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Abstract. The string graph for a collection of next-generation reads is
a lossless data representation that is fundamental for de novo assem-
blers based on the overlap-layout-consensus paradigm. In this paper, we
explore a novel approach to compute the string graph, based on the FM-
index and Burrows-Wheeler Transform (BWT). We describe a simple
algorithm that uses only the FM-index representation of the collection
of reads to construct the string graph, without accessing the input reads.
Our algorithm has been integrated into the SGA assembler as a stand-
alone module to construct the string graph.

The new integrated assembler has been assessed on a standard bench-
mark, showing that FSG is significantly faster than SGA while maintain-
ing a moderate use of main memory, and showing practical advantages
in running FSG on multiple threads.

1 Introduction

De novo sequence assembly continues to be one of the most fundamental prob-
lems in Bioinformatics. Most of the available assemblers [1,12,13,19,20,25] are
based on the notions of de Bruijn graphs and of k-mers (short k-long sub-
strings of input data). Currently, biological data are produced by different Next-
Generation Sequencing (NGS) technologies which routinely and cheaply produce
a large number of reads whose length varies according to the specific technology.
For example, reads obtained by Illumina technology (which is the most used)
have length between 50 and 150 bases [21].

To analyze datasets coming from different technologies, hence with a large
variation of read lengths, an approach based on same-length strings is likely to
be limiting, as witnessed by the recent introduction of variable-length de Bruijn
graphs [9]. The string graph [18] representation is an alternative approach that
does not need to break the reads into k-mers (as in the de Bruijn graphs), and has
the advantage of immediately distinguishing the repeats that result in different
arcs. The string graph is the main data representation used by assemblers based
on the overlap-layout-consensus paradigm. Indeed, in a string graph, the vertices
are the input reads and the arcs corresponds to overlapping reads, with the
property that contigs are paths of the string graph. An immediate advantage of
string graphs is that they can disambiguate some repeats that methods based on
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de Bruijn graphs might resolve only at later stages—for example, the repeats that
are longer than k/2 but contained in a read. Even without repetitions, analyzing
only k-mers instead of the longer reads can result in some information loss, since
bases of a read that are more than k positions apart are not part of the same
k-mer, but might be part of the same read. Indeed, differently from de Brujin
graphs, any path of a string graph is a valid assembly of reads. On the other hand,
string graphs are more computationally intensive to compute [24], justifying
our search for faster algorithms. From an algorithmic point of view, the most
used string graph assembler is SGA [23], which first constructs the BWT [11]
and the FM-index of a set of strings, and then uses those data structures to
efficiently compute the arcs of the string graph (connecting overlapping reads).
Another string graph assembler is Fermi [17] which implements a variant of
the original SGA algorithm [23] that is tailored for SNP and variant calling.
A number of recent works face the problem of designing efficient algorithmic
strategies or data structures for building string graphs. Among those works we
can find a string graph assembler [4], based on a careful use of hashing and Bloom
filters, with performance comparable with the first SGA implementation [23].
Another important alternative approach to SGA is Readjoiner [15] which is
based on an efficient computation of a subset of exact suffix-prefix matches,
and by subsequent rounds of suffix sorting, scanning, and filtering outputs the
non-redundant arcs of the graph.

All assemblers based on string graphs (such as SGA) need to both (1) query
an indexing data structures (such as an FM-index), and (2) access the original
reads set to detect prefix-suffix overlaps between the elements. Since the self-
indexing data structures, such as FM-index, represent the whole information
of the original dataset, an interesting problem is to design efficient algorithms
for the construction of string graphs that only require to keep the index and
do not need to access the read set together with the index. Improvements in
this direction have both theoretical and practical motivations. Indeed, detecting
prefix-suffix overlaps only by analyzing the (compressed) index is an almost
unexplored problem, and managing such data structure is usually more efficient.

