Multidimensional Joint Graphical Display
of Symmetric Analysis: Back
to the Fundamentals

Shizuhiko Nishisato

Abstract The basic premise of dual scaling/correspondence analysis lies in the
simultaneous or symmetric analysis of rows and columns of the data matrix, a
task that resembles the analysis of principal component analysis of both the person-
to-person correlation matrix and the item-by-item correlation matrix together. Our
main quest: whether or not we can represent both analyses in the same Euclidean
space. The traditional graphical methods are very problematic: symmetric display
or French plot suffers from the discrepancy between the row space and the column
space; non-symmetric display involves the projection of data onto standardized
space, which does not contain coordinate information in the data; a variety of
biplots, of which criticisms we rarely see, involve operations that do not typically
maintain row and column measurements on the equal metrics, or if they do they are
not the coordinates of the data. Thus, none of these provides a precise description of
complex information in data, hence failing in the basic objective of symmetric data
analysis. This paper will identify logical problems of the current practice and offers
a justifiable alternative to joint graphical display. “Graphing is believing” may in
reality remain to be a wishful thinking.

Keywords Duality ¢ Joint space for rows and columns ¢ Doubling multidimen-
sional space

1 Introduction

This paper deals with graphical display of quantification theory, where the main
interest lies in the joint analysis of rows and columns of the data matrix. This
aspect is reflected by the word ‘dual’ of Canadian dual scaling (Nishisato 1980)
used to treat rows and columns of a data matrix on the equal footing, that is,
symmetric analysis of the data matrix. The technique is referred to by many
other names such as British simultaneous linear regressions (Hirschfeld 1935), the
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American method of reciprocal averages (Horst 1935), Hayashi’s Japanese theory
of quantification (1950), American principal component analysis of categorical data
(Torgerson 1958), American optimal scaling (Bock 1960), French ‘analyse des
correspondances’ (Escofier-Cordier 1969), and Dutch homogeneity analysis (De
Leeuw 1973). See many other names in Nishisato (2007).

In the traditional multivariate analysis, we often use the least-squares procedure,
which means projection of, for example, data onto the model space, meaning a one-
directional analysis as opposed to the two-way symmetric analysis of equal norms.
Graphical display of quantification results must be such that the norm of the row
variables should be equal to the norm of the column variables. This is a difficult
task for joint graphical display of quantification theory, and in the past a number of
methods have been proposed, none of which, however, is satisfactory. The current
paper starts with some basic premises of quantification, and then discusses how the
perennial problem of joint graphical display should be dealt with. We start with
some relevant basic points.

2 Fundamental One: Orthogonal Coordinates
for n Variables

When we wish to show a graph of two sets of scores (e.g., Mathematics test
and language test), it is a widely used practice to introduce the horizontal axis
for the mathematics test and the vertical axis for the language test as if the two
variates were orthogonal to each other. This is definitely wrong, but this practice
has been used widely for many years. When we have a number of variables, say
n, where n>1, the first task for graphical display is to introduce an orthogonal
coordinate system to accommodate these variables. There are an infinite number
of such systems, and the most widely used choice, out of them, is to adopt principal
coordinates, through principal component analysis: Given the subject-by-test data
matrix, F, we calculate the test-by-test correlation matrix R, which is then subjected
to the eigenvalue decomposition, that is, R=X’ AX, where X is the subject-
by-test matrix of coordinates and A is the diagonal matrix of eigenvalues. The
number of non-zero elements of A is the required dimensionality of the space for
multidimensional coordinates of n variables.

3 Fundamental Two: Coordinates of Framework
and Variables

In this principal axis decomposition of data matrix F, X is referred to as the matrix
of standard coordinates and A VX is called the matrix of principal coordinates. It is
crucial for graphical display to distinguish between these two coordinates. Nishisato
(1996) explained the important difference between them using a simple example
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as follows: Consider principal component analysis of standardized variables, and
suppose that the data are two-dimensional, then plotting principal coordinates of
variables results in a perfect circle with the diameter 1, where all data points lie;
suppose that the data are perfectly three-dimensional, then plotting the principal
coordinates of the data reveals that all data points lie at a distance of 1 from the
origin on the three-dimensional sphere, or on the perfect ball. If we plot standard
coordinates, instead of principal coordinates, however, the two-dimensional data
will show, not a perfect circle, but typically an elongated circle. If the first eigenvalue
is comparatively larger than the second one, the graph will be elongated toward the
second dimension. In other words, standard coordinates do not describe the structure
of the data, but a function of the distribution of data under the condition that the
sum of squares on each dimension is constant, thus the name standard (i.e.,the
fewer the responses the larger the standard coordinates). The conclusion here is
that the coordinates of variables in multidimensional space are given by principal
coordinates.

