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and Pascal Schweitzer2

1 SRI International, 333 Ravenswood Ave, Menlo Park 94025, USA
martin.schaef@sri.com

2 RWTH Aachen University, Aachen, Germany
http://www.csl.sri.com/people/li/

http://www.csl.sri.com/people/saidi/

https://huascarsanchez.com/

http://www.csl.sri.com/people/schaef/

http://www.lii.rwth-aachen.de/~schweitzer/

Abstract. With the increasing availability of source code on the Inter-
net, many new approaches to retrieve, repair, and reuse code have
emerged that rely on the ability to efficiently compute the similarity of
two pieces of code. The meaning of similarity, however, heavily depends
on the application domain. For predicting API calls, for example, pro-
grams can be considered similar if they call a specific set of functions in a
similar way, while for automated bug fixing, it is important that similar
programs share a similar data-flow.

In this paper, we propose an algorithm to compute program similar-
ity based on the Weisfeiler-Leman graph kernel. Our algorithm is able to
operate on different graph-based representations of programs and thus
can be applied in different domains. We show the usefulness of our app-
roach in two experiments using data-flow similarity and API-call simi-
larity.

1 Introduction

Over the past few years, we have seen a rapid increase in the amount of source
code that is openly available on the Internet. Source code hosting platforms such
as GitHub, BitBucket, or SourceForge and social media resources like StackOver-
flow have changed the way we program. This large amount of machine readable
source code also has given rise to several interesting new research directions, such
as code prediction [23], discovery of architectural patterns [20], using donor code
for program repair [12,29], and more efficient ways to search for code [17,30].

Central to these new approaches is the ability to efficiently find similar code
snippets in the wild. Unlike in traditional code clone detection, the notion of
similarity depends heavily on the application. For automatic program repair, for
example, it is important that code shares a similar data-flow, whereas for code
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prediction, it is often sufficient if the code interacts with a certain API in a
similar way. Hence, finding a generic approach to comparing code that can work
with different representations and abstractions has the potential to be beneficial
in a variety of fields.

To address this problem, we propose a new algorithm to compute a program
similarity score based on a technique from graph isomorphism testing. Here, we
use the term program as a shorthand for any piece of code, like a full program,
isolated classes or methods, or just snippets.

Our algorithm consists of two parts. First, it turns a program into a labeled
graph. Second, it computes a Weisfeiler-Leman kernel for this graph and com-
pares it against the precomputed kernels of the graphs of other programs to
identify the most similar ones.

The algorithm itself is agnostic to the graph representation of the program or
the programming language and can be used with different graphs. To illustrate
the usefulness of this approach, we introduce two graph representations of Java
programs, a simplified inter-procedural data-flow graph (IDFG), and an API-call
graph (ACG), and evaluate how these graphs can be used in combination with
our algorithm to identify similar programs. The IDFG is a simplified version
of the actual data-flow graph of a Java program and suitable to find programs
that are algorithmically similar, while the ACG is a stripped-down version of
an inter-procedural control-flow graph that only contains calls to a given API,
which is suitable to find examples of API usage.

To evaluate the ability of our approach to identify similar programs, we
conduct two experiments. For the first experiment, we choose a subset of the
Google CodeJam1 corpus as a benchmark. The corpus is a set of 4 algorithmic
problems, each with hundreds of solutions given as small Java programs (in total
1,280 programs). Our goal is to show that, when picking any of these Java
programs, our approach for finding similarities using the IDFG identifies similar
programs that are in fact solutions to the same problem.

The programs in CodeJam are very algorithmic and make only limited use
of API calls (e.g., for printing). Hence, this corpus is unfortunately not suitable
to evaluate our approach in combination with the second graph representation,
the ACGs. Thus, we perform a second experiment where we use the Apache
commons-lang project as a benchmark. We compare the similarity between all
pairs of methods in this application and evaluate manually if the reported simi-
larities indicate similar API usage patterns.

Roadmap. In the following Section, we introduce the Weisfeiler-Leman algorithm
to compute graph kernels for labeled graphs. In Sect. 3, we explain how we use
these graph kernels to compute a similarity score between graphs. In Sect. 4,
we introduce the two graph representations of Java programs (IDFG and ACG)
that we use in our experiments. We evaluate our approach in Sect. 5, discuss the
related work in Sect. 6, and propose future directions in Sect. 7.

