
Java Extensions for Design Pattern Instantiation

André L. Santos(B) and Duarte Coelho

Instituto Universitário de Lisboa (ISCTE–IUL), ISTAR, Av. Das Forças Armadas,
Edif́ıcio II ISCTE, 1649-026 Lisbon, Portugal

andre.santos@iscte.pt, duarte.goncalo.coelho@gmail.com

Abstract. Design patterns are not easily traceable in source code, lead-
ing to maintainability and comprehension issues, while the instantiation
of certain patterns involves generalizable boiler-plate code. We provide
high-level language constructs addressing design patterns that trans-
form source code by injecting a substantial part of their implementation
at compile time. We developed proof of concept extensions addressing
widely used design patterns, namely Singleton, Visitor, Decorator, and
Observer, using annotations as the means to extend Java. We describe
our Java annotations to support these design patterns and the associ-
ated source code transformations, demonstrating that it is possible to
significantly reduce the necessary code to instantiate a pattern through
the use of high-level constructs.

1 Introduction

Design patterns are widely used in software development and became an essen-
tial element in software reuse. Design patterns are language-independent, but
paradigm-dependent, since they rely on certain programming language con-
structs that often are available in certain programming paradigms only. The
focus of our work is on object-oriented design patterns [8].

Design patterns are used to aid the design of systems, often driven by variabil-
ity and extensibility requirements. Issues related to maintainability and evolu-
tion may occur given that pattern instantiations are interleaved with the system
domain and “fade away” into the source code [15]. This implies that pattern
instantiations are hard to trace, mainly because they have no first-class rep-
resentation in the source code in terms of programming constructs. Further,
the presence of design patterns in source code may hinder understandability
[13]. Certain patterns require substantial boiler-plate code to be written, as for
instance, the abstract decorator class role in the Decorator pattern [8] that del-
egates all the calls to an enclosing reference (highly generalizable code).

Apart from a few exceptions, languages do not have dedicated constructs
for representing design patterns in the source code. As a counter-example, the
Iterator pattern [8] is supported by the libraries of mainstream object-oriented
languages, such as Java and C#. On the other hand, some patterns do not
make sense in the context of certain programming languages, simply because the

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 284–299, 2016.
DOI: 10.1007/978-3-319-35122-3 19



Java Extensions for Design Pattern Instantiation 285

language constructs provide the means for solving the problem directly (e.g., the
Visitor pattern [8] is not relevant in a language with multiple method dispatch).

Some approaches assist developers in the instantiation of patterns either
through external programming languages (e.g., [1,2,10]) or IDE-integrated tools
to guide and automate the process of implementing them through code genera-
tion (e.g., [9]). The former require using other programming paradigms, whereas
the latter do not address pattern representation given that the trace is lost after
the pattern is instantiated in the source code. The fact that there are tools capa-
ble of generating code that instantiates design patterns evidences that patterns
are generalizable into higher-level abstractions, including dedicated language
constructs (see a debate in [6]).

In this paper we describe an approach for generalizing design pattern instanti-
ations for Java, providing high-level programming language constructs for instan-
tiating them using annotations. As a proof of concept, we implemented support
for widely used patterns, such as Singleton, Visitor, Decorator, and Observer,
relying on an existing open-source project called Lombok1. This project pro-
vides the infrastructure for extending Java with generative annotations that
perform compile-time AST transformations to inject class members and state-
ments. Lombok provides extensions that enable developers to write code in a
terse manner, as for instance support for getter and setter method injections,
as well as some design patterns such as Value Object [7] and Builder [8]. We
build on the Lombok infrastructure to address other design patterns that were
not previously addressed, developing an extension that we refer to as JEDI2.

