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Abstract. Pedigrees, or family trees, are graphs of family relationships
that are used to study inheritance. A fundamental problem in computa-
tional biology is to find, for a pedigree with n individuals genotyped at
every site, a set of Mendelian-consistent haplotypes that have the mini-
mum number of recombinations. This is an NP-hard problem and some
pedigrees can have thousands of individuals and hundreds of thousands
of sites.

This paper formulates this problem as a optimization on a graph and
introduces a tailored algorithm with a running time of O(n<k+2)m6k)
for n individuals, m sites, and k recombinations. Since there are gener-
ally only 1-2 recombinations per chromosome in each meiosis, k is small
enough to make this algorithm practically relevant.
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Full Manuscript. Pre-print publication of the full manuscript is
available at arXiv [10].

1 Introduction

The study of pedigrees is of fundamental interest to several fields: to computer
science due the combinatorics of inheritance [8,17], to epidemiology due to the
pedigree’s utility in disease-gene finding [15,18] and recombination rate infer-
ence [3], and to statistics due to the connections between pedigrees and graph-
ical models in machine learning [11]. The central calculation on pedigrees is to
compute the likelihood, or probability with which the observed data observed
are inherited in the given genealogy. This likelihood serves as a key ingredient
for computing recombination rates, inferring haplotypes, and hypothesis testing
of disease-loci positions. State-of-the-art methods for computing the likelihood,
or sampling from it, have exponential running times [1,2,6,7,16].

The likelihood computation with uniform founder allele frequencies can be
reduced to the combinatorial MINIMUM RECOMBINATION HAPLOTYPE CON-
FIGURATION (MRHC) first introduced by Li and Jiang [12]. A solution to
MRHC is a set of haplotypes that appear with maximum probability. The MRHC
problem is NP-hard, and as such is unlikely to be solvable in polynomial time.
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The MRHC problem differs from more general haplotype phasing approaches [13]
that attempt to phase unrelated or partially related individuals. The MRHC
problem applies specifically to individuals in a family with known relationships,
and this problem has a variation with mutations [14,19]. Xiao, et al. considered
a bounded number of recombinations in a probabilistic phasing model [20].
This paper gives an exponential algorithm for the MRHC problem with run-
ning time tailored to the required recombinations O(n**2)m5%) having expo-
nents that only depend on the minimum number of recombinations k& which
should be relatively small (i.e. one or two recombinations per chromosome per
individual per generation). This is an improvement on previous formulation that
rely on integer programming solvers rather than giving an algorithm which is
specific to MRHC [12]. We also define the minimum-recombination (MR) graph,
connect the MR graph to the inheritance path notation and discuss its properties.
The remainder of this paper is organized as follows. Section 2 introduces the
combinatorial model for the pedigree analysis. Section 3 provides a construction
of the MR graph. Finally, Sect.4 gives a solution to the MRHC problem based
on a coloring of the minimum recombination graph. Due to space constraints,
several algorithms and proofs have been deferred to the extended version of the

paper.

2 Pedigree Analysis

This section gives the background for inferring haplotype configurations from
genotype data of a pedigree. We use the Iverson bracket notation, so that [E]
equals 1 if the logical expression E is true and 0 otherwise [9].

A pedigree is a directed acyclic graph P whose vertex set I(P) is a set of
individuals, and whose directed arcs indicate genetic inheritance from parent
to child. A pedigree is diploid if each of its individuals has either no or two
incoming arcs; for example, human, cow, and dog pedigrees are diploid. For a
diploid pedigree P, every individual without incoming arcs is a founder of P,
and every other individual i is a non-founder for which the vertices adjacent to
its two incoming arcs are its parents pi (i), p2(i), mother and father, respectively.
Let F(P) denote the set of founders of P.

In this paper, every individual has genetic data of importance to the haplo-
type inference problem. We abstract this data as follows. A site is an element
of an ordered set {1,...,m}. For two sites s,t in the interval [1,m], their dis-
tance is dist(s,t) = |s — t|. For a pedigree P, let n = |I(P)| be the number
of its individuals. A haplotype h is a string of length m over {0,1} whose ele-
ments represent binary alleles that appear together on the same chromosome.
We use p; and ps to indicate maternal and paternal chromosomes, respectively,
and let hP' (i), hP2(i) be binary strings that denote the maternal and paternal
haplotypes of individual i. For a site s, the maternal (resp. paternal) haplo-
type of individual ¢ at site s is the allele h?*(i,s) (resp. hP2(i,s)) of the string
hPt(7) (resp. hP2(i)) at position s. A haplotype configuration is a matrix H with
m columns and n rows, whose entry H,. at row r and column c is the vector

(ron i),
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Haplotype data is expensive to collect; thus, we observe genotype data and
recover the haplotypes by inferring the parental and grand-parental origin of
each allele. The genotype of each individual ¢ at each site s is the conflation
g(i, s) of the alleles on the two chromosomes: formally,

ois) = {hpl (1,5), i Wi 8) = 2 (0, 9) Q
2, otherwise.