Following this research direction, we propose a new algorithm, called FSG,
to compute the string graph of a set R of reads, whose O(nm) time complexity
matches that of SGA—n is the number of reads in R and m is the maximum
read length. To the best of our knowledge, it is the first algorithm that computes
a string graph using only the FM-index of the input reads. The vast literature
on BWT and FM-index hints that this approach is amenable to further research.
An important observation is that SGA computes the string graph basically per-
forming, for each read r, a query to the FM-index for each character of r, to
compute the arcs outgoing from r. While this approach works in O(nm) time,
it can perform several redundant queries, most notably when the reads share
common suffixes (a very common case). Our algorithm queries the FM-index in
a specific order, so that each string is processed only once, while SGA might
process more than once each repeated string. It is important to notice that
our novel algorithm uses a characterization of a string graph that is different,
but equivalent, to the one in [18] stated in [7] and which is quite useful when
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processing reads with their FM-index. Moreover, since we have integrated our
algorithm into SGA, the read correction and the assembly phases of SGA can
be applied without any modification. These facts guarantees that the assemblies
produced by our approach and SGA are the same. In a previous paper, we have
tackled the problem of constructing the string graph in external memory [8] by
taking advantages of some recent results on the external memory implementa-
tion of the FM-index [2]. Experimental results [8] have revealed that computing
the FM-index and LCP (Longest Common Prefix) array are the two main lim-
iting factors towards an efficient (in terms of running time and main memory
requirements) external memory algorithm to construct the string graph. In fact,
even the best known algorithms for these steps do not have an optimal I/O
complexity [2,3].

The FSG algorithm provides an approach to build a string graph that could
be used for different read assembly purposes. We have implemented FSG and
integrated it with the SGA assembler, by replacing in SGA the step related to
the string graph construction. Our implementation follows the SGA guidelines,
i.e., we use the correction step of SGA before computing the overlaps without
allowing mismatches (which is also SGA’s default). Notice that SGA is a finely
tuned implementation that has performed very nicely in the latest Assemblathon
competition [10]. We have compared FSG with SGA, where we have used the
latter’s default parameter (that is, we compute overlaps without errors). Our
experimental evaluation on a standard benchmark dataset shows that our app-
roach is 2.3–4.8 times faster than SGA in terms of wall clock time.

2 Preliminaries

We briefly recall some standard definitions that will be used in the following.
Let Σ be a constant-sized alphabet and let S be a string over Σ. We denote
by S[i] the i-th symbol of S, by � = |S| the length of S, and by S[i : j] the
substring S[i]S[i + 1] · · · S[j] of S. The suffix and prefix of S of length k are the
substrings S[� − k + 1 : �] (denoted by S[� − k + 1 :]) and S[1 : k] (denoted by
S[: k]) respectively. Given two strings (Si, Sj), we say that Si overlaps Sj iff a
nonempty suffix β of Si is also a prefix of Sj , that is Si = αβ and Sj = βγ. In this
paper we consider a set R of n strings over Σ that are terminated by the sentinel
$, which is the smallest character. To simplify the exposition, we will assume
that all input strings have exactly m characters, excluding the $. The overlap
graph of a set R of strings is the directed graph GO = (R,A) whose vertices are
the strings in R, and each two overlapping strings ri = αβ and rj = βγ form the
arc (ri, rj) ∈ A labeled by α. In this case β is called the overlap of the arc and
α is called the extension of the arc. Observe that the notion of overlap graph
originally given by [18] is defined by labeling with γ the arc (ri, rj) ∈ A.

The notion of a string graph derives from the observation that in a overlap
graph the label of an arc (r, s) may be obtained by concatenating the labels of
a pair of arcs (r, t) and (t, s), thus arc (r, s) can be removed from the overlap
graph without loss of information, since removing all such arcs, called redundant
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arcs, does not changet the set of valid paths. In [18] redundant arcs are those
arcs (r, s) labeled by αβ, for α the prefix of an arc (r, t). An equivalent definition
of string graphs is below. An arc e1 = (ri, rj) of GO labeled by α is transitive
(or reducible) if there exists another arc e2 = (rk, rj) labeled by δ where δ is a
suffix of α [7]. Therefore, we say that e1 is non-transitive (or irreducible) if no
such arc e2 exists. The string graph of R is obtained from GO by removing all
reducible arcs. This definition allows to use the FM-index to compute the labels
of the string graph via backward extensions on the index.

