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Preface

The 12th edition of the International Symposium on Bioinformatics Research and
Applications (ISBRA 2016) was held during June 5–8, 2016, in Minsk, Belarus. The
symposium provides a forum for the exchange of ideas and results among researchers,
developers, and practitioners working on all aspects of bioinformatics and computa-
tional biology and their applications.

There were 77 submissions received in response to the call for papers. The Program
Committee decided to accept 42 of them for publication in the proceedings and for oral
presentation at the symposium: 22 for Track 1 (an extended abstract) and 20 for Track
2 (an abridged abstract). The technical program also featured invited keynote talks by
five distinguished speakers: Dr. Teresa M. Przytycka from the National Institutes of
Health discussed the network perspective on genetic variations, from model organisms
to diseases; Prof. Ion Mandoiu from the University of Connecticut spoke on challenges
and opportunities in single-cell genomics; Prof. Alexander Schoenhuth from Centrum
Wiskunde and Informatica spoke on dealing with uncertainties in big genome data;
Prof. Ilya Vakser from the University of Kansas discussed genome-wide structural
modeling of protein–protein interactions; and Prof. Max Alekseyev from George
Washington University spoke on multi-genome scaffold co-assembly based on the
analysis of gene orders and genomic repeats.

We would like to thank the Program Committee members and external reviewers for
volunteering their time to review and discuss symposium papers. Furthermore, we
would like to extend special thanks to the steering and general chairs of the symposium
for their leadership, and to the finance, publicity, local organization, and publication
chairs for their hard work in making ISBRA 2016 a successful event. Last but not least,
we would like to thank all authors for presenting their work at the symposium.

June 2016 Anu Bourgeois
Pavel Skums
Xiang Wan

Alex Zelikovsky
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Next Generation Sequencing Data
Analysis



An Efficient Algorithm for Finding All Pairs
k-Mismatch Maximal Common Substrings

Sharma V. Thankachan1, Sriram P. Chockalingam2, and Srinivas Aluru1(B)

1 School of CSE, Georgia Institute of Technology, Atlanta, USA
sharma.thankachan@gatech.edu, aluru@cc.gatech.edu

2 Department of CSE, Indian Institute of Technology, Bombay, India
sriram.pc@iitb.ac.in

Abstract. Identifying long pairwise maximal common substrings
among a large set of sequences is a frequently used construct in com-
putational biology, with applications in DNA sequence clustering and
assembly. Due to errors made by sequencers, algorithms that can accom-
modate a small number of differences are of particular interest, but
obtaining provably efficient solutions for such problems has been elusive.
In this paper, we present a provably efficient algorithm with an expected
run time guarantee of O(N logk N + occ), where occ is the output size,
for the following problem: Given a collection D = {S1, S2, . . . , Sn} of n
sequences of total length N , a length threshold φ and a mismatch thresh-
old k ≥ 0, report all k-mismatch maximal common substrings of length
at least φ over all pairs of sequences in D. In addition, we present a result
showing the hardness of this problem.

1 Introduction

Due to preponderance of DNA and RNA sequences that can be modeled as
strings, string matching algorithms have myriad applications in computational
biology. Modern sequencing instruments sequence a large collection of short reads
that are randomly drawn from one or multiple genomes. Deciphering pairwise
relationships between the reads is often the first step in many applications. For
example, one may be interested in finding all pairs of reads that have a sufficiently
long overlap, such as suffix/prefix overlap (for genomic or metagenomic assem-
bly) or substring overlap (for read compression, finding RNA sequences contain-
ing common exons, etc.). Sequencing instruments make errors, which translate to
insertion, deletion, or substitution errors in the reads they characterize, depend-
ing on the type of instrument. Much of modern-day high-throughput sequencing
is carried out using Illumina sequencers, which have a small error rate (< 1–2 %)
and predominantly (> 99 %) substitution errors. Thus, algorithms that tolerate
a small number of mismatch errors can yield the same solution as the much
more expensive alignment/edit distance computations. Motivated by such appli-
cations, we formulate the following all pairs k-mismatch maximal common
substrings problem:
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Problem 1. Given a collection D = {S1, S2, . . . , Sn} of n sequences of total
length N , a length threshold φ, and a mismatch threshold k ≥ 0, report all
k-mismatch maximal common substrings of length ≥ φ between any pair of
sequences in D.

Throughout this paper, for a sequence Si ∈ D, |Si| is its length, Si[x] is its
xth character and Si[x..y] is its substring starting at position x and ending at
position y, where 1 ≤ x ≤ y ≤ |Si|. For brevity, we may use Si[x..] to denote the
suffix of Si starting at x. The substrings Si[x..(x+ l−1)] and Sj [y..(y+ l−1)] are
a k-mismatch common substring if the Hamming distance between them is at
most k. It is maximal if it cannot be extended on either side without introducing
another mismatch.

Before investigating Problem1, consider an existential version of this prob-
lem, where we are just interested in enumerating those pairs (Si, Sj) that contain
at least one k-mismatch maximal common substring of length ≥ φ. For k = 0 and
any given (Si, Sj) pair, this can be easily answered in O(|Si|+ |Sj |) time using a
generalized suffix tree based algorithm because no mismatches are involved. For
k ≥ 1, we can use the recent result by Aluru et al. [1], by which the k-mismatch
longest common substring can be identified in O((|Si| + |Sj |) logk(|Si| + |Sj |))
time. Therefore, this straightforward approach can solve the existential prob-
lem over all pairs of sequences in D in

∑
i

∑
j(|Si| + |Sj |) logk(|Si| + |Sj |) =

O(n2L logk L) time, where L = maxi |Si|. An interesting question is, can we
solve this problem asymptotically faster?

We present a simple result showing that the existence of a purely combi-
natorial algorithm, which is “significantly” better than the above approach is
highly unlikely in the general setting. In other words, we prove a conditional
lower bound, showing that the bound is tight within poly-logarithmic factors.
This essentially shows the hardness of Problem 1, as it is at least as hard as its
existential version. Our result is based on a simple reduction from the boolean
matrix multiplication (BMM) problem. This hard instance is simulated via care-
ful tuning of the parameters – specifically, when L approaches the number of
sequences and φ = Θ(log n). However, this hardness result does not contradict
the possibility of an O(N + occ) run-time algorithm for Problem1, because occ
can be as large as Θ(n2L2).

In order to solve such problems in practice, the following seed-and-extend type
filtering approaches are often employed (see [13] for an example). The underline
principle is: if two sequences have a k-mismatch common substring of length ≥ φ,
then they must have an exact common substring of length at least τ = � φ

k+1�.
Therefore, using some fast hashing technique, all pairs of sequences that have a
τ -length common substring are identified. Then, by exhaustively checking all such
candidate pairs, the final output is generated. Clearly, such an algorithm cannot
provide any run time guarantees and often times the candidate pairs generated
can be overwhelmingly larger than the final output size. In contrast to this, we
develop an O(N) space and O(N logk N+occ) expected run time algorithm, where
occ is the output size. Additionally, we present the results of some preliminary
experiments, in order to demonstrate the effectiveness of our algorithm.
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2 Notation and Preliminaries

Let Σ be the alphabet for all sequences in D. Throughout the paper, both |Σ| and
k are assumed to be constants. Let T = S1$1S2$2 . . . Sn$n be the concatenation
of all sequences in D, separated by special characters $1, $2, . . . , $n. Here each
$i is a unique special symbol and is lexicographically larger than all characters
in Σ. Clearly, there exists a one to one mapping between the positions in T
(except the $i positions) and the positions in the sequences in D. We use lcp(·, ·)
to denote the longest common prefix of two input strings and lcpk(·, ·) to denote
their longest common prefix while permitting at most k mismatches. We now
briefly review some standard data structures that will be used in our algorithms.

2.1 Suffix Trees, Suffix Arrays and LCP Data Structures

The generalized suffix tree of D (equivalently, the suffix tree of T), denoted by
GST, is a lexicographic arrangement of all suffixes of T as a compact trie [11,15].
The GST consists of |T| leaves, and at most (|T| − 1) internal nodes all of which
have at least two child nodes each. The edges are labeled with substrings of T.
Let path of u refer to the concatenation of edge labels on the path from root
to node u, denoted by path(u). If u is a leaf node, then its path corresponds
to a unique suffix of T (equivalently a unique suffix of a unique sequence in D)
and vice versa. For any node, node-depth is the number of its ancestors and
string-depth is the length of its path.

The suffix array [10], SA, is such that SA[i] is the starting position of the suffix
corresponding to the ith left most leaf in the suffix tree of T, i.e., the starting
position of the ith lexicographically smallest suffix of T. The inverse suffix array
ISA is such that ISA[j] = i, if SA[i] = j. The Longest Common Prefix array LCP
is defined as, for 1 ≤ i < |T|

LCP[i] = |lcp(TSA[i],TSA[i+1])|

In other words, LCP[i] is the string depth of the lowest common ancestor of
the ith and (i + 1)th leaves in the suffix tree. There exist optimal sequential
algorithms for constructing all these data structures in O(|T|) space and time
[6,8,9,14].

All operations on GST required for our purpose can be simulated using
SA, ISA, LCP array, and a range minimum query (RMQ) data structure over
the LCP array [2]. A node u in GST can be uniquely represented by an interval
[sp(u), ep(u)], the range corresponding to the leaves in its subtree. The string
depth of u is the minimum value in LCP[sp(u), ep(u) − 1] (can be computed
in constant time using an RMQ). Similarly, the longest common prefix of any
two suffixes can also be computed in O(1) time. Finally, the k-mismatch longest
common prefix of any two suffixes can be computed in O(k) time as follows: let
l = |lcp(T[x..],T[y..])|, then for any k ≥ 1, |lcpk(T[x..],T[y..])| is also l if either of
T[x+l], T[y+l] is a $i symbol, else it is l+1+|lcpk−1(T[(x+l+1)..],T[(y+l+1)..])|.
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2.2 Linear Time Sorting of Integers and Strings

Our algorithm relies heavily on sorting of integers and strings (specifically, suf-
fixes). The integers are always within the range [1, N ]. Therefore, linear time
sorting (via radix sort) is possible when the number of integers to be sorted is
sufficiently large (say ≥ N ε for some constant ε > 0). In order to achieve linear
sorting complexity for even smaller input sizes, we use the following strategy:
combine multiple small collections such that the total size becomes sufficiently
large. Assign a unique integer id in [1, N ] to each small collection, and with each
element e within a small collection with id i, associate the key i · N + e. We can
now apply radix sort and sort all elements within the combined collection w.r.t.
their associated key. An additional scanning step suffices to separate all small
collections with their elements sorted. The strings to be sorted in our algorithms
are always suffixes of T. Using GST, each suffix can be mapped to an integer
in [1, N ] that corresponds to its lexicographic rank in constant time. Therefore,
any further suffix sorting (or sparse suffix sorting) can also be reduced to linear
time integer sorting.

3 Hardness Result

3.1 Boolean Matrix Multiplication (BMM)

The input to BMM problem consists of two n × n boolean matrices A and B
with all entries either 0 or 1. The task is to compute their boolean product C.
Specifically, let Ai,j denotes the entry corresponding to ith row and jth column
of matrix A, where 0 ≤ i, j < n, then for all i, j, compute

Ci,j =
n−1∨

k=0

(Ai,k ∧ Bk,j). (1)

Here ∨ represents the logical OR and ∧ represents the logical AND opera-
tions. The time complexity of the fastest matrix multiplication algorithm is
O(n2.372873) [16]. The result is obtained via algebraic techniques like Strassen’s
matrix multiplication algorithm. However, the fastest combinatorial algorithm is
better than the standard cubic algorithm by only a poly-logarithmic factor [17].
As matrix multiplication is a highly studied problem over decades, any truly
sub-cubic algorithm for matrix multiplication which is purely combinatorial is
highly unlikely, and will be a breakthrough result.

3.2 Reduction

In this section, we prove the following result.

Theorem 1. If there exists an f(n,L) time algorithm for the existential version
of Problem 1, then there exists an O(f(2n,O(n log n))) + O(n2) time algorithm
for the BMM problem.



An Efficient Algorithm for Finding All Pairs 7

This implies BMM can be solved in sub-cubic time via purely combinatorial
techniques if f(n,L) is O(n2−εL) or O(n2L1−ε) for any constant ε > 0. As the
former is less likely, the later is also less likely. In other words, O(n2L) bound is
tight under BMM hardness assumption. We now proceed to show the reduction.

We create n sequences X1,X2, . . . , Xn from A and n sequences Y1, Y2, . . . , Yn

from B. Strings are of length at most L = n�log n� + n − 1 over an alphabet
Σ = {0, 1, $,#}. The construction is the following.

– For 1 ≤ i ≤ n, let Ui = {k | Ai,k = 1}. Then, for each Ui, create a correspond-
ing string Xi as follows: encode each element in Ui in binary in �log n� bits,
append it with $ symbol, then concatenate all of them. For example, if n = 4
and Ui = {0, 2}, then Xi = 00$10$.

– For 1 ≤ i ≤ n, let Vj = {k | Bk,j = 1}. Then, for each Vj , create a corre-
sponding string Yj as follows: encode each element in Vj in binary in �log n�
bits, append it with # symbol, then concatenate all of them. For example, if
n = 4 and Vj = {1, 2}, then Yj = 01#10#.

– The database D is the set of all Xi’s and Yj ’s.

Lemma 1. The entry Ci,j = 1, iff Ui ∩ Vj is not empty. The set Ui ∩ Vj is not
empty iff Xi and Yj have a common substring of length �log n�.
Using this result, we can compute the boolean product of A and B from the out-
put of the existential version of Problem1 plus additional O(n2) time. Therefore,
BMM can be solved in f(2n,O(n log n)) + O(n2) time.

4 Our Algorithm for k-Mismatch Maximal Common
Substrings

We present an O(N logk N + occ) expected time algorithm. Recall that each
position x in the concatenated text T corresponds to a unique position in a
unique sequence Sd ∈ D, therefore we denote the sequence identifier d by seq(x).
Each output can be represented as a pair (x, y) of positions in T, where

1. seq(x) 
= seq(y)
2. T[x − 1] 
= T[y − 1]
3. |lcpk(T[x..],T[y..])| ≥ φ.

4.1 The Exact Match Case

Without mismatches, the problem can be easily solved in optimal O(N + occ)
worst case time. First create the GST, then identify all nodes whose string depth
is at least φ, such that the string depth of their parent nodes is at most (φ−1). Such
nodes are termed as marked nodes. Clearly, a pair of suffixes satisfies condition (3)
iff their corresponding leaves are under the same marked node. This allows us to
process the suffixes under each marked node w independently as follows: let Suffw

denotes the set of starting positions of the suffixes of T corresponding to the leaves
in the subtree of w. That is, Suffw = {SA[j] | sp(w) ≤ j ≤ ep(w)}. Then,
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1. Partition Suffw into (at most) Σ + 1 buckets, such that for each σ ∈ Σ,
there is a unique bucket containing all suffixes with previous character σ.
All suffixes with their previous character is a $ symbol are put together in a
special bucket. Note that a pair (x, y) is an answer only if both x are y are
not in the same bucket, or if both of them are in the special bucket.

2. Sort all suffixes w.r.t the identifier of the corresponding sequence (i.e., seq(·)).
Therefore, within each bucket, all suffixes from the same sequence appear
contiguously.

3. For each x, report all answers of the from (x, ·) as follows: scan every bucket,
except the bucket in which x belongs to, unless x is in the special bucket.
Then output (x, y) as an answer, where y is not an entry in the contiguous
chunk of all suffixes from seq(x).

The construction of GST and Step (1) takes O(N) time. Step (2) over all
marked nodes can also be implemented in O(N) time via integer sorting (refer
to Sect. 2.2). By noting down the sizes of each chunk during Step (2), we can
implement Step (3) in time proportional to the sizes of input and output. By
combining all, the total time complexity is O(N · |Σ| + occ), i.e., O(N + occ)
under constant alphabet size assumption.

4.2 The k-Mismatch Case

Approximate matching problems are generally harder, because the standard data
structures such as suffix trees and suffix arrays may not apply directly. There-
fore, we follow a novel approach, where we transform the approximate matching
problem over exact strings into an exact matching problem over inexact copies
of strings, which we call as modified suffixes.

Definition 1. Let # be a special symbol not in Σ. A k-modified suffix is a suffix
of T with its k characters replaced by #.

Let Δ be a set of positions. Then, TΔ[x..] denotes the |Δ|-modified suffix
obtained by replacing |Δ| positions in the suffix T[x..] as specified by Δ. For
example, let T = aaccgattcaa, Δ = {2, 4}, then T[5..] = gattcaa and TΔ[5..] =
g#t#caa.

Our algorithm consists of two main phases. In the first phase, we create a
collection of sets of k-modified suffixes. In the second phase, we independently
process each set constructed in the first phase and extract the answers. The
first phase takes O(NHk) time, where as the second phase takes O(NHk + occ)
time. Here H is the height of GST. It is known that the expected value of H is
O(log N) [3]. Therefore, by combining the time complexities of both phases with
H replaced by O(log N), we obtain the expected run time as claimed. We now
describe these phases in detail.

Details of Phase-1. This phase is recursive (with levels of recursion starting
from 0 up to k), such that at each level h > 0, we create a collection of sets of
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h-modified suffixes (denoted by Ch
1 , Ch

2 , . . . ) from the sets in the previous level.
At level 0, we have only a single set C1

0 , the set of all suffixes of T. See Fig. 1 for
an illustration. To generate the sets at level h, we take each set Ch−1

g at level
(h − 1) and do the following:

– Create a compact trie of all strings in Ch−1
g

– For each internal node w in the trie, create a set consisting of the strings
corresponding to the leaves in the subtree of w, but with their (l + 1)th
character replaced by #. Here l is the string depth of w. Those strings with
their (l + 1)-th character is a $i symbol are not included.

C0
1

C1
1 C1

2

Ch−1
g−1 Ch−1

g Ch−1
g+1

Ch
f−1 Ch

f Ch
f+1

Ck
1 Ck

2 Ck
3 Ck

4

level 0

level 1

level (h − 1)

level (h)

level k
.. . .

. . . . . .

..

.
. . . .

. .. .

Fig. 1. The sets . . . , Ch
f−1, C

h
f , Ch

f+1 . . . of h-modified suffixes are generated from the

set Ch−1
g .

From our construction procedure, the following properties can be easily
verified.

Property 1. All modified suffixes within the same set (at any level) have #
symbols at the same positions and share a common prefix at least until the last
occurrence of #.

Property 2. For any pair (x, y) of positions, there will be exactly one set
at level k, such that it contain k-modified suffixes of T[x..] and T[y..] with #
symbols at the first k positions in which they differ. Therefore, the lcp of those
k-modified suffixes is equal to the lcpk of T[x..] and T[y..].

We have the following result about the sizes of these sets.

Lemma 2. No set is of size more than N and the sum of sizes of all sets at a
particular level h is ≤ N × Hk, where H is the height of GST.
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Proof. The first statement follows easily from our construction procedure and the
second statement can be proved via induction. Let Sh be the sum of sizes of all
sets at level h. Clearly, the base case, S0 = |C0

1 | = N , is true. The sum of sizes of
sets at level h generated from Ch−1

g is at most |Ch−1
g |× the height of the compact

trie over the strings in Ch−1
g . The height of the compact trie is ≤ H, because if we

remove the common prefix of all strings in Ch−1
g , they are essentially suffixes of

T. By putting these together, we have Sh ≤ Sh−1 ·H ≤ Sh−2 ·H2 ≤ · · · ≤ NHk.

Space and Time Analysis: We now show that Phase-1 can be implemented in
O(N) space and O(N logk N) time in expectation. Consider the step where we
generate sets from Ch−1

g . The lexicographic ordering between any two (h − 1)-
modified suffixes in Ch−1

g can be determined in constant time. i.e., by simply
checking the lexicographic ordering between those suffixes obtained by deleting
their common prefix up to the last occurrence of #. Therefore, suffixes can
be sorted using any comparison based sorting algorithm. After sorting, the lcp
between two successive strings can be computed in constant time. Using the
sorted order and lcp values, we can construct the compact trie using standard
techniques in the construction of suffix tree [4]. Finally, the new sets can be
generated in time proportional to their size. In summary, the time complexity
for a particular Ch−1

g is O(|Ch−1
g |(log N + H)). Overall time complexity is

∑

h≤k

∑

f

Ck
f + (H + log n)

∑

h<k

∑

f

Ch
f = O(N(log N + H)k−1H)

By replacing H by O(log N), we bound the expect run time of Phase-1 by
O(N logk N).

We generate the sets in pre-order of the corresponding node in the recursion
tree. As soon as a set (at level k) is generated, we immediately pass it to Phase-2,
extract the necessary information and discard it from the working space. Also,
any set at level h < k is also deleted after all k-level sets in its subtree are
processed. This way, at any point of time in the execution of the algorithm, we
need to maintain only k sets, corresponding to the sets in a root to leaf path in
the recursion tree. Since the size of each set is at most N (Lemma 2), we can
bound the working space also by O(N), assuming k = O(1).

Details of Phase-2. In this phase, we seek to process each set Ck
f created by

Phase-1 independently and generate the answers in time linear to the total size of
all sets and output. i.e., O(NHk+occ). We first present a simple O((N+occ)Hk)
time approach. Following are the key steps.

1. Create a compact trie over all k-modified suffixes in Ck
f . Then identify the

marked nodes as before. Recall that a marked node has a string depth ≥ φ,
where as the string depth of its parent is < φ.

2. Let Δ be the set of k positions corresponding to modifications in the k-
modified suffixes in Ck

f . Clearly, if the leaves corresponding to two modified
suffixes (say TΔ[x..] and TΔ[y..]) are in the same subtree of a marked node,



An Efficient Algorithm for Finding All Pairs 11

then their lcpk is ≥ φ. If seq(x) 
= seq(y) and T[x − 1] 
= T[y − 1], then report
(x, y) as an answer.

The trie can be created in time linear to the size of Ck
f . Note that the key step

in the creation of a trie is the sorting of k-modified suffixes. To do it efficiently,
we map each k-modified suffix to the lexicographic rank of the suffix obtained
by removing all characters (from left) until its last # symbol. Using this as the
key, the k-modified suffixes can be sorted via integer sorting (refer to Sect. 2.2).
The second step of extracting answers can also be implemented using the exact
same procedure described in Sect. 4.1. However, the problem with this approach
is that, a pair (x, y) can get reported more than once, although only once per
set. In the worst case, an answer can get reported Hk times. The resulting time
complexity is therefore O((N + occ)Hk).

Improving the Run Time Complexity. To achieve the claimed O(NHk +
occ) run time, we need to ensure that each output (x, y) is reported exactly
once. For this, we explore Property 2 as follows: while processing a pair of two
k-modified suffixes TΔ[x..] and TΔ[y..] under the subtree of some marked node,
report (x, y) as an answer iff

1. lcp(TΔ[x..],TΔ[y..]) = lcpk(T[x..],T[y..]).
2. seq(x) 
= seq(y)
3. T[x − 1] 
= T[y − 1]

From Property 2, for a pair (x, y), there will be only one pair of k-modified
suffixes satisfying this condition (1). The following is unique to that pair: T[x +
l − 1] 
= T[y + l − 1] for all l ∈ Δ. Therefore, the task can be executed efficiently
by processing the set of k-modified suffixes in the subtree of each marked node
w as follows:

1. Partition them into (at most) Σ + 1 buckets based on the previous character
as in Sect. 4.1.

2. Partition the k-modified suffixes in each bucket into (at most) |Σ|k sub-
buckets based on the sequence of k characters that were originally at the
positions in Δ. Each sub-bucket is therefore associated with a unique string
of length (1 + k): the (previous) character corresponding to the bucket in
which it belongs to, followed by the sequence of k characters at the positions
in Δ.

3. Within each sub-bucket, sort the k-modified suffixes based on the identifier
of the sequence to which it belongs.

4. Finally, for each TΔ[x..], we visit each sub-bucket and find answers of the
form (x, ·) as follows: let c0, c1, c2, . . . , ck be the sequence of (1+k) characters
corresponding to a sub-bucket. If c0 
= T[x − 1] or T[x − 1] is some $i symbol
and ct 
= T[x + t − 1] for t = 1, 2, . . . k, then for all entries TΔ[y..] in the
sub-bucket with seq(x) 
= seq(y), report (x, y) as an answer. Notice that the
entries within a sub-bucket are sorted according to the sequence identifier.
Therefore, all entries with seq(x) = seq(y) comes together as a contiguous
chunk, which can be easily skipped.
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Analysis: The overall time for implementing the first three steps is O(NHk)
and final step takes O(NHk|Σ|k + occ) time. Therefore, total time complexity
is O(NHk + occ), assuming k and |Σ| are constants.

Theorem 2. Problem 1 can be solved in O(N) space and O(N logk N + occ)
expected time, assuming k and |Σ| are constants.

Note: If the hamming distance between two reads is < k, then our algorithm
will not output them as an answer. To capture such answers, we shall run the
algorithm for all numbers of mismatches starting from 0 up to k. The run-time
remains the same.

5 Preliminary Experiments

We have implemented our algorithm using the C++11 standard. As noted ear-
lier, we use SA, LCP array, and RMQ data structures to simulate all the opera-
tions on the suffix trees. We construct the suffix array for the set of the sequences
D using the libdivsufsort library [12]. We build ISA corresponding to SA by a
single pass over SA. Construction of LCP array and RMQ tables are based on the
implementations in the SDSL library [5]. For the construction of the LCP and
RMQ tables, we use Kasai et al.’s algorithm [7] and Bender-Farach’s algorithm
[2], respectively. Although the SDSL library supports bit compression techniques
to reduce the size of the tables and arrays in exchange for relatively longer time
to answer queries, we do not compress these data structures. Instead, we use
32-bit integers both for indices and prefix lengths.

Note that our algorithm does not require the internal nodes to be processed
in any specific order. Therefore, we do not need to construct parent-child links
or suffix links, which are typically present in a suffix tree. We only need a list
of all the internal nodes, their string depths and the corresponding suffixes.
We represent the internal node u by the tuple (sp(u), ep(u), string-depth), where
sp(u) and ep(u) are the left and right indices in SA anchoring the range of suffixes
having path(u) as their prefix.

We conducted our preliminary experiments on a system with Intel Xeon E5-
2660 CPU having 10 cores and 64 GB RAM. We created a 2,049,118 read input
derived from the RNA-Seq dataset with accession number SRX011546, from the
NCBI SRA repository. This dataset corresponds to an Illumina sequencing of
Human CD4 T cells, with 45bp reads. Table 1 shows the run-time results for this
dataset for different numbers of mismatches allowed k. The length threshold φ
is chosen as 25.

The run-time complexity for generating all valid occurrences increases expo-
nentially with k. As shown in Table 1, this behavior is observed for smaller
values of k. However, for larger values of k, the run-time escalation is signifi-
cantly smaller than the exponential dependence predicted by the theory. This is
probably because as the matches extend towards the end of the sequences, the
number of compact tries that need to be generated is limited.
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Table 1. Time to generate k-mismatch pairs with φ = 25.

Hamming distance (k) Run time (seconds)

0 21.44

1 931.33

2 3244.99

3 4584.36

4 4801.55

5 4920.68

For large input sizes, the value of k for which the algorithm can be run
in practice will become limited. Our method can be supplanted with seed and
extend heuristics, where the seed itself can be based on approximate sequence
matching with a limited value of k. Because our algorithm can process internal
nodes of the GST in any order, it allows easy parallelization on multiple cores
sharing the same shared memory. This can be used to further increase the scale
of the datasets or the values of k for which the algorithm is practical.
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arrays. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 186–199. Springer, Heidelberg (2003)



14 S.V. Thankachan et al.

9. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-
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Abstract. A major computational challenge in analyzing metagenomics
sequencing reads is to identify unknown sources of massive and hetero-
geneous short DNA reads. A promising approach is to efficiently and
sufficiently extract and exploit sequence features, i.e., k-mers, to bin the
reads according to their sources. Shorter k-mers may capture base com-
position information while longer k-mers may represent reads abundance
information. We present a novel Poisson-Markov mixture Model (PMM)
to systematically integrate the information in both long and short
k-mers and develop a parallel algorithm for improving both reads bin-
ning performance and running time. We compare the performance and
running time of our PMM approach with selected competing approaches
using simulated data sets, and we also demonstrate the utility of our
PMM approach using a time course metagenomics data set. The proba-
bilistic modeling framework is sufficiently flexible and general to solve
a wide range of supervised and unsupervised learning problems in
metagenomics.

Keywords: Probabilistic clustering · Expectation-Maximization algo-
rithm · Metagenomics · Next-generation sequencing (NGS) · Parallel
algorithm

1 Introduction

Metagenomics sequencing reads are typically sequenced from a large number of
heterogeneous sources with diverse abundances. There are two related yet dis-
tinct computational problems. The first is unsupervised binning of the reads to
identify unknown sources. Reads from the same sources are more similar com-
pared to the rest and the sources can later be labeled as Operational Taxonomic
Units (OTU’s). The other is supervised classification of the reads to assign each
read to a labeled known source, such as a taxonomic or a patient treatment/risk
group. Here we will focus on the more challenging reads binning problem.

Reads binning has posed the following unprecedented algorithmic and com-
putational challenges, ranked by decreasing priority, to bioinformatics research
c© Springer International Publishing Switzerland 2016
A. Bourgeois et al. (Eds.): ISBRA 2016, LNBI 9683, pp. 15–26, 2016.
DOI: 10.1007/978-3-319-38782-6 2
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community: (1) How to sufficiently and robustly extract discriminating features
from the reads? This is essentially a k-mers (sequencing feature) counting and
selection problem; (2) How to account for the differential abundances across
bins? Some sources may generate more reads whereas others may generate less;
(3) How to filter out the inseparable reads? Some reads contain useful feature
information, but others don’t. The latter can come from the common sequences
shared among the sources and was referred to as inseparable reads, and (4) How
to efficiently process ultra-high throughput (hundreds of millions), very short
(≈ 100 bp) reads?

A key to overcome the first challenge is to sufficiently and robustly extract
sequence features, i.e., k-mers (substring of length k), from NGS reads since it
is the only information available from DNA sequencing data. Earlier approaches
usually align the entire reads to non-redundant coding sequences (nr) and/or
functional groups based on sequence similarity, usually via a BLASTX search. In
metagenomics, familiar examples include CARMA [4], MEGAN [6] and Phymm
[1]. CARMA attempts to assign short reads to known Pfam domains (struc-
tural components conserved across multiple proteins) and protein families [4].
MEGAN classifies reads to the Lowest Common Ancestor (LCA) based on mul-
tiple BLASTX score hits [6]. These dynamic programming approaches use infor-
mation in the long k-mers to construct optimal read sequence alignment result.

Other approaches used information in the shorter k-mers. Phymm used inter-
polated Markov models (IMMs) [18] to characterize variable-length short k-mers
that are typical of a phylogenetic grouping. Short k-mers, such as oligonucleotide
[14], dinucleotide [7] and tetranucleotide counts [16,19], were used as the discrim-
inative features to capture the information on base composition heterogeneity,
perhaps in deference to the long sequencing contigs generated from the earlier
sequencing technology. In particular, our recent work [16] used short k-mers in
a mixture of Markov chains to calculate the probability of each read assigned
to each bin. Presumably, reads binning approaches using both short k-mers and
long k-mers as features are more desirable.

An effective approach to overcome the second challenge is to explicitly capture
abundance information. For example, AbundanceBin extracted and used feature
information from long k-mers of the reads, which directly yield read abundance
information [21], to fit a mixture of Poisson models. Each component models the
abundance of an individual bin. Similarly, an effective approach to overcome the
third challenge is to develop non-mutually exclusive probabilistic clustering meth-
ods, where each read can simultaneously fall into different clusters with different
posterior probabilities. A read with similar posterior probabilities across all the
bins can be considered as non-informative, thus inseparable reads.

Due to the increasing degree of problem complexity, recent works focused
more on developing analytic workflows, which exploit the information in short
and/or long k-mers and solve the problem in a heuristic manner, e.g., [9,20].
However, the short and long k-mer reads features were not used systematically,
i.e., the performance can be compromised by the choices of user-defined cut-
off’s and the heuristic k-means type algorithms. Thus, it is subject to high
variance. Moreover, the deterministic reads partitioning significantly undermines
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performance, especially for the inseparable reads that are sequenced from the
common and/or low-complexity regions of the meta-genomes.

Therefore, it is desirable to develop a systematic approach to robustly and
sufficiently integrate reads base composition information and reads abundance
information into a single probability model to maximize the binning perfor-
mance. By assuming these two pieces of information are captured by short
k-mers and long k-mers, respectively, we propose a novel Poisson-Markov Model
(PMM) approach to integrate reads feature information for binning and classify-
ing short reads. Specifically, we extract reads feature information in both short
k-mers and long k-mers to combat the outstanding issues of read heterogeneity
and abundance variation in short DNA sequencing reads. We use probability
models to accommodate the uncertainties and errors in reads assignment, and
we develop a joint mixture model to systematically integrate sequencing feature
information. Additionally, our joint mixture model overcomes the third challenge
by adopting a soft reads binning, which enables a better performance by filtering
out inseparable reads, e.g., those from orthologs or introns across genomes.

Fig. 1. A conceptual overview of the Poisson-Markov modeling approach for binning
of DNA sequencing reads.

We claim that it is one-of-the-kind probabilistic modeling approaches to
integrate feature information for binning and classifying short DNA sequenc-
ing reads. PMM has been applied in a number of different areas to solve a wide
range of problems arising in biomedical science [12], animal science [11], agricul-
ture science [8] and actuarial science [3]. By exploiting efficient data structures
for counting k-mers and parallelizing likelihood calculations to multiple threads,
we overcome the fourth challenge and make our binning approach more scalable
to ever-increasing data volume. Figure 1 presents the main idea of this work.

2 Method

2.1 Poisson-Markov Model (PMM)

We assume a set of n DNA sequencing reads are sampled from g bins with N
sequencing reads from each bins. A DNA sequence read is defined as S with
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discrete variables yi from {A, T,C,G}. We also assume reads abundance in jth

bin follows a Poisson distribution with parameter λj and the reads base com-
position in the bin is calculated by a Markov model with parameter τ . Please
refer to Table 1 for the list of mathematical symbols used in this paper. A joint
probability model f(yi) is shown as:

f(yi) = P (kj |λj)P (yi | τ), (1)

where i represents read index and j represents bin index. Assuming there are kj

sequences in jth bin, so the abundance of jth bin can be shown in Poisson as:

P (kj |λj) =
λ

kj

j e−λj

kj !
. (2)

In order to develop a probability model for binning and classification of DNA
sequencing reads, we need to introduce another variable Zij , where Zij = 1 means
the sequencing read Si belongs to jth bin, otherwise not. Zij is given (as the label)

Table 1. A list of mathematical symbols

Notations Comments

n number of DNA sequence reads

N number of DNA sequence reads in each bin

S a DNA sequencing read

i index of the reads ∈ [1, ..., n]

Si ith sequencing read in given dataset

yi discrete variables A, T, C, G

g number of bins

j index of the bins ∈ [1, ..., g]

τ latent variable of Poisson-Markov Model

kj number of reads in jth bin

λj parameter of Poisson Model in jth bin

Zij indicator whether read Si belongs to jth bin

φj 4 by 4m Transition Probability Matrix

m tuple/order of TPM

πj proportion of jth tbin

c G/C count

Θ parameter of Poisson-Markov Model

τij posterior binning probability

l index of the iterations

Px xth partition in parallel computing of E-step

x number of partitions in parallel computing of E-step
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in supervised classification problems whereas it is a latent variable in unsupervised
binning problem. Therefore, we focus on the more challenging read binning prob-
lem and applications to solve reads classification problem as follows.

In a Markov model, Transition Probability Matrix (TPM) is represented
with parameter φ, and πj is the initial proportion of jth bin. When Zij=1, the
probability of a sequencing read Si belongs to jth bin is:

P (yi | τ) = P (Zij = 1 | S) = P (Si | φj), (3)

and

P (Si | φ) =
g∑

j=1

πjP (Si | φj). (4)

P (Si | φj) is the probability of observing read Si which can be calculated
using counts of the k-mers. φj is the TPM of 4 by 4m calculated as:

φj(ct−m · · · ct−1ct) =
N(ct−m · · · ct−1ct)
N(ct−m · · · ct−1)

, (5)

where m is the tuple of TPM. N(ct−m, . . . ct−1ct) is the count of the (m + 1)-
tuple, i.e., ct−m . . . ct−1ct, in S and ct−m, . . . ct−1 is the count of the m-tuple
N(ct−m . . . ct−1) in S. For example, in a second-order Markov model, φj is the
TPM using a 4 by 16 probability matrix, where m and t equal to 2 and 3
respectively, which can be calculated by counting the corresponding 3-mers.
Please see [16] for further details in calculating P (Si | φj).

The complete data log-likelihood of Poisson-Markov Model Lc(Θ) can be
written as:

log Lc(Θ) = log

⎛

⎝
n∏

i=1

g∑

j=1

Zij

λ
kj

j e−λj

kj !
πjP (Si | φj)

⎞

⎠

=
n∑

i=1

g∑

j=1

Zij{log λ
kj

j − λj − log kj ! + log πj

+ log P (Si | φj)}.

(6)

The expected value of Zij is τij , where Zij is a latent variable indicating whether
the read i belongs to jth bin:

τij = E[Zij = 1 | πjS, φ] = P (Zij = 1 | πjSi, φj)

=
P (N = kj)πjP (Si | φj)∑g

j=1 P (N = kj)πjP (Si | φj)
.

(7)

2.2 An Expectation-Maximization Algorithm

Here we develop an Expectation-Maximization (EM) algorithm to maximize the
complete data log-likelihood function log Lc(Θ). In the E-step, we calculate the
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expected values of the log-likelihood function log Lc(Θ), i.e., Q(Θ | Θ(l)), under
the current estimate of the parameters Θ(l) in lth iteration, where Θ = (λj , τ),
the set of parameters in Poisson and Markov models.

Q(Θ | Θ(l)) =
n∑

i=1

g∑

j=1

τ
(l+1)
ij {log(l) λ

kj

j − λ
(l)
j − log(l) kj !

+ log(l) πj + log P (Si | φj)}.

In the M-step, we find the parameter values that maximize the Q(Θ | Θ(l)).
Specifically, τij after l + 1 iterations is calculated as:

τ
(l+1)
ij = E[Zij = 1 | π

(l)
j S, φ(l)] = P (Zij = 1 | π

(l)
j Si, φ

(l)
j )

=
P (N = kj)(l)π

(l)
j P (Si | φ

(l)
j )

∑g
j=1 P (N = kj)(l)π

(l)
j P (Si | φ

(l)
j )

.
(8)

πj is the proportion of jth bin, so that πj is updated by summarizing the
expected counts of reads as:

π
(l+1)
j =

n∑

i=1

τ
(l+1)
ij

n
. (9)

φ
(l+1)
j is the second-order TPM which can be updated as in [16]:

φ
(l+1)
j (ct−m . . . ct−1ct) =

N
(l+1)
j (ct−m . . . ct−1ct)

N
(l+1)
j (ct−m . . . ct−1)

,

N
(l+1)
j (ct−m . . . ct−1ct) =

n∑

i=1

τ
(l+1)
ij Nj(ct−m . . . ct−1ct),

N
(l+1)
j (ct−m . . . ct−1) =

n∑

i=1

τ
(l+1)
ij Nj(ct−m . . . ct−1).

λj is estimated by calculating the first derivative of Q(Θ | Θ(l)) as:

dQ(Θ | Θ(l))
dλj

= 0. (10)

Thus we have:
λ
(l+1)
j = k

(l+1)
j . (11)

The E and M steps alternates until convergence.

2.3 A Parallel Implementation of the PMM Algorithm

The E-step calculates the expected values of complete data log-likelihood which
can be calculated using multiple threads in parallel where each thread calculates
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Algorithm 1. The Parallelized PMM Algorithm
Input: n DNA sequencing reads S = S1, ..., Si, ..., Sn, Number of clusters g.

1 for j = 1 to g do

2 Initialize Θ(0):

3 πj = 1
g
, kj = n

g
, φj(ct−m · · · ct−1ct) =

N(ct−m···ct−1ct)

N(ct−m···ct−1)
and λj = n

g
;

4 end
5 repeat

6 E-step: Compute the responsibilities at lth iteration
7 Distribute the log-likelihood table (n × g) into x partitions for parallel

computation;
8 τ̂ij = E[Zij = 1 | πj , S, φ] = p(Zij = 1 | πj , Si, φj) by Eq. (7);
9 M-step: Update the corresponding parameters

10 τ (l+1) = E[Zij = 1 | π
(l)
j S, φ(l)] = P (Zij = 1 | π

(l)
j Si, φ

(l)
j ) by Eq. (8);

11 π
(l+1)
j =

∑n
i=1

τ
(l+1)
ij

n
by Eq. (9), φ

(l+1)
j by Eq. (2.2);

12 λ
(l+1)
j = n

(l+1)
kj

by Eq. (11) ;

13 until |τ (l+1) − τ (l)| < ε;

a fraction of Q function values. The M-step then sums up all these values and
update the parameters. We use a n × g table storing the log-likelihood for each
read calculated in E-step. The table has been randomly separated into x par-
titions, where each partition contains n/x reads. The latter is computed in x
threads in parallel by using “IntStream” technique in Java. We summarize our
workflow as shown in Fig. 2.

3 Results

We developed a PMM model and a Parallel algorithm (hence thereafter referred
as PMMBin, Algorithm 1), to capture both long k-mer and short k-mer
information in the DNA sequencing reads. We compared our methods to the
competing methods that use long k-mers (i.e., AbundanceBin) only and short
k-mers (i.e., MarkovBin) only.

3.1 Simulation Data Analysis

We used MetaSim [17], an open-source DNA sequencing reads simulation system,
to generate six data sets, each with 10 million reads with 100 bases in length,
which are “sequenced” from 10 randomly selected source species. We assigned
the abundances of those species in the taxon profiles of MataSim following a
normal distribution and used the empirical error model that was recommended
for simulating Illumina reads. The ground truth of the reads abundances are
shown in Fig. 3.

We compared the performance and running time of PMMBin and fPMM-
Bin (derived from PMMBin by filtering out the inseparable DNA reads where
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Table 2. The Accuracy (Acc.), Precision (Pre.), and adjusted Rand index (ARI) of
PMMBin, fPMMBin, MarkovBin and AbundanceBin. The best performance results
(excluding fPMMBin due to the added filtering procedure) are in bold face.

PMMBin AbundanceBin MarkovBin fPMMBin

Data Acc Pre ARI Acc Pre ARI Acc Pre ARI Acc Pre ARI

1 0.77 0.85 0.75 0.56 0.59 0.14 0.59 0.81 0.56 0.96 0.86 0.95

2 0.70 0.76 0.73 0.42 0.65 0.12 0.44 0.74 0.44 0.93 0.78 0.92

3 0.84 0.85 0.82 0.52 0.63 0.15 0.55 0.82 0.53 0.92 0.86 0.91

4 0.75 0.80 0.73 0.50 0.66 0.24 0.68 0.79 0.66 0.90 0.82 0.90

5 0.63 0.91 0.54 0.43 0.57 0.13 0.90 0.74 0.65 0.98 0.88 0.81

6 0.66 0.84 0.51 0.56 0.67 0.22 0.99 0.63 0.58 0.91 0.87 0.76

Fig. 2. A flowchart of the Parallel PMM algorithm implementation, where the dotted
boxes represent a more efficient k-mer counting step to further speed up the algorithm.

standard deviation of τ
(l+1)
ij among clusters is less than 0.25) with that of Abun-

danceBin (long k-mers) [21] (version 1.01, February 2013) and MarkovBin (short
k-mers) [16] (version 1.01, July 2013) in terms of accuracy, precision and adjusted
Rand index (ARI) [5]. When calculating accuracy and precision, we consider a
pair of reads to be positive if they are from the same source, negative otherwise.
Let us denote NP as the total number of the positive pairs, NN as the total
number of the negative pairs, NTP (true positive) as the number of positive
pairs that were assigned to the same bin, NTN (true negative) as the number of
negative pairs that were assigned to different bins. We define Accuracy as NTP

NP

and Precision as NTN

NN
. To highlight the unique advantage of PMMBin in recov-

ering the bin abundances with high variance, we designed a set of case-control
experiments. Specifically, we used a bin size distribution with high variance to
generate the data sets 1 to 4, and a true bin size distribution with low variance
to generate the data sets 5 and 6.

From Table 2, PMMBin performs the best in the first 4 simulated data sets
when compared with MarkovBin and AbundanceBin, but not in the last 2 data
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(a) Data set 1
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(b) Data set 2
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(c) Data set 3
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(d) Data set 4
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(e) Data set 5
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(f) Data set 6

Fig. 3. Comparison of reads binning performance in terms of recovering the true bin
size distribution. Each panel corresponds to one data set and from left to right, bar
plots represents: the True Distribution of bin size, the one estimated by our proposed
PMM and fPMM approaches, the one estimated by MarkovBin approach and the one
estimated by AbundanceBin approach.

sets, highlighting the unique capability of PMMBin in detecting bins of diverse
sizes. Compared to PMMBin, fPMMBin enjoys much higher accuracy and ARI
due to the removal of inseparable reads. Thus, the abundance variation informa-
tion is duly captured by Poisson mixtures through extracting long k-mers while
the base composition information is sufficiently captured by the mixture Markov
models by extracting short k-mers. Therefore, our simulation studies strongly
support the notion that short k-mers and long k-mers capture uncorrelated yet
complementary feature information in the reads.

Figure 3 gives a more visually compelling comparison of the binning per-
formance. PMMBin and fPMMBin successfully identified each of the 10 reads
sources (species), represented by a “peak” for each source with negligible sur-
rounding noises. Both MarkovBin and AbundanceBin miss a number of sources
(peaks) albeit the former identities more sources than the latter. In data sets
1-4 when the bin sizes are truly diverse, the bin size distributions recovered by
PMMBin and fPMMBin are much closer to the true distribution compared with
MarkovBin and AbundanceBin. In data sets 5 and 6 when the bin sizes are more
uniform, MarkovBin performs best whereas AbundanceBin capturing bin size
variation performs the worst.
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Table 3. Comparison of running time per iteration (100 million reads).

Data set No Partition 4 Partitions 10 Partitions 40 Partitions

1 92.9 mins 41.7 mins 35.8 mins 6.2 mins

2 92.7 mins 41.3 mins 35.5 mins 5.8 mins

3 92.9 mins 41.6 mins 35.8 mins 6.1 mins

4 92.5 mins 41.4 mins 35.6 mins 5.9 mins

5 92.3 mins 41.1 mins 35.7 mins 5.8 mins

6 93.1 mins 41.7 mins 35.9 mins 6.2 mins

Fig. 4. The temporal changes of the individual’s microbiome composition from Day 1
to Day 302.

We also compared running time of the parallelized PMM algorithm with the
non-parallelized version. As shown in Algorithm 1, we split the calculation of
expected log-likelihood into different number of partitions so that we calculate
all partitions in parallel. We ran the parallel PMM algorithm on the 6 data sets
(one hundred million reads) on a server (4x Twelve-Core AMD Opteron 2.6 GHz,
256 GB RAM). We compare the running time per iteration since different num-
bers of iterations are needed for different data sets. From Table 3, we observe a
markedly faster running time of the parallelized PMM algorithm compared with
the non-parallelized version without sacrificing the accuracy and precision.

Ideally, the running time of the parallelized algorithm per iteration can be
reduced to 1

x of that of the non-parallelized algorithm, where x is the number
of partitions. But it is not the case in reality as shown in Table 3. The reason is
that we only parallelized the E-step since the E-step calculation dominates the
entire computational complexity whereas M-step calculation is relatively trivial.
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3.2 Real-World Data Analysis

We analyzed a human microbiome time course data set in which an individual’s
microbiome was sequenced daily over a period of one year [2]. We looked at
the individual’s microbiome data at eight days: day 1, day 2, day 101, day
102, day 201, day 202, day 301, and day 302, and we partitioned the reads
from each metagenomic sample into four bins, i.e., Actinobacteria, Bacteroidetes,
Firmicuts and Proteobacteria. From Fig. 4, it is evident that the individual’s
microbiomes are similarly between two consecutive days (per columns) whereas
are radically different among distant days (per rows). It was also noted in [2] that
the drastically changed microbiome at days 101–102 is due to the individual’s
trip abroad.

4 Conclusion

In this paper, we presented a novel probability model and a parallel algorithm to
bin short DNA sequencing reads. Our original contributions lie in the systematic
extraction and integration of both short and long k-mers information into the
same probability model, and the parallel implementation of the optimization
algorithm, which results in a vastly improved performance in terms of accuracy,
precision and running time. Albeit the joint probability model was presented in
the context of unsupervised reads binning, it is sufficiently flexible to be extended
to solving supervised reads classification problems.

To further improve the running time, we will leverage efficient data struc-
tures for counting k-mers. Specifically, longer k-mers are sparse meaning that a
majority of the k-mers are unique [15]. Thus the k-mers counting and hashing
can be significantly accelerated by filtering out infrequent k-mers using a Bloom
filter, and store frequent k-mers using a suffix tree in both memory and hard
disk [10]. There are other existing k-mer counting approaches as well, such as in
[13,22]. To this end, we will develop a versatile and scalable toolbox for facili-
tating data mining and machine learning of short DNA sequencing reads.
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Abstract. The string graph for a collection of next-generation reads is
a lossless data representation that is fundamental for de novo assem-
blers based on the overlap-layout-consensus paradigm. In this paper, we
explore a novel approach to compute the string graph, based on the FM-
index and Burrows-Wheeler Transform (BWT). We describe a simple
algorithm that uses only the FM-index representation of the collection
of reads to construct the string graph, without accessing the input reads.
Our algorithm has been integrated into the SGA assembler as a stand-
alone module to construct the string graph.

The new integrated assembler has been assessed on a standard bench-
mark, showing that FSG is significantly faster than SGA while maintain-
ing a moderate use of main memory, and showing practical advantages
in running FSG on multiple threads.

1 Introduction

De novo sequence assembly continues to be one of the most fundamental prob-
lems in Bioinformatics. Most of the available assemblers [1,12,13,19,20,25] are
based on the notions of de Bruijn graphs and of k-mers (short k-long sub-
strings of input data). Currently, biological data are produced by different Next-
Generation Sequencing (NGS) technologies which routinely and cheaply produce
a large number of reads whose length varies according to the specific technology.
For example, reads obtained by Illumina technology (which is the most used)
have length between 50 and 150 bases [21].

To analyze datasets coming from different technologies, hence with a large
variation of read lengths, an approach based on same-length strings is likely to
be limiting, as witnessed by the recent introduction of variable-length de Bruijn
graphs [9]. The string graph [18] representation is an alternative approach that
does not need to break the reads into k-mers (as in the de Bruijn graphs), and has
the advantage of immediately distinguishing the repeats that result in different
arcs. The string graph is the main data representation used by assemblers based
on the overlap-layout-consensus paradigm. Indeed, in a string graph, the vertices
are the input reads and the arcs corresponds to overlapping reads, with the
property that contigs are paths of the string graph. An immediate advantage of
string graphs is that they can disambiguate some repeats that methods based on
c© Springer International Publishing Switzerland 2016
A. Bourgeois et al. (Eds.): ISBRA 2016, LNBI 9683, pp. 27–39, 2016.
DOI: 10.1007/978-3-319-38782-6 3
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de Bruijn graphs might resolve only at later stages—for example, the repeats that
are longer than k/2 but contained in a read. Even without repetitions, analyzing
only k-mers instead of the longer reads can result in some information loss, since
bases of a read that are more than k positions apart are not part of the same
k-mer, but might be part of the same read. Indeed, differently from de Brujin
graphs, any path of a string graph is a valid assembly of reads. On the other hand,
string graphs are more computationally intensive to compute [24], justifying
our search for faster algorithms. From an algorithmic point of view, the most
used string graph assembler is SGA [23], which first constructs the BWT [11]
and the FM-index of a set of strings, and then uses those data structures to
efficiently compute the arcs of the string graph (connecting overlapping reads).
Another string graph assembler is Fermi [17] which implements a variant of
the original SGA algorithm [23] that is tailored for SNP and variant calling.
A number of recent works face the problem of designing efficient algorithmic
strategies or data structures for building string graphs. Among those works we
can find a string graph assembler [4], based on a careful use of hashing and Bloom
filters, with performance comparable with the first SGA implementation [23].
Another important alternative approach to SGA is Readjoiner [15] which is
based on an efficient computation of a subset of exact suffix-prefix matches,
and by subsequent rounds of suffix sorting, scanning, and filtering outputs the
non-redundant arcs of the graph.

All assemblers based on string graphs (such as SGA) need to both (1) query
an indexing data structures (such as an FM-index), and (2) access the original
reads set to detect prefix-suffix overlaps between the elements. Since the self-
indexing data structures, such as FM-index, represent the whole information
of the original dataset, an interesting problem is to design efficient algorithms
for the construction of string graphs that only require to keep the index and
do not need to access the read set together with the index. Improvements in
this direction have both theoretical and practical motivations. Indeed, detecting
prefix-suffix overlaps only by analyzing the (compressed) index is an almost
unexplored problem, and managing such data structure is usually more efficient.

Following this research direction, we propose a new algorithm, called FSG,
to compute the string graph of a set R of reads, whose O(nm) time complexity
matches that of SGA—n is the number of reads in R and m is the maximum
read length. To the best of our knowledge, it is the first algorithm that computes
a string graph using only the FM-index of the input reads. The vast literature
on BWT and FM-index hints that this approach is amenable to further research.
An important observation is that SGA computes the string graph basically per-
forming, for each read r, a query to the FM-index for each character of r, to
compute the arcs outgoing from r. While this approach works in O(nm) time,
it can perform several redundant queries, most notably when the reads share
common suffixes (a very common case). Our algorithm queries the FM-index in
a specific order, so that each string is processed only once, while SGA might
process more than once each repeated string. It is important to notice that
our novel algorithm uses a characterization of a string graph that is different,
but equivalent, to the one in [18] stated in [7] and which is quite useful when
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processing reads with their FM-index. Moreover, since we have integrated our
algorithm into SGA, the read correction and the assembly phases of SGA can
be applied without any modification. These facts guarantees that the assemblies
produced by our approach and SGA are the same. In a previous paper, we have
tackled the problem of constructing the string graph in external memory [8] by
taking advantages of some recent results on the external memory implementa-
tion of the FM-index [2]. Experimental results [8] have revealed that computing
the FM-index and LCP (Longest Common Prefix) array are the two main lim-
iting factors towards an efficient (in terms of running time and main memory
requirements) external memory algorithm to construct the string graph. In fact,
even the best known algorithms for these steps do not have an optimal I/O
complexity [2,3].

The FSG algorithm provides an approach to build a string graph that could
be used for different read assembly purposes. We have implemented FSG and
integrated it with the SGA assembler, by replacing in SGA the step related to
the string graph construction. Our implementation follows the SGA guidelines,
i.e., we use the correction step of SGA before computing the overlaps without
allowing mismatches (which is also SGA’s default). Notice that SGA is a finely
tuned implementation that has performed very nicely in the latest Assemblathon
competition [10]. We have compared FSG with SGA, where we have used the
latter’s default parameter (that is, we compute overlaps without errors). Our
experimental evaluation on a standard benchmark dataset shows that our app-
roach is 2.3–4.8 times faster than SGA in terms of wall clock time.

2 Preliminaries

We briefly recall some standard definitions that will be used in the following.
Let Σ be a constant-sized alphabet and let S be a string over Σ. We denote
by S[i] the i-th symbol of S, by � = |S| the length of S, and by S[i : j] the
substring S[i]S[i + 1] · · · S[j] of S. The suffix and prefix of S of length k are the
substrings S[� − k + 1 : �] (denoted by S[� − k + 1 :]) and S[1 : k] (denoted by
S[: k]) respectively. Given two strings (Si, Sj), we say that Si overlaps Sj iff a
nonempty suffix β of Si is also a prefix of Sj , that is Si = αβ and Sj = βγ. In this
paper we consider a set R of n strings over Σ that are terminated by the sentinel
$, which is the smallest character. To simplify the exposition, we will assume
that all input strings have exactly m characters, excluding the $. The overlap
graph of a set R of strings is the directed graph GO = (R,A) whose vertices are
the strings in R, and each two overlapping strings ri = αβ and rj = βγ form the
arc (ri, rj) ∈ A labeled by α. In this case β is called the overlap of the arc and
α is called the extension of the arc. Observe that the notion of overlap graph
originally given by [18] is defined by labeling with γ the arc (ri, rj) ∈ A.

The notion of a string graph derives from the observation that in a overlap
graph the label of an arc (r, s) may be obtained by concatenating the labels of
a pair of arcs (r, t) and (t, s), thus arc (r, s) can be removed from the overlap
graph without loss of information, since removing all such arcs, called redundant
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arcs, does not changet the set of valid paths. In [18] redundant arcs are those
arcs (r, s) labeled by αβ, for α the prefix of an arc (r, t). An equivalent definition
of string graphs is below. An arc e1 = (ri, rj) of GO labeled by α is transitive
(or reducible) if there exists another arc e2 = (rk, rj) labeled by δ where δ is a
suffix of α [7]. Therefore, we say that e1 is non-transitive (or irreducible) if no
such arc e2 exists. The string graph of R is obtained from GO by removing all
reducible arcs. This definition allows to use the FM-index to compute the labels
of the string graph via backward extensions on the index.

The Generalized Suffix Array (GSA) [22] of R is the array SA where each
element SA[i] is equal to (k, j) iff the k-long suffix rj [|rj | − k + 1 :] of the string
rj is the i-th smallest element in the lexicographic ordered set of all suffixes of
the strings in R. The Burrows-Wheeler Transform (BWT) of R is the sequence
B such that B[i] = rj [|rj |−k], if SA[i] = (k, j) and k > 1, or B[i] = $, otherwise.
Informally, B[i] is the symbol that precedes the k-long suffix of a string rj where
such suffix is the i-th smallest suffix in the ordering given by SA. For any string
ω, all suffixes of (the lexicographically sorted) SA whose prefix is ω appear
consecutively in SA. Consequently, we define the ω-interval [2], denoted by q(ω),
as the maximal interval [b, e] such that b ≤ e, SA[b] and SA[e] both have prefix
ω. Notice that the width e − b + 1 of the ω-interval is equal to the number of
occurrences of ω in some read of R. Since the BWT B and SA are closely related,
we also say that [b, e] is a ω-interval on B. Given a ω-interval and a character c,
the backward c-extension of the ω-interval is the cω-interval.

3 The Algorithm

Our algorithm is based on two steps: the first is to compute the overlap graph,
the second is to remove all transitive arcs. Given a string ω and R a set of strings
(reads), let RS(ω) and RP (ω) be respectively the subset of R with suffix (resp.
prefix) ω. As usual in string graph construction algorithms, we will assume that
the set R is substring free, i.e., no string is a substring of another. A fundamental
observation is that the list of all nonempty overlaps β is a compact representation
of the overlap graph, since all pairs in RS(β) × RP (β) are arcs of the overlap
graph. Our approach to compute all overlaps between pairs of strings is based on
the notion of potential overlap, which is a nonempty string β∗ ∈ Σ+, s.t. there
exists at least one input string ri = αβ∗ (α �= ε) with suffix β∗, and there exists
at least one input string rj = γβ∗δ (δ �= ε) with β∗ as a substring (possibly a
prefix). The first part of Algorithm1 (lines 3–11) computes all potential overlaps,
starting from those of length 1 and extending the potential overlaps by adding
a new leading character. For each potential overlap, we check if it is an actual
overlap. Lemma 1 is a direct consequence of the definition of potential overlap.

Lemma 1. Let β be an overlap. Then all suffixes of β are potential overlaps.

The second part of our algorithm, that is to detect all transitive arcs, can be
sped up if we cluster together and examine some sets of arcs. We start considering
the set of all arcs sharing the same overlap and a suffix of their extensions, as
stated in the following definition.
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Definition 2. Assume that α, β ∈ Σ∗, β �= ε and X ⊆ RP (β). The arc-set
ARC(α, αβ,X) is the set {(r1, r2) : αβ is a suffix of r1, β is a prefix of r2, and
r1 ∈ R, r2 ∈ X}. The strings α and β are called the extension and the overlap
of the arc-set. The set X is called the destination set of the arc-set.

In other words, an arc-set contains the arcs with overlap β and extension
α. An arc-set is terminal if there exists r ∈ R s.t. r = αβ, while an arc-set is
basic if α = ε (the empty string). Since the arc-set ARC(α, αβ,X) is uniquely
determined by strings α, αβ, and X, the triple (α, αβ,X) encodes the arc-set
ARC(α, αβ,X). Moreover, the arc-set ARC(α, αβ,X) is correct if X includes
all irreducible arcs that have overlap β and extension with suffix α, that is
X ⊇ {r2 ∈ RP (β) : r1 ∈ RS(αβ) and (r1, r2) is irreducible}. Observe that our
algorithm computes only correct arc-sets. Moreover, terminal arc-sets only con-
tain irreducible arcs (Lemma 5). Lemma 3 shows the use of arc-sets to detect
transitive arcs. Due to space constraints, all proofs are omitted.

Lemma 3. Let (r1, r2) be an arc with overlap β. Then (r1, r2) is transitive iff
(i) there exist α, γ, δ, η ∈ Σ∗, γ, η �= ε such that r1 = γαβ, r2 = βδη, (ii)
there exists an input read r3 = αβδ such that (r3, r2) is an irreducible arc of a
nonempty arc-set ARC(α, αβδ,X).

A direct consequence of Lemma 3 is that a nonempty correct terminal arc-set
ARC(α, αβδ,X) implies that all arcs of the form (γαβ, βδη), with γ, η �= ε are
transitive. Another consequence of Lemma 3 is that an irreducible arc (αβδ, βδη)
with extension α and overlap βδ reduces all arcs with overlap β and extension
γα, with γ �= ε. Lemma 3 is the main ingredient used in our algorithm. More
precisely, it computes terminal correct arc-sets of the form ARC(α, αβδ,X) for
extensions α of increasing length. By Lemma 3, ARC(α, αβδ,X) contains arcs
that reduce all the arcs contained in ARC(α, αβ,X ′) which have a destination
in X. Since the transitivity of an arc is related to the extension α of the arc that
is used to reduce it, and our algorithm considers extensions of increasing length,
a main consequence of Lemma 3 is that it computes terminal arc-sets that are
correct, that is they contain only irreducible arcs. We will further speed up the
computation by clustering together the arc-sets sharing the same extension.

Definition 4. Let T be a set of arc-sets, and let α be a string. The cluster of
α, denoted by C(α), is the union of all arc-sets of T whose extension is α.

We sketch Algorithm 1 which consists of two phases: the first phase to com-
pute the overlap graph, and the second phase to remove all transitive arcs. In
our description, we assume that, given a string ω, we can compute in constant
time (1) the number suff(ω) of input strings whose suffix is ω, (2) the number
pref(ω) of input strings whose prefix is ω, (3) the number substr(ω) of occur-
rences of ω in the input strings. Moreover, we assume to be able to list the set
listpref(ω) of input strings with prefix ω in O(|listpref(ω)|) time. In Sect. 4 we
will describe such a data structure. The first phase (lines 3–11) exploits Lemma1
to compute all overlaps. Potential overlaps are defined inductively. The empty
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string ε is a potential overlap of length 0; given an i-long potential overlap β∗,
the (i + 1)-long string cβ∗, for c ∈ Σ, is a potential overlap iff suff(cβ∗) > 0 and
substr(cβ∗) > suff(cβ∗). Our algorithm uses this definition to build potential
overlaps of increasing length, starting from those with length 1, i.e., symbols
of Σ (line 2). The lists Last and New store the potential overlaps computed at
the previous and current iteration respectively. Observe that a potential overlap
β∗ is an overlap iff pref(β∗) > 0. Since a potential overlap is a suffix of some
input string, there are at most nm distinct suffixes, where m and n are the length
and the number of input strings, respectively. Each query suff(·), pref(·), substr(·)
requires O(1) time, thus the time complexity related to the total number of such
queries is O(nm). Given two strings β1 and β2, when |β1| = |β2| no input string
can be in both listpref(β1) and listpref(β2). Since each overlap is at most m long,
the overall time spent in the listpref(·) queries is O(nm). The first phase pro-
duces (line 7) the set of disjoint basic arc-sets ARC(ε, β,Rp(β)) for each overlap
β, whose union is the set of arcs of the overlap graph. Recall that listpref(β)
gives the set of reads with prefix β, which has been denoted by Rp(β).

The second phase (lines 13–25) classifies the arcs of the overlap graph into
reducible or irreducible by computing arc-sets of increasing extension length,
starting from the basic arc-sets ARC(ε, εβ,Rp(β)) obtained in the previous
phase. By Lemma 3, we compute all correct terminal arc-sets ARC(α, αβ,X)
and remove all arcs that are reduced by ARC(α, αβ,X). The set Rdc is used
to store the destination set X of the computed terminal arc-sets. Notice that if
ARC(α, αβ,X) is terminal, then all of its arcs have the same origin r = αβ, i.e.,
ARC(α, αβ,X) = {(r, x) : x ∈ X}. By Lemma 3 all arcs in the cluster C(α) with
a destination in X and with an origin different from r are transitive and can be
removed, simply by removing X from all destination sets in the arc-sets of C(α).
Another application of Lemma3 is that when we find a terminal arc-set all of its
arcs are irreducible, i.e., it is also correct. In fact, Lemma 3 classifies an arc as
transitive according to the existence of a read r = αβ with extension α. Since the
algorithm considers extensions α of increasing length, all arcs whose extensions
is shorter than α have been reduced in a previous step, thus all terminal arc-set
of previous iterations are irreducible. More precisely, the test at line 18 is true iff
the current arc-set is terminal. In that case, at line 19 all arcs of the arc-set are
output as arcs of the string graph, and at line 20 the destination set X is added
to the set Rdc that contains the destinations of C(α) that must be removed.
For each cluster C(α), we read twice all arc-sets that are included in C(α). The
first time to determine which arc-sets are terminal and, in that case, to deter-
mine the set Rdc of reads that must be removed from all destinations of the
arc-sets included in C(α). The second time to compute the clusters C(cα) that
contain the nonempty arc-sets with extension cα consisting of the arcs that we
still have to check if they are transitive or not (that is the arcs with destination
set X \Rdc). In Algorithm 1, the cluster C(α) that is currently analyzed is stored
in CurrentCluster, that is a list of the arc-sets included in the cluster. Moreover,
the clusters that still have to be analyzed are stored in the stack Clusters. We
use a stack to guarantee that the clusters are analyzed in the correct order, that
is the cluster C(α) is analyzed after all clusters C(α[i :])—α[i :] is a generic suffix
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Algorithm 1. Compute the string graph
Input : The set R of input strings
Output: The string graph of R, given as a list of arcs

1 Cluster ← empty list;
2 Last ← {c ∈ Σ | suff(c) > 0 and substr(c) > suff(c)};
3 while Last is not empty do
4 New ← ∅;
5 foreach β∗ ∈ Last do
6 if pref(β∗) > 0 then
7 Append (ε, β∗, listpref(β∗)) to Cluster;
8 for c ∈ Σ do
9 if suff(cβ∗) > 0 and substr(cβ∗) > suff(cβ∗) then

10 Add cβ∗ to New;

11 Last ← New;

12 Clusters ← the stack with Cluster as its only element;
13 while Clusters is not empty do
14 CurrentCluster ← Pop(Clusters);
15 Rdc ← ∅;
16 Let ExtendedClusters be an array of |Σ| empty clusters;
17 foreach (α, αβ, X) ∈ CurrentCluster do
18 if substr(αβ) = pref(αβ) = suff(αβ) > 0 then
19 Output the arcs (αβ, x) with label α for each x ∈ X;
20 Rdc ← Rdc ∪ X;

21 foreach (α, αβ, X) ∈ CurrentCluster do
22 if X �⊆ Rdc then
23 for c ∈ Σ do
24 if suff(cαβ) > 0 then
25 Append (cα, cαβ, X \ Rdc) to ExtendedClusters[c];

26 Push each non-empty cluster of ExtendedClusters to Clusters;

of α. We can prove that a generic irreducible arc (r1, r2) with extension α and
overlap β belongs exactly to the clusters C(ε), . . . , C(α[2 :]), C(α). Moreover, r2
does not belong to the set Rdc when considering C(ε), . . . , C(α[2 :]), hence the
arc (r1, r2) is correctly output when considering the cluster C(α). The lemmas
leading to the correctness of the algorithm follow.

Lemma 5. Let ARC(α, αβ,X) be an arc-set inserted into a cluster by
Algorithm1. Then such arc-set is correct.

Lemma 6. Let e1 be a transitive arc (r1, r2) with overlap β. Then the algorithm
does not output e1.

Theorem 7. Given as input a set of strings R, Algorithm1 computes exactly
the arcs of the string graph.

We can now sketch the time complexity of the second phase. Previously, we
have shown that the first phase produces at most O(nm) arc-sets, one for each
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distinct overlap β. Since each string αβ considered in the second phase is a suffix
of an input string, and there are at most nm such suffixes, at most nm arc-sets
are considered in the second phase. In the second phase, for each cluster a set Rdc
is computed. If Rdc is empty, then each arc-set of the cluster can be examined in
constant time, since all unions at line 20 are trivially empty and at line 25 the set
X \Rdc is equal to X, therefore no operation must be computed. The interesting
case is when X �= ∅ for some arc-set. In that case the union at line 20 and the
difference X \ Rdc at line 25 are computed. Let d(n) be the time complexity of
those two operations on n-element sets (the actual time complexity depends on
the data structure used). Notice that X is not empty only if we have found an
irreducible arc, that is an arc of the string graph. Overall, there can be at most
|E| nonempty such sets X, where E is the set of arcs of the string graph. Hence,
the time complexity of the entire algorithm is O(nm + |E|d(n)).

4 Data Representation

Our algorithm entirely operates on the (potentially compressed) FM-index of
the collection of input reads. Indeed, each processed string ω (both in the first
and in the second phase) can be represented in constant space by the ω-interval
[bω, eω] on the BWT (i.e., q(ω)), instead of using the näıve representation with
O(|ω|) space. Notice that in the first phase, the i-long potential overlaps, for a
given iteration, are obtained by prepending a symbol c ∈ Σ to the (i − 1)-long
potential overlaps of the previous iteration (lines 8–10). In the same way the
arc-sets of increasing extension length are computed in the second phase. In
other words, our algorithm needs in general to obtain string cω from string ω,
and, since we represent strings as intervals on the BWT, this operation can be
performed in O(1) time via backward c-extension of the interval q(ω) [14].

Moreover, both queries pref(ω) and substr(ω) can be answered in O(1) time.
In fact, given q(ω) = [bω, eω], then substr(ω) = eω − bω + 1 and pref(ω) = e$ω −
b$ω +1 where q($ω) = [b$ω, e$ω] is the result of the backward $-extension of q(ω).
Similarly, it is easy to compute listpref(ω) as it corresponds to the set of reads
that have a suffix in the interval q($ω) of the GSA. The interval q(ω$) = [bω$, eω$]
allows to answer to the query suff(ω) which is computed as eω$ − bω$ + 1. The
interval q(ω$) is maintained along with q(ω). Moreover, since q(ω$) and q(ω)
share the lower extreme bω = bω$ (recall that $ is the smallest symbol), each
string ω can be compactly represented by the three integers bω, eω$, eω. While
in our algorithm a substring ω of some input read can be represented by those
three integers, we exploited the following representation for greater efficiency. In
the first phase of the algorithm we mainly have to represent the set of potential
overlaps. At each iteration, the potential overlaps in Last (New, resp.) have the
same length, hence their corresponding intervals on the BWT are disjoint. Hence
we can store those intervals using a pair of n(m + 1)-long bitvectors. For each
potential overlap β ∈ Last (New, resp.) represented by the β-interval [bβ , eβ ], the
first bitvector has 1 in position bβ and the second bitvector has 1 in positions eβ$

and eβ . Recall that we want also to maintain the interval q(β$) = [bβ , eβ$]. Since
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substr(β) > suff(β), then eβ$ �= eβ and can be stored in the same bitvector. In
the second phase of the algorithm, we mainly represent clusters. A cluster groups
together arc-sets whose overlaps are pairwise different or one is the prefix of the
other. Thus, the corresponding intervals on the BWT are disjoint or nested.
Moreover, also the destination set of the basic arc-sets can be represented by a
set of pairwise disjoint or nested intervals on the BWT (since listpref(β) of line 7
correspond to the interval q($β)). Moreover, the loop at lines 13–25 preserves the
following invariant: let ARC(α, αβ1,X1) and ARC(α, αβ2,X2) be two arc-sets
of the same cluster C(α) with β1 prefix of β2, then X2 ⊆ X1. Hence, each subset
of arc-sets whose extensions plus overlaps share a common nonempty prefix γ is
represented by means of the following three vectors: two integers vectors Vb, Ve

of length eγ −bγ +1 and a bitvector Bx of length e$γ −b$γ +1, where [bγ , eγ ] is the
γ-interval and [b$γ , e$γ ] is the $γ-interval. More specifically, Vb[i] (Ve[i], resp.)
is the number of arc-sets whose representation (BWT interval) of the overlap
starts (ends, resp.) at bγ + i, while Bx[i] is 1 iff the read at position b$γ + i, in the
lexicographic order of the GSA, belongs to the destination set of all the arc-sets.
As a consequence, the number of backward extensions performed by Algorithm1
is at most O(nm), while SGA performs Θ(nm) extensions.

5 Experimental Analysis

A C++ implementation of our approach, called FSG (short for Fast String
Graph), has been integrated in the SGA suite and is available at http://fsg.
algolab.eu under the GPLv3 license. We have evaluated the performance of FSG
on a standard benchmark of 875 million 101 bp-long reads sequenced from the
NA12878 individual of the International HapMap and 1000 genomes project and
comparing the running time of FSG with SGA. We have run SGA with its default
parameters, that is SGA has compute exact overlaps after having corrected the
input reads. Since the string graphs computed by FSG and SGA are the same,
we have not compared the entire pipeline, but only the string graph construc-
tion phase. We could not compare FSG with Fermi, since Fermi does not split
its steps in a way that allows to isolate the running time of the string graph
construction—most notably, it includes reads correction and scaffolding.

Especially on the DNA alphabet, short overlaps between reads may happen
by chance. Hence, for genome assembly purposes, only overlaps whose length is
larger than a user-defined threshold are considered. The value of the minimum
overlap length threshold that empirically showed the best results in terms of
genome assembly quality is around the 75 % of the read length [24]. To assess
how graph size affects performance, different values of minimum overlap length
(called τ) between reads have been used (clearly, the lower this value, the larger
the graph). The minimum overlap lengths used in this experimental assessment
are 55, 65, 75, and 85, hence the chosen values test the approaches also on larger-
than-normal (τ = 55) and smaller-than-normal (τ = 85) string graphs. Another
aspect that we have wanted to measure is the scalability of FSG. We have run
the programs with 1, 4, 8, 16, and 32 threads. In all cases, we have measured

http://fsg.algolab.eu
http://fsg.algolab.eu
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Table 1. Comparison of FSG and SGA, for different minimum overlap lengths and
numbers of threads. The wall-clock time is the time used to compute the string graph.
The CPU time is the overall execution time over all CPUs actually used.

Min. overlap No. of threads Wall time [min] Work time [min]

FSG SGA FSG
SGA

FSG SGA FSG
SGA

55 1 1, 485 4, 486 0.331 1, 483 4, 480 0.331

4 474 1, 961 0.242 1, 828 4, 673 0.391

8 318 1, 527 0.209 2, 203 4, 936 0.446

16 278 1, 295 0.215 3, 430 5, 915 0.580

32 328 1, 007 0.326 7, 094 5, 881 1.206

65 1 1, 174 3, 238 0.363 1, 171 3, 234 0.363

4 416 1, 165 0.358 1, 606 3, 392 0.473

8 271 863 0.315 1, 842 3, 596 0.512

16 255 729 0.351 3, 091 4, 469 0.692

32 316 579 0.546 6, 690 4, 444 1.505

75 1 1, 065 2, 877 0.37 1, 063 2, 868 0.371

4 379 915 0.415 1, 473 2, 903 0.507

8 251 748 0.336 1, 708 3, 232 0.528

16 246 561 0.439 2, 890 3, 975 0.727

32 306 455 0.674 6, 368 4, 062 1.568

85 1 1, 000 2, 592 0.386 999 2, 588 0.386

4 360 833 0.432 1, 392 2, 715 0.513

8 238 623 0.383 1, 595 3, 053 0.523

16 229 502 0.457 2, 686 3, 653 0.735

32 298 407 0.733 6, 117 3, 735 1.638

the elapsed (wall-clock) time and the total CPU time (the time a CPU has been
working). All experiments have been performed on an Ubuntu 14.04 server with
four 8-core Intel R© Xeon E5-4610v2 2.30 GHz CPUs. The server has a NUMA
architecture with 64 GiB of RAM for each node (256 GiB in total).

Table 1 summarizes the running times of both approaches on the different
configurations of the parameters. Notice that LSG approach is from 2.3 to 4.8
times faster than SGA in terms of wall-clock time and from 1.9 to 3 times in
terms of CPU time. On the other hand, FSG uses approximately 2.2 times the
memory used by SGA—on the executions with at most 8 threads. On a larger
number of threads, and in particular the fact that the elapsed time of FSG on 32
threads is larger than that on 16 threads suggests that, in its current form, FSG
might not be suitable for a large number of threads. However, since the current
implementation of FSG is almost a proof of concept, future improvements to
its codebase and a better analysis of the race conditions of our tool will likely
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lead to better performances with a large number of threads. Furthermore, notice
that also the SGA algorithm, which is (almost) embarrassingly parallel and has
a stable implementation, does not achieve a speed-up better than 6.4 with 32
threads. As such, a factor that likely contributes to a poor scaling behaviour of
both FSG and SGA could be also the NUMA architecture of the server used
for the experimental analysis, which makes different-unit memory accesses more
expensive (in our case, the processors in each unit can manage at most 16 logical
threads, and only 8 on physical cores). FSG uses more memory than SGA since
genome assemblers must correctly manage reads extracted from both strands of
the genome. In our case, this fact has been addressed by adding each reverse-
and-complement read to the set of strings on which the FM-index has been
built, hence immediately doubling the size of the FM-index. Moreover, FSG
needs some additional data structures to correctly maintain potential overlaps
and arc-sets: two pairs of n(m + 1)-long bitvectors and the combination of two
(usually) small integer vectors and a bitvector of the same size. Our experimental
evaluation shows that the memory required by the latter is usually negligible,
hence a better implementation of the four bitvectors could decrease the memory
use. The main goal of FSG is to improve the running time, not the memory use.

The combined analysis of the CPU time and the wall-clock time on at most
8 threads (which is the number of physical cores of each CPU on our server)
suggests that FSG is more CPU efficient than SGA and is able to better dis-
tribute the workload across the threads. In our opinion, our greater efficiency is
achieved by operating only on the FM-index of the input reads and by the order
on which extension operations (i.e., considering a new string cα after α has been
processed) are performed. These two characteristics of our algorithm allow to
eliminate the redundant queries to the index which, instead, are performed by
SGA. In fact, FSG considers each string that is longer than the threshold at
most once, while SGA potentially reconsiders the same string once for each read
in which the string occurs. Indeed, FSG uses 2.3–3 times less user time than
SGA when τ = 55 (hence, when such sufficiently-long substrings occur more
frequently) and “only” 2–2.6 times less user time when τ = 85 (hence, when
such sufficiently-long substrings are more rare).