1 https://code.google.com/codejam.

https://code.google.com/codejam
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2 Preliminaries

Our approach to measure the similarity between programs is based on a standard
routing from graph isomorphism testing which we introduce in this section. More
specifically, we use the 1-dimensional Weisfeiler-Leman algorithm, often also
referred to as color refinement or näıve vertex classification. The procedure is
for example employed in the currently fastest practical isomorphism solvers (such
as Nauty and Traces [18], Bliss [11] and saucy [4]).

The algorithm repeatedly recolors the vertices of its inputs graphs. Starting
with an initial coloring of the vertices which distinguishes them by their degree
the algorithm proceeds in rounds. In each round the new color of a vertex encodes
the previous color as well as the multiset of the colors of the neighbors. The k-
dimensional variant, which we will not require in this work, colors k-tuples of
vertices and can solve isomorphism on quite general graph classes (see [8]).

Next, we describe the one-dimensional variant more formally. If G =
(V,E, χ0) is a vertex colored graph, where χ0 is a vertex coloring, we recur-
sively define χi+1 to be the coloring given by

χi+1(v) :=
(
χi(v), {{χi+1(v′) | {v, v′} ∈ E}})

.

Here we use “{{” and “}}” to indicate multisets.
The process leads to an ever finer classification of the vertices. This process

stabilizes at some point. In the context of graph isomorphism the histogram of
the colors is used to distinguish graphs according to isomorphism.

However, for our purpose, the final colors are excessively descriptive, in
the sense that they actually encode too much information. Indeed, by a result
from [1], for almost all graph, each final color already encodes the isomorphism
type of the graph.

Circumventing this problem we adopt the technique from [27] to only exe-
cute the algorithm for a few rounds and exploit the histograms of the colors
that appear during the execution of the algorithm. In [27] these histograms are
used to design a graph kernel which can then be applied in a machine learning
fashion to perform for example graph classification. Said kernel captures similar
information to other kernels that count subgraphs (see for example [9] or [28]).
However, the Weisfeiler-Leman Kernel can be far more efficiently computed.

It is well known that the exact information captured by i iterations of näıve
vertex classification can be precisely expressed in a certain type of logic (see [19]).
However, it is difficult to grasp what the result means in terms of graph theoretic
properties of the input graphs. While in a regular graph no information is gener-
ated at all, since all vertices have the same color in all iterations, in non-regular
graphs typically the isomorphism type of a small neighborhood of a vertex is
determined.

Concerning running time it is possible to perform h-iterations of the algo-
rithm in O(hm) time, where m is the number of edges of the input graph. To
achieve such a running time, the labels have to be compressed to prevent label
names from becoming excessively long. There are two options to do this, one
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Fig. 1. The figure shows a left graph GL and a right graph GR to which the 1-
dimensional Weisfeiler-Leman is being applied for 2 iterations. Here labels are hashed
to smaller values. The renaming is as follows 4 := (1, {{3}}), 5 := (2, {{2, 3}}), 6 :=
(2, {{3, 3}}), 7 := (3, {{1, 2, 2}}), 8 := (3, {{2, 2, 2}}), 9 := (4, {{7}}) and so on. The figure
also shows the histograms of labels that appear in the two graphs highlighting their
similarity.

employs techniques such as bucket sort, while the other one simply uses a hash
function to compress the labels (see [27]). We adopt the latter approach and
used the built-in hash function for strings in our implementation.

In our intended application, we benefit from the fact that the algorithm can
take vertex-labeled graphs as input. Thus it is easy to introduce labeled nodes
into the algorithm. In Sect. 4 we show how Java types (for IDFG) or method
signatures (for the ACG) can be used as initial coloring χ0 in the definition of
the algorithm.

3 Similarities

Our goal is to design a similarity score S(P, P ′) between programs P and P ′

with the following properties.

– All programs are 100% similar to themselves, i.e. S(P, P ) = 1.
– The score is symmetric, i.e. S(P, P ′) = S(P ′, P ).
– The score is normalized to a percentage number, i.e. 0 ≤ S(P, P ′) ≤ 1.