The Generalized Suffix Array (GSA) [22] of R is the array SA where each
element SA[i] is equal to (k, j) iff the k-long suffix rj [|rj | − k + 1 :] of the string
rj is the i-th smallest element in the lexicographic ordered set of all suffixes of
the strings in R. The Burrows-Wheeler Transform (BWT) of R is the sequence
B such that B[i] = rj [|rj |−k], if SA[i] = (k, j) and k > 1, or B[i] = $, otherwise.
Informally, B[i] is the symbol that precedes the k-long suffix of a string rj where
such suffix is the i-th smallest suffix in the ordering given by SA. For any string
ω, all suffixes of (the lexicographically sorted) SA whose prefix is ω appear
consecutively in SA. Consequently, we define the ω-interval [2], denoted by q(ω),
as the maximal interval [b, e] such that b ≤ e, SA[b] and SA[e] both have prefix
ω. Notice that the width e − b + 1 of the ω-interval is equal to the number of
occurrences of ω in some read of R. Since the BWT B and SA are closely related,
we also say that [b, e] is a ω-interval on B. Given a ω-interval and a character c,
the backward c-extension of the ω-interval is the cω-interval.

3 The Algorithm

Our algorithm is based on two steps: the first is to compute the overlap graph,
the second is to remove all transitive arcs. Given a string ω and R a set of strings
(reads), let RS(ω) and RP (ω) be respectively the subset of R with suffix (resp.
prefix) ω. As usual in string graph construction algorithms, we will assume that
the set R is substring free, i.e., no string is a substring of another. A fundamental
observation is that the list of all nonempty overlaps β is a compact representation
of the overlap graph, since all pairs in RS(β) × RP (β) are arcs of the overlap
graph. Our approach to compute all overlaps between pairs of strings is based on
the notion of potential overlap, which is a nonempty string β∗ ∈ Σ+, s.t. there
exists at least one input string ri = αβ∗ (α �= ε) with suffix β∗, and there exists
at least one input string rj = γβ∗δ (δ �= ε) with β∗ as a substring (possibly a
prefix). The first part of Algorithm1 (lines 3–11) computes all potential overlaps,
starting from those of length 1 and extending the potential overlaps by adding
a new leading character. For each potential overlap, we check if it is an actual
overlap. Lemma 1 is a direct consequence of the definition of potential overlap.

Lemma 1. Let β be an overlap. Then all suffixes of β are potential overlaps.

The second part of our algorithm, that is to detect all transitive arcs, can be
sped up if we cluster together and examine some sets of arcs. We start considering
the set of all arcs sharing the same overlap and a suffix of their extensions, as
stated in the following definition.
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Definition 2. Assume that α, β ∈ Σ∗, β �= ε and X ⊆ RP (β). The arc-set
ARC(α, αβ,X) is the set {(r1, r2) : αβ is a suffix of r1, β is a prefix of r2, and
r1 ∈ R, r2 ∈ X}. The strings α and β are called the extension and the overlap
of the arc-set. The set X is called the destination set of the arc-set.

In other words, an arc-set contains the arcs with overlap β and extension
α. An arc-set is terminal if there exists r ∈ R s.t. r = αβ, while an arc-set is
basic if α = ε (the empty string). Since the arc-set ARC(α, αβ,X) is uniquely
determined by strings α, αβ, and X, the triple (α, αβ,X) encodes the arc-set
ARC(α, αβ,X). Moreover, the arc-set ARC(α, αβ,X) is correct if X includes
all irreducible arcs that have overlap β and extension with suffix α, that is
X ⊇ {r2 ∈ RP (β) : r1 ∈ RS(αβ) and (r1, r2) is irreducible}. Observe that our
algorithm computes only correct arc-sets. Moreover, terminal arc-sets only con-
tain irreducible arcs (Lemma 5). Lemma 3 shows the use of arc-sets to detect
transitive arcs. Due to space constraints, all proofs are omitted.

