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Abstract First, we made an overview of nonparametric item response models and
the corresponding scalability coefficients in Mokken scale analysis for single-level
item scores and two-level dichotomous item scores. Second, we generalized these
models and coefficients to two-level polytomous item scores. Third, we applied the
new scalability coefficients to a real-data example, and compared the outcomes with
results obtained using single-level reliability analysis and single-level Mokken scale
analysis. Results suggest that coefficients from single-level analyses do not provide
accurate information about scalability of two-level item scores.
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1 Introduction

For most tests, a single rater provides the item scores that are used to estimate a
particular subject’ trait value. Typically, the rater and the subject are the same person
but for several clinical or pedagogical tests the rater may be, for example, the parent
or the supervisor of the subject. The item scores are not nested and called single-
level item scores. For some tests, multiple raters provide the item scores that are
used to estimate a particular subject’s trait value. Examples include teachers whose
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teaching skills are rated by all students in the classroom; hospitals for which the
quality of health care is rated by multiple patients; or students whose essays are
rated by multiple assessors. In these cases, the raters are nested within the subjects,
and the resulting item scores are called two-level item scores.

Nonparametric item response theory (NIRT) models are flexible unidimensional
item response theory (IRT) models that are characterized by item response functions
that do not have a parametric form. For an introduction to NIRT models, we refer to
Sijtsma and Molenaar (2002). NIRT models have been defined for dichotomous
single-level item scores (Mokken 1971), polytomous single-level item scores
(Molenaar 1997), and dichotomous two-level item scores (Snijders 2001), but not
yet for polytomous two-level item scores.

NIRT models are attractive for two reasons. First, for single-level dichotomous
item scores, NIRT models allow stochastic ordering of the latent trait by means of
the unweighed sum score of the test (Grayson 1988; Hemker, Sijtsma, Molenaar &
Junker 1997). This in an attractive property because for most tests the unweighed
sum scores is used as a measurement value. For polytomous single-level item scores,
NIRT models imply a weak form of stochastic ordering (Van der Ark & Bergsma
2010). It is unknown whether these properties carry over NIRT models for two-level
item scores. Second, there are many methods available to investigate the fit of NIRT
models (Mokken 1971; Sijtsma & Molenaar 2002; Van der Ark 2007). Because
all well-known unidimensional item response models are a special case of the
nonparametric graded response model (a NIRT model for single-level polytomous
item scores) (Van der Ark 2001), investigating the fit of NIRT models is a logical
first step in parametric IRT modelling: If the nonparametric graded response model
does not fit, parametric IRT models will not fit either.

The set of methods to investigate the fit of NIRT models are called Mokken
scale analysis. The most popular coefficients from Mokken scale analysis are the
scalability coefficients (Mokken 1971). For a set of I items, there are I.I � 1/=2

item-pair scalability coefficients Hij, I item scalability coefficients Hi, and one total
scalability coefficient H. Coefficient H reflects the accuracy of the ordering of
persons using their sum scores (Mokken, Lewis & Sijtsma 1986); hence, the larger
H, the more accurate is the ordering.

The remainder of this paper is organized as follows. First, we discuss NIRT
models and scalability coefficients for dichotomous single-level, polytomous single-
level, and dichotomous two-level item scores. Second, we generalize the NIRT
model and scalability coefficients to polytomous two-level item scores, demonstrate
how the scalability coefficients are estimated, and briefly discuss results from a
simulation study investigating the scalability coefficients for both dichotomous and
polytomous item scores (Crisan 2015). Third, we present a real-data example:
We analyzed two-level polytomous item scores from the Appreciation of Support
Questionnaire (Van de Pol, Volman, Oort & Beishuizen 2015), and compared the
outcomes with results obtained using traditional reliability analysis. Finally, we
elaborate on the implications of our findings and discuss future research directions.
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2 NIRT Models and Scalability Coefficients

Let a test consists of I items, indexed by i or j. Let each item have m C 1 ordered
response categories scored 0; : : : ; m indexed by x or y. If m D 1, the items scores
are dichotomous, if m > 1 the item scores are polytomous. Suppose the test is used
to measure the trait level of S subjects, indexed by s or t, and subject s has been rated
by Rs raters, indexed by p or r. If Rs D 1 for all subjects, we have single-level item
scores, and the index for the rater is typically omitted. Furthermore. Let Xsri denote
the score of subject s by rater r on item i, and let XsCC denote the total score of
subject s; that is, XsCC D PI

iD1

PRs
rD1 Xsri. Finally, let � denote a latent trait driving

the item responses, and let �s denote the latent trait value of subject s.