A percentage score also has the advantage of being more easily interpreted by
the user. We remark that an asymmetric score might be desired in some setting.
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For example, the user may be interested in finding a similar program that is also
of similar size.

Recall that the Weisfeiler-Leman kernel with h iterations for graphs G and
G′ is defined as follows [16]:

K
(h)
WL(G,G′) = w0K(G0, G

′
0) + w1K(G1, G

′
1) + . . . + whK(Gh, G′

h) (1)

where the Gis and G′
is are the graphs produced by successive recoloring of the

original labeled graphs G0 and G′
0 (as shown in Fig. 1), and K(Gi, G

′
i) is a graph

kernel for graphs Gi and G′
i. K

(h)
WL(G,G′) is then constructed as a positive linear

combination of the K(Gi, G
′
i)s using some positive weights wis.

In each iteration of the Weisfeiler-Lehman algorithm, a histogram is produced
which encodes certain structural information of the graph, as shown in Fig. 1.
Treating these histograms as vectors, a natural candidate for K is the scalar
product of two vectors. However, this can be problematic when the graph sizes
are very different. Consider the scenario of two graphs G and G′ where |V | �
|V ′|, and all the nodes in G′ have an identical label l which exists somewhere in
G. We presume G and G′ correspond to either the API call graph or the inter-
procedural data-flow graph generated from programs P and P ′ respectively.
Observe that it is easy to have K(G,G) < K(G,G′). As a result, P ′ might be
reported as a more similar program to P than P itself. Hence, we apply standard
normalization using the lengths of the two vectors and use the angle between
the vectors as our similarity measure.

Let v(Gi) present the coloring vector (histogram) produced at the ith

iteration of the Weisfeiler-Leman algorithm. Then K(Gi, G
′
i) = v(Gi) ·

v(G′
i)/‖(v(Gi))‖ ‖(v(G′

i))‖. Since we are interested in a percentage score, and
0 ≤ K(Gi, G

′
i) ≤ 1 for each i, the weights wis can be chosen appropriately to

make 0 ≤ K
(h)
WL(G,G′) ≤ 1. In our experiments, we simply choose a uniform

weight.

4 Graph-Based Program Representations

The ability of our algorithm to detect program similarity strongly depends on
the graph representation of programs that we use when computing the graph
kernels. Choosing a graph representation for programs is a trade off between
precision and the ability to identify programs that serve a similar purpose but
are structurally different. Using the precise control-flow graph of a program, for
example, would be an efficient way to identify exact code clones but would reduce
the chance to identify programs that are semantically similar but syntactically
different.

In this paper, we search a balance between precision and flexibility by propos-
ing two graph representations. We call our first graph API Call Graph (ACG)
which is a stripped-down inter-procedural control-flow graph that only shows
calls to a specific set of APIs. Our second graph is a (simplified) inter-procedural
data-flow graph (IDFG) which tracks the flow of data between memory locations
from a given program entry point.
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Fig. 2. Running example for our graph representation of programs. The method
reverseFile is the entry point. It takes two file names as input. It reads the con-
tent from the first file to a String using the method readFile, reverses the String, and
writes out the reverted String using writeFile.

Both graphs provide a certain level of abstraction. In the following we dis-
cuss the advantages and disadvantages of our design choices along the running
example program in Fig. 2. This program has a (public) method reverseFile
that takes the names of two files as input, calls readFile to read the contents of
the first file into a string, reverses this string, and subsequently calls writeFile
to write the resulting string to a file.

We now construct the graph representations for this program using Soot [31].
Soot first translates the program into an intermediate format called Jimple which
provides us with a canonical form for expressions. For the graph construction,
we extend Soot’s flow analysis to collect the node and edges of our graph per
method, where we keep placeholder nodes for method calls. Then, in a final
step, we substitute the placeholder nodes for method calls by their corresponding
graphs. We will discuss details and practical issues of the graph construction in
more detail later on in the evaluation.

4.1 API Call Graph

The first graph that we construct is called API Call Graph which represents the
order in which procedures of some given APIs can be called from a given entry
point.
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Fig. 3. ACG for our example from Fig. 2. The ACG approximates the possible
sequences of calls to methods in java.io.* and java.nio.*. The labels are simpli-
fied for readability and usually also encode the types of parameters and return values.

