
Georgia M. Kapitsaki
Eduardo Santana de Almeida (Eds.)

 123

LN
CS

 9
67

9

15th International Conference, ICSR 2016
Limassol, Cyprus, June 5–7, 2016
Proceedings

Software Reuse:
Bridging with Social-Awareness

Lecture Notes in Computer Science 9679

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Georgia M. Kapitsaki
Eduardo Santana de Almeida (Eds.)

Software Reuse:
Bridging with Social-Awareness
15th International Conference, ICSR 2016
Limassol, Cyprus, June 5–7, 2016
Proceedings

123

Editors
Georgia M. Kapitsaki
University of Cyprus
Nicosia
Cyprus

Eduardo Santana de Almeida
Universidade Federal da Bahia
Salvador, Bahia
Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-35121-6 ISBN 978-3-319-35122-3 (eBook)
DOI 10.1007/978-3-319-35122-3

Library of Congress Control Number: 2016938412

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 15th International Conference on Software Reuse (ICSR) took place in Limassol,
Cyprus, during June 5–7, and was hosted by the University of Cyprus. ICSR is the
main premier event in the field of software reuse research and technology. The main
goal of ICSR is to present the most recent advances and breakthroughs in the area of
software reuse and to promote an intensive and continuous exchange among
researchers and practitioners.

The specific theme of the 2016 conference was “Software Reuse: Bridging with
Social-Awareness.” Developers’ social networks are gaining ground recently with
software engineers participating in different fora collaborating and exchanging ideas
and expertise. Software reuse needs to utilize, but also strengthen, this new form of
synergies that can be built among engineers. The ICSR special theme aimed to bring
this aspect in software reuse by raising social awareness, strengthening the existing
platforms and tools, and utilizing the vast software information that exists in devel-
opers’ social networks.

Responding to the call for papers, which expanded beyond the theme to other
important areas, such as software evolution and reuse and software product line
techniques, a total of 51 papers were submitted by authors from different organizations
and institutions around the world. All papers underwent a thorough review process with
the participation of at least three members from the Program Committee for each paper.
In several cases, the independent reviews were followed with a discussion to consol-
idate the results, steered by the program chairs. As a result, 21 high-quality papers were
selected as full research papers with an acceptance ratio of 41 %, while four papers
were accepted as short research papers. Through a separate call for tool demonstrations,
a total of four demonstration papers were selected.

The accepted papers cover different areas of software engineering, where software
reuse plays an important role, such as software product lines, domain analysis and
modelling, software tools, and business aspects of software. ICSR 2016 provided a
complete view on the advancements in the area of software reuse in the last years for
interested researchers and practitioners.

The program chairs wish to thank all authors for their contributions to a successful
conference. Special thanks to General Chair George A. Papadopoulos, to Doctoral
Symposium Chair Maurizio Morisio, to Workshops and Tutorials Chair Tommi
Mikkonen, and to Tools Chair Frederik Kramer for their valuable work, as well as to all
members of the Program Committee for their invaluable support.

June 2016 Georgia M. Kapitsaki
Eduardo Santana de Almeida

Organization

Organizing Committee

General Chair

George Angelos Papadopoulos University of Cyprus, Cyprus

Program Co-chairs

Georgia M. Kapitsaki University of Cyprus, Cyprus
Eduardo Santana de Almeida Federal University of Bahia, Brazil

Doctoral Symposium Chair

Maurizio Morisio Politecnico di Torino, Italy

Workshops and Tutorials Chair

Tommi Mikkonen Tampere University of Technology, Finland

Tool Demonstrations Chair

Frederik Kramer Otto-von-Guericke-Universität Magdeburg,
initOS, Germany

Contents

Software Product Lines

Applying Incremental Model Slicing to Product-Line Regression Testing 3
Sascha Lity, Thomas Morbach, Thomas Thüm, and Ina Schaefer

Automated Composition of Service Mashups Through Software Product
Line Engineering. 20

Mahdi Bashari, Ebrahim Bagheri, and Weichang Du

Feature Location in Model-Based Software Product Lines Through
a Genetic Algorithm . 39

Jaime Font, Lorena Arcega, Øystein Haugen, and Carlos Cetina

Carrying Ideas from Knowledge-Based Configuration to Software Product
Lines . 55

Juha Tiihonen, Mikko Raatikainen, Varvana Myllärniemi,
and Tomi Männistö

Tax-PLEASE—Towards Taxonomy-Based Software Product Line
Engineering . 63

Ina Schaefer, Christoph Seidl, Loek Cleophas, and Bruce W. Watson

Business Aspects of Software Reuse

A Method to Support the Adoption of Reuse Technology in Large Software
Organizations . 73

Luiz Amorim and Manoel Mendonça

A Practical Use Case Modeling Approach to Specify Crosscutting Concerns . . . 89
Tao Yue, Huihui Zhang, Shaukat Ali, and Chao Liu

An Approach for Prioritizing Software Features Based on Node Centrality
in Probability Network. 106

Zhenlian Peng, Jian Wang, Keqing He, and Hongtao Li

VCU: The Three Dimensions of Reuse . 122
Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle,
Nicolas Belloir, Philippe Collet, Benoit Combemale, Julien DeAntoni,
Jacques Klein, and Bernhard Rumpe

Reuse vs. Reusability of Software Supporting Business Processes 138
Hermann Kaindl, Roman Popp, Ralph Hoch, and Christian Zeidler

http://dx.doi.org/10.1007/978-3-319-35122-3_1
http://dx.doi.org/10.1007/978-3-319-35122-3_2
http://dx.doi.org/10.1007/978-3-319-35122-3_2
http://dx.doi.org/10.1007/978-3-319-35122-3_3
http://dx.doi.org/10.1007/978-3-319-35122-3_3
http://dx.doi.org/10.1007/978-3-319-35122-3_4
http://dx.doi.org/10.1007/978-3-319-35122-3_4
http://dx.doi.org/10.1007/978-3-319-35122-3_5
http://dx.doi.org/10.1007/978-3-319-35122-3_5
http://dx.doi.org/10.1007/978-3-319-35122-3_6
http://dx.doi.org/10.1007/978-3-319-35122-3_6
http://dx.doi.org/10.1007/978-3-319-35122-3_7
http://dx.doi.org/10.1007/978-3-319-35122-3_8
http://dx.doi.org/10.1007/978-3-319-35122-3_8
http://dx.doi.org/10.1007/978-3-319-35122-3_9
http://dx.doi.org/10.1007/978-3-319-35122-3_10

Component-Based Reuse

A Case Study on the Availability of Open-Source Components for Game
Development . 149

Maria-Eleni Paschali, Apostolos Ampatzoglou, Stamatia Bibi,
Alexander Chatzigeorgiou, and Ioannis Stamelos

RAGE Reusable Game Software Components and Their Integration into
Serious Game Engines . 165

Wim van der Vegt, Enkhbold Nyamsuren, and Wim Westera

Reusable Secure Connectors for Secure Software Architecture 181
Michael Shin, Hassan Gomaa, and Don Pathirage

Reuse-Based Software Engineering

Concept-Based Engineering of Situation-Specific Migration Methods. 199
Marvin Grieger, Masud Fazal-Baqaie, Gregor Engels,
and Markus Klenke

Leveraging Feature Location to Extract the Clone-and-Own Relationships
of a Family of Software Products . 215

Manuel Ballarin, Raúl Lapeña, and Carlos Cetina

AIRES: An Architecture to Improve Software Reuse 231
Rosana T. Vaccare Braga, Daniel Feloni, Karen Pacini,
Domenico Schettini Filho, and Thiago Gottardi

Pragmatic Software Reuse in Bioinformatics: How Can Social Network
Information Help? . 247

Xiaoyu Jin, Charu Khatwani, Nan Niu, Michael Wagner,
and Juha Savolainen

Software Reuse Tools

Feature Location Benchmark for Software Families Using Eclipse
Community Releases . 267

Jabier Martinez, Tewfik Ziadi, Mike Papadakis,
Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon

Java Extensions for Design Pattern Instantiation . 284
André L. Santos and Duarte Coelho

Towards a Semantic Search Engine for Open Source Software 300
Sihem Ben Sassi

X Contents

http://dx.doi.org/10.1007/978-3-319-35122-3_11
http://dx.doi.org/10.1007/978-3-319-35122-3_11
http://dx.doi.org/10.1007/978-3-319-35122-3_12
http://dx.doi.org/10.1007/978-3-319-35122-3_12
http://dx.doi.org/10.1007/978-3-319-35122-3_13
http://dx.doi.org/10.1007/978-3-319-35122-3_14
http://dx.doi.org/10.1007/978-3-319-35122-3_15
http://dx.doi.org/10.1007/978-3-319-35122-3_15
http://dx.doi.org/10.1007/978-3-319-35122-3_16
http://dx.doi.org/10.1007/978-3-319-35122-3_17
http://dx.doi.org/10.1007/978-3-319-35122-3_17
http://dx.doi.org/10.1007/978-3-319-35122-3_18
http://dx.doi.org/10.1007/978-3-319-35122-3_18
http://dx.doi.org/10.1007/978-3-319-35122-3_19
http://dx.doi.org/10.1007/978-3-319-35122-3_20

Detecting Similar Programs via The Weisfeiler-Leman Graph Kernel. 315
Wenchao Li, Hassen Saidi, Huascar Sanchez, Martin Schäf,
and Pascal Schweitzer

Domain Analysis and Modelling

Metamodel and Constraints Co-evolution: A Semi Automatic Maintenance
of OCL Constraints . 333

Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin,
and Marie-Pierre Gervais

A Model Repository Description Language - MRDL 350
Brahim Hamid

Reverse-Engineering Reusable Language Modules from Legacy
Domain-Specific Languages . 368

David Méndez-Acuña, José A. Galindo, Benoit Combemale,
Arnaud Blouin, Benoit Baudry, and Gurvan Le Guernic

A Framework for Enhancing the Retrieval of UML Diagrams. 384
Alhassan Adamu and Wan Mohd Nazmee Wan Zainoon

Tool Demonstrations

Puzzle: A Tool for Analyzing and Extracting Specification Clones in DSLs . . . 393
David Méndez-Acuña, José A. Galindo, Benoit Combemale,
Arnaud Blouin, and Benoit Baudry

FeatureIDE: Scalable Product Configuration of Variable Systems 397
Juliana Alves Pereira, Sebastian Krieter, Jens Meinicke,
Reimar Schröter, Gunter Saake, and Thomas Leich

Recalot.com: Towards a Reusable, Modular, and RESTFul Social
Recommender System . 402

Matthäus Schmedding, Michael Fuchs, Claus-Peter Klas, Felix Engel,
Holger Brock, Dominic Heutelbeck, and Matthias Hemmje

CORPO-DS: A Tool to Support Decision Making for Component Reuse
Through Profiling with Ontologies . 407

Savvas Loumakos and Andreas S. Andreou

Author Index . 411

Contents XI

http://dx.doi.org/10.1007/978-3-319-35122-3_21
http://dx.doi.org/10.1007/978-3-319-35122-3_22
http://dx.doi.org/10.1007/978-3-319-35122-3_22
http://dx.doi.org/10.1007/978-3-319-35122-3_23
http://dx.doi.org/10.1007/978-3-319-35122-3_24
http://dx.doi.org/10.1007/978-3-319-35122-3_24
http://dx.doi.org/10.1007/978-3-319-35122-3_25
http://dx.doi.org/10.1007/978-3-319-35122-3_26
http://dx.doi.org/10.1007/978-3-319-35122-3_27
http://dx.doi.org/10.1007/978-3-319-35122-3_28
http://dx.doi.org/10.1007/978-3-319-35122-3_28
http://dx.doi.org/10.1007/978-3-319-35122-3_29
http://dx.doi.org/10.1007/978-3-319-35122-3_29

Software Product Lines

Applying Incremental Model Slicing
to Product-Line Regression Testing

Sascha Lity1(B), Thomas Morbach1, Thomas Thüm2, and Ina Schaefer2

1 Institute for Programming and Reactive Systems, TU Braunschweig, Braunschweig,
Germany

{s.lity,t.morbach}@tu-braunschweig.de
2 Institute of Software Engineering and Automotive Informatics, TU Braunschweig,

Braunschweig, Germany
{t.thuem,i.schaefer}@tu-braunschweig.de

Abstract. One crucial activity in software product line (SPL) testing
is the detection of erroneous artifact interactions when combined for a
variant. This detection is similar to the retest test-case selection problem
in regression testing, where change impact analysis is applied to reason
about changed dependencies to be retested. In this paper, we propose
automated change impact analysis based on incremental model slicing
for incremental SPL testing. Incremental slicing allows for a slice com-
putation by adapting a previous slice with explicit derivation of their
differences by taking model changes into account. We apply incremental
slicing to determine the impact of applied model changes and to reason
about their potential retest. Based on our novel retest coverage criterion,
each slice change specifies a retest test goal to be covered by existing test
cases selected for retesting. We prototypically implemented our approach
and evaluated its applicability and effectiveness by means of four SPLs.

Keywords: Software product line · Model-based testing · Regression
testing · Model slicing

1 Introduction

Testing is a necessary and challenging activity during software development [15].
Testing a software product line (SPL) [31], i.e., a family of similar software
systems sharing a common platform and reusable artifacts, is even more chal-
lenging. Due to the huge number of potential variants, testing each variant
individually is often infeasible. Besides the standard testing problem finding
failures in (variable) software artifacts, SPL testing also focuses on the detec-
tion of erroneous interactions of variable artifacts [27]. Existing SPL testing
techniques [13,23,28,30] reduce the overall testing effort, e.g., by testing only a
subset of variants [19]. However, each variant is still tested individually without

This work was partially supported by the German Research Foundation under the
Priority Programme SPP1593: Design For Future – Managed Software Evolution.

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-35122-3 1

4 S. Lity et al.

taking the commonality and obtained test results into account as common in
regression testing [42].

In prior work [25,26], we proposed incremental SPL testing combining the
concepts of model-based [37] and regression testing [42] including the reuse of
test artifacts and test results. Based on delta-oriented modeling [9] specifying
the commonality and variability of variants by means of change operations called
deltas, variant-specific test artifacts, such as the test suite, are incrementally
adapted. Starting with a core variant, each subsequent variant is tested based
on its tested predecessor. Here, a crucial task is the decision whether a reusable
test case should be retested to validate that already tested behavior is not unin-
tentionally affected by changes. In our prior work, this retest decision is to be
performed manually. To cope with this well-known retest test-case selection prob-
lem [42] in regression testing, change impact analysis techniques are required.

Slicing [4,41] is a promising analysis technique to automate this retest deci-
sion [8]. Existing approaches apply slicing in a white-box regression testing
setup [1,7,14]. In line with our prior work [25,26], we focus on model-based
regression testing, where we have no access to source code. Therefore, state-based
model slicing techniques [4] allow for model-based change impact analysis and,
hence, to reason about the retest of test cases [21,36]. Based on a given model
element used as slicing criterion, a behavioral specification, such as a finite state
machine, is reduced comprising solely elements affecting the criterion. Thus, a
modified slice indicates changed dependencies regarding the criterion. In prior
work [24], we proposed incremental model slicing for delta-oriented SPLs. When
stepping from a variant to its subsequent one, we reuse the applied model changes
specified by deltas to incrementally adapt already existing slices for same slicing
criteria. As further result, we capture the differences between two subsequent
slices as slice changes useable to reason about the impact of model changes.

In this paper, we adapt and apply our incremental slicing as change impact
analysis technique to automate retest decisions in incremental SPL testing.
Hence, we investigate the impact of model changes to common behavior between
subsequent variants. We capture the obtained slice differences representing
new/changed dependencies in respective slice changes, e.g., potential artifact
interactions to be retested. The slice changes are used to define a new coverage
criterion facilitating the retest decision. Therefore, we select reusable test cases
for re-execution and further use test-case generation for generating new retest
test cases to ensure coverage. We prototypically implemented and evaluated our
approach by means of four SPLs to validate its applicability and effectiveness.

2 Foundations

Delta-Oriented Software Product Lines. Delta modeling [9] is a modular and flex-
ible variability modeling approach already applied to various types of SPL devel-
opment artifacts, e.g., finite state machines [26]. Differences between variants are
explicitly specified by means of transformations called deltas. Based on a given
core model Mcore modeling a core variant pcore ∈ PSPL, deltas δ ∈ ΔSPL

M are

Applying Incremental Model Slicing to Product-Line Regression Testing 5

A1 A2

t1: e1/e2

t2: e2/e3

B1 B2 B3

t3: e3/ t4: e4/e5

t6: e6/e7

t5: e1/ex

S

C1 C2

t8: e1/e2

t9: e2/e9

C

t7: e7/e8

(a) State machine of pcore

A1 A2

t1: e1/e2

t2: e2/e3

B1 B2 B3

t3: e3/ t4: e4/e5

t10: e10/e7
+

t6: e6/e7
-

t5: e1/ex

S

C1 C2

t8: e1/e2

t9: e2/e9
t11: e4/ex

+

C

t7: e7/e8

(b) State machine of p1

A1 A2

t1: e1/e2

t2: e2/e3
t12: e6/ex

+

B1 B2 B3

t3: e3/ t4: e4/e5

t10: e10/e7
+

t6: e6/e7

t5: e1/ex

S

C1 C2

t8: e1/e2

t9: e2/e9
t11: e4/ex

+

C

t7: e7/e8

(c) State machine of p2

A1 A2

t1: e1/e2

t2: e2/e3

B1 B2 B3

t3: e3/ t4: e4/e5

S

(d) Core slice for t4

A1 A2

t1: e1/e2

t2: e2/e3

B1 B2 B3

t3: e3/ t4: e4/e5

t10: e10/e7
+

t5: e1/ex
+

S

(e) Slice for t4 of p1

A1 A2

t1: e1/e2

t2: e2/e3
t12: e6/ex

+

B1 B2 B3

t3: e3/ t4: e4/e5

t10: e10/e7
t6: e6/e7

+

t5: e1/ex

S

(f) Slice for t4 of p2

Fig. 1. Example of delta modeling [9] and incremental model slicing [24]

defined transforming Mcore into the model Mi of variant pi ∈ PSPL. By PSPL,
we refer to the set of all valid variants of an SPL, whereas ΔSPL

M denotes the set
of all deltas for PSPL and model domain M, here, finite state machines (FSM).
A delta δ specifies change operations, such as additions (add e) or removals (rem
e) of elements. For each pi ∈ PSPL, a predefined set of deltas Δpi

⊆ ΔSPL
M exists

subsequently applied in a predefined order to automatically generate Mi. For the
specification of changes between arbitrary variants, we are able to derive model
regression deltas ΔM

pi−1,pi
⊆ ΔSPL

M to encapsulate the differences between two
variants by incorporating their delta sets Δpi−1 and Δpi

. We refer the reader to
prior work [25,26] for the construction of model regression deltas.

Example 1. Consider the sample core state machine shown in Fig. 1a. Based
on the delta set Δp1 = {δ1 = (add t10), δ2 = (add t11), δ3 = (rem t6)} denoted
by either + (add) or − (rem), the core is transformed into the state machine
of p1 depicted in Fig. 1b. For p2, we apply the delta set Δp2 = {δ1, δ2, δ4 =
(add t12)}. To step from p1 to p2, we derive the model regression delta ΔFSM

p1,p2
=

{(add t12), (add t6)} by incorporating the deltas captured in Δp1 and Δp2 .

Incremental Model-Based SPL Testing. Model-based testing [37] defines
processes for automatic test-case generation based on test models. A test model
tm, e.g., a finite state machine, specifies the behavior of a system under test
in terms of controllable inputs and observable outputs. A system behaves as

6 S. Lity et al.

expected if it reacts to inputs with expected outputs. To validate the confor-
mance, test cases are derivable from the test model. A test case tc corresponds to
a test model path defining a sequence of controlled inputs and expected outputs.
For guiding the test-case generation, adequacy criteria, e.g., structural coverage
criteria like all-transitions [37], where each transition of the test model must be
traversed by a test case, are used to define a set of test goals TG = {tg1, . . . , tgn}.
For each test goal, at least one test case must be generated to be collected in a test
suite TS = {tc1, . . . , tcm}. For SPLs, these test artifacts exist for each pi ∈ PSPL

captured in variant-specific test artifact sets TApi
= {tmpi

, TGpi
, TSpi

}.
In prior work [25,26], we proposed incremental SPL testing, where variants

are subsequently tested. To exploit the reuse potential of test artifacts during
testing, we adopt the concept of delta modeling to define regression deltas for the
set of test artifacts. Hence, we are able to adapt the variant-specific test artifacts
when stepping from pi−1 to pi under test. Furthermore, we categorize the test
suite TSpi

similar to regression testing [42] in sets of new TS pi

N , reusable TS pi

Re,
and obsolete test cases TS pi

O . New test cases are generated for yet uncovered
test goals of pi. Reusable test cases were generated in prior testing steps and are
also valid for pi. Obsolete test cases are not valid and removed from TSpi

of pi.
Obsolete test cases are potentially reusable for a subsequent pj under test and,
thus, remain recorded in a shared artifact repository. From TS pi

Re, we manually
select test cases TS pi

R ⊆ TS pi

Re for retesting that already tested behavior is not
influenced as intended also known as retest test-case selection problem [42].

The testing workflow is defined as follows. We start by testing pcore, i.e., we
apply standard model-based testing [37]. The obtained test suite and test results
are stored in a shared test artifact repository reused and updated by subsequent
testing steps. By stepping from pi−1 to pi, we apply the following:

1. Compute test artifact regression deltas based on delta sets Δpi−1 and Δpi
.

2. Apply regression deltas to adapt the reusable test artifacts.
3. Categorize test cases to obtain test suites TS pi

Re and TS pi

O .
4. Apply test-case generation for uncovered test goals to obtain TS pi

N .
5. Analyze change impact of applied model changes.
6. Select reusable test cases to be retested captured in TS pi

R .
7. (Re-)Test variant pi and record results.

Afterwards, we select the next variant pi+1 to be tested until no variants remain.
In Sect. 3, we present how Steps 5 and 6 are automated by applying change
impact analysis techniques, i.e., incremental model slicing.

Example 2. We use the core from Example 1 as test model for pcore and focus
on all-transition coverage. A test case tc1 is generated for transition t6 also
covering t1, t2, t3, and t4. To step to p1, we adapt the core test artifacts to TAp1

based on Δp1 also representing the regression delta ΔFSM
pcore,p1

. The test model is
transformed as shown in Fig. 1b. TGpcore

is adapted by removing t6 and adding
t10 and t11. The test suite is adapted such that tc1 is obsolete and removed as
well as new test cases for t10 and t11 are added. To step to p2, the test artifacts
are adapted similarly, whereas tc1 becomes reusable again and is added to TS p2

Re.

Applying Incremental Model Slicing to Product-Line Regression Testing 7

Incremental Model Slicing. Slicing was first proposed by Weiser [41] for static
analysis of procedural programs. Meanwhile, slicing is also adapted for the analy-
sis of state-based models, e.g., finite state machines. Such model slicing [4,18,20]
allows for a model reduction by abstracting from model elements not influencing
a selected element, e.g., a transition, used as slicing criterion c. A reduced model
is called slice and preserves the execution semantics compared to the original
model w.r.t. the criterion c. We focus on backward slicing, where a slice com-
prises elements influencing the criterion c determined based on (1) control and
data dependencies between elements, and (2) to ensure model well-formedness,
e.g., element reachability and model connectedness. Backward slicing investi-
gates which elements have potential influences on a slicing criterion and, thus,
indicates retest potentials when changed influences are determined.

In prior work [24], we combined model slicing and delta modeling to ana-
lyze delta-oriented SPLs. A slice Slicecpi

for a criterion c ∈ Cpi
of variant pi is

incrementally computed by exploiting the model changes specified in the model
regression delta ΔFSM

pi−1,pi
. By Cpi

, we refer to the set of all slicing criteria of
pi. The incremental computation is defined by incrSlice : CSPL × ΔSPL

FSM ×
SLICECSPL

→ SLICECSPL
where CSPL =

⋃
pi∈PSPL

Cpi
and SLICECSPL

denotes the set of all slices of the current SPL. Starting with the prior slice
Slicecpj

for criterion c, the regression delta is applied to change the slice com-
pleted by standard model slicing. If there is no prior slice, we apply standard
model slicing to compute a new slice reusable for subsequent variants. In addi-
tion, we directly determine the differences, i.e., slice changes, between the prior
and current slice captured in a slice regression delta Δ

pj ,pi

Slicec
. The slice changes

indicate the impact of applied model changes to the slicing criterion referring to
behavior to be retested and, therefore, facilitate automated retest decisions as
proposed in the next section.

Example 3. Consider the core slice for t4 capturing all its influencing elements
shown in Fig. 1d. Based on Δp1 from Example 1, the core is transformed into
model p1. As those model changes have influences on t4, we recompute its slice
and derive the slice regression delta Δpcore,p1

Slicet4
= {(add t5), (add t10)} shown in

Fig. 1e. By stepping to p2, the model changes also results in slice changes for
Slicet4p2

.

3 Automated Retest Decisions Based on Slice Changes

Change Impact Analysis. By stepping from pi−1 to pi under test, the test model
regression delta ΔFSM

pi−1,pi
captures all changes between the test models. Each

change has an impact on already tested behavior common in both variants.
To investigate whether these impacts have unintended side effects, e.g., based
on unintended artifact interactions, the potentially affected behavior should be
retested by re-executing reusable test cases tcj ∈ TS pi

Re of pi. The identification
of affected behavior and the selection of reusable test cases is performed manually
in our incremental SPL testing strategy [25,26]. For automation, we apply our

8 S. Lity et al.

incremental slicing technique [24] as change impact analysis. Based on obtained
slice changes indicating changed dependencies and their side effects to already
tested behavior, we automate the retest decision.

For the successful application of incremental model slicing as change impact
analysis technique, we require (1) a set of slicing criteria suitable to investi-
gate the change impact, (2) a set of meaningful dependencies, and (3) model
regression deltas specifying the test model changes between subsequent variants
under test. Similar to test-case generation, where test goals are used to guide
the generation process, we use test goals as slicing criteria for (1), as changes
may influence their corresponding behavior. We focus on all-transition coverage,
i.e., a well-known structural coverage criteria used for test-case generation [37],
such that each transition serves as a slicing criterion. As in prior work [24], we
focus on the control dependencies proposed by Kamischke et al. [20] for (2). To
fulfill (3), the required model regression deltas are provided by the incremental
testing strategy.

Furthermore, the order in which variants are tested influence the result [3,16]
as the derived model regression deltas and, thus, the result of the change impact
analysis may differ. We omit the investigation of the best testing order, i.e., an
order of variants allowing for maximal test artifact reuse and minimal retest
decisions, and leave it for future work. We assume that a certain testing order is
given starting with the core variant. However, to incorporate the testing order
for change impact analysis, we identify three potential application scenarios for
the derivation of slice changes as follows, where each scenario specifies which
prior slice for a given slicing criterion is to be selected for adaptation to reason
about change impact. For a slicing criterion contained in a test model for the
first time, we start with a new slice.

1. Least Slice Difference – By stepping to the next variant, we select one of
prior computed slices for the same slicing criterion, i.e., a transition contained
in both variants, such that the resulting slice changes are minimized. To select
a suitable slice, all prior computed slices must be stored and an additional
analysis is required. The determination of a suitable slice, e.g., by analyzing
the core and all deltas defined for already tested variants, is left open for
future work. Due to a potential change minimization, a reduction of retest
decisions and a reduction of test cases to be retested is achievable.

2. Last Variant – For a slicing criterion, we check whether a slice to be adapted
exists in the prior variant pi−1. If a prior slice exists, we obtain slice changes
for the slicing criterion. Otherwise, a new slice has to be computed and no
retest decision can be made. In such a case, either all reusable test cases
covering the slicing criterion should be retested or none of the test cases are
re-executed leading to possible missed failures. A new slice may be used as
basis for incremental slicing in the subsequent variant pi+1 under test.

3. Previous Slice – Similar to the prior scenario, we check for a slicing criterion
if a previous slice to be adapted exists. In contrast, we select the last computed
slice for the corresponding criterion of an already tested variant pj under test,
where the respective test model element was contained. Thus, we ensure the

Applying Incremental Model Slicing to Product-Line Regression Testing 9

determination of slice changes if existing, resulting in retest decisions to be
made for the current variant pi under test.

We do not choose the Least Slice Difference scenario as it requires an additional
analysis effort, i.e., a crucial factor for change impact analysis, and the slice
selection to achieve minimized slice changes is an open question left for future
work. We further do not choose the Last Variant scenario as we are interested
in retest decisions to be made in every variant. The scenario does not ensure
retest decisions as for some slicing criteria the last variant under test does not
contain a required slice to be adaptable. In this paper, we focus on the Previous
Slice scenario following the incremental idea by providing retest decisions based
on slice changes for each variant under test. Depending on a given testing order,
the scenario, however, may result in redundant decisions for some slicing criteria
in subsequent variants under test. To select already computed slices, we store
each new/adapted slice in a shared slice repository.

Based on the Previous Slice scenario, we apply incremental slicing for change
impact analysis as follows. The incremental testing strategy starts with the test
of pcore. As pcore is the first variant under test, no retest potentials arise and we
solely compute for all test goals used as slicing criteria the first slices such that
∀tg ∈ TGpcore

: incrSlice(tg, ∅, ε) = Slicetgpcore
holds. By the second parameter ∅,

we refer to the empty model regression delta not existing for the core, whereas the
third parameter ε represents that no prior slices exist for the slicing criterion tg.
These slices build the basis of the change impact analysis for the next variants.
For the remaining variants to be tested, we apply our analysis after the test-case
generation step for covering not yet covered test goals such that

∀tg ∈ TGpi :

{
incrSlice(tg, ∅, ε) = Slicetgpi if ¬∃Slicetgpj , j < i (1)

incrSlice(tg, ΔFSM
pi−1,pi , Slicetgpj) = Slicetgpi if ∃Slicetgpj , j < i (2)

holds. For each test goal of a variant pi under test, one of the two cases is valid.
In case (1), the test goal and, thus, the respective model element is contained in
a test model for the first time. That is, no prior slice exists in the shared slice
repository to be adaptable for analyzing the change impact. For the test goal,
a new slice is computed and stored for subsequent testing steps. In case (2), we
have access to a prior slice of the test goal to be adaptable based on incremental
model slicing. In addition to the adapted slice, we obtain the slice regression
delta Δ

pj ,pi

Slicetg
as result facilitating retest decision to be made.

A slice regression delta captures additions/removals of test model elements
of the updated slice. Both, additions and removals represent changed behavioral
influences on the respective slicing criterion, i.e., test goal, caused by the applied
model changes. Those changed influences may indicate potential sources of errors
to be (re-)tested, e.g., due to unintended artifact interactions. In contrast, an
empty slice regression delta implies that no changed influences exist and, thus,
no retest potentials arise for the corresponding test goal.

To reason about the retest of test cases, we require a scale by means of an
expressive criterion based on these slice changes. Coverage criteria are promising

10 S. Lity et al.

scales as they are already applied in various scenarios, e.g., all-transition coverage
for test-case generation [37]. Hence, we define a new coverage criterion to control
the retest decision as described in the next paragraph.

Example 4. Consider Examples 2 and 3 again. For pcore, we compute for each
test goal a respective slice, e.g., the slice for t4 depicted in Fig. 1d. By stepping
to p1, all test artifacts are adapted and for each test goal, a slice is either created
from scratch or updated by applying the incremental slicing, in which we use
the slices of the core as basis. For instance, compared to the base slice of t4,
its updated slice comprises two new elements as shown in Fig. 1e indicating new
dependencies for t4 to be tested. By stepping to p2, the slice of t4 is again
updated. Furthermore, the slice of t6 computed for pcore is now updated to
investigate the applied model changes as the element was not contained in p1.

Retest Coverage Criterion. Similar to the definition of model-based coverage
criteria, where test model elements, e.g., transitions are used as test goals [37], we
combine slicing criteria with their slice changes to define a novel retest coverage
criterion. A retest test goal rtgl = (ek, tg) ∈ TG pi

R is defined as a pair of test
model elements such that tg represents a slicing criterion of pi for which a slice
regression delta Δ

pi−1,pi

Slicetg
exists, and ek corresponds to one of the following cases:

1. A state/transition added to the slice Slicetgpi
via Δ

pi−1,pi

Slicetg
.

2. A source/target state of a transition removed with Δ
pi−1,pi

Slicetg
still contained in

the current test model.

Retest test goals are defined for Case 1 to (re-)validate newly introduced depen-
dencies between element ek and slicing criterion tg. For Case 2, retest test goals
are specified to validate that removed behavior represented by a removed tran-
sition is not remained in the variant implementation under test, and that new
dependencies build due to the removal are implemented as expected. With TG pi

R ,
we refer to the retest test goal set of the variant pi under test.

To cover a retest test goal rtgl ∈ TG pi

R by a test case tc, both, ek and tg
must be traversed by the test model path of tc. Test case tc specifies a represen-
tative execution of the current variant validating that no unexpected behavior
is implemented based on the new dependencies between both elements. Similar
to model-based coverage criteria, for each retest test goal rtgl ∈ TG pi

R , at least
one test case must exist for its coverage. An empty retest test goal set indicates
that no retest decisions are to be made.

Example 5. We use the slice changes for t4 obtained in Example 4 by stepping
from pcore to p1 as basis to define respective retest test goals. The set TG p1

R

comprises two retest test goals rtg1 = (t5, t4) and rtg2 = (t10, t4) to be covered
by (reusable) test cases. In p2, we similarly derive for t4 the retest test goal
rtg3 = (t6, t4).

Applying Incremental Model Slicing to Product-Line Regression Testing 11

Retest Test-Case Selection and Generation. To validate that changes do not
unintentionally influence already tested behavior when stepping to a subsequent
variant under test, we require the selection of reusable test cases to be retested.
Based on a set of retest test goals TG pi

R for a variant pi, we are able to make
retest decisions. Therefore, each retest test goal rtgl ∈ TG pi

R must be covered by
at least one (reusable) test case. We identify three coverage scenarios as follows:

1. New Test Cases – By adapting the test model based on a model regression
delta, new model elements ek may be added for the first time, i.e., all prior
tested variants do not comprise ek. Those elements will also be contained in
slices for the first time resulting in retest goals rtgl = (ek, tg) not coverable
by reusable test cases. For this type of retest test goals, we check whether
newly added test cases tc ∈ TS pi

N are selectable to cover retest test goals.
2. Reusable Test Cases – By stepping to a subsequent variant, some elements ek

may again be added to the current model via the model regression delta, i.e.,
ek was already contained in a prior test model. Those elements will again be
contained in slices resulting in retest goals rtgl = (ek, tg) covered by reusable
test cases to be selected for retest. For this type of retest test goals, we check
whether reusable test cases tc ∈ TS pi

Re are selectable for retest.
3. New Retest Test Cases – Some retest test goals may not be covered by the

current test suite. All test cases are defined by a certain test model path
which must traverse the element combination specified by a retest test goal
for its coverage. We apply test-case generation to derive new retest test cases
covering the remaining retest test goals. The newly generated retest test cases
are added to the variant-specific test suite also reusable for subsequent vari-
ants under test. For this type of retest test goals, we generate new test cases
tc ∈ TS pi

R,N for covering the remaining uncovered retest test goals.

The selected reusable test cases TS pi

R and the generated retest test cases TS pi

R,N

are captured in a retest suite TS pi

R = TS pi

R ∪ TS pi

R,N for variant pi under test.
The resulting test suite TSpi

= TS pi

N ∪ TS pi

R for pi comprising all new and
retest test cases is executed to (re)test pi. The test suite may contain redundant
test cases, e.g., by means of test goal coverage, and, thus, be still optimizable
to further reduce the testing effort. To minimize the set of executed test cases,
test suite minimization [42] is applicable, which is, however, out of our scope.
After test case execution, all new and updated test artifacts, e.g., slices and test
cases, are stored in the shared test artifact and slice repository. The incremental
testing process is either finished or selects the next variant to be tested.

Example 6. To cover the retest test goals from Example 5, we select a reusable
test case, i.e., generated for pcore, covering t5 and the retest test goal rtg1. In
contrast, as t10 is a new transition not contained in a prior variant, we generate
a new test case for t10 to cover rtg2. For covering rtg3 in p2, we again select a
reusable test case, i.e., the test case for t6 defined in Example 2. To cover the
new retest test goal rtg4 = (t12, t4) in p2, we generate a new retest test case.

12 S. Lity et al.

4 Evaluation

Prototype. Our approach is realized as Eclipse1 plug-ins to facilitate its extend-
ability in future work. We use the CAISE-tool eMoflon2 for the model-driven
development based on respective meta models defined in the Eclipse modeling
framework.3 We applied FeatureIDE4 for feature modeling and to derive the set
of valid feature configurations generated in default order, i.e., by incrementing
the number of features contained in a configuration after covering all poten-
tial combinations of the current number of features. Furthermore, our approach
requires the generation of test cases to cover (retest) test goals during testing
all variants. For test-case generation, we apply CPA/Tiger5 an extension of
the symbolic model-checker CPA/Checker6 for the language C. Therefore, we
realized a transformation from our event-based models to C-Code by encoding
the event handling based on respective variables and their restricted access.

Subject Product Lines. For evaluation, we apply our approach to our example
and to three existing SPLs already served as benchmarks in the literature [10].
These systems are (1) a Wiper SPL comprising variable qualities of rain sen-
sors and wipers, (2) a Vending Machine SPL with optional selection of various
beverages, and (3) a Mine Pump SPL describing a pump control system with
variable water level handling and an optional methane detection facility. We
chose these systems as each has unique characteristics, e.g., the mine pump SPL
is specified by parallel regions mainly synchronized by internal variables and
events, whereas the wiper subsystems communicate via internal events. Based
on the set of dependencies containing only control and not data dependencies,
the slicing and the change impact analysis is affected by the different system
characteristics.

Results. For the evaluation of our approach and its prototypical implementation,
we derive two research questions to be answered:

RQ1. Is incremental model slicing applicable as change impact analysis to rea-
son about retesting of test cases in incremental SPL testing?

RQ2. Do we achieve a gain in effectiveness from the slicing-based retest test-
case selection compared to retest-all [42]?

As already explained in Sect. 3, for the evaluation set-up, (1) we focus on all-
transition coverage [37], (2) transition test goals are used as slicing criteria, (3)
we choose the set of control dependencies proposed by Kamischke et al. [20], and
(4) we select the Previous Slice scenario for the derivation of slice changes.

1 https://eclipse.org/.
2 http://www.emoflon.org/emoflon/.
3 https://eclipse.org/modeling/emf/.
4 http://wwwiti.cs.uni-magdeburg.de/iti db/research/featureide/.
5 http://forsyte.at/software/cpatiger/.
6 http://cpachecker.sosy-lab.org/.

https://eclipse.org/
http://www.emoflon.org/emoflon/
https://eclipse.org/modeling/emf/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://forsyte.at/software/cpatiger/
http://cpachecker.sosy-lab.org/

Applying Incremental Model Slicing to Product-Line Regression Testing 13

Table 1. Results of change impact analysis and retest test-case selection

SPL |PSPL| ∅ Test Goals ∅ Test Cases ∅ Retest ∅ Retest

(Transition/Retest) (New/Reuse/Obsolete) (Select/New) All

Example 3 24.0 (14.3/9.6) 17.0 (8.0/7.6/1.3) 4.6 (1.6/3.0) 7.6

Wiper 8 63.6 (17.5/46.1) 71.1 (14.1/33.5/23.5) 32.5 (21.0/11.5) 33.5

Mine pump 16 106.2 (33.5/72.7) 51.7 (4.6/26.3/20.8) 16.3 (13.5/2.8) 26.3

Vending

machine

28 108.8 (15.4/93.4) 92.2 (5.2/16.0/70.9) 18.2 (14.6/3.6) 16.0

In Table 1, our results of the change impact analysis and the retest test-
case selection are summarized denoted by average values of test goals and test
cases. For change impact analysis, we consider the number of retest test goals
referring to the impact of applied model changes between subsequently tested
variants. As we can see, the three existing SPLs have a high number of retest
test goals compared to their approximate model size represented by the number
of transition test goals. Thus, the applied model changes have a large impact
on common behavior detected based on our incremental slicing. For instance,
the vending machine SPL has 93.4 retest test goals compared to 15.4 transition
test goals on average, where we have a maximum of 208 retest test goals for
variant p11 and a minimum of 27 for p2. This difference is mainly caused based
on the exchange of the offered beverages representing the main behavior of a
vending machine variant, whereas the exchange of the payment currency has a
rather small impact. Another crucial factor for the high number of retest test
goals is the testing order. In the given default order, the exchange of beverages is
alternating and, therefore, results in lots of model changes with a large impact on
common behavior between variants. A different order may reduce these changes
and also their impact to be retested. Similarly, for the wiper and the mine pump
SPL, the testing order as well as the behavior of some features alternating added
or removed from the variants result in high number of retest test goals.

By comparing the number of retest test cases generated and selected with
our approach to retest-all, we see at first sight that our approach and retest-all
executes similar numbers of test cases for the vending machine and the wiper
SPL. Solely for the mine pump SPL and the running example, we achieve a
reduction of test cases to be retested (16.3/4.6) against retest-all (26.3/7.6).
However, based on a more precise consideration of the vending machine and
wiper results, we see that this average values are of course influenced by the
number of retest test goals. In those variants, where we have a high number of
retest goals, e.g., for variant p11 (208) of the vending machine SPL, we require
more covering test cases (34) with our approach in contrast to retest-all (20) as
retest-all does not ensure our retest coverage criterion. But, for variants with a
small number of retest goals, e.g., for variant p4 (28) of the wiper SPL, we require
less test case (26) than retest-all (51). Hence, our retest decisions depend also
on the testing order as well as the added/removed behavior of some features as
described above. Again, another testing order may improve also the results of
the vending machine and wiper SPL for the retest test-case selection.

14 S. Lity et al.

Summarizing, our results show the applicability of our approach (RQ1).
Based on incremental slicing, we are able to detect the impact of applied model
changes when stepping to subsequent variants captured by retest test goals.
The determined retest test goals are then used to select test cases to be retested,
where we obtain positive results in the reduction of test suite size to be enhanced
by investigating testing orders in future work.

To answer RQ2, we evaluate the fault detection capability of our approach
compared to retest-all [42] by means of a set of faults to be detected. Unfortu-
nately, for the SPLs under consideration, we do not have such a set of real faults.
As no faults exist, we utilize simulated ones derived by incorporating the changes
applied to a test model when stepping to a subsequent variant. Therefore, we
take changes captured in the model regression deltas into account, where added
transitions as well as source and target states of removed transitions which are
still contained in the test model are used for fault generation. We combine those
elements with other transitions from the test model to define faults representing
erroneous artifact interactions caused by changes and their impact on common
behavior. For the evaluation, we generate for each variant a set of simulated
faults. We randomly select 10% of the faults from this set to obtain a random
data set on which test cases are executed to validate the fault detection. Depend-
ing on the size of the original variant-specific fault set, we derive a maximum of
different random data sets to investigate the fault detection capability.

In Table 2, our results for the fault detection capability are summarized
denoted by average values of undetected (alive) and detected (dead) faults. As
we can see, our approach has for all four SPLs a good fault detection rate and
performs better compared to retest-all. We obtained the best results for the
vending machine SPL, where almost all faults are detected (0.08 alive) by our
determined retest suites. But, this result must be relativized when considering
the results shown in Table 1. On average, we select more test cases as retest-all
allowing for a better chance to detect faults. However, for those variants, where
we select less test cases than retest-all, we still have a better detection rate. For
the wiper SPL, we select slightly less test cases compared to retest-all, where
only three of the eight variants under test increase the average values. Thus, our
approach allows for a good detection rate with a reduced set of test cases to be
retested. This is supported based on the results of the mine pump SPL. Here,

Table 2. Results of the approach effectiveness compared to retest-all

SPL ∅ Faults # Fault Size Fault Approach Retest-all

Sets Sets ∅ Alive/∅ Dead ∅ Alive/∅ Dead

Example 17 22 7 0.11/6.89 2.84/4.16

Wiper 69 22 7 1.05/5.95 3.05/3.95

Mine pump 136 54 17 3.79/13.21 5.11/11.89

Vending machine 73 30 10 0.08/9.92 0.96/9.04

Applying Incremental Model Slicing to Product-Line Regression Testing 15

we obtained a good detection rate with reduced variant-specific retest suites
(cf. Table 1).

Summarizing, our approach shows a better fault detection capability com-
pared to retest-all (RQ2). For all SPLs, we detect more faults than retest-all,
where in the worst cases our approach detect and miss at least the same numbers
of faults. The undetected faults mainly belong to artifact interactions seeded in
model parts, where changes had no impact and are ignored by our approach.

Threats to Validity. For our approach and its evaluation, the following threats to
validity arise. Due to varying interpretations of a systems’ behavior, test model-
ing may result in different models to be used for model-based testing processes.
This problem exists in general for model-based testing [37] and is not a specific
threat for the delta-oriented test models of the four SPLs. To cope with this
threat, we compared our re-engineered models with the original documented
models [10] to ensure that both instances specify the same behaviors.

The non-existence of faults is a potential threat. For evaluating the effec-
tiveness, we require the existence of faults detectable during test-case execution.
Therefore, we derived simulated faults representing potential erroneous artifact
interactions. We further select several randomly chosen fault sets to obtain vary-
ing data sets for each variant under test. In future work, we want to use a
model-based mutation testing framework [2] for fault generation and apply the
approach on real SPLs with an existing fault history.

We evaluated our approach by means of four SPLs with different system
characteristics. Based on the obtained results showing a gain in effectiveness, we
propose the assumption that our obtained results, up to a certain extent, are
generalizable to other SPLs as well. However, we must investigate this assump-
tion by performing more experiments with more complex systems. In addition,
all four SPLs are modular event-based systems, i.e., the behavior is specified
based on several subsystems, which are synchronized and controlled via events.
To find the barrier for which systems our approach does not fit, we must include
other types of systems in future experiments.

The choice of the coverage criterion used for test-case generation is a relevant
factor influencing the obtained test suites. We focused on all-transition coverage,
whereas more complex criteria exists to be considered in future experiments.

In this paper, we apply only control dependencies for the slicing computation
due to our prior work [24]. As next step, we integrate also data dependencies and
more complex control dependencies [4] allowing for a more fine-grained change
impact analysis and, therefore, to ensure a more conclusive retest decision.

The testing order is also a threat. We applied the default order obtained from
FeatureIDE, but other testing orders may influence our results. An investigation
of the best testing order optimized for incremental SPL testing is required to be
used for future evaluations to consolidate the achieved positive results.

The choice of the test-case generator may represent a threat. Depending on
the applied generator, the obtained test suites may differ and, thus, the selection
of test cases to be retested. However, our approach is independent of a specific
test-case generator only required for providing test cases.

16 S. Lity et al.

The neglection of factors such as time required for change impact analysis
or test-case execution cost may be threats. The analysis time is a crucial factor
for a successful retest test-case selection. Likewise, testing costs are important
as there are solely limited testing budgets/resources available. We will perform
a comprehensive evaluation in future work, where the analysis time is measured
as well as limited testing resources are taken into account.

5 Related Work

We discuss related work regarding SPL regression testing as well as the appli-
cation of slicing for change impact analysis. For a discussion concerning related
(1) variability-aware slicing approaches, e.g., conditioned model slicing for anno-
tated state machines [20], and (2) incremental slicing techniques, e.g., to support
software verification [40], we refer to our prior work on incremental slicing [24].

SPL Regression Testing. Existing techniques realize SPL regression testing in
the industrial context [13,33,34], for product-line architectures [11,22,29], for
sample-based testing [32], as well as to allow for incremental testing [5,6,12,
25,26,38,39]. Uzuncaova et al. [38] propose one of the first incremental strate-
gies for SPL testing, where test suites are incrementally refined for a variant
under test. Baller et al. [5,6] present multi-objective test suite optimization
for incremental SPL testing by incorporating costs and profits of test artifacts.
Varshosaz et al. [39] present delta-oriented test-case generation, where delta-
oriented test models facilitate test-case generation by exploiting their incremen-
tal structure. Compared to our approach, where test cases are selected for retest,
those techniques focus on the determination and optimization of SPL test suites.
Dukaczewski et al. [12] propose an adaption of our previous work [25,26] for
incremental requirements-based SPL testing. In contrast, we focus on finite state
machines facilitating a more fine-grained reasoning about behavioral change.

Slicing for Change Impact Analysis. Mainly white-box regression testing
approaches exist applying slicing for change impact analysis [1,7,8,14,17,35].
Agrawal et al. [1] propose three types of slices for a test case comprising its exe-
cuted program statements, where a modification of at least one of these state-
ments indicates a retest. Jeffrey and Gupta [17] adopt this technique and define
a prioritization of test cases to be re-executed. Bates and Horwitz [7] present
slicing on program dependence graphs and reason about retest based on slice iso-
morphism. Gupta et al. [14] propose program slicing to identify affected def-use
pairs to be retested by selected test cases. Tao et al. [35] present object-oriented
program slicing for change impact analysis by incorporating the logical hierarchy
of object-oriented software. We refer to Binkley [8] for an overview of program
slicing techniques applied for change impact analysis. In contrast to those tech-
niques, our approach is applied in model-based testing and it does not cope with
evolution of software, but rather with incremental testing of SPLs. In the context
of model-based regression testing, Korel et al. [21], and Ural and Yenigün [36]

Applying Incremental Model Slicing to Product-Line Regression Testing 17

propose retesting of test cases based on dependence analysis. Both techniques are
similar to our approach, also starting their analysis based on model differences
to reason about change impact. In contrast to our approach, where slices are
defined for model elements, their dependence analysis is applied on the model
path of a test case resulting in a different retest test-case selection.

6 Conclusion

In this paper, we proposed the application of incremental slicing as change
impact analysis technique for automated retest decisions in SPL regression test-
ing. By stepping to a subsequent variant under test, we capture differences
between slices as slice changes indicating the impact of model changes, i.e.,
changed dependencies between model elements. Based on a novel retest cov-
erage criterion, each slice change represents a retest test goal to be covered by
reusable or newly generated retest test cases. We prototypically implemented and
evaluated our approach concerning its applicability and effectiveness by means
of four SPLs.

We obtained positive results to be enhanced in future work by (1) consid-
ering more elaborate control and data dependencies [4], and (2) also applying
forward slicing facilitating a more fine-grained analysis and more comprehen-
sive retest decisions. Furthermore, we plan a case study by means of a real
SPL from the medical domain provided by our industrial partner, in which we
also want to investigate how we can apply our approach in practice. In addi-
tion, we want to adapt our analysis technique to cope with SPL evolution. In
this context, an investigation of the first application scenario for change impact
analysis (cf. Sect. 3) is aspired as this scenario seems to be more preferable when
SPL evolution arises.

References

1. Agrawal, H., Horgan, J.R., Krauser, E.W., London, S.: Incremental regression test-
ing. In: ICSM 1993, pp. 348–357. IEEE Computer Society (1993)

2. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.: Killing
strategies for model-based mutation testing. Softw. Test. Verif. Reliab. 25(8), 716–
748 (2014)

3. Al-Hajjaji, M., Thüm, T., Meinicke, J., Lochau, M., Saake, G.: Similarity-based
prioritization in software product-line testing. In: SPLC 2014, pp. 197–206 (2014)

4. Androutsopoulos, K., Clark, D., Harman, M., Krinke, J., Tratt, L.: State-based
model slicing: a survey. ACM Comput. Surv. 45(4), 53:1–53:36 (2013)

5. Baller, H., Lity, S., Lochau, M., Schaefer, I.: Multi-objective test suite optimization
for incremental product family testing. In: ICST 2014, pp. 303–312 (2014)

6. Baller, H., Lochau, M.: Towards incremental test suite optimization for software
product lines. In: FOSD 2014, pp. 30–36. ACM (2014)

7. Bates, S., Horwitz, S.: Incremental program testing using program dependence
graphs. In: POPL 1993, pp. 384–396. ACM (1993)

18 S. Lity et al.

8. Binkley, D.: The application of program slicing to regression testing. Inf. Softw.
Technol. 40(1112), 583–594 (1998)

9. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: GPCE 2010,
pp. 13–22 (2010)

10. Classen, A.: Modelling with FTS: a collection of illustrative examples. Techni-
cal report P-CS-TR SPLMC-00000001, PReCISE Research Center, University of
Namur (2010)

11. Da Mota Silveira Neto, P., do Carmo Machado, I., Cavalcanti, Y., de Almeida, E.,
Garcia, V., de Lemos Meira, S.: A regression testing approach forsoftware product
lines architectures. In: SBCARS 2010, pp. 41–50 (2010)

12. Dukaczewski, M., Schaefer, I., Lachmann, R., Lochau, M.: Requirements-based
delta-oriented SPL testing. In: PLEASE 2013, pp. 49–52 (2013)

13. Engström, E.: Exploring regression testing and software product line testing -
research and state of practice. LIC dissertation, Lund University (2010)

14. Gupta, R., Harrold, M.J., Soffa, L.: Program slicing-based regression testing tech-
niques. Softw. Test. Verif. Reliab. 6, 83–112 (1996)

15. Harrold, M.J.: Testing: a roadmap. In: ICSE 2000, pp. 61–72. ACM (2000)
16. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., Traon, Y.L.:

Bypassing the combinatorial explosion: using similarity to generate and prioritize t-
wise test configurations for software product lines. IEEE Trans. Softw. Eng. 40(7),
650–670 (2014)

17. Jeffrey, D., Gupta, R.: Test case prioritization using relevant slices. In: COMPSAC
2006, vol. 1, pp. 411–420 (2006)

18. Wang, J., Dong, W., Qi, Z.-C.: Slicing hierarchical automata for model checking
UML statecharts. In: George, C.W., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495,
pp. 435–446. Springer, Heidelberg (2002)

19. Johansen, M.F., Haugen, O., Fleurey, F.: An algorithm for generating t-wise cov-
ering arrays from large feature models. In: SPLC 2012, pp. 46–55. ACM (2012)

20. Kamischke, J., Lochau, M., Baller, H.: Conditioned model slicing of feature-
annotated state machines. In: FOSD 2012, pp. 9–16 (2012)

21. Korel, B., Tahat, L., Vaysburg, B.: Model-based regression test reduction using
dependence analysis. In: ICSM 2002, pp. 214–223 (2002)

22. Lachmann, R., Lity, S., Lischke, S., Beddig, S., Schulze, S., Schaefer, I.: Delta-
oriented test case prioritization for integration testing of software product lines.
In: SPLC 2015, pp. 81–90 (2015)

23. Lee, J., Kang, S., Lee, D.: A survey on software product line testing. In: SPLC
2012, pp. 31–40. ACM (2012)

24. Lity, S., Baller, H., Schaefer, I.: Towards incremental model slicing for delta-
oriented software product lines. In: SANER 2015, pp. 530–534 (2015)

25. Lochau, M., Lity, S., Lachmann, R., Schaefer, I., Goltz, U.: Delta-oriented model-
based Integration testing of large-scale systems. J. Syst. Softw. 91, 63–84 (2014)

26. Lochau, M., Schaefer, I., Kamischke, J., Lity, S.: Incremental model-based testing
of delta-oriented software product lines. In: Brucker, A.D., Julliand, J. (eds.) TAP
2012. LNCS, vol. 7305, pp. 67–82. Springer, Heidelberg (2012)

27. McGregor, J.D.: Testing a software product line. Technical report CMU/SEI-2001-
TR-022, Carnegie Mellon University (2001)

28. da Mota Silveira Neto, P.A., Carmo Machado, I.D., McGregor, J.D., de Almeida,
E.S., de Lemos Meira, S.R.: A systematic mapping study of software product lines
testing. Inf. Softw. Technol. 53, 407–423 (2011)

29. Muccini, H., van der Hoek, A.: Towards testing product line architectures. Electron.
Notes Theor. Comput. Sci. 82(6), 99–109 (2003). TACoS 2003

Applying Incremental Model Slicing to Product-Line Regression Testing 19

30. Oster, S., Wübbeke, A., Engels, G., Schürr, A.: A survey of model-based software
product lines testing. In: Zander, J., Schieferdecker, I., Mosterman, P.J. (eds.)
Model-Based Testing for Embedded Systems, pp. 338–381. CRC Press, Boca Raton
(2011)

31. Pohl, K., Böckle, G., Linden, F.J.V.D.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, Heldelberg (2005)

32. Qu, X., Cohen, M.B., Rothermel, G.: Configuration-aware regression testing: an
empirical study of sampling and prioritization. In: ISSTA 2008, pp. 75–86 (2008)

33. Runeson, P., Engström, E.: Chapter 7-regression testing in software product line
engineering. Adv. Comput. 86, 223–263 (2012). Elsevier

34. Runeson, P., Engström, E.: Software product line testing - a 3D regression testing
problem. In: ICST 2012, pp. 742–746. IEEE (2012)

35. Tao, C., Li, B., Sun, X., Zhang, C.: An approach to regression test selection based
on hierarchical slicing technique. In: COMPSACW 2010, pp. 347–352 (2010)

36. Ural, H., Yenigün, H.: Regression test suite selection using dependence analysis. J.
Softw.: Evol. Process 25(7), 681–709 (2013)

37. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., Burlington (2006)

38. Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Trans. Softw. Eng. 36(3), 309–322 (2010)

39. Varshosaz, M., Beohar, H., Mousavi, M.R.: Delta-oriented FSM-based testing. In:
Butler, N., Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 366–
381. Springer, Switzerland (2015). doi:10.1007/978-3-319-25423-4 24

40. Wehrheim, H.: Incremental slicing. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 514–528. Springer, Heidelberg (2006)

41. Weiser, M.: Program slicing. In: ICSE 1981, pp. 439–449 (1981)
42. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:

a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2007)

http://dx.doi.org/10.1007/978-3-319-25423-4_24

Automated Composition of Service Mashups
Through Software Product Line Engineering

Mahdi Bashari1(B), Ebrahim Bagheri2, and Weichang Du1

1 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
{mbashari,wdu}@unb.ca

2 Department of Electrical and Computer Engineering,
Ryerson University, Toronto, Canada

bagheri@ryerson.ca

Abstract. The growing number of online resources, including data and
services, has motivated both researchers and practitioners to provide
methods and tools for non-expert end-users to create desirable appli-
cations by putting these resources together leading to the so called
mashups. In this paper, we focus on a class of mashups referred to as
service mashups. A service mashup is built from existing services such
that the developed service mashup offers added-value through new func-
tionalities. We propose an approach which adopts concepts from soft-
ware product line engineering and automated AI planning to support
the automated composition of service mashups. One of the advantages
of our work is that it allows non-experts to build and optimize desired
mashups with little knowledge of service composition. We report on the
results of the experimentation that we have performed which support
the practicality and scalability of our proposed work.

Keywords: Service mashups · Feature model · Software product lines ·
Automated composition · Planning · Workflow optimization

1 Introduction

More and more companies are now making their application services publicly
available to non-affiliated developers through online platforms such as Program-
mableWeb. These services can be accessed through well-defined RESTful APIs.
Many of these services are highly reliable and provide functionalities that cannot
be otherwise easily implemented by smaller software development companies or
end-users such as Google Maps, Zazzle and Paypal, just to name a few. There-
fore, the popularity of such publicly available online services and the ease of
adoption of their REST-based SOA architectures have motivated researchers
and practitioners to develop tools and methods which allow end-users to seam-
lessly build new services by composing existing APIs [4]. Such services are often
known as service mashups. A service mashup is a service which is composed of a
number of other services and provides added-value through new functionalities.

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 20–38, 2016.
DOI: 10.1007/978-3-319-35122-3 2

Automated Composition of Service Mashups 21

The added value of service mashups is through the emergence of newer func-
tional capabilities that were not available prior to the integration of the already
existing services.

There is considerable amount of research on semi-automatic and automatic
methods for composing service mashups [10]. Most of these approaches assume
that the end-user is familiar with the specifics of each and every instance of
services’ execution and invocation criteria, i.e., their pre-requisites, input and
output types and other types of execution requirements. However, when consid-
ering the fact that the objective of such work is to enable automated runtime
selection and composition of services from the available service possibilities with
minimal user intervention and high-availability, this becomes a noticeable short-
coming. It can prevent non-expert users who do not have the required knowledge
to benefit from and use such approaches.

In order to address this issue, we follow an intuitive approach to separate
the non-expert end-users from the complexities of the services by using concepts
from Software Product Lines (SPL). It has already been argued in the literature
that while end-users might have difficulty understanding the underlying specifics
of services, they are more comfortable when dealing with higher-level represen-
tations of functionality expressed through SPL features [13]. A feature is often
defined as an incremental prominent or distinctive user-visible functionality of a
software and is therefore quite understandable for the end-users. In other words,
while the end-user may not know which specific services are collectively needed
to satisfy her requirements, she would know which user-visible functionalities
are expected from the final product.

The integration of services and features have already been extensively investi-
gated in the literature [13]. We specifically base our work on the model proposed
by Lee and Kotonya where features are operationalized through atomic or com-
posite services [13]. In this model, two distinct lifecycle phases are introduced:
(i) domain engineering phase: during which appropriate services that can oper-
ationalize features are identified, and are connected to their corresponding fea-
tures, and (ii) application engineering phase: during which the end-users select
their desired features through which the right services are identified. Our work is
positioned within the application engineering phase of this model and provides
mechanisms for automatically composing and optimizing a service mashup based
on the user-specified feature requirements.

In this paper, we provide the following concrete contributions:

– We propose an AI planning based method for automated service mashup com-
position which operates based on feature model configurations as the main
input model for specifying user requirements and generates a WS-BPEL work-
flow that satisfies those requirements.

– We further propose a method for optimizing the created WS-BPEL workflow
by considering the concepts of safeness and threat from the planning domain
in order to inject parallelism into the generated workflow and improve its exe-
cution efficiency (e.g. reduce execution time).

22 M. Bashari et al.

The rest of this paper is organized as follows: Sect. 2 will cover the required
background information and the problem statement. In Sect. 3, we will describe
the details of the proposed approach. Section 4 will then provide the details of
the experiments and the insights gained from them. The related work is covered
in Sect. 5 and finally, the paper is concluded in Sect. 6.

2 Problem Statement and Background

The objective of our work is to enable non-expert end-users to automatically opti-
mially compose publicly available services in order to satisfy the requirements
without being concerned with the technical details of service composition. To
achieve this objective, we rely on the integration of services and software prod-
uct line features. As mentioned earlier, researchers such as Lee and Kotonya
[13] have already explored and concretely investigated how services and features
can be integrated. There is ample literature that builds on a two-phase lifecycle
that integrates services and features in its first phase and then, in the second
phase, uses the integrated model to derive a product that satisfies the end-users’
desired feature selections [13]. The derived product will then be operationalized
by the services that are connected to the selected features. In this paper, we
assume that the first domain engineering phase of the lifecycle, i.e., the con-
nection between services and features, has already been completed using one
of the established methods in the literature [13]. Our focus will therefore be to
systematically support the application engineering phase of the lifecycle. Cur-
rent automated service composition methods work on inputs such as OWL-S
service descriptions [10], temporal logic [5], or other languages, which are used
to specify the characteristics of the desired composed service mashup. However,
we are interested in an input specification model abstract enough to be used by
non-expert end-users to specify their requirements and an output that would
be concrete enough to be directly executable. For this purpose we use feature
models as the input specification model and generate the final outcome of the
composed service mashup in WS-BPEL.

Order
processing

Shipping
Scheduling

Invoice
Creation

Currency
conversion

Territory
support

International Domestic Tax
calculation

Google
Wallet PayPal

Payment
Processing

Integrity Constraints:
Domestic requires Tax calculation
International excludes Tax calculation
International requires Currency Conversion

Optional Mandatory Or Alternative And

Fig. 1. A sample feature model for an order processing mashup family.

Automated Composition of Service Mashups 23

2.1 Feature Models

Feature models are among the widely used variability modeling tools used in
Software Product Line Engineering (SPLE). A feature model provides a hierar-
chical tree structure that represents the organization of and the relation between
the features. Features can be structurally related to each other through optional,
mandatory, Xor-, Or-, or And-group relations. These relations express the pos-
sible variabilities of the product family. Feature models also represent cross-
cutting variations using integrity constraints. The use of feature models has the
advantage of being understandable while having the power to represent complex
variability of a family and therefore is usually used as a shared model between
users and system developers in software product line engineering [14].

Figure 1 depicts a feature model for a product family that processes a pur-
chase request and creates an invoice in different ways. The product family repre-
sented through the ‘Order Processing’ root node has four sub-features, namely
invoice creation, shipping scheduling, payment processing, and territory support,
where shipping scheduling and payment processing features are optional. Ter-
ritory support sub-features are mutually exclusive. Furthermore, the selection
of the ‘international’ feature prevents the selection of the ‘tax calculation’ fea-
ture and requires the selection of the ‘currency conversion’ due to the integrity
constraints.

A feature model configuration is a subset of the features in a feature model
which satisfies the structural and integrity constraints, and represents a viable
instance of the family. Prior work has shown that a feature model configuration
can be used as an effective tool for representing the end-users’ requirements
[14]. For example, the selection of features marked with a checkbox in Figure 1
represents a valid feature model configuration that can also be considered to be
the requirements expressed by an end-user.

2.2 Business Process Execution Language (BPEL)

The Web Service Business Process Execution Language (WS-BPEL), commonly
interchangeable with BPEL, is a well-known standard for the specification and
execution of service-oriented business processes. In WS-BPEL, processes are
built using WSDL-SOAP services and processes themselves are exposed as
WSDL-SOAP web services. Control flows in WS-BPEL are expressed by struc-
tured activities and data is passed between services by sending variables as
parameters. Figure 2 represents a graphical representation for a WS-BPEL code
for the possible realization of the feature model configuration in Fig. 1 where
features marked with checkboxes are selected. The general process for a service
composition is made of hierarchical organization of activities using <flow> and
<sequence> tags. The activities in <flow> can be executed in any order or in
parallel while activities in a <sequence> tag should be executed in order. The
synchronization between activities in a <flow> tag can be done using <link>
tags which has been shown by yellow arrows in Fig. 2.

24 M. Bashari et al.

Fig. 2. Graphical representation of a possible WS-BPEL process for order processing.

The atomic activities in WS-BPEL are made of service invocations, receiving
a callback for a service invocation, and a number of WS-BPEL actions or control
activities which will not be considered in this paper for the sake of simplicity and
without loss of generality. Each service invocation may receive some variables
as input and may return one or more outputs. WS-BPEL code can be readily
executed using existing WS-BPEL engines.

In the next section, we will describe our proposed automated mashup compo-
sition and workflow optimization method which receives the end-users’ require-
ments through a feature model configuration process and automatically builds
a fully executable WS-BPEL process to serve as the target service mashup.

3 Proposed Approach

In our work, an input feature model configuration serves as the end-users’
requirements and it is realistically assumed that the features of the feature model
configuration have already been connected to relevant services during the domain
engineering phase [13]. We refer to the feature model configuration and the ser-
vices connected to the features as the domain model. The objective is to generate
a fully executable WS-BPEL process based on the domain model. Our proposed
method first creates a workflow model that consists of all the features present in
the domain model through an AI planning problem. The obtained workflow is
then optimized and converted into WS-BPEL. In the following, we first formally
define the domain model.

Automated Composition of Service Mashups 25

3.1 Domain Model Specification

We define the domain model to consist of five sub-models, namely feature model,
service model, context model, service annotations, and feature model annota-
tions. We start by formally defining a feature model configuration and a workflow
and then define the models that connect these two together.

In order to define feature model configuration, we first need to define the
feature model. A feature model can be formally defined as:

Definition 1 (Feature model). A feature model is a tuple fm = (F,P,FO,
FM , FIOR,FXOR,Freq,Fexc) where

– F is a set of features;
– FO : F �→ F is a function which maps an optional child feature to its parent;
– FM : F �→ F is a function which maps a mandatory child feature to its parent;
– FIOR : F �→ F and FXOR : F �→ F is a function which maps child features

and their common parent feature, grouping the child features into optional and
alternative groups, respectively;

– P : F �→ F is a function which maps each feature to its parent and hence we
have P = FO ∪ FM ∪ FIOR ∪ FXOR;

– Freq ⊂ F × F is a set of requirement relations which represents dependency
between features.

– Fexc ⊂ F × F is a set of exclusion relations between features which repre-
sents pair of features that both can not be selected in a valid feature model
configuration.

Consequently, a feature model configuration is defined as follows:

Definition 2 (Feature model configuration). A feature model configuration
is a set C ⊆ F where

– if f ∈ C then P(f) ∈ C
– if f ′ ∈ C and (f, f ′) ∈ FM then f ∈ C
– if f, f ′ ∈ F and f ′′ = P(f) = P(f ′) and (f, f ′′), (f ′, f ′′) ∈ FXOR then f ∈

C ⇒ f ′ /∈ C
– f, f ′ ∈ F and (f, f ′) ∈ Freq then f ∈ C ⇒ f ′ ∈ C
– f, f ′ ∈ F and (f, f ′) ∈ Fexc then f ∈ C ⇒ f ′ /∈ C.

In order to operationalize a feature model configuration in a SOA model, the
orchestration of features implemented using services needs to be implemented
in a workflow. A workflow specifies the sequence of interactions between the
services. Our objective is to first develop a workflow from a feature model con-
figuration and then convert that into WS-BPEL. We define a workflow based on
a service specification as:

Definition 3 (Service). A service specification s = (I,O,Oc) is a triple where

– I is a set of entities that the service accepts as input when invoked.
– O is the set of entities that the service returns as output after being invoked.
– Oc is the set of entities that is received in service callback.

26 M. Bashari et al.

Definition 4 (Workflow). A workflow is a triple w = (E,N, E) where

– E is a set of entities which can be used as input or output in the operations of
the workflow. Each entity e ∈ E has a type.

– N is a set of operation nodes which can be:
• An invocation node is a triple (s, I,O) where s ∈ S represents the invoked

service and I and O specify the mapping relation between workflow enti-
ties, and input and output of the services.

• A receive node is a pair (s,Oc) where s ∈ S represents the invoked ser-
vice which has resulted in callback and Oc specifies the mapping relation
between workflow entities and the outputs of service callback.

– E ⊂ N × N shows directed edges between operation nodes such that for each
n, n′ ∈ N , (n, n′) ∈ E , the operation of node n should be performed before n′

in the execution process.

In order to be able to automatically make a transition from a feature model
to a workflow, we define a context model, which represents the environment in
which the service mashup will operate in. Relations between the feature model,
services and the context model are represented with annotations on these mod-
els. These annotations are used for creating a workflow from the feature model
configuration. We formally define a context model as:

Definition 5 (Context model). A context model is a triple c = (cT , cE , S)
where

– cT denotes context types, which is a tuple (Θ,Φ,F) where
• Θ is a set of data types
• Φ is a set of fact types
• F : Φ �→ Θ × × Θ is a function which specify the data type of entities

that each fact type is defined on.
– cE is context entities which is a pair (E, T) where

• E is a set of entities that exist in the context
• T : E �→ Θ is a function which defines the type of each entity

– S is context state which is a set S ⊂ Φ × E × × E such that for each fact
f = (φ, e1, ..., ei) ∈ S ⇒ (φ, T (e1), ..., T (ei)) ∈ F and shows the facts which
are true in that context.

In our context model definition, context entities are similar to object
instances passed between functions, and context types are used for strictly spec-
ifying entity types. Furthermore, the context model also consists of the context
state, which is defined by facts. Facts can express the relationship between zero
or more context entities. Let us elaborate on this using Fig. 3. In this example, c
and po are two context entities, which are of customer and purchase order types,
respectively. Furthermore, the fact ordered(c, po) expresses that customer c has
ordered the purchase order po. This fact is represented using fact type ordered
which relates an entity of type customer to an entity of type purchase order. We
will explain in the following how the context model information will be used to
annotate features.

Automated Composition of Service Mashups 27

Fig. 3. An annoated feature model for the order processing family.

Based on the context model, each feature in the feature model needs to be
annotated with three sets: (i) the set of entities that are required by a service
consisting of this feature; (ii) the set of facts that should be true in the current
state of the context model in order for the service that consists of this feature
to safely execute, and (iii) the set of facts that will become true in the context
model once a service that consists of this feature is executed. These annotations
can be formally defined as:

Definition 6 (Feature model annotation). The annotation for feature
model fm is a function AFM which maps each feature f in the feature model
to a triple (Ef ,Pf , Ef) where

– Ef ⊂ E is the set of entities that must exist in a context model in order to
execute any service mashup with feature f .

– Pf ⊂ Φ × E × × E is the set of facts which should be true in the context
model in order to execute a service mashup with feature f .

– Ef ⊂ Φ × E × × E is the set of facts that will be true in the context model
after executing a workflow with feature f .

Figure 3 shows the annotations for our order processing feature model. As
seen in the figure, for each feature, Ef ,Pf , Ef are defined as needed. For instance,
the figure shows that for the ‘Invoice Creation’ feature to be included in the goal
service mashup, a context entity i of type Invoice needs to be present in the
context model. Furthermore, when the service mashup consisting of the ‘Invoice
Creation’ feature is executed, the fact hasInvoice(po, i) will become true as an
effect, which means purchase order entity po will have an invoice entity i.

In addition to feature model annotations, we also annotate the services in a
similar vein. The annotation of services with pre-conditions and post-conditions
(effects) has been already widely used in the literature [10] and we adopt a
similar strategy.

Definition 7 (Service annotation). A service annotation for service s is a
tuple As = (PI ,QI ,RI ,PC ,QC ,RC) where

28 M. Bashari et al.

– PI ,PC ⊂ P ×IO ××IO are the facts that should be true over the entities
interacting with the service (including inputs, output, callback output) in order
to invoke the service and receive any callback.

– QI ,QC ⊂ R × IO × × IO are the facts that become true over the entities
interacting with the service after the service is invoked or the callback has been
received.

– RI ,RC ⊂ R × IO × × IO are the facts that become false over the entities
interacting with the service after the service is invoked or the callback has been
received.

For example in the service Request Shipping Info in Fig. 2, assuming
the input customerInfo is of type customer, the output shippingInfo is
of type shippingInfo, and the callback output shippingSchedule is of type
schedule in the context model, one could define the annotations for this
service as QI = {hasShippingInfo(customerInfo, shippingInfo)}, QC =
{hasShippingSchedule (customerInfo, shippingSchedule)}, and the other
annotation sets would be empty. This annotation means after the invocation
of this service the value of the output would be the shipping information for the
input customer and after receiving the callback the value of the callback output
would be the shipping schedule for the input customer.

In our model, the feature and service annotations serve as a bridge between
the feature and service spaces and allow us to automatically compose a service
mashup based on the end-users’ feature selections.

Problem Statement. Given a context model type cT , a feature model fm, a
feature model configuration C, a feature model annotation AFM , a set of services
S, and their corresponding annotations AS , the goal is to find a workflow w using
services in S which satisfies the requirements of feature model configuration C.

3.2 Proposed Solution

We propose to formalize the above problem statement as a planning problem
and provide a solution through AI planning. The AI planning model would be
concretely defined by the initial context state as the starting point of the planner
and the expected context state as the goal of the planner. Therefore, we need
to formalize how the initial context state, expected goal state and the service
invocations can be defined with an AI planning context to generate a workflow.

We adopt the widely used STRIPS planning specification model to provide
our problem formalization, which can easily be converted to a Planning Domain
Definition Language (PDDL) model. A planning problem in STRIPS [7] can be
defined as below:

Definition 8 (Planning problem). A planning problem is a triple p =
(Sinitial, Sgoal, A) where:

– Sinitial, Sgoal are the initial and goal states. These states are represented by a
set of atomic facts,

Automated Composition of Service Mashups 29

– A is the set of available actions. This set includes all the actions that
can be done in order to change the state. Each action a ∈ A is a tuple
(I, Fpre, Fadd, Fdel) where

• I is the set of parameters that an action takes.
• Fpre is the set of atomic facts which should be in a state in order for that

action to be applicable in that state (i.e. action a is applicable in state S
where Fpre(a) ⊆ S).

• Fadd is a set of facts which are added to a state after the action has been
applied to the state.

• Fdel is a set of facts which are deleted from the state after the action has
been applied to the state. Therefore, if Ssucc be the state after applying
action a to state S then Ssucc = S − Fdel(a) ∪ Fadd(a).

Definition 9 (Planning problem solution). Sequence s = <a1, ..., ai> is a
solution to planing problem p = (Sinitial, Sgoal, A) if

– a1 is applicable on state Sinitial;
– for each 1< j ≤ i action aj is applicable in state S which has been resulted

by consecutive application of action a1, ..., aj−1 on the initial state Sinitial;
– consecutive application of actions a1, ..., ai on initial state Sinitial will result in

a state S such that Sgoal ⊆ S.

In the proposed method, we formalize the problem as a method for find-
ing a workflow expressed through a sequence of service invocations and call-
backs, which results in the expected context state and satisfies the requirements
expressed in the configured feature model.

Generating Initial and Goal States. Initial and goal states of the planner
are built by aggregating the annotations of the feature model configuration,
which represents the end-users’ requirements. For a feature model configuration
C, initial and goal states for planning problem p = (Sinitial, Sgoal, A) would be:

– Sinitial =
⋃

f∈C Pf

– Sgoal =
⋃

f∈C Ef

Generating Actions. In our planning model, actions are considered to be
the service operations that can be executed in the final service mashup. These
actions are invocations of different services or receiving callbacks. Each of these
actions affects the context state.

– Invocation. An invocation of service s = (I,O,Oc) with annotation As =
(PI ,QI ,RI ,PC ,QC ,RC) can be defined as an action ainvoke(s) = (I, Fpre,
Fadd, Fdel) where

• input of the action is I = I ∪ O ∪ Oc

• Fpre = PI

• Fadd = QI and a predicate showing that service s callback is pending
(callbackPending(s)) if it has a callback

• Fdel = RI

30 M. Bashari et al.

1: function Optimize(workflow w = (E,N, E))
2: repeat
3: W ← {}
4: for all e = (n1, n2) ∈ E do
5: E ′ ← E ∪ {(n′, n2) s.t. (n′, n1) ∈ E}
6: ∪{(n1, n

′) s.t. (n2, n
′) ∈ E} − {(n1, n2)} :

7: w′ ← (E,N, E ′)
8: if Safe(w′) then
9: W ← W ∪ {w′}

10: end if
11: end for
12: w ← Select(W)
13: until TerminationCondition(w)
14: return w

Algorithm 1. Pseudo-code for workflow optimization.

– Callback is of service s = (I,O,Oc) with annotation As = (PI ,QI ,RI ,
PC ,QC ,RC) can be defined as an action acallback(s) = (I, Fpre, Fadd, Fdel)
where

• input of the action is I = I ∪ O ∪ Oc

• Fpre = PC ∪ {callbackPending(s)}
• Fadd = QC

• Fdel = RC ∪ {callbackPending(s)}

Workflow Creation. Now that the planning goal and planning problem
domain are concretely defined, a planner can be used in order to find a solution
for the planning problem. The solution will be a sequence of actions which takes
us from the initial context state to the expected context state. Based on the solu-
tion of the above planning problem s = <a1, ..., ai>, a workflow w = (E,N, E)
can be built where:

– The workflow entities set E =
⋃

f∈C Ef .
– The operation node set N = n1, ..., ni is made from the action sequence where

nj is built based on aj where the service for the operation is the correspond-
ing service for that action. Similarly, the assigned input and output for the
operation node are corresponding entities assigned to action parameters.

– The edge set E is {(nj−1, nj) such that 1<j ≤ i} which means the operation
nodes should be executed in the order specified in the action execution.

Workflow Optimization. Although the generated workflow can be used to
generate WS-BPEL code, given that the AI planners produce strictly sequential
plans, the generated workflow would not benefit from potentially more efficient
and valid plans which use parallel execution of operations when possible. Using
parallelism in a service workflow can significantly affect the efficiency of the

Automated Composition of Service Mashups 31

1: function Safe(workflow w = (E,N, E))
2: for all n ∈ N do
3: for all p ∈ P(n) do
4: safeCausalLinkFound ← false
5: for all n′ ∈ N do
6: if After(w,n′, n) and p ∈ Q(n′) then
7: if ¬ThreatExists(w, n, n′, p) then
8: safeCausalLinkFound ← true
9: end if

10: end if
11: end for
12: if ¬safeCausalLinkFound then
13: return false
14: end if
15: end for
16: end for
17: return true

Algorithm 2. Pseudo-code for examining safeness of a workflow.

composed service [20]. Therefore, once a plan is generated by the AI planner, we
take an additional step to optimize the workflow.

Workflow optimization can be performed by consecutive removal of the edges
in the workflow which do not affect the safeness [15] of the workflow. The details
of our method for optimization has been shown in Algorithm 1. In the main
loop in the algorithm (Lines 2–13), the edges are removed consecutively until
the termination condition (Line 13) is met. In each iteration of the loop, each
edge in the workflow is examined (Line 4) to see whether the workflow stays safe
even after the removal of that edge or not (Line 8). If so, the edge is added a
set W (Line 9). The new workflow after removal of an edge would be a revised
workflow which would not include the removed edge but instead new edges are
added to preserve the connectivity of the workflow. This is done by adding edges
from the start node of the removed edge to the immediate nodes after the end
node of the removed edge and similarly the immediate nodes before the start
node and the end node of the removed edge (Lines 5–6). This ensures that the
order of execution for the nodes before and after stay the same. After all edges
are examined, the best workflow is selected from the set W and the current
workflow is replaced by that workflow (Line 12).

The definition of Select and TerminationCondition depends on the
optimization method which has been selected. The definition for Safe which
is responsible for examining the safeness of a workflow has been defined in Algo-
rithm 2. The definition of this function has been inspired by the safeness condi-
tion in partial order planning [15]. In this function, the main loop iterates over
all operation nodes of the workflow (Lines 2–16) and its immediate inner loop
iterates over all facts that is required to be true as the precondition of the node
(Lines 3–15). For each precondition fact p of each node n, this algorithm iterates

32 M. Bashari et al.

1: function ThreatExists(workflow w, node n, node n′,fact p)
2: for all n′′ ∈ N do
3: if ¬After(w,n′′, n′) or ¬After(w, n, n′′) and p ∈ R(n′′) then
4: return true
5: end if
6: end for
7: return false

Algorithm 3. Pseudo-code for examining existence of threat to a causal link.

over all the nodes in the workflow (Lines 5–11) in order to find an operation
node n′ which makes that fact true and is executed before node n (Line 6). The
relation between node n′ and n is called causal link for p. If such a node is found,
it is examined if a threat to that causal link exists (Line 7). If there is no threat
to the causal link between two nodes, a safe causal link has been found (Line 8).
If there exists no safe causal link for a precondition fact of a node (Line 12), the
workflow is not safe.

A threat exists for a causal link when there exists an operation node that
can be executed between the two nodes of the causal link and makes the fact
of the causal link false. The function which examines a causal link for possible
threat has been shown in Algorithm 3. This algorithm works by iterating over
all nodes in the workflow and analysing if it can pose a threat to the causal link
(Lines 2–6). A node can be considered a threat to a causal link if it does not
execute before the start node or after the end node of the causal link and makes
the related fact to that causal link false (Line 3).

Although the optimization process keeps the workflow safe, it does not ensure
that the workflow has the same preconditions and effects. A small modification
can be done in the input workflow in order to ensure that workflow preconditions
and effects remain the same during and after the optimization. This modification
adds a new start operation node with no precondition and workflow precondi-
tions as the effects to the beginning of the workflow and an end operation node
with no effect and with expected effects as the preconditions to the end of the
workflow. Considering that the optimization will not affect preconditions, it can
be easily proven that if the start and end nodes are removed from the workflow
after optimization, it will satisfy the expected preconditions and effects.

In order to make the derived workflow executable, it needs to be converted
into WS-BPEL. In WS-BPEL, each flow is defined by a <process> tag which
is made of the <variables> tag and a set of actions organized with <sequence>
and <flow> tags. Actions in the flow tag can be executed in parallel while
actions in the sequence tag should be executed sequentially. Often more than
one WS-BPEL code can satisfy user’s goals. Here, we adopt the method used
in [18] for creating an efficient WS-BPEL code from the created workflow. This
method takes as input a workflow represented as a directed graph and generates
an efficient WS-BPEL representation.

Automated Composition of Service Mashups 33

4 Experiments

In order to perform experiments, we have developed a fully integrated toolset
that supports our proposed approach. In our implementation, we have used OWL
as the representation language for the context model as suggested in [10], OWL-
S for representing services and their annotations [9], and SA-FMDL format for
representing the feature model and its annotations [2]. For planning, the FF
planner [9], which is a fast PDDL planner is used and for optimization a greedy
implementation is used that chooses an action with the best immediate gain.
Our experiments were performed on a machine with Intel Core i5 2.5 GHZ CPU,
6 GB of RAM, Ubuntu 14.04, Java Runtime Environment v1.8.

4.1 Workflow Generation

The main focus of our experiments with regards to workflow generation is the
assessment of the scalability of the proposed method in terms of its running
time. We evaluate the efficiency of the method from two perspectives:

– Experiment 1.1 (Scalability in terms of services repository size): How
does the workflow generation time increase as the number of services in the
repository grows?

– Experiment 1.2 (Scalability in terms of feature model configuration
size): How does the workflow generation time increase as the size of the feature
model configuration grows?

In order to run the experiments, three models were required: context model,
services and their annotations, feature model and its annotations.

Context Model: We have developed an OWL ontology for the context model
with 30 entity types and 600 fact types. This context model is used to annotate
the services and the feature model.

Services and Their Annotations: In order to generate the services and their
annotations, we developed a random OWL-S service description generator which
creates service description with inputs, outputs, precondition, and effects ran-
domly picked from our context model. This OWL-S service description generator
is highly customizable with different service model characteristics (e.g. number
of inputs, outputs, precondition, and effects). Three service repository sets have
been created where services in the repositories of different sets have different
numbers of precondition and effects. In our experiments, we used 3, 6, and 9
as the number of preconditions and effects. Each of these repository sets has
10 different repositories of sizes between 1,000 to 10,000. Totally, 30 different
service repositories have been created.

Feature Model and Its Annotations: We used the SPLOT feature model
generator to generate a feature model with 1,000 features. In order to annotate
this feature model, a customized feature model annotation generator is developed
which randomly picks annotations from the context model and assigns them

34 M. Bashari et al.

Fig. 4. Workflow generation time in terms of service repository and FM conf. size.

to the features of the feature model. Using this annotation generator, three
different annotation sets were created for the feature model where the number
of annotations for each feature was 2, 8 and 16. In the first experiment, a feature
model configuration with 50 features is selected and the time to generate the
workflow using service repositories of different sizes is measured. This operation
is done repeatedly 20 times with different feature model configurations of the
same size and the average time for generating the workflow is calculated. This
experiment is repeated for all three repository sets. Figure 4 (left) shows how the
workflow generation time increases with the increase in the size of the service
repository. As it can be seen from the figure, the increase in time is linear and
does not significantly increase with the increase in the number of services in the
repository and remains practical (around 2.4 s for 9,000 services).

In the second experiment, the service repository with 1,000 services and an
average sum of precondition and effects of 6 is selected. In this setting, the time
for generating workflows for feature model configurations of different sizes is
measured. The feature model configuration is generated by a tool which gets a
feature model and desired number of features in the configuration and returns a
random valid feature model configuration with that size. For each configuration
size, 20 different configurations is generated. For each number of annotations,
the average time required for generating the workflow is calculated for different
configurations. Figure 4 (right) shows the average workflow generation time with
different feature model configuration sizes for different number of annotations.
As seen in the figure, the generation time remains linear for various configuration
sizes when the number of annotations are 2 and 8 per feature. However, when the
number of annotations are increased to 16, the generation time becomes expo-
nential and shows rapid increase. It is important to note that (i) even with the
increase, the time is manageable for practical purposes, i.e., 2 s for 1,000 services
and 500 requirements. (ii) Literature suggests that the number of annotations
is typically in the range of 5–6 annotations per feature [1], in which case, the
performance of the generation algorithm is linear.

4.2 Workflow Optimization

The focus of the second set of experiments is on the investigation of the scalability
of the optimization method. We explore the optimization method scalability when

Automated Composition of Service Mashups 35

Fig. 5. Workflow optimization and execution time in terms of workflow size.

the size of workflow increases. In addition, we explore whether the optimization
method is able to decrease the time-to-completion of the service mashup.

– Experiment 2.1 (Optimization scalability in terms of workflow size):
How does the workflow optimization time increase with the increase in the size
of workflow (in terms of growth in the number of workflow nodes)?

– Experiment 2.2 (Effectiveness of the optimization in terms service
mashup time-to-completion): How much does the time-to-completion of a
service mashup is decreased as a result of the optimization?

In order to run this experiment the models from the previous experiment
were used. The service repository with 1,000 services and an average number of
preconditions and effects of 6 were employed. The services were annotated with
random time-to-completion with a normal distribution N (200 ms, 50).

For the first experiment, 20 different configurations in each workflow size
category is randomly selected and the average time for workflow generation
and optimization is calculated. Figure 5 shows how workflow generation and
optimization time increases as the size of workflow grows. This shows that the
workflow optimization method is considerably slower than the planning method.
However, given the fact that the optimization method is only a one time task,
its benefits in terms of reducing the time-to-completion is noticeable.

In the second set of experiments, the objective is to measure whether the
optimization method has been to generate workflows that have a lower time-to-
completion (execution time) or not. For this purpose, the time-to-completion of
the generated workflows were calculated both before and after the optimization.
Figure 5 shows the result of the optimization. As seen in the figure, the time-to-
completion of a workflow increases as the size of the workflow increases. However,
the optimization method has been able to maximize parallelism in the workflow
such that there is no noticeable growth with the increase in the workflow size.
For instance, for a workflow with 100 activities, which on average take 20 s prior
to optimization, the optimization method has been able to reduce the time-to-
completion to 1 s.

5 Related Work

Our work is positioned among considerable other research on service composition
using AI planning methods. Given the fact that planners usually take initial and

36 M. Bashari et al.

goal states as the way to define the planning problem, adopting this approach
for modeling the expected outcome of a service composition is quite intuitive.
Therefore, many existing approaches specify the expected outcome using a plan-
ner input language or a model that is easily convertible to a planner input [10,12].
For example, in [12], an XML dialect of PDDL is used to define the expected
service specification. However, specification of requirements in those languages
requires expert knowledge. In order to facilitate the design of service mashups
in some approaches, the concrete service mashup is generated from the abstract
process created by the user using some GUI interface. For example in [16], users
drag and drop required components of their service mashup into a canvas and
create the flow by connecting these components using arcs where this process is
facilitated using semantic annotations for components. Such approaches still rely
on the users for designing the logic of the service interactions. Another way used
for specifying service requirements is through natural language specifications.
For example in [8], an approach is proposed where a composite service is created
based on a request in natural language using semantic annotation of the com-
ponents. Although natural language seems an easy to use method of specifying
requirements, it does not provide the user with a tangible model of functional-
ities which makes it confusing to use and unreliable. Feature models provide a
tangible way to represent functionalities and have been used to represent service
families. However, existing automated approaches only suggest methods which
customize the services [1,3]. For example, Baresi et al. [3] use aspect-orientation
in WS-BPEL to activate/deactivate aspects in WS-BPEL code of the service
composition in order to customize it.

WS-BPEL allows sequential as well as parallel invocation of services. How-
ever, most AI planning methods come up with total-ordered sequential composi-
tion of services [20]. For example in [6], a planner is used to find the goal service
composition which is sequential although WS-BPEL is used to represent the
composition. Some of the other automated service composition methods gener-
ate compositions which take advantage of parallelism [11,20]. For example in [20],
service composition is modeled as a tree search problem where the goal is to find
a service composition with maximum parallelization. In another example [11],
the service composition problem is modeled as a sub-graph search in a service
dependency graph where the goal is to find a composition which satisfies its func-
tional requirements as well as optimizing different quality attributes such as par-
allelism. However, enabling parallelisim is embedded in the composition process
of these methods. In order to compose services with parallel execution, [19] sug-
gests that partial-order planning methods need to be used. However, none of the
existing service composition methods use partial-order planning because exist-
ing partial-order planners are significantly less efficient than total-order planners
[17]. We suggest that enabling parallelism in the workflow can be viewed as an
optimization problem. The idea of optimizing a total-order plan in order to take
advantage of parallelism has been explored in the planning area [21]. However,
it has not been used in the context of service composition. Our approach uses
the ideas from the planning domain to propose an optimization model where
different optimization methods can be used in order to enable parallel execution
of operations in a workflow.

Automated Composition of Service Mashups 37

6 Conclusion

In this paper, we propose a method for the automated composition of service
mashups. The service mashup composition process is operationalized through
a novel approach that combines the modeling power of software product line
feature models with AI planning techniques. The novelty of our work is in that
end-user requirements are expressed as feature model compositions, which have
been shown to be understandable by end-users. We automatically transform the
feature model composition into a viable executable workflow through the map-
ping of the feature space into the AI planning domain. Given the fact that AI
planning techniques only generate strictly sequential plans, we further develop
an algorithm to optimize the developed workflow through the introduction of
parallelism. The final outcome of our approach is an optimized executable busi-
ness process represented in WS-BPEL format. Through our experiments we have
shown that our work is scalable and is also able to efficiently produce workflows
that are optimized using parallelism.

