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Abstract. Reconstructing ancestral gene orders in a given phylogeny
is a classical problem in comparative genomics. Most existing meth-
ods compare conserved features in extant genomes in the phylogeny to
define potential ancestral gene adjacencies, and either try to reconstruct
all ancestral genomes under a global evolutionary parsimony criterion,
or, focusing on a single ancestral genome, use a scaffolding approach to
select a subset of ancestral gene adjacencies. In this paper, we describe
an exact algorithm for the small parsimony problem that combines both
approaches. We consider that gene adjacencies at internal nodes of the
species phylogeny are weighted, and we introduce an objective function
defined as a convex combination of these weights and the evolutionary
cost under the Single-Cut-or-Join (SCJ) model. We propose a Fixed-
Parameter Tractable algorithm based on the Sankoff-Rousseau dynamic
programming algorithm, that also allows to sample co-optimal solu-
tions. An implementation is available at http://github.com/nluhmann/
PhySca.

1 Introduction

Reconstructing ancestral gene orders is a long-standing computational biology
problem with important applications, as shown in several recent large-scale
projects [8,17,18]. Informally, the problem can be defined as follows: Given a
phylogenetic tree representing the speciation history leading to a set of extant
genomes, we want to reconstruct the structure of the ancestral genomes corre-
sponding to the internal nodes of the tree.

Existing ancestral genome reconstruction methods concentrate on two main
strategies. Local approaches consider the reconstruction of one specific ancestor
at a time independently from the other ancestors of the tree. Usually, they do
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not consider an evolutionary model and proceed in two stages: (1) comparing
gene orders of ingroup and outgroup species to define potential ancestral gene
adjacencies, and (2) selecting a conflict-free subset of ancestral gene adjacen-
cies to obtain a set of Contiguous Ancestral Regions (CARs) [3,7,14,15]. Global
approaches on the other hand simultaneously reconstruct ancestral gene orders
at all internal nodes of the considered phylogeny, generally based on a parsi-
mony criterion within an evolutionary model. This small parsimony problem has
been studied with several underlying genome rearrangement models, such as
the breakpoint distance or the Double-Cut-and-Join (DCJ) distance [1,11,23].
While rearrangement scenarios based on complex rearrangement models can give
insights into underlying evolutionary mechanisms, from a computational point
of view, the small parsimony problem is NP-hard for most rearrangement dis-
tances [21]. One exception is the Single-Cut-or-Join (SCJ) distance, for which
linear/circular ancestral gene orders can be found in polynomial time [9], however
constraints required to ensure algorithmic tractability yield fragmented ancestral
gene orders.

The work we present is an attempt to reconcile both approaches. We intro-
duce a variant of the small parsimony problem based on an optimality criterion
that accounts for both an evolutionary distance and the difference between the
initial set of potential ancestral adjacencies and the final consistent subset of
adjacencies. More precisely we consider that each potential ancestral gene adja-
cency can be provided with a (prior) non-negative weight at every internal node.
These adjacency weights can e. g. be obtained as probabilities computed by sam-
pling scenarios for each potential adjacency independently [6] or can be based
on ancient DNA (aDNA) sequencing data providing direct prior information
assigned to certain ancestral nodes. It follows that the phylogenetic framework
we present can then also assist in scaffolding fragmented assemblies of aDNA
sequencing data [12,19]. We describe an exact exponential time algorithm for
reconstructing consistent ancestral genomes under this optimality criterion, and
show that the small parsimony problem variant we introduce is Fixed-Parameter
Tractable (FPT), with a parameter linked to the amount of conflict in the data.
Moreover, this also allows us to provide a FPT sampling algorithm for co-optimal
solutions. We evaluate our method on two data sets: mammalian genomes span-
ning roughly one million years of evolution, and bacterial genomes (pathogen
Yersinia) spanning 20, 000 years of evolution. See [13] for an extended preprint
of this paper.

2 Background

Genomes and adjacencies. Genomes consist of chromosomes and plasmids. Each
such component can be represented as a linear or circular sequence of oriented
markers over a marker alphabet. Markers correspond to homologous sequences
between genomes, e. g. genes or synteny blocks. We assume that each marker
appears exactly once in each genome, so our model does not consider duplica-
tions or deletions. To account for its orientation, each marker x is encoded as
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a pair of marker extremities (xh, xt) or (xt, xh). An adjacency is an unordered
pair of marker extremities, e. g. {xt, yh}. The order of markers in a genome can
be encoded by a set of adjacencies. Two distinct adjacencies are said to be con-
flicting if they share a common marker extremity. If a set of adjacencies contains
conflicting adjacencies, it is not consistent with a mixed linear/circular genome
model.