Genotype ¢(i,s) is homozygous if g(i,s) € {0,1} and heterozygous otherwise.
Let G be the matrix of genotypes with entry ¢(i, s) at row ¢ and column s. We
have defined the genotypes in the generative direction from the haplotypes. We
are interested in the inverse problem of recovering the haplotypes given the geno-
types. For a matrix G having n heterozygous sites across all individuals, there
are 271 possible configurations satisfying genotype consistency given by (1).

Throughout, we assume that Mendelian inheritance at each site in the
pedigree proceeds with recombination and without mutation. This assumption
imposes Mendelian consistency rules on the haplotypes (and genotypes) of the
parents and children. For ¢ € {1, 2}, a haplotype h*¢(3) is Mendelian consistent if,
for every site s, the allele h?¢ (i, s) appears in p(i)’s genome as either the grand-
maternal allele hP! (py(), s) or grand-paternal allele h?2(p,(7), s). Mendelian con-
sistency is a constraint imposed on our haplotype configuration that is in addi-
tion to genotype consistency in (1). From now on, we will define a haplotype
configuration as consistent if it is both genotype and Mendelian consistent.

For each non-founder ¢ € I(P) \ F(P) and ¢ € {1,2}, we indicate the origin
of each allele of py(i) by the binary variable o (i, s) defined by

‘e BPe(; o) — hP1 i
oPe (L s) _ P1, ?f h (7,, 5) h (pg(l.), 8)’
po, if hPe(i,s) = hP2(pe(i), s).

In words, oP¢(i, s) equals py if hP* (i, s) has grand-maternal origin and equals po
otherwise. The set o(s) = {(o?'(4,),0P2(i,s)) | i € I(P)} is the inheritance
path for site s. A recombination is a change of allele between consecutive sites,
that is, if oP¢(i,s) # oP¢(i,s + 1) for some ¢ € {1,2} and s € {1,...,m — 1}.
For a haplotype configuration H, 2¢ inheritance paths satisfy (2), where ¢ is
the number of homozygous sites among all parent individuals of the pedigree.
This means that for a genotype matrix G, we have at most O(27-12¢) possible
tuples (H, o), and this defines the search space for the MRHC problem where
the goal is to choose a tuple (H, o) with a minimum number of recombinations
represented in o.
For a pedigree P and observed genotype data G, the formal problem is:

(2)

MINIMUM RECOMBINATION HAPLOTYPES (MRHC)

Input: A pedigree P with genotype matrix G

Task: Find hP¢(i,s) for i € I(P),s € {1,...,m},¢ € {1,2} minimizing
the number of required recombinations, i.e., compute

. m—1 2 . .
argmin 57 o) Y ic1(p\F(P) 2as>1 2at—1 07 (6:8) # 0P (i, s +1)]
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3 Minimum Recombination Graph

We now fix a pedigree P and describe a vertex-colored graph R(P), the minimum
recombination graph (MR graph) of P, which allows us to reduce the MRHC
problem on P to a coloring problem on R(P). The concept of the MR graph was
introduced by Doan and Evans [4] to model the phasing of genotype data in P.
However, our graph definition differs from theirs, because, as we will argue later,
their definition does not model all recombinations of all haplotypes consistent
with the genotype data.

3.1 Definition of the Minimum Recombination Graph

Intuitively, the minimum recombination graph represents the Mendelian consis-
tent haplotypes and the resulting minimum recombinations that are required for
inheriting those haplotypes in the pedigree: vertices represent genome intervals,
vertex colors represent haplotypes on those intervals, and edges represent the
potential for inheritance with recombination.

Formally, the minimum recombination graph of P is a tuple (R(P),¢,S),
where R is an undirected multigraph, ¢ is a coloring function on the vertices of
R(P), and S is a collection of “parity constraint sets”. The vertex set V(R(P))
of R(P) consists of one vertex iy for each individual 4 € I(P) and each genomic
interval 1 < s < t < m, plus one special vertex b. A vertex ig is reqular if
sites s and t are contiguous heterozygous sites in individual i, and supplemen-
tary otherwise. A vertex iy is heterozygous (homozygous) if i has heterozygous
(homozygous) genotypes at both s, t.

Vertex-Coloring. The coloring function ¢ assigns to each regular or supplemen-
tary vertex ig a color ¢(is;) € {gray,blue,red, white}. The color of vertex ig
indicates the different “haplotype fragments” that are Mendelian consistent at
sites s and ¢ in the genome of individual i. A haplotype fragment f(is:) of a
vertex ig at sites s and ¢ is an (unordered) set of two haplotypes which we will
write horizontally with sites s and t side-by-side and the two haplotypes stacked
on top of each other. Let @(is) be the set of haplotype fragments generated
by the color assignment of vertex is;. The colors are defined in Table1. The
haplotype pair of individual i at sites s and t is the {0,1}-valued 2 x 2-matrix

. hP1(i,s) hP*(i,t
Hi,s.t) = (hp2 Ez si hP2Ei7t§
haplotype fragments and haplotype pairs by H (i, s,t) = f(is:). Similarly, for set
comparison of sets, we write {H (i, s,t)| VH} = ®(ist) where the first set con-
siders all consistent haplotype configurations H. Then the color and genotype
of 14 precisely represent its haplotype fragments, as defined in Table 1. Figure 1
gives an example of the genotypes, haplotypes, and vertex colorings.