Although the idea of having language constructs for design patterns is not
new (e.g., [2,6]), we are not aware of other approaches that address this problem
relying only on object-orientation in Java, that is, with no resort to additional
programming paradigms or external tools. We demonstrate the feasibility of the
approach, showing that significant amounts of pattern-related code can be gen-
erated from simple declarations embodied in the form of annotations. These have
the advantage of being dedicated language constructs that are traceable, while
simultaneously serving the purpose of documentation. Empirical experiments
have shown that documenting patterns in the source code is beneficial for sys-
tem maintenance [14]. Therefore, besides facilitating pattern instantiation, the
annotations also mitigate traceability and maintainability issues.

This paper proceeds as follows. Section 2 introduces a running example that
is used throughout the paper. Section 3 presents project Lombok and briefly
explains its infrastructure for transforming classes. Section 4 describes the Java
extensions that we developed to support design patterns. Section 5 analyzes the
transformations performed by our extensions. Section 6 discusses the benefits
and limitations of our approach. Section 7 discusses related work, and Sect. 8
presents our conclusions.

1 www.projectlombok.org.
2 Java Extensions for Design pattern Instantiation. Available at github.com/

andre-santos-pt/lombok-jedi.

www.projectlombok.org
https://github.com/andre-santos-pt/lombok-jedi
https://github.com/andre-santos-pt/lombok-jedi


286 A.L. Santos and D. Coelho

Fig. 1. UML class diagram describing the running example: a file system with files
and folders. The operation compartments are divided according to the associated
design pattern and the letter labels identify the pattern to which the types or mem-
bers relate to (Singleton, Composite, Visitor, Decorator, Observer). Notation: a⊕ → b
denotes that b is a nested classifier of a (in programming these are mapped to inner
classes/interfaces).

2 Running Example

In order to illustrate our approach we introduce a small running example involv-
ing several design patterns (see Fig. 1), designed intentionally to be simple for
clarity of presentation, and on the other hand, appropriate to demonstrate all of
our Java extensions. Section 4 describes how our annotations are able to address
the instantiation of each pattern, except for Composite, which we omit due to
space constraints.

The example consists of a FileSystem that structures its Elements in a tree. The
FileSystem class can only have a single instance (Singleton pattern), and holds a
reference to the root Folder. The singleton property is ensured by having a static
field instance that holds the unique instance, which can be obtained through the
static operation getInstance() (there are no public constructors).



Java Extensions for Design Pattern Instantiation 287

The class Folder is an Element that can have Files (leafs) and other Folders as children
(Composite pattern). The methods for adding children and obtaining an Element’s
parent relate to the instantiation of this pattern.

The interface IElement is yet a more abstract representation of Element objects.
The FileSystem tree is traversable to iterate over its Files and Folders (Visitor pattern),
by providing a specialization of the abstract class IElement.Visitor. The instantiation
of this pattern requires the accept method to be defined by every visitable node
(File and Folder).

Elements may be wrapped in read-only views that disallow renaming (Dec-
orator pattern) using the class ReadOnlyElement. The instantiation of this pattern,
since there may be other kinds of decorator objects, involves the abstract class
IElement.Decorator, which implements IElement and holds a reference to the decorated
instance, delegating every call to it. Notice that the accept method pertaining to
the Visitor pattern also had to be included here for interface compatibility. As
an example of a concrete decorator, the class ReadOnlyElement overrides the rename(...)

operation to throw a runtime exception (disallowed operation).
Finally, the Element objects are observable with respect to rename events

(Observer pattern) through the registration of Element.Observer objects. The meth-
ods for adding and removing observers pertain to this pattern, as well has the
association observers.

Notice that in this example the elements pertaining to the essence of the
domain that the model is capturing (i.e. the file system structure) are clearly
outnumbered by infrastructural elements that are necessary to implement the
desired functionally and extensibility properties. The Composite pattern is the
only pattern whose elements inherently pertain to the domain. This means that
the remaining patterns “bloat” the design with several elements that are essen-
tially technical (accidents in software engineering [3]).