References

1. Asadi, M., Mohabbati, B., Groner, G., Gasevic, D.: Development and validation
of customized process models. J. Syst. Softw. 96, 73–92 (2014)

2. Bagheri, E., Asadi, M., Ensan, F., Gasevic, D., Mohabbati, B.: Bringing semantics
to feature models with SAFMDL. In: Proceedings of CASCON 2011, pp. 287–300.
IBM Corporation (2011)

3. Baresi, L., Guinea, S., Pasquale, L.: Service-oriented dynamic software product
lines. Computer 45(10), 42 (2012)

4. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: the new generation of
web applications. IEEE Internet Comput. 5, 13–15 (2008)

5. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via
planning in asynchronous domains. Artif. Intell. 174(3), 316–361 (2010)

6. Chafle, G., Das, G., Dasgupta, K., Kumar, A., Mittal, S., Mukherjea, S., Srivastava,
B.: An integrated development environment for web service composition. In: ICWS
2007, pp. 839–847. IEEE (2007)

7. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(3), 189–208 (1972)

8. Fujii, K., Suda, T.: Semantics-based dynamic web service composition. Int. J. Coop.
Inf. Syst. 15(03), 293–324 (2006)

9. Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through
heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001)

10. Hristoskova, A., Volckaert, B., Turck, F.D.: The WTE framework: automated con-
struction and runtime adaptation of service mashups. Autom. Softw. Eng. 20(4),
499–542 (2013)

11. Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: Qsynth: a tool for QoS-
aware automatic service composition. In: ICWS 2010, pp. 42–49. IEEE (2010)

12. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with OWLS-XPlan. In: AAAI Fall Symposium on Semantic Web and Agents (2005)

13. Lee, J., Kotonya, G.: Combining service-orientation with product line engineering.
IEEE Softw. 27(3), 35–41 (2010)

38 M. Bashari et al.

14. Lee, K., Kang, K.C., Lee, J.J.: Concepts and guidelines of feature modeling for
product line software engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319,
pp. 62–77. Springer, Heidelberg (2002)

15. McAllester, D., Rosenblatt, D.: Systematic nonlinear planning. In: Proceedings
9th National Conference on Artificial Intelligence (AAAI-91), Anaheim, CA. pp.
634–639 (1991)

16. Ngu, A.H.H., Carlson, M.P., Sheng, Q.Z., Paik, H.Y.: Semantic-based mashup of
composite applications. IEEE Trans. Serv. Comput. 3(1), 2–15 (2010). iD: 1

17. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proceedings
of the 17th International Joint Conference on Artificial Intelligence, vol. 1, pp.
459–464. Morgan Kaufmann Publishers Inc. (2001)

18. Ning, G., Zhu, Y., Lu, T., Wang, F.: BPELGEN: an algorithm of automatically
converting from web services composition plan to BPEL4WS. In: ICPCA 2007, pp.
600–605. IEEE (2007)

19. Peer, J.: Web Service Composition as AI Planning - A Survey. University of St.
Gallen, Switzerland (2005)

20. Rodriguez-Mier, P., Mucientes, M., Lama, M.: Automatic web service composition
with a heuristic-based search algorithm. In: ICWS 2011, pp. 81–88. IEEE (2011)

21. Siddiqui, F.H., Haslum, P.: Plan quality optimisation via block decomposition.
In: Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, pp. 2387–2393. AAAI Press (2013)

Feature Location in Model-Based Software
Product Lines Through a Genetic Algorithm

Jaime Font1,2(B), Lorena Arcega1,2, Øystein Haugen3, and Carlos Cetina1

1 SVIT Research Group, San Jorge University, Zaragoza, Spain
{jfont,larcega,ccetina}@usj.es

2 Department of Informatics, University of Oslo, Oslo, Norway
3 Department of Information Technology,

Østfold University College, Halden, Norway
oystein.haugen@hiof.no

Abstract. When following an extractive approach to build a model-
based Software Product Line (SPL) from a set of existing products, fea-
tures have to be located across the product models. The approaches
that produce best results combine model comparisons with the knowl-
edge from the domain experts to locate the features. However, when the
domain expert fails to provide accurate information, the semi-automated
approach faces challenges. To cope with this issue we propose a genetic
algorithm to feature location in model-based SPLs. We have an oracle
from an industrial environment that makes it possible to evaluate the
results of the approaches. As a result, the proposed approach is able
to provide solutions upon inaccurate information on part of the domain
expert while the compared approach fails to provide a solution when the
information provided by the domain expert is not accurate enough.

1 Introduction

A recent survey [2] reveals that most of the Software Product Lines (SPLs)
are built following an extractive approach, where a set of existing products is
reengineered into a SPL [12]. The resulting SPL is capable of generating the
products used as input (among others) with the benefit of having the variability
among the products formalized, enabling a systematic reuse.

Several reverse engineering approaches can be used to identify and locate the
features [4–6,14,16,18] from the existing product models and formalize them in
the form of a model-based SPL (where the features are realized in the form of
model fragments). In our previous work [5] we show that Conceptualized Model
Patterns to Feature Location (CMP-FL) provides features more recognizable by
the engineers that must use them thanks to the inclusion of information from
the domain experts into the feature location process.

This work has been partially supported by the Ministry of Economy and Competi-
tiveness (MINECO), through the Spanish National R+D+i Plan and ERDF funds
under The project Model-Driven Variability Extraction for Software Product Lines
Adoption (TIN2015-64397-R).

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 39–54, 2016.
DOI: 10.1007/978-3-319-35122-3 3

40 J. Font et al.

However, in CMP-FL the set of possible solutions is too big to be evaluated
exhaustively, resulting in the need of very precise information from the domain
engineers to accelerate the process. If the information provided is not accurate
enough the feature location will fail, not being able to provide the expected solu-
tion. When the family of product models is built following clone-and-own tech-
niques, the variability among the products is not always properly documented,
resulting in a lack of precise information.

To cope with the above, we propose an approach based on a Genetic Algo-
rithm to Feature Location (GA-FL) among a set of product models. Specifically,
we propose new model-based genetic operations capable of working with model
fragments: (1) the crossover operation, that combines information from two pos-
sible solutions into a single offspring; (2) the mutation operation, that randomly
mutates one model fragment (while keeping the consistency with the product
model where the fragment was extracted from); (3) a fitness function that evalu-
ates the population of possible solutions and ranks them depending on how they
solve the problem and (4) a parent selection operation to find candidates that
feed the rest of genetic operations.

We have compared the CMP-FL with GA-FL through the use of an oracle
extracted from our industrial partner (BSH), whose induction department pro-
duces the firmware for their induction hobs (sold under the brands of Bosch and
Siemens) based on a model-based SPL. It turns out that our GA-FL is able to
provide the solution expected in scenarios where the CMP-FL fails. When the
information provided is accurate, the GA-FL algorithm is able to enrich the set
of best solutions produced given that it explores a broader search space.

The rest of the paper is organized as follows: next section presents some
background about the domain of our industrial partner and its SPL. In Sect. 3
we present our approach, the GA-FL. Section 4 compares the presented approach
with the best alternative from literature. In Sect. 5 we discuss some related work.
Finally, we conclude the paper.

2 Formalizing the Variability

This section presents the Domain Specific Language (DSL) used by our industrial
partner to formalize their products, the IHDSL. It will be used through the
rest of the paper to present a running example. Then, the Common Variability
Language (CVL) is presented, CVL is the language used by our approach (GA-
FL) to formalize the location of the features as reusable model fragments.

2.1 The Induction Hobs Domain Specific Language (IHDSL)

The newest Induction Hobs (IHs) feature full cooking surfaces, where dynamic
heating areas are automatically generated and activated or deactivated depend-
ing on the shape, size, and position of the cookware placed on top. In addition,
there has been an increase in the type of feedback provided to the user while
cooking, such as the exact temperature of the cookware, the temperature of the

Feature Location in Model-Based Software Product Lines 41

food being cooked, or even real-time measurements of the actual consumption
of the IH. All of these changes are made possible at the cost of increasing the
software complexity.

Base Model

P1

Library Model

R4

R1

R2

R3

P2

Inverter

Channels
Power

manager

Inductors

IHDSL Metamodel

Induction
HobInverter

Power
Manager

Inductor

IHDSL syntax

Product Realization layer

Provider
Channel

Consumer
Channel

Feature Specification layer

Induction
Hob

0..1

small
Inductor
P2 R2

lower
Inverter

P1 R4

medium
Inductor
P2 R1

large
Inductor
P2 R3

upper
Inductor

Fig. 1. CVL applied to IHDSL

The Domain Specific Language used by our industrial partner to specify the
Induction Hobs (IHDSL) is composed of 46 meta-classes, 74 references among
them and more than 180 properties. However, in order to gain legibility and due
to intellectual property rights concerns, in this paper we use a simplified subset
of the IHDSL (see Fig. 1).

Inverters are in charge of transforming the input electric supply to match the
specific requirements of the IH. Then, the energy is transferred to the inductors
through the channels. There can be several alternative channels, which enable
different heating strategies depending on the cookware placed on top of the IH at
runtime. The path followed by the energy through the channels is controlled by
the power manager. Inductors are the elements where the energy is transformed
into an electromagnetic field. Inductors can be organized into groups to heat
larger cookware while sharing the user interface controllers.

2.2 The Common Variability Language Applied to IHs

To formalize the variability among the products of the SPL, we need a variability
model that captures which model fragments are used by each of the products that
can be built from the SPL. To build it, the presented approach uses the Common
Variability Language (CVL) [8], given its expressiveness to properly formalize
the feature realizations in terms of model fragments. CVL defines variants of a
base model conforming to MOF (Meta-Object Facility, the Object Management
Group metalanguage for defining modeling languages) by replacing variable parts
of the base model by alternative model replacements found in a library.

42 J. Font et al.

The base model is a model described by a given DSL (here, IHDSL) that
serves as the base for different variants defined over it. In CVL the elements
of the base model that are subject to variations are the placement fragments
(hereafter placements). A placement can be any element or set of elements that is
subject to variation. To define alternatives for a placement we use a replacement
library, which is a model that is described in the same DSL as the base model
that will serve as a base to define alternatives for a placement. Each one of the
alternatives for a placement is a replacement fragment (hereafter replacement).
Similarly to placements, a replacement can be any element or set of elements
that can be used as variation for a replacement.

Figure 1 shows an example of variability specification of IH through CVL.
In the product realization layer, two placements are defined over an IH base
model (P1 and P2). Then, four replacements are defined over an IH library
model (R1, R2, R3, and R4). In the feature specification layer, a Feature Model
is defined that formalizes the variability among the IH based on the placements
and replacements. For instance, P1 can only be substituted by R4 (which is
optional), but P2 can be replaced by R1, R2, or R3. Note that each fragment has
a signature, which is a set of references (boundaries) going from and towards that
replacement. A placement can only be replaced by replacements that match the
signature. For instance, the P2 signature has a reference from a power manager
(outside the placement) to an inductor (inside the placement), while the R4
signature is a reference from a power manager (inside the replacement) to an
inductor (outside the replacement). P2 cannot be substituted by R4 since their
signatures do not match.

Through the rest of the paper, we will use the term feature location in mod-
els formalized through CVL as “the process of obtaining the particular model
fragments (or alternatives e.g. R1, R2 and R3) that are used in a particular
placement (or variation point e.g. P1) among a set of products”. Therefore, we
will refer to the variation point as the feature being located and each of the alter-
native model fragments will be referred as different realizations for that feature
(in fact, they are realizations of the alternatives of the feature).

3 Genetic Algorithm for Feature Location

This section present our approach, a Genetic Algorithm to Feature Location
(GA-FL). Figure 2 shows an overview of the GA-FL process. The input of the
process is a set of interrelated product models with implicit variability among
them.

In the Genetic Algorithm process, the set of solutions that will be iterated
need to be properly encoded (see A - Encoding of the Population), enabling
the GA to work with them. The DE (domain expert or domain engineer) pro-
vides information about the set of product models to initialize the population
of model fragments (see B - Initialize Population), the DE will select some
product models to locate a particular feature and an initial model fragment for
each of the selected product models. Next, each possible individual from the

Feature Location in Model-Based Software Product Lines 43

Fig. 2. Overview of the genetic algorithm to feature location

population is evaluated to determine how good is as a solution to the problem
(see C - Fitness), as a result the population of solutions is ranked depend-
ing on their fitness value. Based on the ranked population, the parents for
the new element are randomly selected (see D - Parent Selection), giving a
higher probability to the solutions with higher fitness values. The first operation
applied to the parents is the crossover, that joins two parents into a new solution
(see E - Crossover). The resulting model fragment will be bound by a different
product model and thus will evolve differently than the original one. The second
operation applied to the solution resulting from the crossover is the mutation (see
F - Mutation), the model fragment will evolve, growing or shrinking, resulting
in a different model fragment that will be evaluated as possible solution in fur-
ther generations. Finally, the set of solutions obtained will be presented to the
DE, to select the solution that best represent their understanding of the feature
being located.

3.1 Encoding of the Population

Traditionally, genetic algorithms encoded each possible solution of the problem
(or chromosome) as a fixed-size string of binary values. Each position of the
chromosome string (called locus) has two possible values (called alleles): 0 or 1.

However, to encode each model fragment as a string of binary values is not
straightforward. As suggested by Davis [3], we decided to use an encoding natural
for our problem and then devise a GA for that specific encoding. Therefore, we
will encode our individuals as model fragments. To do so, we rely on MOF as the
standard to define the models and CVL to specify fragments over those models
and manipulate them.

Each individual of our Genetic Algorithm will be a model fragment defined
over one of the product models. That is, each individual is a set of model elements
and relationships among them that is present in one of the product models (see
right part of Fig. 3 to see the representation of the individual). Therefore, to
work with these individuals (model fragment defined over a product model),
we will present genetic operations that can be applied directly to those model
fragments. Through the rest of the paper we will refer to each individual as a
model fragment that is always part of a product model.

44 J. Font et al.

3.2 Initialize Population

The first step of the process is to initialize the population of the GA. This is
done by the DEs, preferably the same DE that created the products or work
directly with them. The initialization is done based on DE’s knowledge of the
domain and the products themselves. This step is performed only one time for
each feature that wants to be located.

Fig. 3. Initialize population

Figure 3 shows an overview of this step. Top part shows the set of similar
product models that where the feature will be located (Product Model 1 to 4).
First, (1) the DE selects a subset of product models representative of the feature
that will be used as input (in this example Product Model 1, 2 and 3), then,
(2) for each product model from the subset the DE selects a model fragment
that he believes will be part of the realization of that particular feature (Model
Fragment 1, 2 and 3). As a result we get an initial population composed of pairs
of model fragments and the product models where they were extracted from.

It is important to remark that we focus in the location of the features, leaving
out of the scope of this work the features constraints discovery. That is, there
could exists a cross-tree constraint among the feature ‘upper heating spot’ and
the feature ‘lower heating spot’ (e.g. power consumption of combination of sev-
eral inductors is higher than power consumption of single small inductors), but
feature constraint discovery is not covered by this work.

3.3 Fitness Function

The fitness function is used as an heuristic to find the best solutions for the
given problem. It is applied to each individual in the population and the function
assigns a value that assesses how good is the solution. This information can be
used in two ways: to determine that the algorithm should terminate as a desirable
level of fitness has been reached and to determine the best candidates as parents
for the next generation.

Feature Location in Model-Based Software Product Lines 45

Fig. 4. Fitness function application

Our fitness function proceeds as follows: (1) the process abstracts from each
model fragment to a placement signature in their referenced model fragment;
(2) placement signatures are compared and grouped together if they are equal;
(3) each placement signature is matched against all the product models from the
initial subset of product models; (4) the fitness is computed for each placement
signature and the fitness values are spread to the elements of the population.

Figure 4 depicts an overview of the model pattern extraction process [5]
adapted to be used as a fitness function. The input of the process is the present
population (the set of model fragments and their reference to a product model),
see first and second column.

Step 1: The first step (see third column of Fig. 4) is to obtain a placement
signature for each of the individuals (model fragment and the product model).
The placement signature formalizes the set of elements that must be present in a
model in order to connect the given model fragment. This is done comparing the
model fragment with the product model from which it was originally extracted
(when the initial population was created). The model fragment is present in the
product model and connected to other model elements of the product model.
The process looks for those boundary elements that link an element from the
model fragment with the rest of the product model and extracts them as a place-
ment signature. That is, the set of elements needed to connect the given model
fragment. Therefore, the model fragment used as input match this placement
signature. As a result, step 1 produces a placement signature for each model
fragment used as input.

46 J. Font et al.

Step 2: The second step (not shown in Fig. 4, there are no duplicates) is to
compare the placement signatures and group the ones that are equal. To do
so, the process compares pairwise the placement signatures. If two placement
signatures have the same elements in the boundaries, they are considered to be
equal. Then, both placement signatures are grouped together. As a result, this
step produces a set of unique placement signatures and each model fragment is
associated to a single placement signature.

Step 3: The third step (see fourth, fifth and sixth columns of Fig. 4) is to
match each placement signature with all the product models present in the
initial subset of product models. That is, the process looks for spots where a
given placement signature matches in each of the given product models. When a
placement signature matches a particular spot of a product model, means that
the model fragments associated to that placement signature could be inserted in
the given spot. As a result, step 3 provides a set of spots (across all the product
models) where the given placement signature matches.

Step 4: The fourth step (see seventh column of Fig. 4) is to compute the
fitness value for each of the placement fragments and spread it to the associated
model fragments. The process computes the number of product models where
the placement matches (no matter how many times). This value indicates the
number of product models where the resulting placement could be used. As
the purpose of the genetic algorithm is to locate variation points and alternative
realizations across the product models, the higher the number of product models
that match the better. Finally, the value of each placement signature is spread
to the associated model fragments. As a result, step 4 assigns a fitness value for
each model fragment present in the population.

After applying these steps, each model fragment gets a fitness value. The
higher the number of products where the placement signature is present the
better, as this means that it will be able to formalize the variability of a higher
number of product models.

Once the population fitness has been assessed, it is time to create the next
generation of individuals. This new generation will be based on present genera-
tion and the fitness value will be used to ensure that best candidates are chosen
as parents for the evolution process. To do so, the process makes use of three
different genetic operations that will act over the individuals of the population
to generate new ones. First, a selection operation will be used to select the ele-
ments that will be used as parents of the new individual. Then, a crossover
operation will be used to broad the solution space that a particular solution can
reach. Finally a mutation operation will be used to introduce variations in the
individual hoping that the new individual performs better than its antecessor.

3.4 Selection of Parents

The selection of parents is performed following the roulette wheel selection
method [1], one of the most common methods used in GA. In this method,
each individual is assigned with a share of a wheel roulette proportional to their

Feature Location in Model-Based Software Product Lines 47

fitness. By doing so, fitter individuals will have higher chance to be selected
and go forward with the rest of genetic operations while weaker individuals will
have lower probability of being selected. Other selection strategies present in
literature can be used with our model fragments, as the operation simply selects
individuals, the encoding does not affect the selection.

This operation selects the individuals that will be parents of the new indi-
vidual that is going to be generated. Traditionally, genetic algorithms select two
elements as parents with the only restriction of avoiding the same element being
‘father’ and ‘mother’ (as this would nullify the effect of the crossover operation).
However, when applying our genetic algorithm to model fragments a new restric-
tion applies: both fragment selected must reference different product models. By
doing so we ensure that the crossover operation can be properly applied.

First, we perform the selection of the first parent with no restrictions. Then,
when selecting the second parent, we will only allow selections of elements ref-
erencing a product model different from the first parent. However, in order to
allow the algorithm to browse into a broader search space, the product models
not included into the input subset by the DE will be also eligible (with a low
fitness value). That is, elements already present in the population will have the
fitness value from the previous step while product models not present in the
population will have a fitness value of 1.

As a result, the selection operation provides a parent model fragment
(obtained from the present population) and another product model (that could
not be present in the actual population) that will be used for the crossover
operation.

3.5 Crossover

In genetic algorithms, crossover enables the creation of a new individual gen-
erated combining the genetic material of both parents. In our encoding there
are two elements that can be mapped across the different individuals: the model
fragment and the referenced product model. Therefore, our crossover operation
will take the model fragment from the first parent and the product model from
the second parent, generating a new individual that contains elements from both
parents and thus preserving the basic mechanics of the crossover operation.

To achieve the latter, our crossover operation is based on model comparisons.
Figure 5 shows an example of application of the crossover operation over model
fragments. First we select the model fragment from the first parent. Then we
select the product model from the second parent. Then the model fragment (from
first parent) is compared with the product model (from the second parent). If
the comparison finds the model fragment in the product model, the process
creates a new individual with the model fragment taken from the first parent
but referencing the product model from the second parent. In the case that the
comparison does not find a similar element, the crossover will return the first
parent unchanged.

This operation enables to broad the search space to a different product model.
That is, both model fragments (the one from the first parent and the one from

48 J. Font et al.

Fig. 5. Crossover operation

the new individual) will be the same. However, as each of them is referencing
a different product model, they will mutate differently and provide different
individuals in further generations. As the solution we are looking for should
apply to all the models provided as input, it can be reached from any of them,
but some product models can yield to the solution faster than others.

3.6 Mutation

In genetic algorithms, mutation operation introduces a random variation to the
new individuals generated by the crossover operation. The mutation operation
often results in a weaker individual, but occasionally the result might be a
stronger individual.

Figure 6 shows an example of our mutation for model fragments. Each model
fragment is associated to a product model and the model fragment mutates in
the context of their associated product model. That is, the model fragment will
gain or drop some elements, but the resulting model fragment will be still part
of the referenced product model. The mutation possibilities of a given model
fragment are driven by their associated product model.

To perform the mutation, the type of mutation that will occur (either addi-
tion or removal of elements) is decided randomly:

Removal of Elements: This kind of mutation randomly removes some ele-
ments from the model fragment. The only constraint is that elements are selected
from the edges of the model fragment (they are connected with a single element),
so the resulting model fragment is still connected (we can navigate from any ele-
ment to any other element through the connections between the elements) and
is not split in two isolated groups of elements. As the resulting model fragment
is a subset of the original model fragment, and the original was present in the
referenced product model, the resulting product model will be always present in
the referenced product model.

Addition of Elements: This kind of mutation randomly adds some elements
to the model fragment. The only constraint is that the resulting model fragment
is present in the referenced product model. To achieve it, the boundaries of the

Feature Location in Model-Based Software Product Lines 49

model fragment with the rest of the product model are identified and then a
random element from the boundary is added to the resulting model fragment.
By doing so, the mutated model fragment will be part of the referenced product
model.

Fig. 6. Mutation operation

As a result, a new model fragment is created but it still references the same
product model. That is, the individual represent other possible feature realization
present in the product model for the particular feature being located. The next
time the fitness is calculated, the placement signature described by this model
fragment will be extracted and evaluated to assess how good it is as a solution.

4 Case Study

To evaluate the approach we are going to compare the presented GA-FL app-
roach with CMP-FL, an approach to Feature Location in product models that
makes use of the information provided by DEs. We are going to validate the
results from both approaches against an oracle obtained from our industrial
partner (BSH), the leading manufacturer of home appliances in Europe. Their
induction division has been producing induction hobs (under the brands of Bosch
and Siemens among others) for the last 15 years. The firmware of the different
induction hobs is generated following a model-based SPL approach. First, a res-
olution for a product is created choosing from the set of features present in
the variability model (each feature is formalized as model fragments). Then, a
product model is generated by executing the product resolution (CVL execution
capabilities produce a product model including the model fragments from the
features selected). Finally, the firmware of the induction hob is obtained applying
a model transformation to the resulting product model.

4.1 Case Study Setup

Figure 7 presents an overview of the process followed to evaluate the presented
approach. Top part shows the oracle, a set of product models and their formal-
ization of features. The product models from the oracle are used to construct
three different scenarios regarding how good is the input fed to the approaches
(left part of Fig. 7). Then each scenario is test against both approaches, (CMP-
FL) and the presented approach (GA-FL). As a result each approach provides

50 J. Font et al.

a set of placement signatures that realize the feature being located. Each set of
solutions is compared with the placement signature present in the oracle for that
particular feature being located (right part of Fig. 7). We want to determine if
the solution used by our industrial partner (from the oracle) is present among
the solutions provided by each approach in each scenario.

Fig. 7. Overview of the evaluation with the oracle

The oracle is composed of a set of product models and the set of features
(used to define the products) properly located. That is, for each feature used by
the products (around 100 features) has been previously located and validated by
our industrial partner (the oracle is extracted from a set of product models that
are currently under production). Therefore, we will consider the oracle as the
ground truth for the evaluation process. The set of product models consist of 46
induction hob models, each of them model composed of around 100 elements (on
average) that can be part or not of a model fragment. Therefore, the number of
possible combinations can be calculated as the power set of the set S of elements
P (S), resulting in around 2100 (|P (S)| = 2n where |S| = n) different potential
model fragments. We generate the product models attending to the oracle to
distinguish three different scenarios regarding how accurate is the input fed to
the approaches:

S1 High Accuracy: The first scenario corresponds to what we consider a high
accuracy input from the user. More than a 75 % of the products used as input for
the approaches corresponds to the subset of product models (46 available) that
actually include a formalization of the feature that is being located (extracted
from the oracle); and thus the placement signature will match with those product
models.

S2 Medium Accuracy: The second scenario corresponds to a medium accu-
racy input from the user. Between 25 % and 75 % of the products used as input

Feature Location in Model-Based Software Product Lines 51

for the approaches include a formalization of the feature that is being located.
Therefore, a similar percentage (25 % to 75 %) of the products do not contain a
formalization of the feature being located.

S3 Low Accuracy: The third scenario corresponds to a low accuracy input
from the user. Only less than a 25 % of the products used as input include a
formalization of the feature that is being located. This results in some deliber-
ately bad cases (e.g. select only products that do not include the feature being
located).

In the three scenarios, the size of the input is randomly selected and ranges
from 1 to 5 product models. The seed fragments have been obtained randomly.
For each of the features present in the oracle we generate 100 different test
cases for each of the three scenarios (S1, S2 and S3). Then, each test case is
tested against both approaches (CMP-FL and GA-FL). Finally, the solutions
sets (placement signatures) provided by the approaches are compared against
the oracle. As a result, we can determine if the feature realizations that is actu-
ally being used by our industrial partner (the expected solution) is present among
the solution sets returned by the approaches. We do this comparing the place-
ment signature from the oracle with the set of placement signatures provided as
solution and determining whether it is present or not.

4.2 Results

The CMP-FL was able to provide a set of solutions that included the expected
solution in 86 % of the cases from S1 (high accuracy input). Nevertheless, the
presented GA-FL was able to include the expected solution in 79 % of the cases.
The CMP-FL was able to include the expected solution into the solutions set
in 48 % of the cases from S2 (medium accuracy input). When the information
provided by the user is not accurate enough, the approach fails to include the
expected (oracle) option into the resulting set. By contrast, the GA-FL was able
to include it in 73 % of the cases. Finally, the CMP-FL was able to include
the expected solution into the solutions set in 16 % of the cases from S3 (low
accuracy input). The approach only search in the product models provided by
the user and is not able to look for the solution in other product models. By
contrast, the GA-FL approach was able to include the expected solution in 63 %
of the cases from S3. Given the stochastic nature of the Genetic Algorithm, the
approach is able to find the solution even if the input provided is not accurate.

The justification of the different results provided by both approaches resides
in how the search space is traversed. That is, the different elements evaluated
as possible solutions by each of the approaches. The CMP-FL approach only
explores the portion of the solution space delimited by the product models used
as input. In contrast, the GA-FL approach is capable of traversing the entire
solution space, independently of the input.

The GA-FL approach is capable of reaching any possible solution from the
search space, as it can move across the search space in any direction. The muta-
tion enables the exploration of solutions within the same product, while the

52 J. Font et al.

crossover operation enables to switch to another product (an further explore
it with subsequent random mutations). By contrast, the CMP-FL approach is
bounded by the input of the user and only explores solutions within the product
provided as input; thus, some areas of the search space cannot be reached.

As a result, the CMP-FL is not able to provide better results than the input
provided; that is, upon a 75 % of accuracy will provide the expected result 75 %
of the cases. In particular in all the cases where the accuracy was 0 % (from S3)
the expected solution was not included. In contrast, the presented approach is
able to explore solutions beyond the input provided by the user. This means
that upon the scenarios where the input is not accurate enough, the crossover
operation will (eventually) be able to switch to different product models that
convey to the expected solution.

5 Related Work

Some works report their industrial experiences in a wide range of fields trans-
forming legacy products into Product Line assets [10,11,13]. These approaches
focus on capturing guidelines and techniques for manual transformations. In con-
trast, our approach introduces automation into the process while taking advan-
tage from the knowledge of the domain experts.

Other works focus on the automation of the extraction process [6,9,14,16–
18], obtaining the variability from legacy products by comparing the products
with each other. In [17], the similarity between models is measured following an
exchangeable metric, taking into account different attributes of the models. Then,
the approach is further refined [9] to reduce the number of comparisons needed
to mine the family model. Rubin et al. [16] propose a generic framework for min-
ing legacy product lines and automating their refactoring. They compare the
elements of the input with each other, matching those whose similarity is above
a certain threshold and merging them together. The authors in [18], propose a
generic approach to automatically compare products and extract the variability
among them in terms of a CVL variability model. The authors in [14] propose
an approach based on comparisons to extract the variability of any kind of asset.
However, these approaches are based on mechanical comparisons, automatically
turning identical elements into common parts of the SPL, similar elements as alter-
natives for a feature and unmatched elements into optional features. In contrast,
our work enables the DE to decide which elements should be formalized as part of
a feature based on the results of the comparisons.

Finally, there are some research efforts that apply genetic algorithms to the
SPLs domain. For instance, the authors in [7] present GAFES, an artificial intel-
ligence approach for optimized feature selection in SPLs. The authors in [15]
present a genetic algorithm that finds optimal configurations of a Dynamic SPL
at run-time. However, the solutions of those genetic algorithms are encoded as
strings of binary values specifying the presence or absence of each feature. By
contrast, our approach is applied directly to the product models and model frag-
ments, resulting in a different encoding and set of genetic operations customized
to work with model fragments.

Feature Location in Model-Based Software Product Lines 53

6 Conclusion

In this paper we have presented a Genetic Algorithm to Feature Location (GA-
FL) approach. To the best of our knowledge it is the first Genetic Algorithm
applied to feature location over models. We have provided a custom encoding
that enable the GA to work with model fragments and a set of genetic operations
that can be applied to individuals following that encoding. We have presented a
fitness function, a parent selection operation, a crossover operation (capable of
bring together elements from two parents into a single offspring) and a mutation
operation (that produces slight variations of the individual being mutated).

Finally we have compared the presented GA-FL with CMP-FL in terms on
how both approaches traverse the search space. This comparison shows that
CMP-FL does not traverse the whole space, failing to find a solution under
some scenarios, while the GA-FL is capable of traversing the whole search space
reaching the solutions. In addition, in scenarios where the CMP-FL approach
is able to find the best solution, our GA-FL approach is also able to do so
while traversing more elements from the search space, providing a more complete
solution.

The ideas of the presented approach are generic and can be applied to any
MOF-based models. Our next steps will involve the application of the presented
GA-FL approach to CAF1, an international company that builds and deploy
railway solutions. They are currently shifting to a model-based SPL approach
and there is a need of locating the features among their existing product models.

References

1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and
Genetic Programming: Modern Concepts and Practical Applications, 1st edn.
Chapman & Hall/CRC, London (2009)

2. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wasowski,
A.: A survey of variability modeling in industrial practice. In: 7th International
Workshop on Variability Modelling of Software-Intensive Systems (VaMoS) (2013)

3. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
(1991)

4. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. J. Softw.: Evol. Process 25(1), 53–95 (2013)

5. Font, J. , Arcega, L., Haugen, Ø., Cetina, C.: Building software product lines from
conceptualized model patterns. In: Proceedings of the 19th International Confer-
ence on Software Product Line (SPLC), pp. 46–55 (2015)

6. Font, J., Ballaŕın, M., Haugen, Ø., Cetina, C.: Automating the variability formal-
ization of a model family by means of common variability language. In: Proceedings
of the 19th International Conference on Software Product Line (SPLC), pp. 411–
418 (2015)

7. Guo, J., White, J., Wang, G., Li, J., Wang, Y.: A genetic algorithm for optimized
feature selection with resource constraints in software product lines. J. Syst. Softw.
84(12), 2208–2221 (2011)

1 www.caf.es/en.

www.caf.es/en

54 J. Font et al.

8. Haugen, Ø., Moller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding
standardized variability to domain specific languages. In: 12th International Soft-
ware Product Line Conference, SPLC 2008, pp. 139–148, September 2008

9. Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer, I., Vogel-Heuser, B.: Fam-
ily model mining for function block diagrams in automationsoftware. In: Proceed-
ings of the 18th International Software Product Line Conference, vol. 2, pp. 36–43
(2014)

10. Kim, K., Kim, H., Kim, W.: Building software product line from the legacy systems
“experience in the digital audio and video domain”. In: 11th International Software
Product Line Conference, SPLC 2007, pp. 171–180, September 2007

11. Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.: Refactoring a legacy component
for reuse in a software product line: a case study: practice articles. J. Softw. Maint.
Evol. 18(2), 109–132 (2006)

12. Krueger, C.W.: Easing the transition to software mass customization. In: van der
Linden, F. (ed.) Software Product-Family Engineering. LNCS, vol. 2290, pp. 282–
293. Springer, Heidelberg (2002)

13. Lee, H., Choi, H., Kang, K.C., Kim, D., Lee, Z.: Experience report on using a
domain model-based extractive approach to software product line asset develop-
ment. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp.
137–149. Springer, Heidelberg (2009)

14. Martinez, J., Ziadi, T., Bisyandé, T.F., Klein, J., Traon, Y.L.: Bottom-up adoption
of software product lines,: a generic and extensible approach. In: Proceedings of
the 19th International Conference on Software Product Line (SPLC), pp. 101–110
(2015)

15. Pascual, G.G., Pinto, M., Fuentes, L.: Self-adaptation of mobile systems driven by
the common variability language. Future Gener. Comput. Syst. 47, 127–144 (2015).
Special Section: Advanced Architectures for the Future Generation of Software-
Intensive Systems

16. Rubin, J., Chechik, M.: Combining related products into product lines. In: de Lara,
J., Zisman, A. (eds.) FASE 2012 and ETAPS 2012. LNCS, vol. 7212, pp. 285–300.
Springer, Heidelberg (2012)

17. Wille, D., Holthusen, S., Schulze, S., Schaefer, I.: Interface variability in family
model mining. In: Proceedings of the 17th International Software Product Line
Conference: Co-located Workshops, pp. 44–51 (2013)

18. Zhang, X., Haugen, Ø, Moller-Pedersen, B.: Model comparison to synthesize a
model-driven software product line. In: Proceedings of the 15th International Soft-
ware Product Line Conference (SPLC), pp. 90–99 (2011)

Carrying Ideas from Knowledge-Based
Configuration to Software Product Lines

Juha Tiihonen1(B), Mikko Raatikainen2, Varvana Myllärniemi2,
and Tomi Männistö1

1 University of Helsinki, Helsinki, Finland
{Juha.Tiihonen,Tomi.Mannisto}@cs.helsinki.fi

2 Aalto University, Espoo, Finland
{Mikko.Raatikainen,Varvana.Myllarniemi}@aalto.fi

Abstract. Software variability modelling (SVM) has become a central
concern in software product lines – especially configurable software prod-
uct lines (CSPL) require rigorous SVM. Dynamic SPLs, service oriented
SPLs, and autonomous or pervasive systems are examples where CSPLs
are applied. Knowledge-based configuration (KBC) is an established way
to address variability modelling aiming for the automatic product con-
figuration of physical products. Our aim was to study what major ideas
from KBC can be applied to SVM, particularly in the context of CSPLs.
Our main contribution is the identification of major ideas from KBC that
could be applied to SVM. First, we call for the separation of types and
instances. Second, conceptual clarity of modelling concepts, e.g., having
both taxonomical and compositional relations would be useful. Third, we
argue for the importance of a conceptual basis that provides a founda-
tion for multiple representations, e.g., graphical and textual. Applying
the insights and experiences embedded in these ideas may help in the
development of modelling support for software product lines, particu-
larly in terms of conceptual clarity and as a basis for tool support with
a high level of automation.

Keywords: Variability modelling · Feature modelling · Knowledge-
based configuration · Conceptualization · Variability management

1 Introduction

Software product lines (SPL) have emerged as an important means for reuse
in the context of a set of products that share a common SPL architecture and
other assets (e.g. [5]). For SPLs, variability management has become a central
concern. Variability is the ability of a system to be efficiently extended, changed,
customised or configured for use [19]. Domain engineering develops assets for
reuse while exploiting reusable commonalities and catering for differentiating
variability. Application engineering realises the products of a SPL by reusing the
assets, by resolving the variability, and by developing product specific extensions.
Software variability modelling (SVM) represents the variability of the assets.
c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 55–62, 2016.
DOI: 10.1007/978-3-319-35122-3 4

56 J. Tiihonen et al.

A special class of SPLs is a configurable software product line (CSPL), in
which all differences between the product variants have been pre-defined and
implemented in domain engineering. Product derivation involves merely making
decisions on the predefined and implemented assets and variability therein [3].
This specification of an individual product is also called a configuration for short
(cf., [7]). Recently, CSPLs have received increasing attention in different forms:
Dynamic SPLs, the application of SPL to autonomous or pervasive systems, and
service oriented SPLs are examples where the idea of CSPL can be applied.

In the field of physical, such as mechanical products, knowledge-based con-
figuration (KBC) (e.g., [10]) is a related domain to SPL in general, and CSPL
in particular. KBC aims to model and manage variability in a way that enables
automated product derivation. Besides similarity, the long history since 1980’s
and relative maturity makes KBC an interesting field to compare with CSPLs.

Compared to previous work [1,12,14], we aim to investigate synergies between
KBC and SVM in more depth and from the variability modelling point of view.
The research problem of this paper is: What ideas from knowledge-based config-
uration can be applied to software variability modelling and configuration? We
highlight three ideas of KBC and discuss their potential implications for SVM
in general and especially in the context of CSPLs.

In terms of the methodology, our analysis and comparison of the literature
focuses on core KBC modelling literature and feature models that are the most
common modelling method of SVM. A search based on title and abstract through
all special issues on configuration and the proceedings of configuration workshops
since 2000 was performed to augment already known relevant KBC literature on
modelling conceptualisations. We focus on aspects of variability modelling that
are relevant to supporting product derivation and configurability.

The rest of this paper is organised as follows. Section 2 identifies previous
work. Section 3 presents the three identified potentially useful ideas from KBC.
Section 4 provides discussion and concludes.

2 Previous Work

Knowledge Based Configuration emerged from various domains of physi-
cal products such as computers and elevators. It is a relatively general, widely
deployed and domain-independent approach with quite a long history [10]. The
core of knowledge representation in KBC forms two widely cited and funda-
mentally similar conceptualisations of Soininen et al. [18] and Felfernig et al.
[9]. In the conceptualisation of Soininen et al. configuration model knowledge
specifies the entities that can appear in a configuration specifying an indi-
vidual product, their properties, and the rules on how the entities and their
properties can be combined. Individuals (instances) of configuration model con-
cepts describe individual configurations and thus represent configuration solution
knowledge. Finally, requirements knowledge specifies the systematised require-
ments on the configuration to be constructed. Besides being widely cited by
researchers, these types of configuration knowledge representations are “typi-
cally provided in today’s commercial configuration environments” [11].

Carrying Ideas from Knowledge-Based Configuration 57

Software Variability Modelling has been elevated as a central concern for
SPLs in addition to reuse [4]. Feature modelling (FM) is probably the first and
the most widely known means to represent SPL variability. A feature represents
a characteristic of a system that is visible to the end-user [13], or in general, a
system property that is relevant to some stakeholder and is used to capture com-
monalities or discriminate among product variants [6]. Other variability mod-
elling approaches include the orthogonal variability modelling approaches such
as OVM [15] that define a separate model that is associated with the base model
such as an UML model; and decision-oriented [16] approaches model variability
as questions and possible answers to be presented in the style of wizards.

3 Ideas from Knowledge Based Configuration

3.1 I1: Separating Types and Instances

In KBC, domain and application models are clearly separated: domain models
are expressed as types (that are instances of a meta-model) and application
models as instances of the types.

SPL engineering makes a clear distinction between domain and application
engineering activities [5]. However, most of the research on variability modelling
seems to focus on domain engineering and variability representation; and appli-
cation engineering has often remained more implicit [7].

Conceptual separation of domain and application models. In feature
modelling, there is no clear difference between a domain model and an applica-
tion model, but the same modelling concepts are used for both purposes. This
is illustrated in Fig. 1. Instantiating a product feature model takes place by spe-
cializing the product line feature model. Each operation in resolving variability
results in another feature model containing less variability. When all variability
has been resolved, the remaining features represent the valid, fully resolved (spe-
cific) configuration [6]; for an example see the lower part of Fig. 1. The only way
to recognize that a feature model describes a product variant is to investigate
whether all variability has been resolved. Additionally, it can become challenging
to differentiate the product line feature model from a series of specialized models
or to distinguish evolution of the variability models from their specialization.

In KBC, a clear separation between domain and application models is made.
Figure 2 illustrates how a product line feature model and a product feature
model could be represented. In the product line feature model, modelling con-
cepts are called feature types, whereas modelling concepts in the product fea-
ture model are called feature instances. Instead of specializing, the model of the
product is instantiated from the model of the product line. In KBC terminology,
a generic description of a product family (configuration model) is instantiated
into an unambiguous specification of a concrete product individual (configura-
tion). Consequently, feature types in the configuration model are instantiated
as feature instances in the configuration (Fig. 3). When following the distinction
between types and instances, the different levels of feature modelling can be seen

58 J. Tiihonen et al.

Fig. 1. A sample feature model [2]. Same modelling concepts are used to represent
both the product line feature model (top) and product feature model (bottom); the
latter is specialized from the former.

as instantiations: modelling concepts are instantiated as concrete feature types
in the domain models, which are then instantiated as concrete feature instances
in the application models (Fig. 3).

Types modularize models and facilitate reuse. Besides conceptual dif-
ferentiation, there are other advantages to apply types and instances. A type
declaration provides a convenient means for modularizing a reusable asset so
that each logical entity can be defined and managed independently. A type is
a natural place to collect specifications of compositional structure, attributes,
constraints, and other modelling constructs. The set of type declarations forms
a repository of reusable assets. The types can then be reused in the context
of larger entities and eventually to model an entire SPL. Another advantage of
types and instances is the reuse of a type within a product of a product line
via instantiation. This seems conceptually cleaner than referencing and cloning
suggested for feature models [6].

3.2 I2: Conceptual Clarity

In KBC, there are two main relations: classification (is-a) and composition (has-
part) with cardinality to expresses compositional rules such as mandatory or
optional. With these, two respective major hierarchies emerge. Composition can
pick e.g. alternatives from various branches of the classification hierarchy.

Initially, FODA [13] defined features and mandatory, optional and alterna-
tive relations between features, along with mutually exclusive with and requires
constraints (Fig. 1). Over time, the need for representing more complex variabil-
ity has emerged. For example, there is a need to represent or (Fig. 1), which
indicate that one or more features from the child features must be included [2].
The exact nature of the modelling concepts should be explicit and unambiguous.

Distinct relationships such as has-part and is-a. In the context of FM,
particularly, the alternative relation has proved to be difficult to interpret

Carrying Ideas from Knowledge-Based Configuration 59

Fig. 2. The sample feature model in Fig. 1 represented to follow the KBC conceptual-
izations: a distinction between domain and application models is made. The features in
the product model are instantiated from the feature types in the product line model.

Fig. 3. Following the KBC conceptualizations, feature modelling involves three instan-
tiation levels: modelling concepts, product line feature models with feature types, and
product feature models with feature instances. Adapted from [18].

(Fig. 4(a) and (b)). Originally, this relation denoted specialisation: “[a]lternative
features can be thought of as specializations of a more general category” [13].
This is concretely manifested by the alternative relation in Fig. 4(a): the domain
engineer does not read the model as “the mobile phone consists of one screen,
and the screen consists of basic, colour or high resolution screen”. Instead, the
obvious intention is that “the mobile phone consists of one screen, and the screen
can be a basic, colour or high resolution screen.” (fig. 4(b)).

To organise and specialise types, KBC adopts classification (is-a) and inher-
itance of features in the usual object-oriented manner. For example, Screen can
be specialised into Basic, Colour and High Resolution screens (Fig. 2).

Cardinality as a basis for compositional relationships. In the context
of FM, composition is the fundamental relationship and the need to represent

60 J. Tiihonen et al.

different kinds of cardinalities [6] has been identified. However, instead of replac-
ing mandatory, optional, alternative and or with cardinalities, cardinalities are
feature model extensions Fig. 4(c) and (d). That is, instead of refining previ-
ous modelling conceptualisations, the existing conceptualisations are extended
by adding new concepts on top of the old ones.

In KBC, a means to model varying compositional structure is via part defin-
itions [18] that include cardinalities. In the example of Fig. 2, type Mobile phone
has a part definition calls[1] of allowed type Calls: one feature Calls must be
present in a valid configuration. As another example, type Media has a part def-
inition apps[1...2] of allowed types MP3 and Camera. The semantics of a part
definition is that in a configuration, a valid instance of the whole type has the
number of part instances specified by the cardinality as parts with the specified
part name; each instance as a part must be of one of the allowed types. Note
that allowed types do not have to be subtypes of the same type. Naturally, it is
possible to reuse a type as an allowed type in several contexts.

3.3 I3: Separate Domain Phenomena, Concepts and Representations

The modelling concepts in KBC are defined and provided with semantics inde-
pendently of the representations of concepts.

SVM in terms of FM started with graphical feature diagrams (cf., [17]).
Numerous dialects of graphical FM notations have been proposed [2,17] and even
textual FM languages have emerged (cf., [8]) — some of these also introduce new
concepts. The full semantics of the concepts or notations has also been provided,
although often as an afterthought [17]. However, two concerns are combined:
what are usable or otherwise appropriate representations and what phenomena
a model needs to capture.

Domain phenomena as concepts with semantics. Well-defined concepts are
the fundamental basis for capturing the phenomena of the domain. They are an
asset on which representation formats for various (but similar) purposes can be
developed. In KBC, modelling conceptualisations have been defined independent

Fig. 4. (a) Alternative originally implied specialisation. (b) Idea to model specialisation
as is-a, not consists-of. (c, d) Extending but not refining FM concepts: consists-of with
cardinality could have replaced mandatory, optional and other consists-of relations.

Carrying Ideas from Knowledge-Based Configuration 61

of direct representations [9,18]. The idea is that concepts can be defined inde-
pendently of representations so that appropriate concepts capture the domain
phenomena aptly.

Multiple equivalent representations of concepts. When concepts capture
domain phenomena, it is more straightforward to support multiple representa-
tions than when attempting to directly capture the domain phenomena or to
perform model transformations between representations. First, it is easier to
have simultaneous representations when the representations are based on the
same concepts. Second, changes or adaptations such as shorthand notations or
semantic sugar are easier to add to representations without affecting other repre-
sentations. Consequently, completely new representations are easier to add. An
example from KBC is described in [20] where a model is kept in internal data
structures and it can be edited in textual representation, as called for also in
SVM (cf. [8]), and via a graphical editor.

4 Discussion and Conclusions

We explored the research in Knowledge-Based Configuration (KBC) to identify
major ideas that could be applied to Software Variability Modelling (SVM),
particularly in Configurable Software Product Lines. We reflected the ideas to
the existing research in SVM with the hope that the ideas could provide fresh
insight and novel ideas for advancing the state of the art and practice in SVM.
This analysis was performed assuming that automation is desired – the ideas
might not fit less rigorous SVM, e.g., when exploring the variability of a domain.
Fully exploiting some of the benefits requires tool support, e.g., to benefit from
multiple representations of the concepts or modelling with types and instances.

We argue for having separate models for domain and application engineering,
i.e., separate models for the product line and for product variants. Further, we
see room for re-factoring the feature modelling concepts and relationships for
better conceptual clarity. This could apply types and instances as a mechanism
to simplify the reuse of assets within and between the products of a product line.
The separation of well-defined concepts from representations makes the manage-
ment of variability models more straightforward. If a model has a well-defined
conceptualisation with declarative semantics, a straightforward translation can
be carried out to produce an equivalent model that can be reasoned upon.

Some of the ideas are already reflected in some SVM approaches, but not
in mainstream SVM. However, the ideas address interrelated concerns – full
benefits stem from being applied simultaneously.

Future work can identify additional ideas that can be applied to SVM from
KBC and vice versa. Concretising, refining and extending the ideas into con-
ceptualisations, representations and supporting tools would enable practical
utilisation. Both theoretical and empirical research is needed, e.g., conceptual
re-factoring would benefit from empirical investigation on what concepts are
needed to form a clear conceptual foundation that is neither too minimal nor
bloated.

62 J. Tiihonen et al.

References

1. Benavides, D., Felfernig, A., Galindo, J.A., Reinfrank, F.: Automated analysis in
feature modelling and product configuration. In: Favaro, J., Morisio, M. (eds.)
ICSR 2013. LNCS, vol. 7925, pp. 160–175. Springer, Heidelberg (2013)

2. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

3. Bosch, J.: Maturity and evolution in software product lines: approaches, artefacts
and organization. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 257–
271. Springer, Heidelberg (2002)

4. Chen, L., Ali Babar, M.: A systematic review of evaluation of variability manage-
ment approaches in software product lines. IST 53(4), 344–362 (2011)

5. Clements, P., Northrop, L.: Software Product Lines Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Softw. Process Improv. Pract. 10(1), 7–29 (2005)

7. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product fam-
ilies: a case study. J. Syst. Softw. 74(2), 173–194 (2005)

8. Eichelberger, H., Schmid, K.: Mapping the design-space of textual variability mod-
eling languages: a refined analysis. Int. J. Softw. Tools Technol. Transf. (2014)

9. Felfernig, A., Friedrich, G.E., Jannach, D.: UML as domain specific language for
the construction of knowledge-based configuration systems. Int. J. Softw. Eng.
Knowl. Eng. 10(4), 449–469 (2000)

10. Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (eds.): Knowledge-Based Configu-
ration: From Research to Business Cases. Morgan Kaufmann, San Francisco (2014)

11. Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley, C., Wolter, K.:
Configuration knowledge representation and reasoning. In: Felfernig, A., Hotz, L.,
Bagley, C., Tiihonen, J. (eds.) Knowledge-Based Configuration: From Research to
Business Cases, pp. 41–72. Morgan Kaufmann, San Francisco (2014)

12. Hubaux, A., Jannach, D., Drescher, C., Murta, L., Männistö, T., Czarnecki, K.,
Heymans, P., Nguyen, T., Zanker, M.: Unifying software and product configuration:
a research roadmap. In: ECAI 2012 Workshop on Configuration, pp. 31–35 (2012)

13. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented
domain analysis feasibility study (FODA). Technical report CMU/SEI-90-TR-021,
Carnegie Mellon U., Software Engineering Institute, Pittsburgh, PA, USA (1990)

14. Männistö, T., Soininen, T., Sulonen, R.: Product configuration view to software
product families. In: ICSE Software Configuration Management Workshop (2001)

15. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer, New York (2005)

16. Schmid, K., Rabiser, R., Grünbacher, P.: A comparison of decision modeling
approaches in product lines. In: 5th Workshop on Variability Modeling of Software-
Intensive Systems, pp. 119–126. ACM, New York (2011)

17. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic semantics
of feature diagrams. Comput. Netw. 51(2), 456–479 (2007)

18. Soininen, T., Tiihonen, J., Männistö, T., Sulonen, R.: Towards a general ontology
of configuration. AI EDAM 12(04), 357–372 (1998)

19. Svahnberg, M., van Gurp, J., Bosch, J.: A taxononomy of variability realization
techniques. Softw. Pract. Experience 35(8), 705–754 (2005)

20. Tiihonen, J., Heiskala, M., Anderson, A., Soininen, T.: WeCoTin–A practical logic-
based sales configurator. AI Commun. 26(1), 99–131 (2013)

Tax-PLEASE—Towards Taxonomy-Based
Software Product Line Engineering

Ina Schaefer1(B), Christoph Seidl1, Loek Cleophas2,3, and Bruce W. Watson2,4

1 Institute for Software Engineering, Technische Universität Braunschweig,
Braunschweig, Germany

{i.schaefer,c.seidl}@tu-bs.de
2 Department of Information Science, Stellenbosch University,

Stellenbosch, South Africa
{loek,bruce}@fastar.org

3 Software Engineering and Technology, Technische Universiteit Eindhoven,
Eindhoven, The Netherlands

4 Centre for Artificial Intelligence Research, CSIR Meraka Institute,
Stellenbosch, South Africa

Abstract. Modern software systems, in particular in mobile and cloud-
based applications, exist in many different variants in order to adapt
to changing user requirements or application contexts. Software product
line engineering allows developing these software systems by managed
large-scale reuse in order to achieve shorter time to market. Traditional
software product line engineering approaches use a domain variability
model which only captures the configuration options of the product vari-
ants, but does not provide any guideline for designing and implementing
reusable artifacts. In contrast, software taxonomies structure software
domains from an abstract specification of the functionality to concrete
implementable variants by successive correctness-preserving refinements.
In this paper, we propose a novel software product line engineering
process based on a taxonomy-based domain analysis. The taxonomy’s
hierarchy provides guidelines for designing and implementing the prod-
uct line’s reusable artifacts while at the same time specifying possible
configuration options. By deriving reusable product line artifacts from a
software taxonomy, the well-defined structuring of the reusable artifacts
yields improved maintainability and evolvability of the product line.

Keywords: Taxonomy-Based Software Construction (TABASCO) ·
Software Product Line (SPL)

1 Introduction

Modern software—in particular data-intensive, mobile or cloud-based
applications—exists in many different variants in order to adapt to changing user
requirements or environment contexts. Software Product Line (SPL) engineering
[10] is a software development approach aiming at systematic reuse for a family
c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 63–70, 2016.
DOI: 10.1007/978-3-319-35122-3 5

64 I. Schaefer et al.

of related software variants from a common domain. An SPL comprises a set of
software variants, which are software products with well-defined commonalities
and variabilities. The SPL engineering process is split into a domain engineering
and an application engineering stage (see Sect. 2). During domain engineering,
the product variants that should be incorporated into the SPL are identified in
a domain analysis phase. In the subsequent domain design and implementation
phases, reusable core assets are developed from which the variants can be derived
during application engineering. Existing approaches to domain analysis [10] in
SPL engineering rely on a conceptual variability model—such as a feature model
[9] or a decision model [12]—which only focuses on the different configuration
options for the individual product variants. However, this model does not pro-
vide guidelines on how to structure the reusable core assets for the variants, such
as source code.

Taxonomy-Based Software Construction (TABASCO) [3] is a method for
systematic domain analysis aiming at providing a software taxonomy of a given
domain. A taxonomy hierarchically structures the domain of a particular fam-
ily of variants, usually data structures and/or algorithms. It forms a tree or
directed-acyclic graph where nodes correspond to variants in the family. Edges
connecting two variant nodes correspond to correctness-preserving refinements
between variants and express the differences between those variants from a real-
ization perspective. Intermediate nodes, especially those closer to the taxonomy
root, tend to correspond to abstract algorithms, while nodes closer to the leaves
correspond to concrete implementations. Nodes that are closer together are more
similar than nodes that are further away from each other. A taxonomy provides
guidelines on how to structure the implementations of different variants in the
taxonomy. In TABASCO, taxonomies are used to structure the implementation
of a toolkit, i.e., a library implementing the domain’s algorithms and data struc-
tures as included in the taxonomy. Principally, TABASCO can bridge the gap
between SPL variability models and the realization of variability in reusable arti-
facts, such as source code, because taxonomies can capture the set of reusable
variants both from a conceptual and a realization perspective. However, tax-
onomies have not been used for domain analysis in SPL engineering yet.

We propose a Taxonomy-based Software Product Line Engineering Process
(Tax-PLEASE) with the taxonomy as the first and central artifact resulting from
domain analysis. The taxonomy-based domain analysis follows TABASCO [3],
which provides a systematic approach to obtain taxonomies. From such a taxon-
omy, we derive a conceptual variability model in the form of a feature model [9]
as part of domain analysis. For domain design and implementation, we derive the
structure of the reusable realization artifacts from the taxonomy. This leads to
clear engineering principles for obtaining reusable artifacts. Furthermore, these
artifacts follow a more stringent structure, which leads to improved maintain-
ability and evolvability of the resulting SPL. We illustrate our approach using
the Forest FIRE taxonomy [4], which provides data structures and algorithms
for analyzing tree structured data, including XML. The different algorithmic
variants can be used in applications aiming at big data analysis of XML data.

Tax-PLEASE—Towards Taxonomy-Based SPL Engineering 65

The next two sections provide foundations on SPL engineering and on soft-
ware taxonomies. Section 4 presents the conceptual ideas of the Tax-PLEASE
process for SPL engineering. In Sect. 5, we review related work; Sect. 6 concludes
the paper.

2 SPL Engineering

Software Product Line (SPLs) [10] are a large-scale reuse mechanism for closely
related software systems. These systems are modeled as SPL consisting of com-
mon and variable parts. The configuration options for individual products are
captured on a conceptual level within a variability model, e.g., in the form of
a feature model, which arranges features (increments in program functionality)
along a decomposition hierarchy [8].

Fig. 1. SPL engineering process according to [10].

The development process of SPLs can be divided into two principal phases as
illustrated in Fig. 1 [10]. The domain engineering phase builds and maintains the
software family: The domain analysis identifies all sensible common and variable
parts to capture them conceptually, e.g., in a feature model. The domain design
creates a software architecture suitable for the SPL. The domain implementa-
tion realizes it by providing realization artifacts (e.g., source code) for all possible
products of the SPL. Moreover, these two steps implement a variability realization
mechanism for the SPL that can create realization artifacts for individual prod-
ucts of the SPL, e.g., by removing parts from source code that are not needed for
the specified variant. The application engineering phase is concerned with creat-
ing individual products of the SPL: Requirements analysis collects user demands
for individual software systems, application design determines the architecture of
the system and application implementation realizes the system.

Domain engineering guides the design of the SPL in its entirety as well as the
creation of individual products in application engineering, so that this phase is of
utmost importance for the success of SPL. However, the standard development
process provides little guidance on how to perform the tasks within the domain
engineering phase, which may result in fundamentally different realizations of
SPL with little regard to best practices in design. In this paper, we address this
problem by using software taxonomies to guide the domain engineering phase of
SPL development.

66 I. Schaefer et al.

3 Software Taxonomies

Software taxonomies form a means of classifying software. Such algorithm tax-
onomies, in various shapes, have been used for decades [1,4,6,13]. In this paper,
we consider algorithm taxonomies as they have been used in Taxonomy-Based
Software Construction (TABASCO) [3].

A taxonomy hierarchically structures the domain of a particular family of
variants, usually data structures and/or algorithms. It forms a tree (or more
generally a single-rooted directed-acyclic graph) where nodes correspond to vari-
ants in the family. Such an algorithm taxonomy has a starting point, i.e., a root
algorithm corresponding to a highly abstract solution to the algorithm problem
at hand. Edges connecting two variant nodes correspond to refinements between
variants and express the differences between those variants from a realization
perspective. Intermediate nodes in the taxonomy, especially those closer to the
taxonomy’s root, tend to correspond to abstract algorithms, while nodes closer
to the leaves correspond to concrete implementations. Nodes that are closer
together in the taxonomy are more similar than nodes that are further away
from each other.

To illustrate such algorithm taxonomies, we consider a relatively small exam-
ple. Figure 2 depicts this taxonomy of tree acceptance algorithms, one of the For-
est FIRE taxonomies [4]. Such algorithms allow determining whether a particular
subject tree is part of a set of trees, called a tree language; in essence a type
of pattern matching on trees. The taxonomy contains three main branches. The
first one introduces the use of a tree acceptor—a finite state device for processing
trees, similar to a finite state machine for string processing—, and then has vari-
ants that process trees from the leaves to the root (refinement FR) or vice-versa
(RF). Such tree acceptors in principle are nondeterministic, but deterministic
variants can be obtained (refinement Det). The middle root branch considers
another view on deterministic leaves-to-root tree acceptors, based on the com-
putation of so-called match sets per node of the subject tree. Here, various
refinements can be applied to obtain different match-set based algorithms. The
branch labelled S-Path contains algorithms that are based on decomposing a tree
into strings uniquely encoding the tree, and then using string pattern matching
techniques. The taxonomy and its corresponding toolkit (library) provide a fam-
ily of data structures and algorithms for analyzing tree structured data, such as
parse trees for natural languages, XML documents, or programming languages.
These different algorithmic variants can be used in applications aiming at big
data analysis of such tree structured data.

4 A Taxonomy-Based SPLE Process

The central idea of the taxonomy-based SPL engineering process, Tax-PLEASE
(Taxonomy-based Product Line Engineering and Architecture of SoftwarE),
which we propose in this paper, is to base the SPL engineering process on a tax-
onomy of the considered domain of product variants. This process is depicted in

Tax-PLEASE—Towards Taxonomy-Based SPL Engineering 67

Fig. 2. Algorithm taxonomy graph of tree acceptance algorithms [4]. Branches are
labeled by algorithm detail identifiers (i.e., refinements).

Fig. 3. The taxonomy is developed as the first and central artifact during domain
engineering. It is used to derive a conceptual variability model (in the context
of this work, a feature model) as part of domain analysis. Furthermore, the
structure of the reusable artifacts that are developed in domain design and real-
ized in domain implementation is derived from the taxonomy. The application
engineering phase of the traditional SPL engineering process remains unchanged
and relies on the artifacts that are produced during the taxonomy-based domain
engineering phase. The following subsections provide details on how variability
models and reusable realization artifacts are derived from the taxonomy.

Fig. 3. Tax-PLEASE Engineering Process.

4.1 Domain Analysis

For domain analysis in Tax-PLEASE, we assume that a TABASCO-based tax-
onomy for the given domain exists. The derivation of a feature model from a
taxonomy requires domain-knowledge and, hence, cannot be automated fully. In
[11], we provided general guidelines on how to obtain a feature model from a tax-
onomy for transforming an existing taxonomy and toolkit into SPL. The same
guidelines can now be used for developing a feature model from a taxonomy.

Candidates for features in the feature model are the refinements in the tax-
onomy as well as its core concepts. Core concepts might be different from the
refinement operations, form separate clusters in the taxonomy, and need to be

68 I. Schaefer et al.

Fig. 4. Feature model for the Forest FIRE toolkit (cf. Fig. 2) [11].

identified by domain knowledge. The clusters are represented as alternative fea-
tures on the first level of the feature model. The variability inside the clus-
ters is captured as a sub feature-model of these features. The same process can
be repeated recursively. For transforming refinements into features, refinements
which are alternatives are also alternative features. Refinements in the taxon-
omy after a taxonomy node representing a concrete variant are transformed
to optional features as there may be variants with and without this feature.
Sequences of taxonomy nodes which do not correspond to concrete variants can
be combined into one feature whose variability is determined from the start-
ing point of the path. Constraints can be added to the feature model if certain
feature combinations are not valid.

Figure 4 shows the feature model derived from the taxonomy shown in Fig. 2.
In this example, the feature model structure mimics the taxonomy structure
which, however, is not generally the case (cmp. [11]) as features represent config-
uration options while the taxonomy captures the structure of the family of vari-
ants. The refinements of the taxonomy can be transformed into features where
alternative and optional refinements become alternative and optional features,
respectively. Additionally, taxonomy nodes that do not correspond to concrete
variants are combined into one feature, e.g., refinements Match-Set and Rec into
feature MatchSet; and S-Path, SP-Matcher and Det into StringPath.

4.2 Domain Design and Implementation

In Tax-PLEASE, the design of the reusable realization artifacts does not follow
immediately from the TABASCO-based taxonomy. Some choices still have to
be made whose outcome may depend on the designer’s experience and creativ-
ity. However, the TABASCO method [3] and the derived feature model make
the task of domain design and implementation more straightforward. Different
implementation language constructs [5] or design patterns [7] can be used to
structure and realize the design of the reusable artifacts, depending on the type
of commonality and variability of the variants present in the taxonomy.

For example, the different tree acceptor kinds in Forest FIRE are naturally
presented by classes, with all such classes sharing an operation for computing
acceptance (i.e. for executing the pattern matching), yet differing in algorithm,
data structure etc. In Java, this is naturally represented by an interface defin-
ing the acceptance operation, with classes implementing this interface: classes

Tax-PLEASE—Towards Taxonomy-Based SPL Engineering 69

DFRAcceptor, NRFAcceptor etc. in Forest FIRE therefore implement an inter-
face IAcceptor. (In C++, this would naturally be represented by using inheri-
tance with virtual functions [5, p. 151].) As another example, in the match set
branch of the taxonomy, the particular match set computation function used can
encapsulate the use or absence of so-called filtering techniques; this corresponds
to the use of the Strategy design pattern [5, p. 250], [7, p. 315].

By capturing the set of reusable variants from both a conceptual and a real-
ization perspective, taxonomies and their derived feature models bridge the gap
between the two perspectives and hence provide clear engineering principles for
obtaining reusable artifacts. As evidenced by the examples given above, standard
design techniques can be used to map the different types of commonality and
variability to the implementation language level [5]. The resulting, stringently
structured domain design ensures that the resulting SPL has improved main-
tainability and evolvability compared to those of a less principled, less stringent
realization as typically used in SPL engineering.

5 Related Work

In SPL engineering, domain engineering aims to develop reusable core assets
and application engineering applies them to build specific product variants [10].
Domain engineering requires domain analysis in order to determine which char-
acteristics, i.e., commonalities and variabilities, the variants within the SPL
have and which products should be included in the SPL [10]. The most promi-
nent domain analysis approach in SPL engineering is Feature Oriented Domain
Analysis (FODA) [9] where the commonalities and variabilities of the product
variants are expressed by means of product features and their valid combina-
tions, commonly expressed in feature models. Alternative approaches express
the commonality and variability of the product variants in decision models [12]
or orthogonal variability models [10]. However, these variability models focus on
configuration options of variants, but do not provide a structuring of the artifacts
developed in domain design and implementation. In this paper, we replace tra-
ditional configuration-only variability models as output of domain analysis with
taxonomies which also guide the structuring of the reusable realization artifacts.

TABASCO [3] is an approach to domain engineering. Algorithm taxonomies
have been around since at least Darlington’s [6] and Broy’s [1] work. Dijk-
stra’s correctness-by-construction algorithm development style was applied in
taxonomies of algorithms for garbage collection, attribute evaluation, and finite
automata algorithms [2]. In [11], we considered an extractive SPL engineering
approach for transforming a TABASCO taxonomy and toolkit into an SPL.

6 Conclusion

We presented the conceptual ideas for a taxonomy-based SPL engineering
process, Tax-PLEASE. The central artifact of domain analysis in this process

70 I. Schaefer et al.

is a taxonomy of the variants included in the SPL to be developed. This tax-
onomy drives the development of a conceptual variability model, in this work
a feature model, and guides the structuring of the reusable realization artifacts
in domain analysis and implementation. In order to support large-scale soft-
ware development and achieve industrial adoption, architectural concepts such as
component-based modularization will have to be integrated with Tax-PLEASE,
and appropriate tool support is needed. In order to evaluate applicability and
scalability, we are planning on conducting real world case studies. Another topic
of interest is whether agile development and Tax-PLEASE can be combined,
using the reactive taxonomy-based SPLE techniques as mentioned in [11].

Acknowledgments. This work was partially supported by the DFG (German
Research Foundation) under grant SCHA1635/2-2, by the NRF (South African
National Research Foundation) under grants 81606 and 93063, and by the European
Commission within the project HyVar (grant agreement H2020-644298).

References

1. Broy, M.: Program construction by transformations: a family tree of sorting
programs. In: Biermann, A.W., Guiho, G. (eds.) Computer Program Synthe-
sis Methodologies. NATO Advanced Study Institutes Series, vol. 95, pp. 1–49.
Springer, Netherlands (1981)

2. Cleophas, L., Watson, B.W.: Applying and spicing up TABASCO: taxonomy-based
software and how to increase its usability. In: Formal Aspects of Computing—
Essays dedicated to Derrick Kourie, pp. 173–183, Shaker Verlag (2013)

3. Cleophas, L., Watson, B.W., Kourie, D.G., Boake, A., Obiedkov, S.A.: TABASCO:
using concept-based taxonomies in domain engineering. S. Afr. Comput. J. 37, 30–
40 (2006)

4. Cleophas, L., Algorithms, T.: Two Taxonomies and a Toolkit. Ph.D. thesis, TU
Eindhoven, April 2008

5. Coplien, J.O.: Multi-Paradigm DESIGN for C++. Addison-Wesley, Boston (1998)
6. Darlington, J.: A synthesis of several sorting algorithms. Acta Inf. 11, 1–30 (1978)
7. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Patterns, D.: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)
8. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical report, DTIC Document (1990)
9. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-

oriented reuse method with domain-specific reference architectures. Ann. Softw.
Eng. 5, 143–168 (1998)

10. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering -
Foundations. Principles and Techniques, 1st edn. Springer, Heidelberg (2005)

11. Schaefer, I., Seidl, C., Cleophas, L., Watson, B.W.: SPLicing TABASCO: Custom-
Tailored Software Product Line Variants from Taxonomy-Based Toolkits. In: SAIC-
SIT 2015, pp. 34:1–34:10. ACM (2015)

12. Schmid, K., Rabiser, R., Grünbacher, P.: A comparison of decision modeling
approaches in product lines. In: VaMoS 2011. ACM (2011)

13. Watson, B.W.: Taxonomies and Toolkits of Regular Language Algorithms. Ph.D.
thesis, TU Eindhoven (1995)

Business Aspects of Software Reuse

A Method to Support the Adoption of Reuse Technology
in Large Software Organizations

Luiz Amorim1(✉) and Manoel Mendonça2

1 Department of Computer Science, Federal University of Bahia, Salvador, Brazil
luizamamorim@hotmail.com

2 Fraunhofer Project Center at UFBA, Salvador, BA, Brazil
manoel.mendonca@ufba.br

Abstract. The process of adopting a software technology in a large
organization is significantly influenced by organizational culture and behavioral
aspects of the practitioners involved in the process. The adoption of software
reuse technology in particular significantly alters the software process of the
organization as well as the modus operandi of the practitioners involved. The
identification of factors that will facilitate or hinder this process is strongly
correlated with the existing system of beliefs and represents a key element to
the planning of this process. Our aim is to propose an action model based on
classes of beliefs that will support the process of adoption of software reuse
technology. An industrial case study was conducted in a large organization to
validate and refine the proposed method. As a result, we propose a method based
on the identification of classes of beliefs and re-signification of those that hinders
the adoption of software reuse technologies.

Keywords: Adoption of software reuse technology · Software reuse beliefs ·
Reasoned action model · Beliefs system and knowledge · Re-signification of
beliefs · Industrial case study

1 Introduction

The adoption of a new technology is an innovation process for the organization and is
strongly related to organizational learning and directly interferes with its human
resources. Organizational learning that integrates individual learning is a vital factor to
increase the practice of innovation in organizations.

Technology adoption within software organizations involves cognitive and social
aspects that permeate the engineers, team leaders, practitioners and users involved in
the software engineering activities.

Beliefs are propositions or premises - or even a formed opinion or conviction - that
an individual holds as true [51]. The basis of models referring to mental processes that
affect people’s behavior is their belief system. This beliefs system also significantly
influences their position facing a change in an organizational process [42, 59]. Under‐
standing belief system can significantly help to influence technology acceptance.

© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 73–88, 2016.
DOI: 10.1007/978-3-319-35122-3_6

The adoption of reuse technology in a large organization significantly changes the
software process of the organization as well as the modus operandi of the technicians
involved. Thus, human and organizational obstacles often outweigh the technical obsta‐
cles in this context [4, 25]. Knowing and treating these obstacles is, therefore, an impor‐
tant step during the adoption of reuse technology, in order to minimize the risks of failure.

The goals of this research are expressed by answering the following research
questions:

RQ1: What factors facilitate or hinder the adoption, acceptance, deployment and use
practices of software reuse in a large organization?

RQ2: How do you to treat these factors to facilitate the process of technology adoption?

In this work, we developed a systematic way to identify and treat factors that facilitate
or hinder the adoption of reuse practices in large software organizations. Our approach
is based on the study of the underlining belief systems, from the practitioners involved
in the process.

All our research is being developed through qualitative studies in an industrial
setting, a software division of a very large organization. The acquisition and organization
of knowledge through the use of empirical methods have become increasingly present
in the field of software engineering enabling the understanding of various factors
involved in the area, trying to make it more predictable and manageable [9, 55]. The use
of an industrial organization setting is a key factor to improve external validity of
empirical studies in software engineering [60]. This type of environment provides real
processes, significant scale and realistic settings for studies. The use of qualitative
methods is more suitable to this type of study and setting. The real world environment
is more difficult to control and demands a more constructivist approach where data is
collected by reviews and interviews, as opposed as, quantitative measures. In particular,
we used an ethnographic approach where one of the researches was inserted in the
studied environment during a major effort of reuse technology adoption.

The main contribution of this work is to present a method based on the identification
of classes of beliefs to support the process of adoption of reuse technology in a large
organization and a catalog of beliefs referring to the reuse technology. We use an
approach of re-signification of beliefs that may represent a risk to the technology adop‐
tion process. The work is focused on the adoption of software reuse technology, but we
also suggest how to extend the use of this method to help the adoption of others software
technologies.

The rest of this paper is organized as follows. Section 2 presents an overview of the
software reuse technology adoption problem and discusses the major cognitive models
that represent the way people act. Section 3 presents the framework for our method and
a Catalog of Software Reuse Beliefs’. Section 4 presents our ethnographic industrial
case study, developed over two years, regarding the adoption of reuse technology in a
large organization. Section 5 presents our conclusions and recommendations for future
works.

74 L. Amorim and M. Mendonça

2 Background

Society currently has knowledge as a rather significant value and the various technolo‐
gies represent an important means to make this knowledge more and more useful and
available, stimulating constant evolution and innovation in organizations [36]. Under‐
standing the factors that interfere in the process of adoption of new technologies in
organizations helps us to predict and manage this adoption process [41].

Straub [56] suggests three conclusions about technology adoption an diffusion:
“(a) technology adoption is a complex, inherently social, developmental process; (b)
individuals construct unique (but malleable) perceptions of technology that influence
the adoption process; and (c) successfully facilitating a technology adoption needs to
address cognitive, emotional, and contextual concerns”.

New technology finds barriers in the organization such as incompatibilities with
other technologies used, technical skills, resistance of people to change [28]. In general
we see the great importance of the people, their beliefs and organizational culture in a
process of technology adoption.

2.1 The Adoption of a Software Technology

The diversity and the growing need of organizations in adopting new technologies for
the development and evolution of software, has led to a concern in better understanding
the factors involved in the process of introducing these technologies.

Adopting a software technology in an organization requires different levels of
learning, because it changes the skill of the practitioners and the organizational structure
and procedures of the company. This requires the definition of strategies most appro‐
priate to the organization’s culture.

Technological changes in software processes should consider the human factor
involved as a critical element to their success as well as some important aspects that affect
the adoption of software engineering technologies as described by Punter et al. [47].

In this way we can obtain better support to understand, predict and modify human
behavior to better plan and manage the process of adoption of technologies to facilitate
its acceptance.

2.2 The Adoption of Software Reuse Technology

The introduction of software reuse technology in organizations has a very positive
impact on issues of cost, productivity and quality of software [8, 20, 44].

The adoption of software reuse technology in an organization is costly in terms of
time and resources. Failure in this process causes significant damage to the organization,
including, with respect to its market share [23]. The transition from a traditional software
development process to a process using the technology of reuse requires a great deal of
change in the way the organization works and the behavior of practitioners involved [39].

Pietro-Diaz [45] proposed a model of incremental reuse of adoption to reduce the
risk involved in the adoption process, emphasizing the importance of the organizational

A Method to Support the Adoption of Reuse Technology 75

structure for successful adoption. We also found in the literature other significant work
on the adoption of reuse among them we can mention [12, 14, 33, 34, 38, 48, 54].

As Griss [27] said, “Reuse is a business issue that involves technology transition and
organizational change. Instituting a reuse culture, providing training, adhering to stand‐
ards and securing management commitment, are the key success factors”. Empirical
studies by Morisio [38] in industrial organizations show that non-technical factors, such
as organization, processes, business drivers, and human involvement, appear to be the
most important factors for a successful reuse adoption process.

The human aspects are presented, [53] emphasizing the importance of empirical
evidence to demonstrate their degree of influence as a factor to help or hinder the process.
Human, organizational, managerial and economic obstacles often outweigh the technical
and should be considered in each organization to ensure that the risks associated with
them are properly handled.

2.3 Organizational Culture, Belief System and Knowledge

The organizational culture comprises the context in which software development takes
place [32] and consists of beliefs, attitudes, values, norms, standards of behavior,
customs, practices, symbols and organizational knowledge.

The adoption of new technologies adds new knowledge to the organization’s culture
which will iterate directly with the organization’s belief system and with the belief
system of its members. The learning of new thing requires a review and generally
changes stable portions of the cognitive structure of people in organizations [6]. This is
a very significant aspect of the process of adoption of new technologies.

To understand the process of change in the culture of organizations it is necessary
to deal with the concepts of beliefs, belief systems and knowledge and their relationships.
Beliefs are the elements that primarily determine the way people act and are the main
barriers to the learning process and changes in organizations.

We found in scientific studies, the importance of beliefs as a determinant of the
behavior of individuals and groups in different fields and in software engineering as we
see in [32, 42, 59] among many others.

Belief is a proposition or premise or even an opinion formed or conviction that an
individual holds as true [57]. This refers to the subjective probability of judging people
on some aspect of their environment, focusing on the understanding of the person about
oneself and the environment.

A belief system is a set of beliefs which guide and govern a person’s attitude. Atti‐
tudes and beliefs in these systems are closely associated with one another and retained
in memory [46]. Our belief system is the set of precepts which govern our thoughts,
words, and actions.

Beliefs are formed from several different sources as our own experiences, observa‐
tions, reads, hear things, reflections, generalizations, learning, advertising, acceptance
of what is said by people who are references, influences of the environment. People often
examine the captured information against evidence and facts and produce their infer‐
ences with a greater or lesser degree of analysis. Once are beliefs formed, changes in
them are usually not made easily.

76 L. Amorim and M. Mendonça

Knowledge has a philosophical definition that says it is the justified true belief in the
“standard analysis” [18]. The adoption of a new technology in an organization implies
a process of knowledge transfer changing the organization’s belief system and the indi‐
viduals who compose it. Learning is a process of growth of knowledge and takes place
on a large scale during the adoption process.

2.4 Cognitive Models that Represent the Way People Act

Cognitive psychology is the study of mental processes such as “attention, language use,
memory, perception, problem solving, creativity and thinking” [5]. Its focus is the mental
processes that affect people’s behavior. We selected some models that will be the basis
for the model that we propose to support the adoption of new technologies.

In social psychology, we find three theories developed by Fishbein & Ajzen. The
first, called the Theory of Reasoned Action - TRA [21] presents a model to represent
the way people act. According to TRA, people construct beliefs about various personal,
technological and environmental aspects, which may facilitate or complicate their
attempts to adopt certain behaviors. The TRA suggests that beliefs, attitudes and inten‐
tions are the main determinants of human behavior, and there are additional elements
such as knowledge, skills, and environmental factors.

The TRA has been extended, aimed to predict and explain human behavior in specific
context, having been baptized as Theory of Planned Behavior-TPB [3]. The TPB beliefs
can be of three types: behavioral, normative and control.

The two theories were consolidated [22] and called theory of behavioral predic‐
tion-TBP, where “human social behavior follows reasonably and often spontane‐
ously from the beliefs people possess about the behavior under consideration”. The
authors present cases of use in various experimental studies and its uses were cited
in over 1000 experiments.

In social cognitive perspective Bandura [7] proposes that the theory of self-efficacy
has a central role in this context [7]. The concept of perceived self-efficacy is defined as
people’s beliefs about their capabilities to achieve certain levels of performance.

The growing diversity of software technology and the need to explain the acceptance
or rejection of these technologies led to Davis’s proposition Technology Acceptance
Model -TAM [17] which determined three motivating behavioral factors: Perceived
Ease of Use, Perceived Usefulness and Attitude Toward Using. TAM is an adaptation
of the TRA version to emphasize characteristics of the behavior of users of computer
technology. It was extended later to incorporate new features proposed for the evolution
of the TRA and generated the TAM2 [57]. The third version of the TAM model called
TAM3 was proposed by Venkatesh and Bala [58] by adding determinants of perceived
ease of use (self-efficacy computer, perceptions of external control, computer anxiety,
computer playfulness, perceived enjoyment and usability objective) which aims at
making the process of adopting a new technology more precise.

The importance of the software teams´ beliefs system for the decision-making
process in regards to new technologies is emphasized by Passos et al. [43].

A Method to Support the Adoption of Reuse Technology 77

3 A Method Based on an Action Model Reasoned on Classes
of Beliefs to Support the Adoption of Software Reuse Technology

The model that we propose has a basic model, the theory of TBP-behavioral prediction
[22]. This choice is a consequence of their conceptual scope and its wide range of use
in experiments in various fields of knowledge.

The reasoned action approach of TBP provides theoretical support to understand,
predict, and modify human behavior and plan how to implement interventions to change
behavior.

We adapt this model to support the planning process of adopting a software tech‐
nology in an organizational environment and use the models previously cited as support
for the creation of classes of beliefs.

A belief generates an attitude (latent disposition or tendency to respond in a favorable
or unfavorable degree to an object) which in turn produces an intention (promptness of
a person to perform the behavior) which in turn determines behavior (observable acts
that are performed by the person in question).

For the process of adoption of reuse technology, we can cite an example of chaining
these elements by a practitioner of an organization. The belief “Technology reuse is
complex and expensive”, generates an intention “Resist the deployment of reuse tech‐
nology” produces the behavior “Do not engage/hinder the execution of the tasks of
adoption.”

While investigating the beliefs system of software practitioners we can identify their
latent intentions and consequently predict possible behaviors against the process of
technology adoption (Fig. 1).

The model to support the adoption of software technologies proposed here is based
on the four basic types of beliefs. The first three types of beliefs: behavioral, normative
and of control were previously described in the theory of behavioral prediction-TBP.
The fourth type is the beliefs of self-efficacy proposed by Bandura [7].

Fig. 1. Basic structure of our Action model

To structure the process of identifying the beliefs in the software technology area,
we stratify each basic type of belief in a set of significant classes of beliefs to be mapped
to support the adoption of new software technology. These classes of beliefs are iden‐
tified from the literature review, relative to others models of acceptance of technologies
presented in the next section.

78 L. Amorim and M. Mendonça

3.1 Classes of Beliefs

Classes of beliefs are significant aspects related to software technology that guide the
identification of beliefs of the software practitioners’. From an analysis of the various
existing models in the literature mentioned above, we construct classes of beliefs by
grouping the main aspects identified for each basic type of belief. In Fig. 2 we show our
action model reasoned on beliefs classes.

The Behavioral beliefs are defined as “people hold beliefs about the positive or
negative consequences they might experience if they performed the behavior” [22].

The Normative beliefs are defined “as people form beliefs that important individuals
or groups in their lives would approve or disapprove of their performing the behavior
as well as beliefs that these referents themselves perform or don’t perform the behavior
in question” [22].

The Perceived Control Beliefs are defined as “people form beliefs about personal
and environmental factors that can help or hinder their attempts to perform the
behavior” [22].

The Self-efficacy beliefs are defined as “people’s ability to produce well-defined
performance levels” [7]. Experience and abilities (lack or presence) are important to
prevent/encourage people to take action.

Fig. 2. Action model reasoned on beliefs classes

3.2 The Re-Signification of Beliefs

The re-signification of beliefs, also cited in the literature as “change beliefs” or “beliefs
revision” [16, 18], is defined as the process that leads the individual to assign new
meaning to objects or events through a change of vision. Through it, the individuals
learn to think differently about things, seeing new points of view or considering other

A Method to Support the Adoption of Reuse Technology 79

factors as stated by Gardner [26]: “The key to change the mind is to shift the way a
person perceives, codes, retains and accesses information”.

Cognition involves the act or process of belief formation, acquisition of knowledge
and reasoning. This process can be conscious or unconscious [18] being related to
perception, memory and emotion. Techniques that encourage individuals to adapt or
change their beliefs from the identification and awareness regarding false beliefs and
elicitation of conflicting true beliefs are developed. The formation of new true beliefs
and alignment of other beliefs with reality are stimulated, thus creating a process for
enabling the acquisition of knowledge. Emotions, fear, anxiety and wrong perceptions
often lead the individual to have defensive thoughts and false beliefs which make the
process of re-signification a difficult task that requires the use of appropriate techniques
for each type of situation.

The model identifies false, true and conflicting group of beliefs with the practitioners
involved. Re-signification activities have to act mostly upon false individual beliefs.

The beliefs that cause difficulties in the adoption process or false beliefs related to
new technology are the most frequent cause of misconceived knowledge [13] such as
missing or incomplete knowledge or wrong knowledge. Other significant causes are past
experiences in conflict with the new conception [16] and distorted perceptions of envi‐
ronmental factors.

For missing or incomplete beliefs, we seek to develop new beliefs through the provi‐
sion of new knowledge. From false beliefs, we will use the explicit or implicit refutation
to support belief revision. In our method, we can use re-signification techniques such as
readings process, reflective process, discussion and presentation of cases and experience
with alternative models [16].

3.3 A Catalog of Software Reuse Beliefs’

To identify the beliefs regarding the adoption of reuse in each class we use a research
process that consists of three steps.

In step-1 review and analysis of literature, publications were identified and selected
on the topic under study. These publications were analyzed and the beliefs presented
were identified for each class of beliefs.

In step-2 were conducted interviews with experts in reuse in large companies, with
the objective of validate and expand the list of beliefs identified in step-1.

In step-3, an ethnographic study was done in the process of adoption of reuse tech‐
nology in a large company where the researcher sought to observe among the practi‐
tioners involved throughout the adoption process, existing beliefs and how those beliefs
evolved.

A review and analysis of the literature was performed with the use of search engines
with search strings defined to select articles, books and conferences on the subject. The
selected publications were analyzed and marked the identified beliefs [1, 2, 10, 11, 15,
23–25, 29–31, 34, 35, 37, 38, 40, 48, 49, 52, 53].

These beliefs were consolidated and fairly categorized in their classes. A preliminary
list of beliefs grouped in classes was produced, which was submitted to analysis and
complementation by practitioner with reuse experience in the organization.

80 L. Amorim and M. Mendonça

As a result of these steps, we present the Catalog of Software Reuse Beliefs with 68
beliefs, classified according to the model defined, presented below:

Behavioral beliefs
 Technology Maturity

1. The reuse technology is mature.
2. The reuse technology has a well-defined development methodology of assets.

 Relative Advantage
3. Reuse promises a quick time to market and a reduction in cost.
4. The cost of adoption of reuse technology is described as very high without significant short-term returns.
5. Managerial levels think the investment with reuse is accounted for indirect costs not directly related to application

development.
 Perceived Usefulness
6. Developers believe that reuse reduces the cost and time for the development of a new application.
7. Reuse would require a structured process for quality release of the assets which would slow down the develop-

ment process.
8. The benefits of reuse will depend on the range of products the asset is planned to assist and the stability of the

domains.
9. The lack of metrics for reuse makes it difficult to identify costs and benefits.
10. Managers react to implementation reuse due to lack of quantitative measures to assess the benefits and costs of

their utilization.
Perceived Ease of Use
11. Reuse is difficult to implement in one organization.
12. The use of object orientation facilitates the creation of reusable assets.
13. The communication between creators and users of assets facilitates the adoption process.
14. The cost of developing a reusable asset depends on the technical competence of the staff in the methodology

used.
15. The cost of developing a reusable asset depends on the quality of the development methodology used.
16. Developers believe that reuse increases the quality of a new application.
17. A systematic reuse process increases the developer’s productivity.

Complexity
18. Building reusable assets and assembling them to build future systems is a complex activity.
19. Reuse technology is complex because it involves the identification, construction, and maintenance of assets

availability.
20. Developers believe that reuse is an opportunistic ‘‘hunter/gatherer’’ process that depends on the cognitive abil-

ities of developers to locate the right domains and components.
21. The use of assets of limited scope or wide scope requires excessive effort to adapt to the new context.
22. The excess of parameterization of assets requires a high investment in the testing process.

Outcome expectations
23. Developers are wary of the quality and performance of the assets to be reused.
24. The lack of reusable components to meet the future needs of a domain limits the success of technology adop-

tion.
25. The lack of adequate assets documentation hinders and limits its use in the development process.
26. Software developer’s belief that reuse will inhibit creativity: the ‘‘Not Invented Here’’ syndrome.
27. The evolution of the assets may create problems with older applications that use them.
28. Architecture of many levels that can be used in different applications is a critical factor for success of reuse im-

plantation.
29. A Quality Management assets approach has a significant impact on the development process.
30. The quality of the assets is important to obtain the desired benefits such as defect/time reduction.

B. Normative beliefs
Image
31. To develop software with reuse is a positive differential for my company and for me as a professional.

Visibility
32. Participate in a project with reuse is a positive factor for my work in the company.

Voluntariness of use
33. I use the reuse technology voluntarily in my work.

Social Factors
34. The use of the technology reuse will facilitate my interaction with other technicians within and outside of my

company.
C. Control Beliefs
Compatibility
35. The reuse activities have incompatibility with the methodology of software development organization.
36. The use of asset repository when it is not considered a critical factor of success breeds dissatisfaction with the

use of technology reuse.
37. Elements such as the organizational structure of the reuse group and their way to work hinder the deployment

of technology reuse.
38. The lack of an educational and training program/mentoring program is a complicating factor for reuse.
39. The organization is resistant to a structure required to support the reuse technology which makes the adoption

process very hard.
(*) For reason of space we not show the others beliefs of the catalog.

A Method to Support the Adoption of Reuse Technology 81

4 A Industrial Case Study with Ethnography

The proposed method was applied in the process of reuse technology adoption in a large
organization as a form of experimentation, refinement and validation of the results. To
accomplish this task we used a qualitative multi-method procedure [19] with a main
method, a long-term case study [50] conducted during a project of technology adoption
in a large organization. We apply an ethnographic approach in this case study so as to
be immersed in the everyday life of the project group.

4.1 Case Study Description

We conducted a case study on a project of adoption of reuse technology in a large
company during 24 months where we investigated the beliefs related to reuse of existing
technology among those involved in the project, its effects (strength and impact) in the
process of adoption and means of re-signification to them to make the process more
effective. To do this we used an ethnographic approach where we were involved
throughout the project following and observing all the activities performed.

The organization has areas of software development in various locations in the
country and this project of adoption was carried out in one of those areas that have around
250 practitioners involved in the process of development/evolution of software. The
area of software development organization is certified ISO 9001:2008 and has an estab‐
lished and mature software’s development and evolution process and a project manage‐
ment process based on PMBOK and SCRUM.

The focus of the project to adopt the reuse technology was one of the main business
areas of the organization and was conducted with a description of the main business
processes, evaluation of the organization´s software development/evolution process,
proposed modifications in this process and training of practitioner involved (22 techni‐
cians). Analysis of process software environment support to the business process was
also performed to identify opportunities for reuse, business component identification,
specification and implementation of some of these components.

The project was carried out through a consulting contract with a research/consultancy
institution, having as the first phase (one year duration), the project definition, the
domain analysis of the business area involved and the survey of the main software that
provide support for the business processes and the mapping of software features, iden‐
tifying potential features for reuse.

Eight existing software to support the business process were analyzed and their
complexity was measured in function points (fp), where one fp is equivalent on average
to 10 h of development effort. The software are presented below:

The organization’s software development methodology was altered to incorporate
the domain analysis practices (Table 1).

A quantity of 136 features were identified and used to create the application map at
this stage. Upon completion of this phase, adjustments were made in the organization’s
software development process, previously adapted.

82 L. Amorim and M. Mendonça

Table 1. - Software involved in project

Software Complexity (in fp) Technology Platform
P 2757 Java Open Source Tools
C 1719 MS.NET
G 1011 Java Open Source Tools
S 650 Java Open Source Tools
I 382 Java Open Source Tools
J 618 Java Open Source Tools
K 377 MS.NET
L 335 MS.ASP

The second phase of the project (one year duration) focused on defining the appli‐
cation architecture to support reuse, in accordance with the development frameworks
Java and MS.NET which are used as standards for software development in the organ‐
ization. The construction of reusable components adhering to this defined architecture
was held. As in the previous phase, this phase was also started by a team training process,
followed by adjustment of the organization’s software development methodology to
incorporate reuse practices.

A pilot was conducted with refactoring of software adequacy for the proposed archi‐
tecture and use of components developed.

At the end of the phase, adjustments were made to previously adapted software
development processes, as occurred in the previous phase.

The data collection involves semi-structured interviews, observation of meetings and
project tracking, observation of the practitioners’ behavior, observation of the work
processes, and analysis of existing documents produced during the process.

Using the Catalog of Software Reuse Beliefs, the qualified beliefs of the practitioners
were classified into four groups that should be treated according to the model.

We can summarize these results as:

(a) False Beliefs that can hinder the adoption process: 5
(b) True Beliefs with high impact that can facilitate the adoption process: 11
(c) True Beliefs with high impact that can hinder the adoption process: 7
(d) Conflicting beliefs of high impact: 4

The false and conflicting beliefs identified were separated to be worked first through
the process of re-signification of beliefs. The true beliefs with high impact that can hinder
the adoption process were managed/treated during the adoption process so that the
negative effects on the process were neutralized.

4.2 Re-Signification of Beliefs Identified

The process of re-signification of beliefs was conducted through the use of various
techniques. Two workshops, involving 40 technicians, one at the beginning of the project
and the other half way through, presented practical cases employing reuse technology.
In developing the work, those involved were encouraged to use the techniques, practices

A Method to Support the Adoption of Reuse Technology 83

and conduct such as domain analysis activities as a means of supplementing the knowl‐
edge and encouraging reformulation of beliefs.

The work of revision and adaptation of the software process of the organization led
the participants through a detailed reflective process of the technology operationalization
approach. We observe how existing beliefs were discussed and adjusted/modified during
the execution of the work. This led to a change of view that was confirmed in several
follow-up meetings.

The re-signification process has as its first focus the false beliefs as we can see:
The belief 1 “The reuse technology isn’t mature” and the belief 9 “The lack of metrics

for reuse makes it difficult to identify costs and benefits” and the belief 4 “The cost of
adoption of reuse technology is described as very high, without significant short-term
returns” were re-signified through examples that showed the use of technology in various
large organizations, associated with reading articles with reported practical experiences.

The belief 2 “The reuse technology has a well-defined development methodology of
assets” was re-signified through the presentation of the methodology and its use in a
pilot of analysis and domain implementation and validation of key components.

The belief 37 “Elements such as the organizational structure of the reuse group and
their way to work hinder the deployment of technology reuse” was re-signified through
the experience during the group work process in which it was to take responsibility for
the parts certification process. This process was experimented in the pilot phase.

For reason of space we not show how other beliefs were re-signified.
Some specific cases of individual beliefs (false and conflicting) were objects of

special treatment through conversation and discussion of practical situations that stimu‐
lated the technician to perform a critical analysis and review of their positions.

In some cases, declared true beliefs were abandoned during the execution of activ‐
ities. This was verified through behaviors that skipped meaningful activities which leads
us to believe that many beliefs do not always generate consistent behavior (matching)
during execution of activities.

In the observation process we found some cases where the beliefs presented by a
practitioner were conflicting with their behavior when performing actions. We can cite
the case of a practitioner who believes in the modeling process and to implement decides
to abandon the model and merge two different components to simplify the process.
Another significant observation was the surprise of the technicians with the effectiveness
of the technique of domain analysis for identification of components. This represents a
practical case of practitioner’s beliefs re-signification.