Lemma 3. Let (r1, r2) be an arc with overlap β. Then (r1, r2) is transitive iff
(i) there exist α, γ, δ, η ∈ Σ∗, γ, η �= ε such that r1 = γαβ, r2 = βδη, (ii)
there exists an input read r3 = αβδ such that (r3, r2) is an irreducible arc of a
nonempty arc-set ARC(α, αβδ,X).

A direct consequence of Lemma 3 is that a nonempty correct terminal arc-set
ARC(α, αβδ,X) implies that all arcs of the form (γαβ, βδη), with γ, η �= ε are
transitive. Another consequence of Lemma 3 is that an irreducible arc (αβδ, βδη)
with extension α and overlap βδ reduces all arcs with overlap β and extension
γα, with γ �= ε. Lemma 3 is the main ingredient used in our algorithm. More
precisely, it computes terminal correct arc-sets of the form ARC(α, αβδ,X) for
extensions α of increasing length. By Lemma 3, ARC(α, αβδ,X) contains arcs
that reduce all the arcs contained in ARC(α, αβ,X ′) which have a destination
in X. Since the transitivity of an arc is related to the extension α of the arc that
is used to reduce it, and our algorithm considers extensions of increasing length,
a main consequence of Lemma 3 is that it computes terminal arc-sets that are
correct, that is they contain only irreducible arcs. We will further speed up the
computation by clustering together the arc-sets sharing the same extension.

Definition 4. Let T be a set of arc-sets, and let α be a string. The cluster of
α, denoted by C(α), is the union of all arc-sets of T whose extension is α.

We sketch Algorithm 1 which consists of two phases: the first phase to com-
pute the overlap graph, and the second phase to remove all transitive arcs. In
our description, we assume that, given a string ω, we can compute in constant
time (1) the number suff(ω) of input strings whose suffix is ω, (2) the number
pref(ω) of input strings whose prefix is ω, (3) the number substr(ω) of occur-
rences of ω in the input strings. Moreover, we assume to be able to list the set
listpref(ω) of input strings with prefix ω in O(|listpref(ω)|) time. In Sect. 4 we
will describe such a data structure. The first phase (lines 3–11) exploits Lemma1
to compute all overlaps. Potential overlaps are defined inductively. The empty
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string ε is a potential overlap of length 0; given an i-long potential overlap β∗,
the (i + 1)-long string cβ∗, for c ∈ Σ, is a potential overlap iff suff(cβ∗) > 0 and
substr(cβ∗) > suff(cβ∗). Our algorithm uses this definition to build potential
overlaps of increasing length, starting from those with length 1, i.e., symbols
of Σ (line 2). The lists Last and New store the potential overlaps computed at
the previous and current iteration respectively. Observe that a potential overlap
β∗ is an overlap iff pref(β∗) > 0. Since a potential overlap is a suffix of some
input string, there are at most nm distinct suffixes, where m and n are the length
and the number of input strings, respectively. Each query suff(·), pref(·), substr(·)
requires O(1) time, thus the time complexity related to the total number of such
queries is O(nm). Given two strings β1 and β2, when |β1| = |β2| no input string
can be in both listpref(β1) and listpref(β2). Since each overlap is at most m long,
the overall time spent in the listpref(·) queries is O(nm). The first phase pro-
duces (line 7) the set of disjoint basic arc-sets ARC(ε, β,Rp(β)) for each overlap
β, whose union is the set of arcs of the overlap graph. Recall that listpref(β)
gives the set of reads with prefix β, which has been denoted by Rp(β).