6 Conclusions and Future Work

We present FSG: a tool implementing a new algorithm for constructing a string
graph that works directly querying a FM-index representing a collection of reads,
instead of processing the input reads. Our main goal is to provide a simpler and
fast algorithm to construct string graphs, so that its implementation can be easily
integrated into an assembly pipeline that analyzes the paths of the string graph
to produce the final assembly. Indeed, FSG could be used for related purposes,
such as transcriptome assembly [5,16], and haplotype assembly [6]. These topics
are some of the research directions that we plan to investigate.
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Abstract. Detection of somatic mutations from tumor and matched
normal sequencing data has become a standard approach in cancer
research. Although a number of mutation callers are developed, it is
still difficult to detect mutations with low allele frequency even in exome
sequencing. We expect that overlapping paired-end read information is
effective for this purpose, but no mutation caller has modeled overlap-
ping information statistically in a proper form in exome sequence data.
Here, we develop a Bayesian hierarchical method, OVarCall, where over-
lapping paired-end read information improves the accuracy of low allele
frequency mutation detection. Firstly, we construct two generative mod-
els: one is for reads with somatic variants generated from tumor cells and
the other is for reads that does not have somatic variants but potentially
includes sequence errors. Secondly, we calculate marginal likelihood for
each model using a variational Bayesian algorithm to compute Bayes
factor for the detection of somatic mutations. We empirically evaluated
the performance of OVarCall and confirmed its better performance than
other existing methods.

Keywords: Somatic mutation detection · Next-generation sequencing
data · Overlapping paired-end reads · Bayesian hierarchical model

1 Introduction

Cancer is driven by genomic alterations. Acquired somatic mutations, together
with individual germ line haplotypes, are definitive factors for cancer evolution.
Together with decreasing massively parallel sequencing costs, mutation calling
from tumor and matched normal sequence data has been a fundamental analysis
in cancer research [11].

There are several important points in somatic mutation detection for achiev-
ing high accuracy. For example, a somatic mutation caller should distin-
guish somatic mutations from sequence errors, alignment errors, and germ line
c© Springer International Publishing Switzerland 2016
A. Bourgeois et al. (Eds.): ISBRA 2016, LNBI 9683, pp. 40–51, 2016.
DOI: 10.1007/978-3-319-38782-6 4
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variants. In this paper, we focus on the development of somatic mutation caller
for mutations with low allele frequencies because of low tumor contents in sam-
ple, copy number alterations and tumor heterogeneity. The detection of low
allele frequency mutations is important for capturing minor subclones which are
thought as a cause of therapeutic resistance or recurrence of cancer [17].

Although there are many methods for somatic mutation detection;
VarScan2 [7], Genomon [21], SomaticSniper [8], JointSNVMix [14], Strelka [16],
MuTect [4] and HapMuC [20], it is still difficult to detect low allele frequency
mutations of 1 % to 5 % in exome sequence data. These mutations are detectable
in PCR-targeted sequence data. On the other hand, Chen-Harris [3] reported the
efficacy of overlapping paired-end reads, and a mutation caller was developed for
PCR-targeted sequence data. However, this mutation caller uses only overlap-
ping paired-end reads and was not designed for usual exome sequence data that
include overlapping and non-overlapping paired-end reads.

Here, we constructed a Bayesian hierarchical method, OVarCall, for the
detection of somatic mutations with low allele frequencies from exome sequence
data. In this method, we construct two generative models: one is for reads with
somatic variants generated from tumor cells and the other is for reads with
sequence errors, and then calculate marginal likelihood for each model using a
variational Bayesian algorithm. Under the assumption that the sequence error
occurs randomly, it is low probability that sequence errors occur in the same
position. Our generative model realizes this idea and determines the statistical
significance of the candidate somatic mutation by using Bayes factor.

Firstly, we evaluated our assumption and the validity of the use of overlap-
ping paired-end reads by observing that the sequence errors occur mostly on
one side of the overlapping paired-end reads and the validated mutations appear
mostly on both sides of the overlapping paired-end reads. Secondly, we empiri-
cally showed the effectiveness of our method using simulation data. Finally, in
20 ccRCC patients’ exome sequence data, we confirmed that our method outper-
forms existing methods for detection of low allele frequency somatic mutations.

Fig. 1. Assumptions of sequence error for overlapping paired-end reads. (A) Sequence
error occurs on one side of the reads. This type of error is considered to be common
for overlapping paired-end reads, since sequence error needs to occur independently on
both sides of the reads. (B) Sequence errors occur on both sides of the reads. This type
of error is considered to be rare since sequence error should occur twice.
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Fig. 2. Graphical representation of OVarCall. Notation i stands for the index of the
candidate mutation positions, and n stands for the index of the paired-end reads. In
this model, strand bias of sequence error is considered, and sequence error of each
strand on the i-th position occurs independently.

2 Methods

2.1 Graphical Model of OVarCall

We define the 1-of-K expression vectors, Ri,n,+ and Ri,n,−, which represent the
base or ins/del of the n-th read pair on the i-th reference position on each strand.
We also define the 1-of-K expression vector, pi,n, which indicates the strand
information of reads covering the candidate mutation positions, i.e., covering by
only plus strand reads (pi,n = [1, 0, 0]), only minus strand reads (pi,n = [0, 1, 0]),
or both strands (pi,n = [0, 0, 1]). The vector of latent variables of the pair-end
reads is denoted by zi,n, which explains whether the read pair is sequenced
from a DNA fragment with true somatic mutation or not. For example, if the
original DNA fragment is the same as the reference sequence, zi,n is equal to
[1, 0], and if the original DNA fragment contains somatic mutation, zi,n is equal
to [0, 1]. Allele frequency for the candidate mutation position is denoted by πi;
(1 − πi) represents the proportion of variant supporting reads. Sequence error
probability on the i-th position of each strand is denoted by εi,+, εi,−. We set
the prior distributions of the parameters and the latent variables as follows:

πi ∼ pbeta(πi|αref , βobs)
εi,+ ∼ pbeta(εi,+|δ+,1, δ+,2)
εi,− ∼ pbeta(εi,−|δ−,1, δ−,2)

p(zi,n,0) = πi

p(zi,n,1) = 1 − πi
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where pbeta(·|a, b) is the probability density of the beta distribution with the
parameters a and b, i. e., hyperparameters of beta distribution for πi, εi,+, and
εi,− are denoted as (αref , βobs), (δ+,1, δ+,2), and (δ−,1, δ−,2), respectively.

2.2 Modeling of Sequence Errors on Paired-End Reads

We assumed that sequence errors occur independently in the overlapping paired-
end reads as expressed in Fig. 1. For simplicity, here we denote only the modeling
of sequence error when candidate mutation is single nucleotide variant (SNV). If
there is no mismatch between the latent variables zi,n and observed read bases
Ri,n,+ or Ri,n,−, sequence error is supposed to occur with probability of (13εi,+)
or (13εi,−). The other case, in which there is no sequence error, is supposed to
occur with probability of (1 − εi,+) or (1 − εi,−). We introduce an indicator
variable mi,+ which is 1 if the latent variables zi,n is the same as the observed
bases Ri,n,+, and which is 0 otherwise. The indicator variable mi,− is defined in
the same way. We define the likelihood of the observed reads as follows:

p(Ri,n,+,Ri,n,−|zi,n, εi,+, εi,−,πi,n,pi,n)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − εi,+)mi,+ · ( 13εi,+)1−mi,+ (pi,n = [1, 0, 0])
(1 − εi,−)mi,− · ( 13εi,−)1−mi,− (pi,n = [0, 1, 0])
(1 − εi,+)mi,+ · ( 13εi,+)1−mi,+

·(1 − εi,−)mi,− · ( 13εi,−)1−mi,− (pi,n = [0, 0, 1])

From the probabilistic distributions above and the dependencies of variables
denoted in Fig. 2, the joint distribution is given in the following form:

p(Ri,Zi|γi,αi,+,αi,−) = p(πi|γi)p(εi,+|αi,+)p(εi,−|αi,−)

·
∏

n

p(Ri,n,+,Ri,n,−|zi,n, ε±,i,πi,n,pi,n)p(zi,n|πi)

= p(πi|γi)p(εi,+|αi,+)p(εi,−|αi,−)
· p(Ri,+, Zi,+|εi,+, πi) · p(Ri,−, Zi,−|εi,−, πi)
· p(Ri,±, Zi,±|εi,+, εi,−, πi)

where we denote all paired-end read information or corresponding latent vari-
ables as (Ri,+, Zi,+), (Ri,−, Zi,−) or (Ri,±, Zi,±), depending on the value of
pi,n, and Ri = (Ri,+, Ri,−, Ri,±), Zi = (Zi,+, Zi,−, Zi,±,πi, εi,+, εi,−). In
this equation, the hyperparameters are denoted as γi = (αref , βobs), αi,+ =
(δ+,1, δ+,2), αi,− = (δ−,1, δ−,2).

2.3 Difference of the Tumor Model and the Error Model

In the tumor model, we set (αref , βobs) = (100.0, 1.0) because the number of true
somatic mutation is small, compared to error prone sites. In the error model,
there should be no mutations except for contaminations in a sample, and we set
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(αref , βobs) = (1000000.0, 10.0). In both models, we used the hyperparameters of
the posterior beta distributions in the error model given the normal sample data,
where the hyperparameters for sequence errors are (δ+,1, δ+,2) = (δ−,1, δ−,2) =
(2.0, 30.0), which is same as the error probabilities in simulation model. In the
real data analysis, we set (δ+,1, δ+,2) = (δ−,1, δ−,2) = (1.0, 100.0), (αref , βobs) =
(100.0, 1.0), since positions with over 100 depth coverage are selected in the
minimum criteria.

2.4 Bayes Factor for Detecting Somatic Mutations

For the detection of the somatic mutations, Bayes factor (BF ) is defined as:

BF =
pT (Ri|γi,αi,+,αi,−)
pE(Ri|γi,αi,+,αi,−)

where pT and pE represent the marginal likelihoods calculated by the tumor
and error models, respectively. In order to compute BF , marginal likelihoods is
calculated for both models as:

pT (Ri|γi,αi,+,αi,−) =
∑

Zi

∫

pT (RiZi|γi,αi,+,αi,−)dπidεi,+dεi,−

However, calculation of the marginal likelihoods needs high-dimensional integrals
and sums, and the closed form cannot be obtained. We use variational Bayes
approach for approximating the values of the marginal likelihoods.

2.5 Variational Bayes Procedure

Here we represent the computation of p(Ri|γi,αi,+,αi,−), or ln p(Ri|γi,
αi,+,αi,−). From the fact that log function is concave, we can derive the follow-
ing inequality [6].

ln p(Ri|γi,αi,+,αi,−) ≥ Eq

[
p(Ri,Zi|γi,αi,+,αi,−)

q(Zi)

]

(1)

where q(Zi) is the variational distribution for Zi, and the equality holds when
q(Zi) is equal to the posterior distribution of p(Zi|Ri,γi,αi,+,αi,−). In this
variational Bayes approach, we approximately decompose q(Zi) in the following
form, and update q(Zi) iteratively to maximize the right hand side of the Eq. (1).

q(Zi) = q(Z+)q(Z−)q(Z±)q(πi)q(εi,+)q(εi,−)

The update formula of q is expressed as:

q∗(Zi,+) =
N+∏

n+

1∏

j=0

(ζ∗
i,n+,+,j)

Zi,n+,j



OVarCall: Bayesian Mutation Calling Method 45

q∗(Zi,−) =
N−∏

n−

1∏

j=0

(ζ∗
i,n−,−,j)

Zi,n−,j

q∗(Zi,±) =
N±∏

n±

1∏

j=0

(ζ∗
i,n±,±,j)

Zi,n±,j

q∗(πi) = pbeta(πi|γ∗
i )

q∗(εi,+) = pbeta(εi,+|α∗
i,+)

q∗(εi,−) = pbeta(εi,−|α∗
i,−)

Updated parameters are obtained in the following equations.

ζ∗
i,n+,j =

ρ∗
i,n+,j

ρ∗
i,n+,0 + ρ∗

i,n+,1

ζ∗
i,n−,j =

ρ∗
i,n−,j

ρ∗
i,n−,0 + ρ∗

i,n−,1

ζ∗
i,n±,j =

ρ∗
i,n±,j

ρ∗
i,n±,0 + ρ∗

i,n±,1

α∗
i,+,0 = δ+,1 + N+ + N± + 2 − s+

α∗
i,+,1 = δ+,2 + s+

α∗
i,−,0 = δ−,1 + N− + N± + 2 − s+

α∗
i,−,1 = δ−,2 + s−

γ∗
i,j =

N+∑

n+

ζ∗
i,n+,j +

N−∑

n−

ζ∗
i,n−,j +

N±∑

n±

ζ∗
i,n±,j + γi,j

s+ =
N+∑

n+

1∑

j=0

ζ∗
i,n+,jRi,+,n+,j +

N±∑

n±

1∑

j=0

ζ∗
i,n±,jRi,+,n±,j

s− =
N−∑

n−

1∑

j=0

ζ∗
i,n−,jRi,−,n−,j +

N±∑

n±

1∑

j=0

ζ∗
i,n±,jRi,−,n±,j

ln ρ∗
i,n+,j = Eq [ln πi,j ] + Eq

[
Ri,n+,+,j

{
− ln

(εi,+
3

)
+ ln(1 − εi,+)

}]

ln ρ∗
i,n−,j = Eq [ln πi,j ] + Eq

[
Ri,n−,−,j

{
− ln

(εi,−
3

)
+ ln(1 − εi,−)

}]

ln ρ∗
i,n±,j = Eq [ln πi,j ]

+ Eq

[
Ri,n±,+,j

{
− ln

(εi,+
3

)
+ ln(1 − εi,+)

}]

+ Eq

[
Ri,n±,−,j

{
− ln

(εi,−
3

)
+ ln(1 − εi,−)

}]
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2.6 Criteria for Selecting the Error Prone Site

To examine the correlation between sequence error and overlapping paired-
end reads, we collected the error prone sites using ccRCC patients’ 20 nor-
mal samples, whose sequencing reads were aligned to hg19 Reference Genome
using Burrows-Wheeler Aligner [9], with default parameter settings. We firstly
excluded the germ line SNP positions, as listed in the following conditions.

1. The read coverage is ≥20
2. The non-reference allele frequency is >0.2
3. At least one variant read is observed in both positive and negative strands.

We counted the candidate error positions which satisfy the following conditions:

1. The read coverage is ≥20
2. The non-reference allele frequency is >0.03
3. The read coverage of plus strand read ≥1
4. The read coverage of minus strand read ≥1

If the number of samples satisfying the above four conditions is greater than
or equal to 5, then we decide the position as an error prone site. The above
conditions is based on [19], but to consider low depth positions, we ignore the
condition that read coverages between all samples are ≥20.

2.7 Minimum Criteria for the Simulation Study

We retained the candidate positions if they met with the following criteria:

1. The tumor allele frequency is >thres.
2. The normal allele frequency is <0.1.
3. The number of variant-supporting reads in tumor is ≥4.
4. The read coverage is ≥12.

Where we set thres as 0.07 if tumor allele frequency is 10 %, and we set thres as
0.005 if tumor allele frequency is 1 %, in order to collect as many true somatic
mutations as possible.

2.8 Minimum Criteria for the Real Data Study

We set several filter conditions to exclude false positive SNV. We filtered reads
if they met with at least one filtering conditions described below:

1. Mapping quality is <30.
2. Number of insertion or deletion is ≥3.
3. Number of SNV is ≥3.
4. Number of insertion or deletion or SNV is ≥4.
5. The proportion of soft-clipping is >0.25.
6. Read is not mapped in proper pair.
7. Intersections with sam flag 3840 is not 0.
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If the proportions of filtered reads that cover a candidate position is ≥0.3 or
indels are present within a 25 bp distance, we excluded the position. After apply-
ing the above filters, we collected candidate positions if they met with the fol-
lowing criteria:

1. The read coverage is ≥100.
2. The tumor allele frequency is ≥0.01 and ≤0.07.
3. The number of variant-supporting reads in a tumor sample is ≥3.
4. The normal allele frequency is ≤0.01.
5. The number of variant-supporting reads in a normal sample is ≤1.

We should also note that potential mapping errors are excluded by using genomic
super duplications, simple repeats [1], and dbSNP138 [18], and we selected posi-
tions within exome regions.

2.9 Parameters for Alternative Methods

Fisher’s exact test: Two-sided Fisher’s exact test is executed. We simply used
the library function from scipy.stats.fisher exact

VarScan2 (v2.3.9): –min-var-freq 0.01 –min-coverage 10 –min-coverage-normal
10 –min-coverage-tumor 10 –somatic-p-value 0.5.

Strelka (v1.0.14): isSkipDepthFilters = 1 is set on the default setting.
MuTect (v1.1.4): –minimum mutation cell fraction 0.01

3 Numerical Examples

3.1 Validation of the Sequence Error Assumption in ccRCC
Patients’ Data

We investigated the independence of the sequence error on the overlapping
paired-end reads, using exome tumor and matched normal sequences of 20
ccRCC patients [15,19]. Sequence errors in Illumina sequencer data do not occur
uniformly, i.e., errors occur in a sequence specific manner [5,10,12]. Shiraish [19]
examined such errors, by collecting errors which occur repeatedly in multiple
samples, and he defined these sites as error prone sites. Firstly, we extracted
error prone sites using the normal sequence samples and the somatic mutation
positions which were validated by PCR-targeted sequence. Secondly, for each
position of error prone sites or true somatic mutations, we checked the numbers
of two types of overlapping paired-end reads: (i) VX, overlapping paired-end
reads where at least one read is a variant supporting read. (ii) VV, overlapping
paired-end reads where both reads are variant supporting read and have same
variant in the candidate position. For each candidate SNV position, we count
the numbers of VV and VX reads, denoted by #VV and #VX, and show the
scatter plot of (#VV, #VX) in Fig. 3. We should note that potential mapping
errors are excluded by using genomic super duplications, simple repeats [1], and
dbSNP138 [18]. For almost all of the validated somatic mutations, the numbers
of VX and VV are almost same. However, for sequence errors, almost no VV
read is observed. This observation indicates that sequence error occurs randomly
on the overlapping paired-end reads as expressed in Fig. 1.
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Fig. 3. Consistency within the overlapping paired-end reads from 20 ccRCC patients’
sequence data. For each error prone site or validated SNV position, we counted #VV
and #VX. For each point of (#VV, #VX) in this plot, color gradient represents the
number of positions. (A) For almost all of the position error prone sites, we could
hardly observe the VV paired-end reads. (B) However, for almost all of the validated
SNV positions, we can observe that the number of VX and VV paired-end reads are
same.

3.2 Simulation Study

We evaluated OVarCall using simulation data. In this simulation, we used two
types of tumor allele frequency (10 % and 1 %), four pairs of average and vari-
ance of DNA fragment size, and three pairs of average and variance of depth
around the positive mutations or negative error prone sites. We generated posi-
tive mutations and negative error prone sites as follows:

(1) Generate a random reference DNA sequence.
(2) Generate somatic mutations and error prone sites randomly, and generate

paired-end reads around them.
(2-a) Determine the number of paired-end reads covering the position, by

generating a random value d from a norm distribution of N(μd, σd),
and round d to the nearest integer value.

(2-b) Determine randomly whether the original DNA fragment is from tumor
cell DNA or normal cell DNA, according to the tumor allele frequency.

(2-c) For each paired-end reads, determine the DNA fragment size, by gen-
erating a random value l from N(μl, σl), and round l to the nearest
integer value.

(2-d) Generate the 100 bp length read sequence on plus strand. Each observed
base flips with sequence error probability of perror. If the position of
each observed base is the error prone site, perror is generated from a
beta distribution of Beta(2, 30). If the position of each observed base
is not the error prone site, perror is generated from Beta(10, 1000).

(2-e) Generate the read sequence on minus strand like (2-d).
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We used only those positions that passed the minimum criteria for allele
frequencies, read coverage, the number of variant supporting reads, etc., as listed
in Method section. As a counterpart method, we prepared a simple Fisher’s exact
test-based method, which uses a 2 by 2 contingency table of read counts; tumor
and normal samples / variant and reference alleles. We calculated the area under
curve (AUC) values [2], plotted the ROC curve for each simulation conditions
and summarized the results in Table 1. In the simulation data of which tumor
allele frequency is 10 %, OVarCall outperforms Fisher’s exact test methods, when
overlapping paired-end reads are available or enough depth is obtained, and even
if we cannot use the enough overlapping paired-end reads, OVarCall performs
competitively. In the simulation data of which tumor allele frequency is 1 %,
OVarCall succeeded in detecting low allele frequency mutations accurately.

Table 1. Simulation results summary

Allele frequency μd σd μl σl Fisher AUC OVarCall AUC #SNV #False positive

10% 50 2 180 40 0.867 0.941 667 2442

200 40 0.868 0.912 707 3152

300 40 0.870 0.863 738 4697

100 2 180 40 0.983 0.994 788 2254

200 40 0.976 0.988 794 2858

300 40 0.973 0.981 796 5203

1% 300 2 150 20 0.745 0.917 455 14394

3.3 Mutations of Low Allele Frequency in cRCC Patients’ Data

By using the error prone sites and validated somatic SNVs in 20 ccRCC patients’
whole exome sequence data, we also evaluated the performance of OVarCall and
compared with the existing mutation callers, i.e., VarScan2 [7] and MuTect [4]
and Strelka [16]. From each ccRCC patients’ sample, we prepared two data sets
as normal and tumor samples, following these rules below.

Error Prone site in normal sample: Output all reads in original normal
sample, covering error prone sites, to the new tumor sample, and output
all reads in original normal sample, except for variant supporting reads,
to the new normal sample.

Validated SNV in tumor sample: Output all reads in original tumor sam-
ple, covering error prone sites, to the new tumor sample, and output all
reads in original normal sample to the new normal sample.

After applying the minimum criteria in Method section for collection of candidate
mutations, we collected 44 validated somatic mutations and 1884 false positive
positions. We applied OVarCall, VarScan2, MuTect and Strelka to the data sets
and drew the ROC curves shown in Fig. 4. By calculating AUC value for each
method, it is clear that OVarCall outperformed to the other methods.
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Fig. 4. Performance evaluation of OVarCall using real data which contains validated
mutations of low allele frequency and error prone sites.

4 Conclusions

In this paper, we focused on the problem of accurate detection of low allele fre-
quency somatic mutations from tumor and matched normal sequence data. In
20 ccRCC patients’ exome sequence data, we observed the consistent overlap-
ping paired-end reads on the validated somatic mutations, however, we observed
the inconsistent overlapping paired-end reads on the error prone sites. From
these observations and existing observations in PCR-targeted sequence [3,13],
we developed a novel Bayesian statistical method, OVarCall, which can use the
information of overlapping paired-end reads for detecting low allele frequency
somatic mutations.

In our simulation study, we prepared multiple simulation data set, based on
the conditions of tumor allele frequency, DNA fragment size, and depth around
the positive mutations or negative error prone sites. As the results, we suc-
ceeded in showing the superiority of our method for low allele frequency somatic
mutation when overlapping pair-end reads are available. Even if such reads are
not available substantially, our method can show comparable performance with
Fisher’s exact test based method. Furthermore, in 20 ccRCC patients’ exome
sequence data, we confirmed that our method could detect validated low allele
frequency somatic mutations and outperformed existing methods for detection
of mutations of low allele frequency.

Also, in our methods, the hyperparameters for tumor and sequence error
model were chosen empirically, and we should develop the learning methods
from other sequence data. In the learning of the hyperparameters, a problem is
expected. When the distribution of tumor allele frequency follows a multimodal
form [19], accurate learning of the tumor allele frequencies is expected to be
difficult in our methods. The same problem is also expected for the learning of
the sequence error. One possible solution for this problem is to use the framework
of nonparametric Bayes approach for learning the multimodal distributions from
the training data set. We will investigate this problem in our future papers.
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Abstract. In this paper a high-sensitive capacitive DNA-nanosensor
based on spin-dependent polarization effects has been proposed. We
demonstrate that the polarization effects of charge-carriers transport in
multi-walled carbon nanotubes (MWCNT) decorated by organometal-
lic complexes lead to the surface-resonance-enhanced signals of DNA-
hybridization sensor. According to obtained experimental data, such
DNA-sensor allows to discover the forming duplex with DNA targets,
including single-base-pair-mismatched DNA.

1 Introduction

At present, development of nanostructures for sensor devices which detect bio-
macromolecular binding is an actual problem. Utilizing of nanostructures allows
to register reagents in molecular recognition reactions at ultra-low concentrations
without using of any type of labels, so called “label-free”-detection via a surface
plasmon resonance, for example, in oligonucleotide-capped gold nanoparticle [1].
Since the intensity of signal, which is transduced by single nanostructure, is not
high enough, arrays of nanostructures have to be used. These arrays have to
be previously arranged to decrease experimental data dispersion stipulated by
multipoles interaction between nanostructures themselves. As for example, an
“antigen-antibody”-interaction signal transducer, which consists of a layer of sil-
ver nanowires with diameter of about 60 nm and a layer of silver nanoribbons
with a width of about 500 nm, allows to detect specific binding up to limiting
antigen concentrations about 300 nM under conditions of “label-free”-detection
[2]. An effective medical diagnostics needs DNA-nanosensors for specific detec-
tion of molecular recognition process in vitro and in vivo with sensitivity to
analyzed molecules at ultra-low concentrations about pico- and femtoM and less
[1]. To detect such ultra-low concentrations, superlattices with characteristic size
c© Springer International Publishing Switzerland 2016
A. Bourgeois et al. (Eds.): ISBRA 2016, LNBI 9683, pp. 52–66, 2016.
DOI: 10.1007/978-3-319-38782-6 5
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≤ 2 nm have to be fabricated. Because of weak interactions between components
of such a nanosystem, for example, Van der Waals or stacking π − π-electron
interactions, the system emerges and gains stability due to cooperative effects in
a self-organizing process. Therefore, nanotechnologies, by means of which such
superlattices can be produced, are the Langmuir-Blodgett (LB) technique and
the method of molecules deposition on a coating, on which these molecules self-
assemble into a monolayer [3]. The sensitivity of DNA sensors functioning on
the base of π-stacking interaction of fluorescein-dye-labelled DNA-probes with
MWCNT and graphene is of about 300 nM [4–6], whereas though usage of single-
walled non-labelled CNT increases sensitivity to complimentary ssDNA [7], but
restricts the recognition of base-pair nucleotide mismatch to five pairs [8]. Hydra-
tion of nucleic acids, including deoxyribonucleic acids (DNA), occurs in aqueous
mediums [9]. At that, DNA electron density distribution is high sensitive to pH
of the medium. Because of this, structural parameters of hydrated nucleic acids
are hardly to be established [10].

Besides this, heat γ-radiation (irradiation by quanta of electro-magnetic field
with the energy of about 10−13 eV/molecule and higher) can lead to γ-radiolysis
of water with reactive oxygen species (ROS) formation, namely hydroxyl radicals
HO· and hydrogen peroxide H2O2 et al. [11,12].

Detection of DNA hybridization in living systems is realized in the pres-
ence of hydrogen peroxide H2O2 and hypo(pseudo)halous acids (for example,
hypochlorous acid HOCl). HOCl reacts with water to form hydrochloric acid
and H2O2. H2O2 produces hydroxyl radical in the Fenton reaction also [13].
Hydroxyl radicals damage DNA [14]. Electrochemical H2O2 biosensors are based
on heme-proteins such as horseradish peroxidase [15]. However, since their low
stability, at present, one utilizes fluorescence and nuclear or electron magnetic
resonance (NMR or EPR) to detect ROS on base of chemoselective probes (see
[16,17] and refs. therein).

Elecrtochemical sensors promise to provide simple, low cost, sensitive, and
miniaturized platforms for DNA-based diagnostics. To date, most of the electro-
chemical DNA sensors demand a single-stranded (ss) nucleic acid probe sequence
immobilization on electrode surface and utilizing of special redox-active labels to
enhance their sensitivity and improve the signal-to-noise ratio [18,19]. Immobi-
lization of ssDNA within recognition layer usually decreases the electrochemical
DNA-sensor sensitivity due to the steric hindrance effect of the electrode sur-
face and the loss of configurational freedom of the immobilized probe DNA. To
avoid this, label-free and immobilization-free electrochemical sensors have been
actively proposing [20–22].

Moreover, because of hydroxyl radicals neutrality, DNA hybridization detec-
tion faces difficulties at determination of hydroxyl radicals contribution in trans-
ducer signal. To get over the difficulties, one can design DNA-sensor based on
magneto-electric effects in graphene-like materials [23].

Thus, the absence of DNA-sensors with control of HO· low-concentration
and, respectively, of DNA-oxidation level is a principal problem at recognition
of DNA-markers including single nucleotide polymorphism (SNP) at ultra-low
DNA-concentrations.
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The nanosensors based on graphene and graphene-like materials are con-
sidered as the most perspective ones due to their high electro-conductivity in
comparison with ordinary tree-dimensional metals [6,8,24,25]. Nanobiosensors
formed from graphene and CNT in self-organizing processes are able to recognize
a specific antigen at ultra-low concentrations [6]. Minimal conductivity 4e2

h (con-
ductivity quantum) of graphene and carbon nanotubes is about 154μS (respec-
tively, resistivity is equal to 6 kOm for graphene and 6.5 kOm for CNT, that
is less than resistivity of silver), whereas conductivity of a contact is much less,
about 65 nS [26–28]. Here e is the electron charge, h is the Plank constant. How-
ever, utilizing of graphene and graphene-like materials is impeded by linearity
of charge-carrier energy dispersion law which consists in the absence of charge
carriers on the Fermi level for non-doped samples and in a shift of the Fermi level
into hole or electron bands at addition of infinitely small amount of electrically
charged impurities in material.

The goal of the paper is to show that it is possible to control and enhance sig-
nals of biomolecular binding on interphase boundary between a water subphase
and self-organized LB-arrays of carbon nanotubes decorated by organometallic
complexes, and then to propose a DNA-detection via a surface plasmon res-
onance combined with DNA-covered LB-MWCNT-array signal enhancement.
This enhancement phenomenon will be used to determine reactive oxygen species
at ultra-low concentrations and for nanosensorics of DNA-markers including
single-base-mismatched DNA-target.

2 Materials and Methods

MWCNTs with diameters ranging from 2.0 to 5 nm and length of ∼2.5 μm
were obtained by the method of chemical vapor deposition (CVD-method) [29].
Salts Fe(NO3)3 · 9H2O, Ce2(SO4)3 (Sigma, USA), hydrochloric acid, deioni-
zed water were used to preparate subphases. Iron-containing films were fab-
ricated from an amphiphilic oligomer of thiophene derivatives with chemically
bounded hydrophobic 16-link hydrocarbon chain: 3-hexadecyl-2,5-di(thiophen-2-
yl)-1H-pyrrole (H-DTP, H-dithiopyrrole). H-dithionilepyrrole was synthesized by
a method proposed in [30]. Working solution of H-dithionilepyrrole, 1.0 ·10−3 M,
was prepared by dissolving precisely weighed substances in hexane. All salt solu-
tions have been prepared with deionized water with resistivity 18.2 MΩ·cm. Com-
plexes primer ssDNA/MWCNT were obtained by means of ultrasonic treatment
of alcoholic solution of ssDNA with MWCNT [31,32]. All used materials belong
to class of analytical pure reagents.

Langmuir - Blodgett monolayer formation was carried out on an automated
hand-made Langmuir trough with controlled deposition on a substrate, and with
computer user interface working under Microsoft Windows operational system.
Control of the surface tension has been performed by a highly sensitive resonant
inductive sensor. The Y-type transposition of monolayers on supports was per-
formed by their vertical dipping. The complexes Fe(II)DTP3 of high-spin Fe(II)
with the dithionilepyrrole ligands were synthesized by LB-method at compres-
sion of H-dithionilepyrrole molecules on the surface of subphase with salts of
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three-valence Fe [33]. Horizontally and vertically arranged LB-MWCNT-bundles
can be fabricated from the multi-walled CNTs [34]. We use the Langmuir–
Blodgett technique to fabricate new layered nanoheterostructures consisting of
two MWCNT/ssDNA LB-monolayers which are deposited on five-monolayer LB-
film of the organometallic complexes.

For electrochemical studies, we use a planar capacitive sensor of interdigital-
type on pyroceramics support. N pairs, N = 20, of aluminum electrodes of the
sensors are arranged in an Archimedes-type spiral configuration. Every such pair
is an “open type” capacitor. A dielectric coating of the electrodes represents itself
nanoporous anodic alumina layer (AOA) with a pore diameter of 10 nm. The
obtained LB-nanoheterostructures were suspended on the interdigital electrode
system covered by dielectric nanoporous anodic alumina. To excite harmonic
auto-oscillations of electric current (charge-discharge processes in the capaci-
tors), the sensor was connected as the capacitance C into the relaxation RC-
generator (self-excited oscillator) [35]. Operating of such RC-generator is based
on the principle of self-excitation of an amplifier with a positive feedback on the
quasi-resonance frequency. The capacitance C of the sensor entered in measuring
RC-oscillating circuit has been calculated by the formula C = 1/(2πRf), where
R is the measuring resistance, f is the frequency of quasi-resonance.

3 Plasmon Resonance Phenomenon in Decorated
Graphene and Graphene-Like Materials

Let consider the screening in true two-dimensional (2D) semimetals to which
graphene and graphene-like materials belong. As known [36–38], free charge car-
riers at the Fermi level in these materials are absent. In single-pole approxima-
tion for small momenta p the condition of emerging of plasmon resonance can
be found from a followingp dependency of dielectric permeability ε(p, ω) at a
frequency ω [39]:

ε(p, ω) ≈ 1 − 1
(ω2/ω2

plasmon) − p2r2D
, p � 1 (1)

where rD =
(∑

a
e2
ana

ε0kBT

)−1/2

is the Debye screening radius, ωplasmon =
(∑

a
e2
ana

ε0ma

)1/2

is a plasmon frequency, a, a = 1, 2 is a type of the charge carri-
ers; na, ma, and ea are a density, a mass and a charge of a-th type, respectively;
ε0 is the dielectric constant, T is the temperature, kB is the Boltzmann con-
stant. Pseudofermion charge carriers in bipolar graphene-like two-dimensional
material are massless: ma = 0, and their charge density is vanishing: na → 0
in Dirac point K(K ′) of a Brillouin zone. Due to the fact that rD → ∞, and
plasmon frequency gets a finite value ω2

plasmon = 2e2ε0, the right side of the
condition (1) is always positive and, respectively, plasmon resonance in 2D sys-
tem is absent. Now, one can examine two-dimensional semimetals decorated by
impurity adsorbed metal atoms (adatoms). In Coulomb field of adatoms a band
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Fig. 1. Origin of screening effect in 2D Dirac metal (a) after decorating (b)

structure of the monolayer acquires the energy gap Eg, the mass of the charge
carriers becomes non-zero: ma = Eg, and on Fermi level there appears non-
zero charge-carrier density na = δnF < 1. Therefore, the dielectric permeability
εLB(p, ω) of the decorated system is determined by the following expression:

εLB(p, ω) ≈ 1 − 1
(ε0ω2Eg/(2e2δnF )) − 2p2 2e2δnF

ε0kBT

, p � 1. (2)

The expression (2) can acquire zero and negative values, corresponding to plas-
mon resonance. Figure 1 demonstrates the absence of screening and, respectively,
plasmon oscillations for non-decorated 2D Dirac metals.

In what follows we will show that decorating of CNT by organometallic
compounds provides such values of δnF , at which CNTs effectively screen the
Coulomb field.

4 Screening Effects

Near-electrode double electrically charged layer of interdigital capacity trans-
ducer, shown in Fig. 2, is similar to a plane capacitor [35,40]. Due to the fact that
the distance between plates of such capacitor is small, the field strength is high.
Let us consider the screening of the near-electrode double electrically charged
layer of such sensor by metal- and CNT-containing LB-monolayers. Metal atoms
add impurity charge density into graphene-like monolayers of the LB-film. There-
fore, in accord with the results of the previous section, free charge carriers with
non-zero mass appear at the Fermi level. Addition of free charge carriers of
conducting Ce- and/or Fe-containing LB-films into the electric density of near-
electrode layer reveals as an observable screening effect (curves “0” and “1” in
Fig. 2b,c).

Two LB-monolayers of carboxylated MWCNT have been deposited on trans-
ducer insulating layer, which has been previously modified by metal-containing
LB-film of conducting thiophene-pyrrole series oligomer (dithionilepyrrole – 3-
hexadecyl-2,5-di(thiophen-2-yl)-1H-pyrrole) [33,41]. Note that CNTs decorated
by the metallic complexes of dithionilepyrrole possess non-zero electron den-
sity at the Fermi level. Due to this fact the CTNs screen the electrical field of
electrodes, as one can see from comparison of curves “1” and “2” in Fig. 2b,c.
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Fig. 2. Interdigital structure of electrodes (a) and cyclic frequency dependencies of
capacity (b–d) of such sensors without (0) and with dithionilepyrrole LB-films (1)
and MWCNTs (2) in deionized water. A and B denote direct and reverse branches,
respectively.

A high value of low-frequency dielectric permeability of water is due to the
ionization of water molecules and impurities in water with following formation
of hydrated complexes of ions and of impurity ions. The existence of such com-
plexes impedes the ion recombination. According to frequency dependencies of
capacity C (curves “0” in Fig. 2), the sensor capacity is minimal at a frequency of
oscillating alternative electric field (a plasmon resonance frequency) of the near-
electrode layer. This frequency coincides with an eigenfrequency of hydrated-
complex oscillations (ion vibrations). The plasmon resonance enhances a process
of decay of hydrated complexes and, respectively, subsequent recombination of
ions into neutral molecules H2O and impurity molecules that results in decreas-
ing of the dielectric permeability of the medium. The density of charge carriers in
the double electrically charged layer, which does not modified by ultra-thin LB-
film, is moderate because this resonance is observed as a wide band in dielectric
spectrum with maximum in frequency range from 200 to 600 kHz.
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Because of these screening effects are stipulated by sharp increasing of the
double layer electric field strength, the probability of hydrated complexes decay
with subsequent recombination into neutral molecules increases sharply. It leads
to narrowing of the dielectric band and appearing of an explicit extremum at
frequency 220 kHz in dielectric spectrum of CNTs decorated by Fe(II) complexes
and at 270 kHz for CNTs decorated by complexes of Fe(II) and Ce atoms (curves
“2” in Fig. 2a,b). The well-exhibited screening effect is due to decoration of all
surface of MWCNTs by the complexes of Fe(II) and Ce atoms. An addition of
impurity ions Ce3+ into water decreases the screening effect sharply, according
the comparison of displacements of curves “1” and “2” respect to each other
in Fig. 2d. It occurs because of reducing (up to full suppression) of the charge
carrier mobility in graphene devices at decoration with small and large doses of
adatoms, respectively [23].

Further, let us study magnetoelectric effects of spin-dependent dielectric
polarization in CNTs decorated by complexes of dithionilepyrrole with metal
atoms.

5 Spin-Dependent Polarization of Metal-
and CNT-Containing LB-Coatings

As is known [23], the distribution of adatom electron density near the graphene
sheet causes a local spin-orbit field, and, respectively, the scattering of cur-
rent components with positive (negative) angular momentum is enhanced (sup-
pressed) for charge carriers with a spin projection sz = +1/2 (sz = −1/2).
Furthermore, a spin-orbit splitting of the band dispersion occurs by bringing
heavy metal atoms in close contact to graphene.

Thus, the charge carriers scattering in LB-monolayer of CNT decorated by
complexes of Ce and/or high-spin Fe(II) can be spin-dependent. Vector of spin-
dependent polarization of LB-coating will precess in alternative magnetic field
of the sensor. Spin precession is a quantum phenomenon consisting in quanti-
zation of levels of a system in a magnetic field. Dependencies of capacity upon
ions concentration for the sensor, electrodes of which have been modified by
LB-coating or persist unmodified, are represented in Fig. 3. According to experi-
mental data, the LB-coatings screen an electric field of the near-electrode double
layer, significantly decreasing the capacitance value and, therefore, not allowing
appearance of break-down voltage. These dependencies have at least three inflec-
tion points. The stepwise dependence of the sensor capacity is due to a quantized
low-frequency Maxwell-Wagner polarization of the spin-polarized LB-coating.

If atoms of reagents with lone-electron pairs have unpaired electrons, a mag-
netic field produced by their non-zero magnetic moments causes a precession of
polarization vector coupled with spin polarization of a sample. This magneto-
electric effect will be higher, the more non-paired electrons are and, respectively,
the higher reagent concentration. Because of this, in subsequent we will study
the enhancement of the concentration signal of a sensor for substances, decay of
which leads to formation of neutral HO·.
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Fig. 3. Concentration dependencies of capacity of sensors without and with Fe-
containing dithionilepyrrolle LB-film and MWCNTs at frequency 150 kHz.

6 Reactive Oxygen Species Influence on Sensor Response

Due to large spin relaxation time and spin polarization of charge carrier current
components in graphene and graphene-like materials, electronic graphene devices
can be utilized to detect magnetotransport [42]. Further we show that large spin
relaxation time for graphene-like materials allows to detect ROS at ultra-low
concentrations. To do this, we study sensor response at different concentrations
of H2O2 and NaOCl, hydrolysis of the last leads to generation of HOCl [43].
Addition of ROS results in increase of the capacity in low-frequency range, as
one can see in Fig. 4a. At that, Garnett law holds for Maxwell-Wagner dielectric
polarization of a mixture [44,45] (Fig. 4b, c and d).

Using experimental data, we estimate sensitivity of the LB-array of CNTs
decorated by organometallic complexes. Let C and C0 denote capacities of the
sensor in media with and without ROS. Then, estimation can be obtained by
intersection of the straight-line dependence of a difference (C − C0) logarithm
and logarithmic axis corresponding to ROS concentration. The sensor sensitiv-
ity depends on a measurement frequency. Maximal sensitivity of a sensor to
ROS must be at a frequency of the plasmon resonance. At frequencies near the
plasmon resonance, which have been obtained by using measuring resistance
R = 1.96 kOm, the sensitivity to H2O2 has been observed of about 10−15 M
and less (Fig. 4b) for sensor put in salt solution (Earle medium). Far from the
resonance, that corresponds to measuring resistances R = 20 and 10 kOm, the
sensitivity decreases up to 10−12 M (Fig. 4b). For deionized water, the limiting
concentration sensitivity to H2O2 has an order of 10−14 M, according to Fig. 4d.
One can suppose that salt ions in water reduce free charge carriers density δnF

due to partial electric neutralizing of metallocenters. Therefore, according the
expression (2), dielectric permeability decreases and sensor sensitivity increases.
Moreover, the experimental data for neutral molecules NaOCl allow to conclude
that NaOCl decay and, respectively, appearing of hydroxyl radicals HO· occurs
at large enough concentration of this reagent.
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(a)

(b)

(c)

(d)

Fig. 4. Frequency-capacity dependencies for sensor in Earle solution (0) at addition of
hydrogen peroxide in concentrations 0.01, 0.1, 10, 102, and 103 μM (a). Concentration
dependence of capacity increment for sensor in Earle solution (b,c) and in deionized
water (d) at addition of hydrogen peroxide (b–d) and sodium hypochlorite (c,d). Mea-
surements have been carried out at measuring-resistor values R = 20 (b, d), 10 (b),
1.96 (b and c, H2O2), 1.89 (c, NaOCl) kOm. C and C0 are sensor capacities in presence
and absence of ROS, respectively.
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7 DNA-Hybridization Signal Surface-Enhancement
Phenomenon

LB-monolayers consisting of ssDNA/MWCNT complexes have been formed
by Langmuir-Blodgett technique from hydrophobic micelles of stearic acid
with ssDNA/MWCNT complexes inside (Fig. 5). Two of such monolayers were
deposited on near-electrode insulating layers modified by metal-containing
dithionilepyrrole LB-film. Micelles were obtained preliminary by ultrasonic irra-
diating of the mixture from ssDNA-probe and carboxylated MWCNT (Fig. 5)
in hexane. DNA, which is compactified due to stacking π-electron interac-
tion between nitrogenous bases of DNA and carboxylated MWCNT, repre-
sents itself an electron-dense layer of oligonucleotide (primer ssDNA), on which
the epitaxial growth of DNA-crystals can occur [31,46]. The obtained data of
ssDNA/MWCNT-complex structural and diffraction analysis allow to propose
a model of complementary or non-complementary binding of ssDNA-probe with
ssDNA-target, which is represented in Fig. 6.

Fig. 5. Transmission electron microscopy (TEM) images of hydrophobic stearic acid
micelles with DNA compactified on MWCNT surface, inside; arrow on insert directs on
one of CNTs. Micella is located on the edge of etching nanoporous alumina membrane
(left). TEM-image of original MWCNTs (right).

Carbon nanotubes quench the fluorescence of FAM-type dyes (FAM -
fluorescein phosphoramidites) [7,32]. This property of CNT can be used to study
the process of DNA-hybridization on the DNA/CNT-complex surface. Elec-
trophoretic data of FAM-labeled primer ssDNA binding with different ssDNA-
targets are shown in Fig. 7a. They demonstrate that utilizing of carboxylated
MWCNT makes it possible to recognize single nucleotide polymorphism (SNP).

Now, we apply this ssDNA/MWCNT-complex to recognize DNA-targets
by means of the electrophysical method. The proposed capacitive DNA-sensor
detects forming homo- and heteroduplexes including heteroduplexes probe
ssDNA/single-base-pair-mismatched oligonucleotide. The determination is due



62 V.P. Egorova et al.

)b()a(

Fig. 6. Model of complementary (a) or non-complementary (b) binding of ssDNA-probe
with ssDNA-target.

to above considered effect of resonance-enhanced spin-dependent Maxwell-
Wagner depolarization/polarization of interphase boundary in electric field of
electrodes, insulating coating of which is modified by the LB-films of MWCNT
decorated by the organometallic complexes. Further we discuss results of the
electrochemical analysis concerning the degree of binding between different-types
unlabeled dsDNA and MWCNTs on the surface of the LB-film.

In deionized water the dielectric properties of MWCNT-LB-films and
oligonucleotide/MWCNT-complexes reveal as a capacity change of the charged
double Helmholtz layer formed on the interface – insulating barrier layer of
anodic alumina – water. Two frequency ranges (∼100 kHz – low-frequency one
being in the vicinity of plasmon resonance, and ∼400–800 kHz – high-frequency
one being far from resonance) have been used for the electrochemical detec-
tion. In the low-frequency range the main contribution into film polarization is
given by surface-enhanced Maxwell-Wagner polarization of conducting impurity
inclusions. According to DNA-sensor model in Fig. 6, far from the resonance the
number of hydrated nitrogenous bases and, respectively, the dipole polarization
vector for the hydrate complex of heteroduplex DNA-probe/non-complementary
DNA-target are larger than for the homoduplex DNA-probe/complementary
DNA-target. Because of this, the dielectric response is higher in the case of
non-complementary binding than in the case of complementary one.

Let us define a degree of heterogeneity sh of biosensitive coating as a ratio of
difference between capacities C

ssDNA/CNT
and C

dsDNA/CNT
for DNA-sensors

without and with DNA marker, respectively, to difference between C
ssDNA/CNT

and C
CNT

for the sensor without DNA probe:

sh =
C

ssDNA/CNT
− C

dsDNA/CNT

C
ssDNA/CNT

− C
CNT

. (3)
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Fig. 7. (a) Intensity of FAM-ssDNA (light bars) and complexes FAM-ssDNA/MWCNT
(dark bars) fluorescence in the absence of ssDNA-target, at the presence non-
complementary ssDNA-target and single-base mismatched target, and at the presence
of perfect complementary ssDNA (left diagram). (b) Absolute value of low-frequency
sensor capacity change |ΔC|, ΔC < 0 at interaction of DNA probe with perfect com-
plementary one, and non-complementary (nc ssDNA), three-base mismatched, and
single-base mismatched DNA markers (diagram in center). (c) Degree sh of sensor coat-
ing heterogeneity for different types of ssDNA-target at frequency 700 kHz. ds-DNA
denotes homoduplex, non-complementary, three-base mismatched, and single-base mis-
matched DNA markers are denoted by symbols “nc ss-DNA” , “3-mis ss-DNA” , and
“1-mis ss-DNA” , respectively (right diagram).

The experimental data of sh are shown in Fig. 7c. As one can see, the prob-
ability of heteroduplex formation decreases with the increase of mismatched-
nucleotide numbers. Due to this, the capacity increment |ΔCm| of DNA-sensor
placed in solution of m-base-pair-mismatched DNA-marker is less than ΔCn for
n-base-pair-mismatched DNA-marker at n < m. It is known [47], spin-dependent
dielectric polarization is absent at the helicoidal structure in a sample. Because of
this, a sharp decrease of low-frequency sensor capacity value in Fig. 7c at homod-
uplex formation is due to the helicoidal structure of DNA-probe/complementary
DNA-marker.
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8 Conclusion

So, a capacitive DNA-nanosensor based on spin-dependent polarization effects
for high-performance sensing of DNA hybridization has been proposed. The new
method of hybridization assay allows to detect the interaction between DNA-
probe and DNA marker, including single-base-pair-mismatched DNA-target
occuring on surface of self-organized MWCNT-arrays decorated by organometal-
lic complexes. The DNA-sensorics of formating homo- and heteroduplexes is
based on the studied above phenomenon of resonance-enhanced spin-dependent
Maxwell-Wagner polarization/depolarization on interphase boundary in the elec-
tric field of electrodes, insulating coating of which is modified by LB-film con-
sisting of carboxilated MWCNT decorated by organometallic complexes.
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Abstract. Next-generation sequencing technologies has advanced our
knowledge in genomics by a tremendous step in the past years. On the
other hand, there are still critical questions left unanswered due to the
intrinsic limitations of short read length. To address this issue, several
new sequencing platforms came into view. However, a lack of comprehen-
sive understanding of the sequencing error poses a primary challenge for
their optimal use. Here, we focus on optical mapping, a high-throughput
laboratory technique that provides long-range information of a genome.
Existing error model is based on OpGen maps. It is not clear if the model
is also good for BioNano maps. In this paper, we try to provide a more
accurate error model for BioNano optical maps based on real data. Due
to the limited availability of real datasets, as an indirect validation of
our model, we predict the regions that are difficult to cover and com-
pare the predicted results with the empirical results (both simulated and
real data) on human chromosomes. The results are promising, with most
of the difficult regions correctly predicted. Tested on BioNano maps,
our model is more accurate than the most popular existing error model
developed based on OpGen maps. Although we may not have captured
all possible errors of the technology, our model should provide important
insights for the development of downstream analysis tools using BioNano
optical maps.

Keywords: Optical mapping · Error model · Difficult to cover regions

1 Introduction

In recent years, next-generation sequencing technologies (e.g. short reads from
Solexa) enabled researchers to discover many critical findings in genomics. On the
c© Springer International Publishing Switzerland 2016
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other hand, it is believed that the intrinsic limitations of these technologies, in
particular, short read length, are a major obstacle for future research. Many
sequencing platforms have been developed in recent years to tackle this issue.
However, a lack of comprehensive understanding of the sequencing errors poses a
primary challenge for their effective use. Among these new high-throughput tech-
nologies, optical mapping (OM) is one that produces high-resolution restriction
maps at no risk of PCR artifacts. Each restriction map, known as an “opti-
cal map”, represents a stained DNA molecule digested by a given restriction
enzyme and imaged by optics. Consequently, an optical map can be regarded as
an ordered sequence of lengths, each corresponding to the distance between two
adjacent digested sites. On average, an optical map spans 200,000 bases, which
is much longer than short reads of a few hundred bases.

Long-range information contributes significantly to a more comprehensive
analysis of genomes. It is crucial to the connectivity of genome assembly,
sequence alignments in repeat regions and the detection of long structural
variants. With long spans, optical maps have been applied either alone or
together with short reads to genome assembly [2,7,12,19,21] and sequence align-
ments [10,11,16,18,20], bringing in insights in explorations of bacteria [12,13],
animal [4], plant [5,21,22] and human [8,14,17] genomes. To achieve better accu-
racy in these studies, it is important to understand the inherent errors during
the production of optical maps.

The modern optical mapping system works as follows. Single molecules of
DNA are placed onto a nanofluidic platform. With nanoconfinement, molecules
are unraveled and stretched uniformly towards their full contour length. When
they dock on a slide electrostatically, restriction enzymes are added to cleave
the molecules at specific recognition sites, leaving gaps identifiable under the
microscope. The resulting DNA fragments are stained by fluorescent dyes and
are imaged through microscope. Lengths of these fragments are measured by
the integrated fluorescence intensity, comprising optical maps. Details may differ
from platform to platform. For example, the OpGen Argus System follows the
above workflow, while the BioNano Genomics Irys System applies enzyme before
the elongation of molecules. Furthermore, Irys System uses nicking enzymes that
create single-strand cuts rather than cleaving enzymes that cut on both strands
at its restriction sites. Repaired by fluorescently labelled nucleotides, the nicking
sites appear as identifiable labels instead of gaps under microscope. Keeping the
molecule intact, this strategy keeps short fragments from being flushed away.

Various types of errors are involved in different stages of the procedure.
Lengths of fragments are estimated by comparing the observed fluorescent inten-
sity with that of a molecule with known size and intensity. Because a fragment
is not guaranteed to stretch perfectly to its full contour length,the observed
fragment length may deviate from its true underlying length. Meng et al. [9]
concluded from experiments on lambda bacteriophage genome that shorter frag-
ments tend to have greater sizing error. The restriction enzyme is another source
of inaccuracy. There are a small fraction of missing sites because some restriction
sites may not be fully digested by the enzyme, while false sites appear when the
enzyme cleaves at wrong sites.
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Although errors in optical mapping were addressed by some previous studies,
most of the studies, if not all, are based on OpGen maps and some were not
validated using real data. For examples, Anatharaman el al. [1] discussed sizing
error, false sites and missing sites in error modeling; however, the validity of
their model was not examined with real data. Valouev et al. [18] proposed a
popular representation of sizing error e, and showed the resemblance between e
of the Kim strain of Y. Pestis and Normal distribution. Their error model was
prevalently adopted in subsequent investigations and continues to be the most
popular model. Taking it a step further, Sarkar et al. [15] derived a new error
model based on the GM075535 data set. In their study, Sarkar found that the
sizing error of optical maps has a heavier tail than a Normal distribution as
what Anatharaman and Valouev assumed; however, Sarkar only presented a few
fragment-length Q-Q plots of his simulated data and real data, which may not
provide enough evidence to support the accuracy of his model1. Zhou el al. [21]
had a similar hitch that they only validated their error model on rice genome
optical maps with fragment sizes. We remark that despite the limitations of these
studies (probably due to the limited availability of real optical map data at that
moment), they laid down a good standing point for the study in this paper. In
this paper, we want to focus on the raw maps produced from BioNano as more
and more institutions are now using BioNano maps. The aim is to derive a more
accurate model for BioNano maps.

Our study is based on a trio of samples (NA12878, NA12891, and NA12892)
from the CEU collection. Long DNA molecules from the cell lines are digested
by nicking endonuclease Nt.BspQI with BioNano IrysPrep Reagents. An in silico
reference map for GRCh38 genome is generated by detecting the BspQI restric-
tion sites (GCTCTTCN)̂. The trio maps are aligned to the GRCh38 map using
BioNano RefAligner. By studying this alignment result, we derive an error model.
Using the trio samples and simulated data, we demonstrate that our error model
fits optical maps generated by BioNano Genomics Irys System much better than
the previous model. To further validate our result, based on our error model, we
try to predict the regions in the human genome that are difficult to cover by opti-
cal maps and compare our results with the empirical alignment results on both
simulated and real datasets. The results are consistent and promising. Most of
the predicted regions overlap with the empirical results. The rest of the paper is
organized as follows. Section 2 provides the details of the proposed error model.
We also show how we can compute a probability that captures how likely a par-
ticular region may not be covered by the data. It is a difficult task to evaluate
such an error model with limited availability of real data. Our evaluation is based
on alignment results of RefAligner. With proper settings, the alignment results
achieves an accuracy of 98.88 %, which should provide enough evidence for our
evaluation. The details of evaluation are given in Sect. 3. Finally, we discuss the
applicability and limitations of this error model in Sect. 4.

1 Fragment size distribution mainly depends on the distribution of nicking sites, thus
may not be a strong evidence to show the accuracy of an error model.
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2 Methods

2.1 Error Model

An optical map can be represented by a vector of fragment lengths, i.e.,
O = (o1, o2, . . . , om), where a fragment is bounded by a pair of digested recog-
nition sites visible under the microscope. This map originates from a region
R = (r1, r2, . . . , rn) = Ref[i . . . j] = (refi, refi+1, . . . , refj) on the whole reference
map Ref = (ref1, ref2, . . . , refN ), with some random errors introduced during
the wet bench procedures. We will explore each type of error in more detail.
Note that the following study is based on the CEU trio dataset, which con-
sists of human optical maps of three individuals, namely NA12878, NA12891,
NA12892. The parameters of the error model in this section are derived from
NA12878 by maximum likelihood estimation. We also present how such an error
model fits the optical maps of NA12891 (a similar result was also obtained on
NA12892).

Sizing Error. The length of a fragment is observed from microscopy images.
Due to limited resolution of microscopy and imprecision of image processing, ok’s
(1 ≤ k ≤ m) may not be exactly their corresponding reference length. Assuming
no site error, the expected value of ok

rk
is around 1.

Valouev el al. [18] concluded that ok ∼ N(rk, σ2rk), or equivalently ek =
ok−rk√

rk
∼ N(0, σ), where σ = μ

γ , μ and γ are the mean and standard deviation
of fluorescent intensity per nucleotide. This conclusion holds when the length
of fragments is determined by W

U , where W is the accumulation of fluorescence
intensity and U is the intensity per unit length. However, with the advances
in nanochannel, microscopy and imaging technology, recent studies [3,6] have
adopted various image processing techniques to calculate the length of fragments,
which may deviate from W

U . As a result, Fig. 1, which illustrates how sizing
error ek = ok−rk√

rk
of NA12878 optical maps fits a Normal distribution, shows

that Valouev’s model for sizing error is not very consistent with optical maps
generated by Irys System.

For any molecule fragment that originates from a reference fragment of length
rk but is observed to be ok in length, its sizing error is defined as sk = ok

rk
.

According to CEU trio dataset, with the deviations from the Normal distribution
at the tails, it triggers us to consider a Laplace distribution for sk, that is,

sk ∼ Laplace(μ, β),

where μ is the location parameter and β is the scale parameter.
More specifically, it has been extensively observed that shorter fragments are

subject to greater sizing error. Also, Valouev et al. [18] noticed that sizing error
of short fragments (< 4 kb) does not converge to a normal distribution, so for
short fragments, sizing error was modeled as an additive error that is irrelevant
to the underlying fragment length. Lin et al. [7] combined a relative error and
an additive error to characterize the sizing error. As shown in Fig. 2, we studied
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Fig. 1. The Q-Q plot of ek’s of NA-
12878 maps (3600 bp ≤ rk < 4800 bp)
against Normal (0.1921347, 5.074905)
(based on Valouev’s model).

Fig. 2. The dispersion of the sizing error
of NA12878 optical maps against fragment
length. (Color figure online)

the dispersion of sizing error against fragment length by looking at the Laplace
scale values.2 The red curve indicates that the sizing error of fragments of length
[1200 bp, 2400 bp), [2400 bp, 3600 bp) and [3600 bp, 4800 bp) are less centralized
than that of longer fragments of length (4800 bp,∞). Here, 1200 bp is chosen
as the interval unit because it is the imaging resolution in our experimental
settings. Consequently, based on different levels of rk lengths, values of μ and β
were estimated separately as below, forming four similar distributions.

(μ, β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0.858181, 0.180196), 1200 bp ≤ rk < 2400 bp
(0.980760, 0.071176), 2400 bp ≤ rk < 3600 bp
(1.003354, 0.052800), 3600 bp ≤ rk < 4800 bp
(1.00482, 0.042428), rk ≥ 4800 bp

From the perspective of cumulative density and quantile distribution, Fig. 3
exhibits that the scaling factor distribution (3600 bp ≤ rk < 4800 bp) estimated
from NA12878 fits well with optical maps of NA12891.

Missing Cuts. When a restriction site is incompletely digested by the enzyme,
the two flanking fragments will appear concatenated under the microscope. Such
restriction sites are called missing cuts. It is natural to regard whether a restric-
tion site is digested or not as a Bernoulli trial, with a probability of pdigest to
succeed. Upon further investigation, pdigest is found to decline when two nearby
nicking sites are closer to each other. The red curve in Fig. 4(a) shows that pdigest

rises as the average distance between this site and its neighbors (denoted as davg)

2 We noticed that the Laplace scale value increases slightly when the fragment length
exceeds 20400 bp; however, since the number of samples decreases drastically as the
fragment length grows (see the blue curve), it is reasonable to use the scale value of
the majority of long fragments in [4800 bp, 20400 bp) to represent the whole.
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(a) The cumulative density distribution
of NA12878 (3600bp ≤ rk < 4800bp)
sizing error and the optimal Laplace
(1.003354,0.052800).

(b) The Q-Q plot of NA12891 (3600bp ≤
rk < 4800bp) sizing error against Laplace
(1.003354, 0.052800) based on NA12878.

Fig. 3. A comparison of NA12878 and NA12891 (3600 bp ≤ rk < 4800 bp) sizing error
against the Laplace distribution Laplace (1.003354, 0.052800) estimated from NA12878.

(a) The digest rate pdigest of BspQI
on NA12878 against davg.

(b) Fitting pdigest = f(davg) of NA12891
to NA12878 2nd-degree polynomial, 3rd-
degree polynomial and logarithm models.

Fig. 4. The digest rate pdigest of enzyme BspQI against the average distance of a
restriction site from its adjacent sites davg. (Color figure online)

increases, and then remains stable at 0.9 when davg exceeds 18 kbp. pdigest =
f(davg) of NA12878 is fit to 2nd-degree polynomial, 3rd-degree polynomial and
logarithm respectively, where the coefficients are predicted by regression. The
resulting functions are compared with the digest rate of NA12891 in Fig. 4(b). It
is obvious that the best fitting is pdigest = α3 d3

avg +α2 d2
avg +α1 davg +α0, where

α3 = 3.089 × 10−4, α2 = −1.069 × 10−2, α1 = 1.253 × 10−1, α0 = 3.693 × 10−1,
and davg = the average distance to its neighbors

1200 bp .
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Fig. 5. The cumulative density distribution of NA12878 nfp and the combination of
0.18 Poisson(0) + 0.60 Poisson(1) + 0.22 Poisson(3).

False Cuts. False cuts mainly result from random breaks of DNA molecules. A
reasonable assumption is that the number of false cuts per unit length (nfp) obeys
a Poisson distribution. Taking 200 kb as a unit, nfp is observed to follow Pois-
son(1.3) with notably more zeros. Figure 5 suggests that a good approximation
of such a distribution is nfp ∼ 0.18Poisson(0)+0.60Poisson(1)+0.22Poisson(3).

Valouev et al. [18] presumed that false cuts occur equally likely at any posi-
tion, while according to CEU trio data, false cuts are less likely to take place at
both ends of optical maps. As Fig. 6(a) shows, the frequency of false cuts drops

(a) The histogram of the locations of
false cuts within NA12878 optical maps.
The red vertical lines indicate location =

0.1 and 0.9 respectively.

(b) A Q-Q plot of the NA12891 false
cut location and a hybrid of Uniform
and Normal distribution derived from
NA12878.

Fig. 6. Modeling the locations of NA12878 false cuts as a combination of U [0.1, 0.9],
N(0.100178, 0.044186) and N(0.9, 0.044186), where the Union distribution goes for the
middle part of an optical map, and the two Normal distributions are fit for the ends.
This combination of distributions is tested on NA12891 dataset with a Q-Q plot. (Color
figure online)
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gradually as it approaches both ends of the molecule. Define the location of a
false cut as lfp = the distance from this false cut to the 5’-end

the total length of the optical map . Figure 6(b) shows that
the following distribution perfectly models the scattering of observed false cuts.

lfp ∼

⎧
⎪⎨

⎪⎩

U [0.1, 0.9], 0.1 ≤ lfp ≤ 0.9, w.p. 0.8852
N(0.1, 0.044186), lfp < 0.1, w.p. 0.0574
N(0.9, 0.044186), lfp > 0.9, w.p. 0.0574

Unknown Orientation. The linearization and movement of DNA molecules
does not assure its orientation. If we consider 5’-to-3’ as the forward direction,
a certain proportion (preverse) of molecules may be reversed (3’-to-5’) under the
microscope. As reported by CEU trio data, preverse = 0.5.

2.2 Regions Difficult to Cover

Some regions in a genome are likely to produce optical maps with higher error
rate. In this section, we would like to predict these regions. This may affect
the quality of downstream genome analysis. In other words, these regions are
difficult to be aligned by optical maps produced. This concept will be used in
the next section to indirectly validate our error model.

Define Δtscaling, tfn and tfp as high error thresholds for sizing error, missing
cuts and false cuts respectively. Δtscaling bounds the difference of scaling factors
from 1 and this should not be exceeded by any fragment within a confident
alignment. tfn is the maximum missing rate, which means 1−pdigest must be not
greater than tfn. tfp is the upper bound of nfp.

Given the site locations of a reference region, according to our error model,
pe+, the probability of this region having high error, can be calculated as follows,

pscaling- = Pr(∀k(1 − Δtscaling < sk < 1 + Δtscaling))

=
n∏

k=1

(

1 − 1
2

exp
μ − 1 − Δtscaling

β
− 1

2
exp

1 − Δtscaling − μ

β

)

pfn- = Pr(no more than �n ∗ tfn	 cuts are missing)
pfp- = Pr(no more than tfp false cuts)

= 0.18 +
tfp∑

i=0

(

0.6 · e−1

i!
+ 0.22 · 3i e−3

i!

)

pe+ = (1 − pscaling-)(1 − pfn-)(1 − pfp-)

where pscaling-, pfn- and pfp- are probabilities that reference region R =
(r1, r2, . . . , rn) has small scaling factors, a low missing cut rate and a low false
cut rate respectively. Note that pfn- relies on davg’s to estimate the digest rate
pk
digest of each nicking site k (0 ≤ k ≤ n). Given (p0

digest, p
1
digest, . . . , p

n
digest), pfn-

can be calculated by dynamic programming. Regions with pe+ ≥ 0.8 (i.e. over
80 % of molecules originated here will be discarded) can be considered difficult
to cover.
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3 Experiments

In this section, besides fitting our error model derived from NA128787 into
NA12891 (Figs. 3(b), 4(b) and 5(b)), we want to further evaluate our error model
using both simulated and real datasets based on alignment. For real datasets, we
use the CEU trio dataset, which consists of human optical maps of three individu-
als, namely NA12878, NA12891 and NA12892, each containing 2164566, 2113707
and 3305770 molecules. For simulated data, we implemented an OM simulator
that starts producing an optical map from uniformly picking a starting posi-
tion of a molecule and setting its length with an exponential random generator.
After that, sizing error, missing cuts, and false cuts are successively introduced
to this molecule. Finally, a random orientation is applied and an optical map
is generated. Both real data and simulated data are digested by Nt.BspQI and
share the resolution of 1200 bp. They are aligned to an in silico reference map
GRCh38 precisely digested by BspQI. The aligner in use is RefAligner from Bio-
Nano IrysView kit. Note that RefAligner was not developed based on our error
model, thus providing an independent assessment of our model.

Set pe+ ≥ 0.8 as a threshold of regions that are difficult to be covered.
Ten simulated datasets of depth = 10x were used to test the difficult regions
in GRCh38. The simulation parameters in use were derived from NA12878 (as
presented in Sect. 2). For each chromosome, the percentage of difficult regions
estimated by error model (called theoretical percentage) and that summarized
from ten runs of 10x alignment results (called empirical percentage) are com-
pared in Table 1. We noticed that two other reasons that are unrelated to error
model are also causing poorly covered regions. Part of the reference map does
not produce any valid molecule because there are too few nicking sites (i.e. nick-
ing sites are too loose) within this range. In addition, an optical map can be

Table 1. The theoretical and empirical percentages of difficult regions (pe+ ≥ 0.8).

Chr id Theoretical Empirical Sensitivity Chr id Theoretical Empirical Sensitivity

1 0.4169% 0.4106% 63.11% 13 0.1975% 0.2567% 62.01%

2 0.1297% 0.1428% 59.56% 14 0.2476% 0.2527% 71.64%

3 0.3837% 0.4323% 72.55% 15 0 0 NA

4 0.0703% 0.0732% 86.44% 16 0.4462% 0.5083 100.00%

5 0.3479% 0.2135% 38.30% 17 0.1402% 0.1547% 32.73%

6 0.0026% 0.0026% 100.00% 18 0 0 NA

7 0.7445% 0.5682% 61.59% 19 0.6399% 0.7287% 100.00%

8 0.3393% 0.2729% 58.07% 20 1.3809% 1.1334% 62.37%

9 0.4445% 0.2477% 55.73% 21 2.7056% 3.0488% 95.94%

10 0.7023%% 0.6461% 68.31% 22 0.6887% 0.7243% 100.00%

11 0.9054% 0.8158% 71.50% X 0.3472% 0.3190% 83.54%

12 0.4513% 0.3033% 64.66% Y 0.2583% 0.2867% 91.28%
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mistakenly aligned to another region that has highly similar nicking site pattern
to the correct one. Both theoretical percentage and empirical percentage are
calculated with the exclusion of loose regions and similar regions, that is,

theoretical percentage =
L(regions in chr c with pe+ ≥ 0.8)

total length

empirical percentage =
L(regions in chr c covered by less than 3 molecules)

total length
total length = L(chr c) − L(loose or similar regions in chr c)

where L(·) is an abbreviated notation for “the accumulated length of”. Based
on hundreds of RefAligner experiments, the highest accuracy of 96.88 % can be
reached by setting the filtering thresholds of RefAligner to be max

{
|ok−rk|√

rk

}
=

12.650, tfn = 0.377925 and tfp = 3.9. This set of thresholds is also adopted in
the calculation of theoretical percentage. Since RefAligner measures sizing error
as |ok−rk|√

rk
, Δtscaling is in fact a function of rk, that is, Δtscaling = 12.650√

rk
.

Table 1 shows that our error model is quite consistent. Sensitivity is defined
as the total length of regions that are both theoretically and empirically difficult to cover

the total length of regions that are difficult in theory . Evi-
dently, for most chromosomes, our error model identifies 60 % to 100 % of difficult
regions correctly. For chromosomes chr5, chr9, and chr17, a relatively smaller
fraction of difficult regions than in theory are predicted to be difficult according
to the simulated data. Take the most extreme case, i.e. chr17, as an example,
among the theoretically difficult regions that do not appear poorly covered on
simulated data, 95.74 % has pe+ > 0.77 in practice. The average pe+(our model)
is 0.7792, which does not deviate much from 0.8.

In our experiment on real data, we justify the accuracy of pe+ calculation
focusing on a list of manually-verified non-SV regions [8]. We did not present
the percentage of difficult regions because there are too few verified non-SV
regions with pe+ ≥ 0.8. The total length of these non-SV regions accumulates to
be 6760268, 7420612 and 7884938 bases for NA12878, NA12891 and NA12892
respectively. Instead, we compared the accuracy of pe+ estimated by our model
with the accuracy of pe+ based on Valouev’s model. Please note that to calculate
the theoretical pe+ for each individual, the parameters are estimated solely from
the other two.

Table 2 summarizes the average difference of pe+(our model) − pe+(trio) and
pe+(valouev’s model) − pe+(trio) for non-SV regions on each chromosome. pe+

(our model) is calculated as formulated in Sect. 2.2. pe+(valouev’s model) follows
a similar computation except that pscaling− is calculated in the light of Valouev’s
Normal distribution. pe+(trio) = the number of molecules mapped to this region

optical mapping depth , where
the depth is 100x. Evidently, the pe+ based on our error model is more accu-
rate than that of Valouev’s error model. On average, Valouev’s model has
four times greater probability difference against real data than ours. More-
over, pe+(our model) − pe+(trio) is much stabler than pe+(valouev’s model) −
pe+(trio)), with a standard deviation of 0.0764 over Valouev’s 0.1512.
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Table 2. The average of pe+(our model) − pe+(trio) and pe+(valouev’s model) −
pe+(trio) for verified non-SV regions on each chromosome.

Chr id NA12878 NA12891 NA12892

Our model Valouev’s Our model Valouev’s Our model Valouev’s

1 –0.0301 –0.1954 –0.0410 –0.2760 0.0287 0.0936

2 –0.0529 –0.2195 –0.0501 –0.1070 0.0138 –0.1107

3 –0.0644 –0.1003 –0.0646 –0.1200 –0.0078 –0.1294

4 –0.0973 –0.1374 –0.0989 0.1579 –0.0406 –0.1635

5 –0.0724 –0.1085 –0.0630 –0.1182 –0.0103 –0.1314

6 0.0664 –0.1148 –0.0469 –0.1246 –0.0083 –0.1298

7 –0.0532 –0.2184 –0.0466 –0.1032 0.0134 –0.1101

8 –0.0591 –0.2225 –0.0662 –0.1207 –0.0039 –0.1247

9 –0.0437 0.0908 0.0343 0.0881 0.0211 0.1008

10 –0.0319 –0.1985 –0.0263 0.0823 0.0259 0.0976

11 –0.0448 –0.0908 –0.0462 –0.1031 0.0291 0.0946

12 –0.0485 –0.0960 –0.0470 0.1210 0.0159 –0.1048

13 –0.0412 –0.0939 –0.0284 –0.1428 0.0301 –0.1550

14 –0.0495 –0.0996 –0.0414 –0.0981 0.0152 –0.1090

15 0.0033 –0.1649 –0.0067 0.0591 0.0427 –0.0512

16 –0.0001 –0.1685 0.0163 0.0363 0.0574 –0.0490

17 0.0082 –0.1587 0.0195 –0.0339 0.0896 0.0347

18 –0.0383 0.0883 –0.0349 –0.0917 0.0043 –0.1194

19 –0.0332 –0.1400 –0.0048 –0.1023 0.0175 –0.0725

20 0.0304 0.0031 0.0145 –0.0084 0.1038 0.0194

21 –0.776 0.0395 –0.0064 –0.1237 –0.0084 –0.1347

22 0.0036 –0.1859 0.0156 –0.0342 0.0736 –0.0755

4 Discussion

In this paper, we present a probabilistic error model based on the alignment
results of BioNano RefAligner on CEU trio maps. We use both simulated and
real datasets to verify our model. Based on our model, we compute a probability
for each non-SV region showing how likely an optical map produced from this
region has high error. By comparing these probabilities with the percentages of
molecules covering these regions in real data, we show that our model is more
accurate than the popular error model being used in the community. On the
other hand, we admit that we should conduct a more comprehensive evaluation
once more real optical map data are available in order to get a more accurate
and robust error model. We also want to remark that the validation method used
in the paper may not be the only method. For example, we may compare our
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error model with the error rates indicated by some accurate assemblers, such
as Gentig [2] and the assembler from IrysView kit. To conclude, although we
are still not able to capture all possible errors in our model, it should provide a
better model for subsequent development of downstream analysis tools to make
full use of BioNano Irys optical maps. Also, with our error model, it is possible
to compute a lower bound on the required depth for each region in the genome
which may guide practitioners how much optical map data we should produce.
This research was supported by NSFC/RGC joint research scheme (N HKU
729/13).
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Abstract. Sequencing of RNA provides the possibility to study an indi-
vidual’s transcriptome landscape and determine allelic expression ratios.
Single-molecule protocols generate multi-kilobase reads longer than most
transcripts allowing sequencing of complete haplotype isoforms. This
allows partitioning the reads into two parental haplotypes. While the
read length of the single-molecule protocols is long, the relatively high
error rate limits the ability to accurately detect the genetic variants and
assemble them into the haplotype-specific isoforms. In this paper, we
present HapIso (Haplotype-specific Isoform Reconstruction), a method
able to tolerate the relatively high error-rate of the single-molecule plat-
form and partition the isoform reads into the parental alleles. Phasing
the reads according to the allele of origin allows our method to effi-
ciently distinguish between the read errors and the true biological muta-
tions. HapIso uses a k-means clustering algorithm aiming to group the
reads into two meaningful clusters maximizing the similarity of the reads
within cluster and minimizing the similarity of the reads from different
clusters. Each cluster corresponds to a parental haplotype. We use family
pedigree information to evaluate our approach. Experimental validation
suggests that HapIso is able to tolerate the relatively high error-rate and
accurately partition the reads into the parental alleles of the isoform
transcripts. Furthermore, our method is the first method able to recon-
struct the haplotype-specific isoforms from long single-molecule reads.

The open source Python implementation of HapIso is freely available
for download at https://github.com/smangul1/HapIso/.

1 Introduction

Advances in the RNA sequencing technologies and the ability to generate
deep coverage data in the form of millions of reads provide an exceptional
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opportunity to study the functional implications of the genetic variability
[4,16,17]. RNA-Seq has become a technology of choice for gene expression stud-
ies, rapidly replacing microarray approaches [20]. RNA-Seq provides sequence
information, which aids in the discovery of genetic variants and alternatively
spliced isoforms within the transcripts. RNA-Seq has the potential to quantify
the relative expression of two alleles in the same individual and determine the
genes subject to differential expression between the two alleles. Comparison of
the relative expression of two alleles in the same individual as a phenotype influ-
enced by the cis-acting genetic variants helps determine the cis-acting nature of
the individual polymorphism [23].

There are three major difficulties in current approaches to identify allele spe-
cific expression using RNA-Seq data. First, short read protocols [15] cut genetic
material into small fragments and destroy the linkage between genetic variants.
Short reads obtained from the fragments are well suited to access the allele-specific
expression on the single variant level. However, complexity of the higher eukary-
otic genomes makes it hard to phase the individual variants into the full-length
parental haplotypes (haplotype-specific isoforms). A common technique to assess
the allele-specific expression (ASE) is to count the number of reads with the ref-
erence allele and the number of reads with alternate allele. However, this app-
roach works on individual variant level and is not well suited to determine the
allele-specific expression on the isoform level. Second, mapping the short reads
onto the reference genome introduces a significant bias toward higher mapping
rates of the reference allele at the heterozygous loci. Masking known loci in the
genome does not completely remove the inherent bias [6]. Aside from the allele-
specific expression, mapping biases may affect the QTL mapping and the discovery
of new sequence variants. Third, the high sequence similarity between alternatively
spliced variants of the same gene results in a significant number of short reads to
align in multiple places of the reference transcriptome [9].

Multi-kilobase reads generated by single-molecule protocols [8] are within the
size distribution of most transcripts and allow the sequencing of full-length hap-
lotype isoforms in a single pass [14]. The reads cover multiple genomic variants
across the gene, eliminating the necessity to phase the individual variants into
the isoform haplotypes. Additionally, the extended length of the reads makes
it simple to map the reads uniquely and eliminate the read-mapping biases.
However, the relatively high error rates of the single-molecule protocols limit
the application of the long single-molecule protocol to studies of the allele spe-
cific variants. There are currently no methods able to accurately detect the
genetic variants from the long single-molecule RNA-Seq data and connect them
to haplotype-specific isoforms.