2.1 NIRT Models and Scalability Coefficients for Single-Level
Dichotomous Item Scores

The monotone homogeneity model (MHM) (Mokken 1971; Molenaar 1997; Sijtsma
& Molenaar 2002) is a NIRT model for single-level dichotomous item scores.
P.Xsi D xsij�s/ denote the probability that subject s has score xsi 2 f0; 1g on item i.
The MHM consists of three assumptions.

• Unidimensionality: � is unidimensional;
• Local independence: item-scores are independent conditional on � , that is,

P.Xs1 D xs1; Xs2 D xs2; : : : ; XsI D xsI j�s/ D
IY

iD1

P.Xsi D xsij�s/I (1)

• Monotonicity: For each item i, there is a nondecreasing function pi.�/ such that
the probability of obtaining item score 1 given latent trait value �s is pi.�s/ D
P.Xsi D 1j�s/.

Function pi.�/ is known as the item response function. Under the MHM, item
response function are allowed to intersect. If, additionally to the three assumptions,
the restriction of non-intersecting of the IRFs is imposed, then the more restrictive
double monotonicity model is defined (Mokken 1971).

The scalability coefficients are based on the Guttman model. Without loss of
generality, let the I items be put in descending order of mean item score and
be numbered accordingly, so that P.Xi D 1/ > P.Xj D 1/ for i < j. The
Guttman model does not allow that the easier (more popular) item has score 0
and the more difficult (less popular) item has score 1, and thus excludes item-score
pattern .Xi; Xj/ D .0; 1/, which is known as a Guttman error. For items i and j, let
Fij D P.Xi D 0; Xj D 1/ denote the probability of obtaining a Guttman error, and
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let Eij D P.Xi D 0/P.Xj D 1/ denote the expected probability of a Guttman error
under marginal independence. Item-pair scalability coefficient Hij is then defined as

Hij D 1 � Fij

Eij
: (2)

If the MHM holds 0 � Hij � 1 for all i ¤ j. Hij equals the ratio of the covariance of
Xi and Xj and the maximum covariance of Xi and Xj given the marginal item score
distribution. Item scalability coefficient Hi is

Hi D 1 �
P

i¤j Fij
P

i¤j Eij
: (3)

If the MHM holds 0 � Hi � 1 for all i. Hi can be viewed as a nonparametric
analogue of the discrimination parameter (Van Abswoude, Van der Ark & Sijtsma
2004). As a heuristic rule for inclusion in a scale, Hi is often required to exceed 0.3.
Finally, total-scale scalability coefficient H is

H D 1 �
P

i

P
j Fij

P
i

P
j Eij

: (4)

As a heuristic rule, 0:3 < H � 0:4 is considered a weak scale, 0:4 < H � 0:5 is
considered a moderate scale, and H > 0:4 is considered a strong scale.

2.2 NIRT Models and Scalability Coefficients for Single-Level
Polytomous Item Scores

The nonparametric graded response model (a.k.a. the MHM for polytomous items
(Molenaar 1997) is the least restrictive NIRT model for polytomous items. As
the MHM, it consists of the assumptions unidimensionality, local independence,
and monotonicity but monotonicity is defined differently. For item score x (x D
1; : : : ; m) for each item i there is a nondecreasing function pix.�/ such that the
probability of obtaining at least item score x given latent trait value �s is pix.�s/ D
P.Xsi � xj�s/. Function pix.�/ is known as the item step response function.
Under the nonparametric graded response model, ISRFs from the same item cannot
intersect by definition but ISRFs from different items are allowed to intersect.
If, additionally to the three assumptions the restriction of non-intersecting of the
ISRFs is imposed, then we have the more restrictive double monotonicity model for
polytomous items (Molenaar 1997).

