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Abstract Large-scale assessments are often conducted using complex sampling
designs that include the stratification of a target population and multi-stage
cluster sampling. To address the nested structure of item response data
under complex sample designs, a number of previous studies proposed the
multilevel/multidimensional item response models. However, incorporating sample
weights into the item response models has been relatively less explored. The
purpose of this study is to assess the performance of four approaches to analyzing
item response data that are collected under complex sample designs: (1) single-level
modeling without weights (ignoring complex sample designs), (2) the design-based
(aggregate) method, (3) the model-based (disaggregate) method, and (4) the hybrid
method that addresses both the multilevel structure and the sampling weights.
A Monte Carlo simulation study is carried out to see whether the hybrid method
can yield the least biased item/person parameter and level-2 variance estimates.
Item response data are generated using the complex sample design that is adopted
by PISA 2000, and bias in estimates and adequacy of standard errors are evaluated.
The results highlight the importance of using sample weights in item analysis when
a complex sample design is used.

Keywords Complex sample design • Multilevel item response theory • Sample
weights • Pseudo maximum likelihood

1 Introduction

Large-scale educational assessments are often conducted through complex sampling
designs for the purpose of reducing costs or improving precision for subgroup
analyses relative to simple random sampling (SRS) (Heeringa, West & Berglund
2010). Such design typically includes a stratification of target population and
multi-stage cluster sampling within each stratum that result in unequal selection
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probabilities for different clusters and/or subjects within clusters. Data collected
under complex sampling designs have a multilevel structure and sampling weights
for units at each level. While traditional item response theory (IRT) models usually
assume that examinees are independent and identically distributed across clusters
(e.g. schools), these assumptions seldom hold for large-scale assessments that utilize
complex sampling designs.

To address the nested structure of item response data under the complex sample
designs, a number of previous studies proposed the model-based multilevel item
response models (e.g., Adams, Wilson & Wu 1997; Fox & Glas 2001; Jiao,
Kamata, Wang & Jin 2012; Kamata 2001), where clustering effects are treated as
random effects. Multilevel IRT models have gained popularity in recent years as it
addresses the person clustering that is common in education settings. But the sample
weights are often not considered in estimating multilevel IRT models.

The second method to analyze complex sample data is design based, which
incorporates the complex sample weights into likelihood, resulting in pseudolike-
lihood for point estimation (see e.g., Binder 1983; Skinner 1989). Taylor Series
linearization, jackknifing or balanced repeated replication (BRR) methods are
utilized for standard error estimation (see e.g., Rust 1985). However, the design-
based method has been less explored in the context of item response models. One
example of applying design-based method to IRT models is the work by Mislevy,
Beaton, Kaplan, and Sheehan (1992), where a two-stage plausible value method
is used to deal with sparse matrix of item responses. In stage 1, a unidimensional
IRT calibration is conducted to obtain item parameters through marginal likelihood
estimation. In stage 2, multiple imputations (Rubin 1987) of latent scores (also
known as plausible values) are conducted via a latent regression model that treats
item parameters from stage 1 as fixed. Sample weights are incorporated to the
stage 2 model in a design-based manner to estimate parameters and standard errors.
The plausible value method provides a practical framework for handling complex
samples, and allows convenience for secondary data users. Another example of
using design-based method in IRT modeling was explored by Cai (2013), which
demonstrates that the sampling weights could be incorporated into one-level
multiple-group IRT models to obtain more accurate population-level inferences.