For a heterozygous vertex ig, its color ¢ (i) indicates the relative paternal
origin of the heterozygous alleles at sites s and ¢ and corresponds to a haplotype
configuration (red and blue have a one-to-one correspondence with the two pos-
sible haplotypes for the sites of is). But these haplotypes are fragmented, and,

>. We denote unordered (set) comparison of the
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Table 1. Rules for coloring vertex is; of the minimum recombination graph. The =
symbol denotes a set comparison operation (i.e., an unordered comparison of elements).

g(i,s) | g(i,t) | {H(i,s,t)|VH} = B(ist) @(ist)
2 2 {(75), (39} gray

2 2 (98 red

2 2 ((1) (1)) blue

0 0 (59) blue

1 1 (11) blue
o1 (Y red
1 0 (1) red
otherwise {(8(1)) ( ) (1?),(?1)} white

hence, may or may not be consistent with a single haplotype configuration. Note
that colors may or may not indicate Mendelian consistent haplotype fragments.

g(i,.) = 2012 9(P3_g(4)»-) = 0010

0011 e 0010 Phase with
1010
0010 one recomb.

_|_ 0 | by resolving

the gray vertex

) as red
0010 g(j,.) = 0010
0010

Fig. 1. The genotypes and the haplotypes are given for three individuals and four
sites. Here (s,t) = (1,4) since those are the heterozygous sites in the left parent. From
Table 1, we see that the left parent is gray, line 1, that the right parent is blue, line 4,
and that the child is blue, line 4. This figure is an instance of Table2, case 1 (in the
full manuscript’s Appendix [10], it is the first case). There are no parity constraints in
this example. A better phasing with zero recombinations would be to resolve the gray
parent as blue.

Parity Constraint Sets. We now describe the collection S of parity constraint
sets. The collection S contains one set S for each gray heterozygous supple-
mentary vertex. A parity constraint set is a tuple (S, ps) with parity color
ps € {red,blue} for even parity, and a set S consisting of a heterozygous
supplementary vertex iy and all regular heterozygous vertices i,, such that
s <p < g <t. Here, ps = red (resp. ps = blue) indicates even parity of the red
(resp. blue) vertices. As sites s,t are heterozygous and i is supplementary, the
set S contains at least two regular vertices i, and either i,; or ig4.
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Given S, every Mendelian consistent haplotype configuration induces a vertex
coloring ¢s of R(P), defined by

Plist), if dist) # gray,
¢5(ist) = I’ed, if ¢(Zst) = gray A3 H(Z7S7t) = (? (1)) ’
blue,  otherwise.

However, we need further constraints to guarantee that the coloring ¢s has
a corresponding Mendelian consistent haplotype configuration. Intuitively, these
constraints ensure that the collection of overlapping haplotype fragments selected
by coloring the gray vertices are consistent with two longer haplotypes. Examples
of red parity constraint sets are given in Fig. 2.

For coloring ¢s, the number of pg-colored vertices in each parity constraint
set (S,ps) € S must be even. When ps = red it properly models that the
gray vertices ipq, s < p < g < t with ¢(ipe) = gray and ¢s(is;) = red indicate
alternating alleles 0-1 along the chromosome. For now, we focus on the case where
ps = red which is the default color for pg. Informally, we want the red-colored
gray vertices in the parity constraint set to indicate alternating 0-1 pattern along
the haplotype. Therefore, the color of the unique supplementary vertex in each
set S must agree with the pattern indicated by the regular vertices in S. Later
we will see that ps = blue only for particular cases where the blue vertices are
adjacent to red vertices on edges without recombination, meaning that these red
vertices indicate alternative allele 0-1 along the chromosome.

We call a parity constraint set .S satisfied by ¢s if S contains an even number
of vertices ipq, s < p < ¢ < t with ¢(ipq) = gray and color ¢s(is) = ps; and
we call S satisfiable if there exists a coloring ¢s induced by S, ¢, H such that
each set S € § is satisfied. By definition, a coloring ¢s induced by a Mendelian
consistent haplotype configuration satisfies all sets (S, ¢s) € S. The converse is
also true:

Observation 1. Any assignment ¢s of colors red and blue to vertices ipq, s <
p < q <t with ¢(ipq) = gray that satisfies all sets of the form (S,¢s) € S
represents a Mendelian consistent haplotype configuration H.

In other words, there is a bijection between haplotype configurations and color-
ings that satisfy the parity constraint sets. For ¢s = red, the justification follows
from the 0-1 alternating alleles of gray vertices in any genotype consistent hap-
lotype. We will see later that in the instances where we have pg = blue, the
bijection will also hold.