4 Fundamental Three: Dual Relations

Quantification theory can be depicted as singular value decomposition of data
matrix F, that is, YAX’, where Y and X are standard coordinates of rows and
columns, respectively, and A is the diagonal matrix of singular values. Because
of the symmetry of this analysis, Nishisato (1980) called it dual scaling, based on
the dual relations:
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where p; is the k-th singular value, fj; is the element of the i-th row and the
J-th column, f; and f; are respectively the sums of the i-th row and that of the
Jj-th column of data matrix F. In other words, for each component k, the mean
of rows i of F, weighted by column weights x; is equal to the weight for row i
times the singular value, and the mean of column j, weighted by row weights y; is
equal to the weight for column j times the singular value. This mutual reciprocal
averaging relation holds for each component. Although p;. is the singular value of
data matrix F, it is also (1) Hirschfeld’s simultaneous regression coefficient (1935),
(2) Guttman’s maximal row-column correlation (1941) and (3) Nishisato’s (1980)
projection operator from row space to column space or vice versa.
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5 Fundamental Four: Discrepancy Between Row Space
and Column Space

For a particular component, the dual relation shows that the mean of the row i,
weighted by column weights x;, is equal to the weight for row i times the singular
value. In other words, the singular value is the projection operator of the row space
onto the column space, or vice versa. Thus, it is possible to calculate the angle of
discrepancy, 8y, between the row space and the column space for component k by
the following formula (Nishisato & Clavel 2008):

B = cos™ ' pi

From this we know that only when the singular value is one the variables associated
with rows and columns of the data matrix span the same space. In this regards,
we should remember the famous warning by Lebart, Morineau and Tabard (1977)
that one cannot calculate the exact distance between a row variable and a column
variable from the symmetric scaling.

6 Lessons From Analysis of Contingency Table
and Response-Pattern Table

Using an example from Nishisato (1980), some important aspects of joint graphical
display can be illustrated to clarify the current controversies of joint graphical
display.

Consider the following 2 x 3 contingency table, C, obtained by asking two
multiple-choice questions:

Q1: Do you smoke? (yes, no)
Q2: Do you prefer coffee to tea? (yes, not always, no)

Suppose we obtained the following data indicated by C, which is the ‘options of
Q.1-by options of Q.2,” that is, a 2 x 3 table of joint frequencies. Nishisato (1980) has
shown that the same data can be represented also as the traditional response-pattern
table F,, which is the ‘subjects-by-options of two items,’ that is, 14 x 5 incidence
table. He has also shown that this large table can be transformed into a condensed
response-pattern table F;, by creating a table of distinct patterns with frequencies. In
our example, the data in the three data formats are as follows:
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As Nishisato (1980) has shown, the two response-pattern formats yield identical
quantification results. Therefore, for brevity we will use F.

Suppose that two items have n and m options, respectively, and there are N
respondents. Then, assuming that N is much larger than the sum of the response
categories, the total number of components from the n X m contingency table, K(C),
is equal to the smaller of #n and m minus 1, that is,

K (C) = min (n,m) — 1.

In the current example, min(2,3)—1=2—1=1. Assuming that N is much larger
than n 4 m, the total number of components from the response-pattern table, K(F),
is equal to the total number of categories of two items minus 2, that is,

KF)=n+m-2.

In the current example, K(F) =2 +3-2=3.