The third approach to dealing with complex sample data combines the model-
based and design-based methods by incorporating complex sampling weights in
the likelihood of multilevel models. For standard errors, sandwich estimators can
be used. The method has previously been evaluated in linear multilevel model
(Pfeffermann, Skinner, Holmes, Goldstein & Rasbash 1998) and multilevel logistic
regression (Rabe-Hesketh & Skrondal 2006), and has shown superior performance
in reducing bias in point estimates. Rabe-Hesketh and Skrondal (2006) characterize
this method as “a hybrid aggregated-disaggregated approach”. We use “hybrid
method” to refer to this combined approach throughout the manuscript. The hybrid
method has also been examined using the data of the Trends in International
Mathematics and Science Study (TIMSS) in the context of linear multilevel
modeling (Laukaityte 2013). As far as the authors are aware of, the hybrid method
has never been explored in IRT models.
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The purpose of this paper is to assess the performance of four approaches to
analyzing item response data that are collected under complex sample designs:
(1) single-level IRT without weights, (2) the model-based method (multilevel IRT
without weights), (3) the design-based method (single-level IRT with weights), and
(4) the hybrid method (multilevel IRT with weights). We are particularly interested
in seeing whether the hybrid method can yield the least biased item parameters
and level-2 variance estimates under different conditions. To do so, we first briefly
introduce complex sampling designs. A multilevel unidimensional model is then
described. The marginal pseudolikelihood for the model is presented. The sandwich
estimator for standard error estimation is also introduced. Finally a Monte Carlo
simulation study is carried out to examine the performance of the pseudo-maximum-
likelihood method in comparison with traditional design-based and model-based
methods. Bias in estimates and adequacy of standard errors are evaluated across
these methods.

Large-scale assessment data are routinely collected with complex sample
designs. But the sample weights are often ignored in item analysis, which might
lead to biased item parameter estimates and misleading inference on the target
finite population. The results of the study highlight the importance of using sample
weights in item analysis when a complex sample design is used.

2 Complex Sample Weights

In large-scale tests such as Programme for International Student Assessment
(PISA), it is usually not practical to conduct simple random sampling (SRS) on the
student level directly. Instead a complex sampling design is implemented to obtain
student samples. This paper will keep using the terms “schools” and “students” for
illustrative purpose.

Let’s consider a complex case of cluster sampling, where stratification is carried
out at both levels. The following indices are used:

• h D 1; : : : ; H is the index for stratum at the school level.
• k D 1; : : : ; Kh is the index for school within school-level stratum h.
• g D 1; : : : ; Gkh is the index for within-school stratum of school k that is in school-

level stratum h.
• j D 1; : : : ; Jgkh is the index for student who is from within-school stratum g of

school k, where school k is from school-level stratum h.

All schools are first separated to H school-level strata according to some group-
ing variables (e.g., public or private status and proportion of minority students). Let
Ah and ah be the total number of schools in stratum h and the number of schools to
be sampled in stratum h, respectively. Suppose that schools in stratum 1 are over-
sampled compared to schools in stratum 2. Then a1 and a2 are decided in such a
way that a1=A1 > a2=A2.
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Within stratum h, a two-stage sampling is carried out, where schools are sampled
in the first stage, and students are then selected from each sampled school on
the second stage. A common way to conduct the first-stage sampling is through
Probability Proportional to Size (PPS) sampling (see e.g., Kish 1965). With PPS,
the probability of a school k being sampled is proportional to the total number of
students in this school, Nkh. Let Nh be the population of students in stratum h. Then
the selection probability for school k can be written as:

Pkjh D ah � Nkh=Nh: (1)

The level-2 weights Wkjh is the inverse of Pkjh.
In the second stage, the stratified random sampling is implemented. Students

are further stratified within each school to G groups based on some student-level
grouping variables (e.g., ethnicity). Students are then randomly selected from each
group. Within school k in stratum h, let Ngkh and ngkh be the total number of students
in group g, and the number of students to be sampled in group g respectively.
Suppose students in group 1 are over-sampled compared to students in group 2.
Then n1kh and n2kh are decided in such a way so that n1kh=N1kh > n2kh=N2kh.

The conditional selection probability of student j in group g given that his/her
school has already been selected is written as:

Pjjg;k;h D ngkh=Ngkh: (2)

The level-1 conditional weight Wjjgkh is the inverse of Pjjgkh.
The overall unconditional probability of a student being selected is:

Pjgkh D Pkjh � Pjjg;k;h D ah � Nkh=Nh � ngkh=Ngkh: (3)

As a result, all the students in the same group g, school k, stratum h would have
the same overall unconditional selection probability, while schools and students
across different strata would have different weights.

