical tests have been applied because in sev-
eral cases the distributions of results did not follow the conditions of normal-
ity and homoscedasticity [17]. Therefore, the analyses and comparisons focus
on the entire distribution of each of the two metrics studied. Specifically, we
have applied Friedman’s ranking and Holm’s post-hoc multicompare tests [17]
to know which algorithms are statistically worse than the control one (with the
best ranking).

In this regard, as shown in Table 4, SMPSO is the best ranked technique
according to IHV (with a value of 1.02), followed by MOEA/D, GDE3, and
NSGA-II. Therefore, SMPSO is established as the control algorithm for IHV in
the post-hoc Holm test, which is compared with the remaining algorithms. The
adjusted p-values (HolmAp in Table 4) resulting from these comparisons are, for
the last three algorithms (MOEA/D, GDE3, and NSGA-II), lower than the con-
fidence level, meaning that SMPSO is statistically better than these algorithms.
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Fig. 1. Reference front contributions of docking instances 1D4K and 1HIV. SMPSO
and MOEA/D contribute with practically all the solutions of the reference fronts.

In the case of Iε+, SMPSO is better ranked than the remaining compared algo-
rithms, although without statistical differences in the case of MOEA/D. SMPSO
is statistically better than GDE3 and NSGA-II.

In summary, SMPSO shows the overall best balance for the two quality indi-
cators, followed by MOEA/D. These results are graphically supported by two
examples included in Fig. 1, where the reference fronts obtained for two repre-
sentative instances 1D4K and 1HIV are plotted. In these graphs, the contribu-
tions, in terms of solutions, of each algorithm to the global reference front are
plotted with different points and colors. As it is easily observable, SMPSO and
MOEA/D contribute with almost all solutions taking part to the reference front.
Interestingly, SMPSO converges to the region biased towards the RMSD objec-
tive, whereas MOEA/D generate non-dominated solutions in a different region
to the ones of SMPSO, thereby giving cue to the energy optimization. We can
state that the specific learning procedures induced by SMPSO and MOEA/D
lead these algorithms to search in different regions of the problem landscape,
hence generating solutions in complementary parts of the reference front.
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Table 5. Best RMSD scores (Å) calculated from all SMPSO solutions in comparison
with the best RMSD values of LGA single-objective solutions.

1AJV 1AJX 1BV9 1D4K 1G2K 1HIV 1HPX 1HTF 1HTG 1HVH 2UPJ
SMPSO 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.03 0.00 0.11 0.03
LGA 5.23 5.12 4.46 4.46 4.46 6.47 6.09 3.89 0.38 6.71 4.55

Fig. 2. Set of non-dominated solutions obtained by SMPSO with regards to those
by LGA, for instance 1HTF. Corresponding ligand conformation structures (captured
from AutoDock) of two representative solutions are shown at right side.

5.2 Comparison Single Versus Multi-objective

After the performance comparison of multi-objective algorithms, we are now
interested in knowing how competitive their solutions are against those yielded
by the LGA single-objective technique provided by Autodock 4.2. This way, we
will be able to determine whether our bi-objective formulation has a positive
effect in the search of solutions with the lowest RMSD score, or not. The values
are included in Table 5, in which we can observe that SMPSO outperforms LGA
in all the instance problems with large and small ligands.

With the multi-objective approach proposed here, SMPSO is able to return
better results (RMSD scores below 2Å) for all the instances, since the optimiza-
tion procedure is actively guided to compute solutions to the real ligand pose.

The use of RMSD as objective to guide the search procedure could be counter-
intuitive, since it would restrict us to work only with molecular structures whose
co-crystallized ligand are known beforehand (experimentally determined). Nev-
ertheless, this new focus is useful in those typical cases in which the active site
of a given therapeutic target mutates and makes it multidrug resistant. There-
fore, new compounds analogous to the reference ligand should be tested to be
considered as new pharmacological candidates.
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Figure 2 shows the non-dominated solutions obtained by SMPSO, for mole-
cule 1HTF. In addition, the two solutions with the best binding energy and
RMSD values obtained by LGA are also plotted. In order to visualize the com-
puted ligand docked to the active site of the HIV-protease receptor, we have
selected two solutions with the best RMSD values. The best RMSD solutions
for the LGA and the SMPSO are 3.89Å and 0.39Å with binding energies of
−5.99 kcal/mol and −18.04 kcal/mol, respectively. As Fig. 2 shows, the ligand
computed by the SMPSO is docked to the active site of the receptor with a
better pose than the LGA computed ligand that is partially inside.

6 Conclusions

In this paper, we propose a novel multi-objective formulation of the molecular
docking problem, where the RMSD and binding energy are the goals to optimize.
This new approach has been incorporated in four multi-objective algorithms:
NSGA-II, SMPSO, GDE3 and MOEA/D. A heterogenous set of 11 protein-
ligand complexes with flexible ligands and receptors were selected in order to
carry out the experiments. The main conclusions can be outlined as follows:

1. Using a multi-objective approach to solve the molecular docking could lead
to a broad set of solutions, which can be selected according to the weight of
the RMSD and binding energy, instead of only focusing on energy values.

2. SMPSO provides the best overall performance according to the two quality
indicators used, and for the studied molecular instances.

3. For all studied molecular instances, SMPSO converges to the region biased
towards the RMSD, whereas MOEA/D generates its fronts of non-dominated
solutions in a different region, thereby giving cue to energy optimization.

4. According to the single-objective (AutoDock 4.2) fitness function, SMPSO
algorithm find, in most of the cases, better solutions than the ones obtained by
LGA. This is a noticeable result since SMPSO is a general purpose optimiza-
tion technique, while LGA is specifically adapted to deal with the molecular
docking problem.

5. The use of RMSD as objective to guide the search is useful in those typical
cases in which the active site of a given therapeutic target mutates and makes
it multi-drug resistant.

As future work, the most natural extension would be to design a hybrid algo-
rithm combining search procedures from both SMPSO and MOEA/D algorithms
in order to get solutions covering the full Pareto front. To test this, a greater
number of molecular instances could be used and the solutions obtained could
be studied from a more biological point of view.
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Montes, J.F.: Solving molecular docking problems with multi-objective metaheuris-
tics. Molecules 20(6), 10154–10183 (2015)

5. Grosdidier, A., Zoete, V., Michielin, O.: EADock: docking of small molecules
into protein active sites with a multiobjective evolutionary optimization. Proteins
67(4), 1010–1025 (2007)

6. Gu, J., Yang, X., Kang, L., Wu, J., Wang, X.: MoDock: a multi-objective strategy
improves the accuracy for molecular docking. Algorithms Mol. Biol. 10, 8 (2015)

7. Janson, S., Merkle, D., Middendorf, M.: Molecular docking with multi-objective
particle swarm optimization. Appl. Soft Comput. 8(1), 666–675 (2008)

8. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized dif-
ferential evolution. In: The 2005 IEEE Congress on Evolutionary Computation,
vol. 1, pp. 443–450 (2005)

9. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 229–242 (2009)
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Abstract. The interaction of two RNA molecules involves a complex
interplay between folding and binding that warranted the development
of RNA-RNA interaction algorithms. However, these algorithms do not
handle more than two RNAs. We note our recent successful formula-
tion for the multiple (more than two) RNA interaction problem based
on a combinatorial optimization called Pegs and Rubber Bands. Even
then, however, the optimal solution obtained does not necessarily corre-
spond to the actual biological structure. Moreover, a structure produced
by interacting RNAs may not be unique to start with. Multiple solu-
tions (thus sub-optimal ones) are needed. Here, a sampling approach
that extends our previous formulation for multiple RNA interaction is
developed. By clustering the sampled solutions, we are able to reveal
representatives that correspond to realistic structures. Specifically, our
results on the U2-U6 complex and its introns in the spliceosome of yeast,
and the CopA-CopT complex in E. Coli are consistent with published
biological structures.

Keywords: Multiple RNA interaction · RNA structure · Gibbs
sampling · Metropolis-Hastings algorithm · Clustering

1 Introduction

The role of interaction between two or more RNA molecules has been increasingly
recognized in regulatory mechanisms, including gene expression, methylation, and
splicing. Pairwise interaction has been noted for regulating gene expression, e.g.
when one RNA binds to the ribosome binding site of another mRNA, thus block-
ing its translation to protein [18]. Typical scenarios of multiple RNA interaction
involve the interaction of multiple small nucleolar RNAs (snoRNAs) with riboso-
mal RNAs (rRNAs) in guiding the methylation of the rRNAs [24], and multiple
small nuclear RNAs (snRNA) with mRNAs in the splicing of introns [34].

The prediction of structures resulting from pairwise interactions is now some-
what understood, due to successful efforts in generalizing the partition function
of a single RNA to the case of two.
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Algorithms for pairwise interaction of RNAs can be found in [3,7,8,15,19,
24,25,29,31,32]. However, when carried over to multiple RNAs (more than two),
generalizing the partition function further does not necessarily lead to efficient
algorithms for computing it. Consequently, structure prediction in the context
of multiple RNAs was almost non-existent; with just a few attempts that lack
the ability to produce realistic structures. The de facto approach for multiple
RNAs has been to account for their interaction by concatenating the RNAs
into a single long RNA, which is then folded in order to predict the structure
[4,10]. On the one hand, this presents a challenge to existing folding algorithms,
which are far less reliable when the RNA is too long. On the other hand, most
folding algorithms prevent the formation of pseudoknots due to their increased
computational complexity. While pseudoknots are rare in folded structures, they
translate into kissing loops when spanning multiple RNAs, which are quite fre-
quent in interacting RNA structures. There are a few attempts for introducing
kissing loops into the concatenation model, e.g. [6], but advances in pairwise
interaction algorithms based on the generalized partition function suggest that
the latter are more adequate, so they remain the state-of-the-art for two RNAs.

Therefore, a promising approach is to adapt existing pairwise interaction
algorithms to the case of multiple RNAs. This generally leads to a computational
hurdle: when RNAs are treated pairwise, an immediate consequence is the greedy
nature of the algorithm. The best interacting pair of RNAs will dominate the
solution, as in [35,36]. Since the pair of RNAs is required to fully interact, this
will “lock” the interaction pattern of the whole ensemble into a sub-optimal
state; thus preventing the correct structure from presenting itself as a solution.

We have recently proposed in a series of works [1,2,26,28] a mathematical
formulation based on combinatorial optimization that overcomes the issues out-
lined above. The model handles multiple RNAs without having to generalize the
partition function beyond pairs. The resulting algorithms are not based on the
concatenation paradigm, so they allow the formation of kissing loops, as well as
other structures. And while they are still primarily based on an adaptation of
pairwise interaction, they avoid the “locking” problem mentioned earlier.

Even then, obtaining one (optimal) solution for a multiple RNA interac-
tion problem is not completely satisfactory. Many biological factors are hard to
account for computationally. In addition, correct biological structures are often
not unique. Therefore, some realistic solutions are ought to be sub-optimal, which
is what we address here.

2 Preliminaries

2.1 The Model: Pegs and Rubber Bands

We advocate a combinatorial optimization problem called Pegs and Rubber
Bands as a framework for multiple RNA interaction. The link between the two
will be made shortly following a formal description of Pegs and Rubber Bands.

Consider m levels numbered 1 to m with nl pegs in level l numbered 1 to nl.
There is an infinite supply of rubber bands, and a rubber band can be placed
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around pegs in consecutive levels. For instance, we may choose to place a rubber
band around pegs [i1, i2] (i.e., the set of pegs from i1 to i2, where i1 ≤ i2),
in level l, and pegs [j1, j2] in level l + 1. In this case, the rubber band defines
a window with a given weight w(l, i2, j2, u, v), where u = i2 − i1 + 1 and v =
j2 − j1 + 1 represent the lengths of the intervals covered by the window in levels
l and l + 1, respectively (as in Fig. 1). For convenience, we will use w(l, i, j, u, v)
interchangeably to denote both the window and its weight, depending on context.
As such, each window w(l, i, j, u, v) defines two intervals, [i − u + 1, i] in level l
and [j − v + 1, j] in level l + 1. Two windows overlap if any of their intervals
overlap on the same level. In addition, w(l, i, j, u, v) and w(l, i′, j′, u′, v′) overlap
if sgn(i − i′) �= sgn(j − j′) (their rubber bands cross).

Fig. 1. A rubber band around pegs defines a window. The lengths u = i2 − i1 + 1 and
v = j2 − j1 + 1 of the corresponding intervals may be different.

The Pegs and Rubber Bands problem is to maximize the total weight by
placing rubber bands around pegs in such a way that none of their corresponding
windows overlap.

To make the connection with multiple RNA interactions: RNA sequences
become the levels, the ordered pegs in each level represent RNA bases
{A,G,C,U} in the order of occurrence in their sequence, a window w(l, i, j, u, v)
is an interaction between bases [i − u + 1, i] in RNA l and bases [j − v + 1, j] in
RNA l + 1, and the weight w(l, i, j, u, v) is chosen based on the energy of that
interaction. The energies are obtained using a generalized partition function for
pairwise interaction, and account for both intra- and inter- molecular energies.
The no overlap condition reflects a typical nature of RNA interactions, and the
maximization nature of the problem corresponds to energy minimization.

2.2 An Approximation Algorithm

A polynomial time approximation scheme (PTAS) for Pegs and Rubber Bands
based on dynamic programming was described in [2,28], where n = maxl nl.

Theorem 1. Polynomial Time Approximation Scheme (PTAS) Pegs and Rub-
ber Bands is NP-hard; however, for every ε > 0, it admits a polynomial time
algorithm that runs in O(� 1

ε �mn� 1
ε �) time and achieves a total weight within a

(1 − ε)-factor of optimal.

The mapping of RNAs to levels can be obtained as in [2,28]. Figure 2 shows
an example of a structure predicted using the Pegs and Rubber Bands formula-
tion as reported in [2,28], where windows are replaced by bonds between their
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I1 3’ UGUAUG 5’

||||

U6 5’ AUAC...GAUU...GUGAAGCGU 3’

|||| |||||||||

U2 3’ UAUGAU...CUAG...CACUUCGCA 5’

|||||

I2 5’ UACUAAC 3’

Fig. 2. Multiple RNA interaction within the eukaryotic spliceosome, a large ribonu-
cleoprotein assembly responsible for the excision of intervening sequences in precursor
messenger (pre-mRNA) molecules. Showing is the spliceosomal U2-U6 small nuclear
(snRNA) and introns I1 and I2. The resulting structure is consistent with biological
experiments [34,38].

corresponding intervals. The formulation avoids the “locking” problem, since
treating the RNAs pairwise would have favored the full binding of U2-U6 to
include their left extremities in Fig. 2, leaving I1 and I2 detached.

3 Realistic Biological Factors and Sub-optimal Solutions

Most algorithms for RNA-RNA interaction compute a partition function for the
two RNAs based on loop energies in ways inspired by the basic algorithm of
McCaskill for a single RNA [21]. Thus, when it comes to multiple RNA inter-
action, the maximization of weight in the Pegs and Rubber Bands problem is
somewhat equivalent to minimization of energy.

We have successfully used weights obtained from the tool RNAup [29] as
follows: w(l, i, j, u, v) ∝ log Pl(free[i − u + 1, i]) + log Pl+1(free[j − v + 1, j]) +
log ZI

l (i − u + 1, i, j − v + 1, j) where Pl(free[i, j]) is the probability that sub-
sequence [i, j] is free (does not fold) in RNA l, and ZI

l (i1, i2, j1, j2) is the gen-
eralized partition function of the interaction of subsequences [i1, i2] in RNA l
and [j1, j2] in RNA l + 1 (subject to no folding within the RNAs subsequences).
Therefore, the method may be categorized as an MFE-like approach (Minimum
Free Energy). It is clear that such an approach does not capture “everything”.

Many biological factors affect the observed structure of interacting RNA
molecules. For instance, reversible kissing loops (where some hydrogen bonds
of the interaction between hairpins unwind) [17] are generally not captured by
MFE since a kissing loop is energetically more favorable than a partial one. We
observe such artifacts within the pairwise interaction of CopA-CopT in E. Coli,
as shown in Fig. 3.

Another example is the U2-U6 snRNA complex. There seems to be a lack
of consensus whether the U2-U6 snRNA complex forms a 4-way or a 3-way
junction (most likely both structures co-exist [5,30,33,38]). Figure 4 shows the
two possibilities. It has been conjectured in [5] that co-axial stacking is essential
for the stabilization of helix I in U2-U6 and, therefore, inhibition of the co-axial
stacking, possibly by protein binding, may activate the second conformation
(with helices Ia and Ib).
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(a)

CopA 5’ CGGUUUAAGUGGG...UUUCGUACUCGCCAAAGUUGAAGA...UUUUGCUU 3’

||||||||||||| |||||||||||||||||||||||| ||||||||

CopT 3’ GCCAAAUUCACCC...AAAGCAUGAGCGGUUUCAACUUCU...AAAACGAA 5’

(b)

CopA 5’ CGGUUUAAGUGGG...UUUCGUACUCGCCAAAGUUGAAGA...UUUUGCUU 3’

|||||||||||| ||||||||| ||||||

CopT 3’ GCCAAAUUCACCC...AAAGCAUGAGCGGUUUCAACUUCU...AAAACGAA 5’

Fig. 3. The pairwise interaction of CopA-CopT: (a) computational prediction with
artifact interactions due to the maximization nature of the problem, and (b) the actual
biologically known interaction [18], where the last window is dropped and the middle
window is split (reversible kissing loop).

Fig. 4. U2-U6 snRNA complex in humans obtained by Greenbaum’s lab [38]. The
4-way junction appears on the left hand side with Helix I, and the 3-way junction
appears on the right hand side with Helices Ia and Ib.

Therefore, correct biological structures are not always “optimal” (from the
computational perspective), and often are not unique. Sub-optimal solutions are
needed to cover the biological ground. To that end, we consider in this paper two
main modifications to our original approach based on Pegs and Rubber Bands:

– Sampling is used to produce multiple (sub-optimal) solutions instead of a
single solution (this is described in Sect. 4).

– Windows are considered to be either single or dependent. Single windows con-
tribute a weight equal to a sum of three terms as described above (our origi-
nal formulation). Recall that each window w(l, i, j, u, v) defines two intervals,
[i − u + 1, i] in level l and [j − v + 1, j] in level l + 1. If a solution con-
tains two windows that define intervals [a, b] and [c, d] in level l with b < c
and no other intervals in between, then we may consider them dependent
in level l (windows can be dependent in one or two levels) and thus replace
log Pl(free[a, b]) + log Pl(free[c, d]) (each of these two terms is coming from
the single contribution of each window) with log Pl(free[a, d]), if the latter is
larger than the former sum. This allows window splits such as the one shown
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in Fig. 3(b) to be not so detrimental to the total weight of the solution. Given
a solution, its total weight is then obtained by the optimal determination of
single and dependent windows in each level to maximize that weight (this is
achieved by a dynamic programming algorithm for each level). We denote this
modified weight of a solution S by w(S).

4 A Sampling Approach

Sampling is more efficient than exhaustive enumeration of solutions within a
certain threshold of optimal, especially that many of these solutions will be
similar. Furthermore, sampling has been successfully used in the context of a
single RNA; for instance, in [9,23,37] to mention a few examples. For the multiple
RNA interaction, we propose below an approach based on Gibbs sampling and
the Metropolis-Hastings algorithm.

4.1 The Gibbs Sampler

The described model for multiple RNA interaction, viewed as Pegs and Rub-
ber Bands with m levels, lends itself quite naturally to Gibbs sampling [13,20].
As a random variable, let Sl be a set of non-overlapping windows of the form
w(l, i, j, u, v), so Sl represents a valid interaction pattern between RNA l and
RNA l + 1. A Gibbs sampler works by sampling each random variable individu-
ally in order, conditioned on the current values of the other variables. In other
words, we work with P (Sl|S1, . . . , Sl−1, Sl+1, . . . , Sm−1). Therefore, if we start
with S0

1 = . . . = S0
m−1 = ∅, we sample S1

1 using P (S1|S0
2 , . . . , S0

m−1), then S1
2

using P (S2|S1
1 , S0

3 , . . . S0
m−1), then S1

3 using P (S3|S1
1 , S1

2 , S0
4 , . . . , S0

m−1), and so
on until we sample S1

m−1 using P (Sm−1|S1
1 , . . . , S1

m−2). We call (S1
1 , . . . , S1

m−1)
our first sample, and we repeat to obtain (St

1, . . . , S
t
m−1) for every t. Under typ-

ical conditions of ergodicity [11], the Gibbs guarantee is that (St
1, . . . , S

t
m−1) for

large t is a sample from P (S1, . . . , Sm−1), which is not necessarily a known dis-
tribution, in contrast to P (Sl|S1, . . . , Sl−1, Sl+1, . . . , Sm−1) which is reasonably
accessible.

This is interesting because, conditioned on S1, . . . , Sl−1, Sl+1, . . . , Sm−1, the
permissible windows of the form w(l, i, j, u, v) are exactly those which do not
overlap with windows in Sl−1 and Sl+1. As such, we assume that:

P (Sl|S1, . . . , Sl−1, Sl+1, . . . , Sm−1) = P (Sl|Sl−1, Sl+1)

P (Sl|Sl−1, Sl+1) ∝
{

0 Sl contains a window that overlaps in Sl−1 or Sl+1

ew(Sl) otherwise

The exponential term is similar in spirit to the standard Boltzman distribution
used for RNAs, knowing that w(Sl) represents the negative of the energy.

If P (Sl|Sl−1, Sl+1) is easy to sample from, then the Gibbs sampler works
nicely given a fixed mapping of RNAs to levels 1 to m. We describe in the next
section how to sample from P (Sl|Sl−1, Sl+1).
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4.2 Gibbs Sampling with Metropolis-Hastings

The Metropolis-Hastings algorithm for sampling (also known as the Markov
Chain Monte Carlo method) was described in [14,22], and since then has been
utilized extensively in the literature. To sample from P (Sl|Sl−1, Sl+1), we first
drop all the windows of the form w(l, i, j, u, v) that overlap in Sl−1 or Sl+1.
We only work with the remaining windows of the form w(l, i, j, u, v). We then
construct a random sequence S0

l , S1
l , . . ., where St

l is a set of non-overlapping
windows of the form w(l, i, j, u, v). This can be done with a Metropolis-Hastings
strategy: Given St

l , we randomly generate St+1
l with some proposal probability

Q(St+1
l |St

l ), and either accept St+1
l with probability

min
{

1,
Q(St

l |St+1
l )

Q(St+1
l |St

l )
× ew(St+1

l )

ew(St
l )

}

or reject it and let St+1
l = St

l .
It is well known and easy to show that such a strategy results in a Markov

chain which converges to the desired probability distribution if the proposal
chain Q(St+1

l |St
l ) satisfies Q(St+1

l = y|St
l = x) > 0 ⇔ Q(St+1

l = x|St
l = y) > 0;

this also makes it irreducible [12].
For practical purposes, we limit St

l to contain only windows w(l, i, j, u, v)
where u = v. We also do not allow two adjacent windows w(l, i, j, u, v) and
w(l, i − u, j − v, u′, v′) to co-exists (since together they represent one bigger
window). With that in mind, a simple strategy is to make Q(St+1

l |St
l ) uniform

among all the neighbors of St
l (including St

l itself), where a neighbor other than
St

l can be obtained by one of the following three operations:

– a window w(l, i, j, u, v) ∈ St
l is removed from St

l

– a window w(l, i, j, u, v) �∈ St
l that does not overlap in St

l is added to St
l

– a window w(l, i, j, u, v) ∈ St
l is replaced by a window w(l, i′, j′, u′, v′) �∈ St

l

that only overlaps with w(l, i, j, u, v) in St
l

Therefore, for every St+1
l that is a neighbor of St

l , Q(St+1
l |St

l ) is the inverse of
the number of neighbors of St

l . This proposal probability defines an irreducible
Markov chain since every pair of solutions can be reached from one another
through a sequence of neighbors.

4.3 A Notion of Distance for Sub-optimal Solutions

Many of the sampled sub-optimal solutions will be similar. To quantify this
similarity/dissimilarity, we need to describe a distance function. To motivate
our approach, we first define the notion of a terminal window: Given a solution
S, the terminal window w(l, i, j, u, v) ∈ S is the window with the largest l such
that no windows appear on its right in levels l − 1, l, and l + 1:

– no window w(l − 1, i′, j′, u′, v′) ∈ S has j′ > i
– no window w(l, i′, j′, u′, v′) ∈ S has i′ > i
– no window w(l + 1, i′, j′, u′, v′) ∈ S has i′ > j
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By recursively eliminating the terminal window from a solution, we obtain a
total order on the windows of that solution.

Our approach builds on the idea that if two solutions are similar, we expect
them to have a similar set of windows; furthermore, these windows should exhibit
the same order. In more detail, given a solution S, define |S| as the number of
windows in S, and let w(l1, i1, j1, u1, v1), . . . , w(l|S|, i|S|, j|S|, u|S|, v|S|) be the |S|
windows in the order defined by terminal windows. Each of these windows, say
w(l, i, j, u, v), defines the two intervals, [i − u + 1, i] in level l and [j − v + 1, j] in
level l + 1. Define the set of interaction intervals

I(S) = (I1, . . . , I2|S|) = ([i1 − u1 + 1, i1], [j1 − v1 + 1, j1], . . .

. . . , [i|S| − u|S| + 1, i|S|], [j|S| − v|S| + 1, j|S|])

as an ordered sequence of 2|S| intervals, and L(S) = (l1, . . . , l|S|) as an ordered
sequence of |S| levels, where li is the level defining the ith window. Therefore,
L(S) means that we have the following set of pairwise interactions (not neces-
sarily unique in terms of RNAs): RNA l1 with RNA l1 + 1, RNA l2 with RNA
l2 + 1, . . ., RNA l|S| with RNA l|S| + 1. Two solutions that do not agree on
this set, or do not define overlapping interaction intervals, are considered com-
pletely dissimilar; otherwise, their distance is given by the amount of overlap
in their interaction intervals (as in the Jaccard metric [16]), hence the following
definition of distance:

Given two solutions S1 with I(S1) = (I1, I2, . . .) and S2 with I(S2) =
(T1, T2, . . .), the distance between S1 and S2 is

d(S1, S2) =

{
1 −

∑
i |Ii∩Ti|∑
i |Ii∪Ti| L(S1) = L(S2) and Ii ∩ Ti �= ∅ for all i

1 otherwise

where ∩ and ∪ represent the standard intersection and union operations on
sets respectively, and intervals are treated as sets of integers. This distance is
modified from our previous metric in [26,27], and is not a metric; however, it
works well with the clustering algorithm described below.

4.4 Clustering the Samples

The sampled sub-optimal solutions are generally more than what we need. In
addition, as mentioned above, many of them will be similar. Therefore, we use
clustering to reduce their number. To cluster the samples, we first remove dupli-
cates, so we only work with unique samples. We then drop all solutions with a
weight below 1/3 of the best. Finally, we sort the solutions to make the output
of the clustering deterministic. We adopt hierarchical agglomerative clustering
with complete linkage, and we obtain the clusters by “cutting” the tree where
distance between clusters is 1. Given the clusters, the optimal solution in each
cluster acts as a “representative” of the cluster. The representatives should reveal
some of the structures that are observed in biological experiments [1,26,27].
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5 Experimental Results

We perform 50 iterations of the Metropolis-Hastings algorithm without rejec-
tion. This allows us to start at some random solution. We then allow 50 iterations
(with rejection) for the “burn-in” time of the Metropolis-Hastings algorithm.
Finally, we generate 50 samples in 50 iterations and select one uniformly at ran-
dom. We generate 1000 solutions (Gibbs samples) by repeating this procedure,
as described in Sect. 4.1.