In this way we triangulated data from different qualitative sources: interviews and
observations, document analysis and group meetings, project meetings which was
important to corroborate findings from the case study and provide more reliable results.

The process of re-signification of beliefs occurred effectively during the whole
process of adoption of reuse technology. Through observation and recording of conver‐
sations with the practitioner involved in the adoption process, we can validate the posi‐
tive results of re-signification of the beliefs throughout the process.

The adoption process of reuse technology in the organization was successful and
received many compliments from the practitioners involved. Practitioner particularly praised
the way activities were developed and the form in which the project was conducted.

84 L. Amorim and M. Mendonça

5 Conclusions and Further Works

In this paper, we presented a systematic way to identify and treat factors that facilitate
or hinder the adoption of reuse practices in large software organizations. Our approach
is based on the study of the underlying belief systems of the practitioners involved in
the process.

The main contribution of this work is an action model reasoned on classes of beliefs
to support the adoption of software technology where we present a structured method
to guide the process of mapping the belief’ systems of the practitioners involved in the
process of technology adoption. Another contribution is a catalog of the beliefs
regarding the adoption of reuse where we use the class of beliefs of the model,
preceded by a literature review and an analysis of the publications identified, to map a
set of beliefs for each class. This list was refined by interviews conducted with experts
in reuse in large companies, with the objective of validating and expanding the list of
identified beliefs. The set of beliefs was applied, refined and validated with a long-term
ethnographic case study done during the process of adoption of reuse technology
in a large company. The third significant contribution is a method to capture, weigh
and re-signify the beliefs of practitioners involved in the process of adoption of reuse
technology, where criteria have been proposed to prioritize beliefs to be submitted to a
re-signification process. The method of treatment of the selected beliefs was described.

The answer to research question RQ1 is presented through the action model
reasoned on classes of beliefs to support the adoption of software technology and
through the catalog of the beliefs regarding the adoption of reuse that complements
the model to support the adoption of reuse in large organizations. The answer to research
question RQ2 is presented through the method to capture, weigh and re-signify the
beliefs of practitioners where these beliefs are processed and properly classified so that
all beliefs that cause difficulties to the adoption process are treated through specific re-
signification techniques, involving specific groups and technicians.

A case study with ethnography was undertaken and through its description we show
the application of the process and improvements to the method is proposed. Application
of this method produced positive results in the adoption process of reuse technology in
the large organization.

From the results presented in this work, we can identify several future research
opportunities that complement this work or explore other aspects that have not been
investigated here and have relevance for the field of software engineering. Thus, the
points that can be investigated in the future are a catalog of the beliefs regarding the
adoption of reuse based on expert opinion that is currently in the elaboration phase, the
application of the method to support the adoption of software reuse technology in other
large organization and the application of the action model reasoned on classes of beliefs
to map the beliefs regarding the adoption of other mature software technology.

The results of this work show the growing importance of considering and treating
human and organizational factors involved in developing and adopting new software
technologies. This is because software technologies are always embedded in processes
that significantly require the participation of the human element.

A Method to Support the Adoption of Reuse Technology 85

References

1. Ahmed, F., Capretz, L., Sheikh, S.: Institutionalization of software product line: An empirical
investigation of key organizational factors. JSS 80, 836–849 (2007)

2. Ahmed, F., Campbell, P., Lagharid, M.: Cognitive factors in software product line
engineering. In: Proceedings of the UK Sim 2009, pp. 352–355. IEEE, USA (2009)

3. Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50(2), 179–
211 (1991)

4. Almeida, E.: RiDE: The RiSE Process for Domain Engineering. Ph.d Thesis, Universidade
Federal de Pernambuco, Brazil (2007)

5. American Psychological Association, Glossary of psychological terms, Apa.org. (2013).
http://www.apa.org/research/action/glossary.aspx

6. Argyris, C., Putnam, R., McLain Smith, D.: Action Science: Concepts, Methods, and Skills
for Research and Intervention. Jossey-Bass, San Francisco (1985)

7. Bandura, A.: On the functional properties of perceived self-efficacy revisited. J. Manage.
38(1), 9–44 (2012)

8. Basili, V., Briand, L., Melo, W.: How reuse influences productivity in object-oriented
systems. Commun. ACM 39(10), 104–116 (1996)

9. Basili, V., Rombach, D., Selby, R. (eds.): Experimental Software Engineering Issues: Critical
Assessment and Future Directions. LNCS, vol. 706. Springer, Heidelberg (1993)

10. Bastos, J., Neto, P., Almeida, E., Meira, S.: Adopting software product lines: a systematic
mapping study. In: 15th EASE, Durham City (2011)

11. Bosch, J.: Software product lines: organizational alternatives. In: Proceedings of the 23rd
ICSE, pp. 91–100. IEEE Computer Society, Washington, DC (2001)

12. Bongard, B., Gronquist, B., Ribot, D.: Impact of reuse on organizations. In: Proceedings of
the Reuse 1993. IEEE Computer Society Press, Los Alamitos (1993)

13. Broughton, S., Sinatra, G., Reynolds, R.: The refutation text effect: Influence on learning and
attention. American Educational Researchers, Chicago (2007)

14. Caldiera, G.: Domain factory and software reusability. In: Proceedings of the Software
Engineering Symposium: New Frontiers for Software Maintenance (1991)

15. Catal, C.: Barriers to the adoption of software product line engineering. SIGSOFT Softw.
Eng. Notes 34, 1–4 (2009)

16. Chi, M.: Three types of conceptual change: Belief revision, mental model transformation,
and categorical shift. In: Vosniadou, S. (ed.) International Handbook of Research on
Conceptual Change. Erlbaum, Hillsdale (2008)

17. Davis, F., Bagozzi, R., Warshaw, P.: User acceptance of computer technology: A comparison
of two theoretical models. Manage. Sci. 35, 982–1003 (1989)

18. Douglas, N., Wykowski, T.: From Belief to Knowledge Achieving and Sustaining an
Adaptive Culture in Organizations. CRC Press, USA (2011)

19. Easterbrook, S., Singer J., Storey, M., Damian, D.: Selecting empirical methods for software
engineering research. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to AESE, Section
III, pp. 285–311. Springer, London (2008)

20. Ezran, M., Morisio, M., Tully, C.: Practical Software Reuse. Springer, London (2002)
21. Fishbein, M., Ajzen, I.: Belief, Attitude, Intention, and Behavior: An Introduction to Theory

and Research. Addison-Wesley, Reading (1975)
22. Fishbein, M., Ajzen, I.: Predicting and Changing Behavior: The Reasoned Action Approach.

Psychology Press, New York (2010)
23. Frakes, W., Kang, K.: Software Reuse Research, Status and Future. IEEE Trans. Software

Eng. 31(7), 529–536 (2006)

86 L. Amorim and M. Mendonça

http://www.apa.org/research/action/glossary.aspx

24. Gacek, C., Knauber, P., Schmid, K., Clements, P.: Successful software product line
development in a small organization. In: SPL: Practices and Patterns. Addison Wesley (2001)

25. Garcia, V., Lisboa, L., Meira, S., Almeida, E., Lucrécio, D., Fortes, R.: Towards a maturity
model for a reuse incremental adoption. In: SBCARS (2007)

26. Gardner, H.: Changing Minds. Harvard Business School Publishing, Boston (2006)
27. Griss, M.: Software Reuse: Objects and Frameworks are not Enough. Object Mag. 5(2), 77–

87 (1995)
28. Hoffman, N., Keppler, R.: Assimilating New Technologies: The Role of Organizational

Culture. Inf. Syst. Manage. 17(3), 36–42 (2000)
29. Joanes, L., Northrop, L.: Clearing the way for software product line success. IEEE Softw.

27, 22–28 (2010)
30. Knauber, P., Muthig, D., Schmid, K., Widen, T.: Applying product line concepts in small and

medium-sized companies. IEEE Softw. 17, 88–95 (2000)
31. Li, D., Chang, C.: Initiating and institutionalizing software product line engineering: from

bottom-up approach to top-down practice. In: Proceedings of the 2009 33rd Annual IEEE
ICSAC, vol. 01, pp. 53–60. IEEE Computer Society, USA (2009)

32. Livari, J., Livari, N.: The relationship between organizational culture and the deployment of
agile methods. IST 53(5), 509–520 (2011)

33. Lloréns, J., Fuentes, J.M., Prieto-Diaz, R., Astudillo, H.: Incremental Software Reuse. In:
Morisio, M. (ed.) ICSR 2006. LNCS, vol. 4039, pp. 386–389. Springer, Heidelberg (2006)

34. Lucredio, D., Brito, K., Alvaro, A., Garcia, V., Almeida, E., Fortes, R., Meira, S., Software
reuse: The brazilian industry scenario. JSS 81, 996–1013 (2008)

35. Lynex, A., Layzell, P.: Organizational considerations for software reuse. Ann. Softw. Eng.
5, 105–124 (1998)

36. Lytras, M., Pablos, P.: Software Technologies in Knowledge Society. J. UCS 17(9), 1219–
1221 (2011)

37. Mannion, M., Organizing for software product line engineering. In: Proceedings of the 10th
International Workshop on STEP. IEEE Computer Society, USA (2002)

38. Morisio, M., Ezran, M., Tully, C.: Success and failure factors in software reuse. IEEE Trans.
Softw. Eng. 28(04), 340–357 (2002)

39. Muthig, D.: A Light-weight Approach Facilitating an Evolutionary Transition Towards
Software product Lines. Ph.d. thesis, Universitär Kaiserlautern (2002)

40. Northrop, L.: Software product line adoption roadmap. Technical Note CMU/SEI-2004-
TR-022, SEI (2004)

41. Partala, T., Saari, T.: Understanding the most influential user experiences in successful and
unsuccessful technology adoptions. CHB 53, 381–395 (2015)

42. Passos, C., Braun, A., Cruzes, D., Mendonça, M.: Analyzing the impact of beliefs in software
project practices. In: ESEM (2011)

43. Passos, C., Mendonça M., Cruzes, D.: The role of organizational culture in software
development practices: a cross-case analysis of four software companies. In: Proceedings of
SBES 2014, Maceio, Brazil (2014)

44. Poulin, J.S.: The Business Case for Software Reuse: Reuse Metrics, Economic Models,
Organizational Issues, and Case Studies. In: Morisio, M. (ed.) ICSR 2006. LNCS, vol. 4039,
p. 439. Springer, Heidelberg (2006)

45. Prieto-Díaz, R.: Making software reuse work: An implementation model. ACM SIGSOFT
Softw. Eng. Notes 16, 61–68 (1991)

46. Psychology Dictionary (2015). http://psychologydictionary.org/
47. Punter, T., Krikhaar, R., Bril, R.: Software engineering technology innovation: turning

research results into industrial success. JSS 82(1), 993–1003 (2009)

A Method to Support the Adoption of Reuse Technology 87

http://psychologydictionary.org/

48. Rine, D.: Success factors for software reuse that are applicable across domains and businesses.
In: ACM Symposium on Applied Computing, USA, pp. 182–186 (1997)

49. Rine, D., Sonnemann, R.: Investment in reusable software. A study on software reuse
investment success factors. J. Syst. Softw. 41, 17–32 (1998)

50. Runeson, P., Host, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14(2), 131–164 (2008)

51. Schwitzgebel, E.: Belief. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy,
Stanford. http://plato.stanford.edu/entries/belief/

52. Sharp, H.: Software reuse: Survey and Research Directions. J. Manage. Inf. Syst. 14(4), 113–
147 (1998)

53. Sherif, K., Vinze, A.: Barriers to adoption of software reuse A qualitative study. Inf. Manage.
419, 159–175 (2003)

54. Sherif, K., Appan, R., Lin, Z.: Resources and incentives for the adoption of systematic
software reuse. Int. J. Inf. Manage. 26, 70–80 (2006)

55. Sjoberg, D., Hannay, J., Hansen, O., Kampenes, V., Karahasanović, A., Liborg, N.: A survey
of controlled experiments in software engineering. IEEE TSE 31(9), 733–753 (2005)

56. Straub, E.: Understanding technology adoption: Theory and future directions for informal
learning. Rev. Educ. Res. 79(2), 625–649 (2009)

57. Venkatesh, V., Davis, F.: A theoretical extension of the technology acceptance model: four
longitudinal field studies. Manage. Sci. 45(2), 186–204 (2000)

58. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on
interventions. Decis. Sci. 39(2), 273–315 (2008)

59. Wernick, P., Hall, T.: Can Thomas Kuhn’s paradigms help us understand software
engineering. Eur. J. Inf. Syst. 13(3), 235–243 (2004)

60. Wohlinf, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012)

88 L. Amorim and M. Mendonça

http://plato.stanford.edu/entries/belief/

A Practical Use Case Modeling Approach
to Specify Crosscutting Concerns

Tao Yue1,2(&), Huihui Zhang3, Shaukat Ali1, and Chao Liu3

1 Simula Research Laboratory, Oslo, Norway
{Tao,Shuakt}@simula.no

2 University of Oslo, Oslo, Norway
3 Beihang University, Beijing, China

{zhhui,liuchao}@buaa.edu.cn

Abstract. Use case diagrams together with use case specifications are commonly
used to specify system requirements. To reduce imprecision, ambiguity, and
incompleteness in use case specifications, an approach with template and
restriction rules is often recommended to achieve better understandability of use
cases and improves the quality of derived analysis models. However, when
crosscutting concerns are modeled together with non-crosscutting concerns as use
case models, resulting use case models often result in cluttered diagrams and
redundant information in use case specifications. Therefore, the overall reusability
of the use case models is usually low. To tackle this, we extend a general use case
approach, named as RUCM, for modeling crosscutting concerns, along with a
weaver to automatically weave aspect use case models into their corresponding
base model to facilitate, e.g., automated requirements analysis. The extended
approach has been evaluated with three real-world applications from communi-
cation, maritime and energy domains and aviation. We compared the modeling
effort required to model three sets of crosscutting concerns from the real-world
applications, when using and not using the extended RUCM approach. Results
show that more than 80 % of modeling effort can be saved.

Keywords: Use case modeling � Reuse � Crosscutting concern � Aspect

1 Introduction

Use case models (UCMods) are widely used for specifying functional requirements of
systems, which are generally text-based and contain ambiguity. To decrease such
ambiguity, previously we proposed the Restricted Use Case Modeling (RUCM)
methodology [19]. RUCM contains standard UML use case diagram notations, a use
case template and a set of restriction rules for textual Use Case Specifications (UCSs).

Use case modeling of communication and control systems poses special require-
ments such as specifying the communication medium and its various properties (e.g.,
packet loss). Behaviors related to such properties are often redundant across use cases
and if modeled directly with them can result in cluttered use case diagrams and
redundant UCS fragments, thus making them difficult to comprehend and reuse.
However, such behaviors are essential for specifying use cases, e.g., for robustness

© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 89–105, 2016.
DOI: 10.1007/978-3-319-35122-3_7

testing [5]. Therefore, it is required to capture sufficient information in the UCMod such
that this kind of analysis/testing can be facilitated. One possible way of facilitating such
analysis/testing is to transform UCMods specified using our approach into other soft-
ware artifacts (e.g., standard UML state machines or even aspect state machines [5]).

Inspired by Aspect-Oriented Requirements Engineering (AORE) [12] and also
driven by needs of industry to deal with specifying crosscutting concerns, we extend
our RUCM approach to support modeling crosscutting concerns, named as Aspec-
tRUCM. The AspectRUCM methodology comprises of the AspectRUCM profile
(extending UML use case diagram notations) and a set of guidelines (formalized as a
UML activity diagram) for applying the profile for specifying crosscutting behaviors.

Eliciting and identifying crosscutting behaviors or applying the AspectRUCM
methodology to support other requirements engineering activities (e.g., requirements
verification and validation) is not the focus of the paper. However, as the first step
towards supporting automated analysis or generation (e.g., test cases), we need a
formalization mechanism to model textual UCMods. We have already developed such
a formalization mechanism: a use case metamodel referred to as UCMeta, in our
previous work [20]. Based on it, we present a weaver to automatically weave aspect
UCMods specified using AspectRUCM to their corresponding base UCMod.

Our work is evaluated with three real world applications and results demonstrate
that AspectRUCM is applicable for real world applications. We also evaluated mod-
eling effort required when using AspectRUCM and not using AspectRUCM to model
three sets of crosscutting concerns of the three real-world applications. Results show
that more than 80 % of modeling effort can be saved when using AspectRUCM.

The rest of the paper is organized as follows. In Sect. 2, we briefly discuss RUCM,
UCMeta, and the running example used to illustrate our approach. The AspectRUCM
methodology is discussed in Sect. 3. Section 4 presents the evaluation. Related work is
presented in Sect. 5. The paper is concluded in Sect. 6.

2 Background

We present the running example in Sect. 2.1. In Sect. 2.2, we introduce RUCM. The
metamodel of formalizing RUCM and AspectRUCM is presented in Sect. 2.3.

2.1 Running Example

We used a subsystem of a Video Conferencing System (VCS) as the running example,
which has been used in our previous works [5]. Figure 1 shows that the VCS is
responsible for sending/receiving multimedia streams, i.e., audio and video to a number
of other Endpoints. The core functionality of such a VCS includes establishing/
disconnecting audio/videoconferences and starting/stopping presentations in addition
to audio/videoconferences. The other Endpoints have the similar functionality.

We group use cases into two packages corresponding to VCS or EndPoint. Both
have the same set of use cases as they are equivalent communication end points.
However, their implementations might be different, forming different products with the

90 T. Yue et al.

same functionalities. In Fig. 1, we have defined associations between use cases,
e.g., StartPresentation of VCS with StopPresentation of Endpoint with cardinality 0 to
many (*) on the StopPresentation side. This means when presentation is started on
VCS, it stops the presentation of any other endpoint, which is currently presenting.

2.2 RUCM

There exist many requirements specification techniques, which are either fully formal
or fully informal [16]. Use case modeling is widely applied in practice for specifying
requirements specifications in a structured manner, which combines diagrammatic (use
case diagrams) and textual descriptions (in a use case template) and offers an easy-to-
apply and precise foundation for requirements specification.

We have previously devised a methodology named as Restricted Use Case
Modeling (RUCM) [19] to reduce ambiguity and improve understanding of require-
ments, and facilitate automated analysis. Table 1 is an example of UCS documented
with an editor implemented the RUCM methodology. Use case Disconnect contains
one basic flow and two specific alternative flows. The two specific alternative flows are
used to branch from the basic flow under specific conditions. RUCM specifies three
different types of alternative flows. Specific and bounded flows indicate from which
step in which flow of reference they branch whereas a global flow can branch from any
step. For instance, the specific alternative flow in Table 1 branches from Reference
Flow Step (RFS) 2 in the basic flow, and the condition for branching is the negation of
step 2 of the basic flow. Restrictions to natural language take the form of keywords,
such as VALIDATES THAT [19].

RUCM has been defined as the foundation of the Zen-RUCM framework [21],
which is built on RUCM, and extends it for specifying test case specifications (RTCM)
and transforming RUCM models to test case specifications [23], and generating

Fig. 1. Use case diagram of VCS

A Practical Use Case Modeling Approach to Specify Crosscutting Concerns 91

executable test cases from RTCM models [17]. In this paper, we report another
extension of RUCM for specifying crosscutting behaviors (i.e., AspectRUCM).

2.3 UCMeta

UCMeta is the intermediate model in aToucan [20], used to bridge the gap between a
textual UCMod and a UML analysis model (e.g., class and sequence diagrams). As a
result, we have two transformations: from the textual UCMod to the intermediate
model, and from the intermediate model to the analysis model. UCMeta can also be
considered as a way to formalize textual UCMods and therefore the formalized
UCMods can be used for automated analysis or test generation. Metamodel UCMeta
also complies with the restrictions and use case template of RUCM.

UCMeta is hierarchical and contains five packages: UML::UseCases, UCSTem-
plate, SentencePatterns, SentenceSemantics, and SentenceStructure. UML::UseCases is
a package of UML 2 superstructure [2], which defines the key concepts used for
modeling use cases such as actors and use cases. PackageUCSTemplate not only models
the concepts of the use case template but also specifies three kinds of sentences: Sim-
pleSentence, ComplexSentence, and SpecialSentence. In linguistics, a SimpleSentence

Table 1. Use case disconnect (specified in the RUCM editor)

92 T. Yue et al.

has one independent clause and no dependent clauses [8]: one Subject and one Predi-
cate. UCMeta has four types of ComplexSentences: ConditionCheckSentence, Condi-
tionalSentence, IterativeSentence, and ParallelSentence, which correspond to four
keywords (i.e., VALIDATES THAT, IF-THEN-ELSE-ELSEIF-ENDIF, DO-UNTIL,
and MEANWHILE) that are specified in RUCM to model conditions, iterations, con-
currency, and validations in UCS sentences. UCMeta also has four types of special
sentences to specify how flows in a use case or between use cases relate to each other.
They correspond to keywords RESUME STEP, ABORT, INCLUDE USE CASE, and
EXTENDED BY USE CASE.

3 The AspectRUCM Approach

This section pre-
sents our Aspec-
tRUCM approach.
Section 3.1 presents
the domain model
capturing main
aspect concepts,
Sect. 3.2 discusses
the profile, Sect. 3.3
defines weaving
directive interaction
overview diagram,
and modelling
guidelines are pre-
sented in Sect. 3.4.
Our weaver is presented in Sect. 3.5. We used example of AdaptCallRate (Table 2) to
explain the concepts.

3.1 Domain Model

A domain model for AspectRUCM is shown in Fig. 2. An aspect describes a cross-
cutting concern, which in our context is a set of system requirements, which crosscuts
another set of system requirements describing the main functionalities of the system.
A joinpoint is a model element, which corresponds to a pointcut where an advice (e.g.,
use cases and actors in a use case dia-
gram, and additional steps of flows of
events, preconditions and postconditions
in UCSs) might be applied. Theoreti-
cally, all model elements in UML use
case diagrams and constructs of UCSs
are possible joinpoints. However, we
only define five types of joinpoints in

Table 2. Use Case AdaptCallRate (specified in the RUCM editor)

Fig. 2. Domain model

A Practical Use Case Modeling Approach to Specify Crosscutting Concerns 93

AspectRUCM: actors, use cases, preconditions, postconditions, and steps of flows of
events, which are sufficient based on our experience of evaluating AspectRUCM with
three real world case studies (Sect. 4.1). A pointcut selects one or more joinpoints with
similar properties. A model element (e.g., actor) can be introduced in two different
ways. It can be introduced to an aspect UCMod without being connected to any
pointcut and it can also be connected to a pointcut through another model element.

3.2 AspectRUCM Profile

The profile diagram of AspectRUCM is provided in Fig. 3. An aspect describes a
crosscutting concern and we specify stereotype «Aspect», which extends UML
Package. «Aspect» has two attributes: baseUCM specifying the comma separated
name(s) of the base UCMod(s), on which an aspect UCMod will be weaved, and the
name of the aspect itself. We use a package to group model elements including use
cases and actors to specify a crosscutting concern. For example, as shown in Fig. 4,
package NetworkDegradation stereotyped with «Aspect» contains use case Adapt-
CallRate, actor Timer, etc. Another example is provided in Fig. 5, where the cross-
cutting concern Standby is modeled as an aspect UCMod. The Standby behavior of the
VCS becomes active when it is idle for 5 min (a property of Timer). When any activity
is performed by any actor of the system while it is in Standby, the system becomes
active. One benefit of using a package to group model elements of an aspect UCMod, is
that the model elements contained in the package and without stereotypes (from the
AspectRUCM profile) applied are by default considered as elements newly introduced
to the base UCMod. By not explicitly stereotyping model elements in an aspect
UCMod reduces modeling effort (in terms of the reduced number of elements that
could have stereotypes applied instead) and therefore results in less cluttered use case
diagrams.

Fig. 3. Profile diagram of AspectRUCM

94 T. Yue et al.

As shown in Fig. 3 an aspect UCMod might have one or more pointcuts. We
specify two types of pointcuts in our profile: «UseCasePointcut» and «Actor
Pointcut» specializing «Pointcut».

Use Case Pointcut. A use case pointcut selects one or more use cases of a system and
the flows of events of the UCSs of the selected use cases. This is realized via the
composition association between stereotype «UseCasePointcut» and class
UseCaseCutSegment, which
is further associated to class
FlowCutSegment (Fig. 3).
Class UseCaseCutSegment
specifies the system where a
selected use case belongs to
(attribute system: String),
a set of selected use cases
(selectedUseCases: String),
and the type of the pointcut
(enumeration PointcutType
and attribute poincutType:
PointcutType), which can be
selectingAll, Subset, or One
use case(s) of the system.
As shown in Fig. 4, we
apply «UseCasePointcut» to use case SelectedUseCases. The values of the attributes of
the stereotype show that we select all the use cases of the VCS and EndPoint systems.
AdaptCallRate extends all the selected use cases and is triggered by Timer periodically.
The example in Fig. 5 shows that this aspect introduces two new use cases (i.e.,
Standby and ExitStandby) by extending all the use cases of the two systems as indicated
by the values of the attributes of «UseCasePointcut». Use case Standby is triggered by
Timer and any actor of the two systems can trigger use case ExitStandby (via actor
pointcut SelectedActors).

As shown in Fig. 3, UseCasePointcut should have at least one UseCaseCutSeg-
ment. A UseCaseCutSegment is composed of zero to many FlowCutSegments, which
specify the selected steps of the flows of events of a selected use case (selectedSteps:
String), where Before, After, or Around advice (adviceType: StepAdvice) should be
applied. This part of the pointcut should also indicate the type of the pointcut: selecting
All, Subset, or One step of a UCS, and the step sentence to be introduced through
advice (adviceSpec: UCSAdviceSpecification). Note that it is possible that a
UseCaseCutSegment does not contain any FlowCutSegment when there is no need to
get into the UCS level. When the pointcut type of a UseCaseCutSegment or
FlowCutSegment is PointcutType::All, then there is no need to specify attribute se-
lectedUseCases of metaclass UseCaseCutSegment or attribute selectedSteps of class
FlowCutSegment. This constraint is formalized as the OCL expression attached to
metaclass UseCaseCutSegment (Fig. 3). For example, as shown in Fig. 5, the use case
pointcut SelectedUseCases consists of two UseCaseCutSegments: one is to select all

Fig. 4. Aspect use case diagram of network degradation

A Practical Use Case Modeling Approach to Specify Crosscutting Concerns 95

the use cases of the VCS system and the other is to select all the use cases of the
EndPoint system. In these two UseCaseCutSegments, no FlowCutSegment is specified.

If there is no UCS specified for a newly introduced use case in the aspect UCMod
or if the aspect UCMod does not need to get into the level of UCSs, the use case is
weaved into the base use case diagram through three different types of relationships of
use case diagrams: Extend, Include, Generalization, which are explicitly captured in the
use case diagram of the aspect UCMod. However, the use case pointcut should also
specify the steps of the selected use cases (via use case pointcut) where the newly
introduced use case should extend or be included. This is realized by FlowCutSegment
and UCSAdviceSpecification of UseCasePointcut. Attributes includeSpec and
extendSpec of class UCSAdviceSpecification specify two sentences: INCLUDE USE
CASE <name of the newly introduced use case> and EXTENDED BY USE CASE
<name of the newly introduced use case>. During weaving, these two sentences should
be added before, after the selected steps of FlowCutSegment, or replace existing ones,
through Before, After or Around advice. For the cases when the selected use cases
extend or are included by a newly introduced use case in the aspect UCMod, the
inclusion and extension points are however specified in the newly introduced use case
and therefore no extra information is required in the point cut specification.

We specify a special type of advice UseCaseSpecificationConditionAdvice, with
two sub-types: PreconditonAdvice and PostconditionAdvice, to introduce precondition
and postcondition sentences to the selected UCSs. The introduced sentences can be
weaved with the ones of the base UCSs in three different ways: AND, OR and XOR,
which are defined as the enumeration ConditionAdviceType as shown in Fig. 3. As
shown in Fig. 4, the use case pointcut has one PreconditionAdvice with condition “The
system should be connected to network”. This precondition sentence should be weaved
to the preconditions of the UCSs of the use cases selected by the use case pointcut, via
a conjunction, which is indicated by assigning “AND” to attribute condi-
tionAdviceType: ConditionAdviceType of UseCaseSpecificationConditionAdvice.

Fig. 5. Aspect use case diagram of Standby

96 T. Yue et al.

Actor Pointcut. An actor pointcut selects one or more actors and consists of one or
more ActorPointcutSegments, which specify the system that the actor belongs to, the
selected actors, and the pointcut type. In Fig. 5, actor SelectedActors is stereotyped
with «ActorPointcut». The values of its attributes show that all the actors of the two
systems are selected. Same as for UseCaseSegment, if an ActorPointcutSegment has
poincutType as PointcutType::All, there is no need to specify selectedActors. Note that,
there are two types of actors: Primary and Secondary, as shown in enumeration
ActorType, which makes it easier to specify actor pointcut expressions. For instance,
the actor pointcut selects all the primary actors of the base UCMod (Fig. 5).

3.3 Definition of Weaving Directive Specification

Each crosscutting concern is specified as a separate aspect UCMod. Aspect UCMods of
multiple crosscutting concerns should be weaved into their corresponding base UCMod
in a specific order to ensure that the woven UCMod is correct. To achieve this, an
ordering must be defined and provided to the weaver as an input. However, UML use
case diagram does not provide such a capability. We therefore choose to use the UML
interaction overview diagram notations to specify such orderings, denoted as
weaving-directive interaction overview diagrams.

UML interaction overview diagrams define interactions through a variant of
Activity Diagrams, in a way that promotes overview of the control flow [2]. Weaving-
directive interaction overview diagrams contain interaction uses representing and ref-
erencing to all aspect UCMods, ordered using UML activity diagram’s flow control
features such as decision, join, and fork. Of course, UML activity diagrams can equally
perform the same functionality. Choosing UML interaction overview diagram notations
instead of activity diagram notations is simply because the former is simpler than the
later since interaction overview diagrams abstract away Messages and Lifelines and
therefore the approach would be easier to be accepted in practice.

A weaving-directive interaction overview diagram contains the following model
elements: (1) An initial activity node; (2) A set of interaction uses, each of which refers
to an aspect UCMod; and (3) A set of control flow edges that can be of any of the
following two types: a control flow edge from the initial activity to an interaction use
representing the first aspect UCMod to weave, and a set of control flow edges con-
necting interaction uses (e.g., decision, join and fork) to show the order in which the
interaction uses (aspect UCMods) will be weaved into the base UCMod.

3.4 Modeling Guidelines

The AspectRUCM profile (Sect. 3.2) provides a notation to specify crosscutting con-
cerns as aspect UCMods (Sect. 2.3). Before applying AspectRUCM, crosscutting
concerns have to be first identified at the requirements level (activity A1), as shown in
Fig. 6. Different approaches (e.g., [15]) can be used for this purpose. Our Aspec-
tRUCM approach can be used in conjunction with these existing works. However, we
do not discuss this further in this paper as it is out of the scope of this paper.

A Practical Use Case Modeling Approach to Specify Crosscutting Concerns 97

Core concerns of the system are specified using RUCM (activity A2), leading to the
creation of Base UCMod. Followed by A2, A3 specifies crosscutting concerns using the
AspectRUCM profile, which includes sub-activities of creating a UML package
stereotyped with «Aspect», then specifying pointcut(s) and creating other model ele-
ments of the use case diagram (e.g., actors, use cases), and finally specifying UCSs of
the introduced use cases in the aspect UCMod using the RUCM template. The output
of this activity is a set of Aspect UCMods created for each identified crosscutting
concern. Activity A4 specifies the weaving ordering and outputs the weaving directive
interaction overview diagram.

Aspect UCMods
(from A3) are weaved
into their corresponding
Base UCMod (from A2),
based on the weaving
ordering specified in
the interaction overview
diagram (from A4), to
automatically generate
a woven UCMod (A5),
which can be used
to facilitate automated
analyses (A6) such as
requirements analyses,
automated creation of
analysis and design
models, and automated
derivation of test cases.
It is sometimes more
effective to perform
various requirements
analyses (e.g., identify-
ing and managing con-
flicts and tradeoffs
among concerns [9])
based on the same
woven UCMod, instead
of separate aspect
UCMods and the base
UCMod. Based on [20], automated transition from the woven UCMod to different UML
diagrams can be supported. If the derivation or generation of downstream artifacts (e.g.,
test cases) relies on the transformation from an AOM approach at the requirements level
(e.g., AspectRUCM) to another AOM approach at the design or testing level (e.g.,
AspectSM [5]), there is no point to perform weaving at the requirements level and hence
activities A4, A5 and A6 are unnecessary.

Fig. 6. Guidelines for applying AspectRUCM

98 T. Yue et al.

3.5 Weaver

Aspect UCMods are weaved into their base UCMod by a weaver, which reads the base
and aspect UCMods and the weaving-directive interaction overview diagram, and
produces a woven UCMod. We developed a weaver for AspectRUCM using Java to
weave one or more aspect UCMods into a base UCMod. Aspect UCMods are specified
in AspectRUCM (Sect. 3.2). A base UCMod is modeled using RUCM.

Due to the reason that UCSs of both the base and the aspect UCMods are textual,
all of them have to be formalized such that weaving can be performed. Therefore, the
weaver has a formalization engine, which contains a set of transformation rules
transforming textual UCMods into instances of UCMeta (Sect. 2.3). The aspect
UCMods are formalized into instances of extended UCMeta with AspectRUCM while
the base UCMod is transformed into an instance of UCMeta. UCMeta and its extension
are implemented as an Ecore model, using Eclipse EMF [1]. We also use the Stanford
Parser [3] as a NL parser for the transformation of textual sentences in UCSs to
instances of UCMeta. The parser is written in Java and generates a syntactic parse tree
for a sentence and the sentence’s grammatical dependencies (e.g., subject, direct
object). It is important to notice that it is not necessary to have the transformation from
UML use case diagrams (either with or without the AspectRUCM profile applied) to
instances of the UML::UseCases package of UCMeta (Sect. 2.3), as UCMeta directly
imports the UML::UseCases package and the AspectRUCM profile.

The weaver takes the formalized aspect and base UCMods and the weaving-
directive interaction overview diagram as inputs and generates a woven UCMod, which
is an instance of UCMeta. The automatically generated woven UCMod can be used as
an input for further analysis (e.g., automated requirements verification and validation)
or generation (e.g., generating UML analysis models). Currently our approach and its
weaver do not support modeling and weaving interactions that may occur between
different aspects and will be investigated in the future.

4 Evaluation

Section 4.1 presents the three case studies, Sect. 4.2 discusses how AspectRUCM
reduces modeling effort, and Sect. 4.3 summarizes evaluation results.

4.1 Case Studies

We used three case studies from the telecommunication domain, the maritime and
energy sector and the aviation domain: VCS, Subsea Oil Production System (SOPS)
and Navigation System (NAS). Table 3 presents the characteristics of their UCMods.

VCS. VCS contains four systems/endpoints with same functionality (e.g., call, pre-
sentation) modeled as the same set of use cases. Each endpoint has 10 use cases and in
total 40 use cases per system. A timer periodically initiates the adaption of the call rate.
The following eight crosscutting concerns are specified using AspectRUCM: Network
Degradation, Standby, Media Quality Recovery, Do Not Disturb, Synchronization

A Practical Use Case Modeling Approach to Specify Crosscutting Concerns 99

Mismatch, Intelligent Packet Loss Recovery, Echo Reduction, and Noise Cancellation
based on our previous work [5].

SOPS. SOPSs are systems of systems for managing the exploitation of oil and gas
production fields. SOPS has four different types of systems, three of which are located
above the sea level and the other is located in subsea. These systems have distinct
functionalities and are connected through different types of communication media. We
modelled 12 out of 65 representative use cases were specified for our evaluation. We
modeled six crosscutting concerns using AspectRUCM: Operation Mode Exchange,
Backup Communication, Communication Timeout, Runtime Configuration, Commu-
nication Bandwidth Limiting, and Data Update Mechanism Switch.

NAS. NAS [22] controls and guides an aircraft, based on control law computation
that takes data sampled from sensors as input and sends commands to actuators. NAS
has two operating modes: Auto mode and Manual mode and a pilot can switch the
modes during flight. To ensure safe operation, NAS is fault tolerant with a redundant
design. At the end of each clock cycle, redundant inputs from sensors are given to the
autopilot system and multiple computation methods produce redundant outputs to be
voted. There are many periodical tasks in the system and the system period is set as
20 ms—the minimal one among the periods of all the tasks (with periods as 20 ms,
40 ms or 60 ms). We specified the following seven crosscutting concerns using
AspectRUCM: System Synchronization, Flight Mode Exchange, Periodical Action,
Data Monitoring, Data Voting, Fault Handling, and Communication Timeout.

Notice that both VCS and SOPS have eight common network abnormal use cases
since both of these systems employ the same type of Ethernet communication medium.
VCS has two extra abnormal use cases, which are specific to video conferencing
protocols, i.e., H323 and SIP.

4.2 AspectRUCM Evaluation

One way of evaluating if AspectRUCM reduces modeling effort is to estimate mod-
eling effort through a surrogate measure, e.g., as the number of modeling elements
required to be modeled. This number can then be compared in aspect UCMods and
RUCM UCMods when modeling crosscutting concerns. Table 4 summarizes the
modeling tasks involved when using and not using AspectRUCM for modeling three
sets of crosscutting concerns from the three case studies. We do not count modeling
effort required to specify UCSs and only focus at the level of use case diagrams.

For the VCS case study, we have eight crosscutting concerns, which are described
in Sect. 4.1. When we used AspectRUCM to model these eight crosscutting concerns,
we significantly reduced modeling effort for modeling relationships between use cases

Table 3. Characteristics of Base and Aspect UCMods

System # of Base Use Case Total # of UCSs # of Aspect UCMods # of Actors

VCS 40 10 8 5
SOPS 65 12 6 9
NAS 46 11 7 9

100 T. Yue et al.

(95 % (= 420/440) on average, see Table 4). In other words, for all the eight cross-
cutting concerns together, we modeled 20 relationships when using AspectRUCM,
whereas we need to model 440 relationships without using AspectRUCM. In terms of
actors, using AspectRUCM we modeled 10 actors in all eight crosscutting concerns,
whereas we modeled 8 actors without using AspectRUCM. For use cases, we modeled
19 use cases using AspectRUCM for all eight crosscutting concerns together, whereas
we modeled 11 use cases when not using AspectRUCM. Considering that modeling
effort for an actor, use case, and a relationship is roughly equal, for all eight cross-
cutting concerns together, we modeled 459 modeling elements without using Aspec-
tRUCM, whereas with AspectRUCM we modeled only 49 modeling elements. This
means on average we saved 89 % of modeling effort in our case studies.

Table 4. Evaluation results of the three case studies

Case
Study

Crosscutting
concerns

Using AspectRUCM Without AspectRUCM Effort
saved
(%)

UCs Actors Rels Pointcut Total UCs Actors Rels Total

VCS 1 2 1 2 1 6 1 1 40 42 86 %
2 3 2 4 2 11 2 1 80 83 87 %
3 3 1 2 1 7 2 1 80 83 92 %
4 3 2 4 1 10 2 1 80 83 88 %
5 2 1 2 1 6 1 1 40 42 86 %
6 2 1 2 1 6 1 1 40 42 86 %
7 2 1 2 1 6 1 1 40 42 86 %
8 2 1 2 1 6 1 1 40 42 86 %

Total 19 10 20 9 58 11 8 440 459 87 %
SOPS 1 3 1 4 1 9 2 1 78 81 89 %

2 3 2 6 2 13 2 1 56 59 78 %
3 2 1 2 1 6 1 1 48 50 88 %
4 2 1 2 1 6 1 1 12 14 57 %
5 3 2 6 2 13 2 1 47 50 74 %
6 3 1 4 1 9 2 0 25 27 67 %

Total 16 8 24 8 56 10 5 266 281 80 %
NAS 1 2 2 4 1 9 1 2 42 45 80 %

2 2 1 2 1 6 1 1 14 16 62 %
3 5 3 6 2 16 3 3 74 80 80 %
4 2 3 2 1 8 1 2 48 51 84 %
5 2 3 2 1 8 1 2 50 53 85 %
6 3 1 2 1 7 2 1 46 49 86 %
7 3 3 4 2 12 2 3 62 67 82 %

Total 19 16 22 9 66 11 14 336 361 82 %

A Practical Use Case Modeling Approach to Specify Crosscutting Concerns 101

With AspectRUCM, we needed to model pointcuts for all crosscutting concerns. In
total, we modeled 10 pointcuts (Table 4) for VCS and modeling these pointcuts is the
additional modeling effort required in AspectRUCM. In conclusion, modeling 10
pointcuts can save us modeling 410 modeling elements. We assume that the modeling
effort of 10 pointcuts is less than modeling 410 modeling elements and thus modeling
effort using AspectRUCM can be reduced. For SOPS/NAS, we modeled 6/7 cross-
cutting concerns. Similar to VCS, as one can observe from Table 4, using Aspec-
tRUCM significantly reduced the modeling effort equivalent to 80 %/82 %.

Overall, results on the three case studies seem to suggest that the modeling effort
can be significantly reduced when using AspectRUCM for modeling crosscutting
concerns. Since using AspectRUCM requires the modeling of use case pointcuts and
actor pointcuts with the «UseCasePointcut» and «ActorUseCasePoint» stereotypes,
there will only be a benefit if modeling, more than 80 % additional relationships on a
UCMod is more time-consuming than modeling few pointcuts. Though this seems to
be likely, it would need to be confirmed via controlled experiments involving human
designers to determine the actual percentage of modeling effort saved when using
AspectRUCM. In addition, modeling crosscutting concerns as aspect UCMods keeps
the base UCMod less cluttered; hence, they are easier to read and maintain, and support
reuse, as crosscutting concerns are modeled separately from the base ones.

4.3 Empirical Evaluation of RUCM

AspectRUCM extends use case diagrams, but has no extensions to the RUCM template
and no new restrictions introduced. Hence, in terms of describing UCSs, AspectRUCM
should be exactly the same as RUCM. In our previous work [19], we have conducted
two controlled experiments to evaluate RUCM in terms of its applicability and impact
on the quality of manually derived UML analysis models. Experiment results [19]
show that RUCM is easy to apply and RUCM results into significant improvements
over traditional approaches in terms of the quality of derived class and sequence
diagrams. These two controlled experiments particularly focus on the evaluation of the
RUCM template and the restriction rules; therefore we can conclude that the evaluation
results for RUCM are also applicable to AspectRUCM.

However, as discussed in Sect. 3.2, the AspectRUCM profile is introduced to
extend the use case diagram notations and it should be evaluated to test its applicability
and other benefits similar to other aspect-oriented modeling approaches such as
enhanced separation of concerns, improved maintainability, reusability and under-
standability. In the future, we plan to conduct empirical studies for further evaluation.

5 Related Work

It is a common practice to follow a template to structure UCSs, thereby helping their
reading and reviewing. Various templates (e.g., [6]) have been suggested to satisfy
different application contexts and purposes. These templates share common fields such
as: use case name, brief overall description, precondition, postcondition, basic flow,

102 T. Yue et al.

and alternative flows. The systematic review [18] we conducted to examine literature
that transform textual requirements into analysis models revealed that six approaches
require use cases (e.g., [14]). RUCM was built on the state of art.

An aspect-oriented use case modeling approach was proposed in [7] to connect
advice use cases to base ones through a relationship stereotyped with a newly proposed
stereotype «Aspect». A grammar is proposed to specify pointcut expressions based on
wildcards in steps of flows of events of use cases. Four types of advices are specified:
before, after, around, and concurrent. The approach does not directly introduce aspect
to use case diagrams and therefore there is no graphical notation reused from use case
diagrams or newly introduced. Aspect use cases are weaved with their corresponding
base use cases into a petri net model, which is used as an input for further analysis. We
however extend UML use case diagrams by reusing their inherent graphical notations
with limited extensions via UML stereotypes.

Jacboson and Ng proposed an aspect-oriented use case modeling approach [10], by
extending the meaning of extension points as joint points. With it, the base model has
to be modified by inserting textual sentences of extension points directly to the UCSs of
the Pointcut use cases of the base UCMod. If there are more than one Pointcut use
cases (most probably the case in the context of AOM), more than one places of the
UCSs of these Pointcut use cases have to be modified. This implies that this approach
does not really separate aspects from their base. The approach has only one type of
Advice: the extension behavior specified in an aspect use case as the whole.

Sillito et al. [13] proposed a textual aspect language called AspectU, to support
modularization of crosscutting concerns in UCMods. AspectU aspects are then trans-
formed into AspectJ implementation. AspectU is purely textual and very similar to
programming languages. AspectRUCM relies on the inherent graphical notations of
UML use case diagrams. Therefore, in terms of usability, AspectRUCM should be
easier to understand and apply for engineers, especially requirements engineers.

Mussbacher et al. [11] proposed an aspect-oriented requirements modeling
approach with use case maps. In this approach, advice and pointcut are both captured
using the use case map inherit graphical notations. Several works on adding aspect
concepts to goal models (e.g., [4]) have been also proposed. Other aspect oriented
modeling approaches (e.g., [5]) have been proposed at different levels of abstraction of
a software development lifecycle than UCMods.

6 Conclusion

Use case modeling is commonly used for capturing functional requirements. However,
use case specifications (UCSs) are text-based having ambiguity. This paper proposed
an extension of RUCM (a generic use case approach), named as AspectRUCM, to
model crosscutting concerns at the level of use case models to alleviate its complexity.
AspectRUCM is a UML profile to support the modeling of crosscutting concerns as
aspects in use case diagrams and UCSs. We performed and reported on three real world
case studies, which suggest that using AspectRUCM results in reducing on average
more than 80 % modeling effort.

A Practical Use Case Modeling Approach to Specify Crosscutting Concerns 103

Acknowledgement. This work was supported by the MBT4CPS project (No. 240013) funded
by the Research Council of Norway under the category of Young Research Talents of the FRIPO
funding scheme. Tao Yue and Shaukat Ali are also supported by the Zen-Configurator project
(No. 240024), the EU Horizon 2020 project U-Test (http://www.u-test.eu/), the MBE-CR (No.
239063) and the Certus SFI.

References

1. Eclipse EMF. https://eclipse.org/modeling/emf/
2. OMG. UML2.2. http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/
3. The Stanford Parser version 1.6. http://nlp.stanford.edu/software/lex-parser.shtml
4. Alencar, F., Moreira, A., Castro, J., Silva, C., Mylopoulos, J.: Using aspects to simplify

iModels. In: 14th IEEE International Conference on Requirements Engineering, pp. 335–
336. IEEE, Minneapolis/St. Paul, MN (2006)

5. Ali, S., Briand, L.C., Hemmati, H.: Modeling robustness behavior using aspect-oriented
modeling to support robustness testing of industrial systems. Softw. Syst. Model. 11(4),
633–670 (2012)

6. Alistair, C.: Writing Effective Use Cases. Addison-Wesley, Boston (2001)
7. Anthonysamy, P., Somé, S.S.: Aspect-oriented use case modeling for software product lines.

In: EA-AOSD 2008, p. 5. ACM (2008)
8. Brown, E.K., Brown, K., Miller, J.: Syntax: A Linguistic Introduction to Sentence Structure.

Psychology Press, Abingdon (1991)
9. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-based composition for

aspect-oriented requirements engineering. In: Proceedings of the 6th International
Conference on Aspect-Oriented Software Development, pp. 36–48. ACM (2007)

10. Jacobson, I., Ng, P.-W.: Aspect-Oriented Software Development with Use Cases Reading.
Addison-Wesley Professional, Reading (2004)

11. Mussbacher, G., Amyot, D., Weiss, M.: Visualizing aspect-oriented requirements scenarios
with use case maps. In: REV 2006. IEEE (2006)

12. Sampaio, A., Rashid, A., Chitchyan, R., Rayson, P.: EA-Miner: towards automation in
aspect-oriented requirements engineering. In: Rashid, A., Akşit, M. (eds.) Transactions on
AOSD III. LNCS, vol. 4620, pp. 4–39. Springer, Heidelberg (2007)

13. Sillito, J., Dutchyn, C., Eisenberg, A.D., de Volder, K.: Use case level pointcuts. In:
Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 246–268. Springer, Heidelberg
(2004)

14. Somé, S.S.: Supporting use case based requirements engineering. Inf. Softw. Technol. 48(1),
43–58 (2006)

15. Sousa, G., Soares, S., Borba, P., Castro, J.: Separation of crosscutting concerns from
requirements to design: adapting the use case driven approach. In: Early Aspects, pp. 93–
102 (2004)

16. van Lamsweerde, A.: Requirements Engineering: from System Goals to UML Models to
Software Specifications. Wiley, New York (2009)

17. Yue, T., Ali, S., Zhang, M.: RTCM: a natural language based, automated, and practical test
case generation framework. In: Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pp. 397–408. ACM (2015)

18. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation approaches
between user requirements and analysis models. Requirements Eng. 16(2), 75–99 (2011)

104 T. Yue et al.

http://www.u-test.eu/
https://eclipse.org/modeling/emf/
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/
http://nlp.stanford.edu/software/lex-parser.shtml

19. Yue, T., Briand, L.C., Labiche, Y.: Facilitating the transition from use case models to
analysis models: Approach and experiments. TOSEM. 22(1), No. 5 (2013)

20. Yue, T., Briand, L.C., Labiche, Y.: aToucan: An Automated Framework to Derive UML
Analysis Models from Use Case Models. TOSEM. 24(3), No. 13 (2015)

21. Zhang, G., Yue, T., Wu, J., Ali, S.: Zen-RUCM: A Tool for Supporting a Comprehensive
and Extensible Use Case Modeling Framework. In: Demos/Posters/StudentResearch@
MoDELS, pp. 41–45. Springer (2013)

22. Zhang, H., Yue, T., Ali, S., Liu, C.: Facilitating requirements inspection with search-based
selection of diverse use case scenarios. In: BICT (2015, in press)

23. Zhang, M., Yue, T., Ali, S., Zhang, H., Wu, J.: A systematic approach to automatically
derive test cases from use cases specified in restricted natural languages. In: Amyot, D.,
Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS, vol. 8769, pp. 142–157.
Springer, Heidelberg (2014)

A Practical Use Case Modeling Approach to Specify Crosscutting Concerns 105

An Approach for Prioritizing Software Features
Based on Node Centrality in Probability

Network

Zhenlian Peng1,2, Jian Wang1(B), Keqing He1, and Hongtao Li1

1 State Key Laboratory of Software Engineering, Computer School,
Wuhan University, Wuhan, China

{zlpeng,jianwang,hekeqing,htli}@whu.edu.cn
2 Computer School, Hunan University of Science and Technology, Xiangtan, China

Abstract. Due to the increasing complexity of software products as
well as the restriction of the development budget and time, requirements
prioritization, i.e., selecting more crucial requirements to be designed
and developed firstly, has become increasingly important in the software
development lifetime. Considering the fact that a feature in a feature
model can be viewed as a set of closely related requirements, feature
prioritization will contribute to requirements prioritization to a large
extent. Therefore, how to measure the priority of features within a fea-
ture model becomes an important issue in requirements analysis. In this
paper, a software feature prioritization approach is proposed, which uti-
lizes the dependencies between features to build a feature probability
network and measures feature prioritization through the nodes central-
ity in the network. Experiments conducted on real world feature models
show that the proposed approach can accurately prioritize features in
feature models.

Keywords: Feature prioritization · Feature model · Feature probability
network · Centrality

1 Introduction

Due to the increasing complexity of software products as well as the restriction of
the budget and time, how to select more crucial software requirements to be fur-
ther developed becomes increasingly important, because it can save development
costs, plan reasonable products releases and improve the market competition of
software products.

The lack of practical efficient requirements prioritization technologies in the
software requirements phase has been viewed as one of the most important rea-
sons that lead to project failures [1,2]. Requirements prioritization is a complex
multi-criteria decision-making process. Most existing requirements prioritization
approaches [3–9] take the following steps: Firstly, the target criterion is deter-
mined; secondly, the specification of requirement attributes related to the chosen
c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 106–121, 2016.
DOI: 10.1007/978-3-319-35122-3 8

An Approach for Prioritizing Software Features Based on Node Centrality 107

criterion is encoded; thirdly, the concrete values for the attributes of all require-
ments is set, and finally, the ranking of each requirement will be calculated
based on the attributes associated to the target criterion. These approaches take
each requirement as the object to be prioritized and most of them neglect the
dependencies between requirements [1,3,10].

Since Kang et al. [11] proposed feature-oriented domain analysis (FODA)
that utilizes feature models to organize the reusable software requirements,
feature-oriented software development and software reuse have been widely used
by software practitioners. Radatz et al. [12] defined the feature as “a software
characteristic specified or implied by requirements documentation” in IEEE
standard glossary of software engineering terminology. Zhang et al. [13] defined
the feature as “a collection which is comprised of a group of closely related
individual requirements in terms of intension and feature is a software charac-
teristic which has user values in terms of extension”. Due to the close relation-
ship between requirements and features according to the above definitions, we
argue that feature prioritization will contribute to requirements prioritization
to a large extent. Existing related researches on feature models mainly focus
on features selection in the derivation of feature model configurations (specific
software products) [14–16]. The concept of feature prioritization is firstly pro-
posed in [17] and a method named stratified analytic hierarchy process (S-AHP)
is presented to help rank and select the most relevant features from the feature
model. The ultimate goal of these approaches is to achieve automated derivation
of specific software products by associating stakeholders’ business requirements
with features. However, the structures of feature models are not considered in
these work.

We use an example to illustrate the feature prioritization. Assume that a
software to be developed contains a text editor, and we need to prioritize the
two features “Text Editing” and “File Operations” shown in Fig. 1 such that the
one with a higher priority will be firstly developed or reused in the next release
of the software product. A general approach usually takes the following steps:
Firstly, the specific requirements associated with the two features are identified.
Next, these requirements are prioritized using existing software requirements
prioritization technologies. And finally, the prioritization of the two features
is completed by some weighted measurements. Clearly, this approach should
consider all the possible factors such as value, cost and risk of each requirement.
However, it is not an easy task to accurately collect these factors at the early
stage of requirements engineering. In our opinion, a possible solution is that
given a feature model created from a software family, the structure of the feature
model can be leveraged to prioritize the features. The basic assumption we made
is that a feature will have a higher priority if it is required by more features in
the feature model. To this end, a feature prioritization approach is proposed
in this paper. In our approach, we build a feature probability network (FPN)
through dependencies between features and measures the feature priorities by
computing centrality values of nodes in the network.

108 Z. Peng et al.

Fig. 1. Feature model of text editor

The main contributions of our work consist of:

– A software feature prioritization approach is proposed in this paper. Specif-
ically, an approach of generating FPNs is presented and a measurement
method of node centrality in the probability network is adopted. The pro-
posed approach provides a complementary and reference indicator for multi-
criterion decision in the process of requirements prioritization.

– Case studies on real world feature models are conducted to evaluate the effec-
tiveness of the proposed approach.

The remainder of the paper is organized as follows. Section 2 introduces the
preliminary knowledge of feature models. The feature prioritization approach is
presented in Sect. 3. The evaluation of the proposed approach is discussed in
Sect. 4. Section 5 discusses related work. We conclude the paper in Sect. 6.

2 Feature Model

The concept of feature model comes from software engineering disciplines, aiming
to discover and express commonalities and variabilities among the members in
software product line (SPL). A feature diagram is a graphical representation of
the feature model, which is generally represented as a tree structure. The root
node of the tree is called root feature, which represents the concept of the domain.
Branches of the tree are defined as refinement relations, including mandatory,
optional, OR and XOR. Furthermore, there exist cross-tree constraints between
features, including requires and excludes [18–20]. Figure 1 depicts a text editor
feature model, which comes from SPLOT1, a feature model repository. Each
node in Fig. 1 denotes a feature, which is represented by its name and record
number.

Referring to the literature [18,19], feature model and feature model configu-
ration are defined as follows:

1 http://www.splot-research.org/.

http://www.splot-research.org/

An Approach for Prioritizing Software Features Based on Node Centrality 109

Definition 1 (feature model, FM). A feature model is defined as a tuple FM =
(G, EMAND, EOPT, GOR, GXOR, RE, EX). G = (F, E, r) is a rooted tree where
F=(F fun, F att) is a finite set of features, F fun is a set of functional features, F att

is a set of non-functional features, E ⊆ (F × F) is a finite set of edges and r ∈ F
is the root feature; EMAND ⊆ E is a set of edges that define mandatory features
with their parents; EOPT ⊆ E is a set of edges that define optional features
with their parents; GXOR ⊆ P(F) × F defines feature groups where exactly one
child feature exists when their common parent feature exists; GOR ⊆ P(F) × F
defines feature groups where at least one child feature exists when their common
parent feature exists; P(F) represents a set of parent feature of feature F ; RE
is a set of implies requires constraints with the form of A ⇒ B ; EX is a set of
excludes constraints with the form of A ⇒ ¬ B (A ∈ F and B ∈ F).

Definition 2 (feature model configuration). A feature model configuration is
defined as a set of selected features. It is an optional decision result in the
software product configuration process and it only represents a software product
design which satisfies the semantic constraints in the FM.

For example, as shown in Fig. 1, {Text Editor, Text Editing, File Operations,
Load, Save} is a valid configuration of the FM. However, {Text Editor, Text
Editing, File Operations, Load, Save, Print} is not a valid configuration because
it violates the requires constraint.

A feature model is viewed as consistent if it contains neither dead feature
nor false optional feature, where a dead feature refers to the feature that does
not appear in any software products, and a false optional feature refers to the
feature that is declared to optional feature but appears in all software products.
Many approaches, e.g., [21], have been proposed to detect and eliminate the
inconsistencies in feature models.

3 Software Feature Prioritization

3.1 Overall Framework

The proposed approach is based on the hypothesis that feature models have
already been created before requirements analysts customize applications. FM
extraction is not the focus of this paper and many approaches have been reported
in this field. For example, Acher et al. [18] presented a semi-automated procedure
to support the transition from tabular format product descriptions to a FM.
Davril descriptions to a feature model. Davril et al. [20] proposed an automated
approach to construct FMs from available product descriptions published in
online product repositories such SoftPedia2.

As shown in Fig. 2, the process of computing feature prioritization consists
of two steps:

2 http://www.softpedia.com/.

http://www.softpedia.com/

110 Z. Peng et al.

Fig. 2. Framework of feature prioritization approach

Step 1: A FPN is generated from a FM according to the dependencies between
features. The FPN is represented as a directed acyclic weighted graph.

Step 2: The centrality values of all nodes in the generated FPN are calculated
and regarded as metrics for feature prioritization.

3.2 Generating a Feature Probability Network

According to the definition of the feature model, the relations between features
can be classified into refinement relations and cross-tree constraints. We aim
to quantify these relations between features, which are characterized by the
probabilities of the emergence between features in the FPN in our approach.
A FPN is a directed acyclic weighted graph, where its nodes represent features
in the FM, its edges represent the direct and indirect relationships between
features in the FM, and weights on edges represent the dependency degree of
the relationships. Next, we discuss how to convert a FM to a FPN.

In particular, we need to define generating rules of nodes, edges between the
nodes and weights on the edges for the FPN.

Generating nodes in the FPN: The nodes in the FPN correspond to the
features in the FM and they do not change in the transformation process.

NDN(i) = NDF(i), i ∈ [0, n − 1], (1)

where NDN(i) denotes node i in the FPN, NDF(i) denotes feature i in the FM,
and n denotes the number of nodes or features.

Generating edges in the FPN: Given two features i and j in the FM, four
cases need to be considered about their connection in the FPN:

(1) If feature i is a parent feature of feature j in the FM, there will be
bidirectional edges between node i and j in the FPN. The generation rule is
depicted using Eq. (2).

EF(i, j) ∈ ERF ⇒ EN(i, j) = 1 ∧ EN(j, i) = 1, (2)

An Approach for Prioritizing Software Features Based on Node Centrality 111

where EF(i, j) denotes the edge from feature i to feature j in the FM; ERF=
EMAND∪EOPT∪GOR∪GXOR denotes a set of edges that satisfy any one of rela-
tions including mandatory, optional, OR and XOR; EN(i, j) denotes an edge
from node i to j in the FPN and EN(i, j) = 1 indicates that there is a directed
edge from i to j in the FPN.

(2) If feature i is an ancestor feature of feature j in the FM, there will
be bidirectional edges between node i and j in the FPN. The corresponding
generation rule is depicted using Eq. (3).

∃k1, k2, ..., km−1({EF(i, k1), EF(k1, k2), ..., EF(km−1, j)}
⊆ ERF) ⇒ EN(i, j) = 1 ∧ EN(j, i) = 1, (3)

where d i and d j denote the depths of features i and j in the FM, respectively;
m = dj − di; kt(t ∈ [1,m − 1]) are features between features i and j in the FM,
and the collection of edges constructed by them is a subset of ERF.

(3) If feature i requires feature j in the FM, there will be a directed edge
from node i to j in the FPN,

EF(i, j) ∈ ERE ⇒ EN(i, j) = 1, (4)

where ERE is a set of edges that satisfy the “requires” relation.
(4) In other cases, nodes i and j in the FPN do not connect with each other,

i.e., EN(i, j) = 0 and EN(j, i) = 0. Please note that EN(i, i) = 0, because the
FPN is a directed acyclic weighted graph.

Figure 3(a) shows the connectivity of nodes in the FPN converted from the
text editor feature model shown in Fig. 1.

Fig. 3. A generated feature probability network from Fig. 1

Weights on edges in the FPN: Given two nodes i and j in the FPN, EN(i, j)
is quantified with the emergence probability of node j on the condition that node
i exists. To compute weights of edges between nodes i and j, four cases also need
to be considered:

112 Z. Peng et al.

(1) If there is no edge from node i to node j in the FPN, the weight of edge
from node i to j (denoted as W (i, j)) is set to 0.

EN(i, j) = 0 ⇒ W (i, j) = 0, (5)

where W (i, j) is the weight of the directed edge from node i to j in the FPN.
(2) If i is the parent feature of j in the FM, according to the edge generation

rules mentioned above, bidirectional edges will be created between nodes i and
j in the FPN. W (j, i), the weight on the edge from j to i, equals to 1, which
means that the parent feature must exist if its child feature exists in the FM.
W (i, j) is calculated according to the following situations:

1© If EF(i, j) in the FM is a “mandatory” relation, W (i, j) is computed using
Eq. (6).

EF(i, j) ∈ EMAND ⇒ W (i, j) = 1. (6)

2© If EF(i, j) in the FM is an “optional” relation, W (i, j) is computed using
Eq. (7).

EF(i, j) ∈ EOPT ⇒ W (i, j) = 0.5. (7)

3© If EF(i, j) in the FM is a “XOR” relation, assume that the number of
features that share the same parent feature of j by “XOR” relations is g, W (i, j)
is computed using Eq. (8).

EF(i, j) ∈ GXOR ⇒ W (i, j) = 1/g. (8)

4© If EF(i, j) in the FM is an “OR” relation, assume that the number of
features that share the same parent feature of j by “OR” relations is g, W (i, j)
is computed using Eq. (9).

EF(i, j) ∈ GOR ⇒ W (i, j) = rand(1/g, 1), (9)

where rand(1/g, 1) is a uniformly random number between 1/g and 1, in other
words, the appearance probability of i is between 1/g and 1 when j exists.

(3) If feature i is an ancestor feature of feature j in the FM, according to
the edge generation rules mentioned above, bidirectional edges will be created
between nodes i and j in the FPN. W (j, i) equals to 1 because the ancestor
feature must exist if its descendant feature exists in the FM. W (i, j) is computed
according to Eq. (10).

∃k1, k2, ..., km−1({EF(i, k1), EF(k1, k2), ..., EF(km−1, j)} ⊆ ERF)

⇒ W (i, j) = W (i, k1) ×
m−2∏

t=1

W (kt, kt+1) × W (km−1, j). (10)

(4) If feature i requires feature j in the FM, W (i, j) equals to 1 in the FPN,
as depicted in Eq. (11).

EF(i, j) ∈ ERE ⇒ W (i, j) = 1. (11)

Figure 3(b) shows the weighted matrix of the FPN, which is generated from
the text editor feature model. Note that the value in cell {i, j} of the matrix
represents the weight value W (i, j).

An Approach for Prioritizing Software Features Based on Node Centrality 113

3.3 Computation of Node Centrality in Network

Many metrics on how to measure the node centrality have been investigated in
complex networks and social networks. Typical metrics consists of betweenness
centrality, degree centrality, indegree centrality, outdegree centrality and their
hybrid metrics [22]. In this paper, the summation of input weights of the node
(abbr. IW, similar to in-degree) and the summation of output weights of the
node (abbr. OW, similar to out-degree) are adopted to measure the centrality of
the node. For a specific feature in a feature model, the larger IW means that
more features rely on this feature, and on the contrary, the larger OW means
that this feature relies on more features. IW (i) and OW (i) are computed using
Eqs. (12) and (13), respectively.

IW (i) =
i−1∑

t=0

W (t, i) +
n−1∑

t=i+1

W (t, i). (12)

OW (i) =
i−1∑

t=0

W (i, t) +
n−1∑

t=i+1

W (i, t). (13)

where n denotes the number of features in the feature model.
The node centrality (abbr. NC) is computed using Eq. (14). As shown in

Eq. (14), the centrality of a node will increase with the increase of its IW and
the decrease of its OW.

NC(i) = α × IW (i)/(1 + (1 − α) × OW (i)). (14)

Where α is a weighted factor, which indicates the importance of IW in the node
centrality measurement.

Figure 3(c) shows the values of IW, OW and NC in the FPN converted from
the text editor feature model in Fig. 1. Here α is set to 0.8.

3.4 Feature Prioritization Algorithm

Algorithm 1 shows the pseudo-code of feature prioritization based on the node
centrality in the feature probability network.

The input of the algorithm is a software feature model and the output is a
priority ranking list of features. Firstly, each node in the FPN is generated based
on the FM (Line 1). Then EN(i,j) and W (i,j) are initialized (Lines 2∼3). When
the FM is traversed using the breadth-first search (BFS), the edges in the FPN
are generated according to relations between features in the FM and the weights
on edges are computed (Lines 4∼5). Then the values of IW, OW and NC in
the FPN are computed (Line 6). If feature i requires feature j in the FM and
NC (i) is larger than NC (j) in the FPN, NC (i) and NC (j) are exchanged (Lines
7∼8). If feature i excludes feature j in the FM, the smaller one of NC (i) and
NC (j) and its descendant features are added to a set denoted as REAR (Lines
9∼10). If there are multiple excludes relations, the nodes in REAR are sorted in

114 Z. Peng et al.

Algorithm 1. Feature Prioritization Algorithm.
Input: a software feature model;
Output: a priority ranking list of features;
1: Copy the nodes in the FM to the FPN according to Equation(1);
2: For each node pair i and j in the FPN
3: EN(i,j)=0, W (i,j)=0;
4: Traverse the FM using the breadth-first search until each node and edge is traversed
5: Generate edges in the FPN according to Equations(2)∼(4)

and compute weights on edges in the FPN according to
Equations(5)∼(11);

6: Compute IW,OW,NC for each node according to Equations(12)∼(14), respectively;
7: If feature i requires feature j in the FM and NC (i)>NC (j)
8: Exchange NC (i) with NC (j);
9: If feature i excludes feature j in the FM and NC (i)>NC (j)

10: Add feature j and its descendant features in REAR;
11: If REAR.length>1
12: Sort the features in REAR according to their NC values;
13: Sort the order of features outside REAR according to their NC value;
14: Merge the sorted results where results in REAR are placed after the ones outside

REAR;
15: return the ranking list.

descending order with NC values (Lines 11∼12); The nodes outside REAR are
also sorted in descending order with NC values (Line 13). Two groups of results
are merged and returned (Lines 14∼15).

Finally, we estimate the time complexity of the algorithm. Among the steps
in the algorithm, Lines 2∼5 spend the most time and the time complexity of
these steps is O(n2), where n represents the number of features in the FM. Line
12 is a sorting process, and its time complexity in the worst case is also no
more than O(n2). For other steps, the time complexity is no more than O(n).
Therefore, the time complexity of the whole algorithm is O(n2).

4 Evaluation

4.1 Setup

We conducted several groups of case studies to evaluate the effectiveness of
the proposed approach. The algorithm proposed in this paper was developed in
Java and conducted on a PC with 3.19 GHz Intel Core i3 CPU and 4 GB RAM,
running Windows 7 Operating System.

Three feature models selected from SPLOT, including text editor (abbr. TE),
help system (abbr. HS) and software stack (abbr. SS), are used in our case studies.
SPLOT maintains a publicly available feature model repository, and the feature
models registered in SPLOT are created by experts in the SPL field, which have
certain credibility. Although feature models are selected, there is no available
information about the priorities of features. We have to manually create such

An Approach for Prioritizing Software Features Based on Node Centrality 115

a ground truth. In order to decrease the efforts in creating the ground truth,
the three selected feature models are small or medium sizes. Details of the three
feature models are shown in Table 1.

Table 1. Details of the three selected feature models

Name Number of features Root Mandatory Optional OR XOR Requires Excludes

TE 12 1 4 4 0 3 1 1

HS 25 1 6 0 3 15 5 0

SS 37 1 1 2 9 24 7 0

4.2 Ground Truth Building

In order to evaluate the effectiveness of the proposed approach, the ground truth
needs to be built as a reference of priorities between features in the FM. Accord-
ing to the idea of the analytic hierarchy process (AHP) [5] that has been widely
used in requirements prioritization, the process of building the ground truth is
implemented as follows:

(1) For each of the three selected feature models, we created a n×n table,
where n represents the number of features, and cell(i,j) in the table will record
the priority comparison result of feature i (row i) with feature j (column j),
i, j ∈ [0, n−1]. All the initial values of the cells are set to null. Two PhD students
and three master students in our research group were invited to participate in
a small group meeting. They were emailed to introduce the goal of the group
meeting and give examples about how to fill in the three tables.

(2) A small group meeting was held after a day. In the meeting, the objective
of the group meeting was explained again and the related domain knowledge
about the FM was also introduced by the first author of the paper for about
20 min. Then the idea of the AHP method was explained for about 10 min.
Participants of the meeting were requested to fill in cells of the tables with 1
(denoted as “greater than”), 0 (denoted as “equal to”) and -1 (denoted as “less
than”) to represent the comparison result of feature i (i.e., row i) with feature
j (i.e., column j) following the examples provided in the email after the group
meeting. Because the priority comparison value in cell(i,j) is opposite with the
value of cell(j,i) in a table, participants only need to fill in the upper (or lower)
triangular tables.

(3) The first author of the paper collected all the results of the tables filled
in by participants and conducted statistical analysis on the results of inconsis-
tencies. The group meeting was held again a day later. Participants discussed
and negotiated with the inconsistent results until agreement could be recognized.
Furthermore, The ranked scores (the larger is prioritized) of all features in each
FM were also discussed and negotiated.

116 Z. Peng et al.

Fig. 4. Scatter diagrams of evaluation results on three feature models

4.3 Evaluation Indicator

Spearman’s rank correlation coefficient [23], accuracy and execution time are
selected as the evaluation indicators to evaluate the proposed approach.

Spearman’s rank correlation coefficient (denoted as rs) is a widely used non-
parametric measure of statistical dependence between two variables [23]. In this
paper, we used Spearman’s rank correlation coefficient to measure the statisti-
cal dependence between the proposed approach (described as the values of node
centrality and the ground truth (described as the ranked values). That is, it eval-
uates how well the relationship between the proposed approach and the ground
truth can be described using a monotonic function.

For each feature model whose feature number is n, the node centrality values
X i of n features are firstly converted to rank rgX, rgY denotes the ranked values
in the ground truth, and rs is computed using Eq. (15):

rs = cov(rgX, rgY)/(σrgX × σrgY), (15)

where, cov(rgX, rgY) is the covariance of the ranked variables of the proposed
approach and the ground truth, and σrgX and σrgY are the standard deviations
of the rank variables (the proposed approach and the ground truth).

Accuracy is measured by the value of disagreements. Disagreements refer
to the total number of inconsistent priority comparison value for each feature
pairwise between the proposed approach and the ground truth. Both the priority
comparison values have the range of {−1, 0, 1}. If the corresponding value of the
proposed approach and the ground truth is not the same, then the count of
disagreements will be added. Accuracy is calculated using Eq. (16).

accuracy = 1 − 2 × disagreements/(n × (n − 1)). (16)

4.4 Results and Analysis

The first experiment is conducted to verify whether the proposed approach can
accurately predict the priority between features in the feature models. By the

An Approach for Prioritizing Software Features Based on Node Centrality 117

analysis of comparing the results with the ground truth, the statistical informa-
tion of the scatter diagram of each feature model is depicted in Fig. 4.

As can be seen from the scatter diagrams shown in Fig. 4, the two rank
variables of the proposed approach (described as the values of NC) and the
ground truth (described as the ranked values) in the three feature models always
form monotonic functions on the whole. Therefore, they have the same positive
sign, which implies that they have a perfect monotone increasing relationship.
Moreover, according to the Spearman’s rank correlation coefficient (rs) shown
in Table 2, rs in feature models TE, HS and SS are 0.921, 0.976 and 0.988 (the
maximum value is 1), respectively. All the rs values are above 90 %, which implies
once again that the two rank variables in the three feature models are closely
related. In other words, the ranking of features in the proposed approach is close
to that of the ground truth.

Table 2. Disagreements, accuracy and rs of each feature model

FM Number of feature pairwise Disagreements Accuracy/% rs

TE 66 8 87.9 0.921

HS 300 25 91.7 0.976

SS 666 49 92.6 0.988

In addition, the disagreements and accuracy in the three feature models are
shown in Table 2. The values of disagreements in feature models TE, HS and SS
are 8, 25 and 49, respectively. The accuracy values in TE, HS and SS feature
models are 87.9 %, 91.7 % and 92.6 %, respectively. With the increase of the
number of features, both the number of feature pairwise and disagreements are
increasing. Moreover, when the number of features increase, the increasing speed
of disagreements is slower than that of the number of feature pairwise, which is
the reason why the accuracy is gradually increasing. In conclusion, the results
of this group of experiments show that the proposed approach can accurately
predict the priority of the features in the FM.

The second experiment is conducted to verify whether the execution time of
the proposed approach is acceptable. The feature numbers of the three selected
feature models are 12, 25, and 37, respectively. In order to observe the trend of
the execution time with the number of features in our proposed approach, we
generate a series of feature models with larger feature number according to the
generating rules described as the feature model editor in SPLOT3. The number
of features in these generated feature models is 50, 75, 100, 125, 150, 175, and
200, respectively. Figure 5 shows the trend of the execution time of the proposed
approach with the increase of the number of features.

As can be seen from Fig. 5, the execution time of TE, HS and SS feature
models is 9, 23 and 32 ms, respectively. The execution time of the proposed app-
roach increases with the increase of the number of features in the FM, because
3 Feature Model Editor, http://www.splot-research.org/.

http://www.splot-research.org/

118 Z. Peng et al.

Fig. 5. Change trend of execution time

the nodes and edges to be considered in the FPN will also increase. In addition,
Fig. 5 shows that the execution time grows nearly in a trend no more than O(n2)
with the increase of the number of features. Therefore, it can be concluded that
the execution time of the proposed approach is acceptable, which means that
the proposed approach can be capable of supporting feature prioritization for a
software feature model that contains a large number of features. Therefore, it is
possible to help requirements analysts focus their attentions on the important
features to be developed or reused in the initial phase of requirements engi-
neering. Please note that besides the feature number in a feature model, the
number of different relations between features including XOR, OR and excludes
is another important factor that may affect the execution time of the proposed
approach, albeit it has minor influence than the feature number. More analysis
on this point will be one of our future work.

4.5 Threats to Validity

With respect to the internal validity, the main threat is that the proposed app-
roach only considers the priority between features from the structure complexity
in the FM. In fact, there are many other factors involved in the feature prioritiza-
tion, such as stakeholders preferences, semantic constraints of the feature model
configurations and values, as well as costs and risks. In our opinion, the feature
prioritization approach based on structure complexity provides an important
and complementary factor to prioritize requirements.

Threats to the external validity concern the scale of feature models and the
authority of determining the ground truth. For simplicity, only feature models
in small or medium scale are selected in this paper. We are not quite sure that
the proposed approach is also effective in precision and execution time when the
scale of the FM is very large. In addition, in the process of building the ground
truth, due to the difference of expertise and experience of the participants, it is
difficult to ensure that the ground truth is absolutely accurate in practice. To
decrease such kind of uncertainty as more as possible, we recruited five students
to construct the ground truth.

An Approach for Prioritizing Software Features Based on Node Centrality 119

5 Related Work

We focus the related work discussion on two fields: requirements prioritization
as well as feature selection.

Currently, most prioritization related studies focus on software requirements
prioritization. Researchers and practitioners have proposed a number of software
prioritization techniques. Perini et al. [3] presented a method for requirements
prioritization called case-based ranking (CBRank), which combines stakehold-
ers preferences with requirements ordering approximations computed through
machine learning techniques. A case study by comparing with analytic hierar-
chy process (AHP) [5] showed the effectiveness of CBRank. They claimed that
requirements dependencies should be handled in the future work. Tonella et al.
[6] proposed an interactive genetic algorithm (IGA) that includes incremental
knowledge acquisition and combines it with the dependencies and priorities from
requirements documents. A real case study by comparing with incomplete ana-
lytic hierarchy process (IAHP) [7] showed the effectiveness and robustness of
IGA. Easmin et al. [8] proposed a scheme for requirements prioritization address-
ing the feedback issue along with a highly significant ranking function that has
decisive impact on true ranking. Khari and Kumar [9] compared six techniques
of numerical assignment technique (NAT), AHP, value oriented prioritization
(VOP), cumulative voting (CV), binary search tree (BST) and planning game
(PG) in a controlled experiment. Tong et al. [1] conducted systematic reviews
for current software requirements prioritization techniques from technical per-
spective. Achimugu et al. [10] conducted systematic reviews for current soft-
ware requirements prioritization techniques from literature perspective. They
pointed out that most of the current techniques neglect requirements dependen-
cies. To summarize, most of existing techniques treat each specific requirement
as the unit of priority comparison and focus on factors such as value, cost and
risk of specific requirement. Also they usually neglect dependencies between
requirements [1,3,10].

Related studies of the FM mainly focus on feature selection problem for
the feature model configuration. Czainecki et al. [14] introduced the concept
of staged configuration which can be achieved by the stepwise specialization of
the FM. This multi-stage selection considered cases in which the selection of
features in a previous stage impacts the validity of later stage features selec-
tions. White et al. [15] provided the study of multi-step configuration for SPL.
They presented a formal model of multi-step SPL configuration and mapped
the model to constraint satisfaction problems (CSPs). Stoiber and Glinz [16]
presented an approach to support stepwise, incremental derivation of a product
requirements specification from a product line specification. The starting point
of these methods is automated reasoning on the FM and feature prioritization
is not considered. Bagheri et al. [17] introduced the concept of feature prioriti-
zation. They proposed an extension of the FM with capabilities for capturing
business oriented requirements and a method named stratified analytic hierar-
chy process (S-AHP) was presented on top of this extension to help rank and
select the most relevant features from the FM. However, automated derivation of

120 Z. Peng et al.

specific product was the goal of the method and they did not prioritize features
as well. To the best of our knowledge, there are no more researches on the feature
prioritization.

6 Conclusion

In this paper, an approach for software feature prioritization based on the node
centrality in the probability network is proposed. The approach can be applied
in the early stage of software requirements engineering. Through feature prior-
itization in the FM, requirements analysts and software practitioners can focus
more on the important features to be further developed or reused in the specific
software product development. In order to prioritize features, a method of gener-
ating the FPN from the FM is presented and a measurement method for network
node centrality is adopted to calculate the priority of features to guide software
requirements prioritization. The proposed approach is validated by using three
real feature models.

In the future, we plan to extend our work from the following directions.
Firstly, we plan to further evaluate the performance of the proposed approach
when the feature number grows to a large scale (for example, greater than
1000). Secondly, we will investigate how to combine the proposed approach with
automated reasoning methods to support staged feature model configuration
problem.

Acknowledgments. The work is supported by the National Basic Research Program
of China under grant No. 2014CB340404, and the National Natural Science Foundation
of China under Nos. 61373037, 61272111, 61572186 and 61562073. The authors would
like to thank anonymous reviewers for their valuable suggestions. Jian Wang is the
corresponding author.

References

1. Tong, Z., Zhuang, Q., Guo, Q., Ma, P.: Research on technologies of software require-
ments prioritization. In: Yuan, Y., Wu, X., Lu, Y. (eds.) ISCTCS 2013. CCIS, vol.
426, pp. 9–21. Springer, Heidelberg (2014)

2. Hofmann, H.F., Lehner, F.: Requirements engineering as a success factor in soft-
ware projects. IEEE Softw. 4, 58–66 (2001)

3. Perini, A., Susi, A., Avesani, P.: A machine learning approach to software require-
ments prioritization. IEEE Trans. Softw. Eng. 39(4), 445–461 (2013)

4. Peter, H., Olson, D., Rodgers, T.: Multi-criteria preference analysis for systematic
requirements negotiation. In: 26th Annual International Conference on Computer
Software and Applications, pp. 887–892. IEEE Press, New York (2002)

5. Saaty, R.W.: The analytic hierarchy process: what it is and how it is used. Math.
Model. 9(3), 161–176 (1987)

6. Tonella, P., Susi, A., Palma, F.: Interactive requirements prioritization using a
genetic algorithm. Inf. Softw. Technol. 55(1), 173–187 (2013)

An Approach for Prioritizing Software Features Based on Node Centrality 121

7. Harker, P.T.: Incomplete pairwise comparisons in the analytic hierarchy process.
Math. Model. 9(11), 837–848 (1987)

8. Easmin, R., Gias, A.U., Khaled, S.M.: A partial order assimilation approach for
software requirements prioritization. In: 3rd International Conference on Informat-
ics, Electronics and Vision (ICIEV), pp. 1–5. IEEE Press, New York (2014)

9. Khari, M., Kumar, N.: Comparison of six prioritization techniques for software
requirements. J. Glob. Res. Comput. Sci. 4(1), 38–43 (2013)

10. Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.N.: A systematic literature
review of software requirements prioritization research. Inf. Softw. Technol. 56(6),
568–585 (2014)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Carnegie Mellon Uni-
versity (1990)

12. Radatz, J., Geraci, A., Katki, F.: IEEE standard glossary of software engineering
terminology. IEEE Stand. 610121990(121990), 3 (1990)

13. Zhang, W., Yan, H., Zhao, H., Jin, Z.: A BDD-based approach to verifying clone-
enabled feature models’ constraints and customization. In: Mei, H. (ed.) ICSR
2008. LNCS, vol. 5030, pp. 186–199. Springer, Heidelberg (2008)

14. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature mod-
els. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer,
Heidelberg (2004)

15. White, J., Dougherty, B., Schmidt, D.C., Benavides, D.: Automated reasoning for
multi-step feature model configuration problems. In: 13th International Conference
on Software Product Line, pp. 11–20. Carnegie Mellon University (2009)

16. Stoiber, R., Glinz, M.: Supporting stepwise, incremental product derivation in
product line requirements engineering. In: 4th International Workshop on Vari-
ability Modelling of Software-Intensive Systems. ICB-Research report, pp. 77–84.
University Duisburg-Essen (2010)

17. Bagheri, E., Asadi, M., Gasevic, D., Soltani, S.: Stratified analytic hierarchy
process: prioritization and selection of software features. In: Bosch, J., Lee, J.
(eds.) SPLC 2010. LNCS, vol. 6287, pp. 300–315. Springer, Heidelberg (2010)

18. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P.,
Lahire, P.: On extracting feature models from product descriptions. In: 6th Interna-
tional Workshop on Variability Modeling of Software-Intensive Systems, pp. 45–54.
ACM, New York (2012)

19. Benavides, D., Segura, S., Ruiz-Corts, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

20. Davril, J.M., Delfosse, E., Hariri, N., Acher, M., Cleland-Huang, J., Heymans, P.:
Feature model extraction from large collections of informal product descriptions.
In: 9th Joint Meeting on Foundations of Software Engineering, pp. 290–300. ACM,
New York (2013)

21. Rincn, L.F., Giraldo, G.L., Mazo, R., Salinesi, C.: An ontological rule-based app-
roach for analyzing dead and false optional features in feature models. Electron.
Notes Theoret. Comput. Sci. 302, 111–132 (2014)

22. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks:
generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

23. Zar, J.H.: Significance testing of the Spearman rank correlation coefficient. J. Am.
Stat. Assoc. 67(339), 578–580 (1972)

VCU: The Three Dimensions of Reuse

Jörg Kienzle1, Gunter Mussbacher1(B), Omar Alam2, Matthias Schöttle1,
Nicolas Belloir3, Philippe Collet4, Benoit Combemale5, Julien DeAntoni4,

Jacques Klein6, and Bernhard Rumpe7

1 SOCS/ECE, McGill University, Montréal, QC, Canada
{joerg.kienzle,gunter.mussbacher}@mcgill.ca,

matthias.schoettle@mail.mcgill.ca
2 Trent University, Peterborough, Canada

oalam@acm.org
3 Université de Pau, Pau, France
nicolas.belloir@univ-pau.fr

4 Université Nice Sophia Antipolis, Nice, France
philippe.collet@unice.fr, julien.deantoni@polytech.unice.fr

5 Université de Rennes 1, Rennes, France
benoit.combemale@irisa.fr

6 Université du Luxembourg, Luxembourg, Luxembourg
jacques.klein@uni.lu

7 RWTH Aachen, Aachen, Germany
rumpe@se-rwth.de

Abstract. Reuse, enabled by modularity and interfaces, is one of the
most important concepts in software engineering. This is evidenced by an
increasingly large number of reusable artifacts, ranging from small units
such as classes to larger, more sophisticated units such as components,
services, frameworks, software product lines, and concerns. This paper
presents evidence that a canonical set of reuse interfaces has emerged
over time: the variation, customization, and usage interfaces (VCU). A
reusable artifact that provides all three interfaces reaches the highest
potential of reuse, as it explicitly exposes how the artifact can be manip-
ulated during the reuse process along these three dimensions. We demon-
strate the wide applicability of the VCU interfaces along two axes: across
abstraction layers of a system specification and across existing reuse tech-
niques. The former is shown with the help of a comprehensive case study
including reusable requirements, software, and hardware models for the
authorization domain. The latter is shown with a discussion on how the
VCU interfaces relate to existing reuse techniques.

Keywords: Reuse · Interfaces · Variability · Customization ·
Configuration · Extension · Usage · Concern-oriented reuse

1 Introduction

Complex systems are rarely built from scratch, but rather rely on the existence of
reusable artifacts for improved productivity and higher quality. Reuse of artifacts
c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 122–137, 2016.
DOI: 10.1007/978-3-319-35122-3 9

VCU: The Three Dimensions of Reuse 123

comes in very different flavors, and can be investigated by looking at how the
reusable artifact is manipulated during the reuse process, and by looking at
various reuse techniques.

A long list of reuse techniques exist, each with its own unit of reuse [15]. Many
of them are considered success stories, starting from isolated classes managed
in libraries to sophisticated components and services [6] and finally to large
reusable entities such as frameworks and Software Product Lines [20]. Recently,
concerns have been proposed as variable and generic units of reuse [3]. Successful
reuse also includes development artifacts, such as analysis and design models
describing interaction, function, data, or architecture. In recent years, it has
been shown that even crosscutting elements can be reused with aspect-based
merging and weaving techniques. Instead of concrete artifacts, it is also possible
to reuse conceptual knowledge, such as design patterns [8], or to encode reuse
knowledge in model transformations or code generators.

Dimensions of reuse may be considered by categorizing the manipulations
performed on the reusable artifact during the reuse process. These manipula-
tions range from the simple act of using an existing artifact to the more mature,
coordinated customization (also called adaptation or extension) of reusable arti-
facts to a new reuse context, and thus also include white-box and black-box
forms of reuse. As a prerequisite to all previously mentioned activities, a spe-
cific reusable artifact must first be identified (i.e., selected from a set of possibly
applicable reusable artifacts). The following paragraph gives some examples of
these common activities.

A simple example of repeated use of an artifact is the common case of a
software application started several times. Often, however, a reusable artifact
needs to be adapted to its reuse context. Source code may be reused through
copy/paste and free adaptation (a common, but bad form of reuse as it is error-
prone and difficult to maintain). On the other side of the reuse spectrum, there
is the common reuse scenario, where, e.g., an operating system is installed on
different computers with different, predefined features required for different forms
of use and preferences. This is a case of reuse of an artifact through the selection
from a planned set of variations, which also is the case for the popular Software
Product Lines (SPL) paradigm. Modern applications more and more often have
the ability to adapt themselves to their environment, i.e., to automatically select
the most appropriate variation depending on their context. This requires the
consequences of a selection on the system to be made explicit, so that it can
be reasoned about. Last but not least, a piece of software can also be reused
by embedding it in different applications (e.g., generic reusable class libraries,
components, and frameworks). However, genericity is hard to achieve. While
class libraries provide crisp interfaces describing an intended form of reuse, they
may easily be too narrow to be usable. Frameworks often add customization
ability through subclassing of their concepts to cover a wider range of supported
reuse contexts.

Nowadays, it is generally agreed that reuse of artifacts with explicitly defined,
clear boundaries through their interfaces is the most appropriate to reach high
levels of reuse maturity. In this way, internal complexity and properties are

124 J. Kienzle et al.

encapsulated, and thus do not affect the (re-)users. While interfaces have tra-
ditionally been mostly employed to formalize the usage of an artifact, we stip-
ulate that all forms of manipulating a reusable artifact should be supported
by interfaces in today’s complex development processes, starting with identifi-
cation, followed by customization, and finally the usage of a reusable artifact.
Consequently, we have identified the need for three interfaces that every reusable
artifact should consider providing:

– a Variation (V) Interface,
– a Customization (C) Interface, and
– a Usage (U) Interface.

We call them interfaces, because people with different roles interact with
the artifact during different activities of the development process through the
appropriate interface to achieve a desired result. Each interface targets a different
dimension of reuse, and together they streamline the reuse process. However,
depending on the reusable artifact, these interfaces may be broader or smaller
and explicit or implicit.

The long-term aim of this work is to define fundamental concepts for the
reuse of (modeling) languages that can then be made available to any (modeling)
language, e.g., through metamodeling or other software language engineering
techniques.

In the remainder of this paper, we first introduce the VCU interfaces in more
detail in Sect. 2. The following two sections intend to provide convincing evidence
that these three interfaces capture all dimensions required to achieve effective
reuse. Section 3 presents several example models from the Authorization domain
expressed in different modeling notations that were made reusable by adding
VCU interfaces. In Sect. 4, we discuss how the explicit and implicit interfaces
of existing units of reuse can be categorized with the VCU approach. Section 5
presents our conclusions and discusses future work.

2 The VCU Approach – Definitions

VCU stands for the three interfaces: variation, customization, and usage.
We start with the last and most known.

2.1 Usage Interface

The Usage Interface (UI) describes what functionality can be requested by the
developer of the application who wants to reuse the artifact, i.e., which structural
and behavioral elements within the artifact are accessible. For example, the UI of
a software design artifact is typically comprised of the public classes and methods
made available by the artifact. For a reusable security artifact this might include
an authentication operation that an administrator can invoke in order to gain
access to restricted behavior. Sometimes usage interfaces are explicitly published,
which includes the promise of developers that those are stable over evolution
steps.

VCU: The Three Dimensions of Reuse 125

2.2 Customization Interface

The Customization Interface (CI) describes how the developer of an application
tailors a generic artifact to a specific application. The term customization here
has an extended meaning compared to the SPL paradigm. A reusable artifact is
described as generically as possible to increase reusability. Therefore, some ele-
ments in the artifact are only partially specified and need to be complemented
with concrete modeling elements of the application that intends to reuse the arti-
fact. Sometimes, parameters have to be filled in a template. Sometimes, complete
new classes have to be provided and injected into the reused artifact, e.g., as hot
spots in frameworks or as plug-ins in pluggable applications. The CI is hence
used when a reusable artifact is composed with the application. For example, a
security artifact may define generic Users and Administrators as partial classes
that need to be merged with the concrete application classes that describe the
actual users of the system, e.g., Customer or CrisisCoordinator, respectively. At
the implementation/source code level, Java generics, for example, exist, which
require the provision of a concrete type when they are reused. Databases are cus-
tomized with schema definitions. The Eclipse IDE framework became so popular,
because it is strongly decoupled and structured as a plug-in system, allowing the
IDE to be customized.

2.3 Variation Interface

The Variation Interface (VI) exposes the available variants that the artifact
encapsulates and from which the developer has to choose. It helps organize pos-
sible variations and their impact on goals and system qualities. From this VI
the application developer selects one concrete variant of the artifact that fits the
stakeholders needs best. Variations are typically described by a feature model [11]
that specifies the individual features of the artifact, as well as their mandatory,
optional, alternative, requires, and excludes relationships. The impact of choos-
ing a feature can be specified with goal models [10] when relationships among goals
are more complex or otherwise with attributed feature models [4]. For example, a
reusable authentication artifact may offer various alternatives for authentication,
from key-based to biometrics-based solutions, each with differing impacts on the
level of security as well as cost and end-user convenience.

2.4 VCU Approach to Reuse

Variant selection and customization typically happen during development time.
Use of an artifact in terms of connecting it to the rest of the application also

Fig. 1. The VCU reuse approach

126 J. Kienzle et al.

happens at development time, while actually using its functionality happens at
runtime when the application is executed. Some kinds of artifacts allow defer-
ring the variant selection and customization at least partially to installation or
runtime. Modern operating systems allow users to customize or at least adapt
customization during installation, prior to or even while executing it. Plug-in
systems allow extending an application and thus building new variants partially
even at runtime. Recently, adaptive systems have started to automate the selec-
tion process, switching among variations at runtime. Still, the three interfaces
should be methodically distinguished to simplify understanding of reusability
techniques.

Existing techniques (see Sect. 4) may only use some of the three interfaces
from the least mature to the most mature levels of reuse: only U, V&U, C&U,
and all three interfaces as indicated in Fig. 1. Actually, a developer that wants
to reuse an artifact is typically exposed to the VCU interfaces of the artifact
in the opposite order (V, then C, then U), roughly following these methodical
guidelines:

1. The developer determines the variant of the artifact that best suits her needs.
This is done by selecting the feature(s) with the best impact on relevant stake-
holder goals and system qualities from the VI of the artifact based on provided
impact analysis.

2. The developer customizes the resulting artifact by filling all parameterizations
(generics, partial elements), connecting the resulting artifact to the application
under development with the help of the CI.

3. The developer actually uses the UI of the artifact in the rest of the application
under development, such that the artifacts structural and behavioral properties
are integrated at the desired locations.