3 Multilevel IRT Model and Pseudolikelihood

For illustration purpose, this section describes a two-level 2-parameter logistic
IRT model. The marginal pseudolikelihood of the model as well as the sandwich
estimator for standard errors are also presented. The IRT model and its estimation
could easily be extended to polytomous or mixed item types, and situations with
more than two levels.
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3.1 Multilevel IRT Model

Let yijk be the observed response to item i, (i D 1; : : : ; I) for student j in school k.
Then �jk, the latent score for student j in school k, can be expressed as the sum of
school level latent mean �:k and the individual deviation score ıjk. In a dichotomous
two-level unidimensional IRT model, let ˛i be the slope on the latent variables at
both level 1 and level 2 for cross-level measurement invariance assumption. ˇi is the
intercept for item i. The conditional likelihood of student j from school k answering
item i correctly is:

fijk D f .yijk D 1 j �:k; ıjk/ D 1

1 C exp.�ˇi � ˛i�:k � ˛iıjk/
: (4)

3.2 Conventional Likelihood

If we do not consider the complex sample weights, the conditional density for an
observed response yijk is:

f�.yijk j �:k; ıjk/ D f
yijk

ijk .1 � fijk/
1�yijk ; (5)

where � is a vector of parameters to be estimated. The contribution of a student’s
responses across all items to the marginal likelihood, conditional on level-2 random
effect of school k is:

Ljjk D
Z IY

iD1

f�.yijk j �:k; ıjk/g1.ıjk/dıjk; (6)

where g1.ıjk/ is the distribution of level-1 latent variable ıjk. The contribution of a
level-2 school k to the marginal likelihood is:

Lk D
Z JkY

jD1

Ljjkg2.�:k/d�:k; (7)

where g2.�:k/ is the distribution of level-2 latent variable �:k. The marginal likelihood
of the model to be maximized to obtain parameter estimates is the product of each
school’s contribution to the marginal likelihood:

L D
KY

kD1

Lk: (8)
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3.3 Pseudolikelihood

Let Wkjh be the conditional weight for school k in stratum h and Wjjg;k;h be the
conditional level-1 weight for student j in within-school stratum g, given that his/her
school k has already been selected in the first stage. The contribution of student j to
the marginal pseudolikelihood conditional on level-2 random effect can be obtained
by rewriting Eq. (6) with weights as:

L�
jjgkh D

Z "
IY

iD1

f�.yijk j �:k; ıjk/
Wjjg;k;h

#
g1.ıjk/dıjk: (9)

And the contribution of school k in stratum h to the marginal pseudolikelihood can
be written as:

L�
kjh D

Z 2
4 GkhY

gD1

JkY
jD1

�
L�

jjgkh

�Wkjh

3
5 g2.�:k/d�:k: (10)

Finally, the likelihood of the model is:

L� D
HY

hD1

KhY
kD1

L�
kjh D

HY
hD1

KhY
kD1

Z 2
4 GkhY

gD1

JkY
jD1

�
L�

jjgkh

�Wkjh

3
5 g2.�:k/d�:k: (11)

Thus, weights are incorporated into the likelihood of the multilevel model to
replicate units at both levels. As Rabe-Hesketh and Skrondal (2006) pointed out,
one set of unconditional weights is not sufficient for multilevel pseudo-maximum-
likelihood estimation. Level-specific weights must be used at each level.

A number of previous researchers have found that scaling of level-1 weights
could affect variance estimates (e.g., Asparouhov 2006; Pfeffermann 1993; Rabe-
Hesketh & Skrondal 2006; Stapleton 2002). Several scaling methods have been
explored to reduce the bias in the variance components for small cluster sizes.
A common scaling method is to scale the level-1 weights to sum up to actual
cluster sample size, which is the scaling method used in the simulation study of
this paper. Due to space limitation, a discussion of scaling issues is not presented
here. A comprehensive investigation of the weight-scaling methods could be found
in the work of Asparouhov (2006).