The small parsimony problem and rearrangement distances. In a global phylo-
genetic approach, we are given a phylogenetic tree with extant genomes at its
leaves and internal nodes representing ancestral genomes. We denote by A the
set of all adjacencies present in at least one extant genome and assume that
every ancestral adjacency belongs to A. Then the goal is to find a labeling of the
internal nodes by consistent subsets of A minimizing a chosen genomic distance
over the tree. This is known as the parsimonious labeling problem. It is NP-hard
for most rearrangement distances. The only known exception is the set-theoretic
Single-Cut-or-Join (SCJ) distance [9]. It defines a rearrangement distance by
two operations: the cut and join of adjacencies. Given two genomes defined by
consistent sets of adjacencies A and B, the SCJ distance between these genomes
is dSCJ(A,B) = | A − B | + | B − A |.

The small parsimony problem under the SCJ model can be solved by com-
puting a parsimonious gain/loss history for each adjacency separately with the
dynamic programming Fitch algorithm [10]. Consistent labelings can be ensured
with the additional constraint that in case of ambiguity at the root of the tree,
the absence of the adjacency is chosen [9]. As each adjacency is treated indepen-
dently, this constraint might automatically exclude all adjacencies being part
of a conflict to ensure consistency and thus results in an unnecessarily sparse
reconstruction.

Generalization by weighting adjacencies. When considering an internal node v,
we define node u as its parent node in T . We assume that a specific adjacency
graph is associated to each ancestral node v, whose edges are annotated by
a weight wv,a ∈ [0, 1] representing a confidence measure for the presence of
adjacency a in species v. Then in a global reconstruction, cutting an adjacency
of a higher weight has higher impact in terms of the optimization criterion, than
cutting an adjacency of lower weight.

Formally, we define two additional variables for each adjacency a ∈ A at each
internal node v ∈ V : The presence (or absence) of a at node v is represented by
pv,a ∈ {0, 1}, while cv,a ∈ {0, 1} indicates a change for the status of an adjacency
along an edge (u, v), i.e., pu,a �= pv,a. We consider the problem of optimizing the
following objective function, where α ∈ [0, 1] is a convex combination factor.

Definition 1 (Weighted SCJ labeling problem). Let T = (V,E) be a tree
with each leaf l labeled with a consistent set of adjacencies Al ⊆ A and each
adjacency a ∈ A is assigned a given weight wv,a ∈ [0, 1] for each node v ∈ V . A
labeling λ of the internal nodes of T with λ(l) = Al for each leaf is an optimal
weighted SCJ labeling if none of the internal nodes v ∈ V contains a conflict
and it minimizes the criterion
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D(λ, T ) =
∑

a,v

α(1 − pa,v)wa,v + (1 − α)ca,v

Further, we can state the corresponding co-optimal sampling problem.

Definition 2 (Weighted SCJ sampling problem). Given the setting of the
weighted SCJ labeling problem, sample uniformly from all labelings λ of the inter-
nal nodes of T that are solutions to the weighted SCJ optimal labeling problem.

Existing results. There exist a few positive results for the weighted SCJ labeling
problem with specific values of α. If α = 0, the objective function corresponds to
the small parsimony problem under the SCJ distance and hence a solution can
be found in polynomial time [9]. A generalization towards multifurcating, edge-
weighted trees including prior information on adjacencies at exactly one internal
node of the tree is given in [12]. Recently, Miklós and Smith [16] proposed a
Gibbs sampler for sampling optimal labelings under the SCJ model with equal
branch lengths. This method addresses the issue of the high fragmentation of
internal node labelings, but convergence is not proven, and so there is no bound
on the computation time. If α = 1, i.e., we do not take evolution in terms of SCJ
distance along the branches of the tree into account, we can solve the problem by
applying independently a maximum-weight matching algorithm at each internal
node [15]. So the extreme cases of the problem are tractable, and it remains open
to see if the general problem is hard.

3 Methods

In order to find a solution to the weighted SCJ labeling problem, we first show
that we can decompose the problem into smaller independent subproblems.
Then, for each subproblem containing conflicting adjacencies, we show that, if it
contains a moderate level of conflict, it can be solved using the Sankoff-Rousseau
algorithm [20] with a complexity parameterized by the size of the subproblem.
For a highly conflicting subproblem, we show that it can be solved by an Integer
Linear Program (ILP).