After clustering, we sort the representatives of the clusters by decreasing
weight. We consider the first k representatives, for a given k. To assess our app-
roach, we repeat the experiment 100 times. Given a set of candidate structures
in mind; for instance, Fig. 5 shows four candidates for the yeast spliceosome, we
then count how many times (in the 100 runs) each candidate is found among
the first k representatives, as a percentage hit. We also compute the “rank” of
each candidate, which is the first time1 that candidate is seen as representative,
averaged over the 100 experiments.

5.1 Experiment 1: Structural Variation

The U2-U6 complex in the spliceosome of yeast has been reported to have two
distinct experimental structures, e.g. [33]. In one conformation, U2 and U6 inter-
act to form a helix known as helix Ia. In another conformation, the interaction
reveals a structure containing an additional helix, known as helix Ib. Section 3
describes possible underlying mechanisms that are responsible for this confor-
mational switch. We consider the set of four candidates in Fig. 5. The results are
summarized in Table 1.

Table 1. Results for the yeast spliceosome. Each entry lists the percentage hit followed
by the average rank.

k 1 2 3 4 5 6 7 8 9 10

Helices Ia+Ib 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1

Helices Ia+Ib, I1
detached

0 − 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2

Helix Ia 0 − 0 − 0 − 40 4 85 4.5 100 4.8 100 4.8 100 4.8 100 4.8 100 4.8

Helix Ia, I1
detached

0 − 0 − 0 − 0 − 40 5 85 5.5 100 5.8 100 5.8 100 5.8 100 5.8

5.2 Experiment 2: Artifact Interactions

Due to the optimization nature of the problem, it is sometimes easy to pick
up interactions that are not biologically real. This is because dropping these
interactions from the solution would make it sub-optimal (even when preferred
biologically, as described in Sect. 3). The last interaction window of CopA-CopT

1 We use “first time” because many solutions can represent the same candidate; for
instance, a window can split in different ways, but we still refer to it as a window
split.
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(a)

I1 3’ UGUAUG

|||

U6 5’ ACAGAGAUGAUC--AGC

||||| |||

U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||

I2 5’ UACUAACACC

(b)

I1 3’ UGUAUG

U6 5’ ACAGAGAUGAUC--AGC

||||| |||

U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||

I2 5’ UACUAACACC

(c)

I1 3’ UGUAUG

|||

U6 5’ ACAGAGAUGAUCAGC

|||||

U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||

I2 5’ UACUAACACC

(d)

I1 3’ UGUAUG

U6 5’ ACAGAGAUGAUCAGC

|||||

U2 3’ AUGA-UGUGAACUAGAUUCG

|||| ||||

I2 5’ UACUAACACC

Fig. 5. The yeast spliceosome with 4 RNAs (I1 and I2 are functionally independent
stretches of the same much longer messenger RNA). (a) Helix Ia and helix Ib with both
introns attached. (b) Helix Ia and helix Ib with I1 detached. (c) Helix Ia with both
introns attached. (d) Helix Ia with I1 detached.

in Fig. 3 is an example of such an artifact. We consider six candidate solutions
based on presence/absence of windows and window splits, as described in Table 2.
For each of the three interaction windows in Fig. 3, we consider whether the
window is present, dropped, or split. Typically, we detect a window split when
the two portions happen to be treated as dependent in some level l (see Sect. 3).
Therefore, to correctly capture reversible kissing loops, undesired splits can be
ignored if the corresponding window does not represent a kissing loop. Given the
RNA structures of CopA and CopT, only the middle window is a kissing loop.

Table 2. Results for CopA-CopT. For each of the three interaction windows in Fig. 3,
we consider whether the window is present, dropped, or split. Each entry lists the
percentage hit followed by the average rank.

k 1 2 3 4 5 6 7 8 9 1 0

First, middle, last 89.6 1 93.8 1 97.9 1.1 100 1.2 100 1.2 100 1.2 100 1.2 100 1.2 100 1.2 100 1.2

First, middle split,
last

4.2 1 52.1 1.9 77.1 2.3 93.8 2.6 97.9 2.7 100 2.8 100 2.8 100 2.8 100 2.8 100 2.8

First, middle, last
dropped

4.2 1 10.4 1.6 16.7 2.1 20.8 2.5 27.1 3.1 29.2 3.3 31.2 3.5 31.2 3.5 35.4 4.2 35.4 4.2

First, middle split,
last dropped

0 − 2.1 2 2.1 2 4.2 3 12.5 4.3 18.8 4.9 25 5.4 29.2 5.8 37.5 6.5 41.7 6.8

First split, middle,
last

2.1 1 8.3 1.8 20.8 2.5 27.1 2.8 43.8 3.7 54.2 4.1 70.8 4.8 79.2 5.1 83.3 5.3 83.3 5.3

First split, middle,
last dropped

0 − 0 − 0 − 0 − 2.1 5 4.2 5.5 6.2 6 6.2 6 10.4 7.2 10.4 7.2
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6 Conclusion

In RNA interaction, the optimal structure may not be the real structure, and the
real structure may not be unique. In this work, we build on our previous approach
for multiple RNA interaction using the Pegs and Rubber Bands formulation to
generate multiple sub-optimal solutions. This is developed using Gibbs sampling
and the Metropolis-Hastings algorithm.

Our sampling approach successfully computes sub-optimal solutions for the
multiple RNA interaction problem that are truthful representations of the actual
biological structures. For instance, it can provide several candidate structures
when they exist, e.g. the U2-U6 complex and its introns in the spliceosome of
yeast, and find structures that agree with the literature, but are not necessarily
optimal in the computational sense, e.g. CopA-CopT in E. Coli.
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Abstract. We propose a novel summary based method to infer species
trees from input multi-locus gene trees with incomplete lineage sorting
(ILS). The method extends an existing technique called STAR [13], which
defines average coalescence rank between taxa pairs (couplets), to derive
species trees using Neighbor-Joining (NJ) [20,23]. Such coalescence rank,
however, is ambiguous at couplet level. We propose two new couplet
based distance measures, termed as accumulated coalescence rank (AcR),
and excess gene tree leaves (XL), and show that their combination dis-
criminates individual couplets better. We propose a new method AcRN-
JXL, which uses the proposed measures, for NJ based species tree con-
struction. Results show that for biological datasets, AcRNJXL produces
much better performance than STAR and other reference approaches,
with the same time and space complexities as STAR.

Keywords: Inferring the evolutionary phylogeny of species · Phylogeny
reconstruction

1 Introduction

A gene tree depicts the evolutionary relationship of a given sample of gene copies
obtained from a group of N taxa [5]. A set of M (>1) gene trees produced by
sampling respective genes from N taxa, may be complete or partial, and may
exhibit conflicting evolutionary histories (thus having conflicting topologies and
branch lengths). Such conflict arises mainly due to one of the following three
biological processes: (1) Horizontal gene transfer (HGT), (2) Gene duplication /
loss, and (3) Incomplete Lineage Sorting (ILS) or Deep Coalescence (DC) [18].
Estimation of a species tree by modeling such gene tree / species tree discordance
is essential to understand the evolutionary histories among these N taxa. Here
we focus on the discordance caused by ILS, which occurs due to rapid speciation
and short branches in respective gene trees, resulting failure of two or more
lineages in a population to coalesce [5].

During ILS, most probable gene tree topology may not be the species tree,
a condition termed as the ‘anomaly zone’ [5,18]. So, supertree or consensus
approaches estimate comparatively less accurate species trees [28]. Traditional
c© Springer International Publishing Switzerland 2016
M. Botón-Fernández et al. (Eds.): AlCoB 2016, LNBI 9702, pp. 93–105, 2016.
DOI: 10.1007/978-3-319-38827-4 8
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concatenation (supermatrix) approach [10] employs phylogenetic reconstruction
methods such as maximum likelihood (tools like RAxML [22]) to generate species
trees from concatenated gene sequence alignments. But, concatenation may pro-
duce variable performances across datasets with high degree of ILS [14], and
is also statistically inconsistent [19]. Statistical methods modeling multi-species
coalescence, such as BEST [9], *BEAST [6], co-estimate gene and species trees
from input gene alignments. Few other statistical methods like STEM [7], MP-
EST [12], BUCKy [8], estimate species trees from gene trees, using maximum
likelihood or Bayesian techniques. However, apart from MP-EST and STEM,
these methods are computationally intensive [4], thus applicable to datasets
involving ≈20 taxa and a few (< 50) gene trees [14].

Parsimony approaches aim to minimize either the sum of deep coalescence
(MDC criterion) [1,25,28], or the sum of Robinson-Foulds (RF) distance between
S and G (as in mulRF [2]). However, performance of these methods can vary for
different degrees of ILS. Recently proposed summary methods ASTRAL [15] and
ASTRAL-II [16] employ quartet decomposition and bi-partitions of input gene
trees, to generate statistically consistent and highly accurate species trees. How-
ever, they incur high runtime for thousands of gene trees. Approaches GLASS
[17], STEAC [13], employ couplet (taxa pair) based coalescence time for species
tree inference. But such coalescence time information is not always accurate (or
even not available) for many datasets [4]. Methods like STAR [13] and NJst [11]
employ couplet based coalescence rank and internode count measures, respec-
tively, for species tree inference. These methods are computationally efficient.
But their performances on biological datasets need to be verified.

Current manuscript proposes an extension of STAR [13], by using two novel
couplet based measures termed as accumulated coalescence rank (AcR), and
excess gene leaf count (XL). We show that a combination of these measures dis-
criminates individual couplets better. Subsequently, we describe a new method
AcRNJXL using both of these measures for species tree inference. AcRNJXL
supports incomplete, non-binary, multi-copy gene trees having ILS. It requires
rooted gene trees to generate a rooted species tree. We show that AcRNJXL
shows superior performance on biological datasets, with the same time and space
complexities as STAR. Hence it is applicable for large scale biological datasets.

2 Methodology

2.1 Concept of Coalescence Rank and Basics of STAR

For a rooted gene tree G in the input gene tree set G, suppose L(G) and NL(G)
denote the set of leaves (taxa set) and the set of internal (non-leaf) nodes,
respectively. For an internal node n ∈ NL(G), Liu et al. [13] defined its rank of
a coalescence event, or simply the rank λG(n), as follows:

λG(n) =
{ |L(G)| : n is the root node r

|L(G)| − I(n, r) : n is not the root node
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where |.| is the set cardinality, and I(n, r) is the number of internal nodes (includ-
ing n) along the path between n and the root r. For a pair of taxa (x, y) (denoted
as couplets from now on) covered in G, its support set τxy is defined as follows:

τxy = {G : (x, y) ∈ L(G)} (1)

For a couplet (x, y) in a gene tree G (G ∈ τxy), let LCAG
xy be their lowest

common ancestor (LCA) in G. Then the couplet coalescence rank RG(x, y) for
(x, y) in G is defined as the rank of LCAG

xy (= λG(LCAG
xy)) [13]. For a pair of

couplets (x, y) and (x, z) ∈ L(G), RG(x, y) < RG(x, z) indicates that x and y
coalesce before z. The average couplet coalescence rank Ravg(x, y) for (x, y) is
defined by the following equation [13]:

Ravg(x, y) =
1

|τxy|
∑

G∈τxy

RG(x, y) (2)

The method STAR [13] constructs a distance matrix D whose individual ele-
ments d(x, y) (for a couplet (x, y)) are set to Ravg(x, y). Subsequently, neighbor-
joining (NJ) [20,23] is applied on D, to generate the species tree S.

2.2 Accumulated Coalescence Rank and Excess Gene Leaf Measures

Major drawback of the couplet coalescence rank is its ambiguity. For two pairs
of couplets (x1, y1) and (x2, y2) in a gene tree G, RG(x1, y1) = RG(x2, y2) if
LCAG

x1y1
= LCAG

x2y2
. In general, if |L(G)| = N , 2 ≤ RG(x, y) ≤ N . Thus, map-

ping between couplets and their coalescence rank values has cardinality ratio of
≈N2

2 : N = N : 2. In view of this, we propose a new measure accumulated couplet
coalescence rank (AcR) between individual couplets (x, y) of a gene tree G. This
measure is denoted by R′

G(x, y), and defined as following:

R′
G(x, y) =

∑

n

λG(n) (3)

where n denotes any internal node lying between the path from x to y via LCAG
xy.

Coalescence rank and the proposed AcR values for few couplets of the example
phylogenetic tree (Fig. 1) are shown in Table 1.

For a gene tree G covering N taxa, values of R′
G(x, y) for a couplet (x, y)

exhibit following properties, based on whether G is a caterpillar or not (a cater-
pillar is a binary phylogenetic tree that reduces to a path once the leaf nodes
and leaf edges are deleted).

1. R′
G(x, y) ≥ 2.

2. R′
G(x, y) ≤ (N(N+1)

2 − 1) (if G is a caterpillar).

3. R′
G(x, y) ≤ (2 × {

N−1∑

N+1−�lg N�
i} + N) (for non-caterpillar G).
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Fig. 1. An example phylogenetic
tree. Labels associated with inter-
nal nodes denote their coalescence
rank (λ) values.

Table 1. Values of coalescence rank [13], accumu-
lated coalescence rank, and excess gene leaf count
measures for some of the couplets of the tree.

Taxa Coalescence Accumulated Excess

pair rank (R) coalescence gene

rank (R’) leaf (X)

A,E 9 51 6

D,G 9 32 6

K,I 11 31 9

C,H 9 32 6

Proofs of the above properties are shown in Lemma 1 to 5 of the supple-
mentary material (available in http://www.facweb.iitkgp.ernet.in/∼jay/phtree/
AcRNJXL/AcRNJXL.html). Thus, mapping between the number of couplets
and the proposed accumulated rank (R′) has a cardinality ratio of ≈ N2:N2 =
1:1. As R′ has almost N times higher range of distribution than R, it discrim-
inates individual couplets better. In general, couplets with higher AcR values
are considered to be more distant, thus expected to coalesce later (closer to the
root) compared to other couplets having lower AcR values. However, this obser-
vation does not always hold. For example, considering Fig. 1, the couplet (K,I)
has lower AcR compared to the couplet (D,G), although the LCA of (K,I) is at
higher level compared to the LCA of (D,G). Thus, sole use of the AcR values
may not reveal the correct order of evolution.

Considering above drawback of AcR, we introduce another couplet based
measure termed as the number of excess gene tree leaves, to use in conjunction
with AcR. For a gene tree G, suppose a subtree rooted at an internal node
v ∈ NL(G) is denoted as CladeG(v). Further, let the set of taxa underlying
CladeG(v) be represented as ClusterG(v). Then, the number of excess leaves
XG(x, y) for a couplet (x, y) in G, is defined as follows:

XG(x, y) = |ClusterG(LCAG
xy)| − 2 (4)

For any couplet (x, y) ∈ L(G), 0 ≤ XG(x, y) ≤ (N − 2). Lower XG(x, y) means
that (x, y) coalesces earlier in G, compared to other couplets having higher excess
leaf counts. Although XL measure is an indicator of the order of evolution among
different couplets, it is also ambiguous. Couplets with identical LCA node have
the same XL value. So, we propose to use both AcR and XL measures for couplet
based species tree estimation. Couplets having high values of both AcR and XL
measures are distant. Couplets having low values of both AcR and XL measures
are evolutionarily very close.

For a particular couplet (x, y), average excess gene leaf count Xavg(x, y) with
respect to the input gene tree set G, is defined as following:

Xavg(x, y) =
1

|τxy|
∑

G∈τxy

XG(x, y) (5)

http://www.facweb.iitkgp.ernet.in/~jay/phtree/AcRNJXL/AcRNJXL.html
http://www.facweb.iitkgp.ernet.in/~jay/phtree/AcRNJXL/AcRNJXL.html
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Lower Xavg(x, y) means (x, y), on the average, coalesces early in G, than other
couplets having higher average excess gene leaf counts. Suppose, N is the number
of taxa covered in G. Then, we construct an N × N distance matrix DX , whose
individual elements dX(x, y) are set to Xavg(x, y).

(a) AcR distribution of (HOM, TAR) (b) AcR distribution of (MYO, TUR)

Fig. 2. Example of accumulated coalescence rank (R′) distribution between two dif-
ferent couplets of the Mammalian dataset [15,21].

Similarly, the average accumulated coalescence rank R′
avg(x, y) for a couplet

(x, y) is defined as the following:

R′
avg(x, y) =

1
|τxy|

∑

G∈τxy

R′
G(x, y) (6)

However, we do not use R′
avg(x, y) (for individual couplets (x, y)) directly for

constructing the AcR based distance matrix DR′ . Its reason is explained with
Fig. 2a and b, which show the distributions of R′ for two couplets (HOM,TAR)
and (MYO,TUR), present in the Mammalian dataset of 37 taxa and 447 gene
trees [15,21]. Figure 2a and b show that R′

G(x, y) values for a couplet (x, y)
have highly variable distribution, since individual gene trees G ∈ G exhibit
high topological incongruence. Many R′

G(x, y) values have very low frequencies.
Topologies of the gene trees G containing these R′

G(x, y) values can be considered
as infrequent with respect to G. In view of this, we propose a novel filtered
averaging (as defined below), by first discarding such infrequent R′

G(x, y) values.
For a couplet (x, y), suppose its set of R′

G(x, y) values (G ∈ τxy) are placed
in m equal spaced bins. So, width of a particular bin Bi (1 ≤ i ≤ m) becomes
(max(R′

G(x, y)) - min(R′
G(x, y))) / m. Here, max() and min(), denote the max-

imum and minimum operators, respectively. Further, let fBi be the cardinality
of Bi, and FB = max(fBi) ∀ i. Our proposed filtered averaging first computes
the set R′m

xy , defined below:

R′m
xy = {R′

G(x, y) : R′
G(x, y) ∈ Bi(1 ≤ i ≤ m) and fBi ≥ 0.5 × FB}.
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Algorithm 1. AcRNJXL algorithm
1 /* Input: Set of rooted gene trees G. */

2 /* Output: Rooted species tree S */

3 Initialize S as a star tree with all N taxa covered in G.
4 Form DR′ and DX distance matrices, using R′

G(x, y) and XG(x, y) values for all
(x, y) and for all G ∈ G.

5 while S is not fully binary do
6 for All pairs of leaf nodes or taxa clusters (defined below) x and y do
7 Compute CR′

xy using Eq. 8.
8 Compute CXxy using Eq. 7.

9 Choose the couplet (x, y) for coalescence if
(x, y) = argmin∀x′,y′,x′ �=y′(CR′

x′y′ × CXx′y′).

10 Create one speciation node nxy (also called a taxa cluster) and insert x and
y as its children.

11 Set distance (in terms of AcR) from nxy to any other leaf node (or taxa
cluster) z as:

12 dR′(nxy, z) = (dR′(x, z) + dR′(y, z))/2.
13 Set distance (in terms of excess gene leaves) from nxy to z as:
14 dX(xy, z) = (dX(x, z) + dX(y, z))/2.
15 Continue agglomeration in successive iterations.

Such 50 % threshold is empirical, and produces best results on biological datasets.
Average of the elements in R′m

xy is denoted as R′m
avg(x, y). The distance matrix

DR′ is constructed by using R′m
avg(x, y) values for all couplets (x, y).

2.3 AcRNJXL Algorithm

We use both D′
R and DX to construct the species tree S. Initially, S is a star tree

covering N taxa covered in G. First, for individual couplets (x, y), we compute
its relative XL distance CXxy and relative AcR distance CR′

xy, with respect
to other couplets (x, z) and (y, z) for all other taxa z(�= x, y), according to the
following equations:

CXxy = (N − 2)dX(x, y) −
∑

z( �=x,y)

(dX(x, z) + dX(y, z)) (7)

CR′
xy = (N − 2)dR′(x, y) −

∑

z( �=x,y)

(dR′(x, z) + dR′(z, y)) (8)

Lower CXxy means both dX(x, y) is low and
∑

z( �=x,y)

(dX(x, z) + dX(y, z)) is

high. Similarly, CR′
xy is low when both dR′(x, y) is low, and

∑

z( �=x,y)

(dR′(x, z) +

dR′(z, y)) is high. Both conditions indicate that on average (with respect to G),
coalescence of x and y has occurred before other couplets. Thus, a couplet (x, y)
which is a possible candidate for coalescence at the current iteration, should have
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low (minimum or close to minimum) CR′
xy and CXxy values. So, the product

of CR′
xy and CXxy should also be very low (minimum or close to minimum).

Following this principle, each iteration of our proposed NJ based agglomeration
selects a couplet (x, y) for coalescence, provided the following:

(x, y) = argmin∀x′,y′,x′ �=y′(CR′
x′y′ × CXx′y′) (9)

Coalescence of a couplet (x, y) generates new internal speciation node nxy, whose
child nodes are x and y. Second step of NJ based agglomeration involves re-
adjusting the distance matrices DR′ and DX , by estimating distances between
nxy and any other leaf node (or any other internal speciation node) z. Let,
dR′(nxy, z) and dX(nxy, z) denote the approximated AcR and XL measures,
respectively, between the pair of nodes nxy and z. These values are computed
using simple averaging, as the following:

dR′(nxy, z) = (dR′(x, z) + dR′(y, z))/2. (10)

dX(nxy, z) = (dX(x, z) + dX(y, z))/2. (11)

Such agglomeration continues until a binary species tree S is generated. The algo-
rithm is referred to as AcRNJXL (NJ based species tree estimation with AcR
and XL measures). Algorithm 1 presents an overview of AcRNJXL. Performance
comparison of AcRNJXL with the reference methods, is provided in Sect. 3.

Computational Complexity: Computation of LCAG
xy for a gene tree G and a

couplet (x, y) ∈ L(G), can be performed at constant time, by applying preorder
traversal of all n ∈ NL(G). Given M = |G| and N as the total number of
taxa covered in G, R′

G(x, y) and XG(x, y) for all couplets can be computed in
O

(
MN2

)
time. NJ [20,23] based agglomeration requires O

(
N3

)
time complexity

for N taxa. So, overall time complexity of AcRNJXL is O
(
N3 + MN2

)
, which

is equal to that of the couplet based approaches NJst [11], STAR [13], and
lower than other reference approaches. As the time complexity is proportional to
O (M), AcRNJXL requires lower running time for processing thousands of gene
trees. AcRNJXL requires O

(
MN2

)
space complexity, to store couplet based

AcR and XL measures for all input trees. Such storage complexity is equal to
that of iGTP, Phylonet, STAR, STEAC, and GLASS, and lower than other
reference methods such as ASTRAL2, MP-EST, etc.

3 Experimental Results

We have implemented AcRNJXL in python (version 2.7). Phylogenetic library
Dendropy (version 3.12.0) [24] is used for reading and processing tree datasets.

Biological Datasets: Following biological datasets are analyzed for perfor-
mance comparison between AcRNJXL and the reference techniques.

(1) Amniota dataset [3,15] consists of 16 taxa and 248 gene trees. Gene trees
were inferred from the nucleotide sequences of respective genes, using maximum
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likelihood. Chiari et al. [3] reported a reference species tree by using MP-EST [12]
on input gene alignments. We have used gene trees and sequence alignments from
the datasets reported in [3,15], and run multi locus bootstrapping (employing
both site and gene re-sampling with 200 bootstrap replicates) on individual gene
trees using RAxML (version 8.0.17) [22].

(2) Angiosperm dataset [27] concerns about the placement of Amborella tri-
chopoda Baill on the evolutionary tree of angiosperms. Study in [26] and out-
put of CA+ML (Concatenated Analysis with Maximum Likelihood) conclude
that Amborella is sister to the rest of angiosperms, followed by water lilies
(Nymphaeales) [16]. Another study by Xi et al. [27], and output of MP-EST
[12], provide an alternative hypothesis that Amborella is sister to water lilies,
and together this group is sister to other angiosperms. Considering that MP-
EST models ILS (while CA+ML does not model ILS), second hypothesis is
more likely for ILS based modeling. We have tested both of these hypotheses
using alignments of 310 nuclear genes from 42 angiosperms and 4 outgroups
(obtained from http://www.cs.utexas.edu/∼phylo/datasets/astral2/). We have
also generated 200 bootstrap replicates for individual gene trees.

(3) Mammalian dataset [21] covers 37 taxa and 447 gene trees, with 440
distinct gene tree topologies. Mirarab et al. [15] removed 23 mislabeled genes, and
reconstructed gene trees with RAxML [22], using the remaining 424 genes. Input
gene trees and alignments were obtained from http://www.cs.utexas.edu/users/
phylo/datasets/astral/. Gene trees were rooted using Chicken as the outgroup.
Individual gene trees and corresponding alignments were used to estimate 200
bootstrap replicates per gene trees.

Methods Compared: AcRNJXL is benchmarked with the summary meth-
ods ASTRAL2 (version 4.7.8) [15,16], STAR [13], NJst [11], and the parsimony
approaches Phylonet (version 3.5.6) [25], mulRF (version 1.2) [2], and iGTP (ver-
sion 1.1) [1]. Methods STEAC [13] and GLASS [17] could not be executed since the
coalescence time information was not available. Bayesian methods like BEST [9],
*BEAST [6], or BUCKy [8], have not been tested, due to their excessive compu-
tation. We have executed ASTRAL2 [16] using its default settings, without using
any excess bipartitions generated from MP-EST, STAR, or concatenation analy-
sis. Phylonet [25] was also executed with its default settings, since its exact version
incurs huge running time even for the datasets with 20 taxa.

3.1 Performance Comparison on Amniota Dataset

Species tree topologies and bootstrap clade supports for AcRNJXL and other
reference methods, when executed on Amniota dataset, are shown in Fig. 3a. This
dataset exhibits high degree of conflicts among input gene trees, regarding the
position of turtles with respect to the Archosauria clade (consisting of birds and
crocodiles). Phylogenetic analysis suggests that the turtles should be placed as
a sister group to the Archosauria clade. Species trees generated from ASTRAL2,
NJst, mulRF, STAR, and AcRNJXL, satisfy this configuration. Both Phylonet
and iGTP (their output species trees are shown in the Fig. 3 of the supplementary

http://www.cs.utexas.edu/~phylo/datasets/astral2/
http://www.cs.utexas.edu/users/phylo/datasets/astral/
http://www.cs.utexas.edu/users/phylo/datasets/astral/
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material) fail to support this clade. AcRNJXL shows highest (74%) bootstrap
support for this clade, much better than ASTRAL2 (47%), STAR (49%), and
NJst (38%), and mulRF (60%).