Scalability coefficients for polytomous item scores are more complicated than for
dichotomous item scores, which are a special case. They are best explained using an
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Table 1 Frequency table for
two polytomous items with
three response categories

Item 2

Response 0 1 2 P.X1 � x/

Item 1 0 2 (0) 1 (2) 0 (4) 1

1 3 (0) 0 (1) 0 (2) 3/4

2 3 (0) 2 (0) 1 (0) 1/2

P.X2 � x/ 1 1/3 1/12

Note: Frequencies not pertaining to Guttman errors
are in boldface, frequencies pertaining to Guttman
errors are in normal font, Guttman weights are
between parentheses. The last row and column show
the marginal cumulative probabilities

example. Table 1 contains the scores of 12 subjects on two items, each having three
ordered answer categories.

First, Guttman errors are determined. Item steps (Molenaar 1983) Xi � x.i D
1; : : : ; II x D 1; : : : ; m/ are boolean expressions indicating whether or not an item
score is at least x. P.Xi � x/ defines the popularity of item step Xi � x. The item
steps are placed in descending order of popularity. For the data in Table 1, the order
of the item-steps is:

X1 � 1; X1 � 2; X2 � 1; X2 � 2: (5)

Items steps X1 � 0 and X2 � 0 are omitted because, by definition, P.X1 � 0/ D
P.X2 � 0/ D 1. Item-score pattern .x; y/ is a Guttman error if an item step that has
been passed is preceded by an item step that has not been passed. Let zxy

g indicate
whether (score 1) or not (score 0) the gth ordered item step has been passed for item-
score pattern .x; y/. The values of zxy

g are collected in vector zxy D .zxy
1 ; : : : ; zxy

G /. To
obtain item-score pattern .0; 2/ in Table 1, a subject must have passed item steps
X2 � 1 and X2 � 2 but not item steps X1 � 1 and X1 � 2. Hence, for item-
score pattern .0; 2/, z02 D .0; 0; 1; 1/. Because item steps that have been passed
are preceded by items steps that have not been passed, .0; 2/ is identified as a
Guttman error. Similarly, for item-score pattern .2; 1/, z21 D .1; 1; 1; 0/ and item-
score pattern .2; 1/ is not a Guttman error. In Table 1, the four item-score patterns
for which the frequencies are printed in normal font are Guttman errors, whereas
the frequencies printed in bold font are not.

Second, the frequencies of the item-score patterns are weighed (Molenaar 1991);
the weight being equal to the number of times an item step that has not been passed
preceded an item step that has been passed. Weight wxy

ij equals

wxy
ij D

GX

hD2

8
<

:
zxy

h �
2

4
h�1X

gD1

.1 � zxy
g /

3

5

9
=

;
(6)
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(Kuijpers, Van der Ark & Croon 2013; Ligtvoet, Van der Ark, te Marvelde &
Sijtsma 2010). For example, for item-score pattern (0, 2), z02 D .z02

1 ; z02
2 ; z02

3 ; z02
4 / D

.0; 0; 1; 1/. Using Eq. (6), the weight equals w02
ij D 4. Table 1 shows the weights

between parentheses.
Item-pair scalability coefficient Hij for polytomous items is

Hij D 1 �
P

x

P
y wxy

ij P.Xi D x; Xj D y/
P

x

P
y wxy

ij P.Xi D x/P.Xj D y/
(7)

(Molenaar 1991). Because item-score patterns that are not Guttman errors have
weight 0, the probabilities pertaining to these patterns do not count, and the
numerator of Eq. (7) is simply the sum of observed weighed Guttman errors, and
the denominator the sum of expected weighed Guttman errors. Similarly, item
scalability coefficient Hi for polytomous items is

Hj D 1 �
P

i¤j

P
x

P
y wxy

ij P.Xi D x; Xj D y/
P

i¤j

P
x

P
y wxy

ij P.Xi D x/P.Xj D y/
; (8)

and the total scale scalability coefficient H is

H D 1 �
PP

i¤j

P
x

P
y wxy

ij P.Xi D x; Xj D y/
PP

i¤j

P
x

P
y wxy

ij P.Xi D x/P.Xj D y/
: (9)

Note that for dichotomous items, the Guttman error receives a weight 1, and
Eqs. (7)–(9) reduce to Eqs. (2)–(4), respectively. In Table 1, because there are only
two items, H12 D H1 D H2 D H D 0:50.