In this paper, we present HapIso (Haplotype-specific Isoform Reconstruc-
tion), a comprehensive method for the accurate reconstruction of the haplotype-
specific isoforms of a diploid cell that uses the splice mapping of the long
single-molecule reads and partitions the reads into parental haplotypes. The
single molecule reads entirely span the RNA transcripts and bridge the single
nucleotide variation (SNV) loci across a single gene. Our method starts with
mapping the reads onto the reference genome. Aligned reads are partitioned
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into the genes as a clusters of overlapping reads. To overcome gapped coverage
and splicing structures of the gene, the haplotype reconstruction procedure is
applied independently for regions of contiguous coverage defined as transcribed
segments. Restricted reads from the transcribed regions are partitioned into two
local clusters using the 2-mean clustering. Using the linkage provided by the long
single-molecule reads, we connect the local clusters into two global clusters. An
error-correction protocol is applied for the reads from the same cluster. To our
knowledge, our method is the first method able to reconstruct the haplotype-
specific isoforms from long single-molecule reads. We applied HapIso to pub-
licly available single-molecule RNA-Seq data from the GM12878 cell line [18].
Circular-consensus (CCS) single-molecule reads were generated by Pacific Bio-
sciences platform [8]. Parental information (GM12891 and GM12892 cell lines) is
used to validate the accuracy of the isoform haplotype reconstruction (i.e. assign-
ment of RNA molecules to the allele of origin). We use short read RNA-Seq data
for the GM12878 sample to validate the detected SNVs using a different sequenc-
ing platform (short reads). Our method discovered novel SNVs in the regions
that were previously unreachable by the short read protocols.

Discriminating the long reads into the parental haplotypes allows to accu-
rately calculate allele-specific gene expression and determine imprinted genes
[7,19]. Additionally it has a potential to improve detection of the effect of cis-
and trans-regulatory changes on the gene expression regulation [5,21]. Long reads
allow to access the genetic variation in the regions previously unreachable by the
short read protocols providing new insights into the disease sustainability.

2 Methods

2.1 Overview

Very similarly to the genome-wide haplotype assembly problem, the problem of
haplotype-specific isoform assembly aims to infer two parental haplotypes given
the collection of the reads [1,12]. While those problems are related, the allele
expression ratio between RNA haplotypes is a priori unknown and may be signif-
icantly different from 1:1. An additional difference is due to the RNA-Seq gapped
alignment profile and alternative splice structures of the gene. Overall, the prob-
lem of reconstruction of the haplotype-specific isoforms of a diploid transcrip-
tome represents a separate problem requiring novel computational approaches.

We apply a single-molecule read protocol to study the allele-specific differ-
ences in the haploid transcriptome (Fig. 1). The single molecule protocol skips
the amplification step and directly sequences the poly (A) selected RNA mole-
cules. The reads generated by the protocol entirely span the RNA transcripts
bridging the single nucleotide variation (SNV) loci across a single gene.

We introduce a method able to reconstruct the haploid transcriptome of a
diploid organism from long single-molecule reads (Fig. 2). This method is able
to tolerate the relatively high error-rate of the single-molecule sequencing and
to partition the reads into the parental alleles of the isoform transcript. The
errors in the long single-molecule reads typically are predominantly one-base
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Fig. 1. Overview of long single-molecule protocol. (A) Unamplified, polyA-selected
RNA molecules are sequenced by the single-molecule protocol able to entirely span
the RNA transcripts to produce long single-molecule reads. The fragmentation-based
protocols shred the amplified and poly (A) selected RNA into short fragments appro-
priately sized for sequencing. Short reads destroys the linkage between the SNVs. (B)
Reads are mapped onto the reference genome. (C) SNVs are assembled into the two
parental haplotype isoforms.

deletions and insertions [3]. Both insertions and deletions are corrected through
the alignment with the reference genome. The remaining mismatch errors are
further passed to the downstream analysis.

Our method starts with mapping the reads onto the reference genome
(Fig. 2A). Long reads allow us to identify the unique placement of the read
(99.9 % of the reads from GM12878 sample are mapped to a single location in
the genome). The reads are partitioned into the genes as clusters of overlap-
ping reads. The haplotype reconstruction procedure is applied independently for
every gene. First, we identify the transcribed segments corresponding to con-
tiguous regions of equivalently covered positions. Two positions are equivalently
covered if any read covering one position also covers the other one.
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Fig. 2. Overview of HapIso. (A) The algorithm takes long single-molecule reads that
have been mapped to the reference genome as an input. (B) The transcribed seg-
ments are identified as contiguous regions of equivalently covered positions. (C) Aligned
nucleotides of the transcribed segment are condensed into the binary matrix whose
width equals the number of variable positions. The entry “1” corresponds to the posi-
tion with the observed mismatch, the entry is encoded as “0” if it matches the reference
allele. (D) Reads restricted to the transcribed segment (rows of the binary matrix) are
partitioned into two clusters, using the 2-means clustering algorithm. Each cluster cor-
responds to a local haplotype. (E) The segment graph is constructed to incorporate the
linkage between the alleles. The edges of the graph connect the local haplotypes. The
minimum number of corrections to the graph is applied to partition the graph into two
independent components corresponding to full-length parental gene haplotypes. (F) An
error-correction protocol is applied for the reads from the same cluster. The protocol
corrects the sequencing errors and produce corrected haplotype-specific isoforms.

To account for gapped coverage and splicing structures of the gene, we cluster
the reads into two parental haplotypes for every transcribed segments indepen-
dently (Fig. 2C). The clustering procedure first condenses the aligned nucleotides
of the transcribed segment into a binary matrix with a width equal to the num-
ber of variable positions. The entry “1” corresponds to the position which mis-
matches the reference allele, while the entry is encoded as “0” if it matches
the reference allele. We partition the rows (reads restricted to the transcribed
segment) into two clusters, using the 2-means clustering algorithm (Fig. 2D).
The result from the 2-means clustering partitions the restricted reads into local
parental haplotypes. Using the linkage provided by the long single-molecule
reads, we reconstruct the full-length gene haplotypes. We build the segment
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graph encoding the linkage between the alleles in form of edges (Fig. 2E). The
minimum number of corrections to the graph is applied to partition the graph
into two independent components corresponding to two parental haplotypes. The
transcript reads are then grouped according to the allele of origin (Fig. 2F). An
error-correction protocol is applied for the reads from the same cluster. The pro-
tocol corrects the sequencing errors and produces corrected haplotype-specific
isoforms.

2.2 Single-Molecule RNA-Seq

We use publicly available single-molecule RNA-Seq data generated from the
peripheral blood lymphocyte receptors for B-lymphoblastoid cell lines (GM12878
cell line) [18]. Additionally, we use parental long read RNA-Seq data from
GM12891 and GM12892 cell lines to validate the accuracy of the proposed app-
roach. Libraries were sequenced using the Pacific Bioscience platform [8] able
to produce long single-molecule reads for all three samples in the trio. Unam-
plified, polyA-selected RNA was sequenced by the circular molecules. Circular-
consensus (CCS) single-molecule read represent a multi-pass consensus sequence,
where each base pair is covered on both strands at least once and the multiple
low-quality base calls can be used to derive a high-quality calls.

2.3 Read Mapping

The first step of the analysis is to place sequencing reads onto the refer-
ence genome. Long read length provided by the single molecule protocol pro-
vides enough confidence to find unique position in the genome where the reads
were generated from without using the existing gene structure annotation. The
715,902 CCS reads were aligned to the human reference genome (hg19) using the
GMAP aligner, which maps cDNA sequences to a genome [22]. GMAP was orig-
inally designed to map both messenger RNAs (mRNAs) and expressed sequence
tags (ESTs) onto to genome. The tool is able to tolerate high number of sequence
errors in long cDNA sequences which makes it perfect fit for Pac Bio single-
molecule platform.

GMAP is able to identify up to two placements in the genome for 99.6 %
reads. Only a small portion of those are mapped to two locations of the genome
(1.6 %). However in many case two placement in the genome have a evident dif-
ferences thus making it easy to select the most preferable placement. In this way,
vast majority of the CCS reads have single high-confidence mapping covering the
entire exon-intron structure of an isoform transcript.

2.4 Haplotype-Specific Isoform Reconstruction

Having the reads spanning the full-length isoform transcripts, the problem of
the haplotype-specific isoform reconstruction aims to discriminate the tran-
script reads into two parental haplotypes. The problem is equivalent to the read
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error-correction problem. If all the errors are corrected, the long reads provide
the answer to the reconstruction problem, i.e. each non redundant read is the
haplotype-specific isoform. Since the long reads are error prone, it is required to
fix the errors or equivalently call single nucleotide variants (SNVs). Rather than
phasing each isoform separately, it is preferable to agglomerate all the isoforms
from a single gene and cluster the reads by haplotype of origin. All the reads
from a single haplotype contain the same alleles of shared SNVs, thus all the
differences between reads in shared transcribed segments should be corrected.
We propose the following optimization formulation minimizing the number of
errors.

Phasing Problem. Given a set of the long reads R corresponding to the tran-
scripts from the same gene g. Partition the reads into two haplotype clusters
such that the number of sequencing errors in the reads is minimized.

Typically, the errors in the long single-molecule reads are dominated by one-
base insertions and deletions. Both are corrected through the alignment to the
reference genome – insertions are deleted and deletions are imputed from the
reference. The remaining mismatch errors are further passed to the downstream
analysis.

Since long reads are uniquely aligned, the aligned reads are uniquely parti-
tioned into clusters corresponding to the genes. Further, the haplotype are inde-
pendently reconstructed for every gene. First we split the genes into transcribed
segments corresponding to contiguous regions of equivalently covered positions.
Two positions are equivalently covered if any read covering one position also
covers the other one. To overcome gapped coverage and splicing structure of
the gene, we cluster the reads into two parental haplotype for every transcribed
segments independently. The clustering procedure first condenses the aligned
nucleotides of the transcribed segment into the binary matrix whose width equals
the number of polymorphic positions. The entry “1” corresponds to each posi-
tion whose allele mismatches the reference and the entry is encoded as “0” if it
matches the reference allele. We partition the rows (reads restricted to the tran-
scribed segment) into two clusters, using the 2-means clustering algorithm. The
clustering algorithm returns a set of centroids, one for each of the two clusters.
An observation vector is classified with the cluster number or centroid index of
the centroid closest to it. A vector r belongs to cluster i if it is closer to centroid
i than any other centroids. If r belongs to i, centroid i is refereed as dominating
centroid of r.

Given a set of observations (r1, r2, , rn), where each observation is a binary
read vector, k-means clustering aims to partition the n reads into two sets S =
S1, S2 so as to minimize the distortion defined as

D =
2∑

i=0

∑

x∈Si

‖x − µi‖2 where µi is the dominating centroid in Si. (1)

Each step of the k-means algorithm refines the choices of centroids to mini-
mize distortion. The clustering algorithm uses change in distortion as stopping
condition.
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Haplotypes for each transcribed segment obtained by local read clustering
are further linked using the long single-molecule reads as follows.

First, we build a graph G in which each vertex corresponds to a transcribed
segment and two vertices are adjacent if they belong to the same read. Two
transcribed segments A and B with pairs of haplotypes (A1, A2) and (B1, B2),
respectively, can be either linked in parallel A1B1 and A2B2 or in cross A1B2
and A2B1. If among reads containing A and B there are more reads consistent
with the parallel linkage than the reads consisting with the cross linkage, then the
parallel linkage is more likely and vice versa. The larger skew between number of
parallel and cross reads gives the higher confidence in the corresponding linkage.
Therefore the weight of an edge between A and B in the graph G is set to

w(A,B) =
∣
∣
∣
∣log

(
#parallel (A − B) − reads
#cross (A − B) − reads

)∣
∣
∣
∣ (2)

Then we find the maximum-weight spanning tree T of the graph G consisting
of links with the highest confidence in the chosen (cross or parallel) linkage [2].
The tree T is split into two trees T1 and T2 uniquely identifying two global
haplotypes for the corresponding gene as follows. Each vertex A of T is split
into two vertices A1 and A2 corresponding to two haplotypes of the transcribed
segment A. Each edge (A,B) of T with the positive weight w(A,B) is split into
two edges (A1, B1) and (A2, B2) and each edge (A,B) with the negative weight
is split into (A1, B2) and (A2, B1). Starting with A1 we traverse the tree T1
concatenating all haplotypes corresponding to its vertices into a single global
haplotype. Similarly, starting with A2, we traverse the complementary tree T2
concatenating its haplotypes into the complimentary global haplotype.

Long reads are grouped according to the haplotype of origin. An error-
correction protocol is applied for the reads from the same cluster. The protocol
corrects the sequencing errors and produce corrected haplotype-specific isoforms.

Finally, the resulting two haplotypes are different in heterozygous loci allow-
ing our method to determine the SNVs. Long reads provide one to one mapping
between the reconstructed haplotypes and the isoform haplotypes. Reads counts
are used to determine allelic expression of each haplotype copy of the isoform.

The absence of the systematic errors allows us to successfully correct the
randomly distributed errors and accurately reconstruct the isoform haplotypes.
Comparing to other approaches requiring trio family data, we are able to correct
the error and reconstruct the parental haplotypes from sequencing data.

3 Results

3.1 HapIso is able to Accurately Reconstruct Haplotype-Specific
Isoforms

We used trio family long single-molecule RNA-seq data to validate the recon-
structed haplotype-specific isoforms. Single molecule RNA-Seq data was gener-
ated from the peripheral blood lymphocyte receptors for B-lymphoblastoid cell
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Fig. 3. Allele inheritance model. (A) Mendelian consistency; Each parent provides one
copy of the allele to a child; child inherits red allele from mother and a green allele from
father. (B) Mendelian inconsistency; Child does not inherit green allele from any of the
parents. (C) Ambiguity: Green allele is not expressed or covered in the right parent due
to lack of sequencing coverage. Mendelian (in)consistency can not be verified. (Color
figure online)

lines from a complete family trio composed of a father, a mother and a daugh-
ter. We reconstructed the haplotype-specific isoforms of each individual indepen-
dently using HapIso method. Family pedigree information makes it possible for
us to detect Mendelian inconsistencies in the data. We use reconstructed haplo-
types to infer the heterozygous SNVs determined as position with non-identical
alleles with at least 10x coverage.

According to Mendelian inheritance, one allele in the child should be inherited
from one parent and another allele from the other parent (Fig. 3A). Mendelian
inconsistencies correspond to loci from the child with at least one allele not
confirmed by parents (Fig. 3B). We also separately account for the missing alleles
from the parental haplotypes due to insufficient expression or coverage of the
alternative allele (Fig. 3C). Such loci are ambiguous since Mendelian consistency
or inconsistency cannot be verified.

HapIso was able to detect 921 genes with both haplotypes expressed among
9,000 expressed genes. We observed 4,140 heterozygous loci corresponding to
position with non-identical alleles among inferred haplotypes. 53 % of detected
SNVs follow Mendelian inheritance. The number of variants with Mendelian
inconsistencies accounts for 10 % of the heterozygous SNVs. The remaining SNVs
are ambiguous and the Mendelian consistency cannot be verified.

Additionally we check the number of recombinations in the inferred haplo-
types. Our approach can theoretically identify recombinations in the transmitted
haplotypes. Crossovers between the parental haplotypes result in recombination
events in the child’s haplotypes (Fig. 4B). Since recombination events are rare,
most of the time they manifest switching errors in phasing. Single-molecule reads
are long enough to avoid switching errors, which are confirmed by lack of recom-
bination events, observed in the reconstructed haplotypes.

3.2 SNV Discovery and Cross Platform Validation

The single-molecule RNA-Seq was complemented by 101-bp paired-end RNA-Seq
data of the child. Short RNA-seq reads are used for cross-platform validation of
the detected SNVs. The haplotypes assembled by the HapIso were scanned with
the 10x coverage threshold to detect the heterozygous loci passed for the vali-
dation. The short RNA-Seq reads were mapped onto the hg19 reference genome
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Fig. 4. Gene inheritance model. (A) Each parent provides one copy of the gene to a
child; child inherits blue haplotype from mother and a green haplotype from father.
(B) Haplotypes of mother pair up with each other and exchange the segments of their
genetic material to form recombinant haplotype (recombination of orange and blue
haplotypes). The child inherits the recombined haplotype. Haplotype from father is
inherited with no recombination. (Color figure online)

complemented by the gene annotations (tophat 2.0.13, GRCh37 ENSEMBL).
GATK [11] variant caller was used to call the SNVs from the short RNA-seq
reads following the publicly available best practices. Additionally, the public cat-
alogue of variant sites (dbSNP), which contains approximately 11 million SNVs,
was used to validate genomic position identified as SNVs by single-molecule and
short read protocols.

We compared genomic positions identified as SNVs from long single-molecule
reads and short reads (Fig. 5). First, we compared the positions identified as
SNVs by both platforms. 279 genomic positions were reported as SNV by both
platforms. Those positions were also confirmed by dbSNP. Of those SNVs, 94 %
are concordant between the platform i.e. contain identical alleles. Among the
detected SNVs by the single-molecule protocols, 23 positions are identified as
SNVs only by the single-molecule protocol. We investigated the coverage of
those SNVs by the short reads. Those SNVs are covered by the short reads
with the alternative allele expression under the SNV calling threshold, while the
remaining SNVs are not covered by short reads.

We compared haplotypes assembled from long and short RNA-Seq reads
(child sample, GM12878). We use HapCUT [1] to assemble the haplotypes from
the short RNA-Seq reads. HapCUT is a max-cut based algorithm for haplotype
assembly from the two chromosomes of an individual. GATK is used to generate
vcf file with genomic variants required by HapCUT. HapCUT produces multiple
contigs per gene shorter than the transcript isoforms, thus limiting the possibility
to access haplotype-specific isoforms.

Unfortunately we could not compare our method with HapCUT for the long
single-molecule reads. HapCUT is originally designed for the short reads. We
are not able to generate the genomic variants (vcf format) required by HapCUT.
The GATK tool doesn’t have the best practice pipeline for the Pac Bio RNA-Seq
reads.
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Fig. 5. Venn diagram showing the numbers of genomic position identified as SNVs
from long single-molecule reads (green) and short reads (orange). SNVs calls from
both platforms were match against the dbSNP catalogue of variant sites (blue). (Color
figure online)

4 Discussion

RNA molecules represent an essential piece of the cell identity, playing an impor-
tant role as a messenger and regulatory molecule [13]. Long single-molecule pro-
tocols provide an unprecedented allele-specific view of the haploid transcriptome.
Partitioning the long reads into the parental haplotypes allows us to accurately
calculate allele-specific transcript and gene expression and determine imprinted
genes [7,19]. Additionally, it has the potential to improve detection of the effect
of cis- and trans-regulatory changes on the gene expression regulation [5,21].
Long reads allow us to access the genetic variation in the regions previously
unreachable by the short read protocols providing new insights into the dis-
ease sustainability. Availability of full-length haplotype-specific isoforms opens
a wide avenue for the accurate assessment of allelic imbalance to study molecu-
lar mechanisms regulating genetic or epigenetic causative variants, and associate
expression polymorphisms with the disease susceptibility.

We have presented HapIso, an accurate method for the reconstruction of the
haplotype-specific isoforms of a diploid cell. Our method uses the splice mapping
and partitions the reads into parental haplotypes. The proposed method is able
to tolerate the relatively high error-rate of the single-molecule sequencing and
discriminate the reads into the paternal alleles of the isoform transcript. Phasing
the reads according to the allele of origin allows efficiently distinguish between
the read errors and the true biological mutations. HapIso uses the 2-means clus-
tering algorithm aiming to group the reads into two meaningful clusters maxi-
mizing the similarity of the reads within cluster, and minimizing the similarity of
the reads from different clusters. Clustering is applied locally for the transcribed
regions, which are further reconnected in the segment graph. Each cluster cor-
responds to the parental haplotype. An error-correction protocol is applied for
the reads from the same cluster allowing to correct the errors and reconstruct
haplotype-specific isoforms.
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Traditional haplotype assembly [1,12] approaches are designed for whole-
genome sequencing and are not well suited for gapped alignment profile offed by
the RNA sequencing. Genome-wide haplotype assembly aims to assemble two
haplotypes for a chromosome given the collection of sequencing fragments. In
contrast, RNA haplotype reconstruction requires to assemble multiple haplo-
types of a gene, which each isoform having two parental haplotype copies. ASE
detection methods [10] are well suited to determine the allele-specific expression
on the on individual variant level further aggregated into gene-level estimates.
However, those methods are originally designed for SNV-level read counts and
are not applicable to reconstruct full-length haplotype-specific isoforms of a gene.

To our knowledge, our method is the first method able to reconstruct
the haplotype-specific isoforms from long single-molecule RNA-seq data. Other
approaches [18] quantify the allele-specific expression of the genes using trio fam-
ily data, while only being able to provide the ratio between allele expression of
the genes. Such approaches are not suited to reconstruct the haplotype-specific
isoforms and correct sequencing errors. Experimental validation based on the trio
family data and orthogonal short read protocol suggests that HapIso is able to
tolerate the relatively high error-rate and accurately reconstruct the haplotype-
specific isoforms for genes with at least 10x coverage. Deeper sequencing is
required to assemble haplotype-specific isoforms of genes with low expression
level.
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Abstract. Structural characterization of protein-protein interactions is essential
for fundamental understanding of biomolecular processes and applications in
biology and medicine. The number of protein interactions in a genome is signif‐
icantly larger than the number of individual proteins. Most protein structures have
to be models of limited accuracy. The structure-based methods for building the
network of protein interactions have to be fast and insensitive to the inaccuracies
of the modeled structures. This paper describes our latest development of the
docking methodology, including global docking search, scoring and refinement
of the predictions, its systematic benchmarking on comprehensive sets of protein
structures of different accuracy, and application to the genome-wide networks of
protein interactions.
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1 Introduction

Many cellular processes involve protein-protein interactions (PPI). Structural charac‐
terization of PPI is essential for fundamental understanding of these processes and for
applications in biology and medicine. Because of the inherent limitations of experi‐
mental techniques and rapid development of computational power and methodology,
computational modeling is increasingly a tool of choice in many biological studies [1].
Protein docking is defined as structural modeling of protein-protein complexes from the
structure of the individual proteins [2]. Protein docking techniques are largely based on
structural and physicochemical complementarity of the proteins. Rigid-body approxi‐
mation, neglecting the internal (conformational) degrees of freedom, is a common
approach, allowing exhaustive exploration of the docking search space (three transla‐
tions and three rotations in Cartesian coordinates), often using pattern recognition tech‐
niques like correlation by Fast Fourier Transform [3]. The free docking is increasingly
complemented by comparative (template-based) docking, where the docking pose of the
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target proteins is inferred by experimentally determined complexes of proteins that are
similar to the targets, either in sequence or in structure [4].

Current docking approaches are targeted towards protein structures determined outside
of the complex (unbound structures). Thus the rigid-body approximation requires a degree
of tolerance to conformational changes in proteins upon binding. Increasingly, the object of
docking is the modeled rather than experimentally determined structures. Generally, such
structures have lower accuracy than the ones determined by experiment (primarily, X-ray
crystallography and nuclear magnetic resonance) [1]. Thus conformational search becomes
a necessary part of the docking routine, especially in light of the rapid development of
computing power, such as accessible and inexpensive GPU computing.

Structural modeling of PPI also addresses the problem of reconstruction and char‐
acterization of the network of connections between proteins in a genome [5]. The number
of protein interactions in a genome is significantly larger than the number of individual
proteins. Moreover, most protein structures have to be models of limited accuracy. Thus,
structure-based methods for building this network have to be fast and insensitive to
significant inaccuracies of the modeled structures. The precision of these methods may
be correlated with the precision of the protein structures – lower for less accurate models
and higher for more exact models.

This paper describes our latest development of the docking methodology, including
global docking search, scoring and refinement of the predictions, its systematic bench‐
marking on comprehensive sets of protein structures of different accuracy, and appli‐
cation to the genome-wide networks of protein interactions.

2 Docking

2.1 Comparative and Free Docking

Our free docking method is based on the systematic grid search by correlation techniques
using Fast Fourier Transformation (FFT) [3, 6]. The algorithm and its subsequent devel‐
opment are implemented in software GRAMM (http://vakser.compbio.ku.edu), which
is freely available and widely used in the biomedical community. New comparative
docking techniques are being developed following the rapidly increasing availability of
the structural templates, and statistics on residue-residue propensities, along with the
coarse-grained potentials accounting for structural flexibility.

The comparative modeling of protein complexes relies on target/template relation‐
ships based on sequence or structure similarity, with the latter showing a great promise
in terms of availability of the templates [7]. Docking assumes knowledge of the struc‐
tures of the interacting proteins. Thus, the templates for protein-protein complex may
be found by structure alignment of the target proteins to full structures of proteins in the
co-crystallized complexes. Dissimilar proteins may have similar binding modes. Thus,
docking can also be performed by the structure alignment of the target proteins with
interfaces of the co-crystallized proteins [8].

Important element in structure alignment is the diversity, non-redundancy and
completeness of the template libraries. While selecting all pairwise protein-protein
complexes from Protein Data Bank (PDB) [9] would produce the complete set, such
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“brute force” set will have many identical or highly similar complexes, and overrepre‐
sentation of some types of complexes. The set would also have low-quality, erroneous,
and biologically irrelevant structures. Thus, to retain only the relevant interactions, it is
important to generate a template library by filtering PDB.

We generated a carefully curated, nonredundant library of templates containing
4,950 full structures of protein-protein complexes and 5,936 protein-protein interfaces
extracted at 12 Å distance cut-off [10]. Redundancy was removed by clustering proteins
based on structural similarity. The clustering threshold was determined from the analysis
of the clusters and the docking performance. An automated procedure and manual cura‐
tion yielded high structural quality of the interfaces in the template and validation sets.
The library is part of the DOCKGROUND resource for molecular recognition studies (http://
dockground.compbio.ku.edu).

2.2 Constraints

An important problem in protein-protein docking is identification of a near-native match
among very large number of putative matches produced by a global docking search. To
detect the near-native matches at the docking post-processing stage, a scoring procedure
is performed by re-ranking the matches, often by functions that are too computationally
expensive or impossible to include in the global scan. Such scoring may be based on
structural, physicochemical, or evolutionary considerations [11]. Often information on
the docking mode (e.g. one or more residues at the protein-protein interfaces) is available
prior to the docking. If this information is reliable, the global scan may not be necessary,
and the search can be performed in the sub-space that satisfies the constraints. However,
if the probability of such information is less than certain, it may rather be included in
the post-processing scoring. Given the inherent uncertainties of the global-search predic‐
tions, such information on the binding modes is very valuable. For docking server
predictions, which can be used by the biological community, an automated search for
such data can be of great value.

We developed the first approach to generating text-mining (TM) [12] constraints for
protein-protein docking [13]. Our methodology, by design, is a combination and extension
of two well-developed TM fields: (1) prediction of interactors in PPI networks, and (2)
detection of protein functional sites for small ligands. The first one was used as the source
of expertise on TM of PPI (existing approaches predict the fact, not the mode of interac‐
tion), and the second one as the source of expertise on TM for prediction of the binding sites
on protein structures (existing approaches are developed for small non-protein ligands).

The procedure retrieves published abstracts on specific PPI and extracts information
relevant to docking. The procedure was assessed on protein complexes from the
DOCKGROUND resource. The results show that correct information on binding residues
can be extracted for about half of the complexes. The amount of irrelevant information
was reduced by conceptual analysis of a subset of the retrieved abstracts. Support Vector
Machine models were trained and validated on the subset. The extracted constraints
were incorporated in the docking protocol and tested on the DOCKGROUND unbound
benchmark set, significantly increasing the docking success rate (Fig. 1).
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Fig. 1. Docking with TM constraints. The results of benchmarking on the unbound X-ray set
from DOCKGROUND. A complex was predicted successfully if at least one in top ten matches had
ligand Cα interface RMSD < 5 Å (light gray), and one in top hundred had RMSD < 8 Å (dark
gray). The success rate is the percentage of successfully predicted complexes in the set. The low-
resolution geometric scan output (20,000 matches) from GRAMM docking, with no post-
processing, except removal of redundant matches, was scored by the TM results. The reference
bars show scoring by the actual interface residues.

2.3 Refinement

Comparative docking lacks explicit penalties for inter-molecular penetration as opposed
to the free docking where such penalty is inherently based on the shape complementarity
paradigm. Thus, the template-based docking models are commonly perceived as
requiring special treatment to obtain usable PPI structural models without significant
interatomic clashes. In this study, we compared the clashes in the template-based models
with the same targets produced by the free docking. The resulting clashes in the two
types of docking, in fact, were similar according to all considered parameters, due to the
higher quality of the comparative docking predictions. This indicates that the refinement
techniques developed for the free docking, can be successfully applied to the refinement
of the comparative models.

A new method for protein-protein docking refinement was developed and imple‐
mented. This method is a compromise between a complete exhaustive search and polyno‐
mial-time approximation schemes, in a sense that it avoids combinatorial explosion, but
does not provide polynomial-time separation of solution and its approximation. A grid-based
method was implemented in C++/CUDA programming languages. A rotamers library [14]
was employed as a set of primitives for combinatorial geometric optimization of the side-
chains. The method was validated on a subset of protein complexes from the DOCKGROUND

unbound benchmark 3.0. The results (Fig. 2) suggest that the method effectively removes
steric clashes from the docked unbound proteins. The GPU-based implementation was 38
faster than the single-thread C++ implementation of the same algorithm (GPU Quadro
K4000, CPU Intel Xeon 2.7 GHz).
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Fig. 2. Clashes removal by an exhaustive search in rotameric space of the interface residues for
99 complexes of the DOCKGROUND unbound benchmark 3.0. A residue was considered at the
interface if any of its atoms was within 6 Å from any atom of the other protein. Steric clash was
defined as any two atoms of different proteins within 2 Å, including atoms of the backbone. For
each complex a conformation with the minimal number of clashes was selected.

3 Benchmarking

Because of limitations of the experimental techniques the vast majority of protein struc‐
tures in a genome would be models. However, sensitivity of the docking methods to the
inherent inaccuracies of protein models, as opposed to the experimentally determined
high-resolution structures, has remained largely untested, primarily due to the absence
of appropriate benchmark sets. Protein models in such sets should have pre-defined
accuracy levels and, at the same time, be similar to actual protein models in terms of
structural motifs and packing. The sets should also be large enough to ensure statistical
reliability of the benchmarking. The traditional protein-protein benchmark sets contain
only the X-ray structures. An earlier study on low-resolution free docking of protein
models utilized simulated (not actual) protein models – artificially distorted structures
with limited similarity to actual models.

We developed a set of protein models based on 63 binary protein-protein complexes from
DOCKGROUND, which have experimentally resolved unbound structures for both proteins.
This allowed comparison to the traditional docking of unbound X-ray structures. However,
only one third of proteins in the dataset were true homology models and the rest was gener‐
ated by the Nudged Elastic Band method [15]. In the new release [16], we report a new, 2.5
times larger set of protein models with six levels of accuracy. All structures were built by the
I-TASSER modeling procedure [16] without any additional generation of intermediate
structures. Thus, the new set contains a larger number of complexes, all of them bona fide
models, providing an objective, statistically significant benchmark for systematic testing
protein-protein docking approaches on modeled structures.

In this paper, we address the problem of models’ utility in protein docking using our
benchmark set of protein models. The quality of free and template-based docking
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predictions built from these models was thoroughly assessed to reveal the tolerance
limits of docking to structural inaccuracies of the protein models. The predictive power
of the currently available rigid-body and flexible docking approaches is similar [11].
Thus in this study we used basic rigid-body approaches that would clearly reveal the
general similarities and differences in free and template-based docking performance
depending on the accuracy of the interacting protein models.

The results (Fig. 3) show that the existing docking methodologies can be successfully
applied to protein models with a broad range of structural accuracy; the template-based
docking is much less sensitive to inaccuracies of protein models than the free docking; and
docking can be successfully applied to entire proteomes where most proteins are models of
different accuracy.

Fig. 3. Normalized success rates for the template-based and free docking. The free docking at
low resolution was performed by GRAMM [6] with Miyazawa-Jernigan potentials [17], and at
high resolution by ZDOCK 3.0.2 [18]. Template-based docking was performed by the full
structure alignment (FSA) [8] using TM-align [19]. The complex was predicted successfully if
one out of top 10 predictions was correct (acceptable, medium or high quality, according to CAPRI
criteria). All success rates are normalized by the ones for the co-crystallized X-ray structures. The
numbers above the data points show the absolute number of successful docking outcomes (out of
165 complexes in Benchmark 2).

4 Genome-Wide Database of Protein Complexes

4.1 GWIDD Design and Content

The progress in 3D modeling of PPI is reflected in the Genome-Wide Docking Database
(GWIDD), which provides annotated collection of experimental and modeled PPI struc‐
tures from the entire universe of life from viruses to humans. The resource has user-friendly
search interface, providing preview and download options for experimental and modeled
PPI structures. Since its introduction in 2006 and major overhaul in 2010 [20], GWIDD
database targets large-scale genome-wide modeling of PPI. Here, we report a major update
of GWIDD (version 2.0), which includes an addition of 47,896 proteins and 673,468 PPI
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from new external PPI sources as well as new functionalities in the Web user interface and
data processing pipeline. The database spans 1,652 organisms in all kingdoms of life, from
viruses to human. The available structures can be accessed, visualized and downloaded
through the user-friendly web interface at http://gwidd.compbio.ku.edu. GWIDD 2.0 has
been populated with the PPI imported from BIOGRID [21] and INTACT [22] repositories
of non-structural PPI data. Out of 117,697 imported proteins, 92,389 non-redundant
proteins, involved in 800,365 binary protein-protein complexes, with sequence length
30-1000 residues were selected for further modeling. Additional screening was performed
to remove proteins containing unknown amino acid residues (filtering out 1117 proteins). A
summary of the GWIDD content is in Table 1.

Table 1. Overview of GWIDD content. Total numbers in corresponding category are in bold.

Kingdoms of life Species Proteins* Interactions**
Archaea 59 733 831
Bacteria 609 15663 92853
α-proteobacteria 68 518 1143
β-proteobacteria 34 99 137
γ-proteobacteria 95 818 1634
Eukaryota 504 73001 601330
Animals 239 51493 263962
Plants 126 9510 29185
Fungi 92 10944 306725
Viruses 448 1736 10274
Unclassified*** 32 139 289

* Proteins with 30-1000 amino acids
** Both monomers are from the same organism
*** Taxonomy IDs correspond to vector sequences and do not have an organism
specified by NCBI

The user interface is shown in Fig. 4 and has structure-homology models incorpo‐
rated in the search procedure. The interface offers search by keywords, sequences or
structures for one or both interacting proteins. Alternatively, advanced search can be
used for a more specific query, based on different menus and boxes. The additional
search options of choosing the model type, an upgrade in the current release, are (i) X-
ray structures: X-ray/NMR structures as deposited in RCSB PDB; (ii) Sequence
homology models: PPI models built by homology docking utilizing known structure of
a homologous complex found at the sequence level; (iii) Structure homology models:
Interacting monomers are independently modeled by the sequence homology modeling
and subsequently docked by full structural alignment; and (iv) no model structure
(yet): model PPI structures to be generated. The Web interface has been tested on all
platforms in Windows, Linux and Mac and runs best in Safari, Chrome and Firefox.
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Fig. 4. GWIDD database browser. (a) Search panel with a keyword “trypsin.” (b) PPI structure
results for the query. The “Download” button provides the atomic coordinates. The “Visualize”
button opens a new pop-up window that displays the model structure along with the modeling
parameters (Fig. 5).

4.2 Visualizing PPI

The visualization screen of the database (Fig. 5) has advanced and mobile-friendly
JavaScript implementation of Jmol, JSmol, to view the 3D structures of PPIs. The default
view is a cartoon of the PPI model colored by the chain with interface residues between
the monomers in ball-and-stick representation colored by the atom type. The interface
residues can be displayed as sticks-only, ball-and-sticks, or spacefill representations.
The header contains the name of proteins and the number of residues along with the
modeling parameters. The protein name is also mapped either to RCSB (X-ray struc‐
tures) or UNIPROT (sequence/structure homology models). The interactive list of
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interface residues, provided below the main JSmol screen, enables highlighting indi‐
vidual interface residues. There is also an option of displaying the van der Waals dot
surface or the solvent accessible surface area of the interface residues.

Fig. 5. Visualization screen for a sequence homology model of protein complex with trypsin as
one of the monomers.

4.3 Future GWIDD Development

The future GWIDD development will primarily focus on improvement of the modeling
pipeline. Full sequences of individual proteins will be split into domains according to the
UNIPROT data and the structures of interacting domains will be modeled. Models of indi‐
vidual proteins will be taken from the external databases of protein models (e.g.
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MODBASE). Proteins that do not have externally precompiled models will be first clus‐
tered and a representative protein of each cluster will be modeled by state-of-the-art stand-
alone package I-TASSER. The rest of the proteins in the cluster will be generated from the
representative models by simple residue replacements. Other docking techniques will be
incorporated, including partial structural alignment and free docking. The complexes will
be further annotated by their functionality, place in biological pathways, etc., and search
engine will be modified accordingly to enable the new functionality.
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Abstract. Identification of essential proteins based on protein interaction net-
work (PIN) is a very important and hot topic in the post genome era. In this
paper, we propose a new method to identify essential proteins based on the
purified PIN by using gene expression profiles and subcellular location infor-
mation. The basic idea behind the proposed purifying method is that two pro-
teins can physically interact with each other only if they appear together at the
same subcellular location and are active together at least at a time point in the
cell cycle. The original static PIN is marked as S-PIN and the final PIN purified
by our method is marked as TS-PIN. To evaluate whether the constructed
TS-PIN is more suitable to being used in the identification of essential proteins,
six network-based essential protein discovery methods (DC, EC, SC, BC, CC,
and IC) are applied on it to identify essential proteins. It is the same way with
S-PIN and NF-APIN. NF-APIN is a dynamic PIN constructed by using gene
expression data and S-PIN. The experimental results on the protein interaction
network of S.cerevisiae shows that all the six network-based methods achieve
better results when being applied on TS-PIN than that being applied on S-PIN
and NF-APIN.

1 Introduction

With the developments of high-throughput technologies, such as yeast-two-hybrid,
tandem affinity purification, and mass spectrometry, a large number of protein-protein
interactions have been accumulated. The protein-protein interactions are generally
constructed as an undirected network. It has become a hot topic to identify essential
proteins from protein interaction networks by using various topological characters.
Generally, we said a protein is essential for an organism if its knock-out results in lethality
or infertility, i.e., the organism cannot survive without it [1, 2]. As the biological
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experiment-based methods, such as gene knockouts [3], RNA interference [4] and
conditional knockouts [5], are relatively expensive, time consuming and laborious,
computational methods for identifying essential proteins offer the essential candidates in
an easier way and furnish the experimental evidence for further researching.

Up to now, a number of network-based essential protein discovery methods have
been proposed. The simplest one of all the network-based methods is the degree cen-
trality (DC), known as a centrality-lethality rule, which was proposed by Jeong et al. [6].
It has been observed in several species, such as S. cerevisiae, C.elegans, and D. mel-
anogaster, that the highly connected proteins tend to be essential [7–10]. Some
researchers also investigated the reason why the highly connected proteins tend to be
essential. Though there are still some disputes, the centrality-lethality rule has been used
widely in the identification of essential proteins. Besides DC, several other popular
centrality measures used in complex networks, such as betweenness centrality
(BC) [11], closeness centrality (CC) [12], subgraph centrality (SC) [13], eigenvector
centrality (EC) [14], information centrality (IC) [15], were also been used for the
identification of essential proteins. BC is a global metric which calculates the fraction of
shortest paths going through a given node. CC is also a global metric, which evaluates
the closeness of a given node with all the rest proteins in a given protein interaction
network. SC accounts for the participation of a node in all subgraphs of the network. EC
simulates a mechanism in which each node affects all of its neighbors in the network and
IC describes how information might flow through many different paths. In recent years,
Yu et al. [16] studied the importance of bottlenecks in protein interaction networks and
investigated its correlation with gene essentiality by constructing a tree of shortest paths
starting from each node in the network. Lin et al. proposed two neighborhood-based
methods [17] (maximum neighborhood component (MNC) and density of maximum
neighborhood component (DMNC)) to identify essential proteins from PIN. In our
previous studies, we also proposed two neighborhood-based methods: LAC [18] and
NC [19]. LAC predicts essential proteins by using a local average connectivity and NC
identifies essential proteins considering how many neighbors a protein has but also the
edge clustering coefficient of the interaction which connects the protein and its neighbor.

Though great progresses have been made in the network-based essential protein
discovery methods, it is still a challenge to improve the predicted precision as most of
these methods are sensitive to the reliability of the constructed PIN. It is well known
that the protein-protein interactions generated by high-throughput technologies include
high false positives [20, 21]. von Mering et al. [20] investigated the quality of
protein-protein interactions and found that there are about 50 % false positives under
circumstances and in the nearly 80,000 interactions they studied there are merely 3 %
of protein-protein interactions can be detected by more than two experimental methods.
In order to overcome the effects of high false positives, some researchers began to
construct weighted PINs [10], dynamic PINs [22–24] or propose new methods by
integrating the network with different biological information, such as gene expression
profiles [25–27], gene ontology annotations [28], domain types [29], orthology [30],
protein complexes [31, 32].

In this paper, we propose a new method to purify the PIN with high false positives
by using gene expression profiles and subcellular location information to identify
essential proteins more accurately. The basic idea behind the proposed purifying
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method is that two proteins can physically interact with each other only if they are
active together at least at a time point in the cell cycle and appear together at the same
subcellular location. The original static protein interaction network is marked as S-PIN,
and the final protein interaction network purified by our method is denoted by TS-PIN.
To test the effectiveness of the purified network TS-PIN, we applied six typical
network-based essential protein discovery methods (DC [6], BC [11], CC [12], SC
[13], EC [14], and IC [15]) on it and compared the results with those on the original
network S-PIN and a dynamic network NF-APIN. The experimental results on the
protein interaction network of S.cerevisiae shows that all the six network-based
methods achieve better results when being applied on TS-PIN than on S-PIN and
NF-APIN in terms of the prediction precision, sensitivity, specificity, positive pre-
dictive value, negative predictive value, F-measure, accuracy rate, and a jackknifing
methodology. It has been proved that the purified method contributes to filtering false
positives in the protein interaction network (PIN) and can help to identify essential
proteins more accurately.

2 Methods

In this section, we first introduce how to construct a high-quality network by purifying
the protein-protein interactions based on integration of gene expression profiles and
subcellular location information.

In this study, S-PIN(Static Protein Interaction Network) referred to is the original
network which includes all the protein-protein interactions occur at different time
points and locations. The S-PIN can be described as an undirected graph G(V,E), which
V = {v1,…,vn} is the set of proteins, and E � V × V is the set of protein-protein
interactions.

2.1 Purification by Using Gene Expression Data

It is well known that protein-protein interactions in a cell are changing over time,
environments and different stages of cell cycle [33]. Considering that the expression
profiles under different time points and conditions provide the information of a pro-
tein’s dynamic, some researchers have proposed different methods to construct
dynamic protein interaction (PIN) network by integrating gene expression data with
PIN. It is only possible that two proteins physically interact with each other if their
corresponding genes are both expressed at the same time point. For a time point, how to
determine whether a gene is expressed? Generally, a potential threshold is used as a
cutoff to determine whether a gene is expressed at a time point [22]. Considering the
fact that some proteins with low expression values will be filtered even if it is active at
some time points, in our previous study [23] we proposed a three-sigma-based method
to determine an active threshold for each protein based on the characteristics of its
expression curve. Given a gene v, its corresponding gene’s expression value at time
point i is denoted by EV(v,i), the algorithmic mean of its expression values over times 1
to m is denoted by μ(v) and the standard deviation of its expression values is denoted
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by σ(v). Here, we adopted the same strategy used in [24] to calculate the active
threshold for each gene. For a gene v, its active threshold is computed by using the
following formula:

Active thðvÞ ¼ l vð Þþ krðvÞ � ð1� FðvÞÞ ð1Þ

l vð Þ ¼
Pm

i¼1 EVðv; iÞ
m

ð2Þ

r vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1ðEV v; ið Þ � lðvÞÞ2
m� 1

s
ð3Þ

F vð Þ ¼ 1

1þ rðvÞ2 ð4Þ

where k = 2.5 is used in this paper according to the analysis in [24].
A protein is regarded as active at a time point i if and only if the expression level of

its corresponding gene EV(v, i) is larger than its active threshold (i.e., EV(v, i) >
Active_th(v)). If there are m time points in the gene expression data, we can use a
m-dimensional vector T(v) = {ti(v), i = 1 to m} to describe a protein’s active time
points, where ti(v) = 1| if EV(v, i) > Active_th(v) and 0 otherwise.

To reduce effects of noise in the gene expression data, we used the same method
described in [24] to filter noisy genes based on time-dependent model and
time-independent model [34]. After the processing, S-PIN is purified by using the
filtered gene expression data and the three-sigma principle. For an edge (u,v)2E in
S-PIN, if there exists a time point i that both proteins u and v are active (i.e., ti(u) =
ti(v) = 1), we say that they may interact with each other. If not, the edge (u,v) will be
removed from the edge set E.

2.2 Purification by Using Subcellular Location Information

It is well known that proteins must be localized at their appropriate subcellular com-
partment to perform their desired function. The basic idea that we use subcellular
location information to purify PIN is that two proteins should be at the same subcellular
location if they interact with each other. The subcellular localization database of
COMPARTMENT [35] developed by Binder et al., provides the subcellular location
information of several species, including yeast, human, mouse, rat, fly, worm and
arabidopsis. We download the subcellular location information of yeast. There are 11
different subcellular locations for yeast proteins: cytoskeleton, golgi apparatus, cytosol,
endosome, mitochondrion, plasma membrane, nucleus, extracellular space, vacuole,
endoplasmic, reticulum, peroxisome. For a protein u, its subcellular location infor-
mation can be viewed as an r-dimensional vector (r = 11), denoted as L(u) = (l1,…,li,
…,lr). If a protein u is localized at the ith subcellular compartment, li(u) = 1. For an
edge (u,v)2 E, only there exists a subcellular localization i where li(u) = li(v) = 1, we
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say that they may interact with each other at subcellular localization i. If not, the edge
(u,v) will be removed from the edge set E.

2.3 Network-Based Essential Protein Discovery Methods

In the past decades, a number of network-based essential protein discovery methods
have been proposed. In this paper, we collect six typical network-based methods and
test whether their performances on prediction of essential proteins are improved when
being applied on the purified (TS-PIN). As there is no differences for the network-based
methods when being applied on S-PIN or TS-PIN, only undirected graph G(V,E) is
used in the following definitions. Actually, the edge set of TS-PIN is a subset of E.

Given a protein interaction network G(V,E) and a protein u2V, let A be the adja-
cency matrix of the network and Nu be the set of its neighbors. The six network-based
methods (DC [6], BC [11], CC [12], SC [13], EC [14], and IC [15]) are defined as
following:

DC uð Þ ¼ Nuj j ð5Þ

BC uð Þ ¼
X

s6¼u 6¼t

qðs; u; tÞ
qðs; tÞ ð6Þ

CC uð Þ ¼ Nuj j � 1P
v2V distðu; vÞ

ð7Þ

SC uð Þ ¼
X1

l¼0

llðuÞ
l!

ð8Þ

EC uð Þ ¼ amaxðuÞ ð9Þ

IC uð Þ ¼ 1
Vj j

X
v2V

1
Iu;v

� ��1

ð10Þ

where qðs; tÞ is the total number of shortest paths from node s to node t and
qðs; u; tÞ denotes the number of those shortest paths that pass through u, distðu; vÞ
represents the distance of the shortest path from node u to node v, llðuÞ is the number
of closed walks of length l which starts and ends at node u,amax is the eigenvector
corresponding to the largest eigenvalue of the adjacency matrix A, Iu;v ¼ ðcu;u þ cv;v �
2 � cu;vÞ�1 and C = cu;v

� � ¼ ðD� Aþ JÞ�1, D is the diagonal matrix of all nodes’
degree, J is a matrix whose all elements are 1.

3 Results and Discussion

In order to evaluate whether the proposed TS-PIN is effective for predicting essential
proteins, we applied six typical network-based essential protein discovery methods (DC
[6], BC [11], CC [12], SC [13], EC [14], and IC [15]) on it and compare the results
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with those of the same methods applied on the original S-PIN, and NF-APIN. More-
over, the sensitivity (SN), specificity (SP), F-measure (F), positive predictive value
(PPV), negative predictive value (NPV), and accuracy (ACC) are calculated for each
method on all the three networks. Finally, different proteins identified by six essential
proteins discovery methods from TS-PIN and that from S-PIN, and NF-APIN are
studied.

3.1 Experimental Data

All the experiments in this study are based on the protein-protein interaction data of S.
cerevisiae, which is now the most complete data in all species and has widely been
used in the validation of essential protein discovery. The protein-protein interaction
data of S.cerevisiae is downloaded from DIP database [36] of 20101010, which con-
tains 5093 proteins and 24743 interactions after the repeated interaction and the
self-interactions are removed. S-PIN in this study is the network constructed by the
5093 proteins and 24743 interactions. Other biological information used in this study is
as following:

Essential Proteins: The essential proteins of S.cerevisiae are obtained from the fol-
lowing databases: MIPS(Mammalian Protein-Protein Interaction Database) [37], SGD
(Saccharomyces Genome Database) [38], DEG(Database of Essential Genes) [39] and
SGDP(Saccharomyces Genome Deletion Project) [40]. Out of all the 5093 proteins in
S-PIN, 1167 proteins are essential.

Subcellular Localization Data: The Subcellular localization information of S.cere-
visiae is obtained from COMPARTMENT [35] database. After removing the repeated
information, we finally obtain 11 subcellular locations.

Gene ExpressionData:GSE3431 from gene ExpressionOmnibus (GEO) [41] is used in
this paper. GSE3431 is a gene expression profiling of S.cerevisiae over three successive
metabolic cycles. For each cycle there are 12 time time points, and the time interval
between two time points is 25 min. The 6,777 gene products in the gene expressing
profile cover 95 % of the proteins in S-PIN. That is to say, 4846 gene expression profiles
are used in our experiment.

3.2 Identification of Essential Proteins from TS-PIN, S-PIN,
and NF-APIN

To compare the constructed TS-PIN with S-PIN and NF-APIN, we applied six popular
network-based essential protein discovery methods (DC, IC, EC, SC, BC, and CC) on
them. Similar to most validation methods for identifying essential proteins, we ranked
all the proteins by using each essential protein discovery method and selected a certain
top number of proteins as essential candidates. Then, the number of true essential
proteins was counted. A comparison of the number of true essential proteins identified
from TS-PIN and that identified from S-PIN and NF-APIN by using DC, EC, SC, BC,
CC, and IC was shown in Fig. 1.
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From Fig. 1 we can see that the performance of all the six network-based methods
is significantly improved when being applied on TS-PIN compared to being applied on
S-PIN and NF-APIN in terms of a number of true essential proteins identified. Taking
the typical centrality measure DC as an example, the improvements of its application
on TS-PIN are about 54.35 % and 26.79 %. Respectively, compared to the case applied
on S-PIN and NF-APIN when predicting the top 100 essential candidates. For EC and
SC, the improvements of them are both more than 90 % when being applied on TS-PIN
than on S-PIN for predicting the top 100 essential candidates. When compared to
NF-APIN, there are still 29.09 % and 36.84 % improvements for EC and SC when
being applied on TS-PIN. The experimental results show that the network-based
essential protein discovery methods are sensitive to false positives in PIN and the
purification of PIN can help to identify essential proteins more accurately.

3.3 Validated by Accuracy

In recent years, the sensitivity (Sn), specificity (Sp), F-measure (F), positive predictive
value (PPV), negative predictive value (NPV), and accuracy (ACC) have also been
used for the validation of essential protein discovery [19]. Let P be the number of

Fig. 1. Comparison of the number of essential proteins identified from TS-PIN and that
identified from S-PIN and NF-APIN by using six network-based essential protein discovery
methods: DC, EC, SC, BC, CC, and IC.
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predicted essential protein candidates and N be the number of the rest proteins. TP
represents the number of true essential proteins and FP is the number of non-essential
proteins in the prediction, respectively. FN denotes the number of the false negatives,
i.e., that true essential proteins are ignored by a method and TN is the number of true
negatives that non-essential proteins are correctly predicted to be nonessential. Then,
the sensitivity (Sn), specificity (Sp), F-measure (F), positive predictive value (PPV),
negative predictive value (NPV), and accuracy (ACC) are defined as following:

Sn ¼ TP
TPþFN

ð11Þ

Sp ¼ TN
TNþFP

ð12Þ

F ¼ 2Sn� Sp
Snþ Sp

ð13Þ

PPV ¼ TP
TPþFP

ð14Þ

NPV ¼ TN
TNþFN

ð15Þ

ACC ¼ TPþ TN
PþN

ð16Þ

The sensitivity (Sn), specificity (Sp), F-measure (F), positive predictive value
(PPV), negative predictive value (NPV), and accuracy (ACC) of the six methods (DC,
EC, SC, BC, CC, IC, LAC, NC, BN and DMNC) applied on TS-PIN, S-PIN and
NF-APIN were calculated and the results were shown in Table 1.

Table 1. The sensitivity(Sn), specificity (Sp), F-measure (F), positive predictive value (PPV),
negative predictive value (NPV), and accuracy (ACC) of the six methods (DC, EC, SC, BC, CC,
and IC) applied on TS-PIN, and that on NF-APIN, and S-PIN

Centrality Network Sn Sp F PPV NPV ACC

DC TS-PIN 0.4513 0.8146 0.5808 0.451 0.8148 0.7229
NF-PIN 0.4148 0.8023 0.5469 0.4145 0.8025 0.7045
S-PIN 0.393 0.7949 0.526 0.3927 0.7951 0.6935

EC TS-PIN 0.4358 0.8093 0.5665 0.4355 0.8096 0.7151
NF-PIN 0.3837 0.7918 0.5169 0.3834 0.792 0.6888
S-PIN 0.3665 0.786 0.4999 0.3663 0.7862 0.6801

IC TS-PIN 0.4389 0.8104 0.5694 0.4386 0.8106 0.7167
NF-PIN 0.4101 0.8007 0.5424 0.4098 0.8009 0.7021
S-PIN 0.3938 0.7952 0.5267 0.3935 0.7954 0.6939

(Continued)
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From Table 1, we can see that the sensitivity (Sn), specificity (Sp),F-measure (F),
positive predictive value (PPV), negative predictive value (NPV), and accuracy
(ACC) of the six methods applied on TS-PIN are consistently higher than that they
S-PIN and NF-APIN.

4 Conclusion

In the postgenome era, it has become a hot spot in the systems biology and bioin-
formatics to identify essential proteins from PINs with the accumulation of
protein-protein interactions. However, it is still a challenge to improve the predicted
precision of the network-based methods for the available protein-protein interaction
data are inevitable to contain many false positives, and the network-based methods are
very sensitive to false positives. In this paper, we therefore proposed a new purifying
method to filtering the false positives based on the assumption that two proteins can
physically interact with each other only if they are at the same subcellular location and
active together at least at a time point in the cell cycle. Correspondingly, we con-
structed TS-PIN and try to improve the accuracy of identifying essential proteins based
on the new network. To test the effectiveness of the purified network TS-PIN, we
applied six network-based essential protein discovery methods (DC [6], BC [11], CC
[12], SC [13], EC [14], and IC [15]) on it and compared the results with that on S-PIN
and on a dynamic network NF-APIN. The experimental results of the six network-
based methods from TS-PIN are consistently better than from S-PIN and NF-APIN.
The experimental results also demonstrates that the quality of TS-PIN is much better
than that of S-PIN and NF-APIN, the network-based methods will achieve better results
on a more precision PIN. The proposed purifying method can also be used in the PIN of
other species if its gene expression profiles and subcellular location information are
available. Moreover, some other network-based methods by integration of other bio-
logical information can also be applied and tested the constructed TS-PIN. As future
work, it would be interesting to apply the purifying method and TS-PIN to other
studies, such as identification of protein complexes and functional modules.

Table 1. (Continued)

Centrality Network Sn Sp F PPV NPV ACC

SC TS-PIN 0.4537 0.8154 0.583 0.4533 0.8156 0.7241
NF-PIN 0.3883 0.7933 0.5214 0.388 0.7935 0.6911
S-PIN 0.3665 0.786 0.4999 0.3663 0.7862 0.6801

BC TS-PIN 0.4358 0.8093 0.5665 0.4355 0.8096 0.7151
NF-PIN 0.3712 0.7876 0.5046 0.3709 0.7878 0.6825
S-PIN 0.3385 0.7765 0.4715 0.3383 0.7767 0.666

CC TS-PIN 0.4389 0.8104 0.5694 0.4386 0.8106 0.7167
NF-PIN 0.3588 0.7834 0.4922 0.3585 0.7836 0.6762
S-PIN 0.351 0.7807 0.4843 0.3507 0.7809 0.6723

114 M. Li et al.



References

1. Winzeler, E.A., Shoemaker, D.D., Astromo, A., Liang, H., Anderson, K., et al.: Functional
characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science
285, 901–906 (1999)

2. Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., et al.: Systematic functional
analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

3. Giaever, G., Chu, A.M., Ni, L., et al.: Functional profiling of the Saccharomyces cerevisiae
genome. Nature 418(6896), 387–391 (2002)

4. Cullen, L.M., Arndt, G.M.: Genome-wide screening for gene function using RNAi in
mammalian cells. Immunol. Cell Biology 83(3), 217–223 (2005)

5. Roemer, T., Jiang, B., Davison, J., et al.: Large-scale essential gene identification in Candida
albicans and applications to antifungal drug discovery. Mol. Microbiol. 50(1), 167–181
(2003)

6. Jeong, H., Mason, S.P., Barabási, A.L., et al.: Lethality and centrality in protein networks.
Nature 411(6833), 41–44 (2001)

7. Lin, C.C., Juan, H.F., Hsiang, J.T., et al.: Essential Core of Protein − Protein Interaction
Network in Escherichia coli. J. Proteome Res. 8(4), 1925–1931 (2009)

8. Liang, H., Li, W.H.: Gene essentiality, gene duplicability and protein connectivity in human
and mouse. TRENDS in Genet. 23(8), 375–378 (2007)

9. Zhao, B., Wang, J., Li, M., et al.: Prediction of essential proteins based on overlapping
essential modules. IEEE Trans. Nanobiosci. 13(4), 415–424 (2014)

10. Li, M., Wang, J.X., Wang, H., et al.: Identification of essential proteins from weighted
protein–protein interaction networks. J. Bioinform. Comput. Biol. 11(03), 1341002 (2013)

11. Joy, M.P., Brock, A., Ingber, D.E., et al.: High-betweenness proteins in the yeast protein
interaction network. BioMed. Res. Int. 2005(2), 96–103 (2005)

12. Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223(1), 45–53
(2003)

13. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality in complex networks. Phy. Rev.
E 71(5), 056103 (2005)

14. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182
(1987)

15. Stevenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11(1),
1–37 (1989)

16. Yu, H., Kim, P.M., Sprecher, E., et al.: The importance of bottlenecks in protein networks:
correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3(4), e59
(2007)

17. Lin, C.Y., Chin, C.H., Wu, H.H., et al.: Hubba: hub objects analyzer—a framework of
interactome hubs identification for network biology. Nucleic Acids Res. 36(suppl 2), W438–
W443 (2008)

18. Li, M., Wang, J., Chen, X., et al.: A local average connectivity-based method for identifying
essential proteins from the network level. Comput. Biol. Chem. 35(3), 143–150 (2011)

19. Wang, J., Li, M., Wang, H., et al.: Identification of essential proteins based on edge
clustering coefficient. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1070–1080 (2012)

20. Von Mering, C., Krause, R., Snel, B., et al.: Comparative assessment of large-scale data sets
of protein–protein interactions. Nature 417(6887), 399–403 (2002)

21. Brohee, S., Van Helden, J.: Evaluation of clustering algorithms for protein-protein
interaction networks. BMC Bioinform. 7(1), 488 (2006)

Identifying Essential Proteins by Purifying Protein Interaction Networks 115



22. Tang, X., Wang, J., Liu, B., et al.: A comparison of the functional modules identified from
time course and static PPI network data. BMC Bioinform. 12(1), 339 (2011)

23. Wang, J., Peng, X., Li, M., et al.: Construction and application of dynamic protein
interaction network based on time course gene expression data. Proteomics 13(2), 301–312
(2013)

24. Xiao, Q., Wang, J., Peng, X., et al.: Detecting protein complexes from active protein
interaction networks constructed with dynamic gene expression profiles. Proteome Sci. 11
(suppl 1), S20 (2013)

25. Li, M., Zhang, H., Wang, J., et al.: A new essential protein discovery method based on the
integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6(1), 15
(2012)

26. Li, M., Zheng, R., Zhang, H., et al.: Effective identification of essential proteins based on
priori knowledge, network topology and gene expressions. Methods 67(3), 325–333 (2014)

27. Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted
degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(2), 407–418 (2014)

28. Kim, W.: Prediction of essential proteins using topological properties in GO-pruned PPI
network based on machine learning methods. Tsinghua Sci. Technol. 17(6), 645–658 (2012)

29. Peng, W., Wang, J., Cheng, Y., et al.: UDoNC: an algorithm for identifying essential
proteins based on protein domains and protein-protein interaction networks. IEEE/ACM
Trans. Comput. Biol. Bioinform. 12(2), 276–288 (2015)

30. Peng, W., Wang, J., Wang, W., et al.: Iteration method for predicting essential proteins
based on orthology and protein-protein interaction networks. BMC Syst. Biol. 6(1), 87
(2012)

31. Li, M., Lu, Y., Niu, Z., et al.: United complex centrality for identification of essential
proteins from PPI networks (2015). doi:10.1109/TCBB.2015.2394487

32. Ren, J., Wang, J., Li, M., et al.: Discovering essential proteins based on PPI network and
protein complex. Int. J. Data Mining Bioinform. 12(1), 24–43 (2015)

33. Przytycka, T.M., Singh, M., Slonim, D.K.: Toward the dynamic interaction: it’s about time.
Brief Bioinform. 11, 15–29 (2010)

34. Wu, F.X., Xia, Z.H., Mu, L.: Finding significantly expresses genes from timecourse
expression profiles. Int. J. Bioinform. Res. Appl. 5(1), 50–63 (2009)

35. Binder, J.X., Pletscher-Frankild, S., Tsafou, K., et al.: COMPARTMENTS: unification and
visualization of protein subcellular localization evidence. Database, 2014: bau012 (2014)

36. Xenarios, I., Rice, D.W., Salwinski, L., et al.: DIP: the database of interacting proteins.
Nucleic Acids Res. 28(1), 289–291 (2000)

37. Mewes, H.W., Frishman, D., Mayer, K.F.X., et al.: MIPS: analysis and annotation of
proteins from whole genomes in 2005. Nucleic Acids Res. 34(suppl 1), D169–D172 (2006)

38. Cherry, J.M., Adler, C., Ball, C., et al.: SGD: Saccharomyces genome database. Nucleic
Acids Res. 26(1), 73–79 (1998)

39. Zhang, R., Ou, H.Y., Zhang, C.T.: DEG: a database of essential genes. Nucleic Acids Res.
32(suppl 1), D271–D272 (2004)

40. Saccharom yces Genome Deletion Project. http://www.sequence.stanford.edu/group/yeast_
deletion_project

41. Tu, B.P., Kudlicki, A., Rowicka, M., et al.: Logic of the yeast metabolic cycle: temporal
compartmentalization of cellular processes. Science 310(5751), 1152–1158 (2005)

42. Holman, A.G., Davis, P.J., Foster, J.M., et al.: Computational prediction of essential genes
in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi. BMC Microbiol.
9(1), 243 (2009)

116 M. Li et al.

http://dx.doi.org/10.1109/TCBB.2015.2394487
http://www.sequence.stanford.edu/group/yeast_deletion_project
http://www.sequence.stanford.edu/group/yeast_deletion_project


Differential Functional Analysis and Change
Motifs in Gene Networks to Explore the Role

of Anti-sense Transcription
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Abstract. Several transcriptomic studies have shown the widespread
existence of anti-sense transcription in cell. Anti-sense RNAs may be
important actors in transcriptional control, especially in stress response
processes. The aim of our work is to study gene networks, with the par-
ticularity to integrate in the process anti-sense transcripts. In this paper,
we first present a method that highlights the importance of taking into
account anti-sense data into functional enrichment analysis. Secondly, we
propose the differential analysis of gene networks built with and with-
out anti-sense actors in order to discover interesting change motifs that
involve the anti-sense transcripts. For more reliability, our network com-
parison only studies the conservative causal part of a network, inferred
by the C3NET method. Our work is realized on transcriptomic data from
apple fruit.

1 Introduction

Understanding the regulation mechanisms in a cell is a key issue in bioinformat-
ics. As large-scale expression datasets are now available, gene network inference
(GNI) is a useful approach to study gene interactions [1], and a lot of meth-
ods have been proposed in the literature for this reverse engineering task [2–4].
Going a step further, the field of differential network analysis [5,6] proposes to
decipher the cellular response to different situations. In medicine the compari-
son of interaction maps observed in cancerous tissues and healthy tissues may
reveal network rewiring induced by the disease [7]. In these approaches, the com-
parative analysis is performed on networks that involve the same set of actors,
namely the genes or proteins of the studied organism.

The aim of our work is to study gene networks, with the particularity to
integrate in the process anti-sense transcripts. Anti-sense RNAs are endoge-
nous RNA molecules whose partial or entire sequences exhibit complementarity
to other transcripts. Their different functional roles are not completely known
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but several studies suggest that they play an important role in stress response
mechanisms [8]. A recent study with a full genome microarray for the apple has
detected significant anti-sense transcription for 65 % of expressed genes [9], which
suggests that a large majority of protein coding genes are actually concerned by
this process.

The work described in this paper proposes a large-scale analysis of apple
transcriptomic data, with measures of anti-sense transcripts. To highlight the
impact of anti-sense transcription, we propose to compare context-specific gene
networks that involve different kinds of actors, on one hand the sense transcripts
that are usually used in gene networks and on the other hand the sense and anti-
sense transcripts. GNI methods generally find many false positive interactions,
and some authors have proposed to study the core part of a gene network [10], by
only computing for each gene the most significant interaction with another gene.
We follow this line in order to discover which interactions of the core network
are modified when we integrate in our GNI method the anti-sense transcripts.
To characterize these modifications, we define the notions of change motifs for
the comparison graph. Our preliminary results on the apple datasets show that
relevant information is provided by this approach.

In Sect. 2, we present the motivations of this work and the apple datasets that
are used in our study. In Sect. 3, we present a differential functional analysis
that reveals the interest of taking into account anti-sense data. In Sect. 4, we
present our method to compare two core gene networks and to detect motifs
that underline the role of anti-sense transcripts.

2 Motivations and Biological Material

Several studies have revealed the widespread existence of anti-sense RNAs in
many organisms. Anti-sense transcripts can have different roles in the cell [8].
A significant effect is the post-transcriptional gene silencing: the self-regulatory
circuit where the anti-sense transcript hybridizes with the sense transcript to
form a double strand RNA (dsRNA) that is degraded in small interfering RNAs
(siRNA). Previous studies on Arabidopsis Thaliana showed that sense and anti-
sense transcripts for a defense gene (RPP5) form dsRNA and generate siRNA
which presumably contributes to the sense transcript degradation in the absence
of pathogen infection [11].

In [9], the authors have combined microarray analysis with a dedicated chip
and high-throughput sequencing of small RNAs to study anti-sense transcription
in eight different organs (seed, flower, fruit, ...) of apple (Malus × domestica).
Their atlas of expression shows several interesting points. Firstly, the percentage
of anti-sense expression is higher than that reported in other studies, since they
identify anti-sense transcription for 65 % of the sense transcripts expressed in at
least one organ, while it is about 30 % in previous Arabidopsis Thaliana studies.
Secondly, the anti-sense transcript expression is correlated with the presence of
short interfering RNAs. Thirdly, anti-sense expression levels vary depending on
both organs and Gene Ontology (GO) categories. It is higher for genes belonging
to the “defense” GO category and on fruits and seeds.
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In order to study the impact of anti-sense transcripts, we use data of apple
fruit during fruit ripening. The fruit ripening is a stress-related condition involv-
ing “defense” genes. We analyse RNA extracted from the fruit of apple thanks
to the chip AryANE v1.0 containing 63011 predicted sense genes and 63011
complementary anti-sense sequences. This chip allows us to study the role of
anti-sense transcripts at the genome-wide level by supplying transcriptional
expression on both sense and anti-sense transcripts. We study the fruit ripen-
ing process described by two conditions: harvest (H) and 60 days after harvest
(60DAH), and for each condition, 22 samples of apple fruit have been analysed.
We first identify transcripts displaying significant differences between the two
conditions (p-val<1 %). With a further threshold of 1 log change between the
two conditions, we found 931 sense (S) and 694 anti-sense transcripts (AS) dif-
ferentially expressed, with among them, 200 transcripts (S∩AS) for which both
sense and anti-sense fulfil the condition. In the following, these 1625 transcripts
will be called transcripts of interest for our study of apple ripening.

3 Differential Functional Analysis

A lot of tools are available to identify which GO categories are statistically over-
represented in a set of genes. The Cytoscape plugin BiNGO [12] performs this
task in a flexible and interactive way and moreover, the output of BiNGO is
a graph where nodes represent GO categories and arcs represent the hierarchy
between categories. In this visualisation, the size of a node is proportional to the
number of genes in the test set annotated by this category, and the color of a node
codes the over-representation: dark orange categories are most significantly over-
represented, whereas white nodes are not significant but are included to show
the hierarchy linking the dark categories.

In our experiment about apple ripening, the analysis of probes that are dif-
ferentially expressed shows an important proportion of anti-sense actors: 694 AS
probes for 931 S probes. Therefore it is relevant to question the role of these
anti-sense actors in the ripening process. To look at this point, we propose a
differential functional analysis where we compare the functional categories over-
represented in the set of S probes and the functional categories over-represented
in the set of probes S ∪ AS. Anti-sense probes are not associated with a GO
category. We decided to associate an anti-sense probe with the category of its
corresponding sense probe1. This decision is based on the fact that due to its
sequence complementarity, an anti-sense transcript may interact with the cor-
responding sense transcript, or at least with a very close member of the gene
family.

The differential functional analysis is performed as follows. We apply BiNGO
on the set S containing 931 genes, and we apply BiNGO on the set SAS (S∪AS)
containing 494 supplementary genes. These 494 genes are the genes associated
with the AS probes of interest for which the corresponding sense probe is not
1 Because there is no GO category for apple transcripts, we use Arabidopsis Thaliana

orthologs in order to associate apple transcripts with GO categories.
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Fig. 1. BiNGO outputs for SAS probes (left), the revealed-by-AS terms (right) with
a zoom (bottom) of the red square of the revealed-by-AS terms. Node size denotes the
number of genes in the GO category. Node color denotes the over-representation of the
GO category (yellow : low, orange : high). Arcs denote the hierarchy between nodes.
(Color figure online)

differentially expressed. We thus obtain two sets of GO categories represented
as two sub-graphs of the GO. Our proposal is then to compute the difference of
these two sets; this provides a set of functional terms that are over-represented
only when we include the AS probes in the functional analysis and we call these
terms the revealed-by-AS terms.

Figure 1 shows the SAS ontology and the difference with the S ontology that
gives the revealed-by-AS terms. We can see on this representation that the nodes
of the difference occur on many branches of the SAS ontology, meaning that the
revealed-by-AS terms are not specific to a GO category.

This differential analysis gives us 125 revealed-by-AS terms, associated with
their p-values. We present the top 10 terms in Table 1, where we report how
many genes are associated with the terms. As pointed out by the authors of
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Table 1. Top 10 of revealed-by-AS terms, sorted by p-values. For each term, we indicate
the number of genes associated to transcripts of interest, and if the term is a most
specific revealed-by-AS term.

GO category p-value # genes Most specific

hyperosmotic response 4.4644e-05 30 yes

response to cold 5.4256e-05 56 yes

multicellular organismal process 1.1794e-04 225 no

response to high light intensity 5.2641e-04 25 yes

growth 1.6007e-03 56 no

cellular biosynthetic process 1.6007e-03 329 no

cell growth 1.8010e-03 51 no

regulation of response to stimulus 1.8376e-03 58 no

salicylic acid mediated signaling pathway 2.0524e-03 30 yes

jasmonic acid mediated signaling pathway 2.2286e-03 27 yes

BiNGO, due to the interdependency between GO categories in the hierarchy,
the most relevant terms of the output are the terms located farthest down the
hierarchy, that correspond to more specific functions. Therefore the interpreta-
tion will focus on the most specific terms according to the ontology hierarchy,
as indicated in Table 1. These revealed-by-AS terms highlight biological func-
tions that are over-represented in our probes of interest only when we include
AS informations. Our experiment concerns the complex process of apple ripen-
ing. In this experiment, between harvest (H) and 60 days after harvest (60DAH),
fruits are stored in cold rooms and have to react to cold stress. We notice that
the response to cold term is a revealed-by-AS term. Therefore, if we do not
consider the anti-sense data, we loose important information for a functional
analysis. Moreover, the response to cold term is represented by 56 sense or
anti-sense actors in our probes of interest; if we examine the differential expres-
sion of these transcripts, we notice that 24 of them are anti-sense probes with
a diminution of their expression between H and 60DAH, while the corresponding
sense probes have no differential expression. The differential functional analysis
that we propose is thus a way to focus on interesting anti-sense transcripts that
deserve a further biological study.

4 Network Comparison

4.1 Inference of the Core Part of a Gene Network

Many models have been proposed to infer gene networks from transcriptomic
data. Reviews of the reverse engineering methods can be found in [2,3,13].
A family of inference methods reconstruct pairwise gene interaction networks
by measuring with a statistical criterion whether two genes are co-expressed
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or co-regulated. This statistical measure can be the Spearman or Pearson
correlation [14], or the mutual information [10,15]. Mutual information enables
the detection of non-linear relationships. These methods need a step of thresh-
olding to decide which values of the statistical measure are significant. One major
drawback of these methods is that many of the predicted interactions are false
positives. We can differentiate two types of false positive interactions: an inter-
action that does not biologically exist, and an indirect interaction. If two genes
g2 and g3 are regulated by g1, then mutal information (as well as correlation)
between g2 and g3 is high and an indirect interaction is put in the inferred net-
work. Indirect interactions lead in large gene networks difficult to interpret by
biologists and they must be pruned from the output networks [15,16]. To avoid
this pitfall, the method C3NET proposes to compute the conservative causal
core of a gene network, by selecting for each gene a unique interaction. Figure 2
decomposes the C3NET algorithm, that we use in this work. From the mutual
information matrix, for each line corresponding to a gene g, the algorithm iden-
tifies the maximal mutual information which defines the best neighbor that will
be connected to g in the network. Experiments have shown the good ability of
this conservative method to capture the causal structure of a regulatory network.

Fig. 2. C3NET procedure from the mutual information matrix to the network adja-
cency matrix. The mutual information matrix is computed from transcriptomic data.
Step 1: non-significant and diagonal values are suppressed. Step 2: the maximal mutual
information is identified for each row. Step 3: the matrix is transformed into a boolean
matrix. Step 4: the resulting adjacency matrix is made symmetric because mutual infor-
mation does not provide directional information. This is the adjacency of the computed
network.

4.2 Comparison of Core Networks : Change Motifs

To study the role of anti-sense transcripts in gene regulation networks, we pro-
pose to compare two networks obtained by C3NET, the NS network using only
sense actors, and the NSAS network using sense and anti-sense actors. Our goal
is to identify which direct interactions are modified in the core network when
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Fig. 3. Mutual information matrices from S (left) and SAS (right). With anti-sense
data, the maximal mutual information changes (green values). s3 is connected with s1
in NS (red value) and with as2 in NSAS . (Color figure online)

we consider anti-sense transcripts. To achieve this, we need the first three steps
of C3NET (we do not need the symmetric matrix). Figure 3 illustrates modifi-
cations of interactions in the matrix. In NS for s3 the direct interaction occurs
with s1 but in NSAS , the direct interaction occurs with as2. This is this type of
modification that we want to identify.

When we integrate anti-sense actors in the core network computation, we
focus on sense nodes which become connected with an anti-sense node. It means
that an arc from NS between two sense nodes is now an arc from a sense to an
anti-sense in NSAS .

In order to highlight those modifications, we construct a comparison graph
G by adding NS arcs to NSAS . We visualize this graph with Cytoscape [17],
where we color arcs of G depending on the network they belong to: an arc is
green if it only exists in NSAS , red if it only exists in NS and grey if it exists in
both networks. With this color code, an interaction from NS replaced in NSAS

is represented by a sense node with a green and a red arc (Fig. 4a).
Around this elementary motif, named M0, we observe richer configurations

represented in Fig. 4b. M1 motif denotes a strong link between a sense and an
anti-sense. M2 motif reveals that the interaction between S1 and S2 observed
in NS is in fact an indirect one that involves the anti-sense AS3.

We have constructed comparison graphs from H and 60DAH experiments. The
60DAH comparison graph can be visualized in Fig. 4c. This visualization allows
biologists to explore what gene links are impacted by the anti-sense transcripts.
In a more quantitative way, we give in Table 2 the count of the motifs existing
in each of the graphs. The most important information is the number of M0

motifs that indicates how many sense actors are connected to an anti-sense. We
notice that there are about 380 M0 motifs, which means that 40 % of the 931 S
transcripts are involved in a M0 motif, for 50 % of the 694 AS transcripts. Among
these M0 motifs, about 30 % are M1 motifs, where sense and anti-sense are
strongly connected. Richer motifs M2 are less represented. As the core network
tries to capture the most important gene interactions, the fact that 40 % of S
network is impacted by anti-sense actors shows that anti-sense transcripts play
a role in fruit ripening.
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M 0

(a)

M 1 M 2

(b)

(c)

Fig. 4. Motifs and comparison graph of a Sense network with a Sense and Anti-sense
network. Blue nodes denote sense nodes and purple nodes denote anti-sense nodes.
(4a) Elementary motif. (4b) Richer motifs observed. (4c) Comparison graph between
NS and NSAS networks from 60DAH experiment. (Color figure online)

Table 2. Number of motifs, number of motifs containing at least one revealed-by-AS
transcript and number of these transcripts being in motifs. The number of revealed-
by-AS transcripts associated with the term is noted in parentheses.

Experiment H 60DAH

Motif M0 M1 M2 M0 M1 M2

Global # motifs 371 107 18 384 116 19

hyperosmotic response # motifs 18 3 1 21 8 0

(37 transcripts) # transcripts 17 3 1 18 8 0

response to cold # motifs 25 4 2 32 12 1

(63 transcripts) # transcripts 24 4 2 29 13 1

response to high light # motifs 14 5 1 13 7 0

intensity (31 transcripts) # transcripts 12 5 2 12 7 0

salicylic acid mediated # motifs 17 3 0 14 3 1

signaling pathway (36 transcripts) # transcripts 15 3 0 13 3 1

jasmonic acid mediated # motifs 14 2 0 13 3 0

signaling pathway (31 transcripts) # transcripts 13 2 0 12 3 0



Differential Functional Analysis and Change Motifs in Gene Networks 125

4.3 Change Motifs and Functional Analysis

In Sect. 2 we have proposed a differential functional analysis and defined the
revealed-by-AS terms. We now combine the information provided by the func-
tional analysis with the information provided by motifs. To illustrate this, we
select in Table 1 the most specific GO categories from the top 10 revealed-by-AS
terms and study what kind of motifs are related to these terms. Table 2 counts,
for each term, the number of motifs which contain at least one transcript associ-
ated to the term, and the number of transcripts associated to the term present
in the motifs. We notice that in both experiments, for each term, around 40 %
of the transcripts are involved in a M0 motif. This observation encourages us to
study the gene regulatory networks related to the revealed-by-AS terms, which
will be the next step of this work.