(a) (b)

Fig. 3. Topology and bootstrap clade supports corresponding to (a) Amniota, and (b)
Mammalian dataset, for AcRNJXL and other reference approaches. 100% Bootstrap
support values are indicated by ‘*’. Bootstrap values for unsupported branches are
denoted as ‘-’. Topology of a group of taxa, depicting 100% bootstrap, are represented
by the group name, shown in colored and underlined labels. (a) For amniota dataset,
Both NJst and STAR place Anolis above podarcis and python (shown in red branch;
corresponding bootstrap clade s upport is also shown by red colored label.). Rest of the
methods place Anolis as a sister to python (shown in green branch). Other branches
(shown in black) are supported by all methods. Bootstrap support values (< 100%)
are ordered as ASTRAL2 / mulRF / AcRNJXL / NJst / STAR. (b) For mammalian
dataset, Bootstrap support values (< 100%) are shown in the order of ASTRAL2 /
mulRF / STAR / AcRNJXL. NJst performs the same as STAR, thus its topology is
not separately shown. (Color figure online)

For gene trees generated from nucleotide sequences, the reference species tree
[3] contains the triplet (podarcis, (Anolis, python)) (in Newick format). On the
other hand, reference species tree produced by gene trees derived from amino
acid sequences, contains this triplet as (Anolis, (podarcis, python)). So, this
triplet discriminates between the nucleotide and amino acid based species trees.
As we have used gene trees derived from nucleotide sequences, the clade (podar-
cis, (Anolis, python)) should be highly supported. However, species trees gen-
erated from both NJst and STAR falsely produce the triplet (Anolis, (podarcis,
python)), with 100 % clade support. Although ASTRAL2 and mulRF correctly
predict this triplet, corresponding bootstrap support values are very low (28 %
and 30 %, respectively). AcRNJXL exhibits much higher bootstrap support value
(54%) for this clade. So, AcRNJXL performs best for the Amniota dataset.
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3.2 Performance Comparison on Mammalian Dataset

Figure 3b shows different species tree topologies and bootstrap support values
for different species tree construction methods, when executed on the mam-
malian dataset. Phylonet and iGTP produce wrong species tree topologies within
Laurasiatheria clade. Corresponding topologies are shown in the supplementary
material (Figs. 5 and 6). NJst produces identical performance with STAR. So
its output topology is not shown separately. Outputs of various methods differ
mainly with respect to the bootstrap support values, corresponding to the place-
ment of Scandentia, Lagomorpha, and Rodentia groups, as sister to the Primates
group. We see that AcRNJXL exhibits highest bootstrap support (90%) for this
clade, higher than ASTRAL2 (83%) and much higher than mulRF (40%) and
STAR (61%).

3.3 Performance Comparison on Angiosperm Dataset

Species tree obtained by AcRNJXL for Angiosperm dataset is shown in Fig. 4.
Trees generated by NJst, STAR, ASTRAL2, and mulRF, are shown in the sup-
plementary material (Figs. 1 and 2). Results depict that ASTRAL2 and mulRF
place Amborella as a lone sister to the rest of Angiosperms, followed by Nupher,
with bootstrap supports of 75 % and 22 %, respectively. Such result matches with
the output of CA+ ML, which does not model ILS. Authors in [16] have argued
that the alternative hypothesis (placement of Amborella + Nupher as sister to
the rest of the Angiosperms) cannot be recovered by sole ILS based species tree
algorithm. However, we have found that NJst, STAR, and AcRNJXL correctly
recover such sister relationship, with bootstrap supports of 100 %, 99 %, and
100 %, respectively. Such observation matches with the outputs of MP-EST [12]
and the species tree topology reported in [27].

Species tree reported by Xi et al. [27], favors the placement of monocots as a
sister to magnollids + eudicots. However, we have found that only mulRF sup-
ports such placement with a relatively high bootstrap support of 58 %. Methods
ASTRAL2, NJst and STAR exhibit very low bootstrap supports for this clade.
AcRNJXL places monocots + magnollids as a sister to eudicots with 99 % boot-
strap support.

Both NJst and STAR wrongly (according to the studies performed in
[26,27]) place the taxon Vitis just below Aquilegia, with low bootstrap sup-
port values of 25 % and 11 %, respectively. Rest of the methods correctly place it
above Eucalyptus (as shown in Figs. 1 and 2 of the supplementary material). The
method mulRF falsely assigns Eucalyptus just above the group Fagales (shown
by the red colored branch of the Fig. 2 in the supplementary material), with a
low bootstrap support of 23 %. Rest of the methods correctly place Eucalyptus
as a sister clade to Fagales + Malpighiales. With respect to such comparative
analysis, we can say that AcRNJXL performs best for the Angiosperm dataset.
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Fig. 4. Topology and bootstrap clade supports for the Angiosperm dataset, for AcRN-
JXL. It exhibits 100% bootstrap support for the placement of (Amborella, Nupher)
together, and above the rest of the angiosperms. Here, 100% bootstrap support values
are indicated by ‘*’ symbol.

4 Discussion

We have proposed two new couplet based measures, namely AcR and XL, for
species tree construction. AcR measure (R′) has higher range of distribution
compared to the coalescence rank (R). So, R′ discriminates individual couplets
better than R. However, higher R′

G(x, y) (for a particular couplet (x, y) in a
gene tree G) may not always indicate the closeness of LCAG

xy to the tree root.
The measure XL uses tree rooting information, but is also ambiguous like the
coalescence rank R. So, sole use of either AcR or XL measures for species tree
construction, may produce comparatively lower performances. We have tested
both of these approaches and found their comparative lower performances on
biological datasets. Using a combination of AcR and XL measures discriminates
individual couplets better, and also identifies correct order of evolution among
the constituent taxa set. This is evident from the obtained results on biological
datasets, presented in Sect. 3.

Parsimony approaches satisfying MDC criterion (tools Phylonet [25], iGTP
[1]) exhibit comparatively poor performances. Here, derived species tree S
becomes topologically closer to the input gene tree set G. However, during ILS,
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topology of the species tree may be considerably different from the input gene
trees. So the derived species tree S may be completely different from the more
likely species tree.

Approaches Phylonet and ASTRAL2 incur higher running time for large
number (thousands) of input gene trees. AcRNJXL, like other couplet based
approaches STAR or NJst, is computationally efficient for such a large number
of gene trees. Due to its superior performance on biological datasets, support on
incomplete, non-binary gene trees, and computational efficiency, AcRNJXL can
be considered as among the best species tree inference methods.

Supplementary and Executable: Supplementary material corresponding to
this manuscript, executable and results of AcRNJXL, are provided in http://
www.facweb.iitkgp.ernet.in/∼jay/phstree/AcRNJXL/AcRNJXL.html.
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Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland
{a.mykowiecka,gorecki}@mimuw.edu.pl

Abstract. Based on the classical non-parametric bootstrapping for phy-
logenetic trees, we propose a novel bootstrap method to define support
for gene duplication and speciation events. While this approach can be
used to annotate orthology and paralogy, we show how it can be used to
verify reliability of tree reconciliation with applications to the problem
of rooting of an unrooted gene tree. We propose a linear time algorithm
for the computation of bootstrap values and we show the correspondence
of our method with the classical non-parametric bootstrapping. Finally,
based on simulated data and nine yeast genomes we present a compara-
tive study of tree rooting methods and evaluation of their performance
by using our bootstrapping method. The software and examples are pub-
licly available.

Keywords: Non-parametric bootstrapping · Tree reconciliation · Gene
duplication · Speciation · Gene tree · Species tree

1 Introduction

The study on the evolutionary history of genes and species is of great importance
for many disciplines such as ecology, biology or medicine. Earlier research was
severely limited due to difficulties in acquiring DNA sequences of genes and
the whole genomes. Today, thanks to the development of new methods of DNA
sequencing and conducted large-scale metagenomic experiments many data are
publicly available for the purpose of phylogenetic studies.

Examining relations between aligned molecular sequences from a single gene
family allows for approximation of the evolutionary history that can be repre-
sented in the form of a phylogenetic tree, called gene tree. In many cases tree-
building methods give slightly different results, and none of them guarantees the
correct topology of the inferred gene tree. Thus, the necessary step is to assess
the credibility of inferred trees. It can be done by bootstrap, which allows to
determine whether a particular tree is a good approximation of the evolution
of molecular sequences [9]. Species trees that represent evolutionary history of
species can be inferred from gene trees. However, gene and species trees are usu-
ally incongruent which can be due to data selection, sequencing errors, inference
c© Springer International Publishing Switzerland 2016
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methods or evolutionary events such as gene duplication, loss or gene trans-
fer [20]. Studies on gene and species phylogeny have been conducted since 1980s.
Goodman et al. [11] introduced a model of tree reconciliation in which gene
duplication and loss events are invoked to address the differences between a
gene tree and its species tree. This concept was later formalized [27] by intro-
ducing reconciled trees and the duplication-loss cost, i.e., the minimal number
of gene duplications and losses required to reconcile a given gene tree with its
species tree. The model was further extended by horizontal gene transfer [20,24].

A major problem in tree reconciliation is its high sensitivity to fallible gene
trees [19,31]. Gene trees can have topological errors that result in an incorrect
topology or rooting errors related to the wrong placement of the root [12]. One
way to deal with errors is the reconciliation model in which input gene trees
are corrected by using tree edit operations [5,6]. For example, in [5,12] a gene
tree have one error if there is a tree with improved reconciliation cost in the
local neighborhood of the given gene tree. Another method proposed in [3,32]
consisted in preprocessing of a set of gene trees by removing nodes that cause
inconsistency. A more statistical approach was presented in [34].

While the classical reconciliation model is applicable to rooted trees only,
most of the standard tree inference methods infer unrooted trees. In addition it
is often difficult to identify a credible rooting. Outgroup rooting can result in
incorrect rootings when there is heterogeneity in a gene tree. Moreover, when
analyzing an ancient dataset or a gene family that exists only in a specific organ-
ismal group, the outgroup can be unavailable [10,23]. Another approach is to
root gene trees under the molecular clock assumption, or similarly by using mid-
point method. Both can result in error when there is a molecular rate variation
throughout the tree [21,22]. Tree reconciliation has been successfully extended
to reconcile an unrooted gene tree with a rooted species tree by seeking a rooting
of the unrooted gene tree that invokes the minimal duplication-loss cost [16,35].

So far, bootstrap methods in tree reconciliation were mainly focused on
rooted trees. For example, [28] proposed to estimate the support of horizon-
tal gene transfers. An early approach to integrate reconciliation and bootstrap-
ping for unrooted trees [36] relied on rooting by choosing the midpoint rooting
with the minimal duplication-loss cost. By aggregating gene duplication loca-
tions from all rooted sample trees, the authors of [36] were able to compute
support values for every duplication from the input gene tree. However, in such
an approach, some information can be lost as the selected midpoint rooting
may be incorrect.

Here we propose to assess the credibility of unrooted gene trees by using
unrooted reconciliation and non-parametric bootstrapping. Having this, we show
how to compute support values for branching events in a gene tree, i.e., for dupli-
cation and speciation events. We propose a linear time algorithm for the compu-
tation of bootstrap values and we show the correspondence of our approach with
the classical non-parametric bootstrapping. Finally, based on simulated data and
yeast genomes we present a comparative study of tree rooting methods.
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2 Basic Definitions

We introduce several notions from the phylogenetic theory [15,27]. For a tree
T by LT we denote the set of all leaves present in T . A species tree is a rooted
binary tree whose leaves are called species. A rooted gene tree T over a species
tree S is a triple 〈VT , ET , ΛT 〉 such that 〈VT , ET 〉 is a rooted binary tree and
ΛT : LT → LS is the leaf labelling function called labelling. Leaves of a gene tree
are called genes. A cluster for v is the set of all leaves present in the subtree of T
rooted at v. We denote trees by using the standard nested parenthesis notation
with the extension that allows to encode labelling. For instance, in Fig. 1A,
G = ((a1, d), (a2, b)) is a four-leaf gene tree over a species tree (((a, b), c), d) such
that two leaves of the gene tree, i.e., a1 and a2, are assigned to species a.

Let T be a rooted gene tree over a species tree S. Let lcaS(v, w) denote the
least common ancestor of nodes v and w from S. The least common ancestor
mapping, or lca-mapping, M : VT → VS , is defined as follows: M |LT

= ΛT and
when v ∈ VT has two children a and b, then M(v) = lcaS(M(a),M(b)). We
distinguish two types of nodes: (I) an internal node v is a duplication if M(g) =
M(a) for a child a of g, and (II) speciation nodes, otherwise. The duplication
cost, denoted by D(T, S), is the total number of duplications in T [26]. The
total number of gene losses required to reconcile T and S can be defined by:
L(T, S) = 2D(T, S)+

∑
g is internal,a,b children of g(‖M(a),M(b)‖−2), where ‖a, b‖

is the number of edges on the path connecting a and b in S [24]. Finally, we can
define the duplication-loss cost : DL(T, S) = D(T, S) + L(T, S).

Fig. 1. A: An example of rooted reconciliation. The lca-mapping between a gene tree
G and a species tree S and the embedding of G into S, i.e., an informal representation
of an evolutionary scenario explaining differences between G and S by using gene
duplications and gene losses. Here the DL cost is 5 (1 duplication + 4 gene losses). The
lca-mapping is shown only for the internal nodes. B: Stars in unrooted reconciliation.
A star in a gene tree and possible types of edges and stars. Subtrees Ta, Tb and Tc are
rooted at a, b and c, respectively.

Now we introduce the main concepts related to unrooted reconciliation. For
a species tree S, an unrooted gene tree G over a S is a triple 〈VG, EG, ΛG〉 such
that 〈VG, EG〉 is an undirected acyclic connected graph in which each node has
degree 1 (leaves) or 3 (internal nodes), and ΛG : LG → LS is a leaf labelling
function. A split A|B is a partition of X, i.e., A and B are two disjoint non-
empty sets such that A ∪ B = X. We say that a split A|B is present in an
unrooted tree if there is an edge e in G, such that removing e from G induces
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two subtrees of G having A and B as the set of its leaves, respectively. Splits are
the unrooted equivalent of clusters.

For an edge e ∈ EG, by Ge, we denote the rooting, i.e., a rooted gene tree,
obtained from G by placing the root on e. By Me we denote the lca-mapping
between Ge and S. For a species tree S, such a rooting induces the duplication-
loss cost DL(Ge, S). The set of all edges with the minimal duplication-loss cost, or
optimal edges, we call plateau. Rootings of optimal edges are also called optimal.

Without loss of generality we assume that every root of a gene tree is mapped
into the root of S, denoted by �, and both trees are non-trivial. An edge e =
{v, w} of G is empty if the root of Ge is a speciation. We call e double if Me(v) =
� = Me(w). Otherwise, e is called single. A single edge e is called v-incoming
or w-outgoing if Me(v) 	= � = Me(w). Let v be an internal node of G, then a
star with a center v consists of three edges sharing a common node v incident to
nodes a, b and c, respectively (see Fig. 1B). There are five types of possible star
topologies: the S1 star has one v-incoming edge and two v-outgoing edges, the
S2 star has exactly two v-outgoing edges and one empty edge, the S3 star has
two v-outgoing edges and one double edge, in the S4 star all 3 edges are double,
and the S5 star has one v-outgoing edge and two double edges. The main result
on unrooted reconciliation is below.

Theorem 1 (Adopted from [16]). For a given unrooted gene tree G, we have:
(1) either G has exactly one empty edge or G has at least one double edge,
(2) if the plateau of G consists of exactly one edge then this edge is either empty
or double, and all other edges are single, or (3) if the plateau of G has more
than one edge then it contains all edges present in stars S4 and S5, and all
other edges are single.

It follows from this theorem and the properties of stars that the plateau is a full
subtree of G. See also [15,16] for more details. An example is depicted in Fig. 2.

3 Results

In this Section we present theoretical results related to bootstrapping with rec-
onciliation. We start with the properties of optimal rootings, then we define the
main notion of support values for duplication and speciation events. Next, we
propose an algorithm for the support values computation. Finally, we show a
correspondence between our approach and the classical bootstrapping proposed
by Felsenstein [9].

3.1 Properties of Optimal Rootings

Lemma 2. If e and e′ are elements of the plateau of an unrooted gene tree G,
then Me(w) = Me′(w) for any w ∈ VG.

Note that the root of any rooting of unrooted gene tree is mapped to the same
node in S. Despite the formal complication with the root (which is formally a new
node in a rooting of unrooted tree), we conclude that lca-mappings of optimal
rootings are identical. The next result follows from Lemma 2.
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Theorem 3 (Homology in unrooted trees). For a node of an unrooted gene
tree G, its type is the same in every optimal rooting of G.

Now we introduce a notion of type of cluster in unrooted trees. A cluster of
a node v from a rooting of G is called a duplication if v is a duplication in an
optimal rooting of G (or, by Theorem 3, equivalently in all optimal rootings).
Analogically, we define a speciation cluster in G.

Fig. 2. Left : An example of unrooted gene tree G, reconciled with S =
(a, ((b, c), (d, e))), with three optimal rootings. Each edge is decorated with the DL
cost of the corresponding rooting (optimal cost is 9). G has three non-leaf speciation
clusters (marked by green circles) and two duplication clusters (one marked by blue
square + the cluster of the root). Every plateau edge, colored in red, has a label E1,
E2 or E3, which relates to one of the embeddings visible on the left. Right : Three
embeddings of all optimal rootings of G into S. Every embedding has 2 duplications
and 7 gene losses.(Color figure online)

Lemma 4. There are four disjoint kinds of speciation and duplication clusters
in unrooted gene trees: (1) clusters of internal nodes of the plateau, (2) clus-
ters of leaves of the plateau, (3) clusters of nodes disjoint with the plateau, and
(4) the rooting cluster composed of all leaves. The last three kinds are present in
every optimal rooting.

Optimal evolutionary scenarios can be represented by embeddings of an opti-
mal rooting into the species tree [14]. From Lemma 2 and Theorem 3, we conclude
that these scenarios differ only in their rooting edges (hat) while the remaining
parts of all the trees (body) are identical as indicated in Fig. 2 (see also [16]).

3.2 Bootstrapping

Bootstrap methods are used to assign confidence values for the estimated trees.
Bootstrapping consists in reconstruction of trees altered by random input data
modification or sampling. The variability in the obtained set is assessed by com-
paring its elements with the original tree. The results can be interpreted as
an indication of the influence of arbitrary changes which (in this case) do not
resemble evolutionary schema on the structure of the phylogenetic tree.

Our methods is partially based on the classical non-parametric bootstrap
proposed by Felsenstein [9]. Given a set X of n gene sequences and a multiple
sequence alignment A (of dimension n rows and k columns) of sequences from X.
First, N bootstrap alignments are constructed, where each bootstrap alignment
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is formed by randomly selecting k columns from A with replacement. Next, for
each bootstrap alignment, an unrooted gene tree, called sample tree, is inferred
by using some standard tree-building tool, e.g. PhyML [17]. Finally, for further
processing a gene tree G is inferred from the alignment A. The frequency of
clusters/splits present in sample trees indicates the support for the corresponding
clusters/splits in G.

Fig. 3. A bootstrap example (see Fig. 2). Left : a gene tree G with D/S support values
shown for non-leaf clusters present in optimal rootings. Middle: trees T1, T2 and T3 -
sampled from G. Edges of Ti’s are decorated with the rooting cost (DL). Right : D/S
support values for all non-leaf clusters from rootings of G, T1, T2 and T3. Cluster type
is denoted by S (speciation) and D (duplication). Additionally, r (root), i (plateau
internal), b (plateau border) and o (outside plateau) denote the location of the cluster.
For example, the duplication cluster {a2, c, d} from G is present as a duplication inside
of the plateau of T1, which is denoted Di, while the same cluster determines a speciation
located on the border of the plateau in T2 (denoted by Sb).

Based on the non-parametric bootstrapping we provide the main notion of
duplication and speciation (D/S) support values.

Definition 5 (D/S support values). Given: a species tree S and a col-
lection of sample trees U such that all trees from U have the same set of
leaves X (a set of genes) and the same labelling1 Λ : X → LS. Then, for
a cluster A ⊆ X, the duplication support for A is defined as bDup(A,U) =
1

|U| |{T ∈ U : A is a duplication cluster in T}|, and the speciation support as
bSpec(A,U) = 1

|U| |{T ∈ U : A is a speciation cluster in T}|.

Similarly to the standard non-parametric bootstrapping of phylogenetic trees
it is interesting to analyse the support values for the clusters of the gene tree
inferred from the input alignment. An example is depicted in Fig. 3.

Problem 6. Given: a species tree S, a gene tree G over S and a collection of
sample trees U such that all trees from U ∪ {G} have the same set of leaves X

1 Note that in this definition all trees in U are over S.
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and the same labelling Λ : X → LS . For each duplication and speciation cluster

A in G compute: σG(A,U) =

{
bDup(A,U) if A is a duplication cluster in G,

bSpec(A,U) if A is a speciation cluster in G.

For a set of edges EG in G, let ÊG = {〈v, w〉, 〈w, v〉 : {v, w} ∈ EG}. For a
directed edge 〈v, w〉 ∈ ÊG, by c(v, w,G) we denote the cluster of v in the rooting
G〈v,w〉. There is one-to-one correspondence between clusters and directed edges,
therefore, due to computational efficiency in our algorithm we assign support
values to the directed edges only.

Lemma 7. Under the notation from Algorithm1. For each duplication and spe-
ciation cluster A in G such that c(v, w,G) = A we have σG(A,U) = #(v, w)/|U|.
Proof (Sketch). We have the following meaning of functions in line 10 of Algo-
rithm1: m(v, w, P,Q) - the lca-mapping Mv,w(v); τ(v, w, P,Q) - the type of a
cluster c(v, w,Q), i.e., duplication, speciation or not present in any optimal root-
ing; incoming(v, w) - the edge {v, w} is v-incoming in the star with center v;
insideplateau(v) - v is internal in the plateau; symmetric(v, w) - the edge
{v, w} is symmetric; and inoptrooting(v, w) - the cluster c(v, w,Q) is present
in an optimal rooting. The main part is in lines 5–8 in which we increase the
counter of events #(v, w) when the cluster c(v, w, Ti) is present in G. We use
efficient lca-queries between R and T ′

i ’s with additional verification of types
of clusters.

By using linear time preprocessing [2], we can prove the next result.

Theorem 8. Algorithm1 computes D/S support values in linear time.

3.3 Correspondence to Classical Bootstrap

Now we present the correspondence between D/S support values and the sup-
port values from Felsenstein’s bootstrapping of unrooted and rooted gene trees
proposed by [9]. We use the notation from Sect. 3.2 and Definition 5. For a
split A|B the support for A|B in U is defined by su(A|B,U) = 1

|U| |{T ∈
U : A|B is a split in T}|.
Theorem 9. For a collection of unrooted gene trees U and a split A|B, we have
su(A|B,U) ≥ bDup(A,U) + bSpec(A,U).2

Similarly, we define the support for a cluster A in a collection of rooted trees
R: sr(A,R) = 1

|R| |{T ∈ R : A is a cluster in T}|. The D/S support values can
be naturally extended to collections of rooted gene trees by replacing the term
“cluste” with “node” in Definition 5. We omit the straightforward definitions.

Theorem 10. For a collection of rooted gene trees R over the same set of leaves,
and a cluster A, we have sr(A,R) = bDup(A,R) + bSpec(A,R).
2 Observe that B is not present in the right side of the inequality.
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Algorithm 1. Computing D/S Support Values
1: Input/output: See Problem 1. Let U = {T1, T2, . . . , TN}.
2: Fix ω ∈ X. Let R := Ge, where e is the edge incident to ω. For g ∈ VG, let π(g) denote

the parent of g in R if it is not the root of R, otherwise π(g) is the sibling of g. Note that
π(g) is an element of VG and {g, π(g)} ∈ EG. For each i, let T ′

i be the unrooted gene tree
over R obtained from Ti by replacing the labelling with the identity function on X.

3: Init lca-structures for S and R. For 〈v, w〉 ∈ ÊG, #(v, w) := 0 // reset cluster counters

4: For each i ∈ 1, 2, . . . , N and For each 〈v, w〉 ∈ ÊTi
such that τ(v, w, Ti, S) �= None

5: If ω ∈ c(v, w, Ti) Then { g := m(v, w, T ′
i , R)

6: If |c(v, w, Ti)| = |c(g, π(g), G)| AND τ(v, w, S, Ti) = τ(g, π(g), G, S) Then #(v, w) + + }
7: Else { g := m(w, v, R, T ′

i )

8: If |c(w, v, Ti)| = |c(g, π(g), G)| AND τ(v, w, Ti, S) = τ(π(g), g, G, S) Then #(v, w) + + }
9: Return #(v, w)/|U| for each 〈v, w〉 ∈ ÊG such that τ(v, w, G, S) ∈ {Dup, Spec}.
10: Definitions. For a rooted tree Q, an unrooted gene tree P over Q and 〈v, w〉 in ÊP :

m(v, w, P, Q) :=

{
ΛP (v) v is a leaf in P,
lcaQ(m(x, v, P, Q), m(y, v, P, Q)) v is internal and {x, y} = ch(v, w).

τ(v, w, P, Q) :=

⎧
⎪⎪⎨

⎪⎪⎩

None not inoptrooting(v, w, P, Q),
Dup inoptrooting(v, w, P, Q), {x, y} = ch(v, w) and

m(v, w, P, Q) = m(x, v, P, Q) or m(v, w, P, Q) = m(y, v, P, Q),
Spec otherwise

where for an internal node v ∈ VP , ch(v, w) = {x, y} such that {x, y, w} is the set of all
neighbours of v; � is the lowest node in Q whose cluster contains ΛP (LQ);
incoming(v, w) := m(v, w, P, Q) �= � = m(w, v, P, Q) = �; symmetric(v, w) := m(v, w, P, Q)
= � = m(w, v, P, Q) = � OR m(v, w, P, Q) �= � �= m(w, v, P, Q); insideplateau(v) :=
∃ siblings x and y of v such that: x �= y AND symmetric(v, x) AND symmetric(v, y) and
inoptrooting(v, w) := incoming(v, w) OR insideplateau(v) OR symmetric(v, w).

4 Experiment

We performed several computational experiments with bootstrapping and rec-
onciliation on simulated and real data.

Simulated data preparation. In the first step, model species trees were gener-
ated using Mesquite [25], with topology generation performed according to the
Yule-Harding distribution. The procedure is similar to the one proposed in [4]
with tree height set to 115 myr, and the number of leaves equal 16.

Simulated gene trees were created from model species trees using a con-
tinuous time birth-death process [1] with the gene duplication and gene loss
events. On each lineage, an occurrence of gene duplication (bifurcation) or

Fig. 4. Frequency diagram of plateau sizes. The numbers of gene trees having singleton
plateau (for K = 1), omitted here, are present in the second row of Table 1.
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loss (termination) was drawn with a probability defined by a constant rate.
As duplication should not change the height of a tree, a duplication node was
added precisely at the point of the model tree edge in which a duplication event
was postulated. In [30], three different values of rates of duplication and losses
were proposed: 0.002, 0.004 and 0.008 events/gene per myr. For greater diver-
sity of gene trees, in our experiment we additionally tested the rate of 0.012.
For each simulated model tree, 1000 simulated gene trees were generated. For
each of them we simulated a nucleotide sequence alignment of length 100 under
the GTR + Gamma + I model using Seq-Gen [29]. Next, for each parameter
rate λ ∈ {0.002, 0.004, 0.008, 0.012}, we obtained a set Simλ consisting of 1000
unrooted gene family trees inferred by PhyML program [18] from the correspond-
ing alignments. Finally, from each Simλ, we inferred a species tree Sλ by using
the program fasturec [13].