3.4 Sandwich Estimators for Standard Errors

This section summarizes the sandwich estimator for standard errors of multilevel
pseudo-maximum likelihood estimates. Detailed derivations about standard error
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estimations could be found in the works of Asparouhov and Muthén (2006) and
Rabe-Hesketh and Skrondal (2006).

When units are independent and identical, the standard errors can be computed
using a sandwich estimator:

cov. O�/ D A�1BA�1; (12)

A is the observed Fisher information at maximum-likelihood estimates O�. Let O�0
be

the transpose of O�. Matrix A can be written as:

A � �E

�
@2

@ O�@ O�0 logL

� ˇ̌
ˇ̌
�D O�

; (13)

while B, the outer product of the gradient vector, can be written as:

B � E

�
@

@ O� logL

� �
@

@ O�0 logL

� ˇ̌
ˇ̌
�D O�

: (14)

A and B are the same when the model is the true model. In complex samples, A
becomes the observed Fisher information at pseudo-maximum-likelihood estimates:

A� � �E

�
@2

@ O�@ O�0 logL�
� ˇ̌

ˇ̌
�D O�

: (15)

B can be obtained by summing the contributions of each independent school
(Rabe-Hesketh & Skrondal 2006). Specifically, the first derivatives of the log-
pseudolikelihood is:

@

@ O� logL� D
HX

hD1

KhX
kD1

@

@ O� logL�
kjh: (16)

and B is calculated by:

B� D
HX

hD1

Kh

Kh � 1

KhX
kD1

�
@

@ O� logL�
kjh

� �
@

@ O�0 logL�
kjh

�
: (17)

Finally, the variances of pseudo-maximum-likelihood estimates could be estimated
with:

cov. O�/ D .A�/�1B�.A�/�1: (18)
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4 Simulation Design

Motivated by the versatility of the hybrid method in dealing with complex sampling
weights, and by the lack of application of such technique to IRT models, this
paper attempts to evaluate the performance of hybrid method in IRT models in
comparison to other methods. Monte Carlo simulations are carried out to examine
the performance of the above mentioned three methods in dealing with complex
sample item response data.

The sample design in this paper is partly inspired by PISA 2000 sample design
of the United States as described by Rabe-Hesketh and Skrondal (2006). The design
includes stratification on both school and student levels, which made both the level-
1 and level-2 weights informative. The simulation study chooses this design as
an inspiration due to the added complexity of stratification on student level. By
adopting this design, the method would be generalizable to more complex situations.
Assessments with a less complex design would be a simplification of the scenario
presented here.

4.1 Generating Latent Variables and Student Samples

Latent scores of the population are generated with respect to both levels (school
level and student level). One level 2, the latent variable is set to follow a normal
distribution with mean 0 and variance 3/7. One level 1, the latent variable is set to
follow a normal distribution of mean 0 and variance 1. The setup would yield an
intraclass correlation (ICC) of 0.3 for the latent variable, which is meant to mimic
a fairly large clustering effect of the schools that is typically found in PISA. For
example, the results from PISA2003 showed that, the ICC for math outcome was
0.345 across all countries. The ICC for USA was 0.264 (Anderson, Milford & Ross
2009). We have not found any reference on ICCs for PISA2000, but we assume them
to be comparable to PISA2003. A population of 400,000 students are generated
using above mentioned latent variables. The total number of schools is set to 1000
and the average school size (total number of students in a school) is set to 400.
Schools are categorized into public and private schools in such a way that private
schools have higher average latent scores than public schools. At level 1, students
are categorized into two groups based on ethnicities. The majority group (about
70 % of all the students) are set to have a larger mean latent score than the minority
group (about 30 % of the students). The proportions of minority students in each
school are then identified. School type and minority status will serve as the basis for
stratification in the sampling design.