In practice, however, this is an evolutionary process, e.g., changing the chosen
variant due to adapted goals and therefore switching between variant selection,
customization, and usage.

3 VCU Interfaces Across Levels of Abstraction

This section illustrates the applicability of the VCU approach by building a
unit that encapsulates reusable requirements, design, and hardware models that
describe general structural and behavioral properties of Authorization. The app-
roach that was followed to create these models is called concern-orientated reuse
(CORE), and described in more detail in [3].

Among authorization models, the most used ones are based on access control
policy. The main idea is that access to a resource is controlled by some rules,
such as, e.g., in the widely used Role-Based Access Control (RBAC) [7,21]. In
RBAC, the access of a user to a resource is based on the role of the user in the
system to which RBAC rules are applied (e.g., in a banking institution, the role
of a user can be customer or teller). Access to a resource is usually defined as
a set of actions that the user can perform on the resource (e.g., a customer can
withdraw or deposit money from or in an account).

VCU: The Three Dimensions of Reuse 127

Fig. 2. Authorization variation interface

We first model the VI of Authorization, i.e., the different RBAC and Authen-
tication features and their impacts using feature diagrams and impact mod-
els (Sect. 3.1). We then present the interaction workflow of Authorization using
Aspect-oriented Use Case Maps (Sect. 3.2), the structural and behavioral design
models using class and sequence diagrams with Reusable Aspect Models (RAM)
(Sect. 3.3), as well as the hardware configurations using enhanced SysML block
diagrams (Sect. 3.4). For space reasons, the descriptions focus mostly on the CI
and UI of each model. Then, we show how to reuse the Authorization concern
in a simple bank application (Sect. 3.5).

3.1 Variation Interface Models

Inspired by the RBAC specification in the NIST standard [7] and an RBAC
feature model [14], we created a feature model [11] for the Authorization concern
as shown at the top of Fig. 2.

128 J. Kienzle et al.

The base functionality that any RBAC system must provide is encapsulated
in the root feature Authorization and the mandatory Authentication child fea-
ture. The optional feature Hierarchical adds the ability for role inheritance,
whereas SeparationOfDuty (SoD) adds the ability to restrict permissions based
on constraints. Furthermore, the child features of Authentication provide dif-
ferent means for performing authentication (Password and Biometrics with its
three sub-options), as well as the optional features Access Blocking, Auto Logoff,
and Password Expiry. Hardware variability is also depicted by different Camera
configurations and an optional LightSensor for FacialRecognition.

The impact model of the Authorization concern is shown at the bottom
of Fig. 2. Four high-level goals are defined: Increase Security, Decrease Cost,
Increase User Convenience, and Improve Security Management. The impact of
variable features on these goals are indicated with weighted contributions in a
relative way, e.g., the Facial Recognition feature impacts security sixteen times
more than the Auto Logoff feature (80 vs. 5).

The Variation Interface (VI) for the Authorization concern is comprised of
the feature and impact models. The feature model presents all encapsulated vari-
ants of the concern to the developer, and the impact model helps the developer
to determine the best solution for a specific reuse context by enabling impact
analysis on high-level system qualities. It is the VI that all other requirements,
design, and hardware models presented in the remainder of this section have in
common, i.e., the other models are realizations of the features defined in the fea-
ture model and the impact model relates the impact of these realization models
to system qualities.

3.2 Requirements Models

The workflow model describes the two main user-system interactions of the
Authorization concern in Fig. 3. First, the |Administrator may choose to define
roles at any time (define start point), possibly using hierarchies (Hierarchical)
and constraints (SeparationOfDuty). Second, the |User may have to authenti-
cate herself (authenticate start point), but the authentication behavior must be
combined with application-specific behavior of the system reusing Authoriza-
tion. Therefore, a pointcut stub (dashed diamond shape with P) represents all
those locations in the application that require authentication. Those locations
are identified with a pattern, stating that authentication is needed when the
|User interacts with a |ProtectedResource by attempting a |protectedAction.

The vertical bar | in the model highlights generic model elements that need
to be customized to the actual application under development, i.e., these model
elements constitute the Customization Interface (CI) of the workflow model. In
Fig. 3 the CI elements are highlighted in orange. For example, |ProtectedResource
may have to be matched against Account and |protectedAction against withdraw
and transfer. Given these customizations, the authenticate behavior would be
composed with the withdraw and transfer actions, resulting in an authentication
check before performing these actions (because the authenticate behavior occurs
before the requiresAuthentication pointcut stub).

VCU: The Three Dimensions of Reuse 129

Fig. 3. Authorization requirements models (Color figure online)

The UI is defined by the start points (i.e., define, authenticate, and all start
points of lower-level workflow models of the variable features depicted by stubs
(diamonds)). In Fig. 3 the UI elements are highlighted in yellow.

We used Aspect-oriented Use Case Maps (AoUCM) to represent the workflow
of Authorization. However, the approach is not AoUCM-specific and could have
considered other languages like activity diagrams or BPMN models and their
aspect-oriented extensions.

3.3 Design Models

To illustrate reusable software design models, we design realization models for
each feature of Authorization using RAM [13]. For space reasons, only the RAM
model realizing the root feature of Authorization is shown in Fig. 4. The RAM
model comprises two compartments, the structural view showing the class dia-
gram and the message view defined using sequence diagrams. The partial struc-
tural entities such as the class |User and the operation |execute again designate
the CI. The UI is comprised of all public classes and operations.

3.4 Hardware Models

Often, software is connected to specific hardware elements with which it tightly
interacts. In the context of Authorization, this is the case for specific Authen-
tication Means like Fingerprint or Facial Recognition. To illustrate that our

130 J. Kienzle et al.

Fig. 4. Authorization design models

interfaces are also capable of dealing with hardware, we present hardware mod-
els realizing the Facial Recognition feature in the System Model in Fig. 5.

We used SysML to represent the execution platform of Authorization because
a Block in SysML can be realized by hardware or physical elements. However,
the approach is not SysML-specific and could have considered other suitable
modeling languages like MARTE or AADL. Features are therefore realized not
only by workflow models and UML design models, but also by a SysML block
diagram specifying the hardware and by a SysML allocation model specifying
how the software is linked to the hardware.

Our facial recognition artifact could contain lots of hardware variability (such
as different quality cameras, optional light sensors) as shown in the feature
model, but for space reasons we are only illustrating one hardware model using
a video camera and a luminosity sensor.

The SysML internal block diagram describes the hardware elements that
FacialRecognition provides to measure physical data: a VideoCamera and a
LightSensor. It also depicts required hardware elements, such as a PowerSource,
a LightSource, a USB plug, and at least one CPU, and specifies how they are
connected to the provided hardware. These elements constitute the CI of our
hardware model, highlighted again with the vertical bar. Allocations of drivers
to �part� model elements show how the software relates to the hardware.

The remainder of this subsection summarizes the VCU interfaces for a
reusable artifact for system modeling, i.e., when software and hardware are to be
made reusable. In this case, the VI also includes the hardware variability offered
by the unit of reuse, and the resulting impacts on high-level goals such as cost,
power consumption, impact on environment, and noise. The CI also includes
hardware elements or physical elements in addition to software elements (e.g.,
the temperature in the environment), and constraints on their properties (e.g.,
greater than 100 Watt). The UI includes the functionality needed by the user of
the hardware artefact during execution/simulation of the model, i.e., interfaces

VCU: The Three Dimensions of Reuse 131

Fig. 5. Authorization system models

offered by the drivers (e.g., takePicture()) but it also includes the physical data
flow ports needed to make the system operational (e.g., a specific amount of
electricity through a power connection, a minimum and maximum quantity of
lumens into a lens). This hardware model highlights that even if the nature of
the UI is different from the one in a software model (i.e., it is not based only on
method declarations), the notion of UI is still valid and correctly encompasses
these different notions.

3.5 Reusing Authorization

This section illustrates how the Authorization concern is reused in a simple ATM
machine. The ATM developer selects from the Authorization VI the desired fea-
tures with the best impact (step 1 in 2.4). Based on this selection, the workflow,
design, and system models linked to the selected features are composed by the
reuse tool to create workflow, design, and system models for Authorization that
only contain the selected features.

The next step (step 2 in 2.4) is to customize each kind of model by
establishing mappings from the Authorization CI to the ATM models. To
customize Authorization to the ATM context at the workflow and design
level, |User of Authorization is mapped to the Customer component in the
ATM workflow model and the Customer class in the ATM design model.
Similarly, |ProtectedResource in the workflow as well as |Action and |Resource
in the design are mapped to Account. Finally, the |protectedAction responsibil-
ity in the workflow and the |execute operation of Action are mapped to the
withdraw and deposit responsibilities and operations of Account, respectively:

132 J. Kienzle et al.

|User → Customer; |ProtectedResource → Account; |protectedAction →
withdraw, deposit; |Action, |Resource → Account; |execute → withdraw,
deposit.

The internal block diagram model of the ATM machine contains parts rep-
resenting the specific CPU that was chosen, the memory used, the USB ports,
the specific power source chosen, etc. To customize the Authentication hard-
ware model, mappings must be established that link the CI model elements to
model elements in the ATM machine that satisfy the property constraints, e.g.:
|PowerSource → SeaSonicSS; |USB → MediasonicHP1-U34F; ...

4 VCU Interfaces Across Reuse Techniques

While the last section demonstrated the use of the VCU interfaces in require-
ments, design, and hardware models across various levels of abstraction, this
section focuses on VCU interfaces in existing reuse techniques.

Usage Interface: The prototypical example of a UI is the API of a class in
an object-oriented programming language. Standard classes do not have a cus-
tomization interface, as all of their public operations and attributes are fully
specified and defined (as opposed to generic classes described in the next para-
graph). UIs can also be of considerable size, such as the API of an entire library.
Libraries, even if comprised by several classes that offer alternative functionality,
typically do not have an explicit VI. Information about variants encapsulated in
the library, and impacts of the different variants on non-functional requirements
and qualities are informally described in textual documentation, if at all.

Customization and Usage Interfaces: Generic classes are a popular reuse mech-
anism in programming languages, such as Ada, Java, and C++ (where they are
called template classes). In essence, a generic class provides a crisp set of func-
tionalities, and for that purpose encapsulates some structure and behavior that
is generically applicable for all parameter types. The CI is defined by the para-
meters, which are classes, types, and often also operations that define what the
generic class needs from the reuse context. The programmer must provide the
correct parameters at development time, when instantiating the generic class, to
customize the class to a particular reuse context and to access its tailored UI.

In modeling, the CI is defined in similar form. The UML template parameters
provide the mechanism to tailor models to different reuse contexts. They can be
applied to a class as in programming languages. However, template parameters
can also be applied to UML packages, thus effectively parameterizing the entire
model contained in the package. Many aspect-oriented modeling techniques offer
UML template parameters or similar CIs to adapt aspect models that encapsu-
late reusable structure and behavior to specific reuse contexts (e.g., [3]).

Application frameworks are also composed of classes, but usually focus on
providing reusable structure and behavior related to a specific domain (e.g.,
Graphical User Interfaces, Persistence, Banking). By definition, frameworks

VCU: The Three Dimensions of Reuse 133

impose an application architecture, drive the execution control flow, and require
the programmer to tailor the framework to their needs and integrate the appli-
cation’s behavior by implementing interfaces or extending classes provided by
the framework. The CI of a framework is defined by the interfaces and abstract
classes that need to be subclassed by the programmer to reuse the framework.
The UI of the framework consists of the public (or published) operations defined
in its API.

Components are broad units of reuse that encapsulate a set of classes whose
instances collaborate to provide a reusable service. The required interface of a com-
ponent is a form of CI, since it allows the component to list the services it needs
from the reuse context in order to be operational. The provided interface describes
the service(s) that the component offers, and hence is equivalent to the UI.

All four discussed mechanisms have clearly defined CIs and UIs. Customiza-
tion is in all forms applied by binding open holes, namely generic parameters
or super classes, with concrete types or subclasses. Usage in all forms is defined
by the public (published) interfaces. None of them however explicitly provide
mechanisms for expressing the variation they encapsulate, if any. It would be
very interesting to add such explicit variation mechanisms into the respective
programming or modeling techniques, in order to allow documenting and under-
standing possible variation and selecting variants at design time. Currently vari-
ation can only implicitly be achieved by using the UI, i.e., calling mode-setting
functions to adapt behavior, or using the CI by defining several subclasses for
hot spots in frameworks. In the latter case, creational design patterns such as
Factory [8] can be used to select variations encapsulated by the framework at
initialization time or at run time.

Variation and Usage Interfaces: A common approach to handle variability at
the domain level is to follow a Software Product Lines (SPL) approach [20]. SPL
engineering focuses on how to organize similar software products as a family
within a closed domain, exploiting commonalities, and managing variabilities
among them. Many implementation techniques have been proposed for SPLs,
but when the variability is explicitly represented, feature models [11] are then
widely used. In this context, feature models are a perfect mechanism for the VI,
as they express the (closed) variability of an SPL.

The UI is usually obtained by a derivation process on the SPL assets. Assets
can be code, models, or other software artifacts. Two main groups can be distin-
guished by their way to derive a product, i.e., annotative and compositional. At
the model level, annotative approaches [5] normally use annotations on model
elements and prune them during derivation. On the other hand, compositional
approaches rely on several models or fragments corresponding to the selected fea-
tures that then need to be well integrated. For structural models, such as class
diagrams composition, techniques can notably rely on aspect-oriented model-
ing [17], model merging [19] or delta modeling techniques [9]. Related to our
authorization case study, a recently proposed compositional approach [14] cap-
tures the variability of RBAC models in a feature model to configure an associ-
ated UML model.

134 J. Kienzle et al.

In the SPL field, researchers have also proposed extensions to feature models
so that the VI is enriched with properties on features. This can be done with
attributes on features [4], typically representing non-functional properties within
the SPL that can be reasoned about. By the scoped and closed nature of a SPL,
the CI is not explicitly present, but it is of course possible that the selected
and composed assets provide individual customization mechanisms (as already
discussed in the “Customization and Usage Interfaces” subsection).

The Service-Oriented Architecture (SOA) is a software architecture style that
views the system as set of services that are self-contained, loosely coupled, and
can be easily composed. SOA provides guidelines that govern how services are
represented and used. Services are designed to address business-related behaviour
and logic, and are meant to be assembled to build enterprise solutions [16].
Connections between services are flexible, as services are dynamically invoked
at run time through a UI that is described, for instance, by means of the Web
Service Description Language (WSDL).

There exist SOA approaches that provide a sort of variability interface, which
is helpful in choosing the most appropriate service during run-time. Service Level
Agreements (SLAs) specify non-functional properties of services, which is a way
of specifying the impacts of services that allows for a limited form of trade-off
analysis when multiple services providing similar functionality are available.

Table 1. Summary of common units of reuse

Units of reuse Usage interface Customization interface VI variation VI impact

Classes Yes No No No

Generic classes Yes Yes No No

Components Yes Yes No No

Frameworks Yes Yes Informal Informal

Feature models Yes No Yes No

Feature models
with
attributes

Yes No Yes Yes

Services Yes No Limited Limited

Variation, Customization, and Usage Interfaces: A summary of the analysis of
the most common units of reuse and their support for usage, customization and
variation interfaces is shown in Table 1. Although none of the units provides
out-of-the-box support for all three interfaces, there has been lots of research
extending their reuse potential.

Perrouin et al. [19] have proposed an approach to provide some flexibility by
broadening the scope of the captured variability. In a first reuse step, variability
is resolved from a feature model selection and a product is generated by auto-
matically merging model elements associated to the selected features. A second

VCU: The Three Dimensions of Reuse 135

reuse step involves a customization process implemented by a model transfor-
mation and validated by OCL constraints defined on the model elements. This
can be seen as a first, but not very explicit, form of the CI.

Handling variability while being able to consider unplanned contexts is a
problem that has already been tackled in other works, mainly by introducing
variability management in reusable units such as components [18,22] or mod-
ules [12]. van der Storm defines variable components [22] and uses solving tech-
niques for checking compatibility among them. In a similar way, Plastic Partial
Components [18] are components equipped with several variable interfaces and
implemented internally with aspect-oriented techniques in model-driven software
architectures. These approaches are more flexible than common SPL techniques,
as they are handling variability at the component level, providing VIs (although
with limited support for specifying impacts) and UIs. Nevertheless, the cus-
tomization part is not as fine-grained as in our definition, as it is obtained by
the different compositions of components, and not at the level of each component.

Recently, Kästner et al. [12] proposed a core calculus for variability-aware
modules, complemented by a C-based implementation. Variability is handled on
module interfaces and inside modules, providing a solution that covers all three
VCU interfaces. Modular type checking of internal variability is supported and
the composition of two compatible modules yields a well-typed module with
combined variabilities. However, the notion of impact model in the VI is not
covered.

Finally, there have also been efforts to provide CI for services through para-
meterization and personalization [1] and using templates [23]. [2] proposes an
approach that allows customized use of web services in XML documents. The
approach uses an XML schema that allows to specify elements/subelements of
the XML document that can be specified/replaced dynamically. They provide
an example of a schema for news exchange, where the element <item> can be
given by a service call that matches the news service call pattern, which allows to
use any service call that returns an element (news <item>) of the correct type.

5 Conclusion

Reuse is one of the most important concepts in software engineering to improve
system quality, product reliability and in particular developer efficiency, thus
reducing development costs. This paper argues that while there is a huge variety
in the kinds of reusable artifacts, almost all forms of reuse have in common the
need to provide some or all of three key interfaces, i.e., the variation, customiza-
tion, and usage interface, summarized as VCU interfaces. We have discussed
the commonalities and potential consequences of different kinds of reuse dimen-
sions: (a) selecting a variant based on information about impacts, (b) adapting
the generic artifact to a specific context, and (c) using the functionality. Further-
more, we discussed how the three interfaces explicitly pinpoint down “where”
this reuse happens. The variation interface is needed to select from a set of
choices offered by a reusable artifact while being informed about the impact of

136 J. Kienzle et al.

the selection. The customization interface is required to adapt a generic reusable
artifact to a specific reuse context. The usage interface is needed to define how
the services of a reusable artifact may be accessed.

For a better understanding of these interfaces, we have examined their con-
crete appearance across levels of abstraction (i.e., from requirements to software
design and hardware design model) and across reuse techniques (from classes
and components to software product lines and services). Based on these find-
ings, we have found that all examined reusable artifacts indeed make use of and
only of the VCU interfaces. Today we do not know of situations, where the VCU
modeling approach will not hold, but these are preliminary findings. We invite
the software reuse community to challenge the sufficiency of the VCU interfaces
in the context of reuse. In the future, we plan to make generic support for the
VCU interfaces available to several mainstream modeling notations.

References

1. Amazon: Amazon web services
2. Abiteboul, S., Amann, B., Baumgarten, J., Benjelloun, O., Ngoc, F.D., Milo, T.:

Schema-driven customization of web services. In: Proceedings of the 29th Interna-
tional Conference on Very Large Data Bases, VLDB 2003, vol. 29, pp. 1093–1096.
VLDB Endowment (2003)

3. Alam, O., Kienzle, J., Mussbacher, G.: Concern-oriented software design. In: Mor-
eira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 604–621. Springer, Heidelberg (2013)

4. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491–503. Springer, Heidelberg (2005)

5. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

6. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

7. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur.
4(3), 224–274 (2001). doi:10.1145/501978.501980

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley,
Reading (1995)

9. Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, I.: Delta-oriented architec-
tural variability using monticore. CoRR abs/1409.2317 (2014)

10. International Telecommunication Union (ITU-T): Recommendation Z.151 (10/12):
User Requirements Notation (URN) - Language Definition. Accessed Oct 2012

11. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report, CMU/SEI-90-TR-21, SEI,
CMU, Nov 1990

12. Kästner, C., Ostermann, K., Erdweg, S.: A variability-aware module system. In:
Leavens, G.T., Dwyer, M.B. (eds.) Proceedings of the 27th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2012, Part of SPLASH 2012, pp. 773–792, Tucson, AZ,
USA, 21–25 Oct 2012. ACM (2012)

http://dx.doi.org/10.1145/501978.501980

VCU: The Three Dimensions of Reuse 137

13. Kienzle, J., Al Abed, W., Klein, J.: Aspect-oriented multi-view modeling. In: Pro-
ceedings of the 8th International Conference on Aspect-Oriented Software Devel-
opment - AOSD, pp. 87–98, 1–6 Mar 2009. ACM Press (2009)

14. Kim, S., Kim, D.K., Lu, L., Kim, S., Park, S.: A feature-based approach for mod-
eling role-based access control systems. J. Syst. Softw. 84(12), 2035–2052 (2011).
doi:10.1016/j.jss.2011.03.084

15. Krueger, C.W.: Software reuse. CSURV: Comput. Surv. 24, 131–183 (1992)
16. Krut, R., Cohen, S.: Service-oriented architectures and software product lines -

putting both together. In: 12th International Software Product Line Conference -
SPLC 2008, p. 383, Sept 2008

17. Morin, B., Vanwormhoudt, G., Lahire, P., Gaignard, A., Barais, O., Jézéquel, J.-M.:
Managing variability complexity in aspect-oriented modeling. In: Czarnecki, K.,
Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 797–812. Springer, Heidelberg (2008)

18. Pérez, J., Dı́az, J., Soria, C.C., Garbajosa, J.: Plastic partial components: a solution
to support variability in architectural components. In: WICSA/ECSA, pp. 221–
230. IEEE (2009)

19. Perrouin, G., Klein, J., Guelfi, N., Jézéquel, J.M.: Reconciling automation and
flexibility in product derivation. In: SPLC, pp. 339–348. IEEE Computer Society
(2008)

20. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

21. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Comput. 29(2), 38–47 (1996)

22. van der Storm, T.: Variability and component composition. In: Dannenberg, R.B.,
Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp. 157–166.
Springer, Heidelberg (2004)

23. ten Teije, A., van Harmelen, F., Wielinga, B.J.: Configuration of web services as
parametric design. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.)
EKAW 2004. LNCS (LNAI), vol. 3257, pp. 321–336. Springer, Heidelberg (2004)

http://dx.doi.org/10.1016/j.jss.2011.03.084

Reuse vs. Reusability of Software Supporting
Business Processes

Hermann Kaindl1(B), Roman Popp1, Ralph Hoch1, and Christian Zeidler2

1 Institute of Computer Technology, TU Wien, Vienna, Austria
{kaindl,popp,hoch}@ict.tuwien.ac.at

2 Adaptive GmbH, Vienna, Austria
zeidler@adaptive.at

Abstract. Reusing software is desirable, and so is reusing business
processes. For reusing both in the course of developing software sup-
porting business processes, an integration of related reuse approaches
is necessary. Of course, such reuse is not for free and requires reusabil-
ity of related artefacts, i.e., business process models and software parts
supporting them. For successful reuse, of course, trade-offs with making
artefacts reusable (or acquiring them) have to be beneficial.

In this paper, we present an integration of business process and soft-
ware reuse and reusability (R&R). Based on it, we compare trade-offs
between making reusable and reusing in the context of developing soft-
ware supporting business processes. As a consequence, it should become
easier to make rational judgments on whether and how to engage in R&R
of such software.

Keywords: Reuse and reusability · Business process · Business software

1 Introduction

The context of this work is reuse in the course of creating and adapting software
(SW) supporting business processes, where reusability depends on the explicit
availability (and use) of a business process model (BPM). Reuse of software and
of related BPMs together has the potential to increase efficiency and thus to
reduce costs and time-to-market. However, the trade-offs with related invest-
ments into reusability need to be better understood.

More specifically, we focus on reuse based on repositories, as illustrated in
Fig. 1. This approach integrates reuse of (similar) business processes and their
adaptation for the case at hand (possibly also involving their composition) with
reuse of related software parts (such as components or Web-services) and their
adaptation. It requires repositories filled with reusable artefacts of both kinds,
which can be efficiently looked-up for retrieval of (similar) artefacts as needed.
This, in turn, requires some effort for making artefacts reusable. So, we discuss
trade-offs between investments into reusability and related benefits for efficient
software and process reuse.
c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 138–145, 2016.
DOI: 10.1007/978-3-319-35122-3 10

Reuse vs. Reusability of Software Supporting Business Processes 139

Fig. 1. Business software development with reuse from repositories

The remainder of this paper is organized in the following manner. First, we
provide an overview of related work both on software and business process reuse
and reusability. Then we explain an integration of software and business process
reuse. For such a reuse approach, we compare trade-offs between making reusable
and reusing in the context of developing software supporting business processes.

2 Related Work

Software reuse and reusability have a long tradition in general, see, e.g., [4],
where Frakes and Terry reviewed, among other things, metrics and cost-benefit
models. Rotaru and Dobre [14] studied the adaptability and composability of
software components, both qualitatively and quantitatively (through metrics).
Recently, Mohr [10] presented metrics for functional reusability of services based
on their relevance. So, for software parts even quantitative measures related to
their reusability are available. These could be used in the context of our approach
for software reuse.

Reuse of business process models is the act of designing business processes
by using existing process models. To this end, typically BPM repositories are
employed. Requirements for such repositories from a stakeholders’ perspective
were defined in [16]. Elias and Johannesson [3] provided a survey on repositories
for process models. A similar survey was carried out by Yan et al. [17]. Such repos-
itories may serves as building blocks in the context of our approach for BPM reuse.

For retrieving relevant BPMs from such a repository, Dijkman et al. [2]
described graph matching on business processes to search and find similar
processes. Business process fragments may be reused during business process
modeling by integration [9]. According to [1], business processes are composi-
tions of sub-processes or process fragments. Both composability and variability
are necessary for deploying a business process in an adapted way. This work may
be used in the context of our approach for BPM retrieval and adaptation.

When both a BPM and related software parts are available, software support-
ing the modeled process may be directly driven by the BPM [11]. Based on this
idea, we recently proposed a software architecture including a BPMN 2.0 engine
and a model of business artefacts for aligning the architectures of the business

140 H. Kaindl et al.

and its supporting software [5]. BPMs can be enriched at their enactment with
additional artefact information for addressing certain usability problems of such
software. We build on this previous work in our overall approach for integrating
a BPM directly in the software.

3 Integrated Software and Business Process Reuse

Based on this previous work, integrated software and business process reuse
is possible as illustrated in Fig. 2. Business Software Reuse as sketched at the
bottom of the figure may happen with virtually any software reuse approach.
The figure shows a simple case-based approach, where software cases are stored
in a repository, selected using some similarity measure, and adapted for the case
at hand. Even a single scenario was sufficient for finding useful software cases in
[7]. Such an approach is also part of a feature-similarity model for product line
engineering recently co-proposed by one of these authors [8].

Business Software Reuse is integrated in our approach with Business Process
Reuse as sketched at the top of the figure. Also for such a reuse, different
approaches are possible. Analogously to software reuse, the figure sketches the
selection of a business process (more precisely a BPM) from a repository and its
adaptation. According to [13], such a process adaptation can be an adjustment or
a refinement. Both may be performed even automatically through model trans-
formations specifying business rules (see also [12]). Model transformations have
also been used for automated tailoring of a software process [6], but we consider
this outside the scope of our approach as presented here.

Ideally, every BPM in the repository could be executed using the software
artefacts in the repository. After a process adaptation, however, some part of
the adapted BPM, e.g., a Task (as illustrated in green in Fig. 2), may not be
executable by any piece of software in the repository. Then a related software
adaptation will be necessary. It may have to be done manually, but model trans-
formations could be employed as well.

4 Comparison of R&R Trade-offs

The R&R trade-offs in the context of software supporting business processes are
between an initial investment to create reusable software or BPM artefacts, and
the benefits from having either or both of them available for later reuse. We
compare such trade-offs in three different scenarios that primarily differ in what
is given for a development or change effort:

– Software development from scratch
This is the extreme case where nothing would exist yet for being reused, not
even software built for prior (similar) projects.

– Software available, but neither BPMs nor repositories for reuse
This is a case where software exists, which has to be changed or may be
informally used somehow for creating similar software. However, no investment

Reuse vs. Reusability of Software Supporting Business Processes 141

F
ig
.
2
.
In

te
g
ra

te
d

b
u
si

n
es

s
p
ro

ce
ss

a
n
d

so
ft

w
a
re

re
u
se

142 H. Kaindl et al.

into (systematically) making artefacts reusable has been done yet, neither for
software nor BPM artefacts.

– Repositories filled with reusable artefacts
This is the other extreme case where investments have been made for creating
both software and BPM repositories with reusable artefacts.

These scenarios are obviously on different levels of R&R maturity for software
(see, e.g., [4]). However, they do not involve software artefacts and processes only
but also related business process artefacts or processes dealing with them.

In Table 1, these scenarios are given in its rows. The columns contrast soft-
ware development without any systematic reuse or reusability with the R&R
approaches illustrated above in Fig. 2. In the third column, a software repository
filled with reusable software artefacts is assumed to be available and used. In the
fourth column, in addition, a related BPM repository filled with reusable BPMs
is assumed to be available and used. “MR” indicates an investment through
making reusable, while “R” stands for reusing.

Such a trade-off can obviously be in terms of some cost measure. As discussed
below, however, investing some cost for MR may have a positive return by R in
terms of time, e.g., time-to-market, i.e., in a different ‘currency’. We also discuss

Table 1. A comparison of approaches to software development and change based on
reuse and reusability

Software development
without R&R

Reuse with software
repository

Reuse with BPM
repository

Software
development
from scratch

Software development
only

MR: repository has
to be available (or
created)

MR: repository has
to be available (or
created)

Developers directly
encode BP in
source code

MR: enrich software
parts with
meta-data

MR: enrich BPMs
with meta-data

Alternative:
executable BPM
available or created

MR: organize
software parts in
repository

MR: organize BPMs
in repository

Software available,
but neither
BPMs nor
repositories for
reuse

Source code has to be
changed

Same as in cell above Same as in cell above

Depending on the
architecture, more
or less complicated

Possibly some reverse
engineering

Possibly some reverse
engineering

Repositories filled
with reusable
software
artefacts and
BPMs

— R: possibility to
retrieve software
artefacts from
repository for reuse

R: possibility to
retrieve BPMs
from repository for
reuse

R: possibility to
retrieve related
software artefacts
from repository for
reuse

Reuse vs. Reusability of Software Supporting Business Processes 143

positive and negative results in terms of quality. So, we discuss trade-offs with a
triple (cost, time, quality), which was also inspired by [15].

Let us start with the scenario of software development from scratch. If it
focuses on development only, then there is no investment into explicit reuse later.
If there is no BPM available, developers directly encode the business process in
the source code. However, if an executable PBM is explicitly given or created
for the software supposed to support this process, this BPM may be directly
included into a specific software architecture and drive the software at runtime
(see, e.g., [5]). While this approach can be efficient, it reduces the flexibility of
the software and may even entail usability problems. In terms of making such
software reusable, investments should be made here to enter pieces of software
such as components or Web services into a software repository. This requires
that a repository is technically available or has to be created, and the artefact to
be stored has to be enriched with meta-data and organized into the repository.
In addition, the BPM should be made reusable as well by entering it into a
repository, analogously to entering pieces of software. These investments are
usually in terms of cost. While they will also take extra time, it can be spent in
parallel to development projects.

When software is already available from previous projects, but neither BPMs
nor repositories for reuse, then source code has to be added or changed directly.
The difficulty of doing this will depend, e.g., on the software architecture. If
an executable BPM drives the software, primarily adaptations of such a model
will have to be made. Investments for making such software or BPMs reusable
in repositories are basically the same as indicated above. When this is done
only after several projects have already created software and models without
making them reusable, then even some reverse engineering may have to be done
additionally now.

For the scenario with repositories already filled with reusable artefacts, devel-
opment will try to reuse as many as possible to make best use of them. Let us first
have a brief look at the well-known case where software artefacts (only) are avail-
able for reuse in a repository. In general, it will be more efficient than software
development from scratch, i.e., there will be a return of invest from MR for R in
terms of cost. Actually, there should also be an improvement in time-to-market,
where the investment by MR in terms of cost is paid back in terms of time. When
software artefacts are often reused, it is well-known that they may become more
mature, i.e., there may be a return of invest in terms of quality.

If an executable BPM drives the software, primarily adaptations of such a
model will have to be made and, if they can be implemented completely by soft-
ware parts from the repository, ideally no software developer will have to make
any change to the source code. This requires a given framework for automatic
execution of BPMs, however, with the possible downside of reduced flexibility
and quality, e.g., of the user interface.

If, in addition, a repository full of BPMs is available, then they can be reused
as well. In particular, BPMs may be found in the repository as needed, and two or
more of these BPMs may be merged. If these BPMs are supported well by stored

144 H. Kaindl et al.

software parts, then ideally not much new software will have to be created anew,
in stark contrast to pure software development in such a case without reuse. The
return of invest from MR on this level may also be in terms of cost, time and
quality through R of BPMs, much as through indirect R of related software
artefacts.

5 Conclusion

In this paper, we discuss trade-offs between reuse and reusability of software
supporting business processes, depending on different development approaches
with and without explicit business process models and corresponding reposito-
ries. This discussion is based on the literature and on previous work of these
authors.

This work aims to contribute an improved understanding of these trade-offs
for different development approaches for software supporting business processes.
In particular, such trade-offs may arise with different currencies, e.g., cost vs.
time-to-market, with effects on quality as well. We found an argument why efforts
into making artefacts should be invested early, since otherwise even additional
effort in some reverse engineering may arise. Overall, a reuse approach inte-
grating both business processes and software artefacts appears to have a high
potential.

Still, our comparison is based on qualitative assessments only. Based on
already existing work on metrics especially in the context of software reuse and
reusability, future work should investigate such trade-offs quantitatively as well.

Acknowledgment. Part of this research has been carried out in the ProREUSE
project (No. 834167), funded by the Austrian FFG.

References

1. Angles, R., Ramadour, P., Cauvet, C., Rodier, S.: V-BPMI: A variability-oriented
framework for web-based business processes modeling and implementation. In: 2013
IEEE Seventh International Conference on Research Challenges in Information
Science (RCIS), pp. 1–11, May 2013

2. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03848-8 5

3. Elias, M., Johannesson, P.: A survey of process model reuse repositories. In:
Dua, S., Gangopadhyay, A., Thulasiraman, P., Straccia, U., Shepherd, M., Stein, B.
(eds.) ICISTM 2012. CCIS, vol. 285, pp. 64–76. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29166-1 6

4. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv.
28(2), 415–435 (1996). doi:10.1145/234528.234531

http://dx.doi.org/10.1007/978-3-642-03848-8_5
http://dx.doi.org/10.1007/978-3-642-29166-1_6
http://dx.doi.org/10.1145/234528.234531

Reuse vs. Reusability of Software Supporting Business Processes 145

5. Hoch, R., Kaindl, H., Popp, R., Zeidler, C.: Aligning architectures of business and
software: software driven by business process models and its user interface. In:
Proceedings of the 2016 49th Hawaii International Conference on System Sciences,
HICSS 2016. IEEE Computer Society (2016)

6. Hurtado Alegŕıa, J.A., Bastarrica, M.C., Quispe, A., Ochoa, S.F.: An MDE app-
roach to software process tailoring. In: Proceedings of the 2011 International Con-
ference on Software and Systems Process, ICSSP 2011, pp. 43–52, ACM, New York,
NY, USA (2011). http://doi.acm.org/10.1145/1987875.1987885

7. Kaindl, H., Śmia�lek, M., Nowakowski, W.: Case-based reuse with partial require-
ments specifications. In: 18th IEEE International Requirements Engineering Con-
ference (RE 2010), pp. 399–400, IEEE, New York, NY, USA (2010)

8. Kaindl, H., Mannion, M.: A feature-similarity model for product line engineering.
In: Schaefer, I., Stamelos, I. (eds.) ICSR 2015. LNCS, vol. 8919, pp. 34–41. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-14130-5 3

9. Markovic, I., Pereira, A.C.: Towards a formal framework for reuse in business
process modeling. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM
Workshops 2007. LNCS, vol. 4928, pp. 484–495. Springer, Heidelberg (2008).
http://dl.acm.org/citation.cfm?id=1793714.1793769

10. Mohr, F.: A metric for functional reusability of services. In: Schaefer, I., Stamelos,
I. (eds.) ICSR 2015. LNCS, vol. 8919, pp. 298–313. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-14130-5 21

11. Ouyang, C., Dumas, M., Van Der Aalst, W.M., Ter Hofstede, A.H., Mendling, J.:
From business process models to process-oriented software systems. ACM Trans.
Softw. Eng. Methodol. 19(1), 2:1–2:37 (2009). doi:10.1145/1555392.1555395

12. Popp, R., Kaindl, H.: Automated adaptation of business process models through
model transformations specifying business rules. In: Nurcan, S., Pimenidis, E.,
Pastor, O., Vassiliou, Y. (eds.) Joint Proceedings of the CAiSE 2014 Forum and
CAiSE 2014 Doctoral Consortium Co-located with the 26th International Confer-
ence on Advanced Information Systems Engineering (CAiSE 2014), Thessaloniki,
Greece, CEUR Workshop Proceedings, vol. 1164, pp. 65–72. CEUR-WS.org, 18–20
June 2014. http://ceur-ws.org/Vol-1164/PaperVision09.pdf

13. Popp, R., Kaindl, H.: Automated refinement of business processes through model
transformations specifying business rules. In: 9th IEEE International Conference on
Research Challenges in Information Science, RCIS 2015, Athens, Greece, pp. 327–
333. IEEE, 13–15 May 2015. http://dx.doi.org/10.1109/RCIS.2015.7128893

14. Rotaru, O., Dobre, M.: Reusability metrics for software components. In: The 3rd
ACS/IEEE International Conference on Computer Systems and Applications, p. 24
(2005)

15. Sametinger, J.: Software Engineering with Reusable Components. Springer,
New York (1997)

16. Shahzad, K., Elias, M., Johannesson, P.: Requirements for a business process model
repository: a stakeholders’ perspective. In: Abramowicz, W., Tolksdorf, R. (eds.)
BIS 2010. LNBIP, vol. 47, pp. 158–170. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12814-1 14

17. Yan, Z., Dijkman, R., Grefen, P.: Business process model repositories - framework
and survey. Inf. Softw. Technol. 54(4), 380–395 (2012). http://www.sciencedirect.
com/science/article/pii/S0950584911002291

http://doi.acm.org/10.1145/1987875.1987885
http://dx.doi.org/10.1007/978-3-319-14130-5_3
http://dl.acm.org/citation.cfm?id=1793714.1793769
http://dx.doi.org/10.1007/978-3-319-14130-5_21
http://dx.doi.org/10.1145/1555392.1555395
http://ceur-ws.org/Vol-1164/PaperVision09.pdf
http://dx.doi.org/10.1109/RCIS.2015.7128893
http://dx.doi.org/10.1007/978-3-642-12814-1_14
http://dx.doi.org/10.1007/978-3-642-12814-1_14
http://www.sciencedirect.com/science/article/pii/S0950584911002291
http://www.sciencedirect.com/science/article/pii/S0950584911002291

Component-Based Reuse

A Case Study on the Availability
of Open-Source Components for Game

Development

Maria-Eleni Paschali1(&), Apostolos Ampatzoglou2, Stamatia Bibi3,
Alexander Chatzigeorgiou4, and Ioannis Stamelos1

1 Department of Computer Science,
Aristotle University of Thessaloniki, Thessaloniki, Greece

{mpaschali,stamelos}@csd.auth.gr
2 Institute of Mathematics and Computer Science,

University of Groningen, Groningen, The Netherlands
a.ampatzoglou@rug.nl

3 Department of Informatics and Telecommunications,
University of Western Macedonia, Kozani, Greece

sbibi@uowm.gr
4 Department of Applied Informatics,

University of Macedonia, Thessaloniki, Greece
achat@uom.gr

Abstract. Nowadays the amount of source code that is freely available inside
open-source software repositories offers great reuse opportunities to software
developers. Therefore, it is expected that the implementation of several
requirements can be facilitated by reusing open source software components. In
this paper, we focus on the reuse opportunities that can be offered in one specific
application domain, i.e., game development. In particular, we performed an
embedded multiple case study on approximately 110 open-source games,
exploiting a large-scale repository of OSS components, and investigated:
(a) which game genres can benefit from open source reuse, and (b) what types of
requirements can the available open-source components map to. The results of
the case study suggest that: (a) game genres with complex game logic, e.g., First
Person Shooter, Strategy, Role-Playing, and Sport games offer the most reuse
opportunities, and (b) the most common requirement types that can be devel-
oped by reusing OSS components are related to scenarios and characters.

1 Introduction

The last two decades video games have become one of the most important forms of
entertainment in modern societies, with respect to their social and economic impact.
Specifically, in recent years, and especially among the youth, playing games has
outperformed many other types of entertainment, like listening to music or watching
movies. Additionally, it is reported that the worldwide revenue of the game industry
increased from nearly $11 billion in 2003 to $50 billion in 2007 [13] and is still rising
until now. One of the most important business requirements of successful game series,

© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 149–164, 2016.
DOI: 10.1007/978-3-319-35122-3_11

which is a prerequisite for surviving demanding competition, is the need for continuous
release of newer game versions or patches. Therefore, game development is an intense
process, which requires techniques that will shorten the product time to market and
simultaneously minimize the effort spent for debugging and testing activities [3, 30].

Reuse is a software engineering technique that offers such benefits, since it
increases development productivity [8, 32] and product quality [16, 21]. In addition,
despite the fact that games are usually large and complex software projects with high
individuality, one can identify a variety of common concepts (e.g., maps, weapons,
terrains, etc.), which can enable reuse among games of the same genre. To introduce
reuse into the game development process, several studies have proposed software
architectures that improve the reusability of games (e.g., [15, 18, 28]). The aim of such
architectures is to deliver more stable and extensible software, with enhanced inter-
operability, robustness and scalability.

In most of the cases, solutions that facilitate reuse discuss the utilization of com-
ponentized opportunities (e.g., [12, 34]). In software engineering, components are
typically equivalent to software packages or groups of classes that encapsulate a set of
related and well defined functions [40]. By taking into account the enormous amount
of source code that is available in Open Source Software (OSS) repositories (e.g.,
Sourceforge, Github, etc.), in this paper we perform an exploratory case study to
investigate the opportunity to reuse OSS components in game development. To achieve
this goal, we exploit a large-scale repository of OSS components (namely Percerons1)
that at this point offers approximately 3,000 components retrieved from open source
games. The case study aims at investigating the available open source components,
which can be supplied for reuse in the game development community, based on:

(p1) Game genre specificity: By taking into account that software reuse is more
efficient when performed within the same application domain [24], we investi-
gate how many components have been identified for each game genre (e.g.,
sports games, strategy games, RPGs, etc.). It is expected that game genres with
high availability of components, can more easily benefit from OSS reuse. The
game genres that we investigate are extracted from sourceforge.net, i.e., the
source code repository, on which the games have been originally published. The
studied genres are: arcade, board, card, first person shooter, puzzle, role-
playing, sports and strategy games.

(p2) Requirements specificity: Even within a specific game genre, components can be
further classified, based on the requirement that they implement. Such a clas-
sification would provide an even more fine-grained level of specificity, based on
which we can further quantify the supply of components. For instance, a com-
ponent that is related to the scenario of a game, e.g., an inventory of a player in
an RPG, is only reusable in scenarios that involve the management of objects
collected by game characters. To this end, we have manually classified a subset
of the components of the Percerons database in seven categories: scenario,
controls, community, speed, characters, sound, and graphics. The categories
have been retrieved from the work of Ham et al. [22], on gamers’ satisfaction

1 http://www.percerons.com.

150 M.-E. Paschali et al.

http://www.percerons.com

factors. The connection between game satisfaction factors and requirements is
discussed in Sect. 2.3.

(p3) Reusability: However, the identification of a software component is only the first
step towards its reuse. The next step is its adaptation to the target system. The
ease of adapting a software component in a new system is quantified through the
reusability quality attribute [1]. Therefore, we investigate if there are statistically
significant differences in the reusability of components, identified in games of
different genres.

The rest of the paper is organized as follows: In Sect. 2 we introduce the concepts
of software reuse and component-based software engineering. Additionally, we pro-
vide background information that is used in this study, i.e., aspects of game engi-
neering and the component extraction algorithm of Percerons. In Sect. 3 we present the
study design in the form of a case study protocol. In Sect. 4 we provide the results,
organized by research question, and discuss them in Sect. 5. In Sect. 6 we discuss the
threats to validity of our study, and in Sect. 6, we conclude the paper.

2 Background Information

2.1 Software Reuse

Software reuse is the process of implementing or updating software systems using
existing software assets [26]. Software reuse according to Baldassaire [8] is a software
engineering technique that, when adopted systematically, can improve and even
guarantee software quality. Additionally, it is suggested that reuse has a positive effect
on productivity and quality [8]. The results of the previous study are verified in [32]
where traditional and reuse-based software productions are compared in an industrial
context. Furthermore, a failure mode model for part-based software reuse was proposed
to improve the reuse processes [16].

Source code reuse is considered to be more intense in OSS development compared
to commercial/closed source software [31]. Heinemann et al. performed an empirical
multiple-case study in 20 popular OSS Java projects and concluded that third party
reuse is common in OSS [23], while Raemaekers et al. [36] pointed out that logging
frameworks (e.g., log4j) are the most frequently reused libraries. Sojer and Henkel [39]
investigated, through a survey among 686 open-source developers, the usage of
existing open-source code for the development of new open-source software. Their
results showed that on average 30% of the offered functionality is based on reuse.

Another type of studies aims at diversifying between white-box and black-box
reuse. According to Heinemann et al. [23] black-box reuse is the predominant form of
reuse. These findings are in accordance with those of Haefliger et al. [21], who con-
cluded that black-box reuse is the dominant form of reuse by analyzing six open source
projects and interviewing their developers. Schwittek and Eicker [38] examined
black-box reuse in OSS web applications resulting that on average this type of
applications reuse 70 libraries, 50% of which come from the Apache Foundation.
White-box reuse has been studied by Frakes et al. and Mockus et al. on 38.7 thousand
OSS projects, by measuring filename overlapping. The results showed that more than

A Case Study on the Availability of Open-Source Components 151

50% of the components are reused in more than one projects [16] and [31]. In general it
seems that identifying application domains [38], requirements specificity [36] and type
of reuse [16, 23, 31] is of great importance in guiding practitioners on where to find
appropriate components of reuse.

2.2 Component-Based Software Engineering

Component-Based Software Engineering (CBSE) is an approach that relies on software
reuse. CBSE purpose is twofold: (a) to facilitate the development of reusable com-
ponents that can be used in various independent systems, apart from the one initially
implemented for (i.e. development for reuse), and (b) to exploit reusable components
for the development of new systems (i.e. development with reuse).

In the literature a variety of terms regarding software components can be found, as
the term “component” is considered so generic that is used to denote any software part:
architectural, design, source code, or requirements unit [17], patterns or even methods
and lines of code [14, 40]. In JavaBeans the component is considered to be a class, in
Component Object Model (COM) and CORBA Component Model (CCM) a compo-
nent is an object, whereas in SOFA, PECOS and Pin it is an architectural unit [27].
However, Szyperski [40] distinguishes between classes and components: components
are more abstract than classes and can be considered to be stand-alone service providers
consisting of one or more classes. Components are “fired” during execution and
therefore considered as deployment units, while classes are considered as development
artifacts. Unlike classes, components can be synthesized with different technologies
and can contain elements such as global variables, images, html files, etc.

Component adoption in software reuse may occur in many levels of granularity
from a few lines of code to even a whole system [2]. Franch et al. point out the
importance of the component selection process in software engineering, a fact that
indicates the growing need for establishing software reuse patterns and guidelines [17].
The separation of the components’ interface from the components’ functionality is an
important aspect of a component that may increase its reuse. For this reason according
to [14] the use of design patterns in components analysis and design can be useful in
increasing component cohesion and minimizing component internal coupling.

2.3 Game Engineering

The main requirement of every game is to be entertaining (see [11, 25, 41]) and therefore
gamers’ satisfaction factors are of paramount importance in the game analysis phase.
The first study that investigated the factors from which gamers gain satisfaction was
performed by Ham et al. [22]. The results of the study suggested that game satisfaction
factors are game genre specific. Ham et al. investigated seven satisfaction factors
(Scenario, Graphics, Sound, Game Speed, Game Control, Character and Community)
and several game genres (Role Playing Games - RPG, First Person Shooter - FPS, Sport
Video Games and Computer-Mediated Board Games). The average importance of each
factor, calculated over all game genres, is depicted in Table 1.

152 M.-E. Paschali et al.

While discussing the results of this paper, we have to note that this study has been
published a decade ago, when the state of practice in game industry was substantially
different. A replication of the aforementioned study has been published in 2014, by
Paschali et al. [33]. In the recent study, the results have been updated: Character
Solidness, Scenario and Sound are highlighted as the most important factors for
gamers’ satisfaction, followed by Game Speed, Game Community, Controls and
Graphics. The fact that the results of the two studies are contradicting is considered
rather intuitive, in the sense that such factors are highly related to the most popular
game genre, and the state of practice in the industry. In this study, we reuse the game
satisfaction factors as types of requirements.

2.4 An Algorithm for Component Identification

In this section we shortly describe the methodology that is used in the study to identify
components from open source games, as proposed by Ampatzoglou et al. [4]. The used
algorithm is based on the identification of reusable sets of classes, by applying a
path-based strong component algorithm [19]. To apply this algorithm a directed graph
is created that depicts the dependencies among the classes of the system and then
depth-first search is performed to identify strongly connected components, in our case:
sets of classes. The algorithm successively provides sets of classes that are as inde-
pendent as possible, grouped together according to the functionality that they offer. In
particular the steps of the applied methodology are the following:

step 1. Create a dynamic two dimensional array where Candidate Components will be
stored in. Each row will store groups of classes that depend on each other. In
row 1 only one class will be stored depending solely on itself. In row two,
couples of classes will be stored that depend on each other, in row three
triplets of classes will be stored presenting dependencies, etc. Each row
number defines the maximum number of classes that can be included in a
Candidate Component. The columns represent the number of possible Can-
didate Components that can be used for each component size. At this step only
the first Component Candidate, of size 1, is created for one class of the system.

step 2. Identify the classes that the participants in the Candidate Components iden-
tified in the previous step are connected to.

step 3. Sort the dependencies according to their number of external dependencies in a
descending order.

Table 1. User satisfaction factors [22]

Id Factor Importance Id Factor Importance

1 Character 20,0 % 5 Scenario 11,1 %
2 Graphics 17,6 % 6 Sound 10,8 %
3 Game Control 16,7 % 7 Community 10,1 %
4 Game Speed 13,7 %

A Case Study on the Availability of Open-Source Components 153

step 4. For every dependency create an updated Component Candidate and place it in
the corresponding position in the array according to the number of classes in
the dependency group.

step 5. Return to step 2, for every Component Candidate created in the previous step,
according to the order that they have been added in the array. The process
stops if the maximum number of components is reached or if there are no
external dependencies.

step 6. For every dependency in the list create an updated Component Candidate and
place it in the corresponding position in the data structures.

step 7. For every Component Candidate created in the previous step, following the
order that each candidate was identified, return to step 2. Stop if maximum
number of components is reached or if there are no external dependencies.

For example, by applying the algorithm on the dependency graph of Fig. 1, we
obtain the candidate components presented in Table 2. The intermediate steps on the
application of the algorithm are presented in detail in the original study [4]. We note that
from the candidate components identified by this algorithm, we only investigate those
that are independent of other system classes (i.e., have zero efferent coupling [29]).

3 Case Study Design

In this section, we present the protocol that has been used for guiding the execution of
this case study. The case study has been designed and is reported based on the
guidelines of Runeson et al. [37]. Therefore, in Sect. 3.1 we present the aim of the
study and the research questions in which we decompose it, in Sects. 3.2 and 3.3 we
describe the case selection and the data collection processes, and in Sect. 3.4, we
provide an overview of the data analysis process.

3.1 Research Question

The goal of this case study, based on GQM [10], is to characterize OSS components
with respect to their domain-specificity and reusability from the point of view of

Fig. 1. Dependency graph
(Example)

Table 2. Extracted components (Example)

Size 1 A A1 A2 A21 B C D

Size 2 A,B A1,D A,A1 A,A2 A2,A21 A21,C A,C

Size 3 A,A1,D A,A1,B A,A2,B A,A2,A21 A,A21,C A2,A21,C A,B,C

Size 4 A,A1,B,D A,A2,
A21,B

A,A2,A21,C

Size 5 A,A2,A21,
B,C

154 M.-E. Paschali et al.

software engineers in the context of game development. To ease the design and
reporting of the case study, we split the aforementioned goal into three research
questions, based on the analysis perspectives (i.e., game genre specificity, requirements
type specificity, and reusability) that we introduced in Sect. 1, as follows:

[RQ1]: Which game genres offer the most open source components?
This research question aims at identifying game genres that offer the larger
pool of components. The game genres that are used in this study have been
extracted from sourceforge.net, i.e., the repository from which the OSS
projects have been retrieved. The categorization on sourceforge.net is
performed by the game developers, and therefore is considered accurate. The
analysis will provide an overall view of how many components are found on
average in each game genre.

[RQ2]: Which are the game requirements to which most open source components
are related?
This question explores the types of requirements for which the most
components are implemented. Requirements are mapped to game satisfaction
factors, as presented in Sect. 2.3 (see [33]). The analysis will provide insight
on the game requirements for which components are more easily accessible,
based on the quantitative analysis.

[RQ3]: What is the reusability of open source components for each game genre?
The two quality attributes related to software reuse are functionality and
reusability. These attributes will be analyzed for the components retrieved
across different game genres.

[RQ3.1]: Is there a difference in the average functionality offered by open source
components for various game genres?

[RQ3.2]: Is there a difference in the average reusability of open source components
for various game genres?

The results of this research question are expected to provide insights on how easy it
is to reuse one component, upon its identification.

3.2 Case Selection

The case study of this paper is a holistic multiple-case study [37] for RQ1 and an
embedded-multiple case study for RQ2 and RQ3. The context of the study is OSS game
development, the cases are open source games (for RQ1 games are also the units of
analysis), and units of analysis (for RQ2 and RQ3) are open source components.

In order to select as many cases as possible for our case study, we exploited a
repository of open source components, namely Percerons (see http://www.percerons.
com). Percerons is a software engineering platform [5] created by one of the authors with
the aim of facilitating empirical research in software engineering, by providing:
(a) indications of componentizable parts of source code, (b) quality assessment, and
(c) design pattern instances. The platform is consistently used for empirical research in

A Case Study on the Availability of Open-Source Components 155

http://www.percerons.com
http://www.percerons.com

the last three empirical software engineering conferences (ESEM’ 13 [6], ESEM’14
[20], and ESEM’ 15 [7, 35]). The identification of units of analysis is performed
automatically, by dumping the complete database of the repository.

In its current state Percerons provides 6.4 million candidate components that
concern 8 application domains. From these candidate components, 1.1 million have
been retrieved from OSS computer games. However, we need to note that the majority
of these components are not completely independent, since the algorithm described in
Sect. 2.4 stores components with efferent coupling less than 10. In our case study as
units of analysis, we consider approximately 3,000 components that are completely
independent and compileable (i.e., efferent coupling equals zero). The average size of
the components that are used as units of analysis is 6.52 classes (standard deviation:
8.92), ranging from single class components to components up to 40 classes.

3.3 Data Collection

In order to answer our research questions for every open source game that we analyzed
we recorded the following variables:

• Game Name: The name of the open source game that we analyzed.
• Game Genre: The genre of the game—Arcade, Board, Card, FPS, Puzzle, RPG,

Sports and Strategy. We note that some categories that are obtained from Percerons
have been excluded or merged, due to the low number of games that they involved.
For example, Educational games have been removed, Turn-Based and Real-Time
Strategy games have been merged in a common category, named Strategy.

• Number of Components: The number of independent and compileable components
that have been identified for the current game.

Additionally, for each component the following variables have been recorded:

• Component ID: A unique identifier for the component.
• Game Genre: Derived from the case variables.
• Requirement Type: The type of requirement that the component implements. The

possible classes for this variable are: Scenario, Controls, Community, Speed,
Characters, Sound, and Graphics. We note that since this was a manual process, it
was performed on only a limited number of components. In particular, we explored
100 random components, of various sizes, extracted from different games,
belonging to various game genres.

• Reusability: The reusability, as provided by the Percerons database, is calculated
based on the Quality Model for Object-Oriented Design (QMOOD) [9]. QMOOD
suggests that reusability is calculated as a function of component size in classes,
cohesion, coupling, and public interface. By taking into account: (a) the rigorous
empirical validation of QMOOD by experienced software engineers, and (b) its
popularity in the software engineering literature, we assume that it is a valid model
for quantifying reusability. In any case, we note that at this stage we are not
interested in the actual value of reusability, but only on components ranking.

156 M.-E. Paschali et al.

• Functionality: As a measure of functionality we use Afferent Coupling (AffC), as
proposed by Martin [29]. Afferent coupling counts the number of system classes
that actually invoke any method of the public interface of the component. In that
sense, it is a proxy of the functionality that this component offers to the rest of the
system. Thus, a component that provides high functionality to other system classes
is more probable to be reused than another that only provides limited services, even
in its original system.

3.4 Data Analysis

The data analysis step of this case study includes the calculation of descriptive
statistics, and the application of independent sample t-tests and Analysis of Variance
(ANOVA). Table 3 summarizes the data analysis process that we have applied in this
case study.

In particular for RQ1 the number of components retrieved per game genre is pre-
sented along with basic descriptive statistics (i.e., minimum, maximum, and average
number of components per game). Also the standard deviation which is calculated to
quantify the amount of variation in the number of components per game is presented.
Additionally Analysis of Variance is performed to identify whether there are certain
game genres that offer significantly more components. One limitation of ANOVA is the
fact that it identifies differences in the mean value of the testing variable, among
groups, but it does not specify which groups are different. Therefore, the results of
ANOVA are further explored with independent sample t-tests, in order to identify
which game genres (i.e., the grouping variable) are different in terms of the number of
components they offered (i.e., independent variable).

Concerning RQ2, we discuss the frequency with which components implement
various requirement types. The results are presented in the form of a pie chart. The
same descriptive statistics as RQ1 are presented for reusability and functionality metrics
with respect to the various game genres, addressing RQ3. In that case ANOVA and
independent samples t-test are performed to identify whether different game genres
offer components that present significant differences in reusability and functionality.

Table 3. Data analysis and presentation overview

RQ Variable Analysis

Components /
Genre

Number of Components
Grouping Variable: Game
Genre

• Descriptive statistics (mean, min, max,
std. dev.)

• Frequencies
• ANOVA

Components /
Requirements

Number of Components
Grouping Variable:
Requirement Type

• Frequencies (pie chart)

Reusability /
Genre

Reusability
Functionality
Grouping Variable: Game
Genre

• Descriptive statistics (mean, min, max,
std. dev.)

• Frequencies
• ANOVA

A Case Study on the Availability of Open-Source Components 157

4 Results

In this section we present the results of our case study, organized by research question,
and based on the data analysis plan, as presented in Sect. 3.4. Therefore, first we
present the results as obtained by the statistical analysis and then interpret them.

RQ1 (Availability of Components for Game Genres). Table 4 presents the results that
have been obtained by splitting the dataset by game genre and then calculating basic
descriptive statistics. The results of Table 4 are ranked by the mean value of compo-
nents offered by one game (see column 4). It can be observed that the game genre that
has the highest number of components (see Frequency—column 3) is Board games,
followed by Puzzles. However, we need to underline that these game genres are the
ones with the most games in the dataset (see N—column 2). In terms of average
components per game, we observe that the maximum value exists for FPS and Strategy
games, whereas the least components per game are found in Board, Card and Puzzle
games. Thus, based on this ranking we can claim that the amount of components that
are available for Board and Puzzle games are only due to the number of explored
games, and not due to game-specific characteristics.

To investigate if the aforementioned differences are statistically significant, we first
perform an Analysis of Variance (ANOVA), which suggested that some of the game
genres offers significantly more components per game (F: 3.62, sig: 0.00). Next, in
order to identify which game genres are those that stand out, either positively or
negatively, we performed independent sample t-tests. The results revealed that the
top-2 genres (i.e., FPS and Strategy games) are indeed having more available com-
ponents than the rest game genres. The second group of game genres (i.e., RPG and
Sport games), although offer on average approximately 10 additional components
compared to the other genres, this result is not statistically significant.

A possible explanation of the aforementioned ranking is the level of game logic
complexity of every game genre. For example, Arcade, Puzzle, Card and Board games
have a rather limited game logic (at least compared to the other genres), less impressive
graphics, etc. Therefore, the amount of possible components is limited. On the other
hand, the various characters, scenario objects, etc. offered in FPS, Strategy, Sports
games and RPGs, offer many reuse opportunities.

Table 4. Component per game genre

Genre N Frequency Mean Std. Dev Min Max

First Person Shooter (FPS) 8 400 50.00 36.02 3 99
Strategy 9 438 48.67 23.71 17 83
Sports 6 212 35.33 27.48 7 72
RPG 10 348 34.80 26.34 9 76
Arcade 17 407 23.94 12.19 8 45
Puzzle 21 464 22.10 18.39 1 64
Card 7 153 21.86 18.89 5 59
Board 31 647 20.87 18.49 4 80

158 M.-E. Paschali et al.

RQ2 (Availability of Components for Requirement Types). Concerning RQ2, we dis-
cuss the frequency with which components implement the various requirement types
(see Fig. 2). The results of the pie chart suggest that most of the identified components
are implementing requirements that concern the game Scenarios, followed by Char-
acters. Another interesting finding is that we were not able to identify any component
that is related to game Speed2.

The fact that game speed has not been associated with any component is intuitive in
the sense that speed is a run-time characteristic that cannot be identified with static
source code analysis. In addition, the extensive linkage of components to scenarios and
characters is in accordance to our discussion for RQ1 suggesting that most of the
components are found in games with complex game logic.

RQ3 (Reusability of Components for Game Genres). In order to investigate the
reusability of components that are extracted from different game genres, we performed
descriptive statistics, ANOVA, and independent sample t-tests for two testing vari-
ables: component functionality (afferent coupling) and component reusability. In
Table 5, we present descriptive statistics concerning the afferent coupling of compo-
nents extracted from different game genres. The results suggest that RPGs, FPSs, and
Sport games offer components that are more intensively used inside their games. This
fact can be explained by the average size of these games, in the sense that games with
more classes are expected to have more method invocations to the extracted compo-
nents. Another interesting finding is that all differences that are presented in Table 5 are
statistically significant and therefore generalizable to the population, according to the
individual independent sample t-tests. As expected, ANOVA has also revealed a dif-
ference between the groups (F: 46.18, sig: 0.00).

Similarly in Table 6, we present the results on the reusability of components
extracted from different game genres. The descriptive statistics imply that differences
between games genres are rather small in absolute numbers with the only exception of

Fig. 2. Pie Chart (Frequency of Requirement types)

2 A very small number of classes has been related to sound requirements, but due to its negligible
number has not been included in the pie chart.

A Case Study on the Availability of Open-Source Components 159

FPS games. Additionally, although the results of ANOVA (F: 10.11, sig: 0.00) suggest
the existence of significant differences, the independent sample t-tests revealed that
these are limited to the difference of FPSs with all other game genres. The outcome of
the statistical analysis suggests that differences in the reusability of open source games
are rather small, regardless of game genre.

5 Discussion

The results of this paper revealed that the top-2 genres FPS and Strategy games offer
significantly more components than the rest game genres. In terms of requirements
specificity, most of the identified components are implementing requirements that
concern the game Scenarios, followed by Characters. Concerning component func-
tionality RPGs, FPSs, and Sport games offer components that are more intensively
used inside their games, while in terms of component reusability no significant dif-
ferences between games genres are found with the only exception of FPS games. The
results of this study provide useful information both to researchers and practitioners:

• Guidance on the existence of reuse opportunities for practitioners. Based on the
results of this study, game developers can have indications on the feasibility of
reuse in different game genres.

Table 5. Component functionality per game genre

Genre N Mean Std. Dev. Min Max

Arcade 407 11.76 13.00 0 61
Board 647 19.70 24.48 0 109
Card 153 28.83 41.70 0 207
First Person Shooter (FPS) 400 38.72 49.84 0 234
Puzzle 464 15.54 19.33 0 70
RPG 348 43.69 86.97 0 337
Sports 212 33.62 39.14 0 148
Strategy 438 24.12 35.97 0 152

Table 6. Reusability per game genre

Genre N Mean Std. Dev. Min Max

Arcade 407 3.313 2.433 0.375 15.633
Board 647 3.576 2.525 0.250 22.516
Card 153 3.623 2.741 0.333 24.025
First Person Shooter (FPS) 400 4.328 4.039 -0.385 69.250
Puzzle 464 3.685 2.868 0.119 18.517
RPG 348 3.768 2.603 0.500 17.034
Sports 212 3.681 4.081 0.308 66.552
Strategy 438 3.550 2.727 0.500 20.026

160 M.-E. Paschali et al.

– FPS game developers can exploit the great reuse opportunities offered by OSS
components. This application domain offers the most components per game that
offer substantial functionality inside games, and are of optimum design-time
reusability.

– Strategy, Sport and Role-Playing game developers can also exploit the large
number of components offered by OSS games, although they have some limi-
tations. For example, RPGs offer the most functional components, of high
structural reusability. However, their availability is lower than that of FPS
games. On the other hand, despite the fact that Sport games that offer a high
number of components, these components are not of optimal reusability or
functionality.

– Game developers of any game genre should consider reuse of OSS components
when implementing requirements related to scenarios and character management.

• Guidance on case selection for researchers. Nowadays, more and more researchers
perform empirical studies on OSS projects. The results of the study can guide
researchers in selecting appropriate game genres to identify as many cases/units of
analysis as possible.

• Future work opportunities for researchers. Some interesting future work direc-
tions are derived from this study: (a) the actual reuse rates of these components in
OSS games can be calculated, (b) the reusability of these components can be tested
by software engineers through experiments, and (c) a process for systematically
reusing these components can be introduced.

6 Threats to Validity

In this section we discuss threats to the validity of our case study, with regard to
construct, reliability and external aspects [37]. Threats to internal validity are not
discussed in this paper, since identifying causal relations was out of the scope of this
study. A possible threat to construct validity is related to the metrics that are used to
answer our research questions and the extracted components. In particular, we have
used QMOOD to measure reusability and Afferent Coupling (AffC) to measure
functionality. Although we acknowledge that if different measures are used, the results
might be slightly altered, we believe that both choices provide adequat assessments of
the corresponding quality attributes. QMOOD, is an established quality model that has
been rigorously validated [9], whereas AffC offers a well-known proxy of functionality,
as explained in Sect. 3.3. Finally, another threat to construct validity is whether the
candidate components are indeed reusable artifacts that can be ported to settings
beyond their own game. We believe that the component selection algorithm, which is
based on an exhaustive search process, provides adequate recall rates, and therefore is
fitting for the purposes of this study. In any case to the best of our knowledge there is
no algorithm that 100% accurately captures all intended components of the original
developers.

A Case Study on the Availability of Open-Source Components 161

With regard to reliability, we consider any possible researchers’ bias, during the
data collection and data analysis process. In particular in the data collection phase, the
only possible bias can be identified in RQ2. To gather data on the types of requirements
that components implement we employed a manual process performed by the first
author. In order to increase the reliability of this process the second and the third author
validated the results. Finally, concerning external validity, a potential threat to gen-
eralization is that if the component extraction algorithm was performed on additional,
or different games, the results might be altered. However we believe that the selected
cases (open source games), offer a large and representative sample of the population.
Additionally, we need to clarify that although, the small amount of cases for RQ3 is a
threat to generalization, the manual inspection of additional games was not possible
due to the time consuming nature of the manual inspection.

7 Conclusion

In this paper, we empirically explore an important topic in game development, i.e., the
opportunity to reuse components from existing games. As parameters in this empirical
study we selected two aspects that can affect reusability: the application sub-domain of
the game, namely the game genre, and the requirement specificity that a certain
component may fulfill. To evaluate the relation of the game genre and the requirement
types in games components, approximately 3,000 components were retrieved from over
100 open source games. The results of the study suggested that specific game genres
offer more reuse opportunities than others, and that most components are related to
scenario and characters. Based on these results, we have been able to provide useful
implications for researchers and practitioners. As future work, we plan to replicate the
study with more refined metrics/algorithms and feedback from game developers.
Additionally, we plan to perform an in-depth study of a small number of games where
the actual components that were envisioned for reuse are actually used for this purpose.

References

1. 9126-2001: ISO/IEC, Software engineering - Product quality (Part 1: Quality model),
Geneva, Switzerland (2001)

2. Ajila, S.A., Wu, D.: Empirical study of the effects of open source adoption on software
development economics. J. Syst. Softw. Elsevier 80(9), 1517–1529 (2007)

3. Ampatzoglou, A., Stamelos, I.: Software engineering research for computer games: A
systematic review. Inf. Softw. Technol. Elsevier 52(9), 888–901 (2010)

4. Ampatzoglou, A., Stamelos, I., Gkortzis, A., Deligiannis, I.: Methodology on extracting
reusable software candidate components from open source games. In: Proceeding of the 16th
International Academic MindTrek Conference, pp. 93–100. ACM, Finland (2012)

5. Ampatzoglou, A., Michou, O., Stamelos, I.: Building and mining a repository of design
pattern instances: Practical and research benefits. Entertainment Comput. Elsevier 4(2),
131–142 (2013)

162 M.-E. Paschali et al.

6. Ampatzoglou, A., Gkortzis, A., Charalampidou, S., Avgeriou, P.: An embedded multiple-case
study on oss design quality assessment across domains. In: 7th International Symposium on
Empirical Software Engineering and Measurement (ESEM 2013), pp. 255–258. ACM/IEEE
Computer Society, Baltimore, USA, 10–11 October 2013

7. Arvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.: Introducing a ripple
effect measure: a theoretical and empirical validation. In: 9th International Symposium on
Empirical Software Engineering and Measurement (ESEM 2015), ACM/IEEE Computer
Society, Beijing, China

8. Baldassarre, M.T., Bianchi, A., Caivano, D., Visaggio, G.: An industrial case study on reuse
oriented development. In: 21st International Conference on Software Maintenance (ICSM
2005), IEEE Computer Society, 283–292, September 2005

9. Bansiya, J., Davies, C.G.: A hierarchical model for object-oriented design quality
assessment. Trans. Softw. Eng. IEEE Comput. Soc. 28(1), 4–17 (2002)

10. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal question metric paradigm, Encyclopedia of
Software Engineering, pp. 528–532. John Wiley & Sons, New York (1994)

11. Callele, D., Neufeld, E., Schneider, K.: Emotional requirements in video games. In: 14th
International Conference on Requirements Engineering, IEEE Computer Society,
Minneapolis, USA,11 – 15 September 2006

12. Cho, H., Yang, J.S.: Architecture patterns for mobile games product lines. In: Proceedings of
the 2008 International Conference on Advanced Communication Technology (ICACT
2008), pp. 118–122. IEEE Computer Society Korea, 17 – 20 February 2008

13. Consumer Electronics Association, “Digital America”, published electronically at. http://
www.ce.org

14. Crnkovic, I., Hnich, B., Johnson, T., Kiziltan, Z.: Specification, implementation, and
deployment of components. Commun. Assoc. Comput. Mach. 45(10), 35–40 (2002)

15. Folmer, E.: Component based game development – a solution to escalating costs and
expanding deadlines? In: Schmidt, H.W., Crnković, I., Heineman, G.T., Stafford, J.A. (eds.)
CBSE 2007. LNCS, vol. 4608, pp. 66–73. Springer, Heidelberg (2007)

16. Frakes, W.B., Fox, C.J.: Quality improvement using a software reuse failure modes model.
Trans. Softw. Eng. IEEE Comput. Soc. 22(4), 274–279 (1996)

17. Franch, X., Carvallo, J.P.: Using quality models in software package selection. Softw. IEEE
Comput. Soc. 20(1), 34–41 (2003)

18. Furini, M.: An architecture to easily produce adventure and movie games for the mobile
scenario. Comput. Entertainment Assoc. Comput. Mach. 6(2), 1–16 (2008)

19. Gabow, H.N.: Path-based depth-first search for strong and bi-connected components. Inf.
Process. Lett. Elsevier 74(3–4), 107–114 (2000)

20. Griffith, I., Izurieta, C.: Design pattern decay: the case for class grime. In: 8th International
Symposium on Empirical Software Engineering and Measurement (ESEM 2014),
ACM/IEEE Computer Society, Torino, Italy, 18–19 September 2014

21. Haefliger, S., von Krogh, G., Spaeth, S.: Code reuse in open source software. Manage. Sci.
PubsOnline 54(1), 180–193 (2007)

22. Ham, H., Lee, Y.: An empirical study for quantitative evaluation of game satisfaction. In:
2006 International Conference on Hybrid Information Technology, pp. 724–729. ACM,
November 2006

23. Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., Irlbeck, M.: On the extent
and nature of software reuse in open source java projects. In: Schmid, K. (ed.) ICSR 2011.
LNCS, vol. 6727, pp. 207–222. Springer, Heidelberg (2011)

24. Johnson, I., Snook, C., Edmunds, A., Butler, M.: Rigorous development of reusable,
domain-specific components, for complex applications. In: 3rd International Workshop on
Critical Systems Development with UML (CSDUML 2004), Springer (2004)

A Case Study on the Availability of Open-Source Components 163

http://www.ce.org
http://www.ce.org

25. Kasurinen, J., Maglyas, A., Smolander, K.: Is requirements engineering useless in game
development? In: Salinesi, C., Weerd, I. (eds.) REFSQ 2014. LNCS, vol. 8396, pp. 1–16.
Springer, Heidelberg (2014)

26. Krueger, C.W.: Software reuse. Comput. Surv. ACM 24(2), 131–184 (1992)
27. Lau, K.K., Wang, Z.: A taxonomy of software component models. In: 31st EUROMICRO

Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA),
pp. 88–95. IEEE (2005)

28. Lee, W.P., Liu, L.J., Chiou, J.A.: A component-based framework to rapidly prototype online
chess games for home entertainment. In: Proceedings of the International Conference on
Systems, Man and Cybermetrics (SMC 2006), IEEE Computer Society, Taipei, Taiwan,
pp. 4011–4016, 8–11 October 2006

29. Martin, R.C.: Agile software development: principles, patterns and practices. Prentice Hall,
New Jersey (2003)

30. McShaffry, M.: Game Coding Complete. Paraglyph Press, Arizona, USA (2003)
31. Mockus, A.: Large-scale code reuse in open source software. In: 1st International Workshop

on Emerging Trends in FLOSS Research and Development (FLOSS 2007), IEEE Computer
Society (2007)

32. Morisio, M., Romano, D., Stamelos, I.: Quality, productivity, and learning in
framework-based development: an exploratory case study. Trans. Softw. Eng. IEEE
Comput. Soc. 28(9), 876–888 (2002)

33. Paschali, M.E., Ampatzoglou, A., Chatzigeorgiou, A., Stamelos, I.: Non-functional
requirements that influence gaming experience: A survey on gamers satisfaction factors.
In: 18th Academic MindTREK Conference (MindTREK 2015), ACM, 4–6 November 2014,
Tampere, Finland

34. Passos, E.B., Weslley, J., Walter, E., Clua, G., Montenegro, A., Murta, L.: Smart
composition of game objects using dependency injection. Comput. Entertainment, Assoc.
Comput. Mach. 7(4), 408–423 (2009)

35. Reimanis, D.: A research plan to characterize, evaluate, and predict the impacts of behavioral
decay in design patterns. In: 13th International Doctoral Symposium on Empirical Software
Engineering (IDOSE 2015), Beijing, China

36. Raemaekers, S., van Deursen, A., Visser, J.: An analysis of dependence on third-party
libraries in open source and proprietary systems. In: 6th International Workshop on Software
Quality and Maintainability (SQM 2012), March 2012

37. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. John Wiley & Sons, Hoboken (2012)

38. Schwittek, W., Eicker, S.: A study on third party component reuse in java enterprise open
source software. In: 16th International Symposium on Component-based Software
Engineering (CBSE 2013), pp. 75–80. ACM (2013)

39. Sojer, M., Henkel, J.: Code Reuse in Open Source Software Development: Quantitative
Evidence, Drivers, and Impediments. J. Assoc. Inf. Syst. 11(12), 868–901 (2010)

40. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley International, Massachusetts, USA (1997)

41. van Lent, M., Swartout, W.: Games: Once more, with Feeling. Comput. IEEE Comput. Soc.
40(8), 98–100 (2007)

164 M.-E. Paschali et al.

RAGE Reusable Game Software Components and Their
Integration into Serious Game Engines

Wim van der Vegt, Enkhbold Nyamsuren, and Wim Westera(✉)

Open University of the Netherlands, Heerlen, Netherlands
{wim.vandervegt,enkhbold.nyamsuren,wim.westera}@ou.nl

Abstract. This paper presents and validates a methodology for integrating reus‐
able software components in diverse game engines. While conforming to the
RAGE component-based architecture described elsewhere, the paper explains
how the interactions and data exchange processes between a reusable software
component and a game engine should be implemented for procuring seamless
integration. To this end, a RAGE-compliant C# software component providing a
difficulty adaptation routine was integrated with an exemplary strategic tile-based
game “TileZero”. Implementations in MonoGame, Unity and Xamarin, respec‐
tively, have demonstrated successful portability of the adaptation component.
Also, portability across various delivery platforms (Windows desktop, iOS,
Android, Windows Phone) was established. Thereby this study has established
the validity of the RAGE architecture and its underlying interaction processes for
the cross-platform and cross-game engine reuse of software components. The
RAGE architecture thereby accommodates the large scale development and
application of reusable software components for serious gaming.

Keywords: Serious game · Reuse · Software component · Integration · Game
engine · Interoperability · RAGE

1 Introduction

Although games for learning have received attention from researchers and educators for
several decades, the uptake of these “serious games” in schools and corporate training
has been quite limited. Unlike the leisure game industry, which is an established industry
dominated by major non-European hardware vendors (e.g. Sony, Microsoft and
Nintendo) as well as major publishers and a fine-grained network of development
studios, distributors and retailers, the serious game industry is scattered over a large
number of small independent studios. This fragmentation goes with limited intercon‐
nectedness, limited knowledge exchange, limited specialisations, limited division of
labour and an overall lack of critical mass [1, 2]. Moreover, driven by the successes of
leisure games, quality standards of serious games as well as their production costs tend
to increase substantially, which raises barriers to serious game adoption [3].

In 2014, the European Commission has designated serious games as a priority area
in its Horizon 2020 Programme for Research and Innovation. It envisions a flourishing
serious games industry that helps to address a variety of societal challenges in education,

© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 165–180, 2016.
DOI: 10.1007/978-3-319-35122-3_12

health, social cohesion and citizenship, and at the same time stimulates the creation of
jobs in the creative industry sector. Funded by the Horizon 2020 Programme, the RAGE
project is a technology-driven research and innovation project that will make available
serious game-oriented software modules (software assets) that game studios can easily
integrate in their game development projects. Serious games studios would then benefit
from reusing state-of-the-art technologies, while their development would become
easier and faster, and upfront investments during development would be reduced.

In the RAGE project up to 40 advanced software assets are anticipated. These
assets cover a wide range of functionalities particularly tuned to the pedagogy of
serious gaming, e.g. player data analytics, emotion recognition, stealth assessment,
personalisation, game balancing, procedural animations, language analysis and
generation, interactive storytelling, social gamification and many other functions.
One of the major challenges of RAGE is to ensure portability of the software assets
across the wide diversity of game engines, game platforms and programming
languages that game studios have in use. In the game industry game engines are the
focal point of reuse [4]. They provide core libraries providing functionalities
common to most games (e.g., rendering, scripting, networking). To support reusa‐
bility within specific genres of games, game engines are supplemented with stores
of plug-in “assets” [4]. These stores mostly concentrate on reuse of 2D/3D models
and animation scripts. In rare occasions, software libraries with auxiliary function‐
alities are also available. For example, the store for the Unity game engine offers
assets for game data analytics (https://www.assetstore.unity3d.com/). However, such
libraries are bound to the architecture of the target engine. Furthermore, there is a
lack of assets with explicitly pedagogical purposes.

RAGE has addressed these issues by devising a component-based architecture [5, 6]
that preserves the portability of assets and that supports data interoperability between the
assets [7]. In [7] the principles and constituents of the RAGE asset architecture have been
described in detail and proofs of concept were presented that demonstrate its compliance
with the following basic requirements: (1) minimal dependencies on external software
frameworks and (2) interoperability between assets, and (3) portability of assets across
different programming languages. This paper focuses on an additional requirement: the
portability across different platforms, hardware and game engines. For the validation an
existing RAGE Asset is used, the Heterogeneous Adaptation Asset (HAT).

We will first summarise the main features of the RAGE architecture and the set of
communication modes it supports. Next, we will introduce the HAT asset and an exem‐
plary game that were used for investigating the asset integration. Thereafter we will
discuss the integration of the asset and the game and describe the principal asset classes
and the main interaction processes that are required for system integration. Finally, we
will discuss the portability of the HAT-asset to other game engines and verify the port‐
ability to diverse delivery platforms.

166 W. van der Vegt et al.

https://www.assetstore.unity3d.com/

2 The RAGE Architecture

The RAGE asset architecture defines a component model (Fig. 1) for creating a reusable
plug-and-play asset. The component model conforms to common norms of Component-
Based Development [5–7]: (1) a component is an independent and replaceable part of a
system that fulfils a distinct function; (2) a component provides information hiding and
used as black box; (3) a component communicates strictly through a predefined set of
interfaces that guard its implementation details.

The RAGE architecture [7] distinguishes between server-side assets and client-side
assets. Remote communications of server-side assets with either the game engine (client)
or a game server are readily based on a service-oriented architecture (SOA) using the
HTTP-protocol (e.g. REST), which offers platform-independence and interoperability
among heterogeneous technologies. In contrast, client-side RAGE assets are to be inte‐
grated with the game engine and are likely to suffer from incompatibilities. Therefore,
the RAGE (client) asset architecture relies on a limited set of well-established software
patterns and coding practices aimed at decoupling abstraction from its implementation.
This decoupling facilitates reusability of an asset across different game engines with
minimal integration effort. Figure 1 displays the UML class diagram of the RAGE asset
architecture [7].

Fig. 1. Class diagram reflecting the internal structure of a client-side software asset.

First, the asset does not provide any functionality related to the game user interface as
to avoid platform-dependent code. The asset just provides processing functionality by
returning processed data to the game engine (e.g. calculating user performance metrics
based on logged behaviours). Second, since various assets may be linked together to
express aggregates, a coordinating agent is needed: the Asset Manager, which is imple‐
mented as a Singleton, is needed for registration of the assets. It exposes methods to query
these registrations. Also, the Asset Manager centralises shared code that is commonly used
by multiple assets, such as the name and the type of the game engine, or user login/logout
info for assets that would need a user model. For such data, the Asset Manager is the single

RAGE Reusable Game Software Components and Their Integration 167

interaction point with the outside game engine, and thus avoids duplicating code. Third, for
allowing an asset to call a game engine method, the Bridge software pattern [8] is used,
which is platform-dependent code implementing an interface. Alternatively, the commu‐
nications could use the Publish/Subscribe pattern [9, 10] through the Event Manager, which
is initialised by the Asset Manager during its Singleton instantiation. Fourth, the asset
offers basic capabilities of storing configuration data (settings), be it delegated through the
Bridge to the game engine. Storage also includes localisation data (string translation
tables), version information and dependency information (dependency on other assets’
versions). Fifth, assets largely rely on the programming language’s standard features and
libraries to maximise the compatibility across game engines. Therefore, assets could thus
delegate the implementation of required features to the actual game engine, for example the
actual storage of runtime data.

3 Communications Between Assets and the Game Engine

For allowing an asset or its sub-components to communicate with the outside world (e.g.
with other assets, the game engine or a remote service), well-defined interfaces are
needed. The RAGE architecture support 4 different communication modes, which are
connected with asset registration and the use of RAGE architecture methods, the use of
game methods, using web services and using Publish/Subscribe events, respectively.
These modes will be summarised below are explained below at a generic level. In
Sect. 6 we will provide the implementation details of asset registration, the reuse of
RAGE architecture methods and the reuse of game engine methods.

3.1 Communications with the Asset Manager and Other Assets

The Asset Manager has the central role in registering assets. Such registration is needed,
because for communication the game engine should be able to locate the assets, as much
as each asset should be able to locate other assets. Principal steps of the registering
process are:

• Asset creation
Upon execution the game engine creates the asset by calling its constructor.

• Locating or creating the Asset Manager
After its creation the asset tries to locate the Asset Manager. If no Asset Manager
instance can be found, it creates the instance as a Singleton.

• Asset self-registration
The asset registers itself at the Asset Manager by the name of its class. In return, it
receives a unique identifier, so that multiple instances of the same class can be kept
apart.

• Asset ID exchange
The unique identifier is then returned to the game engine for later use.

168 W. van der Vegt et al.

The Asset Manager provides an interface for querying this registration of assets. An
asset can also query the Asset Manager for other assets by their class names when inter-
asset communication becomes necessary.

3.2 Communications Through a Game Method Call

For allowing an asset to call a game engine method a Bridge [8] is used. The Bridge
includes platform-dependent code that implements one or more interfaces. The
following actions are required:

• Bridge creation
The game engine creates a Bridge and registers it with either a specific asset or with
the Asset Manager. The asset can access its own Bridge or the Asset Manager´s
Bridge to further communicate with the game engine.

• Calling the game engine
Upon calling a game engine method, the asset would look for a suitable interface
from the Bridge, which then forwards the method call to the game engine.

• Receiving the response of game engine method
The game engine returns the method’s response to the Bridge, which forwards it to
the asset.

Overall, the Bridge pattern allows assets to call game engine methods while hiding the
game engine’s implementation details from the asset. Additionally, polymorphism is
supported by allowing a Bridge to implement multiple interfaces, or allowing an asset to
access multiple Bridges that implement different interfaces. The asset may identify and
select a suitable Bridge and use its methods or properties to get the pursued game data.

3.3 Communications Through a Web-Service Call

The Bridge can also be used for the communications of client-side assets with remote
services through web services. Obviously, this also applies for client-side assets calling
server-side assets. The communication includes the following elements:

• Bridge creation
If the Bridge was not instantiated yet, the game engine should create it and make it
available to the asset.

• Using an adapter
The Bridge uses an Adapter [11] provided by the game engine, which thus removes
the dependency of the asset on specific communication protocols used by remote
services, thereby allowing a greater versatility of the asset.

• Sending a request
In turn the asset could send a request (e.g. load or save data) to the Adapter, which
is then to be translated to a suitable format (e.g. REST) and sent to the web service.

• Receiving a response
Eventually, the web service would return its response, which is then received and
processed by the asset.

RAGE Reusable Game Software Components and Their Integration 169

Obviously, the communication with remote services assumes an online connection.
When a service is unavailable, e.g. when the game system is offline, the interface should
be able to receive a call without processing it or acting on it.

3.4 Communications Through a Publish/Subscribe Event

Communications can also be arranged using the Publish/Subscribe pattern, which
supports a 1-N type of communication (broadcasting). An example would be the game
engine frequently broadcasting player performance data, which could be received by
multiple assets.

• Creation of an Event Manager
An Event Manager is needed, which is a centralised class that handles topics and
events. It is initialised by the Asset Manager during its Singleton instantiation.

• Registration of an event
The game engine registers a publication event at the Event Manager, for instance the
broadcast of player performance data, or any other required state data from the game.

• Subscription to the event
An asset that wants to use such data for further processing would subscribe to the
registered event.

• Receiving updates
Any publication or update of the event by the game engine will then be broadcast by
the Event Manager. The assets that have subscribed to the particular event will receive
the data and act upon it.

According to the Publish/Subscribe design pattern, subscribers do not have knowl‐
edge of publishers and vice versa. This allows an asset to ignore implementation details
of a game engine or other assets. The communication can go both ways: asset and the
game engine can be either publishers or subscribers. The Publish/Subscribe pattern of
communication is more suitable for (asynchronous) broadcasting to multiple receivers
than the Bridge-based communication, which realises bilateral communications only.

4 The Heterogeneous Adaptive Gaming Asset (HAT)

The Heterogeneous Adaptive Gaming asset (HAT) can be used for real-time adaptation
of game features to player skills. The current version of the HAT asset supports adapting
game difficulty to player’s expertise using the CAP algorithm [12]. The CAP algorithm
is based on the Elo rating system [13] that was originally developed to dynamically
calculate and match expertise levels of two chess players. Similar to the Elo algorithm,
CAP does not require pre-testing to estimate difficulty of items. Instead, CAP is capable
of on the fly estimation of item difficulty and player’s expertise parameters. The CAP
algorithm is successfully being used in a wide array of games ranging from simple
arithmetic games [14] to complex problem solving games such as Mastermind [15].

The HAT asset assumes that a player plays through a sequence of one or more
game scenarios. The game delegates the choice of the scenarios to be played to the

170 W. van der Vegt et al.

HAT asset, which after each scenario adapts game difficulty to the player’s expertise
level. Quantitative ratings need to be assigned to both a player’s expertise or skills
level, and to the game scenarios’ difficulties. After each played scenario, the HAT
asset updates the player’s expertise rating by taking into account a Boolean value
indicating whether the player failed or succeeded in a scenario and the time needed
by the player to finish the scenario. If the player performed better than expected then
the expertise rating is increased, otherwise it is decreased. Based on the updated
player’s expertise rating, the HAT asset returns the most suitable difficulty level for
the next scenario to the game. For this decision, the HAT asset uses a prefixed prob‐
ability value indicating the probability that the player finishes the scenario success‐
fully. Based on previous research this probability threshold was set to 0.75, as to
balance the challenge provided by the game and player’s motivation to continue to
play [12, 16]. The player is initially assigned a low expertise rating and, therefore,
will be provided with easier scenarios. However, as the player improves by gaining
expertise, the expertise rating increases, and more difficult scenarios will be
presented. Through this iterative process, the HAT asset ensures that the player is
always given a reasonable amount of challenge even if the player gradually improves.

5 The TileZero Game

The TileZero game (Fig. 2) is a derivative of the popular turn-based board game Qwirkle
(released by MindWare, http://www.mindware.com). In recent years, Qwirkle has
captured interests of educational researchers for its potential use in developing children’s
spatial, mathematical, and fluid reasoning skills [17]. The game contributes to capacities
to think logically and solve problems from different perspectives. It requires from a
player a strategic reasoning ability to form, compare and choose from alternative combi‐
nations of moves. Finer grained skills include spatial manipulation of tiles in mind,
mental arithmetic of in-game scores, and tactical consideration of other players’ possible
moves. The same considerations apply to the TileZero game. As the game has simple
mechanics and rules that are easy to implement and control, it is a good candidate for
testing the asset integration.

The mechanics of TileZero revolves around combining tiles into a sequence. Each
tile has a picture of a coloured shape. There are six distinct colours and six distinct shapes
resulting in 36 unique tiles. With three copies of each unique tile the total number of
playable tiles is 108. Tiles that have not been used yet, are kept in a bag, and players
cannot see them.

TileZero can be played with two to four players. A match starts with three random
tiles put in a sequence on a board. Next, each player receives a set of six random tiles.
Once tiles are distributed, players start taking turns. During their turn, the players can
place one or more tiles on the board and replenish their set from the bag. The player has
to follow several rules for tile placement. First, a tile should be placed next to another
tile already on the board. Second, any sequence of tiles on the board should have either
the same colour and different shapes or vice versa. Third, a player can only place tiles
of either the same colour or same shape during a turn. A player receives a score for each

RAGE Reusable Game Software Components and Their Integration 171

http://www.mindware.com

tile placed on a board. The score is based on the length of the sequence that the tile forms
on the board. The game ends if the bag of tiles is empty and the player put his last tile
on the board. The player with the highest score is the winner.

In our implementation of TileZero, a human player plays against one of six available
AI opponents. An AI opponent is considered as a scenario. AI opponents have different
strategies and thus provide different degrees of challenge to the human player. The six
AI opponents in an increasing order of difficulty are Very Easy AI, Easy AI, two versions
of Medium AI, Hard AI and Very Hard AI. The TileZero was extended with the HAT
asset to match difficulty of an AI opponent to the player’s demonstrated expertise level.
A beginner player is assigned a low initial rating and therefore, the first few matches
will involve Very Easy or Easy AIs. However, as player gains expertise, the HAT asset
starts gradually introducing more challenging AIs.

6 Integrating Assets with Game Engines

The TileZero game was implemented on MonoGame v3.0, which is a portable open-
source Mono-based and OpenGL-based game engine (monogame.net) [18]. Both Tile‐
Zero and the HAT asset were written in C# using Visual Studio 2013. The integration
of the HAT asset and the TileZero game was based on usage of the Asset Manager and
the Bridge pattern for calling game engine methods. The implementation of Web Serv‐
ices and Publish/Subscribe patterns were not needed. In the next sections we will first

Fig. 2. A screenshot of the TileZero game against Hard AI Player.

172 W. van der Vegt et al.

explain game how to setup game code in MonoGame to be compliant with the RAGE
architecture. Secondly, the principal classes required for this integration will be
explained. Third, the main interaction processes that are required for system integration
and the reuse of libraries are described. Finally, we will discuss the portability of the
HAT-asset to other game engines and verify the portability to diverse delivery platforms.

6.1 MonoGame Implementation of TileZero

MonoGame uses a simple architecture of 5 methods being called.

• Initialize
• LoadContent
• Update
• Draw
• UnloadContent

When the game starts, the Initialize method is called and the main classes are created
and configured. Then the LoadContent method is called which covers the loading of the
tile bitmaps. Next MonoGame enters a loop of repetitively calling the Update and Draw
methods around 60 times/s. In the Update method the keyboard and mouse states are
examined and processed and forwarded to the game logic. In the Draw method the game
model is rendered onto the screen. Finally, when the loop has ended (the end of the
game), an UnloadContent method is called to free up previously loaded content.

Instead of directly implementing the HAT adaptation algorithm in the MonoGame
code, reuse of the HAT asset requires to declare a separate class (HATAsset) wrapping all
HAT functionality and thus exposing a minimum number of methods needed. Impor‐
tantly, the HAT asset itself can already be tested without being embedded in the game.
Because the HAT asset does not directly link with the game’s user interface, the TileZero
game code was separated in two distinct classes, covering the game logic (TileZeroGame
class) and the display model (VirtualTileZeroBoard class), respectively. The TileZero‐
Game class uses the HAT asset to select the appropriate AI for the computer player when
a new match is started. It is called by the MonoGame Update method, to process keyboard
and mouse input into updates of the VirtualTileZeroBoard class. The VirtualTileZero‐
Board class is used by the Draw method to visualise the user interface of the game.