The second phase (lines 13–25) classifies the arcs of the overlap graph into
reducible or irreducible by computing arc-sets of increasing extension length,
starting from the basic arc-sets ARC(ε, εβ,Rp(β)) obtained in the previous
phase. By Lemma 3, we compute all correct terminal arc-sets ARC(α, αβ,X)
and remove all arcs that are reduced by ARC(α, αβ,X). The set Rdc is used
to store the destination set X of the computed terminal arc-sets. Notice that if
ARC(α, αβ,X) is terminal, then all of its arcs have the same origin r = αβ, i.e.,
ARC(α, αβ,X) = {(r, x) : x ∈ X}. By Lemma 3 all arcs in the cluster C(α) with
a destination in X and with an origin different from r are transitive and can be
removed, simply by removing X from all destination sets in the arc-sets of C(α).
Another application of Lemma3 is that when we find a terminal arc-set all of its
arcs are irreducible, i.e., it is also correct. In fact, Lemma 3 classifies an arc as
transitive according to the existence of a read r = αβ with extension α. Since the
algorithm considers extensions α of increasing length, all arcs whose extensions
is shorter than α have been reduced in a previous step, thus all terminal arc-set
of previous iterations are irreducible. More precisely, the test at line 18 is true iff
the current arc-set is terminal. In that case, at line 19 all arcs of the arc-set are
output as arcs of the string graph, and at line 20 the destination set X is added
to the set Rdc that contains the destinations of C(α) that must be removed.
For each cluster C(α), we read twice all arc-sets that are included in C(α). The
first time to determine which arc-sets are terminal and, in that case, to deter-
mine the set Rdc of reads that must be removed from all destinations of the
arc-sets included in C(α). The second time to compute the clusters C(cα) that
contain the nonempty arc-sets with extension cα consisting of the arcs that we
still have to check if they are transitive or not (that is the arcs with destination
set X \Rdc). In Algorithm 1, the cluster C(α) that is currently analyzed is stored
in CurrentCluster, that is a list of the arc-sets included in the cluster. Moreover,
the clusters that still have to be analyzed are stored in the stack Clusters. We
use a stack to guarantee that the clusters are analyzed in the correct order, that
is the cluster C(α) is analyzed after all clusters C(α[i :])—α[i :] is a generic suffix
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Algorithm 1. Compute the string graph
Input : The set R of input strings
Output: The string graph of R, given as a list of arcs

1 Cluster ← empty list;
2 Last ← {c ∈ Σ | suff(c) > 0 and substr(c) > suff(c)};
3 while Last is not empty do
4 New ← ∅;
5 foreach β∗ ∈ Last do
6 if pref(β∗) > 0 then
7 Append (ε, β∗, listpref(β∗)) to Cluster;
8 for c ∈ Σ do
9 if suff(cβ∗) > 0 and substr(cβ∗) > suff(cβ∗) then

10 Add cβ∗ to New;

11 Last ← New;

12 Clusters ← the stack with Cluster as its only element;
13 while Clusters is not empty do
14 CurrentCluster ← Pop(Clusters);
15 Rdc ← ∅;
16 Let ExtendedClusters be an array of |Σ| empty clusters;
17 foreach (α, αβ, X) ∈ CurrentCluster do
18 if substr(αβ) = pref(αβ) = suff(αβ) > 0 then
19 Output the arcs (αβ, x) with label α for each x ∈ X;
20 Rdc ← Rdc ∪ X;

21 foreach (α, αβ, X) ∈ CurrentCluster do
22 if X �⊆ Rdc then
23 for c ∈ Σ do
24 if suff(cαβ) > 0 then
25 Append (cα, cαβ, X \ Rdc) to ExtendedClusters[c];

26 Push each non-empty cluster of ExtendedClusters to Clusters;

of α. We can prove that a generic irreducible arc (r1, r2) with extension α and
overlap β belongs exactly to the clusters C(ε), . . . , C(α[2 :]), C(α). Moreover, r2
does not belong to the set Rdc when considering C(ε), . . . , C(α[2 :]), hence the
arc (r1, r2) is correctly output when considering the cluster C(α). The lemmas
leading to the correctness of the algorithm follow.

Lemma 5. Let ARC(α, αβ,X) be an arc-set inserted into a cluster by
Algorithm1. Then such arc-set is correct.