Real data preparation. We downloaded the set of 9 yeast genomes consisting
of 4617 protein families from [33]. After removing families with only two genes,
we inferred 4141 gene trees by using PhyML with the standard parameter setting.

Plateau sizes for all datasets are depicted in Fig. 4.
Bootstrap processing. Next steps were performed for all datasets. For each

alignment we created 100 bootstrap alignments by Seqboot from PHYLIP pack-
age [8]. Finally, for each bootstrap alignment we inferred a sample tree by
PhyML.

4.1 A Comparative Study of Rooting Methods

In our study we compared five rooting methods by using the rooting score based
on the D/S support values as follows. Given an optimal edge e from a gene
tree G and a set of sample trees U , a rooting score for e is the average value of
σG(A,U) for all non trivial (non leaf/root) clusters A from Ge. We claim that the
edges from the plateau having the maximal rooting score are the best candidates
for rooting. We need two additional definitions. The edge distance between two
nodes is the number of edges on the shortest path connecting these nodes. In the
case when the gene tree has branch lengths, the BL-distance between two nodes
is the total branch length of all edges on the shortest path connecting these
nodes. We have three types of standard rooting methods. Two of them take into
consideration all tree edges [7] while the last one uses only edges included in
the plateau [36]. In midpoint edge rooting the root is placed in a half-way
between two the most edge distant leaves, while in BL-Midpoint rooting the
root is placed such that its BL-distance to the leaves is minimized. In Midpoint
plateau rooting the root is placed in a half-way between two the most distant
nodes from the plateau.

Note that in our model of binary trees, the midpoint rootings may be non
unique. For instance, if an unrooted tree has three leaves a, b and c, then the
midpoint edge rooting can be (a, (b, c)), (b, (a, c)) or (c, (b, a)). The same property
holds for the BL-midpoint rootings. Additionally for a control we tested two
random rootings: random edge rooting and random plateau rooting where
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the root is placed on the edge uniformly chosen from the set of all edges of a
gene tree and all edges of the plateau, respectively.

The summary of results is depicted in Table 1, where A denotes the number
of gene trees from a given dataset having rooting inside DL-plateau. B is the
number of rootings having the maximal rooting score, and C is the percent of
gene trees with non-singleton plateau having the maximal rooting score. In case
of ambiguity, we assume a match if there is a non-empty intersection between
sets of corresponding rootings. Our results suggests that the midpoint edge and
BL-midpoint rooting methods indicate generally poorly supported rootings for
the simulated datasets. Even the random edge rooting method performs better
than these two methods. This observation partially holds for the yeast dataset
with the difference that BL-midpoint rootings are generally better supported
(1282 well supported rootings).

Table 1. Summary of rootings of gene trees from simulated and real datasets.

For the plateau based methods, the number of well supported rootings is usu-
ally high due to the large number of singleton plateaux present in our datasets.
For example, in the dataset X0.002, 843 out of 1000 trees have a unique rooting
candidate in the plateau. Therefore, to compare these methods we analyzed non-
singleton plateaux (see columns C). In the first simulated dataset the ratio of
optimal bootstrap rootings is 58 % for the midpoint plateau rootings. This prop-
erty can be explained by the fact that relatively large portion of trees has the
plateau of size 3 (see Fig. 4). In consequence, in such a case the midpoint plateau
rooting method gives all three possible rootings which includes the rooting max-
imal score. Next, the first dataset performed better than the other simulated
datasets, which is due to usually more complex plateaux as indicated in Fig. 4.
In the real dataset the midpoint plateau method inferred 46 % rootings with
maximal score. However, a better ratio for the non-singleton plateau trees was
obtained for the BL-midpoint method. On the other hand the latter method
performed poorly for the trees with singleton plateaux.

5 Conclusions and Future Work

In this article we proposed a bootstrapping approach to define support for gene
duplication and speciation events when reconciling a given gene tree with its
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species tree. By comparing gene trees obtained by bootstrapping to the origi-
nal gene tree we showed how to calculate support for both clusters and gene
duplication events. While this approach can be used to annotate orthology and
paralogy in unrooted trees, we showed how it can be used to verify reliabil-
ity of tree reconciliation with applications to the rooting problem. We provided
several theoretical and algorithmic results, in particular we showed the corre-
spondence between our method and the classical non-parametric bootstrapping.
Software and example are publicly available at: http://bioputer.mimuw.edu.pl/
∼agnieszka/bootstrap.
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(eds.) CiE 2014. LNCS, vol. 8493, pp. 42–52. Springer, Heidelberg (2014)

4. Chaudhary, R., Boussau, B., Burleigh, J.G., Fernandez-Baca, D.: Assessing
approaches for inferring species trees from multi-copy genes. Syst. Biol. 64(2),
syu128 (2014)

5. Chaudhary, R., Burleigh, J.G., Eulenstein, O.: Efficient error correction algorithms
for gene tree reconciliation based on duplication, duplication and loss, and deep
coalescence. BMC Bioinform. 13(Suppl. 10), S11 (2012)
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Abstract. The aim of this paper is to explore the robustness of the
parsimonious host-symbiont tree reconciliation method under editing or
small perturbations of the input. The editing involves making different
choices of unique symbiont mapping to a host in the case where multi-
ple associations exist. This is made necessary by the fact that no tree
reconciliation method is currently able to handle such associations. The
analysis performed could however also address the problem of errors. The
perturbations are re-rootings of the symbiont tree to deal with a possibly
wrong placement of the root specially in the case of fast-evolving species.
In order to do this robustness analysis, we introduce a simulation scheme
specifically designed for the host-symbiont cophylogeny context, as well
as a measure to compare sets of tree reconciliations, both of which are
of interest by themselves.

Keywords: Cophylogeny · Parsimony · Event-based methods · Robust-
ness · Measure for tree reconciliation comparison

1 Introduction

Almost every organism in the biosphere is involved in a so-called symbiotic inter-
action with other biological species, that is, in an interaction which is close and
often long term. Such interactions (one speaks also of symbiosis) can involve two
or more species and be of different types, ranging from mutualism (when both
species benefit) to parasitism (when one benefits to the detriment of the other).
Some interactions may even become obligatory in the sense that neither species is
able anymore to live without the other. This may in particular be the case when
one of the species lives inside the cells of the other. We speak then of endosymbio-
sis (notice however that not all endosymbioses are obligatory). Understanding
symbiosis in general is therefore important in many different areas of biology.
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As symbiotic interactions may continue over very long periods of time, the
species involved can affect each other’s evolution. This is known as coevolution.
Studying the joint evolutionary history of species engaged in a symbiotic inter-
action enables in particular to better understand the long-term dynamics of such
interactions. This is the subject of cophylogeny.

The currently most used method in cophylogenetic studies is the so-called
phylogenetic tree reconciliation [3,4,12,16]. In this model, we are given the phy-
logenetic tree of the hosts H, the one of the symbionts S, and a mapping φ
from the leaves of S to the leaves of H indicating the known symbiotic rela-
tionships among present-day organisms. In general, the common evolutionary
history of the hosts and of their symbionts is explained through four main macro-
evolutionary events that are assumed to be recovered by the tree reconciliation:
(a) cospeciation, when host and symbiont speciate together; (b) duplication,
when the symbiont speciates but not the host; (c) host switch, when after speci-
ation of the symbiont, one of the new species of symbionts switches to a new host
that is not related to the previous one; and (d) loss, which can describe three
different and undistinguishable situations: (i) speciation of the host species inde-
pendently of the symbiont, which then follows just one of the new host species
due to factors such as, for instance, geographical isolation; (ii) cospeciation of
host and symbiont, followed by extinction of one of the new symbiont species
and; (iii) same as (ii) with failure to detect the symbiont in one of the two new
host species. A reconciliation is a function λ which is an extension of the map-
ping φ between leaves to a mapping that includes all internal nodes and that
can be constructed using the four types of events above. An optimal reconcilia-
tion is usually defined in a parsimonious way: a cost is associated to each event
and a solution of minimum total cost is searched for. If timing information (i.e.
the order in which the speciation events occurred in the host phylogeny) is not
known, as is usually the case, the problem is NP-hard [15,23]. A way to deal
with this is to allow for solutions that may be biologically unfeasible, that is for
solutions where some of the switches induce a contradictory time ordering for
the internal nodes of the host tree. In this case, the problem can be solved in
polynomial time [1,6,7,13,21]. In most situations, as shown in [6], among the
many optimal solutions, some are time-feasible.

However, an important issue in this model is that it makes strong assumptions
on the input data which may not be verified in practice. We examine two cases
where this situation happens.

– The first is related to a limitation in the currently available methods for tree
reconciliation where the association φ of the leaves is for now, to the best
of our knowledge, required to be a function. A leaf s of the symbiont tree
can therefore be mapped to at most one leaf of the host tree. This is clearly
not realistic as a single symbiont species can infect more than one host. We
henceforth use the term multiple association to refer to this phenomenon.
For each present-day symbiont involved in a multiple association, one is cur-
rently forced to choose a single one. Clearly, this may have an influence on
the solutions obtained.
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– The second case addresses a different type of problem related to the phyloge-
netic trees of hosts and symbionts. These indeed are assumed to be correct,
which may not be the case already for the hosts even though these are in
general eukaryotes for which relatively accurate trees can be inferred, and can
become really problematic for the symbionts which most often are prokaryotes
and can recombine among them [14,20,22]. We do not address the problem of
recombination in this paper, but another one that may also have an influence
in the tree reconciliation. This is the problem of correctly rooting a phyloge-
netic tree. Many phylogenetic tree reconstruction algorithms in fact produce
unrooted trees [14,19,22]. The outgroup method is the most widely used in
phylogenetic studies but a correct indication of the root position strongly
depends on the availability of a proper outgroup [9,18,20]. A wrong rooting
of the trees given as input may lead to an incorrect output.

The aim of this paper is, in the two cases, to explore the robustness of the
parsimonious tree reconciliation method under “editing” (multiple associations)
or “small perturbations” of the input (rooting problem). Notice that the first
case is in general due to the fact that we are not able for now to handle multiple
associations, although there could also be errors present in the association of
the leaves that is given as input. The editing or perturbations we will be con-
sidering involve, respectively: (a) making different choices of single symbiont-
host leaf mapping in the presence of multiple associations, and (b) re-rooting of
the symbiont tree. In both studies, we explore the influence of six cost vectors
that are commonly used in the literature (for a more detailed discussion, see
for e.g. [2,4]). The final objective is to arrive at a better understanding of the
relationship between the input and output of a parsimonious tree reconciliation
method, and therefore at an evaluation of the confidence we can have in the
output.

We wish here to call attention to the fact that we will consider the robust-
ness of the parsimonious method in the case where the solutions provided may
be time-unfeasible. Our choice is driven by two reasons. The first is that, as
already mentioned, finding time-feasible optimal tree reconciliations is an NP-
hard problem, and therefore testing a significant number of large datasets is
computationally impossible in practice. The second is that, as also indicated,
it has been empirically observed that time-unfeasible methods when they are
exhaustive, that is when they correctly output all optimal solutions, can be
a good heuristic for finding optimal time-feasible solutions [6]. Many tree rec-
onciliation algorithms exist, but only a few enumerate all solutions. The most
commonly used are Notung [21], Jane 4 [5], and CoRe-Pa [13]. However, the
first was designed for a gene/species context and imposes some restrictions on
the costs that may be given to some of the events, while the last two provide for
most instances only a proper subset of all the optimal solutions [6]. Currently,
only the method that we developed, called Eucalypt [6], is exhaustive, and we
therefore decided to use it exclusively in order to explore the robustness of the
parsimonious tree reconcilation method.

Another important point is that we tested the parsimonious reconciliation
method both on real and simulated datasets. There are not many methods
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available to simulate datasets that coevolved as these were mostly developed in
a gene/species context [1,7]. These are not suitable here for two reasons, the first
being that they do not consider cospeciation as an event with its own parame-
ter value (a gene automatically speciates within its species, i.e. when speciation
occurs we consider that two different genes are automatically created, whether
their sequences/functions already differ or not). The second reason is that these
methods most often rely on a dating scheme of the host tree which might be diffi-
cult to tune so as to mimic real datasets. These limitations were already noticed
in [10] where the authors attempted to provide their own simulation setup (to
our knowledge, the only other one available in the cophylogeny context) by gen-
erating simultaneously a host and a symbiont tree relying on parameter values
for the events. In this paper, we use a simulation method which we previously
introduced in Coala [2] whose interest lies in that it uses parameter values
(for the event probabilities) that are estimated on real datasets. Hence, this
simulation scheme is more realistic and is designed for the cophylogeny context.

We start by introducing the datasets that will be used, both real and sim-
ulated ones as well as in the latter case, the method to generate them. We
also present a measure to compare sets of tree reconciliations which may be
of independent interest. We then describe the methods used to explore small
perturbations in the two cases considered here, and discuss the results obtained.

The implemented methods are included in the tree reconciliation method we
previously developed, called Eucalypt, and will be made freely available at
http://eucalypt.gforge.inria.fr/. This webpage also contains the online Supple-
mentary Material with exhaustive results on the datasets.

2 Materials and Methods

In what follows, a dataset is a pair of host and symbiont trees (H,S), together
with the association φ of their leaves. The indexes c, d, s, l relate to the 4 different
events: cospeciation, duplication, switch and loss, respectively.

To analyse the influence of a perturbation, we adopted a set of cost events
that correspond to those most commonly used in the literature on cophylogeny.
We thus considered the following cost vectors c = 〈cc, cd, cs, cl〉 ∈ C where C =
{〈−1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈0, 1, 2, 1〉, 〈0, 2, 3, 1〉, 〈1, 1, 1, 1〉, 〈1, 1, 3, 1〉}.

2.1 Materials

Biological Datasets. To test the robustness of the method, we selected 15
biological datasets from the literature: AW - Arthropods (12 leaves) & Wol-
bachia (12 leaves), CT - Cichlidogyrus (19 leaves) & Tropheini (28 leaves),
EC - Encyrtidae (7 leaves) & Coccidae (10 leaves), FD - Fishes (20 leaves)
& Dactylogyrus (50 leaves), GL - Gophers (8 leaves) & Lices (10 leaves), IFL
- Insects (17 leaves) & Flavobacterial endosymbionts (17 leaves), MP - Myr-
mica (8 leaves) & Phengaris (8 leaves), PML - Pelicans (18 leaves) & Lices (18
leaves) where both trees are generated through a maximum likelihood approach,

http://eucalypt.gforge.inria.fr/
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PMP - Pelicans (18 leaves) & Lices (18 leaves) where both trees are generated
through a maximum parsimony approach, PP - Primates (36 leaves) & Pinworms
(40 leaves), RH - Rodents (34 leaves) & Hantaviruses (42 leaves), RP- Rodents
(13 leaves) & Pinworms (13 leaves), SBL - Seabirds (15 leaves) & Lices (8 leaves),
SC - Seabirds (11 leaves) & Chewing Lices (14 leaves) and SCF - Smut Fungi
(15 leaves) & Caryophillaceus plants (16 leaves). The choice was dictated by:
(1) the availability of the data in public databases, and (2) the desire to cover
for situations as widely different as possible in terms of the topology of the trees
and the presence of multiple associations. For a more detailed description of
these biological datasets, see the online Supplementary Material. We call atten-
tion here to the fact that only 3 of these datasets present multiple associations
(namely MP, SBL, SFC) and are the ones used for studying the robustness of
the method in the case of multiple associations.

Simulated Datasets. We generated simulated datasets using a method that we
previously developed, called Coala [2], and the 15 biological datasets as follows.

For any such dataset, Coala first estimates the corresponding probability
of each coevolutionary event (cospeciation, duplication, switch and loss) based
on an approximate Bayesian computation approach. As we needed the datasets
to be as realistic as possible, each time we ran Coala to obtain 50 vectors of
probabilities γ = 〈γc, γd, γs, γl〉 that are in some sense a likely explanation of the
observed data.

In a second step, we used these vectors and the symbiont tree generation
algorithm in Coala (see Baudet et al. [2] for more details) to obtain, for each
vector γ, a simulated symbiont tree S′ whose evolution follows that of the host
tree H. Each dataset (H,S, φ) and probability vector γ thus led to a simulated
dataset (H,S′, φ′). In total, we created 15 × 50 = 750 such datasets. For each of
the 15 real datasets, we call the whole set of 50 simulated datasets (generated
using the parameter estimates on the real dataset) by the name of the real
dataset followed by sim, for instance AW-sim.

The simulated datasets will be used only for testing the rooting of the trees.
Indeed, using simulated datasets in the multiple associations context would
require a model that allows for such multiple associations by considering addi-
tional events. To the best of our knowledge, such a model does not exist yet. We
therefore did not use such datasets to test the robustness of the associations.

2.2 Methods

Generating All the Optimal Solutions. We used Eucalypt [6], which for
a given dataset (H,S, φ) and vector c = 〈cc, cd, cs, cl〉 specifying the costs of the
events, generates all the optimal reconciliations in polynomial-delay, meaning
that the computation time between two outputs is polynomial in the input size.

Comparing Two Sets of Reconciliations. To estimate the similarity of the
outputs of two different runs of the tree reconciliation algorithm, we needed a
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measure to compare two sets of tree reconciliations. Most studies summarise a
reconciliation as a pattern of integers π = 〈nc, nd, ns, nl〉, representing the num-
ber of each event that it contains. The set of optimal solutions for a given dataset
(H,S, φ) and cost vector c can thus be viewed as a multiset ΛH,S,φ,c of patterns
in N4. Notice that we needed to consider multisets as different reconciliations
may induce the same pattern of events.

There is a wide literature on distances for sets of points. One of the best-
known metrics between subsets, the Hausdorff metric, does not take into account
the overall structure of the point sets. Other distances used for mining multisets,
such as the Jaccard or Minkowski distance (see for example Chap. 6 in [11]), have
the drawback of taking into account not the distance between the elements in
the sets but only the number of different elements and their multiplicity.

Hence, for our purpose, we decided to introduce the following measure. Given
a tree reconciliation Λ (i.e. a multiset of patterns), we define its representative
vΛ =

∑
π∈Λ π. Notice that such sum takes into account the multiplicities of

a pattern. Given two tree reconciliations Λ1 and Λ2, we define a dissimilarity
measure d(Λ1, Λ2) as follows:

d(Λ1, Λ2) =
||vΛ1 − vΛ2 ||

(|Λ1| + |Λ2|)maxπ∈Λ1∪Λ2 ||π|| (1)

where || · || is the L1 norm and |Λ| is the cardinality of the multiset Λ. Observe
that d(Λ1, Λ2) = 0 whenever Λ1 = Λ2 while the converse is not necessarily
true. Note also that we normalised this dissimilarity measure so that it takes
values in [0, 1]. This dissimilarity measure, while not being a distance, enables
us to summarize the comparison between two multisets of reconciliations. In
particular, it takes into account both the multiplicity of the patterns and their
actual values (patterns are vectors in N4 that might be close to each other).

Choosing Among Multiple Associations. Three of the real datasets we
selected present multiple associations. For each of them, we considered all the
datasets that may be obtained by resolving the multiple associations in all the
possible ways. More precisely, for each symbiont associated with more than one
host, we chose one and only one of the possible associations, and we did this
in all the possible ways. For instance, in the SBL dataset, 5 out the 8 leaves
of the symbiont tree have multiple associations, each connected to 2, 2, 4, 5,
and 7 leaves of the host tree respectively (see Fig. 1 in the online Supplementary
Material). By choosing in all possible ways among the multiple associations, we
thus obtain 560 datasets.

Re-rooting of the Symbiont Tree. Most phylogenetic reconstruction algo-
rithms produce unrooted trees, or rooted ones that have an unreliable root [9].
Rooting a phylogenetic tree is especially challenging for fast-evolving organisms.
We therefore studied the influence on the optimal tree reconciliation of an erro-
neous rooting of the symbiont tree. More precisely, given a host tree H and a
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symbiont tree S, the association of their leaves φ, and a cost vector c, we com-
pute all the optimal reconciliations for the pair H,S′ where S′ is obtained by
positioning the root of S in an edge of S. Intuitively, one would expect that the
correct positioning of the root would correspond to the reconciliation(s) having
the minimum cost among all the ones that could be obtained by other rootings.
This is indeed motivated by the same parsimony principle as for the tree recon-
ciliation itself. Although slightly less immediate to grasp, one could expect also
that positioning the root “near” to what would be the real one would lead to
optimal reconciliation costs that are near the minimum.

Both cases were in fact observed by Gorecki et al. [8] who showed the exis-
tence of a certain property in models such as the Duplication-Loss for the
gene/species tree reconciliation. Such property, which the authors called the
plateau property, states that if we assign to each edge of the parasite tree a
value indicating the cost of an optimal reconciliation when considering the par-
asite tree rooted in that edge, the edges with minimum value form a connected
subtree in the parasite tree, hence the name of plateau. Furthermore, the edge
values in any path from a plateau towards a leaf are monotonically increasing.
In the presence of host switches, it was however not known whether such plateau
property was satisfied.

Here, for both biological and simulated datasets, we count the number of
plateaux (i.e. subtrees where rootings lead to minimal optimum cost), and we
further keep track whether the original root belongs to a plateau. To study the
robustness, we define a “small perturbation” of the rooting as follows. Given
a dataset (H,S, φ), let k = max(5%|V (S)|, 3). We compute all the optimal
reconciliations for the pair H,S′ where S′ is obtained from S by positioning the
root of S in an edge (x, y) ∈ E(S) at a distance exactly k from the root, the latter
being defined as the minimum distance between the node and the edge endpoints.
The variable k captures the “closeness” of the new root to the original one. We
compare the sets of reconciliations obtained with the true positioning of the root
and with the positioning at distance k using our dissimilarity measure (1). We
then analyse the variations of these dissimilarities with respect to the variation
of the distance k.

3 Results and Discussions

For both the editing of host-symbiont associations and perturbations of the
symbiont tree root, we present only part of the results obtained in our analysis
(in terms of datasets and/or of cost vectors) for reasons of space. In every case,
the choice of which results to show was dictated either by the most interesting
case observed among all those explored for the purposes of a discussion of the
effect of edits and small perturbations on a parsimonious tree reconciliation, or,
in the case of the cost vectors, by the one(s) that are more commonly used in the
literature. An exhaustive presentation appears in Supplementary Material. Here,
time-unfeasible reconciliations have been filtered-out. For each result appearing
in Supplementary Material, we specify whether this is the case or not.
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3.1 Perturbation of the Present-Day Host-Symbiont Associations

We present here the results for the SBL dataset analysed with cost vector
〈0, 1, 1, 1〉. The TreeMap analysis of this dataset performed in [17] tried to max-
imise the number of cospeciations between hosts and symbionts but found out
that sometimes host switches must be postulated to maximise cospeciation. Thus
in some sense the choice of this cost vector is in accordance with the TreeMap
philosophy. Our results for this dataset with the other cost vectors together with
the two other datasets (MP and SFC) are presented in Sect. 2.1 from the online
Supplementary Material.

Figure 1 (left) shows the optimal reconciliation costs obtained for the 560
datasets that were simulated from the SBL one by resolving the multiple associ-
ations in all the possible ways. We observe that when we change the associations,
most often the optimum cost remains the same, namely 70 % of the datasets have
the same cost (of 7). However, in many cases (30 %), changing association of the
leaves results in a change of the optimum cost value (from 7 to a value in {6,8,9}).

To go further and analyse whether two datasets with same optimum cost have
the same evolutionary history, we compared their sets of reconciliation patterns as
described in Sect. 2.2. Figure 1 (right) shows the pairwise dissimilarities (see Eq. 1)
between the reconciliation sets of the 392 datasets with same optimum cost of 7.
Even if often the dissimilarity between two reconciliation sets is 0 (and we checked
that the multisets of reconciliations are in fact exactly the same in those cases),
in 65.5% of the cases this is not so, and the value instead ranges inside [0.05,0.6],
the largest dissimilarity (value of 0.6) being observed in 8.5 % of the cases.

Fig. 1. Barplots of optimum cost (left) and dissimilarity between pairs of reconciliations
with optimum cost 7 (right) obtained on the datasets derived from the SBL dataset
by resolving the multiple associations in all the possible ways and computed with the
cost vector 〈0, 1, 1, 1〉.

3.2 Re-rooting of the Symbiont Tree

Testing the Plateau Property. Table 1 in the online Supplementary Material
presents the results for the 15 biological datasets evaluated with the 6 cost vectors
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in C. Most of the datasets present only 1 plateau and only 2 datasets (CT and
EC) present 2 plateaux. Moreover for 5 out of the 6 cost vectors tested, there is
always a biological dataset for which 2 plateaux are observed.

The plateau property therefore does not hold in the presence of host switches
for real datasets analysed with biologically plausible setups. It is interesting to
observe that among the 15 biological datasets, there were never more than 2
plateaux. This may be due to the relatively small size of the trees.

We also note that in 37 % of the cases, the original root is not in a plateau.
Moreover, the difference between the optimal cost obtained for the original root-
ing and the cost obtained by placing the root inside the plateau is quite large
(difference between columns D and B in Table 1 in online Supplementary Mate-
rial). Among these 37 %, in addition, for the datasets AW, FD, RH, and SFC,
the original root of the symbiont tree is never in a plateau. This may indicate
that either the original root is not at its correct position, or that there is not
enough evolutionary dependence between the two organisms to allow for a cor-
rect inference of the symbiont tree root.

The simulated datasets present similar results as the biological ones (Table 2
in the online Supplementary Material). The number of datasets with more than
one plateau however increases, as does in some cases the number of plateaux
observed. Indeed, some simulated datasets from the sets AW-sim, MP-sim, and
SFC-sim exhibit up to 5 plateaux. In 17 % of the simulations, the original root
does not belong to a plateau (data not shown).

Fig. 2. Boxplots of the dissimilarities between reconciliations obtained for the original
dataset MP and all datasets simulated from MP by re-rooting the symbiont tree at
distance k from the original root. The six plots correspond to the 6 cost vectors in C.
The x-axis shows the distance k between new and original root. The y-axis shows the
value d of the dissimilarity of the reconciliation patterns.
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Rerooting at Distance k. We show in Fig. 2 the results obtained with the
biological dataset MP. Similar figures are presented with other biological datasets
in Sect. 2.3 from the online Supplementary Material. Here the dissimilarity of
the reconciliation globally increases as k also increases. The farther is the new
root from the original one, the more dispersed the patterns tend to be (i.e.
the values of d have larger variance). These conclusions extend for 8 of the
remaining biological datasets (EC, FD, GL, PML, PP, RP, SBL, SC). However,
no such global trend is obtained for the other biological datasets for which we
only observe variability (neither increasing nor decreasing) in the dissimilarities.

As concerns the simulated datasets, we observe a bigger dispersion between
patterns with larger values taken by the dissimilarities (see Sect. 2.4 from the
online Supplementary Material). This might be due to the fact that there are
much more datasets (50 simulated datasets corresponding to one biological
dataset). The trend of a global increase of the values and the variance of the
dissimilarity when k increases is observed again.

4 Conclusions and Open Problems

In this paper, we explored the robustness of the parsimonious tree reconciliation
method to some editing of the input required in order to associate a symbiont
to a unique host in the case where multiple associations exist, as well as to small
perturbations linked to a re-rooting of the symbiont tree.