6.2 HAT Asset Integration

Figure 3 shows a (simplified) UML class diagram depicting the main classes required
for the integration of the HAT asset and the TileZero game.

In Fig. 3, the TileZero class represents the game. The HATAsset class represents the
core functionality of the HAT asset, which is the adaptation algorithm. To gain access to
the standardised functionality of the RAGE architecture, the HATAsset class extends the
BaseAsset class from the architecture. This enables the HATAsset class to communicate
with the game engine (the TileZero class) using the Bridge class that implements the Bridge
pattern. The Bridge pattern enables the asset to call methods from the game engine without
knowing the game´s implementation details. Apart from the IBridge interface, the Bridge

RAGE Reusable Game Software Components and Their Integration 173

 class can realise additional interfaces that allow an asset to delegate common functionali‐
ties to a standard library provided by a game engine. For example, the IDataStorage inter‐
face allows an asset to request the game engine to load or save files.

6.3 The Reuse of Libraries by Using the RAGE Architecture

Figure 4 shows the UML sequence diagram reflecting interactions between the HAT
asset and the game engine.

This figure shows five different communication processes, which are labelled at the
right hand side. These processes will be briefly explained below, with occasional refer‐
ence to Figs. 3 and 4.

Instantiation of system components. During its initialisation (step 1 in Fig. 4), the Tile‐
Zero class instantiates all other components of the system. First, a Singleton of the Asset
Manager is created (step 2). Next, an instance of the Bridge class is created (step 3) and
referred to a newly created instance of the HATAsset class (step 4). During initialisation, the
HATAsset class performs two main operations. First, it registers itself with the Asset
Manager and receives a unique id (step 5). Next, it instantiates HATAssetSetting class
(steps 6 and 7) to load and manage player and scenario settings.

An asset reusing game engine libraries. The HAT asset uses the IDataStorage inter‐
face to load the asset’s settings stored on a local XML file. This process is shown by
steps 8 – 12 in the sequence diagram in Fig. 4. The HATAsset requests the Bridge object
to load the file by its name. Contacting the Bridge object is a matter of calling the
LoadSettings method inherited from the BaseAsset class. This method handles details

Fig. 3. Class diagram describing the integration of the HAT asset with the TileZero game.

174 W. van der Vegt et al.

of the call such as ensuring that the Bridge object has realised the IDataStorage interface.
In turn, the Bridge object uses libraries from the MonoGame engine to read textual files
and it returns to the HATAsset the content as a string value. Such delegation of generic
functions to game engines has main advantages of avoiding redundancy in code func‐
tionality and unnecessarily bloated implementation of an asset software component.

An asset reusing RAGE architecture libraries. One standardised functionality in the
BaseAsset class is to deserialise XML specified data into instances of a RAGE compliant
class for managing settings. In the HAT asset, settings include lists of available scenarios
and players together with relevant adaptation parameters such as ratings. These settings
are managed by the HATAssetSettings class shown before in Fig. 3. Within this class,
settings for individual scenarios and players are managed as instances of the HATSce‐
nario and the HATPlayer classes respectively. For example, each scenario available in
a game is identified in the HAT asset by its ID and assigned a difficulty rating. Because
HATAssetSettings extends the BaseSettings class from the architecture, the HAT asset
is able to use the SettingsFromXML method predefined in the BaseAsset class (step 13
in Fig. 4). This method automatically deserialises the asset’s settings from an XML
format into an instance of the HATAssetSettings.

Game engine
reusing RAGE
architecture
libraries

Asset reusing
RAGE
architecture
libraries

Asset reusing
game engine
libraries

HATAsset

TileZero

Bridge

HATAssetSettings

AssetManager

loopseq

Game engine to
asset
communication

Instantiation of
system
components

13 : HATAssetSettings = SettingsFromXml(stringValue)

1 : Initialize
2 : «create»

3 : «create»

4 : «create»
5 : id = registerAssetInstance(HATAsset)

6 : InitSettings
7 : «create»

8 : LoadSettings
9 : Load(filename)10 : ReadTextFile(filename)

11 : stringValue 12 : stringValue

13 : HATAssetSettings = SettingsFromXml(stringValue)

14 : VersionAndDependenciesReport

15 : NewGame
16 : getTargetScenarioID(playerID)

17 : scenarioList = getScenarios
18 : scenarioID

19 : initNewGame(scenarioID, playerID)

20 : EndGame

21 : updateRatings(playerID, scenarioID, time, success)
22 : Find(playerID)

Fig. 4. UML sequence diagram depicting communication processes between the HAT asset and
the game engine.

RAGE Reusable Game Software Components and Their Integration 175

A game engine reusing RAGE architecture libraries. Functionalities predefined in
the RAGE architecture may also be reused by different game engines. One of the core
components that offer reusable methods is the Asset Manager that assists the game
engine in coordinating multiple assets. The Asset Manager can keep track of all assets
by ID or class name and provide basic services relevant to all assets. In this particular
example, the Asset Manager is used by the game engine to verify the HAT asset’s version
and check if it is dependent on any additional library (step 14 in Fig. 4).

Game engine to asset communication. Every time the player starts a new match, the
game has to decide on the AI opponent to use in the match. The game delegates this
decision to the HAT asset as it is shown through step 15 to 22 in Fig. 4. The HAT asset
treats each AI opponent as a scenario and tries to find one with the difficulty rating that
matches the player’s expertise rating. As indicated by step 16 in Fig. 4, the game requests
the HAT asset to return an ID of the AI opponent it should select. This request is accom‐
panied with an ID of the player. As was discussed earlier, the HAT asset maintains
players’ and scenarios’ ratings and IDs in the HATAssetSettings class. The HAT asset
uses the player’s ID to fetch the player´s expertise rating from the HATAssetSettings
class. Next, it also retrieves the list of all available AI opponents (step 17). Given this
information, the asset can find an ID of the AI opponent best suitable for the indicated
player. This ID is returned to the game, and a new match starts (step 19). Upon comple‐
tion of the match, the game requests the HAT asset to update player’s rating (step 21).
This request includes player and AI IDs, duration of time the match lasted, and Boolean
indication whether player succeeded over the AI opponent. The HAT asset uses these
four parameters to recalculate player’s expertise rating after each match.

Results of test gameplays. The TileZero and HAT asset were tested by a human player
who played multiple consecutive matches against an AI opponent. The HAT asset was
used to adapt the game difficulty. Initially, the player was assigned a low initial expertise
level and matched against easier AIs. Figure 4 shows how the player’s ratings changed
during first 29 matches. The figure also depicts the type of AI opponent used in each
match. Two main trends can be observed. First, the player’s rating shows steady increase

0 5 10 15 20 25 30

0.
1

0.
2

0.
3

0.
4

Game matches

P
la

ye
r's

ex
pe

rti
se

ra
tin

gs

Very Easy AI
Easy AI
Medium Shape AI
Medium Color AI
Hard AI
Very Hard AI

Fig. 5. Player’s increasing expertise ratings during 29 matches.

176 W. van der Vegt et al.

indicating a positive overall performance growth of the player. Second, the frequencies
of AI types change during 29 matches. The first half of matches shows overall prevalence
of Very Easy and Easy AIs, while the second half shows prevalence of Medium and
Hard AIs. These two trends together confirm that the HAT asset worked as expected
and matched game difficulty to player’s expertise (Fig. 5).

6.4 Portability Across Game Engines and Platforms

The principal reason for devising the RAGE asset architecture has been to make avail‐
able software components that can be reused across different game engines and different
platforms. For verifying this, the TileZero project was ported from the MonoGame
engine (monogame.net) to both the Unity engine (unity3d.com) and the Xamarin mobile
app platform (xamarin.com), which both support the C# implementation. The HAT asset
was then added and integrated with each of these new game versions. No extensive user
interfaces were implemented in the Unity and Xamarin game versions, as for testing the
games’ functioning simple buttons for mimicking player’s decisions were sufficient.
Exactly, because of the decoupling of RAGE assets and the game’s user interface, testing
of the system integration is completely independent of the user interface. Likewise the
portability of RAGE assets across diverse delivery platforms is easily delegated to the
game engines´ rendering utilities, which in many cases include cross-platform delivery.
Both MonoGame, Unity and Xamarin support a large number of leading platforms,
covering different operating systems and hardware configurations. Successful system
integration was established for all three game engines, and proper delivery was verified
for Windows desktop, iOS, Android and Windows Phone, be it not in all possible
combinations. Some issues were encountered, but these could be easily solved.

First, during the coding of a mock-up game in Unity for Android, XPath could not
be used for performing some basic calculations. This was caused by the Mono version
that Unity uses. The issue could be solved by replacing XPath by code using the .NET
XmlSerializer class. It should be noted that this issue is not related to the RAGE asset
architecture, but to differences between the Mono and .Net frameworks used.

A second issue was located in the Bridge and occurred when trying to create and
access a platform-independent directory in Unity for storing the player’s performance
data. It turned out the Unity does not allow for this. The Application.dataPath method
only provides a read-only directory on iOS. Likewise, the Environment class cannot be
used as its main target is desktop. The issue could be solved by using Application.persis‐
tentDataPath, which is read-write on all tested platforms. Thereby the Bridge class
became portable across Unity’s target platforms.

Third, in our tests we used a Xamarin Forms project, which allows for referencing to
assemblies for using their projects, but it also supports direct referencing to compiled
assemblies. Assemblies can be compiled either against a common .Net framework or as a
portable assembly. Although Android and iOS allow for both portable (mobile) and non-
portable solutions, Windows Phone only allows portable assemblies. The implies that if a
Windows Phone project is present, the HAT Asset and the Asset Manager assembly need
to be compiled as portable assemblies and used on all respective platform projects.

RAGE Reusable Game Software Components and Their Integration 177

http://monogame.net
http://unity3d.com
http://xamarin.com

Fourth, as Unity is using an older .NET version (v3.5) it cannot handle portable
libraries. Indeed, .NET version 4.5, as used in Xamarin, is required for portable libraries.
Obviously the issue is not an issue of the RAGE architecture.

Fifth, as the format of Visual Studio project files is different for common .Net projects
and portable projects, respectively, separate project files are needed for each type of
assembly. With some small adjustments the RAGE asset sources can still be shared for
both types of assemblies. Two minor coding issues surfaced and were removed. The
system libraries used by portable assemblies lack support for some property attributes
used in RAGE assets (Category and Description). This was solved by removing these
two attributes as they are only used by an experimental configuration editor based on a
PropertyGrid and not of vital importance for the game. In the portable projects the
affected lines where omitted using C# compiler directives. Also, the two projects have
different methods for retrieving properties by reflection. This was addressed by adding
some conditional code using C# compiler directives and refactoring the code in such
way (using the constructor) that it does not need reflection.

Sixth, the Bridge for multi-target Xamarin Forms projects is composed of a common
part and a device specific part. For Android and iOS the Bridge implementation is straight‐
forward. For Windows Phone, however, the preferred file I/O API is asynchronous. This
requires that the code in the Windows Phone Bridge waits for the result of asynchronous
calls, which could lead to a deadlock. This issue was solved by including async helper
methods that wait for their result in the synchronous interface in a correct way.

Seventh, if an asset’s Bridge interfaces such as IDataStorage are to be used for all
platforms and engines, including Unity, they must be coded synchronously, because the
async keyword was included only after the .Net 3.5 framework, and is thus not available
in Unity.

Finally, some minor portability issues have been reported before, e.g. confusion of
separator characters (e.g. “/” versus “\”), conversion of debug symbol files for Unity,
and the compilation of embedded resources in Unity [7].

7 Conclusion

In this study, we have provided further evidence for the validity of the RAGE game asset
architecture. We have demonstrated that client-side game technology components that
are compliant with the RAGE architecture can be easily integrated with existing game
engines and allow for reuse across different engines and platforms. The power of the
RAGE architecture is not limited to the potential reuse of assets, but is also based on the
efficient reuse of existing libraries, either from the RAGE architecture or from the game
engine in use. To maximise the reusability of assets among different games, the assets
do not directly link with the game´s user interface and exchange only the basic forms
of information with the game engine. In the HAT asset, for example, the code of the
asset responsible for difficulty adaptation requires only the exchange of string IDs and
a few numerical values such as the duration of a task. The qualifies the integration of
RAGE assets as “lightweight”, which may promote its adoption.

178 W. van der Vegt et al.

It should be noted that we have tested the integration of C# coded assets only. In a
previous study, we have tested and validated the RAGE architecture by implementing
a dummy asset prototype also in C ++, Java and TypeScript (JavaScript). Establishing
the ecological validity for those languages by integrating real assets in real games for
various game engines and platforms needs further investigation. Moreover, in the current
study for C# some issues surfaced, be it minors issues. Yet, it demonstrates that cautious
and prolonged investigation is needed of the practical factors and conditions that might
corrupt seamless asset integration, both for C# and other languages. So far, this study
has established the validity of the RAGE architecture and its underlying interaction
processes for the cross-platform and cross-game engine reuse of software components.
The RAGE architecture thereby accommodates the large scale development and appli‐
cation of reusable software components for serious gaming.

Acknowledgement. This work has been partially funded by the EC H2020 project RAGE
(Realising an Applied Gaming Eco-System); http://www.rageproject.eu/; Grant agreement No
644187.

References

1. Stewart, J., Bleumers, L., Van Looy, J., Mariën, I., All, A., Schurmans, D., Willaert, K.,
De Grove, F., Jacobs, A., Misuraca, G.: The potential of digital games for empowerment and
social inclusion of groups at risk of social and economic exclusion: evidence and opportunity
for policy. Joint Research Centre, European Commission, Brussels (2013)

2. García Sánchez, R., Baalsrud Hauge, J., Fiucci, G., Rudnianski, M., Oliveira, M., Kyvsgaard
Hansen, P., Riedel, J., Brown, D., Padrón-Nápoles, C.L., Arambarri Basanez, J.: Business
Modelling and Implementation Report 2. GALA Network of Excellence (2013).
www.galanoe.eu

3. Warren, S.J., Jones, G.: Overcoming educational game development costs with lateral
innovation: chalk house, the door, and broken window. J. Appl. Instr. Des. 4(1), 51–63 (2014)

4. Bergeron, B.: Developing Serious Games. Charles River Media, Hingham MA (2006)
5. Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Sea-cord, R.,

Wallnau, K.: Technical concepts of component-based software engineering, vol. II. Carnegie
Mellon University, Software Engineering Institute, Pittsburgh (2000)

6. Mahmood, S., Lai, R., Kim, Y.S.: Survey of component-based software development. IET
Software 1(2), 57–66 (2007)

7. Van der Vegt, G.W., Westera, W., Nyamsuren, N., Georgiev, A., Martinez Ortiz, I.: RAGE
architecture for reusable serious gaming technology components. Int. J. Comput. Games
Technol. (2016, to appear)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software, pp. 171–183. Pearson Education, London (1994)

9. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In: Proceedings
of the Eleventh ACM Symposium on Operating systems principles (SOSP 1887), pp. 123–
138 (1987)

10. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of publish/
subscribe. ACM Comput. Surv. (CSUR) 35(2), 114–131 (2003)

RAGE Reusable Game Software Components and Their Integration 179

http://www.rageproject.eu/
http://www.galanoe.eu

11. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing adapters
for web services integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

12. Klinkenberg, S., Straatemeier, M., Van der Maas, H.L.J.: Computer adaptive practice of maths
ability using a new item response model for on the fly ability and difficulty estimation.
Comput. Educ. 57(2), 1813–1824 (2011)

13. Elo, A.E.: The Rating of Chess Players, Past and Present (Vol. 3). Batsford, London (1978)
14. Van der Maas, H.J.J., Van der Ven, S., Van der Molen, V.: Oefenen op niveau: het cijferspel

in de Rekentuin. Volgens Bartjens 3, 12–15 (2014)
15. Gierasimczuk, N., Van der Maas, H.L., Raijmakers, M.E.: An analytic tableaux model for

Deductive Mastermind empirically tested with a massively used online learning system. J.
Logic Lang. Inform. 22(3), 297–314 (2013)

16. Eggen, T.J., Verschoor, A.J.: Optimal testing with easy or difficult items in computerized
adaptive testing. Appl. Psychol. Meas. 30(5), 379–393 (2006)

17. Mackey, A.P., Hill, S.S., Stone, S.I., Bunge, S.A.: Differential effects of reasoning and speed
training in children. Dev. Sci. 14(3), 582–590 (2011)

18. Pavleas, J., Chang, J.K.W., Sung, K., Zhu, R.: Learn 2D Game Development with C#, pp.
11–40. Apress, New York (2013)

180 W. van der Vegt et al.

Reusable Secure Connectors for Secure Software
Architecture

Michael Shin1(✉), Hassan Gomaa2, and Don Pathirage1

1 Department of Computer Science, Texas Tech University, Lubbock, TX, USA
{michael.shin,don.pathirage}@ttu.edu

2 Department of Computer Science, George Mason University, Fairfax, VA, USA
hgomaa@gmu.edu

Abstract. This paper describes the design of reusable secure connectors that are
used in the design of secure software architectures for distributed software appli‐
cations. The secure connectors are designed separately from application compo‐
nents by reusing the appropriate communication pattern between components as
well as the security services required by these components. Each secure connector
is designed as a composite component that encapsulates both security service
components and communication pattern components. Integration of security
services and communication patterns within a secure connector is provided by a
security coordinator. The main advantage is that secure connectors can be reused
in different applications. In this paper, secure connectors are reused in electronic
commerce and automated teller machine applications.

Keywords: Reusable secure connector · Secure software architecture ·
Component-based software architecture · Secure software design · Message
communication patterns · Dynamic modeling

1 Introduction

Secure software architecture for distributed software applications can be composed of
components and connectors in which connectors encapsulate the details of communi‐
cation between components. Although connectors are typically used in software archi‐
tecture to encapsulate communication mechanisms between components, this paper
describes how security concerns can also be encapsulated in software connectors, which
are referred to as secure connectors, separately from application components that contain
application logic. However, integrating security concerns with communication concerns
in secure connectors could make applications more complex. It is therefore necessary
to design secure connectors that are both modular and reusable.

Each secure connector is designed as a composite component using component
concepts by reusing security service components and communication pattern compo‐
nents, which are designed separately from each other. Each security service component
encapsulates a security service, such as confidentiality or integrity. Each communication
pattern component encapsulates the communication pattern between application compo‐
nents, such as synchronous or asynchronous message communication. A secure

© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 181–196, 2016.
DOI: 10.1007/978-3-319-35122-3_13

connector is then constructed by composing security service components and commu‐
nication pattern components. Integration of security services and communication
patterns within a secure connector is provided by a security coordinator. Once a secure
connector is constructed, it can then be reused in different applications.

This paper describes the design of reusable secure connectors to be used in secure
software architectures for distributed software applications in which application compo‐
nents communicate with each other via different communication patterns. Reusable
secure connectors make complex software applications more maintainable by separating
security concerns from application concerns in the software architectures. Reusable
secure connectors described in this paper are applied to the software architectures for
electronic commerce applications, such as Business to Business (B2B) and Business to
Customer (B2C) electronic commerce applications, and an Automated Teller Machine
(ATM) application.

This paper is organized as follows. Section 2 describes existing approaches to imple‐
menting security concerns in software applications. Section 3 describes reusable secure
connector concepts followed by the design of reusable secure connectors in Sect. 4.
Section 5 describes a reusable secure synchronous message communication with reply
connector. Section 6 describes the validation of reusable secure connectors.

2 Related Work

Related work focuses on approaches to designing software architectures for secure
applications and patterns for distributed communication. Authors in [3] identified
several security dimensions, and related them to the building blocks of software archi‐
tecture. The components, connectors and their configurations are the architectural
building blocks, which can be customized to enforce the security dimensions.

Authors in [5] proposed a methodology to model secure software architectures and
verify whether required security constraints are assured by the composition of compo‐
nents of the system. An extension of UML called UMLsec had been proposed to express
security-relevant information within design diagrams in an effort to aid in the develop‐
ment of security-critical systems [9].

Using connectors as the central construct, a distributed software architecture in [6]
is composed of a set of components and a set of connectors that can be used to inter‐
connect the components. The Unified Modeling Language (UML) is used to describe
the component interconnection patterns for synchronous, asynchronous and brokered
communications [6]. In [10], a connector centric approach is used to model, capture,
and enforce security. The security characteristics of a software architecture are described
and enforced using software connectors.

Security patterns in [6, 11] address the broad range of security issues that should be
taken into account in the stages of software development lifecycle. The authors describe
the problem, context, solution, and implementation of security patterns with a template
so that the presentations are consistent.

182 M. Shin et al.

Methods in [1] propose SecArch to evaluate architectures with significant security
concerns. The SecArch is an incremental evaluation tool for secure architectures, which
utilizes implied scenarios and race conditions analysis.

In earlier work by the authors [8], an approach is described to model complex appli‐
cations by modeling application requirements and designs separately from security
requirements and designs using the UML notation. In later work by the authors [12], an
approach is described for modeling the evolution of a non-secure application to a secure
application in terms of a requirements model and a software architecture. In recent work
by the authors [13], secure asynchronous and synchronous connectors are described for
modeling the software architectures for distributed applications. In very recent work by
one of the authors [2], an aspect-oriented approach is described for mapping from the
objects in secure connectors to separate security and communication aspects. In contrast,
this paper focuses on designing secure connectors using a component-based approach
to make them reusable.

3 Concepts of Reusable Secure Connectors

The software architecture [14] for concurrent and distributed applications can be
designed by means of components and connectors. The components address the func‐
tionality of an application, whereas connectors deal with communication between
components. Each component defines application logic that is relatively independent of
those provided by other components. A component may request services from other
components, or provide services to them through connectors. A connector acts on behalf
of components in terms of communication between components, encapsulating the
details of inter-component communication.

Separately from application components, security services can be encapsulated in
connectors between components in the software architecture for concurrent and distrib‐
uted applications [12, 13]. The original role of connectors in the software architecture
is to provide the mechanism for message communication between components [14].
However, in this paper, the role of connectors is extended to security by adding security
services to the connectors, which are referred to as secure connectors. This can be done
by either:

(a) Encapsulating a security service inside a secure connector, or
(b) Providing access from the secure connector to an external security service.

In the latter case, if security services cannot themselves be encapsulated in connectors,
secure connectors can be designed to request security services from security service
components.

The security services provided by secure connectors for components are confiden‐
tiality, integrity, non-repudiation, access control, and authentication, as follows:

• Confidentiality security service, which prevents secret information from being
disclosed to any unauthorized party, can be achieved by secure connectors encapsu‐
lating cryptosystems [6].

Reusable Secure Connectors for Secure Software Architecture 183

• Integrity security service, which protects against unauthorized changes to secret
information, can be performed by secure connectors using message digest or message
authentication code [6].

• Non-repudiation security service protects against one party to a transaction later
falsely denying that the transaction occurred. Non-repudiation security services can
be realized using digital signatures [6] or Trusted Third Parties.

• Access control security service protects against unauthorized access to valuable
resources. Access control may be implemented using mandatory access control,
discretionary access control or role-based access control [4, 6].

• Authentication security service allows an entity (a user or system) to identify itself
positively to another entity. This can be achieved using a password, personal-iden‐
tification number or challenge response [6].

Although there are other types of communications between distributed components,
typical message communication patterns between the components are synchronous
message communication with reply, synchronous message communication without
reply, asynchronous message communication, and bidirectional asynchronous message
communication [7].

• In synchronous message communication with reply, a sender component sends a
message to a receiver component and waits for a response from the receiver. When
a response arrives from the receiver, the sender can continue to work and send the
next message to the receiver.

• In synchronous message communication without reply, a receiver component
acknowledges a sender component when it receives a message from the sender. As
the sender is acknowledged by the receiver, it can continue to work and send the next
message to the receiver.

• In asynchronous message communication, an asynchronous message is sent from a
sender component to a receiver component and is stored in a queue if the receiver is
busy. The sender component can continue to send the next message to the receiver
component as long as the queue is not full.

• Bidirectional asynchronous message communication uses asynchronous message
communication in both directions between the sender and receiver components, with
the receiver component sending responses to the sender component asynchronously.
Responses are sent to a queue from which the sender component retrieves each
response.

A secure connector is designed by separately considering the message communica‐
tion pattern and the security services required by application components. A secure
connector is a distributed connector, which consists of a secure sender connector and a
secure receiver connector that communicate with each other. Each secure connector is
labeled with the UML stereotype « secure connector » to clearly identify its role in the
software architecture. A secure sender or receiver connector (Fig. 1) consists of:

• A security coordinator. The security coordinator receives messages from a sender
component or delivers messages to a receiver component. The security coordinator

184 M. Shin et al.

also sequences the interactions with one or more security services and with a
communication object that encapsulates a communication pattern.

• One or more security service objects. A security service object encapsulates the
specific security service being applied to the application message, such as encryption
or decryption for a confidentiality security service. For some security services, such
as authentication, authorization or non-repudiation, a secure connector might not
encapsulate the security service. Instead the secure connector interacts with the
security service contained in security service components.

• A communication object. The communication object encapsulates the communica‐
tion pattern used to transmit the message (and possibly the response) from the sender
component to the receiver component. For all secure connectors, there is a sender
communication object and a receiver communication object.

Fig. 1. Secure sender connector and secure receiver connector

It should be noted that most conventional connectors only consist of the communi‐
cation object. A secure connector expands on this by providing the security service(s)
and security coordinator. A secure connector separates the concerns of communication
and security by encapsulating them in separate objects, which are unaware of each
other’s existence. This loose coupling is ensured by providing a security coordinator,
which interacts with the application component (sender or receiver) and sequences the
interactions with security service(s) and communication objects.

Reusable Secure Connectors for Secure Software Architecture 185

4 Design of Reusable Secure Connectors

The secure connectors are designed using component-based concepts in which a secure
connector is designed as a composite component that contains simple components that
encapsulate the security services and the message communication pattern. One or more
security service components are encapsulated in a secure connector as application
components could require several security services. Figure 2 depicts the security service
components where each security service is designed with one or two security service
components. The confidentiality security is designed with the encryption and decryption
security service components, whereas the integrity security is designed with the integrity
generation and integrity verification security components. The non-repudiation security
is designed with the non-repudiation generation and non-repudiation verification
security components. The authentication and access control securities are designed with
the authentication and access control security service components respectively.

Fig. 2. Security service components

Each port of a component is defined in terms of provided and/or required interfaces
[7]. Each security service component (Fig. 2) has a provided port through which the
component provides security services to other components. The Encryption and Decryp‐
tion security service components for confidential security have the provided PEncryp‐
tion and PDecryption ports respectively. The Authentication security service component
has the provided PAuthentication port, whereas the Access Control security service
component has the provided PAccessControl port. The integrity security is provided by
the Integrity Generation security service component via the provided PIntegrityGener‐
ation port and by the Integrity Verification security service component via the provided
PIntegrityVerification port. The Non-repudiation Generation and Verification security

186 M. Shin et al.

service components have the provided PNon-repudiationGeneration and PNon-repudi‐
ationVerification ports respectively for the non-repudiation security. Figure 3 depicts
the interfaces provided by the ports of the security service components in Fig. 2.

Fig. 3. Interfaces of security service components

Each communication pattern is designed with a sender communication pattern
component (CPC) and a receiver communication pattern component (CPC), which are
encapsulated in a secure sender connector and a secure receiver connector respectively.
Figure 4a depicts the Synchronous Message Communication With Reply (SMCWR)
Sender CPC and Synchronous Message Communication With Reply (SMCWR)
Receiver CPC for the secure synchronous message communication with reply connector.
The SMCWR Sender CPC ((a) in Fig. 4) has the provided PSyncMCWithReplySen‐
derService port through which the Security Sender Coordinator component ((a) in
Fig. 5) sends to the SMCWR Sender CPC a message being sent to the receiver appli‐
cation component, whereas it requests a service from the SMCWR Receiver CPC via
the required RNetwork port. Similarly, the SMCWR Receiver CPC ((a) in Fig. 4) has
the required RSecurityService port for sending to the Security Receiver Coordinator
component a message received from the SMCWR Sender CPC ((a) in Fig. 6), whereas
it receives a message from the SMCWR Sender CPC via the provided PNetwork port.
(b) in Fig. 4 depicts the interfaces provided by each port of the SMCWR Sender and
Receiver communication pattern components (CPCs).

Reusable Secure Connectors for Secure Software Architecture 187

Fig. 4. Synchronous message communication with reply sender and receiver communication
pattern components and their interfaces

The secure connectors are constructed by reusing security service components
(Figs. 2 and 3) and CPCs (Fig. 4), with the security coordinator being a component that
needs to be designed for each secure connector to integrate the selected security service
components with the selected CPCs. Once one or more security services required by an
application component are determined, the corresponding security service components
are selected from the reusable security service components (Figs. 2 and 3). Similarly the
required CPCs are selected from the reusable CPCs (Fig. 4) in accordance with the
communication pattern between application components. The security coordinator
component (Figs. 5 and 6) integrates the selected security service component(s) with
the selected CPC by sequencing the interaction with those components. For the inte‐
gration, the security coordinator component has required ports through which it requests
security services from the security service components and communicates with the CPC.
Also the security coordinator components (Figs. 5b and 6b) provides ports for receiving
a service request message from or requesting a service from an application component.

5 Secure Synchronous Communication with Reply Connector

Secure synchronous message communication with reply between components is
provided by means of a pair of reusable connectors, namely a secure synchronous
message communication with reply sender connector and a secure synchronous message
communication with reply receiver connector (shortened to secure sender connector and

188 M. Shin et al.

secure receiver connector in this section). These secure connectors encapsulate the intri‐
cacy of sending and receiving messages for their respective components. When the
secure sender connector receives a message from the sender component, it applies the
security services to the message. The secured message is packed by the secure sender
connector, which sends it to the secure receiver connector. With this message commu‐
nication pattern, a sender component cannot process and send the next message until it
receives a response from the receiver component. When the receiver connector receives
a secured and packed message, it unpacks the message and checks the security of the
message before sending it to the receiver component. Conversely, a response is sent
from the receiver component to the sender component via secure receiver and sender
connectors. If the response requires security services, the secure receiver and sender
connectors apply the security services required by the components. When the sender
component receives the response, it resumes processing and sends the next message to
the receiver component. A reusable secure connector encapsulates security service
components that implement security services, such as confidentiality, integrity, non-
repudiation, access control, and authentication.

5.1 Design of Secure Synchronous Communication with Reply Connector

Figures 5 and 6 depict the design of a reusable secure SMCWR connector. This secure
connector provides application components with the confidentiality security services

Fig. 5. Security sender coordinator and secure synchronous message communication with reply
sender connector

Reusable Secure Connectors for Secure Software Architecture 189

between the sender and receiver application components. This secure connector is
composed of a secure SMCWR sender connector ((a) in Fig. 5) and a secure SMCWR
receiver connector ((a) in Fig. 6). The secure SMCWR sender connector ((a) in Fig. 5)
is designed as a composite component in which the Security Sender Coordinator compo‐
nent integrates the reusable Encryption and Decryption security service components
(Fig. 2) for the confidentiality security with the reusable SMCWR Sender CPC (Fig. 4).
For integrating the components, the Security Sender Coordinator component ((b) in
Fig. 5) has a required REncryption port to communicate with a provided PEncryption
port of the Encryption security service component, which encrypts messages being sent
to the receiver component, and it also has a required RDecryption port to communicate
with a provided PDecryption port of the Decryption security service component, which
decrypts messages received from the receiver component. For synchronous message
communication with reply, the Security Sender Coordinator component ((b) in Fig. 5)
has a required RSyncMCWithReplySenderService port to communicate with a provided
PSyncMCWithReplySenderService port of the SMCWR Sender CPC. Also the Security
Sender Coordinator component has a provided PSecSyncSenderService port to commu‐
nicate with an application component, and the interface of PSecSyncSenderService is
depicted in (b) in Fig. 5. Similarly, the SMCWR Receiver Connector ((a) in Fig. 6) is
designed as a composite component that encapsulates the Security Receiver Coordinator
component, Encryption component, Decryption component, and SMCWR Receiver
CPC. The Security Receiver Coordinator component communicates with the SMCWR

Fig. 6. Security receiver coordinator and secure synchronous message communication with reply
receiver connector

190 M. Shin et al.

Receiver CPC, the Encryption and Decryption security service components, and an
application component through ports.

5.2 Example of Secure Synchronous Communication with Reply Connector

This section describes how a reusable secure synchronous message communication with
reply connector for confidentiality is applied to an E-Commerce application. A secure
SMCWR connector (Figs. 5 and 6) for a confidentiality security service is applied for
placing requisition in the business to business (B2B) electronic commerce application
(Fig. 7). For requisition order confidentiality, the secure SMCWR sender connector
contains a Security Sender Coordinator component, an Encryption security service
component and a Decryption security service component, whereas the secure SMCWR
receiver connector encapsulates a Security Receiver Coordinator component, a Decryp‐
tion security service component and an Encryption security service component (Fig. 7).
When a Customer Interface component places a requisition on a Requisition Server, the
Requisition Order is encrypted by the Encryption security service component in the
secure SMCWR sender connector (message Q2 in Fig. 7). The encrypted Requisition
Order is sent by the SMCWR Sender CPC to the SMCWR Receiver CPC (messages Q4
and Q5 in Fig. 7). The encrypted Requisition Order is decrypted by the Decryption
security component in the secure SMCWR receiver connector (message Q7 in Fig. 7).
Similarly, the Requisition Status is encrypted by the Encryption security service compo‐
nent in the secure SMCWR receiver connector (message Q10 in Fig. 7) and the encrypted
Requisition Status is sent by the SMCWR Receiver CPC to the SMCWR Sender CPC
(messages Q12 and Q13 in Fig. 7). The encrypted Requisition Status is decrypted by
the Decryption security service component in the secure SMCWR sender connector
(message Q15 in Fig. 7).

The same secure SMCWR connector for a confidentiality security service that is
used for placing requisition (Fig. 7) in the B2B electronic commerce application can be
applied to different applications. Figure 8 depicts a secure SMCWR connector for a
confidentiality security service, which is applied for validating a Personal Identification
Number (PIN) in the Automated Teller Machine (ATM) application. When an ATM
Client component requests validating a PIN, the Encryption security service component
in the secure SMCWR sender connector encrypts a PIN and a card number (message P2
in Fig. 8), which are decrypted by the Decryption security service component in the
secure SMCWR receiver connector (message P7 in Fig. 8) in order to check the confi‐
dentiality of a PIN and a card number. Similarly, the validation result is encrypted by
the Encryption security service component (message P10 in Fig. 8) and it is decrypted
by the Decryption security service component (message P15 in Fig. 8).

6 Validation of Reusable Secure Connectors

6.1 Implementation of Reusable Secure Connectors

The reusable secure connectors described in Sects. 4 and 5 have been implemented using
object-oriented programming in Java. The implementation environment used is as

Reusable Secure Connectors for Secure Software Architecture 191

follows: Eclipse 4.4.2 version on a Windows 7, 64 bit-based computer with 4 GB of
memory and 2.20 GHz quad core i7 processor. All secure message communications
between application components were implemented in a local machine.

The secure connector for a SMCWR CPC and confidentiality security service
components (Fig. 5 through Fig. 8) has been implemented for the validation. The
components handle the functionality of the application, while secure connectors address
both security and communication between components. Encryption and decryption
security service components for the confidentiality security service have been imple‐
mented using the Data Encryption Standard (DES) algorithm, which is a block cipher
that operates on plain text blocks of a given size (64-bits) and returns cipher text blocks
of the same size. It is based on a symmetric-key algorithm that uses a 56-bit key. DES
works by using the same key to encrypt and decrypt a message, so both the sender and
the receiver must know and use the same secret key. An encrypted message is passed
to the receiver component, the receiver connector of which decrypts the message using
the DES algorithm with the same secret key. Finally, the receiver component replies to
the sender with an encrypted result using the same algorithms described above.

Another validation has been done by designing and implementing a secure asynchro‐
nous message communication connector with both confidentiality and non-repudiation
security services. The secure asynchronous message communication connector has been
designed by replacing the CPC with an asynchronous message CPC, and by modifying the

Fig. 7. Applying secure synchronous message communication with reply connector with
confidentiality security service in the b2b electronic commerce application

192 M. Shin et al.

security coordinator component in accordance with reusing both the confidentiality and
non-repudiation security service components. The connector was implemented using two
algorithms for security services, Digital Signature Algorithm (DSA) to sign/verify the
message and DES to encrypt/decrypt the message. The non-repudiation security service
was implemented using the DSA, which was running on a public key infrastructure. In the
secure asynchronous message communication sender connector, the security service signs
the message with the sender’s private key using the DSA, which generates a digital signa‐
ture so as to prove that the message is authentic and unforgeable. Then this message was
packed and sent to the receiver by the asynchronous message communication sender CPC.
Similarly, the secure asynchronous message communication receiver connector was
implemented to unpack the signed message and check for the validity of the signature
using DSA with the sender’s public key.

6.2 Reusability of Secure Connectors

The implementation of the secure SMCWR connector (described in Sects. 4 and 5) was
applied to different applications - Place Requisition (Fig. 7) in the B2B electronic
commerce application and PIN Validation (Fig. 8) in the ATM application. The Place
Requisition and the PIN Validation require both a confidentiality security service and
SMCWR communication pattern. They were implemented using the reusable secure

Fig. 8. Applying secure synchronous connector with confidentiality security service in the
automated teller machine (ATM) application

Reusable Secure Connectors for Secure Software Architecture 193

SMCWR connector, which encapsulated the Encrypt and Decrypt security service
components (Fig. 2) for a confidential security service. Test cases for a place requisition
request and a PIN validation request were used to successfully validate the reusable
secure connector.

The implementation of the secure asynchronous message communication connector
was applied to different applications – Purchase Order in the B2C electronic commerce
application and Confirm Shipment in the B2B electronic commerce application. The
Purchase Order and the Confirm Shipment require both confidentiality and non-repu‐
diation security services as well as asynchronous message communication pattern. Both
were implemented using the reusable secure asynchronous message communication
connector, which encapsulated the Encrypt and Decrypt security service components
(Fig. 2) for a confidential security service, and the Non-repudiationGeneration and Non-
repudiationVerification security service components (Fig. 2) for a non-repudiation
security service. Test cases for a purchase order request and a confirm shipment request
were used to successfully validate the reusable connector.

Table 1 shows reusable secure connectors that were implemented for different appli‐
cations. The secure SMCWR connector was implemented and reused for the ATM, B2B,
and B2C applications, in particular to implement use cases such as PIN validation
(ATM), Browse Catalog and Place Requisition (B2B) and Pay Product (B2C). The
secure asynchronous message communication connector was implemented and reused
for Confirm Shipment (B2B) and Purchase Order (B2C) use cases.

Table 1. Reusable secure connectors for different applications

Reusable secure
connector

Communication pattern Security
services

Applications

Secure synchronous
message communica‐
tion with reply
connector

Synchronous Message
Communication with
Reply Communication
Pattern

Confidentiality PIN Validation
(ATM, Fig. 8),
Place Requisition
(B2B, Fig. 7),

Browse Catalog
(B2B), Pay
Product (B2C)

Secure asynchronous
message communica‐
tion Connector

Asynchronous Message
Communication
Pattern

Confidentiality,
Non-repudiation

Confirm Shipment
(B2B),

Purchase Order
(B2C)

7 Conclusions

A secure connector can be reused in different applications if it matches the security
requirement and communication pattern required between application components.
Reusable secure connectors have been designed as composite components using compo‐
nent concepts, which are designed by reusing the security service components providing
security services required by application components as well as the CPCs for transmis‐
sion of secure messages and responses between the components. Integration of security

194 M. Shin et al.

services and communication patterns within secure connectors is provided by security
coordinators. To validate this approach, the secure connectors were implemented for an
electronic commerce application and an ATM application.

The component-based approach described in this paper for designing reusable secure
connectors is different from the aspect-oriented secure connectors described in [2]. The
aspect-oriented approach [2] provides a mapping scheme from the objects constituting
secure connectors to separate security and communication aspects so that the aspects
can be implemented using aspect-oriented languages, such as AspectJ. In the aspect-
oriented approach, the security aspects are separated from the communication aspects
for the reusability of secure connectors. In contrast, the component-based approach
focuses on designing reusable secure connectors that are internally structured into sepa‐
rately reusable security and communication components, which can themselves be
assembled to form different reusable secure connectors. The component-based approach
provides a basis of the implementation of reusable secure connectors using object-
oriented programming languages, such as Java.

This paragraph describes future research for secure connectors. We will investigate
how the component-based approach can be integrated with the aspect-oriented approach
[2]. The component-based secure connectors might be mapped to the aspect-oriented
secure connectors by considering the relationships between the ports/interfaces of
components and the pointcuts/advices of aspects. In addition, security connectors can
be specialized to realize specific algorithms. For example, a secure connector containing
an access control security service can be implemented with role-based access control or
mandatory access control. To realize these algorithms, a secure connector could be
specialized to provide the appropriate security service.

Acknowledgement. Gomaa’s research is supported by the Air Force Office of Scientific
Research under grant number FA9550-16-1-0030.

References

1. Al-Azzani, S., Bahsoon, R.: SecArch: Architecture-level evaluation and testing for security.
In: Joint Working IEEE/IFIP Conference on Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), August 2012

2. Baker, C., Shin M.: Aspect-oriented secure connectors for implementation of secure software
architecture. In: International Conference on Software Engineering and Knowledge
Engineering (SEKE 2014), Vancouver, 1–3 July 2014

3. Banerjee, S., Mattmann, C.A., Medvidovic, N., Golubchik, L.: Leveraging architectural
models to inject trust into software systems. In: Proceedings of the ICSE 2005 Workshop on
Software Engineering for Secure Systems, St. Louis, Missouri, May 2005

4. Basin, D., Clavel, M., Egea, M.: A decade of model-driven security. In: 16th ACM
Symposium on Access Control Models and Technologies (SACMAT 2011), Innsbruck, 15–
17 June 2011

5. Deng, Y., Wang, J., Tsai, J.J.P., Beznosov, K.: An approach for modeling and analysis of
security system architectures. IEEE Trans. Knowl. Data Eng. 15(5), 1099–1119 (2003)

6. Fernandez, E.B.: Security Patterns in Practice. Wiley, New York (2013)

Reusable Secure Connectors for Secure Software Architecture 195

7. Gomaa, H.: Software Modeling and Design: UML, Use Cases, Patterns, and Software
Architectures. Cambridge University Press, Cambridge (2011)

8. Gomaa, H., Shin, M.E.: Modeling complex systems by separating application and security
concerns. In: 9th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS 2004), Italy, April 2004

9. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel, J.-M.,
Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425. Springer,
Heidelberg (2002)

10. Ren, J., Taylor, R., Dourish, P., Redmiles, D.: Towards an architectural treatment of software
security: A connector-centric approach. In: Proceedings of the Workshop on Software
Engineering for Secure Systems, St. Louis, Missouri, 15–16 May 2005

11. Schumacher, M., Fernandez, E.B., Hybertson, D., Buschmann, F., Sommerlad, P.: Security
Patterns. Wiley, New York (2006)

12. Shin, M.E., Gomaa, H.: Software modeling of evolution to a secure application: From
requirements model to software architecture. Sci. Comput. Program. 66(1), 60–70 (2007)

13. Shin, M.E., Malhotra, B., Gomaa, H., Kang, T.: Connectors for secure software architectures.
In: 24th International Conference on Software Engineering and Knowledge Engineering
(SEKE 2012), San Francisco, 1–3 July 2012

14. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. Wiley, Chichester (2010)

196 M. Shin et al.

Reuse-Based Software Engineering

Concept-Based Engineering of Situation-Specific
Migration Methods

Marvin Grieger1(B), Masud Fazal-Baqaie1,
Gregor Engels1, and Markus Klenke2

1 s-lab – Software Quality Lab, Paderborn University,
Zukunftsmeile 1, 33102 Paderborn, Germany

{grieger,mfazal-baqaie,engels}@s-lab.uni-paderborn.de
2 TEAM GmbH, Hermann-Löns-Straße 88, 33104 Paderborn, Germany

mke@team-pb.de

Abstract. Software migration methods enable to reuse legacy systems
by transferring them into new environments. Thereby, the method used
needs to fit to the project’s situation by considering conceptual differ-
ences between the source and target environment and automating parts
of the migration whenever suitable. Using an inappropriate migration
method may lead to a decreased software quality or increased effort. Var-
ious method engineering approaches have been proposed to support the
development of situation-specific migration methods. However, most do
not provide a sufficient degree of flexibility when developing a method or
fall short in guiding the endeavor. To address this problem, we introduce
a situational method engineering framework to guide the development
of model-driven migration methods by assembling predefined buildings
blocks. The development is centered around the identification of concepts
within a legacy system and the selection of suitable migration strategies.
We evaluate the framework by an industrial project in which we migrated
a legacy system from the domain of real estates to a new environment.

Keywords: Software migration · Model-driven · Concept modeling ·
Method engineering · Method base · Method fragments · Method
patterns

1 Introduction

If an existing software system does not realize all of its requirements, but is still
valuable to ongoing business, it has become legacy. This might be due to the fact
that the underlying technology restricts the fulfillment of new requirements that
arose over time. As redevelopment is risky and error-prone [19], a proven solution
is to migrate the existing system into a new environment. The migration is
performed by establishing a migration project during which a migration method

This work is supported by the Deutsche Forschungsgemeinschaft under grants EB
119/11-1 and EN 184/6-1.

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 199–214, 2016.
DOI: 10.1007/978-3-319-35122-3 14

200 M. Grieger et al.

is enacted. The method specifies the activities to perform, roles to involve, tools
to apply, and artifacts to generate in order to systematically transfer the legacy
system into the new environment.

Using a migration method that fits to the projects situation is essential, as
the method determines the efficiency and effectiveness of the overall migration
project. To demonstrate this relationship, consider the following two functional-
ities, i.e., concepts [13], realized by a legacy system. First, the system contains
Dialogs, i.e., graphical user interfaces. Second, some of these dialogs contain but-
tons that enable to perform a navigation flow to another dialog, i.e., a Dialog
Flow. The imperative source code shown on the left side of Fig. 1 realizes such
a dialog flow concept. It gets executed whenever a user presses an associated
button. The invocation of the platform-specific function call form triggers the
change to another dialog, i.e., the contract management dialog.

Fig. 1. Imperative realization of Dialog Flow in the source environment (left), declar-
ative realization in the target environment (right)

Based on this example, we describe two situations in which the realization
of the dialog flow in the target environment varies. In the first situation, we
envision to realize dialog flows by imperative source code, too. This means, it
is also required to call a platform specific function in the target environment.
Then, using a migration method M1 that specifies to perform an automatic
transformation on a syntactical level can be efficient and effective. Following
this migration strategy results in the desired realization and enables to migrate
large parts of the system automatically, as it only required to develop parsers,
code generators, and a mapping between the syntactic elements of the languages.

In the second situation, the realization in the target environment might be
significantly different. Such a case can be seen on the right side of Fig. 1. In
this situation, dialog flows should be realized by using the provided declara-
tive language. The language enables to reference dialogs (PropertyManagement,
ContractManagement) and to define flows between them (manageContract).
Then, using the same method M1 that prescribes to perform a transformation
on a syntactical level would preserve the imperative realization in the target
environment, possibly by emulating the platform specific function. As the func-
tionality would be preserved, but its realization would not be adapted to the
target environment, we consider the method to be ineffective [6].

Using a method M2 that prescribes to perform a migration on a higher
level of abstraction by extracting the underlying concept would increase the
effectiveness of an automatic transformation. Following this migration strategy
requires to extract contained dialogs and flows between them by interpreting the

Concept-Based Engineering of Situation-Specific Migration Methods 201

source code. But, this will influence the efficiency of the method as sophisticated
program comprehension techniques are required.

If an automatic transformation is either inefficient or ineffective, a method M3

that prescribes a guided manual migration can be a viable alternative. As illus-
trated by this example, developing a migration method for the situation at hand
is a critical but cumbersome task.

To support the development of situation-specific methods, various method
engineering approaches have been developed over time. However, we identified
that existing approaches mainly suffer from two shortcomings [7]: First, they do
not provide a sufficient degree of flexibility when developing a method. There-
fore, a fine-grained adaptation of the method for the situation at hand is often
not possible. Second, they fall short in providing sufficient guidance on how to
develop a method, making the endeavor error-prone. During industrial projects,
we observed situations in which no suitable migration method was available up
front and no approach was available to guide the development of a new method.
Eventually, this prevented the reuse of the legacy systems and led to a redevel-
opment instead.

Fig. 2. Overview of the method engineering framework for the development and enact-
ment of situation-specific migration methods

We address this problem by introducing a Situational Method Engineering
(SME) [11] framework that guides the development and enactment of situation-
specific migration methods. An overview of the method engineering process is
shown in Fig. 2. The process begins with the activity called Concept Modeling.
Thereby, the concepts that are present within the system to migrate are mod-
eled, e.g., the Dialog Flow concept. The focus on the conceptual level enables to
develop effective migration methods by choosing a suitable migration strategy
for each concept, e.g., the migration on a syntactical level. Such strategies are
encoded by Method Patterns stored in the Method Base. Intuitively, the patterns
represent construction guidelines for methods that follow the associated strategy.
Before choosing a pattern for a concept, we aim to assess their efficiency and
effectiveness during the Method Pattern Evaluation activity. This allows to make
informed decisions in the subsequent Migration Method Construction activity.

202 M. Grieger et al.

Thereby, a pattern is chosen for each concept and multiple patterns are inte-
grated. If the resulting specification of the constructed method indicates that
some parts of the migration are automated, then a corresponding tool chain is
realized during the Tool Implementation activity. Thereby, we focus on model-
driven tool chains. In the last activity called Migration, the developed method is
enacted and the legacy system is transferred to the new environment. Thereby,
developed tools get used and associated developers are included.

The contributions of this paper are threefold: We define a method engineering
framework (C1) that enables a concept-based engineering of situation-specific,
model-driven migration methods. We describe the content of the method base,
i.e., the building blocks for migration methods, and the first two activities of the
method engineering framework in detail (C2). In addition, we describe how we
evaluated the framework (C3) by migrating a monolithic legacy system from the
domain of real estates to a multilayered environment, in an industrial context.

The paper is structured as follows: In Sect. 2, we describe the first activity
of the method engineering process named Concept Modeling. We introduce the
content of the Method Base in Sect. 3. The second activity of the process named
Method Pattern Evaluation is described in Sect. 4. Details of the project in which
we evaluated the framework are described in Sect. 5. Related work is discussed
in Sect. 6, before we draw conclusions in Sect. 7.

In the remainder, we use the Dialog Flow functionality introduced in the
beginning of this section as a running example. It is an example of the industrial
project in which we migrated a system from Oracle Forms1 to Oracle ADF2.

2 Concept Modeling

The purpose of this activity is to decompose the legacy system into distinct
parts. We consider that this is essential for two reasons: First, it enables to
choose a different strategy per part, e.g., to vary the abstraction level of the
transformation as well as the degree of automation. Based on our observations
in practice, we conclude that this is essential for situation-specific migration
methods. Second, it enables to flexibly adapt the granularity of the method
specification, which is dependent on the amount of parts identified. The more
parts are used, the more coarse-granular the specification will become.

To decompose the legacy system, we use the established technique of con-
cept modeling, described in [13]. A concept model describes a software system
by a set of concepts, whereby different types of concepts on various levels of
abstraction are differentiated. In terms of types, a distinction between language
concepts and abstract concepts is made. Language concepts are syntactic entities
defined by the programming language used, while abstract concepts “represent
language-independent ideas of computation and problem solving methods” [13].
The abstract concepts can be further classified as architectural or programming

1 http://www.oracle.com/technetwork/developer-tools/forms/overview.
2 http://www.oracle.com/technetwork/developer-tools/jdev/overview/.

http://www.oracle.com/technetwork/developer-tools/forms/overview
http://www.oracle.com/technetwork/developer-tools/jdev/overview/

Concept-Based Engineering of Situation-Specific Migration Methods 203

concepts, whereby the latter ones include “general coding strategies, data struc-
tures and algorithms” [13]. The concepts can be related to each other by consists-
of relations, e.g., an abstract concept can consist of a language concept. In this
case, the consists-of relation represents the technology-specific realization.

Fig. 3. Concepts for the running example (left), classes of concepts involved in a soft-
ware migration scenario in general (right)

The concept model for the running example is shown on the left side of
Fig. 3, while the general schema of concept models is shown on the right side.
As illustrated, we classified the concepts into three classes. Abstract concepts
belonging to the class of Shared concepts can be realized in both environments,
like the Dialog Flow concept. The remaining two classes are associated with the
Legacy System and the Target System, respectively. The legacy system already
consists of a set of language concepts of the legacy environment, while the target
system will consist of a set of target environment-specific language concepts after
the migration. Related to the Dialog Flow concept, it can be seen that it currently
consists of imperative Function Call Expressions. In the target environment, it
will consist of the declarative language concept called Task Flows.

The purpose of the Concept Modeling activity is to define a concept model
that conforms to the schema shown. Defining this model is the task of a migra-
tion expert who has expertise about both environments. In addition, he can
perform interviews with experts of the legacy system or a coarse-grained analy-
sis to derive the sets of concepts. In the subsequent activities of our framework,
migration strategies for the concepts identified can be chosen. More specifically,
we choose strategies for each concept that belongs to the set of shared, abstract
concepts. This is due to the fact that choosing migration strategies for language
concepts has several drawbacks: First, the method specification would get very
fine-granular. As the method specification shall provide guidance for people, it
needs to be more coarse-granular. Second, adapting the legacy system to the
new environment requires to preserve the abstract concepts, but not necessarily
their technical realization, i.e., the language concepts.

204 M. Grieger et al.

3 Method Base

So far, we identified the abstract concepts of the legacy system as well as their
current and envisioned realization. The next activity of the method engineering
process aims to assess migration strategies for each concept (cf. Sect. 4). To do
this, we need to have knowledge of the migration strategies available. These are
stored in the method base of the framework and described in this section.

In general, a method base is a repository that contains reusable building
blocks of methods [11]. In our framework, we use two different types of building
blocks, namely method fragments and method patterns. While methods frag-
ments constitute atomic building blocks of migration methods, method patterns
represent different migration strategies by indicating which fragments to use.
Having knowledge of the different strategies is essential to perform an informed
decision on which one to use. Therefore, an excerpt of the contained fragments
and patterns is described subsequently.

3.1 Method Fragments

We defined method fragments based on principles hat have been developed in
the context of the Architecture-Driven Modernization (ADM) initiative [20].
ADM was initiated by the Object Management Group (OMG) and aims to
apply model-driven techniques on the domain of software migration. Thereby,
a legacy system is represented by various models, while model transformations
are used to realize conversions between them. Conceptually, ADM is related to
the Model-Driven Architecture (MDA) by using the same levels of abstraction.

Figure 4 visualizes the proposed method fragments stored in the method base.
In this figure, a fragment is either a single artifact or activity. For simplicity we
do omit other constituents of a method, i.e., tools and roles. As illustrated, the
fragments form an instance of the well-established horseshoe-model [12]. This
is due to the fact that migration methods are used to perform a reengineering
task. Therefore, each activity belongs to either one of the three reengineering
processes, namely reverse engineering, restructuring or forward engineering [4].

The method fragments that constitute artifacts can be distinguished based
on the abstraction layer they belong to, namely the System-, Platform-Specific-,
or Platform-Independent Layer.

On the System Layer, textual artifacts are located that represent source code.
This can either be the Legacy Source Code of the existing system, or the resulting
Migrated Source Code. Besides textual artifacts, external systems like Platforms
or Databases are also located there. If the legacy system uses their interfaces, it
can be necessary to capture them as a model.

On the Platform-Specific Layer, Platform-Specific Models (PSMs) are located
that represent the legacy system (L-PSM) and the migrated system (M-PSM)
respectively. These models describe the source code of the legacy system and its
environment by modeling the corresponding Abstract Syntax Graphs (ASGs).
They are platform-specific since the systems are represented by the language con-
cepts of the environments, e.g., by using a metamodel of a programming language

Concept-Based Engineering of Situation-Specific Migration Methods 205

Fig. 4. Excerpt of method fragments (activities and artifacts) stored in the method
base

like PL/SQL. From the ADM context, the Abstract Syntax Tree Metamodel
(ASTM) [15] can be extended to derive such a platform-specific metamodel.

On the Platform-Independent Layer, Platform-Independent Models (PIMs)
are located that act as an intermediate representation. We distinguish two kinds
of them, based on the abstraction level of the contained information.

The model on the lower level of abstraction (F-PIM) represents the function-
ality of the system to transform, i.e., it explicitly models the abstract concepts.
For example, using a metamodel of general programming language concepts, like
loops, conditions or function calls, a platform-independent ASG can be modeled.
However, the model is not limited to solely describing source code but any infor-
mation that represents the functionality of the system. Such functionality can
be implicitly described by the source code, examples being states of the system,
structures of user interfaces or dialog flows.

On the highest level of abstraction, we consider a model that represents
architectural structures of a software system (A-PIM), like existing components
or layers. Architectural structures usually aggregate entities that are represented
by a model on a lower level of abstraction, e.g., a component consists of classes
in an object-oriented system. From the ADM context the Knowledge Discovery
Metamodel (KDM) [16], which is separated into layers and packages, can be used
to represent both platform-independent models.

3.2 Method Patterns

The method fragments introduced are atomic building blocks of migration meth-
ods. As solely using the fragments would not provide sufficient guidance on how

206 M. Grieger et al.

to construct migration methods, the method base additionally contains a set
of method patterns [5]. These patterns encode different migration strategies by
indicating which method fragments to use when applying the strategy. In total,
we observed 14 patterns. Four of them are shown in Fig. 5.

Fig. 5. Excerpt of observed method patterns to preserve functionality

Migration strategies to transform functionality, i.e., to preserve it, need to
realize a consistent path from the Legacy Source Code to the Migrated Source
Code in the horseshoe model. Note that the preservation of functionality is not
ensured by realizing such a path, but it is an essential prerequisite. As shown
in Fig. 5, each pattern indicates activities to execute, artifacts to create, roles to
involve or tools to apply. Subsequently, we describe the strategies encoded by
the patterns shown and go into detail on the first two.

Language Migration. This pattern prescribes to migrate the functionality
by defining a mapping between language concepts of both environments. The
mapping will be realized by a direct transformation between the L-PSM and
M-PSM (cf. Fig. 4). While such a mapping can theoretically always be defined,
we observed instances in practice in which the pattern has been perceived as
not suitable. Based on our experience, this mainly depends on the complexity
of the model transformation between both PSMs, as this transformation needs
to address multiple concerns: First, it needs to interpret the L-PSM to identify
the language concepts related to the abstract concept to transform. The com-
plexity depends on the degree of program comprehension required. Second, it
can be necessary to restructure the explicit representation of the abstract con-
cept. Third, the language concepts of the legacy environment need to be mapped
to the language concepts of the target environment. Therefore, we consider the
pattern to be suitable if a concept is realized comparably in both environments,
i.e., whenever the degree of interpretation and restructuring required is low.
Also, the functionality needs to have a sufficient size. Only then, benefits gained
by automating the transformation will outweigh the effort spend on developing
required tools.

Related to the example, we consider that the pattern is not suitable for the
migration of the Dialog Flow concept. The transformation from the imperative

Concept-Based Engineering of Situation-Specific Migration Methods 207

to the declarative realization at least requires a comprehensive interpretation of
the source code. In addition, we aimed to restructure the application based on
the navigation flows identified.

Conceptual Migration. This pattern prescribes to migrate the functionality
by using an intermediate representation on a platform-independent layer. The
functionality, i.e., the abstract concept, is explicitly represented by an F-PIM
(cf. Fig. 4). Compared to the Language Migration pattern, the complexity of
performing a transformation between both PSMs is reduced by following the
separation of concerns principle: the Model Understanding activity specifically
addresses the first concern of the transformation, i.e., the interpretation of the
L-PSM. A Restructuring can be applied on the resulting model before it is
mapped into the target environment by enacting the Program Concretization
activity. Therefore, we consider the pattern to be suitable if a concept is realized
significantly different in both environments, requiring to reduce the complexity
of model transformations by separating different concerns. Also, the functionality
needs to have a sufficient size.

Related to the running example, we consider the pattern to be particularly
suitable for the Dialog Flow. Figure 6 shows an excerpt of the resulting L-PSM
and F-PIM when enacting a method that conforms to the pattern.

Fig. 6. Example of conceptual information represented in the F-PIM as a result of
performing the Model Understanding activity

In the lower part of the figure, an excerpt of the L-PSM is shown which
is a result of the Model Discovery activity. The instance of the model con-
forms to a Specific Abstract Syntax Tree Metamodel (SASTM) [15] for the
programming language PL/SQL that we developed. This language provides syn-
tactic elements to define certain functionalities declaratively, e.g., user inter-
faces are implemented by Window elements. The FunctionCallExpression cor-
responds to the one shown in Fig. 1. The control-flow relation is represented by

208 M. Grieger et al.

an IdentifierReference object, while the platform-specific function is mod-
eled by a FunctionDeclaration. The upper part of the figure shows an excerpt
of the F-PIM, which is a result of performing the Model Understanding activity.
The instance of the model conforms to the KDM specification of the OMG. It
explicitly represents user interfaces as Screen objects as well as the flow between
them. This is a result of interpreting the imperative source code to represent the
underlying concept.

Concept Recognition-Based Language Migration. This pattern prescribes
to migrate the functionality by using an intermediate representation on a
platform-independent layer to improve a dependent transformation on the
platform-specific layer. Parts of the functionality, i.e., the abstract concept, is
explicitly represented by an F-PIM (cf. Fig. 4). We consider the pattern to be
suitable if a concept is realized differently in both environments and when the
complexity of a direct transformation becomes low if parts of the functionality
are made explicit. Also, the functionality needs to have a sufficient size.

Manual Migration. This pattern prescribes to migrate the functionality by
having it manually transformed by software developers. The developers explore
the functionality of the legacy system and subsequently reimplement it in the
new environment. We consider the pattern to be suitable whenever automatic
transformations are not, e.g., if the size of the functionality is small or if the
transformations are still complex even when concerns are separated.

4 Method Pattern Evaluation

So far, we identified concepts within the legacy system and gained knowledge
about different migration strategies encoded as method patterns. The purpose
of the current activity is to assess the method patterns contained in the method
base for each concept identified. More specifically, the experts responsible for the
activity shall estimate the suitability of patterns as well as their efficiency and
effectiveness. This approach transfers the ideas defined in [21] to the domain of
software migration. In this work, architectural design decisions and their alter-
natives are modeled, before experts identify the advantages and disadvantages
of each alternative. This enables to perform informed and traceable decisions.

Indicators to estimate the suitability of a pattern have already been discussed
in the previous section. To estimate the effectiveness, we estimate the outcome
of the patterns, i.e., the resulting realizations in the target environment. In
theory, each pattern can be effective, i.e., can be used to create the desired
result. However, in practice we observed instances in which the application of
the pattern led to a deviation from an initially desired realization, even though
this negatively influenced the effectiveness. The main reason for a deviation is
the interdependency between the effectiveness and efficiency, i.e., the fact that
a decrease in the effectiveness can increase the efficiency.

Consider for example that we apply the Language Migration Pattern on the
Dialog Flow concept. As the model transformation between the PSMs would be

Concept-Based Engineering of Situation-Specific Migration Methods 209

complex, we can decide to realize the concept imperatively in the target envi-
ronment, too. This avoids an interpretation of the source code to identify dialog
flows, making the transformation less complex and therefore the pattern more
efficient. However, as it negatively influences the performance and maintainabil-
ity of the resulting system, it decreases the effectiveness of the pattern.

To estimate the efficiency of a pattern, we systematically evaluate the method
fragments indicated. We aim to identify influence factors on the efficiency that
originate based on the use of a method fragment. For example, the availability
of parsers, code generators and metamodels are critical influence factors for
all patterns that encode an automated transformation. Whenever any of these
artifacts are not available, effort needs to be spend to develop them.

The efficiency of the Conceptual Migration Pattern is particularly determined
by the effort required to realize the Model Understanding activity. This effort
depends on characteristics of the legacy system and the information that needs
to be extracted. For example, the amount of different implementation variants
of a concept influences the effort required to extract it, as each variant needs to
be considered. Also, some implementation variants require more effort to extract
than others, e.g., by requiring time-consuming analysis techniques. Related to
the Dialog Flow concept of the running example, we used the coding convention
that the same platform-specific function (call form) was used throughout the
system and a static value was bound as parameter to identify the target user
interface. However, if the parameter of the function call would not have been
bound statically but dynamically, e.g., by using a variable, then extracting the
flows would have required time-consuming dynamic analysis techniques.

The gathered knowledge is preserved in a situational context model, based
on which a decision for a pattern to use is performed. For the running example,
the contents of this model are shown in Fig. 7. It contains the identified abstract
concept, its realization in the legacy system as well as the envisioned realization
in the target system. In addition, it contains the related assessment of the method
patterns in terms of indicators for their suitability, efficiency and effectiveness.

The model forms the basis for the next activity, which is concerned with the
construction of the migration method. During this activity a method pattern
gets chosen for each concept and the resulting method parts get integrated into
a coherent method. Thereafter, tools are implemented based on the resulting
method specification, before the method gets enacted. Subsequently, we describe
the evaluation of the framework by applying it within an industrial project.

5 Industrial Project

We evaluated the framework by developing and enacting a migration method
to migrate a real-world legacy system from the domain of real estates in an
industrial context. The system consisted of about 5 KLOC written in the pro-
gramming language PL/SQL and 2 K declarative elements defined in the 4th
generation language (4GL) of the source environment. While the amount of
declarative elements does seem to be small, we want to point out that even one
declarative element can contain a lot of information, e.g., up to 172 properties.

210 M. Grieger et al.

Fig. 7. Excerpt of the situational context model, showing the gathered knowledge
related to the abstract concept Dialog Flow of the running example

In the legacy system, we determined 23 abstract concepts for which method
patterns had been evaluated and selected. For each resulting activity that is
a concretization of the Model Understanding activity, a pattern-based reverse
engineering technique was applied [14]. Thereby, implementation patterns on the
L-PSM were formalized by model transformations, using knowledge of the plat-
form and of coding conventions. The constructed migration method also com-
prised an Architectural Restructuring. We realized an evolutionary algorithm to
cluster the dialogs based on the extracted dialog flows [9]. Each cluster aggre-
gates dialogs that are related in terms of the underlying business process.

A component-based tool chain had been implemented, according to the devel-
oped method specification. In terms of technologies used, models and metamod-
els had been implemented in the Eclipse Modeling Framework (EMF). This
enabled to include several components that are based on EMF, like CDO3 as
model repository, Acceleo4 for code generation or Henshin5 for model transfor-
mations. In addition, we included metamodels defined by the ADM that had been
implemented by MoDisco [3]. Automated transformations between the models
as well as restructurings had been realized by 432 model transformations rules.

We aimed for an iterative migration of the legacy system, that is, an iterative
enactment of the specified method. To systematically improve the method during
each iteration, we defined the exchange of structured feedback between the par-
ticipants involved [8]. Applying the tool chain on the legacy source code resulted
in a model repository consisting of nearly 37 K entities. The L-PSM accounted

3 http://www.eclipse.org/cdo/.
4 http://www.eclipse.org/acceleo/.
5 http://www.eclipse.org/henshin/.

http://www.eclipse.org/cdo/
http://www.eclipse.org/acceleo/
http://www.eclipse.org/henshin/

Concept-Based Engineering of Situation-Specific Migration Methods 211

for the largest part (70 %), followed by the M-PSM (13 %) and the PIMs (8 %).
The remaining entities belonged to models that represented infrastructural infor-
mation, consisting of traceability links (7 %) or language extensions like stereo-
types (2 %). The discrepancy between the size of the L-PSM and the other models
had two main reasons. On the one hand, the source code of the legacy system
had not been optimized prior to the migration, in terms of dead code and soft-
ware clones. These issues had been addressed during the migration. On the other
hand, the use of languages that declaratively express concepts, often required
less language constructs (cf. Fig. 6). This could be observed in the F-PIM as well
as in the M-PSM.

Nearly one third of the overall effort for the migration was spent on construct-
ing the migration method and implementing required tools, while the enactment
of the method accounted for the rest. In total, 27 KLOC (about 50 % of the
code) had been generated by the tool chain.

5.1 Discussion

The method engineering framework was developed in close cooperation with
an industrial partner during a technology transfer project, supported by the
German Federal Ministry of Economic Affairs and Energy (BMWi). The project
had been motivated by a real-world problem, namely the platform migration
from Oracle Forms to Oracle ADF. Although Forms has a large installation base
and many companies consider migrating to ADF, the vendor does not provide
guidance on how to perform the migration.

Together with our industrial partner, we investigated the reasons for the lack
of a generic migration method. We concluded that this is due to the comprehen-
sive differences between the two platforms. These differences require migration
methods to perform abstractions on a conceptual level in order to be effective.
This is hard to generalize as it requires program comprehension. As a result, we
observed that companies started redeveloping their systems from scratch, due
to missing knowledge on how to develop a situation-specific migration method.

Our framework addresses this problem in two ways: on the one hand, the
contents of the method base are based on Model-Driven Engineering (MDE)
principles. By the project we were able to demonstrate that the proposed method
base supports the migration between environments that are significantly differ-
ent. The benefits of using model-driven principles have also been acknowledged
by the Oracle community6. On the other hand, the proposed method engineering
process provides useful guidance for the development of situation-specific migra-
tion methods. We conclude this, based on our experience with constructing the
method for the project. During intensive discussions with the migration expert
of our project partner, the use of concepts and patterns essentially enabled a
systematic development.

We want to point out that our framework is centered around expert knowl-
edge by design. This is highlighted by the fact that we do not predict, i.e.,

6 http://www.oracle.com/technetwork/de/community/forms/overview/.

http://www.oracle.com/technetwork/de/community/forms/overview/

212 M. Grieger et al.

quantify, the efficiency and effectiveness of method patterns in advance, but rely
on the estimations of experts. We consider that making a reliable prediction
is hard, requiring profound, technology-specific knowledge. Instead, we aim to
enable a systematic exploration of the context to make informed and traceable
decisions, possibly enabling quantification in subsequent projects.

6 Related Work

The related work can be separated into two areas. First, we classify method
engineering approaches based on their degree of situation-specific adaptivity [7].
Second, as migration methods are reengineering methods, we discuss frameworks
that support reengineering tasks.

Most approaches define fixed methods, which can be seen as an edge case as
they do not foresee situation-specific adaptation. Examples being the methods
described in [6,17], they conform to the Conceptual Migration pattern. In the
latter one, platform-independent user interface models, namely Rapid Applica-
tion Development (RAD) models, are extracted to migrate user interfaces. The
method described in [10] is also fixed but conforms to the Concept Recognition-
Based Language Migration pattern. In this work, the information to which archi-
tectural layer a code block belongs is represented by a PIM. After the PIM had
been restructured to conform to a specific architectural style, the M-PSM is
derived by transforming the L-PSM. This transformation is parameterized over
the information contained in the PIM.

For fixed methods, the assumed situational context is often described implic-
itly. If it is made explicit, it allows to define an approach to select the most
suitable one, which can be seen as a way to perform situation-specific adapta-
tion. An example for an approach of this category is the SOA migration frame-
work (SOA-MF) [18]. It enables to select a method based on knowledge that is
available or shall be generated. However, the resulting method is still fixed.

Approaches that specify adaptable methods provide a higher degree of flexi-
bility to perform situation-specific adaptation by configuring variation points or
by performing tailorings. Examples being REMICS [1] and ARTIST [2]. They
have been developed to guide migrations towards Service Oriented Architectures
(SOA) or cloud platforms. While configuration only enables adaptation to a
foreseen context, tailoring can enable to perform arbitrary changes. However,
in general, such approaches fall short in guiding the tailoring, i.e., a method
engineering process is often missing.

Reengineering frameworks can be used to define migration methods, too.
However, they have been developed with the focus on tool support, examples
being CORUM [12] and MoDisco [3]. The former work introduced the horseshoe
model with the intention to integrate existing tools. This is achieved by defining a
schema that includes different abstraction levels and a corresponding process on
how to instantiate it. However, the horseshoe is only used as a whole, adaptation
is not discussed. In addition, the method does not use models as primary artifacts
of the migration, while MoDisco does. However, MoDisco does not specify a

Concept-Based Engineering of Situation-Specific Migration Methods 213

migration method but provides a set of tools that can be freely assembled. In
general, reengineering frameworks are useful to implement tools but fall short in
providing guidance on how to systematically construct migration methods itself.

7 Conclusion and Future Work

We introduced a method engineering framework for the development of situation-
specific, model-driven migration methods. The framework consists of two main
constituents, namely a method engineering process and a method base.

We described the content of the method base which contains predefined build-
ing blocks of migration methods. On the one hand, it contains a set of atomic
building blocks called method fragments. On the other hand, it contains a set
of method patterns which encode migration strategies.

We introduced the method engineering process of the framework and
described the first two activities in detail. They are concerned with the identifi-
cation of the situational context of a migration project: First, concepts realized
within a legacy system are identified. Second, the efficiency and effectiveness of
the proposed method patterns, i.e., the migration strategies, are estimated by
experts involved. This is essential to perform informed and traceable decisions
when subsequently constructing a migration method.

We evaluated the framework by applying it in an industrial context. In par-
ticular, we constructed and enacted a migration method to transform a legacy
system from the domain of real estates.

As future work, we plan to develop tool support for the activities of the
proposed framework, e.g., to support the modeling of the situational context.
In addition, we aim to define quality criteria for the assessment of constructed
methods, e.g., to determine its completeness or correctness.

References

1. Barbier, F., Mohagheghi, P., Berre, A.J., et al.: Reuse and migration of legacy
systems to interoperable cloud services - the REMICS project. In: 4th Workshop
on Modeling, Design, and Analysis for the Service Cloud (2010)

2. Bergmayr, A., Bruneliere, H., Canovas Izquierdo, J.L., et al.: Migrating legacy
software to the cloud with ARTIST. In: 17th European Conference on Software
Maintenance and Reengineering, pp. 465–468 (2013)

3. Brunelière, H., Cabot, J., Dupé, G., et al.: MoDisco: a model driven reverse engi-
neering framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014)

4. Chikofsky, E.J., Cross, J.H.I.: Reverse engineering and design recovery: a taxonomy.
IEEE Softw. 7(1), 13–17 (1990)

5. Fazal-Baqaie, M., Luckey, M., Engels, G.: Assembly-based method engineering
with method patterns. In: Software Engineering 2013 Workshopband, pp. 435–444
(2013)

6. Fleurey, F., Breton, E., Baudry, B., Nicolas, A., Jézéquel, J.-M.: Model-driven
engineering for software migration in a large industrial context. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 482–497. Springer, Heidelberg (2007)

214 M. Grieger et al.

7. Grieger, M., Fazal-Baqaie, M.: Towards a framework for the modular construction
of situation-specific software transformation methods. In: 17th Workshop Software-
Reengineering and Evolution, pp. 41–42 (2015)

8. Grieger, M., Fazal-Baqaie, M., Klenke, M., Sauer, S.: A method to systemat-
ically improve the effectiveness and efficiency of the semi-automatic migration
of legacy systems. In: 16th Workshop Software-Reengineering and Evolution,
pp. 77–78 (2014)

9. Grieger, M., Sauer, S., Klenke, M.: Architectural restructuring by semi-automatic
clustering to facilitate migration towards a service-oriented architecture. In: 2nd
Workshop Model-Based and Model-Driven Software Modernization, pp. 44–45
(2014)

10. Heckel, R., Correia, R., Matos, C., et al.: Architectural transformations: from
legacy to three-tier and services. Software Evolution, pp. 139–170. Springer,
Heidelberg (2008)

11. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P.J., Rossi, M.: Situational Method
Engineering. Springer, Heidelberg (2014)

12. Kazman, R., Woods, S.G., Carrière, S.J.: Requirements for integrating software
architecture and reengineering models: CORUM II. In: 5th Working Conference
on Reverse Engineering, pp. 154–163 (1998)

13. Kozaczynski, W., Ning, J., Engberts, A.: Program concept recognition and trans-
formation. IEEE Trans. Software Eng. 18, 1065–1075 (1992)

14. Niere, J., Schäfer, W., Wadsack, J., Wendehals, L., Welsh, J.: Towards pattern-
based design recovery. In: 24th International Conference on Software Engineering,
pp. 338–348 (2002)

15. OMG: Architecture-Driven Modernization: Abstract Syntax Tree Metamodel
(ASTM) (2011). http://www.omg.org/spec/ASTM/1.0/

16. OMG: Architecture-Driven Modernization: Knowledge Discovery Meta-Model
(KDM) (2011). http://www.omg.org/spec/KDM/1.3

17. Ramón, Ó.S., Cuadrado, J.S., Molina, J.G.: Model-driven reverse engineering of
legacy graphical user interfaces. In: 25th International Conference on Automated
Software Engineering, pp. 147–150 (2010)

18. Razavian, M., Lago, P.: A systematic literature review on soa migration. J. Softw.
Evol. Process 27(5), 337–372 (2015)

19. Sneed, H.M.: Estimating the costs of a reengineering project. In: 12th Working
Conference on Reverse Engineering, pp. 111–119 (2005)

20. Ulrich, W.M., Newcomb, P.: Information Systems Transformation: Architecture-
Driven Modernization Case Studies. Morgan Kaufmann Publishers, San Francisco
(2010)

21. Zimmermann, O.: An architectural decision modeling framework for service-
oriented architecture design. Ph.D. thesis (2009)

http://www.omg.org/spec/ASTM/1.0/
http://www.omg.org/spec/KDM/1.3

Leveraging Feature Location to Extract
the Clone-and-Own Relationships of a Family

of Software Products

Manuel Ballarin, Raúl Lapeña, and Carlos Cetina(B)

SVIT Research Group, San Jorge University, Zaragoza, Spain
{mballarin,rlapena,ccetina}@usj.es

Abstract. Feature location is concerned with identifying software arti-
facts associated with a program functionality (features). This paper
presents a novel approach that combines feature location at the model
level with code comparison at the code level to extract Clone-and-Own
Relationships from a family of software products. The aim of our work
is to understand the different Clone-and-Own Relationships and to take
advantage of them in order to improve the way features are reused. We
have evaluated our work by applying our approach to two families of
software products of industrial dimensions. The code of one of the fam-
ilies is implemented manually by software engineers from the models
that specify the software, while the code of the other family is imple-
mented automatically by a code generation tool. The results show that
our approach is able to extract relationships between features such as
Reimplemented, Modificated, Adapted, Unaltered, and Ghost Features,
thus providing insight into understanding the Clone-and-Own relation-
ships of a family of software products. Furthermore, we suggest how to
use these relationships to improve the way features are reused.

Keywords: Feature location · Software variability extraction ·
Clone-and-own extraction

1 Introduction

Feature location is concerned with identifying software artifacts associated with a
program functionality (features). Feature location is one of the most important
and common activities performed by developers during software maintenance
and evolution [1]. Most of the approaches carry out feature location at the code
level [1–3], but in recent years feature location at the model level is gaining
momentum [4–6].

This work has been partially supported by the Ministry of Economy and Competi-
tiveness (MINECO), through the Spanish National R+D+i Plan and ERDF funds
under The project Model-Driven Variability Extraction for Software Product Lines
Adoption (TIN2015-64397-R).

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 215–230, 2016.
DOI: 10.1007/978-3-319-35122-3 15

216 M. Ballarin et al.

This paper presents the first approach that combines the recent techniques
on feature location at the model level with code comparison at the code level.
We combine both to extract Clone-and-Own Relationships from a family of
software products where the software has been specified through models, and
implemented either in a manual or in an automatic way. The extracted Clone-
and-Own Relationships reflect how features have been reused throughout the
development of the family of software products.

In order to combine both techniques, we used the information that the tech-
niques on feature location provide to develop an algorithm that isolates features
at the model level. Then, our approach uses that information to guide code
comparisons at the code level. This enables us to isolate features at the code
level and retrieve their source code. Finally, we make one-to-one comparisons of
the source code of a feature isolated in a product with the source codes of the
different isolations of the same feature in other products.

We have evaluated our approach in the industrial domain of Induction Hobs
(IH) over two families of IH products. On one of them, the firmware code of
the products was implemented manually from the models. On the other, the
firmware code of the products was implemented in an automatic way.

The results show that it has been possible to identify several different Clone-
and-Own Relationships between features such as Reimplemented, Modified,
Adapted, Unaltered, and Ghost Features. These relationships are then used to
suggest improvements on how features are reused. In the case of automatic imple-
mentation, extracted relationships are used to analyze whether it is necessary to
carry out changes over the model-to-code transformation. In the case of manual
implementation, extracted relationships are used to detect reuse impediments, to
analyze cost-benefit and to detect opportunities to improve the reuse maturity.

The rest of the paper is structured as follows: Sect. 2 presents our approach
and shows how to apply our approach to a simple example. Section 3 shows the
evaluation of our work. Section 4 comprehends the work related to this paper.
Section 5 summarizes the conclusions of our work.

2 Clone-and-Own Extraction Approach

The aim of our approach is to extract Clone-and-Own Relationships that enable
us to understand and improve how features are reused among the products. The
input of our approach is a family of software products where the software has

Fig. 1. Stages of the approach

Leveraging Feature Location to Extract the Clone-and-Own Relationships 217

been specified through models. The models are translated into code by humans
or in an automatic way using a model-to-text transformation [7]. Our Clone-
and-Own Extraction approach builds up on feature location at the model level
and code comparisons. The main stages of our approach are: Model-based fea-
ture location, Feature Isolation, Code Comparison and Similarity Comparison.
Figure 1 depicts the inputs and outputs of these stages, which are described in
the following subsections.

We use a running example in order to illustrate our approach. The Linked
List Example is based on a family of software products where the variability is
not formalized. The products have associated models, from which the code of the
products has been manually implemented by a human (see left side of Fig. 2).
The products are lists, which can be singly or doubly linked lists. Each list has
a different combination of added functionality: sorting functionality (using the
bubble method), functionality that enables calculating the number of elements
of the list, and functionality that prints the elements of the list.

2.1 Model-Based Feature Location

The first stage of our approach extracts the features from the products at the
model level by using already existing techniques that identify features given a
set of models. Feature location consists of identifying a fragment in the source
code or software model that corresponds to a specific functionality. It is one of
the most frequent maintenance activities undertaken by developers because it is
a part of the incremental change process [1].

There are several research efforts in existing literature towards feature loca-
tion from a set of models [5,6,8]. For this stage we have adopted Conceptual-
ized Model Patterns to feature location (hereinafter CMP-FL) [9], which identify
model patterns by human-in-the-loop (domain experts and application engineers
become part of the decision-making process) and conceptualize the extracted
patterns as reusable model fragments. We have adopted CMP-FL because the
authors show CMP-FL improves the results obtained with previous approaches,
providing features that are more recognizable by the engineers.

In CMP-FL, the elements that differ between the product models are
extracted as alternatives for a feature. The elements that do not have a coun-
terpart in the rest of the models are extracted as optional features. As a result,
the models will be divided into reusable model fragments. Each of the reusable
fragments will correspond with one of the features of the family of software prod-
ucts. The output of our first stage is a list for each product, that contains the
features of the product which have been located at the model level by CMP-FL.

The Linked List Example (see 1 Model-based Feature Location of Fig. 2)
tags the products with the located features. In the figure, the products, their
features, and the names associated with the features are shown. In this example,
five features are identified in the product family.

Current techniques used to locate features at the model level [5,6,8,9] do not
provide meaningful names, only synthetic names (F1, F2, etc.). We have decided
to add more meaningful names to the features in order to improve understanding

218 M. Ballarin et al.

Fig. 2. Clone-and-own relationships extraction applied to the linked list example

Leveraging Feature Location to Extract the Clone-and-Own Relationships 219

of the example: F1, (Forward Linking), F2 (Sorting), F3 (Printing), F4 (Back-
wards Linking) and F5 (Measuring).

In the first product (PA), features F1, F2 and F3 have been detected. In the
second product (PB), features F1, F2, and F4 have been detected. Finally, in
the third product (PC), features F1, F4, and F5 have been detected.

Notice that some of the features are present in more than one product. For
instance, F2 is present in both product PA and product PB. In order to avoid
ambiguity in feature names through this example, a feature FN that belongs to
a product PX will be referred to as FN(PX).

2.2 Feature Isolation

This stage performs subtractions between the different products at the model
level to identify the features that can be potentially isolated in code. We devel-
oped an algorithm that performs the second stage. The algorithm’s input is a
list of the existing products and their features. The result of the algorithm is
the list of the features that can be isolated at the model level, accompanied by
one operation per feature which expresses the code subtractions that need to
be carried out between products in order to isolate the mentioned feature. The
implementation of the algorithm is described as follows:

– The algorithm creates an empty list to store the features that it is able to
isolate.

– For each feature (FN) of every product (PX), the algorithm calculates the
Complementary Feature Set (CFS). A CFS is a product, combination of prod-
ucts, or combination between products plus already isolated features which
contains all the features in PX except for FN. A CFS is valid even if it con-
tains features that are not present in PX. Subtracting the found CFS to PX
results in isolating FN. The isolation operation becomes FN(PX) = PX - CFS
(e.g.: F1(P7) = P7 - P6 - F3(P4)).

– The isolated features and their isolation operations are added to the list. The
addition of new features to the list of isolated features enables for new CFS,
hence new feature isolations, so we make iterations while new isolated features
are added to the list.

The first iteration of the algorithm will include into the list those features
that can be isolated by a CFS composed only of a product or combination of
products. Isolation operations found in the first iteration constitute the base
cases of our algorithm. Following iterations will use combinations between prod-
ucts plus already isolated features to calculate the CFS. Isolation operations
found this way constitute the recursive cases of our algorithm.

The Linked List Example (see 2 Feature Isolation at model level of Fig. 2)
shows the application of our feature isolation algorithm as follows.

– First Iteration: For all the features in PA, the feature isolation algorithm
searches for the CFS that can isolate them. It is not possible to calculate the
CFS for F1 nor F2, but it is possible to calculate it for F3. Subtracting PB

220 M. Ballarin et al.

and PC from PA, we eliminate from PA the code from F1, F2, F4, and F5.
Eliminating F1 and F2 from PA leaves us with F3. We have found the first
isolation operation. Notice that it would be enough to subtract PB from PA to
achieve the same result, but we follow the criteria of eliminating the maximum
possible CFS expression to get a purer result.
The feature isolation algorithm performs the same search in the rest of the
products. In PB, it is possible to isolate its F2 by eliminating F1 and F4 from
PC, and it is also possible to isolate its F4 by disposing of F1 and F2 via PA.
In PC, we can isolate F5 in a similar fashion as F3 from PA.
At this point, the feature isolation algorithm has gone through all the features
of the product family, so the iteration ends. In this iteration, the feature iso-
lation algorithm has calculated the isolation operations for F3(PA), F2(PB),
F4(PB), and F5(PC). As there are still features that lack an isolation operation
and we have unlocked new isolation operations, the feature isolation algorithm
makes a new iteration.

– Second Iteration: For all the features in PA that lack an isolation operation,
the feature isolation algorithm searches for the CFS that can isolate them. In
order to isolate F1, we need to eliminate both F2 and F3. In the first iteration,
our algorithm located F2(PB) and F3(PA). They conform the CFS for F1(PA).
We can isolate F2(PA) by subtracting PC and F3(PA).
We can repeat the same steps in both PB and PC. By combining the different
products and the features that we isolated in the first iteration, it is possible to
get all the isolation operations for the features that lacked them in the previous
step (F1(PB), F1(PC), F4(PC)).
The second iteration has calculated the isolation operations for F1(PA),
F2(PA), F1(PB), F1(PC), and F4(PC). At the end of the second iteration,
the feature isolation algorithm has isolated all the features, so no more itera-
tions are needed.

As the output of the Stage 2 of the Linked List Example, three tables are
returned. Each one of these tables contains the product name, the features that
belong to it, and the isolation operations found by the feature isolation algorithm.

2.3 Code Comparison

The third stage runs the code comparisons specified by the operations in order
to isolate the features in the source code of the products. In a family of software
products, the newest products are implemented by carrying out increments or
decrements of the previous products in the family. Version control software has
become really popular, and there is a wide amount of tool support that calculates
differences between two source codes available. Apart from this, code comparison
techniques have been used successfully for large scale systems [10,11], proving
the computational cost of the operation to be affordable should we scale up our
approach. For all these reasons, we use textual code comparison techniques (diff)
to execute the code comparisons dictated by the operations given by the second
step of our approach.

Leveraging Feature Location to Extract the Clone-and-Own Relationships 221

The Linked List Example (see 3 Code Comparison of Fig. 2) shows how fea-
tures are isolated. In our approach, all the features isolated at the model level
in the second stage are isolated at the code level in the third stage. Due to
space restrictions, this example isolates only two features: F2(PB), and F2(PA).
According to the operations, F2(PB) can be automatically isolated by subtract-
ing the code belonging to PC from PB. In this example, subtracting the code
results in eliminating from PB the inner class Node and the variable declaration
section (PB, lines 1 to 8). Therefore, the approach isolates the Sorting Feature
from PB (PB, lines 9 to 30).

In order to isolate F2(PA), we must first isolate F3(PA). We subtract both
PB and PC to PA, and after eliminating the corresponding code, the approach
isolates the Printing Feature (PA, declaration at line 6). We can now isolate
F2(PA) by removing from PA the code that is common between PA and PC,
and disposing of the F3(PA) code that we just isolated. By doing this, the
approach isolates the Sorting Feature from PA (PA, lines 8 to 22). The third
stage concludes when the features are isolated in code. The output of the third
stage is, for each FN(PX), the code that isolates the feature.

2.4 Similarity Comparison

In this stage, the isolated pieces of code that implement the features that belong
to more than one product are compared one to one in order to calculate the
similarity between them. In order to calculate the similarity between the same
feature in two different products, our approach performs a diff between them.

Diff returns the equal parts and the differences in the code of the two features.
We discard the code differences and retain the parts of the code that are equal
between them. Similarity between features is then measured in terms of the
Total Number of Statements (TNOS) [1], which is a size metric for measuring
code size. TNOS counts the number of statements (e.g. for, if, return, switch,
while) in each method for assessing the entire code size. This size metric is not
dependent on the coding style of programmers, unlike the Lines Of Code metric.

The Linked List Example (see 4 Similarity Comparison of Fig. 2) compares
F2(PB) and F2(PA). From the lines of code present in the figure, it can be
appreciated that the two order methods, while very similar, do not have the
exact same code (notice the marked changes from line 20 to line 28 on PB). It is
reasonable, as PA implements a singly linked list and PB implements a doubly
linked list. Even if the sorting technique is the same (bubble sort), it cannot be
implemented the same way with a different number of links between elements. In
fact, F2(PA) has 6 statements and F2(PB) has 7 statements. Considering that
4 of the 7 statements are equal and represent the same conditions in the code,
the similarity percentage between F2(PA) and F2(PB) is around the 57 %. From
this example, we can conclude that some sort of modification has occurred to
the feature since it was first implemented on PA until its appearance on PB.

Summarizing, our approach is applied to a family of software products where
variability is not formalized. The first stage identifies the features from the prod-
ucts at a model level, tagging the products with them. Then, in the second stage,

222 M. Ballarin et al.

the operations to isolate the features are calculated. After that, in the third stage,
the approach executes the code comparisons dictated by the operations. Finally,
in the fourth stage, the approach quantifies the degree of similarity between the
features that appear in more than one product. Our approach returns, for the
different features in the family, the feature isolation at the code level and the
degree of similarity between the features that appear in more than one product.

3 Evaluation

We have evaluated the presented ideas with our industrial partner (BSH group).
Their induction division has been producing induction hobs (under the brands
Bosch and Siemens among others) over the last 15 years.

3.1 The Induction Hobs Domain

The newest Induction Hobs (IHs) include full cooking surfaces, where dynamic
heating areas are automatically calculated and activated or deactivated depend-
ing on the shape, size, and position of the cookware placed on top. In addition,
there has been an increase in the type of feedback provided to the user while
cooking, such as the exact temperature of the cookware, the temperature of the
food being cooked, or even real-time measurements of the actual consumption
of the IH. All of these changes are being possible at the cost of increasing the
software complexity.

Fig. 3. IHDSL metamodel, syntax and model

The Domain Specific Language used by our industrial partner to specify the
Induction Hobs (IHDSL) is composed of 46 meta-classes, 74 references among
them and more than 180 properties. However, in order to gain legibility and due
to intellectual property rights concerns, in this paper we use a simplified subset
of the IHDSL (see Fig. 3). The main concepts of IHDSL are: Inverter, Induction
Hob, Inductor, Provider Channel, Power Manager and Consumer Channel. The
firmware code of each IH is implemented in ANSI C and includes about four
hundred thousand TNOS.

In order to gain legibility and due to intellectual property rights concerns,
in the following lines, we explain a subset of IHDSL to present the IH domain,
although in the evaluation, the complete models have been used. The main
concepts of IHDSL are: Inverter, Induction Hob, Inductor, Provider Channel,
Power Manager and Consumer Channel.

Leveraging Feature Location to Extract the Clone-and-Own Relationships 223

Inverters are in charge of converting the input electric supply to match the
specific requirements of the Induction Hob. Specifically, the amplitude and fre-
quency of the electric supply needs to be precisely modulated in order to improve
the efficiency of the IH and to avoid resonance. Then, the energy is transferred
to the hotplates through the channels. There can be several alternative channels,
which enable different heating strategies depending on the cookware placed on
top of the IH at run-time. The path followed by the energy through the channels
is controlled by the power manager.

Inductors are the elements where the energy is transformed into an electro-
magnetic field. Inductors are composed of a conductor that is usually wound
into a coil. However, inductors vary in their shape and size, resulting in different
power supply needs in order to achieve performance peaks. Inductors can be
organized into groups in order to heat larger cookware while sharing the user
interface controllers. Each group of inductors can have different particularities;
for instance, some of them can be divided into independent zones while others
can grow in size adapting to the size of the cookware being placed on top of
them. Some of the groups of inductors are made at design time, while others can
form at run-time (depending on the cookware placed on top).

3.2 Extracted Clone-and-Own Relationships

We have applied our Clone-and-Own approach to two families of products of our
industrial partner. The first family of products was specified using IHDSL. After
the specification, the IH’s firmware was manually implemented (MI) in ANSI C
by software engineers. This family of products contains a total of 46 products.
Since this family of products uses IHDSL and manual implementation we refer
to this family as IHDSL+MI. The second family of products was also specified
using IHDSL. After the specification, the IH’s firmware was automatically imple-
mented (AI) using m2t (model-to-text) transformation. This transformation was
produced by Acceleo [12]. This family is composed by a total of 66 products.
Since this family of products uses IHDSL and automatic implementation we refer
to this family as IHDSL+AI.