The sampling method follows the design described in Sect. 2. In level-2 sam-
pling, public schools with at least 15 % minority students are set to be twice
as likely to be sampled as other schools. In level-1 sampling, minority students
within public schools with at least 15 % minority students are twice as likely to be
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sampled as other students. As a result, higher latent scores are associated with lower
selection probabilities at both levels. Since the selection probabilities are related to
the outcome measures (latent scores) on both levels, the resulting sample weights
are informative on both levels. Ignoring such sampling design might lead to bias in
estimations of item and person parameters in the finite population.

With this method, 75 schools are first selected in the first stage. Then 30 students
are selected from each school in the second stage. The final sample has 2250
students.

4.2 Generating Item Response Data

Item response data are generated using a graded response model (Samejima 1969).
The generating model is chosen for illustrative purpose only, and not meant to
mimic actual PISA items. The sampled latent scores are used to generate 5-category
polytomous responses for 20 items using an unidimensional graded response model,
with the latent variable split into level 1 and 2. Cross-level measurement invariance
is assumed. Let f �

ijkx be the probability of examinee j from school k scoring x or
above on item i. The model is defined as:

f �
ijkx D f .yijk � x j �:k; ıjk/ D 1

1 C exp.�ˇix � ˛i�:k � ˛iıjk/
: (19)

The examinee’s probability of scoring x can be expressed as:

fijkx D f �
ijkx � f �

ijk.xC1/: (20)

4.3 Data Analysis

The generated response data are then analyzed with four methods, namely (1)
one-level modeling without weights, (2) one-level modeling with weights (design-
based method), (3) two-level modeling without weights (model-based method), and
(4) two-level modelling with weights at both levels (hybrid method).

In total, the simulation study has four conditions (four analytical methods). Both
Mplus Version 7.2 and flexMIRT® Version 3 are used for method (1), (2) and (3).
Results produced by the two packages are identical across the three methods. Only
Mplus is used to conduct the analysis with method (4), as no other standard IRT
packages implement the hybrid method at this moment as far as the authors are
aware of. For the two multilevel models, the variance of the level-1 latent variable is
set to 1, leaving the level-2 factor variance to be freely estimated. 100 replications
are carried out for each condition.
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5 Simulation Results

5.1 Results for Item Parameter Estimates and Standard Errors

The average item parameter estimates (slopes and intercepts) over 100 replications
are plotted against the generating true values in order to gauge the biases in the point
estimates. As shown in Fig. 1, the biases in point estimates are all fairly small across
the four models. The point estimates in the two weighted models (right two panels)
are almost unbiased. Both slope and intercept estimates are slightly upward biased
in the two unweighted methods (left two panels). The weighted methods are able to
yield unbiased item parameters, while the unweighted methods overestimate these
point estimates.

The average estimated standard errors for slopes are plotted against the Monte
Carlo standard deviations of point estimates in order to evaluate the biases in
standard errors in Fig. 2. Using the Monte Carlo standard deviations as the standard,
the root-mean-square errors (RMSE) of the estimated standard errors are also
calculated. As we can see, the two two-level models (bottom two panels in Fig. 2)
yield almost unbiased slope standard errors as the points are closely distributed
around the diagonal line. The two one-level models (top two panels in Fig. 2 slightly
underestimated the slope standard errors as the points are mostly under the diagonal
line. The RMSE also confirm the observation.