Edge Creation. It remains to describe the edge set E(R(P)) of R(P), which
requires some preparation. Consider a haplotype configuration H and a mini-
mum recombination inheritance path for those haplotypes. Let r be a recom-
bination that occurs during the inheritance from an individual i to its child j
between contiguous sites ¢ and ¢+ 1. Let £ € {1,2} indicate whether i = py(j)
is the maternal or paternal parent of j. Then the recombination r of i’s hap-
lotypes is indicated in the inheritance path by o?¢(j,q) # o?*(j,q + 1). Fixing
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all recombinations 7’ # r in the inheritance path, r can be shifted to the right
or to the left in j’s inheritance path to produce a new inheritance path which
is also consistent with the haplotype configuration H. The mazimal genomic
interval of r is the unique maximal set [s,t] = {s,s+1,...,t —1,¢} of sites such
that r can placed between any contiguous sites ¢,q + 1 in the interval with the
resulting inheritance path being consistent with H. Since all genotype data is
observed, the maximal genomic interval [s,t] of r always means that both s,t
are heterozygous sites in the parent ¢, and therefore [s, t] is determined only by
the recombination position ¢ and the pair {s, ¢}, independent of H. This interval
[s,t] is pertinent to which haplotype fragments are represented in R(P), and it
is elucidated by the “min-recomb property” defined below.

The set E(R(P)) will be the disjoint union of the set E* of positive edges
and the set E~ of negative edges. An edge {u,v} € E(R(P)) will be called
disagreeing if either {u,v} € ET and vertices u,v are colored differently, or if
{u,v} € E~ and vertices u,v have the same color. Our goal is to create edges
such that R(P) satisfies the “min-recomb property”.

Definition 1. Let P be a pedigree with I(P) its set of individuals. A graph with
vertex set I(P) has the min-recomb property if for every individual j € I(P)
with parents p1(j),p2(4), and every haplotype configuration H for the genotype
data, for ¢ € {1,2}, a recombination between i = py(j) and j in the maximal
genomic interval [s,t] is in some minimum recombination inheritance path for
H if and only if the recombination is represented in the graph by a disagreeing
edge incident to vertex isy = pp(4)st-

Let is be a regular vertex of R(P) with g(i,s) = g(i,t) = 2 and let j €
I(P)\ F(P) be such that i = pg(j). Then ¢(is;) € {gray, blue, red}, and we create
edges incident to is; and j depending on their colors and genotypes, according
to Table2. Figurel gives an example of the first case in this table. Note that
R(P) is a multigraph, but there is at most one negative edge {is, ps—¢(j)} for

any tuple (7, st = pe(4), p3—e(J))-

Table 2. Rules for creating edges of the minimum recombination graph.

Case | ¢(p3-e(J)) #(5) Edges to create

1 {gray, blue, red} | {gray, blue, red} | {is¢, jst }, {p3—2(j)st, Jst } € E*
2 white {gray, blue, red} | {ist, st} € ET

3 {gray, blue, red} | white {ist,p3_2(j)st} € E~

4 white white (see text)

It remains to describe the edges to create in Case 4, when ¢(ps—¢(j)) =
@(7) = white. This will be done according to the following subcases:

4(a) If p3_,(j) and j have a common heterozygous site, that is, if g(p3—_¢(j),s) =
9(J,s) =2 or g(ps—e(j),t) = g(j,t) = 2, then there is a unique site z € {s, t}
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that is heterozygous in both individuals j and ps_¢(j). Let ¢(j) € {s,s +
1,...,t—1,t}\ {z} be the heterozygous site in j that is closest to z, or ¢(j) =
+00 if no such site exists. Similarly, let g(ps—¢(j)) € {s,s+1...,t}\ {z} be
the heterozygous site in ps_g(j) that is closest to z, or q(p3_¢(j)) = +oo if
no such site exists. If min{q(j), ¢(ps—¢(j))} = +oo then vertex iy remains
isolated; otherwise, let zmin = min{z, ¢}, zmax = max{z,q},z = {s,t} \ {2z},
and create edges incident to i4 according to Table 3.

4(b) If j and p3_,(j) do not have a heterozygous site at the same position, then
either g(ps—e(j), ) = g(4,t) = 2 or g(j,s) = g(ps—e(j),t) = 2. Let z € {s,}
be such that g(ps—e¢(j),2) # 2 and let z € {s,¢} be such that g(j,z) # 2.
If g(ps—e(4),2) = g(4, 2), create the edge {ist, b} € E—, else create the edge
{ist,b} € ET.

Table 3. Case 4(a): rules for creating edges incident to a vertex iy with
min{q(7), ¢(ps—¢(j))} < +o0.

P(Jzminzmax) | 904, min{q(5), g(ps—e(5))}) | edge to create

{blue, red, gray} | = g(ps—¢(j), 2) {ist, Jrminzma ) € BT
{blue, red, gray} | # g(ps—c(j), 2) {ist, Jominzmax ) € B

white = g(p3—e(j), 2) {istyP3—2(J) zminzmax } € £~
white # 9(ps—c(j), %) {ists P3—¢(J) smminzman } € BT

Graph Cleanup. To complete the construction of R(P), we pass through its list
of supplementary vertices to remove some of their edges: this is necessary as
some edges adjacent to a supplementary vertex might over-count the number of
recombinations; see the example in Fig. 2.