The IHDSL+MI family has a total of 81 different features. On the other side,
the IHDSL+AI family contains a total of 47 features. After applying our Clone-
and-Own Relationship extraction approach to both families of products we were
able to isolate a total of 49 features belonging to IHDSL+MI and a total of 34
features belonging to IHDSL+AI. As a result, we detected five types of Clone-
and-Own Relationships. Given the extracted code of FN(PX) and FN(PY), being
product (PX) previous in time to product (PY), and being the same feature (FN)
present in both products, we have identified the following feature relationships
(see top part of Fig. 4).

– Reimplemented Feature, FN(PX) and FN(PY) do not share code between
them. The implementations of these features are entirely different.

– Modified Feature, it exists shared code between both features. The part
of code from FN(PX) which is present in FN(PY) is referred to as Legacy.

224 M. Ballarin et al.

Fig. 4. Clone-and-own relationships extraction applied to both family of products

The differences between FN(PX) and the Legacy are referred to as Negative
modifications. The differences between FN(PY) and the Legacy are referred to
as Positive modifications.

– Adapted Feature, FN(PY) includes all code from FN(PX), and additional
code which is not present in FN(PX). The part of FN(PX) is referred to as
Legacy. Adapter represents the difference between FN(PY) and the Legacy.

– Unaltered Feature, the code of FN(PX) and FN(PY) is strictly the same.
– Ghost Feature, FN(PY) is specified at the model level but the extraction

approach reveals that the code is missing.

We have the intuition that another type of relationship exists, Non-
documented Features. Non-documented Features are those features that are
not present at the model level, but they are at the code level. Software engi-
neers reported that sometimes they implemented new code in later stages of
the development without updating the corresponding IHDSL models. However,
the full set of features of neither software family was completely isolated. The
unclassified code may belong to either Non-isolated Features or Non-documented
Features. Therefore, we have not evidence that this feature genuinely exists in
IHDSL+MI or IHDSL+AI.

3.3 Clone-and-Own Relationships for Automatic Implementation

In the IHDSL+AI family our approach extracted the following relationships: 0 %
Reimplemented, 8 % Modified, 11 % Adapted, 81 % Unaltered and 0 % Ghost.
The presence of Modified and Adapted Features reveals that the implementation
code of those features was refined (Modified Feature) or extended (Adapted
Feature) by hand after the execution of the m2t transformation. Each feature
classified as Unaltered Feature exhibits the same implementation code across all
the members of the family that implement that particular feature. Unaltered
Features suggest that the code of those features was not altered by software
engineers after the execution of the m2t transformation.

Leveraging Feature Location to Extract the Clone-and-Own Relationships 225

In IHDSL+AI, the presence of Unaltered Features (81 %) surpasses the pres-
ence of both Modified and Adapted Features (19 %). This indicates that the
m2t transformation actually saves implementation time to software engineers.
Furthermore, the size of Positive modifications is smaller than the size of the
Legacy feature on average (Modified Features) and the size of the Adapter is
smaller than the Legacy feature on average (Adapted Features). These evidence
contributes to concluding that the m2t transformation requires little human
intervention.

We suggest that the Modified Feature and Adapted Feature relationships are
useful to analyze whether it is necessary to carry out changes over the model-
to-code transformation. If it is determined that it is necessary to update it, then
the information provided by the occurrences of these relationships can be used
to refine the metamodel and the code transformation rules.

In the IHDSL+AI family, modified features enabled to adjust the transfor-
mation rules. Negative parts of modified features reflected eliminated code intro-
duced by obsolete transformation rules, and positive parts of modified features
reflected manual code additions. The information provided by analyzing both
the negative and positive parts enabled the company to update transformation
rules with recurring changes that were predicted to keep occurring in the future.

3.4 Clone-and-Own Relationships for Manual Implementation

In the IHDSL+MI family our approach extracted the following relationships: 3 %
Reimplemented, 52 % Modified, 23 % Adapted, 16 % Unaltered and 6 % Ghost.
The presence of Modified and Adapted Features reveals that the implementa-
tion code was reused from another product as source and then refined to meet
the particularities of the target product. F2(PA) and F2(PB) of the Linked
List example (see Fig. 2) are instances of the Modified Feature relationship. On
one hand, both F2(PA) and F2(PB) implement the same functionality (sort-
ing the lists using the bubble method). On the other hand the implementation
details of F2(PA) are different than those of F2(PB) to accommodate a feature
(F4 = Backwards Linking) of PB which is not a feature of PA.

Unaltered Features were copied from previous products and used directly
in new products. It turns out, Unaltered Features are reused among different
products without requiring refinements on part of the engineer to accommodate
the rest of the features of the product.

In IHDSL+MI, Unaltered, Adapted and Modified Features (91 %) reveal
reuse opportunities identified by the software engineers. The presence of Reim-
plemented Features (3 %) indicates that software engineers did not realize former
implementations of the feature. The implementation of these features was done
from scratch, revealing missed reuse opportunities. Finally 6 % of isolated fea-
tures were cataloged as Ghost Features. Ghost Features reveal inconsistencies
between the model specification and the implemented code. The model specifi-
cation should be updated to keep software engineers from failing to locate the
code of those features.

226 M. Ballarin et al.

We suggest that Reimplemented Feature relationships are useful to detect
feature reuse impediments. In IHDSL+MI, for instance, they were useful to
detect that a developer had left the company without performing knowledge
transfer, and that the new developer in his place eventually reimplemented some
code from scratch. Apart from detecting the situation, now we have awareness
of both implementations, therefore widening the reuse possibilities.

We propose that Modified Feature and Adapted Feature relationships are
useful for analyzing cost-benefit payoffs of reusing code fragments against reim-
plementing them. In IHDSL+MI, for instance, 12 cases were found where it had
become more costly to create adapters that allowed reusing the legacy part of a
feature than to reimplement the feature as needed.

We propound that Unaltered Feature relationships are useful to detect the
opportunities to improve the reuse maturity of a family of software products. In
IHDSL+MI, for instance, they were useful to build an implementation framework
that has been used in further developments.

3.5 Limitations

There are some limitations that must be acknowledged. To begin with, there
are companies that implement the code directly from the software requirements.
This leads to software product families implemented without models. In such an
scenario, our approach is not applicable. Developing and using techniques that
permit to carry out feature location at the requisites level would widen the scope
of our approach.

Second, depending on the configuration of the products in the software fam-
ily, it is possible for our feature isolation algorithm to not find the isolation
operations for every feature in every product. In the future, our approach might
suggest the addition of products to the family with specific feature configurations
that would allow the algorithm to isolate non-isolated features.

In addition, determining the kind of Clone-and-Own Relationships between
products entails some degree of uncertainty. Specifically in the cases of reim-
plementation and feature modification, the current criteria is very rigid. This
results in reimplemented features that, due to having low amounts of common
code, are incorrectly classified as modified ones.

Finally, inspecting the isolated features with domain experts, we detected
that in some cases, not all the lines of code provided in an isolated piece of code
belong to the isolated feature and, in some other cases, some lines that do belong
to the isolated feature are missing. Nevertheless, we have confirmed that the iso-
lated code is a good heuristic for feature location, and domain experts have
validated that the behavior detected by the described Clone-and-Own Relation-
ships is the right one at the code level.

4 Related Work

Approaches related to the one presented in this paper can be distinguished into
two areas: feature location at the model level and feature location at the code

Leveraging Feature Location to Extract the Clone-and-Own Relationships 227

level. First we introduce the state-of-the-art of feature location at the code level
and secondly, the state-of-the-art of feature location at the model level.

4.1 Feature Location at the Code Level

Some works apply type systems to extract relevant information when construct-
ing the variability model. For instance, Typechef [13] provides an infrastructure
to analyze the variability with the #ifdef directives. In [14] the authors extend
Typechef in order to support the variability at run-time.

Text similarity techniques are based on mathematical methods to determine
the similarity in a collection of texts. As an example, Latent Semantic Indexing
(LSI) [15] takes into account the number of occurrences in a set of words in large
texts. LSI can be used to obtain similarity measurement metrics between features
and the code used to implement them. These similarity can be represented by
Vector Space Models (VSM). On some occasions text similarity techniques are
combined with dynamic analysis [16].

Other works focus on applying reverse engineering to the source code to
obtain the variability model [3,17]. In [3] the authors use propositional logic
which describes the dependencies between features. In [18] Typechef and propo-
sitional logic are used to extract conditions among a collection of features.

Several approaches [19,20] apply Program Dependence Analysis (PDA) to
locate features. PDA can be represented by Program Dependence Graphs (PDG)
where the nodes represent functions or global variables and the edges represent
function calls or accesses to global variables.

Trace analysis is a run-time technique used to define a variability model
through relevant information. When the technique is executed, it produces traces
indicating which parts of code have been executed. Some approaches [21] are
based on traces analysis. There are also works that combine dynamic analysis
and static analysis as is the case of LSI [22], PDA [21] or VSM [2].

Compared to the above works, our approach introduces software models as
a new source of knowledge for feature location at the code level. Furthermore,
our approach not only isolates the implemented code of the features but it also
extracts Clone-and-Own Relationships among these features. These relationships
are used to better understand how features are reused, and to suggest improve-
ments on the way they are reused.

4.2 Feature Location at the Model Level

In [5], the authors propose a framework for mining legacy product lines
and automating their refactoring to contemporary feature-oriented SPLE
approaches. They compare the elements of the input with each other, matching
those whose similarity is above a certain threshold and merging them together.
In [8], the authors propose a generic approach to automatically compare prod-
ucts and extract the variability among them in terms of Common Variability
Language (CVL) [23,24]. In [9] an approach to automate the formalization of

228 M. Ballarin et al.

variability in a given family of models is presented. The model commonalities
and differences are specified as placements over a base model and replacements in
a model library. The resulting Software Product Line (SPL) enables the deriva-
tion of new product models by reusing the extracted model fragments. In [6] the
authors propose another approach based on comparisons to extract the variabil-
ity of any kind of asset. These works focus on formalizing the variability in a
SPL. Finally, [4] identifies model patterns in a set of models and conceptualizes
the extracted patterns as reusable model fragments.

The above approaches limit their application to finding fragments of a model
which represent features in order to formalize the variability in a SPL. In con-
trast, our approach combines feature location at the model level with code com-
parison in order to isolate the implemented code of the features. Furthermore, our
work identifies several different Clone-and-Own Relationships among the located
features. These relationships enable us to make improvement suggestions based
on the knowledge gathered on the way features are reused.

5 Conclusions

To keep pace with the increasing demand for custom-tailored software systems,
companies often apply the clone-and-own practice, through which a new product
in a software product family is built by copying and adapting code from other
products in the family.

In this work, we show our approach, which leverages feature location to
identify and extract the Clone-and-Own Relationships from a family of software
products. We have proposed an approach that extracts the features at the model
level and, with that information, calculates isolation operations that enable to
isolate the features at the code level. This work allows us to isolate the features
of the different products in the code. With the achieved code isolation, features
are compared at the code level in order to define the relationships between them.

We have evaluated the approach with our industrial partner, extracting the
Clone-and-Own Relationships presented in two product families of induction hob
models. One of the families had its code implemented manually and the other
one, in an automatic way.

A total of five different relationships have been extracted. These relationships
entitle Reimplemented, Modified, Adapted, Unaltered, and Ghost Features. The
results of our approach provide insight into understanding the Clone-and-Own
relationships of the features in a family of software products. These relationships
are then used to suggest improvements on how features are reused.

In the case of families where automatic code generation is applied, the Mod-
ified and Adapted Features are used to analyze whether it is necessary to carry
out changes over the model-to-code transformation. If it is determined that it
is necessary to improve it, then the information provided by the occurrences of
these relationships can be used to refine the metamodel and the code transfor-
mation rules.

In the case of families where the code is manually implemented, Reimple-
mented Features are used to detect feature reuse impediments; Modified and

Leveraging Feature Location to Extract the Clone-and-Own Relationships 229

Adapted Features are used for analyzing cost-benefit payoffs of reusing code frag-
ments against reimplementing them; and Unaltered Features are used to detect
opportunities to improve the reuse maturity of a family of software products.

References

1. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. J. Softw. Evol. Proc. 25, 53–95 (2013). doi:10.1002/smr.
567

2. Eaddy, M., Aho, A.V., Antoniol, G., Guéhéneuc, Y.G.: CERBERUS: tracing
requirements to source code using information retrieval, dynamic analysis, and
program analysis. In: Krikhaar, R.L., Lämmel, R., Verhoef, C. (eds.) The 16th
IEEE International Conference on Program Comprehension, ICPC, Amsterdam,
The Netherlands, 10–13 June 2008, pp. 53–62. IEEE Computer Society (2008)

3. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: there and back again.
In: Software Product Lines, 11th International Conference, SPLC, Proceedings,
Kyoto, Japan, 10–14 Sept 2007. IEEE Computer Society (2007)

4. Font, J., Ballaŕın, M., Haugen, Ø., Cetina, C.: Automating the variability formal-
ization of a model family by means of common variability language. In: Schmidt,
D.C. (ed.) Proceedings of the 19th International Conference on Software Product
Line, SPLC 2015, Nashville, USA, 20–24 July 2015, pp. 411–418. ACM (2015)

5. Rubin, J., Chechik, M.: Combining related products into product lines. In: de Lara,
J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol.
7212, pp. 285–300. Springer, Heidelberg (2012)

6. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Bottom-up adoption
of software product lines: a generic and extensible approach. In: Schmidt, D.C. (ed.)
Proceedings of the 19th International Conference on Software Product Line, SPLC
2015, Nashville, TN, USA, 20–24 July 2015. ACM (2015)

7. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003). http://dx.doi.org/10.1109/MS.2003.1231146

8. Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Model comparison to synthesize a
model-driven software product line. In: de Almeida, E.S., Kishi, T., Schwanninger,
C., John, I., Schmid, K. (eds.) Software Product Lines - 15th International Con-
ference, SPLC, Munich, Germany, 22–26 Aug 2011, pp. 90–99. IEEE (2011)

9. Font, J., Arcega, L., Haugen, O., Cetina, C.: Building software product lines from
conceptualized model patterns. In: Proceedings of the 19th International Confer-
ence on Software Product Line, SPLC 2015. ACM, New York (2015)

10. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans. Software
Eng. 28(7), 654–670 (2002)

11. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: finding copy-paste and related
bugs in large-scale software code. IEEE Trans. Softw. Eng. 32(3), 176–192 (2006)

12. Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.:
Variability-aware parsing in the presence of lexical macros and conditional com-
pilation. In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA 2011, pp.
805–824. ACM, New York (2011). http://dx.doi.org/10.1145/2048066.2048128

http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1145/2048066.2048128

230 M. Ballarin et al.

13. Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.:
Variability-aware parsing in the presence of lexical macros and conditional com-
pilation. In: Lopes, C.V., Fisher, K. (eds.) Proceedings of the 26th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2011. ACM (2011)

14. Kästner, C., Ostermann, K., Erdweg, S.: A variability-aware module system. In:
Leavens, G.T., Dwyer, M.B. (eds.) Proceedings of the 27th Annual ACM Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
USA, 21–25 Oct 2012. ACM (2012)

15. Landauer, T.K., Psotka, J.: Simulating text understanding for educational applica-
tions with latent semantic analysis: introduction to LSA. Interact. Learn. Environ.
(2000)

16. Asadi, F., Penta, M.D., Antoniol, G., Guéhéneuc, Y.G.: A heuristic-based approach
to identify concepts in execution traces. In: Capilla, R., Ferenc, R., Dueñas, J.C.
(eds.) 14th European Conference on Software Maintenance and Reengineering,
CSMR, March 2010, Madrid, Spain. IEEE Computer Society (2010)

17. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: Taylor, R.N., Gall, H.C., Medvidovic, N. (eds.) Proceedings of
the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu, HI, USA, 21–28 May 2011. ACM (2011)

18. Nadi, S., Berger, T., Kästner, C., Czarnecki, K.: Mining configuration constraints:
static analyses and empirical results. In: Jalote, P., Briand, L.C., van der Hoek,
A. (eds.) 36th International Conference on Software Engineering, ICSE 14, Hyder-
abad, India, 31 May – 07 June 2014, pp. 140–151. ACM (2014)

19. Walkinshaw, N., Roper, M., Wood, M.: Feature location and extraction using land-
marks and barriers. In: 23rd IEEE International Conference on Software Mainte-
nance (ICSM 2007), Paris, France, 2–5 Oct 2007. IEEE (2007)

20. Trifu, M.: Improving the dataflow-based concern identification approach. In: Win-
ter, A., Ferenc, R., Knodel, J. (eds.) 13th European Conference on Software
Maintenance and Reengineering, CSMR 2009, Architecture-Centric Maintenance
of Large-SCale Software Systems, Kaiserslautern, Germany, 24–27 Mar 2009. IEEE
Computer Society (2009)

21. Eisenberg, A.D., Volder, K.D.: Dynamic feature traces: finding features in unfamil-
iar code. In: 21st IEEE International Conference on Software Maintenance (ICSM),
Budapest, Hungary, 25–30 Sept 2005, pp. 337–346. IEEE Computer Society (2005)

22. Poshyvanyk, D., Guéhéneuc, Y.G., Marcus, A., Antoniol, G., Rajlich, V.: Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. IEEE Trans. Softw. Eng. 33(6), 420–432 (2007). doi:10.1109/
TSE.2007.1016

23. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding
standardized variability to domain specific languages. In: Software Product Lines,
12th International Conference, SPLC 2008, Proceedings, Limerick, Ireland, 8–12
Sept 2008, pp. 139–148. IEEE Computer Society (2008)

24. Svendsen, A., Zhang, X., Lind-Tviberg, R., Fleurey, F., Haugen, Ø., Møller-
Pedersen, B., Olsen, G.K.: Developing a software product line for train control:
a case study of CVL. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp.
106–120. Springer, Heidelberg (2010)

http://dx.doi.org/10.1109/TSE.2007.1016
http://dx.doi.org/10.1109/TSE.2007.1016

AIRES: An Architecture to Improve
Software Reuse

Rosana T. Vaccare Braga(B), Daniel Feloni, Karen Pacini,
Domenico Schettini Filho, and Thiago Gottardi

Institute of Mathematics and Computer Sciences (ICMC),
University of Sao Paulo (USP),

P.O. Box 668, Sao Carlos, Sao Paulo 13.566-590, Brazil
{rtvb,dfeloni,karenr,domenico,gottardi}@icmc.usp.br

http://www.icmc.usp.br

Abstract. Among the several challenges still faced by Software Engi-
neering, software reuse can be listed as a potential solution towards
improving productivity and quality, through the utilization of previously
produced artifacts that can leverage development activities. Among these
artifacts we can mention not only code, but also requirements’ docu-
ments, analysis and design models, test cases, documentation, and even
development processes that achieved success in the past and could be
reused again and again. However, the diversity of methods, processes
and tools for software engineering make it difficult to turn reuse into
a systematic activity. Considering this context, the present paper aims
at presenting an architectural model that encompasses the main ele-
ments needed to support software reuse in a large scale. This model,
named AIRES, allows reuse to be realized intrinsically to the develop-
ment process life cycle, providing mechanisms to facilitate a variety of
processes and artifacts representation and a Service-Oriented Architec-
ture (SOA) to make assets available to other software engineering envi-
ronments or tools. The AIRES model is being implemented using open
source platforms and will be available within the cloud.

Keywords: Software reuse · Reuse tools · Reuse environments

1 Introduction

Reuse techniques can be used to improve productivity and quality in software
development processes, as they allow to take advantage of previous development
efforts where several reusable assets have been produced. It is essential that
computational support to reuse is provided since the very beginning, including
reuse of the process itself, and then moving to reuse of artifacts of several process
phases that occur before implementation, and finally with the reuse of code
and test cases. This is not a trivial task, especially when we consider the great
variety of representations for reusable processes and artifacts, as well as the
ever-changing development platforms and tools that are not easily integrated.
c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 231–246, 2016.
DOI: 10.1007/978-3-319-35122-3 16

232 R.T.V. Braga et al.

Also, we can say that recent advances in Software Engineering, which could
potentially offer solutions to these problems, are rarely used to build existing
tools, as for example service-oriented architectures (SOA). SOA is an architec-
tural style to build software applications taking advantage of services available
in a network [2,10,11]. A typical SOA has three types of participants: a service
provider, a service repository, and a service consumer (client). A service imple-
ments a well-defined business function that can be used by clients of different
applications in different business processes. A service has a public interface that
is available and interoperable, and it can dynamically connect to other services.
Clients can be both final user applications (e.g., web pages or desktop applica-
tions) or application modules belonging to other business processes (e.g., other
services) [10]. Therefore, the use of SOA is appropriate in distributed software
development environments like AIRES, in which the integration among different
tools is required, preferably in a transparent way.

A number of techniques and tools are used nowadays to facilitate reuse, but
they are generally focused on specific forms of reuse. Indeed, the development of
environments to support software reuse has been focused on the requirements of
specific groups of developers, as shown by Mahmood and others [9]. Nine reuse
environments were analyzed in their work in order to propose an analysis frame-
work. Each of them focused on a specific artifact type (for example, UML class
diagram, sequence diagram, feature model, etc.). Additionally, in a recent sys-
tematic mapping of the literature conducted by our group, it was identified that
software engineering tools aiming at reuse are too specific (e.g. software product
line tools, components and/or code repositories, patterns, etc.). Among examples
of reuse tools, Eclipse provides the reuse of components and patterns; Peonia
[1] allows the reuse of processes, software patterns and respective requirements
tests; OdysseyShare [19] allows the reuse of conceptual models, software archi-
tectures and implementation models for a certain domain; and Pure::variants
[17] allows the derivation of products of a software product line based in its fea-
ture model and implementation assets. On the other hand, we envision a more
complete architecture to allow the integration of different types of software reuse
tools, which we propose by employing SOA and RAS.

Moreover, software developers often employ more than one way of reuse, so
they would need to manage different environments, tools, processes, and tech-
niques. Without an unified support, this could lead to difficulties in integrating
the resulting artifacts of different projects, as they were developed in different
formats. Also, using an isolated tool for each reuse attempt can inhibit orga-
nizations towards reuse, because they know the difficulties of integration with
existing development tools. In parallel to this, processes themselves could be
reused to take advantage of successful experiences obtained in previous projects.

In this context, the use of SOA (or at least services) would be important
to make available artifacts in different levels of abstraction, so that they could
be shared by different projects of different organizations. It is also important
to provide mechanisms to facilitate the storage and retrieval of assets, as for
example by using a standard for asset representation and interchange.

AIRES: An Architecture to Improve Software Reuse 233

Notice that SOA is only employed as a mechanism to ease the retrieval
of reusable assets. The actual assets may have different types, including Web
services themselves, as well as source code. This retrieval is done by software
engineers during the development of new applications or maintenance of exist-
ing applications that can benefit from reuse, which is different from reusing Web
services during run-time by invoking them on a Web Server (task done by the
running application). Of course, after the Web Service is retrieved for reuse,
its invocation will be placed in the source code and it will be invoked during
run-time, which is the final result of reuse.

Therefore, the contribution of this paper is to propose an integrated architec-
tural model that helps leveraging software reuse while complying to standards.
It should be customized according to the particular needs of software engineers,
who are the main target users. The main motivation of this proposal is to help
organizations to implement a reuse approach, as well as to provide means to
encourage the development of computational support that follows the proposed
architectural model.

This paper includes a proposal of an architectural model, named AIRES
(ArchItecture for REuse using Services), whose main goal is to allow software
reuse in large scale, making use of services. It is aimed at organizations distrib-
uted in different locations and with different needs regarding reuse: from process
reuse to different levels of software reuse, such as documents, models, code, test
cases, etc.

The proposed architecture comprises several views of its components, their
interfaces and the rationale involved in their design. Use cases are also provided
to better illustrate how the architecture can be used to produce different reuse
environments. To allow a standardization of assets storage and retrieval, AIRES
adopts the Reusable Assets Specification (RAS) [14], from the Object Manage-
ment Group (OMG). If other models are necessary, specific services to translate
them to RAS, and vice-versa, can be implemented.

The remainder of the paper is organized as follows. In Sect. 2, an overview
of the AIRES architecture is presented. In Sect. 3, all elements that compose
AIRES are explained in detail. The evaluation of AIRES is reported in Sect. 4.
Related work is discussed in Sect. 5. Finally, the conclusions, as well as future
work, are discussed in Sect. 6.

2 AIRES Overview

AIRES was firstly conceived from one of the author’s experience in the reuse
domain for more than two decades. Several systematic mappings and reviews have
been done during the last years related to the software reuse domain, and the
results have indicated a lack of reuse environments that take advantage of SOA.

Therefore, the motivations for proposing AIRES came from different assump-
tions: (1) the importance of easing software development through reuse method-
ologies that can leverage both productivity and quality; (2) the relevance of
having adequate computational support for reuse since the initial phases until the

234 R.T.V. Braga et al.

final development phases, including reuse of processes themselves; (3) the diver-
sity of methods, processes, and tools used by software engineers along the devel-
opment life cycle, with a great number of representation formats to processes and
reusable assets; (4) the variety of development platforms, often proprietary or
difficult to access, accompanied by tools with different visions and goals, which
produce/consume artifacts in different formats and abstraction levels, being also
difficult to integrate in the several development phases; and (5) the potential of
service-oriented architectures to solve some of the problems mentioned. There-
fore, AIRES architectural model contains all the necessary elements to support
reuse considering assumptions 1 to 4, as well as taking advantage of SOA as
mentioned in assumption 5.

By integrating reuse tools, AIRES intends to allow reuse intrinsically in the
whole software development life cycle. To solve the problem of difficult access
to reuse supporting tools, services should be provided and made available in the
cloud. This makes it easier to build applications that consume these services, as
well as facilitates integration with existing tools. To allow different representa-
tions of processes and reusable assets, AIRES uses standards as input to invoked
services, which process them and produce the expected results. Considering that
AIRES can be instantiated by different institutions, geographically distributed
in different locations and operating independently, new services can be developed
in the future to integrate these different instances.

It is important to notice that AIRES is not only intended to integrate asset
repositories: it is also focused on leveraging reuse by allowing the construction
of applications that benefit from its infrastructure to fulfill other more specific
reuse requirements. In this sense, two different applications are being built based
on AIRES, one to improve reuse in software product lines and another to allow
the reuse of processes in the context of Software Process Improvement (SPI)
and Software Process Assessment (SPA). Other applications can be developed
in the future, as its SOA-based characteristics make it easier to add new services
whenever they are necessary.

The possibility of integrating assets in different abstraction levels and estab-
lishing the relationships among artifacts enables reuse of as many assets as possi-
ble. For example, if the user searches for a source code in the telecommunications
domain, (s)he would be able to also reuse the corresponding test cases, as well
as other higher abstraction models of the same domain, if they exist.

3 AIRES Elements Detailing

In this section, we provide a detailed description of AIRES elements, from
requirements to conceptual model. We also describe its development process
and identified results.

3.1 Requirements - Use Cases Overview

One of the first activities in the AIRES definition was use case modeling. We
have done several meetings with stakeholders, where several actors have been

AIRES: An Architecture to Improve Software Reuse 235

identified, as listed in Table 1, followed by use case modeling. Figure 1 presents a
partial view of the use case diagram. Due to space restrictions, we have simplified
the diagram to show only the main use cases for the three most important actors.
The complete diagram can be found in the project documentation1, where we
also provide a detailed description of the intent of each use case.

Table 1. Actors identified during AIRES use case modeling

Actor name Description

General user Common User System. Main interests are to create an account, log
in and log out of the system, search for groups, search for assets,
create groups, request access to private assets and respond to
requests to participate in groups

Asset owner User with rights to include its own assets

Asset reviewer Responsible for assessment and review of the asset. This is an
optional actor

Group member Member of a group. The main interest is to actively participate in a
community of users, sharing and evaluating assets

Group leader Member of the group responsible for managing it

System Administrative routines are performed automatically by the system
through scheduling

We propose the inclusion of the Asset Reviewer as an optional actor, as we
believe that each asset owner is responsible for the assets he includes, indepen-
dently of whether or not they are validated. It is therefore an alternative choice
to have a reviewer for validating the assets. If we forced this role as mandatory,
we could end with a model that is difficult to be implemented due to the lack of
reviewers.

The evaluation performed by the Asset Reviewer would assess the applicabil-
ity of the asset proposed by the Asset Owner, validating some requirements such
as: (i) the asset is applicable to the group context; (ii) the asset has potential for
reuse; (iii) there is not another similar asset in the groups library. If the asset
meets the requirements set by the Group Leader then it can be added to the
groups portfolio and shared with its members and other groups if so desired.

Additionally, it is a complex task to establish the validation criteria and
AIRES managers would be overloaded if they needed to take the responsibility
for all the assets they include. We agreed, together with the stakeholders, that
the most acceptable solution to this problem is to make assets available as soon
as they fulfil the minimum requirements to be included in AIRES, and users
willing to reuse them are totally aware that they need to validate them before
reusing. After the assets have been successfully reused, we can provide a way
to register this in AIRES so that other users can benefit from this information.

1 http://www.icmc.usp.br/∼rtvb/Aires doc/.

http://www.icmc.usp.br/~rtvb/Aires_doc/

236 R.T.V. Braga et al.

Fig. 1. AIRES - part of use case diagram for the three main actors.

On the other hand, for organizations where the control of assets needs to be done
in a more systematic way, the role of the Asset Reviewer can be fully employed.

3.2 Architecture Overview

After defining the use cases, an architectural model for AIRES has been devel-
oped, according to the assumptions discussed in the beginning of Sect. 2. Figure 2
illustrates this model.

As mentioned in Sect. 1, AIRES adopts the Reusable Assets Specification
(RAS) [14], from the Object Management Group (OMG), to store the assets in
a repository, so any type of reusable asset is allowed, as for example require-
ments, analysis models, design models, source code, test cases, and processes.
RAS allows a common approach to be used by developers when storing reusable
assets. RAS contains a basic structure (CORE), but can be extended by the
creation of extension modules to customize it to the particular needs of each
project. The RAS specification is available via XSD (XML Schema Definition)
and XMI (XML Metadata Interchange) files and its usage is defined by profiles.
Another advantage of adopting RAS is to ease the interoperability with other
tools that use it, as well as having the benefits of all the knowledge embodied in
the specification itself.

AIRES: An Architecture to Improve Software Reuse 237

Similarly to the specification, AIRES is an architecture designed with a
Core layer, which serves as a foundation for every other layer. The Core repre-
sents the central modules, which include a module to allow unique identity for
objects (UUIds Manager), a module to ensure the correct authentication of users
(AuthenticationManager), another to manage the authorization of users to avail-
able services (Authorization Manager), a module to manage the reusable assets
(Assets Manager), and a module to provide an interface to read and export
assets as RAS in addition to translate from simple model (provided by AIRES)
to RAS. (RAS Interface). For example, if a client application adopts a different
asset representation, this module takes a simple modulated input and performs
its translation to RAS, so client applications do not need to understand RAS to
use the repository.

The persistence of objects related to users and authorization is done in a
specific database (AIRES Core), and assets in another one (Assets Repository).
Other possibilities exist, as for example the client application can have its own
authorization/authentication services and use AIRES only to search for reusable
assets, and not for managing them.

In AIRES, it is considered that assets can have private or public visibility. If
an asset is private, only the owner can have writing access to it, while members
of the owner group have reading access. On the other hand, public assets can be
viewed by any users (writing access is also allowed only to the asset owner). As
AIRES is based on SOA, the access (reading or writing) is done through specific
services.

The private services layer offers services to access the Core layer. They can
be invoked by the Applications layer, which contains external applications that
interact with AIRES. Examples of such applications are Software Product Lines
Manager and Certification Manager, but other applications can be added as
required. Private services can also be invoked by Public services. This allows
that modules belonging to the Clients layer or other external custom applications
interact with the Core layer.

The access to modules of the Applications layer is also done through public
services, which can be invoked both by the Clients layer and by custom applica-
tions. As mentioned before, public services can, in turn, invoke services from the
Private Services layer, which provide access to more basic core functions. This
avoids unauthorized access to private services and, at the same time, makes
publicly available only relevant services required by applications. All services
provided by AIRES have been documented through the detailed specification of
their interfaces, i.e., the inputs required to invoke them, as well as the outputs
they generate.

The Clients layer provides a graphical user interface to AIRES assets man-
ager or other applications. The AIRES Manager Frontend aims at providing
a Web application through which developers who do not have their own reuse
tools can initiate a reuse program. This allows them to search for reusable assets
and include their own assets, which can optionally be shared with the software
community. Special mechanisms of quality control can be implemented to avoid
the inclusion on undesired assets in the repository.

238 R.T.V. Braga et al.

Fig. 2. AIRES - architectural model overview.

The Software Product Lines Manager/LPS Manager Frontend and Certifica-
tion Manager/Certification Manager Frontend are examples of possible applica-
tions that can be built based on AIRES. The SPL Manager allows a SPL domain
or application engineer to manage software product lines, since the inclusion of
the SPL reusable assets until the management of derived products, as well as
the documentation of the SPL development processes used by the organization.
The Certification Manager aims at facilitating the reuse of process and confor-
mance analysis by organizations that pursue the certification of their develop-
ment processes against existing maturity models, but do not have supporting
tools for that. They can include their current development processes and receive
as output the conformance report. It should be observed that this requires that
the maturity models are previously fed into the AIRES, as well as the transfor-
mation rules that allow the comparison to executed processes. These applications
are being built in the context of ongoing Master projects at ICMC.

In Appendix A we provide a list of the available services provided in the
Private Services layer, describing the service method signature, its parameters
(input and output) and a brief description of its behaviour.

AIRES: An Architecture to Improve Software Reuse 239

Fig. 3. AIRES conceptual model.

3.3 Conceptual Model

Figure 3 presents AIRES conceptual model. Its model follows SPEM, which is
the most used standard for software process modeling, according to [4]. This
makes it easier to integrate AIRES with software improvement approaches that
also adopt SPEM. For example, if the software engineer wants to analyse the
process employed in his organization against well-known standards, the architec-
ture could export the current process to serve as input to conformance analysis
tools that also follow SPEM.

The classes of the conceptual model related to SPEM are: Process,
ProcessPhase, ExpectedActivity, and ExpectedArtifact. There are also classes or

240 R.T.V. Braga et al.

relationships to represent the dependencies among phases or activities (for exam-
ple, a phase that follows another, or that is done in parallel to another). The
classes just mentioned represent the process template as specified by standards
or organizations [15].

Related to these classes, we have another set of classes corresponding to the
process instantiation to a particular project. They are: ProcessInstance, Pha-
seInstance, ActivityInstance and Artifact. Note that there is a many-to-many
relationship between ActivityInstance and User. This means that an activity
can be performed by one or more users, and a user can perform one or more
activities. This association derives an association class (ActivityExecution) where
it is possible to link the execution of the activity to a specific role. An Activi-
tyInstance can be related or not to an ExpectedActivity, because activities that
were not predicted in the process template can occur in a concrete instance of
the process, and they must be registered by the system.

Additionally, the ExpectedActivity and ActivityInstance classes has an asso-
ciation to the ProcessArea class, that represents the software engineering disci-
plines used in the software process development, such as requirements manage-
ment, configuration management, quality assurance, among others.

It is important to notice that this model is used to represent both the process
template (i.e., the process model as defined by its authors) and the process
instance, which is derived by instantiating the process template for particular
purposes [15]. A process instance refers to a template but has its own elements,
according to the process execution. This is important because we may want to
reuse not only the templates, but also the instances that were successful in a
particular context and thus can be recommended when similar situations occur.
For example, RUP is a process model (template) that can be reused in a concrete
development project, resulting in a process instance. Later, when a new project
begins in a similar context, instead of reusing RUP, we might want to reuse the
instance instead, because it is already customized to that context.

As mentioned before, to represent reusable assets (Asset class), the main
parts of RAS have been incorporated to AIRES conceptual model, with some
adaptation. This aims at facilitating interoperability with tools that also employ
RAS, besides taking advantage of the reuse knowledge embedded in the specifi-
cation itself. All classes from RAS Core are related to Asset structure as shown
in Fig. 3 (some minor classes are hidden due to lack of space). Basically, an Asset
includes a Solution, a Profile, a Usage, and a Classification. Optionally, it can
include one or more Related Asset. The Solution refers to one or more Artifacts
that contain references to the concrete artifacts to be reused. An artifact can be
classified into types (e.g., source code, model, text, template, feature, etc.). It
can also have dependencies, a context and variability points. The Usage refers to
Description, usage manual, installation guide, comments and other information
relevant to the asset. The Classification aggregates several objects to ease the
retrieval of the object by using different types of keys to classify it.

The remaining classes of the conceptual model were included to fit other
needs of the stakeholders. For example, the UserProfile enables a user to assume

AIRES: An Architecture to Improve Software Reuse 241

several different profiles, both related to playing different roles in process activ-
ities, and having different positions regarding the asset management (reviewer,
group leader, etc.). The Group is used to describe the group of users, allowing
closed sharing of assets by defining their own rules of assessment and privacy.
The Project holds all information about the project itself like title, estimate time
and budget, so on. Another addition to the conceptual model was Review, which
represents the optional functionality of allowing an asset to be included provi-
sionally, and depending on the reviews received it will be included definitely.
A Review is composed by several assessments about the asset, according to the
criteria established by the group.

Another feature provided by the RAS metamodel is to add usage (class
Usage) information to help on the usability of the assets stored by it. The
UserComments class represents the users feedback about their experience on
using the assets available in the repository. This feedback can be used by the
AssetOwner or GroupLeader to improve the asset functionality.

3.4 AIRES Asset Life Cycle

An asset can be in different states within the development process, which we
refer as Asset Life Cycle, as represented in Fig. 4. Firstly, by creating an asset,
the creator is automatically defined as its owner. Therefore, any user could
have permission to become an asset owner. As soon as the asset is created,
it is defined as “Under Elaboration”. After the asset is set as complete by the
owner, it evolves to the “Complete” state. Then, the owner can submit the asset
for review, performed by the AssetReviewer. Therefore, it would be in “Under
Review” state. The AssetReviewer may either approve or reject the asset. In
case of approval, the asset is moved into “Approved” state. In case of disap-
proval, there are two alternatives: if the asset is considered useless, it goes to the
“Removed” state; otherwise, it needs to suffer modifications and be resubmit-
ted for approval, thus it is moved back into “Under Review” state. After being
moved to the “Approved” state, the asset can be submitted to periodic reviews,
performed to evaluate its acceptance and reuse index. In this stage, an asset
can be moved to the “Discontinued” state, indicating that it is no longer active
in the repository and will not receive any improvements or bug fixes. Another
possible scenario is that the asset is not being reused or it depends on platforms
that became obsolete, so the AssetOwner or GroupLeader might decide to flag
it as discontinued. Notice that, as mentioned before, reviews are optional. Once
the asset candidate is moved to the “Complete” state, the review stages of the
life cycle can be set as optional in an AIRES environment instance and, in this
case, the assets will have an internal visibility to the institution that manages
the repository instance.

4 AIRES Evaluation

AIRES has been evaluated using the Architecture Trade-off Analysis Method
(ATAM) [7]. ATAM aims to identify how well an architecture satisfies the
expected quality goals, as well as how these goals interact with each other.

242 R.T.V. Braga et al.

Fig. 4. Asset life cycle.

In the first step, a group of researchers and professionals interested in software
reuse have been presented to ATAM. The group consisted of two experienced
professionals, two graduate students with professional experience in software
reuse, and one graduate student with no professional experience, but having
deep knowledge about reuse tools. They have evaluated the business drivers
that involve software reuse. In summary, after discussing the several challenges
involved, they have reached a consensus that a considerable part of developers
do not invest on software reuse because they do not have the adequate support
to do that, not only in terms of processes and tools, but due to the lack of
organizational support.

Therefore, the main business drivers that should be considered are: usabil-
ity - it should be easy both to share new assets and to retrieve them, not only
considering the computational support, but the organizational process involved
in publishing new assets; flexibility - the system should be able to manage any
kind of reusable asset, independently of its representation; and availability -
the system should allow the retrieval of assets at any time. If these business
drivers are achieved, the proposed architecture could serve as a means to lever-
age software reuse. In this sense, computational support is essential to encourage
organizations to adopt a reuse program.

Next, AIRES architecture overview was presented to the team, with an expla-
nation of each layer and corresponding components. Additionally, the use cases
have been presented and discussed by the team, which lead to several modifica-
tions both to use cases and architecture. After refinements, the resulting models
have been updated. The architecture shown in Fig. 2, as well as the use case
diagram partially presented in Fig. 1 exemplify the results.

In a subsequent step, the team has established quality attributes relative to
each business driver, indicating how each business driver would be dealt with
by the architecture. For example, to achieve flexibility, RAS has been adopted
as a way to represent reusable assets; to achieve usability, we have defined a
process with mandatory and optional activities that can be adapted to each
possible scenario; and to achieve availability, we have designed the architecture
based on SOA principles. Cloud computing could be also considered to enhance
availability, specially by adopting Platform as a Service to host AIRES instances.

AIRES: An Architecture to Improve Software Reuse 243

Finally, different architectural approaches have been analyzed, and the team
agreed that the proposed architecture was adequate according to the requirements
defined in the previous step. Phase 2 of ATAM consists of extending the evaluation
with the help of a larger stakeholder group and is planned as future work.

5 Related Work

There are a number of ways to build a RAS repository. The very RAS speci-
fication document offers some guidelines for searching, browsing and retrieving
assets by using services [14]. It is possible to build them both as independent
web services or as part of a larger product, which is the case of AIRES.

The use of RAS to represent processes has been explored in the work of
Pacini and Braga [15]. The paper shows how to map RAS elements to each
process element in order to ease the reuse of process phases, activities, artifacts,
etc. This mapping is used in assets translation to RAS on RAS Interface module.

Another example of RAS application is proposed by Nianjun Zhou et al. [20].
In their approach, they present a legacy reuse analysis and integration method to
support modeling legacy assets in a SOA context. To store the assets extracted
by their approach, they use the IBM Rational Asset Manager Repository (RAM),
which is typically used for storage of unstructured assets (jar, war and ear) and
documents specified using RAS.

There are also other online repositories based on RAS in the web. One exam-
ple is LAVOI, created by Moura [13] and OpenCom created by Ren Hong-min
et al. [5]. Both extended the RAS profile to adapt it to a wide range of types of
assets and to facilitate assets classification, search and use. However they only
provide the repository, and it works for specific types of assets. On the other
hand, AIRES proposes a complete architecture to build an integrated environ-
ment to manage and leverage reuse.

In Feloni and Braga [3], a systematic mapping was elaborated to identify
the different approaches used to obtain software process certification (through
maturity and process quality models). In particular, two research gaps were
listed in the context of methodologies to assist process assessment and improve-
ment regarding reuse: (1) the reuse of certified processes; and (2) the reuse of
artifacts produced in software process execution in a large scale within the soft-
ware engineering community. A concept still little explored is the reuse of the
processes and quality models as a hole, such as the activities executed, roles per-
formed and work products consumed/produced in its execution [3]. The creation
of repositories to persist the created artifacts was also an approach used in some
papers, but they limited the access to those artifacts for the company members
only, eradicating the possibility for reuse outside the company. We claim that
it should be available to more software engineers [12,16,18], which is the idea
behind AIRES.

Lee et al. [8] propose the integration of Web Services technology into an
environment, also proposed by them, where components could be integrated.
This environment is developed in three parts: a Provider, a Consumer and

244 R.T.V. Braga et al.

a Component Repository. The Provider subsystem stores components and its
attributes into a repository. The Consumer subsystem helps the client applica-
tion to find the desired component in the repository. The Component repository
stores in a relational database the components attributes and where they could
be found for future sharing with the client. They proposed the use of Web Ser-
vices to expand the interoperability between components and clients and to ease
the access to these components.

Hongmin et al. [6] proposed a lightweight open framework for sharing assets
repository based on SOA, whose main system is the Software Asset Repository
Management System (SARMS). It is a set of software systems that control the
creation, maintenance and use of the assets repository. The Asset Sharing Service
Subsystem (ASSS) provides five categories of sharing services: User Management
Service, Asset Management Service, Authorization Management Service, Facet
Management Service and Meta Data Service. As future work, the authors claimed
to explore the sharing asset repositories, developing an experimental system
based on the open architecture proposed. However, we did not find any published
works that proceeded with the implementation of the proposed architecture.

6 Conclusions and Future Work

In this paper, we have presented AIRES, an architectural model that intends
to leverage software reuse initiatives. This architecture can be the basis for the
implementation of different reuse environments according to the particular needs
of software engineers. A RAS repository server has been developed and is func-
tional. We have also devised user access modules to control authentication and
authorization. We are currently developing clients for the server modules, includ-
ing clients with graphical user interface, which is being tested for the Asset
Manager component. In addition, we have also defined all the modeling of the
Software Product Line and Certification components, and a Web Services gen-
erator based on class diagrams that will ease the creation of the services layer.

As future work, we intend to make available, in an open-source repository,
all the artifacts produced so far as accessible assets by using our own proposal.
We believe that by sharing these artifacts we can speed up the development of a
global repository for software assets that can benefit all the software community.

A Private Services Interface Definition

As defined in Subsect. 3.2, in this Appendix, we list the specification of private
services that are used for accessing AIRES integration layer. Therefore, Table 2
consists of a subset of the services provided in the Private Services layer. In each
row of the table, we provide the service signature and its description.

AIRES: An Architecture to Improve Software Reuse 245

Table 2. Specification of Private Services - some examples

Service signature and Description

authenticate(String username, String passwd): String tokenID

Returns a token valid for a certain period of time if the username and passwd
corresponds to a valid user. Otherwise, returns a null token

authorize(String tokenID, String operation): Boolean okResponse

Returns a boolean corresponding to the authorization of the user to perform a
specific operation in the system

newAsset(Asset asset, String tokenID): String assetID

Includes a new asset in the repository. When the server executes this insertion, the
validation rules are checked according to RAS specifications about structure,
cardinality, and so on. Allowed only if the tokenID refers to an authenticated
and authorized user. Returns the UID of the new generated asset

updateAsset(Asset asset, String assetID, String tokenID): Boolean
okResponse

Updates an existing asset of the repository. Allowed only if the tokenID refers to
an authenticated and authorized user.

removeAsset(String assetID, String tokenID): Boolean okResponse

Removes an existing asset of the repository. Allowed only if the tokenID refers to
an authenticated and authorized user.

retrieveAsset(String assetID, String tokenID): Asset asset

Retrieves an existing asset based on its UID. Allowed only if the tokenID refers to
an authenticated and authorized user.

retrieveAssetParents(String assetID, String tokenID): AssetList
assetList

Retrieves a list with zero or more assets that correspond to the parents of the asset
whose UID was supplied as parameter. Allowed only if the tokenID refers to an
authenticated and authorized user.

retrieveAssetChildren(String assetID, String tokenID): AssetList
assetList

Retrieves a list with zero or more assets that correspond to the children of the
asset whose UID was supplied as parameter. Allowed only if the tokenID refers
to an authenticated and authorized user.

References

1. Braga, R.T.V., Chan, A.: Peony: A web environment to support pattern-based
development. In: ICWE, pp. 358–361. IEEE (2008)

2. Erl, T.: Principles of Service Design. Practice Hall, USA (2008)
3. Feloni, D., Braga, R.T.V.: Methodologies for evaluation and improvement of soft-

ware processes in the context of quality and maturity models: a systematic map-
ping. In: XVIII Ibero-American Conference on Software Engineering (CIbSE),
pp. 1–14 (2015)

246 R.T.V. Braga et al.

4. Garcia-Borgonon, L., Barcelona, M., Garcia-Garcia, J., Alba, M., Escalona, M.:
Software process modeling languages: A systematic literature review. Inf. Softw.
Technol. 56(2), 103–116 (2014)

5. Hong-Min, R., Zhi-Ying, Y., Jing-Zhou, Z.: Design and implementation of ras-
based open source software repository. In: 6th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), vol. 2, pp. 219–223. IEEE (2009)

6. Hong-Min, R., Jin, L., Jing-Zhou, Z.: Software asset repository open framework
supporting customizable faceted classification. In: 2010 IEEE International Con-
ference on Software Engineering and Service Sciences (ICSESS), pp. 1–4 (2010)

7. Kazman, R., Klein, M., Clements, P.: Atam: Method for architecture evaluation.
Technical report CMU/SEI-2000-TR-004, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA (2000). http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=5177

8. Lee, R., Kim, H.K., Yang, H.S.: An architecture model for dynamically converting
components into web services. In: 11th Asia-Pacific Software Engineering Confer-
ence, 2004, pp. 648–654 (2004)

9. Mahmood, S., Ahmed, M., Alshayeb, M.: Reuse environments for software artifacts:
Analysis framework. In: Proceedings of the 12th International Conference on Com-
puter and Information Science (ICIS), pp. 35–40. IEEE Computer Society (2013).
http://dblp.uni-trier.de/db/conf/ACISicis/ACISicis2013.html#MahmoodAA13

10. Mahmoud, H.: Service-oriented architecture (soa) and web services: The road to
enterprise application integration (eai) (2005)

11. Michael, M.P., Georgakopoulos, D.: Srveice-oriented computing. Commun. ACM
46, 25–28 (2003)

12. Montoni, M., et al.: Taba workstation: supporting software process deployment
based on CMMI and MR-MPS.BR. In: Münch, J., Vierimaa, M. (eds.) PROFES
2006. LNCS, vol. 4034, pp. 249–262. Springer, Heidelberg (2006)

13. Moura, D.d.S.: Software Profile RAS: extending RAS and building an asset repos-
itory. Master’s thesis (2013). http://www.lume.ufrgs.br/handle/10183/87582

14. OMG: Reusable asset specification, November 2005. http://www.omg.org/spec/
RAS/2.2/

15. Pacini, K.D.R., Braga, R.T.V.: An approach for reusing software process elements
based on reusable asset specification: a software product line case study. In: Pro-
ceedings of the Tenth International Conference on Software Engineering Advances
(ICSEA), pp. 200–206. IEEE, IARIA XPS Press, Barcelona, Spain (2015)

16. Park, E., Kim, H., Lee, R.Y.: Software repository for software process improvement.
In: Lee, R., Kim, H.-K. (eds.) Computer and Information Science. SCI, vol. 131,
pp. 51–64. Springer, Heidelberg (2008)

17. Pure-systems: [On-Line] PURE: : VARIANTS (2009). http://www.pure-systems.
com/purevariants.49.0.html

18. Von Wangenheim, C.G., McCaffery, F., Hauck, J.C.R., Lacerda, T.C., Buglione,
L., Vieira Da Cruz, R.F.: Building a maturity & capability model repository. In:
ACM International Conference Proceeding Series, pp. 2–5 (2011)

19. Werner, C., Mangan, M., Murta, L., Pinheiro, R., Mattoso, M., Braga, R., Borges,
M.: Odyssey-Share: An Environment for Collaborative Component-Based Devel-
opment. Las Vegas, USA (2003)

20. Zhou, N., Zhang, L.J., Chee, Y.M., Chen, L.: Legacy asset analysis and integra-
tion in model-driven soa solution. In: IEEE International Conference on Services
Computing (SCC), pp. 554–561. IEEE (2010)

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5177
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5177
http://dblp.uni-trier.de/db/conf/ACISicis/ACISicis2013.html#MahmoodAA13
http://www.lume.ufrgs.br/handle/10183/87582
http://www.omg.org/spec/RAS/2.2/
http://www.omg.org/spec/RAS/2.2/
http://www.pure-systems.com/purevariants.49.0.html
http://www.pure-systems.com/purevariants.49.0.html

Pragmatic Software Reuse in Bioinformatics:
How Can Social Network Information Help?

Xiaoyu Jin1, Charu Khatwani1, Nan Niu1(B),
Michael Wagner2, and Juha Savolainen3

1 Department of EECS, University of Cincinnati, Cincinnati, OH 45221, USA
{jinxu,khatwacu}@mail.uc.edu, nan.niu@uc.edu

2 Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center,
Cincinnati, OH 45229, USA
michael.wagner@cchmc.org

3 Head of Software Architecture, Roche Diagnostics, 6343 Rotkreuz, Switzerland
juha.savolainen@roche.com

Abstract. Little is known about the specific kinds of questions that
bioinformatics programmers ask during pragmatic software reuse tasks
and how well development online social networks help answer those ques-
tions. To fill the gap, we report an empirical study involving 20 biomed-
ical software developers performing reuse tasks. A key contribution of
our study is the discovery of 31 questions needed to be addressed, which
we further classify into 5 categories along a software-architecture-centric
and problem-domain-centric spectrum. Our study further provides evi-
dence for the positive effect of social network information on pragmatic
reuse tasks. Our work can lead to enhanced tool support so as to improve
biomedical software reuse in practice.

Keywords: Pragmatic software reuse · Architecture-centric reuse ·
Biomedical software · Information needs · Social network information

1 Introduction

Software is a critical enabler to advance our understandings and make innova-
tive discoveries in biomedicine. In fact, the software engineering challenges have
grown so immense that, in the United States, for example, the primary bio-
medical and health-related funding agency — the National Institutes of Health
(NIH) — began investigating ways to better discover software, namely to greatly
facilitate the biomedical research community to locate and reuse software [5].

An essential challenge here is pragmatic software reuse that uses the soft-
ware artifacts which were not necessarily developed with reuse in mind [25].
In contrast to pre-planned software reuse such as product line engineering [29],
pragmatic reuse recognizes the opportunistic and exploratory nature of reuse
decisions manifested in practices like copy-paste-modify code. A unique aspect
in this domain is that the programmers are often researchers whose principal

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 247–264, 2016.
DOI: 10.1007/978-3-319-35122-3 17

248 X. Jin et al.

training area is not software engineering but biomedical related fields. In the
daily work of these bioinformatics researchers, pre-planned software reuse may
not be instrumented or enforced, leaving pragmatic reuse the only feasible option.

Current approaches to pragmatic reuse attempt to support the developer’s
explicit recording of a reuse plan and automatically enact certain steps of
the plan [19], define metrics to indicate the effects of reuse on project perfor-
mance [21], and assist in the reusable component extraction by iteratively ana-
lyzing the structural complexity of code [14]. In addition, various kinds of code
search and recommendation mechanisms are proposed [18,20,24,27,28], focusing
on white-box reuse where existing code needs internal modifications so as to fit
the target system. Despite the contemporary support, pragmatic software reuse
remains a difficult endeavor. Among the salient challenges are the dependencies
surrounding the reusable code and the breakdowns experienced when the code
is integrated into the target system [25].

Such issues can be regarded as instances of architectural mismatch [16] rep-
resenting a persistent difficulty in software reuse [17]. Architectural mismatch
stems from the incompatible assumptions that each part of reuse had made
about its operating environment. Although pragmatic reuse is often labeled
ad hoc [19], we believe it should not be performed without explicit architec-
tural considerations. Existing pragmatic reuse approaches, however, have not
thoroughly examined the role of software architecture in pragmatic reuse.

To fill the gap, we investigate in this paper the kinds of architectural knowl-
edge involved in pragmatic reuse. We conduct a controlled experiment to elicit
the information needs from the bioinformatics programmers carrying out soft-
ware reuse tasks. Our results drawn from 20 participants suggest 31 specific
questions, which we group along a software-architecture-centric and problem-
domain-centric spectrum. Furthermore, we test the extent to which development
online social networks support the needs of the reuse tasks.

The contributions of our work lie in the discovery and codification of the
information needs in pragmatic software reuse, as well as the positive evidence
gained on the use of social network information to satisfy those needs. In what
follows, we review related work in Sect. 2. Section 3 presents our study design,
Sect. 4 analyzes the results, and finally, Sect. 5 discusses our work’s implications
and draws some concluding remarks.

2 Background and Related Work

2.1 Biomedical Software Discovery

Aimed to advance the understanding of human health and disease through har-
vesting the wealth of information in biomedical data, the NIH launched the Big
Data to Knowledge (BD2K) initiative in 2012 [2]. While progresses in areas like
data accessibility are made, challenges persist for the biomedical community to
discover software in an effective and efficient manner. To tackle the problem, in
May of 2014, about 40 people from government, academia, and industry partic-
ipated in a workshop on biomedical software discovery and released a report [5].

Pragmatic Software Reuse in Bioinformatics 249

In this report, software discoverability is defined as the ability to locate, cite,
and reuse software. Although, in theory, every biomedical software is known
and therefore discoverable, at least by its original developer(s), the improved
software discoverability is much needed in practice by four specific stakeholders:
(1) developers who face challenges measuring their software’s adoption, (2) users
who have difficulty in software reuse, (3) publishers who lack a consistent way
to handle software citations, and (4) funders who struggle to make informed
decisions about which software development projects to support.

The report then focuses mainly on proposing a global indexing solution.
The solution is delineated as an automated, broadly accessible system allowing
for comprehensive identification of biomedical software. Central to the solution
is assigning each software tool with a unique identifier [5]. While such a pro-
posal can facilitate how biomedical software is disseminated and cited, serious
drawbacks are pointed out by the commenters shortly after the release of the
report [4]. A common criticism is about scalability and argues against the devel-
opment of a brand new indexing capability to cover a broad biomedical software
spectrum.

Another major problem with the unique-identifier indexing proposal is the
confusion between a software paper and the software itself [4]. In fact, some
publishers began archiving papers describing research software. Elsevier, for
instance, launched a new journal called SoftwareX in 2015 [6], aiming to dis-
seminate software applications, tools, and libraries in various domains including
medical and biological sciences. However, the unique identifier/index (e.g., a
DOI linking to a SoftwareX article) captures rather the static metadata about
the entire software (e.g., weblink to code repository, legal license, support email,
etc.) than the dynamic usage information about specific part(s) of the software.
In another word, what a global indexer [5] supports is black-box software use
instead of white-box software reuse. Our objective is to tackle directly the prag-
matic software reuse challenges faced by the biomedical community.

2.2 Pragmatic Software Reuse

Reuse attempts to improve software quality and developer productivity by lever-
aging existing artifacts and knowledge [23]. Two approaches can be distin-
guished in terms of how the reusable artifacts are created and used. Pre-planned
approaches, such as object-oriented inheritance and product line engineering,
explicitly build artifacts for reuse so that subsequent software product/system
development can be carried out with reuse. In contrast, pragmatic approaches,
such as code scavenging [23] and opportunistic programming [13], facilitate the
reuse of software artifacts that were not necessarily designed for reuse [25].
While the distinction is not always clearcut, a key difference is that pre-planned
approaches assume that a reusable part exists that either fits perfectly or that
the target system can be adapted to make it fit whereas a pragmatic approach
assumes that the reusable itself is a legitimate target for modification [19].

Maras et al. [25] identified 3 steps involved in pragmatic software reuse based
on their experience of Web application development: locating the source code of

250 X. Jin et al.

an individual feature, analyzing and modifying the code, and integrating code
into the target system. These steps are in line with the process model described
by Holmes and Walker [19]. In [19], a tool named Gilligan was introduced to
support Java developer’s recording of a pragmatic reuse plan. Moreover, Gilligan
helped automate simple cycles of the plan (e.g., copy a manually found element,
paste it in a manually determined location, flag syntactic warnings, etc.). The
experiments with 16 participants (2 undergraduates, 7 graduate students, and
7 industrial developers) using Gilligan showed that, compared to the location
of reusable code, much difficulty occurred in analyzing the code, especially in
resolving dangling dependencies to Java libraries, types, methods, and fields [19].

The difficult-to-resolve dependencies reflect incompatibilities at not only the
source code level, but also the software architecture level. Architecture-centric
reuse approaches date back at least to the work of Garlan et al. [16], who argued
that a main reason why software architecture is important is because it lets
designers exploit recurring architectural styles to reuse routine solutions for cer-
tain classes of problems. Drawing from their experience of failing to build a
system from reusable parts, Garlan et al. [16] recognized a root cause being the
conflicting assumptions among the parts and termed this phenomenon “archi-
tectural mismatch”. Generally speaking, four categories of assumptions can lead
to architectural mismatch: nature of the components, nature of the connectors,
global architectural structure, and construction process.

Researchers have advanced architecture-centric reuse by trying to avoid or
tolerate mismatch [30], to sustain evolutionary stability [32], and to catalog
specialized solutions specific to a particular domain in a way that restricts the
range of permissible components and their interactions [26]. Beyer et al. [10]
reported a success story of introducing a product-line architecture to a small
software team of 2 developers and 1 tester. During 4 iterations, an organization-
specific software architecture was established, static architectural compliance
checks were performed, and the reduced development effort was observed. In [10],
the main benefit of the product-line architecture was to help communicate and
negotiate the competing stakeholder concerns within the same organization. In
our work, the focus is on examining the role of general software architectural
styles in pragmatic code reuse without any organizational boundary.

2.3 Development Social Networks

Social interactions of software engineers have been studied from various techni-
cal and organizational aspects. For example, given a particular organization or
project, people can “be friends” with the work items that they share [9], optimal
group size can be determined by social information foraging principles [11], and
latent sub-communities can be identified based on email exchanges [12].

What have recently emerged to shape software engineering practices are
the online social networks where developers collaborate and exchange ideas
and expertise. These technologies include community portals, Q&A sites, wikis,
forums, and microblogs [8]. Reviewing feeds, watching projects, and following

Pragmatic Software Reuse in Bioinformatics 251

others are the most used social networking functionalities among today’s soft-
ware developers [15]. Surprisingly, little is known about how software reuse can
utilize and even strengthen the online social networks. This lack of knowledge is
especially prominent in pragmatic, white-box reuse tasks.

Exploiting online information to support software reuse, even before the
social networking era, is not without problems. Hummel and Atkinson [20] pio-
neered the systematic investigation of the Web as a reuse repository; however,
the web services that they deployed for white-box reuse experienced discontin-
uation and returned disappointing results. Happel et al. [18] found that most
source code search engines focused on retrieving lines of code and often lacked
the capability to help the re-user explore in-depth connected information. Zou
and colleagues [35] proposed an automated approach to searching software reuse
candidates and using the developer comments extracted from online social net-
works to perform sentiment analysis of the candidates. In sum, the support so
far has been extensive on code search but not on the reuse per se. Understand-
ing how social network information can help carry out the actual reuse task is
precisely the focus of our research.

3 Study Design

Our work aims to answer two main research questions: what information is
needed in pragmatic software reuse and how social networks can help meet those
needs. Thus our inquiry is composed of two parts: first eliciting the informa-
tion needs and then quantifying the effect of social networks. To address these
research questions, we performed a lab experiment. The rest of this section details
our experimental design and execution.

3.1 Participants

The population that our study intends to impact is the community of pro-
grammers who develop biomedical software; notably, most are bioinformatics
researchers [5]. Twenty participants took part in our experiment (12 male and
8 female; 18 graduate students and 2 staff researchers). These participants were
recruited from the Cincinnati local community via email invitations. To be eli-
gible to participate in our experiment, each individual had to consider writing
software as an essential (as opposed to accidental) part of their work, and con-
sider that pragmatic code reuse (as opposed to pre-planned reuse) is common in
their practice. We did not impose any criteria regarding research area, software
development experience, or programming language, as we attempted to select a
sample representative of developers across the broad biomedical domains. Our
participants had a varied background: 13 had no professional software devel-
opment experience, 1 had less than a year professional experience, 3 had 1–
5 years, and 3 had more than 5 years. Table 1 overviews the demographics of the
participants in our study. The data were collected through a pre-experimental,
self-reported survey. Note that we performed two pilot trials before the actual

252 X. Jin et al.

Table 1. Overview of participants and their self-reported pre-experimental survey
data: “#” represents the number of participants, “Area” shows the participant’s main
research area, “PL” denotes one or more programming languages that the participant
is familiar with, “SE Freq” classifies the software engineering (coding, debugging, etc.)
frequency, and “Reuse Freq” indicates the frequency of pragmatic software reuse.

Area # PL # SE Freq # Reuse
Freq

#

Genomics 5 Python 16 Daily 12 Frequently 11

Gene regulatory
networks

4 C/C++ 7 Weekly 4 Sometimes 7

Biostatistics
survival
analysis

4 Matlab 5 Monthly 1 Rarely 0

Neuroimaging
analysis

3 R 5 Others (as

needed,

project-

driven,

etc.)

3 Others
(in-

house

mainte-

nance,

etc.)

2

Others (molecular

biology,

proteomics, etc.)

4 Others (C#,

Java, etc.)

14

experimentation to test instrumentation and solicit feedback. The results from
these two pilots are excluded for the rest of the paper.

3.2 Tasks

The participants were asked to perform pragmatic software reuse tasks that have
direct biomedical relevance. We explicitly considered software architecture when
designing the tasks. Two architectural styles were chosen: plug-in architecture
and event-driven architecture. For each architecture, an open-source software
acted as the target system where the actual reuse was expected to take place.
Next is a description of these two systems and their reuse tasks.

• ImageJ [1] is a Java image processing program whose author, Wayne Rasband,
works at the NIH’s Research Services Branch. We downloaded the latest ver-
sion of ImageJ (v1.49) and ran it as a standalone application on a Windows lab
machine. ImageJ provides extensibility via Java plug-ins. Some plug-in exam-
ples are automatically installed and can be accessed as shown in Fig. 1a. It
is believed that user-written ImageJ plug-ins make it possible to solve almost
any image processing or analysis problem [1]. The reuse task that we defined
for our participants was inspired by protein quantification with ImageJ [3].
In particular, we pre-processed an image containing a variety of different pro-
teins being separated on a gel. We stored the pre-processing results in 4 textual

Pragmatic Software Reuse in Bioinformatics 253

Fig. 1. ImageJ reuse task: (a) example plug-ins after installation, (b) sample output.

Fig. 2. StochKit task: (a) before reuse, (b) after reuse.

files, which were provided as inputs to the reuse task: Protein.txt defining the
values on the x-axis and each of Result1.txt, Result2.txt, and Result3.txt giv-
ing rise to a protein sample. For each sample, the participant was asked to
reuse code so as to draw the gel plot and perform linear regression of that
plot. Figure 1b illustrates one sample curve and its linear regression result:
R2=0.917147. Biologically speaking, the best protein fit is the sample with
the greatest R2 value.

• StochKit [7] is a C++ biochemical reaction simulation program [31]. We
installed its latest version (StochKit v2.0.10) on the same lab machine as
ImageJ. StochKit utilizes event-driven architecture to achieve fine-grained
control of the reaction process and to simulate real-time response. Event trig-
gers are discrete changes in the system state or parameter value typically
used to mimic biological processes or to recreate experimental conditions [31].
Figure 2 simulates the reaction: Blue + Red → Green. The reuse task here

254 X. Jin et al.

was motivated by a mathematical model of an open monosubstrate enzyme
reaction [33]. Specifically, we asked the participant to reuse code so that the
enzyme reaction could be better controlled, namely, to follow [33] to increase
Blue’s volume under two conditions: (i) when its value drops below 5, and (ii)
at time units 2 and 8. If the two conditions interact, (i) takes precedence over
(ii). The StochKit task illustrates that human intervention is essential, espe-
cially when the amount of reactants needs to be strictly regulated to achieve
a stable biochemical reaction environment.

To circumvent the unfamiliarity with the target systems, we provided a
few seed elements [19] to assist in participant’s investigation. For the ImageJ
task, the participants were pointed to the “Example Plot implements Plu-
gIn” class and the “PlotWindow(..)” constructor. For the participants tasked
with StochKit, 3 files’ names were given: \src\model parser\Input events.ipp,
\src\solvers\SSA Direct.ipp, and \src\solvers\SSA Direct Events.ipp. These seeds
were provided to the participants on the printed hard copy of the task descrip-
tions and were provided only as structural elements without any hint of runtime
behavior [19].

While the seed elements were available to every participant, our indepen-
dent variable was the social network information that we wanted to test in a
controlled manner. To instrument such a treatment, two researchers manually
searched for useful online resources and jointly finalized a set of links for each
task. Tables 2 and 3 list these links pointing to portals (e.g., ImageJ #11), wikis
(e.g., ImageJ #3), forums (e.g., StochKit #7), Q&A sites (e.g., StochKit #5),
etc. These links are by no means complete. Our intention is to raise the partici-
pant’s awareness of online social network information and offer a set of specific
links to encourage them to take advantage of the information during their reuse
tasks. In this sense, the links in Tables 2 and 3 should be treated as hints that pro-
vide shortcuts to potentially useful information for carrying out the pragmatic
reuse tasks. We grouped these “shortcuts” in the experimental computer’s web
browser’s bookmark — one bookmark folder per reuse task. To avoid partici-
pant’s unintentional inference about the resources’ importance, we ordered the
links inside each bookmark folder alphabetically, as shown in Tables 2 and 3.
For the remaining of the paper, we use “pre-selected SNI” to refer to the social
network information presented in Tables 2 and 3.

3.3 Procedure

The participants worked individually in a lab and began by signing the con-
sent form and completing a background survey (cf. Table 1). Each participant
received a randomly assigned experimental ID and followed the corresponding
block assignment to perform the two reuse tasks. Table 4 shows our block design,
in which both SNI-treatment order and task order are counterbalanced. Thus,
each participant performed one task with SNI and the other without the pre-
instrumented SNI support. Similar to [19], our design is best understood as
within-(participants plus SNI treatment) and between-(participants plus order).

Pragmatic Software Reuse in Bioinformatics 255

Table 2. Social network information (SNI) provided for the ImageJ reuse task.

Title Link

1 Data
Analysis-Linear
Regression

http://introcs.cs.princeton.edu/java/97data/

2 Development -
ImageJ http://imagej.net/Develop

3 Gel electrophoresis -
Wikipedia https://en.wikipedia.org/wiki/Gel electrophoresis

4 gel quantification
analysis [ImageJ
Documentation
Wiki]

http://imagejdocu.tudor.lu/doku.php?id=video:analysis:
gel quantification analysis

5 image - Live vertical
profile plot in
ImageJ - Stack
Overflow

http://stackoverflow.com/questions/19016991/
live-vertical-profile-plot-in-imagej

6 Java read file and
store text in an
array - Stack
Overflow

http://stackoverflow.com/questions/19844649/
java-read-file-and-store-text-in-an-array

7 Java Read Files
With
BufferedReader,
FileReader

http://www.dotnetperls.com/bufferedreader

8 Linear Regression
http://stattrek.com/regression/linear-regression.aspx

9 Linear regression -
Wikipedia https://en.wikipedia.org/wiki/Linear regression

10 Plot issues in Jython
script for ImageJ

http://stackoverflow.com/questions/26400563/plot-issues-
in-jython-script-for-imagej-reference-sources-welcome

11 Plugins (ImageJ)
http://rsb.info.nih.gov/ij/plugins/index.html

12 Protein
Electrophoresis |
Applications
&Technologies |

http://www.bio-rad.com/en-us/applications-technologies/
introduction-protein-electrophoresis

13 Read Text file in
string array Java http://www.technical-recipes.com/2011/

reading-text-files-into-string-arrays-in-java/

A researcher explained the first reuse task to the participant. The task
description was printed on a hard copy which was presented throughout the
task period for easy reference. The researcher then introduced the target

http://introcs.cs.princeton.edu/java/97data/
http://imagej.net/Develop
https://en.wikipedia.org/wiki/Gel_electrophoresis
http://imagejdocu.tudor.lu/doku.php?id=video:analysis:gel_quantification_analysis
http://imagejdocu.tudor.lu/doku.php?id=video:analysis:gel_quantification_analysis
http://stackoverflow.com/questions/19016991/live-vertical-profile-plot-in-imagej
http://stackoverflow.com/questions/19016991/live-vertical-profile-plot-in-imagej
http://stackoverflow.com/questions/19844649/java-read-file-and-store-text-in-an-array
http://stackoverflow.com/questions/19844649/java-read-file-and-store-text-in-an-array
http://www.dotnetperls.com/bufferedreader
http://stattrek.com/regression/linear-regression.aspx
https://en.wikipedia.org/wiki/Linear_regression
http://stackoverflow.com/questions/26400563/plot-issues-in-jython-script-for-imagej-reference-sources-welcome
http://stackoverflow.com/questions/26400563/plot-issues-in-jython-script-for-imagej-reference-sources-welcome
http://rsb.info.nih.gov/ij/plugins/index.html
http://www.bio-rad.com/en-us/applications-technologies/introduction-protein-electrophoresis
http://www.bio-rad.com/en-us/applications-technologies/introduction-protein-electrophoresis
http://www.technical-recipes.com/2011/reading-text-files-into-string-arrays-in-java/
http://www.technical-recipes.com/2011/reading-text-files-into-string-arrays-in-java/

256 X. Jin et al.

Table 3. Social network information (SNI) provided for the StochKit reuse task.

Title Link

1 abs - C++
Reference http://www.cplusplus.com/reference/cmath/abs/

2 C Program: Solving
Simultaneous
Equations in Two
Variables

http://www.thelearningpoint.net/computer-science/
c-program-solving-simultaneous-equations-
in-two-variables

3 C++ - Difference
between .ipp
extension and
.cpp extension
files

http://stackoverflow.com/questions/19147208/difference-
between-using-ipp-extension-and-cpp-extension-files

4 Equations for 2
variable Linear
Regression -
Stack Overflow

http://stackoverflow.com/questions/459480/
equations-for-2-variable-linear-regression

5 Event Driven
Programming? -
Programmers
Stack Exchange

http://programmers.stackexchange.com/questions/
230180/event-driven-programming

6 Global Variables -
C++ Forum http://www.cplusplus.com/forum/windows/115425/

7 How do you make
C++ solve
equations? -
C++ Forum

http://www.cplusplus.com/forum/beginner/34039/

8 java - Creating a
simple event
driven
architecture

http://stackoverflow.com/questions/13483048/
creating-a-simple-event-driven-architecture

9 Solving a system of
2 Linear
Equations using
C++

http://stackoverflow.com/questions/14594240/
solving-a-system-of-2-linear-equations-using-c

10 visual studio - How
to declare a
global variable in
C++

http://stackoverflow.com/questions/9702053/
how-to-declare-a-global-variable-in-c

system, as well as the seed elements by emphasizing their structural aspects.
If the first task was with the SNI treatment, then the participant was made
aware of the task-specific bookmark folder that the researcher pre-ported to the
lab computer. For the instrumentation to be uniform, the researcher configured

http://www.cplusplus.com/reference/cmath/abs/
http://www.thelearningpoint.net/computer-science/c-program-solving-simultaneous-equations-in-two-variables
http://www.thelearningpoint.net/computer-science/c-program-solving-simultaneous-equations-in-two-variables
http://www.thelearningpoint.net/computer-science/c-program-solving-simultaneous-equations-in-two-variables
http://stackoverflow.com/questions/19147208/difference-between-using-ipp-extension-and-cpp-extension-files
http://stackoverflow.com/questions/19147208/difference-between-using-ipp-extension-and-cpp-extension-files
http://stackoverflow.com/questions/459480/equations-for-2-variable-linear-regression
http://stackoverflow.com/questions/459480/equations-for-2-variable-linear-regression
http://programmers.stackexchange.com/questions/230180/event-driven-programming
http://programmers.stackexchange.com/questions/230180/event-driven-programming
http://www.cplusplus.com/forum/windows/115425/
http://www.cplusplus.com/forum/beginner/34039/
http://stackoverflow.com/questions/13483048/creating-a-simple-event-driven-architecture
http://stackoverflow.com/questions/13483048/creating-a-simple-event-driven-architecture
http://stackoverflow.com/questions/14594240/solving-a-system-of-2-linear-equations-using-c
http://stackoverflow.com/questions/14594240/solving-a-system-of-2-linear-equations-using-c
http://stackoverflow.com/questions/9702053/how-to-declare-a-global-variable-in-c
http://stackoverflow.com/questions/9702053/how-to-declare-a-global-variable-in-c

Pragmatic Software Reuse in Bioinformatics 257

Table 4. Experimental block assignments.

ID (Block name) First task Second task

A ImageJ-without-SNI StochKit-with-SNI

B ImageJ-with-SNI StochKit-without-SNI

C StochKit-without-SNI ImageJ-with-SNI

D StochKit-with-SNI ImageJ-without-SNI

all the 3 browsers’ bookmarkings of the computer in the same way: Internet
Explorer, Mozilla Firefox, and Google Chrome. If the first task was in the con-
trol group receiving no SNI treatment, then the researcher would make sure no
task-related bookmarks existed in the browsers. The participant was then asked
to perform the first reuse task and was encouraged to “think aloud” to verbalize
their rationales, decision, strategies, and tactics being employed. Note that the
participant was allowed to access the entire internet for completing the reuse
task, independent of whether pre-selected SNI was present. Informed by our
pilot trials, we set the expected task completion time to be 20 min and commu-
nicated such an expectation to the participant prior to the task. The participant
was reminded around 20 min into the task but was not forced to terminate until
a natural stop point was signaled by the participant himself or herself. The
researcher then conducted an informal interview with the participant to collect
feedback, and if the first task was treated with SNI then the usefulness of the
pre-selected SNI was also surveyed verbally. The participant was given a break
if desired, and then continued with the second reuse task in the same manner.

4 Results and Analysis

4.1 Information Needs in Pragmatic Software Reuse

Understanding the needs of software developers is a prerequisite for researchers
and tool builders to better answer those needs. For software evolution tasks,
Sillito et al. [34] identified 44 specific questions programmers ask and further
classified those questions into 4 groups: (1) finding focus points, (2) expand-
ing focus points, (3) understanding a subgraph, and (4) understanding groups of
subgraphs. Ko et al. [22] abstracted from 17 Microsoft developers’ daily practices
into 21 types of information needs, emphasizing the communication and coordi-
nation demands in collocated software teams. The needs in pragmatic software
reuse tasks, to the best of our knowledge, have not been thoroughly explored.

The participants in our study asked a variety of questions which we group
into 5 categories. The data extraction was done manually and jointly by
two researchers. Figure 3 positions the categories along a software-architecture-
centric and problem-domain-centric spectrum. The specific questions are pre-
sented below, annotated with ‘I’ (relevant to ImageJ), ‘S’ (relevant to StochKit),
or ‘B’ (relevant to both).

258 X. Jin et al.

Fig. 3. Categories of information needs in pragmatic software reuse.

Reuse infrastructure (C1) touches upon the critical issues of the architectural
style underpinning the target system, and if not addressed properly, will likely
cause serious architectural mismatch [16,17] thereby hampering pragmatic reuse.

1. Where is the starting point that kind of likes a main function? [B]
2. How does this software know that I am writing a plugin class? [I]
3. What is the control structure/flow in an event-driven architecture? [S]
4. Where is an event triggered and/or captured? [S]
5. How to reuse the seeds to realize simple functions like ‘Hello World’? [B]

Components and connectors (C2) are at the heart of software architec-
ture. Understanding the computation, the interface, the decomposition, and the
interdependency is key to arrive at a successful reuse implementation.

6. How to name the plug-in class and what must be imported? [I]
7. Where should I save the plugin class in the file system? [I]
8. How do different events relate to each other? [S]
9. Where to specify precedence of multiple events? [S]

10. How can I customize the data to fit into the function being reused? [B]
11. How to initialize suitable variables to be applicable for a function? [B]
12. What is the linkage between the computation units (methods, procedures,

etc.) and/or between the encapsulates (classes, templates, etc.)? [B]

Reuse implementation (C3) is where the two ends of Fig. 3 meet. Solving
the needs in this category will facilitate the completion of the pragmatic reuse
task in an architecturally compatible way.

13. Where can I see the compilation information? [B]
14. Is this software capable of printing things out to help me debug? [B]
15. Where are the input files located and how to change the values related to

the reuse task in the (input) files? [B]
16. How to resolve the dangling references of a reused code fragment? [B]
17. How to output string with a numeric value together? [I]
18. How is the visualization for trajectories done? [S]

Problem solving (C4) shifts the information needs toward the functionalities
that the reuse task dictates. Here the programmers search for reuse candidates
written in same programming language as the target system.

Pragmatic Software Reuse in Bioinformatics 259

19. Is there existing Java implementation that I can import (reuse) to calculate
linear regression as well as curve plotting? [I]

20. Can I find existing code to read data from text files in Java? [I]
21. Is there available C++ code online to solve the linear equations? [S]
22. What might be the existing implementation for a specific function (variable

type conversion [I], absolute value calculation [S], etc.)? [B]
23. How to initialize member variables and vectors in Java or C++? [B]
24. Are there unit tests to be reused together with code? [B]

Problem understanding (C5) helps the developers to clarify the concep-
tual questions about the reuse task. Formulating an appropriate task context is
important to search and evaluate reuse candidates.

25. Why use linear regression in this task? [I]
26. What is the original gel sample: human or other species? [I]
27. How is the protein separated from the gel and what is the expected error

rate of the given input files as this can affect the kinds of (linear) regression
that I do? [I]

28. Do I have to plot three curves in a single figure or in 3 separate figures? [I]
29. What does species mean in a biochemical reaction? [S]
30. Are those values (time units 2 and 8, volume below 5) arbitrary or do they

follow certain properties? [S]
31. What is the biomedical significance of the task? [B]

4.2 Supporting the Needs with Social Network Information

Having elicited the specific questions and characterized them, we now examine
how the SNI supports pragmatic reuse needs. The support is analyzed both qual-
itatively and quantitatively. Figure 4 presents our qualitative analysis result, in
which the mappings between the SNI links and the information-need categories
are established. For each category, we present three statistics per task: the sup-
port from pre-selected SNI links (cf. Tables 2 and 3), the pre-selected links fol-
lowed by the participants, and the additional online SNI that the participants
accessed during pragmatic reuse.

A couple of observations can be made from Fig. 4. First, most pre-selected
SNI links were actually followed. This indicates that the developers perceived
the SNI as helpful hints which they were willing to spend time investigating.
Second, for a category whose pre-selected SNI links were actively followed, more
additional links were sought. This implies that the developers, once made aware
of SNI support, were motivated to pursue more links, which in turn increased
the likelihood of devising a reuse solution, as opposed to starting from scratch.

The usage data of Fig. 4 increased our confidence in the magnitude of the
impact that SNI had on pragmatic reuse. In another word, if little SNI were
followed, the impact would be trivial. To quantify such an impact, we assessed 2
variables: time to task completion and success of reuse solution. The comparisons
were made between the control groups (participants who did not receive pre-
selected SNI links) and the treatment groups (those who did).

260 X. Jin et al.

Fig. 4. SNI usage by tasks and information-need categories.

Fig. 5. Comparison of task completion time.

Figure 5 compares the time required for completing the reuse task in differ-
ent settings. Generally speaking, developers spent less time on the ImageJ task
than the StochKit task. This indicates that ImageJ’s architecture, namely the
plug-in architecture, is more extensible. By conforming to basic architectural
constraints and the construction process (e.g., importing the necessary libraries,
storing the new class file in the plug-in folder, etc.), the developers were able to
quickly extend the functionality of ImageJ. When the median completion time
is compared, pre-selected SNI links facilitated both tasks to be finished faster.
However, the effect is statistically significant only on the ImageJ task (Wilcoxon
signed rank test: p=0.0098, α=0.05) but not on the StochKit task (Wilcoxon

Pragmatic Software Reuse in Bioinformatics 261

Fig. 6. Comparison of reuse solution success.

test: p=0.2357, α=0.05). We speculate this may be caused by the more effort
in understanding StochKit’s event-driven architecture as well as in locating the
feature where pragmatic reuse would interact with [25]. Testing this hypothesis
requires further research.

In general, a (pragmatic) reuse task can have multiple, equally valid solutions.
Thus we assessed the participants’ reuse solutions on an individual basis with-
out a pre-determined ‘gold standard’ answer. Two researchers jointly judged all
the solutions and qualified them into 3 categories: successful (fulfilled function-
ality with the reuse done conforming to the underlying software architecture),
unsuccessful (unfulfilled functionality or solution developed from scratch), and
partially successful (things in between). Figure 6 shows the distributions. For the
ImageJ task, when provided with SNI, the developers could better complete the
reuse in that the successful rate increased from 30 % to 50 % and the unsuccess-
ful rate decreased from 20 % to 10 % in Fig. 6. For StochKit, SNI’s help seemed
rather limited by shifting some unsuccessful reuse solutions to partially, but not
completely, successful ones.

It is evident based on our observation and our interviews with the partici-
pants that, for the two tasks, developers preferred reuse over devising a solution
from scratch. The preference was predominant. In addition, the support that the
developers received from the SNI — either pre-selected, additionally followed, or
both — is indisputable. In fact, all the participants in our study showed signifi-
cant reliance on SNI that some went on using Google to confirm and even refine
the pre-selected links prepared by us. In sum, our results suggest the positive
impact of SNI on answering developers’ needs and completing the pragmatic
reuse tasks with speed and quality.

4.3 Threats to Validity

Our results about bioinformatics software developers’ information needs in
pragmatic reuse are clearly influenced by the types of architectural styles and

262 X. Jin et al.

particular systems adopted in our experiment. While the 31 specific questions
may not be generalizable to other settings, we believe the external validity is
relatively stronger for our result categories (cf. Fig. 3). Another external validity
threat relates to the representativeness of our study participants. While we tried
to be inclusive, the participants were recruited from a local community and were
primarily affiliated with a university’s medical campus.

For our analysis about SNI’s effect on pragmatic reuse, an important con-
struct validity threat is the pre-selection of the SNI links for both tasks. We
attempted to avoid repetitiveness in our SNI preparation; however, different
researchers might select different online resources. Nevertheless, the usage data
reported in Fig. 4 show that any SNI preparation will be unavoidably incom-
plete. As a result, we argue that the main purpose of the SNI is not to present
to the developers all the links, but to encourage them to engage in an active
information seeking and knowledge acquisition process.

5 Conclusions

For the biomedical community, reusing software in a pre-planned manner is
often infeasible. Pragmatic software reuse, therefore, is key to bioinformatics
programmer’s success in practice. This paper makes two major contributions:
(1) a classification of 31 information needs elicited during pragmatic reuse tasks,
and (2) a controlled experiment revealing the positive impact that development
online social networks have on meeting the information needs and on completing
the reuse tasks.

Our study’s results have several direct implications for tool building. First of
all, architecture decisions should be central to the identification and evaluation
of reuse candidates. Moreover, when the code is reused and integrated into the
target system [25], architectural conformance should be checked and violations
should be managed. Last, but certainly not the least, social network information
should be seamlessly incorporated into the entire process of pragmatic software
reuse: ranging from understanding the reuse infrastructure to implementing a
successful reuse solution. It is hoped that our work illuminates a systematic way
to tackle architectural mismatch [17] in biomedical software reuse.

Acknowledgments. This research is partially supported by the U.S. National Science
Foundation (Award CCF-1350487) and the National Natural Science Foundation of
China (Fund No. 61375053).

References

1. ImageJ: Image Processing and Analysis in Java. http://imagej.nih.gov/ij/.
Accessed March 2016

2. NIH Big Data to Knowledge. http://bd2k.nih.gov. Accessed March 2016
3. Protein Quantification Using ImageJ. http://openwetware.org/wiki/Protein

Quantification Using ImageJ. Accessed March 2016

http://imagej.nih.gov/ij/
http://bd2k.nih.gov
http://openwetware.org/wiki/Protein_Quan tification_Using_ImageJ
http://openwetware.org/wiki/Protein_Quan tification_Using_ImageJ

Pragmatic Software Reuse in Bioinformatics 263

4. Software Discovery Index: Request for Comments. https://nciphub.org/resources/
888/download/Software Discovery Index Meeting Report with comments.pdf.
Accessed March 2016

5. Software Discovery Meeting Report. https://nciphub.org/resources/885/
supportingdocs. Accessed March 2016

6. SoftwareX: An Elsevier Journal. http://www.journals.elsevier.com/softwarex/.
Accessed March 2016

7. StochKit: Stochastic Simulation Kit. http://www.engineering.ucsb.edu/∼cse/
StochKit/StochKit whatis.html. Accessed March 2016

8. Begel, A., Bosch, J., Storey, M.-A.: Bridging software communities through social
networking. IEEE Softw. 30(1), 26–28 (2013)

9. Begel, A., Khoo, Y., Zimmermann, T., Codebook: discovering and exploiting rela-
tionships in software repositories. In: ICSE, pp. 125–134 (2010)

10. Beyer, H.-J., Hein, D., Schitter, C., Knodel, J., Muthig, D., Naab, M.: Introducing
architecture-centric reuse into a small development organization. In: Mei, H. (ed.)
ICSR 2008. LNCS, vol. 5030, pp. 1–13. Springer, Heidelberg (2008)

11. Bhowmik, T., Niu, N., Wang, W., Cheng, J.-R., Li, L., Cao, X.: Optimal group size
for software change tasks: a social information foraging perspective. IEEE Trans.
Cybern. (to appear)

12. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure
in open source projects. In: FSE, pp. 24–35 (2008)

13. Brandt, J., Guo, P., Lewenstein, J., Dontcheva, M., Klemmer, S.: Opportunistic
programming: writing code to prototype, ideate, and discover. IEEE Softw. 26(5),
18–24 (2009)

14. Constantinou, E., Naskos, A., Kakarontzas, G., Stamelos, I.: Extracting reusable
components: A semi-automated approach for complex structures. Inf. Process.
Lett. 115(3), 414–417 (2015)

15. Dabbish, L., Stuart, H., Tsay, J., Herbsleb, J.: Leveraging transparency. IEEE
Softw. 30(1), 37–43 (2013)

16. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: why reuse is so
hard. IEEE Softw. 12(6), 17–26 (1995)

17. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: why reuse is still
so hard. IEEE Softw. 26(4), 66–69 (2009)

18. Happel, H.-J., Schuster, T., Szulman, P.: Leveraging source code search for reuse.
In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 360–371. Springer, Heidelberg
(2008)

19. Holmes, R., Walker, R.: Systematizing pragmatic software reuse. ACM Trans.
Softw. Eng. Methodol. 21(4), 20 (2012)

20. Hummel, O., Atkinson, C.: Using the web as a reuse repository. In: Morisio, M.
(ed.) ICSR 2006. LNCS, vol. 4039, pp. 298–311. Springer, Heidelberg (2006)

21. Kakarontzas, G., Constantinou, E., Ampatzoglou, A., Stamelos, I.: Layer assess-
ment of object-oriented software: A metric facilitating white-box reuse. J. Syst.
Softw. 86(2), 349–366 (2013)

22. Ko, A., DeLine, R., Venolia, G.: Information needs in collocated software develop-
ment teams. In: ICSE, pp. 344–353 (2007)

23. Krueger, C.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
24. Lemos, O.A.L., Bajracharya, S.K., Ossher, J., Masiero, P.C., Lopes, C.V.: A test-

driven approach to code search and its application to the reuse of auxiliary func-
tionality. Inf. Softw. Technol. 53(4), 294–306 (2011)

25. Maras, J., S̆tula, M., Crnković, I.: Towards specifying pragmatic software reuse.
In: ECSAW, Article No. 54 (2015)

https://nciphub.org/resources/888/download/Software_Discovery_Index_Meeting_Report_with_comments.pdf
https://nciphub.org/resources/888/download/Software_Discovery_Index_Meeting_Report_with_comments.pdf
https://nciphub.org/resources/885/supportingdocs
https://nciphub.org/resources/885/supportingdocs
http://www.journals.elsevier.com/softwarex/
http://www.engineering.ucsb.edu/~cse/Stoch Kit/StochKit_whatis.html
http://www.engineering.ucsb.edu/~cse/Stoch Kit/StochKit_whatis.html

264 X. Jin et al.

26. Niu, N., Easterbrook, S.: Exploiting COTS-based RE methods: An experience
report. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 212–216. Springer,
Heidelberg (2008)

27. Niu, N., Jin, X., Niu, Z., Cheng, J.-R., Li, L., Kataev, M.: A clustering-based
approach to enriching code foraging environment. IEEE Trans. Cybern. (to appear)

28. Niu, N., Mahmoud, A., Bradshaw, G.: Information foraging as a foundation for
code navigation. In: ICSE, pp. 816–819 (2011)

29. Niu, N., Savolainen, J., Niu, Z., Jin, M., Cheng, J.-R.: A systems approach to
product line requirements reuse. IEEE Syst. J. 8(3), 827–836 (2014)

30. Niu, N., Yang, F., Cheng, J.-R., Reddivari, S.: Conflict resolution support for
parallel software development. IET Softw. 7(1), 1–11 (2013)

31. Sanft, K., Wu, S., Roh, M., Fu, J., Lim, R., Petzold, L.: StochKit2: software for dis-
crete stochastic simulation of biochemical systems with events. Bioinform. 27(17),
2457–2458 (2011)

32. Savolainen, J., Niu, N., Mikkonen, T., Fogdal, T.: Long-term product-line sustain-
ability through planned staged investments. IEEE Softw. 30(6), 63–69 (2013)

33. Sel’Kov, E.: Self-oscillations in glycolysis. Eur. J. Biochem. 4(1), 79–86 (1968)
34. Sillito, J., Murphy, G., De Volder, K.: Asking and answering questions during a

programming change task. IEEE Trans. Softw. Eng. 34(4), 434–451 (2008)
35. Zou, Y., Liu, C., Jin, Y., Xie, B.: Assessing software quality through web comment

search and analysis. In: Favaro, J., Morisio, M. (eds.) ICSR 2013. LNCS, vol. 7925,
pp. 208–223. Springer, Heidelberg (2013)

Software Reuse Tools

Feature Location Benchmark for Software
Families Using Eclipse Community Releases

Jabier Martinez1,2(B), Tewfik Ziadi2, Mike Papadakis1,
Tegawendé F. Bissyandé1, Jacques Klein1, and Yves Le Traon1

1 SnT, University of Luxembourg, Luxembourg, Luxembourg
{jabier.martinez,mike.papadakis,tegawende.bissyande,

jacques.klein,yves.letraon}@uni.lu
2 LiP6, Sorbonne Universités, UPMC Univ Paris 06, Paris, France

tewfik.ziadi@lip6.fr

Abstract. It is common belief that high impact research in software
reuse requires assessment in realistic, non-trivial, comparable, and repro-
ducible settings. However, real software artefacts and common repre-
sentations are usually unavailable. Also, establishing a representative
ground truth is a challenging and debatable subject. Feature location in
the context of software families is a research field that is becoming more
mature with a high proliferation of techniques. We present EFLBench, a
benchmark and a framework to provide a common ground for this field.
EFLBench leverages the efforts made by the Eclipse Community which
provides real feature-based family artefacts and their implementations.
Eclipse is an active and non-trivial project and thus, it establishes an
unbiased ground truth. EFLBench is publicly available and supports all
tasks for feature location techniques integration, benchmark construc-
tion and benchmark usage. We demonstrate its usage and its simplicity
and reproducibility by comparing four techniques.