5 Conclusion

The aim of our work is to study gene networks, with the particularity to integrate
in the process anti-sense transcripts. Firstly we propose a method that highlights
biological functions impacted by anti-sense transcription. Biological functions
are identified by computing the difference between two ontologies. Secondly we
propose a differential gene network analysis allowing to identify which direct
interactions are modified. We combine these two methods to submit limited sets
of anti-sense transcripts to the biological interpretation.

The field of differential network analysis is certainly a promising approach to
study context-specific regulation networks. For example, the method proposed in
[18] compares two networks computed by C3NET corresponding to different cell
conditions (disease versus normal). The aim is to identify the disease network,
that is the interactions that only appear in disease-related cells. This method
can not be applied in our case. In fact, we rely on the same algorithm to compute
a network of direct interactions. But in our case, we compare two networks that
involve different actors, the sense transcripts in one hand and the sense and
anti-sense transcripts in the other hand. These two networks concern the same
experimental condition and the change motifs that we compute aim to highlight
potential anti-sense actions.

References

1. Brazhnik, P., de la Fuente, A., Mendes, P.: Gene networks: how to put the function
in genomics. Trends Biotechnol. 20(11), 467–472 (2002)

2. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer
gene networks from expression profiles. Mol. Syst. Biol. 3(1), 78 (2007)
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Abstract. MicroRNA refers to a set of small non-coding RNA which
plays important roles in regulating specific mRNA targets and sup-
pressing their expression. Previous researches have verified that the
deregulations of microRNA are closely associated with human disease.
However it is still a big challenge to design an effective computational
method which can integrate multiple biological information to predict
microRNA-disease associations. Based on the observation that microR-
NAs with similar functions tend to associate with common diseases, the
diseases sharing similar phenotypes are likely caused by common microR-
NAs and similar environment factors also affect microRNAs with sim-
ilar functions and diseases with similar phenotypes. In this work, we
design a computational method which can combine microRNA, disease
and environmental factors to predict microRNA-disease associations.
The method namely ThrRWMDE, takes several steps of random walking
on three different biological networks, microRNA-microRNA functional
similarity network(MFN), disease-disease similarity network(DSN) and
environmental factor similarity network(ESN) respectively so as to get
microRNA-disease association information from the neighbors in corre-
sponding networks. In the course of walking, the microRNA-disease asso-
ciation information will also be transferred from one network to another
according to the interactions between the nodes in different networks.
Our method is not only a framework which can effectively integrate differ-
ent types of biological methods but also can easily treat these information
differently with respect to the topological and structural difference of the
three networks. The results of experiment show that our method achieves
better prediction performance than other state-of-the-art methods.

1 Introduction

MicroRNAs are a set of non-coding RNA which are approximately 22 nucleotides
in length. MicroRNAs regulate the gene expressions at the post-transcriptional
level. They suppress protein synthesis or initiate mRNA degradation by binding
c© Springer International Publishing Switzerland 2016
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to the 3’UTR of targeted mRNA. MicroRNAs are involved in a wide range of
biological functions, such as cell proliferation, cell death, stem cell differentia-
tion, hematopoiesis. Recently some researches have pointed out some microR-
NAs have close associations with human diseases including cancers, heart disease
and neurological disease. With the development of high throughput techniques,
plenty of microRNAs have been detected. However the functions of most of these
microRNAs still remain to be discovered. Lots of works are needed to identify
which microRNAs are associated to diseases. Experimental methods to detect
disease related microRNA are expensive and time-consuming. Therefore, some
computational methods have been proposed.

Most of computational methods are based on the assumption that microR-
NAs with similar functions tend to association with common disease and the
diseases shared similar phenotypes are likely caused by common microRNA [1].
Jiang et al. [1] have proposed first microRNA-disease association prediction
method, which has constructed a functionally related microRNA network and
a human phenome-microRNA network. After that, they calculated a score for
each microRNA by the cumulative hypergeometric distribution. Xuan et al. [2]
have proposed a new method, HDMP, which calculates the similarity between
microRNAs according to the similarity of disease their associated. Then they
selected the weighted k most similar neighbors to predict disease-related microR-
NAS. Considering that previous method only use local network information to
predict microRNA-disease association, Chen et al. [3] have adopted global net-
work information and applied a Random walk with Restart method (RWRMDA)
on microRNA-microRNA functional similarity network to predict microRNA-
disease association. Recently, Chen’s group [4] have proposed a new method
RLSMDA, which is a semi-supervised and global method to get microRNA-
disease association information from microRNA functional similarity network
and disease semantic similarity network simultaneously. This method can work
without known microRNA-disease associations.

Since microRNAs regulate diseases through their target genes, there is a
high probability that the microRNA will affect the disease if an microRNA tar-
get gene is associated with a disease related genes. Based on this assumption,
Jiang et al. [5] have used a Naive Bayes model to integrate multiple types of data
source to calculate the functional similarity between genes. There are associa-
tions between microRNA and genes, between diseases and genes. They used the
functional similarity between the microRNA target genes and disease related
genes to priority the disease related microRNAs. Shi et al. [6] have mapped
microRNA targeted genes and disease related genes to protein-protein inter-
action (PPI)network respectively. They obtained two ranked list of genes by
random walk with restart algorithm with different seeds. Then they used the
p-value to measure the significant that a microRNA is associated with a disease.
This type of methods highly depend on the correct associations between genes
and microRANs or diseases. However it still is a big challenge to identify micro-
RAN target genes and disease related genes. Chen et al. [7] focused on comput-
ing similarity of two microRNAs from two separated perspectives, microRNA-
based similarity inference and phenotype-based inference. They calculated the
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Pearson correlation scores between the two types of similarities to infer the asso-
ciations between microRNA and disease. The methods mentioned above have
used the microRNA-microRNA similarity and disease-disease similarity to make
prediction. They have employed different methods to calculate the similarities,
i.e. microRNA functional similarity, microRNA sequence similarity, disease phe-
notype similarity, disease function similarity, disease semantic similarity. Lan
et al. [8] have proposed a kernelized Bayesian matrix factorization(KBMFMDI)
method to integrate multiple similarities to get better prediction performance.

More introduction and discussion about the computational methods of pre-
dicting microRNA-disease associations are in [9]. Although previous works have
done many efforts to improve the accuracy of disease related microRNA predic-
tion on the base of combining microRNA similarity and disease similarity. In order
to further improve the prediction performance, more biological knowledge should
be utilized [9]. Recent studies show that microRNA expression can be altered
by environment factors (EF) [10], such as diet,stress,drug,alcohol etc. Diseases
also have relationships with environment factors [9]. The database miREnviron-
ment [11] collects manually curated and experimentally supported associations
among microRNAs, environment factors and disease phenotypes. Qiu et al. [12]
have revealed the microRNA-EF interaction patterns and proposed a new com-
putational method to predict new EF-disease associations. Chen et al. [13] have
made use of environmental factor data to predict EF-microRNA associations. Li
et al. [14] have incorporated environmental factors to predict microRNA networks.
However, few works have combines microRNAs, diseases and Environment factors
to predict microRNA-disease associations. Consequently, in this work, we pro-
pose a new method named by ThrRWMDE, which can both use the inter- and
intra- relationships of the three types of information to predict disease related
microRNAs.

Our method is based on following observations: (1) two functional similar
microRNAs tend to affect a common disease and vice versa, (2) two functional
similar microRNAs tend to interact with similar environmental factors and vice
versa [7]. (3) two similar diseases are highly caused by a common environmental
factors and vice versa [12]. With respect to similarity of each biological property,
three types of biological networks can be constructed, microRNA-microRNA func-
tional similarity network (MFN), disease-disease similarity network (DSN) and
environmental factor similarity network (ESN). There are intricate associations
within and between these networks. Our method ThrRWMDE implements sev-
eral random walking steps on the three biological networks respectively so as to
get microRNA-disease association information from the neighbors in correspond-
ing networks. In the course of walking, the microRNA-disease association infor-
mation will be transferred from one network to another according to the interac-
tions between the nodes in different networks. Our method is not only a framework
which can effectively integrate different types of biological method but also can
treat these information differently with respect to the topological and structural
difference of the three networks. The results of experiment show that our method
achieves better prediction performance than other two state-of-the-art methods
KBMFMDI [8] and RLSMDA [4] in terms of area under the curves(AUC).
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2 Methods

2.1 Experimental Data

We obtain known human microRNA-disease association data from [15], which is
also downloaded from HMDD database [16]. The dataset includes 271 microR-
NAs, 137 diseases and 1395 miRNA-disease interactions.

The microRNA functional similarity data is downloaded from http://www.
cuilab.cn/misim.zip [15]. The microRNA functional similarity network is con-
structed based on the microRNA functional similarity data.

Disease similarity network is constructed based on disease function similar-
ity which is calculated by SemFunSim [17]. This method assumed that similar
diseases tend to be related to genes with similar functions.

The environmental factor similarity network is constructed based on the
chemical structure similarity of environmental factor. The chemical structure
similarities are downloaded from supplemental material of [13], which are cal-
culated by SIMCOMP [18]. There are 138 EFs in EF similarity network. The
association between the EF and microRNA, EF and diseases are downloaded
from miREnironment database. There are 1019 associations between the 138
EFs and the 271 microRNAs. There are 978 associations between the 138 EFs
and the 137 diseases.

Since miREnironment database collects the associations between EF and
disease phenotypes. We map the phenotypes in miREnironment to the disease
in HMDD database by using the information downloaded from Disease Ontol-
ogy http://aber-owl.net/aber-owl/diseasephenotypes/data/ and Medical Sub-
ject Headings(MeSH, http://www.nlm.nil.gov)

2.2 Three Random Walk Algorithm on Three Biological Networks

ThrRWMDE method mainly takes two steps to predict the associations between
microRNAs and diseases. Firstly, construct three different biological networks.
They are microRNA functional similarity network(MSN), disease similarity net-
work(DSN) and environmental factor similarity network(ESN). Secondly several
random walk steps are taken in ESN, DSN and MSN iteratively so as to obtain
the information of level-k neighbors in corresponding network. Moreover, our
method can easily walks different steps on the three networks with respect to
their difference topologies and structures. In the course of iteration, some poten-
tial associations between microRNAs and diseases can not only be explored
from the inter and intra association between microRNAs and diseases but also
be inferred according to the associations between microRNAs and EFs and the
associations between EFs and diseases. To formally define our method, some
variables are introduced.

Let M(m*m), D(d*d) and E(e*e) be the adjacency matrix of MSN, DSN
and ESN respectively. Let matrix Y 1(m*d), Y 2(e*m) and Y 3(e*d) store known
microRNA-disease associations, known EF-microRNA associations and EF-
disease associations respectively. The values of elements in these matrixes are 1,

http://www.cuilab.cn/misim.zip
http://www.cuilab.cn/misim.zip
http://aber-owl.net/aber-owl/diseasephenotypes/data/
http://www.nlm.nil.gov
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if there exist associations between corresponding nodes, 0 otherwise. Matrix
Rmd(m*d) and Red(e*d) denote the predicted microRNA-disease associations
and predicted EF-disease associations respectively.

Our work aims to get matrix Rmd according to matrix M , D, E, Y 1, Y 2
and Y 3. The values in matrix Rmd can be updated through three ways. Firstly,
several random walk steps (l1) are taken in MSN network to get disease related
information from level- l1 neighbors of microRNA (see Formula 1). Secondly, sev-
eral random walk steps (r1) are taken in DSN to get microRNA related informa-
tion from level- r1 neighbors of disease (see Formula 2). Thirdly, some potential
microRNA-disease associations can be inferred by passing the disease-EF asso-
ciations through the known microRNA-EF associations (see Formula 3). Finally,
the three types of predicted microRNA-disease associations can be weighed syn-
thesized to get the final predicted microRNA-disease associations of each itera-
tion (see Formula 4).

Similarly, the predicted EF-disease associations stored in matrix Red are also
updated in three ways. Some potential EF-disease associations can be explored
by extending EF path and disease path in ESN and DSN respectively (see
Formulas 5 and 6). The predicted EF-disease associations can also be updated
by transferring the microRNA-disease associations to EF through the associa-
tions between microRNAs and EFs (see Formula 7). Finally, the final predicted
EF-disease associations of each iteration are calculated by weighted sum of the
three types of predicted EF-disease associations(see Formula 8).

In order to infer information from different levels of neighbors in the three
networks, random walking is iteratively taken on corresponding networks. Para-
meters l1, r1, l2 and r2 are used to control the walking steps in the three networks
in the course of iteration. Their values can be easily set differently with respect
to the difference among the three networks. In summary, Algorithm 1 outlines
the algorithm of ThrRWMDE.

3 Results

In order to assess the effectiveness of ThrRWMDE, we compare it with other
two methods KBMFMDI [8] and RLSMDA [4]. The parameters α, l1, r1, l2 and
r2 of ThrRWMDE are set to 0.9, 1,1,1 and 1 respectively. The parameter w in
RLSMDA is set to 0.9 which is selected from those recommended by the authors.

3.1 Five-Fold Cross Validation of Performance

To evaluate the performance of our method, five-fold cross validation is adopted,
which divides the known microRNA-disease associations into five folds. One of
the five fold is put into test set and the rest associations are selected as train set.
According to known microRNA-disease associations, two metrics, true positive
rate (TPR)and false positive rate(FPR) are utilized to evaluate the accuracy
of the prediction. For each disease, microRNAs ranked in top t are considered
as disease related. With different values of t selected, the ROC (TPR-FPR)
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Algorithm 1. ThrRWMDE
1: Input: Matrix M , D, E, Y 1,Y 2, Y 3, parameter α, iteration steps l1, r1, l2 and

r2, test set S;
2: Output: predicted association matrix Rmd, Red ;
3: Clear the values i, j of matrix Y 1, if i, j in S
4: Rmd0 = Y 1 = Y 1

sum(Y 1)

5: Red0 = Y 2 = Y 2
sum(Y 2)

6: for (t = 1 to max(l1 , r1, l2 , r2)) do
7: λm1 = λd1 = λe1 = λm2 = λd2 = λe2 = 0;
8: if (t <= l2) then
9: Redt

e = α ∗ E ∗ Redt−1 + (1 − α) ∗ Y 2 (Formula 5)
10: Redt

m = Y 3 ∗ Rmdt−1 (Formula 7)
11: λe2 = 1
12: λm2 = 1
13: end if
14: if (t<=r2) then
15: Redt

d = α ∗ Redt−1 ∗ D + (1 − α) ∗ Y 2 (Formula 6)
16: λd2 = 1
17: end if
18: Redt = ((λe2 ∗Redt

e +λd2 ∗Redt
d +λm2 ∗Redt

m)/(λe2 +λd2 +λm2)) ( Formula 8)
19: if (t<=l1) then
20: Rmdt

m = α ∗ M ∗ Rmdt−1 + (1 − α) ∗ Y 1 (Formula 1)

21: Rmdt
e = Y 2

′ ∗ Redt−1 (Formula 3)
22: λm1 = 1
23: λe1 = 1
24: end if
25: if (t<=r1) then
26: Rmdt

d = α ∗ Rmdt−1 ∗ D + (1 − α) ∗ Y 1 (Formula 2)
27: λd1 = 1
28: end if
29: Rmdt = ((λm1∗Rmdt

m+λd1∗Rmdt
d+λe1∗Rmdt

e)/(λm1+λd1+λe1)) (Formula 4)
30: end for
31: return (Rmd,Red)

curve of each method is plotted and corresponding AUC score is calculated.
The process is repeated 500 times. For each method, their average AUC value
over all diseases is calculated. As Fig. 1 shown, compared with RLSMD(AUC is
0.7862)and KBMF(AUC is 0.7877), ThrRWMDE has the highest AUC value,
which is 0.8461. The outperforms of ThrRWMDE suggests its success in inte-
grating three different biological network resources.

3.2 Effect of Parameter on Performance of ThrRWMDE

In ThrRWMDE, parameter α controls the weight of the regulation of known
associations in the course of iteration. When α is set to 1, ThrRWMDE explores
potential MicroRNA-disease associations without considering known ones. In
order to test the effect of parameter α on performance of ThrRWMDE,we set α to
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Fig. 1. Comparison of each method performance in terms of AUC value of ROC curve.

Table 1. Comparison of AUC scores over all diseases with respect to different α values

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AUC 0.8461 0.8473 0.8461 0.8467 0.8463 0.8468 0.8475 0.8469 0.8467

different values ranging from 0.1 to 0.9. The average AUC values of ThrRWMDE
with respect to different α are listed in Table 1. The results in Table 1 show that
the change of α value has little influence on the predict performance. Conse-
quently, in this work, we set the value of parameter α to 0.9 as same as RLSMDA.

4 Conclusion

In this work, we propose a new method named ThrRWMDE to predict
microRNA-disease associations based on three biological networks, MSN, DSN
and ESN. This method walks several steps in the three networks respectively.
In the course of walking, the microRNA-disease association or EF-disease infor-
mation can be inferred from the neighbors in corresponding network but also
the information of microRNA-disease association is transferred from one net-
work to another through the associations between the nodes in them. Compared
to previous methods, our method incorporates environmental factors to pre-
dict microRNA-disease associations. Moreover, our method makes good use of
the interactions within and between the microRNAs, diseases and environmen-
tal factors simultaneously. Additionally, our method is flexible to deal with the
structure and topological difference of the three networks. Compared with two
state-of-the-art methods KBMFMDI [8] and RLSMDA [4], our method achieves
better performance, which verifies the effectiveness of our method on integrating
multiple biological information to predict microRNA-disease association.
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Abstract. Identifying the progression-order of an unsynchronized set of biolog‐
ical samples is crucial for comprehending the dynamics of the underlying molec‐
ular interactions. It is also valuable in many applied problems such as data
denoising and synchronization, tumor classification and cell lineage identifica‐
tion. Current methods that attempt solving this problem are ultimately based either
on polynomial and piece-wise approximation of the unknown generating function
or its reconstruction through the use of spanning trees. Such approaches face
difficulty when it is necessary to factor-in complex relationships within the data
such as partial ordering or bifurcating or multifurcating progressions. We propose
the notion of Cluster Spanning Trees (CST) that can model both linear as well as
the aforementioned complex progression relationships in data. Through a number
of experiments on synthetic data sets as well as datasets from the cell cycle,
cellular differentiation, and phenotypic screening, we show that the proposed CST
approach outperforms the previous approaches in reconstructing the temporal
progression of the data.

1 Introduction

Biochemical processes are dynamic processes expressed over time (and space). In terms
of characterizing their temporal progression, a small set of generating functions can
characterize such processes. For example, linear or polynomial functions (cell growth
[11]), cyclical functions (cell cycle [12]), and branching (bifurcating or multifurcating)
functions (cancer progression [13]). If the system under study can be sufficiently
synchronized, as with cell synchrony methods [22], characterizing the underlying
progression is relatively straightforward. Often however, this is not possible and the
temporal order has to be reconstructed from a sampling of the process. We focus on this
latter case and note that it is complicated due to epistemic and intrinsic factors such as
the unknown nature of the molecular mechanisms of action, their (putative) non-line‐
arity, phase shifts, and rate heterogeneity, as well as extrinsic factors such as under‐
sampling, and noise.

Formally, if we think of a biological process as a series of states evolving with respect
to time, the problem of constructing the temporal ordering for a set of samples requires
specifying the function f (t) = [x1(t), x2(t),… , xd(t)], where xi(t) is the value of dimen‐
sion i at time t, so the output f (t) is a point in d dimensions representing the state of the
process at time t. This function has to be reconstructed from the samples
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S = {s1,… sn}, where si = f (i) + 𝜀 with 𝜀 denoting the noise. Noise modeling is often
simplified by using well characterized distributions, such as a Gaussian. Graph-theoretic
representation of the biological data provides a powerful formalism, especially for
representing non-linear progressions. In such a representation, the complete data set is
represented by a graph Gc = (V , E) with each data point corresponding to a vertex in V
and the edges in E connecting the vertices based on some criterion. Within this frame‐
work, Minimum Spanning Trees (MST) constitute a powerful representation for
progression reconstruction [9, 10, 13]. MST-based methods assume that the tree with
the minimum total edge weight best represents the underlying process. This does not
account for relationships present in the data, such as groupings corresponding to subpro‐
cesses. Furthermore, the connectivity of a tree can be sensitive to how edges are selected
and a poor choice may misrepresent relationships in the data. To illustrate this point, we
use three different methods to reconstruct the progression of gene expression during the
cell cycle. In this example 20 proteins associated with different phases of the cell cycle
are chosen from the cell cycle cDNA expression micro array dataset [12]. Figure 1 shows
the temporal ordering reconstructed by the MST-based method [9], the Sample Progres‐
sion Discovery (SPD) method [10] and the proposed Cluster Spanning Tree (CST)
approach. All three methods accurately group proteins from the G1/S, S, and G2/M
phases, however only CST correctly groups the G2 phase proteins. Moreover, the CST
is the only method that arranges the proteins in the proper order that reflects the stages
of the cell cycle: G1/S, S, G2, G2/M. A more complete evaluation on this dataset is
presented in the results section.

Fig. 1. Progressions reconstructions from applying three reconstruction methods (MST, SPD,
and CST) to a subset of the cell cycle micro array dataset in [12].

Progression Reconstruction from Unsynchronized Biological Data 137



2 Background

Given a sampling S of size n of f, one way of reconstructing the underlying generating
function is through polygonal approximation. Polygonal reconstruction [1] builds a
connected graph G = (V , E), where the vertices V are points from S and edges E connect
the vertices such that each vertex has degree of 1 or 2 and for each set of adjacent vertices
[vi vj] corresponding to points [f(i) f(j)], there does not exist a vk: f(i) ≤ f(k) ≤ f(j). This
can be achieved by determining a traveling salesman path. The notion of principal curves
can also be used to order data points when the manifold on which they lie has a curvature.
Principal curves were introduced in [2] and constitute a non-linear generalization of
principal components. For the set S, a principal curve is defined as a smooth function fc

that passes through the center of mass of the sample set S and is self-consistent, as
defined by Eq. (1):

fc(t) = E[S|tf (S) = t] (1)

In Eq. (1), tf(S) denotes points in S that are projected to point t. That is, each point
on the principal curve coincides with the expectation of the data points that are mapped
to it. As noted in [9], principle curves may require sampling at a denser rate than is
provided in many biological contexts.

Neither polygonal reconstruction nor principal curves can be used to model branching
processes. In such cases the system at time t has more than one possible state at time t +1.
To address such issues, piece-wise representations, such as a spanning trees, have been
employed that create tessellated representations of the data and reconstruct temporal ordering
in each tessellate. A spanning tree of a complete graph Gc = (V,E) is the connected graph
Gs = (V , E′) where E′

⊆ Eand∃u ∈ V:(u, v) ∈ E′ ∨ (v, u) ∈ E′∀v ∈ V. Plainly, the subset
E

′ contains edges that span all vertices in V. Because of the limited number of edges, a
spanning tree enforces a unique path between vertices. Per Cayley’s formula [3] there are
nn−2 spanning trees on any complete graph. Therefore we must add constraints to find those
trees which are biologically meaningful. An MST on Gc is a spanning tree with the addi‐
tional constraint that 

∑

e∈E′

e is the minimum across all spanning trees on Gc. MSTs can be

constructed with one of many greedy algorithms, such as Kruskal’s [4] or Boruvka’s [5] that
iteratively collect edges with the least weight to build the tree. The methods described in [9,
10] employ variations on the MST approach. In [9], the diameter path through the MST (or
multiple candidate diameters with a PQ tree in the presence of noise) are used to determine
the progression. In [10], an automated feature selection step is incorporated where MSTs are
constructed on subspaces of the original feature space. The subspaces that generate the most
similar MST topologies are merged to form the final putative MST progression.

As discussed earlier, the MST formulation cannot represent interrelationships such
as natural sub-processes or groupings in the data. However, hierarchical clustering
methods (like UPGMA [6]) may be used to identify data clusters which should be main‐
tained in the resulting temporal reconstruction. Indeed, a method like UPGMA may be
used directly for reconstructing temporal progression as in phylogenetics. A generic
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application of phylogenetic methods to this problem is however precluded, since such
methods always impose a bifurcating structure on the data.

3 Methods

We propose the idea of cluster spanning trees (CST) that can maintain temporal and
hierarchical clustering structure of the data and investigate three algorithmic variations
for CST construction. At the fundamental level, this method is a process of traversing
a hierarchical tree which represents the relations in the data and iteratively adding edges
between nodes or groupings thereof. A binary hierarchical tree Gb = (Vb, Eb) in our
formulation contains 2n-1 vertices, n is the number of data points being clustered. The
n leaf vertices represent the data points. Each of the n-1 internal vertices represent the
union of its descendants. Accordingly, the root is a set of size n. Each internal vertex vi

has two children, ci1 and ci2 each containing disjoint sets where vi = {ci1 ∪ ci2}.
Figure 2 shows an example. The CST is constructed as follows: beginning with Gb and
a graph of disconnected vertices GCST = (VCST,, ECST) where VCST is the set of original n
data points, e.g. data points in the root node of Gb and ECST is the empty set. For each
non leaf vertex vi in Vb an edge is added to ECST from the child vertices of vi, ci1 and ci2,
that connects a point in ci1 to a point in ci2 and minimizes a distance function d(ci1, ci2).
While the order in which the vertices are traversed is arbitrary and does not affect the
resulting CST, if an in-order traversal is performed, this algorithm can be understood as
the iterative merging of a set of trees into a single tree.

Fig. 2. Left, dendrogram and subsets assigned to the binary tree. Each internal node contains the
union of the two child nodes. Right, Cluster Spanning Tree constructed from the hierarchical tree.
For every internal vertex of Gb there is a connected subtree of GCST.

When this operation has been performed over all internal nodes, we are guaranteed
that for every internal node vi in Vb there exists a connected sub-tree of GCST,

G
′

CST
= (V

′

CST
, E

′

CST
) where V

′

CST
⊆ VCST , E

′

CST
⊆ ECSTandV

′

CST
= vi. Accordingly, the

hierarchical clusters identified at the clustering stage are represented as sub-trees of the
CST. As a general framework for the downward projection of a binary hierarchical tree
of 2n−1 vertices into a tree of n−1 vertices, there are two major algorithmic components
to consider, namely, hierarchical data clustering and cluster merging.
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3.1 Hierarchical Data Clustering

There are a number of established hierarchical clustering techniques that can be utilized
to perform the initial data clustering. Methods we have investigated include the
Unweighted Average (UPGMA) [6], Weighted Average (WPGMA) [6], Complete
Linkage [6], Centroid [7], Median [7] and Incremental Sum of Squares (Ward) [8]
methods. Details on these methods can be found in the references. All of these methods
induce a hierarchical structure on the data that can be used to obtain a hierarchical clus‐
tering of the data. Non-hierarchical clustering techniques can also be employed for this
problem. To limit the scope of this paper, they are not discussed.

3.2 Cluster Merging

The second algorithmic component is the strategy used to draw edges between points
in the subsets at each bifurcation of the hierarchical binary tree. This consists primarily
of choosing a distance function to minimize. The first vertex merging strategy is the
nearest neighbor approach. An edge is drawn from the point in ci1 to the point in ci2 that
are nearest in terms of some distance measure, for example Euclidean (used in the next
three examples). Formally,

argmina∈ci1 ,b∈ci2
d(a, b) =

√
∑t

j=1
(aj − bj)

2 (2)

This method is similar in principle to the traditional MST approach, except edges are
constructed between the hierarchically derived subsets. This approach can be sensitive
to outliers, for example if two outlying points in adjacent clusters happen to present the
minimum distance. To minimize the influence of outliers, we employ the second merging
method, called weighted centroids (defined in Eq. (3)) where we incorporate into the
objective function, the distance from the centroid of the corresponding cluster point.
This gives us the convex combination described in Eq. (3).

argmina∈ci1 ,b∈ci2
d(a, b) = (1 − 𝜆)

√
∑t

j=1
(aj − bj)

2
+

𝜆

(√
∑t

j=1
(aj − ci1)

2 +

√
∑t

j=1
(bj − ci2)

2

) (3)

Here, ci1 is the mean value of points in ci1 equivalent to the centroid of points in the set and
𝜆 is a mixing value between 0 and 1. At 𝜆 = 0 this becomes the same as the nearest
neighbor strategy. Our third method, centroid points, explicitly encourages the best align‐
ment to cluster centroids by choosing a point in ci1 closest to the centroid of ci2.

argmina∈ci1 ,b∈ci2
d(a, b) =

√
∑t

j=1
(aj − ci2)

2 +

√
∑t

j=1
(bj − ci1)

2 (4)
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While the above methods do not guarantee the construction of a minimum spanning tree
they do guarantee that higher groupings within the dataset are maintained.

4 Results

We evaluated our methods on two synthetic datasets including simulated state transitions
and data generated through a noisy polynomial generating function. We also evaluated
on biological datasets from cellular differentiation, the cell cycle, and phenotypic
screening. That the method can be successfully employed on widely differing data sets,
underscores its generic nature and broad applicability.

4.1 Synthetic Datasets

To show how CST captures the larger internal structures of a dataset, we generated
synthetic data by sampling six discrete states that have an implicit ordering along the
abscissa. Gaussian noise was introduced at varying intensities, as shown in Fig. 3. In
this example, we see that the diameter of the CST correctly passes through each of the
six states in order because it encourages the path to pass through local centers of mass.
The MST takes a simpler path and does not pass through all states. The dendrogram,
number 2 in Fig. 3, shows the hierarchical structure found by the UPGMA algorithm
that was used to guide the tree construction.

The previous dataset allowed us to observe the reconstruction of state transitions.
For a more rigorous evaluation we constructed a synthetic dataset by sampling the poly‐
nomial y = x3 + 3x2−6x−8 with Gaussian noise. This allows us to measure the recon‐
struction error of our methods and quantify the effect of increasing noise on deviation
from the ground truth polynomial as shown in Fig. 4. The CST method consistently
outperforms the MST based approaches proposed in [9, 10]. Interestingly, all trees,
including MSTs, are rather robust to noise except for a significant initial spike. This
phenomenon occurs because when the noise level is low enough, the diameter path will
pass through every point. The reconstruction error will increase with noise as long as
the diameter path passes through every point, however when noise increases and outlier
points are no longer on the diameter path, the outlier error no longer contributes to the
reconstruction error, and reconstruction error stabilizes.

4.2 Reconstruction of Embryonic Stem Cell Differentiation Data

The two previous examples showed the method’s ability to reconstruct processes that
are non-branching by representing the progression as the diameter path in the tree.
However, many biological progressions are characterized by branching processes. For
example, the pluripotent embryonic stem cell (ESC) differentiation data set from [10]
contains 44 samples of mouse stem cells at different stages of differentiation. Interven‐
tions were performed on these samples to induce differentiation into trophoblasts, neural
cells, endoderm lineages, and embryonic carcinoma. Each sample contains 25,164 gene
expression measurements. After application of CST, all differentiation lineages are
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reconstructed intact and in the proper temporal order; as shown in Fig. 5, the four cell
lineages each branch off from the blue embryonic stem cells in the center of the tree.
These results are comparable to those achieved by the Sample Progression Discovery
method. The corresponding dendrogram confirms that the cell lineages are clustered in
the clustering phase and the resulting reconstruction shows that temporal order is main‐
tained within clusters.

Fig. 3. Minimum spanning tree and UPGMA spanning tree path reconstruction for a noisy
(additive Gaussian noise) synthetic data set composed of six states with an implicit horizontal
ordering. 1. The dataset showing mean values of the 6 states. 2. The UPGMA dendrogram that
shows the hierarchical clustering of the dataset used to enforce level-wise spanning tree
construction. The clustering and class-color adjacencies in the dendrogram reveal how UPGMA
spanning tree’s constructed the correct path. 3. Shows the CST built with the UPGMA and
Centroid Point merging strategy. 4. The MST built on this dataset. 5. Is the diameter path of the
CST which passes through all states in sequence. 6. The diameter path of the MST which fails to
pass through the light blue state. 7. The diameter path of the data set with increasing noise with
MST on top and CST below. The MSTs consistently fail to pass through the state coded in purple.
(Color figure online)
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4.3 Cell Cycle Reconstruction

Cellular reproduction is carried out in a well characterized and repeating sequence of
biological phases. Specifically, a cell passes through the G1 phase, S phase, G2 phase,
and then M phase to complete one iteration of the cell cycle, beginning again at G1 phase
to repeat the process. Each phase has a number of genes that carry out the underlying
biological function, these genes are often highly expressed during their associated phase.
To capture the expression dynamics at each phase, cDNA microarray samples measure
gene expression levels throughout the cycle. The gene expression profiles form natural
clusters of genes that are associated with each phase [12].

To test our approach’s ability to both capture the gene clusters and accurately recon‐
struct the sequence of phases in the process we applied the CST, MST, and SPD methods
to the expression levels of the 1099 genes in the human tumor cell cycle dataset provided
in [12]. Each gene is represented by a vertex in the tree with the color indicating its
associated phase in Fig. 6. Visibly, the CST method performs better separation of the
phases. Both the MST and SPD methods tend to merge the G2, M/G2 and G1/M gene

Fig. 4. CST and MST performance on a synthetic dataset sampled from the polynomial
y = x3 + 3x2 − 6x − 8 with Gaussian noise. 1. The original curve over the sampled points. 2. The
CST construction, 3. The MST reconstruction. 4. Is the squared reconstruction error of the six
clustering methods with nearest neighbor merging, and the MST. Noise increases left to right.
Cluster trees show consistently lower reconstruction error. 5. Reconstruction error of UPGMA
clustering with the three merging strategies described in Sect. 3.2.
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groups. Because we know that the cell cycle is a repeating sequence with no branches,
we observe the diameter path through the tree as a representation of the underlying
biological sequence. To better represent phase regions of the diameter path, we
performed neighbor smoothing whereby a vertex’s phase assignment is determined by
the majority vote of its raw phase and that of each of its neighbors. The smoothed diam‐
eter paths are shown in Fig. 6. The end points of the diameter are connected to show the
cyclical nature of the process.

Observing these diameter paths, we see that the CST method correctly reconstructs
the phase sequence with the minor exception of two G1/M phase nodes in the G1/S
phase region, this can be explained by the implied overlap of G1 phase within the two
regions. The MST method fails to represent the G1/M phase altogether while the SPD
method combines M/G2, G1/M and G2 phase proteins.

Because most nodes do not appear on the diameter path and form clusters around
the path, we measured the reconstruction error by counting the number of nodes whose
phase assignment does not match the phase assignment of its nearest diameter node. The
CST method had the lowest reconstruction error of the three methods followed by MST
and SPD respectively.

Fig. 5. Embryonic stem cell differentiation. Four cell differentiation lineages are reconstructed
in order with sequential vertices representing increasing time. The dendrogram on the left shows
the underlying hierarchical clustering that informed tree construction. The two images show that
not only are the cell lineages generally clustered together, but their temporal order is maintained
in the clusters.
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4.4 Reconstruction of Macro-parasite Phenotypic Screening Data

We consider phenotypic screening against parasites that cause the disease Schistoso‐
miasis. Our data set consists of images of 95 S. mansoni somules taken on the first,
second, third, and fourth day of exposure to a 10μM solution of the HMG-CoA reductase
inhibitor Mevastatin which has been studied for its potential anthelmintic effects [14].
Each parasite is represented by 43 quantitative image features that describe the parasite’s
shape and texture. Parasites tend to show increasingly apparent deleterious effects as
exposure time increases.

Like with the cell cycle example, this dataset contains a known linear progression
(exposure duration) and natural clustering (images of parasite groups taken on specific
days), so we seek to reconstruct the time progression of the clusters from the dataset.
Error is measured using the same metric from the cell cycle dataset, namely
mismatches along the smoothed diameter path. Figure 7 shows the trees resulting from
the three algorithms along with parasite images across the CST. The CST result shows
strong grouping and correct ordering of parasites from days one and four. It is not

Fig. 6. Cell cycle gene reconstruction. The CST, MST and SPD methods were applied to the
cell cycle gene expression microarray data. The cell cycle has a known sequence of phases:
G1, S-phase, G2, M. Each gene is represented by a node in the tree colored by its associated
phase in the cycle. The CST method properly separated the phases and reconstructed the
sequence in the correct order. Phases were not sufficiently separated with the MST and SPD
methods. The diameter paths of each tree with 1 neighbor smoothing are shown. The MST
does not contain the G1/M phase. SPD mixes M/G2, G1/M and G2 proteins. Error is computed
by summing the number of vertices that do not match the nearest diameter vertex’s phase.
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surprising that the intermediate exposure days are rather heterogeneously grouped due
to the varying rate of response that individual parasites show to the drug. While days
two and three are merged, we can interpret the results as showing three intuitive group‐
ings, initial response, intermediate response, and maximal response. It is worth noting
that, upon visual inspection of the underlying data, the three ‘Day 3’ parasites and one
‘Day 1’ parasite present in the ‘Day 4’ group all show significant effects and are prop‐
erly placed, effect-wise, with the ‘Day 4’ parasites. Similarly, the two ‘Day 4’ para‐
sites in the ‘Day 1’ group show idiosyncratic effects and are rightly not grouped with
the other ‘Day 4’ parasites.

Fig. 7. Progression reconstruction of parasite phenotypic response after the first, second third
and fourth day of exposure to 10 μM concentration of the drug Mevastatin. CST correctly groups
the first and fourth day samples, while days two and three form a heterogeneous intermediate
cluster. Example parasite images from various points on the tree are shown as well as the
progression reconstruction error.

All three tree construction methods accurately grouped the ‘Day 4’ parasites,
however only CST was able to group ‘Day 1.’ Both MST and SPD split the ‘Day 1’
group and placed them on opposite ends of the tree, significantly distorting the recon‐
struction. By reviewing the spatial organization of the underlying data through a lower
dimensional projection (not shown) we observe that, while the parasites from Day 1 are
near to each other in feature space, the MST and SPD algorithms do not take into account
the local organization and one misplaced edge has significant effects on the overall graph
topology. The local constraints enforced by CST help to ameliorate this problem and
improve the overall reconstruction.
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Abstract. We describe an efficient method to facilitate the visual com-
parison of cluster decompositions obtained from multiple variations of
a protein structure, as well as the results of using different computa-
tional and experimental methods for obtaining such decompositions.
Implemented as a web server application, this tool is useful for gain-
ing information about protein folding cores, the effect of mutations on a
protein’s stability, and for validation and better understanding of rigidity
analysis.

1 Introduction

Collective Motions in Proteins. Understanding conformational motions of
biological molecules is important for understanding their functions, yet exper-
imental methods for observing such motions are expensive and limited in the
information they provide. Specialized computer architectures [8] are capable now
of performing molecular dynamics simulations in the range beyond microsec-
onds, yet understanding the large, slow conformational transitions remains a
difficult problem. Due to the often collective nature of macromolecular motions,
where large groups of atoms move together in a coordinated fashion, their study
can be approached with a variety of coarse-grained models. However, the gap
between computation and experiment is wider at this time scale, as pointed out
in [9]; thus model validation remains an important and challenging step in this
area. Comparing the domain decompositions underlying these models with man-
ual annotations, or with each other, is an important step in validating various
decomposition methods.
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Fig. 1. Visualization of rigidity dilution pro-
files of two different structures of HIV-1 pro-
tease using the 1D method: (a) the profile
for 1B6J (which can be compared with simi-
lar ones found in the literature [4]), and (b)
of 1HVR.

Rigidity Analysis. Protein rigidity
analysis is an efficient computational
method for extracting flexibility and
rigid domain information from static
X-ray crystallography data. Atoms
and bonds are modeled as a mechan-
ical structure and analyzed with a
fast graph-based algorithm, produc-
ing a decomposition of the flexible
molecule into interconnected rigid
clusters. Previous implementations
have used 1D-visualization meth-
ods for comparing cluster decompo-
sitions, as in the dilution analysis
application of the FlexWeb/FIRST
server [12]. To provide a comparison
with the 3D visualization method
reported in this paper, we include
in Fig. 1, a demonstration of the 1D
method.

Comparing Cluster Decompositions. In this paper we focus on KINARI-
Web [3], the web server for rigidity analysis developed in the senior author’s
lab, and on the new tools we developed for making such comparisons and visu-
alizations as understandable and useful as possible. KINARI uses a much more
intuitive 3D visualizer for rigid cluster decompositions (Fig. 2).

Fig. 2. Inconsistent coloring makes the
comparisons of clusters confusing: the red
and blue clusters switch location with
each other from the undiluted (left) to the
diluted (right) form. (Color figure online)

Visual comparison is an essential
part of examining rigidity and flexi-
bility results; however, comparisons of
multiple decompositions is difficult due
to the current coloring scheme used by
the KINARI visualizer. This often leads
to inconsistent colorings across different
cluster decompositions of the same pro-
tein, as illustrated in Fig. 2. Here, the
three largest clusters decrease in size
from the undiluted form of cytochrome
C to a diluted form (with hydrogen
bonds weaker than −4.0 kcal/mol in

energy removed). During this process, the largest rigid cluster changes from the
central cluster to the cluster on the right. Since KINARI currently colors clusters
based on ranked size, the top red color switches from the central cluster to the
right cluster, which is confusing to the viewer. Visualizing the change in clusters
from undiluted to diluted form would be more natural if the colors were consis-
tent instead of swapping. Our goal in this paper is to develop and demonstrate
an improved system for automated consistent coloring of cluster decomposition
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for biological applications. This adds to the usefulness of KINARI by assisting
biologists’ assessments of protein stability properties that are reveled in dilution
and mutation applications.

Applications of Rigidity Analysis. The current KINARI-Web software is
designed for analyzing and visualizing the rigidity of one macromolecule at a
time. However, there are many biological applications which rely on compar-
ing the rigidity of multiple structures or decompositions produced by different
computational and experimental techniques. These applications include:

1. Dilution analysis: simulation of the unfolding pathway by generating and
analyzing the rigidity of multiple structures along a modelled denaturation
process

2. Mutation analysis: comparison of the rigidities of in silico point mutations
with those of the original protein

3. NMR models: visualization of the rigidity of multiple NMR models of the
same protein

4. Conformations: examination of the rigidity of multiple conformations of the
same protein

5. Computational methods: comparison of multiple computational methods
and experimental data on rigidity

6. Domains: comparison of crystallographer assigned domains of the same
structure to each other and to computational methods

Types 1, 2, 3, and 4 all involve comparisons of rigidity analysis produced cluster
decompositions, while types 5 and 6 involve comparisons of rigidity analysis
to other computational and experimental decompositions. The last two types
of comparisons (types 5 and 6) are particularly important for evaluating the
biological relevance of rigidity analysis. Specifically, we would like to examine
how the output produced by KINARI-Web [3] compares to both experimental
data on molecular motions and the results of other computational methods for
modeling bio-molecule flexibility. This analysis can lead to further validation of
KINARI and greater understanding of the limitations of and differences between
KINARI and other methods.

In Silico Rigidity of Protein Dilutions. Simulated protein unfolding can
provides insight into protein folding, the steps by which a linear chain of amino
acids folds into a complex three-dimensional structure. For some proteins, the
unfolding pathway is reversible and therefore corresponds directly to the reverse
of the folding process, while for other proteins, the unfolding pathway can still
shed light into certain aspects of folding and intermediate structures that may
form during the folding process. Additionally, understanding protein thermal
stability and unfolding is important in protein design. Experimentally, chemical
and thermal denaturants are used to examine protein stability, unfolding, and
refolding.
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Fig. 3. KINARI Dilution Viewer output
for 1hhp. A scroll bar allows the user
to examine the consistently colored rigid
cluster decompositions of the successive
dilutions and select particular dilutions
for further inspection.

Rader et al. [12] simulated pro-
tein unfolding using rigidity analysis as
implemented in the FIRST server. The
weakening or dilution of non-covalent
bonds during unfolding is modeled by
removal of hydrogen bonds and salt
bridges one by one in order from weak-
est to strongest. This response is simi-
lar to what is expected when a protein
is denatured by increasing tempera-
ture. Hydrophobic interactions are not
removed during dilution because they
have been shown to have a stabilizing
effect at higher temperatures. Rigidity
analysis is performed after removal of
each successive interaction.

Dilution analysis has been used in
multiple computational studies to iden-
tify key transition states in the unfold-
ing process [12] and the folding cores
of particular proteins [11,12]. Com-
putationally found folding cores and
transition states match findings from
experimental data, providing addi-
tional validation for rigidity analysis
and dilution simulations. In particular,
the unfolding of the transmembrane
protein rhodopsin [11] was examined in
detail and shown to correlate well with

NMR data, GNM, and experimental mutation studies. More recently, dilutions
have been used for examining other aspects of protein biology, including the
unfolding patterns across multiple protein families [14], the relationship of ther-
mostability to rigidity in thermophilic proteins [10], and the role of drug identity
and binding on HIV-1 protease rigidity [4]. While FIRST provides a method
for linear visualization of successive dilutions, this method obscures the three-
dimensionality of the dilution; rigid regions are a consequence of 3D structure
and as a result it is important to visualize them as such.

In Silico Rigidity of Proteins with Point Mutations. Mutations that
cause changes to the amino acid sequence of a protein can affect its function.
Point mutations, which are changes to single amino acids, are implicated in
many diseases including sickle cell anemia and cystic fibrosis. It is of interest
to understand the effects of mutations on protein structures and rigidity, which
has applications in drug design. In particular, we want to examine the effect of
mutating a specific residue on a protein’s rigidity, and identify which residues
in a protein are important for its stability (i.e. have a destabilizing affect when
mutated).
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KINARI-Mutagen [7] is a server that generates in silico point mutations for
a selected protein and then performs rigidity analysis on the mutated versions of
the protein. This software can be used for examining the effect of single amino-
acid substitutions on protein stability in order to help identify which residues
may have a destabilizing effect on a protein if mutated. KINARI-Mutagen simu-
lates in silico excision mutations of amino acid residues to glycine by removing
the hydrogen bonds and hydrophobic interactions associated with the mutated
residue, which has the same impact on rigidity as removing the amino acid’s
side chain. The software tool provides multiple features for examining the quan-
titative effect of excision mutations on a protein’s rigidity; however, it does not
provide a method for visualizing the effects of these mutations on the protein’s
rigidity.

Our New KINARI Dilution and Mutation Viewers. Consistently coloring
clusters in two decompositions of the same protein, or in two different proteins,
is computationally a complex problem. In this conference paper we report on
solutions to this problem for the two biologically relevant, yet algorithmically
simpler problems presented above. In these cases, rigidity analysis is performed
multiple times on systematic changes applied to the same protein conformation.
Since in both cases the resulting sequence of decompositions satisfies a hereditary
property, the consistent coloring of the domains can be efficiently computed. To
demonstrate their usefulness for practical applications, we implemented these
methods in two web applications, Dilution Viewer and Mutation Viewer. Snap-
shots of the viewing interface appear in Figs. 3 and 6.

Further Steps: Multiple NMR Models and Multiple Conformations.
We have also proposed a method for applications 3 and 4 above, namely con-
sistently coloring the rigid domain decompositions arising from multiple con-
formations of the same protein. This part of our work, based on variations
of weighted and stable matching algorithms, requires substantially more back-
ground for describing the algorithms and heuristics and is not included in this
short conference submission. Rather, in this current version, we focus on the
motivation for developing such software tools, and illustrate it with the easier-
to-understand (and implement) Dilution and Mutation applications discussed
above. We also present the general mathematical model underlying the consis-
tent coloring problem and the software infrastructure required for making the
visualization tools easily available to biologists. The detailed description of the
underlying algorithms and the results obtained with NMR models and multiple
conformations is deferred to the full version of the paper.

Kinari-2. The tools described above will become publicly available as part
of Kinari-2 at the same url http://kinari.cs.umass.edu as the previous release,
Kinari-1. Besides the improved visualization, Kinari-2 provides much more effi-
cient algorithms and methods for curating and processing large data, in partic-
ular the sequences of diluted and mutated proteins described here. An overview
of the new Kinari-2 design is given in [13]. The underlying infrastructure nec-
essary for guaranteeing the reproducibility of the rigidity analysis results was

http://kinari.cs.umass.edu
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described in [1]. The work reported here focuses on the distinct problem of mak-
ing the results of these calculations clear and intelligible for the biologists using
the system, in the form of visualizations that are as consistent as computationally
possible. While the two cases described in this conference paper are amenable,
after proper formulation, to simple solutions, the general problem of consistent
visualization is not. However, we believe that we have made significant progress
on several cases of practical relevance not just to the KINARI project, but to
the general problem of visualizing distinct cluster decompositions of proteins
(possibly obtained by other decomposition methods, not just rigidity analysis).

2 Methods

The problem of consistently coloring cluster decompositions can be formulated
mathematically in terms of matchings between abstract sets of points. Let
U = {1, ..., n} be the universe of points representing the numbered atoms in
a particular structure. A cluster decomposition is a set system R of the fixed
point universe consisting of m subsets {C1, . . . , Cm}, where each subset Ci in
the set system corresponds to a cluster containing those points. The set system
is said to be 2-thin when any two sets (clusters) in the set system have at most
two points in common.

The consistent coloring problem can now be stated: Given two or more set sys-
tems R1, · · · , Rk over the same universe, assign colors to sets in each set system
to maximize the overlap between similarly colored sets in the two systems.

(a) A set system abstracting a protein clus-
ter decomposition.

(b) Consistent coloring for a collec-
tion of set systems.

Fig. 4. The consistent coloring problem.

As stated, the problem focuses on colorings of two cluster decompositions
from the same set of atoms. Figure 4(a) provides an example of converting the
KINARI produced rigid cluster decomposition of 1BBH to a set system R1 of the
universe U , where each set Ci represents a cluster in the original decomposition.
For simplicity, only a subset of the atoms in the original structure are included
as points in the universe. Figure 4(b) formulates the consistent coloring problem
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in terms of set systems, showing the set system R2 before and after coloring. R2

is a set system of the same universe U as R1 in (a) (In this particular case, R1

and R2 have a hereditary relationship, with R1 as the parent of R2).
Coloring cluster decompositions with different but overlapping sets of atoms

has important applications in comparing the rigidity of proteins in the absence
and presence of biological units, crystal structures [6], and nucleic acids [2]. This
is a significantly more complex problem algorithmically and outside the scope
of the work presented here. Even on the same set of atoms U , there is no easy-
to-obtain optimal solution to the general problem of consistently coloring two
cluster decompositions R1 and R2. Here we focus on particular subproblems
directly motivated by biological applications. We examine how to best color R′,
the new cluster decomposition, based on a given coloring of R, the reference
cluster decomposition, given that R and R′ have a certain relationship.

Hereditary Decompositions. We examine two types of pairwise comparisons
between set systems (cluster decompositions) R and R′ of the same universe
of U with m and m′ clusters respectively where R and R′ have a hereditary
relationship where R is the parent of R′. Two clusters Ci and C ′

j are said to
have a hereditary relationship, with Ci the parent of C ′

j if the set of points
corresponding to C ′

j is a subset of the set of points corresponding of Ci. Similarly
two cluster decompositions R and R′ of the same set of atoms A have a hereditary
relationship with R the parent cluster decomposition of R′ if every cluster C ′

j in
{C ′

1 . . . C
′
m′} of R′ is a subset of exactly one cluster Ci in R (see Fig. 4 for an

example of two cluster decompositions with this relationship)1.
Given that R has been assigned a particular coloring, the problem of color-

ing a cluster decomposition R′ where R is its parent is a relatively simple one.
Algorithm 1 provides pseudocode for this approach. Briefly, each cluster C ′

j in
{C ′

1 . . . C
′
m′} of R′ is matched to its corresponding parent cluster Ci in R based

on the intersection between the two sets of points. Each C ′
j is related to only

one Ci, while one Ci may be the parent of multiple C ′
j because R′ is a subset of

R. A cluster C ′
j inherits the color of its parent cluster Ci if it is the largest child

cluster of Ci. We call this largest child cluster of a particular parent the favorite
child of that parent. If a cluster C ′

j is not the favorite child of its parent Ci in
R, it is assigned a new color.

Consistent Coloring Groups of Cluster Decompositions. The biologi-
cal applications of rigidity analysis we are interested in, dilution and mutation,
require consistent coloring of larger-scale groups of cluster decompositions rather
than pairs. We define two types of group consistent coloring problems in order
of increasing complexity, with each named after the biological application that
inspires this type of coloring.

1 The converse problem, where every C′
j in R′ is a superset of at least one cluster Ci in

R is not addressed because it does not correspond to any of the biological applications
we are interested in and is only a slight variation of the original problem.
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Algorithm 1. Consistent coloring algorithm for related clusters, where R is the
reference cluster decomposition, and R′ is the new cluster decomposition.
consistentColor(R′, R){
1: for C′

j in R′ do
2: Ci = findParent(C′

k, R)
3: if Ci already has a favorite child then
4: Let C′

k be Ci’s favorite child
5: if C′

j is larger than C′
k then

6: C′
k is no longer the favorte child of Ci

7: Assign C′
k to a new color.

8: Set C′
j to the favorite child of Ci. C

′
j now inherits the color of Ci.

9: end if
10: else
11: Set C′

j to the favorite child of Ci. C
′
j now inherits the color of Ci.

12: end if
13: end for

}

The Mutation Problem. The input is an unordered set of n cluster decomposi-
tions S = {R1, R2, . . . , Rn} such that each cluster decomposition Ri was created
by splitting zero or more clusters in an original cluster decomposition R. The
relationship between the cluster decompositions is star-like, where each of the n
rigid cluster decompositions in S = {R1, R2, . . . , Rn} inherits coloring from the
parent (or reference) cluster decomposition R. In terms of the biological appli-
cation, R is the wild-type or normal form of the protein and each of the cluster
decompositions in the set S = {R1, R2, . . . , Rn} is represents a particular point
mutant.

The Dilution Problem. The input is an ordered list of n cluster decompositions
S = {R1, R2, . . . , Rn} such that each cluster decomposition Ri was created by
splitting zero or more clusters in the previous cluster decomposition Ri+1. The
first cluster decomposition R1 was created by splitting zero or more clusters
in the original cluster decomposition R. The set of cluster decompositions then
form a tree. The tree has a single root, and then the first level of the tree contains
the original cluster decomposition R, with each cluster C in R represented by a
node in this level of the tree. All of the original clusters C in R are children of
the root.

Then each cluster decomposition Ri in S will be located at the (i+1)th level
in the tree, with each cluster in Ci = {Ci,1, Ci,2, . . . , Ci,k} in Ri as a node in
that level of the tree. The parent of a particular node Ci,j in the i + 1 level of
the tree is the corresponding node in the ith level that it is a subset of. We color
each level based on the previous level in the tree. A particular level i in the tree
is redundant if every node in that level is also in the previous (i− 1) level of the
tree. An event occurs when a level has more nodes than the previous level.

In terms of the biological application, R is the undiluted or normal form of
the protein, while S contains the subsequent dilutions in the order in which they
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occur. For dilution analysis, we are only interested in steps of the dilution that
produce events. As a result, during the process of coloring the dilutions we both
identify dilution steps that correspond to events where the rigidity has changed
and color based on the previous non-redundant dilution step in the tree.

Implementation. We developed the Dilution and Mutation Viewers based on
the consistent coloring approach described above. The structure scheme of the
software tools is diagrammed in Fig. 5. Both coloring tools share a common C++
back end that implements the algorithms described in Methods. The individual
web applications each have their own user interfaces, which are variations of a
common front end tool built in PHP, CSS, and JavaScript. Jmol, a Java viewer
for chemical structures, is used for visualizing protein rigidity. XML configuration
files are written by the front end and used to communicate with the back end.
This structure of a web front end with Jmol visualization and a C++ back end
that communicate via XML configuration files is similar to existing KINARI
applications. Python and bash scripts are also used as part of the web back
end to generate the dilutions and mutations and write configuration files for
analyzing the rigidity of these structures with KINARI.

Fig. 5. Structure of comparison software
tools. There are three layers: the web front
end which consists of the interface and
Jmol visualizers, the web back end, and the
consistent coloring C++ library.

The interfaces for the dilution and
mutation tools were designed to enable
easy, intuitive visualization of the
results of running each of the biolog-
ical applications. In order to animate
the unfolding pathway, the Dilution
Viewer interface (displayed in Fig. 3)
provides a scroll bar that the user can
employ to view the successive events
in the dilution process. The interface
of the Mutation Viewer is designed to
allow comparisons between the wild-
type form of the protein and the
mutated versions; the user can click
each of the residues in the protein to
visualize the rigidity with that residue
mutated next to the original protein

(Fig. 6). These initial visualizations in the Dilution and Mutation viewers provide
snapshots of 3D Jmol images to allow the user to get an overview of the results
of running dilution and mutation analysis. If further visualization is desired of a
specific example, the user can elect to view and rotate a particular mutated or
diluted version side-by-side with the original form in a 3D JMol visualizer.

3 Results and Discussion

While rigidity analysis has been used previously for simultating protein unfold-
ing in dilution studies [12], until now, the main visualization method for dilution
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results was 1D rigidity line plots (as shown in Fig. 1). These plots lack infor-
mation about the 3D spatial connectivity, shape, and cavities between the rigid
clusters, and the eventual rigid core.

To validate our Dilution Viewer tool, we applied it to two proteins that
have previously been examined with dilution analysis in the literature: HIV-1
protease and rhodopsin. For lack of space, we include here only a shortened
version describing one of our studies.

Fig. 6. The new Mutation Viewer used in
KINARI Mutation analysis, illustrated on 2 khu.
The rigidity of the wild-type 2 khu is shown next
of the rigidity of the same protein when a proline
residue is mutated to glycine.

Case Study: HIV-1 Pro-
tease. We examined the change
in rigidity during dilution of
several PDB structures of HIV-
1 protease, including 1B6J and
1HVR. HIV-1 protease is a pro-
tein involved in the replica-
tion cycle of HIV. It cleaves
one of the viral proteins, per-
forming a step that is neces-
sary for the virus to mature
and proliferate. Because of its
essential role, HIV-1 protease is
frequently used as a drug target,
as inhibiting the enzyme pre-
vents HIV from replicating. As
of April 2014, there are 471 dif-
ferent crystal structures of this
protein available in the PDB.

Heal et al. [4] examined a subset of these structures, performing dilution analysis
on 206 high resolution structures in the presence and absence of known inhibitors
and drugs. HIV-1 protease structures, specifically 1HVR, are also benchmark
tests for KINARI and FIRST software.

Since we re-implemented dilution analysis, we wanted to first check whether
our dilution results match those in the literature and then examine whether
using our improved 3D dilution visualization leads to additional insights into
the unfolding pathway. For this comparison, we ran dilution analysis on some of
the HIV-1 protease examples and generated both 1D plots and 3D visualizations
of the results. A Mathematica program was written to generate 1D plots from
dilution results, and the consistent coloring framework was modified to output
information on residue-level coloring in addition to the current atom-level clus-
ter coloring output. While comparisons indicate that there is some similarity
between our dilution results and those in the literature for HIV-1 protease, the
correspondence between the methods was less than expected. A possible reason
for these differences is the placement of hydrogen bonds by the two methods.
Wells et al. [14] notes a weakness of dilution analysis is its high sensitivity to the
placement of hydrogen bonds. Simple comparison of the numbers of hydrogen
bonds between the two methods shows a large disparity: there are 250 hydrogen
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bonds in Heal et al.’s analysis and 153 in our analysis. One possible explanation
for the difference in hydrogen bond identification and resulting dilutions is that
Heal et al. did not directly identify interactions on the PDB structure [4]. The
authors mention that they perturbed the structure by “representing the protein
in a conformation which is part of the ensemble explored by the protein in its
natural flexible motion” as done previously in [5], but it is not clear what the
final structure used for analysis was. Other disparities in the dilution results
could be due to the use of salt bridges in Heal et al.’s analysis.

The discrepancies between the results of the two software methods highlight a
common issue with computational analyses; often two methods will come up with
variable results and it is unclear which result is more accurate or closer to the
biological “truth”.

Although our dilution analysis of HIV-1 protease produced different results
from the literature, our 3D results provide additional insight into the dilution
pathway and rigidity during the process that is not apparent from examination
of the 1D rigidity plots. Our Dilution Viewer provides a method to display and
compare the sequential rigidity in a scrollable sequence. Figure 7 shows examples
from the our dilution pathway of HIV-1 protease (1HVR). There are 20 steps in
the dilution of 1HVR in which an event or change in rigidity occurs; four of them
are displayed sequentially showing portions of the process. This visualization of
the dilution pathway demonstrates how the shapes and locations of the rigid
clusters change during the dilution pathway. The purpose of running dilution
analysis is to simulate unfolding, which gives us insight into the folding process.
Folding is intrinsically a 3D and not a 1D process and as such, methods for 3D
visualization are essential for insight into the results of computational dilution
simulations.

(a) (b) (c) (d)

Fig. 7. 1HVR 3D dilution pathway produced by our Dilution Viewer: (a) the undiluted
form of 1HVR; (b), (c), and (d) after the removal of 23, 38, and 138 hydrogen bonds
respectively.

Conclusion. We developed methods for consistent coloring of rigid cluster
decompositions produced by the KINARI software, and implemented these
methods in two freely available web-based applications. We demonstrated the
usefulness of the visualization methods through a comparative study of sev-
eral structures of the HIV-1 protease, which were thoroughly compared with
other studies of this nature reported in the literature. We found that the better
visualization permitted the identification of differences between several methods
for placing hydrogen bonds and performing rigidity analysis used by different
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implementations of the method. We also demonstrated the usefulness of our
visualization method in the case of rigidity analysis for mutated proteins; no
such tool was available until now.

Authors’ Contributions. This paper is based on EF’s honors thesis at Smith
College under the supervision of IS. IS identified the problem of consistent color-
ing in the context of rigidity-analysis based applications, modeled it mathemat-
ically, designed and oversaw the project. EF implemented the prototype system
described here and ran the experiments. Both authors contributed to writing the
paper.
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Abstract. Proteins are vital to most biological processes by perform-
ing a variety of functions. Structure and function are intimately related,
thus highlighting the importance of predicting a proteins 3-D conforma-
tion. We propose GMASTERS, a multiagent tool to address the protein
structure prediction (PSP) problem. GMASTERS is a general-purpose
ab initio graphical program based on cooperative agents that explore the
protein conformational space using Monte Carlo and Simulated Anneal-
ing methods. The user can choose the abstraction level, energy function
and force field to perform simulations. Because bioinformatics demands
knowledge from diverse scientific fields, its tools are intrinsically complex.
GMASTERS abstracts away some of this complexity while still allowing
the user to learn and explore research hypotheses with the advantage
of an embedded graphical interface. Although this abstraction comes at
a cost, its performance is similar to state-of-the-art methods. Here, we
describe GMASTERS and how to use it to explore the PSP problem.

Keywords: PSP Problem · Multiagent system · Monte Carlo · AB
model

1 Introduction

Proteins are polymers of 20 different building blocks, called amino acids. These
building blocks interact physicochemically resulting in a unique spatial confor-
mation for each protein [1]. Due to advances in the Genome Project, there is
a large number of protein sequences available in the GenBank [2]. Currently,
there are about 82 million non-redundant protein sequences. However, in the
Protein Data Bank or PDB [3], there are approximately 115,000 3-D structures
of proteins. Eliminating redundancy by filtering very similar structures (SCOP),
we get only 1,393 different folds or topologies. Under these circumstances, it is
evident the huge gap between our competence to produce protein sequences and
to determine 3-D structures of new proteins with yet unknown folds [4]. Com-
puter Science, more specifically Structural Bioinformatics, has been a great ally
on reducing this gap.

c© Springer International Publishing Switzerland 2016
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The Protein Structure Prediction (PSP) problem emerged in the 60’s and
even today its solution remains a major challenge to molecular biology [5]. Lim-
itations of 3-D structure experimental determination techniques, such as X-ray
diffraction crystallography and nuclear magnetic resonance, highlight the impor-
tance of computational methods to predict the structure of proteins. Advances in
handling the PSP problem will allow us to predict the 3-D structure of proteins
with relevant applications in the biopharmaceutical industry. It will also improve
our understanding of proteins involved in vital processes, including diseases such
as cancer [6]. Considering the difficulties faced by traditional approaches (in
vitro and in vivo experiments) concerning biological systems, the use of comput-
ers becomes attractive, making possible to execute low-cost and faster in silico
experiments. An application that involves PSP must consider the system’s real
time adaptability, i.e., parameters modifications such as thermal bath temper-
ature. There is a clear need for in virtuo experiments: computer simulations
susceptible to perturbations during execution. While the easy modification of
parameters is a typical property of all computer simulations (in silico experi-
ments), the easy modification of the experiment itself is a property of multiagent
systems (MAS), resulting in in virtuo experiments [7,8].

Here, we present a general tool that allows addressing PSP according to
the user needs. The user is free to choose (via a Graphical User Interface) both
abstraction level and force field to guide the simulation. The agents are organized
in hierarchical levels. Optimization is done by Monte Carlo/Simulated Annealing
and the user can modify parameters and optimization method. GMASTERS can
be obtained at labio.org.

2 Background

2.1 Proteins and the PSP Problem

If we take a deep look into living organisms and observe their cellular level
functions we will notice these functions are carried out by a variety of proteins.
Zooming in our body toward the cells, we will realize that each cell has its
own copy of the genome. The genome is what gives the cell functionality. From
a computational point of view, we could state that the genome is a string or
sequence composed by four kinds of letters (A,C,T and G) referring to four
kinds of nucleotides. Scanning the genome from the left to the right certain
substrings are found (called genes). Each triplet of nucleotides is a code that
can be parsed to one of the 20 amino acids. The concatenation of parsed triplet
nucleotides (amino acids) generates a protein sequence. A protein linear sequence
of amino acid residues is called its primary structure [9]. Figure 1 shows a typical
representation of a protein, as well as the abstraction level used in this work.

The PSP problem is the problem of predicting the 3-D structure of a pro-
tein starting from its primary structure or amino acid sequence. The physical
process by which a polypeptide folds into a functional protein is an old question
(reviewed by Snow [10]) and continues to be one of the biggest challenges in
current structural bioinformatics [5].
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Fig. 1. (A) The representation of an extended hypothetical protein chain formed by
alternated residues of alanines (hydrophobic) and serines (hydrophilic). (B) The rep-
resentation of the abstraction level used in this work, where hydrophobic amino acids
are marked as “A” while the hydrophilic amino acids are marked as “B”.

The protein’s 3-D structure is directly linked to its function. Determining
its spatial conformation experimentally is expensive and time consuming. Bioin-
formatics has the important role of accelerating this knowledge discovery [11].
This paper’s approach is based on Anfinsen’s proposal which states that, at the
environmental conditions (temperature, solvent concentration and composition)
at which folding occurs, the native structure is a unique, stable and kinetically
accessible minimum of the protein’s free energy. However, finding this structure
is not trivial and even simplified methods have NP-Complete complexity [12].
Figure 2 shows a hypothetical uni-dimensional energy function to illustrate the
challenge of finding the lowest energy and achieving the native conformation.

Still regarding the inherent difficulty of the problem we can cite Levinthal’s
paradox [13], which states that for a 100-length chain there will be at least 2100

possible conformations (considering only two degrees of freedom), characterizing
it as an intractable problem [14]. In the last five decades different algorithmic
approaches have been tested and, although there has been progress, the problem
remains unsolved even for small proteins. While the ultimate goal is to predict
the 3-D or tertiary structure from the primary structure, the current knowledge
and computing power is insufficient to handle a problem of such complexity [15].

2.2 Multiagent Systems

Multiagent systems (MAS) are part of the Artificial Intelligence field and refer
to the modeling of autonomous agents in a common universe. MAS is a relatively
new sub-field of Computer Science - it has been studied since about 1980 - and
the field has gained widespread recognition around 1990 [16].

Agents are computational entities that interact with an environment and
are goal-oriented, having a body and a location in time and space. An agent
is capable of autonomous and flexible actions to reach its goals. According to
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Fig. 2. Simplified protein structure prediction funnel. The figure shows an unidimen-
sional component of a free energy hyper-surface where (A), (B), (C) and (E) represent
local minima and (D) represents the global minimum (native structure).

Russel and Norvig [17], a rational agent is able to select the action that maxi-
mizes its performance, given the evidences accumulated by its perceptions and
internal knowledge. According to Bradshaw [18], an agent is a software entity
that works continuously and autonomously in a given environment. It should
perceive and act in its environment in a flexible and intelligent way. It may
learn from experience, communicate, cooperate with other agents and have the
mobility required to satisfy its goals. The agents’ autonomy means they have
an existence independent of other agents, and have to achieve their own goals.
Although there is no universally accepted definition of agent, some properties as
autonomy, pro-activeness, reactivity and social ability are intrinsic of its behav-
ior. A set of agents acting in an environment characterizes a MAS.

An agent needs an environment that can be of numerous types and complex-
ities. The environment complexity is strongly linked to the agent’s complexity.

Netlogo [19] is a very popular agent-based modeling tool and it is partic-
ularly suited for modeling complex systems that take time into account and
where hundreds or thousands of agents can be programmed and interact inde-
pendently, making possible to explore the connection between micro and macro-
levels of behavioral patterns. One of the remarkable advantages of Netlogo is
its embedded tools, and BehaviorSpace is one of them, offering the possibility of
automatically perform a large set of experiments by changing parameters’ values.
Due to the BehaviorSpace capability, it is possible to explore more resourcefully
the configuration space in PSP and tune parameters to improve results.

3 MASTERS

MASTERS [20] was built using Netlogo v5.0 (see Sect. 2.2 for details). A strong
Netlogo’s peculiarity is that it was developed for educational purposes, providing



A Multiagent Ab Initio Protein Structure Prediction Tool 167

a rich modeling environment which allows experimental coding. Ab initio meth-
ods require three elements [21]: (i) a method for searching the energy landscape,
(ii) an energy function (iii) a geometrical representation of the protein chain.
As a pure ab initio method, MASTERS must comprise these elements. How
MASTERS addresses these items is shown hereafter.

Searching Agents. The Searching Agents have the mission of exploring the con-
formational space. Usually, one or more searching agents are associated to each
amino acid in the protein, depending on the selected abstraction. The agents’
position is expressed as Cartesian coordinates, resulting in movements that are
local, i.e., they do not affect the position of other agents.

Director Agent. The Director Agent has total knowledge about the protein’s
current spatial conformation and coordinates searching agents, aiming at a more
efficient spatial exploration. The Director agent has no representation in the
Cartesian space. It is an agent that acts on the 3-D space from outside. Director
Agents perform global moves on the searching agents. It is mandatory to have
at least one Director Agent in the simulation.

Environment Agent. There is only one Environment Agent. Its role is to con-
trol the simulation flow, simulated annealing scheme, number of movements per
time/temperature step, real time plots, and outputs.

3.1 Hierarchical Cooperation

This is related to (i). A core MASTERS concept is the agents hierarchical orga-
nization (Fig. 3). Higher-level agents have the role of coordinating the actions of
lower-level agents [22]. In a bottom-up hierarchical order.

Searching and Director agents cooperate to find the conformation that better
suits their goals. They are autonomous, not depending on each other to perform
their moves. The agents are reactive to their environment: the Searching agents
can see their neighborhood, whereas the Director agent has full information on
the environment, being able to influence the simulation in a broader manner.

MASTERS’ environment is treated as a box with dimensions delimited by the
user. In a multiagent perspective it can be considered both accessible (for Direc-
tor and Environment agents) and inaccessible (for Searching agents, who have
limited access to information), non deterministic, due to its stochastic nature,
dynamic and discrete.

3.2 Sampling Technique

Also related to (i), MASTERS’ movements are controlled by Monte Carlo (MC).
MC [23] is one of the most used energy landscape exploration techniques. It has
a probabilistic nature and it is a method for generating different configurations
of a particles system, i.e., points in space compatible with external conditions.
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Environment Agent

Director Agent

Searching Agents

Fig. 3. MASTERS’ hierarchy. The Environment Agent is responsible for the simulation
flow. Searching agents explore the configuration space by performing move attempts.
The Director agent is able to affect the position of all other agents in the environment.

Looking back to Fig. 2 we can pay attention to points (A) and (B). From
there, MC defines two conformational states SA and SB, each one with its cor-
responding energy EA and EB . If EB < EA the move is accepted. If EB > EA

there is still the possibility of accepting the move. However, in such cases, the
probability of accepting a move from SA to SB follows the Eq. 1, where k is the
Boltzmann constant and T the temperature. Once the system reaches (B) it is
allowed to accept movements toward (C), hoping to someday find (D).

e−(EB−EA)kT = e−(ΔBA)kT (1)

Once an MC simulation is in progress it is necessary to constantly check its
acceptance ratio, as it influences the agents’ movements. Usually a ratio of 0.5
can be considered an optimal initial value for MC simulations involving PSP
[24]. Since our method is based on different types of autonomous agents, each
type of agent needs to have its acceptance ratio average assessed separately.

The MC method has drawbacks, though. In the PSP problem, the tempera-
ture of the system determines the size of energy barriers that could potentially
be overcome. When dealing with temperatures that are too low, MC will not
explore far from the minimum energy found, leading to local minima. Simulated
Annealing (SA) is a simple MC modification that turns it into a global optimizer.
At the beginning of the simulation the temperature is set high and fairly high-
energy barriers are overcome. Then the system is gradually cooled, eventually
being confined to a single energy. Due to the gradual cooling rate (logarithmic),
the system ends up spending more time in low energy regions. This may increase
the chances of finding the lowest energy state although there is no assurance [11].
Concerning SA performance, convergence is guaranteed only if the temperature
is reduced to zero logarithmically. In MASTERS the temperature is gradually
decreased according to Eq. 2, where α = 0.98:



A Multiagent Ab Initio Protein Structure Prediction Tool 169

Tk+1 = Tk ∗ α (2)

Regarding the role of the agents on sampling, the simulation relies on account-
ing the number of movement attempts for each agent. To achieve minima at a
given temperature, the system should explore the conformational space a large
number of times. Counters are used to summarize the average number of move
attempts per agent type (both Searching and Director Agents). Every time step
is related to a specific temperature. The system will be stuck at each temper-
ature until an average number of movement attempts has been attained. The
simulation ends when the temperature reaches a value set by the user.

3.3 Choosing the Energy Function/Abstraction Level

Here the elements (ii) and (iii) are addressed. MASTERS currently incorporates
MC/SA as sampling technique, not allowing the use of Molecular Dynamics or
Genetic Algorithms. However, one of its particular characteristics is its orthog-
onality with respect to the simulation flow and the energy function/abstraction
level used. The user must choose which energy function/force field to use and
this is a primordial step within the framework’s generality. MASTERS was not
built exclusively to a particular energy function. The framework can be applied
to a wide range of optimization problems that involve Cartesian coordinates (2-
D or 3-D). Regardless of the problem, the energy function will directly affect the
number of searching agents and their movements.

3.4 GMASTERS

The educational purpose is one of the main focuses of GMASTERS, providing a
user-friendly interface where students that are not familiar with computer pro-
gramming can explore the PSP problem in interactive ways. The MASTERS’
version presented here includes a new graphical user interface named GMAS-
TERS. The latter is an alternative to the old MASTERS’ developed on the Net-
Logo environment. GMASTERS is written in the Python language and employs
the GTK+ toolkit, which provides more sophisticated widgets and friendlier
interface. We hope the interface to considerably assist users, something not com-
monly taken into consideration when simulating proteins. The results generated
are plotted using the Matplotlib toolkit. For the visualization and 3D analysis
of the obtained models GMASTERS connects with PyMOL [25] using a similar
approach to GTKDynamo [26]. A typical session snapshot is shown in Fig. 4.

Creating Projects. In GMASTERS the user always works inside a given project.
To create a new project the user provides information such as project directory,
user name and protein sequence. Every project contains, beyond the information
provided by the user, date and time of creation and the list of jobs.

Setup and Running Simulations. Once a project is created the user can setup
and run Monte Carlo simulations inside GMASTERS. The user can set parame-
ters such as box dimensions, temperature and maximum movement. Every new
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Fig. 4. GMASTER’s GUI. (A) Main window, displaying simulation projects and para-
meters setup, (B) Plot window, showing energy and acceptance ratio, (C) PyMOL
viewer, with the predicted conformation.

simulation result is a new item in the job list which provides time of creation,
status, lowest obtained energy and the current step’s energy. These data allow
a preliminary comparison between different simulations and, at the same time,
keep chronologically ordered steps performed by the user.

Data Analysis and Model Visualization. As a simulation proceeds its results are
stored in a log file. GMASTERS is able to read and interpret these log files
and display graphics of the relevant information, which can then be saved and
manipulated by the user. Trajectories are also generated. These come in PDB
format, and can hold a variety of information, including coordinates and energies.

4 Case Study

4.1 Geometry Representation and Energy Function

To examine GMASTERS’ behavior and effectiveness, we adopted the same sim-
plified model used in our last work [20], the AB Model (see Fig. 1).

The simplest and most conventional model among all applied abstractions
used in PSP is the HP Model [27]. The HP model divides all 20 amino acids
into two different groups, the hydrophobic (H) and the hydrophilic (P) ones.
The amino acids are placed at an on-lattice grid, and the energy computation at
each conformation takes into account only interactions between next-neighbored
nonadjacent hydrophobic amino acids [27]. The energy of a conformation is the
number of hydrophobic-hydrophobic contacts that are adjacent on the lattice,
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but not adjacent on the string (sequence). The main idea is to force the establish-
ment of a compact hydrophobic core as observed in real proteins [28]. Lattice
models have proven to be useful tools for reasoning about the PSP problems
complexity [27] and despite its high abstraction level, the PSP problem with HP
models is still an NP-Complete challenge [29]. The AB model is a lattice model
in which the amino acids are once again divided into two groups: hydrophobic
amino acids are marked as A while the hydrophilic ones are marked as B.

Many authors have been using this model as starting point for PSP under-
standing [30–32]. The AB model, in comparison to the HP model, has the addi-
tional capability of collecting information about local interactions that might be
significant for the local structure of protein chains. This allows finding compact,
well-defined native structures that would not be found if these local interac-
tions were neglected [33]. Unlike the HP model, the interactions considered in
the AB model include both sequence independent local interactions and the
sequence dependent Lennard-Jones term that supports the energy convergence
to a hydrophobic core [32,34].

The AB off-lattice energy model is described by Eq. 3, where θ is the bend
angle between the two bonds defined by three consecutive residues and rij is
the distance between residues i and j [32]. The first sum, the backbone bending
potential, calculates the bending angle energy of the protein chain. The dou-
ble sum is the Lennard-Jones potential. It calculates the long-range interaction
energy, which is attractive for pairs of the same amino acids (AA or BB) and
repulsive for AB pairs. The residue specific prefactor C is given by the Eq. 4.

E =
n−1∑

i=2

1
4
(1 − cosθ) +

n−2∑

i=1

n−1∑

j=i+2

[r−12
ij − C(ξi, ξj)r−6

ij ] (3)

C(ξi, ξj) =

⎧
⎨

⎩

+1, ξiξj = A
+1/2, ξiξj = B
−1/2, ξi �= ξj

⎫
⎬

⎭
(4)

4.2 Target Sequence

Although several works in the literature use Fibonacci sequences as targets
for their simulation [32,34], we chose to work on real sequence targets. The
aminoacids A, C, G, I, L, M, P and V were set to hydrophobic (class A) and D,
E, F, H, K, N, Q, R, S, T, W and Y were set to hydrophilic (class B). As means
of demonstration we chose the PDB ID 1AGT protein, a recurrent target [35].

4.3 Simulation Setup and Running

Once the target sequence (and abstraction level) is chosen, a simulation setup is
required. Here it is possible to parametrize the MC/SA scheme, selecting values
to initial temperature, temperature decrease ratio, movement amplitudes, etc.