Let {ist,jst} be an edge adjacent to a supplementary gray vertex is where @
is the parent of j. Let (S(ist), ps(i.,)) € S be the set containing i.;. If all regular
vertices ipq in S(is), for s < p < ¢ < t, are incident to an edge {ipg, jpq} then
the supplementary edge {ist, js¢} over-counts. We remove {ig, js:} and replace
the set S(ist) by a set S(jst), which has vertices with the same indices as those
in S(is;) and where the parity constraint is to have an even number of pg;_,)
vertices where pg(;_,) = blue if pg(;_,) = red and pg(;,,) = red if pg(;_,) = blue.
Notice that js; must also be a supplementary vertex, for the condition to be
satisfied.

Note that this edge-removal rule does not apply to edges in Case 4, and
does not apply to negative edges, as a negative edge {is, st} adjacent to a
supplementary vertex i, has at least one regular vertex i,,, s <p < ¢ <t in
the parity constraint set S(is;) for which there is no edge {ipq, jpq}-

Observation 2. Any assignment ¢s of colors red and blue to vertices ig with
@(ist) = gray that satisfies all parity constraint sets (S,ps) € S represents a
Mendelian consistent haplotype configuration H.
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Comparing the MR, graph R(P) as defined in this section, with the graph
D(P) defined by Doan and Evans [4], we find that D(P) fails to properly model
the phasing of genotype data; see Sect. 3.4 for details.

3.2 Algorithms

Our motivation for introducing the ¢-colored MR graph and parity constraint
sets S is to model the existence of Mendelian consistent haplotypes for the
genotypes in P; we formalize this in Lemmal. Complete algorithms will be
given in the extended version of this paper.

Lemma 1. Given (R(P),¢,S), there exists a Mendelian consistent haplotype
configuration H for the genotypes if and only if there exists a coloring ¢s that
satisfies all parity constraint sets in S.

Proof. Given a haplotype configuration H, let ¢s be a coloring of regular and
supplementary vertices in I(P) defined as follows. For any vertex is; € I(P) with
ds(ist) # gray, set ¢s(ise) = P(ist). For any vertex ig € I(P) with ¢s(ist) =
gray and H(i,s,t) = (V1) set s(ist) = red. For any vertex i, € I(P) with
os(ise) = gray and H(i,s,t) = ((1) (1]), set ¢s(ist) = blue. Then ¢s satisfies the
parity constraint sets in S, since each haplotype in H is a contiguous sequence
of alleles.

Conversely, let ¢s satisfy the parity constraint sets in S. We generate the
haplotype sequences for all individuals by the MR Haplotype algorithm, which
results in the haplotypes from the colored minimum recombination graph. For
individual ¢ and site s, given its genotype ¢(i, s) the algorithm arbitrarily selects
an ¢ € {1,2} and obtain haplotype hP¢(i) from the graph. Recall that the hap-
lotype fragments are unordered, so the symmetry between the first haplotype
fragments is broken by arbitrarily selecting the zero allele of the first locus. Since
the haplotype fragments of all following vertices overlap with the fragments of
the previous vertex, all other symmetries are broken by the original choice. Then
the algorithm sets hP3-¢(i) = g(i,s) — hP¢(i). Let h;s be the haplotype allele for
i at site s. For the smallest heterozygous site sq of i, setting h(i,¢) = 0 allows to
arbitrarily select one of the haplotypes of i. To obtain the rest of the haplotype
alleles, the loop iterates along the genome setting the alleles as indicated by the
colors. All gray vertices are used, and since the parity constraints are satisfied
by the supplementary vertices, the alleles set by the regular gray vertices and
the supplementary gray vertices are identical.

We defined the minimum recombination graph (R(P),¢,S) in terms of the
minimum recombination property, proved that such a graph exists and satisfies
the coloring property.

In the rest of this section we discuss how to construct a minimum recombi-
nation graph in polynomial time from the genotype data for all individuals in
the pedigree P. We make three claims: (1) that the white vertices are irrelevant,
(2) that the algorithms we give construct the minimum recombination graph
of P, and (3) that the algorithms run in polynomial time.
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First, consider the white vertices of (R(P), ¢,S). These are not connected to
any other vertex of R(P) and are therefore not involved in any recombinations.
They never change their color and are therefore not involved in specifying the
haplotype configuration. Thus, removing the white vertices from R(P) yields a
graph that still satisfies the minimum recombination property and the coloring
property. Our algorithms therefore do not create any white vertices.