Keywords: Feature location · Software product lines · Benchmark ·
Static analysis · Information retrieval

1 Introduction

Software reuse is often performed by industrial practitioners mainly to boost
productivity. One such case is the copy-paste-modify which is performed when
creating product variants for supporting different customer needs [9]. This prac-
tice may increase the productivity in a short term period but in the long run
it becomes problematic due to the complex maintenance and further evolution
activities of the variants [4]. To deal with these issues, Software Product Line
(SPL) engineering has developed mature techniques that can support common-
ality and variability management of a whole product family and the derivation
of tailored products by combining reusable assets [4].

Despite the advantages provided by SPLs, their adoption still remains a
major challenge because of organizational and technical issues. To deal with
c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 267–283, 2016.
DOI: 10.1007/978-3-319-35122-3 18

268 J. Martinez et al.

it, software reuse community proposed the so-called extractive or bottom-up
approaches. Among the various bottom-up processes, in this paper we focus on
feature location. A feature is defined as a prominent or distinctive user-visible
aspect, quality, or characteristic of a software system or systems [15]. As pointed
out in the surveys of Rubin et al. and Assunção et al. [5,24], feature location is
an important and challenging problem of these bottom-up processes towards sys-
tematic reuse. Many approaches have been proposed and there is a progression
in the number of research work conducted every year [5]. Thus, it can be stated
that there is an increasing interest on the topic by the research community [19].

Comparing, evaluating and experimenting with feature location techniques
is challenging due to the following reasons:

– Most of the research prototypes are either unavailable or hard to configure.
– Performance comparison requires common settings and environments.
– Most of the tools are strongly dependent on specific artefact types that they

were designed for, e.g., programming language, design models, etc.
– Effectiveness of the techniques can vary according to different implementation

element types, e.g., Abstract Syntax Tree (AST) nodes, software components,
etc., that are to be located.

Common case study subjects and frameworks are in need to foster the
research activity [30]. In this direction, we identified a set of requirements for
such frameworks in feature location:

A standard case study subject. Subjects that are real, non-trivial and easy
to use are mandatory. This includes: (1) A list of existing features; (2) For
each feature, a group of elements that implements it. (3) A set of real product
variants accompanied by the information of which features are included.

A benchmarking framework. In addition to the standard subjects, a full
implementation that allows a common, quick and intensive evaluation is
needed. This includes (1) available implementation with a common abstrac-
tion for the product variants to be considered by the case studies, i.e., as
unified structured elements; (2) easy and extensible mechanisms to integrate
feature location techniques to support the experimentation and (3) sets of
predefined evaluation metrics to draw comparable results.

This paper proposes a framework, called Eclipse Feature Location
Benchmark (EFLBench), that fulfils the requirements identified above. We
propose a standard and a realistic case study for feature location and an inte-
grated benchmark using the packages of Eclipse releases, their features and their
associated plugins. We also propose a full implementation to support bench-
marking within Bottom-Up Technologies for Reuse (BUT4Reuse) [21] that is an
open-source, generic and extensible framework for bottom-up approaches which
allows a quick integration of feature location techniques.

The rest of the paper is structured as follows: Sect. 2 provides background
information about feature location techniques and the Eclipse project. In Sect. 3
we present Eclipse as a case study subject and then in Sect. 4 we present the

Feature Location Benchmark for Software Families: EFLBench 269

EFLBench framework. Section 5 presents different feature location techniques
and the results of EFLBench usage. Section 6 presents related work and Sect. 7
concludes and presents future work.

2 Background

In order to provide a better understanding for the following sections of this
paper, we provide details about feature location and about the Eclipse project.

2.1 Feature Location

Bottom-up approaches for SPL adoption are mainly composed of the following
processes: Feature identification, feature location and re-engineering [21]. While
feature identification is the process that takes as input a set of product variants
and analyses them to discover and identify features, the feature location is the
process of mapping features to their concrete implementation in the product
variants. Therefore, compared to the feature identification process, the assump-
tion in feature location is that the features are known upfront. Feature location
processes in software families also use to assume that feature presence or absence
in the product variants is known upfront. However, what is unknown is where
exactly they are implemented inside the variants. Finally, feature re-engineering
is the process that includes a transformation phase where the artefact variants
are refactored to conform to an SPL approach. This includes extracting, for each
feature, reusable assets from the artefact variants.

As already mentioned, the objective of feature location approaches is to map
features to their concrete implementation parts inside the product variants. How-
ever, depending on the nature of the variants, this can concern code fragments
in the case of source code [2,11,23,34], model fragments in the context of mod-
els [12,20] or software components in software architectures [1,14]. Therefore,
existing techniques are composed of the following two phases: (1) Abstraction,
where the different product variants are abstracted and represented as imple-
mentation elements; (2) Location, where algorithms analyse and compare the
different product variants to create groups of implementation elements. These
groups are to be associated with the sought features. Despite these two phases,
feature location techniques differ in the following three aspects:

– The way the product variants are abstracted and represented.
Indeed, each approach uses a specific formalism to represent product vari-
ants. For example AST nodes for source code [11], Atomic-Model-Element to
represent model variants [20] or plugins in software architectures [1]. In addi-
tion, the granularity of the sought implementation elements may vary from
coarse to fine [16]. Some use fine granularity using AST nodes that cover all
source code statements while others use purposely a little bit bigger granu-
larity using object-oriented building elements [2] like Salman et al. that only
consider classes [25].

270 J. Martinez et al.

– The proposed algorithms. Each approach proposes its own algorithm to
analyse product variants and identify the groups of elements that are related
to features. For instance, Fischer et al. [11] used a static analysis algorithm.
Other approaches use techniques from the field of Information Retrieval (IR).
Xue et al. [33] and Salman et al. [26] proposed the use of Formal Concept
Analysis (FCA) to group implementation elements and then, in a second
step, the IR technique Latent Semantic Indexing (LSI) to map between these
groups and the features. Salman et al. used Hierarchical Clustering to perform
this second step [25].

– The used case studies to evaluate and experiment the proposed
technique. The evaluation of each technique is often performed using its
own case study and with its own evaluation measures.

2.2 The Eclipse Project

The Eclipse community, with the support of the Eclipse Foundation, provides
integrated development environments (IDE) targeting different developer pro-
files. The project IDEs cover the development needs of Java, C/C++, JavaEE,
Scout, Domain Specific Languages, Modeling, Rich Client Platforms, Remote
Applications Platforms, Testing, Reporting, Parallel Applications or for Mobile
Applications. Following Eclipse terminology, each of the customized Eclipse IDEs
is called an Eclipse package.

As the project evolves over time, new packages appear and some other ones
disappear depending on the interest and needs of the community. For instance,
in 2011 there were 12 packages while the next year 13 packages were available
with the addition of one targeted to Automotive Software developers.

Continuing with Eclipse terminology, a simultaneous release (release here-
after) is a set of packages which are public under the supervision of the Eclipse
Foundation. Every year, there is one main release, in June, which is followed
by two service releases for maintenance purposes: SR1 and SR2 usually around
September and February. For each release, the platform version changes and tra-
ditionally celestial bodies are used to name the releases, for example Luna for
version 4.4 and Mars for version 4.5.

The packages present variation depending on the included and not-included
features. For example, Eclipse package for Testers is the only one that includes
the Jubula Functional Testing features. On the contrary, other features like the
Java Development tools are shared by most of the packages. There are also
common features for all the packages, like the Equinox features that implement
the core functionality of the Eclipse architecture. The online documentation of
each release provides a high-level information of the features that each package
provides1.

It is important to mention that in this work we are not interested in the
variation among the releases (version 4.4, 4.5 and so on), known as variation in
time, because this is related to software maintenance and evolution. We focus on

1 https://eclipse.org/downloads/compare.php?release=kepler.

https://eclipse.org/downloads/compare.php?release=kepler

Feature Location Benchmark for Software Families: EFLBench 271

the variation of the different packages of a given release, known as variation in
space, which is expressed in terms of included and not-included features. Each
package is different in order to support the needs of the targeted developer profile
by including only the appropriate features.

Eclipse is feature oriented and based on plugins. Each feature consists of a
set of plugins that are the actual implementation of the feature. Table 1 shows an
example of feature with four plugins as implementation elements that, if included
in an Eclipse package, adds support for a versioning system based on CVS. At
technical level, the actual features of a package can be found within a folder
called features. This folder contains meta-information regarding the installed
features including the list of plugins associated to each of the features. Each
feature has an id, a name and a description as written by the feature providers
of the Eclipse community. A plugin has an id and a name written by the plugin
providers but it does not have a description.

Table 2 presents data regarding the evolution of the Eclipse releases over
the years. In particular, it presents the total number of packages, features and
plugins per release. To illustrate the distribution of packages and features in the
project, Fig. 1 depicts a matrix of the different Eclipse Kepler SR2 packages.

Table 1. Eclipse feature example

Feature

id: org.eclipse.cvs

name: Eclipse CVS Client

description: Eclipse CVS Client (binary runtime and user documentation).

Plugin id Plugin name

org.eclipse.cvs Eclipse CVS Client

org.eclipse.team.cvs.core CVS Team Provider Core

org.eclipse.team.cvs.ssh2 CVS SSH2

org.eclipse.team.cvs.ui CVS Team Provider UI

Table 2. Eclipse releases and their number of packages, features and plugins

Year Release Packages Features Plugins

2008 Europa Winter 4 91 484

2009 Ganymede SR2 7 291 1,290

2010 Galileo SR2 10 341 1,658

2011 Helios SR2 12 320 1,508

2012 Indigo SR2 12 347 1,725

2013 Juno SR2 13 406 2,008

2014 Kepler SR2 12 437 2,043

2015 Luna SR2 13 533 2,377

http://www.org.eclipse.cvs
http://www.org.eclipse.cvs
http://www.org.eclipse.team.cvs.core
http://www.org.eclipse.team.cvs.ssh2
http://www.org.eclipse.team.cvs.ui

272 J. Martinez et al.

Fig. 1. Eclipse Kepler SR2 packages and a mapping to their 437 features

Fig. 2. Features of Eclipse Kepler SR2 and their dependencies

In this figure, a black box denotes the presence of a feature (horizontal axis)
in a package (vertical axis). We observe that some features are present in all
the packages while others are specific to only few, one or two, packages. The
437 features are alphabetically ordered by their id and, for instance, the feature
Eclipse CVS Client, tagged in Fig. 1, is present in all of the packages except in
the Automotive Software package.

Features, as in most of the feature oriented systems, have dependencies
among them. Includes is the Eclipse terminology to define subfeatures and
Requires means that there is a functional dependency between the features.
Figure 2 shows the dependencies between all the features of Eclipse Kepler SR2.
We tagged in Fig. 2 some features and subfeatures of the Eclipse Modeling Frame-
work. Functional dependencies are mainly motivated by the existence of depen-
dencies between the plugins of one feature with the plugins of other features.

Both Feature and Plugin dependencies are explicitly declared in their meta-
data. Figure 3 shows a very small excerpt of the dependency connections of the
2043 plugins of Eclipse Kepler SR2. Concretely, this excerpt shows the depen-
dencies of the four CVS plugins presented in Table 1.

Feature Location Benchmark for Software Families: EFLBench 273

Fig. 3. Excerpt of plugin dependencies focusing on the dependencies of CVS plugins

3 Eclipse as a Standard Case Study Subject

Eclipse packages are an interesting candidate as a standard case study for a
feature location benchmark. First, as mentioned in Sect. 1, it fulfils the require-
ment of providing the needed data to be used as ground truth. This ground
truth can be extracted from features meta-information. Apart from this, Eclipse
packages present other characteristics that make this case study interesting and
challenging. This section aims to discuss these characteristics.

The relation between the number of available packages in the different Eclipse
releases and the number of different features is not balanced. In fact, the number
of available product variants has been shown to be an important factor for
feature location techniques [11]. The limited number of packages and the big
amount of features make the Eclipse case study challenging. The granularity
of the implementation elements (plugins) is very coarse if we compare it with
source code AST nodes, however, the number of plugins is still reasonably high.
In Eclipse Kepler SR2, the total of plugins with different ids is 2043 with an
average of 609 plugins per Eclipse package and a standard deviation of 192.

Eclipse feature and plugin providers have created their own natural language
corpora. The feature and plugin names (and the description in the case of the
features) can be categorized as meaningful names [24] enabling the use of sev-
eral IR techniques. Also, the dependencies between features and dependencies
between implementation elements have been used in feature location techniques.
For example, in source code, program dependence analysis has been used by
exploiting program dependence graphs [7]. Acher et al. [1] also leveraged archi-
tecture and plugin dependencies. As presented in previous section, Eclipse also
has dependencies between features and dependencies between plugins enabling
their exploitation during feature location.

There are properties that can be considered as “noise” that are common in
real scenarios. Some of them can be considered as non-conformities in feature
specification [31]. A case study without “noise” should be considered as a very
optimistic case study. In Eclipse Kepler SR2, 8 plugins do not have a name and
different plugins from the same feature have also exactly the same names. There
are also 177 plugins which are associated to more than one feature. Thereby
the features’ plugin sets are not completely disjoint. These plugins are mostly
related to libraries for common functionalities that they were not included as

274 J. Martinez et al.

required plugins but as a part of the feature itself. In addition, 40 plugins present
in some of the variants are not declared in any feature. Also, in few cases, feature
versions are different among packages of the same release.

Apart from the official releases, software engineering practitioners have cre-
ated their own Eclipse packages. Therefore, also researchers can use their own
packages or create variants with specific characteristics. Interest of analysing
plugin-based or component-based software system families to exploit their fea-
ture variability has been shown in previous works [1,14,29]. For instance, expe-
riences in an industrial case study were reported by Grünbacher et al. [14] where
they performed manual feature location in Eclipse packages to extract an SPL
that involved more than 20 package customizations per year.

4 Eclipse Feature Location Benchmarking Framework

EFLBench is aimed to be used with any set of Eclipse packages. The benchmark
can be created from any set of Eclipse packages that can have additional features
which are not part of any official release. However, to set a common scenario for
research we recommend and propose the use of Eclipse Community releases.

Figure 4, in the top part, illustrates the mechanism for constructing the
benchmark taking as input the Eclipse packages and automatically produc-
ing two outputs, (a) a Feature list with information about each feature name,
description and the list of packages where it was present, and (b) a ground truth
with the mapping between the features and the implementation elements which
are the plugins.

Once the benchmark is constructed, the bottom part of Fig. 4 illustrates how
it can be used through BUT4Reuse [21] where feature location techniques can be
integrated. The Eclipse adapter, which is responsible for the variants abstraction
phase, will be followed by the launch of the targeted feature location techniques.
This process takes as input the Eclipse packages (excluding the features folder)

Fig. 4. EFLBench: Eclipse package variants as benchmark for feature location

Feature Location Benchmark for Software Families: EFLBench 275

and the feature list. The feature location technique produces a mapping between
features and plugins that can be evaluated against the ground truth obtained in
the benchmark construction phase.

The following subsections provide more details on the two phases.

4.1 Benchmark Construction

We implemented an automatic extractor of features information. The implemen-
tation elements of a feature are those plugins that are directly associated to this
feature. From the 437 features of the Eclipse Kepler SR2, each one has an aver-
age of 5.23 plugins associated with. The standard deviation is 9.67. There is
one outlier with 119 plugins which is the feature BIRT Framework present in
the Reporting package. From the 437 features, there are 19 features that do not
contain any plugins, so they are considered abstract features which are created
just for grouping other features. For example, the feature UML2 Extender SDK
(Software Development Kit) groups UML2 End-User Features, Source for UML2
End-User Features, UML2 Documentation and UML2 Examples.

Reproducibility is becoming quite easy by using benchmarks and common
frameworks that launch and compare different techniques [30]. This practice,
allows a valid performance comparison with all the implemented and future
techniques. BUT4Reuse public repository includes EFLBench and its automatic
extractor.

4.2 Benchmark Usage

During the product abstraction phase, the implemented Eclipse adapter decom-
poses any Eclipse installation in a set of plugins by visiting and analysing the
Eclipse installation file structure. The plugin elements contain information about
their id, name as well as their dependency to other plugin elements.

At technical level, BUT4Reuse provides an extension point and interface to
easily include feature location techniques2. After feature location, it calculates
the precision and recall for each feature location technique which are classical
evaluation metrics in IR studies (e.g., [25]). We explain precision and recall, two
metrics that complements each other, in the context of EFLBench. A feature
location technique assigns a set of plugins to each feature. In this set, there can
be some plugins that are actually correct according to the ground-truth, those
are true positives (TP). TPs are also referred to as hit. On the set of plugins
retrieved by the feature location technique for each feature, there can be other
plugins that do not belong to the feature, those are false positives (FP) which are
also referred to as false alarms. Precision is the percentage of correctly retrieved
plugins from the total of retrieved plugins by the feature location technique.
A precision of 100 % means that the ground truth of the plugins assigned to a
feature and the retrieved set from the feature location technique are the same
and no “extra” plugins were included. The formula of precision is as follows:

2 Instructions to integrate feature location techniques in BUT4Reuse: https://github.
com/but4reuse/but4reuse/wiki/ExtensionsManual.

https://github.com/but4reuse/but4reuse/wiki/ExtensionsManual
https://github.com/but4reuse/but4reuse/wiki/ExtensionsManual

276 J. Martinez et al.

precision =
TP

TP + FP
=

plugins hit

plugins hit + plugins false alarm

According to the ground truth there can be some plugins that are not
included in the retrieved set, meaning that they are miss. Those plugins are
false negatives (FN). Recall is the percentage of correctly retrieved plugins from
the set of the ground-truth. A recall of 100 % means that all the plugins of the
ground-truth were assigned to the feature. The formula of recall is as follows:

recall =
TP

TP + FN
=

plugins hit

plugins hit + pluginsmiss

Precision and recall are calculated for each feature. In order to have a global
result of the precision and recall we use the mean of all the features. Finally,
BUT4Reuse reports the time spent for the feature location technique. With this
information, the time performance of different techniques can be compared.

5 Example of EFLBench Usage

This section aims at presenting the possibilities of EFLBench by benchmarking
four feature location techniques. The four techniques are using Formal Concept
Analysis (FCA) and three of them are using natural language processing (NLP).
Before enumerating the four techniques, we briefly present FCA and the used
NLP algorithms.

5.1 Background Algorithms

For the four techniques we used FCA [13] for the identification of an ini-
tial set of groups of implementation elements. We will refer to the identi-
fication of this initial set as block identification [21]. FCA groups elements
that share common attributes. A detailed explanation about FCA formal-
ism in the same context of block identification can be found in Al-Msie’deen
et al. [2] and Shatnawi et al. [29]. FCA uses a formal context as input. In our
case, the entities of the formal context are the Eclipse packages and the attributes
(binary) are the presence or not of each of the plugins. With this input, FCA
discovers a set of concepts. The concepts which contain at least one plugin (non
empty concept intent in FCA terminology) is considered as a block. For example,
in Eclipse Kepler SR2, FCA-based block identification identifies 60 blocks with
an average of 34 plugins per block and a standard deviation of 54 plugins. In
Eclipse Europa Winter, with only 4 packages, only 6 blocks are identified with
an average of 80 plugins each and a standard deviation of 81. Given the low
number of Eclipse packages, FCA identifies a low number of blocks. The number
of blocks is specially low if we compare it with the actual number of features that
we aim to locate. For example 60 blocks in Kepler SR2 against its 437 features.
The higher the number of Eclipse packages, the most likely FCA will be able to
distinguish different blocks. At technical level, we implemented FCA for block
identification using ERCA [10].

Feature Location Benchmark for Software Families: EFLBench 277

In the approaches where we use IR techniques, we did not make use of the
feature or plugin ids. In order to extract the meaningful words from both fea-
tures (name and description) and elements (plugin names), we used two well
established techniques in the IR field:

– Parts-of-speech tags remover: These techniques analyse and tag words
depending on their role in the text. The objective is to filter and keep only
the potentially relevant words. For example, conjunctions (f.e. “and”), articles
(f.e. “the”) or prepositions (f.e. “in”) are frequent and may not add relevant
information. As example, we consider the following feature name and descrip-
tion: “Eclipse Scout Project. Eclipse Scout is a business application framework
that supports desktop, web and mobile frontends. This feature contains the
Scout core runtime components.”. We apply Part-of-Speech Tagger techniques
using OpenNLP [3].

– Stemming: This technique reduces the words to their root. The objective is
to unify words for not to consider them as unrelated. For example “playing”
will be stemmed to “play” or “tools” to “tool”. Instead of keeping the root,
we keep the word with greater number of occurrences to replace the involved
words. As example, in the Graphiti feature name and description we find
“[...]Graphiti supports the fast and easy creation of unified graphical tools,
which can graphically display[...]” so graphical and graphically is considered
the same word as their shared stem is graphic. Regarding the implementation,
we used the Snowball steamer [22].

5.2 Feature Location Techniques

We explain the four examples of feature location techniques. Next Sect. 5.3 will
be dedicated to present the results of using EFLBench.

FCA and Strict Feature-Specific (SFS) location: FCA is used for block
identification. Then, for feature location we use Strict Feature-Specific location
that consider the following assumptions: A feature is located in a block when
(1) the block always appears in the artefacts that implements this feature and
(2) the block never appears in any artefact that does not implement this feature.
Using this technique, the implementation of a feature is located in the plugin
elements of the whole block. The principles of this feature location technique
is similar to locating distinguishing features using diff sets [23]. In the Eclipse
packages case, notice that, given the low number of variants and identified blocks,
a lot of features will be located for the same block. In Eclipse Kepler SR2, an
average of 7.25 features are located for each of the 60 blocks with a standard
deviation of 13.71 features.

FCA and SFS and Shared term: The intuition behind this technique is first
to group features and blocks with FCA and SFS and then apply a “search” of
the feature words inside the elements of the block to discard elements that may
be completely unrelated. For each association between feature to a block, we
keep, for this feature, only the elements of the block which have at least one

278 J. Martinez et al.

meaningful name shared with the feature. In other words, we keep the elements
which term frequency (tf) between feature and element (featureElementTF) is
greater than 0. For clarification, featureElementTF is defined as follows being f
the feature, e the element and tf a method that just counts the number of times
that a given term appears in a given list of terms:

featureElementTF (f, e) =
∑

termi∈e.terms
tf(termi, f.terms)

FCA and SFS and Term frequency: FCA is used for block identification and
then SFS as in the previous approaches. Then, the intuition of this technique is
that all the features assigned to a block competes for the block elements. The
feature (or features in case of drawback) with higher featureElementTF will keep
the elements while the other features will not consider this element as part of it.

FCA and SFS and tf-idf: FCA and SFS are used as in the previous
approaches. The features also compete in this case for the elements of the block
but a different weight is used for each word of the feature. This weight (or score)
is calculated through the term frequency - inverse document frequency (tf-idf)
value of the set of features that are competing. tf-idf is a well known technique
in IR [27]. In our context, the intuition is that words that appear more fre-
quent through the features may not be as important as less frequent words. For
example “Core”, “Client” or “Documentation” are maybe more frequent across
features but “CVS” or “BIRT”, being less frequent, are more relevant, infor-
mative or discriminating. As in the previous approach, the feature (or features)
with higher featureElementScore will keep the elements while the other features
will not consider them. The featureElementScore formula is defined as follows,
being F the set of features that are competing for the block element.

featureElementScore(f, e, F) =
∑

termi∈e.terms
tfidf(termi, f, F)

tfidf(termi, f, F) = tf(termi, f.terms) × idf(termi, F)

idf(termi, F) = log
(|F |

|{f ∈ F : termi ∈ f}|
)

5.3 Results

We used the benchmark created with each of the Eclipse releases presented in
Table 2. The experiments were launched using BUT4Reuse at commit ce3a002
(19 December 2015) which contains the presented feature location techniques.
Detailed instructions for reproducibility are available3. We used a laptop Dell
Latitude E6330 with a processor Intel(R) Core(TM) i7-3540M CPU@3.00 GHz
with 8 GB RAM and Windows 7 64-bit.

After using the benchmark, we obtain the results shown in Table 3. Precision
and Recall are the mean of all the features as discussed at the end of Sect. 4.2.

3 https://github.com/but4reuse/but4reuse/wiki/Benchmarks.

https://github.com/but4reuse/but4reuse/wiki/Benchmarks

Feature Location Benchmark for Software Families: EFLBench 279

Table 3. Precision and recall of the different feature location techniques

SFS SFS+ST SFS+TF SFS+TFIDF

Release Precision Recall Precision Recall Precision Recall Precision Recall

Europa Winter 6.51 99.33 11.11 85.71 12.43 58.69 13.07 53.72

Ganymede SR2 5.13 97.33 10.36 87.72 11.65 64.31 12.80 52.70

Galileo SR2 7.13 93.39 10.92 82.01 11.82 60.50 12.45 53.51

Helios SR2 9.70 91.63 16.04 80.98 25.97 63.70 29.46 58.39

Indigo SR2 9.58 92.80 15.72 82.63 19.79 59.72 22.86 57.57

Juno SR2 10.83 91.41 19.08 81.75 25.97 61.92 24.89 60.82

Kepler SR2 9.53 91.14 16.51 83.82 26.38 62.66 26.86 57.15

Luna SR2 7.72 89.82 13.87 82.72 22.72 56.67 23.73 51.31

Mean 8.26 93.35 14.20 83.41 19.59 61.02 20.76 55.64

The results in terms of precision are not satisfactory in the presented feature loca-
tion techniques. This suggests that the case study is challenging. Also we noticed
that there are no very relevant differences in the results of these techniques
among the different Eclipse releases. As discussed before, given the few amount
of Eclipse packages under consideration, FCA is able to distinguish blocks which
may actually correspond to a high number of features. For example, all the plug-
ins that correspond specifically to the Eclipse Modeling package, will be grouped
in one block while many features are involved.

The first location technique (FCA + SFS) does not assume meaningful names
given that no IR technique is used. The features are located in the elements of a
whole block obtaining a high recall. Eclipse feature names and descriptions are
probably written by the same community of developers that create the plugins
and decide their names. In the approaches using IR techniques, the authors
expected a higher increment of precision without a loss of recall but the results
suggest that certain divergence exists between the vocabulary used at feature
level and at implementation level.

Regarding the time performance, Table 4 shows, in milliseconds, the time
spent for the different releases. Adapt time corresponds to the time to abstract
the Eclipse packages into a set of plugin elements and get their information.
The FCA time corresponds to the time for block identification. Then, the fol-
lowing columns show the time of the different feature location techniques. We
can observe that the time performance is not a limitation of these techniques as
they take around half a minute maximum.

It is out of the scope of the paper to propose innovative feature location
techniques. The objective is to present the benchmark usage, show that quick
feedback from feature location techniques can be obtained in the Eclipse releases
case studies. In addition, we provide empirical results of four feature location
techniques that can be used as baseline. Other block identification approaches
can be used to further split the groups obtained by FCA as for example the

280 J. Martinez et al.

Table 4. Time performance in milliseconds for feature location

Release Adapt FCA SFS SFS+ST SFS+TF SFS+TFIDF

Europa Winter 2,397 75 6 2,581 2,587 4,363

Ganymede SR2 7,568 741 56 11,861 11,657 23,253

Galileo SR2 10,832 1,328 107 17,990 17,726 35,236

Helios SR2 11,844 1,258 86 5,654 5,673 12,742

Indigo SR2 12,942 1,684 100 8,782 8,397 16,753

Juno SR2 16,775 2,757 197 7,365 7,496 14,002

Kepler SR2 16,786 2,793 173 8,586 8,776 16,073

Luna SR2 17,841 3,908 233 15,238 15,363 33,518

Mean 12,123 1,818 120 9,757 9,709 19,493

clustering proposed by Salman et al. [25]. Other feature location techniques
can make use of the available plugin and feature dependencies information as
presented in Figs. 2 and 3. Other works can evaluate the filtering of non-relevant
domain specific words for the IR techniques (f.e. “Eclipse” or “feature”) or even
make use of an Eclipse domain ontology to refine feature location. Finally, meta-
techniques for feature location can be proposed inspired by ensemble learning
from the data mining research field. These meta-techniques can use multiple
feature location techniques, providing better results than using each of them
alone.

6 Related Work

In SPL engineering several benchmarks and common test subjects have been
proposed. Herrejon et al. proposed evaluating SPL technologies on a common
artefact, a Graph Product Line [17], which variability features are familiar to
any computer engineer. The same authors proposed a benchmark for combina-
torial interaction testing techniques for SPLs [18]. Betty [28] is a benchmark for
evaluating automated feature model analysis techniques, which has long history
in software engineering research [6]. Feature location on software families is also
becoming more mature with a relevant proliferation of techniques. Therefore,
benchmarking frameworks to support the evolution of this field are in need.

Many different case studies have been used for evaluating feature location
in software families [5]. For instance, ArgoUML variants [8] have been exten-
sively used. However, none of the presented case studies have been proposed
as a benchmark except the variants of the Linux kernel by Xing et al. [32].
This benchmark considers 12 variants of the Linux kernel from which a ground
truth is extracted with the traceability of 2400 features to code parts. However,
even if the Linux kernel can be considered as an existing benchmark, EFLBench
is complementary to foster feature location research because (a) it maps to a

Feature Location Benchmark for Software Families: EFLBench 281

project that is plugin-based, while Linux considers C code, and (b) the char-
acteristics of the Eclipse natural language corpora is different from the Linux
kernel corpora. This last point is important because it has a major influence on
the IR-based feature location techniques. Finally, using the Linux kernel bench-
mark, the ground truth may be also constructed but there is no framework to
support the experiment. EFLBench is associated with BUT4Reuse which inte-
grates feature location techniques making easier to control and reproduce the
settings of the studied techniques.

7 Conclusion

We have presented EFLBench, a framework and a benchmark for supporting
research on feature location. The benchmark is based on the Eclipse releases
and is designed to support research on software reuse in the context of software
product lines. Existing and future techniques dealing with this problem can find
a challenging playground that is: (a) real, (b) contains a valid ground-truth
and (c) is directly reproducible. We also demonstrated example results of four
approaches using the EFLBench.

As further work we aim to create a parametrizable generator for Eclipse pack-
ages. This generator will combine different features in order to use the benchmark
in special and predefined characteristics. We also aim to generalize the usage of
feature location benchmarks inside BUT4Reuse providing extensibility points for
other case studies. Finally, we plan to use the benchmark in order to test and
report existing and innovative feature location techniques while also encouraging
the research community on using it as part of their evaluation.

Acknowledgments. Supported by the National Research Fund Luxembourg (FNR),
under the AFR grant 7898764.

References

1. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Extraction and
evolution of architectural variability models in plugin-based systems. Softw. Syst.
Model. 13(4), 1367–1394 (2014)

2. AL-Msie’deen, R.F., Seriai, A., Huchard, M., Urtado, C., Vauttier, S., Salman,
H.E.: Feature location in a collection of software product variants using formal
concept analysis. In: Favaro, J., Morisio, M. (eds.) ICSR 2013. LNCS, vol. 7925,
pp. 302–307. Springer, Heidelberg (2013)

3. Apache: Opennlp (2010). http://opennlp.apache.org
4. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product

Lines - Concepts and Implementation. Springer, Heidelberg (2013)
5. Assunção, W.K.G., Vergilio, S.R.: Feature location for software product line migra-

tion: a mapping study. In: International Software Product Line Conference: Com-
panion Volume for Workshop, Tools and Demo papers, SPLC, pp. 52–59 (2014)

6. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20
years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

http://opennlp.apache.org

282 J. Martinez et al.

7. Chen, K., Rajlich, V.: Case study of feature location using dependence graph, after
10 years. In: The 18th IEEE International Conference on Program Comprehension,
ICPC 2010, Braga, Minho, Portugal, 30 June–2 July, pp. 1–3 (2010)

8. Couto, M.V., Valente, M.T., Figueiredo, E.: Extracting software product lines: a
case study using conditional compilation. In: European Conference on Software
Maintenance and Reengineering, CSMR 2011, pp. 191–200 (2011)

9. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K.: An
exploratory study of cloning in industrial software product lines. In: 17th European
Conference on Software Maintenance and Reengineering, CSMR 2013, Genova,
Italy, 5–8 March, pp. 25–34. IEEE Computer Society (2013)

10. Falleri, J.R., Dolques, X.: Erca - eclipse’s relational concept analysis (2010).
https://code.google.com/p/erca/

11. Fischer, S., Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Enhancing clone-and-
own with systematic reuse for developing software variants. In: Proceedings of
International Conference on Software Maintenance and Evolution (ICSME 2014),
pp. 391–400 (2014)

12. Font, J., Ballaŕın, M., Haugen, O., Cetina, C.: Automating the variability formal-
ization of a model family by means of common variability language. In: SPLC, pp.
411–418 (2015)

13. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st
edn. Springer-Verlag New York Inc., Secaucus (1997)

14. Grünbacher, P., Rabiser, R., Dhungana, D., Lehofer, M.: Model-based customiza-
tion and deployment of eclipse-based tools: Industrial experiences. In: International
Conference on Automated Software Engineering (ASE), pp. 247–256 (2009)

15. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univer-
sity Software Engineering Institute (1990)

16. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
Proceedings of the 30th International Conference on Software Engineering (ICSE),
pp. 311–320 (2008)

17. Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-line
methodologies. In: Dannenberg, R.B. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–
24. Springer, Heidelberg (2001)

18. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Haslinger, E.N., Egyed, A., Alba, E.:
Towards a benchmark and a comparison framework for combinatorial interaction
testing of software product lines. CoRR abs/1401.5367 (2014)

19. Lopez-Herrejon, R.E., Ziadi, T., Martinez, J., Thurimella, A.K., Acher, M.: Third
international workshop on reverse variability engineering (REVE 2015). In: Pro-
ceedings of the 19th International Conference on Software Product Line, SPLC
2015, Nashville, TN, USA, 20–24 July, p. 394 (2015)

20. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Automating the
extraction of model-based software product lines from model variants. In: ASE
2015, Lincoln, Nebraska, USA (2015)

21. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Bottom-up adop-
tion of software product lines: a generic and extensible approach. In: Proceedings
of International Conference on Software Product Line, SPLC 2015, pp. 101–110
(2015)

22. Porter, M.F.: Snowball: A language for stemming algorithms, http://snowball.
tartarus.org/. Accessed 19 Nov 2015

https://code.google.com/p/erca/
http://snowball.tartarus.org/
http://snowball.tartarus.org/

Feature Location Benchmark for Software Families: EFLBench 283

23. Rubin, J., Chechik, M.: Locating distinguishing features using diff sets. In:
IEEE/ACM International Conference on Automated Software Engineering, ASE
2012, Essen, Germany, 3–7 September, pp. 242–245 (2012)

24. Rubin, J., Chechik, M.: A survey of feature location techniques. In: Domain Engi-
neering, Product Lines, Languages, and Conceptual Models, pp. 29–58 (2013)

25. Salman, H.E., Seriai, A., Dony, C.: Feature location in a collection of product
variants: combining information retrieval and hierarchical clustering. In: Interna-
tional Conference on Software Engineering and Knowledge Engineering, SEKE,
pp. 426–430 (2014)

26. Salman, H.E., Seriai, A., Dony, C.: Feature-to-code traceability in a collection of
software variants: combining formal concept analysis and information retrieval. In:
International Conference on Information Reuse and Integration, IRI, pp. 209–216
(2013)

27. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

28. Segura, S., Galindo, J.A., Benavides, D., Parejo, J.A., Cortés, A.R.: Betty: bench-
marking and testing on the automated analysis of feature models. In: Proceedings
of Sixth International Workshop on Variability Modelling of Software-Intensive
Systems, Leipzig, Germany, 25–27 January, pp. 63–71 (2012)

29. Shatnawi, A., Seriai, A., Sahraoui, H.: Recovering architectural variability of a
family of product variants. In: Schaefer, I., Stamelos, I. (eds.) ICSR 2015. LNCS,
vol. 8919, pp. 17–33. Springer, Heidelberg (2014)

30. Sim, S.E., Easterbrook, S.M., Holt, R.C.: Using benchmarking to advance research:
a challenge to software engineering. In: Proceedings of the 25th International Con-
ference on Software Engineering, Portland, Oregon, USA, 3–10 May, pp. 74–83
(2003)

31. Souza, I.S., Fiaccone, R., de Oliveira, R.P., Almeida, E.S.D.: On the relationship
between features granularity and non-conformities in software product lines: an
exploratory study. In: 27th Brazilian Symposium on Software Engineering, SBES
2013, Brasilia, Brazil, 1–4 October, pp. 147–156 (2013)

32. Xing, Z., Xue, Y., Jarzabek, S.: A large scale linux-kernel based benchmark for
feature location research. In: Proceedings of International Conference on Software
Engineering, ICSE, pp. 1311–1314 (2013)

33. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants.
In: Proc. of Working Conference on Reverse Engineering, WCRE 2012, pp. 145–154
(2012)

34. Ziadi, T., Henard, C., Papadakis, M., Ziane, M., Traon, Y.L.: Towards a language-
independent approach for reverse-engineering of software product lines. In: Sym-
posium on Applied Computing, SAC 2014, pp. 1064–1071 (2014)

Java Extensions for Design Pattern Instantiation

André L. Santos(B) and Duarte Coelho

Instituto Universitário de Lisboa (ISCTE–IUL), ISTAR, Av. Das Forças Armadas,
Edif́ıcio II ISCTE, 1649-026 Lisbon, Portugal

andre.santos@iscte.pt, duarte.goncalo.coelho@gmail.com

Abstract. Design patterns are not easily traceable in source code, lead-
ing to maintainability and comprehension issues, while the instantiation
of certain patterns involves generalizable boiler-plate code. We provide
high-level language constructs addressing design patterns that trans-
form source code by injecting a substantial part of their implementation
at compile time. We developed proof of concept extensions addressing
widely used design patterns, namely Singleton, Visitor, Decorator, and
Observer, using annotations as the means to extend Java. We describe
our Java annotations to support these design patterns and the associ-
ated source code transformations, demonstrating that it is possible to
significantly reduce the necessary code to instantiate a pattern through
the use of high-level constructs.

1 Introduction

Design patterns are widely used in software development and became an essen-
tial element in software reuse. Design patterns are language-independent, but
paradigm-dependent, since they rely on certain programming language con-
structs that often are available in certain programming paradigms only. The
focus of our work is on object-oriented design patterns [8].

Design patterns are used to aid the design of systems, often driven by variabil-
ity and extensibility requirements. Issues related to maintainability and evolu-
tion may occur given that pattern instantiations are interleaved with the system
domain and “fade away” into the source code [15]. This implies that pattern
instantiations are hard to trace, mainly because they have no first-class rep-
resentation in the source code in terms of programming constructs. Further,
the presence of design patterns in source code may hinder understandability
[13]. Certain patterns require substantial boiler-plate code to be written, as for
instance, the abstract decorator class role in the Decorator pattern [8] that del-
egates all the calls to an enclosing reference (highly generalizable code).

Apart from a few exceptions, languages do not have dedicated constructs
for representing design patterns in the source code. As a counter-example, the
Iterator pattern [8] is supported by the libraries of mainstream object-oriented
languages, such as Java and C#. On the other hand, some patterns do not
make sense in the context of certain programming languages, simply because the

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 284–299, 2016.
DOI: 10.1007/978-3-319-35122-3 19

Java Extensions for Design Pattern Instantiation 285

language constructs provide the means for solving the problem directly (e.g., the
Visitor pattern [8] is not relevant in a language with multiple method dispatch).

Some approaches assist developers in the instantiation of patterns either
through external programming languages (e.g., [1,2,10]) or IDE-integrated tools
to guide and automate the process of implementing them through code genera-
tion (e.g., [9]). The former require using other programming paradigms, whereas
the latter do not address pattern representation given that the trace is lost after
the pattern is instantiated in the source code. The fact that there are tools capa-
ble of generating code that instantiates design patterns evidences that patterns
are generalizable into higher-level abstractions, including dedicated language
constructs (see a debate in [6]).

In this paper we describe an approach for generalizing design pattern instanti-
ations for Java, providing high-level programming language constructs for instan-
tiating them using annotations. As a proof of concept, we implemented support
for widely used patterns, such as Singleton, Visitor, Decorator, and Observer,
relying on an existing open-source project called Lombok1. This project pro-
vides the infrastructure for extending Java with generative annotations that
perform compile-time AST transformations to inject class members and state-
ments. Lombok provides extensions that enable developers to write code in a
terse manner, as for instance support for getter and setter method injections,
as well as some design patterns such as Value Object [7] and Builder [8]. We
build on the Lombok infrastructure to address other design patterns that were
not previously addressed, developing an extension that we refer to as JEDI2.

Although the idea of having language constructs for design patterns is not
new (e.g., [2,6]), we are not aware of other approaches that address this problem
relying only on object-orientation in Java, that is, with no resort to additional
programming paradigms or external tools. We demonstrate the feasibility of the
approach, showing that significant amounts of pattern-related code can be gen-
erated from simple declarations embodied in the form of annotations. These have
the advantage of being dedicated language constructs that are traceable, while
simultaneously serving the purpose of documentation. Empirical experiments
have shown that documenting patterns in the source code is beneficial for sys-
tem maintenance [14]. Therefore, besides facilitating pattern instantiation, the
annotations also mitigate traceability and maintainability issues.

This paper proceeds as follows. Section 2 introduces a running example that
is used throughout the paper. Section 3 presents project Lombok and briefly
explains its infrastructure for transforming classes. Section 4 describes the Java
extensions that we developed to support design patterns. Section 5 analyzes the
transformations performed by our extensions. Section 6 discusses the benefits
and limitations of our approach. Section 7 discusses related work, and Sect. 8
presents our conclusions.

1 www.projectlombok.org.
2 Java Extensions for Design pattern Instantiation. Available at github.com/

andre-santos-pt/lombok-jedi.

www.projectlombok.org
https://github.com/andre-santos-pt/lombok-jedi
https://github.com/andre-santos-pt/lombok-jedi

286 A.L. Santos and D. Coelho

Fig. 1. UML class diagram describing the running example: a file system with files
and folders. The operation compartments are divided according to the associated
design pattern and the letter labels identify the pattern to which the types or mem-
bers relate to (Singleton, Composite, Visitor, Decorator, Observer). Notation: a⊕ → b
denotes that b is a nested classifier of a (in programming these are mapped to inner
classes/interfaces).

2 Running Example

In order to illustrate our approach we introduce a small running example involv-
ing several design patterns (see Fig. 1), designed intentionally to be simple for
clarity of presentation, and on the other hand, appropriate to demonstrate all of
our Java extensions. Section 4 describes how our annotations are able to address
the instantiation of each pattern, except for Composite, which we omit due to
space constraints.

The example consists of a FileSystem that structures its Elements in a tree. The
FileSystem class can only have a single instance (Singleton pattern), and holds a
reference to the root Folder. The singleton property is ensured by having a static
field instance that holds the unique instance, which can be obtained through the
static operation getInstance() (there are no public constructors).

Java Extensions for Design Pattern Instantiation 287

The class Folder is an Element that can have Files (leafs) and other Folders as children
(Composite pattern). The methods for adding children and obtaining an Element’s
parent relate to the instantiation of this pattern.

The interface IElement is yet a more abstract representation of Element objects.
The FileSystem tree is traversable to iterate over its Files and Folders (Visitor pattern),
by providing a specialization of the abstract class IElement.Visitor. The instantiation
of this pattern requires the accept method to be defined by every visitable node
(File and Folder).

Elements may be wrapped in read-only views that disallow renaming (Dec-
orator pattern) using the class ReadOnlyElement. The instantiation of this pattern,
since there may be other kinds of decorator objects, involves the abstract class
IElement.Decorator, which implements IElement and holds a reference to the decorated
instance, delegating every call to it. Notice that the accept method pertaining to
the Visitor pattern also had to be included here for interface compatibility. As
an example of a concrete decorator, the class ReadOnlyElement overrides the rename(...)

operation to throw a runtime exception (disallowed operation).
Finally, the Element objects are observable with respect to rename events

(Observer pattern) through the registration of Element.Observer objects. The meth-
ods for adding and removing observers pertain to this pattern, as well has the
association observers.

Notice that in this example the elements pertaining to the essence of the
domain that the model is capturing (i.e. the file system structure) are clearly
outnumbered by infrastructural elements that are necessary to implement the
desired functionally and extensibility properties. The Composite pattern is the
only pattern whose elements inherently pertain to the domain. This means that
the remaining patterns “bloat” the design with several elements that are essen-
tially technical (accidents in software engineering [3]).

3 Project Lombok and AST Transformations

Lombok is an open source project whose main aim consists of reducing the
amount of boiler-plate code that writing Java programs often involves. The goal
is achieved through annotations that work as language extensions. At compile
time, Lombok annotation processors interfere with the AST of the classes where
annotations are present in order to perform transformations, such as introducing
members (fields, methods, types) or modifying existing ones. The transformed
ASTs are in turn compiled normally. Lombok inspired our work and served as
the infrastructure for the realization of our language extensions.

Figure 2 illustrates two of the simplest Lombok annotations. The annotation
@Getter has the purpose of injecting getter methods based on attributes, whereas
the @NonNull injects null pointer validations on parameters. Hereinafter, when
presenting examples of transformations, we include a box with the code that the
programmer writes followed by another shadowed box that contains the code
that actually compiles after the AST transformation, highlighting the injected
code with gray color. Note that the programmer does not manipulate the source

288 A.L. Santos and D. Coelho

Fig. 2. Example of Lombok extensions: Getter method injection (@Getter) and null
pointer validation (@NonNull).

code of the transformed version of the classes. The injected members cannot
be edited and are not even visible to the programmer. However, the injected
members are accessible to other classes at compilation time, and hence, one may
write code that uses them as if they have been manually written.

One of the key advantages of this approach is that the annotated classes
become significantly less bloated, with fewer lines of code. Furthermore, anno-
tations capture programmer intent with a dedicated construct (the annotation).
The given example is rather simple, and hence, the amount of injected code is
not impressive. However, in other cases such as the annotation for addressing
the Value Object pattern [7], Lombok transforms classes so that the number of
injected lines of code outnumbers manually written code by a factor greater than
five for classes with a few attributes.

As portrayed by the Lombok authors, the technical solution may be regarded
as a “hack”, since Java annotations were not meant to affect program seman-
tics. However, there are other approaches that rely on annotations as the means
to mark parts of programs that are transformed by a third-party. For instance,
transformations to enhance the class with concurrency control (e.g., [5]) or to
perform runtime verifications (e.g., [11]). Lombok was designed for extensibility,
enabling third-party developers to contribute with additional annotations and
their associated AST transformations. We have used this extensibility mecha-
nism to implement our Java extensions.

4 Java Extensions

We developed JEDI, a proof of concept implementation of Java extensions for
design patterns. JEDI comprises a set of annotations whose names (including
participant names) resemble the ones described in [8]. So far, we successfully

Java Extensions for Design Pattern Instantiation 289

addressed the patterns Singleton, Composite, Visitor, Decorator, and Observer.
In this paper, we omit the description of Composite due to space constraints.
The purpose of our annotations is not to fully automate the instantiation of
design patterns, but instead to aid in their instantiation by providing constructs
for their generalizable aspects. For each provided annotation we developed a
Lombok handler that transforms the annotated classes. The transformation may
involve injection or modification of fields, methods, or inner types (classes or
interfaces).

The following subsections describe in detail how JEDI annotations can be
used and the code transformations that are performed when applying them, using
the example of Sect. 2. In some situations the injected code makes use of the
@NonNull annotation (illustrated in Sect. 3) that would further trigger additional
transformations, but whose result we do not expand for clarity and brevity of
presentation.

4.1 Pattern Instantiation Properties

Before illustrating our annotations and the associated AST transformations,
this section explains certain properties of the pattern instantiations that are
important with respect to the use of the annotations in software development.

Validations. The annotation processors perform validations to ensure that the
annotations are applied correctly and guarantee the correctness of the injected
code. Without the validations the annotation placements would be fragile, since
the annotations would not feel like language extensions if errors are not emitted
when they are used incorrectly. For instance, given that the Singleton pattern
requires that the class has no public constructors, there is a validation for check-
ing this issue that emits a compile-time error in case of violation.

Priorities. Each annotation handler has a fixed priority that determines the
order in which the transformations pertaining to the different annotations are
performed on the types. This aspect is relevant since some patterns inject ele-
ments that are of interest to other patterns, and hence, have an effect on the
associated transformation. For instance, the Decorator pattern has a higher pri-
ority than the Visitor pattern, given that it requires the decorated interface to
be complete (Visitor adds operations to interfaces), so that the transformation
addresses all of its methods.

Identifiers. All the identifiers of injected elements (fields, methods, or types)
have default values that are either constant of inferred from other related ele-
ments. However, since design patterns are abstract solutions that are made
concrete in a variety of situations, JEDI annotations were designed to offer a
reasonable degree of adaptability allowing programmers to override the values
for identifiers through annotation parameters. For instance, the default name
for the operation for registering observers in the Observer pattern is by default
“addObserver”, but this name can be set to other value. Throughout the paper,
all the examples of annotation usage consider default values for identifiers.

290 A.L. Santos and D. Coelho

Bidirectional Traceability. The elements that are injected in the AST are
themselves annotated with an annotation for bidirectional traceability purposes,
so that every injected element can unambiguously be traced back to the anno-
tation pattern that generated it. For clarity and brevity of presentation we do
not include these annotations in the transformed code of the given examples.

4.2 Singleton Pattern

The singleton pattern is a solution that guarantees that there is a single instance
of a given class at runtime [8]. The pattern is typically applied by storing the
unique instance in a static field of the class that is accessed through a static
method (that performs lazy instantiation), while the class has no public con-
structors available. In the example given in Sect. 2, the FileSystem class illustrates
the Singleton pattern. The static field instance stores the unique instance, which
is accessed through the static method getInstance().

We provide the @Singleton annotation to aid on implementing the Singleton
pattern (see Fig. 3). This annotation can only be used on classes, implying the
injection of the following elements: (a) a static field to store the singleton instance
with the same type as the class, (b) an empty private constructor to override
the default public parameterless constructor if none is defined, and (c) a static
method to retrieve the singleton instance (initializing (a) on the first call using
the parameterless constructor). The annotation validation ensures that the class
has no public constructors.

Fig. 3. Singleton pattern support and transformations (@Singleton).

4.3 Visitor Pattern

The Visitor pattern is a solution to separate operations from an object structure
[8]. The pattern instantiation is achieved by defining an abstract class, whose

Java Extensions for Design Pattern Instantiation 291

compatible objects are referred to as visitors. This class contains methods, often
named visit and typically overloaded, that receive multiple object types (the vis-
itable nodes) to which the nodes provide their instance. In the example of Sect. 2,
the file system elements take the role of visitable nodes (Folder and File), whereas
the abstract class Visitor has the visitor role.

We provide three related annotations to address the visitor pattern (see
Fig. 4). The @Visitor annotation is used to mark an interface that represents the set
of visitable nodes. It injects an inner abstract class (a), that contains a method
visit(...) returning true for each of the visitable node types (b), which are marked
with the annotation @Visitor.Node. The annotation validation ensures that these
types are compatible with a type annotated with @Visitor. By injecting each visit(...)

method, we solve the problem of having to define manually each operation, which
is one of the visitor’s implementation negative consequences [8]. Additionally, an
accept(...) operation declaration is injected into the interface (c) with a parameter
of type equal to (a).

Visitable nodes may have child visitable nodes. The annotation
@Visitor.Children is used to mark the visitor node fields that store the children nodes
of the current node, so that the visitor traversal can be propagated to them.
The annotation validation ensures that type of the visitor children fields must
be either of a visitor node or of a collection of visitor nodes (compatible with
java.util.Collection). On each visitable node type an accept(...) method is injected whose
body contains a call to the visit(...) operation (d). In case a visitor node has chil-
dren, the method body also includes a loop for invoking the accept(...) operation
on each child (e).

4.4 Decorator Pattern

The decorator pattern [8] is an alternative solution to inheritance comprising
an abstract class that represents decorator objects (that conform to a given
interface), containing a reference to an object to which all the interface calls
are delegated. In the example given in Sect. 2, the class IElement.Decorator represents
decorators of IElement objects.

Figure 5 demonstrates the application of our @Decorator annotation on the IEle-

ment interface. The annotation validation ensures that it can only be used on
interfaces. The annotation injects an abstract class representing the abstract dec-
orator that implements the annotated interface (a), composed of: (b) an instance
field for storing a reference to the decorated object, (c) a public constructor that
receives the reference to the decorated object, and (d) an implementation of
every method of the interface where the calls are delegated to the decorated
object. By generating all the delegating calls, we significantly reduce the lines of
code that otherwise would have to be written and maintained manually. Notice
that in this case the injection is performed after the Visitor injections (priority
issue explained previously), and hence, the accept(Visitor) operation is considered in
the abstract decorator class.

We also provide the @Wrapper annotation that is a variant with a slightly
different purpose than the decorator pattern. This annotation follows a more

292 A.L. Santos and D. Coelho

Fig. 4. Visitor pattern support and transformations (@Visitor, @Visitor.Node, @Visi-

tor.Children).

Java Extensions for Design Pattern Instantiation 293

Fig. 5. Decorator pattern support and transformations (@Decorator). This example
evolves the Visitor example presented in Fig. 4, demonstrating the effect of annota-
tion processing priority. Given that Visitors precede decorators, the injected Decorator
takes into account the previously injected accept method (dashed line).

flexible approach regarding method delegation. Instead of generating an abstract
class, we can directly annotate the class that wraps the decorated object. This
alternative requires the class whose objects we want to decorate to be defined
in an annotation parameter (e.g., @Wrapper(classType=Collection.class)). The annotation
injects a delegating method for each public method of the target class that is
not manually defined.

4.5 Observer Pattern

The Observer pattern [8] is an effective way for objects (subjects) to communi-
cate events of interest to other objects (observers) without depending directly
on their classes. In the example of Sect. 2, the method rename(String) from the class
Element (subject) illustrates an observable event notified through observer objects
that are compatible with the Element.Observer interface.

Figure 6 illustrates the annotations for the Observer pattern on the method
rename(String) of the class Element of the running example. We provide the

294 A.L. Santos and D. Coelho

Fig. 6. Observer pattern support and transformations (@Observable and @Observable.Notify).

@Observable and @Observable.Notify annotations to aid on the instantiation. The for-
mer is used to annotate methods whose execution represents an event of interest
that we want to enable observer objects to be notified of. The latter is used to
mark the variables that hold the objects that we wish to include in the notifica-
tion. We only support the implementation pertaining to the subject participant,
given that the aspects related to observer objects are problem-specific and are
not suitable for being generalized.

The purpose of the @Observable annotation is to create the elements for collab-
oration between the subject’s event types and its observers, by generating the
following elements in the subject class: (a) an inner interface representing the
observable event, (b) a field that stores a collection of objects of type (a) to
which the event notification is sent, and (c) methods to subscribe and unsub-
scribe the notification of the event. The structure of the injected interface is
derived from the annotated elements. Each observable event has a correspond-
ing operation in the interface, whose parameters are determined by variables
annotated with @Observable.Notify (either parameters or local variable declarations).
Each of these variables is augmented with the final modifier in order to guarantee

Java Extensions for Design Pattern Instantiation 295

their immutability (d). Finally, the body of the methods annotated with @Observ-

able is augmented with the event notification to its subscribers (e).
We offer the possibility of using an existing interface, rather than having

a newly injected one. If an inner interface already exists with the same name,
such an interface is considered instead. The parameters of the @Observable annota-
tion allow programmers to further customize the implementation of the observer
pattern, namely with respect to point of notification (beginning or end of the
method), interface to be used (existing or injected), and association of interface
operations to events.

5 Analysis

In this section we analyze our running example with a focus on the amount
of injected lines of code (LOC), and the relation between each Java extension
and the transformed code. Table 1 presents the classes of the running example
that were used as illustration throughout Sect. 4, in terms of manually written
LOC, and LOC that were effectively compiled considering the transformations
(manual plus injected code). The amount of injected LOC is decomposed, dis-
criminating the LOC according to the design pattern they pertain to. Recall that
the injected code resembles what otherwise would be written by hand when not
using our extensions. Looking back to Fig. 1, notice that every element in the
diagram labeled with a letter was obtained through a transformation. Although
we omitted the description of our support for the Composite pattern, here we
include the result of applying it in the running example.

Table 1. Overview of the number of lines of code in the running example classes,
discriminating between manually written and injected code, decomposing the latter
according to the related pattern.

Manual Injected Compiled Singleton Composite Visitor Decorator Observer

FileSystem 17 10 27 (159%) 10 - - - -

Element 26 22 48 (185%) - 8 1 - 13

Folder 14 17 31 (221%) - 10 7 - -

File 7 7 14 (200%) - 4 3 - -

IElement 7 24 31 (443%) - - 9 15 -

Total 71 80 151 (213%) 10 22 20 15 13

The effective number of LOC that define the classes is significantly higher
than the manual code, more than twice in this example. This factor is by no
means generalizable, given that the domain elements of the example were mini-
mal, and hence, the weight of the injected code is high. Some of the transforma-
tions perform an injection whose size in terms of LOC is constant despite the
elements where the annotations are applied, whereas the injected code of other
transformations grows linearly with the size of the annotated elements. The latter
are more powerful because they spare more effort when writing code, facilitate

296 A.L. Santos and D. Coelho

maintenance, and reduce the size of files significantly. The former are not as
beneficial with this respect, but nevertheless, share the advantage of having a
dedicated language construct that consists of an unambiguous representation of
the pattern (traceability), which is guaranteed to be instantiated uniformly.

The Singleton extension is an example of a constant transformation, given
that no matter how large is the annotated class, the injected code always has the
same size. The value of 10 injected LOC for FileSystem will be the same in every
other class. Both the Composite and Observer extensions fall into this category,
too. On the other hand, the Visitor and Decorator extensions are cases where
the larger the number of elements is (visitor nodes and interface operations,
respectively), the larger the injected code. Notice the case of IElement where these
two patterns were applied, resulting in an effective number of LOC than is
more that four times larger than the manually written code. Therefore, these
extensions are more powerful in terms of the transformation of source code.

6 Discussion

The novelty of our approach does not pertain to the form of instantiating design
patterns, but instead in the automatization of their instantiation according to
common idioms. Although we believe that our language constructs are a power-
ful abstraction, bringing the implementation of design patterns to the program-
ming language level has some drawbacks, as pointed out by John Vlissides in
a debate on the issue of having patterns as language constructs [6]. The more
automation we aim at, the less flexible the pattern instantiation becomes, given
that code generation approaches that bridge higher levels of abstraction to lower
ones necessarily have to compromise flexibility to some extent. Even though we
took into account the possibility of parameterizing pattern instantiations, our
solutions will naturally not fit any context that a programmer might come up
with. However, when certain patterns need to be instantiated in such a way that
the annotations did not anticipate, programmers can always implement them
manually without benefiting from the transformations.

We argue that the traceability benefit of having the annotations present in
the source code consists of an important advantage, given that the documenta-
tion of design patterns in the code has revealed beneficial for system maintenance
[14]. Annotations are types in the programming language, and the associated val-
idations ensure that they are applied in the correct locations and obey to other
constraints. In this way, annotations can be seen as a structured form of docu-
mentation and compliance verification, and hence, they also consist of a robust
means to document and enforce design issues. This is an advantage when com-
pared with unstructured documentation text present in source code comments,
which is somewhat fragile and easily becomes outdated, or external artifacts
such as design documents, which often suffer from the problem of architectural
erosion [12].

Given that our annotations indicate the patterns and their roles we believe
that they are easy to understand from a code reading perspective, since the

Java Extensions for Design Pattern Instantiation 297

programmer is basically attaching labels to code elements using a familiar con-
struct (the annotations). Further, the existence of dedicated language constructs
also promotes pattern learning and experimentation. However, we believe that
the language extensions in some cases do not dismiss programmers of having to
understand how the patterns actually work internally.

We demonstrated how some of the widely used patterns are suitable to
be addressed in language extensions. Other potentially more specific patterns
(e.g., concurrency, or related to a particular platform) could also be addressed
with this mechanism. The implementation of our extensions was by no means
technically trivial, given that it had to be based directly on the compiler API.
A more friendly abstraction for writing transformations would make easier to
define extensions. However, we envision that this kind of extensions would be
developed by specialized programmers and packaged as if they were libraries, in
order to have some degree of reliability and standardization.

7 Related Work

Previous works have proposed dedicated language constructs to address design
patterns. Jan Bosch [2] proposed a design-level support for generating design
pattern implementations. When the design is finished, the model is able to gen-
erate the equivalent C++ code. The problem with this approach is that it works
as a code generation tool that only provides support at the design stage, and the
generated code will resemble manual implementation. Since the C++ code does
not keep up with the pattern instance specifications, as opposed to our approach,
the problems of traceability and comprehension at the source code level are not
addressed.

OpenJava [16] is a macro system for Java that offers a compile-time reflective
means that can inject source code in a similar way as Lombok. Therefore, Open-
Java could be an alternative means for implementing our approach for design
pattern instantiation. However, it implies using syntax extensions to Java for the
declaration of macro expansions, whereas Lombok does not (it relies on existing
language constructs, the annotations).

FRED [9] is an environment that supports the implementation of design
patterns in Java. The implementation of design patterns is aided through an
incremental sequence of tasks until all the mandatory tasks are completed.
A task is considered to be the creation of small elements like classes, meth-
ods and fields. This incremental process has to be done every time one wants to
instantiate a pattern, which can be time-consuming. Since the pattern instan-
tiation is supported by the environment, we have no assistance if we use the
resulting code on another Java development environment.

Using a different strategy for implementing design patterns, AspectJ3 was
proposed as a suitable means [10] with modularity improvements that make pos-
sible to encapsulate pattern instantiations in independent modules – the aspects.

3 www.eclipse.org/aspectj.

www.eclipse.org/aspectj

298 A.L. Santos and D. Coelho

The main drawback of this approach is the fact that in order to instantiate the
patterns programmers must have some technical skills with respect to AspectJ.
As with our approach, the aspect-based pattern instantiations also address trace-
ability at the source code level, because the pattern instantiations are given in
well-defined entities (all the instantiations of a given pattern extend the same
abstract aspect). However, issues pertaining to pattern inter-dependency and
interaction might consist of an issue, as reported by a study on the scalability
of pattern modularity using the aspect-based approach [4].

JavaStage [1] is an extension to Java that encompasses programming con-
structs to represent roles. The notion of role has a dedicated module that may
define fields and methods that enhance the classes to which the role is bound
(using a declarative-style primitive on their definition). The definition of the role
modules have a similar purpose than the AST transformations in our approach,
whereas the role binding primitives relate to our annotations. Defining extensions
using roles is a more elegant and easy way in contrast to the AST transforma-
tions used in our approach. Namely, the authors illustrate their approach with
the Observer pattern. However, complex cases that require enhancements across
multiple types, e.g., as our Visitor pattern transformation, might not be possible
to address using roles due to the transformation complexity.

8 Conclusions

In this paper we described a set of Java extensions addressing widely used design
patterns, whose instantiation can be achieved partly through source code trans-
formation. We conclude that at least the patterns we presented here are suit-
able to be addressed with dedicated language constructs, given the considerable
amount of elements that can effectively be generalized, as demonstrated in the
example instantiations. The provided annotations consist of powerful high-level
language constructs, which besides automating parts of the pattern instanti-
ation, also mitigate pattern traceability and comprehension issues, given that
patterns instances are represented by first-class entities. Although the exten-
sions were proven to work, research on their suitability to real projects still has
to be carried out to evaluate if the balance between automation and flexibility
is satisfactory. As future work, we plan to refactor an existing framework using
our annotations for this purpose.

References

1. Barbosa, F.S., Aguiar, A.: Using roles to model crosscutting concerns. In: Pro-
ceedings of the 12th Annual International Conference on Aspect-Oriented Software
Development, AOSD 2013, pp. 97–108. ACM, New York (2013)

2. Bosch, J.: Design patterns as language constructs. J. Object-Oriented Program
11(2), 18–32 (1998)

3. Brooks Jr., F.P.: No silver bullet - essence and accidents of software engineering.
Computer 20(4), 10–19 (1987)

Java Extensions for Design Pattern Instantiation 299

4. Cacho, N., Sant’Anna, C., Figueiredo, E., Garcia, A., Batista, T., Lucena, C.:
Composing design patterns: a scalability study of aspect-oriented programming.
In: Proceedings of the 5th International Conference on Aspect-Oriented Software
Development, AOSD 2006, pp. 109–121. ACM, New York (2006)

5. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Sci. Comput. Program. 63(2), 172–185 (2006)

6. Chambers, C., Harrison, B., Vlissides, J.: A debate on language and tool support for
design patterns. In: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 277–289. ACM (2000)

7. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2002)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson Education, Upper Saddle River
(1994)

9. Hakala, M., Hautamäki, J., Koskimies, K., Paakki, J., Viljamaa, A., Viljamaa,
J.: Architecture-oriented programming using FRED. In: Proceedings of the 23rd
International Conference on Software Engineering, pp. 823–824. IEEE Computer
Society (2001)

10. Hannemann, J., Kiczales, G.: Design pattern implementation in java and aspectj.
In: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2002, pp. 161–173.
ACM, New York (2002)

11. Nobakht, B., de Boer, F., Bonsangue, M., de Gouw, S., Jaghoori, M.: Monitor-
ing method call sequences using annotations. Sci. Comput. Program. 94, 362–378
(2014)

12. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

13. Prechelt, L., Unger, B., Tichy, W.F., Brossler, P., Votta, L.G.: A controlled experi-
ment in maintenance: comparing design patterns to simpler solutions. IEEE Trans.
Softw. Eng. 27(12), 1134–1144 (2001)

14. Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W.F.: Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance. IEEE Trans. Softw. Eng. 28(6), 595–606 (2002)

15. Soukup, J.: Implementing patterns. In: Coplien, J.O., Schmidt, D.C. (eds.) Pattern
Languages of Program Design, Chap. Implementing Patterns, pp. 395–412. ACM
Press/Addison-Wesley Publishing Co., New York (1995)

16. Tatsubori, M., Chiba, S., Killijian, M.-O., Itano, K.: OpenJava: a class-based macro
system for java. In: Cazzola, W., Houmb, S.H., Tisato, F. (eds.) Reflection and
Software Engineering. LNCS, vol. 1826, pp. 117–133. Springer, Heidelberg (2000)

Towards a Semantic Search Engine for Open
Source Software

Sihem Ben Sassi1,2(B)

1 RIADI Laboratory, National School of Computer Sciences,
Manouba University, 2010 La Manouba, Tunisia

sihem.bensassi@isetcom.rnu.tn
2 High Institute of Telecommunication, Technoparc ElGhazala,

2083 Ariana, Tunisia

Abstract. To be able to use or reuse an open source software, we must
be aware of its existence and find it first. Existing search engines on the
Web do not allow finding open source software satisfying given require-
ments while taking into account special semantics. In this paper, we
propose a semantic search system for open source software allowing to
identify and localize them. It relies on an ontology providing a mecha-
nism to describe knowledge about open source software. Moreover, it can
infer knowledge for semantic identification through some defined rules.
Preliminary results are encouraging. The evaluation results compared
to a non-semantic version of the same search engine confirm the added
value of the consideration of the semantic aspect in search.

Keywords: Open source software · Ontology · Search engine ·
Semantic · FLOSS

1 Introduction

Open source software (OSS) adoption is growing up since it is an alternative
to commercial software and it provides many benefits. In fact, recent surveys
revealed that the number of OSS users is more than the double of what it
was five years ago [1], and that the number of open source software projects
is almost multiplied by three from 2011 to 2015 [2]. Organizations went open
source software not only to save money as it was the case a decade ago, but also
for its quality and flexibility features, and for agility and innovation needs [2,3].

OSS software is therefore not only used by end users as alternative to commer-
cial software products, but also reused by developers as alternative to commercial
off-the-shelf components (COTS) for the development of new systems. However,
this type of development still faces some difficulties. As a matter of fact, com-
mercial software vendors are investing to promote their products using several
ways of advertisement, which could influence decision-makers and developers
while searching for and choosing a software. This is also true for the Web which
remains an important source of information. OSS products meeting the require-
ments of an organization or a system to develop may exist on the Web but they
c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 300–314, 2016.
DOI: 10.1007/978-3-319-35122-3 20

Towards a Semantic Search Engine for Open Source Software 301

are not (re)used due to the fact that decision-makers or developers are unaware
of their existence. To find an open source software, the use of search engines is a
must. Most effort spent in this field is devoted to code search. Several tools are
proposed to mine code and retrieve relevant software asset from different repos-
itories, many of them return snippets. Some tools return open source modules
or “components” in the sens of method, function, class, etc. such as SPARS-J
[4], JBender [5], Krugle [6], OpenHub [7], S6 [8], Merobase [9,10], Sourcerer [11]
and Exemplar [12]. Some of these tools integrate semantic aspects by providing
the possibility to specify the type of the searched asset (e.g. function definition,
function call, method definition, interface, test case, etc.) and to specify the pro-
gramming language if more than one is supported. Only few of them let the user
specify the license of the searched code. Only very few of them return also the
name of the originating project allowing the user identifying the OSS containing
the fragment of code. These tools are rather programming task-oriented tools.

Another type of search engines, to which we are interested in this work,
return software applications whose functionality match high-level requirements.
Whether they are conventional such as Google or specific for software compo-
nents such as open source software [13], the help they provide in the identifica-
tion task is not as much as needed. As a matter of fact, they may return a large
number of results that should be further studied and filtered. The more the can-
didate number is large the more the evaluation effort required is. Furthermore,
this type of search engines do not take into account OSS features when searching
like license or programming language.

On the other hand, it is known that the integration of semantics in the search
process improves the relevance of the returned results and reduces the required
effort by the user to identify the appropriate component satisfying his/her needs.
This work proposes a semantic search system specific to open source software
named Se2FLOSS. Returned results are open source software components that
are unit of composition and can be independently deployed, that’s to say they
correspond to a given functionality therefore can be used as-is by end users,
or can be reused to develop a new system. The semantic qualification stems
from the ontology for open source software (OntoFLOSS) we elaborated and on
which Se2FLOSS relies on. Since we are neutral between free software and open
source software, we used the term FLOSS for free/libre open source software in
the names chosen for the ontology and the search system i.e. OntoFLOSS and
Se2FLOSS as it is recommended by Richard Stallman [14], but we keep using
the term OSS in the description text.

The remainder of this paper is structured as follows. Section 2 deals with the
OntoFLOSS ontology. Section 3 presents the architecture of Se2FLOSS with its
two processes indexing and searching. Section 4 describes the experimentation.
The paper ends with a conclusion and future work.

2 OntoFLOSS Ontology

An ontology defines the terms used to describe and represent some topic. It com-
bines the basic concepts of that particular topic and the relationship between

302 S. Ben Sassi

these concepts. It is therefore the specification of conceptualizations, used to help
programs and humans share knowledge [15]. There are several methodologies to
design ontologies such as Ontoclean [16], On-to-knowledge [17] and Methontol-
ogy [18]. We used Archonte (Architecture for Ontological Elaborating) [19] which
is a bottom-up approach for building ontology operating in three steps:

1. selecting relevant terms of the domain and specifying the semantic similarities
normalization of relationships and differences between concepts;

2. formalizing knowledge by building a referential ontology and adding proper-
ties and annotations, and defining relationships domains and co-domains;

3. operationalizing the ontology using a knowledge representation language
resulting in what is called computational ontology.

We present in this section OntoFLOSS standing for Ontology for Free/Libre
Open Source Software through the three Archonte steps.

2.1 Semantic Normalization

Building any ontology should start by acquiring knowledge. We have studied
software components description models in the literature as well as description
models used by OSS editors or repositories on the Web. Gathered information
is processed and structured in a description model as shown in Fig. 1.

In this model, there are five aspects of OSS software: the informational aspect,
the relational aspect, the functional aspect, the use aspect and the quality aspect.
Each of these includes a category of attributes to represent a particular view of
the software.

Informational aspect provides general information about the software. An
OSS software is defined by its “name”, its functionality “description”, the “lan-
guages” in which it is available, the “programming language” with which it was
developed, the “operating systems” on which it can be used and “the target
audience” to whom it is intended (e.g. developers, qualified engineers, system
administrators, end users, etc.). It belongs at least to one subdomain which is a
specific filed of a domain. A domain is defined by a list of terms. The OSS has
one or more versions. Each version is characterized by its “name”, “release date”,
total “size”, “source code” file name and the total “number of downloads”. Each
version may have several features as it may be provided as binary format for dif-
ferent platforms. The characteristics of a version change with its “development
state”. The activity state of the software is captured through its “activity rate”
and the “total number of downloads”. Usually, this kind of software is published
on the Web by its developers and registered in a software repository (such as
SourceForge1) to allow its use and/or the OSS community contributing to its
improvement. It may also be published in a specific Web page by the editing
organization. An OSS software is generally distributed under one license, but it
may sometimes be distributed under multiples licenses [20]. A license is charac-
terized by its “name” and version. It can be one of three types: either strong
1 http://sourceforge.net/.

http://sourceforge.net/

Towards a Semantic Search Engine for Open Source Software 303

Fig. 1. Description model OSS components

copyleft, or weak copyleft or permissive [21,22]. In fact, for free software licenses,
the freedom to use and modify the software is unconditional as long as the soft-
ware remains inside the organization. However, if the software is redistributed
outside the organization, the type of the original license will decide for the final
one.

1. Strong copyleft license type: the software redistributed with or without mod-
ification must always be under the original license. All new components asso-
ciated are covered by the same license. As example, we cite GNU GPL v.3.0,
GNU Affero GPL v3.0 and CeCILL v.2.

2. Weak copyleft license type: the software redistributed with or without modifi-
cation must always be under the original license while the added components,
features and code can be under another license. GNU LGPL v.2.1, Mozilla
public license v.1.1, Eclipse public license and CeCILL-C are weak copyleft
licenses.

3. Permissive license type: the software can be redistributed with or without
modification under another license. BSD, Free BSD, Apache, MIT/X11 and
CeCILL-B are permissive licenses.

The relational aspect represents the various relationships that an OSS may
have with other ones. These, inspired from [23], may be one of the following:

304 S. Ben Sassi

– use: an OSS C1 requires the services of an OSS C2.
– provision: an OSS C1 uses a service of an OSS C2. This means that C2 services

are made available to C1.
– refinement: an OSS C1 refines C2 if and only if its functionality is an extension

of the one of C2. This means that C1 provides additional services comparing
to C2.

– similarity: similarity implies identical functionalities. The same services are
provided by the two OSS C1 and C2.

Functional aspect gives more details about the functionality of the software
through the description of the services it provides. Each service is characterized
by the name, a description, its input and output parameters (or signature), the
pre-conditions which are constraints that the input parameters must meet so
that the service can be run and post-conditions which are conditions on results
of the service.

The use aspect includes information about the use of the software and means
that facilitate its use and comprehension for reuse perspective. This is ensured
through use and reuse guidelines. On the other hand, for each OSS, a list of bugs
(or reported errors), corrections (or patches) and a mailing list are recorded.

The quality aspect is defined formally through OSS software quality metrics
as defined in [24] and the corresponding values. In a less formal way, the model
includes information about the documentation, adaptation easiness and clarity.

2.2 Knowledge Formalization

In this step, the referential ontology is built by transforming the acquired
knowledge into concepts and relations between concepts; it is also question of
adding properties and defining properties domains. Figure 2 illustrates, through
a semantic network, an extract of determined concepts to capture knowledge
about an OSS software. Some concepts are refined:

– either into more specific ones such as programming language which can be
imperative, functional, object-oriented, prototype-oriented, aspect-oriented or
specification language.

– or to handle more details such as operating system which has an architecture
kernel representing a family of operating systems, having itself one or more
distributions.

On the other hand, major instances of some concepts are determined, namely:

– strong copyleft, weak copyleft and permissive licenses,
– imperative, functional, object-oriented, prototype-oriented, aspect-oriented

and specification programming language,
– development state, and
– operating system related concepts: kernel architecture, family and

distribution.

Towards a Semantic Search Engine for Open Source Software 305

Fig. 2. OSS concept related to some of its concepts

Figure 3 shows license types and a sample of their instances with a sample of
their versions. It is important to notice here that some licenses may be referred to
by other names. We define synonyms for these ones. For example, original BSD
license has as synonym BSD 4-clause, BSD old and old BSD. Modified BSD is
also called new BSD, BSD-new, revised BSD and BSD 3-clause. Simplified BSD
has as synonyms FreeBSD and 2-clause BSD.

As a sample of object-oriented programming language, we list Smalltalk,
C++, Java, Eiffel, C#, Delphi, Ada, PHP5, Perl5 and Ruby. Agora, Cecil,
JavaScript, R, ActionScript, Perl6 and TADS are a sample instances of
prototype-oriented programming languages. Programming languages are also
classified according to the type of applications they allow to build: real-time,
Web or desktop application.

Development state instances are planning, pre-alpha, alpha, beta, mature,
stable and inactive.

Regarding operating systems, there are two main architectures: Win32-based
and kernel-based. As kernal, we may have smartphone (Android, IOS), GNU-
Linux, UNIX and MAC-OS families. For GNU-Linux we have Redhat, Debian,
Suse distributions, and so on.

After building the referential ontology and based on it, it is question to define
some rules that will be used in order to improve the search results of OSS software.

306 S. Ben Sassi

Fig. 3. Sample of instances related to License concept

Regarding license: when a user searches for an OSS having a given license,
this latter is a specific license version of a license that belongs to one of the
three licenses types. It is possible that no OSS of the given version satisfying
the query will be found, or returned OSS with that version are considered not
relevant. The user may therefore be interested to check alternative OSS. In this
case and from license point of view, we estimate that it is interesting to include
in the search results OSS with the same license but a higher version if any, OSS
with the same license but a lesser version if any, OSS with licenses of the same
type of the given one. To illustrate this rule, assume that the user searches for
a software with a GPLv2.0 license. Based on Fig. 3, the search system should
also return (1) OSS satisfying the other requirements with GPLv3.0 license, (2)
those with GPLv1.0 and (3) those with CeCiLLv2 as well as AGPLv3 licenses.

The same idea is applied to have rules regarding operating systems knowing
that OS families are incompatible and that 32 bits program can run over 32 or
64 bits system, but a 64 bits program can run only over a 64 bits system.

We apply the same principle to programming languages. For example, when
searching for OSS written in Java, the search system returns also OSS written
in Jee, Jsp.

Other rules relating programming language and operating system concepts
are defined such as:

– If the programming language is Java than the OSS is operating system inde-
pendent.

– If the programming language is .Net then the operating system is of Win32
architecture.

These rules are inter-conceptual ones, while the former are intra-conceptual rules.

Towards a Semantic Search Engine for Open Source Software 307

2.3 Operationalization

In this step, the ontology should be transcribed in a formal and operational lan-
guage to represent knowledge so that the machine can understand and manipu-
late it and infer new knowledge. For that purpose, we used OWL-DL language
which is based on description logic and has desirable computational properties
for reasoning. We used Protege2000 as ontology editor. The referential ontol-
ogy is transformed into a computational ontology defined through classes, prop-
erties (object and datatype) instances and individuals. Inferring knowledge is
performed through reasoning which is based on:

1. mechanisms provided by OWL and used to further specify properties, namely
InverseOf and SymmetricProperty

2. specific rules defined during the knowledge formalization step (described in
the preceding subsection). These rules are written using SWRL (Semantic
Web Rule Language). The following is a rule example written in SWRL.

OSS(?o) ∧ hasProgrammingLanguage(?o, java) → isOSIndependent(?o, true)

3 OSS Search System Description

Like any search engine Se2FLOSS is composed of modules handling the two main
processes: the indexing process and the search process, described in the sequel.

3.1 The Indexing Process

To gather information about OSS components on the web, we coded a multi-
threaded crawler that browses Web pages of each site. Crawlers explore a Web
page, extract internal and external links on that page and then reiterate the
same process on each found link. The coded crawler starts with a predefined
URLs list of Web sites containing OSS and then manages internal or external
URLs found. It classifies all URLs in a queue list which is updated as and when
crawling URLs by eliminating incorrect ones as well as those that are already
scanned. The crawler carries out two types of processing: a vertical one for major
known OSS repositories such as SouceForge, and an horizontal one for the other
sites/pages.

To decide if a Web page is representing an OSS, we define a method that
is based on checking if a set of keywords are present on that page or not. For
that purpose, we have carried out an empirical study on over 40 software com-
ponents Web sites which let us determine the set of keywords and categorize
them according to their location (URL, meta data or body) and importance
(involvement in the decision).

After identifying an OSS page, the crawler indexes the OSS by extracting
related information, processing it and saving it as an OntoFLOSS instance. In
this version of the crawler, information related to quality and services is not
considered as it requires to process the source code.

308 S. Ben Sassi

Fig. 4. The search process

3.2 The Search Process

The search process, illustrated in Fig. 4 relies mainly on the OntoFLOSS ontology
and a thesaurus. We describe in the sequel how a query is processed.

The user enters a simple or compound query. A simple query contains key-
words related to the name and or software functionality description while a
compound query includes in addition words related to other characteristics such
as license or operating system. For example: “download a PDF creator” is a
simple query, and “download a PDF creator for Windows GPL” is a compound
one. The thesaurus is used to:

– Remove stop words. In addition to standard stop words, we consider words
such as download, license and free as stop ones since we focus on function-
ality related keywords and values of required features such as license value,
programming language value and not on the words themselves.

– Identify terms/words related to the OSS name and/or description.
– Identify the other search criteria such as license, operating system, program-

ming language.

Towards a Semantic Search Engine for Open Source Software 309

A first search with the decomposed query is then performed on the index and
a first result list is obtained. Afterward, it is question to match with concepts of
OntoFLOSS in order to determine the rules and the inter-conceptual and intra-
conceptual relations that will be used to reformulate the query. A second search
with the reformulated query is performed and a second list is obtained. The final
result presented to the user is composed of the first list to which is appended
the second list, without duplication. The described process is illustrated through
the following example:

User query: “download a PDF creator with GPLv2 license written in C”
Stop words: download, a, with, license, written, in
Software name/functionality: PDF creator
License: GPLv2
Programming language: C#
The first search is performed with the query: “PDF creator” to search in

the name and/or description with GPLv2 as license and C# as programming
language.

The ontology is used to find that:

– GPLv2 is a version of GPL license which has two other versions GPLv3 and
GPLv1, and that GPL is a strong copyleft license like AGPL, CeCILL and
Jabber OSL. OSS satisfying the other conditions and having one of the cited
licenses are included in the result list.

– C# is an oriented programming language. However, it is not right to include
any programming language before checking the operating system.

Using the rule programming language/operating system, it is found that the
operating system type should be Win32, all Windows versions may apply. The
object oriented programming languages that may be used is determined such as
Java, dotNet, C++.

The second search is then performed with the new query:
Software name/functionality: PDF creator
License: GPLv2, GPLv3, GPLv1 AGPLv2, AGPLv3, CeCILLv2, Jabber

OSLv1
Programming language: C#, C++, VB.Net, Java
Operating system: WindowsXP, Windows7, Windows8, Windows10.

4 Experimentation

We developed a prototype of the search system named Se2FLOSS (see Fig. 5
for a sample query results showing the identified knowledge.). After building
an index by collecting information from the Web and in order to evaluate the
effect of using the OntoFLOSS ontology, we carried out an experimentation by
submitting a set of queries on one hand to Se2FLOSS, and on the other hand to
a non-semantic version of it i.e. without using OntoFLOSS, working on a small
index of 22233 OSS descriptions. We use the precision and the normalized recall
metrics to evaluate the results.

310 S. Ben Sassi

– Precision is computed using the expression 1

precision =
number of relevant OSS retrieved

number of OSS retrieved
(1)

– As it is impossible to know the total number of relevant OSS available on the
Web, it does not make sense to user the standard recall metric. We use instead
the normalized recall [25]. This latter introduces the rank of the relevant OSS
on the returned results list and allows to limit the assessment to a given
number of results N as shown by the expression 2.

Recallnormalized = 1 −
∑n

i=1 ri −
∑n

i=1 i

n(N − n)
(2)

where n is the number of relevant OSS in the results list limited to N and ri
is the rank of the ith relevant document in that list.

We assessed the first 20 returned results. However, when the number of
retrieved OSS is less than 20, precision and normalized recall are calculated
over the number of retrieved OSS. Table 1 gives the mean values of the precision
and the normalized recall obtained for both Se2FLOSS and Se2FLOSS without
OntoFLOSS. We notice that Se2FLOSS performs better than the non semantic
version thanks to the use of OntoFLOSS which improves both the precision and
the normalized recall values by around 23 %.

Since no benchmark is available to compare results with other search sys-
tems, we carried out another experimentation based on a manually controlled
collection. The built collection is composed of OSS descriptions gathered ran-
domly using the domain specific language BOA [26] and completed by others

Fig. 5. A screenshot for a sample Se2FLOSS identified knowledge

Towards a Semantic Search Engine for Open Source Software 311

Table 1. Mean precision and normalized recall for Se2FLOSS and effect of
ONTOFLOSS

Precision Normalized recall

Se2FLOSS without ONTOFLOSS 0.423 0.35

Se2FLOSS 0.521 0.43

%improvement 23.16 % 22.85 %

gathered manually from OSS repositories, mainly SourceForge. A total of 2394
OSS are collected distributed as follows.

– regarding operating systems: about 36 % of OSS work on windows (all ver-
sions included), about 32 % work on linux and about 5 % work on FreeBSD.
Among these ones, some are declared to work on all the preceding platforms
meaning that they are OS independent. 16 % of OSS are explicitly declared
OS independent.

– regarding programming languages: the most used ones are C++ and Java
both around 18 %. C comes next with 15 %, followed by PHP which is used
by about 11 % of gathered OSS. Python, Perl and C# are almost equally used
each by around 5 % of OSS. Note that several OSS are developed using more
than one programming language.

– regarding licenses: the most used license found in the collection is GPLv2
(about 55 %) followed by LGPLv2 (about 10 %) GPLv3 (6 %) and BSD license
(5 %). Some OSS are released under more than one license.

While browsing OSS descriptions on the Web, it is easy to notice that OSS
are not always fully described. Sometimes, important information such as the
programming language, the operating system or the license is missing. The user
should generally inspect OSS related files such as README and source code files
for additional information. For the built collection, Table 2 gives the number of
OSS for each missing information type.

Table 2. Number of OSS with missing information

License Programming language Operating system

OSS number 29 16 112

Once the collection defined, we prepared a set of 20 queries. Each one is
composed of a set of keywords to express the searched functionality and specific
requirements. Types of queries along with their number and requirements are as
follows:

– Type1: 2 queries without any specific requirements.
– Type2: 5 queries about OSS working on a given operating system.
– Type3: 5 queries about OSS released under a given license.

312 S. Ben Sassi

– Type4: 5 queries about OSS written with a given programming language.
– Type5: 3 queries about OSS written with a given programming language and

released under a specific license.

It was then question of assessing the collection against the queries in order to
know, for each query, which software is relevant as well as the total number of
relevant OSS for that query. This process is carried out by three persons having
a computer sciences background and bearing in mind not to consider linguistic
semantics, mainly synonyms, while judging. The queries are afterward submitted
to Lemur2 along with the collection and the judgment files in order to perform
a standard search and compute the precision for the 20 first returned results of
each query. The baseline mean precision obtained is 0.735. Se2FLOSS do not per-
form better than Lemur regarding queries of Type1, Type4 and Type5. However,
using rules defined in OntoFLOSS for licenses as well as those relating operating
systems to programming languages, a part of missing information is deduced.
Therefore, more relevant OSS are retrieved for queries of Type2 and Type3.
Table 3 summarizes precision results and shows that rules within OntoFLOSS
have improved the mean precision by 12 % and that the main improvement
comes from queries with an operating system requirement. This latter has a
good probability to be deduced when it is not initially specified in the OSS
description. Indeed, for the whole collection and as it is mentioned in Table 2,
112 OSS descriptions do not explicitly include the operating system. Applying
OntoFLOSS rules, operating system of 73 among the 112 are determined as fol-
lows: 57 OS independent, 13 Windows and 3 Unix. Therefore, derived knowledge
allowed to fill about 65 % of missing information about operating system.

Table 3. Obtained precision compared to a baseline

Overall mean pr. Type2 mean pr. Type3 mean pr.

baseline 0.735 0.58 0.82

with OntoFLOSS 0.828 0.88 0.89

improvement % 12.65 51.72 8.53

5 Conclusion

The aim of this work is to provide developers and end users with a semantic
search engine for open source software. The system proposed uses an ontology
elaborated in order to capture knowledge about OSS and allow reasoning to
infer new knowledge. The OntoFLOSS ontology is used in the indexing process
to unify open source software descriptions, and intervenes in the search process to
expand the query. Reasoning is ensured through rules relating concepts together.
2 http://www.lemurproject.org/.

http://www.lemurproject.org/

Towards a Semantic Search Engine for Open Source Software 313

Experimentation results show that the use of ONTOFLOSS improves the preci-
sion and recall of the system which means that the relevance of returned results
is clearly increased. We plan to take into account during the search process the
context of the user, especially when he/she is a developer. Preferences such as
interest domain and programming language, as well as characteristics of the
application being developed along with a ranking method would improve the
relevance of the returned results.

Acknowledgments. Acknowledgment to Atef Charef and Raja Lagha for their par-
ticipation during the elaboration of Se2FLOSS.

References

1. Survey Analysis: Open-Source Software Adoption and Governance-Worldwide-
2014, February 2015. https://www.gartner.com/doc/2984418/survey-analysis-
opensource-software-adoption

2. 2015 Future of Open Source Survey Results - Black Duck Software. http://fr.
slideshare.net/blackducksoftware/2015-future-of-open-source-survey-results

3. Widespread Use of Open-Source Software Demands Strong and Effective Gov-
ernance, August 2014. https://www.gartner.com/doc/2822619/widespread-use-
opensource-software-demands

4. Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., Kusumoto, S.: Ranking
significance of software components based on use relations. IEEE Trans. Softw.
Eng. 31(3), 213–225 (2005)

5. Gysin, F.S.: Improved social trustability of code search results. In: 32nd
ACM/IEEE International Conference on Software Engineering, Cape Town, South
Africa, pp. 513–514. ACM Press (2010)

6. Krugle OpenSearch. http://opensearch.krugle.org
7. BlackDuck Open HUB. https://www.openhub.net
8. Reiss, S.P.: Semantics-based code search. In: 31st ACM/IEEE International Con-

ference on Software Engineering, Vancouver, Canada, pp. 243–253. IEEE Computer
Society (2009)

9. Merobase Source Code Search. http://www.merobase.com
10. Hummel, O., Janjic, W., Atkinson, W.: Code conjurer: pulling reusable software

out of thin air. IEEE Softw. 25(5), 45–52 (2008)
11. Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P.: Sourcerer:

mining and searching internet-scale software repositories. Data Min. Knowl. Disc.
18(2), 300–336 (2009)

12. McMillan, C., Grechanik, M., Poshyvanyk, D., Fu, C., Xie, Q.: Exemplar: a source
code search engine for finding highly relevant applications. IEEE Trans. Softw.
Eng. 38(5), 1069–1087 (2012)

13. Open source software. http://opensource.ankerl.com
14. FLOSS and FOSS. http://www.gnu.org/philosophy/floss-and-foss.en.html
15. Gruber, T.: Ontology. In: Liu, L., Tamer Özsu, M. (eds.) Encyclopedia of Database

Systems, pp. 1963–1965. Springer, Heidelberg (2009)
16. Guarino, N., Welty, C.: Evaluating ontological decisions with OntoClean. Commun.

ACM 45(2), 61–65 (2002)

https://www.gartner.com/doc/2984418/survey-analysis-opensource-software-adoption
https://www.gartner.com/doc/2984418/survey-analysis-opensource-software-adoption
http://fr.slideshare.net/blackducksoftware/2015-future-of-open-source-survey-results
http://fr.slideshare.net/blackducksoftware/2015-future-of-open-source-survey-results
https://www.gartner.com/doc/2822619/widespread-use-opensource-software-demands
https://www.gartner.com/doc/2822619/widespread-use-opensource-software-demands
http://opensearch.krugle.org
https://www.openhub.net
http://www.merobase.com
http://opensource.ankerl.com
http://www.gnu.org/philosophy/floss-and-foss.en.html

314 S. Ben Sassi

17. Sure, Y., Studer, R.: On-to-knowledge methodology. In: Staab, S., Studer, R. (eds.)
Handbook on Ontologies. Springer, Heidelberg (2003)

18. Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering with
Examples from the Areas of Knowledge Management, e-Commerce and the Seman-
tic Web. Springer, London (2004)

19. Bachimont, B., Isaac, A., Troncy, R.: Semantic commitment for designing ontolo-
gies: a proposal. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS
(LNAI), vol. 2473, pp. 114–121. Springer, Heidelberg (2002)

20. Licences Libres. https://aful.org/ressources/licences-libres
21. Various Licenses and Comments about Them. http://www.gnu.org/licenses/

license-list.en.html
22. Open Source Licenses Wars. http://www.shlomifish.org/philosophy/computers/

open-source/foss-licences-wars/foss-licences-wars/index.html
23. Beltaifa, R.: Une infrastructure pour la rutilisation de composants logiciels. Ph.D.

thesis, National School of Computer Sciences, Tunisia (2004)
24. Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P., Admas, P.J., Samoladas,

I., Stamelos, I.: Evaluating the quality of open source software. Electron. Notes
Theor. Comput. Sci. 223, 5–28 (2009)

25. Bollmann, P.: The normalized recall and related measures. In: 6th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, Maryland, USA, pp. 122–128. ACM Press (1983)

26. Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: a language and infrastruc-
ture for analyzing ultra-large-scale software repositories. In: 35th International
Conference on Software Engineering, San Francisco, CA, USA, pp. 422–431. IEEE
Press (2013)

https://aful.org/ressources/licences-libres
http://www.gnu.org/licenses/license-list.en.html
http://www.gnu.org/licenses/license-list.en.html
http://www.shlomifish.org/philosophy/computers/open-source/foss-licences-wars/foss-licences-wars/index.html
http://www.shlomifish.org/philosophy/computers/open-source/foss-licences-wars/foss-licences-wars/index.html

Detecting Similar Programs
via The Weisfeiler-Leman Graph Kernel

Wenchao Li1, Hassen Saidi1, Huascar Sanchez1, Martin Schäf1(B),
and Pascal Schweitzer2

1 SRI International, 333 Ravenswood Ave, Menlo Park 94025, USA
martin.schaef@sri.com

2 RWTH Aachen University, Aachen, Germany
http://www.csl.sri.com/people/li/

http://www.csl.sri.com/people/saidi/

https://huascarsanchez.com/

http://www.csl.sri.com/people/schaef/

http://www.lii.rwth-aachen.de/~schweitzer/

Abstract. With the increasing availability of source code on the Inter-
net, many new approaches to retrieve, repair, and reuse code have
emerged that rely on the ability to efficiently compute the similarity of
two pieces of code. The meaning of similarity, however, heavily depends
on the application domain. For predicting API calls, for example, pro-
grams can be considered similar if they call a specific set of functions in a
similar way, while for automated bug fixing, it is important that similar
programs share a similar data-flow.