Lemma 6. Let e1 be a transitive arc (r1, r2) with overlap β. Then the algorithm
does not output e1.

Theorem 7. Given as input a set of strings R, Algorithm1 computes exactly
the arcs of the string graph.

We can now sketch the time complexity of the second phase. Previously, we
have shown that the first phase produces at most O(nm) arc-sets, one for each
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distinct overlap β. Since each string αβ considered in the second phase is a suffix
of an input string, and there are at most nm such suffixes, at most nm arc-sets
are considered in the second phase. In the second phase, for each cluster a set Rdc
is computed. If Rdc is empty, then each arc-set of the cluster can be examined in
constant time, since all unions at line 20 are trivially empty and at line 25 the set
X \Rdc is equal to X, therefore no operation must be computed. The interesting
case is when X �= ∅ for some arc-set. In that case the union at line 20 and the
difference X \ Rdc at line 25 are computed. Let d(n) be the time complexity of
those two operations on n-element sets (the actual time complexity depends on
the data structure used). Notice that X is not empty only if we have found an
irreducible arc, that is an arc of the string graph. Overall, there can be at most
|E| nonempty such sets X, where E is the set of arcs of the string graph. Hence,
the time complexity of the entire algorithm is O(nm + |E|d(n)).

4 Data Representation

Our algorithm entirely operates on the (potentially compressed) FM-index of
the collection of input reads. Indeed, each processed string ω (both in the first
and in the second phase) can be represented in constant space by the ω-interval
[bω, eω] on the BWT (i.e., q(ω)), instead of using the näıve representation with
O(|ω|) space. Notice that in the first phase, the i-long potential overlaps, for a
given iteration, are obtained by prepending a symbol c ∈ Σ to the (i − 1)-long
potential overlaps of the previous iteration (lines 8–10). In the same way the
arc-sets of increasing extension length are computed in the second phase. In
other words, our algorithm needs in general to obtain string cω from string ω,
and, since we represent strings as intervals on the BWT, this operation can be
performed in O(1) time via backward c-extension of the interval q(ω) [14].

Moreover, both queries pref(ω) and substr(ω) can be answered in O(1) time.
In fact, given q(ω) = [bω, eω], then substr(ω) = eω − bω + 1 and pref(ω) = e$ω −
b$ω +1 where q($ω) = [b$ω, e$ω] is the result of the backward $-extension of q(ω).
Similarly, it is easy to compute listpref(ω) as it corresponds to the set of reads
that have a suffix in the interval q($ω) of the GSA. The interval q(ω$) = [bω$, eω$]
allows to answer to the query suff(ω) which is computed as eω$ − bω$ + 1. The
interval q(ω$) is maintained along with q(ω). Moreover, since q(ω$) and q(ω)
share the lower extreme bω = bω$ (recall that $ is the smallest symbol), each
string ω can be compactly represented by the three integers bω, eω$, eω. While
in our algorithm a substring ω of some input read can be represented by those
three integers, we exploited the following representation for greater efficiency. In
the first phase of the algorithm we mainly have to represent the set of potential
overlaps. At each iteration, the potential overlaps in Last (New, resp.) have the
same length, hence their corresponding intervals on the BWT are disjoint. Hence
we can store those intervals using a pair of n(m + 1)-long bitvectors. For each
potential overlap β ∈ Last (New, resp.) represented by the β-interval [bβ , eβ ], the
first bitvector has 1 in position bβ and the second bitvector has 1 in positions eβ$

and eβ . Recall that we want also to maintain the interval q(β$) = [bβ , eβ$]. Since
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substr(β) > suff(β), then eβ$ �= eβ and can be stored in the same bitvector. In
the second phase of the algorithm, we mainly represent clusters. A cluster groups
together arc-sets whose overlaps are pairwise different or one is the prefix of the
other. Thus, the corresponding intervals on the BWT are disjoint or nested.
Moreover, also the destination set of the basic arc-sets can be represented by a
set of pairwise disjoint or nested intervals on the BWT (since listpref(β) of line 7
correspond to the interval q($β)). Moreover, the loop at lines 13–25 preserves the
following invariant: let ARC(α, αβ1,X1) and ARC(α, αβ2,X2) be two arc-sets
of the same cluster C(α) with β1 prefix of β2, then X2 ⊆ X1. Hence, each subset
of arc-sets whose extensions plus overlaps share a common nonempty prefix γ is
represented by means of the following three vectors: two integers vectors Vb, Ve