172 T. Lipinski-Paes et al.

Fig. 5. The system starts with a high energy and the different kind of agents inter-
act microscopically (MC/SA controlled moves) yielding a macroscopic behavior: the
protein folding/energy convergence. The outputs are provided in a PyMOL canvas.

4.4 Data Analysis and Model Visualization

While the simulation runs it is possible to visualize the current energy profile and
structure. Figure 5 shows that in the beginning of the simulation the protein is
nearly unfolded and the first steps’ energy is high. As the simulation progresses
and the system cools down, lower levels of energy are reached and the protein
starts to fold into more favorable conformations. If the system’s energy doesn’t
start to decrease, it may be an indication to review the simulation setup para-
meters. In this case study, the simulation progresses normally and we can see the
energy converging to lower levels. Furthermore it was observed an improvement
in CPU time.

5 Conclusion and Future Works

This paper presented a tool for handling the protein structure prediction prob-
lem. More specifically GMASTERS, a GUI developed in GTK that runs over
MASTERS core. The focus of the application is the user, making possible for
students with different knowledge levels to learn about PSP and Monte Carlo
and for experts to test their own methods.

To explore the new features available in GMASTERS we performed a case
study with the protein whose PDB ID is 1AGT and, in addition to the new
facilities provided, it was noticed a considerable improvement in CPU time.

We plan to evolve GMASTERS’ architecture by parallelizing simulations,
improving its overall performance. In addition, we intend to use different coarse
grained abstraction levels and therefore different force fields.
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Abstract. In mass spectrometry-based de novo protein sequencing, it
is hard to complete the sequence of the whole protein. Motivated by this
we study the (one-sided) problem of filling a protein scaffold S with some
missing amino acids, given a sequence of contigs none of which is allowed
to be altered, with respect to a complete reference protein P of length
n, such that the BLOSUM62 score between P and the filled sequence
S ′ is maximized. We show that this problem is polynomial-time solvable
in O(n26) time. We also consider the case when the contigs are not of
high quality and they are concatenated into an (incomplete) sequence I,
where the missing amino acids can be inserted anywhere in I to obtain
I′, such that the BLOSUM62 score between P and I′ is maximized.
We show that this problem is polynomial-time solvable in O(n22) time.
Due to the high running time, both of these algorithms are impractical,
we hence present several algorithms based on greedy and local search,
trying to solve the problems practically. The empirical results show that
the algorithms can fill protein scaffolds almost perfectly, provided that a
good pair of scaffold and reference are given.

1 Introduction

In mass spectrometry-based de novo protein sequencing, it is hard to complete
the sequence of the whole protein [2]. An incomplete sequence contains one or
several contigs, each is a protein segment. When the order of the contigs is known
(e.g., ordered contigs reported by top-down mass spectrometry-based de novo
protein sequencing [11]), these contigs are called a scaffold. In many applications,
it is more desirable to obtain complete protein sequences. We comment that a
similar phenomena occurs in the sequencing of genomes, firstly noticed by Mũnoz
et al. [14], and have resulted in a series of interesting algorithmic studies [3,5–9].

Hence, a natural combinatorial problem is to fill the missing amino acids into
scaffolds. As one must find a biologically meaningful way of filling scaffolds, it
makes sense to use a complete homologous protein sequence as a reference. Here
c© Springer International Publishing Switzerland 2016
A. Bourgeois et al. (Eds.): ISBRA 2016, LNBI 9683, pp. 175–186, 2016.
DOI: 10.1007/978-3-319-38782-6 15
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we consider two kinds of scaffolds. One kind is lists of contigs which are computed
with a good confidence and should not be altered. Throughout this paper, we
use S to denote such a scaffold, composed of contigs C1, C2, ..., Cm. The other
kind are sequences, which usually arise when contigs are computed without a
very high success confidence — in which case it would be unrealistic not to
alter the contigs. We then simply concatenate the contigs into I, the incomplete
sequence. We try to carry out this idea to fill a scaffold (resp. sequence) S (resp.
I) to have S ′ (resp. I ′), such that the similarity between S ′ (resp. I ′) and a given
(complete) protein P is maximized. These problems are called Contig-Preserving
Protein Scaffold Filling (CP-PSF for short) and Protein Scaffold Filling (PSF
for short) respectively.

The BLOSUM62 matrix [4] is the most popular similarity measure to align a
pair of protein sequences. (The matrix can be found in the appendix.) We will use
BLOSUM62 to measure the accuracy of our scaffold filling algorithms. However,
for empirical results it is not very indicative to interpret BLOSUM62 scores for
measuring the similarity between sequences. Therefore, we will use the number
of matched pairs as a similarity measure (this can be considered a rounded
BLOSUM62 matrix: if the score between two amino acids in BLOSUM62 is
less than 4, then set the score as 0; otherwise, set the score as 1). Of course,
when a space (denoted as a � in this paper) is used, with BLOSUM62 we get a
negative score; and this is not reflected in the number of matched pairs.

Firstly, we show that the PSF problem is solvable in O(n22) time. As this
method is impractical, we make use of the standard Needleman-Wunsch algorithm
to align I with P, we then design two heuristic algorithms, based on greedy and
local search, to insert the amino acids in X = P −I into P. We test our algorithm
using some real datasets (i.e., 4 chains from two antibody proteins). Secondly, for
the CP-PSF problem of filling S, we also present a polynomial time solution which
takes O(n26) time. We then study the problem of aligning the contigs in S to P
to achieve the maximum BLOSUM62 score, and show that it is solvable in O(n5)
time. Then, based on this, we design and implement two algorithms using greedy
and local search methods. We test our algorithms on the same datasets.

We comment that our problems are related to but different from the one-sided
scaffold filling problem for genomes (with gene repetitions), the main difference
is that the similarity measure between genomes is different from that between
two protein sequences. For protein sequences, the order of its amino acids is
even more critical compared with genomes. Given a complete genome G and a
genomic scaffold H, the one-sided scaffold filling problem, i.e., filling H into H′

such that the number of adjacencies between G and H′ is maximized, is NP-hard
[5,6] and the best approximation algorithm has a factor of 1.20 [7].

This paper is organized as follows. In Sect. 2, we give necessary definitions. In
Sect. 3, we present an O(n22) time solution and two practical algorithms, and we
present some empirical results using some real datasets. In Sect. 4, we first show
that CP-PSF can be solved in O(n26) time and a special case for the CP-PSF
problem is solvable in O(n5) time, and then, based on it, we design two practical
algorithms for CP-PSF. We then present some empirical results using the same
datasets. In Sect. 5, we conclude the paper.
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2 Preliminaries

We first present some necessary definitions.
We denote the set of 20 amino acids as Σ = {A,C,D,E, F,G,H, I,K,L,

M,N, P,Q,R, S, T, V,W, Y }. A protein sequence P is a sequence over Σ.
We also use c(P) to denote the multiset of elements in P. For example,
P = 〈A,D,C, I,K,W, Y,C, I〉 (or simply, P =ADCIKWYCI) with c(P) =
{A,C,C,D, I, I,K,W, Y }. In bottom-up mass spectrometry based de novo pro-
tein sequencing, we first derive peptide sequences from tandem mass spectra of
the target protein, then build up longer contigs by spectral or peptide assembly
[1,10]. For real datasets, the length of a peptide is typically between 5 and 40.

Given two protein sequences P = 〈p1, p2, ..., pn〉 and Q = 〈q1, q2, ..., qn〉,
(pi, qi) forms a matched pair if pi = qi, i.e., pi and qi are the same amino acid.
We use P[i] to represent pi, P[i, j] to represent the substring 〈pi, ..., pj〉 and P[i..]
to represent the substring 〈pi, ..., pn〉. The length of P is denoted as |P|, which
is n here. We use mp(P,Q) to denote the corresponding number of matched
pairs. Let T1 and T2 denote two sets of protein sequences of the same length,
we use mp(T1, T2) to denote the maximum number of matched pairs mp(P,Q),
for any P ∈ T1,Q ∈ T2. This definition also holds when P and Q are aligned
from initial protein sequences, possibly of different lengths, using the standard
sequence alignment algorithm by Needleman and Wunsch [15], i.e., when P and
Q contain � (the gap, or space) letters. (For the ease of presentation we use �
instead of −, as the latter is used as subtraction as well.) Note that a � does not
form a matched pair with any amino acid.

BLOSUM62 (B62 for short), coming from BLOck SUbstitution Matrix [4],
is based on comparisons of multiply (locally) aligned ungapped segments corre-
sponding to the most highly conserved regions of proteins in the Blocks database
[16]. The number of 62 means the comparisons are based on ungapped sequence
alignments with < 62% identity. BLOSUM62 is the default matrix for the stan-
dard protein-BLAST program. The integer values in BLOSUM62 vary from −4
to 11, e.g., B62[W,D] = −4 and B62[W,W ] = 11. It should be noted that a
score −8 is applied for introducing a �, which is a restriction for using too many
�’s. Throughout this paper, we use B62 to measure the similarity of protein
sequences.

A scaffold S is a list of contigs C1, C2, ..., Cm, where each contig is a sequence
of amino acids. For example, S = 〈C1, C2, C3〉, where C1 = AEFGIA , C2 =
CDIKLNTVW , and C3 = PQAWYA . These contigs are usually computed

with some weight constraint, say, the total weight of amino acids in C1 is roughly
71+129+147+57+113+71=598 Dalton. Hence, we should be more careful in
inserting some missing amino acid into a contig. In fact, throughout this paper,
we do not alter the amino acids in a given contig at all. A sequence scaffold
(or just sequence) I is an incomplete protein sequence, i.e., with some unknown
missing amino acids. This sequence is obtained usually when the contigs are
not of high quality, and we just concatenate Ci’s to obtain a sequence. We are
allowed to insert missing amino acids anywhere in I.
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Given a multiset X of amino acids, and a scaffold S = 〈C1, ..., Cm〉, S + X
is the set of all protein sequences obtained by inserting the amino acids in X in
between Ci’s (i.e., Ci’s are not altered).

In practice, if the total mass of the target protein is known, which can be
measured by top-down mass spectrometry, we would know the total mass of
missing amino acids. In this case, one way for handling this is to enumerate the
sets of amino acids which sum to a certain mass — corresponding to that of the
missing amino acids. Of course, when this mass is decently large we could have
an exponential number of such sets. In this paper, we only focus on a given set
X of missing amino acids, which can be computed as the difference between the
reference protein and given scaffold (or sequence).

Given two protein sequences P,Q, we use B62(P,Q) to denote the maximum
BLOSUM62 score when aligning them. Let Z be a set of protein sequences. Then
B62(P,Z) is the maximum BLOSUM62 score when aligning P and any sequence
z ∈ Z. Given a protein sequence I and a multiset X of amino acids, we denote
I + X as the set of all protein sequences obtained by filling all the amino acids
in X into I. We use |X| to denote the size of the set X.

The contig-preserving protein scaffold filling (CP-PSF) problem is defined as
follows.

Contig-Preserving Protein Scaffold Filling to Maximize the B62 Score
(CP-PSF)

Input: a complete protein sequence P, a protein scaffold S = 〈C1, ..., Cm〉, and
a multiset X of amino acids.
Question: maximize the B62 score B62(P,S + X).

For most of the practical instances we could assume that X is given as X =
c(P)−∪ic(Ci). Note that we have no restriction on the length of P and the filled
sequences, as with B62 we could use �’s.

When the scaffold is a sequence I, the problem can be simplified as follows.

Protein Scaffold Filling to Maximize the B62 Score (PSF)

Input: a complete protein sequence P with |P| = n, an incomplete protein
sequences I and a multiset of amino acids X.
Question: maximize the B62 score B62(P, I + X).

Note that, again, for most of the practical instances we could assume that X
is given as X = c(P) − c(I).

As solutions for PSF could be used as subroutines for CP-PSF, in the next
section we first show that the PSF problem is polynomially solvable by giving
a complex dynamic programming solution which runs in O(n22) time. We then
present two practical methods and show some empirical results.

3 Algorithms and Empirical Results for PSF

3.1 PSF is in P

We present a dynamic programming solution for solving the PSF problem, given
P, I and X. The objective is to insert X into I to obtain I ′ such that B62(P, I ′)
is maximized.
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The idea of our algorithm is as follows. In an optimal solution, when scanning
P from left to right, there are 4 cases: (1) P[i] is aligned to an inserted amino acid
in X, (2) P[i] is aligned to some amino acid I[j], (3) P[i] is inserted with a � and
it is aligned to some amino acid I[j], and (4) P[i] is aligned to an inserted � in
I[j]. To denote the set X (or any of its subset), we use a 20-dimension vector X =
〈a1, a2, ..., a20〉, where ak is the number of amino acid k (k = 1..20). Define |X| =
a1+a2+· · ·+a20. It is clear that the number of distinct subsets of X is bounded by

(a1 +1)× (a2 +1)× · · · × (a20 +1) ≤ (
a1 + a2 + · · · + a20 + 20

20
)20 = (

|X| + 20

20
)20 = O(n20).

We now define S1[i, k] as the maximum B62 score when aligning P[1..i] and
part of I ′, where P[i] is aligned to an inserted amino acid k from X and some �’s
could be inserted in P[1..i] (the resulting sequence is denoted as P ′[1..i′′]). T1[i, k]
contains all subsets of X, each of a uniform size � and can be inserted to part of
I such that the maximum value of S1[i, k] is achieved. If t ∈ T1[i, k], then t is a
20-vector. Hence at this point there are still |X| − |t| amino acids to be inserted.
Note that here k is a positive integer bounded by 20. If a specific k has been used
up then S1[i, k] is undefined. At the end, |P ′| could be larger than n (due to the
insertion of �’s), but it is still bounded by O(n). We denote the largest index i′′ in
P ′ as nmax, where nmax − n is the number of �’s inserted in P.

Likewise, we define S2[i, i′] as the maximum B62 score when aligning P[1..i]
and part of I ′, where P[i] is aligned to I[i′]. Define T2[i, i′] as all subsets of X,
each can be inserted to part of I such that the maximum value of S1[i, i′] is
achieved. Note that here we have i, i′ = O(n).

S3[i, j] is defined as the maximum B62 score when aligning P[1..i] and part
of I ′, where P[i] is inserted by a � and the � is aligned to I[j]. S4[i, j] is defined
as the maximum B62 score when aligning P[1..i] and part of I ′, where I[j] is
inserted by a � and the � is aligned to P[i]. T3[i, j], T4[i, j] are defined similarly.

We show the update of these tables as follows.

S1[i + 1, k] = max

⎧
⎪⎪⎨

⎪⎪⎩

maxk′{S1[i, k′] + B62((P[i + 1], k)}, if t[k] > 0, t ∈ T1[i, k′] (case 1)
S2[i, i′] + B62(P[i + 1], k), if t[k] > 0, t ∈ T2[i, i′] (case 2)
S3[i, j] + B62(P[i + 1], k), if t[k] > 0, t ∈ T3[i, j] (case 3)
S4[i, j] + B62(P[i + 1], k), if t[k] > 0, t ∈ T4[i, j] (case 4)

T1[i + 1, k] =

⎧
⎪⎪⎨

⎪⎪⎩

T1[i, k
′], and for t ∈ T1[i + 1, k], update t[k] ← t[k] − 1, (case 1)

T2[i, i
′], and for t ∈ T1[i + 1, k], update t[k] ← t[k] − 1, (case 2)

T3[i, j], and for t ∈ T1[i + 1, k], update t[k] ← t[k] − 1, (case 3)
T4[i, j], and for t ∈ T1[i + 1, k], update t[k] ← t[k] − 1, (case 4)

S2[i + 1, i′] = max

⎧
⎪⎪⎨

⎪⎪⎩

maxk′{S1[i, k′] + B62(P[i + 1], I[i′])}, (case 5)
S2[i, i′ − 1] + B62(P[i + 1], I[i′]), (case 6)
S3[i, i′ − 1] + B62(P[i + 1], I[i′]), (case 7)
S4[i, i′ − 1] + B62(P[i + 1], I[i′]), (case 8)

T2[i + 1, i′] =

⎧
⎪⎪⎨

⎪⎪⎩

T1[i, k′], (case 5)
T2[i, i′ − 1], (case 6)
T3[i, i′ − 1], (case 7)
T4[i, i′ − 1], (case 8)
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S3[i + 1, j] = max

⎧
⎪⎪⎨

⎪⎪⎩

maxk′{S1[i, k′]} − 8, (case 9)
S2[i, j − 1] − 8, (case 10)
S3[i, j − 1] − 8, (case 11)
S4[i, j − 1] − 8, (case 12)

T3[i + 1, j] =

⎧
⎪⎪⎨

⎪⎪⎩

T1[i, k′], (case 9)
T2[i, j − 1], (case 10)
T3[i, j − 1], (case 11)
T4[i, j − 1], (case 12)

S4[i + 1, j] = max

⎧
⎪⎪⎨

⎪⎪⎩

maxk′{S1[i, k′]} − 8, (case 13)
S2[i, j − 1] − 8, (case 14)
S3[i, j − 1] − 8, (case 15)
S4[i, j − 1] − 8, (case 16)

T4[i + 1, j] =

⎧
⎪⎪⎨

⎪⎪⎩

T1[i, k′], (case 13)
T2[i, j − 1], (case 14)
T3[i, j − 1], (case 15)
T4[i, j − 1], (case 16)

The optimal solution value is

max{S1[nmax, k], 1 ≤ k ≤ 20;S2[nmax,m];S3[nmax,m];S4[nmax,m]}.

As the number of subsets of X is bounded by O(n20), it is obvious that the
algorithm takes O(n22) time and space. We thus have the following theorem.

Theorem 1. PSF can be solved in O(n22) time and space.

Even though PSF is polynomially solvable, the high running time makes
the solution practically infeasible to implement. We next present two practical
methods.

3.2 Practical Algorithms for PSF

In the following, we assume that a complete protein sequence P is always given.
Our first algorithm is called Align+Greedy: We first align I to P using the
standard Needleman-Wunsch algorithm, and then we insert the missing amino
acids at the � positions in the aligned I with a greedy method (i.e., according
to the maximum of their B62 scores).

Algorithm 1. Align+Greedy(P,I,X)
1 Align I with P to obtain I1 with the maximum B62 score.
2 Find a � position in the aligned I1 such that inserting an amino acid in X

would incur the maximum B62 score among all � positions.
3 Repeat Step 2 until all elements in X are inserted into I1.
4 Return the filled I1 as I′, with the total alignment score between I′ and

P being b62(P, I, X).
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An improved version of our first algorithm is based on a local search method.
The idea is that if Algorithm 1 does not give us the best return, there must be
a way to locally update the solution to have a better result. The algorithm is as
follows.

Algorithm 2. LocalSearch(P,I,X)
1 Compute b62(P, I, X) using Algorithm 1. Assign U ← b62(P, I, X).
2 Insert an amino acid x ∈ X into a position i of I to obtain I(i, x) such

that the score b62(P, I(i, x), X − {x}) is maximum, for all x ∈ X
and for all i ∈ [0, |I|].

3 Run Algorithm 1 to obtain b62(P, I + x, X − {x}).
If b62(P, I + x, X − {x}) ≤ U , then return the solution I′′ incurring U ;
else update U ← b62(P, I(i, x), X − {x}), I ← I(i, x),
X ← X − {x}, and repeat Step 2.

Our datasets are based on MabCampath (or Alemtuzumab) and Humira
(or Adalimumab), which are two similar antibody proteins. Both of them con-
tain a light chain and a heavy chain, the lengths for them are 214 and 449 for
MabCampath, and 214 and 453 for Humira respectively. The pairwise align-
ments of the two light chains and two heavy chains display 91.1 % and 86.6 %
identity respectively. For each protein sequence we compute a set of peptides
from bottom up tandem mass spectra using PEAKS [12,13], which is a de novo
peptide sequencing software tool. Then we simply select a maximal set of dis-
joint peptides for each protein sequence. For the light chain of MabCampath
(MabCampath-L for short): we have two (disjoint) peptides of lengths 12 and 19.
For the heavy chain of MabCampath (MabCampath-H for short): we have eight
(disjoint) peptides of lengths 9, 7, 13, 12, 14, 15, 12 and 19. For the heavy chain
of Humira (Humira-H for short): we have six (disjoint) peptides of lengths 7, 7,
9, 9, 10 and 8. For the light chain of Humira (Humira-L for short), PEAKS is
not able to obtain any peptides of decent quality. So we will only use Humira-L
for reference purpose. Due to that the amino acids I and L have the same mass,
in the peptides and all our comparisons, all I’s have been converted to L’s. The
datasets can be found in
http://www.cs.montana.edu/∼qingge.letu/ResearchData.html.
Our code was written in Matlab and Java.

3.3 Empirical Results

Let x ∈ {MabCampath-H, Humira-H, MabCampath-L} and let the corre-
sponding references of x be Humira-H, MabCampath-H, and Humira-L respec-
tively. For each x, we use Algorithm 1 to compute the filled sequence I ′

x, and we
use Algorithm 2 to compute the filled sequence I ′′

x . As the B62 scores are not
very indicative, in the following we use the number of matched pairs resulting
from the computed B62 scores. The empirical results are shown in the follow-
ing two tables (Tables 1 and 2). Note that in most cases, Algorithm 2 produces
slightly better results. Of course, that should be considered as normal.

http://www.cs.montana.edu/~qingge.letu/ResearchData.html
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Table 1. Empirical results for the three computed I′
x using Algorithm 1. In all the

tables, ref length, tar length represents the length of the reference and target protein
sequence respectively.

x=MabCampath-H x=Humira-H x=MabCampath-L

mp(I′
x,ref) 406 442 214

mp(I′
x,ref)/ref length 406/453=89.62 % 442/449=98.44 % 214/214=100 %

mp(I′
x,target) 355 385 195

mp(I′
x,target)/tar length 355/449=79.06 % 385/453=84.99 % 195/214=91.12 %

Table 2. Empirical results for the three computed I′′
x using Algorithm 2.

x=MabCampath-H x=Humira-H x=MabCampath-L

mp(I′′
x ,ref) 415 442 214

mp(I′′
x ,ref)/ref length 415/453=91.61 % 442/449=98.44 % 214/214=100 %

mp(I′′
x ,target) 370 385 195

mp(I′′
x ,target)/tar length 370/449=82.41 % 385/453=84.99 % 195/214=91.12 %

4 Algorithms for Empirical Results for CP-PSF

4.1 CP-PSF is Polynomially Solvable

In this section, we first show that CP-PSF is also solvable in polynomial time.
As the running time of this algorithm is too high (hence infeasible for implemen-
tation), we just sketch a solution without necessarily trying to obtain the best
running time.

Define B[i, j, k, �] as the maximum B62 score when the last element of S�−1

is aligned with P[i], and S� is aligned with P[j..k]. Define C[i, j, k, �] as the set of
amino acids inserted to obtain B[i, j, k, �]. Let INS(P[i+1..j−1], C[i, j, k, �]) be
the maximum B62 score obtained by inserting the amino acids in C[i, j, k, �] to
align with the substring P[i+1..j−1]. Apparently, INS(−,−) can be computed
using the dynamic programming algorithm summarized in Theorem 3.1. Note
that ∗’s could be inserted in P and in between the scaffolds in S. The optimal
solution is maxi,j,k{B[i, j, k,m]+INS(P[k+1..n],X−C[i, j, k,m])}, which might
not be unique. As we have O(mn3) = O(n4) cells in the table B[i, j, k, �], the
following theorem is straightforward.

Theorem 2. The Contig-Preserving PSF can be solved in O(n26) time and
space.

Unfortunately, the running time of this algorithm is too high. Hence, we first
design some practical algorithms and then show some empirical results for the
CP-PSF problem using these practical algorithms.
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4.2 Practical Algorithms CP-PSF-B62

We show some property for CP-PSF.

Lemma 1. The problem of computing an alignment of P and S by only inserting
spaces between the contigs in S such that B62(P,S) is maximized, is polynomi-
ally solvable.

Proof. Let C[1], C[2], ..., C[m] be the sequence of contigs in S. Let c[i] be the
size of C[i], i.e., c[i] = |C[i]|, for i = 1, ..,m. Let d[i] be the last letter of C[i],
for i = 1, ..,m. Note that B62∗(P[i..j], C[k]) is the maximum B62 score when
aligning P[i..j] and C[k], where no � can be inserted into C[k]. This can be
pre-computed in O(c[k]2) time by setting a large penalty for introducing a � in
C[k] (say −c[k]). Therefore, the problem is to align C[k]’s, without any gap in
each C[k], to disjoint positions at P.

Define A[i, j, k] as the maximum total B62 score obtained when P[i..j] is
aligned with C[k], without using any gap in C[1], ..., C[k].

A[i, j, k + 1] = max
i′,j′

{A[i′, j′, k] + B62∗(P[i..j], C[k + 1])},

where i′ ≤ i − c[k],
∑

�=k+1..m c[�] ≤ n − j + 1.
The initialization is done as follows. A[i, j, 1] = B62∗(P[i..j], C[1]),

∑
�=2..m

c[�] ≤ n − j + 1. The final solution can be found at max1≤i<j≤n{A[i, j,m]}. The
algorithms takes O(mn4) = O(n5) time and O(mn2) = O(n3) space. �	

The above lemma, though does not solve CP-PSF, does give us a heuristic
algorithm. After the contigs in S are aligned at P, we could use a greedy method
to form a feasible solution. Among all the gap positions out of any contig in the
aligned S, we insert the elements in X at all the �’s positions, from left to right,
to maximize the total B62 score. We could use the lemma as a subroutine to
have Algorithm 3, which runs in O(mn4) time. In fact, we could implement a
simplified heuristic version for the above lemma; namely, we could scan from
left to right in P to find the best locations to locate C1, C2, ..., Cm. In the worst
case, that would only take O(mn2) time.

Algorithm 3. ContigAlign+Greedy(P,S,X)
1 Align S with P to obtain S1 with the maximum B62 score based on Lemma 4.
2 Find a � position in the aligned S1 such that inserting an amino acid in X

would incur the maximum B62 score among all � positions.
3 Repeat Step 2 until all elements in X are inserted into S1.
4 Return the filled S1 as S′, with the total alignment score between S′ and

P being b62(P, S, X).

Similar to the idea in Sect. 3.2, we could use a local search idea to try to
improve Algorithm 3. Here, we could augment the contigs by appending some
amino acids at its two ends, but the initial contigs are never altered.
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Algorithm 4. ContigLocalSearch(P,S,X)
1 Compute b62(P, S, X) using Algorithm 3. Assign U ← b62(P, S, X).
2 Insert an amino acid x ∈ X at the beginning (resp. end) of contig Si ∈ S

to obtain Si + x such that the score b62(P, S − {Si} ∪ {Si + x}, X − {x})
is the maximum, for all x ∈ X and all Si ∈ S.

3 Run Algorithm 3 to obtain b62(P, S − {Si} ∪ {Si + x}, X − {x}).
If b62(P, S − {Si} ∪ {Si + x}, X − {x}) ≤ U , then return the solution S ′′

incurring U ; else update U ← b62(P, S − {Si} ∪ {Si + x}, X − {x}),
S ← S − {Si} ∪ {Si + x}, X ← X − {x} and repeat Step 2.

Table 3. Empirical results for the three computed S ′
x using Algorithm 3.

x=MabCampath-H x=Humira-H x=MabCampath-L

mp(S ′
x,ref) 369 421 214

mp(S ′
x,ref)/ref length 369/453=81.46 % 421/449=93.76 % 214/214=100 %

mp(S ′
x,target) 347 363 195

mp(S ′
x,target)/tar length 347/449=77.28 % 363/453=80.13 % 195/214=91.12 %

Table 4. Empirical results for the three computed S ′′
x using Algorithm 4.

x=MabCampath-H x=Humira-H x=MabCampath-L

mp(S ′′
x ,ref) 377 422 214

mp(S ′′
x ,ref)/ref length 377/453=83.22 % 422/449=93.97 % 214/214=100 %

mp(S ′′
x ,target) 345 364 195

mp(S ′′
x ,target)/tar length 345/449=76.84 % 364/453=80.35 % 195/214=91.12 %

4.3 Empirical Results

Similar to Sect. 3.3, let x ∈ {MabCampath-H,Humira-H,MabCampath-L}
and let the corresponding references of x be Humira-H, MabCampath-H, and
Humira-L respectively. For each x, we use Algorithm 3 to compute the filled
sequence S ′

x, and we use Algorithm 4 to compute the filled sequence S ′′
x . Instead

of directly using the B62 scores, we again use the number of matched pairs
resulting from the computed B62 scores. The empirical results are shown in the
following two tables. Note that in all cases, compared with Algorithm 3, with
respect to a reference Algorithm 4 produces slightly better results. This can be
seen in the first two lines in Tables 3 and 4. However, with respect to the corre-
sponding target, it is not always the case that Algorithm 4 performs better than
Algorithm 3 (though the difference is small). This can be checked in the last two
lines of Tables 3 and 4 (and when x =MabCampath-H).

5 Concluding Remarks

In this paper, we study the protein scaffold filling problem when a reference
protein is given and we solve the two corresponding versions in O(n22) and
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O(n26) time, which are both impractical, respectively. We then design two prac-
tical methods, for each version, and obtain some empirical results using some
datasets from four antibody protein sequences. Our empirical results are very
promising: as long as the right reference protein and a high-quality scaffold are
given, the algorithms can fill the scaffold with 76 %-91 % accuracy.

In practice, with top-down mass spectrometry, we might know the length of
the target protein sequence. In this case, we might only need to insert a subset
X ′ ⊂ X of the missing amino acids. This will be an interesting direction for
future research.
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and Theory in Zhejiang Provincial Colleges at Zhejiang Normal University. We also
thank anonymous reviewers for several useful comments.

Appendix

See Table 5.

Table 5. The BLOSUM62 score matrix.

C S T P A G N D E Q H R K M I L V F Y W

C 9

S -1 4

T -1 1 5

P -3 -1 -1 7

A 0 1 0 -1 4

G -3 0 -2 -2 0 6

N -3 1 0 -2 -2 0 6

D -3 0 -1 -1 -2 -1 1 6

E -4 0 -1 -1 -1 -2 0 2 5

Q -3 0 -1 -1 -1 -2 0 0 2 5

H -3 -1 -2 -2 -2 -2 1 -1 0 0 8

R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5

K -3 0 -1 -1 -1 -2 0 -1 1 1 -1 2 5

M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5

I -1 -2 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4

L -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4

V -1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4

F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6

Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7

W -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11



186 L. Qingge et al.

References

1. Bandeira, N., Pham, V., Pevzner, P., Arnott, D., Lill, J.: Beyond Edman degra-
dation: automated de novo protein sequencing of monoclonal antibodies. Nat.
Biotechnol. 26(12), 1336–1338 (2008)

2. Bandeira, N., Tang, H., Bafna, V., Pevzner, P.: Shotgun protein sequencing by
tandem mass spectra assembly. Anal. Chem. 76, 7221–7233 (2004)

3. Bulteau, L., Carrieri, A.P., Dondi, R.: Fixed-parameter algorithms for scaffold
filling. Theo. Comput. Sci. 568, 72–83 (2015)

4. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks.
PNAS 89(22), 10915–10919 (1992)

5. Jiang, H., Zhong, F., Zhu, B.: Filling scaffolds with gene repetitions: maximizing
the number of adjacencies. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS,
vol. 6661, pp. 55–64. Springer, Heidelberg (2011)

6. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint
and related distances. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(4), 1220–1229
(2012)

7. Jiang, H., Ma, J., Luan, J., Zhu, D.: Approximation and nonapproximability for
the one-sided scaffold filling problem. In: Xu, D., Du, D., Du, D. (eds.) COCOON
2015. LNCS, vol. 9198, pp. 251–263. Springer, Heidelberg (2015)

8. Liu, N., Jiang, H., Zhu, D., Zhu, B.: An improved approximation algorithm for
scaffold filling to maximize the common adjacencies. IEEE/ACM Trans. Comput.
Biol. Bioinf. 10(4), 905–913 (2013)

9. Liu, N., Zhu, D., Jiang, H., Zhu, B.: A 1.5-approximation algorithm for two-sided
scaffold filling. Algorithmica 74(1), 91–116 (2016)

10. Liu, X., Han, Y., Yuen, D., Ma, B.: Automated protein (re)sequencing with MS/MS
and a homologous database yields almost full coverage and accuracy. Bioinformat-
ics 25, 2174–2180 (2009)

11. Liu, X., Dekker, L., Wu, S., Vanduijn, M., Luider, T., Tolic, N., Kou, Q., Dvorkin,
M., Alexandrova, S., Vyatkina, K., Pasa-Tolic, L., Pevzner, P.: De Novo protein
sequencing by combining top-down and bottom-up tandem mass spectra. J. Pro-
teome Res. 13, 3241–3248 (2014)

12. Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., Lajoie,
G.: PEAKS: powerful software for peptide de novo sequencing by tandem mass
spectrometry. Rapid Commun. Mass Spectrom. 17(20), 2337–2342 (2003)

13. Ma, B., Zhang, K., Liang, C.: An effective algorithm for peptide de novo sequencing
from MA/MS spectra. J. Comput. Syst. Sci. 70(3), 418–430 (2005)
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Abstract. Reconciliation based cost functions play crucial role in com-
paring gene family trees with their species tree. To provide a better
understanding of tree reconciliation we derive mean formulas for gene
duplication, gene loss and gene duplication-loss cost functions, for a fixed
species tree under the uniform model of gene trees. We then analyse
the time complexity and study mathematical properties of these formu-
las. Finally, we provide several computational experiments on empirical
datasets for the duplication, duplication-loss and deep coalescence means
under the uniform model.

Keywords: Tree reconciliation · Duplication-loss model · Deep coales-
cence · Speciation · Gene duplication · Gene loss · Bijectively labelled
tree · Uniform model of trees · Mean value

1 Introduction

Species phylogeny that represent evolutionary history of species is usually
inferred from gene family trees. However, gene and species trees are usually
incongruent which can be due to data selection, sequencing errors, inference
methods or evolutionary events such as speciation, gene duplication, gene loss,
lineage sorting or horizontal gene transfer [14] events. Studies on gene and species
phylogeny have been conducted since 1980s. Goodman et al. [6] introduced a
model of tree reconciliation in which gene duplication and loss events are invoked
to address the differences between a gene tree and its species tree. This concept
was formalized by Page and others [4,10,21]. The crucial notion in this model
is the duplication-loss cost defined as the minimal number of gene duplications
and losses required to explain all differences between a given gene tree with its
species tree.

The model of reconciled trees is closely related to a stochastic coalescent
model [1,22] in which a gene tree is evolving over time in a process that is
dependent on the second tree, called a species tree. Maddisson [17,18] proposed
a new type of lineage sorting event, called deep coalescence, that occurs when a
common ancestor of two genes extends deeper than their corresponding specia-
tion event. Minimizing the number of deep coalescences leads to the notion of the
c© Springer International Publishing Switzerland 2016
A. Bourgeois et al. (Eds.): ISBRA 2016, LNBI 9683, pp. 189–199, 2016.
DOI: 10.1007/978-3-319-38782-6 16



190 P. Górecki et al.

deep coalescence cost, which is a measure, similar to duplication-loss cost, that
can be used to compare gene and species trees. Mathematical properties the deep
coalescence cost have been intensively studied in the recent years [8,9,23,26–29].
Furthermore, all reconciliation based costs including the deep coalescence have
been successfully applied in many classical problems such as species tree infer-
ence, error correction or rooting an unrooted gene tree [2,7,11,16].

In this article we focus on mean values of gene duplication based cost func-
tions where a species tree is a parameter. Similar results were established for
the deep coalescence cost by Than and Rosenberg in 2012 [29] under two stan-
dard probability models of trees: the uniform model and the Yule-Harding
model [15,19,25]. From the mathematical point of view, the gene loss cost func-
tion is a linear combination of gene duplication and deep coalescence [11,32],
therefore, any property derived for these two functions can naturally be trans-
lated into gene loss and gene duplication-loss cost functions.

Our contribution. In this article we derive mean formulas for gene duplica-
tion, gene loss and gene duplication-loss cost functions for a fixed species tree
under the uniform model of gene trees. We show that the mean values for the
duplication based cost functions depends on the cardinalities of sibling clusters
present in the species tree. Next, we analyse the time complexity of these for-
mulas. Finally, by using our computationally efficient formulas, we provide a
comparative study for the mean values under the uniform model performed on
two empirical datasets for three standard reconciliation cost functions such as
gene duplication, gene duplication-loss and deep coalescence.

2 Basic Definitions

We introduce several notions from phylogenetic theory [11,21]. Let X be a non-
empty set of n species (taxons). By R(X) we denote the set of all rooted binary
trees whose leaves are bijectively labeled by the species from X. Let T ∈ R(X).
A cluster1 of v is the set of all leaf labels present in the subtree of S rooted at v.
Let lcaT (v, w) denote the least common ancestor of nodes v and w in T . The
root of a tree T is denoted by root(T ) and the parent of a non-root node v is
denoted by par(v). By VT and ET we denote the sets of all nodes and all edges
in T , respectively.

In the model of reconciled trees a gene tree is compared with its species tree.
In this article both types of trees have the same bijective labelling of leaves,
therefore, we assume that every gene tree and every species tree is an element
of R(X). For a (gene) tree G ∈ R(X) and a (species) tree S ∈ R(X) the least
common ancestor mapping between G and S, or lca-mapping, M : VG → VS , is
defined as

M(g) :=

{
s g and s are leaves having the same label,

lcaS(M(g′),M(g′′)) g is an internal node having two children g′and g′′.

1 Called sometimes a clade in the literature.
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Fig. 1. An example of rooted reconciliation. The lca-mapping between a gene tree G
and a species tree S and the embedding of G into S, i.e., an informal representation
of an evolutionary scenario explaining differences between G and S by using gene
duplications and gene losses. Here the DL cost is 9 (2 duplications + 7 gene losses) and
the DC cost is 3. The lca-mapping is shown only for the internal nodes of G.

An internal node g is a duplication if M(g) = M(a) for a child a of g. Every
internal non-duplication node is called a speciation. The duplication cost, denoted
by D(G,S), equals the total number of duplications in G when reconciling G with
S [20]. Formally,

D(G,S) := |{g ∈ VG : M(g) = M(a) and par(a) = g}|.
The formula for counting deep coalescence events [17,18], that occur when a

common ancestor of two genes extends deeper than their corresponding specia-
tion event, can be expressed by [32]:

DC(G,S) :=
∑

g∈VG\{root(G)}
(‖M(g),M(par(g))‖ − 1).

where ‖a, b‖ is the number of edges on the path connecting a and b in S. See also
[29] for alternative definitions of DC. The total number of gene losses required
to reconcile G and S is defined by [32]

L(G,S) := 2D(G,S) + DC(G,S). (1)

Finally, the duplication-loss cost we define as

DL(G,S) := D(G,S) + L(G,S). (2)

We denote trees by using the standard nested parenthesis notation. For instance,
in Fig. 1, G = (((a, c), b), (d, e)) is a five-leaf gene tree over a species set
{a, b, c, d, e}.

3 Results

In the uniform model of binary trees an equal probability is assigned to each
possible leaf labeled binary tree with n leaves. Unrooted trees in this model
can be generated by uniform and random insertions of one edge to any edge at
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each step. For rooted trees the insertion can be additionally performed on the
rooting edge as indicated in Fig. 2. We analyse the mean of the duplication cost
in the uniform model of rooted leaf-labeled trees. Recall that R(X) denote the
set of all bijectively labeled rooted trees over X and |X| = n > 0. The mean of
duplication cost for a fixed species tree S ∈ R(X) under a probabilistic model
of gene trees is defined as:

Du(S) =
∑

G∈R(X)

P(G)D(G,S). (3)

The size of R(X) is given by the following classical formula:

b(n) = (2n − 3)!!,

where k!! is the double factorial, i.e., k!! = k · (k − 2)!! and 0!! = (−1)!! = 1.
Thus, in the uniform model every (gene) tree G ∈ R(X) has the same probability
P(G) = 1

b(n) .

Fig. 2. Uniform model for leaf-labeled rooted trees. A new edge with n + 1-th label is
uniformly added to any edge including the rooting edge. Every tree among the four-leaf
trees on the right can be created from (a, (b, c)) with equal probability.

In the duplication model a type of a node from a gene tree depends on
the clusters of its children, therefore, we introduce a notion of a (rooted) split.
Every internal node s of S, induces the set {A,B}, called a split and denoted
by A|B, such that A and B are the clusters of children of s. The set of all
splits in S we denote by Spl(S). For example, Spl(((a, b), (c, d))) is equal to
{{{a, b}, {c, d}}, {{a}, {b}}, {{c}, {d}}}, or by using a simplified split notation:
{ab|cd, a|b, c|d}.

For A,B ⊂ X, by eDup
n (A,B) we denote the number of duplication nodes

present in trees from R(X) mapped into a node whose split is A|B. Similarly,
we define eSpecn (A,B) for speciation nodes.

Lemma 1. For a species tree S with n leaves,
∑

A|B∈Spl(S)

(eDup
n (A,B) + eSpecn (A,B)) = b(n) · (n − 1).

Proof. The result follows from the fact that there are b(n) trees each having
n − 1 internal nodes. Next, for a fixed species tree, every internal node present
in a tree from R(X) is either a speciation or a duplication.
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2D 6L 2D 6L 2D 6L 1D 3L 1D 3L

2D 6L 1D 4L 2D 6L 1D 3L 2D 6L

0D 0L 2D 6L 1D 3L 1D 4L 2D 6L

Fig. 3. Duplication-loss scenarios for n = 4 and the species tree S = ((a, b), (c, d)). Top:
All 15 bijectively labeled gene trees with four leaves. Bottom: Embeddings (scenarios)
of every gene tree into the species tree S [10]. Each scenario is summarized with two
numbers denoting the number of gene duplications (D) and the number of gene losses
(L). We omit leaf labels for brevity. We have 22 duplications, 23 speciation nodes and
68 gene losses in total. In this example, Du(S) = 22/15, L(S) = 68/15 and DLu(S) =
90/15.

Hence, the mean (3) is equivalent to

Du(S) =
1

b(n)

∑

A|B∈Spl(S)

eDup
n (A,B) = n − 1 − 1

b(n)

∑

A|B∈Spl(S)

eSpecn (A,B). (4)

The mappings of children of a speciation node induce disjoint clusters in a
species tree, therefore, it is more convenient to count directly the number of
speciation nodes rather then duplications.

Lemma 2. For a species tree S with n leaves and a split A|B present in S

eSpecn (A,B) =
|A|∑

i=1

|B|∑

j=1

(|A|
i

)(|B|
j

)

b(i)b(j)b(n − i − j + 1).

Proof. Assume that s ∈ S has the split A|B. A gene tree having a speciation
node mapped into s can be constructed as follows. Let z be an element not in
X, let A′ and B′ be nonempty subsets of A and B, respectively. Then, a gene
tree G ∈ R(X) which has a speciation node with split A′|B′ can be constructed
by replacing the leaf z in a tree R((X \ (A′ ∪B′))∪{z}) by a tree (GA, GB) such
that GA ∈ R(A′) and GB ∈ R(B′). Clearly, the root of (GA, GB) is a speciation
mapped into s. It should be clear that the above method counts every speciation
node from R(X) exactly once (even if a single tree from R(X) may have more
than one speciation mapped into s). ��
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Finally, we have the main result.

Theorem 1 (Mean of D under the uniform model). For a given species
tree S with n leaves

Du(S) = n − 1 − 1
b(n)

∑

A|B∈Spl(S)

|A|∑

i=1

|B|∑

j=1

(|A|
i

)(|B|
j

)

b(i)b(j)b(n − i − j + 1).

Proof. It follows from Lemma 2 and Eq. 4. ��
To obtain the result for the duplication-loss cost we need the mean of the

deep coalescence cost.

Theorem 2 (Mean of DC under the uniform model; adopted from Cor.
5 [29]). For a species tree S with n leaves:

DCu(S) = −2n(2n − 2) + 2 epl(S) +
(2n − 2)!!

b(n)

∑

A∈C(S)

(2n − 2|A| − 1)!!
(2n − 2|A| − 2)!!

,

where C(S) is the set of all clusters in S excluding the cluster of the root, and
epl(S) is the external path length of S [3,29] equaling

∑
v∈LS

‖v, root(S)‖ (or
equivalently

∑
A∈C(S) |A|).

Finally, we have the result for the duplication-loss and loss costs.

Theorem 3 (Mean of DL and L under the uniform model). For a species
tree S we have

DLu(S) = 3 · Du(S) + DCu(S)

and
Lu(S) = 2 · Du(S) + DCu(S).

Proof. The result follows easily from the definition of gene loss (see Eq. (1)) and
duplication-loss (see Eq. (2)) cost functions and the properties of mean values.��
Now it is straightforward to combine the formulas from Theorems 1, 2 and 3
to obtain the final formula for the mean of both cost functions. We omit easy
details. An example is depicted in Fig. 3.

From the computational point of view computing the mean of deep coales-
cence for a fixed species tree can be completed in O(n) steps under assumption
that double factorials are memorized and the required size of clusters is stored
with the nodes of the standard pointer-like implementation of trees. For the
mean of the remaining cost functions, however, we need two additional loops.
Therefore, the time complexity of computing Du(S), Lu(S) and DLu(S) is O(n3).
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4 Experimental Evaluation

4.1 Mean Values for Tree Shapes

Table 1 depicts mean values of four cost functions for all tree shapes with
3, 4, . . . 9 leaves. Note that the mean formula (Theorem 2) for deep coalescence
depends on the size of clusters from a species tree. On the other hand the mean
of the duplication cost (Theorem 1) depends on the cardinality of splits from a
species tree. The same applies for the duplication-loss and loss costs. Therefore
the same cardinality of splits in tree shapes induces the same mean values. The
smallest n, for which we can observe this property is 9 as indicated in the last row
of Table 1, where the trees marked in red have the following split cardinalities:
4|5, 2|2, 1|4, 1|3, 1|2 and three times 1|1. In Table 1 the mean of gene duplication
cost grows with the Furnas rank [5] of a species tree (a general statement of this
type for any n, however, needs to be proved), while the deep coalescence and
other cost functions have rather the opposite property (see also [29]).

For a more general view, we computed mean values for all tree shapes with
up to 20 leaves. Note that for n = 20 there are 293547 shapes. The result is
summarized in Fig. 5. We observe that mean of the duplication cost has the
smallest variability, which can partially be explained by the fact that the max-
imal number of gene duplications is n − c − 1 [12], where c is the number of
cherries, i.e., subtrees consisting of exactly two leaves, in a gene tree. In con-
sequence, other cost functions such as duplication-loss, deep coalescence or loss
(not depicted here), being a linear combination of gene duplication and deep
coalescence functions, share a similar structure of values as indicated in Fig. 5.

4.2 Empirical Study

In our experimental evaluation we used two publicly available datasets.
Dataset I. We downloaded a collection of curated unrooted gene family trees

from TreeFam v7.0 [24]. From the TreeFam species tree based on the NCBI
taxonomy, we selected 24 species out of 29 species in order to obtain gene
trees with a bijective labelling. The following species were removed: Oryzias
latipes, Fugu rubripes, Ciona savignyi, Drosophila pseudoobscura, Caenorhab-
ditis remanei. Next, after contracting gene trees to the set of 24 species, we
obtained 11 bijectively labelled gene trees. Finally, these gene trees were rooted
by using Urec [13].

Dataset II. We downloaded gene families of nine yeast genomes from
Génolevures dataset [30]. From the whole dataset, we selected 1690 gene fam-
ilies having exactly one gene sampled from each species. Finally, for each gene
family we inferred an unrooted gene tree having bijective leaf labelling by using
PhyML with the standard parameter setting. Similarly, to the first dataset, the
gene trees were rooted by Urec [13]. To reconcile the gene trees we used the
original Génolevures species phylogeny [31].

Data processing. For both datasets we conducted an experiment accordingly
to the following procedure. For a dataset with the species tree S, for every
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Table 1. Mean values for all tree shapes with n ∈ {3, 4, . . . , 9} leaves. The shapes
are shown ordered by Furnas rank [5]. The table is patterned after [29]. Below every
shape we present the corresponding mean values. The two shapes marked in red have
the splits with the same cardinality, which implies equal values of the corresponding
means. Note that for n = 1, 2 the means are 0.

n ≤ 6
0.67 2.00 1.33 4.67 1.47 4.53 2.00 8.00 2.02 7.41 2.17 7.54 2.67 12.00 2.67 11.28 2.70 10.86 2.85 11.19 2.86 10.48 2.90 10.82
2.67 0.67 6.00 2.00 6.00 1.60 10.00 4.00 9.43 3.37 9.71 3.20 14.67 6.67 13.96 5.94 13.56 5.46 14.04 5.49 13.33 4.76 13.72 5.02

n = 7
3.33 16.67 3.34 15.88 3.35 15.29 3.37 15.01 3.38 14.22 3.39 14.42 3.52 15.52 3.52 14.74 3.53 14.14 3.60 14.72 3.60 13.94
20.00 10.00 19.22 9.21 18.63 8.60 18.38 8.26 17.60 7.47 17.81 7.65 19.04 8.48 18.26 7.69 17.67 7.07 18.32 7.52 17.54 6.74

n = 8
4.00 22.00 4.00 21.18 4.01 20.49 4.02 20.01 4.02 19.18 4.02 19.33 4.05 19.85 4.05 19.03 4.05 18.34 4.07 18.71 4.07 17.88 4.19 20.52
26.00 14.00 25.18 13.17 24.50 12.48 24.02 11.97 23.20 11.15 23.35 11.28 23.90 11.76 23.08 10.94 22.40 10.24 22.78 10.56 21.96 9.73 24.71 12.15

4.19 19.70 4.19 19.02 4.20 18.53 4.21 17.71 4.21 17.85 4.28 19.29 4.28 18.47 4.28 17.78 4.31 18.84 4.31 18.02 4.31 17.20
23.89 11.32 23.21 10.63 22.73 10.12 21.91 9.30 22.06 9.43 23.57 10.74 22.75 9.91 22.07 9.22 23.15 10.23 22.33 9.40 21.51 8.58

n = 9

4.67 28.00 4.67 27.15 4.67 26.41 4.68 25.81 4.68 24.96 4.68 25.07 4.69 25.43 4.69 24.58 4.69 23.83 4.70 24.10 4.70 23.25 4.72 25.39
32.67 18.67 31.82 17.82 31.08 17.07 30.49 16.46 29.64 15.61 29.75 15.71 30.11 16.05 29.26 15.20 28.52 14.45 28.80 14.70 27.95 13.85 30.11 15.96

4.72 24.54 4.72 23.80 4.72 23.20 4.72 22.35 4.73 22.47 4.75 23.70 4.75 22.85 4.76 22.11 4.77 23.12 4.77 22.27 4.77 21.42 4.85 26.21
29.26 15.11 28.52 14.36 27.93 13.76 27.08 12.90 27.19 13.01 28.45 14.20 27.61 13.35 26.87 12.60 27.89 13.59 27.04 12.74 26.19 11.89 31.06 16.51

4.85 25.36 4.86 24.62 4.86 24.02 4.86 23.17 4.86 23.28 4.87 23.64 4.87 22.79 4.88 22.05 4.89 22.31 4.89 21.46 4.95 24.56 4.95 23.71
30.21 15.66 29.47 14.91 28.88 14.30 28.03 13.45 28.15 13.56 28.51 13.89 27.66 13.04 26.92 12.30 27.20 12.54 26.35 11.69 29.51 14.65 28.66 13.80

Key:

4.95 22.96 4.96 22.37 4.96 21.52 4.96 21.63 5.00 23.63 5.00 22.78 5.00 22.04 5.00 22.78 5.00 21.94 5.00 21.19 Du Lu

27.92 13.06 27.33 12.45 26.48 11.60 26.59 11.70 28.63 13.64 27.78 12.79 27.04 12.04 27.78 12.79 26.94 11.94 26.20 11.19 DLu DCu

Fig. 4. Average number of gene duplication and gene duplication-loss events located
in gene trees sampled from TreeFam and Génolevures.

k = 0, 1, . . . , |LS | − 3, and for i = 1, 2, . . . , 100 we randomly chose a set Ri
k

of k species present in S. Then, we created (|LS | − 2) · 100 sample datasets by
contracting the species tree S and every gene tree to the set of species from LS \
Ri

k. Next, for every resulting sample dataset consisting of a species tree S′ and
a collection of gene tree G we calculated the average number of gene duplication
and gene duplication-loss events by 1

|G |
∑

G∈G D(G,S′) and 1
|G |

∑
G∈G DL(G,S′),



Mean Values of Gene Duplication and Loss Cost Functions 197

Fig. 5. Frequency diagram of mean values of duplication, duplication-loss and deep
coalescence costs for all fixed species tree shapes for n = 3, 4, . . . 20 under the uniform
model of gene trees. For each n, mean values for every cost were grouped into bins of
size 0.01. The width of each bin is proportional to log2 K, where K is the number of
species tree shapes having the mean value in this bin.

respectively. Finally, we averaged these values in the 100 sample datasets having
the same size of contracted trees.

The results are depicted in Fig. 4. We observe that the average number of
gene duplication in empirical datasets can be well approximated by a constant
function. For instance, every gene tree in TreeFam, whether contracted or not,
have on average 2 gene duplications. On the other hand, the mean values over
the whole set of gene trees are monotonically growing with n as indicated in
Fig. 5. We conclude that the properties of empirical datasets are significantly
different than uniformly random ones.

5 Conclusion

In this article we derived mean formulas for gene duplication, gene loss and gene
duplication-loss cost functions for a fixed species tree under the uniform model
of gene trees. Our empirical study shows that the properties of mean values of
the duplication cost are different than properties of the deep coalescence cost.
For instance, we shown that only the mean of duplications tend to grow with the
Furnas rank. As expected our study confirmed that the structure of mean values
is similar between the gene loss, the deep coalescence and the duplication-loss
cost functions. Similar results can be obtained for the Yule-Harding model for
bijectively labelled trees [15,19,25].
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Mean values can naturally be used to normalize costs in comparative studies
with gene and species trees [29]. For example, in [12], we demonstrated how
a species tree can be inferred from a set of gene trees under the normalized
duplication cost, where the normalizing factor was a diameter of a duplication
cost defined as the maximal number of gene duplications for a fixed species
tree (see also Sect. 4.1). Further investigation into the normalization with mean
values provides an important direction for future work.
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Abstract. Reconstructing ancestral gene orders in a given phylogeny
is a classical problem in comparative genomics. Most existing meth-
ods compare conserved features in extant genomes in the phylogeny to
define potential ancestral gene adjacencies, and either try to reconstruct
all ancestral genomes under a global evolutionary parsimony criterion,
or, focusing on a single ancestral genome, use a scaffolding approach to
select a subset of ancestral gene adjacencies. In this paper, we describe
an exact algorithm for the small parsimony problem that combines both
approaches. We consider that gene adjacencies at internal nodes of the
species phylogeny are weighted, and we introduce an objective function
defined as a convex combination of these weights and the evolutionary
cost under the Single-Cut-or-Join (SCJ) model. We propose a Fixed-
Parameter Tractable algorithm based on the Sankoff-Rousseau dynamic
programming algorithm, that also allows to sample co-optimal solu-
tions. An implementation is available at http://github.com/nluhmann/
PhySca.

1 Introduction

Reconstructing ancestral gene orders is a long-standing computational biology
problem with important applications, as shown in several recent large-scale
projects [8,17,18]. Informally, the problem can be defined as follows: Given a
phylogenetic tree representing the speciation history leading to a set of extant
genomes, we want to reconstruct the structure of the ancestral genomes corre-
sponding to the internal nodes of the tree.

Existing ancestral genome reconstruction methods concentrate on two main
strategies. Local approaches consider the reconstruction of one specific ancestor
at a time independently from the other ancestors of the tree. Usually, they do
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not consider an evolutionary model and proceed in two stages: (1) comparing
gene orders of ingroup and outgroup species to define potential ancestral gene
adjacencies, and (2) selecting a conflict-free subset of ancestral gene adjacen-
cies to obtain a set of Contiguous Ancestral Regions (CARs) [3,7,14,15]. Global
approaches on the other hand simultaneously reconstruct ancestral gene orders
at all internal nodes of the considered phylogeny, generally based on a parsi-
mony criterion within an evolutionary model. This small parsimony problem has
been studied with several underlying genome rearrangement models, such as
the breakpoint distance or the Double-Cut-and-Join (DCJ) distance [1,11,23].
While rearrangement scenarios based on complex rearrangement models can give
insights into underlying evolutionary mechanisms, from a computational point
of view, the small parsimony problem is NP-hard for most rearrangement dis-
tances [21]. One exception is the Single-Cut-or-Join (SCJ) distance, for which
linear/circular ancestral gene orders can be found in polynomial time [9], however
constraints required to ensure algorithmic tractability yield fragmented ancestral
gene orders.

The work we present is an attempt to reconcile both approaches. We intro-
duce a variant of the small parsimony problem based on an optimality criterion
that accounts for both an evolutionary distance and the difference between the
initial set of potential ancestral adjacencies and the final consistent subset of
adjacencies. More precisely we consider that each potential ancestral gene adja-
cency can be provided with a (prior) non-negative weight at every internal node.
These adjacency weights can e. g. be obtained as probabilities computed by sam-
pling scenarios for each potential adjacency independently [6] or can be based
on ancient DNA (aDNA) sequencing data providing direct prior information
assigned to certain ancestral nodes. It follows that the phylogenetic framework
we present can then also assist in scaffolding fragmented assemblies of aDNA
sequencing data [12,19]. We describe an exact exponential time algorithm for
reconstructing consistent ancestral genomes under this optimality criterion, and
show that the small parsimony problem variant we introduce is Fixed-Parameter
Tractable (FPT), with a parameter linked to the amount of conflict in the data.
Moreover, this also allows us to provide a FPT sampling algorithm for co-optimal
solutions. We evaluate our method on two data sets: mammalian genomes span-
ning roughly one million years of evolution, and bacterial genomes (pathogen
Yersinia) spanning 20, 000 years of evolution. See [13] for an extended preprint
of this paper.

2 Background

Genomes and adjacencies. Genomes consist of chromosomes and plasmids. Each
such component can be represented as a linear or circular sequence of oriented
markers over a marker alphabet. Markers correspond to homologous sequences
between genomes, e. g. genes or synteny blocks. We assume that each marker
appears exactly once in each genome, so our model does not consider duplica-
tions or deletions. To account for its orientation, each marker x is encoded as
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a pair of marker extremities (xh, xt) or (xt, xh). An adjacency is an unordered
pair of marker extremities, e. g. {xt, yh}. The order of markers in a genome can
be encoded by a set of adjacencies. Two distinct adjacencies are said to be con-
flicting if they share a common marker extremity. If a set of adjacencies contains
conflicting adjacencies, it is not consistent with a mixed linear/circular genome
model.

The small parsimony problem and rearrangement distances. In a global phylo-
genetic approach, we are given a phylogenetic tree with extant genomes at its
leaves and internal nodes representing ancestral genomes. We denote by A the
set of all adjacencies present in at least one extant genome and assume that
every ancestral adjacency belongs to A. Then the goal is to find a labeling of the
internal nodes by consistent subsets of A minimizing a chosen genomic distance
over the tree. This is known as the parsimonious labeling problem. It is NP-hard
for most rearrangement distances. The only known exception is the set-theoretic
Single-Cut-or-Join (SCJ) distance [9]. It defines a rearrangement distance by
two operations: the cut and join of adjacencies. Given two genomes defined by
consistent sets of adjacencies A and B, the SCJ distance between these genomes
is dSCJ(A,B) = | A − B | + | B − A |.

The small parsimony problem under the SCJ model can be solved by com-
puting a parsimonious gain/loss history for each adjacency separately with the
dynamic programming Fitch algorithm [10]. Consistent labelings can be ensured
with the additional constraint that in case of ambiguity at the root of the tree,
the absence of the adjacency is chosen [9]. As each adjacency is treated indepen-
dently, this constraint might automatically exclude all adjacencies being part
of a conflict to ensure consistency and thus results in an unnecessarily sparse
reconstruction.

Generalization by weighting adjacencies. When considering an internal node v,
we define node u as its parent node in T . We assume that a specific adjacency
graph is associated to each ancestral node v, whose edges are annotated by
a weight wv,a ∈ [0, 1] representing a confidence measure for the presence of
adjacency a in species v. Then in a global reconstruction, cutting an adjacency
of a higher weight has higher impact in terms of the optimization criterion, than
cutting an adjacency of lower weight.

Formally, we define two additional variables for each adjacency a ∈ A at each
internal node v ∈ V : The presence (or absence) of a at node v is represented by
pv,a ∈ {0, 1}, while cv,a ∈ {0, 1} indicates a change for the status of an adjacency
along an edge (u, v), i.e., pu,a �= pv,a. We consider the problem of optimizing the
following objective function, where α ∈ [0, 1] is a convex combination factor.

Definition 1 (Weighted SCJ labeling problem). Let T = (V,E) be a tree
with each leaf l labeled with a consistent set of adjacencies Al ⊆ A and each
adjacency a ∈ A is assigned a given weight wv,a ∈ [0, 1] for each node v ∈ V . A
labeling λ of the internal nodes of T with λ(l) = Al for each leaf is an optimal
weighted SCJ labeling if none of the internal nodes v ∈ V contains a conflict
and it minimizes the criterion



The SCJ Small Parsimony Problem for Weighted Gene Adjacencies 203

D(λ, T ) =
∑

a,v

α(1 − pa,v)wa,v + (1 − α)ca,v

Further, we can state the corresponding co-optimal sampling problem.

Definition 2 (Weighted SCJ sampling problem). Given the setting of the
weighted SCJ labeling problem, sample uniformly from all labelings λ of the inter-
nal nodes of T that are solutions to the weighted SCJ optimal labeling problem.

Existing results. There exist a few positive results for the weighted SCJ labeling
problem with specific values of α. If α = 0, the objective function corresponds to
the small parsimony problem under the SCJ distance and hence a solution can
be found in polynomial time [9]. A generalization towards multifurcating, edge-
weighted trees including prior information on adjacencies at exactly one internal
node of the tree is given in [12]. Recently, Miklós and Smith [16] proposed a
Gibbs sampler for sampling optimal labelings under the SCJ model with equal
branch lengths. This method addresses the issue of the high fragmentation of
internal node labelings, but convergence is not proven, and so there is no bound
on the computation time. If α = 1, i.e., we do not take evolution in terms of SCJ
distance along the branches of the tree into account, we can solve the problem by
applying independently a maximum-weight matching algorithm at each internal
node [15]. So the extreme cases of the problem are tractable, and it remains open
to see if the general problem is hard.

3 Methods

In order to find a solution to the weighted SCJ labeling problem, we first show
that we can decompose the problem into smaller independent subproblems.
Then, for each subproblem containing conflicting adjacencies, we show that, if it
contains a moderate level of conflict, it can be solved using the Sankoff-Rousseau
algorithm [20] with a complexity parameterized by the size of the subproblem.
For a highly conflicting subproblem, we show that it can be solved by an Integer
Linear Program (ILP).

Decomposition into independent subproblems. We first introduce a graph that
encodes all adjacencies present in at least one internal node of the considered
phylogeny (Definition 3). As introduced previously, we consider a tree T = (V,E)
where each node is augmented by an adjacency graph.

Definition 3 (Global adjacency graph). The set of vertices VAG of the
global adjacency graph AG consists of all marker extremities present in at least
one of the adjacency graphs. There is an edge between two vertices a, b ∈ VAG

that are not extremities of a same marker, if there is an internal node in the tree
T whose adjacency graph contains the adjacency {a, b}. The edge is labeled with
the list of all internal nodes v that contain this adjacency.
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Each connected component C of the global adjacency graph defines a sub-
problem composed of the species phylogeny, the set of marker extremities equal
to the vertex set of C and the set of adjacencies equal to the edge set of C.
According to the following lemma, whose proof is straightforward, it is sufficient
to solve each such subproblem independently.

Lemma 1. The set of all optimal solutions of the weighted SCJ labeling prob-
lem is the set-theoretic Cartesian product of the sets of optimal solutions of the
instances defined by the connected components of the global adjacency graph.

To solve the problem defined by a connected component C of the global
adjacency graph containing conflicts, we rely on an adaptation of the Sankoff-
Rousseau algorithm with exponential time complexity, parameterized by the
size and nature of conflicts of C, and thus can solve subproblems with moderate
amount of conflict.

Application to the weighted SCJ optimal labeling problem. In order to use the
Sankoff-Rousseau algorithm to solve the problem defined by a connected compo-
nent C of the global adjacency graph, we define a label of an internal node of the
phylogeny as the assignment of at most one adjacency to each marker extrem-
ity. More precisely, let x be a marker extremity in C, v an internal node of T ,
and e1, . . . , edx

be all edges in the global adjacency graph that are incident to
x and whose label contains v (i.e., represent adjacencies in the adjacency graph
of node v). We define the set of possible labels of v as Lx,v = {∅, e1, . . . , edx

}.
The set of potential labels Lv of node v is then the Cartesian product of the
label sets Lx,v for all x ∈ V (C) resulting in a set of discrete labels for v of size∏

x∈V (C)(1 + dx). Note that not all of these joint labelings are valid as they can
assign an adjacency a = (x, y) to x but not to y, or adjacency a = (x, y) to x
and b = (x, z) to z thus creating a conflict (see [13] for an example).

For an edge (u, v) in the tree, we can then define a cost matrix that is indexed
by pairs of labels of Lu and Lv, respectively. The cost is infinite if one of the
labels is not valid, and defined by the objective function otherwise. We can then
apply the Sankoff-Rousseau approach to find an optimal labeling of all internal
nodes of the tree for connected component C. Note that, if C is a connected
component with no conflict, it is composed of two vertices and a single edge,
and can be solved in space O(n) and time O(n).

Solving a general instance. Given a general instance, i.e., an instance not limited
to a single connected component of the global adjacency graph, we can consider
each connected component independently (Lemma 1). For a set of N markers
and c connected components in the global adjacency graph defining a conflicting
instance, we define D as the maximum degree of a vertex and M as the maximum
number of vertices in all such components. Then, the complexity analysis in the
appendix shows that the problem is Fixed-Parameter Tractable (FPT).

Theorem 1. The weighted SCJ labeling problem can be solved in worst-case
time O(nN(1 + D)2M ) and space O(nN(1 + D)M ).
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In practice, the exponential complexity of our algorithm depends on the
structure of the conflicting connected components of the global adjacency graph.
The dynamic programming algorithm will be effective on instances with either
small conflicting connected components or small degrees within such compo-
nents, and will break down with a single component with a large number of
vertices of high degree. For such components, the time complexity is provably
high and we propose an ILP (see [13]) to solve such components.

Sampling co-optimal labelings. The Sankoff-Rousseau DP algorithm can easily
be modified to sample uniformly from the space of all optimal solutions to the
weighted SCJ labeling problem in a forward-backward fashion. The principle is to
proceed in two stages: first, for any pair (v, a) we compute the number of optimal
solutions under this label for the subtree rooted at v. Then, when computing an
optimal solution, if a DP equation has several optimal choices, one is randomly
picked according to the distribution of optimal solutions induced by each choice
(see [13] for more details). This classical dynamic programming approach leads
to the following result.

Theorem 2. The weighted SCJ sampling problem can be solved in worst-case
time O(nN(1 + D)2M ) and space O(nN(1 + D)M ).

For subproblems that are too large for being handled by the Sankoff-Rousseau
algorithm, the SCJ small parsimony Gibbs sampler recently introduced [16] can
easily be modified to incorporate prior weights, although there is currently no
proven property regarding its convergence.

4 Results

We evaluated our reconstruction algorithm on two datasets: mammalian and
Yersinia genomes. The mammalian dataset was used in the studies [7,16]. Our
second dataset contains eleven Yersinia genomes, an important human pathogen.
This dataset contains contigs from the recently sequenced extinct agent of the
Black Death pandemic [4] that occurred roughly 650 years ago. We refer to [13]
for the species phylogenies of these two datasets and extended information on
how adjacency weights have been obtained for both datasets.

4.1 Mammalian Dataset

Unique and universal markers were computed as synteny blocks with different
resolution in terms of minumum marker length. Note that all rearrangement
breakpoints are therefore located outside of marker coordinates. It results in five
different datasets varying from 2, 185 markers for a resolution of 100 kb to 629
markers for a resolution of 500 kb.

We considered all adjacencies present in at least one extant genome as poten-
tially ancestral. To weight an adjacency at all internal nodes of the tree, we relied
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on evolutionary scenarios for each single adjacency, in terms of gain/loss, inde-
pendently of the other adjacencies (i. e. without considering consistency of ances-
tral marker orders). We obtain these weights using the software DeClone [6], and
we refer to them as DeClone weights. We considered two values of the DeClone
parameter kT , 0.1 and 1, the former ensuring that only adjacencies appearing in
at least one optimal adjacency scenario have a significant DeClone weight, while
the latter samples adjacencies outside of optimal scenarios. For the analysis of
the ancestral marker orders obtained with our algorithm, we considered the data
set at 500 kb resolution and sampled 500 ancestral marker orders for all ancestral
species under different values of α.

The complexity of our algorithm is dependent on the size of the largest
connected component of the global adjacency graph. In order to restrict the
complexity, we kept only adjacencies whose weights are above a given thresh-
old x. In most cases, all connected components are small enough to be handled
by our exact algorithm in reasonable time except for very large components in
the marker sets with higher resolution under a low threshold x. For the 500 kb
dataset with x = 0.2 and kT = 1, the computation of one solution takes on
average 200 s on a 2.6 GHz i5 with 8 GB of RAM. It can be reduced to 30 s when
DeClone weights are based on kT = 0.1. This illustrates that our algorithm,
despite an exponential worst-case time complexity, can process realistic datasets
in practice. Next, we analyzed the 500 optimal SCJ labelings obtained for α = 0,
i. e. aiming only at minimizing the SCJ distance, and considered the fragmenta-
tion of the ancestral gene orders (number of CARs) and the total evolutionary
distance. Note that, unlike the Fitch algorithm used in [9], our algorithm does
not favor fragmented assemblies by design but rather considers all optimal label-
ings. Sampling of co-optimal solutions shows that the pure SCJ criterion leads
to some significant variation in terms of number of CARs (Fig. 1). The optimal
SCJ distance in the tree for α = 0 is 1, 674, while the related DCJ distance in
the sampled reconstructions varies between 873 and 904 (Fig. 2). In comparison,
we obtained a DCJ distance of 829 with GASTS [22], a small parsimony solver
directly aiming at minimizing the DCJ distance. This illustrates both a lack of
robustness of the pure SCJ optimal labelings, and some significant difference
between the SCJ and DCJ distances.

For α > 0, our method minimizes a combination of the SCJ distance with
the DeClone weights of the adjacencies discarded to ensure valid ancestral gene
orders. We distinguish between DeClone parameter kT = 0.1 and kT = 1.
Figures 2 and 3 show the respective observed results in terms of evolutionary
distance and fragmentation. For kT = 0.1, the optimal SCJ and DCJ distance
over the whole tree hardly depends on α. Including the DeClone weights in the
objective actually results in the same solution, independent of α > 0. In fact,
while applying a low weight threshold of x = 0.2, the set of potential adjacencies
is already consistent at all internal nodes except for a few conflicts at the root
that are solved unambiguously for all values of α. This indicates that building
DeClone weights on the basis of mostly optimal adjacency scenarios (low kT )
results in a weighting scheme that agrees with the evolution along the tree for this
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Fig. 1. Number of reconstructed CARs
at each internal node in 500 samples
for the mammalian dataset with 500 kb
resolution, x = 0.2 and α = 0.

Fig. 2. SCJ distance (upper half) and
DCJ (lower half) distance in the whole
tree for all samples and selected values of
α in the mammalian dataset.

dataset. More importantly, Figs. 2 and 3 show that the combination of DeClone
weights followed by our algorithm, leads to a robust set of ancestral gene orders.

In comparison, for kT = 1, we see an increase in SCJ and DCJ distance
for higher α, while the number of CARs at internal nodes decreases, together
with a loss of the robustness of the sampled optimal results when α gets close
to 1. It can be explained by the observation that the weight distribution of
ancestral adjacencies obtained with DeClone and kT = 1 is more balanced than
with kT = 0.1 as it considers suboptimal scenarios of adjacencies with a higher
probability.

4.2 Yersinia Pestis Dataset

We started from fully assembled DNA sequences of seven Yersinia pestis and four
Yersinia pseudotuberculosis genomes. In addition, we included aDNA single-end
reads and 2 134 contigs of length >500bp assembled from these reads for the
Black Death agent, considered as ancestral to several extant strains [4]. We refer
to this augmented ancestral node as the Black Death (BD) node. The marker
sequences for all extant genomes were computed as described in [19], restricting
the set of markers to be unique and universal. We obtained a total of 2, 207
markers in all extant genomes and 2, 232 different extant adjacencies. As for the
mammalian dataset, we considered as potentially ancestral any adjacency that
appears in at least one extant genome. However for this dataset, reducing the
complexity by applying a weight threshold x was not necessary. For the BD node,
adjacency weights can be based on the given aDNA reads for a given potential
ancestral adjacency as follows. First, we used FPSAC [19] to compute DNA
sequences filling the gaps between any two adjacent marker extremities. Then
we computed the weights as a likelihood of this putative gap sequence given the
aDNA reads, using the GAML probabilistic model described in [5].

Again we sampled 500 solutions for this dataset. We computed the weights
at the BD node based on the aDNA data, while adjacencies at all other nodes
were given weight 0. Hence we can investigate the influence of including the
aDNA sequencing data in the reconstruction while for the rest of the tree, the
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Fig. 3. Number of CARs in all samples
at selected internal nodes for different
values of α reconstructed with DeClone
weights under kT = 0.1.

Fig. 4. Reconstructed number of CARs in
the yersinia dataset with a DNA weights
at the BD node and 0 otherwise, for four
ancestral nodes.

weights do not impact the objective function. As shown in Fig. 4, for selected
internal nodes of the phylogeny, the pure SCJ solutions at α = 0 result in the
highest fragmentation, while the number of CARs decreases as we increase the
importance of the adjacency weights in the objective of our method. For the BD
node, when including the aDNA weights, the fragmentation is decreasing while
the reconstructions for each α > 0 are robust. At the other nodes, the applied
sequencing weights also reduce the fragmentation except for node6 which is
located in the pseudotuberculosis subtree and hence more distant to the BD
node. This shows that the aDNA weights not only influence the reconstructed
adjacencies at the BD node, but also other nodes of the tree.

5 Conclusion

Our main contributions are the introduction of the small parsimony problem
under the SCJ model with adjacency weights, together with an exact parame-
terized algorithm for the optimization and sampling versions of the problem.
The motivation for this problem is twofold: incorporating sequence signal from
aDNA data when it is available, and recent works showing that the reconstruc-
tion of ancestral genomes through the independent analysis of adjacencies is an
interesting approach [2,6,9,16].

Regarding the latter motivation, we address a general issue of these
approaches that either ancestral gene orders are not consistent or are quite frag-
mented if the methods are constrained to ensure consistency. The main idea we
introduce is to take advantage of sampling approaches recently introduced in [6]
to weight potential ancestral adjacencies and thus direct, through an appropriate
objective function, the reconstruction of ancestral gene orders. Our results on
the mammalian dataset suggest that this approach leads to a robust ancestral
genome structure. However, we can observe a significant difference with a DCJ-
based ancestral reconstruction, a phenomenon that deserves to be explored fur-
ther. Our sampling algorithm improves on the Gibbs sampler introduced in [16]
in terms of computational complexity and provides a useful tool to study ances-
tral genome reconstruction from a Bayesian perspective.
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There are several research avenues opened by our work. From a theoretical
point of view, we know the problem we introduced is tractable for α = 0 and
α = 1, but it remains to see whether it is hard otherwise. Further, given that the
considered objective is a combination of two objectives to be optimized simulta-
neously, Pareto optimization is an interesting aspect that should be considered.
From a more applied point of view, one would like to incorporate duplicated
and deleted markers into our small parsimony problem. There exist efficient
algorithms for the case of a single adjacency [2,6] that can provide adjacency
weights, and natural extensions of the SCJ model to incorporate duplicated
genes.

Acknowledgements. NL and RW are funded by the International DFG Research
Training Group GRK 1906/1. CC is funded by NSERC grant RGPIN-249834.

References

1. Alekseyev, M., Pevzner, P.A.: Breakpoint graphs and ancestral genome reconstruc-
tions. Genome Res. 19, 943–957 (2009)

2. Bérard, S., Gallien, C., et al.: Evolution of gene neighborhoods within reconciled
phylogenies. Bioinformatics 28, 382–388 (2012)

3. Bertrand, D., Gagnon, Y., Blanchette, M., El-Mabrouk, N.: Reconstruction of
ancestral genome subject to whole genome duplication, speciation, rearrangement
and loss. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 78–89.
Springer, Heidelberg (2010)

4. Bos, K.I., Schuenemann, V., et al.: A draft genome of yersinia pestis from victims
of the black death. Nature 478, 506–510 (2011)
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Abstract. Synthesizing large-scale phylogenetic trees is a fundamen-
tal problem in evolutionary biology. Median tree problems have evolved
as a powerful tool to reconstruct such trees. Given a tree collection,
these problems seek a median tree under some problem-specific tree
distance. Here, we introduce the median tree problem for the classical
path-difference distance. We prove that this problem is NP-hard, and
describe a fast local search heuristic that is based on solving a local
search problem exactly. For an effective heuristic we devise a time effi-
cient algorithm for this problem that improves on the best-know (näıve)
solution by a factor of n, where n is the size of the input trees. Finally,
we demonstrate the performance of our heuristic in a comparative study
with other commonly used methods that synthesize species trees using
published empirical data sets.

Keywords: Phylogenetic trees · Median trees · Supertrees · Path-
difference distance · Local search

1 Introduction

Large-scale phylogenetic trees that represent the evolutionary relationships, or
genealogy, among thousands of species offer enormous promise for society’s
advancements. While such species trees are fundamental to evolutionary biol-
ogy, they are also benefiting many other disciplines, such as agronomy, bio-
chemistry, conservation biology, epidemiology, environmental sciences, genetics,
genomics, medical sciences, microbiology, and molecular biology [13,14,21]. How-
ever, despite these promises, synthesizing large-scale species trees is confronting
us with one of the most difficult computational challenges in evolutionary biol-
ogy today. Here, we are focusing on synthesizing large species trees from a given
collection of typically smaller phylogenetic trees.

Traditionally, a species tree for a set of species is inferred by first selecting
a gene that is common to them, and then inferring the evolutionary history for
this gene, which is called a gene tree. Gene trees describe partial evolutionary
histories of the species genomes, and therefore, it is often assumed that gene
trees have evolved along the edges of the species tree, imitating it. However,
a major shortcoming of the traditional approach is that different gene trees
for the same set of species can describe discordant evolutionary histories. Such
discordance is frequently caused by erroneous gene trees, or can be the result
c© Springer International Publishing Switzerland 2016
A. Bourgeois et al. (Eds.): ISBRA 2016, LNBI 9683, pp. 211–223, 2016.
DOI: 10.1007/978-3-319-38782-6 18
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of genes which have evolved differently due to complex evolutionary processes
that have shaped the species genomes [23]. To confront these challenges, median
tree problems (also called supertree problems [4]) have emerged as a powerful
tool for inferring species trees from a collection of discordant gene trees. These
problems seek a tree, called a median tree, that is minimizing the overall distance
to the input trees based on some problem-specific distance measure. Typically,
measures that have been well-established in comparative phylogenetics are used
to compute median trees [4], and one of the oldest measures to compare trees is
the path-difference distance. However, despite the tradition and popularity of the
path-difference distance, median trees under this measure and their computation
have not been analyzed.