2.3 NIRT Models and Scalability Coefficients for Two-Level
Dichotomous Item Scores

Snijders (2001) generalized the MHM for dichotomous items to two-level data.
As in the MHM, each subject has a latent trait value �s. In addition, rater r is
assumed to have a deviation (ısr), so the latent trait value for subject s as rated
by rater r is �s C ısr. Deviation ısr can be considered a random rater effect
together with the subject by rater interaction. It is assumed that the raters are a
random sample from the population of raters, so deviations ısr can be considered
independent and randomly distributed variables. As the MHM, Snijders’ model for
two-level data assumes unidimensionality, local independence, and monotonicity
for the item response functions pi.�s C ısr/ D P.Xsri D 1j�sI ısr/. In addition, a
second nondecreasing item response function is defined �i.�s/ D P.Xsi D 1j�s/ D
EıŒpi.�s C ısr/�. If pi.�s C ısr/ is nondecreasing, then so is �i.�s/, yet �i.�s/ will be
flatter.
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Snijders generalized scalability coefficients for dichotomous items [Eqs. (2)–
(4)] to two-level data, resulting in within-rater and between-rater scalability
coefficients.1 The within-rater scalability coefficients HW

ij , HW
i , and HW are in fact

equivalent to the scalability coefficients that were defined for the MHM [Eqs. (2)–
(4), respectively], where every rater-subject combination is considered a separate
case.

Snijders defined the between-rater item-pair scalability coefficients

HB
ij D 1 � P.Xsri D 1; Xspj D 0/

P.Xsri D 1/P.Xsrj D 0/
.p ¤ r/: (10)

The joint probability in the numerator is computed for pairs of different raters p
and r (p ¤ r) nested within the same subject s. More specifically, the numerator
represents the joint probability that rater r assigns score 1 on item i to subject s
and rater p assigns score 0 on item j to subject s. Because the denominator consists
of a product of two probabilities that are independent of r, replacing r with p in
the second term of the denominator would not make any difference: the expected
proportion of Guttman errors under marginal independence remains the same. Using
a similar line of reasoning, the item between-rater scalability coefficients are

HB
i D 1 �

P
j¤i P.Xsri D 1; Xspj D 0/

P
j¤i P.Xsri D 1/P.Xsrj D 0/

.p ¤ r/ (11)

and

HB D 1 �
PP

j¤i P.Xsri D 1; Xspj D 0/
PP

j¤i P.Xsri D 1/P.Xsrj D 0/
.p ¤ r/: (12)

Within-rater scalability coefficients are useful for investigating the quality of
the test as a unidimensional cumulative scale for subject-rater combinations. The
between-rater scalability coefficients and the ratio of the within- and between-rater
scalability coefficients are useful for investigating the extent to which item responses
are driven by the subjects trait value rather than by rater effects. If Snijders’ model
holds, 0 < HB � HW (Snijders 2001); and larger values indicate greater scalability.
In the extreme case that there is no rater variation (ırs D 0 for all r and all s),
HB D HW . As a heuristic rule, Snijders suggested HB > 0:1 and HW > 0:2 to
be reasonable. The ratio of the two scalability coefficients reflect the relative effect
of the subjects and the raters. Low values indicate that the effect of raters is large
and many raters per subject are required to scale the subjects. Snijders suggested
HB=HW � 0:3 could be labelled reasonable and HB=HW � 0:6 excellent. The
measurement for scaling subjects is the mean total score of a subjects across all
raters: XsCC.

1Terminology is ours; Snijders used within-subject and between-subject scalability.
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3 A Generalization to Two-Level Polytomous Item Scores

Given the work on scalability coefficients for single-level polytomous item scores
(Sect. 2.2) and two-level dichotomous item scores (Sect. 2.3), a generalization
to two-level polytomous item scores is rather straightforward. The within-rater
scalability coefficients for polytomous item scores are the same as the scalability
coefficients for single-level polytomous item scores [Eqs. (7)–(9)] when considering
all rater-subjects combinations as individual cases.