In the first case, we observed that the choice of leaf associations may have
a strong impact on the variability of the reconciliation output. Although such
impact appears not so important on the cost of the optimum solution, proba-
bly due to the relatively small size of the input trees, the difference becomes
more consequent when we refine the analysis by comparing, not the overall cost,
but instead the patterns observed in the optimal solutions. Notice that this
highlights the great interest in finding measures for the dissimilarity of sets of
reconciliations such as the new one we proposed in this paper.

As indicated, we were able to do the analysis on the choice of leaf associations
only for the real biological datasets because we are currently not capable of
simulating the coevolution of symbionts and hosts following the phylogenetic
tree of the latter and allowing for an association of the symbionts to multiple
hosts. This is an interesting and we believe important open problem in the
literature on reconciliations which we are currently trying to address.

As concerns the problem of the rooting, we were able to show that allowing for
host switches invalidates the plateau property that had been previously observed
(and actually also mathematically proved) in the cases where such events were
not considered. Again here, the number of plateaux observed is small for the
real datasets (this number is indeed 2). Moreover, such increase from 1 to 2 does
not concern all pairs of datasets and of cost vectors, even though for all, except
one of the cost vectors tested, there is always a biological dataset for which 2
plateaux are observed. We might be tempted to say that this is once more due
to the small sizes of the input trees. However, the sizes are of the same order
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for the simulated datasets, but there the differences are greater: we may indeed
reach up to 5 plateaux in some cases. We are currently not able to explain this
difference between the two types of datasets (this might be just chance related
to the fact that we have 50 times more simulated than biological datasets).
For both of them, we also observe that the original root may not be inside a
plateau, and that the proportion for which this is observed is approximately the
same (3 cases out of 15 as compared to 17 % respectively) for real or simulated
datasets. We hypothesised that for the real datasets, this might indicate that
the original root is not at its correct position. It would be interesting in future
to try to validate this hypothesis. If it were proved to be true, an interesting,
but hard open problem would be to be able to use as input for a cophylogeny
study unrooted trees instead of rooted one, or even directly the sequences that
were originally used to infer the host and symbiont trees. In this case, we would
then have to, at a same time, infer the trees and their optimal reconciliation.

Re-rooting the symbiont tree at distance k leads in many cases to an increase
in both the values and variance of the dissimilarity measure in the patterns (9
out of 15 biological datasets and all sets of simulations). The dispersion and
the values of dissimilarity are also greater in the simulated datasets than in the
biological ones (here again, this could be an artefact due to the large number of
simulated datasets).

Clearly, the effect in terms of number of plateaux depends on the presence
of host switches since this number was proved to be always one when switches
are not allowed [8]. Perhaps the most interesting open problem now is whether
there is a relation between the number of plateaux observed as well as the level of
dissimilarity among the patterns obtained on one hand, and the number of host
switches in the optimal solutions on the other hand. Actually the relation may
be more subtle, and be related not to the number of switches but to the distance
involved in a switch, where by distance of a switch we mean the evolutionary
distance between the two hosts involved in it. This could be measured in terms
of the number of branches (as is the case in our method Eucalypt) or in terms
of the sum of the branch lengths, that is of estimated evolutionary time.
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Abstract. A wide range of applications, most notably in comparative
genomics, involve the computation of a shortest sorting sequence of oper-
ations for a given permutation, where the set of allowed operations is
fixed beforehand. Such sequences are useful for instance when recon-
structing potential scenarios of evolution between species, or when try-
ing to assess their similarity. We revisit those problems by adding a new
constraint on the sequences to be computed: they must avoid a given set
of forbidden intermediates, which correspond to species that cannot exist
because the mutations that would be involved in their creation are lethal.
We initiate this study by focusing on the case where the only mutations
that can occur are exchanges of any two elements in the permutations,
and give a polynomial time algorithm for solving that problem when the
permutation to sort is an involution.

Keywords: Genome rearrangement · Permutation sorting · Lethal
mutations · Forbidden vertices · Hypercube graphs · st-Connectivity

1 Introduction

Computing distances between permutations, or sequences of operations that
transform them into one another, are two generic problems that arise in a wide
range of applications, including comparative genomics [7], ranking [5], and inter-
connection network design [15]. Those problems are well-known to reduce to
constrained sorting problems of the following form: given a permutation π and
a set S of allowed operations, find a sequence of elements from S that sorts π
and is as short as possible. In the context of comparative genomics, the sequence
to be reconstructed yields a possible scenario of evolution between the genomes
represented by π and the target identity permutation ι, where all permutations
obtained in-between are successive descendants of π (and ancestors of ι). The
many possible choices that exist for S, as well as other constraints or cost func-
tions with which they can be combined, have given rise to a tremendous number
of variants whose algorithmic and mathematical aspects have now been stud-
ied for decades [7]. Specific issues that biologists feel need to be addressed to
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improve the applicability of these results in a biological context include: (1)
the over simplicity of the model (permutations do not take duplications into
account), (2) the rigid definition of allowed operations, which fails to capture
the complexity of evolution, and (3) the complexity of the resulting problems,
where algorithmic hardness results abound even for deceivingly simple prob-
lems. A large body of work has been devoted to addressing those issues, namely
by proposing richer models for genomes, encompassing several operations with
different weights [7]. Some approaches for increasing the reliability of rearrange-
ment methods by adding additional biologically motivated constraints have been
investigated (see for example [2] for conserved intervals, [8] for restricting the set
of allowed inversions and [1] for preserving the number of inversions in the sce-
nario which commute with all common intervals). However, another critical issue
has apparently been overlooked: to the best of our knowledge, no model takes
into account the fact that the solutions it produces may involve allele mutations
that are lethal to the organism on which they act. Lethals are usually a result of
mutations in genes that are essential to growth or development [10]; they have
been known to occur for more than a century [4], as they were first discovered
by Cuénot in 1905 while studying the inheritance of coat colour in mice. As a
consequence, solutions that may be perfectly valid from a mathematical point of
view should nonetheless be rejected on the grounds that some of the intermediate
ancestors they produce are nonviable and can therefore not have had any descen-
dants. We revisit the family of problems mentioned above by adding a natural
constraint which, as far as we know, has not been previously considered in this
form (see e.g. [1,2,8] for connected attempts): namely, the presence of a set of
forbidden intermediate permutations, which the sorting sequence that we seek
must avoid. We refer to this family of problems as guided sorting problems,
since they take additional guidance into account. In this paper we focus our study
on the case where only exchanges (i.e., algebraic transpositions) are allowed; fur-
thermore, we simplify the problem by demanding that the solutions we seek be
optimal in the sense that no shorter sorting sequence of exchanges exists even
when no intermediate permutation is forbidden. We choose to focus on exchanges
because of their connection to the underlying disjoint cycle structure of permu-
tations, which plays an important role in many related sorting problems where
a similar cycle-based approach, using this time the ubiquitous breakpoint graph,
has proved extremely fruitful [14]. Therefore, we believe that progress on this
particular variant will be helpful when attempting to solve related variants based
on more complex operations. Our main contribution in this work is a polynomial
time algorithm for solving guided sorting by exchanges when the permuta-
tion to sort is an involution. We show that, in that specific case, the space of
all feasible sorting sequences admits a suitable description in terms of directed
(s, t)-paths in hypercube graphs. We achieve this result by reducing guided
sorting to the problem of finding directed (s, t)-paths that avoid a prescribed
set F ⊆ V of forbidden vertices. Our main contribution, therefore, consists in
solving this latter problem in time polynomial in just the encoding of F if G
is constrained to be a hypercube graph, which is a novel algorithmic result that
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may be of independent interest. Specific properties that will be described later
on [11,16] allow us to avoid the full construction of that graph, which would lead
to an exponential time algorithm. We should mention that constrained variants
of the (s, t)-connectivity problem have been studied already to some extent.
For instance, already in the ‘70s, motivated by some problems in the field of
automatic software testing and validation, [13] introduced the path avoiding for-
bidden pairs problem, namely, that of finding a directed (s, t)-path in a graph
G = (V,E) that contains at most one vertex from each pair in a prescribed set
F ⊆ V × V of forbidden pairs of vertices. [9] proved that the problem is NP-
complete on DAGs. A number of special cases were shown to admit polynomial
time algorithms, e.g. [18] studied the problem in directed graphs under a skew-
symmetry condition. However, the involved techniques and the related results
do not extend to our problem, for which we are aware of no previously known
algorithm that runs in time polynomial in just the encoding of F .

2 Background and Notation

Our aim is to sort a given permutation π using a predefined set of allowed
operations, specified as a generating set S of the symmetric group Sn. We seek
a sorting sequence that uses only elements from S and: (1) avoids a given set F of
forbidden permutations, i.e. no intermediary permutation produced by applying
the operations specified by the sorting sequence belongs to F , and (2) is optimal,
i.e. no shorter sorting sequence exists for π even if F = ∅. We refer to the
general problem of finding a sorting sequence under these constraints as guided
sorting, and restrict in this paper the allowed operations to exchanges of any
two elements (i.e. algebraic transpositions). For instance, let π = 〈2 3 1 4〉 and
F = {〈1 3 2 4〉, 〈3 2 1 4〉}. Then 〈2 3 1 4〉 �→ 〈2 1 3 4〉 �→ 〈1 2 3 4〉 is a valid
solution since it is optimal and avoids F , but neither 〈2 3 1 4〉 �→ 〈4 3 1 2〉 �→
〈4 3 2 1〉 �→ 〈4 2 3 1〉 �→ 〈1 2 3 4〉 nor 〈2 3 1 4〉 �→ 〈1 3 2 4〉 �→ 〈1 2 3 4〉 can be
accepted: the former is too long, and the latter does not avoid F .

We use standard notions and notation from graph theory (see e.g. [6] for
undefined concepts), using {u, v} (resp. (u, v)) to denote the edge (resp. arc)
between vertices u and v of an undirected (resp. directed) graph G = (V,E).
All graphs we consider are simple: they contain neither loops nor parallel edges.
If F ⊆ V , a directed path p = v0v1 · · · vn avoids F when vi �∈ F for every i.
If S ⊆ V and T ⊆ V , we say that a directed path p goes from S to T in G
when p starts from some s in S and ends at some t in T . When G is directed,
we partition the neighbourhood N(u) of a vertex u into the sets Nout(u) =
{v ∈ V | (u, v) ∈ E} and Nin(u) = {v ∈ V | (v, u) ∈ E}. Some of our graphs
may be vertex-labelled, using any injective mapping � : V → N. For any n ∈ N,
℘n = ℘([n]) denotes the power set of [n]. The hypercube graph on ground set
[n], denoted by Hn, is the graph with vertex set ℘n and in which the arc (U, V )
connects vertices U, V ⊆ [n] if there exists some q ∈ [n] such that U = V \ {q}.
If S, T ∈ ℘n and |S| ≤ |T |, then dS,T = |T | − |S| is the distance between S and
T . Finally, H(i)

n denotes the family of all subsets of ℘n of size i.
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3 Solving Guided Sorting For Involutions

The Cayley graph Γ (Sn, S) of Sn for a given generating set S of Sn contains
a vertex for each permutation in Sn and an edge between any two permuta-
tions that can be obtained from one another using one element from S. A näıve
approach for solving any variant of the guided sorting problem would build
the part of Γ (Sn, S) that is needed (i.e. without the elements of F), then run a
shortest path algorithm to compute an optimal sequence that avoids all elements
of F . This is highly impractical, since the size of Γ is exponential in n.

We describe in this section a polynomial time algorithm in the case of
exchanges if π is an involution, i.e. a permutation such that for each 1 ≤ i ≤ n,
either πi = i or there exists an index j such that πi = j and πj = i. From our
point of view, involutions reduce to collections of disjoint pairs of elements that
each need to be swapped by an exchange until we obtain the identity permuta-
tion, and the only forbidden permutations that could be produced by an optimal
sorting sequence are involutions whose pairs of unsorted elements all appear in
π. Therefore, we can reformulate our guided sorting problem in that setting
as that of finding a directed (π, ι)-path in Hn that avoids all vertices in F , where
the permutation to sort π corresponds to the bottom vertex ∅ of Hn and the
identity permutation ι corresponds to the top vertex [n] of Hn.

We shall focus on the following problem from here on.
Problem: Hy-stCon.

Input: the size n ∈ N of the underlying ground set [n], a family of
forbidden vertices F ⊆ ℘n, a source set S ∈ ℘n and a target set T ∈ ℘n.
Decision-Task: Decide whether there exists a directed path p in Hn

that goes from source S to target T avoiding F ;
Search-Task: Compute a directed path p in Hn that goes from source
S to target T avoiding F , provided that at least one such path exists.
We will show how to solve Hy-stCon in time polynomial in |F| and n. The

algorithm mainly consists in the continuous iteration of two phases:

1. Double-BFS. This phase explores the outgoing neighbourhood of the source
S by a breadth-first search denoted by BFS↑ going from lower to higher levels
of Hn while avoiding the vertices in F . BFS↑ collects a certain (polynomially
bounded) amount of visited vertices. Symmetrically, the incoming neighbour-
hood of the target vertex T is also explored by another breadth-first search
BFS↓ going from higher to lower levels of Hn while avoiding the vertices in F ,
also collecting a certain (polynomially bounded) amount of visited vertices.

2. Compression. If a valid solution has not yet been determined, then a compres-
sion technique is devised in order to shrink the size of the remaining search
space. This is possible thanks to some nice regularities of the search space and
to certain connectivity properties of hypercube graphs [11,16]. This allows us
to reduce the search space in a suitable way and, therefore, to continue with
the Double-BFS phase in order to keep the search towards valid solutions
going.
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Our main contribution is summarized in the following theorem. We devote
the rest of this section to an in-depth description of the algorithms it mentions1.

Theorem 1. Concerning the Hy-stCon problem, the following propositions
hold on any input 〈S, T,F , n〉, where dS,T is the distance between S and T .

1. There exists an algorithm for solving the Decision-Task of Hy-stCon
within O(min(

√|F| dS,T n, |F|) |F|2 d4S,T n2) time.
2. There exists an algorithm for solving the Search-Task of Hy-stCon within

O(min(
√|F| dS,T n, |F|) |F|2 d4S,T n2 + |F|5/2n3/2dS,T ) time.

3.1 On Vertex-Disjoint Paths in Hypercube Graphs

The proof of Theorem 1 relies on connectivity properties of hypercube
graphs [11]. The next result, which proves the existence of a family of certain
vertex-disjoint paths in Hn that are called Lehman-Ron paths, will be particu-
larly useful.

Theorem 2 (Lehman, Ron [16]). Given n,m ∈ N, let R ⊆ H(r)
n and S ⊆ H(s)

n

with |R| = |S| = m and 0 ≤ r < s ≤ n. Assume there exists a bijection
ϕ : S → R such that ϕ(S) ⊂ S for every S ∈ S. Then there exist m vertex-
disjoint directed paths in Hn whose union contains all the subsets in S and R.

We call tuples 〈R,S, ϕ, n〉 that satisfy the hypotheses of Theorem 2 Lehman-
Ron tuples, and we refer to the quantity d = s − r as the distance between
R ⊆ H(r)

n and S ⊆ H(s)
n . An elementary inductive proof of Theorem 2 is in [16].

A careful and in-depth analysis of their proof, from the algorithmic perspective,
yields a polynomial time algorithm for computing all the Lehman-Ron paths.

Theorem 3. There exists an algorithm for computing all Lehman-Ron paths
within time O

(
m5/2n3/2d

)
on any Lehman-Ron input 〈R,S, ϕ, n〉 with |R| =

|S| = m, where d is the distance between R and S and n is the size of the
underlying ground set.

In an extended version (i.e. [3]) we provide all the details of the above mentioned
algorithm as well as a proof of the time complexity stated in Theorem 3, in which
Menger’s vertex-connectivity theorem [6] and Hopcroft-Karp’s algorithm [12] for
maximum cardinality matching in undirected bipartite graphs play a major role.

3.2 A Polynomial Time Algorithm for Solving Hy-stCon

We now describe a polynomial time algorithm for solving Hy-stCon, called
solve Hy-stCon(), which takes as input an instance 〈S, T,F , n〉 of Hy-stCon,
and returns a pair 〈YES, p〉 where p is a directed path in Hn that goes from
source S to target T avoiding F if such a path exists (otherwise, the algorithm

1 See [3], Appendix B2 for correctness and Appendix B3 for complexity.
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Algorithm 1. solving the Hy-stCon problem.
Procedure solve Hy-stCon(S, T, F , n)

Input: an instance 〈S, T, F , n〉 of Hy-stCon.
Output: a pair 〈YES, p〉 where the path p is a solution to Hy-stCon if such

a path exists, NO otherwise.
1 dS,T ← |T | − |S|; // let dS,T be the distance between S and T
2 S ← {S}; �↑ ← 0; // initialize the frontier S and its level counter �↑
3 T ← {T}; �↓ ← 0; // initialize the frontier T and its level counter �↓
4 while TRUE do
5 〈S, T , �↑, �↓〉 ← double-bfs phase(S, T , F , �↑, �↓, dS,T , n);
6 if S = ∅ OR T = ∅ OR (�↑ + �↓ = dS,T AND S ∩ T = ∅) then
7 return NO ;

8 if �↑ + �↓ = dS,T AND S ∩ T �= ∅ then
9 p ← reconstruct path(S, T , n);

10 return 〈YES, p〉;
11 returned val ← compression phase(S, T , F , �↑, �↓, dS,T , n);
12 if returned val = 〈YES, p〉 then return p;
13 else T ← returned val;

simply returns NO). Algorithm 1 shows the pseudo-code for that procedure. The
rationale at the base of solve Hy-stCon() consists in the continuous iteration
of two major phases: double-bfs phase() (line 5) and compression phase()
(line 11). Throughout computation, both phases alternate repeatedly until a final
state of termination is eventually reached (either at line 7, line 10 or line 12).
At that point, the algorithm either returns a pair 〈YES, p〉 where p is the sought
directed path, or a negative response NO instead2. We now describe both phases
in more detail, and give the corresponding pseudo-code.

Breadth-First Search Phases. The first search BFS↑ starts from the source vertex
S and moves upward, from lower to higher levels of Hn. Meanwhile, it collects
a certain (polynomially bounded) amount of vertices that do not lie in F . In
particular, at the end of any BFS↑ phase, the number of collected vertices will
always lie between |F| dS,T + 1 and |F| dS,T n (see line 1 of bfs phase()). The
set S of vertices collected at the end of BFS↑ is called the (source) frontier of
BFS↑. All vertices within S have the same cardinality, i.e. |X1| = |X2| for every
X1,X2 ∈ S. Also, the procedure keeps track of the highest level of depth �↑ that
is reached during BFS↑. Thus, �↑ corresponds to the distance between the source
vertex S and the current frontier S, formally, �↑ = |X| − |S| for every X ∈ S.
Since at the beginning of the computation BFS↑ starts from the source vertex S,
solve Hy-stCon() initializes S to {S} and �↑ to 0 at line 2.

Similarly, the second search BFS↓ starts from the target vertex T and moves
downward, from higher to lower levels of Hn, also collecting a certain (polyno-
mially bounded) amount of vertices that do not lie in F . As in the previous case,

2 See [3], Appendix B2-B3 for proofs of correctness and complexity.
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Algorithm 2. Breadth-First-Search phases of solve Hy-stCon().
Procedure double-bfs phase(S, T , F , �↑, �↓, dS,T , n)

1 〈S∗, �∗
↑〉 ← bfs phase(S, F , �↑, �↓, out, dS,T , n); // BFS↑ phase

2 〈T ∗, �∗
↓〉 ← bfs phase(T , F , �↓, �∗

↑, in, dS,T , n); // BFS↓ phase
3 return 〈S∗, T ∗, �∗

↑, �∗
↓〉;

SubProcedure bfs phase(X , F , �x, �y, drt, dS,T , n)
1 while 1 ≤ |X | ≤ |F| dS,T AND �x + �y < dS,T do
2 X ← next step bfs(X , F , drt, n);
3 �x ← �x + 1;

4 return 〈X , �x〉;
SubProcedure next step bfs(X , F , drt, n)

1 X ′ ← ∅;
2 foreach v ∈ X do
3 X ′ ← X ′ ∪ N drt(v) \ F ; // N drt is N in if drt = in, otherwise it is N out

4 return X ′;

this amount will always lie between |F| dS,T + 1 and |F| dS,T n. The set T of
vertices collected at the end of BFS↓ is called the (target) frontier of BFS↓. All
vertices within T have the same cardinality. Also, the procedure keeps track of
the lowest level of depth �↓ that BFS↓ has reached. Thus, �↓ corresponds to the
distance between the target vertex T and the frontier T , so that �↓ = |T | − |X|
for every X ∈ T . Since at the beginning of the computation, BFS↓ starts from
the target vertex T , solve Hy-stCon() initializes T = {T} and �↓ = 0 at line 3.
Figure 1 provides an illustration of double-bfs phase().

In summary, after any round of double-bfs phase(), we are left with two
(possibly empty) frontier sets S and T . In Algorithm 1, whenever S = ∅ or T = ∅
holds at line 6, then at least one frontier set could not proceed one level further
in Hn while avoiding F , and thus the procedure halts by returning NO at line 7.
Similarly, whenever �↑+�↓ = dS,T and S∩T = ∅ holds at line 6, the computation
halts by returning NO at line 7 — the underlying intuition being that S and T
have finally reached one another’s level of depth without intersecting each other,
which means that Hn contains no directed path from S to T that avoids F3.

On the other hand, if both �↑ + �↓ = dS,T and S ∩ T �= ∅ hold at line 8, then
we can prove that for every S′ ∈ S, there exists at least one directed path in Hn

that goes from the source S to S′ avoiding F . Similarly, for every T ′ ∈ T , there
exists at least one directed path in Hn that goes from T ′ to target T avoiding F .
Therefore, whenever S ∩ T �= ∅, the algorithm is in the right position to recon-
struct a directed path p in Hn that goes from source S to S ∩T and from S ∩T
to target T avoiding F (line 9). In practice, the reconstruction can be imple-
mented by maintaining a map throughout the computation, which associates to
every vertex v (possibly visited during the BFSs) the parent vertex, parent(v),

3 See [3], Appendix B2 for correctness.
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1, 2, 3

1,2 1, 3 2,3

1 2 3

∅

Fig. 1. A double bfs phase() on H3 that starts from S = ∅ and T = {1, 2, 3}. The
forbidden vertices are F = {{2}, {3}, {1, 2}, {2, 3}}, while the edges explored by BFS↑
and BFS↓ are (∅, {1}) and ({1, 2, 3}, {1, 3}) (respectively).
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T )(X (maxi)

S , T )

...

Fig. 2. The frontier sets considered during the compression phase().

which led to discover v first. As soon as p gets constructed, solve Hy-stCon()
returns 〈YES, p〉 at line 10, and the computation halts.

Compression Phase. After double-bfs phase() has completed, the procedure
solve Hy-stCon() also needs to handle the case where S, T �= ∅ and �↓ + �↑ <
dS,T . The phase that starts at that point is named compression phase() (see
Algorithm 3). This procedure takes as input a tuple 〈S, T ,F , �↑, �↓, dS,T , n〉,
where S and T are the current frontier sets. Recall that |T | > |F| dS,T holds
due to line 1 of bfs phase(). Also, F ⊆ ℘n is the set of forbidden vertices; �↑
is the level counter of S and �↓ is that of T ; finally dS,T is the distance between
the source S and the target T , and n is the size of the ground set. The output
returned by compression phase() is either a path p that goes from the source
S to the target T avoiding F or a subset T ′ ⊂ T such that the following two
basic properties hold: (1) |T ′| ≤ |F| dS,T , and (2) if p is any directed path in Hn

that goes from S to T avoiding F , then p goes from S to T ′.
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Algorithm 3. Compression phase of solve Hy-stCon().
Procedure compression phase(S, T , F , �↑, �↓, dS,T , n)

1 T ′ ← ∅;
2 while TRUE do
3 G ← construct bipartite graph(S, T , n);
4 M ← compute max matching(G, |F| + 1);
5 if |M| > |F| then
6 MS ← {X ∈ S | ∃ Y ∈ T s.t (X, Y ) ∈ M};
7 MT ← {Y ∈ T | ∃ X ∈ S s.t. (X, Y ) ∈ M};
8 {p1, . . . , p|M|} ← compute Lehman-Ron paths(MS , MT , M, n);

9 p ← reconstruct path(S, T , {pi}|M|
i=1 , n);

10 return 〈YES, p〉;
11 X ← compute min vertex cover(G, M);
12 XS ← X ∩ S; XT ← X ∩ T ;
13 T ′ ← T ′ ∪ XT ;
14 〈S, T , �↑, �↓〉 ← double-bfs phase(XS , T , F , �↑, �↓, dS,T , n);
15 if S = ∅ OR (�↓ + �↑ = dS,T AND S ∩ T = ∅ ) then
16 return T ′;

17 if �↑ + �↓ = dS,T AND S ∩ T �= ∅ then
18 p ← reconstruct path(S, T , n);
19 return 〈YES, p〉;

This frontier set T ′ is dubbed the compression of T . The underlying rationale
goes as follows. On one hand, because of (1), it is possible to keep the search
going on by applying yet another round of double-bfs phase() on input S
and T ′ (in fact, the size of T has been compressed down to |T ′| ≤ |F| dS,T ,
thus matching the threshold condition “|X | ≤ |F| dS,T ” checked at line 1 of
bfs phase()). On the other hand, because of (2), it is indeed sufficient to seek
for a directed path in Hn that goes from S to T ′ avoiding F , namely, the search
can actually forget about T \T ′ because it leads to a dead end. We now describe
compression phase() in more details, and give a graphical summary in Fig. 2.
The procedure repeatedly builds an undirected bipartite graph G = (VG , EG),
where VG = S ∪ T and every vertex U ∈ S is adjacent to a vertex V ∈ T if and
only if U ⊂ V . It then uses the procedure compute max matching() to find a
matching M of size |M| = min(m∗, |F|+1), where m∗ denotes the size of a max-
imum cardinality matching of G. In practice, this step can be implemented in the
same manner as a maximum cardinality matching procedure, e.g. as Hopcroft-
Karp’s algorithm [12], although with the following basic variation: if the size of
the augmenting matching M eventually reaches the cut-off value |F| + 1, then
compute max matching() returns M and halts (i.e. even if m∗ > |F| + 1). The
next course of action depends on |M|:

1. If |M| = |F| + 1, then the procedure relies on Theorem 3 to compute a
family p1, p2, . . . , p|M| of |M| vertex-disjoint directed paths in Hn that go
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from S to T . In order to do that, the procedure considers the subset MS ⊆ S
(resp. MT ⊆ T ) of all vertices in S (resp. in T ) that are incident to some
edge in M (lines 6 and 7). Notice that the matching M can be viewed as a
bijection between MS and MT . Then, the algorithm underlying Theorem 3
gets invoked on input 〈MS ,MT ,M, n〉 (line 8). Once all the Lehman-Ron
paths p1, p2, . . . , p|M| have been found, it is then possible to reconstruct the
sought directed path p in Hn that goes from source S to target T avoiding
F (line 9). In fact, since |M| > |F| by hypothesis, and since p1, p2, . . . , p|M|
are distinct and pairwise vertex-disjoint, there must exist at least one path
pi that goes from S to T avoiding F . It is therefore sufficient to find such
a path pi = v0v1 · · · vk by direct inspection. At that point, it is possible to
reconstruct a path p going from S to v0 (because v0 ∈ S), as well as a path
going from vk to T (because vk ∈ T ). As already mentioned, in practice, the
reconstruction can be implemented by maintaining a map that associates to
every vertex v (eventually visited during the BFSs) the parent vertex that
had led to discover v first. Then, 〈YES, p〉 is returned at line 10.