Second, we claim that the MR Graph algorithm constructs the minimum
recombination graph from the given genotype data for all individuals in the
pedigree P. Considering the color ¢(i) of any heterozygous vertex created. If
Mendelian consistency requires vertex ¢ to have a particular color ¢ € {red, blue},
then ¢(i) is set to c¢. By definition of (R(P),®,S), any heterozygous vertex is
colored a particular color if every Mendelian consistent haplotype configuration
has the appropriate corresponding haplotypes. The analysis of all genotype and
haplotype possibilities in the proof of Lemma 2 shows that Mendelian consis-
tency criterion is necessary and sufficient to obtain these colors. The cases show
that when considering this vertex as the parent, there are haplotype configura-
tions for both colors of the vertex, regardless of the genotypes of the children.
However, when this vertex is the child, there are instances where the vertex has
a determined color. These cases in the tables are marked with bold; the dis-
allowed genotype combinations are indicated with MI and by a slash through
the offending color with the only feasible color in bold. Since the table shows
all Mendelian consistent genotype possibilities, it follows that any vertex con-
strained to be a particular color must be constrained by one of the Mendelian
compatibility instances in the table. Therefore these Mendelian consistency cases
are necessary and sufficient for initially coloring the heterozygous vertices.

Note that the parity constraint sets add no further coloring constraints to
the heterozygous vertices beyond those given by the Mendelian consistency con-
straints. To see this, suppose, for the sake of contradiction, that there is a parity
constraint set S € S with exactly one vertex iy of color ¢(is;) = gray. Then in
every haplotype configuration H, the color ¢s is uniquely determined. Therefore,
of all possible haplotype cases in the proof of Lemma 2, since the only ones having
a determined color for a heterozygous vertex are Mendelian consistency cases,
then this single gray vertex color must be determined by Mendelian consistency.

It remains to verify that the edges of R(P) are created according to the rules
given above. It is possible to write an MR Trio algorithm that satisfies this, this
algorithm is given in the extended version of this paper.

Third, we claim that the MR Graph algorithm runs in time polynomial in
| P|. Its running times is determined by the number of vertices that are processed.
Let n = |I(P)| be the number of individuals in P, let m be the number of sites,
and ¢ be the maximum number of individuals j for any ¢ with py(j) = ¢. Then the
MR Graph algorithm runs in time O(cnm), since for each individual ¢ € I(P)
there are at most m vertices for contiguous heterozygous sites. For each of those
vertices, MR Trio algorithm is called at most ¢ times, and performs a constant-
time edge-creation operation. All these algorithms are given in the extended
version of this paper.
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3.3 Properties of the Minimum Recombination Graph

We prove basic properties of the minimum recombination graph (R(P), ¢,S).

First, there can be multiple colorings of gray vertices by red or blue that satisfy
those parity constraints corresponding to a particular choice of haplotypes for
all individuals in P; this is formalized in Lemma 2.

Lemma 2. Given (R(P),$,S), a coloring ¢’ of reqular and supplementary ver-
tices of R(P) satisfies all parity constraint set in S if

{o(ise)},  if ¢(ist) # gray, and regular
@' (ist) € < {red,blue}, if ¢p(ist) = gray, and regular (3)
parity(ps) if supplementary

Proof. By definition of ¢, for any regular vertex is; with ¢(ist) = gray there exist
two haplotype configurations, one in which 74 has the red haplotype fragments,
((1) (1)), and one in which is has the blue haplotype fragments, (? é) In both
cases, there exists a haplotype configuration, one represented by blue and the
other by red. After coloring all the regular vertices, we can select the color of
the supplementary vertices to satisfy parity. Thus, any coloring ¢’ obtained from
the haplotype fragments that appear in the haplotype configuration and subject

to (3) satisfies the parity constraint sets.

Second, we show that each edge in the graph is necessary, in that there exists
a haplotype configuration with the indicated recombination.

Theorem 3. For any edge e = {is, jpq} € E(R(P)) there exists a haplotype
configuration H having a minimum recombination inheritance path with the
recombination indicated by e. (Proof in the extended version of the paper.)

Third, we prove that (R, ¢, S) satisfies the min-recomb property.

Theorem 4. Let H be a Mendelian consistent haplotype configuration, let
1,7 € I(P) be such that i = pe(j), and let s,t be sites such that s < t. Then a
recombination between i and j in the mazimal genomic interval [s,t] is in some
minimum recombination inheritance path of H if and only if it is represented in
R(P) by a disagreeing edge incident to is:.

Theorem 4 proves that the edge construction cases result in an MR, graph,
since those particular edges satisfy the min-recomb property.

Corollary 1. For a Mendelian consistent haplotype configuration H, let ¢’ be
the coloring induced on R(P) by H, and let E' = {{is, jpq} € E~ | ¢'(ist) =
& (Gpg)} U {{ist,dpg} € ET | ¢'(ist) # &' (Jpg)}. Then the minimum number
of recombinations required for any inheritance of those haplotypes equals |E’|.
(Proof in the extended version of the paper.)

Note that similar to the proof of Theorem 4, from R(P) and ¢, we can exploit
the edge cases for the disagreeing edges to obtain a minimum recombination
inheritance path from R(P) in time O(|E(R(P))|) time. The running time is
due to a constant number of cases being considered for each disagreeing edge.
From each of the cases, a feasible inheritance path is an immediate consequence.