The between-rater scalability coefficients are defined as follows:

HB
ij D 1 �

P
x

P
y wxy

ij P.Xsri D x; Xspj D y/
P

x

P
y wxy

ij P.Xsri D x/P.Xsrj D y/
.p ¤ r/; (13)

HB
i D 1 �

P
j¤i

P
x

P
y wxy

ij P.Xsri D x; Xspj D y/
P

j¤i

P
x

P
y wxy

ij P.Xsri D x/P.Xsrj D y/
.p ¤ r/; (14)

and

HB D 1 �
PP

j¤i

P
x

P
y wxy

ij P.Xsri D x; Xspj D y/
PP

j¤i

P
x

P
y wxy

ij P.Xsri D x/P.Xsrj D y/
.p ¤ r/: (15)

It may be verified that in case of dichotomous item scores Eqs. (13)–(15) reduce to
Equations reduces to (10)–(12), respectively.

3.1 Estimation of the Scalability Coefficients

Snijders (2001) proposed estimators for the scalability coefficients for dichotomous
item scores, by substituting the probabilities in their defining formulas by relative
frequencies. If the number of raters per subject (Rs) is not the same for all
subjects, then the probabilities required to compute the scalability coefficients
can be estimated by averaging the relative frequencies across subjects. Snijders’
estimators can be generalized to polytomous item scores. Let 1.Xsri D x/ denote the
indicator function that Xsri D x, and letbPi.x/ be the estimator for P.Xsri D x/; then,

bPi.x/ D 1

S

X

s

1

Rs

X

r

1.Xsri D x/: (16)

Equation (16) determines the proportions of raters per subject with a score x on
item i and then averages these proportions across subjects, yielding the estimated
probability of a score equal to x on item i.

The joint probabilities in the numerators of the scalability coefficients can be
estimated as follows. LetbPW

ij .x; y/ denote the estimated within-rater joint probability
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that Xsri D x and Xsrj D y, and let bPB
ij.x; y/ denote the estimated between-rater joint

probability that Xsri D x and Xspj D y. Then,

bPW
ij .x; y/ D 1

S

X

s

1

Rs

X

r

1.Xsri D x; Xsrj D y/; (17)

and

bPB
ij.x; y/ D 1

S

X

s

1

Rs.Rs � 1/

XX

p¤r

1.Xsri D x; Xspj D y/: (18)

Finally, substituting the probabilities in the defining formulas of the scalability
coefficients with the estimators in Eqs. (16)–(18) leads to the following estimators
of the within- and between-subject scalability coefficients:

bHW
ij D 1 �

P
x

P
y wxy

ij
bPW

ij .x; y/
P

x

P
y wxy

ij
bPi.x/bPj.y/

; (19)

bHB
ij D 1 �

P
x

P
y wxy

ij
bPB

ij.x; y/
P

x

P
y wxy

ij
bPi.x/bPj.y/

; (20)

bHW
i D 1 �

P
j¤i

P
x

P
y wxy

ij
bPW

ij .x; y/
P

j¤i

P
x

P
y wxy

ij
bPi.x/bPj.y/

; (21)

bHB
i D 1 �

P
j¤i

P
x

P
y wxy

ij
bPB

ij.x; y/
P

j¤i

P
x

P
y wxy

ij
bPi.x/bPj.y/

; (22)

bHW D 1 �
PP

j¤i

P
x

P
y wxy

ij
bPW

ij .x; y/
PP

j¤i

P
x

P
y wxy

ij
bPi.x/bPj.y/

; (23)

and

bHB D 1 �
PP

j¤i

P
x

P
y wxy

ij
bPB

ij.x; y/
PP

j¤i

P
x

P
y wxy

ij
bPi.x/bPj.y/

: (24)

Example 1 illustrates the computation of the scalability coefficients.