2. If |M| ≤ |F|, then the compression phase() aims to compress the size of T
down to |T ′| ≤ |F| dS,T as follows. Notice that in this case M is a maximum
cardinality matching of G, because |M| ≤ |F|. So, the algorithm computes
a minimum cardinality vertex-cover X of G at line 11, whose size is |M| by
König’s theorem [6]. The algorithm then proceeds at line 12 by considering
the set XS = X ∩ S (resp. XT = X ∩ T ) of all vertices that lie both in the
vertex-cover X and in the frontier set S (resp. T ). Here, it is crucial to notice
that both |XS | ≤ |F| and |XT | ≤ |F| hold, because |X | = |M| ≤ |F|. The
fact that, since X is a vertex-cover of G, any directed path in Hn that goes
from S to T must go either from XS to T or from S \ XS to XT plays a
pivotal role. Stated otherwise, there exists no directed path in Hn that goes
from S \XS to T \XT , simply because X is a vertex cover of G. At that point,
the compression T ′ gets enriched with XT at line 13.
Then, compression phase() seeks a directed path in Hn that eventually

goes from XS to T . This is done at line 14 by running double-bfs phase()
on 〈XS , T ,F , �↑, �↓, dS,T , n〉. Since |XS | ≤ |F|, that execution results into
an update of both the frontier set S and of its level counter �↑. Let S(i+1)

be the updated value of S and let �
(i+1)
↑ be that of �↑. Note that, since

|T | > |F| dS,T holds as a pre-condition of compression phase(), neither T
nor �↓ are ever updated at line 14. Upon completion of this supplementary
double-bfs phase(), if S(i+1) = ∅ or both �

(i+1)
↑ +�↓ = dS,T and S(i+1)∩T =

∅ at line 15, then T ′ is returned at line 16 of compression phase().
Otherwise, if �

(i+1)
↑ + �↓ = dS,T and S(i+1) ∩ T �= ∅ at line 17, the sought

directed path p in Hn that goes from source S to target T avoiding F can
be reconstructed from S(i+1) and T at line 18, so that compression phase()
returns 〈YES, p〉 and halts soon after at line 19.

Otherwise, if S(i+1) �= ∅ and �
(i+1)
↑ + �↓ < dS,T , the next iteration will run

on the novel frontier set S(i+1) and its updated level counter �
(i+1)
↑ . It is not
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difficult to prove4 that each iteration increases �↑ by at least one unit, so that
the while-loop at line 2 of compression phase() can be iterated at most
dS,T times overall. In particular, this fact implies that |T ′| ≤ |F| dS,T always
holds at line 16 of compression phase().

Figure 2 illustrates the family of all frontier sets considered throughout com-
pression phase(), where the following notation is assumed: maxi is the total
number of iterations of the while-loop at line 2 of compression phase(), X (i)

is the vertex-cover computed at the ith iteration of line 11, X (i)
S and X (i)

T are the
sets computed at the ith iteration of line 12, and S(i) is the frontier set computed
at the ith iteration of line 14. The compression of T (possibly returned at line 16)
is T ′ =

⋃maxi

i=1 X (i)
T .

3.3 A Remark on Decision Versus Search

Algorithm 1 tackles the Search-Task of Hy-stCon. If we merely want to
answer the Decision-Task instead, we can simplify the algorithm by immedi-
ately returning YES if |M| > |F| at line 5 of compression phase(). This is
because in that case, Theorem 2 guarantees the existence of a family of |M| > |F|
vertex-disjoint paths in Hn that go from the current source frontier S to the tar-
get frontier T , which suffices to conclude that at least one of those paths avoids F .
This simplification improves the time complexity of our algorithm for solving the
Decision-Task by a polynomial factor over that for the Search-Task.

4 Conclusion

With the intention of integrating more biologically relevant constraints into clas-
sical genome rearrangement problems, we introduced in this paper the guided
sorting problem. We broadly define it as the problem of transforming two
genomes into one another using as few operations as possible from a given fixed
set of allowed operations while avoiding a set of nonviable genomes. We gave a
polynomial time algorithm for solving this problem in the case where genomes
are represented by permutations, under the assumptions that (1) permutations
can only be modified by exchanging any two elements, (2) the sequence to seek
must be optimal, and (3) the permutation to sort is an involution.

Many questions remain open, most notably that of the computational com-
plexity of the guided sorting problem, whether under assumptions (1) and
(2) or in a more general setting (i.e., using structures other than permutations,
operations other than exchanges, or allowing sequences to be “as short as possi-
ble” instead of optimal). One could also investigate “implicit” representations for
the set of forbidden intermediate permutations, e.g. all permutations that avoid
a given (set of) pattern(s), or that belong to a specific conjugacy class. Aside
from complexity issues, future work shall also focus on extending the approach

4 See [3], Appendix B2.
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we proposed to other families of instances of the guided sorting problem, and
identifying other tractable (or intractable) cases or variants of it; for instance,
we plan to extend our algorithmic results to the family of graphs satisfying the
shadow-matching condition [17].
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Abstract. With the availability of large amounts of dna data, exact
matching of nucleotide sequences has become an important application in
modern computational biology and in meta-genomics. In the last decade
several efficient solutions for the exact string matching problem have been
developed and most of them are very fast in practical cases. However
when the length of the pattern is short or the alphabet size is small (as
in the case of dna sequences) the problem becomes more difficult to be
solved efficiently. In this paper we review and compare the most efficient
solutions for the online exact matching problem appeared in the latest
years when applied for searching on genome sequences. In addition we
also propose some new variants of an efficient string matching algorithm.
From our experimental results it turns out that the newly presented
variants are very fast in most practical cases.

Keywords: Exact sequence analysis · String matching · Experimental
algorithms · Automata based solution

1 Introduction

In molecular biology, nucleotide sequences are the fundamental information for
each species and a comparison between such sequences is an interesting and basic
problem. Generally biological information is stored in strings of nucleic acids
(dna, rna) or amino acids (proteins). With the availability of large amounts of
dna data, matching of nucleotide sequences has become an important applica-
tion and there is an increasing demand for fast computer methods for analysis
and data retrieval [15]. There are various kinds of comparison tools which pro-
vide aligning and approximate matching (see for instance [15,19]), however most
of them are based on exact matching in order to speed up the process. Moreover
exact string matching is widely used in computational biology for a variety of
other tasks. Thus the need for fast matching algorithms on dna sequences.

In this article we consider the problem of finding all the (possibly overlapping)
occurrences of a pattern P of length m in a text T of length n, both drawn over
an alphabet Σ of size σ. We focus on the case where the text T and the pattern
P are dna sequences over a finite alphabet Σ = {a, c, g, t} of constant size σ = 4.
We are interested here in the problem where the pattern is given first and can
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then be searched in various texts, thus a preprocessing phase is allowed (and in
most cases suggested) on the pattern. This problem is referred in literature as
the exact online string matching problem.

The problem of searching dna sequences has been extensively studied in the
last years and its importance in modern biology has led to produce much works.
In the field of single string matching, Kalsi et al. [13] performed an experimental
comparison of the most efficient algorithms for searching biological sequences. In
addition in [8,11] Faro and Lecroq presented an extensive evaluation of (almost)
all existing exact string matching algorithms (up to 2010) under various condi-
tions, including alphabet of four characters and dna sequences. In 2002 Navarro
and Raffinot presented a comparison [18] of all matching algorithms on biologi-
cal sequences, including multiple pattern matching algorithms. More recently, in
2011, Kouzinopoulos and Margaritis conducted another experimental compari-
son [14] taking into account the most recent solutions.

In recent years a lot of work has been made in this field and several algorithms
can be considered as potential candidates to be among the fastest solutions to
search genome sequences.

In this paper we present a brief survey of the most efficient solutions to
the string matching problem presented in the last few years and compare them
in the task of searching genome sequences. In addition we also present some
efficient variants of one of the previous presented algorithms and compare them,
in terms of running times, in order to evaluate their performances under various
conditions. From our experimental results it turns out that some algorithms
appeared in the latest years are among the fastest solutions for searching genome
sequences. In addition the newly presented variants obtain the best results in
almost all the practical cases.

The paper is organized as follows. In Sect. 2 we review the previous results
known in literature based and describe the latest and most efficient solutions for
searching genome sequences, including the BSDM algorithm. Then in Sect. 3 we
present some new variants of the BSDM algorithm. In Sect. 4 we compare the
newly presented solutions with the most efficient algorithms known in literature.
We draw our conclusions in Sect. 5.

2 Fast Algorithms for Searching Genome Sequences

Basically a string matching algorithm uses a window to scan the text. The size
of this window is equal to the length of the pattern. It first aligns the left ends of
the window and the text. Then it checks if the pattern occurs in the window (this
specific work is called an attempt) and then shifts the window to the right. It
repeats the same procedure again until the right end of the window goes beyond
the right end of the text.

When a similarity has been detected a naive check of the occurrence is per-
formed. In order to detect the similarity between the pattern and the text window
efficient algorithms use bit-parallelism or character comparisons. Both techniques
can be improved by using condensed alphabets and hashing.
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In particular the pattern P is arranged using a condensed alphabet. In such
a representation groups of q adjacent characters of the pattern are condensed in
a single character by using a suitable hash function h : Σq → {0, . . . ,max}, for
a constant value max. In practice, the value of q varies with m and the size of
the alphabet and the value of the constant max varies with the memory space
available.

The bit-parallelism technique [1] takes advantage of the intrinsic parallelism
of the bit operations inside a computer word, allowing to cut down the number
of operations that an algorithm performs by a factor up to ω, where ω is the
number of bits in a computer word. This technique is particularly suitable for
simulating non-deterministic automata for a single pattern [1] and for multiple
patterns [3].

In the following sections we briefly review some of the most recent and effi-
cient solutions for the exact string matching problem.

The Backward DAWG Matching Algorithm

One of the first application of the suffix automaton to get optimal pattern match-
ing algorithms on the average was presented in [4]. The algorithm which makes
use of the suffix automaton of the reverse pattern is called Backward-DAWG-
Matching algorithm (BDM). Such algorithm moves a window of size m on the
text. For each new position of the window, the automaton of the reverse of P
is used to search for a factor of P from the right to the left of the window. The
basic idea of the BDM algorithm is that if the backward search failed on a letter
c after the reading of a word u then cu is not a factor of p and moving the begin-
ning of the window just after c is secure. If a suffix of length m is recognized
then an occurrence of the pattern was found.

The Backward Nondeterministic DAWG Matching Algorithm

The BNDM algorithm [17] simulates the suffix automaton for P r (the reverse
of P ) with the bit-parallelism technique, for a given string P of length m. The
bit-parallel representation uses an array B of |Σ| bit-vectors, each of size m,
where the i-th bit of B[c] is set if and only if P [i] = c, for c ∈ Σ, 0 ≤ i < m.
Automaton configurations are then encoded as a bit-vector D of m bits, where
each bit corresponds to a state of the suffix automaton (the initial state does
not need to be represented, as it is always active). In this context the i-th bit of
D is set iff the corresponding state is active. D is initialized to 1m and the first
transition on character c is implemented as D ← (D & B[c]). Any subsequent
transition on character c can be implemented as D ← ((D � 1) & B[c]) .

The BNDM Algorithm works by shifting a window of length m over the text.
Specifically, for each window alignment, it searches the pattern by scanning the
current window backwards and updating the automaton configuration accord-
ingly. Each time a suffix of P r (i.e., a prefix of P ) is found, namely when prior
to the left shift the m-th bit of D & B[c] is set, the window position is recorded.
A search ends when either D becomes zero (i.e., when no further prefixes of P
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can be found) or the algorithm has performed m iterations (i.e., when a match
has been found). The window is then shifted to the start position of the longest
recognized proper prefix.

In [7] an effective variant of the BNDM algorithm was presented. Such vari-
ant, called Forward-BNDM (FBNDM), takes into account the forward character
(i.e. the character which is just after the current window of the text) for com-
puting the shift advancement. This leads to a more efficient solution especially
in the case of short pattern. The FBNDM algorithm has been later improved in
many ways.

The BNDM Algorithm with Extended Shift

Durian et al. presented in [6] another efficient algorithm for simulating the suffix
automaton in the case of long patterns. The algorithm is called BNDM with
eXtended Shift (BXS). The idea is to cut the pattern into �m/ω� consecutive
substrings of length w except for the rightmost piece which may be shorter.
Then the substrings are superimposed getting a superimposed pattern of length
ω. In each position of the superimposed pattern a character from any piece
(in corresponding position) is accepted. Then a modified version of BNDM is
used for searching consecutive occurrences of the superimposed pattern using
bit vectors of length ω but still shifting the pattern by up to m positions. The
main modification in the automaton simulation consists in moving the rightmost
bit, when set, to the first position of the bit array, thus simulating a circular
automaton. Like in several other cases, the BXS algorithm works as a filter
algorithm, thus an additional verification phase is needed when a candidate
occurrence has been located.

The Factorized BNDM Algorithm

Cantone et al. presented in [2] an alternative technique, still suitable for bit-
parallelism, to encode the nondeterministic suffix automaton of a given string
in a more compact way. Their encoding is based on factorizations of strings in
which no character occurs more than once in any factor. It turns out that the
nondeterministic automaton can be encoded with k bits, where k is the size of
the factorization. Though in the worst case k = m, on the average k is much
smaller than m, making it possible to encode large automata in a single or
few computer words. As a consequence, their bit-parallel variant of the BNDM,
called Factorized BNDM algorithm (KBNDM) based on such approach tends to
be faster in the case of sufficiently long patterns.

2.1 The Backward SNR DWAG Matching

Faro and Lecroq presented in [9] a fast and simple variant of the BDM algorithm
which does not make use of bit parallelism still using a compact representation
of the underlying automaton. It consist in computing the longest substring of
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the pattern with no repetitions, i.e. in which each character is repeated at most
once, and in constructing the suffix automaton of such a substring. This leads
to a simple encoding and, by convenient alphabet transformations, to quite long
automata. The algorithm is named Backward-SNR-DAWG-Matching (BSDM),
where snr is the acronym of substring with no repetitions.

The main interesting aspect of such technique is that only an integer value
between 0 and m is needed to represent the whole automaton. Since each char-
acter is repeated at most once we need only to maintain the information about
the current active state, if one.

However it turns out that in many practical cases the length of the maximal
snr is not large enough if compared with the size of the pattern. This happens
especially for patterns over small alphabets, as in the case of genome sequences,
or for patterns with characters occurring many times, as in the case of a natural
language text. In order to allow longer snr it is convenient to use a condensed
alphabet whose characters are obtained by combining groups of q characters,
for a fixed value q. It turns out that the length of the maximal snr, though
quite less than m in most cases, is quite larger than the size of a computer word
(which typically is 32 or 64). This leads to larger shift in a suffix automata based
algorithm.

Since BSDM is a filter based algorithm, as in many other cases, a naive test
is needed when a candidate occurrences of the pattern is found.

The Two-Way Shift-And Algorithm

In [5] Durian et al. presented the Two-Way Shift-Or algorithm (TSO) which
extends the original Shift-And algorithm [1] and obtains more effective results
in practical cases. Specifically it uses the same vector B as the Shift-Or algorithm
but traverses the text with a fixed step of m positions. At each step i, an align-
ment window T [i − m + 1...i + m − 1] is inspected. The positions T [i...i + m − 1]
correspond to the end positions of possible matches and at the same time, to
the positions of the state vector D. Inspection starts at the character T [i], and
it proceeds with a pair of characters T [i − j] and T [i + j] until corresponding
bits in D become 1m or j = m holds. In TSO, the testing of the state vector D
is slightly faster, when the bit-vectors are seated to the highest order bits. The
Two-Way Shift-And algorithm (TSA) is the dual of TSO which turns out to be
faster in practical cases, especially when implemented with q enrolling characters
(TSAq).

Such two-way algorithms check text in alignment windows of m consecutive
text positions, thus a mismatch can be detected immediately based on the first
examined text character. In the best case the performance can be O(n/m). On
the other hand in the worst case all text characters except the last characters in
each alignment window are examined twice.

The main problem associated with these solutions is that they are not able
to retrive the positions of the occurrences of the pattern but only its number. A
modification of such solutions which retrieve all positions of the occurrences can
be obtained but with slower performance.
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3 New Improvements of the BSDM Algorithm

In this section we propose some new variants of the BSDM algorithm described
above, which turns out to be one of the best solutions for searching dna
sequences. Specifically we focus on reducing the number of false positives
detected during the searching phase in order to reduce the number of naive
tests. This can be done by using different and more effective hash function in
the implementation of the condensed alphabet. In addition we use an effective
technique recently introduced in [9] consisting in the use of several sliding win-
dows while searching the pattern along the text, and which is able to speed up
the whole process up to a factor of 1.3 under suitable conditions.

3.1 Improved Hash Functions for Condensed Alphabets

As we observed above, most filtering algorithms obtain better performances when
used for searching sequences over large alphabets. When the size of the underly-
ing alphabet is small it is possible to extend it by arranging the pattern P using
a condensed alphabet. In such a representation groups of q adjacent characters
of the pattern are condensed in a single character by using a suitable hash func-
tion h : Σq → {0, . . . ,max}, for a constant value max. In practice, the value of
q varies with m and the size of the alphabet and the value of the constant max
varies with the memory space available.1 Thus a pattern P of length m translates
in a condensed pattern P (q) of length m − q + 1 where, for 0 ≤ i ≤ m − q

P (q)[i] = h(P [i . . i + q − 1]).

The hashing method adopted in standard implementations of condensed
alphabets is based on a shift-and-addition procedure. Specifically, if x ∈ Σq,
with x = x[0 . . q − 1], then h(x) can be efficiently computed by

h(x) =
q−1∑

i=0

((P [i] & M) � k(q − i − 1)) (1)

where k is a constant and M is a bit-mask both dependent on q. In practice k is
set to 	ω/q
 and M is set to 0ω−k1k, where ω is the size of the register used for
hashing q-grams. The hash function shown in (1) has been used, for instance,
in the Hashq algorithm [16] and in the Wu-Manber algorithm [20] for the exact
multiple pattern matching problem.

Depending on the underlying alphabet, better hash function could be adopted
in order to reduce the collisions in the hash value associated with different groups
of characters. For instance the dna alphabet is composed by the four characters
{a, c, g, t}, whose ascii codes are {01000001, 01000011, 01000111, 01010100}.
Using k = 2 and a suitable masking leads to a perfect hashing. However for
larger alphabets or when q is greater than 5 only a resemblance can be used.
1 In our implementation we use a value of max equal to 216 and use a 16-bit register

for each hash value.
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In our analysis we took into account six different hash functions (including
the perfect hash) and evaluated them in terms of number of collisions and per-
formances. Specifically we considered the following set of hash functions, where
we set for simplicity the value of q to 4. However it is easy to extend them to
greater values of the parameter q

1. Shift-Addition (a � 6) + (b � 4) + (c � 2) + d 5 %
2. Short-Shift-Addition (a � 3) + (b � 2) + (c � 1) + d 38 %
3. Addition a + b + c + d 88 %
4. Shift-Substract (a � 6) − (b � 4) − (c � 2) − d 5 %
5. Shift-And (a � 6) and (b � 4) and (c � 2) and d 99 %
6. Shift-Or (a � 6) or (b � 4) or (c � 2) or d 95 %
7. Shift-Xor (a � 6) xor (b � 4) xor (c � 2) xor d 3 %
8. Perfect-Hash (α(a) � 6) + (α(b) � 4) + (α(c) � 2) + α(d) 0 %

Where α(c) = (c and 6) � 1, for each c in the set {a, c, g, t}.
From our analysis it turns out that the hash functions 1. and 3. obtain

up to 5.5% of collisions. When the length of the shift decreases (function 2.) the
number of collisions increases to 38% and reach the percentage of 88% when
the shift is reduced to 0. This percentage rises up to 99.2% for hash functions 5.
and 6. where the bitwise and and or are used in place of arithmetic operations.
However it decreases to 3.2% in the case of function 7. where the bitwise xor is
used. Of course the number of collision is 0 in the case of function 8.

Table 1 shows the evaluation, in terms of running times, of the BSDM4 algo-
rithm when the 8 different hash functions presented above are used. In the table
running times are expressed in milliseconds and has been computed as the mean
of 500 searches on a genome sequence of 5 Mb.2 It turns out that the number
of collisions generated by the hash function partially reflects the performance
of the respective algorithm. However it is also affected by the number of oper-
ations needed for computing the hash value. Thus the variant using function 8.

Table 1. Experimental evaluation of the BSDM4 algorithm implemented with 8 differ-
ent hash functions. Running times are expressed in milliseconds and has been computed
as the mean of 500 searches on a genome sequence of 5 Mb.

m 4 8 16 32 64 128 256 512 1024 2048

Func.1 8.41 3.70 2.78 2.35 2.26 2.21 2.15 2.09 2.13 2.12

Func.2 8.82 3.95 3.03 2.63 2.49 2.46 2.38 2.38 2.35 2.36

Func.3 11.08 6.96 6.06 5.77 5.55 5.35 5.14 5.12 4.93 4.81

Func.4 8.32 3.69 2.77 2.36 2.25 2.20 2.14 2.06 2.11 2.12

Func.5 42.51 36.21 27.11 18.62 16.66 17.32 16.84 16.99 17.09 16.84

Func.6 19.58 14.27 11.24 9.09 8.01 7.45 6.73 6.44 6.10 5.98

Func.7 7.96 3.56 2.67 2.35 2.22 2.14 2.06 2.08 2.07 2.06

Func.8 10.93 4.47 3.43 2.92 2.77 2.71 2.62 2.61 2.58 2.58

2 The details of experimental settings can be found in Sect. 4.
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does not obtain the best results since the number of operation is doubled. Best
results are obtained in all cases by the variant using the xor bitwise operation (i.e.
function n.7).

3.2 A Multiple Sliding Windows Variant of the BSDM Algorithm

In this section we describe a multiple windows variant of the BSDM algorithm
which improves the practical performances of the original solution. The general
approach, introduced for the first time in [10], can be seen as a filtering method
which consists in processing k different windows of the text at the same time,
with k ≥ 2.

Suppose P is a pattern of length m and T is a text of length n. Without loss in
generality we can suppose that n can be divided by k, otherwise the rightmost
(nmodk) characters of the text could be associated with the last window (as
described below). Moreover we assume for simplicity that m < n/k and that the
value k is even.

Under the above assumptions the approach can be summarized as follows:
if the algorithm searches for the pattern P in T using a text window of size m,
then partition the text in k/2 partially overlapping substrings, T0, T1, . . . , Tk/2−1,
where Ti is the substring T [2i�n/k� . . 2(i+1)n/k+m−2], for i = 0, . . . , (k−1)/2,
and Tk/2−1 (the last window) is set to T [n − (2n/k) . . n − 1].

Then process simultaneously the k different text windows, w0, w1, . . . , wk−1,
where we set w2i = T [s2i−m+1 . . s2i] (and call them left windows) and w2i+1 =
T [s2i+1 . . s2i+1 + m − 1] (and call them right windows), for i = 0, . . . , (k − 2)/2.

The couple of windows (w2i, w2i+1), for i = 0, . . . , (k − 2)/2, is used to
process the substring of the text Ti. Specifically the window w2i starts from
position s2i = (2n/k)i + m − 1 of T and slides from left to right, while window
w2i+1 starts from position s2i+1 = (2n/k)(i + 1) − 1 of T and slides from right
to left (the window wk−1 starts from position sk−1 = n − m). For each couple
of windows (w2i, w2i+1) the sliding process ends when the window w2i slides
over the window w2i+1, i.e. when s2i > s2i+1 + m − 1. It is easy to prove that
no candidate occurrence is left by the algorithm due to the m − 1 overlapping
characters between adjacent substrings ti and ti+1, for i = 0, . . . , k − 2.

Fig. 1 presents a scheme of the search iteration of the multiple sliding windows
matcher for k = 1, 2 and 4. It has been proved in [10] that this approach can
be applied to all string matching algorithms, including the BSDM algorithm.
Moreover it can be noticed that the worst case time complexity of the original
algorithm does not degrade with the application of the multiple sliding windows
approach.

On the other hand it turns out, when the alphabet is small as in the case
of dna sequences, that the performances of the original algorithm degrade by
applying the new method, since the probability to find mixed candidate positions
increases substantially.
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(C)
︸ ︷︷ ︸

w0

s0 →
︸ ︷︷ ︸

w1

s1←
w2︷ ︸︸ ︷

s2 →
w3︷ ︸︸ ︷

s3←

(B)
︸ ︷︷ ︸

w0

s0 →
w1︷ ︸︸ ︷

s1←

(A)
︸ ︷︷ ︸

w0

s0 →

Fig. 1. A general scheme for the multiple sliding windows approach with (A) a single
window, (B) two windows and (C) four windows (w1 and w2 are overlapping).

4 Experimental Results

In this section we briefly present experimental evaluations in order to understand
the performances of the newly presented algorithm and to compare it against the
best string matching algorithms for searching genome sequences. In particular
we tested the following algorithms:

– the Backward-Nondeterministic-DAWG-Matching algorithm [17] (BNDMq)
implemented using q-grams and a value of q = 4;

– the Extended Backward-Oracle-Matching algorithm [7] (EBOM);
– the Hashing algorithm [16] (HASHq) implemented using q-grams and a value

of q ∈ {3, 4, 5};
– the Simplified version of the BNDM algorithm [17] (SBNDMq) implemented

using q-grams and a value of q = 4;
– the Forward Simplified version of the BNDM algorithm [7] (FSBNDMq) imple-

mented using q-grams and a value of q = 4;
– the Multiple Windows version of the Forward Simplified BNDM algorithm [10]

(FSBNDM-W4) implemented using 4 sliding windows;
– the Factorized BNDM algorithm [2] (KBNDM);
– the BNDM algorithm with Extended Shift [6] (BXSq) implemented using q-

grams and a value of q = 4;
– The Backward-SNR-DAWG-Matching algorithm [9] using condensed alpha-

bets with groups of q characters, with q ∈ {1, 2, 4, 6, 7} (BSDMq);
– The new BSDM algorithm using condensed alphabets and a shift-xor hash

function, with q ∈ {1, 2, 4, 6, 7} (BSDMqx);
– The Multiple Windows version of the new BSDM algorithm using condensed

alphabets and a shift-and-xor hash function (BSDMqx-w2 and BSDMqx-w4)
implemented using 2 and 4 sliding windows, respectively;

For the sake of completeness we evaluate also the following two string match-
ing algorithms for counting occurrences. They do not report the positions but
only the total number of all occurrences.
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– EPSM: the Exact Packed String Matching algorithm [12];
– TSOq: the Two-Way variant of [5] the Shift-Or algorithm [1] implemented

with a loop unrolling of q characters, with q = 5;

All algorithms have been implemented in the C programming language and
have been tested using the Smart tool3. The experiments were executed locally
on an MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 16 GB RAM
1600 MHz DDR3, 256 KB of L2 Cache and 6 MB of Cache L3. Algorithms have
been compared in terms of running times, including any preprocessing time.