3 Project Lombok and AST Transformations

Lombok is an open source project whose main aim consists of reducing the
amount of boiler-plate code that writing Java programs often involves. The goal
is achieved through annotations that work as language extensions. At compile
time, Lombok annotation processors interfere with the AST of the classes where
annotations are present in order to perform transformations, such as introducing
members (fields, methods, types) or modifying existing ones. The transformed
ASTs are in turn compiled normally. Lombok inspired our work and served as
the infrastructure for the realization of our language extensions.

Figure 2 illustrates two of the simplest Lombok annotations. The annotation
@Getter has the purpose of injecting getter methods based on attributes, whereas
the @NonNull injects null pointer validations on parameters. Hereinafter, when
presenting examples of transformations, we include a box with the code that the
programmer writes followed by another shadowed box that contains the code
that actually compiles after the AST transformation, highlighting the injected
code with gray color. Note that the programmer does not manipulate the source



288 A.L. Santos and D. Coelho

Fig. 2. Example of Lombok extensions: Getter method injection (@Getter) and null
pointer validation (@NonNull).

code of the transformed version of the classes. The injected members cannot
be edited and are not even visible to the programmer. However, the injected
members are accessible to other classes at compilation time, and hence, one may
write code that uses them as if they have been manually written.

One of the key advantages of this approach is that the annotated classes
become significantly less bloated, with fewer lines of code. Furthermore, anno-
tations capture programmer intent with a dedicated construct (the annotation).
The given example is rather simple, and hence, the amount of injected code is
not impressive. However, in other cases such as the annotation for addressing
the Value Object pattern [7], Lombok transforms classes so that the number of
injected lines of code outnumbers manually written code by a factor greater than
five for classes with a few attributes.

As portrayed by the Lombok authors, the technical solution may be regarded
as a “hack”, since Java annotations were not meant to affect program seman-
tics. However, there are other approaches that rely on annotations as the means
to mark parts of programs that are transformed by a third-party. For instance,
transformations to enhance the class with concurrency control (e.g., [5]) or to
perform runtime verifications (e.g., [11]). Lombok was designed for extensibility,
enabling third-party developers to contribute with additional annotations and
their associated AST transformations. We have used this extensibility mecha-
nism to implement our Java extensions.

4 Java Extensions

We developed JEDI, a proof of concept implementation of Java extensions for
design patterns. JEDI comprises a set of annotations whose names (including
participant names) resemble the ones described in [8]. So far, we successfully



Java Extensions for Design Pattern Instantiation 289

addressed the patterns Singleton, Composite, Visitor, Decorator, and Observer.
In this paper, we omit the description of Composite due to space constraints.
The purpose of our annotations is not to fully automate the instantiation of
design patterns, but instead to aid in their instantiation by providing constructs
for their generalizable aspects. For each provided annotation we developed a
Lombok handler that transforms the annotated classes. The transformation may
involve injection or modification of fields, methods, or inner types (classes or
interfaces).

The following subsections describe in detail how JEDI annotations can be
used and the code transformations that are performed when applying them, using
the example of Sect. 2. In some situations the injected code makes use of the
@NonNull annotation (illustrated in Sect. 3) that would further trigger additional
transformations, but whose result we do not expand for clarity and brevity of
presentation.

4.1 Pattern Instantiation Properties

Before illustrating our annotations and the associated AST transformations,
this section explains certain properties of the pattern instantiations that are
important with respect to the use of the annotations in software development.

Validations. The annotation processors perform validations to ensure that the
annotations are applied correctly and guarantee the correctness of the injected
code. Without the validations the annotation placements would be fragile, since
the annotations would not feel like language extensions if errors are not emitted
when they are used incorrectly. For instance, given that the Singleton pattern
requires that the class has no public constructors, there is a validation for check-
ing this issue that emits a compile-time error in case of violation.