Fig. 1 True item parameters vs. estimates. The unweighted models (left two panels) have slightly
overestimated the item parameters, while the weighted models (right two panels) appears to return
unbiased estimates
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Fig. 2 Monte Carlo standard deviations for slopes vs. means of slope standard errors. The RMSEs
of slope standard errors are 0.0076, 0.0065, 0.0042 and 0.0037 respectively for the one-level w/o
weights, one-level w/ weights, two-level w/o weights and two-level w/ weights models

The average estimated standard errors for intercepts are plotted against the
Monte Carlo standard deviations of point estimates in Fig. 3. The two two-level
models (bottom two panels in Fig. 3) yield slightly biased intercept standard errors.
The model-based method tends to inflate intercept standard errors, while the
hybrid method slightly underestimate the intercept standard errors. The two one-
level models (top two panels in Fig. 3) have severely underestimated the intercept
standard errors. The RMSEs of the standard errors in the one-level models are
expectedly much higher than two-level models.

The 95 % confidence intervals are constructed using the intercept estimates and
their standard errors. With both the point estimate and the standard errors taken into
account, the coverage rates of the true intercepts in the 95 % confidence interval are
very poor in the two unweighted methods, both under 20 % across items, while the
same measures for the one-level and two-level weighted methods are 86 and 90 %
respectively.
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Fig. 3 Monte Carlo standard deviations for intercepts vs. means of intercept standard errors. The
RMSEs of intercept standard errors are 0.0330, 0.0313, 0.0078 and 0.0129 respectively for the one-
level w/o weights, one-level w/ weights, two-level w/o weights and two-level w/ weights models

5.2 Results for Level-2 Variance

Coverage of true second-level (between-school) variance in the 95 % confidence
intervals of estimates is plotted in Fig. 4 for the weighted and unweighted multilevel
models. It appears that the hybrid method has some advantages over traditional two-
level models, as the hybrid method achieves a less biased level-2 variances and
better coverage of true level-2 variance. In fact, the average percentage bias for the
level-2 variance is 14 % in the unweighted model, while the same measure for the
hybrid model is only �2 %. The coverage rates of true level-2 variance in the 95 %
confidence intervals are 82 and 91 % respectively for the unweighted and weighted
two-level models.

6 Discussion

We compared the performance of three methods to analyze item response data
collected under a complex sample design, with a special interest in the performance
of the pseudo-maximum-likelihood estimation method for multilevel IRT models
(the hybrid method). The results show that, methods accounting for complex sample
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Fig. 4 Coverage of true level-2 variance in 95 % confidence intervals of estimates. The coverage
rates of true level-2 variance in the 95 % confidence intervals are 82 and 91 % respectively for the
unweighted and weighted two-level models

weights produce less biased point estimates for item parameters in either single-
level or multilevel models, while multilevel modeling yields more accurate standard
errors for item parameters than single-level models. It is worth nothing that, in
the unweighted multilevel model, the coverages of the true parameters are very
poor. Better standard error estimates do not seem to make up for deficiency in
point estimates. The hybrid method, which accounts for both the complex sampling
weights and the multilevel data structure, indeed combines the advantages of both
the design-based and model-based methods. Under the unidimensional model, the
performance of the hybrid method is superior to the others in terms of estimating
item parameters.

The hybrid method does show great potential in analyzing testing data collected
with complex sampling designs. One practical obstacle for implementing the hybrid
method is the fact that it requires conditional weights for lower-level units which
survey agencies generally do not release. If conditional weights are not available,
and level-2 variance is not of primary interest, the authors would recommend using
the total unconditional weights with single-level modeling to obtain more accurate
item estimates.

There are a few limitations to the current research. First, the simulation study
only uses one type of sample design. More sampling schemes should be examined
to fully gauge the performance of the hybrid method, including informativeness of
weights, selection mechanism, cluster size and so on. Second, the generating ICC of
0.3 in the simulation study is meant to mimic a large clustering effect. ICCs of other
magnitudes should be explored to evaluate the performance of different methods.
Third, an empirical illustration is missing in current research due to unavailability
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of level-1 conditional weights in PISA data. Last but not least, the role of weight
scaling methods has not been examined.

Our future research includes comparisons of standard errors estimated with
alternative methods, evaluating the weight-scaling methods under different sample
designs, and expanding the hybrid method to multi-dimensional multilevel IRT
models, such as simple cluster models or testlet models.
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