For the evaluation we use the genome sequence provided by the Smart
research tool. Specifically it is a sequence of 4, 638, 690 base pairs of Escherichia
coli, maintained by the Large Canterbury Corpus.4 In all cases the patterns were

Table 2. Experimental results on a genome sequence. Best results have been bold
faced. Running times are expressed in milliseconds. For the algorithms using variable
q-grams we report in brackets the value of q which obtains the best running times. The
EPSM and TSOq algorithms (indicated by a ∗ symbol) are counting algorithm, i.e. it
is able only to count occurrences.

m 4 8 16 32 64 128 256 512 1024 2048

BNDMq 11.14(4) 4.12(4) 3.02(4) 2.41(4) 2.41(4) 2.39(4) 2.23(4) 2.40(4) 2.32(4) 2.33(4)

EBOM 7.74 7.00 5.53 4.01 3.10 2.62 2.38 2.21 2.36 2.65

HASHq 18.31(3) 7.67(3) 4.69(5) 3.32(5) 2.85(5) 2.35(5) 2.57(5) 2.45(5) 2.34(5) 2.30(5)

SBNDMq 10.32(4) 4.00(4) 2.96(4) 2.37(4) 2.39(4) 2.31(4) 2.29(4) 2.34(4) 2.28(4) 2.37(4)

BSDMq 8.43(4) 3.02(6) 2.41(6) 2.42(7) 2.13(7) 1.98(7) 2.01(7) 2.00(7) 2.00(7) 2.00(7)

BXSq 15.34(4) 4.50(4) 3.11(4) 2.39(4) 2.42(4) 2.37(4) 2.40(4) 2.40(4) 2.40(4) 2.41(4)

FS-w4 16.54 5.20 5.05 3.76 4.09 3.61 3.88 3.52 3.34 3.09

FSBNDM-w4 17.10 8.09 4.30 2.99 3.00 2.89 2.94 2.94 2.97 2.95

KBNDM 10.80 8.00 5.88 3.98 3.03 2.91 2.94 2.92 2.97 2.97

TSOq (*) 5.32(5) 3.68(5) 2.88(5) 2.28(5) 1.96(5) - - - - -

EPSM (*) 5.87 3.72 2.50 1.93 1.75 1.72 1.66 1.62 1.65 165

BSDM2x 8.32 7.53 6.80 6.12 5.66 5.24 4.94 4.70 4.46 4.28

BSDM4x 8.09 3.01 2.40 2.21 2.07 2.03 1.96 1.96 1.94 1.94

BSDM6x - 4.79 3.02 2.43 2.15 2.04 2.01 2.00 1.98 2.00

BSDM7x - 6.85 3.10 2.35 2.07 1.96 1.92 1.92 1.92 1.97

BSDM2x-w2 8.94 7.25 6.57 5.82 5.39 5.03 4.70 4.48 4.24 4.09

BSDM2x-w4 9.51 7.27 6.66 5.91 5.52 5.08 4.66 4.42 4.19 4.05

BSDM4x-w2 10.22 3.22 2.54 2.16 2.01 1.96 1.91 1.89 1.86 1.90

BSDM4x-w4 12.72 3.59 2.66 2.25 2.11 2.02 1.96 1.94 1.92 1.95

BSDM6x-w2 - 5.94 3.08 2.40 2.14 2.01 1.99 1.95 1.91 1.97

BSDM6x-w4 - 9.32 3.30 2.36 2.07 1.88 1.85 1.83 1.81 1.84

BSDM7x-w2 - 8.41 3.18 2.29 1.99 1.83 1.82 1.83 1.81 1.84

BSDM7x-w4 - 7.47 3.01 2.30 2.02 1.86 1.85 1.83 1.82 1.88

3 Smart, a String Matching Algorithms Research Tool, by Simone Faro and Thierry
Lecroq, http://www.dmi.unict.it/∼faro/smart.

4 http://www.data-compression.info/Corpora/CanterburyCorpus/.

http://www.dmi.unict.it/~faro/smart
http://www.data-compression.info/Corpora/CanterburyCorpus/
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randomly extracted from the text and the value m was made ranging from 4 to
2048. For each case we reported the mean over the running times of 500 runs.

From experimental results reported in Table 2 it turns out that the BSDMq
algorithm obtains the best results in almost all the cases. In particular the best
running times are obtained with a value of q equal to 7 (for long patterns) and
4 (for short patterns).

Comparing the new presented algorithms against the previous known solu-
tions we can observe that the new BSDMq-w algorithms are the fastest in
most cases, especially for long patterns. We can observe moreover that when the
length of the pattern gets longer, better results are obtained for greater values of
q. The same observation could be done for the number of windows used during
the searching.

Specifically the BSDM algorithm implemented with 7-grams and two sliding
windows obtains the best results when the pattern is longer than 32 characters.
In this cases the BSDMq-w is up to 10% faster than BSDMq and up to 13%
faster than all previous known algorithms.

When the size of the pattern is between 8 and 32 the new BSDMqx algo-
rithms obtain the best results, using 4-grams. In this cases the BSDM4x algo-
rithm is up to 1, 2 times faster than the best among the previous solutions (the
SBNDMq algorithm).

For small patterns (m = 4) the best running time is obtained by the EBOM
algorithm, even if we have to report the good performance of the TSO5 algo-
rithm, although it’s not able to report the positions of the found occurrences.
However, it is interesting to observe that when m = 4 the BSDM4x algorithm
obtains a result which is very close to the best running time.

5 Conclusions and Future Works

In this paper we reviewed the most recent and efficient solutions for searching
exact matching on genome sequences. We also compared such solutions in terms
of running times in order to identify the best solutions for such problem. In
addition we also propose some efficient variants of the BSDM algorithm which
turn out to be competitive with the previous solutions and obtain the best
running times in most practical cases.

From experimental results it turns out that the new presented variants obtain
the best results in most practical cases when tested join real genome sequences.

It will be interesting to investigate if some of the efficient solutions described
above could be generalized also in the case of multiple pattern matching on
genome sequences.

Acknowledgments. This work has been supported by G.N.C.S., Istituto Nazionale
di Alta Matematica “Francesco Severi”.
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Abstract. Current DNA sequencing technologies do not read an entire
chromosome from end to end but instead produce sets of short reads, i.e.
fragments of the genome. Haplotype assembly is the problem of assigning
each read to the correct chromosome in the set of chromosomes in a
homologous group, with the aid of the reference sequence. In this paper,
we extend an existing exact algorithm for haplotype assembly of diploid
species (Patterson et al., 2014) to the reference-free, polyploid case. A
reference-free method does not exploit a reference genomic sequence of
a species and thus we cannot exploit a known linear order for the reads
and resulting variant positions. Therefore we obtain an unordered variant
composition as a result. This setting can be also applied to the study of
relative abundances of related bacterial strains.

Keywords: Variant composition · Reference free sequence analysis

1 Introduction

The genome of an organism is a sequence or sequences of the nucleotides,
A, T, C, and G. Eukaryotic genomes are composed of chromosomes, each of
which is a sequence of nucleotides. The chromosomes are further arranged into
groups of homologous chromosomes, where two or more chromosomes are almost
exact copies of each other. For example, humans’ genomes are arranged into pairs
of homologous chromosomes, one of which is inherited from the mother and the
other from the father. Species with pairs of homologous chromosomes are called
diploid. Species with groups of more than two homologous chromosomes, for
example some potato species which have groups of 3 or 4 chromosomes [7], are
called polyploid. The sequence of a chromosome is called a haplotype sequence,
and a chromosome in a homologous group is sometimes called a haplotype.

Homologous chromosomes are typically very similar to each other with minor
variation. A common variation is the single nucleotide polymorphism (SNP),
where the haplotype sequences vary by exactly one nucleotide at some loca-
tion, either as a substitution, having a different nucleotide in the chromosomes,
or indels (insertion-deletion), where a nucleotide has been inserted or deleted
from one of the chromosomes. SNPs can be either heterozygous, where all of the
c© Springer International Publishing Switzerland 2016
M. Botón-Fernández et al. (Eds.): AlCoB 2016, LNBI 9702, pp. 158–170, 2016.
DOI: 10.1007/978-3-319-38827-4 13
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haplotype 1 ACTAACGCTGAAGACTAGT
haplotype 2 ACTCACGCTGAAGAC - AGT
reference ACTAACGCAGAAGACGAGT

(a) Haplotypes and reference sequence

ACT
A
C
ACGCTGAAGAC

T
-
AGT

(b) Consensus sequence

Fig. 1. The haplotypes of a genome and the corresponding consensus sequence

haplotypes have a different variant (nucleotide), or homozygous, where some hap-
lotypes have the same variant. Figure 1a shows an example of SNPs. Two chro-
mosomes from an organism are compared to a reference genome. The sequences
have three SNPs. In the beginning there is a heterozygous SNP with a substi-
tution, in the middle there is a homozygous SNP with substitutions, and in the
end there is a heterozygous SNP with an indel and a substitution.

Current sequencing technologies produce sets of reads, also called fragments,
which are short sequences of DNA from anywhere in the organism’s genome. Due
to the difficulty of assembling a genome from sequenced reads, most species lack
a reference genome. A reference genome may also be incomplete or otherwise
unusable. Furthermore, polyploid genomes are more difficult to sequence than
diploid sequences. Another similar case is a population of closely related bacteria
or virii. A reference genome may not be available given the sheer amount of
bacterial species. For this reason, reference-free algorithms which do not require
a reference genome are useful for poorly understood genomes.

Since the chromosomes or strains are very similar, they can be represented
as one sequence and a list of positions where SNPs are found. Figure 1b shows
an example with two sequences having a common consensus with two SNPs.
However, the consensus does not tell whether the A and the T belong in the
same sequence or not. SNPs have different effects on an organism’s phenotype
depending on which other variants are found in the same chromosome [19,21],
thus having just a list of SNPs misses phase information, which describes which
variants occur in the same chromosomes or strains. Identification of variant
compositions aims to correct this. A variant composition is an assignment of the
variants to the chromosomes or strains. The process of assigning the variants
of a SNP to the chromosomes is called phasing. In this paper we generalize an
existing exact phasing algorithm for diploid genomes [17] to the reference-free,
polyploid case. The phasing algorithm’s time and space complexities are both
exponential in the maximum coverage of the input. The coverage of a position
is the number of reads that cover the position. See Fig. 2 for an example.

2 Previous Work and Our Contribution in Context

Identification of variant compositions is closely related to the haplotype assembly
problem which seeks to solve the sequences of an organism’s haplotype. A variant
composition is a list of variants for each haplotype at the SNPs, which can be
used to calculate the haplotype sequences given a reference genome. Haplotype
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Fig. 2. The long, solid line is the genome, which is unknown, and the short solid lines
represent the reads and their location in the genome. The position at the first dashed
line is covered by three reads and thus has a coverage of three. Similarly, the second
dashed line has a coverage of five

assembly problem has multiple similar formulations [14]. These formulations are
based on building a haplotyping matrix, where the reads are rows and SNPs are
columns, and partitioning the rows into chromosomes such that all reads in a
partition agree on the variant at each SNP. A haplotyping matrix does not always
have such a partition, and then the problem is to modify the matrix the least to
make such a partition possible. Lippert et al. [14] suggest three formulations, of
which we follow the minimum error correction that aims to flip the least amount
of cells in the matrix. Haplotype assembly is NP-hard both in general [14] and
also in the case when there are no gaps between reads [6].

Identification of variant compositions is also related to the quasispecies spec-
trum reconstruction problem [2], which aims at reconstructing the sequences of
the strains in a population of bacteria or virii and their frequencies. Variant
compositions can be used to reconstruct the sequences, once reference sequences
are given.

Haplotype assembly for diploid organisms, organisms only having two chro-
mosomes, has many algorithms available, both exact [5,9,10,17] and probabilis-
tic [3,12]. Solving the haplotype assembly for polyploid organisms, organisms
having more than two chromosomes, is a more recent field of research. Both
exact [8,16] and probabilistic algorithms [1,4,20] are available.

Deng et al. [9] published in 2013 an exact algorithm for the diploid haplotype
assembly problem with the minimum error correction formulation. The algorithm
has a time complexity of O(|S|2CC) where |S| is the number of SNPs and C is the
maximum coverage. Patterson et al. [17] extended the algorithm to the weighted
minimum error correction formulation, and improved the time complexity to
O(|S|2C−1). In this paper we further extend the algorithm to the polyploid case
with a time complexity of O(|S|C kC

k! ), where k is the number of chromosomes.
The algorithm uses only the reads and requires no reference genome.

For our implementation, we use DiscoSNP [22] to detect SNPs in the reads
in a reference-free manner. DiscoSNP first builds a de Bruijn graph of the reads
and then uses it to find the SNPs.
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(a) A binary matrix before banding (b) A binary matrix after banding

Fig. 3. Matrix banding

3 Extending Haplotyping to Multiple Strains Without
Reference

Our method has three stages. As preprocessing, a haplotyping matrix is built
from the reads. The second stage manipulates the haplotyping matrix to lower
coverage. The third stage, the phasing stage, assigns the reads into strains. Due
to the lack of space, we describe the coverage reduction and phasing stages that
form the algorithmic core of our contribution. More details are available in [18].

3.1 Coverage Reduction

After the preprocessing stages, we assume to have a haplotyping matrix F that
contains the SNPs as columns, reads as rows, and the value of a cell is either the
read’s nucleotide at the SNP or a marker “−” indicating that the read does not
cover that SNP. In the first case, the read is said to support a certain variant,
that is the nucleotide, at the SNP. The haplotyping matrix is then said to have
a variant at that cell. Additionally we have a weight matrix W where the entry
W (i, x) describes the certainty of the haplotyping matrix entry F (i, x).

Because the phasing algorithm is exponential in coverage, reducing the cover-
age is necessary. Coverage is either essential, when a read supports some variant
for a SNP, or accidental when a read does not directly support a SNP, but
supports SNPs both before and after it.

Since a reference genome is not used, the reads cannot be ordered by aligning
them to a reference genome. Instead we use matrix banding [11] to reduce acci-
dental coverage. The haplotyping matrix is treated as a binary matrix, where
cells with a variant are 1, and cells without a variant are 0. The rows and columns
are then permutated to bring the ones together in the matrix. The same per-
mutation is also applied to the weight matrix. Figure 3 shows an example of a
matrix before and after banding. Cells with a variant are colored black, and cells
without are white. The ideal output would be a solid diagonal band.

We use methods presented in [11] for matrix banding. First we find an approx-
imate consecutive-ones property (C1P) on the haplotyping matrix. The C1P is
a permutation of the columns such that in any row, the ones are in consecu-
tive positions. Then barycentric sorting is used. For each row, a centerpoint is
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calculated as the average position of the ones and the rows are sorted based on
the centerpoints. The same operation is then performed on the columns. This
is repeated for a certain number of iterations and the best iteration’s matrix is
selected. The last step in matrix banding uses simulated annealing.

After banding, methods similar to the ones in [15] are used to still lower the
essential coverage.

3.2 Phasing

The algorithm by Patterson et al. [17] works with two strains. Here we extend
the algorithm for an arbitrary number of strains. The output of the phasing
algorithm is an assignment of the reads into the strains.

A partition is an assignment of the reads, or a subset of reads, to the strains.
Partitions are stored as a partition vector, which describes for each read either
the strain where it is assigned, or a marker that this read is not assigned to
any strain. For example, {1,−, 2, 1, 3,−} is a partition of four reads into three
strains, where reads 1 and 4 are in the same strain and reads 2 and 6 are not
assigned to any strain. The example partition is over reads 1, 3, 4, and 5.

The overlap of two partitions is the indices where they both have a value.
For example, the overlap of {1, 2, 2,−,−} and {−, 1, 2, 3, 3} is indices 2 and 3.

The unpermutated form of a partition P is marked as u(P ). In the unpermu-
tated form the strains are re-labeled according to the order in which they appear
in the partition vector. For example, the partition vector {3, 1, 3, 2, 2, 1, 4} has
the unpermutated form {1, 2, 1, 3, 3, 2, 4}.

This operation of re-labeling the strains is called a renumbering which is
a bijection on strain numbers. A renumbering vector describes how the strains
are re-labeled. Given a partition P and a renumbering vector R, the renumbered
partition P ′ is given by P ′

i = RPi
. The renumbering vector for the example above

is {2, 3, 1, 4}. For example, strain number 2 in the original partition is replaced
with 3 in the renumbered partition. Changing a partition to its unpermutated
form is one example of a renumbering but others are also used in the algorithm.

Two partitions are equivalent if and only if their unpermutated forms are
equal, and then both partitions assign the reads into same sets. Only partitions
in the unpermutated form need to be considered in the algorithm since all other
partitions are permutations of some unpermutated form.

The set of active reads for a SNP is the reads that cover it, either essentially
or accidentally. The active reads for SNP i are denoted as α(i).

The set of all partitions over a set of reads r is marked as Par(r). Note that
this set does not actually have all partitions, only all unpermutated forms. This
cuts the number of partitions from k|r| to k|r|

k! .
A partition P1 extends partition P2 if and only if their unpermutated forms

over the overlapping area are equal. The notation Ext(P1, P2) is used to mark
this. The set of partitions that extend a partition is said to be its extensions.

A partition is conflict-free if all reads in a strain assign the same variant
at each SNP. For example, the haplotyping matrix in Fig. 4 is conflict-free for
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the partition vector {1, 2, 1, 2}, but not for the partition vector {1, 2, 2, 2}. In
the conflicting example, the cell at read 3 and SNP 2 is in conflict since it is
different from the consensus variant of strain 2 for SNP 2.

1 2

1 C T

2 C C

3 C T

4 C C

Fig. 4. A haplotyping matrix

In practice, the haplotyping matrix rarely has a conflict-free partition.
Instead, the algorithm finds the partition closest to a conflict-free partition,
with the distance being the total weight of the conflicting cells in the haplotyp-
ing matrix. For a partition P , haplotyping matrix F , weight matrix W , strain
s, variant v ∈ {A, T,C,G}, and a SNP number i, we define a cost function

δ(P, s, v, i) =
∑

x|Pi=s∧F (x,i) �=v

W (x, i).

The function describes the cost for assigning the strain s to have variant v at
SNP i. Using this, we define the partition cost function

Δ(P, i) =
∑

s∈[1,k]

min
v∈{A,T,C,G}

δ(P, s, v, i)

as the cost of partition P at SNP i. This cost function is the minimum cost to
make the partition conflict-free. These functions are generalizations of the cost
functions described in [17], and are equal to them in the case of two strains.

The algorithm is a dynamic programming algorithm that goes through the
SNPs one by one. The table C contains the best scores for a partition at any
SNP; element C(i, x) is the best score at SNP i for partition x. At the first SNP,
the table is initialized with

C(1, x) = Δ(x, 1),∀x ∈ Par(α(1)).

At every SNP other than the first, the cost of a partition at the current SNP is

C(i, x) = Δ(x, i) + min
y∈Par(α(i−1)),Ext(x,y)

C(i − 1, y).

which is the sum of the cost for that partition at the current SNP and the
cost of the best-scoring partition of the previous SNP that is extended by the
current partition. To get the final result, the table C can be backtraced and the
partitions at each SNP must be merged.
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When two partitions are merged, one of them must usually be renum-
bered. For example, the partition {−,−, 1, 2, 1, 1, 3} extends the partition
{1, 2, 3, 4, 3,−,−}, since the unpermutated form of the overlapping part is
{−,−, 1, 2, 1,−,−} for both partitions. The algorithm renumbers the rightmost
partition to correspond to the leftmost partition’s strain numbers. The renum-
bering vector is constructed by first assigning the overlapping part. Having a left
partition P , a right partition Q and a set of indices for the overlapping part I,
the renumbering vector R is given by the equation

RPx
= Qx, x ∈ I

This equation only assigns the renumbering vector for the strains which
appear in the overlapping part and it works only when the two partitions actu-
ally extend each other, otherwise it would produce more than one value for some
indices. Some indices may be left unassigned by this equation. The remaining
indices must be arbitrarily chosen to make the renumbering vector a bijection.
The implementation simply assigns the remaining values in order. In the example
above, the renumbering vector would be {3, 4, 1, 2}. The values of the first two
indices are determined by the overlapping part, and the last two arbitrarily. The
final merged partition is then {1, 2, 3, 4, 3, 3, 1}. After the algorithm has passed
through all SNPs, the solution is the merged partition with the lowest score.

When some values of the renumbering vector are chosen arbitrarily, the
merged partition’s early reads and late reads are assigned essentially randomly.
In the above example another consistent merging is {1, 2, 3, 4, 3, 3, 2}. Therefore
some strains may be swapped in the middle of the partition. The experiments
section measures how often this happens in practice.

Calculating the partition cost function δ directly from its equation would
take O(c) time, where c is the coverage at the current SNP, and Δ would take
O(kc) time. However, two optimizations make it possible to do it faster. The
first optimization is to iterate through the partition only once, and calculate δ
for all strains simultaneously. This is done by keeping a two-dimensional array x
with size k ∗ 4 that keeps track of the cost of assigning a strain to a nucleotide.
At each read in the partition, the cost of the strain that the read is assigned to
is increased at the nucleotide the read has at that position. For example, if read
5 is assigned to strain 2, and read 5 has the nucleotide A at the current SNP,
then the value at x2,A is increased by the weight of the cell when the iteration
handles read 5. The final cost is then calculated with

Δ(P, i) =
∑

s∈[1..k]

max(xs,A;xs,T ;xs,C ;xs,G) − (xs,A + xs,T + xs,C + xs,G)

This improves the cost for calculating Δ to O(c + k).
The second optimization uses a Gray code to order the partitions. A Gray

code is an ordering of vectors, in this case the partition vectors, where two
consecutive vectors differ by exactly one element. Then, calculating the next x
from the previous x can be done in constant time. At each SNP, the first x
must be calculated as usual. Then, using a notation xi,s,a to mark x for the ith
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1, 1, 1

1, 1, 2

1, 2, 1

1, 2, 2

1, 2, 3

(a) A graph of partitions for 3 reads

1, 1, 1
1

1, 1, 2
2

1, 2, 1
1

1, 2, 2
1

1, 2, 3
2

(b) A hamiltonian path in the partition graph
over 3 reads with nodes marked

Fig. 5. Example of partitions for three reads

partition, xi+1,s,a is equal to xi,s,a except for the element that changed between
the two partitions. For example, if the read 5 with nucleotide A was assigned to
strain 3 at the previous partition, and to strain 4 at the current partition, then
the next x is calculated with

⎧
⎪⎨

⎪⎩

xi+1,3,A = xi,3,A − W (5, i)
xi+1,4,A = xi,4,A + W (5, i)
xi+1,s,a = xi,s,a otherwise

This removes the need to iterate through each partition and Δ can be calculated
in amortized constant time. The Gray code optimization was originally described
by Patterson et al. [17]. However, extending it to multiple strains requires a
special Gray code that orders only the unpermutated forms of the partitions.

Consider a graph of the partitions, where nodes are partitions, and edges
connect partitions which differ by exactly one element. A Gray code over the
partitions is possible if the graph has a Hamiltonian path, or a path visiting each
node exactly once. For a partition over one read, this is trivially true. Then, a
path for the graph with c+1 reads can be constructed from a path in the graph
with c reads. Each node in the graph with c reads is divided into the partitions
where the first c elements are equal, and the final element varies. Figures 5a and
6 show an example of extending a graph of 3 reads to a graph of 4 reads. The
node {1, 2, 1} is divided into the nodes {1, 2, 1, 1}, {1, 2, 1, 2} and {1, 2, 1, 3}.

There are two key features of the graph that make a Hamiltonian path pos-
sible. First, a node’s child nodes form a clique, so they can be visited in any
order. Second, if two nodes were connected in the previous graph, their child
cliques will have at least two connections between the cliques: the nodes that
end with 1 are connected, and the nodes that end with 2 are connected. These
nodes exist in all cliques. Therefore, to build a Hamiltonian path for the c + 1
graph from the c graph, mark every other node in the path with a 1, and every
other with a 2. Then, for each node that is marked with a 1, the sub-path starts
at the child clique’s node that ends in 1, visits all nodes that end in 3 or higher,
and ends at the child node that ends with 2. Correspondingly, for nodes marked
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1, 1, 1, 1

1, 1, 1, 2

1, 1, 2, 1

1, 1, 2, 2

1, 1, 2, 3

1, 2, 1, 1

1, 2, 1, 2 1, 2, 1, 3

1, 2, 2, 1

1, 2, 2, 2

1, 2, 2, 3

1, 2, 3, 1

1, 2, 3, 2 1, 2, 3, 3

1, 2, 3, 4

Fig. 6. A graph of partitions for 4 reads

with a 2, the sub-path starts at the child clique’s node that ends in 2, visits all
nodes ending with 3 or higher, and ends at the node ending with 1. Figures 5b
and 7 show an example of extending a path in the graph of 3 reads to the graph
of 4 reads. The graph does not need to be explicitly created, and only the nodes
in the path are processed. Since extending the graph by one read will at least
double the number of nodes, the total number of nodes processed is at most
twice the number of nodes in the final graph, so ordering the partitions with the
Gray code can be done in linear time in the number of partitions.

The algorithm has running time of O(|S|C kC

k! ), where C is maximum cover-
age, k is the number of strains and |S| is the number of SNPs.

4 Experiments

The experiments were run on simulated data based on the E. coli genome. The
simulated mutant genomes were created by taking the first ten thousand bases
from the E. coli genome and creating four mutant strains from it. The mutations
were created with a uniform 1 % probability of substitution per base. Only SNPs
with substitutions were created. Reads were sampled from random locations with
an average coverage of 20 for each strain, for a total average coverage of 80 before
coverage reduction. All reads were created error-free.

Two different methods were used to build the haplotyping matrix from the
reads. In the first method, the simulated method, the SNPs were directly read
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1, 1, 1, 1

1, 1, 1, 2

1, 1, 2, 1

1, 1, 2, 2

1, 1, 2, 3

1, 2, 1, 1

1, 2, 1, 2 1, 2, 1, 3

1, 2, 2, 1

1, 2, 2, 2

1, 2, 2, 3

1, 2, 3, 1

1, 2, 3, 2 1, 2, 3, 3

1, 2, 3, 4

Fig. 7. A hamiltonian path in the partition graph over 4 reads

from the mutated genomes and the haplotyping matrix was built with full
knowledge of the genomes. The simulated method represents a very optimistic
upper bound for the algorithm’s accuracy. In the second method, the DiscoSNP
method, SNPs were detected by DiscoSNP [22] and processed to form the hap-
lotyping matrix. The DiscoSNP method represents a more realistic impression
of the algorithm’s accuracy.

Two experimental settings were used. First, the read length was varied from
100 bases to 2000 bases, and the algorithm’s accuracy was measured with each
length. In the second setting, errors were introduced into the haplotyping matrix
and the algorithm’s accuracy measured for several read lengths. The errors were
introduced directly into the haplotyping matrix immediately after creating it,
before any coverage reduction. The reads passed to DiscoSNP were still error-
free. This was done to make sure that the experiments only measure errors made
by the implementation instead of the external tools.