The motivation for using an ACG for computing program similarity is our
hypothesis that, in Java, programmers often achieve their goals by using external
APIs. Programs that use the same API calls in the same order should have a
similar objective, regardless of the statements in between. A programmer using
our approach to find similar code might thus be interested in finding any code
that shares the usage pattern of a specific subset of APIs.

For the construction of the ACG, we pick an entry point (e.g., reverseFile
in our example) and the APIs that we are interested in (e.g., in our example we
are interested java.io.* and java.nio.*). Then we follow the control-flow of
the program starting from the entry point. Each time we encounter a call to a
method that is declared in an API that we are interested in, we create a new
node for this call. Figure 3 shows the ACG for our example from Fig. 2.

The ACG always has a unique source node but can have multiple sink nodes.
One unique sink node always represents the normal termination of a procedure,
other sink nodes may exist for exceptional returns. In Fig. 2 we have exceptional
sinks for RuntimeException and IOException.

Each time we encounter a call to a method that is not part of an API that
we are interested in, but for which we have code available, we inline the method
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Fig. 4. IDFG for our example from Fig. 2. Vertices are labeled with variable types,
edges represent data-flow. Octagon shaped vertices represent method calls. The actual
operation are omitted from the edges since our algorithm ignores edge labels.

call. In Fig. 2, the method calls to readFile and writeFile have been inlined.
Any call to methods defined in java.io.* and java.nio.* is represented by a
single node, and all other calls (such as the calls to reverse and toString in
Line 3) get ignored.

For resolving virtual calls, we use a static algorithm that is fast but imprecise.
That is, the ACG only approximates the possible sequences of calls to methods
from a certain API. For example, we do not perform a proper points-to analysis
while constructing the graph and indirect control-flow such as library callbacks
is not tracked (but can be provided by the user). We discuss various sources of
imprecision specific to our implementation later on in the evaluation.

4.2 Inter-procedural Data-Flow Graph

Our second graph is an inter-procedural data-flow graph (IDFG). Data-flow
graphs are frequently used in program analysis and compiler optimization. The
graph captures the flow of data between program variables without taking the
control-flow into account. Each node in this graph represents a program variable
or memory location. A (directed) edge between two nodes represents that data
from one source node flows into the variable associated with the sink node. This
way, an IDFG groups variables together that interact with each other even if
they are not immediately connected in the control-flow.

The motivation of using IDFGs for finding similar programs is that programs
that perform similar algorithmic tasks such as sorting or searching in collections
use a similar set of base types and perform similar operations on them. In con-
trast to the ACG which focuses on finding programs with similar API usage, the
IDFG is used to find programs that use similar algorithms. That is, while we
envision a typical scenario for ACG usage as a user trying to understand how
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to use a particular API, we think of the ICFG as a tool to find a method (in an
API) that could be used to replace an algorithm in the user’s program.

Figure 4 shows the IDFG for our example from Fig. 2. Each oval node corre-
sponds to a program variable or a new expression, each octagon shaped node is
a call to a procedure that could not be inlined (e.g., because it is a library call to
which no source code is available). To obtain a more canonical representation,
we label the nodes with the types of the program variables instead of the name.
As an abstraction, we represent types that are not visible outside the current
application with a question mark. We discuss possible ways of how to represent
non-primitive Java types in the IDFG in the future work.

5 Evaluation

5.1 Evaluation of Code Similarity Using IDFG

We use the CodeJam dataset as a benchmark for evaluating our method of find-
ing similar programs. This dataset consists of all the solutions to programming
problems used in the Google Code Jam competition from 2008 to 2015. One
advantage of using the CodeJam dataset is that the problem-solution setting
acts as a free oracle for checking whether two programs are similar, since two
solutions of the same problem must be input-output equivalent for the set of
input test cases provided by Google (although several algorithms may exist as
acceptable solutions). One downside of this dataset is that since the problems are
highly algorithmic in nature (as opposed to large software design), many solution
programs just operate on built-in datatypes and the only library classes that are
frequently used are String and StringBuffer. This restricts our graph choices
to IDFG instead of ACG. Another downside is that code quality is relatively low
compared to well established open-sourced projects since the programs were pro-
duced in a competition environment with tight time constraints. An undesirable
effect of this is that some programs could not be included in the experiments
because of non-standard entry points (no main method), or other compilation
issues (non-unicode characters in the source files).