Example 1. Table 2 (upper panel) shows the frequencies of the scores on 2 items,
each having 3 ordered response categories, assigned by 12 raters to 3 subjects: Four
raters rated subject 1 (R1 D 4), two raters rated subject 2 (R2 D 3), and five raters
rated subject 3 (R3 D 5). Frequencies equal to zero are omitted. These frequencies
equal

P
r 1.Xsri D x; Xsrj D y/ and are required for computing bPW

ij .x; y/ (Eq. (17);

values in last row of Table 2, upper panel). For example, OPW
12.0; 0/ D 1

3
. 1

4
� 2 C 0 C

0/ � 0:17.
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Table 2 Frequencies of observed item-score patterns per subject (upper panel), frequencies of
observed item-score patterns where each item-score in a pattern is assigned by a different rater for
each subject (middle panel), and marginal frequencies of observed item-score patterns per subject
(lower panel)

Item-score pattern .x; y/

s (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) Rs

1 2 1 1 4

2 1 2 3

3 1 3 1 5

OPW
12.x; y/ 0:17 0:08 0:00 0:26 0:00 0:00 0:20 0:22 0:07

Item-score pattern .x; y/

s (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) Rs.Rs � 1/

1 7 2 2 2 12

2 2 2 6

3 3 1 13 3 20

OPB
12.x; y/ 0:19 0:06 0:00 0:11 0:00 0:07 0:33 0:11 0:05

Item 1 Item 2

s x D 0 x D 1 x D 2 x D 0 x D 1 x D 2 Rs

1 3 1 3 1 4

2 1 2 1 2 3

3 1 4 4 1 5

OPi.x/ 0:25 0:26 0:49 0:63 0:31 0:07

Note: unobserved item-score patterns are left blank

Table 2 (middle panel) shows the frequencies of the item-score patterns assigned
by different raters (e.g.,

PP
p¤r 1.Xsri D x; Xspj D y/). For example, score 7

(first row, first column) is obtained as follows. Subject 1 received four item-score
patterns: (0,0); (0,0); (0,1); and (1,0). Within these four patterns, it occurs 7 times
that one rater has score 0 on item 1 and a different rater has score 0 on item 2. Then,
OPB
12.0; 0/ D 1

3
. 1

12
� 7 C 0 C 0/ � 0:19.

Table 2 (lower panel) shows he marginal frequencies of the item scores for each
subject (i.e.,

P
r 1.Xsri D x/), required for estimatingbPi.x/ [Eq. (16)]. For example,

OP1.0/ D 1
3

� . 1
4

� 3 C 0 C 0/ D 0:25. Using the weights from Table 1 yields
OHW

12 D bHW
1 D bHW

2 D bHW D 0:50, and OHB
12 D bHB

1 D bHB
2 D bHB D 0:15.

3.2 Results from a Simulation Study

Crisan (2015) performed a simulation study to the effect of item discrimination,
number of ordered answer categories, the variance ratio of � and ı, the number of
subjects, and the number of raters per subject on the magnitude of OHW , OHB, and the
ratio of OHB and OHW . We briefly reiterate the main results here.
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The variance ratio of � and ı had an extremely large positive effect on the
magnitude of bHB (�2 D 0:985) and OHB= OHW (�2 D 0:558), whereas item
discrimination had an extremely large positive effects on the magnitude OHW (�2 D
0:766) and OHB (�2 D 0:280). Finally number of ordered answer categories had a
very large positive effect of the magnitude of bHW . The variance ratio of � and ı and
number of subjects had the largest effects on the precision of the estimated values
of OHW , OHB, and OHB= OHW .

4 Real-Data Example

We analyzed item scores of the Appreciation of Support Questionnaire (ASQ) (Van
de Pol et al. 2015). The ASQ consists of 11 polytomously scored items (Translated
items in Table 3). For each item, the scores ranged from 0 (“I don’t agree at all”)
to 4 (“I totally agree”). The data came from an experimental study on the effects
of scaffolding on prevocational students’ achievement, task effort, and appreciation
of support (Van de Pol et al. 2015). Six hundred fifty nine grade-8 students in The
Netherlands, nested in 30 teachers, used the ASQ to express their appreciation of
their own teacher’s support. The number of students per teacher ranged from 12 to
46 (M D 21:97, SD D 5:91).