280 B. Kirkpatrick

Corollary 2. A solution to the MRHC problem corresponds to a coloring ¢s
that satisfies S and has a minimum number of disagreeing edges.

3.4 Comparison of the MR Graph with the Doan-Evans Graph

We now compare the MR graph R(P), as defined in Sect. 3, with the graph D(P)
defined by Doan and Evans [4]. We claim that the graph D(P) fails to properly
model the phasing of genotype data.

First, in D(P) any vertex that represents two heterozygous sites is colored
gray. However, as some of the gray vertices are constrained by Mendelian con-
sistency to be either red or blue, D represents Mendelian inconsistent haplotype
configurations. For example, in some instances where both parents are white,
ie. (8 (1)) and ((1) 8), the heterozygous child must be colored red.

Second, D(P) violates the minimum recombination property: in Fig.1(c)
of their paper [4], there exists haplotypes for the two parents and child such
that H indicates a different number of recombinations than required by the
haplotypes. Specifically, let the left parent have haplotypes 0101 and 1110, the
right parent have haplotypes 0010 and 1111, and the child have haplotypes
0111 and 1111. Then D(P) indicates one recombination, whereas the minimum
number of recombinations required by the haplotypes is two.

Third, the parity constraint sets defined by Doan and Evans [4] can over-
count the number of recombinations. For example, consider the pedigree P with
n = 5 individuals consisting of an individual 4, its parents, and its paternal
grand-parents, see Fig. 2.

(S1,0) = ({8(i1,3) = red, ¢(i1,2), ¢(i2,3)}, red)
(823 p2) = ({¢(]1,3) ¢(j1,2) = blue» ¢(]25) = blue}v Ted)

(i) (1 () p2(5)| (000)

wedijen R D,

(001) @

110

e minimum bipartization set

Fig. 2. The specified haplotypes induce two disagreeing edges in D(P), but only one
recombination is required to inherit the haplotypes. The supplementary gray vertices
are indicated with double circles. Their parity constraint sets are given at the top of
the figure.
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4 Coloring the MR Graph by Edge Bipartization

In this section, we solve a variant of an edge bipartization problem on a pertur-
bation of the minimum recombination graph. The solution to this problem is in
one-to-one correspondence with a Mendelian consistent haplotype configuration
for the genotype data, because of Observation 2.

First, we perturb the graph (R(P),¢,S) by substituting each of the posi-
tive edges in R(P) by two negative edges. That is, bisect every positive edge
{ist,jst} € ET with a new gray vertex x and add the resulting two edges
{ist,x},{x, jst}. Once this step has been completed for all positive edges of R(P),
call the resulting graph R(P)~. Observe that R(P)~ is not a minimum recom-
bination graph, since the new gray vertices do not represent a maximal genomic
interval. Further, colorings of R(P) and R(P)~ are in one-to-one correspondence,
as the color of is in R(P) equals the color of ig in R(P)~. Similarly, R(P)~
has the same number of disagreeing edges of a given coloring of R(P), and thus
preserves the number of recombinations of any coloring. Thus, by Observation 2,
R(P) has a bipartization set of size k if and only if R(P)™ has.

Second, we perturb the graph (R(P)™, ¢,S) by turning R(P)~ into an uncol-
ored graph R(P). The graph R(P) has the same vertex set as R(P)~ (with col-
ors on the vertices removed), plus two additional vertices v, and v,. The graph
contains all edges of R(P)~, plus a parity edge for every vertex colored red con-
necting it to v, and a parity edge for every vertex colored blue connecting it
to v,.. This way, color constraints are preserved. For a graph, a subset B of its
edges is called a bipartization set if removing the edges in B from the graph
yields a bipartite graph.

A bipartization set is minimal if it does not include a bipartization set as
proper subset. A bipartization set is respectful if it also satisfies the parity con-
straint sets. We claim that respectful bipartization sets of R(P)~ are respectful
bipartization set of R(P). Those bipartization sets of R(P) that are not biparti-
zation sets of R(P)~ contain at least one parity edge. Here we need to compute
a bipartization set B (with size at most k) of non-parity edges such that the
graph R(P) — B satisfies all parity constraint sets in S; we call such a set B
respectful (with respect to S).

4.1 The Exponential Algorithm

A MRHC problem instance has parameters n for the number of individuals, m
for the number of sites, and k£ for the number of recombinations.

The algorithm considers in brute-force fashion the number of recombinations
{0,1,2,...,k} and stops on the first k such that there exists some set S of k edges
whose removal from the graph produces (1) a bipartite graph and (2) satisfies
the parity constraints. For each selection of k edges, the two checks require (1)
traversing the graph in a depth-first search in time O(n?m?) and (2) computing
the parity of all the parity constraint sets in time O(nm?).
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The number of sets S with k recombination edges is | E|¥ where E = E(R(P))
is the edge set of R(P) and where |E| = O(nm?). So, the running time of the
whole algorithm is O(nF+2)m6k).