Priorities. Each annotation handler has a fixed priority that determines the
order in which the transformations pertaining to the different annotations are
performed on the types. This aspect is relevant since some patterns inject ele-
ments that are of interest to other patterns, and hence, have an effect on the
associated transformation. For instance, the Decorator pattern has a higher pri-
ority than the Visitor pattern, given that it requires the decorated interface to
be complete (Visitor adds operations to interfaces), so that the transformation
addresses all of its methods.

Identifiers. All the identifiers of injected elements (fields, methods, or types)
have default values that are either constant of inferred from other related ele-
ments. However, since design patterns are abstract solutions that are made
concrete in a variety of situations, JEDI annotations were designed to offer a
reasonable degree of adaptability allowing programmers to override the values
for identifiers through annotation parameters. For instance, the default name
for the operation for registering observers in the Observer pattern is by default
“addObserver”, but this name can be set to other value. Throughout the paper,
all the examples of annotation usage consider default values for identifiers.



290 A.L. Santos and D. Coelho

Bidirectional Traceability. The elements that are injected in the AST are
themselves annotated with an annotation for bidirectional traceability purposes,
so that every injected element can unambiguously be traced back to the anno-
tation pattern that generated it. For clarity and brevity of presentation we do
not include these annotations in the transformed code of the given examples.

4.2 Singleton Pattern

The singleton pattern is a solution that guarantees that there is a single instance
of a given class at runtime [8]. The pattern is typically applied by storing the
unique instance in a static field of the class that is accessed through a static
method (that performs lazy instantiation), while the class has no public con-
structors available. In the example given in Sect. 2, the FileSystem class illustrates
the Singleton pattern. The static field instance stores the unique instance, which
is accessed through the static method getInstance().

We provide the @Singleton annotation to aid on implementing the Singleton
pattern (see Fig. 3). This annotation can only be used on classes, implying the
injection of the following elements: (a) a static field to store the singleton instance
with the same type as the class, (b) an empty private constructor to override
the default public parameterless constructor if none is defined, and (c) a static
method to retrieve the singleton instance (initializing (a) on the first call using
the parameterless constructor). The annotation validation ensures that the class
has no public constructors.

Fig. 3. Singleton pattern support and transformations (@Singleton).

4.3 Visitor Pattern

The Visitor pattern is a solution to separate operations from an object structure
[8]. The pattern instantiation is achieved by defining an abstract class, whose



Java Extensions for Design Pattern Instantiation 291

compatible objects are referred to as visitors. This class contains methods, often
named visit and typically overloaded, that receive multiple object types (the vis-
itable nodes) to which the nodes provide their instance. In the example of Sect. 2,
the file system elements take the role of visitable nodes (Folder and File), whereas
the abstract class Visitor has the visitor role.

We provide three related annotations to address the visitor pattern (see
Fig. 4). The @Visitor annotation is used to mark an interface that represents the set
of visitable nodes. It injects an inner abstract class (a), that contains a method
visit(...) returning true for each of the visitable node types (b), which are marked
with the annotation @Visitor.Node. The annotation validation ensures that these
types are compatible with a type annotated with @Visitor. By injecting each visit(...)

method, we solve the problem of having to define manually each operation, which
is one of the visitor’s implementation negative consequences [8]. Additionally, an
accept(...) operation declaration is injected into the interface (c) with a parameter
of type equal to (a).

Visitable nodes may have child visitable nodes. The annotation
@Visitor.Children is used to mark the visitor node fields that store the children nodes
of the current node, so that the visitor traversal can be propagated to them.
The annotation validation ensures that type of the visitor children fields must
be either of a visitor node or of a collection of visitor nodes (compatible with
java.util.Collection). On each visitable node type an accept(...) method is injected whose
body contains a call to the visit(...) operation (d). In case a visitor node has chil-
dren, the method body also includes a loop for invoking the accept(...) operation
on each child (e).