In this work we are studying the computation of median trees under the
path-difference distance. We show that computing median trees under the path-
difference distance is an NP-hard problem for rooted as well as unrooted input
trees. While most median tree problems used in practice are NP-hard, they have
been effectively addressed by standard local search heuristics that solve a local
search problem thousands of times. Encouraged by these promising results we
introduce a novel local search heuristic to compute median trees under the path-
difference distance. The heuristic is based on our Θ(kn3) time algorithm (intro-
duced here) that solves the corresponding local search problem exactly, where
n and k is the size and number of trees in a given instance of the median tree
problem respectively. Our new local search heuristic allows to compute the first
large-scale median trees under the path-difference distance. Finally, we demon-
strate the performance of our heuristic in a comparative study on several pub-
lished empirical data sets, and demonstrate that it outperforms other standard
heuristics in minimizing the overall path-difference. Software implementing our
local search heuristic is freely available from the authors.

Related Work. Median tree problems are a popular tool to synthesize large-
scale species trees from a collection of smaller trees. Given a collection of input
trees, such problems seek a tree, called a median tree, that minimizes the sum
of its distances to each of the input trees. Since the ultimate goal of median
tree problems is to synthesize accurately species trees of enormous scale, a large
body of work has focussed on the biological, mathematical, and algorithmic
properties of median tree problems adopting numerous definitions of distance
measures from comparative phylogenetics [4]. One of the oldest such measures,
however, is the path-difference distance [5,12,26,30], and median trees under this
distance have not been analyzed. The path-difference distance between two trees
is defined through the Euclidean distance between their path-length vectors.
Each such vector represents the pairwise distances between all leaves of the
corresponding tree (i.e., the number of edges on a simple path between leaves).
Steel and Penny [30] have studied the distribution of the path-difference distance
for un-rooted trees. Complementing this work, Mir and Rosello [19] computed
the mean value of this distance for fully resolved unrooted trees with n leaves,
and showed that this mean value grows in O(n3). Variants of the path-difference
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distance are the Manhattan distance of the path-length vectors [33], and their
correlation [24].

Median tree problems are typically NP-hard [4], and therefore are, in practice,
approached by using local search heuristics [1,9,17,18,32] that make truly large-
scale phylogenetic analyses feasible [18,32]. Effective local search heuristics have
been proposed and analyzed [1,9,17,18,32], and provided various credible species
trees [18,32]. Given an instance I of a median tree problem, such heuristics start
with some initial candidate species tree T and find a minimum cost tree for I
under the tree distance measure of the problem in the (local) neighborhood of
T , and so on, until a local minima is reached. At each local search step, the
heuristic solves an instance of a local search problem. The time complexity of
this local search problem depends on the tree edit operation that defines the
neighborhood, as well as on the computation time of the tree distance measure
that is used. A classical and well-studied tree edit operation is the subtree prune
and regraft (SPR) operation [27] where a subtree of the edited tree is pruned
and regrafted back into the tree at another location. The SPR neighborhood of
T is the set of all trees into which T can be transformed by one SPR operation,
and this neighborhood contains Θ(n2) trees. Further, the best-known algorithm
to compute the path-difference distance between two trees with n leaves requires
Θ(n2) time [30]. Therefore, given an instance of k trees over n different taxa of the
SPR based local search problem, this problem can be näıvely solved by complete
enumeration in Θ(kn4) time, which is the best-known algorithm. However, when
faced with heuristically estimating larger median trees this runtime becomes
prohibitive.

Our Contribution. We introduce the path-difference median tree problem
under the classical path-difference distance to synthesize large-scale phyloge-
netic trees. To prove its NP-hardness for rooted and unrooted input trees we
are using polynomial time mapping-reductions from the maximum triplet con-
sistency problem and from the quartet compatibility problem respectively. To
solve large-scale instances of the path-difference median tree problem, we have
devised a standard SPR local search heuristic. For time efficiency, we design a
Θ(kn3) time algorithm for an instance of the local search problem that improves
on the best-known (näıve) solution by a factor of n, where n and k is the size
and number of the input trees of the median tree problem respectively. Finally,
we demonstrate the performance of our new local search heuristic through com-
parative studies using empirical data sets.

2 Basics and Preliminaries

Basic Definitions. A (phylogenetic) tree T is a rooted full binary tree. We
denote its node set, edge set, leaf set, and root, by V (T ), E(T ), L(T ), and Rt(T )
respectively. Given a node v ∈ V (T ), we denote its parent by PaT (v), its set of
children by ChT (v), its sibling by SbT (v), the subtree rooted at v by T (v), and
T |v is the phylogenetic tree that is obtained by pruning T (v) from T . Note that
we identify the leaf set with the respective set of leaf-labels (taxa).
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Let L ⊆ L(T ) and T ′ be the minimal subtree of T with leaf set L. We define
the leaf-induced subtree T [L] of T to be the tree obtained from T ′ by successively
removing each node of degree two (except for the root) and adjoining its two
neighbors.

Path-difference Distance. Given a tree T and two leaves u, v ∈ L(T ), let
du,v(T ) denote the length in edges of the unique path between u and v in T . Let
d(T ) be an associated vector obtained by a fixed ordering of pairs i, j [30], e.g.,
d(T ) = (d1,2(T ), d1,3(T ), . . . , dn−1,n(T )), where n is the number of leaves. Then
the path-difference distance (PDD) between two trees G and S over the same
leaf set is defined as d(G,S) := || d(G) − d(S)||2.

We also define PLM(T ) to be the matrix of path-lengths between each two
leaves in T . That is, a matrix of size | L(T )| × | L(T )|, where rows and columns
represent leaves of T , and PLMu,v(T ) = du,v(T ). Let G and S be trees over the
same leaf set, then we define Δ(G,S) := PLM(G) −PLM(S) to be the matrix of
path-length differences.

3 Path-Difference Median Tree Problem

Let P be a set of trees {G1, . . . , Gk}. We define L(P) := ∪k
i=1L(Gi) to be the leaf

set of P. A tree S is called a supertree of P, if L(S) = L(P). Further, we extend
the definition of the path-difference distance to a set of trees. Note, we defined
PDD only for two trees over the same leaf set. However, we do not want to enforce
such a restriction on the set of input trees, since it is generally not the case for real
world data. Therefore, in order to compare two trees S and G, where L(G) ⊆ L(S)
we use the minus method [11]. That is, we calculate a distance between G and
the subtree of S induced by L(G): d(S,G) = d(S[L(G)], G). We now define PDD
for an input set P and a supertree S as a sum d(P, S) :=

∑k
i=1 d(Gi, S[L(Gi)]),

which is used to establish the following problem.

Problem 1 (PD median tree (supertree) – decision version).
Instance: a set of input trees P and a real number p;
Question: determine whether there exist a supertree S, such that d(P, S) ≤ p.

3.1 The PD Median Tree Problem is NP-hard

We show this by a polynomial time reduction from the MaxRTC problem.

Problem 2 (Maximum Compatible Subset of Rooted Triplets –
MaxRTC).
Instance: a set of rooted triplets R and an integer 0 ≤ c ≤ |R|;
Question: Is there a subset R′ ⊆ R, such that R′ is compatible and |R′| ≥ c.

A rooted triplet is a (rooted full binary) tree with exactly three leaves. A set of
trees P is called compatible if there exist a supertree T consistent with every
tree in P, and a tree T is consistent with a tree G if T [L(G)] ≡ G.
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Theorem 1. The PD median tree problem is NP-hard.

Proof. We map an instance 〈R, c〉 of the MaxRTC problem to an instance
〈R,

√
2(|R|−c)〉 of the PD median tree problem. The MaxRTC problem is known

to be NP-complete [6]. This transformation works due to the following property.
Assume that S is a supertree of a set of rooted triplets R = {T1, . . . , Tk}. Then
we observe that d(S[L(Ti)], Ti) is 0, when S is consistent with Ti, and is

√
2

otherwise. Therefore, d(R,S) =
√

2(|R| − c′), where c′ is the number of triplets
in R, which are consistent with S. That is, there are at least c′ compatible triplets
in R. Now, we can conclude the proof.

(i) If 〈R, c〉 is a yes-instance of the MaxRTC problem, then there exist a tree
S, such that S is consistent with |R′| ≥ c triplets. As we shown above, in
that case d(P, S) ≤ √

2(k − c). Therefore, 〈R,
√

2(|R| − c)〉 is a yes-instance
of the PD median tree problem.

(ii) Clearly, the same argument works in the other direction. �

In practice median trees are sometimes computed for multi-sets of trees.
However, our results, shown for sets of input trees, easily extend to multi-sets.

4 Local Search for PD Median Tree Problem

As stated in the introduction, we address the NP-hardness by devising a new
SPR based local search heuristic. Next, we introduce needed definitions.

4.1 SPR-Based Local Search

Definition 1. Given a node v ∈ V (S)\{Rt(S)}, and a node u ∈
V (S)\(V (S(v)) ∪ {Pa(v)}), SPRS(v, u) is a tree obtained as follows:

(i) Prune the subtree S(v) by (i) removing the edge {Pa(v), v}, and (ii) remov-
ing Pa(v) by adjoining its parent and child.

(ii) If u is a root of S|v, then a new root w′ is introduced, so that u is a child
of w′. Otherwise, an edge (Pa(u), u) is subdivided by a new node w′.

(iii) Connect the subtree S(v) to the node w′.

In addition, we introduce the following useful notation
SPRS(v) :=

⋃
u SPRS(v, u); SPRS :=

⋃
v,u SPRS(v, u). SPRS is called

an SPR-neighborhood of a tree S, and |SPRS | = O(n2), where n = | L(S)|.
Given a set of input trees P = {G1, . . . , Gk}, the search space in the median

tree problem can be viewed as a graph T , where nodes represent supertrees
of P. There is an edge {S1, S2} in T , if S1 could be transformed to S2 with
a single SPR operation. As was mentioned in the introduction, local search is
designed to terminate at a local minimum of T . More formally, at each iteration
the following problem is solved
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Problem 3 (PD local search).
Instance: An input set P and a supertree S;
Find: S′ = arg min

S′∈SPRS

d(P, S′).

Next we describe an algorithm for the PD local search problem that improves
on the best-known näıve algorithm (see Introduction) by a factor of n.

4.2 Local Search Based on an SPR Semi-structure

Let G ∈ P be a fixed input tree, and let Si be a supertree in the i-th iteration of
the local search. Throughout this section we refer to the restricted tree Si[L(G)]
as S. To reduce the complexity of the näıve algorithm, we exploit a semistructure
of an SPR-neighborhood initially introduced in [8]. Let N := SPRS(v,Rt(S))
for some v ∈ V (S), then SPRN (v) is equivalent to SPRS(v). This property is
essential for the further analysis, which is motivated by the following theorem.

Theorem 2. Given Δ(N,G), d(T,G) is computable in Θ(n) time for any T ∈
SPRS(v) with a single precomputation step of time complexity Θ(n2).

This theorem implies that for a fixed input tree G and a fixed prune node
v ∈ V (S) we can compute the PD distance for every T ∈ SPRS(v) in Θ(n2)
time. Therefore, computing d(T,G) for all T ∈ SPRS and all G ∈ P takes
Θ(n3k) time, where k = | P |. This is the time complexity of our algorithm
for the PD local search problem. In the remainder of this section we detail the
precomputation idea and prove Theorem 2.

Consider a tree T := SPRS(v, y), where y ∈ V (S|v), and let (u0, ..., ut) be
a simple path in S|v, where u0 = Rt(S|v) and ut = y. Note, this path is also a
path in N , since S|v is a subtree of N .

For convenience, let Cu denote L(N(u)) for any u ∈ V (N). Thus, we
have Cv = L(N(v)) = L(S(v)). Table 1 shows a path-length difference matrix
PLM(T )−PLM(N). Using this table, it is possible to derive the difference between
d(T,G) and d(N,G). It was constructed by partitioning the leaf set of S as fol-
lows (see also Fig. 1): L(S) = Cv ∪ (CSb(u1) ∪ . . . ∪ CSb(ut)) ∪ Cut

.
In order to explain Table 1 we need to explore how the path between two

leaves changes when regrafting node v. We consider all possibilities for a pair
of leaves i and j (except for the cases, when i and j belong to the same subset
from the table, since the path does not change in that case).

(i) i ∈ Cv, j ∈ Cut
. In N the path between i and j could be denoted by

Ai � (Pa(v), u0, . . . , ut) � Bj . Note that partial paths Ai and Bj are not
changed by the regrafting operation. In T the path between i and j is
Ai � (PaT (v), ut) � Bj . The number of edges in the path is decreased by t.

(ii) i ∈ Cv, j ∈ CSb(up), where 1 ≤ p ≤ t. Again, we denote the path between i
and j in N by Ai � (Pa(v), u0, . . . , up−1,Sb(up))�Bj . Then the correspond-
ing path in T is Ai � (PaT (v), ut−1, . . . , up, up−1,Sb(up)) � Bj . It is easy to
see that the path length increased by (t − p) − (p − 1).
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Fig. 1. Scheme of the N =
SPRS(v,Rt(S)) tree, depicting
how the leaf set was partitioned to
create Table 1.

Table 1. Note that 1 ≤ p ≤ t. Val-
ues inside the table indicate the dif-
ference in path lengths between leaves
from different subsets, i.e., for i ∈ Cv

and j ∈ Cut : di,j(T ) = di,j(N) − t.

(iii) i ∈ Cut
, j ∈ CSb(up), where 1 ≤ p ≤ t. We denote a path between i and j in

N by Ai � (ut−1, . . . , up, up−1,Sb(up)) � Bj . Then the corresponding path
in T is Ai � (PaT (v), ut−1, . . . , up, up−1,Sb(up))�Bj . Exactly one edge was
added to the path (as a result of regrafting v above ut).

(iv) i ∈ CSb(up), j ∈ CSb(uq), where 1 ≤ p, q ≤ t. Clearly, the path between i
and j is not affected by the regrafting operation.

Let A and B be two elements from {Cv, Cut
, CSb(ut), . . . , CSb(u1)} (set of

disjoint subsets), and difA,B be the corresponding value according to Table 1.
For convenience we will refer to Δi,j(N,G) as simply Δi,j .

d2(T,G) − d2(N,G) =
∑

∀{A,B}

∑

i∈A
j∈B

(Δi,j + difA,B)2 − (Δi,j)2

=
∑

∀{A,B}
(|A||B|dif2

A,B + 2difA,B

∑

i∈A
j∈B

Δi,j).
(1)

Precomputation. The above equation shows that in order to efficiently cal-
culate d(T,G) for an arbitrary T ∈ SPRv(S) with a fixed v, we need to know∑

i∈A
j∈B

Δi,j for every pair of distinct A,B, such that difA,B �= 0. Note that there

are only O(t) such pairs. Further, we observe that those sums can be exhaustively
precomputed as the following values for each u ∈ V (N).

– BDist(u) :=
∑

i∈Cv
j∈Cu

Δi,j , for any u ∈ V (S|v). This sum is called the Base Dis-

tance (BDist): sum of path-length differences between all pairs of leaves from
a subset Cu and Cv.
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– RDist(u) :=
∑

i∈Cu

j∈L(S|v)\Cu

Δi,j , for any u ∈ V (S|v). This sum is called the

Remaining Distance (RDist): sum of path-length differences between all pairs
of leaves from a subset Cu, and all the other leaves in N (excluding Cv).

Consider any node u ∈ V (S|v). If u is not a leaf, then we denote its children as
c1 and c2. BDist(u) and RDist(u) can be equivalently computed as follows.

– BDist(u) =

⎧
⎨

⎩

BDist(c1) + BDist(c2), p is not a leaf;
∑

i∈Cv

Δi,u, otherwise.

– RDist(u) =

⎧
⎨

⎩

RDist(c1) + RDist(c2) − 2 · SDist(c1), p is not a leaf;
∑

i∈Cu0

Δi,u, otherwise.

– SDist(c1) = SDist(c2) :=
∑

i∈Cc1 ,j∈Cc2

Δi,j (sibling distance).

Time Complexity. The precomputation step is divided into three sub-steps
according to the relations for the distances BDist, SDist and RDist. Below we
assess their computation time separately.

– BDist is calculated in constant time for internal nodes and in O(|Cv|) time
for leaves. Therefore, it requires Θ(n2) operations to claculate BDist for all
u ∈ V (N).

– RDist is similar to BDist: it is calculated in constant time for internal nodes
and in O(|Cu0 |) for leaves. Once again, the overall time complexity is Θ(n2).

– SDist is calculated across all siblings, and thus requires the computation of
sums over multiple sub-matrices of Δ. However, these sub-matrices do not
overlap for different pairs of siblings. Hence, the overall time complexity to
compute SDist is O(n2).

After the precomputation step, the sums in Eq. 1 can be substituted with BDist
and RDist values in order to calculate d2(T,G) − d2(N,G) in time O(t), where
t ≤ n for any G ∈ SPRS(v). This concludes the proof of Theorem 2.

Unrooted Case. The PD median tree problem for unrooted trees is NP-hard,
which follows from a straightforward polynomial time reduction from the NP-
hard quartet compatibility problem [29] (as in the rooted case, we observe that
the PD distance is 0 when all input trees are consistent with a supertree). More-
over, our local search algorithm for rooted trees can be extended to work with
unrooted trees as well. We are describing the key ideas of this algorithm, and
omitting details for brevity. The semi-structure of the SPR-neighborhood can
be exploited in the unrooted case as well: one can root a supertree at an edge
(Pa(v), v), where v is the “prune” node, and traverse the SPR-neighborhood in
the same way as in the rooted case. Table 1 would be slightly changed to account
for the artificial root, though the same precomputation idea is still applicable.



Path-Difference Median Trees 219

5 Experimental Evaluation

Median tree methods under the path-difference objective have never been studied
before. Therefore, we adhere to a classical evaluation approach by comparing
our median tree heuristic against standard supertree methods with different
objectives [2,20]. We processed two published baseline phylogenetic datasets,
the Marsupials dataset [7] and the Cetartiodactyla dataset [25]. These datasets
have been actively used for experimental supertree evaluations throughout the
evolutionary community (see, for example, [2,10,16,28]).

Following the experiments presented in one of the recent supertree
papers [16], we compare our PD local search method against the following
supertree methods: the maximum representation with parsimony (MRP) heuris-
tic [31], the modified min-cut (MMC) algorithm [22], and the triplet supertree
heuristic [16]. MRP heuristics are addressing the NP-hard MRP problem [20],
and are among the most popular supertree methods in evolutionary biology [4].
For our evaluation we use the MRP local search heuristic implemented in
PAUP* [31] with Tree Bisection and Reconnection (TBR) branch swapping [16].
The TBR edit operation is an extension of the SPR operation, where the pruned
subtree is allowed to be re-rooted before regrafting it. The MMC algorithm com-
putes supertrees (that satisfy certain desirable properties) in polynomial time,
which makes this method especially attractive for large-scale phylogenetic analy-
sis [22]. The triplet supertree heuristic is a local search heuristic that is address-
ing the well-studied NP-hard triplet supertree problem [16]. We are using the
triplet heuristic based on SPR and TBR local searches, called TH(SPR) and
TH(TBR) respectively.

Hybrid Heuristic. In a classical local search scenario there are two major steps.
In the first step a supertree is constructed incrementally. Typically, the process
is initiated with some t taxa, and an optimal supertree over the chosen taxa is
computed exactly. Here, t is typically small, e.g., three. Next, on each iteration
t new taxa are added to the partial supertree (an optimum among all possible
ways to add t leaves to the tree is picked). The second major step is to run the
actual local search starting with the tree obtained in step one.

Clearly, the first step is rather slow, especially when it is costly to compute
the distance measure for a supertree (as in our case). Even though many ideas
could be suggested to accelerate the first step, we want to emphasize that it is
not necessary to separate the two steps in the first place. That is, the local search
heuristic, which is the main optimization engine, could be applied on every step
of construction of the start tree. It could be argued that SPR-based local search
brings in more flexibility than simply trying to add new taxa to a tree with a
fixed structure. For estimation of PD median trees we implemented this novel
hybrid heuristic using the introduced here local search algorithm.

Results and Discussion. Table 2 summarizes the results that we obtained
from the conducted experiments with our heuristic PDM(SPR) in comparison
with the published results for MMC, MRP, TH(SPR), and TH(TBR) [16]. As
expected, all of the methods stand their ground. The MRP method proves to be



220 A. Markin and O. Eulenstein

Table 2. Summary of the experimental evaluation. The best scores under each objec-
tive are highlighted in bold.

Data set Method PD score Triplet-sim MAST-sim Pars. score

Marsuplial 158
input trees 272
taxa

MMC 16,670.45 51.73 % 53.4 % 3901

MRP 5,694.59 98.29 % 71.6 % 2274

TH(SPR) 5,866.27 98.99 % 70.2 % 2317

TH(TBR) 5,888.22 98.99 % 70.5 % 2317

PDM(SPR) 4,677.99 68.43 % 63.4 % 3339

Cetartiodactyla 201
input trees 299 taxa

MMC 16,206.17 70.03 % 51.5 % 4929

MRP 6,991.36 95.84 % 64.7 % 2603

TH(SPR) 7,630.03 97.28 % 63.1 % 2754

TH(TBR) 7,591.13 97.28 % 63.0 % 2754

PDM(SPR) 6,051.13 59.49 % 52.2 % 4162

most effective according to the parsimony objective. In addition, MRP supertrees
show the best fit over the input data in terms of our computed MAST-similarity
scores – which could be seen as an “independent” objective in our evaluation.
At the same time, both triplet heuristics, TH(SPR) and TH(TBR), produced
the best supertrees under the triplet similarity objective. As for our method –
PDM(SPR) – it was able to produce best supertrees with regards to the PD
distance.

In order to rigorously assess the results of our heuristic, we should con-
template them with the distribution of the path-difference distance for the
two datasets. However, such distributions, even for a single input tree, remain
unknown [19]. Thus, following the approach from Steel and Penny [30], we esti-
mate PD distance distributions based on sample data. For each dataset we gener-
ated two collections with 20, 000 random supertrees using PAUP*. One collection
was generated under the uniform binary tree distribution, and the other one was
generated using the Markovian branching process [3]. Then, each collection was
processed to obtain sample datasets with PD distance scores for every generated
supertree. The obtained results are outlined in Fig. 2.

The figure makes it clear that even though our heuristic was able to obtain
the best results for the two datasets, MRP and Triplet heuristics still produce
trees that are significantly better than any of the randomly generated trees. As
for the MMC algorithm, it performs much worse under the PD objective than
simply constructing Markovian Binary trees; and, what is more, worse than
drawing random trees from the uniform distribution.

Figure 2 suggests that there exists a positive correlation between the Par-
simony, Triplet-similarity, and PD distance supertree objectives. On the other
hand, according to Table 2, better PD supertrees do not necessarily score well in
terms of parsimony and triplet measures. Thus, the PD heuristic might produce
structurally new phylogenetic trees that have not been analyzed previously.
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Fig. 2. Histograms of the PD distance based on the generated tree samples. All meth-
ods used for the evaluation are marked on each histogram with dotted lines.

6 Conclusion

We synthesized the first large-scale median trees under one of the oldest and
widely popular tree distance metrics — the path-difference distance. While we
show that the corresponding PD median tree problem is NP-hard, we demon-
strated that it can be successfully approached by using our new SPR based local
search heuristic. To make the heuristic applicable to real-world phylogenetic
datasets, we have significantly improved its time complexity in comparison to
the best known näıve approach.

Currently, no mainstream supertree method can construct edge-weighted
supertrees. However, there has been an increased interest in such tools due
to fast developing databases of time-annotated evolutionary trees (e.g., Time-
Tree [15]). The path-difference distance on the other hand, is naturally extend-
able to account for edge-weights in phylogenetic trees. The introduced PD heuris-
tic, in turn, could also be adapted to deal with edge-weighted supertrees. This
property makes the PD distance even more appealing as a median tree objective
and suggests further investigation in its theoretical and algorithmic means.
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Abstract. Modelling the evolution of biological networks is a major
challenge. Biological networks are usually represented as graphs; evolu-
tionary events include addition and removal of vertices and edges, but
also duplication of vertices and their associated edges. Since duplica-
tion is viewed as a primary driver of genomic evolution, recent work
has focused on duplication-based models. Missing from these models is
any embodiment of modularity, a widely accepted attribute of biological
networks. Some models spontaneously generate modular structures, but
none is known to maintain and evolve them.

We describe NEMo (Network Evolution with Modularity), a new
model that embodies modularity. NEMo allows modules to emerge and
vanish, to fission and merge, all driven by the underlying edge-level events
using a duplication-based process. We introduce measures to compare
biological networks in terms of their modular structure and use them to
compare NEMo and existing duplication-based models and to compare
both generated and published networks.

Keywords: Generative model · Evolutionary model · PPI network ·
Evolutionary event · Modularity · Network topology

1 Introduction

The rapid growth of experimentally measured data in biology requires effec-
tive computational models to uncover biological mechanisms in the data. Net-
works are commonly used to represent key processes in biology; examples include
transcriptional regulatory networks, protein-protein interaction (PPI) networks,
metabolic networks, etc. The model is typically a graph, directed or undirected,
where edges or arcs represent interactions and vertices represent actors (genes,
proteins, etc.). Establishing experimentally the existence of a particular inter-
action is expensive and time-consuming, so most published networks have been
inferred through computational methods ranging from datamining the literature
c© Springer International Publishing Switzerland 2016
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(see, e.g., [1,10,15]) to inferring the evolutionary history of the networks from
present observations [8,26,35,36]. (Makino and McLaughlin [14] present a thor-
ough discussion of evolutionary approaches to PPI networks.) Often these net-
works are built through a process of accretion, by adding new actors and new
interactions as they are observed, published, or inferred, with the result that
errors in many current biological networks tend to be false positives (errors of
commission) rather than false negatives (errors of omission). A variety of data-
bases store inferred networks and range from large graphs, such as the human
PPI network in the STRING database (ca. 3’000’000 interactions) [9,31], down
to quite small ones, such as the manually curated Human Protein Reference
Database (ca. 40’000 interactions) [23]. Even a cursory reading of the literature
shows that agreement among findings is rather limited, due in part to the variety
of samples used and the dynamic nature of the networks, but also in good part
because of the difficulty of inference.

This intrinsic difficulty has led researchers to go beyond the inference of a
single network from data about one organism and to use comparative methods.
Pairwise comparative methods, while more powerful, offer only limited protec-
tion against noise and high variability. This weakness in turn has led to the use
of evolutionary methods that use several organisms and carry out simultane-
ous inference on all of them [8,14,36]—a type of inference that falls within the
category of transfer learning [20]. A unique feature in these approaches is their
use of evolutionary models (not commonly associated with transfer learning).
These approaches posit a model of evolution for the networks, typically based
on inserting and deleting edges and duplicating or losing vertices, and then seek
to infer present-day networks as well as ancestral networks that, under the cho-
sen evolutionary model, would best explain the data collected. The evolutionary
model is thus the crucial component of the inference procedure.

An early finding about biological networks such as regulatory networks and
PPI networks was the clear presence of modularity [11]: these networks are
not homogeneous, with comparable connectivity patterns at every vertex, but
present a higher-level structure consisting of well connected subgraphs with
less substantial connectivity to other such subgraphs. Modularity is now widely
viewed as one of the main characteristics of living systems [28]. While some of
the models devised for networks lead automatically to the emergence of modules
within the network [30], these models are purely generative—increasing the size
of the network at each step—and thus do not match biological reality. There is
thus a need for an evolutionary model for PPI networks that, while still based
on the gain and loss of vertices and edges, takes into account modularity.

In this paper, we introduce NEMo, a network evolutionary model with mod-
ularity for PPI networks that includes both growth and reduction operators, and
that explicitly models the influence of modularity on network evolution. While
modules remain the product of purely local events (at the level of single ver-
tices or edges), they are subject to slightly different selection constraints once
they have emerged, so that our model allows modules to emerge, to disappear,
to merge, and to split. We present the results of simulations and compare the
networks thus produced to the consensus networks currently stored in a variety
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of databases for model organisms. Our comparisons are based on both network
alignment ideas and new measures aimed at quantifying modularity, so we also
discuss the usefulness of these measures and evaluate published PPI networks
with respect to these measures. Our measures of modularity can be used to
analyze the general characteristics of PPI networks and clearly distinguish the
various models organisms. Our findings support the accepted bias of published
networks towards false positives and the often reported distribution of modules
into a few large subgraphs and a collection of much smaller subgraphs; NEMo
produces networks with the latter characteristic and maintains it even when
it has reached a target range of sizes and simply makes small changes to the
structure of the network.

2 Current Generative Models for PPI Networks

All evolutionary models to date are based on the addition or removal of the
basic constituent elements of the network: vertices (proteins) and edges (pair-
wise interactions). In terms of complexity and verisimilitude, however, models
proposed to date vary widely. Most of the recent models are based on duplica-
tion followed by divergence, denoted D&D [4,24], in which a vertex is duplicated
(think of a gene duplication) and inherits some randomly chosen subset of the
connections of the original vertex (the copy of the gene initially produces much
the same protein as the original and so enters into much the same interactions).
Most evolutionary biologists view gene duplication (single gene, a segment of
genes, or even the entire genome) as the most important source of diversification
in genomic evolution [13,19], so models based on D&D have become widely used
for PPI networks.

The full D&D model considers both specialization and gene duplication
events. Following a specialization event, interactions (edges) can be gained or
lost with specified probabilities. A duplication event duplicates all interactions of
the original copy, but some interactions for both the original and the duplicated
copies are immediately lost with some probability. A recent variation on the D&D
model is the duplication-mutation-complementarity (DC) model [16,17,32], in
which the same interaction cannot be lost simultaneously in the original and in
the copy and in which the duplicated gene itself may gain a direct interaction
with the original gene. The DMR (random mutation) model [29] is another vari-
ation, in which new interactions (not among those involving the original vertex)
can be introduced between the duplicate vertex and some random vertex in the
network.

3 NEMo

While, as noted earlier, the D&D model (and, by extension, its various deriva-
tives) will automatically give rise to modular structures, it does so in scenarios
of unrestricted growth: no edge deletions are allowed other than those that occur
as part of a vertex duplication and a vertex gets deleted only indirectly, if and
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when its degree is reduced to zero. In that sense, the D&D, while a generative
model, is not an evolutionary model: it can only grow networks, not evolve them
while keeping their size within some fixed range. The same is true of its several
variants.

Our aim is to produce a generative model that is also an evolutionary model
and that we can later use for reconstructing the evolutionary history of PPI
networks. Under such a model, a network may grow, shrink, or, most commonly,
vary in size within some bounded range. Since the dominant growth operator is
duplication and since this operator typically adds multiple edges to the network,
random (i.e., unrelated to other events) loss of edges must be common. We con-
jecture that, under such a model, modularity might not be preserved—because,
under such a model, the selection of which interactions to lose is independent
of the modular structure. Since modules appear both necessary to life and quite
robust against mutations, a model of evolution of PPI networks that is biased
(as nature appears to be) in favor of the survival of modules would need to
“know”about the module structure.

We therefore decided to design a two-level model. The lower level is just
a variant of the DC model, except that it allows random mutations for each
vertex—a vertex can be lost at any step rather than just when its degree
is reduced to zero—and that, due to the same random mutations, arbitrary
edges can be added to or removed from the network. The higher level, however,
is “module-aware” so that interactions can be classified as within a module,
between modules, or unrelated to modules. This classification allows us to treat
these three types differently in the evolutionary model, with interactions within
modules less likely to be lost. Our model represents a PPI network as a graph,
with the set of vertices representing proteins and the set of undirected edges rep-
resenting undirected interactions between the proteins. In addition, the graph is
at all times subdivided into subgraphs, which correspond to modules.

The events directly affecting vertices and edges are similar to those of the
D&D model and its relatives and can be classified into four categories: protein
gain, protein loss, interaction gain, and interaction loss. Protein gain is exclu-
sively through duplication and thus also includes interaction gains for the newly
added protein. Protein loss removes a randomly chosen vertex; it can be a con-
sequence of, e.g., pseudogene formation. (As in the DMC model, it is also possi-
ble to lose a vertex through progressive loss of interactions until the vertex has
degree zero.) Interaction loss removes a randomly chosen edge; it can come about
through domain mutations, structural mutations, subfunctionalization, and the
like. Interaction gains come in two varieties: those caused by vertex duplication
and those arising purely at random, by connecting a previously unconnected pair
of vertices, which could arise, like loss, through domain or structural mutations,
or through progressive neofunctionalization (Fig. 1).

We use the module level to influence the event chain as follows. First, we
allow events to arise within the same time frame in different modules; whereas
existing models treat the network as one unit and allow a single event at a
time, our model treats the network as a collection of subgraphs and allows up to
one event in each subgraph. Multiple events within the same time frame can
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Fig. 1. NEMo: schema of the evolutionary process: (a) after multiple timesteps;
(b) after reclustering

more closely model events such as segmental duplication (in which many genes
are duplicated together). Second, we distinguish intramodular events (all four
events can be intramodular) from intermodular events (only edge gains and losses
can be intermodular), allowing us to use different parameters for the two types.
While we automatically place a duplicate vertex within the same module as
the original vertex, we also periodically recompute the subgraph decomposition,
thereby inducing changes in the module structure, including both fission and
fusion of modules. Thus there is no specific evolutionary event associated with
changes in the module structure: rather, it is a recognition that underlying events
have, over some number of steps, sufficiently altered the network as to have
altered, destroyed, or created some modules.

Such a model as this requires the identification of modules within a network
and the extraction and quantification of some high-level attributes that can be
used to measure similarity. Methodologies used in much of the work on the
identification of functional modules [2,6,7] are not applicable here, as we deal
with an anonymous graph, not with annotated proteins. We rely in part on
clustering algorithms (to detect clusters, which we regard as potential modules,
within the graph) and in part on matching high-level attributes of actual PPI
networks and using these attributes to measure drift in the course of evolution.
There are several families of clustering algorithms used in the biological domain.
In this study, we use ClusterOne [18], a graph clustering algorithm that allows
overlapping clusters. It has been useful for detecting protein complexes in PPI
networks tolerating nodes to have multiple-module membership.

4 Assessing Modularity

In order to evaluate the output of NEMo, we must first quantify significant
attributes of PPI networks. The resulting features can then be used to measure
the similarity of our generated networks to real networks, as well as the differ-
ences between networks generated by our model and networks generated under
existing models. Similarity here refers to structural and topological features such
as modularity and connectivity: we need to compare networks very different in
size and composition and so cannot use tools such as network alignment methods.
We thus propose a set of features applicable to hall networks, features chosen to
measure global properties of networks and to quantify aspects of modularity.

Most of the features proposed here are commonly used in the analysis of
networks [2,3]; several are modified so as to provide a level of independence



NEMo: An Evolutionary Model with Modularity for PPI Networks 229

from size—bacterial PPI networks are necessarily smaller than mammalian PPI
networks, while simulations can be run at all sizes. For each network, we compute
the number of nodes, the number of edges, and the degree distribution; we also
run the ClusterOne cluster algorithm (always with the same parameters) and
store the number of clusters as well as the size and composition of each cluster.
We then compute the following five global measures.

Cluster Coefficient (CC): The CC is based on triplets of vertices. A triplet is
open if connected with two edges, closed if connected with all three edges.
The CC is just the ratio of the number of closed triplets divided by the total
number of (open or closed) triplets [34].

Graph Density (GD): The density of a graph is the ratio of the actual number
of edges to the number of possible edges.

Diameter (�): The diameter of a graph is the length of the longest simple path
in the graph.

Fraction of Edges Inside (FEI): FEI is the fraction of edges contained within
modules. We expect it to be high since PPI networks contain highly connected
substructures (modules) that have only few connections to vertices outside
the substructure [3,12,33].

Tail Size (TS): A simple representation of the tail of the degree distribution, TS
is fraction of the number of nodes with degree higher than one-third of that
maximum node degree.

5 Results on Natural PPI Networks

For the data, we chose to work with model organisms, as they have large num-
bers of high-confidence interactions. We chose to download the following species
since they have the largest number of well documented interactions: E. Coli, S.
Cerevisiae, and H. Sapiens. Different sources were considered to emphasize the
discrepancies of the networks stored and provided in existing datasets of real
world PPI networks.

One source is the STRING database [9] that aims to provide a global per-
spective for as many organisms as feasible, tolerating lower-quality data and
computational predictions. With this purpose the database holds a large part
of false positive interactions. Although the STRING database stores evidence
scores for each protein-protein interaction to allow elimination of as many false
positive entries as possible by the user, it is still very much biased. For other
sources, we consulted the manually curated H. sapiens PPI network HPRD [22]
database and the experimental setup of the MAGNA++ algorithm [27] that
aims at maximizing accuracy in global network alignment: an H. sapiens PPI
network of 9141 proteins and 41456 interactions (Radivojac et al., 2008 [25]),
an E. coli PPI network [21] of high-confidence of 1941 proteins with 3989 inter-
actions, and a yeast S. cerevisiae PPI network with 2390 proteins and 161277
PPIs (Collins et al., 2007 [5]).
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Table 1. General characteristics of the three PPI networks in various databases

Species # nodes # edges # clusters

H. sapiens STRING 19247 4274001 2077

E. coli STRING 4145 568789 16

S. cerevisiae STRING 6418 939998 159

H. sapiens HPRD 9673 39198 2886

E. coli MAGNA++exp 1941 3989 393

S. cerevisiae MAGNA++exp 2390 16127 360

H. sapiens MAGNA++exp 9141 41456 2306

Table 2. Values of our features for the three PPI networks in various versions

Species CC GD � FEI TS

H. sapiens STRING 0.23058 0.02308 18 0.94506 0.99777

E. coli STRING 0.21368 0.06623 9 1.00942* 0.80555

S. cerevisiae STRING 0.27757 0.04565 20 1.08949* 0.99564

H. sapiens HPRD 0.19602 0.00084 30 0.53896 0.99369

E. coli MAGNA++exp 0.3394 0.00212 33 0.92454 0.98454

S. cerevisiae MAGNA++exp 0.43854 0.00565 34 0.97055 0.95105

H. sapiens MAGNA++exp 0.16377 0.00099 30 0.56549 0.99103
∗ (FEI > 1) comes from the multiple membership of nodes. Edges shared by
two nodes that belong to more than one same module are counted more than
once.

We downloaded PPI networks from the STRING database [31] and used
a high threshold (900) on the supplied confidence scores to retain only high-
confidence interactions. Table 1 provides a brief description of these three PPI
networks in the various databases and versions.

We then computed our network features for each of these networks, as shown
in Table 2.

6 Results on Simulations

6.1 Simulation Goals and Setup

The goal of our simulations was to verify the ability of NEMo to produce net-
works with characteristics similar to those of the natural PPI networks and also
to compare the networks it produces with those produced without the module-
aware level and with those produced by D&D models. In particular, we wanted
to test the ability of NEMo to sustain modules in networks not undergoing
growth, but subject only to change—where gain of proteins and interactions is
balanced by loss of same. Therefore we ran two distinct series of simulations,
one for generation and one for evolution.
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The first series uses both the DMC model [32], perhaps the most commonly
used model in the D&D family today, and NEMo to grow networks to fixed
sizes. We then compute our features on these networks and compare both types
of generated networks with the PPI networks of the model organisms. Since DC
is not module-aware, but claimed to generate modular networks, whereas NEMo
is explicitly module-aware, we want to see how well the characteristics of each
type of generated network compare to the PPI networks of the model organisms.

In the second series of simulations, we use NEMo in steady-state mode (bal-
anced gains and losses) over many steps to evolve networks produced during the
first simulation series. Our main intent here is to observe the evolution (mostly
in terms of size, edge density, and modules) of the networks. We use parameters
for NEMo that give it a slight bias towards growth, mostly to avoid the natural
variance of the process from “starving” too many of the networks.

6.2 Results for Network Generation

We set parameters of our model for simulating growth of the network and com-
pared the resulting networks with those built with the standard DMC model for
similar sizes, as well as with the PPI networks from the three model organisms.

We then computed our network features for each of these networks, as shown
in Table 3, where they can be compared to the same features shown for PPI net-
works (from Table 2). Both DC and NEMo generated networks with features
comparable to those observed in the PPI networks collected from MAGNA
and HPRD, although the significantly lower clustering coefficient of the DC-
generated network (0.04 as compared to 0.14 for the NEMo-generated network)
indicates a less resolved modular structure. Note that all PPI networks from
databases have larger clustering coefficients than the generated networks, a dif-
ference attributable in good part to the generation mode.

Table 3. Values of our features for the generated networks and the three PPI networks
in various versions

Species CC GD � FEI TS

H. sapiens HPRD 0.196021 0.000837947 30 0.538956 0.993694

E. coli MAGNA++exp 0.3394 0.00211869 33 0.924542 0.984544

S. cerevisiae MAGNA++exp 0.438538 0.00564897 34 0.970546 0.951046

H. sapiens MAGNA++exp 0.163768 0.000992379 30 0.565491 0.991029

DC-generated net500 0.0478 0.0040 12 0.9520 0.9880

NEMO-generated net500 0.1417 0.0078 31 0.9559 0.9519

6.3 Results for Network Evolution

In the second step of our experiments we test the ability of NEMo to simulate
the evolution of a PPI network (with roughly balanced ngain and loss rates)
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(a) evolution from a DMC-generated initial network

(b) evolution from a NEMo-generated initial network

Fig. 2. Evolution of network characteristics under the NEMo model over 600 steps,
with reclustering into modules at 200 and 400 steps. Top line shows the total number
of edges, second line the number of vertices, third line the number of modules, fourth
line the size of the largest module, and bottom line the number of singleton modules.

while preserving modularity and also test how NEMo’s behavior is affected by
its initial condition by using for DMC- and NEMo-generated networks at time
zero. Figure 2 shows the changes in network size (numbers of edges and vertices)
and structure (numbers of modules) as an initial n-etwork is evolved through
600 steps, with reclustering into modules taking place after 200 and 400 steps.

The main observation here is that NEMo, when started with a DMC-
generated network (part (a) of the figure), begins by reconfiguring the network,
reducing its number of vertices by about one third over the first hundred steps
and replacing edges. It then moves into much the same mode as depicted in
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part (b) of the figure, which shows a steady evolutionary behavior mixed with
a small bias towards growth. The implication is that, while the DC-generated
network may have a modular structure, that structure is less well structured (as
observed above) as well as not well supported under the evolutionary model.
We can observe that the graph density of the DMC-generated network is low
and gets swiftly increased by NEMo, while the initial number of modules is high
and gets switfly decreased by NEMo as a consequence of the removal of many
nodes. After the first 200 steps and the first reclustering of modules, the evolu-
tion follows the same path as that followed immediately when working from a
NEMo-generated intial graph, as seen in part (b) of the figure. Part (b) shows
variance in the rate of increase in the number of edges, partly a consequence of
the node duplication process—duplicating a few high-degree nodes in rapid suc-
cession quickly increases the overall degree of the network, while also increasing
the number of high-degree nodes.

The mild generative bias we deliberately introduced into the evolutionary
simulations can be harmlessly removed for evolving NEMo-generated networks
and, through larger numbers of steps, evolving a modular structure closer to
that of the PPI networks from the databases.

It is worth noting that the module-aware level of NEMo is very limited in its
effects: its power derives from its distinguishing intermodular from intramodular
events, but NEMo uses this power in quite a minimal way, by assigning slightly
different probabilities to the two classes of events—in evolutionary terms, it
simulates a slightly stronger negative selection for intermodular events than for
intramodular events. The distinction between the two classes of events could
be used to a much larger extent, but our results show that even this minimal
intervention, consistent with a selective pressure to preserve modularity while
allowing modules themselves to adapt, suffices to create a significant difference
in the type of networks generated.

7 Discussion and Future Work

We presented NEMo, a module-aware evolutionary model for PPI networks.
The emphasis of NEMo, as compared to existing models for PPI networks, is on
evolution rather than generation: whereas existing models (and the first layer of
NEMo, which is a variant of existing models) are know to generate modularity
when growing networks, we were interested in a model that would evolve existing
networks, using the same basic set of evolutionary events.

The salient feature of NEMo is a module-aware layer that sits above the
event layer and distinguishes between intermodular and intramodular events.
The awareness is achieved through periodic recomputation (triggered by sam-
pling and analysis for drift) of the modular structure. The uses to which this
awareness are put are minimal: NEMo simply gives a slightly higher probability
to intramodular events than to intermodular events, thereby slightly favoring
conservation of modules and evolution of internal module structure. The details
of the model are broadly adjustable: the algorithm used to detect modules, the
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number and nature of parameters used to control intra- vs. intermodular events,
the features chosen to characterize the network, and the distance measure used to
measure drift in order to decide when to re-evaluate the composition of modules,
are all flexible.

Our simulation results show that this second layer enables NEMo to run
through large numbers (as compared to the size of the network) of evolutionary
events, balanced so as not to affect the expected size of the network, while
preserving the characteristics of its original (growth-derived) modular structure.
To the best of our knowledge, this is the first such result and it paves the way
for phylogenetic analyses as well as population studies of PPI networks.

As discussed by Makino and McLaughlin [14], however, the number of factors
that could affect the evolution of PPI networks is very large. NEMo captures
only a small subset of these factors, since it works just on the graph structure
and, at the level of individual events, makes the same independence assumptions
as current models. Interdependent events or hidden underlying events present
serious challenges. Incorporating externally supplied data (in addition to the
network itself) makes sense in a data-rich era, but will require, for each type of
data, further development of the model.
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Abstract. Advances in the DNA sequencing technology over the past
decades have increased the volume of raw sequenced genomic data avail-
able for further assembly and analysis. While there exist many software
tools for assembly of sequenced genomic material, they often experience
difficulties with reconstructing complete chromosomes. Major obstacles
include uneven read coverage and long similar subsequences (repeats) in
genomes. Assemblers therefore often are able to reliably reconstruct only
long subsequences, called scaffolds.

We present a method for simultaneous co-assembly of all fragmented
genomes (represented as collections of scaffolds rather than chromo-
somes) in a given set of annotated genomes. The method is based on
the analysis of gene orders and relies on the evolutionary model, which
includes genome rearrangements as well as gene insertions and deletions.
It can also utilize information about genomic repeats and the phyloge-
netic tree of the given genomes, further improving their assembly quality.

Keywords: Genome assembly · Scaffolding · Gene order

1 Introduction

Genome sequencing technology has evolved over time, increasing availability of
sequenced genomic data. Modern sequencers are able to identify only short sub-
sequences (reads) in the supplied genomic material, which then become an input
to genome assembly algorithms aimed at reconstruction of the complete genome.
Such reconstruction is possible (but not guaranteed) only if each genomic region
is covered by sufficiently many reads. Lack of comprehensive coverage (partic-
ularly severe in single-cell sequencing), presence of long similar subsequences
(repeats) and polymorphic polyploid genomic structure pose major obstacles for
existing assembly algorithms. They often are able to reliably reconstruct only
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long subsequences of the genome (interspersed with low-coverage, highly poly-
morphic, or repetitive regions), called scaffolds.

The challenge of reconstructing a complete genomic sequence from scaffolds
is known as the scaffolds assembly (scaffolding) problem. It is often addressed
technologically by generating so-called long-jump libraries or by using a related
complete genome as a reference. Unfortunately, the technological solution may
be expensive and inaccurate [9], while the reference-based approach is obfuscated
with structural variations across the genomes [7].

In the current study, we assume that constructed scaffolds are accurate and
long enough to allow identification of homologous genes. The scaffolds then can
be represented as ordered sequences of genes and we pose the scaffolds assembly
problem as the reconstruction of the global gene order (along genome chromo-
somes) by identifying pairs of scaffolds extremities (assembly points) to be glued
together. We view such gene sub-orders as the result of both evolutionary events
and technological fragmentation in the genome. In the course of evolution, gene
orders are changed by genome rearrangements (including reversals, fusions, fis-
sions, and translocations) as well as by gene insertions and deletions commonly
called indels. Technological fragmentation can be modeled by artificial “fissions”
that break genomic chromosomes into scaffolds. This observation inspires us to
employ the genome rearrangement analysis techniques for scaffolding purposes.

Earlier we proposed to address the scaffolding problem with a novel
method [1] based on the comparative analysis of multiple related genomes, some
or even all of which may be fragmented. The core of the proposed approach
can be viewed as a generalization of the reference-based assembly to the case of
multiple reference genomes (possibly of different species), which themselves may
be fragmented. In the current work we extend our initial method in a number
of ways. First, we lift the previously imposed restriction of having a uniform
gene content across the given genomes (i.e., the requirement for each gene to
present exactly once in each of the genomes), thus enabling analysis of gene
orders at a higher resolution. Second, our new method can utilize and greatly
benefit from the information (when available) about (i) a phylogenetic tree of the
given genomes, and (ii) flanking genomic repeats at scaffolds ends. Furthermore,
our new method can be integrated with the ancestral genome reconstruction
software MGRA2 [5], effectively incorporating its multi-genome rearrangement
and gene indel analysis into the framework.

We evaluate performance of our method on both simulated and real genomic
datasets. First, we evaluate it on randomly fragmented mammalian genomes,
representing the case of no prior knowledge about the fragmentation nature.
These experiments demonstrate that the method is robust with respect to the
number of fragments and produces assembly of high quality. Second, we run our
method on mammalian genomes artificially fragmented at the positions of long
repeats, thus simulating genomes obtained from a conventional genome assem-
bler. Most of the reported assembly points in this case are correct, implying
that our method can be used as a reliable step in improving existing incomplete
assemblies. We also compare the performance of our new method with its initial
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Fig. 1. (A) Genome graph GG(A) of genome A = [a, b, c, d] colored black. (B) Genome
graph GG(B) of genome B = [a, b][d] colored purple. (C) Genome graph GG(C)
of genome C = [a, −b, c, d] colored green. (D) The breakpoint graph BG(A, B, C).
Regular and irregular (multi)edges are shown as solid and dashed, respectively. Irreg-
ular vertex is shown in multiple copies representing endpoints of different irregular
(multi)edges. (Color figure online)

version [1] on fragments with uniform gene content. These experiments demon-
strated that while the new method outperforms its initial version on genomes
with a uniform gene content, the assembly quality further increases when non-
uniform genes are taken into account. Third, we evaluate our method on real
incomplete Anopheles mosquito genomes without a complete reference genome.
Comparison of the resulting assembly of A. funestus genome to the one obtained
by [4] reveals that our method is able to assemble a larger number of scaffolds.

2 Background

Our method employs the breakpoint graph of multiple genomes [2] to represent
their gene orders. We start with describing the graph representation for a single
genome, which may consist one or more linear/circular chromosomes and/or
scaffolds, which we commonly refer to as fragments. A circular fragment with
n genes is represented as an undirected graph on 2 · n regular vertices that
encode gene extremities (namely, each gene x corresponds to a pair of vertices xt

and xh representing its “tail” and “head” extremities). For linear fragments, we
introduce one additional irregular vertex labeled ∞, which encodes the fragment
ends (i.e., telomeres if the fragment represents a chromosome). Undirected edges
in this graph connect pairs of vertices encoding genes/fragment extremities that
are adjacent on the fragment. An edge is called irregular if it is incident to an
irregular vertex; otherwise it is called regular. The genome graph GG(P ) of a
genome P is formed by the union of the graphs representing all fragments of P .
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For a set of k genomes {G1, G2, . . . , Gk}, we construct their individual
genome graphs GG(G1), GG(G2), . . . , GG(Gk) and assume that edges in each
graph GG(Gi) are colored in a unique color, which we refer to as the color
Gi. Edges colored into the color Gi are called Gi-edges. The breakpoint graph
BG(G1, G2, . . . , Gk) is defined as the superposition of the colored genome graphs
GG(G1), GG(G2), . . . , GG(Gk) (Fig. 1). Alternatively, it can be obtained by
“gluing” the identically labeled vertices in these genome graphs.

All edges that connect the same pair of vertices u and v in the breakpoint
graph BG(G1, G2, . . . , Gk) form a multiedge [u, v], whose multicolor is defined
as the set of individual colors of corresponding edges (e.g., in Fig. 1D vertices ah

and bt are connected by a multiedge of the purple–black multicolor). A multicolor
can be viewed as a subset of the set of all colors G = {G1, G2, . . . , Gk}, which we
refer to as the complete multicolor. Multiedges of multicolor M ⊆ G are called
M -multiedges.

We find it convenient to view irregular multiedges of the breakpoint graph
as each having a separate irregular vertex (rather than sharing a single irregu-
lar vertex) as an endpoint. Relatedly, we consider connected components in the
breakpoint graph BG(G1, G2, . . . , Gk) with respect to these disjoint represen-
tation of irregular vertices (i.e., no connection between regular vertices happen
through irregular ones).

Let T be the evolutionary tree of a set of genomes G = {G1, G2, . . . , Gk},
i.e., the leaves of T represent individual genomes from G, while its internal
nodes represent their ancestral genomes. We label every internal node in T with
the multicolor formed by all leaves that are descendants of this vertex and call
such multicolor �T -consistent (Fig. 2). Evolutionary events that happen along the
branch (U, V ) in T , where V ⊂ U , affect all genomes in the set V and can be
modeled as operating on V -multiedges in BG(G1, G2, . . . , Gk) [2].

3 Scaffolding Algorithm

Our scaffolding method, initially described in [1], takes as an input a set of
genomes G = {G1, G2, . . . , Gk}, some or even all of which may be fragmented,
where genome chromosomes or fragments are represented as ordered sequences
of homologous genes. We allow specification of a subset GT ⊆ G of genomes
targeted for assembly; by default GT = G. The method assembles genomes
from GT based on the orders of homologous genes along chromosomes and/or
fragments in the input set of genomes G.

In the current work, we present an extension of the initial method by not
only utilizing additional information (when available), but also by introducing
new processing stages, which improve the assembly quality. In particular, we
integrate the rearrangement and gene indel analysis from MGRA2 [5] into in
our method framework and lift the previously imposed limitation on the input
data and allow non-uniform gene content, i.e., all homologous genes may now be
present at most once in each of the input genomes.

The method operates on the breakpoint graph BG(G1, G2, . . . , Gk) of the
input genomes. We remark that a missing link between two fragments in a
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Fig. 2. A phylogenetic tree T of genomes A, B, C, D, and E represented as the leaves
of T and colored in black, purple, green, blue, and red colors, respectively. The internal
nodes of T represent various common ancestors of these genomes. The branches of T
are represented by parallel edges of the colors of descendant genomes. (Color figure
online)

fragmented genome Gi can be viewed as the absence of a Gi-edge (u, v) in
BG(G1, G2, . . . , Gk), where u and v represent the extremities of the outermost
genes at the fragments ends. Namely, instead of the edge (u, v) we observe a pair
of irregular Gi-edges (u,∞) and (v,∞). Thus, assembling a pair of fragments
in the genome Gi can be posed as finding a suitable pair of irregular Gi-edges
(u,∞) and (v,∞) and replacing them with a Gi-edge (u, v).

Since genomic regions (e.g., repeats) that are problematic for existing genome
assemblers may be present in multiple genomes in the GT due to the inheritance
from their common ancestor, we find it beneficial for our new method to perform
simultaneous assembly of multiple given genomes. Namely, we identify all T -
consistent multicolors MC = {mc1,mc2, . . . ,mcn} (mci ⊆ GT ) and attempt to
co-assemble genomes in each mci (i = 1, 2, . . . , n).1 To accomplish this task, we
generalize the search for pairs of irregular edges of the same color to the search
for pairs of irregular multiedges both containing some mci ∈ MC as a subset
(called mc+i -multiedges).

We iterate over the elements tm ∈ MC in the evolutionary order, starting
with most ancient multicolors (ancestral genomes) and ending with singleton
multicolors (genomes) from GT .

3.1 Connected Components

Earlier we showed [1] that connected components in the breakpoint graph of
multiple genomes are robust with respect to the fragmentation in the genomes

1 Since each singleton multicolor mc (i.e., |mc| = 1) is T -consistent, our new method
involves independent assembly of single genomes as a particular case.
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in the case of uniform gene content and genome rearrangements as the only
evolutionary events. The case of non-uniform gene content and evolutionary
events including gene indels in addition to genome rearrangements can be
reduced to the case of uniform gene content, where gene indels are modeled
as genome rearrangements, as it was illustrated [5]. Namely, if gene g is miss-
ing in genome Gi ∈ G, then there are no Gi-edges incident to vertices gt and
gh in BG(G1, G2, . . . , Gk). Following the MGRA2 approach, we add such pros-
thetic Gi-edges (gt, gh) for each gene g and genome Gi, making the breakpoint
graph BG(G1, G2, . . . , Gk) balanced (i.e., each vertex becomes incident to edges
of all k colors). Gene indels are then modeled as genome rearrangements operat-
ing on prosthetic (multi)edges, which allow us to apply heuristics we developed
earlier [1].

A particularly powerful heuristics relies on the robustness of connected com-
ponents and performs assembly independently in each connected component cc
of BG(G1, G2, . . . , Gk). In particular, if cc contains only a single pair of irregular
tm+-multiedges, we perform assembly on these multiedges. Below we describe
new approaches that can process connected components with more than two
irregular tm+-multiedges.

3.2 Integration with MGRA2

For given genomes G1, G2, . . . , Gk and their evolutionary tree T , MGRA2 [5]
reconstructs the gene order in ancestral genomes at the internal nodes of T .
Namely, MGRA2 recovers genome rearrangements and gene indels along the
branches of T and transforms the breakpoint graph BG(G1, G2, . . . , Gk) into
BG(X,X, . . . ,X) of some single genome X. We remark that in the breakpoint
graph BG(X,X, . . . ,X) all multiedges have multicolor G and all connected com-
ponents consist of either 1 or 2 regular vertices.

Our method benefits from integration with MGRA2, which we use to reduce
the size of connected components in the breakpoint graph. Namely, we run
most reliable (non-heuristic) stages of MGRA2 to identify evolutionary genome
rearrangements and gene indels and transform the breakpoint graph of input
genomes closer to the breakpoint graph of single ancestral genome. In the course
of this transformation, large connected components can only be broken into
smaller ones, thus narrowing the search for assembly points.

3.3 Evolutionary Scoring

In this section, we describe a new stage in our algorithm that can identify pairs of
tm+-multiedges resulted from fragmentation in a (large) connected component
of the breakpoint graph. We start with the description of the relationship of the
multicolors structure and the topology of T . Each multicolor mc can be uniquely
partitioned into the smallest number �T -consistent multicolors [5]. We denote the
cardinality of such minimal partition of mc as ps(mc).

For a mc-multiedge e = [u, v] in BG(G1, G2, . . . , Gk), we consider two cases
depending on whether G-multiedge [u, v] is present in BG(X,X, . . . ,X):
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+e: G-multiedge [u, v] is present in BG(X,X, . . . ,X), which then in the course
of evolution loses colors from the set G\mc;

−e: G-multiedge [u, v] is absent in BG(X,X, . . . ,X) and the mc-multiedge [u, v]
is then created in the course of evolution by gaining colors from mc.

We define the evolutionary scores es(+e) and es(−e) as the smallest number
of rearrangements required to create an mc-multiedge in BG(G1, G2, . . . , Gk)
in the course of evolution under the assumption that the G-multiedge [u, v] is
present or absent in BG(X,X, . . . ,X), respectively. We claim that they can be
computed as es(+e) = d(G\mc) and es(−e) = d(mc), where

d(mc) = min
c�(G\mc)

ps(mc ∪ c) + ps(c).

Candidate Assembly Points Identification. The new stage of our algorithm
searches for regular multiedges sm = [u, v] (support multiedges) that are incident
to a pair of irregular tm+-multiedges im1 = [u,∞] and im2 = [v,∞] of multicol-
ors ic1 and ic2, respectively. For each such triple (sm, im1, im2), we estimate the
likeliness for the irregular multiedges to arise from fragmentation rather than in
the course of evolution. Namely, we compare two potential outcomes:

(O1) im1 and im2 are created by evolution (Fig. 3A), in which case the multi-
edges remain intact;

(O2) im1 and im2 arose from fragmentation, in which case we perform their
assembly in tm genomes (Fig. 3B). As a result of this assembly the multiedges
sm, im1, im2 change their multicolors to sm′ = sm ∪ tm, ic′

1 = ic1\tm, and
ic′

2 = ic2\tm, respectively.

In both these outcomes, we consider the following five mutually exclu-
sive evolutionary scenarios (depending on presence or absence of the multi-
edges sm, im1, im2 in BG(X,X, . . . ,X)): s1 = {−sm,−im1,−im2}; s2 =
{+sm,−im1,−im2}; s3 = {−sm,−im1,+im2}; s4 = {−sm,+im1,−im2};
s5 = {−sm,+im1,+im2}. For each evolutionary scenario si, we compute the
evolutionary score es(si) =

∑
m∈si

es(m) and let Δi be the difference between
es(si) in (O2) and es(si) in (O1). We compute Δ = mini Δi and if Δ > 1,2 we
consider {im1, im2} as a candidate assembly point.

Selection of Assembly Points. Since candidate assembly points may share an
irregular multiedge, we need to choose a pairwise disjoint subset of them. To do
so, we construct a candidate assembly graph CAG as the superposition of the
corresponding support multiedges sm with the weight w(sm) = Δ. We obtain
a pairwise disjoint set of candidate assembly points by computing a maximum
matching in CAG, and perform the actual scaffold assembly in this set.

2 The value of Δ = 1 corresponds to a typical fusion. We consider potential assembly
only if it could achieve a better gain in the evolutionary score than a fusion.
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sm
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u v

im1 im2

sm

i si es(si) for (O1) es(si) for (O2) Δi

1 {−sm, −im1, −im2} 1 + 2 + 2 1 + 1 + 1 2

2 {+sm, −im1, −im2} 3 + 2 + 2 2 + 1 + 1 3

3 {−sm, −im1, +im2} 1 + 2 + 3 1 + 1 + 2 2

4 {−sm, +im1, −im2} 1 + 3 + 2 1 + 2 + 1 2

5 {−sm, +im1, +im2} 1 + 3 + 3 1 + 2 + 2 2

Fig. 3. Examples of potential outcomes (O1) and (O2), where the target multicolor is
tm = {black} (shown in bold). Outcome (O1) corresponds to evolutionary origin of
im1 and im2, while outcome (O2) corresponds to assembly of irregular tm-multiedges.
The table gives evolutionary scores for different evolutionary scenarios for (O1) and
(O2) and corresponding values Δi, implying that Δ = mini Δi = 2.

3.4 Flanking DNA Repeats

Long DNA repeats represent one of the major obstacles for typical genome
assemblers, which often cannot reconstruct the order of fragments interspersed
with repeats. As a result they produce scaffolds ending at positions of (i.e.,
flanked by) repeats.

We introduce a new stage in our algorithm, which incorporates the informa-
tion about flanking DNA repeats into the processing pipeline. Namely, we use
flanking repeats (and their orientation) to label corresponding irregular edges in
BG(G1, G2, . . . , Gk) as follows. If a repeat p appears at the end of a fragment
after a gene c, we label the edge (ch,∞) with pt; similarly, if repeat −p (i.e.,
reverse complement of p) appears after a gene z, we label the edge (zh,∞) with
ph; etc. (Fig. 4A, D).

If two consecutive fragments f1 and f2 in a complete genome are interspersed
with a copy of some repeat p, the corresponding irregular edges in these frag-
ments should have labels pt and ph. The new stage of our algorithm uses such
matching labels to allow or disallow assembly of irregular edges (Fig. 4B, E).

We also address the case when two fragments with annotated genes are
interspersed with repeats and fragments without annotated genes. We view a
fragment with no genes and flanked by repeats p and q as a bridge allowing
assembly of irregular edges labeled pt and qh (Fig. 4C, F). This convention nat-
urally extends to the case when there exist multiple bridges in between of two
fragments with annotated genes.
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Fig. 4. (A): Extremities of several fragments in genome G1 ∈ GT flanked by copies of
repeats p and q, where annotated genes are represented by labeled solid arrows. (B):
Assembly of fragments f1 and f2, which are interspersed with a copy of the repeat
p. (C): Assembly of fragments f2 and f3, which is permitted by bridge f4. (D): The
subgraph of BG(G1, G2, . . . , Gk) containing irregular G1-edges that correspond to the
extremities of fragments f1, f2, and f3. Irregular edges are labeled by corresponding
flanking repeats. (E): Assembly of irregular G1-edges corresponding to the assembly
in (B). (F): Assembly of irregular G1-edges corresponding to the assembly in (C).

4 Evaluation

4.1 Artificially Fragmented Genomes

We start evaluation of our method by running it on artificially fragmented mam-
malian genomes. We used a set of seven mammalian genomes: (Hs) Homo sapiens
(hg38), (Pt) Pan troglodytes (panTor2.1), (Mm) Mus musculus (mm38), (Rn)
Rattus norvegicus (rn6.0), (Cf ) Canis familiaris (canFam3.1), (Md) Monodel-
phis demestica (monDom5), and (Fc) Felis catus (felCat6.2). We obtained the
information about homologous genes between each pair of these genomes from
Ensembl BioMart [10] and constructed multi-genome homologous genes families
from this data. We filtered out all copies of the genes that are present more
than once in at least one genome. A phylogenetic tree for these genomes is given
in [13].

We use two different approaches for artificial fragmentation of complete
genomes: random and repeat-based fragmentation. Random fragmentation
allows us to evaluate our method in the case when we have no insight about
the nature of fragmentation, while repeat-based fragmentation allows us to
simulate the case when fragmented genomes are constructed by a conven-
tional genome assembler having difficulties with long repeats. Since our method
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Table 1. Averaged assembly quality for genomes in G = {Hs,Pt,Fc,Cf,Mm,Rn,Md}
all of which are randomly fragmented at k positions.

k 100 200 300 400 500 600 700 800 900 1000

TP 89.3 % 90.6 % 90 % 88.6 % 88.1 % 87.3 % 86.8 % 86 % 85.4 % 84.7 %

SP 1.4 % 1.2 % 1.1 % 1.5 % 1.6 % 2.3 % 2.9 % 3.4 % 4.7 % 5.5 %

FP 2.4 % 2.2 % 2.6 % 2.8 % 3 % 3.3 % 3.7 % 3.8 % 3.8 % 4 %

identifies assemblies only between fragments with annotated genes, we compare
the reported assemblies to the complete genomes where the fragments without
genes are omitted.

We report the following metrics for the resulting assemblies:

1. True Positive (TP), the percentage of correctly identified assembly points,
i.e., pairs of assembled fragments that have correct orientation and are adja-
cent in the complete genome;

2. Semi Positive (SP), the percentage of semi-correctly identified assembly
points, i.e., pairs of assembled fragments that appear in the same order and
orientation on some chromosome in the complete genome but are interspersed
with other fragments;

3. False Positive (FP), the percentage of incorrectly identified assembly points,
i.e., pairs of assembled fragments that have wrong relative orientation or come
from different chromosomes in the complete genome.

Random Fragmentation. We randomly fragment each mammalian genome
in k ∈ {100, 200, . . . , 1000} locations. For each value k, we create 20 different
sets of fragmented genomes, execute our method on each of the sets, and assess
the quality of the produced assembly (averaged over the 20 sets).

The assembly results in Table 1 demonstrate the high quality, which is slightly
better than the assembly quality of the initial version of our method and similar
to that reported in [3].

Repeat-Based Fragmentation. Locations of DNA repeats in the observed
mammalian genomes were obtained from RepeatMasker [13] database. We per-
formed a number of experiments with different values of the repeat threshold
RT , where repeats longer than RT specify breakpoints for artificial fragmenta-
tion. The resulting fragments and the information about their flanking repeats
were provided as an input to our method.

First we compared the performance of our new method to its initial ver-
sion on genomes with uniform gene content and then evaluated how the assem-
bly quality changes when non-uniform genes are taken into account. For this
experiment we fragmented genome Cf with repeats longer than RT = 400
and then executed both versions of our method on the set of genomes G =
{Cf,Hs,Pt,Mm,Rn,Md}3 targeting GT = {Cf } for assembly. The results in
3 Genome Fc is omitted to simulate the case when no closely related reference genome

is available.
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Table 2. Assembly quality for genome Cf fragmented at repeats longer than RT = 400;
G = {Cf,Hs,Pt,Mm,Rn,Md}.

Initial version New version

TP SP FP TP SP FP

uniform gene content 18.23 % 6.02 % 5.2 % 26.9 % 13.5 % 8.3 %

non-inform gene content - - - 30.8 % 9.8 % 5.1 %

Table 3. Assembly quality for genome Cf fragmented at repeats longer than
RT = 2000 without and with the information about flanking repeats; G =
{Cf,Hs,Pt,Mm,Rn,Md}.

TP SP FP

without repeats info 21 % 5.1 % 5 %

with repeats info 22.7 % 5.9 % 3 %

Table 2 show that while the new method outperforms its initial version on
genomes with uniform gene content, the assembly quality further increases when
non-uniform genes are taken into account.

Then we evaluated how the assembly quality changes with respect to uti-
lization of the information about flanking repeats. For this task we fragmented
genome Cf at repeats longer than RT = 2000 and provided the same set of
genomes G as an input for our method. Table 3 shows that utilization of flank-
ing repeats increases both TP and SP , while decreasing the FP values for the
produced assembly.

We also simulated a scenario when all input genomes are fragmented,
but only one of them is targeted for assembly. To do so we took G =
{Fc,Cf,Pt,Mm,Rn,Md}, fragmented all these genomes at repeats longer than
RT = 400, and targeted GT = {Pt } for assembly. Table 4(A) demonstrates that
even when there are no complete genomes available our method is still able to
identify a large number of correct assembly points and make small number of
errors.

Last but not least, we evaluated our method in the case of multi-genome co-
assembly, i.e., when multiple input genomes are targeted for assembly. Namely,
we used all seven mammalian genomes as an input, among which we fragmented
genomes Fc and Cf (i.e., the carnivore representatives) at repeats longer than
RT = 400 and targeted both of these genomes for assembly. As shown in
Table 4(B), multi-genome co-assembly yields additional assembly points as com-
pared to single-genome assembly of Cf shown in Table 2.

4.2 Incomplete Genomes

To evaluate our method on real incomplete genomes (represented as collec-
tions of scaffolds), we have obtained from VectorBase [11] the current (incom-
plete) assembly and homologous gene maps of the following seven Anopheles
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Table 4. (A): Assembly quality for genome Pt from G = {Fc,Cf,Pt,Mm,Rn,Md},
where all genomes are fragmented at repeats longer than RT = 400. (B): Assembly
quality for genomes Fc and Cf both fragmented at repeats longer than RT = 400;
G = {Cf,Fc,Hs,Pt,Mm,Rn,Md}.

(A)
Genome TP SP FP

Pt 21.2% 3.3% 1.3%
(B)

Genome TP SP FP

Fc 31% 5.3% 5%

Cf 32.3% 10.4% 6.5%

Table 5. Assembly results for A. funestus, A. arabiensis, A. minimus genomes. For
each genome, AF and AAF denote the percentage of the fragments involved in the
produced assemblies among all of the input fragments and the input fragments with
annotated genes, respectively.

Genome # Assembly points AF AAF

A. arabiensis 51 14.3 % 24.8 %

A. funestus 250 54.34 % 64.5 %

A. minimus 15 10.3 % 19.7 %

mosquito genomes: A. funestus, A. gambiae PEST, A. arabiensis, A. min-
imus, A. albimanus, A. dirus, and A. atropavarus. Their evolutionary tree is
given in [12]. We targeted our new method for assembly of genomes GT =
{A. funestus,A. arabiensis,A. minimus}.

Table 5 shows the number of assembly points identified by our method in
each of the genomes in GT . We remark that it was able to identify 250 assembly
points (involving 338 scaffolds, which represent 64.5% of all scaffolds containing
at least one gene) in A. funestus (for comparison, the assembly of A. funestus
reported in [4] uses 51.8% of scaffolds).

In order to evaluate our method on incomplete genomes with flanking
repeats, we inquired about obtaining this information from genome assemblers
ALLPATHS-LG [8] (used for assembly of Anopheles genomes) and SPAdes [6].
While the developers generally admit a possibility of providing such information
along with the assembled scaffolds, this feature is not readily available yet.

We find it promising that the information about flanking repeats is supported
by the recently emerged Graphical Fragment Assembly (GFA) format [14]. While
none of the major genome assemblers fully supports this format yet, it becomes
more and more popular within the genome assembly community and we antici-
pate that the flanking repeat data may become available in near future.
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Abstract. Selectoscope is a web application which combines a number
of popular tools used to infer positive selection in an easy to use pipeline.
A set of homologous DNA sequences to be analyzed and evaluated are
submitted to the server by uploading protein-coding gene sequences in
the FASTA format. The sequences are aligned and a phylogenetic tree is
constructed. The codeml procedure from the PAML package is used first
to adjust branch lengths and to find a starting point for the likelihood
maximization, then FastCodeML is executed. Upon completion, branches
and positions under positive selection are visualized simultaneously on
the tree and alignment viewers. Run logs are accessible through the web
interface. Selectoscope is based on the Docker virtualization technology.
This makes the application easy to install with a negligible performance
overhead. The application is highly scalable and can be used on a single
PC or on a large high performance clusters. The source code is freely
available at https://github.com/anzaika/selectoscope.

Keywords: Positive selection · Codeml · Fastcodeml

1 Introduction

Positive selection is the major force standing behind the innovation during the
evolution. Methods based on the ratio of non-synonymous (dN) to synonymous
(dS) mutations allow the detection of ancient positive selection in protein-coding
genes. A number of methods have been developed over the years, they differ in
their data partitioning approach, power, and computational performance [3–6]
and many others.

Not only the method choice has a strong impact on the results, but also the
intermediate stages of data processing. It has been shown that positive selection
codon models are sensitive to the quality of multiple sequence alignments [7,8]
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and the gene tree [9]. All this makes detection of positive selection on a genomic
scale not only computationally intensive, but also difficult to perform properly.

We created a web application that does not require prior experience with
tools for positive selection analysis, while allowing more experienced users to
reconfigure parts of the pipeline without writing any code and to share easily
their successful designs with colleagues.

The pipeline is based on the branch-site model of positive selection, as this
model is widely used, highly sensitive, and straightforward to interpret [4]. We
use a fast implementation of the method in FastCodeML [1].

2 Implementation

One starts with uploading FASTA files containing nucleotide sequences of
orthologous protein-coding genes. The files can be uploaded one by one or in
batches of up to hundreds.

The sequences are aligned with mafft [12], and low-quality regions are filtered
out using guidance2 [10].

The pipeline includes phyml [11] to construct multiple phylogenetic trees. By
default a tree is constructed for every orthologous group independently, but it is
also possible to create a single tree based on the concatenated alignment. This
approach should provide a better tree in the case of homogeneous substitution
rates over the genes and in the absense of horizontal gene transfers.

We use codeml with model M1a [13] to refine the branch lengths and estimate
the transition to transversion ratio (κ).

FastCodeML uses the branch-site model [4] to infer branches and sites under
positive selection. The phylogenetic tree estimated during the codeml run is used.
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By default the branch lengths are not optimized during the FastCodeML for the
sake of computational performance.

After the computations are finished, the phylogenetic tree is displayed. All
branches, for which positive selection has been detected, are highlighted in the
tree, and positions under positive selection are highlighted in the alignment
viewer.

Our application uses pure JavaScript libraries provided by BioJS [14] project
for displaying the alignments and phylogenetic trees. Thus it does not require
any installation procedures on the user’s computer.
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3 Tools

The core of the pipeline is FastCodeML, an extremely optimized software for
detecting positive selection using Yang’s branch-site model of positive selec-
tion. FastCodeML uses highly optimized matrix computation libraries (BLAS,
LAPACK), supports multicore (OpenMP) and multihost (MPI) parallelization.

The sequence alignment is performed using mafft. Low-quality regions of
the multiple sequence alignment are detected using guidance2 and filtered out
according to the threshold (0.93 by default).

To construct the phylogenetic tree we first use phyml with the GTR+Gamma+I
model with four gamma rate site classes. This tree is used as an initial tree
for the M1a model. We use codeml from the PAML package [2], to refine transi-
tion/transversion ratio (kappa) and branch lengths.

All of the application code runs in the Docker containers. Docker is a virtu-
alisation technology that allows one to run a complete operating system within
a container without sacrifices in the computational power as opposed to other
virtualization technologies such as Virtualbox. This is achieved using resource
isolation features of the Linux kernel - cgroups and kernel namespaces. This
allows the processes running in the container to run on the host machine with-
out being able to interact with host processes in any way. Docker provides the
following advantages:

– Easy dependency management. No need to install or configure any part of the
pipeline. Docker is available for all major operating system and its installation
process is described in detail on its website [15].

– The container can be launched both as a web frontend server or as a worker
that runs parts of the pipeline. This provides a considerable flexibility in
launching the application on a single workstation or on a fleet of machines in
a computational cluster.
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Abstract. Emergence of drug-resistant microorganisms has been recognized as
a serious threat to public health since the era of chemotherapy began. This
problem is extensively discussed in the context of tuberculosis treatment.
Alterations in pathogen genomes are among the main mechanisms by which
microorganisms exhibit drug resistance. Analysis of the reported cases and
discovery of new resistance-associated mutations may contribute greatly to the
development of new drugs and effective therapy management. The proposed
methodology allows identifying genetic changes and assessing their contribution
to resistance phenotypes.

Keywords: Genome-wide association study � Multi drug-resistant
tuberculosis � Genotype � Single nucleotide polymorphisms

1 Introduction

Rapid development of high-throughput sequencing technologies has changed dramat-
ically the nature of biological researches and activated establishment of personalized
medicine. However, making sense of massively generated genomic data can be a
challenging task. This study aims at developing an approach to analyzeMycobacterium
tuberculosis whole-genome sequences and identifying genomic markers of drug
resistance that may become important for early diagnosis of tuberculosis and better
understanding of biological foundations behind drug resistance mechanisms.

Although there has been substantial progress in tuberculosis (TB) control, drug-
resistant tuberculosis is an important public health problem in Belarus andworldwide [1].
The situation has been complicated with emergence and development of multi
drug-resistant (MDR) and extensively drug-resistant (XDR) TB that require long-term
treatment. According to a Belarus nationwide survey in 2010–2011MDR-TB was found
in 32.3 % of new patients and 75.6 % of those previously treated for TB. XDR-TB was
reported in 11.9 % of MDR-TB patients [2]. Belarus is still among countries having the
highest multi-resistant tuberculosis incidence.
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There are several lines of drugs used in tuberculosis therapy. First-line drugs are
used in standard course of treatment for newly diagnosed TB cases or fully sensitive
organisms. Treatment of resistant TB requires second-line drugs, which is usually more
toxic and much more expensive.

The ability of TB agent to resist treatment is strongly connected with mutations in
specific coding genes and intergenic regions (IGRs) of the bacteria genome. There has
been a number of studies to address genomic aspects of drug resistance in M. tuber-
culosis. Early research projects were aimed at capturing mutations in a limited number
of coding genes and IGRs, while the full spectrum of genetic variations remained
unclear. Most recent studies [3–5] were focused on comparative genome-wide analysis
of TB strains and have identified previously undescribed mutations with a role that is
not completely clear.

Despite the diversity of the mutations investigated so far, they do not fully explain
all cases of drug resistance observed. For example, analysis of TBDreamDB database
[6] and GenoType MTBDRplus/MTBDRsl assays [7, 8] has shown that only 85.7 % of
ofloxacin and 51.9 % of pyrazinamide resistance could be explained by the presented
high-confidence mutations. For the second-line drugs (ethionamide, kanamycin, ami-
kacin, capreomycin, cycloserine) these values are even lower. This indicates that the
genetic basis of drug resistance is more complex than previously anticipated which
encourages honing investigation of unexplained resistance in the experiments. Com-
prehensive analysis of mutations in MDR/XDR TB sequences may become very
valuable for choosing an adequate treatment regimen and preventing therapy failure.