According to the Young-Householder theorem (Young & Householder 1938),
the variates within columns (or, rows) of the data matrix can be mapped in the
same Euclidean space. Thus, the coordinates of those five columns of F can be
mapped in the same Euclidean space. In contrast, we have already shown that the
two rows and the three columns of C do not belong to the same space. From this
comparison, we can draw the conclusion that the five options of the two items
require three-dimensional space to be plotted together. Our numerical example
(Table 1) yields the following coordinates on respective dimensions. Notice that
the standard coordinates associated with C are exactly the same as the standard
coordinates of the corresponding first component of F:

Several years after Nishisato’s book was published, Carroll, Green and Schaffer
(1986) wrote a paper on the method called the CGS scaling, in which they
maintained that the space discrepancy between row and column space of the
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Table 1 Standard coordinates associated with the two formats of data

The results of C  The results of F,,

Component 1 1 2 3
Smoking ‘yes’ 1.08 1.08 0.00 —1.08
Smoking ‘no’ —0.93 —0.93 0.00 0.93
Coffee ‘yes’ 1.26 1.26 —1.14 1.26
‘not always’ 0.17 0.17 2.11 0.16
‘no’ —1.14 —1.14 -0.77 1.14

contingency table could be solved by representing the rows and the columns of
the contingency table into the same columns of the response-pattern table—this is
exactly what was shown above. However, the CGS scaling was severely criticized
by Greenacre (1989) as false, and his criticism resulted in the downfall of the
CGS scaling. What these investigators completely missed was the point that the
weights for the rows and those for the columns of the contingency table require
more dimensions if they are represented in the same rows of the response-pattern
table. In the above example, one needs three dimensions. In the above example, the
singular value of the component associated with the contingency table is 0.4590,
thus the discrepancy angle between the row axis and the column axis is 62.68°,
leading to the conclusion that we need more than one dimension for the data. The
idea of the CGS scaling should have been presented under the condition that the
space dimensionality must be at least doubled from that of the contingency table.

7 Dimensionality of Total Space

In the above comparison of the contingency format and the response-pattern format,
we concluded that those response options of the two items can be mapped in the
same space, provided that the dimensionality of the space is expanded. There are
two distinct views on how many dimension are needed. The first one is Nishisato’s
view of doubled multidimensional space (2012). His idea of ‘doubling” comes from
the consideration that for each component we must introduce two axes with the
angle of cos_lpk. His view looks reasonable, but we need another view on this:
Based on the comparison between quantification of the contingency table and that
of the corresponding response-pattern table, we need to double the dimensionality
or more than double the dimensionality. This view stems from the following fact:

K (F) =2 x K (C), when n=m and
K (F) > 2K (C), whenn#m

In other words, only when the number of options of Item 1 is equal to that of
Item 2, we need to double the dimensionality. Otherwise, as was the case of the
above numerical example, we need more than double the dimensionality of the joint
space.
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8 From Joint Graphical Display to Cluster Analysis
of Total Space

Nishisato (1997) wrote a paper on “Graphing is believing” in support of graphical
display. With the current revelation, however, it seems generally impossible to
summarize data in multidimensional space, for we are limited to grasp or understand
only two- or three-dimensional graphs and the total space for the joint graphical
display with principal coordinates is almost always greater than two or three.
At this juncture, Nishisato and Clavel (2010) proposed total information analysis
or comprehensive dual scaling: Extract all components from the data, calculate
the within-row distance matrix, the between row-column distance matrix and
the within-column distance matrix; subject this super-distance matrix to cluster
analysis, to identify clusters in the total space as defined here. In this way, we do
not have to concentrate only on major configurations, but can also look at other
rare combinations of variables. (see Nishisato (2014) for a numerical example.)
Total information analysis has not widely been applied to data analysis yet, but
is definitely a logical and reasonable alternative to the traditional analysis via
multidimensional joint graphical display.

9 Concluding Remarks

Historically, French correspondence analysis placed a major emphasis on joint
graphical display. The current paper has identified a number of logical problems
associated with joint graphical display, be it symmetric French plot, or non-
symmetric plot, or biplot. A number of those logical problems prompted Nishisato
and Clavel (2010) to propose total information analysis (TIA), which as explained
in the current paper is free from any logical problems. It is hoped that through many
applications of TIA to data we will learn further how practical and useful TIA is as
an alternative to the traditional multidimensional joint graphical approach to data
analysis.
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