Setup. We randomly selected four problems from the CodeJam dataset. There
are 1280 Java programs in total in this subset. For each of the programs, we
first create an inter-procedural data-flow graph as describe in Sect. 4 for its top-
level entry point (usually the main method). Then, for each program, we use
our graph kernel based method to find the top k most similar programs to it
from the rest of the 1279 programs. Since these programs are known to solve
one of these four problems, we consider a similar program found to be correct if
it solves the same problem. Our goal of this experiment is to evaluate how well
our method identifies the appropriate similar program.

Results. We first evaluate how accurately our method can find the most similar
program. As a baseline comparison, a random guess would have an accuracy of
25%. The accuracy of our method is 77.8%. If we increase k to 2, i.e., consider
the top 2 most similar programs found and check if any one of them is from the
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Fig. 5. Accuracy, precision and recall values plotted at different threshold values. Accu-
racy is the percentage times the program found is from the same problem and has a
similarity score higher than the threshold, or it is from a different problem but is
rejected because of a lower than threshold score. Precision is the percentage of cor-
rectly identified programs with a higher than threshold score over all programs with a
higher than threshold score. Recall is the percentage of correctly identified programs
with a higher than threshold score over all correctly classified programs that would
have been returned without using the threshold.

same programming problem, then the accuracy increases to 87.9%. In general, a
larger k will produce better accuracy but at the expense of user experience and
effort, since the user would have to spend more time reading these programs and
some of them are irrelevant to her task.

We also consider using a threshold value on the similarity score for filtering
the similar programs found. If the most similar program found still has a simi-
larity score lower than the threshold, then the program is not shown to the user.
Figure 5 shows the results of using different threshold values In our case, preci-
sion tops at a threshold of around 0.6. On the other hand, accuracy decreases
monotonically with increasing threshold value.

Discussion. The experiments above show that our graph kernel based approach
can effectively identify similar programs. However, to our surprise, a threshold
value is not needed to achieve the highest accuracy (although one is needed
for precision). This indicates that even a low similarity score may be sufficient
to distinguish the kinds of programs, given the large space of possible imple-
mentations. We plan to include the rest of CodeJam for a more comprehensive
evaluation in the future.

Threads to Validity. One internal threat to validity is the fact that several differ-
ent algorithms may exist for the same programming problem, leading to widely
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different implementations. While IDFG encodes semantic information of the pro-
gram as data-flow, it still follows closely the structure of the program. This means
IDFG will likely fail to capture the fact that different algorithms and implemen-
tations are designed to solve the same problem. An external thread to validity
is that we are only using four problems in our evaluation. We are currently
working on evaluating our method on the whole CodeJam dataset. However,
as mentioned earlier, these programs only represent codes that are highly algo-
rithmic in nature and they still only constitute a tiny fraction of open-sourced
programs.

5.2 Evaluation of ACG Similarity

Using the ACG to find similar programs on the CodeJam corpus turned out
to be infeasible. The programs in CodeJam are of a very algorithmic nature
and mostly operate on the built-in types of Java. The only library classes that
are frequently used are String and StringBuffer which are used to log results.
Hence, building ACGs for these programs did not produce any interesting results.

To evaluate the usefulness of the ACG for finding similar programs, we set up
a different experiment where we compute ACGs for every method in the Apache
project commons-lang which is a library that provides utilities for common tasks
such as handling dates or serializing objects.

We choose commons-lang as a benchmark because it uses large parts of the
Java packages java.lang and java.util which we can use in the ACG con-
struction. Since we do not have an oracle to decide if two methods are similar
like in the case of CodeJam, the moderate size of commons-lang helps us to
examine the similarity results by hand.