2 Strain Selection and Sequencing

To discover genetic markers of drug resistance we performed whole-genome
sequencing of M. tuberculosis isolates obtained from patients in Belarus. Strain
selection was performed to have 17.65 % of drug-sensitive, 10.29 % of MDR, 22.06 %
of preXDR, 27.21 % of XDR and 19.85 % of totally drug-resistant (TDR) tuberculosis.

Two sequencing libraries were created to capture genetic variations for each sample:
fragment library with 180 bp insert size and jumping library with*3–5 kb insert size.
Both libraries were sequenced on Illumina HiSeq2000 instruments to generate 101 bp
paired-end reads at 140 x coverage of the genome. Data were assembled and aligned
against H37Rv reference genome (GeneBank accession NC_018143.2) to identify and
annotate variants, since H37Rv is the most studied drug-susceptible laboratory strain
that retains its virulence in different animal models. Pilon tool [9] was used for variant
calling to capture SNPs and indels. Among 144 assemblies submitted to GeneBank, we
selected genomes with consistent lab data for further analysis. Finally, we performed a
genome-wide association study (GWAS) for 132 annotated nucleotide sequences
(contaminated sequences and strains with ambiguous resistance status were excluded) to
check for statistically significant differences between drug-resistant (cases) and
drug-susceptible (control) samples.
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3 Data Analysis

Data analysis procedure comprised several steps. Based on phenotypic resistance status
we grouped microbial genomes into datasets. Then we performed comparative
sequence analysis and investigated population structure of TB strains. Next steps were
aimed to uncover genome variations highly associated with phenotypic resistance to
known drugs. We tried a number of methods based on different principles to analyze
SNP data, including single- and multi-marker association tests. Lists of known asso-
ciations were used to validate predictions.

3.1 Data Preparation and Filtering

Let Si ¼ si1si2. . .sil; sij 2 fA; T;C;G;�g be a set of input genomic sequences, such
that A, T, G, C designate four nucleotides and “–” means that the element of the
sequence isn’t defined. We will consider any variation in a single nucleotide from
reference genome S0, which may occur at some specific position, as a single nucleotide
polymorphism (SNP). For more compact representation, we will introduce matrix X of
genotypes with elements xij ¼ 1 if mutation occurred for sequence i ¼ 1 to n and
position j ¼ 1 to m, or xij ¼ 0 otherwise. We will code information on drug suscep-
tibility testing (DST) results to some medicine in a binary vector Y , where yi ¼ 1 in
case of drug-resistance recognized for the i th organism.

To reduce the number of parameters in the models we applied a series of filters to
variant calling results. We filtered out long insertions and deletions to create pure SNP
lists with acceptable quality scores. We then removed positions that mutated in less
than 5 % of the organisms. Within the resulting alignment, we recorded SNP positions
and merged identical columns in the corresponding matrix of genotypes. Consequently,
we reduced the search space from approximately 50,000 sites of genetic variations to
about 1,000 SNP positions with unique mutation profiles.

The filtered and cleaned data were grouped into datasets (Table 1) based on lab-
oratory findings on drug-resistance status of the corresponding organisms (for example,
within dataset 2 we examined genetic markers of drug resistance to ofloxacin assuming
that all strains in the current dataset are sensitive to the second-line injectable drugs).

Table 1. Datasets formed from the original samples based on resistance status

Dataset Target drug Size Conditions of strain selection

1 All 1st-line drugs and
ofloxacin

132 All available

2 Ofloxacin 48 Susceptible to aminoglycosides
3 Aminoglycosides 54 Susceptible to ofloxacin
4 Ofloxacin 23 Susceptible to aminoglycosides, but

resistant to rifampicin
5 Capreomycin 63 Susceptible to amikacin

(Continued)
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3.2 Population Structure

We examined the population structure of the sequenced organisms to identify associ-
ations with well-known taxonomic groups. Methods of phylogenetic analysis, digital
spoligotyping and principal component analysis were used to determine relatedness
among strains.

Our genome-wide phylogenetic tree was built from all positions which contained at
least one passing SNP call. Using RAxML package [10] we constructed maximum
likelihood phylogenetic tree using the GTR model with M. canettii as an outgroup.

For digital spoligotyping reads were mapped against 43 spacer sequences and
frequency was tallied. Background null model for the expected coverage was made
from total sequencing data using an exponential distribution under the assumption that
more than 90 % of reads align. The Benjamini‐Hochberg correction was applied to p‐
values calculated for frequency and when significant (p < 0.01), the marker was
reported as present.

Principal components analysis (PCA) was used to visualize the data and segregate
strains for subsequent revision of statistical test outcomes. We used phylogeny and
spoligotyping results to plot affiliations of M. tuberculosis samples with most frequent
genotype lineages and principal genetic groups. We applied method implemented in
EIGENSTRAT software [11] for running PCA and visualizing population stratification
along the principal components (Fig. 1). The Kaiser criteria showed 28 principal
components as significant for inferring axes of genetic variation from a set of 7,000
randomly selected SNPs for 132 tested organisms.

3.3 Single-Marker Drug-Association Analysis

Most single-marker methods rely on contingency table analysis comparing allele fre-
quencies in sets of resistant and susceptible samples. Tables are constructed indepen-
dently for any combination of tested drug and mutation. These allows using sufficient
number of observations to calculate test statistics and estimate parameters. However,
classical implementations of single-marker methods do not consider pairwise and
higher-order interactions between genetic variants. We applied Cochran-Mantel-
Haenszel (CMH) test implemented in PLINK package [12] and Pearson chi-squared
statistics with EIGENSTRAT correction calculated using the method of principal

Table 1. (Continued)

Dataset Target drug Size Conditions of strain selection

6 Aminoglycosides 122 All available
7 Aminoglycosides 29 Susceptible to ofloxacin, but resistant to

rifampicin
8 Non-aminoglycoside 2nd-

line drugs
48 Susceptible to aminoglycosides

9 Non-aminoglycoside 2nd-
line drugs

122 All available
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components [11]. This makes it possible to neutralize spurious correlations caused by
strains segregation based on membership in genetically more homogeneous groups,
which is known as founder effect. Calculated p-values were adjusted for multiple
hypotheses testing using Benjamin-Hochberg correction.

3.4 Multi-marker Drug-Association Analysis

More sophisticated multi-marker methods can realistically model the multiplicity of
genotypic factors, while bringing a number of other challenges associated with analyses
of high-dimensional data in GWAS experiments: number of SNPs (parameters) is
significantly greater than the number of sequences (observations). To overcome these
difficulties we experimented with regularized logistic regression, linear mixed model
(LMM) [13] and mode-oriented stochastic search (MOSS) [14].

According to the classical logistic regression model a posterior probability of
drug-resistant phenotype is given by the formula Pfyi ¼ 1jxig ¼ 1=ð1þ expð�bTxiÞÞ,
where yi 2 f0; 1g indicates the phenotype (susceptible/resistant) of the i th organism, xi
- genotype vector and b - vector of parameters which can be interpreted as significance
of mutations for the development of drug resistance. Elastic net showed most relevant
results as a regularization method encouraging a grouping effect, when strongly cor-
related predictors tend to occur together in a produced sparse model. The elastic net

solves an optimization problem
Pn
i¼1

lðxi; yi; bÞþ k1jjbjjl1 þ k2jjbjjl2 � [ min
b
; where

l xi; yi; bð Þ refers to the misclassification loss function for i th sample. A stage-wise
LARS-EN algorithm was used to solve the elastic net problem [15].

Fig. 1. Top two axes of variation of M.tuberculosis samples represented in Belarus
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Unlike logistic regression, linear mixed model allows explicit correction for pop-
ulation structure due to the random effect of the model that is calculated based on
kinship/relatedness matrix. In general, linear mixed model can be represented in a
matrix form as y ¼ Xbþ uþ e, where y is a vector of phenotypes, X - matrix of
genotypes, b - vector of parameters, e�Nnð0; r2e IÞ - noise and u�Nnð0; kr2eKÞ -
vector of random effects. Parameter k ¼ r2u=r

2
e represents the ratio of variances

explained by internal (genetic) and environmental factors respectively. Kinship matrix
K can be evaluated as K ¼ XXT=m for m organisms. Model parameters are estimated
by the maximum likelihood or restricted maximum likelihood methods.

The Wald test was used to investigate statistical significance of the individual
genetic markers, where null hypothesis H0 : bj ¼ 0 was tested against the alternative

H1 : bj 6¼ 0 for all j ¼ 1;m.
The MOSS algorithm proved to be an interesting model search technique, which

investigates models allowing to identify combinations of the best predictive SNPs
associated with the response. Let M be a subset of searched hierarchical log-linear
models with k 2 2; 5½ � variables. For each element l 2 M define a priori probability
and a neighboring function that returns its environment (a subset of the previous and
subsequent models). The algorithm automatically removes models with low posterior
probability from consideration giving priority to the most promising candidates.
The procedure ends with a set of the most suitable models M cð Þ ¼
l 2 M : P l j X; yh i� c � ‘‘max

l02M
P ljX; yð Þ;;

� �
, where P ljX; yð Þ- a posteriori probabil-

ity of model l 2 M and c 2 ð0; 1Þ is a hyperparameter that influences the amount of
enumerated candidate models and the resulting solution set.

3.5 Correction for Consistency of the Resulting SNP Sets

There are situations when drug-association tests include in the resulting set pairs of
correlated mutations with high and low association scores within the same pair. Rele-
vance feature network (RFN) allows refining the resulting sets of significant genetic
markers to smooth the scores. This is based on building a graph of a special structure to
take into account correlations between the mutated sites so that any highly correlated
SNPs should be either significant or non-significant. Pearson coefficients of correlation
were used to estimate linkages between loci. Algorithm searches for the minimum cut in
the graph that, eventually, splits SNPs into subsets of significant and non-significant [16].
We used F-measure to check the accuracy of classification after the FRN correction.

4 Results

Principal component analysis (PCA) has shown that all strains from Belarusian patients
can be segregated into five groups. Phylogeny and spoligotyping established the most
prevalent sublineages: Beijing (63.6 %), T1 (18.9 %), H3 (5.6 %) and T5 (2.8 %).

Within the descriptive analysis, we discovered pairwise correlations of drug sus-
ceptibility testing results to investigate cross-resistance between drugs (Table 2). As
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anticipated, the highest levels of correlations were detected between amikacin, capre-
omycin and inside groups of first-line drugs.

Interesting results showed analysis of the proportion of phenotypic variance
explained (PVE) by SNP genotypes (Table 3), which can be summarized as k2SNP ¼
r2G=ðr2G þ r2EÞ, where r2G is variance due to genotypic markers and r2E is influence of
the environmental factors.

According to these results, SNPs do not fully explain resistance to most of
second-line TB drugs in our datasets, possibly, due to issues of DST protocols [17] or
other factors, which should be considered when interpreting GWAS results.

Genotype/phenotype association tests resulted in high-confidence mutation lists
that were ordered according to mutation significance values for each drug and anno-
tated using NCBI databases. We provide an overview of the predictions quality

Table 2. Correlations between the results of TB drug susceptibility testing

EMB INH RIF PZA STM CYCL ETH PARA AMIK CAPR OFLO

EMB 1.00 0.90 0.90 1.00 0.80 0.36 0.34 0.25 0.53 0.59 0.55
INH 0.90 1.00 1.00 0.91 0.89 0.36 0.31 0.23 0.48 0.52 0.53
RIF 0.90 1.00 1.00 0.91 0.89 0.37 0.31 0.22 0.48 0.53 0.53
PZA 1.00 0.91 0.91 1.00 0.72 0.38 0.38 0.18 0.38 0.46 0.49
STM 0.80 0.89 0.89 0.72 1.00 0.33 0.27 0.20 0.42 0.45 0.47
CYCL 0.36 0.36 0.37 0.38 0.33 1.00 0.33 0.32 0.27 0.35 0.23
ETH 0.34 0.31 0.31 0.38 0.27 0.33 1.00 0.06 0.33 0.46 0.14
PARA 0.25 0.23 0.22 0.18 0.20 0.32 0.06 1.00 0.07 0.13 0.23
AMIK 0.53 0.48 0.48 0.38 0.42 0.27 0.33 0.07 1.00 0.90 0.57
CAPR 0.59 0.52 0.53 0.46 0.45 0.35 0.46 0.13 0.90 1.00 0.61
OFLO 0.55 0.53 0.53 0.49 0.47 0.23 0.14 0.23 0.57 0.61 1.00

Table 3. PVE values for anti-TB drugs analyzed

Drug PVE % Standard
error %

Drug PVE % Standard
error %

1st-line drugs 2nd-line drugs
INH (Izoniazid) 99.997 0.021 CYCL (Cycloserine) 75.716 12.386
RIF (Rifampicin) 99.997 0.021 CAPR (Capreomycin) 73.903 11.048
PZA
(Pyrazinamide)

99.997 0.049 AMIK (Amikacin) 69.831 11.925

STM
(Treptomycin)

99.997 0.036 OFLO (Ofloxacin) 58.682 12.922

EMB
(Ethambutol)

97.119 1.695 ETH (Ethionamide) 45.680 24.906
PARA
(Para-aminosalicyclic
acid)

29.998 17.010
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obtained by some association analysis methods (Table 4) applied to our datasets. We
used cross-validation (CV) for parameters tuning and calculated generally accepted
metrics to evaluate the quality of predictions: precision, recall, F-measure (the weighted
harmonic mean of precision and recall), accuracy.

Table 4. Comparative analysis of prediction quality scores produced by multi-marker drug
association tests using cross-validation for parameters tuning

Drug Resistant
samples

Susceptible
samples

Method Precision Recall F1 Accuracy

OFLO 69 63 MOSS 0.929 0.752 0.831 0.840
LMM 0.557 1 0.715 0.583
Logistic
regression

0.971 0.986 0.978 0.977

EMB 102 30 MOSS 0.962 0.981 0.972 0.955
LMM 1 0.108 0.195 0.311
Logistic
regression

0.990 1 0.995 0.992

INH 106 26 MOSS 1 0.981 0.990 0.985
LMM 1 1 1 1
Logistic
regression

1 1 1 1

PZA 28 6 MOSS 1 1 1 1
LMM 0.966 1 0.983 0.971
Logistic
regression

1 1 1 1

RIF 106 26 MOSS 1 0.869 0.930 0.895
LMM 1 1 1 1
Logistic
regression

1 1 1 1

STM 110 22 MOSS 1 0.954 0.977 0.962
LMM 1 0.991 0.995 0.992
Logistic
regression

1 1 1 1

AMIK 59 63 MOSS 1 0.847 0.917 0.926
LMM 0.484 1 0.652 0.484
Logistic
regression

1 0.932 0.965 0.967

CAPR 66 51 MOSS 1 0.731 0.845 0.848
LMM 0.564 1 0.721 0.564
Logistic
regression

1 1 1 1

CYCL 46 70 MOSS 0.502 0.453 0.477 0.604
LMM 0.397 1 0.568 0.397
Logistic
regression

1 0.978 0.989 0.991
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Lists of significant mutations differ in the amount of selected features depending on
the method. MOSS and LMM algorithms provided the smallest number of significant
variations with sufficiently good classification quality. Regularized logistic regression
showed the best results but produced much larger lists of significant SNPs, which may
indicate an overfitting and inclusion of noise characteristics in the resulting sets. We
performed a second run of logistic regression using genetic markers selected at the first
run but this did not reduce the output list of SNPs significantly. Single-marker methods
also provided sufficiently large number of mutations associated with drug-resistance.
However, all methods agreed in assigning the highest scores to the genetic markers
used in GenoType MTBDRplus/MTBDRsl assays.

After RFN-based selection procedure, long mutation lists could be at least halved
for most genotype/phenotype association tests. Figure 2 shows the number of signifi-
cant SNPs and F-measure vary depending on the RFN parameter while searching for
ofloxacin resistance markers. In most cases, a serious reduction of the resulting
mutation set slightly degraded classification quality.

The association tests were run for a second time for each drug where known
high-confidence resistance mutations were excluded from the analysis. In such a way
we intended to determine more realistic scores for mutations which appeared not very
significant but correlated to the most significant SNPs in some models. Results showed
that the exclusion of a few significant SNPs did not change the other scores dramati-
cally. For example, the MOSS algorithm populated resulting sets of most promising
log-linear models with a bulk of middle-quality models and lower SNP-inclusion
probabilities. Correction of the significance scores using relevance feature network
after the second run demonstrated a notable loss in predictive power of the remained
SNPs in comparison to the first run.
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Fig. 2. Plot that illustrates (a) changes in the number of significant genomic markers and
(b) alteration of F-measure depending on RFN parameter variation while adjusting logistic
regression results for ofloxacin
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5 Conclusions

Analysis of international databases showed that M. tuberculosis study is one of the
fastest growing areas. Despite high publication activity in mutation analysis of
M. tuberculosis, there are few genome-wide projects directed at comprehensive dis-
covery of MDR and XDR tuberculosis.

Here we proposed a methodology of genome-wide association study of pathogenic
microorganisms, which allows evaluating the contribution of genetic variations in
drug-resistance and adjusting results in case of contradictory. We applied this approach
to the analysis of 132 M. tuberculosis isolated from patients in Belarus with various
forms of pulmonary tuberculosis. We implemented this methodology in laboratory
software tools using third-party libraries and original scripts in R language.

6 Availability

Elements of this approach are used in current to establish the Belarus tuberculosis
portal (http://tuberculosis.by) and conduct comprehensive study of obtained MDR and
XDR TB strains. All sequences have been exposed publically available through
GeneBank bioproject under accession PRJNA200335.
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Abstract. Pedigrees, or family trees, are graphs of family relationships
that are used to study inheritance. A fundamental problem in computa-
tional biology is to find, for a pedigree with n individuals genotyped at
every site, a set of Mendelian-consistent haplotypes that have the mini-
mum number of recombinations. This is an NP-hard problem and some
pedigrees can have thousands of individuals and hundreds of thousands
of sites.

This paper formulates this problem as a optimization on a graph and
introduces a tailored algorithm with a running time of O(n(k+2)m6k)
for n individuals, m sites, and k recombinations. Since there are gener-
ally only 1-2 recombinations per chromosome in each meiosis, k is small
enough to make this algorithm practically relevant.

Keywords: Pedigrees · Haplotype inference · Minimum recombination
haplotype configuration (MRHC)

Full Manuscript. Pre-print publication of the full manuscript is
available at arXiv [10].

1 Introduction

The study of pedigrees is of fundamental interest to several fields: to computer
science due the combinatorics of inheritance [8,17], to epidemiology due to the
pedigree’s utility in disease-gene finding [15,18] and recombination rate infer-
ence [3], and to statistics due to the connections between pedigrees and graph-
ical models in machine learning [11]. The central calculation on pedigrees is to
compute the likelihood, or probability with which the observed data observed
are inherited in the given genealogy. This likelihood serves as a key ingredient
for computing recombination rates, inferring haplotypes, and hypothesis testing
of disease-loci positions. State-of-the-art methods for computing the likelihood,
or sampling from it, have exponential running times [1,2,6,7,16].

The likelihood computation with uniform founder allele frequencies can be
reduced to the combinatorial Minimum Recombination Haplotype Con-
figuration (MRHC) first introduced by Li and Jiang [12]. A solution to
MRHC is a set of haplotypes that appear with maximum probability. The MRHC
problem is NP-hard, and as such is unlikely to be solvable in polynomial time.
c© Springer International Publishing Switzerland 2016
A. Bourgeois et al. (Eds.): ISBRA 2016, LNBI 9683, pp. 269–283, 2016.
DOI: 10.1007/978-3-319-38782-6 23
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The MRHC problem differs from more general haplotype phasing approaches [13]
that attempt to phase unrelated or partially related individuals. The MRHC
problem applies specifically to individuals in a family with known relationships,
and this problem has a variation with mutations [14,19]. Xiao, et al. considered
a bounded number of recombinations in a probabilistic phasing model [20].

This paper gives an exponential algorithm for the MRHC problem with run-
ning time tailored to the required recombinations O(n(k+2)m6k) having expo-
nents that only depend on the minimum number of recombinations k which
should be relatively small (i.e. one or two recombinations per chromosome per
individual per generation). This is an improvement on previous formulation that
rely on integer programming solvers rather than giving an algorithm which is
specific to MRHC [12]. We also define the minimum-recombination (MR) graph,
connect the MR graph to the inheritance path notation and discuss its properties.

The remainder of this paper is organized as follows. Section 2 introduces the
combinatorial model for the pedigree analysis. Section 3 provides a construction
of the MR graph. Finally, Sect. 4 gives a solution to the MRHC problem based
on a coloring of the minimum recombination graph. Due to space constraints,
several algorithms and proofs have been deferred to the extended version of the
paper.

2 Pedigree Analysis

This section gives the background for inferring haplotype configurations from
genotype data of a pedigree. We use the Iverson bracket notation, so that [E]
equals 1 if the logical expression E is true and 0 otherwise [9].

A pedigree is a directed acyclic graph P whose vertex set I(P ) is a set of
individuals, and whose directed arcs indicate genetic inheritance from parent
to child. A pedigree is diploid if each of its individuals has either no or two
incoming arcs; for example, human, cow, and dog pedigrees are diploid. For a
diploid pedigree P , every individual without incoming arcs is a founder of P ,
and every other individual i is a non-founder for which the vertices adjacent to
its two incoming arcs are its parents p1(i), p2(i), mother and father, respectively.
Let F (P ) denote the set of founders of P .

In this paper, every individual has genetic data of importance to the haplo-
type inference problem. We abstract this data as follows. A site is an element
of an ordered set {1, . . . , m}. For two sites s, t in the interval [1,m], their dis-
tance is dist(s, t) = |s − t|. For a pedigree P , let n = |I(P )| be the number
of its individuals. A haplotype h is a string of length m over {0, 1} whose ele-
ments represent binary alleles that appear together on the same chromosome.
We use p1 and p2 to indicate maternal and paternal chromosomes, respectively,
and let hp1(i), hp2(i) be binary strings that denote the maternal and paternal
haplotypes of individual i. For a site s, the maternal (resp. paternal) haplo-
type of individual i at site s is the allele hp1(i, s) (resp. hp2(i, s)) of the string
hp1(i) (resp. hp2(i)) at position s. A haplotype configuration is a matrix H with
m columns and n rows, whose entry Hrc at row r and column c is the vector(
hp1 (r,c)
hp2 (r,c)

)
.
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Haplotype data is expensive to collect; thus, we observe genotype data and
recover the haplotypes by inferring the parental and grand-parental origin of
each allele. The genotype of each individual i at each site s is the conflation
g(i, s) of the alleles on the two chromosomes: formally,

g(i, s) =

{
hp1(i, s), if hp1(i, s) = hp2(i, s),
2, otherwise.

(1)

Genotype g(i, s) is homozygous if g(i, s) ∈ {0, 1} and heterozygous otherwise.
Let G be the matrix of genotypes with entry g(i, s) at row i and column s. We
have defined the genotypes in the generative direction from the haplotypes. We
are interested in the inverse problem of recovering the haplotypes given the geno-
types. For a matrix G having η heterozygous sites across all individuals, there
are 2η−1 possible configurations satisfying genotype consistency given by (1).

Throughout, we assume that Mendelian inheritance at each site in the
pedigree proceeds with recombination and without mutation. This assumption
imposes Mendelian consistency rules on the haplotypes (and genotypes) of the
parents and children. For � ∈ {1, 2}, a haplotype hp�(i) is Mendelian consistent if,
for every site s, the allele hp�(i, s) appears in p�(i)’s genome as either the grand-
maternal allele hp1(p�(i), s) or grand-paternal allele hp2(p�(i), s). Mendelian con-
sistency is a constraint imposed on our haplotype configuration that is in addi-
tion to genotype consistency in (1). From now on, we will define a haplotype
configuration as consistent if it is both genotype and Mendelian consistent.

For each non-founder i ∈ I(P ) \ F (P ) and � ∈ {1, 2}, we indicate the origin
of each allele of p�(i) by the binary variable σp�(i, s) defined by

σp�(i, s) =

{
p1, if hp�(i, s) = hp1(p�(i), s),
p2, if hp�(i, s) = hp2(p�(i), s).

(2)

In words, σp�(i, s) equals p1 if hp1(i, s) has grand-maternal origin and equals p2
otherwise. The set σ(s) = {(σp1(i, s), σp2(i, s)) | i ∈ I(P )} is the inheritance
path for site s. A recombination is a change of allele between consecutive sites,
that is, if σp�(i, s) �= σp�(i, s + 1) for some � ∈ {1, 2} and s ∈ {1, . . . , m − 1}.
For a haplotype configuration H, 2ζ inheritance paths satisfy (2), where ζ is
the number of homozygous sites among all parent individuals of the pedigree.
This means that for a genotype matrix G, we have at most O(2η−12ζ) possible
tuples (H,σ), and this defines the search space for the MRHC problem where
the goal is to choose a tuple (H,σ) with a minimum number of recombinations
represented in σ.

For a pedigree P and observed genotype data G, the formal problem is:

Minimum Recombination Haplotypes (MRHC)
Input: A pedigree P with genotype matrix G
Task: Find hp�(i, s) for i ∈ I(P ), s ∈ {1, . . . , m}, � ∈ {1, 2} minimizing

the number of required recombinations, i.e., compute
argmin(H,σ)

∑
i∈I(P )\F (P )

∑m−1
s≥1

∑2
�=1 [σp�(i, s) �= σp�(i, s + 1)]



272 B. Kirkpatrick

3 Minimum Recombination Graph

We now fix a pedigree P and describe a vertex-colored graph R(P ), the minimum
recombination graph (MR graph) of P , which allows us to reduce the MRHC
problem on P to a coloring problem on R(P ). The concept of the MR graph was
introduced by Doan and Evans [4] to model the phasing of genotype data in P .
However, our graph definition differs from theirs, because, as we will argue later,
their definition does not model all recombinations of all haplotypes consistent
with the genotype data.

3.1 Definition of the Minimum Recombination Graph

Intuitively, the minimum recombination graph represents the Mendelian consis-
tent haplotypes and the resulting minimum recombinations that are required for
inheriting those haplotypes in the pedigree: vertices represent genome intervals,
vertex colors represent haplotypes on those intervals, and edges represent the
potential for inheritance with recombination.

Formally, the minimum recombination graph of P is a tuple (R(P ), φ,S),
where R is an undirected multigraph, φ is a coloring function on the vertices of
R(P ), and S is a collection of “parity constraint sets”. The vertex set V (R(P ))
of R(P ) consists of one vertex ist for each individual i ∈ I(P ) and each genomic
interval 1 ≤ s < t ≤ m, plus one special vertex b. A vertex ist is regular if
sites s and t are contiguous heterozygous sites in individual i, and supplemen-
tary otherwise. A vertex ist is heterozygous (homozygous) if i has heterozygous
(homozygous) genotypes at both s, t.

Vertex-Coloring. The coloring function φ assigns to each regular or supplemen-
tary vertex ist a color φ(ist) ∈ {gray, blue, red,white}. The color of vertex ist

indicates the different “haplotype fragments” that are Mendelian consistent at
sites s and t in the genome of individual i. A haplotype fragment f(ist) of a
vertex ist at sites s and t is an (unordered) set of two haplotypes which we will
write horizontally with sites s and t side-by-side and the two haplotypes stacked
on top of each other. Let Φ(ist) be the set of haplotype fragments generated
by the color assignment of vertex ist. The colors are defined in Table 1. The
haplotype pair of individual i at sites s and t is the {0, 1}-valued 2 × 2-matrix

H(i, s, t) =
(

hp1(i, s) hp1(i, t)
hp2(i, s) hp2(i, t)

)

. We denote unordered (set) comparison of the

haplotype fragments and haplotype pairs by H(i, s, t) .= f(ist). Similarly, for set
comparison of sets, we write {H(i, s, t)| ∀H} .= Φ(ist) where the first set con-
siders all consistent haplotype configurations H. Then the color and genotype
of ist precisely represent its haplotype fragments, as defined in Table 1. Figure 1
gives an example of the genotypes, haplotypes, and vertex colorings.

For a heterozygous vertex ist, its color φ(ist) indicates the relative paternal
origin of the heterozygous alleles at sites s and t and corresponds to a haplotype
configuration (red and blue have a one-to-one correspondence with the two pos-
sible haplotypes for the sites of ist). But these haplotypes are fragmented, and,
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Table 1. Rules for coloring vertex ist of the minimum recombination graph. The
.
=

symbol denotes a set comparison operation (i.e., an unordered comparison of elements).

g(i, s) g(i, t) {H(i, s, t)|∀H} .
= Φ(ist) φ(ist)

2 2 {( 0
1

1
0

)
,
(
0
1

0
1

)} gray

2 2
(
0
1

1
0

)
red

2 2
(
0
1

0
1

)
blue

0 0
(
0
0

0
0

)
blue

1 1
(
1
1

1
1

)
blue

0 1
(
0
0

1
1

)
red

1 0
(
1
1

0
0

)
red

otherwise {( 0
0

0
1

)
,
(
0
1

0
0

)
,
(
1
1

0
1

)
,
(
0
1

1
1

)} white

hence, may or may not be consistent with a single haplotype configuration. Note
that colors may or may not indicate Mendelian consistent haplotype fragments.

g b

b
+ +

g(j, .) = 0010

g(i, .) = 2012 g(p3−�(j), .) = 0010

0011
1010

0010
0010

0010
0010

Phase with
one recomb.
by resolving
the gray vertex
as red

Fig. 1. The genotypes and the haplotypes are given for three individuals and four
sites. Here (s, t) = (1, 4) since those are the heterozygous sites in the left parent. From
Table 1, we see that the left parent is gray, line 1, that the right parent is blue, line 4,
and that the child is blue, line 4. This figure is an instance of Table 2, case 1 (in the
full manuscript’s Appendix [10], it is the first case). There are no parity constraints in
this example. A better phasing with zero recombinations would be to resolve the gray
parent as blue.

Parity Constraint Sets. We now describe the collection S of parity constraint
sets. The collection S contains one set S for each gray heterozygous supple-
mentary vertex. A parity constraint set is a tuple (S, ρS) with parity color
ρS ∈ {red, blue} for even parity, and a set S consisting of a heterozygous
supplementary vertex ist and all regular heterozygous vertices ipq such that
s ≤ p < q ≤ t. Here, ρS = red (resp. ρS = blue) indicates even parity of the red
(resp. blue) vertices. As sites s, t are heterozygous and ist is supplementary, the
set S contains at least two regular vertices isp and either ipt or iqt.
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Given S, every Mendelian consistent haplotype configuration induces a vertex
coloring φS of R(P ), defined by

φS(ist) =

⎧
⎪⎨

⎪⎩

φ(ist), if φ(ist) �= gray,

red, if φ(ist) = gray ∧ ∃ H(i, s, t) .=
(
0
1
1
0

)
,

blue, otherwise.

However, we need further constraints to guarantee that the coloring φS has
a corresponding Mendelian consistent haplotype configuration. Intuitively, these
constraints ensure that the collection of overlapping haplotype fragments selected
by coloring the gray vertices are consistent with two longer haplotypes. Examples
of red parity constraint sets are given in Fig. 2.

For coloring φS , the number of ρS-colored vertices in each parity constraint
set (S, ρS) ∈ S must be even. When ρS = red it properly models that the
gray vertices ipq, s < p < q < t with φ(ipq) = gray and φS(ist) = red indicate
alternating alleles 0-1 along the chromosome. For now, we focus on the case where
ρS = red which is the default color for ρS . Informally, we want the red-colored
gray vertices in the parity constraint set to indicate alternating 0-1 pattern along
the haplotype. Therefore, the color of the unique supplementary vertex in each
set S must agree with the pattern indicated by the regular vertices in S. Later
we will see that ρS = blue only for particular cases where the blue vertices are
adjacent to red vertices on edges without recombination, meaning that these red
vertices indicate alternative allele 0-1 along the chromosome.

We call a parity constraint set S satisfied by φS if S contains an even number
of vertices ipq, s < p < q < t with φ(ipq) = gray and color φS(ist) = ρS ; and
we call S satisfiable if there exists a coloring φS induced by S, φ,H such that
each set S ∈ S is satisfied. By definition, a coloring φS induced by a Mendelian
consistent haplotype configuration satisfies all sets (S, φS) ∈ S. The converse is
also true:

Observation 1. Any assignment φS of colors red and blue to vertices ipq, s <
p < q < t with φ(ipq) = gray that satisfies all sets of the form (S, φS) ∈ S
represents a Mendelian consistent haplotype configuration H.

In other words, there is a bijection between haplotype configurations and color-
ings that satisfy the parity constraint sets. For φS = red, the justification follows
from the 0-1 alternating alleles of gray vertices in any genotype consistent hap-
lotype. We will see later that in the instances where we have ρS = blue, the
bijection will also hold.

Edge Creation. It remains to describe the edge set E(R(P )) of R(P ), which
requires some preparation. Consider a haplotype configuration H and a mini-
mum recombination inheritance path for those haplotypes. Let r be a recom-
bination that occurs during the inheritance from an individual i to its child j
between contiguous sites q and q + 1. Let � ∈ {1, 2} indicate whether i = p�(j)
is the maternal or paternal parent of j. Then the recombination r of i’s hap-
lotypes is indicated in the inheritance path by σp�(j, q) �= σp�(j, q + 1). Fixing
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all recombinations r′ �= r in the inheritance path, r can be shifted to the right
or to the left in j’s inheritance path to produce a new inheritance path which
is also consistent with the haplotype configuration H. The maximal genomic
interval of r is the unique maximal set [s, t] = {s, s+1, . . . , t− 1, t} of sites such
that r can placed between any contiguous sites q, q + 1 in the interval with the
resulting inheritance path being consistent with H. Since all genotype data is
observed, the maximal genomic interval [s, t] of r always means that both s, t
are heterozygous sites in the parent i, and therefore [s, t] is determined only by
the recombination position q and the pair {s, t}, independent of H. This interval
[s, t] is pertinent to which haplotype fragments are represented in R(P ), and it
is elucidated by the “min-recomb property” defined below.

The set E(R(P )) will be the disjoint union of the set E+ of positive edges
and the set E− of negative edges. An edge {u, v} ∈ E(R(P )) will be called
disagreeing if either {u, v} ∈ E+ and vertices u, v are colored differently, or if
{u, v} ∈ E− and vertices u, v have the same color. Our goal is to create edges
such that R(P ) satisfies the “min-recomb property”.

Definition 1. Let P be a pedigree with I(P ) its set of individuals. A graph with
vertex set I(P ) has the min-recomb property if for every individual j ∈ I(P )
with parents p1(j), p2(j), and every haplotype configuration H for the genotype
data, for � ∈ {1, 2}, a recombination between i = p�(j) and j in the maximal
genomic interval [s, t] is in some minimum recombination inheritance path for
H if and only if the recombination is represented in the graph by a disagreeing
edge incident to vertex ist = p�(i)st.

Let ist be a regular vertex of R(P ) with g(i, s) = g(i, t) = 2 and let j ∈
I(P )\F (P ) be such that i = p�(j). Then φ(ist) ∈ {gray, blue, red}, and we create
edges incident to ist and j depending on their colors and genotypes, according
to Table 2. Figure 1 gives an example of the first case in this table. Note that
R(P ) is a multigraph, but there is at most one negative edge {ist, p3−�(j)} for
any tuple (j, ist = p�(j), p3−�(j)).

Table 2. Rules for creating edges of the minimum recombination graph.

Case φ(p3−�(j)) φ(j) Edges to create

1 {gray, blue, red} {gray, blue, red} {ist, jst}, {p3−�(j)st, jst} ∈ E+

2 white {gray, blue, red} {ist, jst} ∈ E+

3 {gray, blue, red} white {ist, p3−�(j)st} ∈ E−

4 white white (see text)

It remains to describe the edges to create in Case 4, when φ(p3−�(j)) =
φ(j) = white. This will be done according to the following subcases:

4(a) If p3−�(j) and j have a common heterozygous site, that is, if g(p3−�(j), s) =
g(j, s) = 2 or g(p3−�(j), t) = g(j, t) = 2, then there is a unique site z ∈ {s, t}
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that is heterozygous in both individuals j and p3−�(j). Let q(j) ∈ {s, s +
1, ..., t−1, t}\{z} be the heterozygous site in j that is closest to z, or q(j) =
+∞ if no such site exists. Similarly, let q(p3−�(j)) ∈ {s, s + 1 . . . , t} \ {z} be
the heterozygous site in p3−�(j) that is closest to z, or q(p3−�(j)) = +∞ if
no such site exists. If min{q(j), q(p3−�(j))} = +∞ then vertex ist remains
isolated; otherwise, let zmin = min{z, q}, zmax = max{z, q}, z̄ = {s, t} \ {z},
and create edges incident to ist according to Table 3.

4(b) If j and p3−�(j) do not have a heterozygous site at the same position, then
either g(p3−�(j), s) = g(j, t) = 2 or g(j, s) = g(p3−�(j), t) = 2. Let z ∈ {s, t}
be such that g(p3−�(j), z) �= 2 and let z̄ ∈ {s, t} be such that g(j, z̄) �= 2.
If g(p3−�(j), z) = g(j, z̄), create the edge {ist, b} ∈ E−, else create the edge
{ist, b} ∈ E+.

Table 3. Case 4(a): rules for creating edges incident to a vertex ist with
min{q(j), q(p3−�(j))} < +∞.

φ(jzminzmax) g(i, min{q(j), q(p3−�(j))}) edge to create

{blue, red, gray} = g(p3−�(j), z̄) {ist, jzminzmax} ∈ E+

{blue, red, gray} �= g(p3−�(j), z̄) {ist, jzminzmax} ∈ E−

white = g(p3−�(j), z̄) {ist, p3−�(j)zminzmax} ∈ E−

white �= g(p3−�(j), z̄) {ist, p3−�(j)zminzmax} ∈ E+

Graph Cleanup. To complete the construction of R(P ), we pass through its list
of supplementary vertices to remove some of their edges: this is necessary as
some edges adjacent to a supplementary vertex might over-count the number of
recombinations; see the example in Fig. 2.

Let {ist, jst} be an edge adjacent to a supplementary gray vertex ist where i
is the parent of j. Let (S(ist), ρS(ist)) ∈ S be the set containing ist. If all regular
vertices ipq in S(ist), for s ≤ p < q ≤ t, are incident to an edge {ipq, jpq} then
the supplementary edge {ist, jst} over-counts. We remove {ist, jst} and replace
the set S(ist) by a set S(jst), which has vertices with the same indices as those
in S(ist) and where the parity constraint is to have an even number of ρ̄S(ist)

vertices where ρ̄S(ist) = blue if ρS(ist) = red and ρ̄S(ist) = red if ρS(ist) = blue.
Notice that jst must also be a supplementary vertex, for the condition to be
satisfied.

Note that this edge-removal rule does not apply to edges in Case 4, and
does not apply to negative edges, as a negative edge {ist, jst} adjacent to a
supplementary vertex ist has at least one regular vertex ipq, s ≤ p < q ≤ t in
the parity constraint set S(ist) for which there is no edge {ipq, jpq}.

Observation 2. Any assignment φS of colors red and blue to vertices ist with
φ(ist) = gray that satisfies all parity constraint sets (S, ρS) ∈ S represents a
Mendelian consistent haplotype configuration H.
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Comparing the MR graph R(P ) as defined in this section, with the graph
D(P ) defined by Doan and Evans [4], we find that D(P ) fails to properly model
the phasing of genotype data; see Sect. 3.4 for details.

3.2 Algorithms

Our motivation for introducing the φ-colored MR graph and parity constraint
sets S is to model the existence of Mendelian consistent haplotypes for the
genotypes in P ; we formalize this in Lemma 1. Complete algorithms will be
given in the extended version of this paper.

Lemma 1. Given (R(P ), φ,S), there exists a Mendelian consistent haplotype
configuration H for the genotypes if and only if there exists a coloring φS that
satisfies all parity constraint sets in S.
Proof. Given a haplotype configuration H, let φS be a coloring of regular and
supplementary vertices in I(P ) defined as follows. For any vertex ist ∈ I(P ) with
φS(ist) �= gray, set φS(ist) = φ(ist). For any vertex ist ∈ I(P ) with φS(ist) =
gray and H(i, s, t) .=

(
0
1
1
0

)
, set φS(ist) = red. For any vertex ist ∈ I(P ) with

φS(ist) = gray and H(i, s, t) .=
(
0
1
0
1

)
, set φS(ist) = blue. Then φS satisfies the

parity constraint sets in S, since each haplotype in H is a contiguous sequence
of alleles.

Conversely, let φS satisfy the parity constraint sets in S. We generate the
haplotype sequences for all individuals by the MR Haplotype algorithm, which
results in the haplotypes from the colored minimum recombination graph. For
individual i and site s, given its genotype g(i, s) the algorithm arbitrarily selects
an � ∈ {1, 2} and obtain haplotype hp�(i) from the graph. Recall that the hap-
lotype fragments are unordered, so the symmetry between the first haplotype
fragments is broken by arbitrarily selecting the zero allele of the first locus. Since
the haplotype fragments of all following vertices overlap with the fragments of
the previous vertex, all other symmetries are broken by the original choice. Then
the algorithm sets hp3−�(i) = g(i, s) − hp�(i). Let his be the haplotype allele for
i at site s. For the smallest heterozygous site s0 of i, setting h(i, t) = 0 allows to
arbitrarily select one of the haplotypes of i. To obtain the rest of the haplotype
alleles, the loop iterates along the genome setting the alleles as indicated by the
colors. All gray vertices are used, and since the parity constraints are satisfied
by the supplementary vertices, the alleles set by the regular gray vertices and
the supplementary gray vertices are identical.

We defined the minimum recombination graph (R(P ), φ,S) in terms of the
minimum recombination property, proved that such a graph exists and satisfies
the coloring property.

In the rest of this section we discuss how to construct a minimum recombi-
nation graph in polynomial time from the genotype data for all individuals in
the pedigree P . We make three claims: (1) that the white vertices are irrelevant,
(2) that the algorithms we give construct the minimum recombination graph
of P , and (3) that the algorithms run in polynomial time.
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First, consider the white vertices of (R(P ), φ,S). These are not connected to
any other vertex of R(P ) and are therefore not involved in any recombinations.
They never change their color and are therefore not involved in specifying the
haplotype configuration. Thus, removing the white vertices from R(P ) yields a
graph that still satisfies the minimum recombination property and the coloring
property. Our algorithms therefore do not create any white vertices.

Second, we claim that the MR Graph algorithm constructs the minimum
recombination graph from the given genotype data for all individuals in the
pedigree P . Considering the color φ(i) of any heterozygous vertex created. If
Mendelian consistency requires vertex i to have a particular color c ∈ {red, blue},
then φ(i) is set to c. By definition of (R(P ), φ,S), any heterozygous vertex is
colored a particular color if every Mendelian consistent haplotype configuration
has the appropriate corresponding haplotypes. The analysis of all genotype and
haplotype possibilities in the proof of Lemma2 shows that Mendelian consis-
tency criterion is necessary and sufficient to obtain these colors. The cases show
that when considering this vertex as the parent, there are haplotype configura-
tions for both colors of the vertex, regardless of the genotypes of the children.
However, when this vertex is the child, there are instances where the vertex has
a determined color. These cases in the tables are marked with bold; the dis-
allowed genotype combinations are indicated with MI and by a slash through
the offending color with the only feasible color in bold. Since the table shows
all Mendelian consistent genotype possibilities, it follows that any vertex con-
strained to be a particular color must be constrained by one of the Mendelian
compatibility instances in the table. Therefore these Mendelian consistency cases
are necessary and sufficient for initially coloring the heterozygous vertices.

Note that the parity constraint sets add no further coloring constraints to
the heterozygous vertices beyond those given by the Mendelian consistency con-
straints. To see this, suppose, for the sake of contradiction, that there is a parity
constraint set S ∈ S with exactly one vertex ist of color φ(ist) = gray. Then in
every haplotype configuration H, the color φS is uniquely determined. Therefore,
of all possible haplotype cases in the proof of Lemma2, since the only ones having
a determined color for a heterozygous vertex are Mendelian consistency cases,
then this single gray vertex color must be determined by Mendelian consistency.

It remains to verify that the edges of R(P ) are created according to the rules
given above. It is possible to write an MR Trio algorithm that satisfies this, this
algorithm is given in the extended version of this paper.

Third, we claim that the MR Graph algorithm runs in time polynomial in
|P |. Its running times is determined by the number of vertices that are processed.
Let n = |I(P )| be the number of individuals in P , let m be the number of sites,
and c be the maximum number of individuals j for any i with p�(j) = i. Then the
MR Graph algorithm runs in time O(cnm), since for each individual i ∈ I(P )
there are at most m vertices for contiguous heterozygous sites. For each of those
vertices, MR Trio algorithm is called at most c times, and performs a constant-
time edge-creation operation. All these algorithms are given in the extended
version of this paper.
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3.3 Properties of the Minimum Recombination Graph

We prove basic properties of the minimum recombination graph (R(P ), φ,S).
First, there can be multiple colorings of gray vertices by red or blue that satisfy

those parity constraints corresponding to a particular choice of haplotypes for
all individuals in P ; this is formalized in Lemma 2.

Lemma 2. Given (R(P ), φ,S), a coloring φ′ of regular and supplementary ver-
tices of R(P ) satisfies all parity constraint set in S if

φ′(ist) ∈

⎧
⎪⎨

⎪⎩

{φ(ist)}, if φ(ist) �= gray, and regular
{red, blue}, if φ(ist) = gray, and regular
parity(ρs) if supplementary

(3)

Proof. By definition of φ, for any regular vertex ist with φ(ist) = gray there exist
two haplotype configurations, one in which ist has the red haplotype fragments,(
0
1
1
0

)
, and one in which ist has the blue haplotype fragments,

(
0
1
1
0

)
. In both

cases, there exists a haplotype configuration, one represented by blue and the
other by red. After coloring all the regular vertices, we can select the color of
the supplementary vertices to satisfy parity. Thus, any coloring φ′ obtained from
the haplotype fragments that appear in the haplotype configuration and subject
to (3) satisfies the parity constraint sets.

Second, we show that each edge in the graph is necessary, in that there exists
a haplotype configuration with the indicated recombination.

Theorem 3. For any edge e = {ist, jpq} ∈ E(R(P )) there exists a haplotype
configuration H having a minimum recombination inheritance path with the
recombination indicated by e. (Proof in the extended version of the paper.)

Third, we prove that (R,φ,S) satisfies the min-recomb property.

Theorem 4. Let H be a Mendelian consistent haplotype configuration, let
i, j ∈ I(P ) be such that i = p�(j), and let s, t be sites such that s < t. Then a
recombination between i and j in the maximal genomic interval [s, t] is in some
minimum recombination inheritance path of H if and only if it is represented in
R(P ) by a disagreeing edge incident to ist.

Theorem 4 proves that the edge construction cases result in an MR graph,
since those particular edges satisfy the min-recomb property.

Corollary 1. For a Mendelian consistent haplotype configuration H, let φ′ be
the coloring induced on R(P ) by H, and let E′ = {{ist, jpq} ∈ E− | φ′(ist) =
φ′(jpq)} ∪ {{ist, jpq} ∈ E+ | φ′(ist) �= φ′(jpq)}. Then the minimum number
of recombinations required for any inheritance of those haplotypes equals |E′|.
(Proof in the extended version of the paper.)

Note that similar to the proof of Theorem4, from R(P ) and φ, we can exploit
the edge cases for the disagreeing edges to obtain a minimum recombination
inheritance path from R(P ) in time O(|E(R(P ))|) time. The running time is
due to a constant number of cases being considered for each disagreeing edge.
From each of the cases, a feasible inheritance path is an immediate consequence.
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Corollary 2. A solution to the MRHC problem corresponds to a coloring φS
that satisfies S and has a minimum number of disagreeing edges.

3.4 Comparison of the MR Graph with the Doan-Evans Graph

We now compare the MR graph R(P ), as defined in Sect. 3, with the graph D(P )
defined by Doan and Evans [4]. We claim that the graph D(P ) fails to properly
model the phasing of genotype data.

First, in D(P ) any vertex that represents two heterozygous sites is colored
gray. However, as some of the gray vertices are constrained by Mendelian con-
sistency to be either red or blue, D represents Mendelian inconsistent haplotype
configurations. For example, in some instances where both parents are white,
i.e.

(
0
0
0
1

)
and

(
0
1
0
0

)
, the heterozygous child must be colored red.

Second, D(P ) violates the minimum recombination property: in Fig. 1(c)
of their paper [4], there exists haplotypes for the two parents and child such
that H indicates a different number of recombinations than required by the
haplotypes. Specifically, let the left parent have haplotypes 0101 and 1110, the
right parent have haplotypes 0010 and 1111, and the child have haplotypes
0111 and 1111. Then D(P ) indicates one recombination, whereas the minimum
number of recombinations required by the haplotypes is two.

Third, the parity constraint sets defined by Doan and Evans [4] can over-
count the number of recombinations. For example, consider the pedigree P with
n = 5 individuals consisting of an individual i, its parents, and its paternal
grand-parents, see Fig. 2.
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minimum bipartization set

(S1, ρ1) = ({φ(i1,3) = red, φ(i1,2), φ(i2,3)}, red)

(S2, ρ2) = ({φ(j1,3), φ(j1,2) = blue, φ(j2,3) = blue}, red)

Fig. 2. The specified haplotypes induce two disagreeing edges in D(P ), but only one
recombination is required to inherit the haplotypes. The supplementary gray vertices
are indicated with double circles. Their parity constraint sets are given at the top of
the figure.
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4 Coloring the MR Graph by Edge Bipartization

In this section, we solve a variant of an edge bipartization problem on a pertur-
bation of the minimum recombination graph. The solution to this problem is in
one-to-one correspondence with a Mendelian consistent haplotype configuration
for the genotype data, because of Observation 2.

First, we perturb the graph (R(P ), φ,S) by substituting each of the posi-
tive edges in R(P ) by two negative edges. That is, bisect every positive edge
{ist, jst} ∈ E+ with a new gray vertex x and add the resulting two edges
{ist, x}, {x, jst}. Once this step has been completed for all positive edges of R(P ),
call the resulting graph R(P )−. Observe that R(P )− is not a minimum recom-
bination graph, since the new gray vertices do not represent a maximal genomic
interval. Further, colorings of R(P ) and R(P )− are in one-to-one correspondence,
as the color of ist in R(P ) equals the color of ist in R(P )−. Similarly, R(P )−

has the same number of disagreeing edges of a given coloring of R(P ), and thus
preserves the number of recombinations of any coloring. Thus, by Observation 2,
R(P ) has a bipartization set of size k if and only if R(P )− has.

Second, we perturb the graph (R(P )−, φ,S) by turning R(P )− into an uncol-
ored graph R(P ). The graph R(P ) has the same vertex set as R(P )− (with col-
ors on the vertices removed), plus two additional vertices vr and vb. The graph
contains all edges of R(P )−, plus a parity edge for every vertex colored red con-
necting it to vb and a parity edge for every vertex colored blue connecting it
to vr. This way, color constraints are preserved. For a graph, a subset B of its
edges is called a bipartization set if removing the edges in B from the graph
yields a bipartite graph.

A bipartization set is minimal if it does not include a bipartization set as
proper subset. A bipartization set is respectful if it also satisfies the parity con-
straint sets. We claim that respectful bipartization sets of R(P )− are respectful
bipartization set of R(P ). Those bipartization sets of R(P ) that are not biparti-
zation sets of R(P )− contain at least one parity edge. Here we need to compute
a bipartization set B (with size at most k) of non-parity edges such that the
graph R(P ) − B satisfies all parity constraint sets in S; we call such a set B
respectful (with respect to S).

4.1 The Exponential Algorithm

A MRHC problem instance has parameters n for the number of individuals, m
for the number of sites, and k for the number of recombinations.

The algorithm considers in brute-force fashion the number of recombinations
{0, 1, 2, ..., k} and stops on the first k such that there exists some set S of k edges
whose removal from the graph produces (1) a bipartite graph and (2) satisfies
the parity constraints. For each selection of k edges, the two checks require (1)
traversing the graph in a depth-first search in time O(n2m4) and (2) computing
the parity of all the parity constraint sets in time O(nm3).
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The number of sets S with k recombination edges is |E|k where E = E(R(P ))
is the edge set of R(P ) and where |E| = O(nm2). So, the running time of the
whole algorithm is O(n(k+2)m6k).

5 Discussion

This paper gives an exponential to compute minimum recombination haplotype
configurations for pedigrees with all genotyped individuals, with only polynomial
dependence on the number m of sites (which can be very large in practice) and
small exponential dependence on the minimum number of recombinations k.
This algorithm significantly improves, and corrects, earlier results by Doan and
Evans [4,5]. An open question is how this algorithm performs when implemented
and applied to data. Another open question is how to handle missing alleles in
the data.
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Abstract. 2D gel electrophoresis is the most commonly used method in bio-
medicine to separate even thousands of proteins in a complex sample. Although
the technique is quite known, there is still a need to find an efficient and automatic
method for detection of protein spots on gel images. In this paper a mixture of 2D
normal distribution functions is introduced to improve the efficiency of spot
detection using the existing software. A comparison of methods is based on
simulated datasets with known true positions of spots. Fitting a mixture of
components to the gel image allows for achieving higher sensitivity in detecting
spots, better overall performance of the spot detection and more accurate esti-
mates of spot centers. Efficient implementation of the algorithm enables parallel
computing capabilities that significantly decrease the computational time.

Keywords: 2D gel electrophoresis � Spot detection � Gaussian mixture model

1 Introduction

2D gel electrophoresis (2DGE) is a powerful tool for separation and fractionation of
complex protein mixtures from tissues, cells or other biological samples. It allows for
the separation of thousands of proteins in a single gel. Modeling and image analysis are
crucial in extracting the biological information from a 2D gel electrophoresis experi-
ment [1]. Goals of such an analysis are the rapid identification of proteins located on a
single gel and/or differentially expressed proteins between samples run on a set of 2D
gels. Applications of 2DGE include whole proteome analysis, detection of biomarkers
and disease markers, drug discovery, cancer research, purity checks, microscale protein
purification and product characterization [2, 3]. The lack of efficient, effective and
reliable methods for 2D gel analysis has been a major factor limiting the contribution of
2DGE to the biomedical research on a wide scale.

A biological experiment consists of two separation steps: first dimension and second
dimension. In the first dimension, protein molecules are resolved depending on their
isoelectric point. The separation of proteins under a pH gradient allows intense band
recovering using various tactics. In the second dimension, protein separation is performed
based on the molecular weight using sodium dodecyl sulfate (SDS) buffers. Due to the
fact that it is improbable that different protein molecules may have the same physico-
chemical properties, proteins are efficiently separated by 2DGE. A result of applying
2DGE on a protein sample is a 2D grayscale image with dark spots corresponding to
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particular proteins. There are also additional artifacts visible, like the random noise and
the background signal. The background signal in 2DGE images is not uniform, but
consists of local regions of elevated pixel-intensities. The local background intensity is
often correlated with the local density of protein spots. The noise in 2D gel images is
usually seen as a common white noise, high-intensity spikes with sharp boundaries
covering a few pixels and larger artifacts resulting from the dust and other pollutions
acquired during the experimental setup.

The detection and quantification of data features, such as spots in two-dimensional
images, is a particularly important component of low-level analysis, because it works to
reduce the data size and to gather only true information about the analyzed sample. The
goal of this step is to find spot positions with the surrounding boundary and determine
their quantities. The simplest approach is to find local extrema in the image and then
apply some filtering criteria. A commonly used method called Pinnacle was introduced
by Morris et al. [4]. Pinnacle’s spot detection is performed on a denoised average image
of a properly aligned 2D gel image set and is achieved by detecting local minima and
combining them within a defined proximity. Another approach is to model a spot’s
intensity as a Gaussian normal distribution and derive spots quantity and boundaries
from the model. The use of a Gaussian is motivated by the 3D shape of spots and by
general considerations on diffusion processes in the gel [5]. Spot models can be used in
the spot quantification, with overlapping spots being represented as the sum of multiple
single-spot models.

In this paper improvements in the detection of protein spots estimated by existing
software, by use of the mixture of 2D functions, are presented. The choice of the
detection algorithm is based on the comparative study described in [6]. Pinnacle is a
quick and automatic non-commercial method that has been shown to yield better spot
detection than commonly used solutions. It is simple to implement and has intuitive
tunable parameters. A natural choice for the component function is a 2D Gaussian
distribution with circular shape. Comparison of the created algorithm to Pinnacle
software is based on a large number of artificially generated datasets, demonstrating
improvements in the performance of the spot detection and the accuracy of spot
location estimation achieved by the use of the Gaussian mixture modeling.

2 Materials and Methods

2.1 Synthetic Data Simulation

The main goal of the spot detection algorithm is to determine if a particular detected
feature is a protein spot or just a consequence of noise. Spot detection methods may be
graded by creating synthetic images with a known location and quantification of
protein spots. In the literature it is stated that to create a proper 2DGE signal we must
assume that the observed image is an effect of accumulating background, random
noises and real information about protein abundance [7, 8]. In order to imitate the real
2DGE image more accurately and retain its characteristics, the information about
distributions of all image elements is taken from the publicly available dataset with
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annotated spots called GelA [9]. The noise signal from GelA image is extracted using
the Median Modified Wiener Filter [10], that preserves the morphology of close-set
spots, and avoids spot and spike fuzzyfication. The Gaussian distribution was fitted to
estimate parameters of the noise distribution. The background signal was found using a
rolling ball algorithm and a log-normal distribution was fitted to estimate parameters of
its distribution. The location of spots in the image was modeled separately in both axes,
using a beta distribution. The spots intensity was modeled by a log-normal distribution
of pixel intensities. Since a spread of the protein spot is strictly connected with its
intensity (higher intensity spots are wider on the gel image) it was found that a second
order polynomial may describe such a connection.

By using the algorithm for creating synthetic images, five simulation scenarios with
a different number of true proteins, varying from 1000 to 2000, were generated. Each
dataset contains 10 images defined over the same equally spaced grid of 1200 points in
both directions. For each image spots are generated using a spot model based on
diffusion principles that occur in 2DGE experiment [11], given as

f x; yð Þ ¼ C0

2
erf

a
0 þ r

0

2

� �
þ erf

a
0 � r

0

2

� �� �
þ ½exp � a

0 þ r
0

2

� �2
 !

þ expð�ða
0 � r

0

2
Þ2Þ

ð1Þ

where r
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2

Dx
þ ðy�y0Þ2

Dy

q
, C0 is a height-defining parameter, DX and Dy are the

diffusion width parameters, a’ is the area of the disc from which the diffusion process
starts and x0, y0 are the spot coordinates. All parameters of the spot model (besides area
of the disc from which the diffusion process starts, that was set to 3 as in [7]) are drawn
from theoretical distributions developed on a real GelA image. 0.5 % of the highest
intensity data was cropped to introduce the effect of the spot saturation. At the last step
the Gaussian distribution noise and the background signal, defined by smooth spatial
stochastic process, were introduced with parameters estimated from the real image.
Finally, 50 synthetic images with a total number of 75,000 spots were created (Fig. 1).

Fig. 1. Example of 2DGE images: (a) GelA image, (b) synthetic image with 1000 spots,
(c) synthetic image with 2000 spots
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2.2 2D Mixture Modeling

To detect spots in a 2DGE image a similar idea that was presented in Polanski et al.
[12] for analysis of 1D spectra is applied. The partition of the gel image into fragments
is augmented by the use of marker-controlled watershed segmentation to separate
touching objects in the image. First, morphological techniques called “opening-by-
reconstruction” and “closing-by-reconstruction” are used to clean up the image and flat
maxima inside each object that can be separated. Next, thresholding by use of the Otsu
method is performed to establish background regions. Computing the skeleton by
influence zones of the foreground can thin the background. It is done by computing the
watershed transform of the distance transform of background signal and looking for the
watershed ridge lines.

The mixture of 2D Gaussian components can be defined as:

f x; yð Þ ¼
XK

k¼1
akfkðx; y; lk;RkÞ ð2Þ

where K stands for the number of Gaussian components, αk, k = 1,2,…K are compo-
nent weights, which sum up to 1, fk is the probability density function of the k-th
Gaussian component, μk is the location of the component and Σk is the component
covariance. Mixture models of 2DGE images are fitted locally to fragments of the
image by use of a modified version of the expectation-maximization (EM) algorithm,
which stabilizes successive estimates of parameters of the mixture distribution. If a
standard EM algorithm for 2D data modeling is used we must create a 2 × nI matrix of
input values, where nI is a number of all pixels n multiplied by total intensity values in
modeled image I. Particularly, for each pixel the same m vectors of size 2 × 1 with its
coordinates are created, where m is a signal intensity in that pixel. For images with
more than 8 bit color depth it will create huge input matrices, what reduces efficiency of
the algorithm drastically. In the proposed modification two variables are created:
2 × n input matrix of pixel coordinates and 1 × n vector of pixel intensities. Addi-
tionally, pixels with zero intensity values are removed to reduce the data size and
increase the calculation speed. The vector of spot intensities is used as a weight for
pixel coordinates in a maximization step. Such modification gives a better fit of the
model when intensity values are not integers, and exactly the same solution as the
standard EM in other cases. In all scenarios, memory and computational time are
drastically reduced using the modified EM. The introduced method of the spot
detection is called 2DGMM in further text.

An important element of the EM algorithm is the choice of initial conditions.
Theoretical positions of spots may be found by applying the method based on local
maxima. In this paper Pinnacle software is used to find spots, which may serve as initial
conditions for parameters of Gaussian components (mean and covariance) and number
of model components K. To provide the regularization of the GMM model a Bayesian
information criterion is used. The final number of model components K is estimated in
a backward elimination scheme. Mixture models created locally on obtained image
fragments are aggregated into the mixture model of the whole image.
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The mixture model is well fitted to 2DGE image and it may still represent a small
amount of the background signal and noise. The post-processing of model components
is needed to remove signal artifacts that failed to have been corrected. In the proposed
approach distributions of some parameters of model components are analyzed. Too
wide components are filtered out by setting a threshold value on the component
covariance. By analyzing the distribution of height of the components, too small
components are detected and removed. To find the threshold for removing components
an outlier detection method, that was created to deal with skewed distributions [13], is

Fig. 2. Flowchart of the algorithm with exemplary images.
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used. The modeling method with enabled post-processing of model components is
called 2DGMM-proc in further text. Flowchart of the algorithm is presented in Fig. 2.

3 Results and Discussion

The comparison of methods of the spot detection is based on simulated datasets, where
true positions of spots are known. Structure of the simulated data is changed by
assuming a different number of true spots in a gel. In this paper the detection power of
different algorithms is analyzed. Spots detected by Pinnacle and GMM-based methods
are treated as a true positive finding if the distance to the true location is lower than
three pixels. Several performance indexes are computed to compare results obtained by
different algorithms. False discovery rate (FDR) is the number of spots among those
detected by the procedure which do not correspond to true spots, divided by the number
of all spots detected by the procedure. Sensitivity index (Sens) is the number of true
spots detected by the procedure divided by the number of all true spots in the sample.
FDR and Sens performance measures are aggregated into the one index F1, which is
defined as the harmonic mean of 1-FDR and Sens. Higher values of F1 score imply
better performance and lower values - poorer performance of the evaluated method.
Also, the number of spots detected by a spot detection algorithm is reported.

Pinnacle algorithm has few tunable parameters, which should be chosen prior to
their application. Two main parameters are tuned: minimum spot intensity (qa) and
minimum distance to another spot (δ). In this analysis the qa parameter is changed in a
range from 0.6 to 0.98 and δ parameter in a range from 2 to 20. F1 index is used as a
base for optimizing above mentioned parameters and for each of the three algorithms
examined, the best parameters are found. For all scenarios the proposed range of
parameters searching provides finding a global maximum of F1 score. All parameters
for methods of image fragmentation and model building were selected automatically or
were set as a constant in all simulation scenarios.

For each scenario with a given number of spots and for each spot detection method
optimal values of two parameters are found by averaging F1 score calculated for 10
images within each scenario. Results of the spot detection after applying all algorithms
with their optimal parameters are shown in Fig. 3. Sensitivity of GMM-based algo-
rithms is higher than the one obtained after using Pinnacle. All methods show the same
patterns of change; sensitivity of detecting true spots decreases with increase of the
number of true spots. In the plots of FDR index it can be seen that Pinnacle method
gives a lower number of false positives. It may be caused by the fact that in 2DGMM
one additional large spot, which corresponds to background level, is introduced for
each gel fragment. Also, it is desirable in the model fitting procedure to find more spots
for each fragment of a gel to represent full image pattern, including remaining artifacts.
Filtering of components gives indispensable decrease in FDR, which however may still
be improved. For all methods a slight increase in FDR can be noticed when gel
complexity grows. F1 score, which is treated as an index of overall detection perfor-
mance, shows that using 2DGMM-proc method gives the best results for the whole
range of numbers of true spots. When the number of spots is greater than 1500
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2DGMM method gives better results than Pinnacle. It may be caused by an increase in
the number of overlapping spots, which are better represented using the mixture model.
Setting optimal parameters for Pinnacle method gives a lower number of detected spots
than the number of true spots in all scenarios. For GMM-based methods these numbers
are comparable.

In previous calculations use of optimal parameters for all methods is assumed. To
check if applying GMM improves the efficiency of detecting spots, a percentage dif-
ference in F1 score, sensitivity, FDR and the number of detected spots between Pin-
nacle and 2DGMM-proc is calculated for all parameter settings. Additionally, it is
checked how the post-processing of model components influences the performance of
the spot detection by comparing differences between results of applying 2DGMM and
2DGMM-proc. In Table 1 median values of detection quality scores are presented. In
both comparisons using 2DGMM-proc leads to the increase of F1 score (5.95 % to
2DGMM and 17.69 % to Pinnacle, in average). Filtering about 13 % of 2DGMM
model components gives a small decrease in spot detection sensitivity (–0.3 % in
average) and fine decrease in finding false positive spots (–14.06 % in average). About

Fig. 3. Performance of the spot detection measured by F1 score (upper left), sensitivity (upper
right), false discovery rate (lower left) and the number of detected spots (lower right).
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17.69 increase of sensitivity is observed, when 2DGMM_proc method is used on the
initial conditions found by Pinnacle. Due to the factors described in previous paragraph
about 5.41 % increase in FDR is observed. To obtain a full potential of applying
mixture models to 2DGE images analysis, a more sophisticated method for discrimi-
nation between those components, which are likely to correspond to protein spots and
those, which were rather generated by noise in the signal and/or by residuals of
baseline, is needed. For example, distributions of different model components
parameters, like component weight or coefficient of variation, may be analyzed or the
algorithm described in [14] may be used to find filtering thresholds.

The accuracy of estimating spot locations is found by calculating the Euclidean
distance between the center of a detected spot and the true location. In Fig. 4
improvement in the accuracy of estimation of spot positions, achieved by application of
GMM-based methods, is highlighted. In Pinnacle spot center is localized by indicating
the particular pixel with locally highest intensity. In that case the average distance to
true location is about square root of 2, which corresponds to the distance of 1 pixel in
both directions. When the mixture model is introduced spot center locations may be
found among image pixels, as a result of the shape of the whole spot. Such ability leads
to reducing the accuracy of the spot location comparing to Pinnacle software. When the
number of spots in an image grows, finding of a proper spot center gets harder. In such
case the accuracy is slightly decreased.

Computations for all datasets were performed by use of the computational server
with two six core Intel Xeon X5680 processors (3.4 GHz in normal work, 3.6 GHz in
turbo mode) and 32 GB DDR3 1333 MHz RAM memory. Since GMM modeling is
performed for each image fragment separately and there is no communication between
analyzed fragments, it is possible to introduce a perfectly parallel computation. The
average processing time of 2DGMM-proc method with parallel and single core com-
putations is presented in Table 2. By average, a 5.43× decrease in the computational
time was observed for 1200 × 1200 pixels images with the number of spots varying
from 1000 to 2000. When the number of spots grows parallel implementation gives
more benefits. Analyzing a single image in parallel mode takes about 18 s.

Table 1. A median percentage difference in the spot detection performance indices between
different methods.

No. of true
spots

2DGMM_proc vs 2DGMM 2DGMM_proc vs Pinnacle
F1 Sensitivity FDR No. of

spots
F1 Sensitivity FDR No. of

spots

1000 6.35 −0.16 −12.29 −14.02 3.85 14.29 7.65 32.19
1250 6.99 −0.35 −16.18 −14.64 8.93 17.61 4.58 30.51
1500 6.36 −0.48 −16.16 −13.94 12.54 19.31 1.20 29.61
1750 5.59 −0.33 −12.94 −11.59 7.15 16.64 9.55 24.52
2000 4.50 −0.45 −12.75 −11.07 13.76 20.62 4.11 28.84
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3.1 Comparison to Compound Fitting Algorithm

Fitting two dimensional Gaussian function curves for the extraction of data from 2DGE
images was recently studied by Brauner et al. [7]. They propose a Compound Fitting
(CF) algorithm based on simultaneous fitting of neighboring groups of spots detected
by any spot detection method (built-in algorithm is also available). The main difference
between CF and 2DGMM-proc algorithm is that they use nonlinear least-square error
type of fit and assume some bounds for the model parameters. By default, the initial
peak position can be refined by the fit only by 2 pixels. In that case, fitting a Gaussian
curve is used rather as a spot quantification method than the spot detection method. In
our algorithm there are no constraints on estimating peak positions, so the performance
of spot detection and quantification can be improved simultaneously.

CF algorithm is semi-automatic, thus it requires from the user to mark the center of
two clearly separable spots with the smallest distance between them. Based on this
information the input parameter w is calculated. After the spot detection step the user
must set the parameter t, that is the number of standard deviations a pixel has to be
higher than the local background to be accepted as a spot, by visual inspection of the
gel image with highlighted spots. The influence of both parameters on the simulated
data was analyzed. Setting w = 10 and t = 2 gave the best visual results. Other

Fig. 4. A mean distance between the center of detected spots and true locations.

Table 2. A mean computational time of 2DGMM-proc in seconds

No. of true spots Parallel Single core Boost

1000 14.33 69.92 4.88×
1250 16.73 87.46 5.23×
1500 17.80 103.51 5.81×
1750 18.23 105.03 5.76×
2000 23.23 127.14 5.47×
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parameters, like the compound area edge length and the maximum number of pixel for
which a peak position can be refined by the fit, was set as default.

Comparing the overall performance of the spot detection (Table 3) CF algorithm
gives higher values of F1 score. Sensitivity is higher when 2DGMM_proc is used. As
previously, both methods show the same patterns of change. Good performance of CF
algorithm is provided by a low value of FDR. The accuracy of estimating the location
of a spot is comparable between methods. These findings show that 2DGMM_proc
method finds more true spots than CF, but still there are too many false positives.
Post-processing of model components must be improved. It will be also interesting too
check the peak detection method used in CF as an initial condition step in
2DGMM_proc application.

4 Conclusions

The idea of proposed algorithm for the detection of protein spots in 2DGE images is
simple. A full image is cut into fragments and an attempt is made to improve the
already discovered pattern of spots by application of a mixture model. Aggregation of
obtained results leads to a precise mixture model of gel image. Some mixture com-
ponents obtained in the iterative EM algorithm do not correspond to protein spots.
They are too wide or too low, so they are filtered out from the final model.

In the cases where there are clusters of overlapping spots, like in scenarios with the
highest number of true spots, the mixture model enables detecting components hidden
behind others. Model components are well characterized by the accurate spot position
and shape, while in some spot detection methods the information on shape is missing.
Fitting the mixture model to synthetic 2DGE image allows for achieving higher sen-
sitivity in detecting spots and better overall performance of the spot detection than
applying the Pinnacle algorithm. Parallel implementation of the algorithm gives sig-
nificant decrease in the computational time.
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Table 3. A comparison of the spot detection performance and accuracy between two methods.

No. of true spots 2DGMM_proc Compound fitting
F1 Sensitivity FDR Accuracy F1 Sensitivity FDR Accuracy

1000 0.63 0.65 0.39 0.71 0.74 0.64 0.12 0.81
1250 0.61 0.62 0.41 0.87 0.69 0.58 0.12 0.88
1500 0.59 0.60 0.42 1.02 0.65 0.52 0.13 0.97
1750 0.56 0.54 0.41 1.08 0.61 0.47 0.13 1.04
2000 0.53 0.52 0.45 1.19 0.55 0.41 0.15 1.10
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An ordinary disease caused by the anomaly of expression level of an individual gene,
can be treated by a specific drug, which regulates the gene’s expression. However, this
single-drug treatment has very low effectiveness on complex diseases [1], which
usually involve multiple genes and pathways of the metabolic network. Drug combi-
nation, as one of multiple-target treatments, has demonstrated its effectiveness in
treating complex diseases, such as HIV/AIDS [2] and colorectal cancer [3]. However, it
is still costly and time-consuming in clinical trials to find an effective combination of
individual drugs. Fortunately, both the number of approved drug combinations [4] and
the amount of available heterogeneous information about drugs are increasing. It
became feasible to develop computational approaches to predict potential candidates of
drug pairs for the treatments of complex diseases [5, 6].

Current computational approaches can be roughly categorized into two groups,
disease-driven and drug-driven. The former, developed for a specific disease, relies
heavily on disease-associated genes and targets in pathways [5]. Disease-driven
approaches are able to predict multiple drug combinations for a specific disease.
However, current approaches use only genotype information, but have not yet inte-
grated other information, such as pharmacology or clinic phenotype.

In contrast, drug-driven approaches focus on drugs, not diseases, and can be
applied to all drugs in a large scale manner. They characterize each drug as a feature
vector capturing various attributes of the drug [6], and directly apply supervised
learning to predict unknown drug pairs, based on the assumption that combinative drug
pairs (positives) are similar to each other and different from conflicting or ineffective
drug pairs (negatives). In these approaches, heterogeneous features are usually
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combined into a high-dimensional vector in a straight-forward manner, which however
leads to a time-consuming training as well as over-parameterized or over-fitted clas-
sifier model. In addition, existing drug-driven approaches mainly are only applicable to
“known” drugs which were already used in some approved combinative drug pairs, but
not to new drugs.

In summary, there are two issues that have been not addressed by former approa-
ches. (i) Existing approaches do not have an effective method to integrate or make full
use of heterogeneous features, in particular, none of the approaches have used infor-
mation from pharmaceutical drug-drug interaction (DDI). (ii) They are not applicable or
effective for “new” drugs that were not approved to be combined with other drugs.
Predicting potential drug combination among “new” drugs remains difficulty.

In this paper, we focus on developing a novel drug-driven approach that tackles the
above two issues. (1) Instead of combining heterogeneous features simply as a
high-dimensional vector, we define features based on heterogeneous data, including
pharmaceutical DDI, ATC codes, drug-target interactions (DTI) and side effects (SE),
where we, in particular, make use of pharmaceutical DDI information not used by existing
approaches. In addition, we design an efficient fusion scheme to integrate four hetero-
geneous features with the advantage of avoiding high-dimensional feature vector, which
usually causes time-consuming training as well as over-parameterized or over-fitted
classifier model. (2) More importantly, we propose the appropriate schemes of cross
validation for three different predicting scenarios, including predicting potential combi-
native pairs (S1) between known drugs, (S2) between new drugs and known drugs, and
(S3) between any two new drugs. Experiments on real data show that our proposed
method is effective, not only for predicting unknown pairs among known drugs
(AUC = 0.954, AUPR = 0.821 in S1), but also for providing the first tool to predict
potential pairs between known drugs and new drugs (AUC = 0.909, AUPR = 0.635 in
S2) and potential pairs among new drugs (AUC = 0.809, AUPR = 0.592 in S3). In
addition, we provide a detailed analysis on how each kind of heterogeneous data is related
to the formation of combinative drug pairs that motivates the design of our approach.
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Cell-penetrating peptides (CPPs) are short peptides usually comprising 5–30 amino
acid residues. Also known as protein transduction domains (PTDs), membrane
translocating sequences (MTSs), and Trojan peptides, CPPs can directly enter cells
without significantly damaging the cell membrane [1, 2]. This unique ability of CPPs
could be exploited to improve the cellular uptake of various bioactive molecules, which
is inherently poor because bioactive cargoes tend to become trapped in the endosomes.
When transported by CPPs, these cargoes are immediately freed in the cytosol to reach
their intracellular targets (immediate bioavailability). CPPs are considered as very
promising tools for non-invasive cellular import of cargoes, and have been successfully
applied in in vitro and in vivo delivery of therapeutic molecules (e.g., small chemical
molecules, nucleic acids, proteins, peptides, liposomes and particles). They also offer
great potential as future therapeutics [2, 3] such as gene therapy and cancer treatments.
The medical applicability of CPPs would be further enhanced by correct classification
of peptides into CPPs or non-CPPs.

Predicting CPPs by traditional experimental methods is time-consuming and
expensive. Thus, there is an urgent demand for fast prediction by computational
methods. Most of the recent computational methods are based on machine-learning
algorithms, which can automatically predict the cell-penetrating capability of a peptide.
Although machine-learning-based methods have intrinsic advantages (time- and
cost-saving) over experimental methods, they are less reliable than experimental
methods. Therefore, they can play only a complementary role to experimental methods.
Consequently, improving the predictive ability of computational predictors has been
the major concern in this field.

In recent years, the predictive performance of computational methods has
improved. However, such improvements seem doubtful because the datasets used for
model training are non-representative. Most of the benchmark datasets used in the
literature are too small to yield statistical results. For example, each of the four datasets
constructed by Sanders et al. [4] contains fewer than 111 true CPPs. Besides being
statistically insufficient, existing benchmark datasets are highly redundant, which
biases the prediction results. For instance, the sequences in the current largest dataset
proposed by Gautam et al. [5] share high sequence similarity. However, the high
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performance of their method on their proposed dataset (> 90 % accuracy) is probably
not generalizable to other datasets. Therefore, a representative benchmark dataset is
essential for robust CPP prediction by computational methods.

Motivated by the aforementioned limitations of existing benchmark datasets, we
propose a high-quality updated benchmark dataset of CPPs with no more than 80 %
similarity. Moreover, the new CPP dataset is sufficiently large to build prediction
models. Considering the importance of negative samples on predictive performance
[6], the collected negative samples (non-CPPs) are strictly based on the distribution of
true CPPs in the dataset. To our knowledge, the proposed dataset is the most stringent
benchmark dataset in the literature. Using this dataset, we then train a novel CPP
prediction method called SkipCPP-Pred, which integrates the features of the proposed
adaptive k-skip-2-gram and the RF classifier. As demonstrated by jackknife results on
the proposed new dataset, the accuracy (ACC) of SkipCPP-Pred is 3.6 % higher than
that of state-of-the-art methods. The proposed SkipCPP-Pred is freely available from an
online server (http://server.malab.cn/SkipCPP-Pred/Index.html), and is anticipated to
become an efficient tool for researchers working with CPPs.