of length eγ −bγ +1 and a bitvector Bx of length e$γ −b$γ +1, where [bγ , eγ ] is the
γ-interval and [b$γ , e$γ ] is the $γ-interval. More specifically, Vb[i] (Ve[i], resp.)
is the number of arc-sets whose representation (BWT interval) of the overlap
starts (ends, resp.) at bγ + i, while Bx[i] is 1 iff the read at position b$γ + i, in the
lexicographic order of the GSA, belongs to the destination set of all the arc-sets.
As a consequence, the number of backward extensions performed by Algorithm1
is at most O(nm), while SGA performs Θ(nm) extensions.

5 Experimental Analysis

A C++ implementation of our approach, called FSG (short for Fast String
Graph), has been integrated in the SGA suite and is available at http://fsg.
algolab.eu under the GPLv3 license. We have evaluated the performance of FSG
on a standard benchmark of 875 million 101 bp-long reads sequenced from the
NA12878 individual of the International HapMap and 1000 genomes project and
comparing the running time of FSG with SGA. We have run SGA with its default
parameters, that is SGA has compute exact overlaps after having corrected the
input reads. Since the string graphs computed by FSG and SGA are the same,
we have not compared the entire pipeline, but only the string graph construc-
tion phase. We could not compare FSG with Fermi, since Fermi does not split
its steps in a way that allows to isolate the running time of the string graph
construction—most notably, it includes reads correction and scaffolding.

Especially on the DNA alphabet, short overlaps between reads may happen
by chance. Hence, for genome assembly purposes, only overlaps whose length is
larger than a user-defined threshold are considered. The value of the minimum
overlap length threshold that empirically showed the best results in terms of
genome assembly quality is around the 75 % of the read length [24]. To assess
how graph size affects performance, different values of minimum overlap length
(called τ) between reads have been used (clearly, the lower this value, the larger
the graph). The minimum overlap lengths used in this experimental assessment
are 55, 65, 75, and 85, hence the chosen values test the approaches also on larger-
than-normal (τ = 55) and smaller-than-normal (τ = 85) string graphs. Another
aspect that we have wanted to measure is the scalability of FSG. We have run
the programs with 1, 4, 8, 16, and 32 threads. In all cases, we have measured

http://fsg.algolab.eu
http://fsg.algolab.eu
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Table 1. Comparison of FSG and SGA, for different minimum overlap lengths and
numbers of threads. The wall-clock time is the time used to compute the string graph.
The CPU time is the overall execution time over all CPUs actually used.

Min. overlap No. of threads Wall time [min] Work time [min]