Decomposition into independent subproblems. We first introduce a graph that
encodes all adjacencies present in at least one internal node of the considered
phylogeny (Definition 3). As introduced previously, we consider a tree T = (V,E)
where each node is augmented by an adjacency graph.

Definition 3 (Global adjacency graph). The set of vertices VAG of the
global adjacency graph AG consists of all marker extremities present in at least
one of the adjacency graphs. There is an edge between two vertices a, b ∈ VAG

that are not extremities of a same marker, if there is an internal node in the tree
T whose adjacency graph contains the adjacency {a, b}. The edge is labeled with
the list of all internal nodes v that contain this adjacency.
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Each connected component C of the global adjacency graph defines a sub-
problem composed of the species phylogeny, the set of marker extremities equal
to the vertex set of C and the set of adjacencies equal to the edge set of C.
According to the following lemma, whose proof is straightforward, it is sufficient
to solve each such subproblem independently.

Lemma 1. The set of all optimal solutions of the weighted SCJ labeling prob-
lem is the set-theoretic Cartesian product of the sets of optimal solutions of the
instances defined by the connected components of the global adjacency graph.

To solve the problem defined by a connected component C of the global
adjacency graph containing conflicts, we rely on an adaptation of the Sankoff-
Rousseau algorithm with exponential time complexity, parameterized by the
size and nature of conflicts of C, and thus can solve subproblems with moderate
amount of conflict.

Application to the weighted SCJ optimal labeling problem. In order to use the
Sankoff-Rousseau algorithm to solve the problem defined by a connected compo-
nent C of the global adjacency graph, we define a label of an internal node of the
phylogeny as the assignment of at most one adjacency to each marker extrem-
ity. More precisely, let x be a marker extremity in C, v an internal node of T ,
and e1, . . . , edx

be all edges in the global adjacency graph that are incident to
x and whose label contains v (i.e., represent adjacencies in the adjacency graph
of node v). We define the set of possible labels of v as Lx,v = {∅, e1, . . . , edx

}.
The set of potential labels Lv of node v is then the Cartesian product of the
label sets Lx,v for all x ∈ V (C) resulting in a set of discrete labels for v of size∏

x∈V (C)(1 + dx). Note that not all of these joint labelings are valid as they can
assign an adjacency a = (x, y) to x but not to y, or adjacency a = (x, y) to x
and b = (x, z) to z thus creating a conflict (see [13] for an example).

For an edge (u, v) in the tree, we can then define a cost matrix that is indexed
by pairs of labels of Lu and Lv, respectively. The cost is infinite if one of the
labels is not valid, and defined by the objective function otherwise. We can then
apply the Sankoff-Rousseau approach to find an optimal labeling of all internal
nodes of the tree for connected component C. Note that, if C is a connected
component with no conflict, it is composed of two vertices and a single edge,
and can be solved in space O(n) and time O(n).

Solving a general instance. Given a general instance, i.e., an instance not limited
to a single connected component of the global adjacency graph, we can consider
each connected component independently (Lemma 1). For a set of N markers
and c connected components in the global adjacency graph defining a conflicting
instance, we define D as the maximum degree of a vertex and M as the maximum
number of vertices in all such components. Then, the complexity analysis in the
appendix shows that the problem is Fixed-Parameter Tractable (FPT).

Theorem 1. The weighted SCJ labeling problem can be solved in worst-case
time O(nN(1 + D)2M ) and space O(nN(1 + D)M ).
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In practice, the exponential complexity of our algorithm depends on the
structure of the conflicting connected components of the global adjacency graph.
The dynamic programming algorithm will be effective on instances with either
small conflicting connected components or small degrees within such compo-
nents, and will break down with a single component with a large number of
vertices of high degree. For such components, the time complexity is provably
high and we propose an ILP (see [13]) to solve such components.

Sampling co-optimal labelings. The Sankoff-Rousseau DP algorithm can easily
be modified to sample uniformly from the space of all optimal solutions to the
weighted SCJ labeling problem in a forward-backward fashion. The principle is to
proceed in two stages: first, for any pair (v, a) we compute the number of optimal
solutions under this label for the subtree rooted at v. Then, when computing an
optimal solution, if a DP equation has several optimal choices, one is randomly
picked according to the distribution of optimal solutions induced by each choice
(see [13] for more details). This classical dynamic programming approach leads
to the following result.

Theorem 2. The weighted SCJ sampling problem can be solved in worst-case
time O(nN(1 + D)2M ) and space O(nN(1 + D)M ).

For subproblems that are too large for being handled by the Sankoff-Rousseau
algorithm, the SCJ small parsimony Gibbs sampler recently introduced [16] can
easily be modified to incorporate prior weights, although there is currently no
proven property regarding its convergence.