Acknowledgments. The work was supported by the National Natural Science Foundation of
China (No. 61370010).
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1 Introduction

In organisms, most biological functions are not performed by a single protein,
but by complexes that consist of multiple proteins [1, 2]. Protein complexes
are formed by proteins with physical interactions. With the advance of biolog-
ical experimental technologies and systems, huge amounts of high-throughput
protein-protein interaction (PPI) data are available. PPI data are usually rep-
resented as a protein-protein interaction network (PIN) where nodes are pro-
teins and edges indicate interactions between the corresponding proteins (nodes).
Existing methods have demonstrated their abilities to predict protein complexes
from PINs. However, up to now there is no approach that is able to provide a
unified framework to detect protein complexes of various sizes from PINs with
an acceptable performance. In the complex dataset of MIPS [3], there are 61
size-two complexes, 42 size-three complexes and 170 larger complexes; while in
CYC2008 [4], there are 156, 66 and 127 size-two complexes, size-three complexes
and larger complexes, respectively. Small complexes and large complexes both
account for a large proportion of the total complexes. A size-two complex is
actually a single edge in the PIN. A size-three complex consists of three proteins
with two or three protein interactions. Traditional graph clustering method is
not effective in detecting such small-size complexes. Thus, it is important and
challenging to detect protein complexes of all sizes.

In this study, a new method named CPredictor2.0, which considers both
protein functions and protein interactions, is proposed to detect both small and
large complexes from a given PIN.

This work was partially supported by the Program of Shanghai Subject Chief Sci-
entist under grant No. 15XD1503600, and NSFC under grant No. 61272380.
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2 Methods

Our approach mainly consists of three steps:
Step 1: According to the function scheme of MIPS, protein functions are

described by terms of various levels in a hierarchy. In order to compare functions
among proteins, we first take the functional annotations specified by the terms of
the first N levels in the hierarchy, where N is a user-specified parameter. Then,
we assign proteins into the same group if they possess similar annotations.

Step 2: A network is built upon each protein group. Nodes are proteins in
the group; Two proteins are linked if they interact with each other according to
PPI data. Then, in each network, we employ the Markov Clustering Algorithm
(MCL) [5] to detect preliminary clusters.

Step 3: Highly overlapping clusters will be merged in case of redundancy.
The derived clusters are regarded as predicted protein complexes.

3 Results

We use three PPI datasets of Saccharomyces cerevisiae, including Gavin et al,
Krogan et al. and Collins et al. Protein complex datasets MIPS and CYC2008 are
used as benchmark datasets. We consider complexes with two or three proteins
as small complexes, and those with at least four proteins as large complexes.
We compare our method with several existing methods. Protein complexes are
detected from the three PPI datasets, and compare with MIPS and CYC2008
as benchmark datasets respectively. The F-measure values are shown in Table 1.
Results of small complexes and large complexes, indicated by S and L, are
presented separately. It is obvious that the proposed method CPredictor2.0 sig-
nificantly outperforms the other methods in most cases.

Table 1. F-measure comparison between CPredictor2.0 and six existing methods.

(a) MIPS as benchmark set

Method Gavin et al. Krogan et al. Collins et al.
S L S L S L

MCODE 0.08 0.39 0.06 0.37 0.08 0.50
RNSC 0.10 0.45 0.11 0.39 0.21 0.50
DPClus 0.11 0.34 0.10 0.27 0.20 0.45
CORE 0.16 0.21 0.15 0.08 0.21 0.35
ClusterONE 0.14 0.44 0.10 0.23 0.23 0.50
CPredictor 0.16 0.46 0.13 0.46 0.25 0.52
CPredictor2.0 0.21 0.59 0.23 0.54 0.27 0.62

(b) CYC2008 as benchmark set

Method Gavin et al. Krogan et al. Collins et al.
S L S L S L

MCODE 0.04 0.50 0.04 0.41 0.05 0.60
RNSC 0.22 0.50 0.24 0.50 0.35 0.63
DPClus 0.08 0.44 0.12 0.33 0.32 0.54
CORE 0.21 0.21 0.24 0.13 0.35 0.45
ClusterONE 0.17 0.53 0.16 0.28 0.35 0.56
CPredictor 0.18 0.55 0.20 0.53 0.32 0.63
CPredictor2.0 0.30 0.59 0.34 0.53 0.39 0.62
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The recruitment of antiapoptotic proteins Bcl-2 and Bcl-xL to the mitochondrial outer
membrane and their activation by BH3-only protein tBid are essential for their anti-
apoptotic function. In a number of neuronal tissues the mitochondrial targeting of Bcl-2
and Bcl-xL is executed by FKBP38, an integral mitochondrial outer-membrane protein
[1]. In the absence of detailed structural information, the molecular mechanisms of the
underlying interactions remain elusive and FKBP38 activity in apoptosis regulation is
contradictory. Here, computational structural biology tools were applied to gain
structural insights into mechanisms of interactions between FKBP38, antiapoptotic
proteins Bcl-2 and Bcl-xL, and BH3-only protein tBid.

Because the atomic-level structure of FKBP38 is absent, we determined the
3D-structure of this membrane protein by computational modeling. To do this, the
FKBP38 protein was divided, in accordance with experimental data, into the membrane
(residues 390-412) and cytosol (residues 1-389) parts and the 3D-structures of two
overlapping segments, those of residues 1-390 and 360-412, were modeled using two
different protocols. In the former case, homology modeling program PHYRE [2] and
the iterative threading assembly refinement (I-TASSER) protocol [3] were applied. In
the latter case the MEMOIR system of membrane proteins homology modeling was
used [4]. Thereafter two structures obtained by these simulations were superimposed
within the segment of the 360-390 residues and were next integrated into one structure
using the Rosetta Loop Closure protocol [5]. The OPM database (“Orientations of
proteins in membranes database”) [6] was used to predict the orientations of FKBP38
in the membrane.

The prediction of the 3D-structures of the FKBP38/Bcl-2, FKBP38/Bcl-xL,
FKBP38/Bcl-xL/tBid and FKBP38/tBid protein-protein complexes was performed in a
stepwise fashion with an initial rigid-body global search and subsequent steps to refine
initial predictions. To do this, a four - stage molecular docking protocol PIPER [7] –
ROSETTADOCK1 [8] – HADDOCK [9] ‒ ROSETTADOCK2 (abbreviated by PRHR)
was used. Clustering of structures and evaluation of energy funnels were used to
improve the ability of finding the correct structures of the complexes. In the present
work, the ranking by binding affinities among different complexes was based on the
ROSETTADOCK2 interface energy score (I_sc). This ranking was favored over that
using the ROSETTADOCK binding score (RDBS) [10], as the one which correlates
more universally with experimental binding affinity data and is free from the problems
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associated with global minimization of pulled apart individual components; these
problems are especially grave when membrane proteins or protein complexes are
docked.

The PRHR docking strategy has resulted in the structure of the FKBP38/Bcl-2
complex possessing good shape complementarity (ΔVDWSRD = −148.9, BSA =
2079 Å2) where ΔVDWSRD is the ROSETTADOCK weighted interface Lennard-
Jones score, which is calculated by subtracting the corresponding score of complexes
from those of the individual chains, and BSA is ‘Buried Surface Area’. Four salt
bridges and one hydrogen bond took place between FKBP38 and Bcl-2. Taken toge-
ther, this resulted in a low ROSETTADOCK interface energy score (I_sc) of −8.7 for
the highest-ranked ROSETTADOCK2 structure of the complex, suggesting a high
binding affinity of FKBP38 towards Bcl-2. In the case of the FKBP38/Bcl-xL complex,
a fine shape complementarity (ΔVDWSRD = −162.5; BSA = 3390.4 Å2) took place.
Besides, one salt bridge and four hydrogen bonds were formed. Together, this resulted
in a low ROSETTADOCK interface energy score value of −8.8, suggesting high
binding affinity between Bcl-xL and FKBP38. With binding of tBid to FKBP38, the
PRHR approach has resulted in the structure of the FKBP38/tBid complex with fine
shape complementarity (ΔVDWSRD = −247.6; BSA = 3579.0 Å2). Besides, three salt
bridges and one hydrogen bond took place between protein components. Taken
together, this resulted in a very low ROSETTADOCK interface binding score (Isc) of
−8.9 for the highest-ranked ROSETTADOCK structure of the complex. Collectively,
these results suggest that tBid has higher binding affinity towards FKBP38 as compared
with that of Bcl-2 or Bcl-xL, thus being capable of displacing these antiapoptotic
proteins from sequestration by FKBP38 and making them free for further antiapoptotic
association with proapoptotic proteins.
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Methylation is a common modification of DNA. It has been a very important and hot
topic to study the correlation between methylation and diseases in medical science.
Because of special process with bisulfite treatment, traditional mapping tools do not
work well with such methylation experimental reads. Traditional aligners are not
designed for mapping bisulfite-treated reads, where the unmethylated ‘C’s are con-
verted to ‘T’s. In this paper, we develop a reliable and visual tool, named VAliBS, for
mapping bisulfate sequences to a genome reference. VAliBS works well even on large
scale data or high noise data. By comparing with other state of the art tools (BisMark
[1], BSMAP [2], BS-Seeker2 [3]), VAliBS can improve the accuracy of bisulfite
mapping. Moreover, VAliBS is a visual tool which makes its operations more easily
and the alignment results are shown with colored marks which makes it easier to be
read. VAliBS provides fast and accurate mapping of bisulfite-converted reads, and
provides a friendly window system to visualize the detail of mapping of each read.

VAliBS uses three stages to map bisulfite reads: pre-processing, mapping, and
post-processing. The schematic diagrams of VAliBS is shown in Fig. 1.

For masking the base difference from methylation, we use the wild useful
three-letter strategy. It means, masking the difference from C and T artificially (in the
other strand is G and A). Concretely, for every reference, we do two copies for it, one
converting all C to T, the other one converting all G to A; for every read, we do the
same process. In the mapping stage, we employee BWA [21] and Bowtie2 [20] to map
converted reads and references. In the post-processing, we have implemented a filter
procedure for wiping off most of mapping mistakes from base conversion. We also
consider the mismatches with SNP tolerant by inputting SNP files to avoid filtering
correct results.
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Metagenomic gene-targeted assemblers generate better gene contigs of a specific gene
family both in quantity and quality than de novo assemblers. The recently released
gene-targeted metagenomic assembler, named Xander [1], has demonstrated that pro-
file Hidden Markov Model (HMM [2]) guided traversal of de Bruijn graph is
remarkably better than other gene-targeted or de novo assembly methods, albeit, great
improvements could be made in both quality and computation. Xander is restricted to
use only one k-mer size for graph construction, which results in compromised sensi-
tivity or accuracy. The use of Bloom-filter representation of de Bruijn graph in order to
maintain a small memory footprint, also brings in false positives, the side-effect of
which remains unclear. The multiplicity of k-mers, which is a proven effective measure
to differentiate erroneous k-mers and correct k-mers, was not recorded also because of
the use of Bloom-filter.

This paper presents a new gene-target assembler named MegaGTA, which succeeded
in improving Xander in both quality and computation (non-gene-targeted assemblers not
included as their performances on this dataset are not comparable with both MegaGTA
and Xander [1]). Quality-wise, it utilizes iterative de Bruijn graphs [3] to take advantage of
multiple k-mer sizes to make the best of both sensitivity and accuracy. It introduces a
penalty score for low coverage error-prone k-mers to enhance the HMM model.
Computation-wise, it adopts succinct de Bruijn graphs (SdBG [4]) to achieve a small
memory footprint. Unlike Bloom filter, SdBG is an exact representation and it enables
MegaGTA to be false positive k-mers free. The highly efficient parallel algorithm for
constructing SdBG [5] results in an order of magnitude higher assembly speed.

We compared MegaGTA and Xander on an HMP-defined mock metagenomic
dataset, and found MegaGTA excelled in both sensitivity and accuracy (Table 1). In
terms of sensitivity, MegaGTA achieved same or higher gene fractions for every
benchmarked microorganism. Notably, MegaGTA was able to recover two genes
almost to its full-length in a single run, while Xander gave fragmented results even by
merging the contigs generated with multiple k-mers sizes in multiple runs. In terms of
accuracy, MegaGTA produced less misassemblies, mismatches, and had a lower
duplication ratio.
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The performance of MegaGTA on real data was evaluated with a large rhizosphere
soil metagenomic sample [1] (327 Gbps). MegaGTA produced 9.7–19.3 % more
contigs than Xander, which were assigned to 10–25 % more gene references. On this
dataset, 0.02 %, 0.39 % and 10.52 % of contigs generated by Xander contain false
positive k-mers, when using a Bloom filter size of 256 GB, 128 GB and 64 GB,
respectively. In comparison, MegaGTA required 242 GB memory without any false
k-mers. We found that most of the false k-mers located amid a contig, which may lead
to misassemblies. Therefore, one should be careful with the size of the Bloom filter in
Xander.

MegaGTA advances in both assembly quality and efficiency. Depends on the
number of k-mers used, it is about two to ten times faster than Xander. The source code
of MegaGTA is available at https://github.com/HKU-BAL/megagta.
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Table 1. Assembly results of MegaGTA (using iterative de Bruijn graph) and Xander (merging
contigs of three k-mer sizes) on rplB genes of the HMP mock dataset. *The rplB gene of
Streptococcus mutans was in fact covered by two fragmented contigs of Xander

MegaGTA (iterates on k = 30,
36, 45)

Xander (Union of k = 30,
36, 45)

# contigs 10 19
# genes recovered 10 10
duplication ratio 1 1.79
# misassembled contigs 0 1
# partially unaligned contigs 1 2
# mismatches per 100kbp 13.52 453.05
Time (second) 277 2927

The gene fraction of each recovered rplB genes (%)
Acinetobacter_baumannii 98.77 84.77
Bacteroides_vulgatus 82.48 82.48
Deinococcus_radiodurans 99.64 99.64
Escherichia_coli 81.39 81.39
Propionibacterium_acnes 78.14 78.14
Rhodobacter_sphaeroides 98.21 98.21
Staphylococcus_aureus 99.64 99.64
Staphylococcus_epidermidis 99.64 99.64
Streptococcus_mutans 99.29 99.29*
Streptococcus_pneumoniae 63.31 62.23
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1 Introduction

Transcriptional enhancers are important regulatory elements that play critical
roles in regulating gene expression. As enhancers are independent of the distance
and orientation to their target genes, predicting distal enhancers is still a chal-
lenging task for bioinformatics researchers. Recently, with the development of
high-throughout ChiP-seq technology, some computational methods, including
RFECS [1] and EnhancerFinder [2] were developed to predict enhancers using
genomic or epigenetic features. However, the unsatisfactory prediction perfor-
mance and the inconsistency of these computational models across different cell-
lines call for further exploration in this area.

2 Methods

We proposed EnhancerDBN, a deep belief network (DBN) based method for
predicting enhancers. The method was trained on the VISTA Enhancer Browser
data set that contains biologically validated enhancers, with three types of fea-
tures, including DNA sequence compositional features, histone modifications and
DNA methylation. Our method mainly consists of the following three steps:

(1) Feature calculation. Three types of features were used to represent
enhancers, including 169 DNA sequence compositional features, 106 histone
modification features and DNA methylation feature.

This work was partially supported by the Program of Shanghai Subject Cheif Sci-
entist under grant No. 15XD1503600, and NSFC under grant No. 61272380.
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(2) Training the EnhanerDBN classifier for enhancer prediction.
EnhancerDBN uses a two-step scheme to turn the prediction problem into a
binary classification task that decides whether any DNA region is an enhancer
candidate or not. The first step is to construct the DBN by training a series of
Restricted Boltzmann Machines (RBMs); the second step is to train and opti-
mize the EnhancerDBN classifier by using the trained DBN and an additional
output layer with the backpropagation (BP) algorithm [3].

(3) Enhancer prediction and performance evaluation. 10-fold validation was
conducted to evaluate the proposed method. We first evaluated the predictive
power of different types of features in terms of prediction error rate, then com-
pared our method with existing methods in terms of AUC value or accuracy.

3 Results

Figure 1 shows the ROCs of our method and five existing methods, from which
we can see that our method clearly outperforms the other five methods. In
summary, our experimental results show that (1) EnhancerDBN achieves higher
prediction performance than 13 existing methods, and (2) DNA methylation and
GC content can serve as highly relevant features for enhancer prediction.

Fig. 1. Performance comparison with five existing methods in ROC space.
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Along with the rapid development of sequencing technology, several cancer-
genome projects, such as TCGA and ICGC, have been achieved. In such projects,
at least two separate samples are sequenced for each patient, one from tumor
tissue and the other from adjacent normal tissue or blood (not in the case of
leukemia) as a control. The alignments and variation callings of the two sets of
sequencing data are compared to identify plausible differences, many of which
may represent genuine germline variants and somatic mutational events.

Identifying novel deleterious germline variation and somatic mutational
events is one of the essential topics in cancer genomics. As rare germline vari-
ants are often uniquely inherited in a population, while highly recurrent somatic
mutations only make up a small proportion of total rare somatic events, burden-
test, also known as collapsing-based strategy, becomes a major technique for
association analysis, which is considered to relieve the underpowered issues
caused by low minor allelic frequencies (MAFs). These approaches collapse given
variants to one or multiple virtual loci, whose MAF(s) is/are obviously increased,
and the statistical tests are then applied to these virtual loci. Because of this
approach, many rare variants have been reported as having hereditary effects
not only on cancers but also on a number of complex diseases and traits.

However, existing approaches are challenged by multiple issues and are still
expected to improve for cancer sequencing data. In traditional rare variant asso-
ciation studies, interactions among rare variants are suggested to be either non-
existent or too weak to be observed significantly. In contrast, several models of
interacting germline and somatic hotspots have been proposed and supported in
cancer research; e.g., the two-hit hypothesis serves as a classic genetic model for
DNA repair and tumor suppressor genes, some germline variants are reported
to significantly increase the mutation rates of somatic events in local genomic
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regions, and so on. Moreover, several computational approaches, such as the sig-
nificant mutated gene test, clonal expansion analysis and allelic imbalance test,
are developed to observe such interactions. Second, due to technical limitations,
sample contamination (purity), sequencing bias and branch effect are ineluctable
and may reveal differences among individuals. To obtain better results, an asso-
ciation pipeline for cancer sequencing data should carefully consider these issues;
otherwise, the burden-test results may be weakened by decreasing the statistical
powers and introducing false positives.

We propose a novel pipeline, RareProb-C for association analysis on cancer
sequencing data. Our approach extends and improves the existing framework
of RareProb, while the old model becomes part of one out of four components.
RareProb-C has three new components, which are detecting interacting variants,
estimating the significant mutated regions with higher probability of harboring
deleterious variants, and inferring and removing singular variants/cases. Dur-
ing implementation, all these components are executed simultaneously within a
hidden Markov random field model.

We compare RareProb-C to several widely used approaches, including RWAS,
LRT and RareCover. We first apply RareProb-C to a real cancer sequencing
dataset. This dataset consists of 429 TCGA serous ovarian cancer (OV) cases.
Each case has one tumor sample with whole exome sequencing data and one
normal sample with whole exome sequencing data. The control cohort is from
the NHLBI Women’s Health Initiative (WHI), which consists of 557 samples
with whole exome sequencing data. All of the data are aligned to human refer-
ence build37 using BWA, and variants are identified using VarScan, GATK, and
Pindel, with stringent downstream filtering to standardize specificity. Variant
annotation is based on Ensembl release 70 37 v5. The variant list for association
analysis contains 3050 germline truncation variants and 4724 somatic trunca-
tion mutations. RareProb-C successfully identifies the known highlighted vari-
ants, which are reported to be associated with enriched disease susceptibilities
in literatures. The comparison approaches, on the other hand, identify part of
those genes/variants. RareProb-C also achieves higher statistical power than the
existing approaches on multiple artificial datasets with different configurations.

Acknowledgments. This work is supported by the National Science Foundation of
China (Grant No: 61100239, 81400632), Shaanxi Science Plan Project (Grant No:
2014JM8350) and the Ph.D. Program Foundation by Ministry of Education of China
(Grant No: 20100201110063).
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Abstract. A mathematical model of CLA metabolism was established to study
the regulation mechanism in CLA metabolic pathway. The simulation results
indicate that if there was only t10c12-CLA pathway left in CLA metabolic
pathway, the LA could completely be converted into t10c12-CLA within less
than 6 h. In addition, the HY emzyme activity has a significant effect on the
forming rate of t10c12-CLA.

Keywords: Conjugated linoleic acid � Biosynthesis � Mathematical modeling

1 Introduction

CLAs (Conjugated linoleic acids) have isomer-specific, health-promoting properties.
However, the content of CLA in natural foods is too small to exert its physiological
activity, which drives scientists to focus on the development of efficient methods for
CLA production. Although some species of bacteria were found having
CLA-producing capacity, their specific and efficient production was not established,
especially for the production of t10c12-CLA, which was the only one of the isomers
with fat reducing activity. The regulation of metabolic pathway of LA (Linoleic acid) in
bacteria might be a promising strategy to produce specific isomers of CLA. However,
the complexity of metabolism of LA makes it difficult and laborious to regulate each
parameter involved in the process through wet experiments. Therefore, a model based
on the biochemical reactions involved in metabolic pathway of LA was built up to find
out the key parameters in the pathway through. This model could be useful for
directional regulating the production of specific CLA isomers.

2 Methods

A relatively complete metabolic pathway of CLA was constructed based on previous
studies [1, 2]. 14 reactions were involved totally (Fig. 1). According to the
Michaelis-Menten equation, the enzymatic reaction kinetics model and the differential
equation model of CLA metabolism were established and simulated.
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3 Results and Conclusions

3.1 The Preliminary Simulation of CLA Metabolic Model

The data obtained from the preliminary simulation shows that the conversion rate of
t10c12-CLA is only *1 % and that of total CLA is *14 %. There was an accumu-
lation of oleic acid (OA) during the process and most of the fatty acids converted to
saturated fatty acid (SA) in the end. The simulation results are consistent with the
previous studies.

3.2 The Influence of Bypasses on the Yield of t10c12-CLA

10-OH, cis12-C18:1 has three metabolic directions: R2, R3 and R6 (Fig. 1). If the
reaction rate of R3 and R6 is adjusted to zero, higher yield of t10c12-CLA should be
expected. However, the yield of t10c12-CLA didn’t show a significant increase when
R6 and R3 was blocked sequentially. Originally, c9c12-LA also participated in the Δ12
hydroxylation (R4), which was converted into SA. So the R4 bypass was also blocked.
Surprisingly, the yield of t10c12-CLA was still at a very low level while the accu-
mulation of OA reached a very high level. The accumulated OA finally converted into
t10c12-CLA after the reaction time was prolonged 20 times compared to the previous
simulations. From this result, we see that if there was only t10c12-CLA pathway left,
the LA could totally be converted into t10c12-CLA, but the output time to reach the
steady state was 20 times long than that without any operation.

3.3 The Influence of Parameters on the Yield of t10c12-CLA

The limiting step related parameter kOH10�cis12
cat�HY ; KNADþ

m�HY ; K
OAOH10�cis12
m�HY ; KNADþ

s�HY was
studied respectively to observe their influences on the production of t10c12-CLA
through amplifying or reducing 10 times of themselves. Among these parameters,
kOH10�cis12
cat�HY has great effect on the yield of t10c12-CLA. When kOH10�cis12

cat�HY was
expanded to 10 times, the accumulated peak of 10-OH, cis12-C18:1 was reduced by
*30 % and the generating rate of t10c12-CLA was increased 10 times roughly.

Altogether,among the factors that affect the production of t10c12-CLA, the cat-
alytic constant of related enzyme affects not only the final yield, but also decides the
generating rate of t10c12-CLA. Blocking some bypasses also contributes to the yield.

Fig. 1. The metabolic pathway of conjugated linoleic acid
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Protein complexes play critical roles in many biological processes and most proteins
are only functional after assembly into protein complexes [1]. One of the most
important challenges in the post-genomic era is to computationally analyze the large
PPI networks and accurately identify protein complexes. Most studies on protein
complexes identification have been focused on the static PPI networks without
accounting for the dynamic properties of biological systems. However, cellular systems
are highly dynamic and responsive to cues from the environment [2]. In reality, the PPI
network in a cell is not static but dynamic, which is changing over time, environments
and different stages of cell cycles.

Some studies have projected the additional information such as gene expression
data onto PPI networks to reveal the dynamic behavior of PPIs. de Lichtenberg et al.
[3] integrate data on protein interactions and gene expression to analyze the dynamics
of protein complexes during the yeast cell cycle, and reveal most complexes consist of
both periodically and constitutively expressed subunits. Srihari et al. [4] exploit gene
expression data to incorporate ‘time’ in the form of cell-cycle phases into the prediction
of complexes, and study the temporal phenomena of complex assembly and disas-
sembly across cell-cycle phases. On the other hand, both static PPI networks and
dynamic static PPI networks are mainly based on the high-throughput PPI data. Some
studies have indicated that the high-throughput PPI data contains high false positive
and false negative rates, due to the limitations of the associated experimental tech-
niques and the dynamic nature of PPIs [5]. This makes the accuracy of the PPI net-
works based on such high-throughput experimental data is far from satisfactory. So far,
it is still impossible to construct an absolutely reliable PPI networks. In fact, each
protein and PPI is associated with an uncertainty value in the PPI networks. It is more
reasonable to use uncertain graph model to deal with PPI networks.

In this paper, we use the uncertain model to identify protein complexes in the
dynamic uncertain PPI networks (DUPN). Firstly, we use the three-sigma method to
calculate the active time point and the existence probability of each protein based on
the gene expression data. DUPN are constructed to integrate the dynamic information
of gene expression and the topology information of high-throughput PPI data. Due to
the noises and incompletion of the high-throughput data and gene expression, each
node and edge is associated with an existence probability on a DUPN. Then, we
propose CDUN algorithm to identify protein complexes on DUPN based on the
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uncertain model. We test our method on the different PPI datasets including Gavin [6],
DIP [7], and STRING [8] datasets, respectively. We download the gene expression data
GSE3431 [9] from Gene Expression Omnibus. The gold standard data are CYC2008
[10], which consist of 408 protein complexes. Precision, recall and F-score are used to
evaluate the performance of our method. It is encouraging to see that our approach is
competitive or superior to the current protein complexes identification methods in
performance on the different yeast PPI datasets, and achieves the state-of-the-art
performance.

Acknowledgments. This work is supported by grant from the Natural Science Foundation of
China (No. 61300088, 61572098 and 61572102), the Fundamental Research Funds for the
Central Universities (No. DUT14QY44).
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Introduction. Long non-coding RNAs (lncRNAs in short), one type of non-
protein coding transcripts longer than 200 nucleotides, play important roles in
complex biological processes, ranging from transcriptional regulation, epigenetic
gene regulation to disease identification. Researches have shown that most lncR-
NAs exert their functions by interfacing with multiple corresponding RNA bind-
ing proteins. Therefore, predicting lncRNA-protein interactions (lncRPIs) is an
important way to study the functions of lncRNAs.

In this paper, to boost the performance of lncRPI prediction we propose
to fuse multiple protein-protein similarity networks (PPSNs), and integrate the
fused PPSN with known lncRPIs to construct a more informative heterogeneous
network, on which new lncRPIs are inferred.

Method. Figure 1 illustrates the pipeline of our method. In the left side of
the figure, the rectangles represent lncRNAs and the circles represent proteins.
In the right side of the figure, four small networks represent different protein-
protein similarity networks (PPSNs), which are first constructed with protein
sequences, protein domains, protein functional annotations from GO and the
STRING database, respectively. These four PPSNs are then fused by using the
Similarity Network Fusion (SNF) algorithm [2] to get a more informative PPSN.
The resulting PPSN is combined with the lncRNA-protein bipartite constructed
by known lncRPIs to obtain a heterogeneous lncRNA-protein network. On this
constructed heterogeneous network, the HeteSim algorithm [1] is finally applied
to predicting new lncRPIs.

Results. The AUC values of the baseline [3] and our method with different
settings of fusing two, three and four PPSNs are illustrated in Fig. 2. We can
see that under all settings, our method outperforms the baseline; and as more
PPSNs are fused, our method performs better and better.

This work was partially supported by the Program of Shanghai Subject Chief Sci-
entist under grant No. 15XD1503600, and NSFC under grant No. 61272380.
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Fig. 1. Illustration of the pipeline of our method.

Fig. 2. The AUC values of the baseline and our method under different settings.
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Abstract. Genome rearrangements are essential processes for evolution and are
responsible for existing varieties of genome architectures. RNA is responsible
for transferring the genetic code from the nucleus to the ribosome to build
proteins. In contrast to representing the genome as a sequence, representing it as
a secondary structure provides more insight into the genome’s function. This
paper proposes a double cut and join(DCJ-RNA) algorithm. The main aim is to
suggest an efficient algorithm that can help researchers compare two RNA
secondary structures based on rearrangement operations. DCJ-RNA calculates
the distance between structures and reports a scenario based on the minimum
rearrangement operation. The results, which are based on real datasets, show
that DCJ-RNA is able to clarify the rearrangement operation, as well as a
scenario that can increase the similarity between the structures. Preliminary
work has been presented as a poster in [1].

1 DCJ-RNA Algorithm

The RNA component-based rearrangement algorithm uses a component-based repre-
sentation [2] that allows for the unique description of any RNA pattern and shows the
main features of the pattern efficiently. The proposed algorithm also uses the DCJ
algorithm to describe rearrangement operations. The DCJ-RNA algorithm is described
as follows:

Input: The input consists of two RNA secondary structures given in a
component-based representation. A: (a1, a. . . an) and B: (b1, b2. . . bm)

Output: This consists of the number of rearrangement (DCJ) operations and one
evolutionary scenario.

The DCJ-RNA algorithm completes three main steps.
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Step 1: Alignment of similar components based on their component lengths and
stem lengths.

In this step, calculate the similarity between components in terms of their com-
ponent lengths and stem lengths [3]. Similar components are assigned together,
beginning with those with the greatest similarity by using the similarity measure:

d1(fai,fbj) = ComponentLength(fai,fbi).StemLength(fai,fbi)
Step 2: Permutation generation
In this step, a corresponding permutation is generated for each of the two structures.

This is completed by determining the components to be inserted or deleted, as well as
the order of the similar components using the alignment that is generated from step 1.
A two-dimensional array of 3 Χ in size is constructed and identified as SortArray. The
first row contains the desired structure, the second row contains the deleted compo-
nents, and the third row contains the inserted components. An index value of zero for
the rows is reserved for the number of components in the same row.

Step 3: Applying the DCJ algorithm.
The component numbers are used to determine the permutations in the DCJ

algorithm [4]. Each permutation has two chromosomes:
For the first permutation: The first chromosome is the actual structure of the

components, and the second chromosome is the inserted components.
For the second permutation: The first chromosome is the desired structure, and

the second chromosome consists of the deleted components.
Each permutation is represented by its adjacencies and telomeres. Finally, the DCJ

algorithm is applied to the first and second permutations as input.

2 Results and Conclusion

To test and validate the DCJ-RNA algorithm, three different experiments are applied to
three different datasets collected using real data from the NCBI GenBank [6] and Rfam
Database [7]1. The worst time for the algorithm is O(N log N). The total space
requirement is O(N2) (N is the number of components). The DCJ-RNA algorithm is
optimal because the DCJ algorithm on which it is based is also optimal.
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1 Introduction

Homology search is still an important step in sequence-based functional analysis
for genomic data. By comparing query sequences with characterized protein
or domain families, functions and structures can be inferred. Profile Homology
search has been extensively applied in genome-scale protein domain annotation
in various species. However, when applying the state-of-the-art tool HMMER [1]
for domain analysis in NGS data lacking reference genomes, such as RNA-Seq
data of non-model species and metagenomic data, its sensitivity on short reads
deteriorates quickly.

In order to quantify the performance of HMMER on short reads, we applied
HMMER to 9,559,784 paired-end Illumina reads of 76 bp sequenced from a
normalized cDNA library of Arabidopsis Thaliana [3]. The read mapping and
domain annotations are used to quantify the performance. The results of this
experiment were shown in Table 1.

Table 1. Performance of HMMER and our tool on classifying reads in a RNA-Seq
data. 2,972,809 read pairs can be uniquely mapped to 3,577 annotated domain families
in the reference genome. However, HMMER missed at least half of the reads when
aligning these reads to the domains. There are three cases of alignments. Case 1: only
one end can be aligned to a domain. Case 2: both ends can be aligned to a domain.
Case 3: No end can be aligned to any domain in the Arabidopsis Thaliana RNA-Seq
dataset. Each number in the table represents the percentage of a case. “HMMER w/o
filtration”: turning off all filtration steps and run full Forward/Backward. “HMMER
GA cutoff”: running HMMER with gathering thresholds.

Case HMMER, HMMER, HMMER, Ours

E-value 10 w/o filtration, E-value 10 GA

Case 1 34.51 % 32.83 % 22.51 % 0.42 %

Case 2 28.42 % 31.58 % 8.84 % 62.51 %

Case 3 37.07 % 35.59 % 68.65 % 37.07 %
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2 Method

We introduce the first profile-based homology search method designed for short
reads by taking advantage of the paired-end sequencing properties. By applying
an approximate Bayesian approach incorporating alignment scores and fragment
length distribution of paired-end reads, our method can rescue missing end using
the most sensitive mode of HMMER to align the other end to the identified
protein families. Then, we compute the posterior probability of the alignments
between a read pair and a domain family. For each aligned read pair, we estimate
the “alignment quality” using an approximate Bayesian approach [2, 5]. The
alignment quality is the probability that a read pair is aligned accurately to its
native domain family. As a read pair could be aligned to multiple protein families
and some of them are not in ground truth, we use the calculated probability to
rank all alignments and discard ones with small probability.

3 Experimental Results

Our homology search method is designed for NGS data that lacks reference
genomes. We applied our tool to align short reads in a RNA-Seq dataset and a
metagenomic dataset.

3.1 Profile-Based Homology Search in RNA-Seq Dataset of
Arabidopsis Thaliana

In this experiment, we used the RNA-Seq dataset as described in Sect. 1. As
shown in Sect. 1, HMMER can miss one end or both ends of at least half of the
read pairs in this experiment. By using our method, the percentage of paired-end
reads with both ends being aligned increases from 28.42 % to 62.51 %. Detailed
comparison is presented in Table 1.

Moreover, we quantified the performance of homology search for each read
by comparing its true domain family membership and predicted membership.
We calculated the sensitivity and FP rate for each read pair and then report
the average of all read pairs using ROC curves in Figs. 1 and 2. Our method
can be used to remove falsely aligned families and thus achieved better tradeoff
between sensitivity and FP rate.

3.2 Protein Domain Analysis in a Metagenomic Dataset of
Synthetic Communities

The second dataset is a metagenomic data set is sequenced from synthetic com-
munities of Archaea and Bacteria [4]. There were 52,486,341 paired-end reads
of 101 bp. In this experiment, we align all these reads to a catalog of single
copy genes, including nearly all ribosomal proteins and tRNA synthases found
in nearly all free-living bacteria. The 111 domains were downloaded from TIGR-
FAMs and Pfam database.
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Fig. 1. ROC curves of short read homology search for RNA-Seq data of Arabidopsis.
Our tool and HMMER are compared on case 1, where only one end is aligned by
HMMER (default E-value). Note that there is one data point for HMMER with GA
cutoff.
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Fig. 2. ROC curves of short read homology search for RNA-Seq data of Arabidopsis.
Our tool and HMMER are compared on case 2, where both ends can be aligned by
HMMER (default E-value). Note that there is one data point for HMMER with GA
cutoff.

As the reads are longer than the first experiment, HMMER is able to align
more reads to correct domain families. Even so, there are still one third of read
pairs with at most one end being aligned to the underlying domains. By using our
method, the percentage of case 2 (both ends aligned) is improved from 65.82 %
to 88.71 %. Table 2 presents the percentage of three cases by HMMER and our
tool.

Table 2. The percentage of three cases of pair-end read alignments by our tool and
HMMER for the metagenomic data. Case 1: only one end. Case 2: both ends. Case 3:
none of end.

Case HMMER, HMMER, HMMER, Ours

E-value 10 w/o filtration, E-value 10 GA

Case 1 23.15 % 21.63 % 3.76 % 0.26 %

Case 2 65.82 % 68.46 % 2.46 % 88.71 %

Case 3 11.03 % 9.91 % 93.77 % 11.03 %

Furthermore, we computed the sensitivity and FP rate for each read pair
and then present the average of all read pairs using ROC curves. Our method
showed better overall performance compared to the state-of-the-art methodology
of homology search.
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Somatic variants are novel mutations that occur within a cell population and are not
inherited. Identification of somatic variants aids identification of significant genes and
pathways that can then be used in predictive, prognostic, remission and metastatic
analysis of cancer. High throughput sequencing technologies, efficient mappers and
somatic variant callers have made identification of somatic variant callers relatively
easy and cost-effective. In the past few years, a lot of methods such as SomaticSniper,
VarScan2, MuTect, VCMM have been developed to identify somatic variants. These
programs differ in the kind of statistics used and the parameters considered. Previous
studies have shown that VCMM has the highest sensitivity while MuTect has the
highest precision for detecting somatic variants.

The exome sequencing platform has been commonly used to identify somatic
variants in cancer due to its low cost and high sequencing coverage as compared to the
genome sequencing platform. However, a recent study has shown that compared to
exome data, whole genome sequencing data enables identification of more germline
variants, and is thus the better platform for identifying germline variations in exon
regions [1]. Although the study is not for somatic variants, it nevertheless suggests that
replying on exome data solely for somatic variant calling may miss many real somatic
variants in exon regions. Therefore, integrating both platforms, i.e., whole genome and
whole exome platforms, provides better strategy to identify a more complete set of
somatic variants.

In this work, we develop a framework that integrates somatic variant calling results
from both platforms. Integrating variant calling results from multiple variant callers has
been used effectively in the past to identify more somatic variants for a single platform
[2]. Here we integrated calling results from two callers, MuTect [3] and VCMM [4], the
former shown to have the highest precision and the latter the highest sensitivity. We
used the output of VCMM and the output derived from the call_stats option of MuTect
to extract 108 features. The features that were selected include base quality, mapping
quality, indel score, SNP quality, allele fraction, coverage of normal and tumor
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samples, presence of the position in dbSNP or COSMIC database etc. These features
were used as input to a machine learning algorithm J48 in WEKA [5], to correctly
identify somatic variants from simulated data and real data.

Using InfoGain+J48 gives a sensitivity of 0.94, precision of 0.99 and an F1-score
of 0.968 (Fig. 1). Using MuTect, SomaticSniper, VarScan2, and VCMM gives an
F1-score of 0.84, 0.84, 0.83, and 0.002 respectively on simulated data. Our ensemble
method, developed by integrating multiple tools, is better than individual callers in both
sensitivity and precision (Fig. 1). Our ensemble method integrating whole genome and
whole exome platforms also performs better than using variants from only exome or
only genome platforms (results not shown). This was also verified using real data from
TCGA (The Cancer Genome Analysis, results not shown).

References

1. Belkadi, A., Bolze, A., Itan, Y., Cobat, A., Vincent, Q.B., Antipenko, A., Shang, L., Boisson,
B., Casanova, J.-L., Abel, L.: Whole-genome sequencing is more powerful than whole-exome
sequencing for detecting exome variants. Proc. Natl. Acad. Sci. 112, 5473–5478 (2015)

2. Fang, L.T., Afshar, P.T., Chhibber, A., Mohiyuddin, M., Fan, Y., Mu, J.C., Gibeling, G.,
Barr, S., Asadi, N.B., Gerstein, M.B., Koboldt, D.C., Wang, W., Wong, W.H., Lam, H.Y.K.:
An ensemble approach to accurately detect somatic mutations using SomaticSeq. Genome
Biol. 16 (2015)

3. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples.
Nat. Biotechnol. 31, 213–219 (2013)

4. Shigemizu, D., Fujimoto, A., Akiyama, S., Abe, T., Nakano, K., Boroevich, K.A., Yamamoto,
Y., Furuta, M., Kubo, M., Nakagawa, H., Tsunodaa, T.: A practical method to detect SNVs
and indels from whole genome and exome sequencing data. Sci. Rep. 3 (2013)

5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data
mining software: an update. SIGKDD Explor. 11 (2009)

Fig. 1. The sensitivity, precision, and F1 score for somatic variant callers, Mutect,
SomaticSniper, Varscan2, VCMM, and our ensemble model InfoGain+J48

Framework for Integration of Genome 331



Semantic Biclustering: A New Way to Analyze
and Interpret Gene Expression Data
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Abstract. We motivate and define the task of semantic biclustering. In
an input gene expression matrix, the task is to discover homogeneous
biclusters allowing joint characterization of the contained elements in
terms of knowledge pertaining to both the rows (e.g. genes) and the
columns (e.g. situations). We propose two approaches to solve the task,
based on adaptations of current biclustering, enrichment, and rule and
tree learning methods. We compare the approaches in experiments with
Drosophila ovary gene expression data. Our findings indicate that both
the proposed methods induce compact bicluster sets whose description is
applicable to unseen data. The bicluster enrichment method achieves the
best performance in terms of the area under the ROC curve, at the price
of employing a large number of ontology terms to describe the biclusters.

The objective of biclustering [8] is to find submatrices of a data matrix such that
these submatrices exhibit an interesting pattern in their contained values; for
example their values are all equal whereas the values in the containing matrix are
non-constant. Biclustering has found significant applications in bioinformatics
[5] and specifically in the context of gene expression data analysis [2, 7]. In the
latter domain, biclustering can reveal special expression patterns of gene subsets
in sample subsets.

By semantic clustering we refer to conventional clustering with a subsequent
step in which the resulting clusters are described in terms of prior domain knowl-
edge. A typical case of semantic clustering in gene expression analysis is clus-
tering of genes with respect to their expression, followed by enrichment analysis
where the clusters are characterized by Gene ontology terms overrepresented in
them. In [3] the authors blend these two phases in that they directly cluster
genes according to their functional similarities. The term semantic clustering
was introduced on analogical principles in the software engineering domain [4].
It can be also viewed as an unsupervised counterpart of the subgroup discovery
method [9]. The semantic descriptions provide an obvious value for interpretation
of analysis results, as opposed to plain enumeration of cluster elements.

Here we explore a novel analytic technique termed semantic biclustering,
combining the two concepts above. In particular, we aim at discovering biclusters
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satisfying the usual biclustering desiderata, and also allowing joint characteri-
zation of the contained elements in terms of knowledge pertaining to both the
rows (e.g. genes) and the columns (e.g. situations). This task is motivated by
the frequent availability of formal ontologies relevant to both of the dimensions,
as is the case of the publicly available Dresden ovary table dataset [1]. Infor-
mally, we want to be able to discover biclusters described automatically e.g. as
“sugar metabolism genes in early developmental stages” whenever such genes
exhibit uniform expression in the said stages (situations). In [6], the authors
present a closely related approach, where the knowledge pertaining to both the
matrix dimensions is directly applied to define constraints to filter biclusters (the
authors use the more general term patterns). The user is provided only with the
interpretable biclusters whose description is compact.

Besides the novel problem formulation stated above, our contributions
described below include the proposal of two adaptations of existing computa-
tional methods towards the objective of semantic biclustering and their com-
parative evaluation on the mentioned publicly available dataset [1]. As usual in
unsupervised data analysis, the way to validate the methods statistically is not
fully obvious. Thus our proposed validation protocol represents a contribution
on its own right.

Acknowledgments. This work was supported by Czech Science Foundation project
14-21421S.
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Abstract. Recent studies have shown that colon cancer progression
involves epigenetic changes of small non-coding microRNAs (miRNAs).
It is unclear how multiple miRNAs induce phenotypic changes via epista-
sis, even though epistasis is an important component in cancer research.
We used an Empirical Bayesian Elastic Net to analyze both the main,
and epistatic effects of miRNA on the pathological stage of colon can-
cer. We found that most of the epistatic miRNAs shared common target
genes, and found evidence for colon cancer associations. Our pipeline
offers a new opportunity to explore epistatic interactions among genetic
and epigenetic factors associated with pathological stages of diseases.

Keywords: Colon cancer · Empirical Bayesian elastic net · Epistasis ·
MicroRNAs

1 Introduction

Colon cancer is the second leading cause of cancer-related death in the United
States [1]. Some studies have shown that aberrant miRNA expression is involved
in colon cancer development, however most studies have analyzed differential
expression between tumor and non-tumor or between tumor stages. Only a few of
these studies have investigated epistatic effects of miRNA on staging. Therefore,
we focused on analyzing the impact of individual miRNAs, and epistasis between
two miRNAs, on the pathological stage of colon cancer in this study. We used
a scalable method, empirical Bayesian elastic net (EBEN) to identify the main
and epistatic effects of miRNAs different pathological stages of colon cancer.
We analyzed the miRNA data from TCGA [2] to evaluate our method, and
the results provide potential for understanding the impact of miRNAs on colon
cancer.

2 Methods

We downloaded miRNA expression profiles for colon cancer from The Cancer
Genome Atlas (TCGA), and created an expression matrix, which was normal-
ized using inverse quantile normalization. We transformed the pathological stage
c© Springer International Publishing Switzerland 2016
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using the natural log, and applied EBEN to detect both main and epistatic effects
of the miRNA. EBEN selects one of the features that is most highly correlated
with the dependent variable, and then applies a coordinate ascent method and
two hierarchical prior distributions to estimate unknown parameters. Finally,
EBEN tests the significance of non-zero coefficient using a t -test. Specially, we
don’t need to do multi-test correction, because the EBEN added drop features
including individual miRNA and pair-wise miRNAs from each iteration using
Bayesian method and was different with multi-correlation methods. Below is the
linear regression model in this study:

y = μ + Xhβm + XiXjβe + e (1)

where y is the dependent variable (i.e., the natural log value of pathological
stage in this study); Xi and Xj are two different miRNAs expression vectors;
βm and βe are the main effect of individual miRNA and the epistasis between
miRNAs. We used four step pipeline based on EBEN method for epistasis and
main effect analysis: a) We ran a model including solely main effect Xβm to
select significant main effect, X ′. The threshold value was set at 0.05; b) we
eliminated these main effect from the original phenotype (y) as the formula y′ =
y - X ′ β′; c) The corrected y′ was used as the new dependent variable to detect
epistasis using EBEN. The threshold was still set at 0.05; d) All the significant
main effect from the step a) and epistatic features identified in c) were included
in Eq. 1 and estimated by EBEN again.

3 Results

We identified a total of 120 main effect miRNA, and 27 pairs of epistatic miRNAs
that had an effect on the pathological stage. 26 of the 120 main effect miRNAs
were found to be associated with colon cancer in the literature. For the 27
epistatic miRNAs, 26 pairs have common target genes in three miRNA target
databases( miR2Disease [3], TargetScan [4] and miRDB [5]) When we queried
Online Mendelian Inheritance in Man (OMIM) Disease for the target genes, we
found 12 that were associated with colon cancer [6].

4 Conclusion

We used an empirical Bayesian elastic net to study main effects, and pair-wise
epistatic effects on the pathological stage of colon cancer. It effectively selected
significant features in the TCGA data. Changes in both the expression of mRNA
and miRNA likely affect the pathological stages of tumor, and by incorporating
mRNA expression levels into our model we could develop a better understanding
of the molecular mechanisms of colon cancer.
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The interaction of RNAs and their ligands strongly depends on folding kinetics
and thus requires explanations that go beyond thermodynamic effects. Whereas
the computational prediction of minimum energy secondary structures, and even
RNA–RNA and RNA–ligand interactions, are well established, the analysis of
their kinetics is still in its infancy. Due to enormous conformation spaces, the
exact analysis of the combined processes of ligand binding and structure forma-
tion requires either the explicit modeling of an intractably large conformation
space or—often debatable—simplifications. Moreover, concentration effects play
a crucial role. This increases the complexity of modeling the interaction kinetics
fundamentally over single molecule kinetics.

We present a novel tractable method for computing RNA–ligand interaction
kinetics under the widely-applicable assumption of ligand excess, which allows
the pseudo-first order approximation of the process. In the full paper, we rigor-
ously outline the general macroprocess of RNA ligand interaction based on gra-
dient basin macrostates (cf. [2]) and discuss how to derive the model parameters,
including corresponding rate constants, from empirical measurements. Figure 1
illustrates important aspects of this coarse graining, based on gradient basins of
the monomer and dimer states. This original description of the specific macrostate
system is a fundamental prerequisite for RNA ligand interaction kinetics. Subse-
quently, we discuss this system under the assumption of excessive ligand concen-
trations, which is valid for a wide spectrum of biological systems. On this basis, we
devise the first analytical approach for RNA ligand interaction kinetics enabling
the computation of time-dependent macrostate probabilities based on solving the
master equation of the interaction process. Finally, we discuss the interaction
kinetics of the artificially designed theophylline riboswitch RS3 [1] at different con-
centrations and study the effect of co-transcriptional interaction in our model.

Our current model assumes only a single binding motif, while multiple bind-
ing motifs with different binding energies and multiple binding sites are plausi-
ble, in general. A corresponding generalization of the model naturally leads to
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Fig. 1. Correspondence between the energy landscapes of the monomers (left) and the
dimers (right). The dimer landscape is obtained from the monomer landscape by only
retaining the structures possessing the binding pocket (blue circles) while removing the
other ones (green squares). As the removed structures might lie on a gradient walk (solid
arrow), rendering that path invalid in the dimer landscape, formerly suboptimal moves
(dashed arrows) become gradient walks and new local minima (filled squares and circles)
may arise. These effects might alter the mapping of the structures to their gradient basin.

multiple “ligand worlds” for the different binding modes. Moreover, riboswitches
that control at the transcriptional level will strongly depend on the kinetics
of transcription, i. e. the growth of the RNA chain itself. After all, growing
RNA molecules are known to favor different local minima and thus to refold
globally as the chain becomes longer. While the corresponding extensions of
our framework are straightforward, experimental measurements are required to
gauge additional thermodynamic parameters, detailed kinetic prefactors, and
transcriptional speed – and these are very scarce at present.
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1 Introduction

Human genetic variation can be present in many forms, including single nucleotide
variants, small insertions/deletions, larger chromosomal gains and losses, and
inter-chromosomal translocations. There is a need for robust and accurate algorithms
to detect all forms of human genetic variation from large genomic data sets. The vast
majority of such algorithms focus exclusively on the 24 chromosomes (22 auto-
somes, X, and Y) comprising the nuclear genome. Usually ignored is the mito-
chondrial genome, despite the crucial role of the mitochondrion in cellular
bioenergetics and the known roles of mitochondrial mutations in a number of human
diseases [1], including cancer. The mitochondrial chromosome (mtDNA) may be
present at up to tens of thousands of copies in a cell [2]. Therefore, variants may be
present in a very small proportion of the cell’s mtDNA copies, a condition known as
heteroplasmy. Established computational tools used to identify biologically important
nuclear DNA variants are often not adaptable to the mitochondrial genome. These
tools have been developed to detect heterozygotic variants rather than heteroplasmic,
so it is vitally important to develop new approaches to assess and quantify mtDNA
genomic variation.

In this study, we focus on detecting deletions within the mitochondrial chro-
mosome. We describe MitoDel, the computational procedure we have developed to
extract predicted mtDNA deletions and their abundances from NGS data. We assess
the theoretical sensitivity of our approach by using simulated data and also applying
MitoDel to previously published data from a sequencing experiment involving aging
human brain tissue. We also use our method to discover novel deletions in large
publicly-available data from the DNA of healthy individuals. The accuracy of
MitoDel compares favorably with an existing tool. Software implementing MitoDel is
available at the LaFramboise laboratory website (http://mendel.gene.cwru.edu/
laframboiselab/).
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2 Methods

Unaligned.fastq files were aligned to a modified human genome build hg19 using
BWA [3]. Hg19 was modified by removing the original chrM and replacing it with the
revised Cambridge Reference Sequence (rCRS; NC_012920.1) [4]. The mitochondrial
reference genome is described a circular chromosome 16,569 bases in length. The base
positions are numbered in a clock-like manner, from 3’ to 5’ on the “light” strand, from
base position 1 to base position 16569. Suppose that the region from mitochondrial
base position s + 1 to base position e − 1 is deleted in proportion p of mtDNA copies
such that positions s and e are ligated together in the mitochondrial chromosome, and
suppose that the NGS experiment generates reads of length l bases. In our study, we
restrict attention to deletions larger than 10 bp, i.e. (e – s + 1) > 10, since standard
aligners like BWA are able to align reads harboring the smaller deletions wholly
encompassed by the read. Suppose further that n reads harbor the deletion fusion point.
For the ith of these reads, let xi (i = 1,…,n) denote the position in the read (oriented
from lower mtDNA base position to higher) harboring base position s in the mito-
chondrial genome (1 ≤ xi ≤ l). Most of these reads will not align to anywhere in the
reference genome, and will be therefore be marked as “unaligned” in the resulting .bam
file output by BWA. We extract these unaligned reads and align them using BLAT [5].

BLAT’s output for split reads includes the start and end read positions of each
aligned segment of the read. In the above notation, this would correspond to two
segments with (start, end) positions (1, xi) and (xi + 1, l) for read i harboring the
deletion fusion point. BLAT’s output also includes the beginning genomic coordinates
(mtDNA base position) to which each segment aligns. In the above notation, this would
correspond to mtDNA positions (s − xi +1) and e for the two read segments. It follows
that we may mine the BLAT output for a set of n split reads that each split into two
segments and pass various quality filters. If the number of such reads harboring pre-
cisely the same breakpoint is sufficiently large, enough evidence is deemed to have
been produced to report the breakpoint as biologically real. Finally, we can estimate the
abundance of a discovered deletion (i.e. the proportion p of mtDNA copies harboring
the deletion) by using the number of reads harboring the 16569/1 “artificial” fusion
point as a proxy for 100 % abundance.

3 Results

Our simulation results shows that MitoDel is very sensitive at read depths of the
magnitude produced by typical NGS runs, and has an extremely low false-positive rate.
We are able to detect deletions present in as few as 0.1 % of mtDNA copies of the cell.
Comparisons with an existing method, MitoSeek [6], show improved detection of
deletions, particularly at low levels of heteroplasmy. We verified the results of Williams
et al. using MitoDel. We also applied MitoDel to data from the 1000 Genomes Project
[7] and discovered a number of novel deletions in several individuals. Regarding run-
time, a .fastq file with 3.4 million reads took approximately 69 min to run.

340 C.M. Bosworth et al.



References

1. Wallace, D.C.: Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen.
51(5), 440–450 (2010)

2. Robin, E.D., Wong, R.: Mitochondrial DNA molecules and virtual number of mitochondria
per cell in mammalian cells. J. Cell. Physiol. 136(3), 507–513 (1988)

3. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics 25(14), 1754–1760 (2009)

4. Andrews, R.M., et al.: Reanalysis and revision of the Cambridge reference sequence for
human mitochondrial DNA. Nat. Genet. 23(2), 147 (1999)

5. Kent, W.J.: BLAT–the BLAST-like alignment tool. Genome Res. 12(4), 656–664 (2002)
6. Guo, Y., et al.: MitoSeek: extracting mitochondria information and performing high-

throughput mitochondria sequencing analysis. Bioinformatics 29(9), 1210–1211 (2013)
7. Genomes Project: C., et al., A map of human genome variation from population-scale

sequencing. Nature 467(7319), 1061–1073 (2010)

MitoDel: A Method to Detect and Quantify Mitochondrial DNA Deletions 341



TRANScendence: Transposable Elements
Database and De-novo Mining Tool Allows

Inferring TEs Activity Chronology

Micha�l Startek1, Jakub Nog�ly1, Dariusz Grzebelus2, and Anna Gambin1(B)

1 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
aniag@mimuw.edu.pl

2 Institute of Plant Biology and Biotechnology, University of Agriculture in Kraków,
29 Listopada 54, 31-425 Kraków, Poland

It has recently come to general attention that TEs may be a major (if not the
main) driving force behind speciation and evolution of species. Thus understand-
ing of TE behavior seems crucial to deepening our knowledge on evolution. How-
ever, the lack of general, easily-usable and free available tools for TEs detection
and annotation, hinders scientific progress in this area. This is especially appar-
ent with the advent of next-generation sequencing techniques, and the resultant
abundance of genomic data, most of which has not been scanned for transposable
elements yet.

The task of searching for TEs is not an easy one. It has been split into many
smaller sub-tasks, such as searching for repeated genomic sequences, annotation
of structural elements of TEs, clustering TEs into families, annotating TEs in
genomes, de-novo searching for repeatable elements, classifying repeatable ele-
ments, and so on. A multitude of tools that can perform each of these steps have
been written: the exhaustive list of tools and resources for TE analysis com-
piled by Bergman Lab (http://bergmanlab.smith.man.ac.uk/) contains about
120 items.

Therefore a need has arisen to merge the appropriate tools into one generic
pipeline, which would be capable of performing a complete, de-novo annotation
of TEs in a whole genome, from the ground up, starting only from the sequence
of an organism’s genome. One such pipeline has been created, called REPET [1].
It combines several different programs for the clustering of interspersed repeats
and the annotation phase requires the use of multiple mechanisms, mainly based
on comparisons to TEs stored in the Repbase [3]. However, in order to use the
pipeline, each one of its components has to be separately installed and configured.

Here we have decided to integrate REPET pipeline with a flexible, relational
TE repository, along with a web interface to benefit from a wide range of efficient
services, but at the same time to eliminate the inconvenience of the lack of user-
friendly interface. Our tool in contrast with previous ones, which either require
manual assistance (and thus, are unsuitable for high-throughput analyses), or
require deep programmer’s experience to set-up and use, is fully automatic
(though it is possible to manually curate the results if desired). To complement

This work was partially supported by Polish National Science Center grant
2012/06/M/ST6/00438.
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Fig. 1. Overview of the TRANScendence tool.

the functionality of specialized tools designed for specific TE families (see [2]
and discussion therein) TRANScendence is developed to study the genome-wide
landscape of TEs families.

In addition to tagging of TEs in genomes, our tool is capable of perform-
ing different qualitative and quantitative analyses. It classifies TEs into families,
superfamilies and orders, allowing us to estimate relative abundances of TEs
in selected genomes, and to perform comparative genomic studies. It also per-
forms searches for TE clusters, i.e. regions containing high concentration of TEs
nested in one another. Based on detected TE nesting structure the methods to
reconstruct evolutionary history of TE families have been developed. Proposed
algorithms yield the chronology of TE families activity.

The main objective of the proposed solution is the support of TE evolutionary
studies. We put special emphasis on the design of the web-interface to assure sim-
plicity and flexibility of data manipulation process.The tool is freely available for
use by the general public at: http://bioputer.mimuw.edu.pl/transcendence. It is
worth to mention that it has already been used in several scientific projects [4, 5].
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Abstract. In this study, we propose three simple yet powerful
maximum-likelihood (ML) based methods which take into account both
gene adjacency and gene content information for phylogenetic recon-
struction. We conducted extensive experiments on simulated data sets
and our new method derives the most accurate phylogenies compared to
existing approaches. We also tested our method on real whole-genome
data from eleven mammals and six plants.

1 Variable Length Binary Encoding

A genome can then be represented as a multiset of adjacencies and genes.
Variable Length Binary Encoding 1 (V LBE1): Given a data set D of n
genomes, screen over it, collect all unique adjacencies and get a list A of m
adjacencies; for each adjacency a ∈ A, count the maximum state number t of it
among all the genomes. We encode each adjacency a in that column as follows:
if genome Di has n copies of adjacency a, we append t − n 0’s and n 1’s to the
sequence. We encode every adjacency a in list A.
Variable Length Binary Encoding 2 (V LBE2): for each adjacency a ∈ A,
count the maximum state number t of it among all the genomes. We encode each
adjacency a in that column as follows: if genome Di has n copies adjacency a,
we append t − n 0’s and n 1’s to the sequence. We encode every adjacency a in
list A. We also append content encoding in this way, for each unique gene, if it
present this genome Di, append 1, otherwise append 0 to the sequence.
Variable Length Binary Encoding 3 (V LBE3): V LBE3 is designed to
encode the multiplicity of both adjacencies and gene content. for each adja-
cency a ∈ A, count the maximum state number t of it among all the genomes.
We encode each adjacency a in that column: if genome Di has n copies adjacency
a, we append t − n 0’s and n 1’s to the sequence. We encode every adjacency a
in list A. We also append content encoding in the same way as for adjacency.
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Fig. 1. RF error rates for different approaches for trees with 100 species, with genomes
of 1,000 genes and tree diameters from 1 to 4 time the number of genes, under the
evolutionary events with both segmental and whole genome duplications.

Since fliping a state (from 1 to 0 or from 0 to 1) depends on the transition
model within the encoding scheme, we use the same transition model as described
in MLWD [1], in order to perform a fair comparison with MLWD. Once we have
encoded input genomes into binary sequences and have computed the transition
parameters, we use RAxML [2] to build a tree from them.

2 Results

Our simulation studies follow the standard practice in [1]. We generate model
trees under various parameter settings, then use each model tree to evolve an
artificial root genome from the root down to the leaves, by performing randomly
chosen evolutionary events on the current genome, finally obtaining data sets
of leaf genomes for which we know the complete evolutionary history. We then
reconstruct trees for each data set by applying different reconstruction methods
and compare the results against the model tree. Figure 1 shows the comparison of
the accuracy of three new approaches, V LBE1, V LBE2, V LBE3 and MLWD [1].

3 Conclusion

Our new encoding schemes successfully make use of the multiplicity information
of gene adjacencies and gene content in different genomes, and apply maximum-
likelihood method designed for sequence data to reconstruct phylogenies for
whole-genome data. As shown in the expetimental results, this new approach
is particularly useful in handling haploid or polyploid species.

References

1. Lin, Y., Fei, H., Tang, J., Moret, B.M.E.: Maximum likelihood phylogenetic recon-
struction from high-resolution whole-genome data and a tree of 68 eukaryotes. In:
Pacific Symposium on Biocomputing, pp. 285–296 (2013)

2. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)



Author Index

Aganezov, Sergey 237
Al-Aqel, Haifa 323
Alekseyev, Max A. 237
Aluru, Srinivas 3
Anishchenko, Ivan 95

Bachega, José Fernando Ruggiero 163
Badal, Varsha 95
Badr, Ghada 323
Bonizzoni, Paola 27
Bosworth, Colleen M. 339
Bu, Hongda 312

Cai, Zhipeng 316
Chan, Ting-Fung 67
Chauve, Cedric 200
Chen, Xiaopei 106
Chiba, Kenichi 40
Chockalingam, Sriram P. 3

Das, Madhurima 95
Dauzhenka, Taras 95
Davidovskii, Alexander 304
Davydov, Iakov I. 253
Della Vedova, Gianluca 27
Dong, Ming 15
Duval, Béatrice 117

Egorova, V.P. 52
Eshleman, Ryan 136
Eskin, Eleazar 80
Eulenstein, Oliver 211

Feng, Bing 345
Flynn, Emily 151

Gabrielian, Andrei 258
Gambin, Anna 342
Gan, Yanglan 312
Gao, Ke 297
Gelfand, Mikhail S. 253
Geng, Yu 314
Górecki, Paweł 189
Gould, Meetha P. 339

Grandhi, Sneha 339
Grushevskaya, H.V. 52
Grzebelus, Dariusz 342
Guan, Jihong 301, 312, 321

Hall, Benika 334
Hormozdiari, Farhad 80
Hou, Aiju 316
Huang, Yukun 309

Imoto, Seiya 40

Jiang, Qijia 224

Kavaliou, Ivan 258
Kirkpatrick, B. 269
Kléma, Jiří 332
Krot, V.I. 52
Krylova, N.G. 52
Kühnl, Felix 337
Kundrotas, Petras J. 95
Kwok, Pui-Yan 67

LaFramboise, Thomas 339
Lam, Ernest T. 67
Lam, Tak-Wah 309
Lan, Wei 127
Legeay, Marc 117
Lei, Jikai 326
Lei, Peng 297
Leung, Henry Chi-Ming 309
Leyi, Wei 299
Li, Dinghua 309
Li, Jia-Xin 297
Li, Menglu 67
Li, Min 106, 307
Li, Yan 15
Lin, Hongfei 319
Lin, Yu 345
Lipinski-Paes, Thiago 163
Lipnevich, I.V. 52
Liu, Xiaowen 175
Luhmann, Nina 200
Luo, Ruibang 309



Mak, Angel C.Y. 67
Malinka, František 332
Mangul, Serghei 80
Marczyk, Michal 284
Markin, Alexey 211
Miyano, Satoru 40
Moret, Bernard M.E. 224
Moriyama, Takuya 40
Mykowiecka, Agnieszka 189

Nogły, Jakub 342
Ni, Peng 106
Norberto de Souza, Osmar 163

Orekhovskaja, T.I. 52
Ouangraoua, Aïda 200

Pan, Yi 106, 127, 307
Paszek, Jarosław 189
Peng, Wei 127
Pirola, Yuri 27
Previtali, Marco 27

Qingge, Letu 175
Quan, Zou 299
Quitadamo, Andrew 334

Racz, Gabriela C. 224
Renou, Jean-Pierre 117
Rizzi, Raffaella 27
Rosenthal, Alex 258

Sergeev, Roman 258
Shi, Jian-Yu 297
Shi, Xinghua 334
Shiraishi, Yuichi 40
Shulitski, B.G. 52
Singh, Rahul 136
Stadler, Peter F. 337
Startek, Michał 342
Streinu, Ileana 151
Sun, Yanni 326

Tang, Jijun 345
Tanus, Michele dos Santos da Silva 163
Techa-Angkoon, Prapaporn 326
Thankachan, Sharma V. 3
Thévenin, Annelyse 200
Tian, Kai 321

Ting, Hing-Fung 309
Tseng, Elizabeth 80
Tuzikov, Alexander V. 95, 258

Vakser, Ilya A. 95
Veresov, Valery 304
Vijayan, Vinaya 330

Wang, Jian 319
Wang, Jianxin 106, 127, 307
Wang, Jiayin 314
Wang, Lu 15
Wang, Wenke 314
Wang, Yang 301, 312, 321
Wen, Jia 334
Will, Sebastian 337
Wittler, Roland 200
Wu, Fang-Xiang 307

Xiao, Ming 67
Xiao, Xiao 314
Xu, Bin 301
Xu, Dechang 316

Yamaguchi, Rui 40
Yan, Xiaodong 307
Yang, Harry (Taegyun) 80
Yang, Zhihao 319
Ye, Min 224
Yip, Kevin Y. 67
Yiu, Siu-Ming 67, 297, 330
Yu, Zeng 127

Zaika, Andrey V. 253
Železný, Filip 332
Zelikovsky, Alex 80
Zeng, Xiangmiao 316
Zhang, Liqing 330
Zhang, Xiuwei 224
Zhang, Xuanping 314
Zhang, Yijia 319
Zhao, Jieyi 345
Zhao, Lingchen 307
Zhao, Zhongmeng 314
Zheng, Xiaoxiang 321
Zhong, Farong 175
Zhou, Lingxi 345
Zhou, Shuigeng 301, 312, 321
Zhu, Binhai 175
Zhu, Dongxiao 15

348 Author Index


	Preface
	Organization
	Contents
	Next Generation Sequencing Data Analysis
	An Efficient Algorithm for Finding All Pairs k-Mismatch Maximal Common Substrings
	1 Introduction
	2 Notation and Preliminaries
	2.1 Suffix Trees, Suffix Arrays and LCP Data Structures
	2.2 Linear Time Sorting of Integers and Strings

	3 Hardness Result
	3.1 Boolean Matrix Multiplication (BMM)
	3.2 Reduction

	4 Our Algorithm for k-Mismatch Maximal Common Substrings
	4.1 The Exact Match Case
	4.2 The k-Mismatch Case

	5 Preliminary Experiments
	References

	Poisson-Markov Mixture Model and Parallel Algorithm for Binning Massive and Heterogenous DNA Sequencing Reads
	1 Introduction
	2 Method
	2.1 Poisson-Markov Model (PMM)
	2.2 An Expectation-Maximization Algorithm
	2.3 A Parallel Implementation of the PMM Algorithm

	3 Results
	3.1 Simulation Data Analysis
	3.2 Real-World Data Analysis

	4 Conclusion
	References

	FSG: Fast String Graph Construction for De Novo Assembly of Reads Data
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Data Representation
	5 Experimental Analysis
	6 Conclusions and Future Work
	References

	OVarCall: Bayesian Mutation Calling Method Utilizing Overlapping Paired-End Reads
	1 Introduction
	2 Methods
	2.1 Graphical Model of OVarCall
	2.2 Modeling of Sequence Errors on Paired-End Reads
	2.3 Difference of the Tumor Model and the Error Model
	2.4 Bayes Factor for Detecting Somatic Mutations
	2.5 Variational Bayes Procedure
	2.6 Criteria for Selecting the Error Prone Site
	2.7 Minimum Criteria for the Simulation Study
	2.8 Minimum Criteria for the Real Data Study
	2.9 Parameters for Alternative Methods

	3 Numerical Examples
	3.1 Validation of the Sequence Error Assumption in ccRCC Patients' Data
	3.2 Simulation Study
	3.3 Mutations of Low Allele Frequency in cRCC Patients' Data

	4 Conclusions
	References

	High-Performance Sensing of DNA Hybridization on Surface of Self-organized MWCNT-Arrays Decorated by Organometallic Complexes
	1 Introduction
	2 Materials and Methods
	3 Plasmon Resonance Phenomenon in Decorated Graphene and Graphene-Like Materials
	4 Screening Effects
	5 Spin-Dependent Polarization of Metal- and CNT-Containing LB-Coatings
	6 Reactive Oxygen Species Influence on Sensor Response
	7 DNA-Hybridization Signal Surface-Enhancement Phenomenon
	8 Conclusion
	References

	Towards a More Accurate Error Model for BioNano Optical Maps
	1 Introduction
	2 Methods
	2.1 Error Model
	2.2 Regions Difficult to Cover

	3 Experiments
	4 Discussion
	References

	HapIso: An Accurate Method for the Haplotype-Specific Isoforms Reconstruction from Long Single-Molecule Reads
	1 Introduction
	2 Methods
	2.1 Overview
	2.2 Single-Molecule RNA-Seq
	2.3 Read Mapping
	2.4 Haplotype-Specific Isoform Reconstruction

	3 Results
	3.1 HapIso is able to Accurately Reconstruct Haplotype-Specific Isoforms
	3.2 SNV Discovery and Cross Platform Validation

	4 Discussion
	References


	Protein-Protein Interactions and Networks
	Genome-Wide Structural Modeling of Protein-Protein Interactions
	Abstract
	1 Introduction
	2 Docking
	2.1 Comparative and Free Docking
	2.2 Constraints
	2.3 Refinement

	3 Benchmarking
	4 Genome-Wide Database of Protein Complexes
	4.1 GWIDD Design and Content
	4.2 Visualizing PPI
	4.3 Future GWIDD Development

	Acknowledgments
	References

	Identifying Essential Proteins by Purifying Protein Interaction Networks
	Abstract
	1 Introduction
	2 Methods
	2.1 Purification by Using Gene Expression Data
	2.2 Purification by Using Subcellular Location Information
	2.3 Network-Based Essential Protein Discovery Methods

	3 Results and Discussion
	3.1 Experimental Data
	3.2 Identification of Essential Proteins from TS-PIN, S-PIN, and NF-APIN
	3.3 Validated by Accuracy

	4 Conclusion
	References

	Differential Functional Analysis and Change Motifs in Gene Networks to Explore the Role of Anti-sense Transcription
	1 Introduction
	2 Motivations and Biological Material
	3 Differential Functional Analysis
	4 Network Comparison
	4.1 Inference of the Core Part of a Gene Network
	4.2 Comparison of Core Networks : Change Motifs
	4.3 Change Motifs and Functional Analysis

	5 Conclusion
	References

	Predicting MicroRNA-Disease Associations by Random Walking on Multiple Networks
	1 Introduction
	2 Methods
	2.1 Experimental Data
	2.2 Three Random Walk Algorithm on Three Biological Networks

	3 Results
	3.1 Five-Fold Cross Validation of Performance
	3.2 Effect of Parameter on Performance of ThrRWMDE

	4 Conclusion
	References

	Progression Reconstruction from Unsynchronized Biological Data using Cluster Spanning Trees
	Abstract
	1 Introduction
	2 Background
	3 Methods
	3.1 Hierarchical Data Clustering
	3.2 Cluster Merging

	4 Results
	4.1 Synthetic Datasets
	4.2 Reconstruction of Embryonic Stem Cell Differentiation Data
	4.3 Cell Cycle Reconstruction
	4.4 Reconstruction of Macro-parasite Phenotypic Screening Data

	Acknowledgements
	References


	Protein and RNA Structure
	Consistent Visualization of Multiple Rigid Domain Decompositions of Proteins
	1 Introduction
	2 Methods
	3 Results and Discussion
	References

	A Multiagent Ab Initio Protein Structure Prediction Tool for Novices and Experts
	1 Introduction
	2 Background
	2.1 Proteins and the PSP Problem
	2.2 Multiagent Systems

	3 MASTERS
	3.1 Hierarchical Cooperation
	3.2 Sampling Technique
	3.3 Choosing the Energy Function/Abstraction Level
	3.4 GMASTERS

	4 Case Study
	4.1 Geometry Representation and Energy Function
	4.2 Target Sequence
	4.3 Simulation Setup and Running
	4.4 Data Analysis and Model Visualization

	5 Conclusion and Future Works
	References

	Filling a Protein Scaffold with a Reference
	1 Introduction
	2 Preliminaries
	3 Algorithms and Empirical Results for PSF
	3.1 PSF is in P
	3.2 Practical Algorithms for PSF
	3.3 Empirical Results

	4 Algorithms for Empirical Results for CP-PSF
	4.1 CP-PSF is Polynomially Solvable
	4.2 Practical Algorithms CP-PSF-B62
	4.3 Empirical Results

	5 Concluding Remarks
	References


	Phylogenetics
	Mean Values of Gene Duplication and Loss Cost Functions
	1 Introduction
	2 Basic Definitions
	3 Results
	4 Experimental Evaluation
	4.1 Mean Values for Tree Shapes
	4.2 Empirical Study

	5 Conclusion
	References

	The SCJ Small Parsimony Problem for Weighted Gene Adjacencies
	1 Introduction
	2 Background
	3 Methods
	4 Results
	4.1 Mammalian Dataset
	4.2 Yersinia Pestis Dataset

	5 Conclusion
	References

	Path-Difference Median Trees
	1 Introduction
	2 Basics and Preliminaries
	3 Path-Difference Median Tree Problem
	3.1 The PD Median Tree Problem is NP-hard

	4 Local Search for PD Median Tree Problem
	4.1 SPR-Based Local Search
	4.2 Local Search Based on an SPR Semi-structure

	5 Experimental Evaluation
	6 Conclusion
	References

	NEMo: An Evolutionary Model with Modularity for PPI Networks
	1 Introduction
	2 Current Generative Models for PPI Networks
	3 NEMo
	4 Assessing Modularity
	5 Results on Natural PPI Networks
	6 Results on Simulations
	6.1 Simulation Goals and Setup
	6.2 Results for Network Generation
	6.3 Results for Network Evolution

	7 Discussion and Future Work
	References

	Multi-genome Scaffold Co-assembly Based on the Analysis of Gene Orders and Genomic Repeats
	1 Introduction
	2 Background
	3 Scaffolding Algorithm
	3.1 Connected Components
	3.2 Integration with MGRA2
	3.3 Evolutionary Scoring
	3.4 Flanking DNA Repeats

	4 Evaluation
	4.1 Artificially Fragmented Genomes
	4.2 Incomplete Genomes

	References


	Sequence and Image Analysis
	Selectoscope: A Modern Web-App for Positive Selection Analysis of Genomic Data
	1 Introduction
	2 Implementation
	3 Tools
	References

	Methods for Genome-Wide Analysis of MDR and XDR Tuberculosis from Belarus
	Abstract
	1 Introduction
	2 Strain Selection and Sequencing
	3 Data Analysis
	3.1 Data Preparation and Filtering
	3.2 Population Structure
	3.3 Single-Marker Drug-Association Analysis
	3.4 Multi-marker Drug-Association Analysis
	3.5 Correction for Consistency of the Resulting SNP Sets

	4 Results
	5 Conclusions
	6 Availability
	Acknowledgements
	References

	Haplotype Inference for Pedigrees with Few Recombinations
	1 Introduction
	2 Pedigree Analysis
	3 Minimum Recombination Graph
	3.1 Definition of the Minimum Recombination Graph
	3.2 Algorithms
	3.3 Properties of the Minimum Recombination Graph
	3.4 Comparison of the MR Graph with the Doan-Evans Graph

	4 Coloring the MR Graph by Edge Bipartization
	4.1 The Exponential Algorithm

	5 Discussion
	References

	Improved Detection of 2D Gel Electrophoresis Spots by Using Gaussian Mixture Model
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Synthetic Data Simulation
	2.2 2D Mixture Modeling

	3 Results and Discussion
	3.1 Comparison to Compound Fitting Algorithm

	4 Conclusions
	Acknowledgments
	References


	Abridged Track 2 Abstracts
	Predicting Combinative Drug Pairs via Integrating Heterogeneous Features for Both Known and New Drugs
	References

	SkipCPP-Pred: Promising Prediction Method for Cell-Penetrating Peptides Using Adaptive k-Skip-n-Gram Features on a High-Quality Dataset
	Acknowledgments
	References

	CPredictor2.0: Effectively Detecting both Small and Large Complexes from Protein-Protein Interaction Networks
	1 Introduction
	2 Methods
	3 Results
	References

	Structural Insights into Antiapoptotic Activation of Bcl-2 and Bcl-xL Mediated by FKBP38 and tBid
	References

	VAliBS: A Visual Aligner for Bisulfite Sequences
	References

	MegaGTA: A Sensitive and Accurate Metagenomic Gene-Targeted Assembler Using Iterative de Bruijn Graphs
	References

	EnhancerDBN: An Enhancer Prediction Method Based on Deep Belief Network
	An Improved Burden-Test Pipeline for Cancer Sequencing Data
	Modeling and Simulation of Specific Production of Trans10, cis12-Conjugated Linoleic Acid in the Biosynthetic Pathway
	Abstract
	1 Introduction
	2 Methods
	3 Results and Conclusions
	3.1 The Preliminary Simulation of CLA Metabolic Model
	3.2 The Influence of Bypasses on the Yield of t10c12-CLA
	3.3 The Influence of Parameters on the Yield of t10c12-CLA

	References

	Dynamic Protein Complex Identification in Uncertain Protein-Protein Interaction Networks
	Acknowledgments
	References

	Predicting lncRNA-Protein Interactions Based on Protein-Protein Similarity Network Fusion (Extended Abstract)
	References

	DCJ-RNA: Double Cut and Join for RNA Secondary Structures Using a Component-Based Representation
	Abstract
	1 DCJ-RNA Algorithm
	2 Results and Conclusion
	References

	Improve Short Read Homology Search Using Paired-End Read Information
	1 Introduction
	2 Method
	3 Experimental Results
	3.1 Profile-Based Homology Search in RNA-Seq Dataset of Arabidopsis Thaliana
	3.2 Protein Domain Analysis in a Metagenomic Dataset of Synthetic Communities

	References

	Framework for Integration of Genome and Exome Data for More Accurate Identification of Somatic Variants
	References

	Semantic Biclustering: A New Way to Analyze and Interpret Gene Expression Data
	References

	Analyzing microRNA Epistasis in Colon Cancer Using Empirical Bayesian Elastic Nets
	1 Introduction
	2 Methods
	3 Results
	4 Conclusion
	References

	Tractable Kinetics of RNA--Ligand Interaction
	References

	MitoDel: A Method to Detect and Quantify Mitochondrial DNA Deletions from Next-Generation Sequence Data
	1 Introduction
	2 Methods
	3 Results
	References

	TRANScendence: Transposable Elements Database and De-novo Mining Tool Allows Inferring TEs Activity Chronology
	References

	Phylogeny Reconstruction from Whole-Genome Data Using Variable Length Binary Encoding
	1 Variable Length Binary Encoding
	2 Results
	3 Conclusion
	References


	Author Index