4.4 Decorator Pattern

The decorator pattern [8] is an alternative solution to inheritance comprising
an abstract class that represents decorator objects (that conform to a given
interface), containing a reference to an object to which all the interface calls
are delegated. In the example given in Sect. 2, the class IElement.Decorator represents
decorators of IElement objects.

Figure 5 demonstrates the application of our @Decorator annotation on the IEle-

ment interface. The annotation validation ensures that it can only be used on
interfaces. The annotation injects an abstract class representing the abstract dec-
orator that implements the annotated interface (a), composed of: (b) an instance
field for storing a reference to the decorated object, (c) a public constructor that
receives the reference to the decorated object, and (d) an implementation of
every method of the interface where the calls are delegated to the decorated
object. By generating all the delegating calls, we significantly reduce the lines of
code that otherwise would have to be written and maintained manually. Notice
that in this case the injection is performed after the Visitor injections (priority
issue explained previously), and hence, the accept(Visitor) operation is considered in
the abstract decorator class.

We also provide the @Wrapper annotation that is a variant with a slightly
different purpose than the decorator pattern. This annotation follows a more



292 A.L. Santos and D. Coelho

Fig. 4. Visitor pattern support and transformations (@Visitor, @Visitor.Node, @Visi-

tor.Children).



Java Extensions for Design Pattern Instantiation 293

Fig. 5. Decorator pattern support and transformations (@Decorator). This example
evolves the Visitor example presented in Fig. 4, demonstrating the effect of annota-
tion processing priority. Given that Visitors precede decorators, the injected Decorator
takes into account the previously injected accept method (dashed line).

flexible approach regarding method delegation. Instead of generating an abstract
class, we can directly annotate the class that wraps the decorated object. This
alternative requires the class whose objects we want to decorate to be defined
in an annotation parameter (e.g., @Wrapper(classType=Collection.class)). The annotation
injects a delegating method for each public method of the target class that is
not manually defined.

4.5 Observer Pattern

The Observer pattern [8] is an effective way for objects (subjects) to communi-
cate events of interest to other objects (observers) without depending directly
on their classes. In the example of Sect. 2, the method rename(String) from the class
Element (subject) illustrates an observable event notified through observer objects
that are compatible with the Element.Observer interface.

Figure 6 illustrates the annotations for the Observer pattern on the method
rename(String) of the class Element of the running example. We provide the



294 A.L. Santos and D. Coelho

Fig. 6. Observer pattern support and transformations (@Observable and @Observable.Notify).

@Observable and @Observable.Notify annotations to aid on the instantiation. The for-
mer is used to annotate methods whose execution represents an event of interest
that we want to enable observer objects to be notified of. The latter is used to
mark the variables that hold the objects that we wish to include in the notifica-
tion. We only support the implementation pertaining to the subject participant,
given that the aspects related to observer objects are problem-specific and are
not suitable for being generalized.

The purpose of the @Observable annotation is to create the elements for collab-
oration between the subject’s event types and its observers, by generating the
following elements in the subject class: (a) an inner interface representing the
observable event, (b) a field that stores a collection of objects of type (a) to
which the event notification is sent, and (c) methods to subscribe and unsub-
scribe the notification of the event. The structure of the injected interface is
derived from the annotated elements. Each observable event has a correspond-
ing operation in the interface, whose parameters are determined by variables
annotated with @Observable.Notify (either parameters or local variable declarations).
Each of these variables is augmented with the final modifier in order to guarantee



Java Extensions for Design Pattern Instantiation 295

their immutability (d). Finally, the body of the methods annotated with @Observ-

able is augmented with the event notification to its subscribers (e).
We offer the possibility of using an existing interface, rather than having

a newly injected one. If an inner interface already exists with the same name,
such an interface is considered instead. The parameters of the @Observable annota-
tion allow programmers to further customize the implementation of the observer
pattern, namely with respect to point of notification (beginning or end of the
method), interface to be used (existing or injected), and association of interface
operations to events.