The goal of this experiment is to evaluate whether methods considered similar
based on ACG isomorphisms are indeed similar. To that end, we choose the
following experimental setup: for each method in commons-lang, we compute an
ACG for all calls to methods in java.* excluding String and StringBuffer. We
inline calls to methods inside commons-lang up to depth four. Method calls that
exceed this limit are dropped from the ACG. While running the experiments,
we experimented with inlining depth up to ten which did not change the results
significantly.

If the ACG of a method has less than four nodes (i.e., two calls to library
methods and source and sink), we drop it since we are only interested in methods
that make at least two library calls.

Results. In total, we processed 3017 methods. Out of these, 660 methods had an
ACG with at least four nodes. For each constructed ACG we identify the two
most similar methods (excluding the method itself) which results in a total of
1320 pairs of ACGs together with their similarity values.

In 686 of these 1320 cases we found a real isomorphism (with a similarity
of 100 %). In 4 cases, we found a similarity between 99 and 80 %, in 8 cases a
similarity between 79 and 60 %, in 24 cases between 59 and 40 %, and all other
similarities were below 40 %.
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The most notable part of our experimental result is the high number of real
isomorphisms (over 50 %). To get an intuition where these isomorphisms come
from, we investigated 40 methods by hand. In 27 of the 40 cases, the graphs were
isomorphic because both methods only contained a single statement calling the
same method. Hence, due to inlining, the ACGs were identical. In the remaining
cases, the methods indeed used the same set of library calls such as iterators
over collections or modifications of Date objects. We emphasize that this high
number of isomorphisms is a result of our experimental setup and this would
not be the case when searching for similar methods in a different code base.

In the four cases where methods had a similarity between 99 and 80 %, the
methods were slightly different but shared a number of API calls. One example
of this is the similarity between DateUtils.round and DateUtils.ceilling.
The round method calls to another method that is almost identical to ceiling
(this method and ceiling are in fact isomorphic).

In the similarity range between 79 and 60 %, we still find interesting results.
Examples of similar procedures are pairs like FormatCache.getDateTime-
Instance and FormatCache.getTimeInstance which, without going into the
details of the code are understandably similar by looking at their names. Five of
the eight similarities between 79 and 60 % were cases where one method called
to other.

Similarities between 59 and 40 % were, for example, found in the
StringUtils class between methods like endsWithAny and startsWithAny,
or removeEndIgnoreCase and removeStartIgnoreCase which, as their naming
suggests, perform very similar tasks. Other cases of 50 % similarity are differ-
ent methods to find threads in ThreadUtil. These methods all iterate over a
collection of Thread objects but use different methods to filter this set.

Even methods with a similarity below 40 % still were interesting in
many cases. For example for the method LocalUtils.countriesByLanguage
the most similar method was LocalUtils.languagesByCountry, or for
Fraction.divideBy the most similar method (with 18 % similarity) was
Fraction.multiply. Only when we reach a similarity of below 15 %, the results
become less useful.

Discussion. This experiment shows that similarity based on the ACG is indeed
useful to identify methods that serve a similar purpose. We emphasize that
our experimental setup of finding similarities in the same code-base is certainly
biased towards finding many isomorphic graphs, so the success rate of finding
similar code with this approach can not be generalized from this experiment.
What the experiment shows, however, is that methods with a similarity between
99 % and 20 % are still very similar even if they do not share code and that the
approach hardly produces false alarms. For the method pairs that we inspected,
there was no case where we could not spot the similarity.

Threats to Validity. Several threats to validity have to be discussed in this experi-
ment. We already mentioned that searching for similar methods in the same code
base is biased towards finding many isomorphic graphs. For a less biased experi-
mental setup, we would need labeled data like in the case of CodeJam. We would
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need an oracle that can decide if methods are similar to measure how often our
approach does not find a similar method where one exists. Unfortunately, we do
not have such an oracle but it is part of our future work to build up a corpus
to further evaluate our approach. Another thread to validity is the choice of
java.* as an API and commons-lang as code base. In the future work we will
experiment with more code bases and different APIs but within the scope of this
paper we believe that this experiment is sufficient to convey our idea.

6 Related Work

The problem of finding similarities in source code is a known problem in software
engineering. It crops up in many software engineering contexts as diverse as
program compression [5], malware similarity analysis [3], software theft detection
[14], software maintenance [7], and Internet-scale code clone search [25].