5 Discussion

This paper gives an exponential to compute minimum recombination haplotype
configurations for pedigrees with all genotyped individuals, with only polynomial
dependence on the number m of sites (which can be very large in practice) and
small exponential dependence on the minimum number of recombinations k.
This algorithm significantly improves, and corrects, earlier results by Doan and
Evans [4,5]. An open question is how this algorithm performs when implemented
and applied to data. Another open question is how to handle missing alleles in
the data.

Acknowledgments. BK thanks M. Mnich at the Cluster of Excellence, Saarland
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arXiv for pre-print publication of the full manuscript [10].

References

1. Abecasis, G., Cherny, S., Cookson, W., Cardon, L.: Merlin-rapid analysis of dense
genetic maps using sparse gene flow trees. Nat. Genet. 30, 97-101 (2002)

2. Browning, S., Browning, B.: On reducing the statespace of hidden Markov models
for the identity by descent process. Theoret. Popul. Biol. 62(1), 1-8 (2002)

3. Coop, G., Wen, X., Ober, C., Pritchard, J.K., Przeworski, M.: High-resolution map-
ping of crossovers reveals extensive variation in fine-scale recombination patterns
among humans. Science 319(5868), 1395-1398 (2008)

4. Doan, D.D., Evans, P.A.: Fixed-parameter algorithm for haplotype inferences on
general pedigrees with small number of sites. In: Moulton, V., Singh, M. (eds.)
WABI 2010. LNCS, vol. 6293, pp. 124-135. Springer, Heidelberg (2010)

5. Doan, D., Evans, P.: An FPT haplotyping algorithm on pedigrees with a small
number of sites. Algorithms Mol. Biol. 6, 1-8 (2011)

6. Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihood haplotyping for
general pedigrees. Hum. Hered. 59, 41-60 (2005)

7. Geiger, D., Meek, C., Wexler, Y.: Speeding up HMM algorithms for genetic linkage
analysis via chain reductions of the state space. Bioinformatics 25(12), 1196 (2009)

8. Geiger, D., Meek, C., Wexler, Y.: Speeding up HMM algorithms for genetic linkage
analysis via chain reductions of the state space. Bioinformatics 25(12), i196-i203
(2009)

9. Iverson, K.E.: A Programming Language. Wiley, New York (1962)

10. Kirkpatrick, B.: Haplotype inference for pedigrees with few recombinations. arXiv
1602.04270 (2016). http://arxiv.org/abs/1602.04270

11. Lauritzen, S.L., Sheehan, N.A.: Graphical models for genetic analysis. Stat. Sci.
18(4), 489-514 (2003)


http://arxiv.org/abs/1602.04270

12.

13.

14.

15.

16.

17.

18.

19.

20.

Haplotype Inference for Pedigrees with Few Recombinations 283

Li, J., Jiang, T.: Computing the minimum recombinant haplotype configuration
from incomplete genotype data on a pedigree by integer linear programming. J.
Comput. Biol. 12(6), 719-739 (2005)

O’Connell, J., Gurdasani, D., et al.: A general approach for haplotype phasing
across the full spectrum of relatedness. PLoS Genet 10(4), e1004234 (2014)
Pirola, Y., Bonizzoni, P., Jiang, T.: An efficient algorithm for haplotype inference
on pedigrees with recombinations and mutations. IEEE/ACM Trans. Comput.
Biol. Bioinform. 9(1), 12-25 (2012)

Risch, N., Merikangas, K.: The future of genetic studies of complex human diseases.
Science 273(5281), 1516-1517 (1996)

Sobel, E., Lange, K.: Descent graphs in pedigree analysis: applications to haplo-
typing, location scores, and marker-sharing statistics. Am. J. Hum. Genet. 58(6),
1323-1337 (1996)

Steel, M., Hein, J.: Reconstructing pedigrees: a combinatorial perspective. J. The-
oret. Biol. 240(3), 360-367 (2006)

Thornton, T., McPeek, M.: Case-control association testing with related individu-
als: a more powerful quasi-likelihood score test. Am. J. Hum. Genet. 81, 321-337
(2007)

Wang, W.B., Jiang, T.: Inferring haplotypes from genotypes on a pedigree with
mutations, genotyping errors and missing alleles. J. Bioinform. Comput. Biol. 9,
339-365 (2011)

Xiao, J., Lou, T., Jiang, T.: An efficient algorithm for haplotype inference on pedi-
grees with a small number of recombinants. Algorithmica 62(3), 951-981 (2012)



	Haplotype Inference for Pedigrees with Few Recombinations
	1 Introduction
	2 Pedigree Analysis
	3 Minimum Recombination Graph
	3.1 Definition of the Minimum Recombination Graph
	3.2 Algorithms
	3.3 Properties of the Minimum Recombination Graph
	3.4 Comparison of the MR Graph with the Doan-Evans Graph

	4 Coloring the MR Graph by Edge Bipartization
	4.1 The Exponential Algorithm

	5 Discussion
	References