5 Analysis

In this section we analyze our running example with a focus on the amount
of injected lines of code (LOC), and the relation between each Java extension
and the transformed code. Table 1 presents the classes of the running example
that were used as illustration throughout Sect. 4, in terms of manually written
LOC, and LOC that were effectively compiled considering the transformations
(manual plus injected code). The amount of injected LOC is decomposed, dis-
criminating the LOC according to the design pattern they pertain to. Recall that
the injected code resembles what otherwise would be written by hand when not
using our extensions. Looking back to Fig. 1, notice that every element in the
diagram labeled with a letter was obtained through a transformation. Although
we omitted the description of our support for the Composite pattern, here we
include the result of applying it in the running example.

Table 1. Overview of the number of lines of code in the running example classes,
discriminating between manually written and injected code, decomposing the latter
according to the related pattern.

Manual Injected Compiled Singleton Composite Visitor Decorator Observer

FileSystem 17 10 27 (159%) 10 - - - -

Element 26 22 48 (185%) - 8 1 - 13

Folder 14 17 31 (221%) - 10 7 - -

File 7 7 14 (200%) - 4 3 - -

IElement 7 24 31 (443%) - - 9 15 -

Total 71 80 151 (213%) 10 22 20 15 13

The effective number of LOC that define the classes is significantly higher
than the manual code, more than twice in this example. This factor is by no
means generalizable, given that the domain elements of the example were mini-
mal, and hence, the weight of the injected code is high. Some of the transforma-
tions perform an injection whose size in terms of LOC is constant despite the
elements where the annotations are applied, whereas the injected code of other
transformations grows linearly with the size of the annotated elements. The latter
are more powerful because they spare more effort when writing code, facilitate



296 A.L. Santos and D. Coelho

maintenance, and reduce the size of files significantly. The former are not as
beneficial with this respect, but nevertheless, share the advantage of having a
dedicated language construct that consists of an unambiguous representation of
the pattern (traceability), which is guaranteed to be instantiated uniformly.

The Singleton extension is an example of a constant transformation, given
that no matter how large is the annotated class, the injected code always has the
same size. The value of 10 injected LOC for FileSystem will be the same in every
other class. Both the Composite and Observer extensions fall into this category,
too. On the other hand, the Visitor and Decorator extensions are cases where
the larger the number of elements is (visitor nodes and interface operations,
respectively), the larger the injected code. Notice the case of IElement where these
two patterns were applied, resulting in an effective number of LOC than is
more that four times larger than the manually written code. Therefore, these
extensions are more powerful in terms of the transformation of source code.

6 Discussion

The novelty of our approach does not pertain to the form of instantiating design
patterns, but instead in the automatization of their instantiation according to
common idioms. Although we believe that our language constructs are a power-
ful abstraction, bringing the implementation of design patterns to the program-
ming language level has some drawbacks, as pointed out by John Vlissides in
a debate on the issue of having patterns as language constructs [6]. The more
automation we aim at, the less flexible the pattern instantiation becomes, given
that code generation approaches that bridge higher levels of abstraction to lower
ones necessarily have to compromise flexibility to some extent. Even though we
took into account the possibility of parameterizing pattern instantiations, our
solutions will naturally not fit any context that a programmer might come up
with. However, when certain patterns need to be instantiated in such a way that
the annotations did not anticipate, programmers can always implement them
manually without benefiting from the transformations.

We argue that the traceability benefit of having the annotations present in
the source code consists of an important advantage, given that the documenta-
tion of design patterns in the code has revealed beneficial for system maintenance
[14]. Annotations are types in the programming language, and the associated val-
idations ensure that they are applied in the correct locations and obey to other
constraints. In this way, annotations can be seen as a structured form of docu-
mentation and compliance verification, and hence, they also consist of a robust
means to document and enforce design issues. This is an advantage when com-
pared with unstructured documentation text present in source code comments,
which is somewhat fragile and easily becomes outdated, or external artifacts
such as design documents, which often suffer from the problem of architectural
erosion [12].