Previous research in program similarity has focused more on detecting syn-
tactic similarity [24] and less on detecting semantic similarity, as the latter is
generally undecidable. We can classify these different approaches into five cate-
gories: Text-based, Token-based, Tree-based, Semantic-based, and Hybrid.

In text-based solutions, the source code of a program is divided into strings
and then compared against another. Under this type of solution, two programs
are similar if their strings match [2]. In token-based solutions (lexical), the source
code of a program is transformed into a sequence of lexical tokens using compiler
style lexical analysis. The produced sequences are then scanned for duplicated
subsequences of tokens. The representative work here is Baker’s token based
clone detection [2]. In tree-based solutions, the source code of a program is
parsed in order to produce an abstract syntax tree (AST). The produced AST
is then scanned for similar subtrees. The representative work here is Jiang’s
Deckard [10]. In semantic-based solutions, a source code is statically analyzed
to produce a program dependency graph (PDG) [6]. Then, the program sim-
ilarity problem is reduced to the problem of finding isomorphic graphs using
program slicing [13]. In hybrid solutions, both syntactic and semantic charac-
teristics are used to find similar code. The representative work here is Leitao’s
hybrid approach for detecting similar code. This hybrid approach combines syn-
tactic techniques based on AST metrics, semantic techniques (call graphs), and
specialized comparison functions to uncover code redundancies [15].

The approach presented in this paper can be seen as a hybrid solution as
well. It identifies similar programs using graph similarity like semantic-based
solutions but is agnostic to the kind of graph that is being used. For example
our ACG is more of a syntactic representation and the IDFG more a semantic
representation of the program.

When considering similarity measures of graphs one has to carefully dis-
tinguish between measures that are applied to labeled graphs and measure
applied to unlabeled graphs. A labeled measure d may use information of
the vertex names. For example the edit distance is usually defined for two
graphs G1 = (V,E1) and G2 = (V,E2) over the same vertex set as d(G1, G2) :=
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|E1 \ E2| + |E2 \ E1|. It captures the amount of edges/non-edges that need
to be altered to turn the one graph into the other. In contrast to this, a
measure for unlabeled graphs is not allowed to depend on the names of the
vertices, that is for a permutation π of the vertices of G2 we must have
that d(G1, G2) = d(G1, π(G2)).

An overview over some graphs similarity measures is given in [26]. Labeled
graph similarity measures are not suitable for our intended applications. Indeed,
the names of the vertices of the IDFG and ACG do not seem to carry relevant
information. (This is different for the labels that are assigned by the algorithm,
which carry structural information, as discussed earlier.) The question remains
which unlabeled graph similarity measures are suitable to capture code similar-
ity? From a conceptual point it appears that the occurrence of substructures
of certain kinds in a node’s vicinity is related to the purpose of a code snippet
containing said node. This is supported by the findings in [16,20–22]. Guided by
this insight, we chose the similarity based on Weisfeiler-Leman algorithm for our
purposes. While it detects similar information as subgraph counts, it provides
us with two significant advantages. On the one hand it is very efficiently com-
putable, which not the case for subgraph detection, as also explained in [16,22].
On the other hand it easily allows us to exploit the label information of different
types of graphs generated from programs.

7 Conclusion

We have presented a generic algorithm to compute program similarity based on
the Weisfeiler-Leman graph kernels. Our experiments suggest that the algorithm
performs well for the IDFG and ACG representation of Java code that we pro-
posed. However, we believe that our algorithm will also perform well with other
graph-based models.

We see several interesting applications that we want to pursue as future work:
one interesting property of graph kernels is that a combination of two graph
kernels is again a graph kernel. In the case of the ACG, this would allow us
to compute separate ACGs for different APIs (e.g., java.lang and java.util)
and either use them in isolation or combine them, which would allow us to build
more efficient search algorithms. Another interesting application would be to
combine kernels from entirely different graphs, such as the ACG and the IDFG
to experiment with new concepts of similarity.

Further, using graph kernels makes it easy to experiment with different graph
representations. One could for example use a simplified version of a control-flow
graph or use a more abstract labeling of the nodes to model different kinds of
program similarity.
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