We used switch distance to measure the accuracy of predictions. Originally
switch distance is defined for two strains [13]. Informally, switch distance builds
consensus genomes from its reads, and then aligns the consensus genomes to the
actual genomes. Switch distance is then the number of times a consensus genome
switches from one actual genome to another, allowing up to a certain number of
alignment errors where a consensus genome’s nucleotide differs from the actual
genome’s nucleotide.
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To calculate the switch distance for multiple strains, we developed a simple
dynamic programming algorithm, whose details can be found in [18]. Informally,
this extended measure calculates the fraction of positions where genomes are
switched. In the graphs, we report switch accuracy, which is the inverse of the
switch distance, or the fraction of SNPs where genomes are not switched.

4.1 Effect of Varying Read Length

In the read length experiment, the implementation’s accuracy was measured with
varying read lengths. Read lengths were varied from 100 bases to 2000 bases.
Figure 8 shows the switch accuracy.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0.75
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1
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Fig. 8. Switch accuracy as a function of read length

The results show that accuracy depends greatly on read length. Even in the
simulated method, reads shorter than about 300 bases have poor accuracy, and
100 bases long reads have an accuracy about as good as random guessing. On
the other hand, long reads have a very high accuracy. The simulated method
was completely accurate at 700 bases long, and the DiscoSNP method at 1600
bases, except for a strange dip at 2000 bases long reads. The experiment shows
that the implementation cannot work for short reads even in the best case, but
works well for long reads.

4.2 Effect of Varying Error Rate

In the error rate experiment, the implementation’s accuracy was measured with
varying error rate. The error rate was varied from 0 % to 15 % chance of a
substitution error per base. The errors were introduced into the haplotyping
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matrix immediately after building the matrix, before any coverage reduction.
Read lengths were 1000, 1600 and 2000 bases long for the DiscoSNP method,
and 500, 700 and 1000 bases long for the simulated method. Only uniformly
distributed substitution errors were considered. The switch accuracy stayed over
0.98 accuracy level in all these settings, and the increase in read length improved
the accuracy level to 1 still at error level 8 % in simulated data.

5 Conclusion

In this paper we gave a proof of concept implementation of an exact haplotyping
algorithm for multiple strains. The performance on simulated data is promising.

Acknowledgements. This work was supported in part by the Academy of Finland
(grants 267591 to L.S. and 284598 (CoECGR)).
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Abstract. A new method to identify all sufficiently long repeating
nucleotide substrings in one or several DNA sequences is proposed. The
method based on a specific gauge applied to DNA sequences that guar-
antees identification of the repeating substrings. The method allows the
matching substrings to contain a given level of errors. The gauge is based
on the development of a heavily sparse dictionary of repeats, thus dras-
tically accelerating the search procedure. Some biological applications
illustrate the method.

Keywords: Genome · Fast search · Vernier pattern

1 Introduction

The classic problem of the search for the longest common string in two symbol
sequences has a long story [1,2,6,8,9,11]. In spite of a number of deep and
valuable results [3–5,7,10] obtained in the algorithm implementation for the
problem, it is computationally challenging and an extremely active research field.

In brief, the problem we address here is the following. Let one (or more)
sequences T1, T2, . . . , Tk from some finite alphabet are given; further we shall
concentrate on the four-letter alphabet ℵ = {A,C,G,T} only, since we illustrate
the results with genetic data. So, the problem is to find all sufficiently long
substrings {si} that occur at least twice in Ti.

The problem could be understood in two different ways: the former is a search
for the exactly matching substrings, and the latter is a search for two substrings
bearing some tolerable mismatches; obviously, the first problem is a special case
of the second one. Section 2 describes a primitive search algorithm meeting the
exact match constraint; Sect. 3 presents our main idea of much faster search
method which additionally allows an expansion for approximate matching case.
In Sect. 4 we give a brief survey of experimental verifications of our method. In
Sect. 5 an important combinatorial problem related to the proposed method is
discussed.
c© Springer International Publishing Switzerland 2016
M. Botón-Fernández et al. (Eds.): AlCoB 2016, LNBI 9702, pp. 171–182, 2016.
DOI: 10.1007/978-3-319-38827-4 14
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The new method has the following advantages:

– it is much more economic in comparison to exhaustive search for all repeating
substrings of an arbitrary length. We search for all repeats longer than a given
integer N (provided by researcher). Greater N accelerates our algorithm;

– it finds simultaneously all repeats in a given DNA sequence (or in any other
string of symbols in any finite alphabet) or common substrings in two or more
symbol sequences;

– it permits an error tolerance: a portion of mismatches in compared sub-
strings is allowed. Although the current implementation does not guarantee
all repeats (or common substrings) of the length N or greater with given
tolerance level of mismatches identification, test runs have shown that the
probability of missing of inexact repeats with the given tolerance is small.
Still the current implementation guarantees all exact repeats to be found,
cf. the discussion in Sect. 3.4.

The problem actuality results in a tremendous growth of the papers devoted
to it. There is a number of various algorithms to resolve the problem, and the
number of software implementations falls beyond imagination; here we have no
chance even to enlist all of them, due to space limitation. Nonetheless, some
related results and reference details could be found in [3–5,7,10].

The authors thank Prof. S.V. Znamenskij for useful discussions; the idea of
Vernier gauge for acceleration of search was also independently found by him.

2 Long Repeats by Brute Force

Here we sketch a well-known primitive but exhaustive algorithm to search repeat-
ing substrings in symbol strings. This algorithm is still of practical use for analy-
sis of DNA sequences as long as 107 or so, and can be used later to check more
advanced algorithms described below.

Theoretically the problem of searching for a repeating substring may be
reduced to a construction of a frequency dictionary for the given symbol
sequence T; the former is a list of all the substrings (of the given length m,
also called “thickness” of dictionary) occurred within the sequence T so that
each entry in the dictionary is associated with the frequency of the relevant
string in T. A dictionary Wm (of the thickness m) could be defined in a variety
of ways; cf. for example [12] (where it is called finite dictionary).

The simplest way to develop Wm is as follows. Let us fix a window of the
length m that identifies a substring in a sequence T, and a step t for the window
shift alongside the sequence. Thus, the frequency dictionary Wm,t is the set of
all the strings of the length m identified by the window of that length moving
alongside the sequence with the step t. Each element of the dictionary is assigned
with its frequency (the number of copies of this element met in the dictionary
building process) and (for our purposes) the list of all positions where the given
element of the dictionary has been met.
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Having Wm,1, one easily can find all the repeats of the length N ≥ m in T,
selecting all elements s of Wm,1 that are met more than in one copy and (using
the list of the positions of s) clustering all other repeating elements of Wm,1 with
consecutive position tags.

The question whether two (or several) sequences T1 and T2 have a common
substring s of the length N could be addressed through a comparison of the
frequency dictionaries of those sequences. In our test runs we have built up
dictionaries of thickness m ≤ 10000 for a single DNA sequence of length 44 · 106

base pairs (Bos taurus chromosome 25). The dictionaries of the given thickness
were built in three stages:

1. first, we identified substrings of the given length m with step t = 1 and
develop an intermediate “predictionary” text file F.predic where each sub-
string occupies a separate line and is accompanied by the position tag;

2. second, F.predic is sorted lexicographically using the standard system com-
mand sort;

3. third, the identical substrings in the sorted file are eliminated so that the
resulting line bears the substring, accumulated number of its copies and the
list of position tags gathered from the eliminated substrings in the sorted
F.predic.

Step 2 (lexicographical sorting) is the most time consuming. It could be executed
in reasonable time on a mainframe with 30 Gb of RAM under OS Linux (http://
cluster.sfu-kras.ru/page/supercomputer/). The following table shows the run
time of this step for several m values (Table 1).

Table 1. Runtime of the tests for brute-force dictionary development; ts is the sorting
time, m is a substring length.

m F.predic size ts m F.predic size ts

200 8.3 Gbytes 10 min 1000 40 Gbytes 17 min

500 20 Gbytes 11 min 10000 400 Gbytes 1 h 12 min

Hence, the steps 1–3 yield the following results, in terms of the frequency
dictionary structure. For m = 200 the observed number Nk of (different) strings
(of the length m) met in k copies is following:

k 2 3 4 5 6 7 8 9 ≥10

Nk 312338 3600 756 203 72 2 0 0 80

Similar figures for m = 500 are

k 2 3 4 5 6 7 8 9 ≥10

Nk 252338 126 14 33 0 0 0 0 33

http://cluster.sfu-kras.ru/page/supercomputer/
http://cluster.sfu-kras.ru/page/supercomputer/
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For m = 1000 N2 = 193227 strings were met in two copies, and none has been
found to be met in three or greater number of copies. Similarly, for m = 10000
these figures were N2 = 18865 and N>2 = 0, respectively. In fact all repeats of
substrings of length 10000 in this DNA sequence were clustered on step 3 into 3
exactly matching substrings of lengths (approximately) 11000, 15000 and 21700.

3 Vernier Gauge Algorithm

Here we introduce a new much faster method to search for a repeating substring
of the length ≥ N in a symbol sequence (alternatively, a common substring in
several symbol sequences). The key idea is to change the analysis of a complete
frequency dictionary Wm,1 (where each symbol in the sequence T gives a start
to a string of the length m) to the analysis of sparse frequency dictionary Wm,ts

with variable step ts having significantly less number of entries. An idea stand-
ing behind the proposed method is strongly connected to a well-known Vernier
scale [13] used to measure length with enhanced precision in comparison to the
standard scale.

3.1 Simple Example

In this subsection we develop the idea of the simplest Vernier gauge to search a
common substring of length N or more in two symbol sequences. Simply speak-
ing, we should cover the first sequence with tags of some small length m with
some step k; the second sequence must be covered with tags of the same length,
but here the step between (the beginning letters of) two neighboring tags is equal
to k − 1, and not k. If a tag is found in both sequences, it must be examined for
expansion (see below). Let us give a closer look at this process.

Fig. 1. Illustration of the Vernier approach to find out a sufficiently long common
substring in two sequences.

Suppose two sequences T1 and T2 have a common substring s of the length N ;
yet, we have no idea about the locations of that common substring in the
sequences. Let us build two frequency dictionaries: W 1

m,k and W 2
m,k−1 with

k �
√

N and some thickness m for T1 and T2 respectively. The second dic-
tionary bears the strings of the same length m. Both dictionaries must start
from the very beginning of each sequence.
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It should be stressed that parameters k and m are almost independent
(cf. Theorem 1 for a precise statement). The choice of these latter is determined
by the (expected) length N of a common substring, while m is to be chosen
almost arbitrary: it would be nice, if the frequency dictionary of the tags is
almost degenerated (i. e. the greatest majority of the tags should exist in few
copies). Figure 1 illustrates this idea for k = 6, m = 2. The common substring
of length N = 31 is indicated in slanted font, in the figure. The Vernier gauge
(see Sect. 3.3 for details) identifies the common short sub-substring GA in both
sequences; they are indicated with the curve arrow in black. Incidentally we can
see one more occurrence of a common sub-substring CG of length 2 in out target
common substrings; this is not a typical case, but we shall keep in mind such a
possibility, as well.

A closer inspection gives three more common sub-substring CA, CT and GT
of length 2 in the dictionaries W 1

2,6 and W 2
2,5. They do not expand to a common

target substring of length N = 5×6+2−1 = 31 in T1 and T2 (more on expansion
of the common entries in the dictionaries W 1

m,k and W 2
m,k−1 see below and in

Subsect. 3.4). This abundance of common entries in W 1
2,6 and W 2

2,5 results from
the small capacity of the nucleotide alphabet ACGT and small length m = 2
chosen for this simple example.

The idea of searching the common substring using relatively very short tags
and rarefied dictionaries (we call it the double Vernier gauge on Ti) is based on
the following simple theorem.

Theorem 1. If there is a common substring of the length N or more in T1

and T2 then a common entry (sub-substring of length m) can be found in dic-
tionaries W 1

m,k and W 2
m,k−1 developed for sequences T1 and T2, respectively,

provided that N ≥ k(k − 1) + m − 1.

Proof. Let s1 and s2 be the common (exactly matching) substrings of the length
N ≥ k(k − 1) + m − 1 starting at positions u and v in Ti respectively. First,
we cut off (virtually, for simplicity of the proof) their last m − 1 symbols and
look only at the starting positions of the tags of the dictionaries W i

m,k in si. Let
0 ≤ α < k and 0 ≤ β < k − 1 be the starting positions of the dictionary entries
in s1 and s2 relative to their starting symbols respectively. The other starting
positions of the dictionary tags inside s1 will be α+x·k with x ∈ {0, 1, . . . , k−2},
for s1 and β + y · k with y ∈ {0, 1, . . . , k − 1}, for s2 (w.r.t. the starting symbols
of si). We should find such integers x, y that α + x · k = β + y · (k − 1), i.e.
x · k − y · (k − 1) = β − α with the constraints on x, y given above. In fact, if
γ = β − α ≥ 0, x = y = γ is the solution. For γ = β − α < 0, x = γ + k − 1,
y = γ + k should be taken. ��

In order to find duplicate tags in the dictionaries one may apply different stan-
dard techniques; in our current simplest implementation standard lexicographic
sorting and merging of W 1

m,k and W 2
m,k−1 are used. As soon as all common tags in

the dictionaries W 1
m,k and W 2

m,k−1 are found, the next steps of our algorithm are:

– expand the found common tags using their positions in Ti. Namely consecu-
tively compare the symbols on the right of the tags in T1 and T2 as far as
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they match, stopping when we meet non-matching symbols. Then consecu-
tively compare the symbols on the left of the tags in the same way as far as
they match.

– If the length of the expanded tag is at least N , add it to the list of successful
expansions for further output after all identical tag pairs in W 1

m,k and W 2
m,k−1

are expanded.

In the simplest version of our algorithm discussed in this subsection we are
searching only exactly matching substrings. Also we do not take into account
the possibility to meet some other symbols than the standard nucleotides A,
C, G, T. If one expects that some other symbols (like N, W etc.) may occur in
the analyzed DNA sequences then one of the expansion strategies discussed in
Sect. 3.4 should be applied. In the next subsection we consider the problem of
choice of the parameter m.

3.2 Tag Length Choice to Enforce Vernier Gauge Algorithm

The sub-substrings of length m chosen to build up the dictionaries W 1
m,k and

W 2
m,k−1 in the previous subsection are called tags. Its length m is very important

parameter affecting speed and overall efficiency of our algorithm. A smart choice
of this parameter may dramatically reduce the processing time and, what is even
more important, is crucial in the process of subsequent expansion of the tags
common for both dictionaries W 1

m,k and W 2
m,k−1 into the full common strings

of the length ≥ N with the given proportion of errors in the last stage of the
algorithm execution (Sect. 3.3).

In fact, the capacity of the nucleotide alphabet dictates the choice of suffi-
ciently large m to minimize the number of sporadic coincidences of tags in the
dictionaries. The experiments in Sect. 4 show that m = 30 is good enough, when
the steps k, k−1 are greater than 30 (so the target length of common substrings
sought by the algorithm is at least 1000). It should be stressed that overlapping
of the tags in Ti (if m > k − 1) is not a problem, in our approach; overlapping
itself does not affect the algorithm.

3.3 General Description of the Problem

The double Vernier gauge described in Sect. 3.1 stands behind the more general
search pattern presented below in Sects. 5.1 and 5.2. Here we will discuss only
the simplest modifications of the double Vernier gauge necessary to find repeats
in one or several DNA sequences.

The general problem solved by our algorithms is:
given parameters N (an integer) and ε (a positive real number), find
all substrings of the length at least N in one or several sequences Ti

that occur repeatedly (exact matching requires ε = 0) or couples of
substrings in Ti that differ at most at q places, q = ε · length(s).
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3.4 How the Method Works

Step 1. Given the target length N , choose proper k and m such that N ≥
k(k − 1) + m − 1.

Step 2. If we have two DNA sequences to analyze, develop the dictionaries W 1
m,k

and W 2
m,k−1. Otherwise (for one or more than two DNA sequences) develop

for each DNA sequence a dictionary with variable step: take tags of length m
starting at positions 1, k, k+1, 2(k−1)+1, 2k+1, . . . — that is at the union
of the subsets {p · (k − 1) + 1, p = 0, 1, 2, . . .} and {q · k + 1, q = 0, 1, 2, . . .}.
Add positions of the selected tags into the dictionaries.

Step 3. Check whether there may be common entry tags in the dictionaries.
If we want to find repeats in one DNA sequence (or all possible repeats in
several DNA sequences Ti, possibly the same ones), find repeated tags in one
dictionary or in the dictionary merged from all dictionaries built for all Ti.
Strategies for finding common tag entries are discussed below.

Step 4. Expand the found repeated tags (using their positions stored in the
dictionaries) as described in Sect. 3.1 if the exact matching is required. If a
positive tolerance ε > 0 is given, use one of the expansion strategies discussed
below.

Step 5. List all expanded tags with their positions in Ti. If some of the expanded
substrings are shorter than N one may keep or reject them (there is no guar-
antee that all matching substrings of length < N will be found!)

More Technical Details. Finding common tags on Step 3. In our current
implementation we use the standard lexicographic sorting of the tags (using
the standard system command sort) and merge the sorted dictionaries. The
positions of the tags stored in the dictionaries are added to the tag on the same
line after a space so identical tags will be on two or more consecutive lines after
sorting. Then using any text processing utility (for example the standard gawk)
we find such consecutive lines with identical tags and build a list of repeated
tags with their positions in the respective Ti. This is rather fast for the examples
described in Sect. 4, but if the error tolerance ε is positive (so inexact matches
are to be allowed) lexicographic sorting does not guarantee that we will find all
tags that match inexactly with the given tolerance level ε.

Expansion strategies on Step 4. If ε = 0 simple expansion described in
Sect. 3.1 should be applied, that is compare consecutively the symbols on the
right and on the left of the identical tags in Ti as far as they match, stopping
when we meet non-matching symbols. If ε > 0 then during this process continue
expansion even if the compared symbols near the tags do not match; if such a
non-match is found add 1 to the counter miss count of mismatches and stop the
process of expansion if miss count/length(s) > ε (here s is the string obtained
in the process of expansion).

Treatment of symbols N, W etc. In the currently available DNA databases
one encounters results with non-exact recognition of nucleotides, they are marked
by letters outside of the standard nucleotide alphabet ℵ = {A,C,G,T}. Several
strategies may be applied depending on the problem solved by the researcher:
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– consider symbols N, W etc. as errors adding 1 to miss count;
– consider them as possible matches (not recognized by the DNA sequencer)

and keep expansion without adding 1 to miss count.
– cut the DNA sequences into smaller pieces which do not contain such extra

symbols and run our algorithm on the obtained pieces.

4 Preliminary Experimental Results

We checked the developed algorithm over the following genetic data (all
sequences were retrieved from EMBL–bank):

(1) Human chromosome 14 (since it contains A,C,G,T symbols only);
(2) 4 sets of drosophila genomes:

– Drosophila melanogaster,
– Drosophila simulans,
– Drosophila simulans strain white501,
– Drosophila yakuba strain Tai18E2;

(3) Bos taurus complete genome.

4.1 Human Chromosome 14

When the algorithm of Sect. 3.4 was run with the parameters m = 50, k = 31
(so we find all repeats of length at least N = k(k − 1) + m − 1 = 979, in total
19946 repeated tags were found on Step 3, among them 12154 tags occur twice,
3670 tags occur thrice, . . . , 12154 tags occur 10 times or more, the maximal
frequency was 25.

After expansion on Step 4 with ε = 0 (only exact matching was allowed) two
identical substrings of length 1019 were found, as well as hundreds of repeats of
smaller lengths.

After expansion on Step 4 with ε = 0.02 a pair of approximately matching
substrings of length 11000 (we give the approximate length since due to our
expansion method there are a few dozens of mismatches at the both ends of
them) was found, as well as few hundreds of repeats (approximate matches) of
lengths 1000 and more. The pair of length >11000 is in fact a long almost periodic
subsequence with period 102: the first string of the found pair starts from position
85597640 and the second one is shifted to the end of the chromosome by 102
positions. If one compares these approximately matching substrings then one
sees a few exactly matching sub-substrings of the following lengths (given in the
order of appearance, only exact matches of length more than 10 are given): 38,
101, 305, 203, 468, 101, 652, 101, 298, 55, 38, 62, 242, 94, 196, 101, 101, 203, 108,
305, 203, 305, 101, 101, 94, 101, 196, 94, 101, 62, 38, 62, 344, 62, 38, 62, 140, 62,
38, 62, 242, 101, 196, 94, 101, 24, 123, 52, 24, 21, 77, 287, 94, 196, 203, 62, 38,
62, 147, 101, 157, 203, 305, 101, 45, 101, 203, 94, 196, 713, 101, 62, 101, 38, 62,
38, 164. Many of them are multiples of the period 102 minus 1. Typically only
1 mismatching nucleotide occurs between the exactly matching subregions.
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4.2 4 Sets of Drosophila Genomes

The total size of this genome collection of 24 chromosomes of all 4 species is
478 · 106 BP. It contains several millions of unrecognized nucleotides (marked
with n symbol, mostly met in the last 3 species). When the algorithm of Sect. 3.4
was run on the complete set of all chromosomes with the parameters m = 50,
k = 63 (so we find all repeats of length at least N = 3995), in total 180980
repeated tags of length m were found on Step 3, the maximal frequency was 34.

We have tried a different choice of m = 50, k = 200 (so we find all repeats
of length at least N = 40000), which produced 20442 repeated tags (maximal
frequency 12). On Step 4 we treated the n symbols as errors. When treated
separately, the 4 species exhibit considerable differences in repeat lengths and
the overall number of long repeats (ε = 1/50):

– Drosophila melanogaster genome has 9 repeats of length 10000 and more, the
longest being 30893.

– Drosophila yakuba strain Tai18E2, Drosophila simulans and Drosophila sim-
ulans strain white501 genomes do not have such long exact repeats (but they
have dozens of exact repeats of length 1000 and more with maximal length
3024). On the other hand these repeats expand to approximate repeats of
length up to 6000 if processed with ε = 1/50.

4.3 Bos Taurus Complete Genome

The overall size of 29 processed DNA sequences of the complete genome was
more than 2.4 ·109 symbols. Since the files contain large unrecognized nucleotide
substrings a number of different strategies described in Sect. 3.4 were tried. If the
n symbols (no other unrecognized symbols were encountered) were considered
as non-errors, huge repeats of length up to 300000 were found; they consists
of n symbols practically completely. When the files were cut into pieces not
containing n symbols (this resulted in 9718 files of size greater than 100 Kbytes
and 11000 smaller files) and processed with the parameters m = 50, k = 600
(thus N > 360000) a number of exact repeats of length up to 89453 were found.

5 Discussion

The experiments described in the previous Section show that our method is suf-
ficiently fast and yields the results interesting both for exact and approximate
sequence analysis. Still, a number of questions arises concerning a feasibility of
the method for various biologically meaningful issues; a search for degenerated
motifs is among them. First, here we present a theoretical result rather than a
ready-to-use software package. Our implementation aims just to check a feasibil-
ity of the method itself. Evidently, there is no obstacles to combine, in some way,
Vernier sparse search and other well-established techniques (suffix trees, etc.).

Second, the current implementation guarantees revealing of all exact matches;
if tolerance level ε > 0, some minor changes must be implemented to avoid a
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failure of the method caused by the coincidence of a tag with admissible mis-
matches in degenerated motif. Indeed, simple lexicographically arranged sorting
of tags (sparse dictionary entries) must be changed for the search of tags that
are close with respect to admissible mismatch patterns (Levenstein distance, edit
distance, etc.).

Finally, a correct comparison of the speed of execution of software realizing
Vernier method and the combinations of that latter with some other approaches
should be done explicitly; a lack of space here blocks us to do that. An extended
version of this paper could be found on www.arXiv.org/archive/q-bio later.

In addition, some interesting mathematical and algorithmic issues are to be
urged to optimize the process. The following subsections address the issues.

5.1 Circular and Linear Vernier Patterns

Actually, the procedure described in Sect. 3 implies the following property of the
standard double Vernier gauge:
suppose some positions i1, i2, . . ., ik in N-element set N = {1, 2, . . . , N}
are marked. Then, if these marks are periodically repeated in a larger
set M = {1, 2, . . . ,M}, M 	 N , then for any s < M −N one finds at least
two marked positions with the exact distance s between them.
The property guarantees that for any two identical substrings s1, s2 of length
N+m−1 located in a longer symbol sequence T of length M+m−1 (the starting
positions of s1 and s2 differ in s symbols), couple of the marked positions exists
in T in the same position in s1, s2 with respect to their starting symbols, so
the tags (sub-substring of length m) starting at the selected positions inside T
coincide.

A better geometric insight into this Vernier pattern of positions i1, i2, . . . ,
ik is given by the following construction:
taking a circumference of length N and starting from some point O
(corresponding to the element 1 in the set N), mark clockwise the
points at the distances i1 − 1, i2 − 1, . . . , ik − 1 from O on the circumfer-
ence. Then for any integer length s ≤ N/2 one finds at least two marks
spanning the (shortest) arc of length s.
The circular picture corresponds to periodic repetition of the marks in the
larger M -element set M. If for the given integer N one finds set of positions
V = {i1, i2, . . . , ik} (with integer elements 0 < ip ≤ N) satisfying the property
formulated above, then such V is called an (N, k)-circular Vernier pattern.

Another concept of Vernier pattern may be introduced. It is referred to sim-
plified version of the problem of DNA sequence assembly. Namely, if for a subset
V = {i1, i2, . . . , ik} ⊂ N and for any integer length s ≤ N one finds at least
two elements in V with the distance s between them, then such V is called
(N, k)-linear Vernier pattern.

www.arXiv.org/archive/q-bio
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5.2 Minimalistic and Minimal Vernier Patterns

Obviously, the smaller k for given N is taken, the more economic dictionary could
be developed using the tags with the starting positions at the elements of an
(N, k)-circular Vernier pattern V periodically repeated in a large DNA sequence
T. Since the number of different distances between k points can not be greater
than k(k−1)/2, we have the following lower bound for k: k(k−1)/2 ≥ N/2, thus
for big N , k ∼ √

N . So, for the double Vernier gauge described in Subsect. 3.1
for a search of repeats in two DNA sequences, we have in fact a minimal possible
choice of marks (beginning positions of the tags). For all other cases described
as Step 2 of our algorithm in Subsect. 3.4, we have approximately twice more
marked positions in each of the Ti. For linear Vernier patterns the situations is
slightly different: k(k − 1)/2 ≥ N1 = N − m + 1.

0

1

3

0 1

3

7

Fig. 2. An example of minimalistic circular
Vernier patterns, for k = 3 (left) and k = 4
(right).

So the following mathematical
problem is a good combinatorial chal-
lenge.

Problem V. For any given integer
N find circular and linear Vernier
patterns with minimal possible k.

Such Vernier patterns are called
minimal Vernier patterns. For small
N one can even find minimalistic
Vernier patterns, i. e. the patterns
with k(k−1)/2 = �N/2 (resp. k(k−

1)/2 = N1 for linear patterns). Here on Fig. 2 we give some examples of mini-
malistic circular Vernier patterns.
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