4 Results

We evaluated our reconstruction algorithm on two datasets: mammalian and
Yersinia genomes. The mammalian dataset was used in the studies [7,16]. Our
second dataset contains eleven Yersinia genomes, an important human pathogen.
This dataset contains contigs from the recently sequenced extinct agent of the
Black Death pandemic [4] that occurred roughly 650 years ago. We refer to [13]
for the species phylogenies of these two datasets and extended information on
how adjacency weights have been obtained for both datasets.

4.1 Mammalian Dataset

Unique and universal markers were computed as synteny blocks with different
resolution in terms of minumum marker length. Note that all rearrangement
breakpoints are therefore located outside of marker coordinates. It results in five
different datasets varying from 2, 185 markers for a resolution of 100 kb to 629
markers for a resolution of 500 kb.

We considered all adjacencies present in at least one extant genome as poten-
tially ancestral. To weight an adjacency at all internal nodes of the tree, we relied
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on evolutionary scenarios for each single adjacency, in terms of gain/loss, inde-
pendently of the other adjacencies (i. e. without considering consistency of ances-
tral marker orders). We obtain these weights using the software DeClone [6], and
we refer to them as DeClone weights. We considered two values of the DeClone
parameter kT , 0.1 and 1, the former ensuring that only adjacencies appearing in
at least one optimal adjacency scenario have a significant DeClone weight, while
the latter samples adjacencies outside of optimal scenarios. For the analysis of
the ancestral marker orders obtained with our algorithm, we considered the data
set at 500 kb resolution and sampled 500 ancestral marker orders for all ancestral
species under different values of α.

The complexity of our algorithm is dependent on the size of the largest
connected component of the global adjacency graph. In order to restrict the
complexity, we kept only adjacencies whose weights are above a given thresh-
old x. In most cases, all connected components are small enough to be handled
by our exact algorithm in reasonable time except for very large components in
the marker sets with higher resolution under a low threshold x. For the 500 kb
dataset with x = 0.2 and kT = 1, the computation of one solution takes on
average 200 s on a 2.6 GHz i5 with 8 GB of RAM. It can be reduced to 30 s when
DeClone weights are based on kT = 0.1. This illustrates that our algorithm,
despite an exponential worst-case time complexity, can process realistic datasets
in practice. Next, we analyzed the 500 optimal SCJ labelings obtained for α = 0,
i. e. aiming only at minimizing the SCJ distance, and considered the fragmenta-
tion of the ancestral gene orders (number of CARs) and the total evolutionary
distance. Note that, unlike the Fitch algorithm used in [9], our algorithm does
not favor fragmented assemblies by design but rather considers all optimal label-
ings. Sampling of co-optimal solutions shows that the pure SCJ criterion leads
to some significant variation in terms of number of CARs (Fig. 1). The optimal
SCJ distance in the tree for α = 0 is 1, 674, while the related DCJ distance in
the sampled reconstructions varies between 873 and 904 (Fig. 2). In comparison,
we obtained a DCJ distance of 829 with GASTS [22], a small parsimony solver
directly aiming at minimizing the DCJ distance. This illustrates both a lack of
robustness of the pure SCJ optimal labelings, and some significant difference
between the SCJ and DCJ distances.

For α > 0, our method minimizes a combination of the SCJ distance with
the DeClone weights of the adjacencies discarded to ensure valid ancestral gene
orders. We distinguish between DeClone parameter kT = 0.1 and kT = 1.
Figures 2 and 3 show the respective observed results in terms of evolutionary
distance and fragmentation. For kT = 0.1, the optimal SCJ and DCJ distance
over the whole tree hardly depends on α. Including the DeClone weights in the
objective actually results in the same solution, independent of α > 0. In fact,
while applying a low weight threshold of x = 0.2, the set of potential adjacencies
is already consistent at all internal nodes except for a few conflicts at the root
that are solved unambiguously for all values of α. This indicates that building
DeClone weights on the basis of mostly optimal adjacency scenarios (low kT )
results in a weighting scheme that agrees with the evolution along the tree for this
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Fig. 1. Number of reconstructed CARs
at each internal node in 500 samples
for the mammalian dataset with 500 kb
resolution, x = 0.2 and α = 0.

Fig. 2. SCJ distance (upper half) and
DCJ (lower half) distance in the whole
tree for all samples and selected values of
α in the mammalian dataset.

dataset. More importantly, Figs. 2 and 3 show that the combination of DeClone
weights followed by our algorithm, leads to a robust set of ancestral gene orders.