We conducted traditional reliability analysis, traditional Mokken scale analysis,
and two-level Mokken scale analysis. Traditional reliability analysis and traditional
Mokken scale analysis are inappropriate analyses for these data. However, they

Table 3 The items if the appreciation of support questionnaire

Item Content M SD IRC

1 The advice that this teacher gave me and my group was very helpful 2:53 1:00 0:70

2 Because of the way in which this teacher helped me and my group, I
could focus on my work with ease

2:24 1:02 0:67

3 I felt the teacher took me seriously because of the way he/she helped
me and my group

2:75 0:97 0:61

4 Because of the way this teacher helped me and my group, I could really
learn new things

2:37 1:03 0:71

5 Because of the way this teacher helped me and my group, I made an
effort

2:42 0:93 0:71

6 The way in which this teacher helped me and my group really worked
for me

2:22 0:98 0:72

7 I could really use the help that this teacher offered 2:49 1:01 0:75

8 I worked hard with this teacher 2:37 0:98 0:67

9 The way in which this teacher helped me and my group was pleasant 2:46 1:03 0:77

10 The explanation and help of this teacher was really helpful 2:39 0:99 0:77

11 Because of the explanation and help of this teacher, I could proceed 2:48 1:03 0:71

Note: M D Mean, SD D standard deviation, IRC D item rest correlation
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are used to demonstrate the different outcomes. All analyses were conducted in R
(R Core Team 2015) using the packages psych (Revelle 2015) and CTT (Willse
2014) for traditional reliability analysis, mokken (Van der Ark 2007) for one-
level Mokken scale analysis, and code available from the first author for two-level
Mokken scale analysis.

4.1 Reliability Analysis

In traditional reliability analysis the nested structure is ignored. The descriptive
statistics of the item scores were all similar: mean item scores ranged between
2.22 and 2.75, the item standard deviations ranged between 0.97 and 1.03, and the
item rest correlations ranged between 0.61 and 0.75 (Table 3). Cronbach’s alpha
was 0.93. These results suggest a very reliable test score with no indication that
items should be revised. The test score had mean M D 26:72, standard deviation
SD D 8:41.

4.2 One-Level Mokken Scale Analysis

In one-level Mokken scale analysis, the nested structure is also ignored. Table 4
shows the item-pair and item scalability coefficients plus standard errors (Kuijpers
et al. 2013). Because all item-pair scalability coefficients were greater than 0,
and all item scalability coefficients are greater than default lower bound c D
0:3, the 11 items form a Mokken scale. The total scalability coefficient equalled
H D 0:58.0:02/, which qualifies as a strong scale. In addition, we investigated
monotonicity using the method manifest monotonicity (Junker & Sijtsma 2000),
local independence using Ellis’ theoretical upper and lower bounds (Ellis 2014), and
non-intersection using the method pmatrix (Mokken 1971). We found no evidence
of any substantial violation of the MHM and the double monotonicity model.

4.3 Two-Level Mokken Scale Analysis

From the single-level Mokken scale analysis we concluded that the assumptions
of the double monotonicity model are reasonable. The within-rater scalability
coefficients are the same as the scalability coefficients in single-level Mokken
scale analysis (Table 4). The between-rater scalability coefficients (Table 5; upper
diagonal and penultimate row) are greater than Snijder’s heuristic lower bound 0.1
suggesting a satisfactory consistency between the raters. The total-scale between-
rater scalability coefficient equalled HB D 0:14. The ratio of the between and
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Table 4 Scalability coefficients and standard errors for the appreciation of support
questionnaire

Item

Item 1 2 3 4 5 6 7 8 9 10 11

1 0.60 0.55 0.60 0.50 0.58 0.64 0.47 0.58 0.60 0.57

2 0.04 0.49 0.53 0.62 0.52 0.55 0.60 0.58 0.57 0.50

3 0.04 0.04 0.53 0.51 0.54 0.56 0.53 0.58 0.52 0.52

4 0.04 0.04 0.04 0.57 0.60 0.57 0.52 0.60 0.60 0.54

5 0.04 0.03 0.04 0.03 0.64 0.60 0.67 0.62 0.59 0.53

6 0.04 0.04 0.04 0.03 0.03 0.61 0.58 0.70 0.68 0.57

7 0.03 0.04 0.04 0.04 0.03 0.03 0.54 0.67 0.63 0.67

8 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.57 0.56 0.50

9 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.68 0.60

10 0.04 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.67

11 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.03

Hi 0.57 0.56 0.53 0.57 0.58 0.60 0.60 0.55 0.62 0.61 0.57

SE 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03

Note: item-pair scalability coefficients Hij are in the upper-triangular matrix, the
standard errors in the lower-triangular matrix. Item scalability coefficients Hi and
standard errors are in the last two rows