Given that our annotations indicate the patterns and their roles we believe
that they are easy to understand from a code reading perspective, since the



Java Extensions for Design Pattern Instantiation 297

programmer is basically attaching labels to code elements using a familiar con-
struct (the annotations). Further, the existence of dedicated language constructs
also promotes pattern learning and experimentation. However, we believe that
the language extensions in some cases do not dismiss programmers of having to
understand how the patterns actually work internally.

We demonstrated how some of the widely used patterns are suitable to
be addressed in language extensions. Other potentially more specific patterns
(e.g., concurrency, or related to a particular platform) could also be addressed
with this mechanism. The implementation of our extensions was by no means
technically trivial, given that it had to be based directly on the compiler API.
A more friendly abstraction for writing transformations would make easier to
define extensions. However, we envision that this kind of extensions would be
developed by specialized programmers and packaged as if they were libraries, in
order to have some degree of reliability and standardization.

7 Related Work

Previous works have proposed dedicated language constructs to address design
patterns. Jan Bosch [2] proposed a design-level support for generating design
pattern implementations. When the design is finished, the model is able to gen-
erate the equivalent C++ code. The problem with this approach is that it works
as a code generation tool that only provides support at the design stage, and the
generated code will resemble manual implementation. Since the C++ code does
not keep up with the pattern instance specifications, as opposed to our approach,
the problems of traceability and comprehension at the source code level are not
addressed.

OpenJava [16] is a macro system for Java that offers a compile-time reflective
means that can inject source code in a similar way as Lombok. Therefore, Open-
Java could be an alternative means for implementing our approach for design
pattern instantiation. However, it implies using syntax extensions to Java for the
declaration of macro expansions, whereas Lombok does not (it relies on existing
language constructs, the annotations).

FRED [9] is an environment that supports the implementation of design
patterns in Java. The implementation of design patterns is aided through an
incremental sequence of tasks until all the mandatory tasks are completed.
A task is considered to be the creation of small elements like classes, meth-
ods and fields. This incremental process has to be done every time one wants to
instantiate a pattern, which can be time-consuming. Since the pattern instan-
tiation is supported by the environment, we have no assistance if we use the
resulting code on another Java development environment.

Using a different strategy for implementing design patterns, AspectJ3 was
proposed as a suitable means [10] with modularity improvements that make pos-
sible to encapsulate pattern instantiations in independent modules – the aspects.

3 www.eclipse.org/aspectj.

www.eclipse.org/aspectj


298 A.L. Santos and D. Coelho

The main drawback of this approach is the fact that in order to instantiate the
patterns programmers must have some technical skills with respect to AspectJ.
As with our approach, the aspect-based pattern instantiations also address trace-
ability at the source code level, because the pattern instantiations are given in
well-defined entities (all the instantiations of a given pattern extend the same
abstract aspect). However, issues pertaining to pattern inter-dependency and
interaction might consist of an issue, as reported by a study on the scalability
of pattern modularity using the aspect-based approach [4].

JavaStage [1] is an extension to Java that encompasses programming con-
structs to represent roles. The notion of role has a dedicated module that may
define fields and methods that enhance the classes to which the role is bound
(using a declarative-style primitive on their definition). The definition of the role
modules have a similar purpose than the AST transformations in our approach,
whereas the role binding primitives relate to our annotations. Defining extensions
using roles is a more elegant and easy way in contrast to the AST transforma-
tions used in our approach. Namely, the authors illustrate their approach with
the Observer pattern. However, complex cases that require enhancements across
multiple types, e.g., as our Visitor pattern transformation, might not be possible
to address using roles due to the transformation complexity.