In comparison, for kT = 1, we see an increase in SCJ and DCJ distance
for higher α, while the number of CARs at internal nodes decreases, together
with a loss of the robustness of the sampled optimal results when α gets close
to 1. It can be explained by the observation that the weight distribution of
ancestral adjacencies obtained with DeClone and kT = 1 is more balanced than
with kT = 0.1 as it considers suboptimal scenarios of adjacencies with a higher
probability.

4.2 Yersinia Pestis Dataset

We started from fully assembled DNA sequences of seven Yersinia pestis and four
Yersinia pseudotuberculosis genomes. In addition, we included aDNA single-end
reads and 2 134 contigs of length >500bp assembled from these reads for the
Black Death agent, considered as ancestral to several extant strains [4]. We refer
to this augmented ancestral node as the Black Death (BD) node. The marker
sequences for all extant genomes were computed as described in [19], restricting
the set of markers to be unique and universal. We obtained a total of 2, 207
markers in all extant genomes and 2, 232 different extant adjacencies. As for the
mammalian dataset, we considered as potentially ancestral any adjacency that
appears in at least one extant genome. However for this dataset, reducing the
complexity by applying a weight threshold x was not necessary. For the BD node,
adjacency weights can be based on the given aDNA reads for a given potential
ancestral adjacency as follows. First, we used FPSAC [19] to compute DNA
sequences filling the gaps between any two adjacent marker extremities. Then
we computed the weights as a likelihood of this putative gap sequence given the
aDNA reads, using the GAML probabilistic model described in [5].

Again we sampled 500 solutions for this dataset. We computed the weights
at the BD node based on the aDNA data, while adjacencies at all other nodes
were given weight 0. Hence we can investigate the influence of including the
aDNA sequencing data in the reconstruction while for the rest of the tree, the
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Fig. 3. Number of CARs in all samples
at selected internal nodes for different
values of α reconstructed with DeClone
weights under kT = 0.1.

Fig. 4. Reconstructed number of CARs in
the yersinia dataset with a DNA weights
at the BD node and 0 otherwise, for four
ancestral nodes.

weights do not impact the objective function. As shown in Fig. 4, for selected
internal nodes of the phylogeny, the pure SCJ solutions at α = 0 result in the
highest fragmentation, while the number of CARs decreases as we increase the
importance of the adjacency weights in the objective of our method. For the BD
node, when including the aDNA weights, the fragmentation is decreasing while
the reconstructions for each α > 0 are robust. At the other nodes, the applied
sequencing weights also reduce the fragmentation except for node6 which is
located in the pseudotuberculosis subtree and hence more distant to the BD
node. This shows that the aDNA weights not only influence the reconstructed
adjacencies at the BD node, but also other nodes of the tree.

5 Conclusion

Our main contributions are the introduction of the small parsimony problem
under the SCJ model with adjacency weights, together with an exact parame-
terized algorithm for the optimization and sampling versions of the problem.
The motivation for this problem is twofold: incorporating sequence signal from
aDNA data when it is available, and recent works showing that the reconstruc-
tion of ancestral genomes through the independent analysis of adjacencies is an
interesting approach [2,6,9,16].

Regarding the latter motivation, we address a general issue of these
approaches that either ancestral gene orders are not consistent or are quite frag-
mented if the methods are constrained to ensure consistency. The main idea we
introduce is to take advantage of sampling approaches recently introduced in [6]
to weight potential ancestral adjacencies and thus direct, through an appropriate
objective function, the reconstruction of ancestral gene orders. Our results on
the mammalian dataset suggest that this approach leads to a robust ancestral
genome structure. However, we can observe a significant difference with a DCJ-
based ancestral reconstruction, a phenomenon that deserves to be explored fur-
ther. Our sampling algorithm improves on the Gibbs sampler introduced in [16]
in terms of computational complexity and provides a useful tool to study ances-
tral genome reconstruction from a Bayesian perspective.
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There are several research avenues opened by our work. From a theoretical
point of view, we know the problem we introduced is tractable for α = 0 and
α = 1, but it remains to see whether it is hard otherwise. Further, given that the
considered objective is a combination of two objectives to be optimized simulta-
neously, Pareto optimization is an interesting aspect that should be considered.
From a more applied point of view, one would like to incorporate duplicated
and deleted markers into our small parsimony problem. There exist efficient
algorithms for the case of a single adjacency [2,6] that can provide adjacency
weights, and natural extensions of the SCJ model to incorporate duplicated
genes.
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