Table 5 Between-subject H coefficients for the appreciation of support questionnaire

Item

Item 1 2 3 4 5 6 7 8 9 10 11

1 0.16 0.13 0.17 0.15 0.17 0.15 0.18 0.16 0.16 0.13

2 0.27 0.11 0.14 0.15 0.13 0.13 0.15 0.15 0.14 0.12

3 0.23 0.23 0.13 0.12 0.11 0.10 0.12 0.11 0.11 0.09

4 0.27 0.25 0.24 0.15 0.14 0.14 0.16 0.15 0.15 0.13

5 0.30 0.25 0.24 0.25 0.14 0.12 0.16 0.15 0.12 0.11

6 0.29 0.24 0.20 0.23 0.22 0.14 0.16 0.14 0.16 0.12

7 0.23 0.24 0.18 0.24 0.21 0.23 0.15 0.14 0.14 0.12

8 0.39 0.25 0.22 0.31 0.24 0.28 0.28 0.17 0.15 0.13

9 0.27 0.26 0.19 0.25 0.24 0.20 0.21 0.30 0.15 0.13

10 0.27 0.24 0.21 0.25 0.21 0.23 0.22 0.27 0.22 0.13

11 0.23 0.24 0.18 0.24 0.21 0.21 0.18 0.26 0.21 0.19

HB
i 0.16 0.14 0.11 0.14 0.14 0.14 0.13 0.15 0.15 0.14 0.12

HB
i =HW

i 0.27 0.25 0.21 0.25 0.23 0.23 0.22 0.28 0.23 0.23 0.21

Note: item-pair scalability coefficients HB
ij are in the upper-triangular matrix, the ratio of

HB
ij and HW

ij in the lower-triangular matrix. Item scalability coefficients HW
i and HB

i =HW
i

are in the last two rows
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within scalability coefficients (lower diagonal and last row) ranged from 0.18–
0.27. All values are less than 0.3, (Snijder’s heuristic value of a reasonable scale).
This suggests that the rater deviation is relatively large and more students may be
required for the scaling of these teachers. The results from the two-level scaling
analysis shows a less bright picture than the results from the one-level analyses.
Finally, the mean and standard deviation of the subject scores Xs were M D 26:8

and SD D 4:35, respectively.

5 Discussion

This chapter presented a first step in reviving Mokken scale analysis for two-
level data, a method that has been largely ignored since its introduction 15 years
ago. Our main contribution is the generalization of Snijder’s (Snijders 2001)
scalability coefficients to polytomous items. We have some reservations because the
scalability coefficients for two-level polytomous data were derived by analogy, and
without formal proof that the properties of the scalability coefficients for two-level
polytomous item scores behave as one would expect under a two-level polytomous
NIRT model.

Furthermore, using guidelines from Snijders (2001) and Crisan (2015) in the
analysis of a real-data example, we showed that ignoring the two-level structure may
result in at least two problems: First, single-level analyses provide information about
the raters’ scores rather than the subjects scores, whereas the interest is in scaling
subjects, not raters. This problem has not always been acknowledged. Second,
interpreting the quality of the scale using single-level statistics may give an that
is too optimistic. Therefore, it is important that Mokken scale analysis for two-level
data is developed further. A possible next step is the derivation of standard errors for
the scalability coefficients proposed in this paper. If that has been accomplished the
bias and variance of both the point estimates and standard errors can be investigated.
Second, it would be interesting to investigate whether other methods in Mokken
scale analysis can be generalized to multi-level data. As a start, Snijders proposed
using the intra-subject correlation coefficient to assess reliability in two-level item
scores, which has been generalized to polytomous items by Crisan (2015). Finally,
the current methods should be further extended so that a rater is allowed to assess
multiple subjects, and the methods should be implemented in software; both would
increase the range of possible applications.
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