FSG SGA FSG
SGA

FSG SGA FSG
SGA

55 1 1, 485 4, 486 0.331 1, 483 4, 480 0.331

4 474 1, 961 0.242 1, 828 4, 673 0.391

8 318 1, 527 0.209 2, 203 4, 936 0.446

16 278 1, 295 0.215 3, 430 5, 915 0.580

32 328 1, 007 0.326 7, 094 5, 881 1.206

65 1 1, 174 3, 238 0.363 1, 171 3, 234 0.363

4 416 1, 165 0.358 1, 606 3, 392 0.473

8 271 863 0.315 1, 842 3, 596 0.512

16 255 729 0.351 3, 091 4, 469 0.692

32 316 579 0.546 6, 690 4, 444 1.505

75 1 1, 065 2, 877 0.37 1, 063 2, 868 0.371

4 379 915 0.415 1, 473 2, 903 0.507

8 251 748 0.336 1, 708 3, 232 0.528

16 246 561 0.439 2, 890 3, 975 0.727

32 306 455 0.674 6, 368 4, 062 1.568

85 1 1, 000 2, 592 0.386 999 2, 588 0.386

4 360 833 0.432 1, 392 2, 715 0.513

8 238 623 0.383 1, 595 3, 053 0.523

16 229 502 0.457 2, 686 3, 653 0.735

32 298 407 0.733 6, 117 3, 735 1.638

the elapsed (wall-clock) time and the total CPU time (the time a CPU has been
working). All experiments have been performed on an Ubuntu 14.04 server with
four 8-core Intel R© Xeon E5-4610v2 2.30 GHz CPUs. The server has a NUMA
architecture with 64 GiB of RAM for each node (256 GiB in total).

Table 1 summarizes the running times of both approaches on the different
configurations of the parameters. Notice that LSG approach is from 2.3 to 4.8
times faster than SGA in terms of wall-clock time and from 1.9 to 3 times in
terms of CPU time. On the other hand, FSG uses approximately 2.2 times the
memory used by SGA—on the executions with at most 8 threads. On a larger
number of threads, and in particular the fact that the elapsed time of FSG on 32
threads is larger than that on 16 threads suggests that, in its current form, FSG
might not be suitable for a large number of threads. However, since the current
implementation of FSG is almost a proof of concept, future improvements to
its codebase and a better analysis of the race conditions of our tool will likely
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lead to better performances with a large number of threads. Furthermore, notice
that also the SGA algorithm, which is (almost) embarrassingly parallel and has
a stable implementation, does not achieve a speed-up better than 6.4 with 32
threads. As such, a factor that likely contributes to a poor scaling behaviour of
both FSG and SGA could be also the NUMA architecture of the server used
for the experimental analysis, which makes different-unit memory accesses more
expensive (in our case, the processors in each unit can manage at most 16 logical
threads, and only 8 on physical cores). FSG uses more memory than SGA since
genome assemblers must correctly manage reads extracted from both strands of
the genome. In our case, this fact has been addressed by adding each reverse-
and-complement read to the set of strings on which the FM-index has been
built, hence immediately doubling the size of the FM-index. Moreover, FSG
needs some additional data structures to correctly maintain potential overlaps
and arc-sets: two pairs of n(m + 1)-long bitvectors and the combination of two
(usually) small integer vectors and a bitvector of the same size. Our experimental
evaluation shows that the memory required by the latter is usually negligible,
hence a better implementation of the four bitvectors could decrease the memory
use. The main goal of FSG is to improve the running time, not the memory use.

The combined analysis of the CPU time and the wall-clock time on at most
8 threads (which is the number of physical cores of each CPU on our server)
suggests that FSG is more CPU efficient than SGA and is able to better dis-
tribute the workload across the threads. In our opinion, our greater efficiency is
achieved by operating only on the FM-index of the input reads and by the order
on which extension operations (i.e., considering a new string cα after α has been
processed) are performed. These two characteristics of our algorithm allow to
eliminate the redundant queries to the index which, instead, are performed by
SGA. In fact, FSG considers each string that is longer than the threshold at
most once, while SGA potentially reconsiders the same string once for each read
in which the string occurs. Indeed, FSG uses 2.3–3 times less user time than
SGA when τ = 55 (hence, when such sufficiently-long substrings occur more
frequently) and “only” 2–2.6 times less user time when τ = 85 (hence, when
such sufficiently-long substrings are more rare).

6 Conclusions and Future Work

We present FSG: a tool implementing a new algorithm for constructing a string
graph that works directly querying a FM-index representing a collection of reads,
instead of processing the input reads. Our main goal is to provide a simpler and
fast algorithm to construct string graphs, so that its implementation can be easily
integrated into an assembly pipeline that analyzes the paths of the string graph
to produce the final assembly. Indeed, FSG could be used for related purposes,
such as transcriptome assembly [5,16], and haplotype assembly [6]. These topics
are some of the research directions that we plan to investigate.
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