8 Conclusions

In this paper we described a set of Java extensions addressing widely used design
patterns, whose instantiation can be achieved partly through source code trans-
formation. We conclude that at least the patterns we presented here are suit-
able to be addressed with dedicated language constructs, given the considerable
amount of elements that can effectively be generalized, as demonstrated in the
example instantiations. The provided annotations consist of powerful high-level
language constructs, which besides automating parts of the pattern instanti-
ation, also mitigate pattern traceability and comprehension issues, given that
patterns instances are represented by first-class entities. Although the exten-
sions were proven to work, research on their suitability to real projects still has
to be carried out to evaluate if the balance between automation and flexibility
is satisfactory. As future work, we plan to refactor an existing framework using
our annotations for this purpose.

References

1. Barbosa, F.S., Aguiar, A.: Using roles to model crosscutting concerns. In: Pro-
ceedings of the 12th Annual International Conference on Aspect-Oriented Software
Development, AOSD 2013, pp. 97–108. ACM, New York (2013)

2. Bosch, J.: Design patterns as language constructs. J. Object-Oriented Program
11(2), 18–32 (1998)

3. Brooks Jr., F.P.: No silver bullet - essence and accidents of software engineering.
Computer 20(4), 10–19 (1987)



Java Extensions for Design Pattern Instantiation 299

4. Cacho, N., Sant’Anna, C., Figueiredo, E., Garcia, A., Batista, T., Lucena, C.:
Composing design patterns: a scalability study of aspect-oriented programming.
In: Proceedings of the 5th International Conference on Aspect-Oriented Software
Development, AOSD 2006, pp. 109–121. ACM, New York (2006)

5. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Sci. Comput. Program. 63(2), 172–185 (2006)

6. Chambers, C., Harrison, B., Vlissides, J.: A debate on language and tool support for
design patterns. In: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 277–289. ACM (2000)

7. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2002)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson Education, Upper Saddle River
(1994)

9. Hakala, M., Hautamäki, J., Koskimies, K., Paakki, J., Viljamaa, A., Viljamaa,
J.: Architecture-oriented programming using FRED. In: Proceedings of the 23rd
International Conference on Software Engineering, pp. 823–824. IEEE Computer
Society (2001)

10. Hannemann, J., Kiczales, G.: Design pattern implementation in java and aspectj.
In: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2002, pp. 161–173.
ACM, New York (2002)

11. Nobakht, B., de Boer, F., Bonsangue, M., de Gouw, S., Jaghoori, M.: Monitor-
ing method call sequences using annotations. Sci. Comput. Program. 94, 362–378
(2014)

12. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

13. Prechelt, L., Unger, B., Tichy, W.F., Brossler, P., Votta, L.G.: A controlled experi-
ment in maintenance: comparing design patterns to simpler solutions. IEEE Trans.
Softw. Eng. 27(12), 1134–1144 (2001)

14. Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W.F.: Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance. IEEE Trans. Softw. Eng. 28(6), 595–606 (2002)

15. Soukup, J.: Implementing patterns. In: Coplien, J.O., Schmidt, D.C. (eds.) Pattern
Languages of Program Design, Chap. Implementing Patterns, pp. 395–412. ACM
Press/Addison-Wesley Publishing Co., New York (1995)

16. Tatsubori, M., Chiba, S., Killijian, M.-O., Itano, K.: OpenJava: a class-based macro
system for java. In: Cazzola, W., Houmb, S.H., Tisato, F. (eds.) Reflection and
Software Engineering. LNCS, vol. 1826, pp. 117–133. Springer, Heidelberg (2000)


	Java Extensions for Design Pattern Instantiation
	1 Introduction
	2 Running Example
	3 Project Lombok and AST Transformations
	4 Java Extensions
	4.1 Pattern Instantiation Properties
	4.2 Singleton Pattern
	4.3 Visitor Pattern
	4.4 Decorator Pattern
	4.5 Observer Pattern

	5 Analysis
	6 Discussion
	7 Related Work
	8 Conclusions
	References