In this paper, we propose an algorithm to compute program similar-
ity based on the Weisfeiler-Leman graph kernel. Our algorithm is able to
operate on different graph-based representations of programs and thus
can be applied in different domains. We show the usefulness of our app-
roach in two experiments using data-flow similarity and API-call simi-
larity.

1 Introduction

Over the past few years, we have seen a rapid increase in the amount of source
code that is openly available on the Internet. Source code hosting platforms such
as GitHub, BitBucket, or SourceForge and social media resources like StackOver-
flow have changed the way we program. This large amount of machine readable
source code also has given rise to several interesting new research directions, such
as code prediction [23], discovery of architectural patterns [20], using donor code
for program repair [12,29], and more efficient ways to search for code [17,30].

Central to these new approaches is the ability to efficiently find similar code
snippets in the wild. Unlike in traditional code clone detection, the notion of
similarity depends heavily on the application. For automatic program repair, for
example, it is important that code shares a similar data-flow, whereas for code

This work is funded in parts by AFRL contract No. FA8750-15-C-0010.

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 315–330, 2016.
DOI: 10.1007/978-3-319-35122-3 21

316 W. Li et al.

prediction, it is often sufficient if the code interacts with a certain API in a
similar way. Hence, finding a generic approach to comparing code that can work
with different representations and abstractions has the potential to be beneficial
in a variety of fields.

To address this problem, we propose a new algorithm to compute a program
similarity score based on a technique from graph isomorphism testing. Here, we
use the term program as a shorthand for any piece of code, like a full program,
isolated classes or methods, or just snippets.

Our algorithm consists of two parts. First, it turns a program into a labeled
graph. Second, it computes a Weisfeiler-Leman kernel for this graph and com-
pares it against the precomputed kernels of the graphs of other programs to
identify the most similar ones.

The algorithm itself is agnostic to the graph representation of the program or
the programming language and can be used with different graphs. To illustrate
the usefulness of this approach, we introduce two graph representations of Java
programs, a simplified inter-procedural data-flow graph (IDFG), and an API-call
graph (ACG), and evaluate how these graphs can be used in combination with
our algorithm to identify similar programs. The IDFG is a simplified version
of the actual data-flow graph of a Java program and suitable to find programs
that are algorithmically similar, while the ACG is a stripped-down version of
an inter-procedural control-flow graph that only contains calls to a given API,
which is suitable to find examples of API usage.

To evaluate the ability of our approach to identify similar programs, we
conduct two experiments. For the first experiment, we choose a subset of the
Google CodeJam1 corpus as a benchmark. The corpus is a set of 4 algorithmic
problems, each with hundreds of solutions given as small Java programs (in total
1,280 programs). Our goal is to show that, when picking any of these Java
programs, our approach for finding similarities using the IDFG identifies similar
programs that are in fact solutions to the same problem.

The programs in CodeJam are very algorithmic and make only limited use
of API calls (e.g., for printing). Hence, this corpus is unfortunately not suitable
to evaluate our approach in combination with the second graph representation,
the ACGs. Thus, we perform a second experiment where we use the Apache
commons-lang project as a benchmark. We compare the similarity between all
pairs of methods in this application and evaluate manually if the reported simi-
larities indicate similar API usage patterns.

Roadmap. In the following Section, we introduce the Weisfeiler-Leman algorithm
to compute graph kernels for labeled graphs. In Sect. 3, we explain how we use
these graph kernels to compute a similarity score between graphs. In Sect. 4,
we introduce the two graph representations of Java programs (IDFG and ACG)
that we use in our experiments. We evaluate our approach in Sect. 5, discuss the
related work in Sect. 6, and propose future directions in Sect. 7.

1 https://code.google.com/codejam.

https://code.google.com/codejam

Detecting Similar Programs via The Weisfeiler-Leman Graph Kernel 317

2 Preliminaries

Our approach to measure the similarity between programs is based on a standard
routing from graph isomorphism testing which we introduce in this section. More
specifically, we use the 1-dimensional Weisfeiler-Leman algorithm, often also
referred to as color refinement or näıve vertex classification. The procedure is
for example employed in the currently fastest practical isomorphism solvers (such
as Nauty and Traces [18], Bliss [11] and saucy [4]).

The algorithm repeatedly recolors the vertices of its inputs graphs. Starting
with an initial coloring of the vertices which distinguishes them by their degree
the algorithm proceeds in rounds. In each round the new color of a vertex encodes
the previous color as well as the multiset of the colors of the neighbors. The k-
dimensional variant, which we will not require in this work, colors k-tuples of
vertices and can solve isomorphism on quite general graph classes (see [8]).

Next, we describe the one-dimensional variant more formally. If G =
(V,E, χ0) is a vertex colored graph, where χ0 is a vertex coloring, we recur-
sively define χi+1 to be the coloring given by

χi+1(v) :=
(
χi(v), {{χi+1(v′) | {v, v′} ∈ E}}).

Here we use “{{” and “}}” to indicate multisets.
The process leads to an ever finer classification of the vertices. This process

stabilizes at some point. In the context of graph isomorphism the histogram of
the colors is used to distinguish graphs according to isomorphism.

However, for our purpose, the final colors are excessively descriptive, in
the sense that they actually encode too much information. Indeed, by a result
from [1], for almost all graph, each final color already encodes the isomorphism
type of the graph.

Circumventing this problem we adopt the technique from [27] to only exe-
cute the algorithm for a few rounds and exploit the histograms of the colors
that appear during the execution of the algorithm. In [27] these histograms are
used to design a graph kernel which can then be applied in a machine learning
fashion to perform for example graph classification. Said kernel captures similar
information to other kernels that count subgraphs (see for example [9] or [28]).
However, the Weisfeiler-Leman Kernel can be far more efficiently computed.

It is well known that the exact information captured by i iterations of näıve
vertex classification can be precisely expressed in a certain type of logic (see [19]).
However, it is difficult to grasp what the result means in terms of graph theoretic
properties of the input graphs. While in a regular graph no information is gener-
ated at all, since all vertices have the same color in all iterations, in non-regular
graphs typically the isomorphism type of a small neighborhood of a vertex is
determined.

Concerning running time it is possible to perform h-iterations of the algo-
rithm in O(hm) time, where m is the number of edges of the input graph. To
achieve such a running time, the labels have to be compressed to prevent label
names from becoming excessively long. There are two options to do this, one

318 W. Li et al.

Fig. 1. The figure shows a left graph GL and a right graph GR to which the 1-
dimensional Weisfeiler-Leman is being applied for 2 iterations. Here labels are hashed
to smaller values. The renaming is as follows 4 := (1, {{3}}), 5 := (2, {{2, 3}}), 6 :=
(2, {{3, 3}}), 7 := (3, {{1, 2, 2}}), 8 := (3, {{2, 2, 2}}), 9 := (4, {{7}}) and so on. The figure
also shows the histograms of labels that appear in the two graphs highlighting their
similarity.

employs techniques such as bucket sort, while the other one simply uses a hash
function to compress the labels (see [27]). We adopt the latter approach and
used the built-in hash function for strings in our implementation.

In our intended application, we benefit from the fact that the algorithm can
take vertex-labeled graphs as input. Thus it is easy to introduce labeled nodes
into the algorithm. In Sect. 4 we show how Java types (for IDFG) or method
signatures (for the ACG) can be used as initial coloring χ0 in the definition of
the algorithm.

3 Similarities

Our goal is to design a similarity score S(P, P ′) between programs P and P ′

with the following properties.

– All programs are 100% similar to themselves, i.e. S(P, P) = 1.
– The score is symmetric, i.e. S(P, P ′) = S(P ′, P).
– The score is normalized to a percentage number, i.e. 0 ≤ S(P, P ′) ≤ 1.

A percentage score also has the advantage of being more easily interpreted by
the user. We remark that an asymmetric score might be desired in some setting.

Detecting Similar Programs via The Weisfeiler-Leman Graph Kernel 319

For example, the user may be interested in finding a similar program that is also
of similar size.

Recall that the Weisfeiler-Leman kernel with h iterations for graphs G and
G′ is defined as follows [16]:

K
(h)
WL(G,G′) = w0K(G0, G

′
0) + w1K(G1, G

′
1) + . . . + whK(Gh, G′

h) (1)

where the Gis and G′
is are the graphs produced by successive recoloring of the

original labeled graphs G0 and G′
0 (as shown in Fig. 1), and K(Gi, G

′
i) is a graph

kernel for graphs Gi and G′
i. K

(h)
WL(G,G′) is then constructed as a positive linear

combination of the K(Gi, G
′
i)s using some positive weights wis.

In each iteration of the Weisfeiler-Lehman algorithm, a histogram is produced
which encodes certain structural information of the graph, as shown in Fig. 1.
Treating these histograms as vectors, a natural candidate for K is the scalar
product of two vectors. However, this can be problematic when the graph sizes
are very different. Consider the scenario of two graphs G and G′ where |V | �
|V ′|, and all the nodes in G′ have an identical label l which exists somewhere in
G. We presume G and G′ correspond to either the API call graph or the inter-
procedural data-flow graph generated from programs P and P ′ respectively.
Observe that it is easy to have K(G,G) < K(G,G′). As a result, P ′ might be
reported as a more similar program to P than P itself. Hence, we apply standard
normalization using the lengths of the two vectors and use the angle between
the vectors as our similarity measure.

Let v(Gi) present the coloring vector (histogram) produced at the ith

iteration of the Weisfeiler-Leman algorithm. Then K(Gi, G
′
i) = v(Gi) ·

v(G′
i)/‖(v(Gi))‖ ‖(v(G′

i))‖. Since we are interested in a percentage score, and
0 ≤ K(Gi, G

′
i) ≤ 1 for each i, the weights wis can be chosen appropriately to

make 0 ≤ K
(h)
WL(G,G′) ≤ 1. In our experiments, we simply choose a uniform

weight.

4 Graph-Based Program Representations

The ability of our algorithm to detect program similarity strongly depends on
the graph representation of programs that we use when computing the graph
kernels. Choosing a graph representation for programs is a trade off between
precision and the ability to identify programs that serve a similar purpose but
are structurally different. Using the precise control-flow graph of a program, for
example, would be an efficient way to identify exact code clones but would reduce
the chance to identify programs that are semantically similar but syntactically
different.

In this paper, we search a balance between precision and flexibility by propos-
ing two graph representations. We call our first graph API Call Graph (ACG)
which is a stripped-down inter-procedural control-flow graph that only shows
calls to a specific set of APIs. Our second graph is a (simplified) inter-procedural
data-flow graph (IDFG) which tracks the flow of data between memory locations
from a given program entry point.

320 W. Li et al.

Fig. 2. Running example for our graph representation of programs. The method
reverseFile is the entry point. It takes two file names as input. It reads the con-
tent from the first file to a String using the method readFile, reverses the String, and
writes out the reverted String using writeFile.

Both graphs provide a certain level of abstraction. In the following we dis-
cuss the advantages and disadvantages of our design choices along the running
example program in Fig. 2. This program has a (public) method reverseFile
that takes the names of two files as input, calls readFile to read the contents of
the first file into a string, reverses this string, and subsequently calls writeFile
to write the resulting string to a file.

We now construct the graph representations for this program using Soot [31].
Soot first translates the program into an intermediate format called Jimple which
provides us with a canonical form for expressions. For the graph construction,
we extend Soot’s flow analysis to collect the node and edges of our graph per
method, where we keep placeholder nodes for method calls. Then, in a final
step, we substitute the placeholder nodes for method calls by their corresponding
graphs. We will discuss details and practical issues of the graph construction in
more detail later on in the evaluation.

4.1 API Call Graph

The first graph that we construct is called API Call Graph which represents the
order in which procedures of some given APIs can be called from a given entry
point.

Detecting Similar Programs via The Weisfeiler-Leman Graph Kernel 321

Fig. 3. ACG for our example from Fig. 2. The ACG approximates the possible
sequences of calls to methods in java.io.* and java.nio.*. The labels are simpli-
fied for readability and usually also encode the types of parameters and return values.

The motivation for using an ACG for computing program similarity is our
hypothesis that, in Java, programmers often achieve their goals by using external
APIs. Programs that use the same API calls in the same order should have a
similar objective, regardless of the statements in between. A programmer using
our approach to find similar code might thus be interested in finding any code
that shares the usage pattern of a specific subset of APIs.

For the construction of the ACG, we pick an entry point (e.g., reverseFile
in our example) and the APIs that we are interested in (e.g., in our example we
are interested java.io.* and java.nio.*). Then we follow the control-flow of
the program starting from the entry point. Each time we encounter a call to a
method that is declared in an API that we are interested in, we create a new
node for this call. Figure 3 shows the ACG for our example from Fig. 2.

The ACG always has a unique source node but can have multiple sink nodes.
One unique sink node always represents the normal termination of a procedure,
other sink nodes may exist for exceptional returns. In Fig. 2 we have exceptional
sinks for RuntimeException and IOException.

Each time we encounter a call to a method that is not part of an API that
we are interested in, but for which we have code available, we inline the method

322 W. Li et al.

Fig. 4. IDFG for our example from Fig. 2. Vertices are labeled with variable types,
edges represent data-flow. Octagon shaped vertices represent method calls. The actual
operation are omitted from the edges since our algorithm ignores edge labels.

call. In Fig. 2, the method calls to readFile and writeFile have been inlined.
Any call to methods defined in java.io.* and java.nio.* is represented by a
single node, and all other calls (such as the calls to reverse and toString in
Line 3) get ignored.

For resolving virtual calls, we use a static algorithm that is fast but imprecise.
That is, the ACG only approximates the possible sequences of calls to methods
from a certain API. For example, we do not perform a proper points-to analysis
while constructing the graph and indirect control-flow such as library callbacks
is not tracked (but can be provided by the user). We discuss various sources of
imprecision specific to our implementation later on in the evaluation.

4.2 Inter-procedural Data-Flow Graph

Our second graph is an inter-procedural data-flow graph (IDFG). Data-flow
graphs are frequently used in program analysis and compiler optimization. The
graph captures the flow of data between program variables without taking the
control-flow into account. Each node in this graph represents a program variable
or memory location. A (directed) edge between two nodes represents that data
from one source node flows into the variable associated with the sink node. This
way, an IDFG groups variables together that interact with each other even if
they are not immediately connected in the control-flow.

The motivation of using IDFGs for finding similar programs is that programs
that perform similar algorithmic tasks such as sorting or searching in collections
use a similar set of base types and perform similar operations on them. In con-
trast to the ACG which focuses on finding programs with similar API usage, the
IDFG is used to find programs that use similar algorithms. That is, while we
envision a typical scenario for ACG usage as a user trying to understand how

Detecting Similar Programs via The Weisfeiler-Leman Graph Kernel 323

to use a particular API, we think of the ICFG as a tool to find a method (in an
API) that could be used to replace an algorithm in the user’s program.

Figure 4 shows the IDFG for our example from Fig. 2. Each oval node corre-
sponds to a program variable or a new expression, each octagon shaped node is
a call to a procedure that could not be inlined (e.g., because it is a library call to
which no source code is available). To obtain a more canonical representation,
we label the nodes with the types of the program variables instead of the name.
As an abstraction, we represent types that are not visible outside the current
application with a question mark. We discuss possible ways of how to represent
non-primitive Java types in the IDFG in the future work.

5 Evaluation

5.1 Evaluation of Code Similarity Using IDFG

We use the CodeJam dataset as a benchmark for evaluating our method of find-
ing similar programs. This dataset consists of all the solutions to programming
problems used in the Google Code Jam competition from 2008 to 2015. One
advantage of using the CodeJam dataset is that the problem-solution setting
acts as a free oracle for checking whether two programs are similar, since two
solutions of the same problem must be input-output equivalent for the set of
input test cases provided by Google (although several algorithms may exist as
acceptable solutions). One downside of this dataset is that since the problems are
highly algorithmic in nature (as opposed to large software design), many solution
programs just operate on built-in datatypes and the only library classes that are
frequently used are String and StringBuffer. This restricts our graph choices
to IDFG instead of ACG. Another downside is that code quality is relatively low
compared to well established open-sourced projects since the programs were pro-
duced in a competition environment with tight time constraints. An undesirable
effect of this is that some programs could not be included in the experiments
because of non-standard entry points (no main method), or other compilation
issues (non-unicode characters in the source files).

Setup. We randomly selected four problems from the CodeJam dataset. There
are 1280 Java programs in total in this subset. For each of the programs, we
first create an inter-procedural data-flow graph as describe in Sect. 4 for its top-
level entry point (usually the main method). Then, for each program, we use
our graph kernel based method to find the top k most similar programs to it
from the rest of the 1279 programs. Since these programs are known to solve
one of these four problems, we consider a similar program found to be correct if
it solves the same problem. Our goal of this experiment is to evaluate how well
our method identifies the appropriate similar program.

Results. We first evaluate how accurately our method can find the most similar
program. As a baseline comparison, a random guess would have an accuracy of
25%. The accuracy of our method is 77.8%. If we increase k to 2, i.e., consider
the top 2 most similar programs found and check if any one of them is from the

324 W. Li et al.

Fig. 5. Accuracy, precision and recall values plotted at different threshold values. Accu-
racy is the percentage times the program found is from the same problem and has a
similarity score higher than the threshold, or it is from a different problem but is
rejected because of a lower than threshold score. Precision is the percentage of cor-
rectly identified programs with a higher than threshold score over all programs with a
higher than threshold score. Recall is the percentage of correctly identified programs
with a higher than threshold score over all correctly classified programs that would
have been returned without using the threshold.

same programming problem, then the accuracy increases to 87.9%. In general, a
larger k will produce better accuracy but at the expense of user experience and
effort, since the user would have to spend more time reading these programs and
some of them are irrelevant to her task.

We also consider using a threshold value on the similarity score for filtering
the similar programs found. If the most similar program found still has a simi-
larity score lower than the threshold, then the program is not shown to the user.
Figure 5 shows the results of using different threshold values In our case, preci-
sion tops at a threshold of around 0.6. On the other hand, accuracy decreases
monotonically with increasing threshold value.

Discussion. The experiments above show that our graph kernel based approach
can effectively identify similar programs. However, to our surprise, a threshold
value is not needed to achieve the highest accuracy (although one is needed
for precision). This indicates that even a low similarity score may be sufficient
to distinguish the kinds of programs, given the large space of possible imple-
mentations. We plan to include the rest of CodeJam for a more comprehensive
evaluation in the future.

Threads to Validity. One internal threat to validity is the fact that several differ-
ent algorithms may exist for the same programming problem, leading to widely

Detecting Similar Programs via The Weisfeiler-Leman Graph Kernel 325

different implementations. While IDFG encodes semantic information of the pro-
gram as data-flow, it still follows closely the structure of the program. This means
IDFG will likely fail to capture the fact that different algorithms and implemen-
tations are designed to solve the same problem. An external thread to validity
is that we are only using four problems in our evaluation. We are currently
working on evaluating our method on the whole CodeJam dataset. However,
as mentioned earlier, these programs only represent codes that are highly algo-
rithmic in nature and they still only constitute a tiny fraction of open-sourced
programs.

5.2 Evaluation of ACG Similarity

Using the ACG to find similar programs on the CodeJam corpus turned out
to be infeasible. The programs in CodeJam are of a very algorithmic nature
and mostly operate on the built-in types of Java. The only library classes that
are frequently used are String and StringBuffer which are used to log results.
Hence, building ACGs for these programs did not produce any interesting results.

To evaluate the usefulness of the ACG for finding similar programs, we set up
a different experiment where we compute ACGs for every method in the Apache
project commons-lang which is a library that provides utilities for common tasks
such as handling dates or serializing objects.

We choose commons-lang as a benchmark because it uses large parts of the
Java packages java.lang and java.util which we can use in the ACG con-
struction. Since we do not have an oracle to decide if two methods are similar
like in the case of CodeJam, the moderate size of commons-lang helps us to
examine the similarity results by hand.

The goal of this experiment is to evaluate whether methods considered similar
based on ACG isomorphisms are indeed similar. To that end, we choose the
following experimental setup: for each method in commons-lang, we compute an
ACG for all calls to methods in java.* excluding String and StringBuffer. We
inline calls to methods inside commons-lang up to depth four. Method calls that
exceed this limit are dropped from the ACG. While running the experiments,
we experimented with inlining depth up to ten which did not change the results
significantly.

If the ACG of a method has less than four nodes (i.e., two calls to library
methods and source and sink), we drop it since we are only interested in methods
that make at least two library calls.

Results. In total, we processed 3017 methods. Out of these, 660 methods had an
ACG with at least four nodes. For each constructed ACG we identify the two
most similar methods (excluding the method itself) which results in a total of
1320 pairs of ACGs together with their similarity values.

In 686 of these 1320 cases we found a real isomorphism (with a similarity
of 100 %). In 4 cases, we found a similarity between 99 and 80 %, in 8 cases a
similarity between 79 and 60 %, in 24 cases between 59 and 40 %, and all other
similarities were below 40 %.

326 W. Li et al.

The most notable part of our experimental result is the high number of real
isomorphisms (over 50 %). To get an intuition where these isomorphisms come
from, we investigated 40 methods by hand. In 27 of the 40 cases, the graphs were
isomorphic because both methods only contained a single statement calling the
same method. Hence, due to inlining, the ACGs were identical. In the remaining
cases, the methods indeed used the same set of library calls such as iterators
over collections or modifications of Date objects. We emphasize that this high
number of isomorphisms is a result of our experimental setup and this would
not be the case when searching for similar methods in a different code base.

In the four cases where methods had a similarity between 99 and 80 %, the
methods were slightly different but shared a number of API calls. One example
of this is the similarity between DateUtils.round and DateUtils.ceilling.
The round method calls to another method that is almost identical to ceiling
(this method and ceiling are in fact isomorphic).

In the similarity range between 79 and 60 %, we still find interesting results.
Examples of similar procedures are pairs like FormatCache.getDateTime-
Instance and FormatCache.getTimeInstance which, without going into the
details of the code are understandably similar by looking at their names. Five of
the eight similarities between 79 and 60 % were cases where one method called
to other.

Similarities between 59 and 40 % were, for example, found in the
StringUtils class between methods like endsWithAny and startsWithAny,
or removeEndIgnoreCase and removeStartIgnoreCase which, as their naming
suggests, perform very similar tasks. Other cases of 50 % similarity are differ-
ent methods to find threads in ThreadUtil. These methods all iterate over a
collection of Thread objects but use different methods to filter this set.

Even methods with a similarity below 40 % still were interesting in
many cases. For example for the method LocalUtils.countriesByLanguage
the most similar method was LocalUtils.languagesByCountry, or for
Fraction.divideBy the most similar method (with 18 % similarity) was
Fraction.multiply. Only when we reach a similarity of below 15 %, the results
become less useful.

Discussion. This experiment shows that similarity based on the ACG is indeed
useful to identify methods that serve a similar purpose. We emphasize that
our experimental setup of finding similarities in the same code-base is certainly
biased towards finding many isomorphic graphs, so the success rate of finding
similar code with this approach can not be generalized from this experiment.
What the experiment shows, however, is that methods with a similarity between
99 % and 20 % are still very similar even if they do not share code and that the
approach hardly produces false alarms. For the method pairs that we inspected,
there was no case where we could not spot the similarity.

Threats to Validity. Several threats to validity have to be discussed in this experi-
ment. We already mentioned that searching for similar methods in the same code
base is biased towards finding many isomorphic graphs. For a less biased experi-
mental setup, we would need labeled data like in the case of CodeJam. We would

Detecting Similar Programs via The Weisfeiler-Leman Graph Kernel 327

need an oracle that can decide if methods are similar to measure how often our
approach does not find a similar method where one exists. Unfortunately, we do
not have such an oracle but it is part of our future work to build up a corpus
to further evaluate our approach. Another thread to validity is the choice of
java.* as an API and commons-lang as code base. In the future work we will
experiment with more code bases and different APIs but within the scope of this
paper we believe that this experiment is sufficient to convey our idea.

6 Related Work

The problem of finding similarities in source code is a known problem in software
engineering. It crops up in many software engineering contexts as diverse as
program compression [5], malware similarity analysis [3], software theft detection
[14], software maintenance [7], and Internet-scale code clone search [25].

Previous research in program similarity has focused more on detecting syn-
tactic similarity [24] and less on detecting semantic similarity, as the latter is
generally undecidable. We can classify these different approaches into five cate-
gories: Text-based, Token-based, Tree-based, Semantic-based, and Hybrid.

In text-based solutions, the source code of a program is divided into strings
and then compared against another. Under this type of solution, two programs
are similar if their strings match [2]. In token-based solutions (lexical), the source
code of a program is transformed into a sequence of lexical tokens using compiler
style lexical analysis. The produced sequences are then scanned for duplicated
subsequences of tokens. The representative work here is Baker’s token based
clone detection [2]. In tree-based solutions, the source code of a program is
parsed in order to produce an abstract syntax tree (AST). The produced AST
is then scanned for similar subtrees. The representative work here is Jiang’s
Deckard [10]. In semantic-based solutions, a source code is statically analyzed
to produce a program dependency graph (PDG) [6]. Then, the program sim-
ilarity problem is reduced to the problem of finding isomorphic graphs using
program slicing [13]. In hybrid solutions, both syntactic and semantic charac-
teristics are used to find similar code. The representative work here is Leitao’s
hybrid approach for detecting similar code. This hybrid approach combines syn-
tactic techniques based on AST metrics, semantic techniques (call graphs), and
specialized comparison functions to uncover code redundancies [15].

The approach presented in this paper can be seen as a hybrid solution as
well. It identifies similar programs using graph similarity like semantic-based
solutions but is agnostic to the kind of graph that is being used. For example
our ACG is more of a syntactic representation and the IDFG more a semantic
representation of the program.

When considering similarity measures of graphs one has to carefully dis-
tinguish between measures that are applied to labeled graphs and measure
applied to unlabeled graphs. A labeled measure d may use information of
the vertex names. For example the edit distance is usually defined for two
graphs G1 = (V,E1) and G2 = (V,E2) over the same vertex set as d(G1, G2) :=

328 W. Li et al.

|E1 \ E2| + |E2 \ E1|. It captures the amount of edges/non-edges that need
to be altered to turn the one graph into the other. In contrast to this, a
measure for unlabeled graphs is not allowed to depend on the names of the
vertices, that is for a permutation π of the vertices of G2 we must have
that d(G1, G2) = d(G1, π(G2)).

An overview over some graphs similarity measures is given in [26]. Labeled
graph similarity measures are not suitable for our intended applications. Indeed,
the names of the vertices of the IDFG and ACG do not seem to carry relevant
information. (This is different for the labels that are assigned by the algorithm,
which carry structural information, as discussed earlier.) The question remains
which unlabeled graph similarity measures are suitable to capture code similar-
ity? From a conceptual point it appears that the occurrence of substructures
of certain kinds in a node’s vicinity is related to the purpose of a code snippet
containing said node. This is supported by the findings in [16,20–22]. Guided by
this insight, we chose the similarity based on Weisfeiler-Leman algorithm for our
purposes. While it detects similar information as subgraph counts, it provides
us with two significant advantages. On the one hand it is very efficiently com-
putable, which not the case for subgraph detection, as also explained in [16,22].
On the other hand it easily allows us to exploit the label information of different
types of graphs generated from programs.

7 Conclusion

We have presented a generic algorithm to compute program similarity based on
the Weisfeiler-Leman graph kernels. Our experiments suggest that the algorithm
performs well for the IDFG and ACG representation of Java code that we pro-
posed. However, we believe that our algorithm will also perform well with other
graph-based models.

We see several interesting applications that we want to pursue as future work:
one interesting property of graph kernels is that a combination of two graph
kernels is again a graph kernel. In the case of the ACG, this would allow us
to compute separate ACGs for different APIs (e.g., java.lang and java.util)
and either use them in isolation or combine them, which would allow us to build
more efficient search algorithms. Another interesting application would be to
combine kernels from entirely different graphs, such as the ACG and the IDFG
to experiment with new concepts of similarity.

Further, using graph kernels makes it easy to experiment with different graph
representations. One could for example use a simplified version of a control-flow
graph or use a more abstract labeling of the nodes to model different kinds of
program similarity.

Detecting Similar Programs via The Weisfeiler-Leman Graph Kernel 329

References

1. Babai, L., Erdős, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput.
9(3), 628–635 (1980)

2. Baker, B.S.: On finding duplication and near-duplication in large software sys-
tems. In: 2nd Working Conference on Reverse Engineering, WCRE 1995, Toronto,
Canada, 14–16 July 2005, pp. 86–95 (1995)

3. Cesare, S., Xiang, Y.: Software Similarity and Classification. Springer Briefs in
Computer Science. Springer, London (2012)

4. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in
symmetry detection for CNF. In: Malik, S., Fix, L., Kahng, A.B. (eds.), Proceed-
ings of the 41th Design Automation Conference, DAC, San Diego, CA, USA, 7–11
June 2004, pp. 530–534. ACM (2004)

5. Evans, W.S.: Program compression. In: Koschke, R., Merlo, E., Walenstein, A.
(eds.) Duplication, Redundancy, and Similarity in Software, 23–26 July 2006,
vol. 06301 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

6. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

7. Godfrey, M.W., Zou, L.: Using origin analysis to detect merging and splitting of
source code entities. IEEE Trans. Softw. Eng. 31(2), 166–181 (2005)

8. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded
minors. J. ACM 59(5), 27 (2012)

9. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph min-
ing. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Seattle, Washington, USA, 22–25 August 2004, pp. 158–167. ACM (2004)

10. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: scalable and accurate tree-
based detection of code clones. In: Proceedings of the 29th International Confer-
ence on Software Engineering, ICSE 2007, pp. 96–105. IEEE Computer Society
Washington, DC, USA (2007)

11. Junttila, T.A., Kaski, P.: Engineering an efficient canonical labeling tool for large and
sparse graphs. In: Proceedings of the Nine Workshop on Algorithm Engineering and
Experiments,ALENEX,NewOrleans,Louisiana,USA,6January2007. SIAM(2007)

12. Ke, Y., Stolee, K.T., Le Goues, C., Brun, Y.: Repairing programs with semantic
code search. In: Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 295–306, Lincoln, NE, USA, Novem-
ber 2015. doi:10.1109/ASE.2015.60, http://people.cs.umass.edu/brun/pubs/pubs/
Ke15ase.pdf

13. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code. In:
Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 40–56. Springer, Heidelberg (2001)

14. Lancaster, T., Culwin, F.: A comparison of source code plagiarism detection
engines. Comput. Sci. Edu. 14(2), 101–112 (2004)

15. Leitão, A.M.: Detection of redundant code using R2D2. In: 3rd IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM 2003), Amsterdam,
The Netherlands, 26–27 September 2003, pp. 183–192 (2003)

16. Lestringant, P., Guihéry, F., Fouque, P.-A.: Automated identification of crypto-
graphic primitives in binary code with data flow graph isomorphism. In: Proceed-
ings of the 10th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS 2015, pp. 203–214. ACM, New York (2015)

http://dx.doi.org/10.1109/ASE.2015.60
http://people.cs.umass.edu/brun/pubs/pubs/Ke15ase.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Ke15ase.pdf

330 W. Li et al.

17. Mahmoud, A., Bradshaw, G.: Estimating semantic relatedness in source code.
ACM Trans. Softw. Eng. Methodol. 25(1), 10:1–10:35 (2015)

18. McKay, B.D., Piperno, A.: Nauty and traces user guide. https://cs.anu.edu.au/
people/Brendan.McKay/nauty/nug25.pdf

19. Pikhurko, O., Verbitsky, O.: Logical complexity of graphs: a survey. CoRR,
abs/1003.4865 (2010)

20. Pradhan, P., Dwivedi, A.K., Rath, S.K.: Detection of design pattern using graph
isomorphism and normalized cross correlation. In: Parashar, M., Ramesh, T.,
Zola, J., Narendra, N.C., Kothapalli, K., Amudha, J., Bangalore, P., Gupta, D.,
Pathak, A., Chaudhary, S., Dinesha, K.V., Prasad, S.K. (eds.) Eighth International
Conference on Contemporary Computing, IC3, Noida, India, 20–22 August 2015,
pp. 208–213. IEEE Computer Society (2015)

21. Qiu, J., Su, X., Ma, P.: Library functions identification in binary code by using
graph isomorphism testings. In: Guéhéneuc, Y., Adams, B., Serebrenik, A. (eds.)
22nd IEEE International Conference on Software Analysis, Evolution, and Reengi-
neering, SANER, Montreal, QC, Canada, 2–6 March 2015, pp. 261–270. IEEE
(2015)

22. Qiu, J., Su, X., Ma, P.: Using reduced execution flow graph to identify library
functions in binary code. IEEE Trans. Softw. Eng. 42(2), 187–202 (2015)

23. Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “big
code”. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2015, pp. 111–124. ACM,
New York (2015)

24. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: a qualitative approach. Sci. Comput. Program.
74(7), 470–495 (2009)

25. Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V.: SourcererCC: scaling
code clone detection to big code. CoRR, abs/1512.06448 (2015)

26. Schweitzer, P.: Isomorphism of (mis)labeled graphs. In: Demetrescu, C.,
Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 370–381. Springer,
Heidelberg (2011)

27. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

28. Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K., Borgwardt,
K.M.: Efficient graphlet kernels for large graph comparison. In: Dyk, D.A.V.,
Welling, M. (eds.) Proceedings of the Twelfth International Conference on Artifi-
cial Intelligence and Statistics, AISTATS, Clearwater Beach, Florida, USA, 16–18
April 2009, vol. 5 of JMLR Proceedings, pp. 488–495. JMLR.org (2009)

29. Sidiroglou-Douskos, S., Lahtinen, E., Long, F., Rinard, M.: Automatic error elim-
ination by horizontal code transfer across multiple applications. In: Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, pp. 43–54. ACM, New York (2015)

30. Stolee, K.T., Elbaum, S., Dobos, D.: Solving the search for source code. ACM
Trans. Softw. Eng. Methodol. 23(3), 26:1–26:45 (2014)

31. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: Proceedings of the Conference of the
Centre for Advanced Studies on Collaborative Research, CASCON 1999, p. 13.
IBM Press (1999)

https://cs.anu.edu.au/people/Brendan.McKay/nauty/nug25.pdf
https://cs.anu.edu.au/people/Brendan.McKay/nauty/nug25.pdf

Domain Analysis and Modelling

Metamodel and Constraints Co-evolution:
A Semi Automatic Maintenance

of OCL Constraints

Djamel Eddine Khelladi1(B), Regina Hebig2, Reda Bendraou1, Jacques Robin1,
and Marie-Pierre Gervais1

1 Sorbonne Universités, UPMC Univ. Paris 06, UMR 7606, 75005 Paris, France
{djamel.khelladi,reda.bendraou,jacques.robin,

marie-pierre.gervais}@lip6.fr
2 Chalmers and University of Technology, Gothenburg, Sweden

hebig@chalmers.se

Abstract. Metamodels are core components of modeling languages to
define structural aspects of a business domain. As a complement, OCL
constraints are used to specify detailed aspects of the business domain,
e.g. more than 750 constraints come with the UML metamodel. As the
metamodel evolves, its OCL constraints may need to be co-evolved too.
Our systematic analysis shows that semantically different resolutions can
be applied depending not only on the metamodel changes, but also on
the user intent and on the structure of the impacted constraints. In this
paper, we investigate the reasons that lead to apply different resolutions.
We then propose a co-evolution approach that offers alternative reso-
lutions while allowing the user to choose the best applicable one. We
evaluated our approach on the evolution of the UML case study. The
results confirm the need of alternative resolutions along with user deci-
sion to cope with real co-evolution scenarios. The results show that our
approach reaches 80 % of semantically correct co-evolution.

1 Introduction

In Model-Driven Engineering, metamodels are core components of a modeling
language ecosystem [10]. They define the structural aspects of a business domain,
i.e. the main concepts, their properties, and the relationships between them [4].
However, a metamodel alone is insufficient to capture all the relevant aspects
and information of a domain specification [18]. To overcome this limitation, the
Object Constraint Language (OCL) [21] is used to define constraints on top
of the metamodel. For instance, the wide-spread Unified Modeling Language
(UML) [23] in version 2.4.1 contains more than 750 OCL constraints expressing
well-formedness rules to be enforced at the model instances level.

A challenge hereby arises when the metamodel is evolved causing the inval-
idation of some OCL constraints that need to be co-evolved (i.e. maintained to
remain reusable [19]). For instance, the UML metamodel officially evolved 10
times in the past that led to manually adapting the OCL constraints.
c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 333–349, 2016.
DOI: 10.1007/978-3-319-35122-3 22

334 D.E. Khelladi et al.

Manual co-evolution is a tedious, time-consuming, and error-prone task, in
particular when hundreds of OCL constraints exist. In such a context, it is crucial
to support an automatic co-evolution.

Problem Statement. Automatically co-evolving OCL constraints remains
challenging, mainly because of two issues: (1) the existence of multiple and
semantically different resolutions, and (2) a resolution can be applicable only
to a subset of OCL constraints. In the following we detail these issues.

(1) The impact of a metamodel change on an OCL constraint can be resolv-
able using resolutions that are syntactically and/or semantically different. For
instance, the metamodel change “multiplicity generalization of a property p from
a single value to multiple values” requires the OCL constraints to work on a col-
lection of values, e.g. by introducing an iterator. Figure 1 gives an example of
this change for the property ref with a simple OCL constraint.

Fig. 1. Existence of multiple solutions

Multiple resolutions can be
applied here as depicted in Fig. 1,
since multiple iterators with differ-
ent semantics exist, e.g. forAll(),
exists() etc. Proposing a unique
resolution reduces the applicabil-
ity of the co-evolution approach
and limits its benefit. Final deci-
sion can only be specified by the
user herself, to avoid unintended
co-evolution changes.

(2) A given resolution strategy is not always applicable for all OCL con-
straints. The complex nature of OCL requires different resolution strategies, each
one applicable for only a subset of OCL constraints based on: (a) the location
of the impacted part in an OCL constraint, and (b) its context (i.e. the meta-
model element on which an OCL constraint is defined). Figure 2 illustrates this
issue. It depicts an evolution of a metamodel where the property depth is deleted
from the superclass Component and added to the subclass Composite, which fits
the definition of a “push property” [9]. The first two constraints become invalid
because depth is no more accessible in Component. The first constraint that uses
the pushed property depth through the reference component, can be co-evolved
by introducing an If expression that first checks whether component references
an instance of the subclass Composite so that depth is accessible. In contrast,
the second OCL constraint whose context is defined on the pushed property
depth, is co-evolved differently by duplicating it for the subclass Composite. The
original constraint is then removed as depicted in Fig. 2d. Note that the third
constraint defined on the context of the subclass Composite that uses depth is
not impacted. Clearly, a unique resolution strategy cannot be applied whatever
the OCL constraint, for the three constraints in our example.

Consequently, it is crucial to consider the two above issues when co-evolving
OCL constraints. However, existing approaches [5–7,13,16,17] propose a unique

Metamodel and Constraints Co-evolution 335

Fig. 2. An evolution example of a composite pattern.

resolution per metamodel change. They neither consider the two above issues,
nor interact with the user.

Contributions. We thus addressed these challenges by four contributions:

– First, we systematically investigated what are the influencing factors that
lead to define alternative resolution strategies and when to apply them. Thus,
we established that the metamodel changes alone are insufficient to propose
the appropriate resolutions, and additional factors must be considered.

– Second, we propose an approach that considers multiple resolutions per
impacted part of an OCL constraint based on the influencing factors. Thus,
for a metamodel change, we propose various resolutions for different subsets
of OCL constraints. It allows us to cover different alternatives of co-evolution.

– Third, we offer the user the option to choose the appropriate resolutions to
be applied during co-evolution among the ones we propose. The user can also
decide to not apply a resolution if it does not suit her needs. Involving the
user greatly contributes to avoid applying unintended resolution strategies.

– Fourth, we evaluate our approach by comparing a set of manually co-evolved
OCL constraints in practice against the same co-evolved ones with our tool.
The evaluation confirms that alternative resolutions along with users final
decision are required in practice for a correct co-evolution. The results on the
UML Class Diagram case study show that our approach can handle a real
case study, reaching 80 % of semantically correct OCL co-evolution.

For a better understanding of the current approach, this paper first discusses
the factors that influence the application of the resolution strategies in Sect. 2.
Section 3 then presents the overall approach introduces some of the proposed
resolutions. Section 4 illustrates our implementation. The evaluation, results,

336 D.E. Khelladi et al.

discussion, and threats to validity are presented in Sect. 5. Finally, Sects. 6 and 7
present respectively the related work and the conclusion.

2 Factors Influencing the Resolution Strategies

In this section, we identify the factors that influence the choice of the resolution
strategies. To illustrate the influencing factors we reuse the example of Fig. 2.

Factor 1. First of all, the metamodel change is fundamental to choose which
resolution to apply, similarly as in model co-evolution (e.g. [15,25]). The impacts
of a rename property and a push property cannot be fixed using the same reso-
lution. Thus, the first influencing factor is: the metamodel change.

Factor 2. We further investigated which locations in an OCL constraint can
influence the choice of a resolution. We identified two locations that have an
influence: navigation path and context. For example, in Fig. 2 the two first OCL
constraints need to be resolved differently since the pushed property depth is
used in different locations. In the first constraint depth is located in the OCL
expression (i.e. body) through a navigation path. Whereas, in the second con-
straint depth is located in the context. Thus, the second influencing factor is: the
location of the impacted metamodel element e in an OCL constraint.

Factor 3. Finally, we found a third factor that is the context of the constraint,
which can influence the choice of a resolution. In Fig. 2, the first constraint is co-
evolved by introducing an If expression and not by duplicating the constraint to
the subclasses where depth is pushed, as we did with the second constraint. This
is due to the fact that the context of the first constraint is not the superclass
Component. When changing the context, all accessible properties from the old
context must remain accessible from the new context. If the context of the first
constraint is changed from Element to Composite, the property limit will not be
accessed anymore. For the third constraint which has the sub class Composite as
context no resolution strategy is applied, since depth is still accessible. Therefore,
the third influencing factor is: the context of the impacted constraint.

Our analysis of the state-of-the-art led us to identify the factor 1, only. To
identify the additional factors 2 and 3, we systematically studied the different
uses of the metamodel elements in the OCL language and we analyzed why a
resolution can be applied to some constraints and not to others.

3 A Co-evolution Approach of OCL Constraints

This section presents our approach to co-evolve OCL constraints. Figure 3 depicts
an overview of our approach. We first present the metamodel changes that we
consider during an evolution and we present how they are identified 1 . After
that, we discuss the identification of impacted OCL constraints, in particular
the localization of the impacted parts in the constraints 2 . Then, we explain
how we obtain the three influencing factors for each impacted OCL constraint.
Finally, we show how alternative resolutions are proposed to the user 3 and
how they are automatically applied 4 .

Metamodel and Constraints Co-evolution 337

3.1 Metamodel Changes During Evolution

Fig. 3. Overall approach.

During a metamodel evolu-
tion two types of changes
are distinguished: (a) Atomic
changes that are additions,
removals, and updates of a
metamodel element, and (b)
Complex changes that con-
sist in a sequence of atomic
changes combined together.
For example, move property
is a complex change where a
property is moved from one
class to another via a refer-
ence. This is composed of two
atomic changes: delete prop-
erty and add property [9].

We consider the following set of atomic changes: add, delete, and update of
metamodel elements. An update, changes the value of a property of an element,
such as ‘type’, ‘name’, ‘upper/lower bounds’. The metametamodel elements that
are considered in this work are: package, class, attribute, reference, operation,
parameter, and generalization. Those elements represent the core features of a
metamodel in the EMF/Ecore [24] and the MOF [20] standards. In the literature,
over sixty complex changes are proposed [9]. Among them, we focus on seven
complex changes: move property, pull property, push property, extract super class,
flatten hierarchy, extract class, and inline class. A study of the evolution of
GMF1 metamodel showed that these seven changes are the most used ones and
constitute 72 % of the applied complex changes [8,14]. In our case study they
constitute 100 % of the applied complex changes in the evolutions.

In our co-evolution approach we must first identify metamodel changes that
led from version n to version n+1, as shown by the step 1 in Fig. 3. This is a
prerequisite for both impact analysis and automatic support of the co-evolution.
We reuse our detection tool [11,12], an extension of the Praxis tool [1]. It first
records at run-time all atomic changes applied by users within a modeling tool.
The sequence of recorded atomic changes then serves as input for the detection
of complex changes. Our tool [11,12] has been designed to detect all applied
changes. This is confirmed in the evaluation results by always reaching a 100 %
recall (i.e. all complex changes are detected) and a precision (i.e. correct detec-
tion) of 91 % and 100 %. Our tool [11,12] allows the user to confirm the list of
complex changes that best reflect her intention during the evolution. Therefore,
a final precise, complete, and ordered trace of both atomic and complex changes
is computed. This trace is taken as input by our herein tool to co-evolve the
OCL constraints.

1 Graphical Modeling Framework http://www.eclipse.org/modeling/gmf.

http://www.eclipse.org/modeling/gmf

338 D.E. Khelladi et al.

3.2 Identification of Impacted OCL Constraints

The second step of our approach is to identify the OCL constraints impacted
by metamodel changes during the evolution. In particular, we identify all the
impacted parts of the OCL constraints that need to be co-evolved.

To run the impact analysis we need to access all the elements used in an
OCL constraint. Thus, we first parse the OCL constraints to use the Abstract
Syntax Tree (AST) representing a structured view of an OCL constraint. The
identification of impacted OCL constraint is then performed on the generated
AST. Before identifying where an AST is impacted, we first compute a table that
lists for each metamodel element e, all OCL constraints using e with references
to the AST nodes using e. Those references will be further used in the resolution
step. Table 1 illustrates an example of our computed table. To build Table 1, we
use pre-order tree traversal algorithm through the AST while filling the table.

Table 1. Impact identification on OCL constraints.

Metamodel elements OCL constraints References to AST nodes

e1 OCL1, ... ref1, ref2, ...

...

For each metamodel change on a metamodel element ei, we access the set
of impacted OCL constraints and we access exactly the impacted AST nodes
with the saved references. Note that a metamodel complex change can involve
several elements ei...ej . Thus, the set of impacted OCL constraints are accessed
naturally for each element ek where i ≤ k ≤ j. During the co-evolution process
Table 1 is also updated accordingly with the applied resolutions. For instance,
when a rename element e occurs, it is also renamed in the table.

3.3 Obtaining the Influencing Factors

As discussed in Sect. 3.1 the metamodel changes are given as input from our
detection [11,12]. The two last factors, i.e. location and context, are obtained
from the impacted AST and AST nodes from Table 1. Each AST node has a
type and information that we can use to determine the impacted location in the
constraints as well as the context of a constraint. For the context, we further
identify whether the impacted element is accessed from the level of its container,
the sub classes, or the super class. At this point, once the three influencing factors
for an impacted part of an OCL constraint are determined, we can propose a set
of possible resolutions, as we will describe it in Sect. 3.5.

3.4 Resolution Strategies

In this section we present our resolutions and the influencing factors under which
they are applied. As an example, we present the resolution strategies associated

Metamodel and Constraints Co-evolution 339

with the metamodel change “generalize property multiplicity (GPM) from a sin-
gle value to multiple values” that is applied in Fig. 1.

This metamodel change requires the OCL constraint to work on a collection
of values of a property p and not a single value anymore. Multiple solutions can
be proposed all with a slightly different semantic.

Id : #S3. Context : n/a.
Location in the constraint : navigation path.
Description : An iterator “forAll” is added to access the property p, and

the subexpression using the values of p is moved to the body of the “forAll”
while replacing the access path with a temporary variable. The given semantic
here is that the OCL constraint is satisfied if it is satisfied for all the values of p.

Exp.p.restExp => Exp.p−>forAll(x|x.restExp)

Id : #S4. Context : n/a.
Location in the constraint : navigation path.
Description : An iterator “exists” is added to access the property p, and

the subexpression using the values of p is moved to the body of the “exists”
while replacing the access path with a temporary variable. The given semantic
is that the OCL constraint is satisfied if at least it is satisfied for one value of p.

Exp.p.restExp => Exp.p−>exists(x|x.restExp)

Table 2 presents the metamodel changes that have an impact on OCL con-
straint which can be automatically resolved, and their associated resolutions
while specifying the two new influencing factors. As shown in Table 2, for 8
metamodel changes we propose 17 resolutions. Note that we do not attempt to
define all possible resolutions. Indeed, there will always be a situation in which
the user might apply a manual resolution or a particular refactoring. This is
handled in our approach by the ignore option since we allow the user to not
apply a specific resolution when desired. Description and examples of all our
resolutions can be found in our companion web page2.

3.5 Proposing Resolution Strategies

In our approach we define and we implement a set of fixed resolutions that can
be applied during co-evolution. When defining the resolutions we already specify
under which influencing factors each resolution is applied (see Sect. 3.4).

Figure 4 depicts our process of selecting the appropriate resolutions. It starts
with all implemented resolutions and excludes a subset of resolutions based on
the influencing factors. The final subset of applicable resolutions is then proposed
to the user. The first factor we consider to exclude resolutions is the metamodel
change that reduces the possible applicable resolutions (step 1). If we encounter a
rename change we exclude the resolutions defined for other metamodel changes.
After that, the impacted location is considered to also reduce the subset of the

2 https://pages.lip6.fr/Djamel.Khelladi/ICSR2016/.

https://pages.lip6.fr/Djamel.Khelladi/ICSR2016/

340 D.E. Khelladi et al.

Table 2. Resolutions proposed in our co-evolution approach.

Metamodel change

(Factor 1)
Location in the

OCL

constraint

(Factor 2)

Context

(Factor 3)
Resolution

strategies

Total no of

proposed

resolutions

� Rename element n/a n/a #S1 1

� Delete element n/a n/a #S2 1

� GPM from a single

value to multiple values

navigation path n/a #S3 #S4 #S5

#S6 #S7

5

� Move property context container #S8 3

navigation path n/a #S9 #S10

� Push property context container #S11 3

navigation path container #S12

navigation path not via the

subclasses

#S13

� Extract class context container #S8 2

navigation path n/a #S9

� Inline class context container #S14 3

navigation path n/a #S15 #S16

� Flatten hierarchy n/a container #S17 1

Fig. 4. Process of selecting the appropriate resolution strategies per impacted part of
a constraint and per metamodel change.

possible applicable resolutions (step 2). Finally, the context of the impacted
constraint allows us to further reduce the resolutions to a final subset (step 3)
that is proposed to the user who decides which one to apply.

A constraint can be impacted in different parts, i.e. different AST nodes,
by either the same or different metamodel changes. The process of Fig. 4 is
applied for each impacted part of an OCL constraint, i.e. for each tuple of {
impacted OCL constraint × impacted AST node}. Note that when a constraint
is impacted by several metamodel changes, the resolutions are proposed and
applied following the chronological order of the changes in the evolution trace.
It ensures consistency in the co-evolution since the resolutions are applied in
the order of their associated metamodel changes. To remain flexible and to not
introduce unintended solutions, our approach also proposes the possibility to
ignore (in Fig. 4) the proposed resolutions.

Metamodel and Constraints Co-evolution 341

Fig. 5. AST of the original and co-evolved OCL constraint

3.6 Automated Application of the Constraints’ Resolutions

At this stage, we can propose, for each impacted part of an OCL constraint, a
set of resolution strategies among which the user can choose.

A resolution updates the AST by adding, removing, or updating nodes. Each
resolution is implemented as a transformation function applied on the ASTs.
Figure 5 depicts the co-evolution of the first constraint in Fig. 2c to the first con-
straint in Fig. 2d at the AST level. The identified impacted AST node by the push
property depth is represented with an arrow labeled “impacts” in Fig. 5. Note
that some resolutions can be applied directly on the impacted AST node such
as for a rename. Other resolutions can be applied on a subtree composing the
OCL subexpression that includes the impacted AST node. The resolution for the
pushed property depth cannot be applied on the AST node AttributeCallExp
of depth alone. To this end, the first OCL subexpression in the AST is identified
on which the resolution strategy is applied locally. In Fig. 5, the subtree on which
the resolution #S13 applies is surrounded by the dashed square. The resolution
is represented by the gray nodes, and it consists in introducing an If expression
that tests whether the current instance of the container is of type Composite.
The Then branch contains the found subtree while introducing a conversion to
Composite before to call the property depth.

4 Implementation

Our tool manipulates Ecore/EMF metamodels and OCL files for the constraints.
After identifying the metamodel evolution trace with the detection tool [11,12].
Our tool runs the impact analysis on the OCL constraints and for each impacted
part we propose alternative resolutions. The user can then choose the appropri-
ate resolution among the proposed ones or can decide to apply none of them.

342 D.E. Khelladi et al.

Fig. 6. Screenshot of the Eclipse plugin Tool.

Then, our co-evolution engine applies the chosen resolution for each impacted
part of an OCL constraint at the AST level. The core functionalities of this
component are implemented with Java and are packaged into an Eclipse plugin
that is chained with the external plugins of Blanc et al. [1] and [11,12].

Figure 6 displays a screenshot of our tool. Window (1) shows the OCL con-
straints that are co-evolved. In window (2) we present the impacted constraints
and the cause of the impact in a textual message (the metamodel change and the
location of the used element). In Window (3) a set of resolutions is proposed in a
dropdown menu to the user along with the ignore option. Then, each resolution
is applied to each impacted part of an OCL constraint.

5 Evaluation

This section presents a qualitative evaluation of our approach by comparing for
the same set of constraints how they are manually co-evolved in practice against
how they are co-evolved by our tool. This allows us to measure the precision of
our approach. We first present our dataset. Then, we present the co-evolution
as it occurred in practice. After that, the co-evolution results of our approach
are illustrated. Finally, we compare our results against the ones in practice.
Time performances of the co-evolution are measured as well. The goals of this
evaluation are the following:

Metamodel and Constraints Co-evolution 343

#G1: Demonstrate that alternative resolutions are required in practice.
#G2: Show that our 17 resolutions are close to the user’s needs.
#G3: Show that the set of initial metamodel changes we support already
allows handling a realistic co-evolution scenario.

5.1 Dataset

We evaluate on a real evolution case study, namely: the UML Class Diagram
(CD) metamodel from version 1.5 to 2.0 with their respective 73 and 110 OCL
constraints. We collected the OCL constraints that are associated to the meta-
model’s versions 1.5 and 2.0. We put the constraints into a canonical form, e.g.
by adding the keyword “self” to remove any ambiguity.

5.2 Co-evolution Results as Occurred in Practice

As a first step of our evaluation, we studied how the OCL constraints are co-
evolved in practice in response to the metamodel evolution. To this end, we first
studied the evolution of the UML CD from 1.5 to 2.0 to determine the atomic
and complex changes. In order to study how the OCL constraints are co-evolved
in practice, we followed the next procedure:

– Identify non-impacted constraints in the original version that are present in
the new version.

– Identify non-impacted constraints in the original version that are deleted in
the new version.

– Identify impacted constraints in the original version that should be co-
evolved.

– For these impacted constraints, we systematically verify in the new version
whether it exists a constraint that:

• Has the same objective. We judge based on the comments describing the
constraint’s purpose (given in the specification). We also check returned
type equality.

• Has the same structure, using similar OCL operators, and/or using the
same metamodel elements.

• Final decision is made manually:
1. If no constraint is found, we consider the impacted constraint as

deleted.
2. If a constraint is found, we consider it to be the co-evolved version of

the impacted constraint.
– Identify new constraints added in the evolved version.

Our analysis’ results of the co-evolution in practice are presented in Table 3.

344 D.E. Khelladi et al.

Table 3. Co-evolution of the OCL constraints as they occurred in practice.

Co-evolution of OCL constraints in practice UML CD 1.5 to 2.0

� Constraints that are not impacted 19

� Constraints not impacted and present in both versions 7

� Constraints not impacted and deleted in the new version 12

� Constraints impacted in the first version (to be co-evolved) 54

� Constraints co-evolved by deletion in the new version 35

� Constraints co-evolved and present in the new version 19

� New constraints in the new version 84

5.3 Co-evolution Results by Our Approach

We first detected with our tool [11,12] the evolution traces of the UML CD
metamodel that is given as input to our co-evolution tool. In the experiment,
the authors play the user role. We aimed at co-evolving the OCL constraints as
close as possible to the co-evolution in practice while also avoiding the use of the
ignore solution (for an objective comparison in the next section). The results of
our applied co-evolution are presented in Table 4.

Table 4. Co-evolution of OCL constraints by our approach

Co-evolution of OCL constraints by our approach UML CD 1.5 to 2.0

� Constraints that are not impacted 19

� Constraints impacted in the first version (to be co-evolved) 54

� Constraints co-evolved by deletion 28

� Constraints co-evolved by other resolution strategies 26

Several constraints are impacted by more than one metamodel change. Thus,
more than one resolution is applied for several constraints. For instance, rename
#S1 (see Table 2) is several times applied along with #S2, #S3, #S9 #S12,
or #S13 on the same constraint. As mentioned previously, the resolutions are
applied following the chronological order of the detected metamodel changes.

Performances. We ran our experiment on a PC VAIO with i7 1.80 GHz Proces-
sor and 8 GB of RAM with Windows 7 as OS. After selecting the resolutions
to be applied among the proposed ones, all impacted OCL constraints were
co-evolved in less than 1 s in each of the case studies.

5.4 Comparison of the Results:“Our Approach” VS “in Practice”

Following our procedure of Sect. 3.2 we were able to identify all the 54 impacted
constraints.

Metamodel and Constraints Co-evolution 345

Deleted constraints. Among those 54 constraints, 28 constraints are co-
evolved by deletion. This is due to the fact that some properties and/or classes
used in those 28 constraints are deleted during the metamodel evolution. Those
28 deleted constraints are also deleted in the real case study, i.e. they are included
in the 35 deleted constraints in practice.

Undeleted constraints. In our approach we co-evolved 26 constraints with
various resolutions. Among those 26 constraints, 19 constraints are co-evolved
in our approach that correspond to the 19 co-evolved constraints in practice.
Moreover, 7 constraints are co-evolved in our approach and correspond to the 7
impacted constraints that are deleted in practice.

Regarding the 19 constraints that are co-evolved with our tool, 11 co-evolved
constraints are syntactically equal to 11 of the 19 constraints that resulted from
the co-evolution in practice. Additional 4 constraints are not syntactically but
are semantically equal to 4 of the 19 constraints that are co-evolved in practice,
making 15 semantically correct co-evolved constraints with our tool.

However, the last 4 constraints are non-syntactically and non-semantically
matching. They are refactored in practice with a different semantic. For example,
one original constraint that checks absence of circular inheritance is impacted by
the renaming of GeneralizableElement to PackageableElement. It is co-evolved by
our approach as follows from (1) to (2) by applying the rename strategy #S1.

context GeneralizableElement inv: (1)
not self.allParents()−> includes(self)
context PackageableElement inv: (2)
not self.allParents()−> includes(self)

In practice the context of constraint (1) was changed to the subclass
Classifier instead of or after applying the rename. Thus, the semantic is slightly
changed by the manual co-evolution since the applicability scope of the new con-
straint is reduced to elements of type Classifier.

The rates of syntactically and semantically correct co-evolution are respec-
tively 72 % and 80 %3.

Maintained constraints. In our approach, 7 impacted constraints are co-
evolved whereas they are deleted in practice A . We applied 8 times the rename
strategy #S1 for six of the constraints and 1 time the strategy #S16 of an inline
class for one constraint. Thus, only 35 % (19/54) of the impacted constraints
are maintained in practice, while 48 % (26/54) of the impacted constraints are
maintained in our approach. For example, constraint (3) is an operation defined
on a ModelElement returning a set of all direct suppliers of the ModelElement;
it is impacted by the rename of ModelElement to NamedElement. We co-evolved
it to (4) simply by applying the rename strategy #S1.

context ModelElement def: supplier : (3)
Set(ModelElement) = self.clientDependency.supplier

3 % = ((deleted constraints + syntactically (respectively semantically) correct co-
evolved constraints)/impacted constraints).

346 D.E. Khelladi et al.

context NamedElement def: supplier : (4)
Set(NamedElement) = self.clientDependency.supplier

From our point of view, it is surprising to delete a constraint, whereas it
would have been possible to rename the impacted element or to apply another
resolution. One possible explanation is that the constraints became meaningless
in the new version of the metamodel. Another arguable explanation is that the
lack of a (semi) automated support for co-evolution was the cause of the loss of
those constraints. Otherwise, they would have been easily maintained in the new
version. Furthermore, it is also surprising to find deletion of 12 non-impacted
constraints B . For example, constraint (5) expressing that an interface can only
contain operations is deleted.

context Interface inv: (5)
self.allFeatures()−>forAll(f | f.oclIsKindOf(Operation))

Similarly, a possible explanation is that those constraints are no more nec-
essary. As a further investigation, we had a look at later versions of UML CD
specifications (versions 2.1, 2.2, and 2.3), and the constraints are indeed missing.

5.5 Discussion and Threats to Validity

The preliminary evaluation shows that our approach is able to cope with real
co-evolution of OCL constraints. In the following we discuss the observed results.

(1) First of all, as mentioned previously multiple resolutions are used in par-
ticular for the metamodel changes push property (#S12, #S13) and inline class
(#S15, #S16). These results emphasize and confirm the necessity to propose
alternative resolutions in order to cope with realistic scenarios of OCL con-
straints’ co-evolution. Otherwise, the rates of automatic co-evolution would be
lower than the ones in this paper, with a higher risk of introducing inappropriate
solutions.

(2) Furthermore, the first 7 cases of maintained constraints A underline the
need to also propose the delete strategy #S2 whenever a constraint is impacted,
and not always try to maintain the constraint. Moreover, the second 12 cases
of deleted constraints B emphasize the fact that even if all impacted con-
straints are correctly co-evolved, user intervention would still be needed to decide
whether to keep or to remove some of the non-impacted constraints.

(3) Finally, the cases of the semantically not matching constraints in UML
CD (e.g. constraint (3)) underline the need to let the user ignore a proposed
co-evolution. By not applying a particular resolution, the user can manually
co-evolve it and further refactor it w.r.t. her intent.

We now discuss threats to validity (internal, external, and conclusion) after
Wohlin et al. [26] w.r.t. our three evaluation goals #G1, #G2, and #G3.

Internal Validity. During the analysis of the co-evolution of the OCL con-
straints in practice, it is possible that we could have missed a correspondence
between an original constraint and a co-evolved constraint when the latter is
subject to a strong refactoring. To reduce this risk, in the procedure of our

Metamodel and Constraints Co-evolution 347

analysis for each impacted constraint, we investigated the constraints of the new
versions one by one to avoid missing any correspondence. Moreover, other com-
plex changes than the 7 ones we considered may occur in the evolution requiring
additional resolutions that are not in our 17 resolutions. However, in our eval-
uation the 7 complex changes we considered as well as the 17 resolutions were
sufficient in our case studies. Therefore, this threat is acceptable here.

External Validity. We evaluated our tool on a case study of metamodels and
its OCL constraints. However, it is difficult to generalize our obtained results for
other metamodels and OCL constraints. Nonetheless, the UML CD case study
provided a representative and a complex evolution trace that had a significant
impact on the OCL constraints.

Conclusion Validity. Our evaluation gives promising results demonstrating
that alternative resolutions are used in real cases. The results also indicate that
our 17 resolutions are semantically close to the user need during the co-evolution.
Thus, our evaluation results meet our goals #G1 and #G2. However, we can-
not estimate the quality of the resolutions only based on our UML CD case
study. Third goal #G3 is also met since our tool covers all metamodel changes
that occurred in the UML CD evolution. Yet, more experiments are necessary
to retrieve a more precise measure of the resolutions’ quality, their occurrence
frequency, and the benefit of the ignore option in practice.

6 Related Work

In contrast to models and transformations co-evolution where many works exist
(e.g. [15,25]), co-evolution of OCL constraints has received little attention so
far. Demuth et al. [5,6] proposed an approach for OCL co-evolution based on
templates. They provided 11 templates that define a fixed structure for OCL
constraints. Thus, the co-evolution in this case is a re-instantiation of the tem-
plates to update the constraints. However, their approach is not applicable for
arbitrary OCL constraints, and is limited to 11 templates only. They do not
handle metamodel changes that impact the structure of the constraints.

Hassam et al. [7] proposed to co-evolve OCL constraints using QVT [22] a
transformation language. Similarly, Markovic et al. [16,17] proposed to refactor,
based on QVT, OCL constraints annotated on UML class diagrams when these
last evolve. Kusel et al. [13] discussed the impact of metamodel evolution on
OCL expressions and proposed to resolve impacted expressions. However, they
do not consider an OCL constraint as a whole. In particular, the context is
ignored whereas it can be the impacted part that requires a resolution.

Cabot et al. [3] focused on the metamodel change delete element. In particu-
lar, they aimed at removing only a sub part of the OCL constraint that is using
the deleted element. However, the approach is applicable only to OCL constraints
written in the form of Conjunctive Normal Form (CNF). Buttner et al. [2] dis-
cussed the impact of changing the multiplicity of a property on OCL constraints.
In our approach we also address this issue in our resolution (#S3-7).

348 D.E. Khelladi et al.

All existing approaches [2,3,5–7,13,16,17] consider only the metamodel
change as a factor to propose a resolution. Thus, they define for each meta-
model change only a unique resolution. In contrast, we identified two additional
factors that lead to propose alternative resolutions.

To the best of our knowledge, we are the first to consider these issues and
to show that multiple resolutions are needed in practice. We therefore are the
first to propose alternative resolution strategies while considering the metamodel
change, the impact location in an OCL constraint, and the context.

7 Conclusion and Future Work

In this paper, we addressed the topic of metamodel and OCL constraints co-
evolutions and proposed a semi-automatic approach with alternative resolution
strategies. We identified two new factors that lead us to propose alternative res-
olutions to the user to chose from. This has the advantage to co-evolve OCL con-
straints w.r.t. the user intent and to avoid applying unintended resolutions. We
evaluated our approach on a big-medium sized case study: the UML CD meta-
model with its OCL constraints. The results show that our approach is suitable
to handle complex co-evolution scenarios of metamodels and OCL constraints.
It reached 72 % of 80 % of syntactically and semantically correct co-evolution.

Although we focused on the co-evolution of OCL constraints defined on top of
metamodels, our approach can also handle the co-evolution of OCL constraints
defined on top of object-oriented models in general. Thus in future work, we first
aim to evaluate our approach on other applications of OCL constraints such as
OCL queries, or OCL scripts that express model transformations. We further
plan to explore the possibility to allow the user to import external resolutions
in particular to be used along with the ignore option.

Acknowledgment. The research leading to these results has received funding from
the industrial innovation Project MoNoGe under grant FUI - AAP no. 15.

References

1. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: ACM/IEEE 30th ICSE 2008, pp.
511–520 (2008)

2. Buttner, F., Bauerdick, H., Gogolla, M.: Towards transformation of integrity con-
straints and database states. In: DEXA, pp. 823–828 (2005)

3. Cabot, J., Conesa, J.: Automatic integrity constraint evolution due to model sub-
tract operations. In: Wang, S., et al. (eds.) ER Workshops 2004. LNCS, vol. 3289,
pp. 350–362. Springer, Heidelberg (2004)

4. Cabot, J., Gogolla, M.: Object constraint language (OCL): a definitive guide. In:
12th SFM, Bertinoro, Italy, pp. 58–90 (2012)

5. Demuth, A., Lopez-Herrejon, R., Egyed, A.: Automatically generating and
adapting model constraints to support co-evolution of design models. In: 27th
IEEE/ACM ASE, pp. 302–305 (2012)

Metamodel and Constraints Co-evolution 349

6. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Supporting the co-evolution of meta-
models and constraints through incremental constraint management. In: MODELS,
pp. 287–303, January 2013

7. Hassam, K., Sadou, S., Gloahec, V.L., Fleurquin, R.: Assistance system for OCL
constraints adaptation during metamodel evolution. In: CSMR, pp. 151–160. IEEE
(2011)

8. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language evolution in practice:
the history of GMF. In: Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS,
vol. 5969, pp. 3–22. Springer, Heidelberg (2010)

9. Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of
operators for the coupled evolution of metamodels and models. In: Malloy, B.,
Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182.
Springer, Heidelberg (2011)

10. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of MDE in industry. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 471–480. ACM (2011)

11. Khelladi, D.E., Bendraou, R., Gervais, M.-P.: Ad-room: a tool for automatic detec-
tion of refactorings in object-oriented models. In: The 38th ICSE (2016)

12. Khelladi, D.E., Hebig, R., Bendraou, R., Robin, J., Gervais, M.-P.: Detecting
complex changes during metamodel evolution. In: Zdravkovic, J., Kirikova, M.,
Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 263–278. Springer,
Heidelberg (2015)

13. Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W., Schoenboeck, J.,
Schwinger, W., Wimmer, M.: Systematic co-evolution of OCL expressions. In: 11th
APCCM 2015, vol. 27, p. 30 (2015)

14. Langer, P., Wimmer, M., Brosch, P., Herrmannsdorfer, M., Seidl, M., Wieland, K.,
Kappel, G.: A posteriori operation detection in evolving software models. J. Syst.
Softw. 86(2), 551–566 (2013)

15. Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and their
instance models: a formal approach based on graph transformation. Sci. Comput.
Program. 104, 2–43 (2015)

16. Markovic, S., Baar, T.: Refactoring OCL annotated UML class diagrams. In: MOD-
ELS, pp. 280–294 (2005)

17. Markovic, S., Baar, T.: Refactoring OCL annotated UML class diagrams. Softw.
Syst. Model 7(1), 25–47 (2008)

18. Mezei, G., Levendovszky, T., Charaf, H.: An optimizing OCL compiler for meta-
modeling and model transformation environments. In: Sacha, K. (ed.) Soft-
ware Engineering Techniques: Design for Quality, vol. 227, pp. 61–71. Springer,
New York (2006)

19. Morisio, M., Ezran, M., Tully, C.: Success and failure factors in software reuse.
IEEE Trans. Softw. Eng. 28(4), 340–357 (2002)

20. OMG. Meta object facility (MOF) (2011). www.omg.org/spec/MOF/
21. OMG. Object constraints language (OCL) (2015). www.omg.org/spec/OCL/
22. OMG. Query/views/transformations (QVT) (2015). www.omg.org/spec/QVT/
23. OMG. Unified modeling language (UML) (2015). www.omg.org/spec/UML/
24. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling

Framework. Pearson Education, Upper Saddle River (2008)
25. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.

(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)
26. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-

imentation in Software Engineering. Springer, Heidelberg (2012)

www.omg.org/spec/MOF/
www.omg.org/spec/OCL/
www.omg.org/spec/QVT/
www.omg.org/spec/UML/

A Model Repository Description
Language - MRDL

Brahim Hamid(B)

IRIT, University of Toulosue, 118 Route de Narbonne,
31062 Toulouse Cedex 9, France

hamid@irit.fr

Abstract. Repository-based development of software systems has
gained more attention recently by addressing new challenges such as
security and dependability. However, there are still gaps in existing mod-
eling languages and/or formalisms dedicated to define model repositories
and the way how to reuse them in the automation of software develop-
ment. Thus, there is a strong requirement for defining a model reposi-
tory description language not only as a modeling approach, but also as
a suitable instrument to support system and software engineers in the
activity of search and retrieval of appropriate models beyond keyword-
based search. Moreover, modeling approaches allow using tools for the
specification and the exploitation of the designed artifacts (e.g. analysis
and evaluation). The goal of this paper is to advance the state of the art
in model repository description for software and systems engineering. In
particular, we have designed a flexible and extensible modeling language,
by means of an OMG style metamodel, to specify model repositories for
modeling artifacts, and we have defined an operational architecture for
development tools. In particular, we show the feasibility of our own app-
roach by reporting some preliminary prototype providing a model-based
repository of security and dependability (S&D) pattern models.

Keywords: Model repository ·Metamodel ·Model-driven engineering ·
Software system engineering

1 Introduction

Our society has become increasingly dependent on software-intensive systems,
such as Information and Communication Technology (ICT) systems, not only
in safety-critical areas (e.g., defense, transportation, nuclear power generation,
space exploration), but also in areas such as finance, medical information man-
agement and systems that use web applications (e.g., cloud computing systems).
ICT systems are a type of socio-technical systems, which include not only tech-
nical systems but also operational processes and the people who use and interact
with those technical systems. However, the shift from traditional computer sys-
tems toward the Internet of Things, i.e., devices connected via the Internet,

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 350–367, 2016.
DOI: 10.1007/978-3-319-35122-3 23

A Model Repository Description Language - MRDL 351

wireless communication or other interfaces, requires a reconsideration of soft-
ware system engineering processes. As a result, new recommendations should
be considered to develop novel methods capable of handling the complexity and
reducing the cost of the development of these systems. We believe that the spec-
ification and packaging of software modeling artifacts can provide an efficient
means of addressing these problems, improving industrial efficiency and foster-
ing technology reuse across domains (the reuse of models at different levels),
thus reducing the time and effort required to design a complex system [1,2].

During system development lifecycles, modeling artifacts may be used in
various forms such as domain models, design patterns, component models, code
modules, test and code generators [3–5]. Repositories of modeling artifacts have
recently gained increased attention as a means of encouraging reuse in soft-
ware engineering. In fact, repository-centric development processes are more
widely adopted in software system development than are other approaches, such
as architecture-centric or pattern-centric development processes. According to
Bernstein and Dayal [6], a repository is a shared database of information regard-
ing engineered artifacts. These authors note that a repository possesses (1) a
Manager for modeling, retrieving, and managing the objects in the repository;
(2) a Database to store the data; and (3) Functionalities to enable interaction
with the repository. In our work, we go one step further: we conceptualize a
model-based repository to support the specifications, definitions and packaging of
a set of modeling artifacts. This paper addresses the challenges of creating a flex-
ible repository of modeling artifacts and managing the models in that repository
while providing assistance with the selection of appropriate modeling artifacts
in the various stages of the system engineering lifecycle. We propose an abstract
syntax, by means of an OMG-style metamodel, for constructing the modeling
language for model repository models, build in an incremental approach. The
abstract syntax is based on the requirements for the model repository modeling
language, describing various concerns, such as engineering concepts, repository
interactions, modeling artifact management and reuse. To specify model repos-
itories conforming to the proposed metamodel, we develop a concrete syntax.
In addition to this task, several services dedicated to repository features are
developed. The objective is to integrate multiple features through model-based
repository engineering coupled with Model-Driven Engineering (MDE) technol-
ogy, making it possible to leverage the reuse of model building blocks from the
repository.

The remainder of this paper is organized as follows. Section 2 describes several
previous approaches to repository building and to system development based on
repositories. In Sect. 3, we describe our approach to designing a model repository
for software system engineering. Then, Sect. 4 presents the design process of a
model-based repository. Section 5 describes the architecture of the tool suite and
an example of the implementation of a repository. Finally, Sect. 6 presents our
conclusions and suggests possible directions for future work.

352 B. Hamid

2 Related Work

Several methodologies use repositories for the storage of reusable artifacts. In
general, these approaches rely on repositories to resolve code dependencies during
the development process. The usage of such repositories (of code, code libraries,
or binaries) is widespread in development and deployment processes. Code or
code library repositories are used for dependency management. For example,
the available repositories in the Java domain include Ivy [7] and Maven [8],
and recently emerging approaches such as Gradle [9] or Bundler [10] for Ruby
are prominent representatives of the usage of these repositories. One example
of repositories for binaries (e.g., deployable components) is the Eclipse Plat-
form, which uses the Equinox p2 repositories [11]. Code, code library and binary
repositories are generally developed in close collaboration with the tools through
which they are accessed. Maven and other Java-based tools may use software
repositories such as Apache Archiva or Sonatype Nexus, for example.

In Model-Driven Development (MDD), model repositories [6,12–15] are used
to facilitate the exchange of models through tools for managing modeling arti-
facts. In the field of biology, the CellML Model Repository [16] provides free
access to over 330 biological models. The CellML Model Repository provides
versioning capabilities and stores the version information at the model level.
When a model is modified, a new version is created and added to the repository.
Model repositories are often built as a layer on top of existing technologies (for
instance, databases). To facilitate querying of the repository, metadata can be
added to assist in the selection of the desired artifacts. Therefore, certain repos-
itories exist that are composed solely of metadata. For instance, as presented in
the ebXML standard [17] and in the ebXML Repository Reference Implemen-
tation [18], a service repository can be regarded as a metadata repository that
contains metadata about location information to assist in finding a service.

In [14], the authors propose a reusable architecture decision model for estab-
lishing model and metadata repositories. Their purpose is the design of data
model and metadata repositories. In addition, several helpful tools are included
in the product to assist in the selection of a basic repository technology, appropri-
ate repository metadata, and suitable modeling levels for the model information
stored in the repository. In [19], the authors propose a repository implementa-
tion with support for artifact storage and management. The supported types
of artifacts are metamodels, models, constraints, specifications, transformation
rules, code, templates, configuration or documentation information, and their
associated metadata.

Another issue of concern is the generation of graphical modeling tools, as
studied in the GraMMi project [20]. In this project, the repository is based
on three levels of abstraction (meta-metamodel, metamodel and model). The
repository stores both metamodels (notation definitions) and models (instanti-
ation definitions). The repository is accessed through a self-provided interface.
GraMMi’s kernel permits the management of persistent objects. Thus, the pur-
pose of this kernel is to convert the objects (models) into an understandable
form for the user via the graphical interface.

A Model Repository Description Language - MRDL 353

Gomes et al. [21] have proposed a centralized knowledge base that can be
used through case-based reasoning, a paradigm for reusing past knowledge stored
in the form of cases. In this context, a case is a UML diagram that is enriched
with certain identifiers. WordNet is used as a common-sense ontology to provide
a classification of software projects described in UML. Searches are performed
based on similarity metrics, which consider the relationships between the UML
elements (packages, classes, interfaces, attributes, methods and relationships)
and WordNet elements. Different metrics must exist, one for each type of UML
element, and the use of the ontology allows more relaxed matching to be per-
formed. The proposed framework cannot be used with any metamodels; only
UML class models are supported.

The ReMoDD (Repository for Model-Driven Development) project [15]
focuses on MDD to reduce the effort involved in the development of complex
software by raising the level of abstraction at which software systems are devel-
oped. This approach is based on a repository that contains artifacts that support
research and education in MDD. The ReMoDD platform provides a set of tools
with which to interact with the repository. Concretely, ReMoDD artifacts include
documented MDD case studies, examples of models that reflect good and bad
modeling practices, modeling exercises and problems that can be used to develop
classroom assignments and projects.

Moogle [22] is a model search engine that uses a UML or DSL metamodel
to create indexes that facilitate the evaluation of complex queries. Its key fea-
tures include the ability to search through different kinds of models, as long as
their metamodels are provided. The index is built automatically, and the sys-
tem attempts to present only the relevant portion of the results, for example,
to remove the XML tags or other unreadable characters to improve readabil-
ity. The model element types, the model attributes and the hierarchy among
model elements can be used as search criteria. Models are searched by using
keywords (Simple Search), by specifying the types of model elements to be
returned (Advanced Search) and by using filters organized into facets (Browse).
To properly use such advanced search engines, the user must have knowledge of
the metamodel elements. Moogle uses the Apache SOLR ranking policy for its
results. The most important information contained in the results is highlighted
for clarity to the user.

ModelBus [23] provides a framework for model storage and transformation
as well as a directory of model services. Similarly, the MORSE project [24] offers
a Model-Aware Service Environment repository to facilitate dynamic, reflective
model searches. MORSE addresses two common problems in MDD systems:
traceability and collaboration. The model repository is the main component of
MORSE and was designed with the intent of abstraction from specific technolo-
gies. MORSE focuses on runtime services and processes and on their integration
and interaction with the repository.

The technique described in [25] is a general-purpose approach that uses
graph query processing to search a repository of models represented as graphs.
First, the repository models are translated into directed graphs. Then, the sys-
tem receives a query that conforms to the considered DSL metamodel. To reduce

354 B. Hamid

the matching problem to one of graph matching, the submitted query is also
transformed into a graph. Matches are calculated by finding a mapping between
the query graph and the project graphs or sub-graphs, depending on the gran-
ularity. The results are ranked based on the graph edit distance metric using
the A-Star algorithm. The prototype addresses the case of the domain-specific
WebML language.

Most process model repositories are linked to business process management
systems and business process editors. In addition to these systems, APRO-
MORE [26] is an Advanced Process Model Repository supported by a tool
infrastructure that integrates a set of features for the analysis, management and
use of process models. The work presented in [27] provides a survey of business
process model repositories and their related frameworks. This work addresses the
management of large collections of business processes that use repository struc-
tures and provide common repository functions such as storage, search capabili-
ties and version management. It targets the process model designer to facilitate
the reuse of process model artifacts. A comparison of process model repositories
is presented to highlight the degree of reusability of artifacts.

Repository-centric engineering implies multiple kinds of interactions with
repositories, e.g., management, population and access, to assist in software sys-
tem development through reuse. To our knowledge, there are no existing method-
ological tools to support the definition and description of these interactions in
repository-based approaches. The workflows, especially those for the develop-
ment of systems with dependency resolutions and the deployment of compo-
nents, are well documented. However, the ability to describe these approaches
in MDE is lacking, and there is also a shortage of available approaches to the
use of models that possess integrated model management functionalities. Our
work aims to provide a new engineering approach to facilitate the reuse of these
solutions (infrastructures and approaches). Regarding compliance with a specific
repository, the approach described in this paper, including the description lan-
guages and the methodology, may be used to specify the management and use of
several of the aforementioned types of repositories. Finally, our approach focuses
not on implementation but rather on the methodology for the development and
use of model repositories. We have used EMF and a repository based on the
Eclipse Connected Data Objects (CDO) framework to implement the structure
and interfaces of a prototype repository. However, other existing platforms for
repository implementation may also be targeted using our proposed approach.

3 Conceptual Model of a Model-based Repository

The proposed model-based repository will effectively support reuse and the inte-
gration of the processes of model specification and system development using
models. The resulting modeling framework reduces the time/cost of understand-
ing and analyzing system artifact descriptions by virtue of its abstraction mecha-
nisms and reduces the cost of the development process by virtue of its generation
mechanisms. Concretely, a repository system is a structure that stores specifi-
cation languages as well as models and the relationships among them, coupled

A Model Repository Description Language - MRDL 355

with a set of tools to manage, visualize, export and instantiate these artifacts
for use in engineering processes. In this section, we introduce the requirements
for a repository system and how they influence the design decisions regarding
the specification language of the model-based repository.

3.1 Requirements

Here, we address the set of requirements involved in the design of a model reposi-
tory description language. These requirements are primarily focused on defining
the engineering process for the development of repository-based applications
(the definition, integration, transformation, and validation of a modeling arti-
fact for use in an application). Additionally, these requirements identify ways in
which the engineering process may serve the engineer in the implementation of
this process and, finally, identify the restrictions that must be considered in the
specification of a model repository.

The following is a list of high level requirements which were established by the
Semco Project [28] and the TERESA Project [29] and which also target lacks in
existing model repository building processes. The following set of requirements
does not represent a complete set of requirements for any arbitrary model-based
repository, as such a set depends on the application domain. As we will demon-
strate, these requirements are identified based on an analysis of the challenges
that the repository should address and range from the top-down specification of
the repository structure to its implementation and deployment with the intent of
facilitating reuse in the process of model-based system and software engineering.
As we will see, the metamodel proposed in this paper tries to fulfill most, if not
all, of the requirements elicited during the projects. The requirements elicited
are categorized into five categories (Table 1) and are outlined in Table 2.

Table 1. Categories of requirements for the metamodel

Category Abbreviation

Repository content and organization RC

Populating the repository PR

Managing the repository MR

Accessing the repository AR

Specification of the repository structure and interfaces SR

Implementing the repository software system IR

3.2 System and Software Artifact Repository Conceptual Model
(SARM)

An analysis of the identified requirements leads to the definition of a set of
concepts on which to base the modeling languages. We have identified three
main concepts for this purpose, as shown in Fig. 1.

356 B. Hamid

Table 2. List of requirements - overview

Category Requirement Description

IR R-01. Repository construction -Domain-independent vs. domain-specific
repository construction

RC R-02. Repository organization -Domain-independent vs. domain-specific
repository organization

SR R-03. Artifact description -Repository-compliant description of
artifacts

-Support for multiple types of artifacts

PR R-04. Artifact publication -Support for the artifact insertion
operation

- Support for the incomplete artifact
description insertion operation

AR R-05. Artifact retrieval -Domain-independent vs. domain-specific
artifact retrieval

-Domain- and role-based artifact
searching

-Support for the artifact search function

MR R-06. Dependencies -Support for dependencies between
artifacts

-Assurance of consistency in artifact
dependencies

AR R-07. Artifact visualization -Support for the visualization of artifacts

-Support for the visualization of the
internal structure of the repository
(browsing)

-Role-dependent visualization of the
content of the repository

-Adaptation of the visualization mode
depending on the user role

AR R-08. Repository interaction -Guidelines for easy interaction with the
repository

-Multiview support for domain- and
actor-specific knowledge

-Multiview support for domain- and
actor-specific tools

MR R-09. User access control -Mechanisms to support access control
for artifacts

-Mechanisms to support access control
for dependencies

MR R-10. Administration -Support of administrative functions

-Support of maintenance and
reorganization of the repository
content

A Model Repository Description Language - MRDL 357

SARM
Content

SARM
Searching
Content

SARM
Model
Content

SARM
Search
Engine

ModelsModelsModel

Index

Model
Descriptor
Model
Descriptor
Model
Descriptor

M2T
Transformation

SARM
model
indexer

ModelsModelsDSL MM

SARM
Managment
Content Model

s
Model
sUser

Model
s
Model
s
Access
Right

SARM
Interfaces

Search

Populating Retrieval

Browse
Model
s
Model
s
Model
Lib

User Mgt Model Mgt

Simple
Search

Advanced
Search

Browse

Fig. 1. SARM architecture

(1) SARM content. The repository structure includes a storage space that is
used to describe multiple storage targets, in which different types of content are
stored. The repository is model-based, and its main content consists of models
and their related libraries. The remainder of the repository content is used to
store necessary elements for the functioning of the repository.

– SARM Model Content. To store models, the repository structure requires a
dedicated storage space for model content, including models, metamodels and
model libraries.

– SARM Search Content. To facilitate model searching, the repository must
store metadata for both models and metamodels. To create such metadata,
an indexer component examines models from the repository and extracts all
information needed for the search.

– SARM Management Content. The repository must also store data regard-
ing its users. The SARM Management Content stores user profiles and the
associated access rights.

(2) SARM search engine. The repository structure includes a search engine,
which is used to search the contents of the repository. The search engine uses
metamodeling information and indexing mechanisms to enable the performance
of more sophisticated queries. The SARM repository offers three modes of search-
ing for models: Simple Search, Advanced Search and Browsing.

– Simple Search. Designed to perform general-purpose queries using keywords.
This type of search is best suited to earlier stages of development, when the
developer is looking for models related to domain concepts.

– Advanced Search. Designed to perform more complex queries. In this case, the
user can specify the types of model elements to be returned.

– Browsing. Similar to Advanced Search but without the need to specify key-
words to be searched. Instead, all elements matching the specified filters are
shown. The user can select one or more filters and combine them for more
precise browsing results.

358 B. Hamid

(3) SARM interfaces. The repository structure includes interfaces (APIs) to
enable interaction with its content. Six types of necessary interfaces can be iden-
tified.

– Populating interface. To populate the repository with models, SARM provides
a set of interfaces (APIs) for interaction with external tools. This interface
interacts with the SARM Model Content.

– Retrieval interface. SARM provides an interface to search for, select and
instantiate models within a specific development environment. This interface
interacts with the SARM Model Content and depends on the Search interface.

– Model Management interface. For management of the models, SARM provides
an interaction interface that offers a set of functions for incorporating new
metamodels into the repository, specifying relationships between models, and
adding other information. This interface interacts with the emphSARM Model
Content.

– User Management interface. For user management in the repository, SARM
provides an interaction interface that offers a set of functions for managing
user data. This interface interacts with the SARM Management Content.

– Search interface. SARM offers a search interface that uses the SARM Search
Engine to search for models in the repository.

– Browse interface. SARM offers a browsing interface that uses the SARM
Browsing functionality of the search engine to browse models.

3.3 Metamodel of the Repository Structure

We propose an abstract syntax, by means of an OMG-style metamodel, for
constructing the MRDL modeling language for model repositories build in an
incremental approach. The abstract syntax is based on the previous requirements
(Table 2), describing various concerns, such as engineering concepts, repository
interactions, artifact-based engineering and reuse. We specify our model reposi-
tory modeling language using the Meta Object Facility (MOF) constructs [30], a
Object Management Group (OMG) standard for describing modeling languages
such as the Unified Modeling Language (UML) [31], and using the open-source
Eclipse Modeling Framework (EMF) [32] environment. EMF provides an imple-
mentation of EMOF (Essential MOF), a subset of MOF, called Ecore1. EMF
offers a set of tools to specify metamodels in Ecore and to generate other repre-
sentations of them. The principal classes of the metamodel of the repository are
described using Ecore notation in Fig. 2. Greater detail is provided below with
regard to the meanings of the principal concepts used to specify the structure of
the repository.

– SarmRepository. The core element used to define the repository.
– SarmModelContent. Represents the model content, including models, meta-

models and model libraries.

1 Ecore is a meta-metamodel.

A Model Repository Description Language - MRDL 359

Fig. 2. SARM - Structure

– SarmDslMetamodel. Represents the specification languages (metamodels) for
the modeling artifacts.

– SarmMmConcept. Represents a specific concept from a specific metamodel. In
general, a concept represents a modeling artifact that will be stored in the
repository.

– SarmAttribut. Defines a property of a specific concept.
– SarmManagementContent. Represents the management content, including user

data.
– SarmUser. Used to define user profiles.
– SarmAccesRight. Used to define characteristics regarding access rights to the

repository and its contents.
– SarmSearchContent. Represents search contents, including the model metadata

for indexing.
– SarmIndex. A structured collection of data used to store a list of model descrip-

tors. The index is used by SarmSearchEngine to perform model searches.
– SarmMetaDataStructure. Used to describe each stored model. This class defines

all information to be searched and all metadata used for the Advanced Search
functionality.

– SarmMetaData. Used to define specific metadata with regard to a model.
– SarmInterface. Provides a specification of the interfaces (APIs) for visualizing

the contents of the repository and for repository management.
– SarmSearchEngine. Uses metamodeling information and indexing mechanisms

to enable the performance of more sophisticated queries.

360 B. Hamid

4 Definition of a Repository Model

The objective of this step is to specify the repository structure in accordance with
the conceptual model defined in Sect. 3.3. To create model instances of the pro-
posed metamodel, we choose to use a tree-structured concrete syntax provided
by Eclipse Modeling Framework Technology (EMFT)2. It provides graphical,
but not-diagrammatic notations, to specify Ecore models. It allows to repre-
sent a model as a nested, collapsible structure with composite and leaf elements
having text labels and/or symbols. A concrete syntax for the SARM language
supports to instantiate the SARM metamodel to create the model of the repos-
itory comprising the creation of the metamodel compartments, the modeling
artifact compartments, the user list, the interfaces, the search engines, and so
on.

In addition, other features are supported, such as the specification of views
of the repository according to its interfaces, its organization and the needs of
the targeted system engineering processes. The structure of the repository and
its interfaces can then be made available (1) to modelers for populating and
managing the repository and (2) to access tools for reusing the repository’s
content. Thus, we provide an EMF-based tree editor for specifying repository
models, as visualized in Fig. 3.

Fig. 3. Example of a repository model

2 https://eclipse.org/modeling/emft/.

https://eclipse.org/modeling/emft/.

A Model Repository Description Language - MRDL 361

In our example, we define SemcoRepository as an instance of SarmRepository:
a model- based repository of S&D patterns and their related property models.
To support these S&D pattern models and property models, we use SEPM and
GPRM, as instances of SarmDslMetamodel, which uses a set of instances of Sarm-
MmConcept to store the pattern modeling language and property modeling lan-
guage concepts, respectively. The Generic PRoperty Metamodel (GPRM) [33],
which is described using Ecore notation in Fig. 4, is a metamodel that defines a
new formalism (i.e., language) for describing property libraries, including units,
types and property categories. For instance, S&D attributes [34] such as authen-
ticity, confidentiality and availability are defined as categories. These categories
require a set of measure types (degree, metrics,. . .) and units (Boolean, float,. . .).
These models are used as external model libraries to type the properties of the
patterns.

Fig. 4. The (simplified) GPRM

The System and Software Engineering Pattern Metamodel (SEPM) [35] is a
metamodel that defines a new formalism for describing S&D patterns and con-
stitutes the basis of our pattern modeling language. Here, we consider patterns
to be subsystems that provide access to services (via interfaces) and manage
S&D and resource properties (via features), offering a unified means of cap-
turing meta-information related to a pattern and its context of use. Figure 5
describes the principal concepts of the SEPM using Ecore notation.

Fig. 5. The (simplified) SEPM

362 B. Hamid

In addition to the repository structure, we define a model of the interfaces
used to visualize and manage the contents of the repository. For instance, Pat-
ternsearch and Patternpublish are defined as instances of SarmInterface for pat-
tern search and publication, respectively.

5 Tool Support

In this section, we propose an MDE tool chain to support the proposed approach
and hence assist the developers of Model-based Repository Software Systems. As
we will see, the proposed tool chain is designed to support the proposed meta-
models, and hence, the tool chain and the remainder of the activities involved
in the approach may be developed in parallel. Appropriate tools for supporting
our approach must fulfill the following key requirements:

– Enable the creation of the UML class diagrams used to describe metamodels
in our approach.

– Support the model-based repository development process.
– Enable the creation of modeling artifacts and the publication of the results

into the repository using the appropriate repository interface.
– Enable the creation of model libraries for artifact classification.
– Enable the creation of model libraries for the classification of the relationships

between artifacts.
– Support the administration of the repository.
– Enable the creation of visualizations of the repository to facilitate its access.

To satisfy the above requirements, we define four integrated sets of software
tools:

– Tool set A for populating the repository,
– Tool set B for retrieval from the repository,
– Tool set C to serve as the repository software and
– Tool set D for managing the repository.

There are several environments that can be used to build an MDE tool chain.
In the context of our work, we have chosen to use EMFT to build the sup-
port tools for our approach. All metamodels used are specified using EMF. The
design tools were semi-automatically generated from these metamodels. Sev-
eral enhancements have been added to the generated code, such as creation
wizards, to guide the modeling artifact designer in populating the repository.
Visual enhancements have been added to facilitate the recognition of different
concepts, as a first step toward a future visual syntax. To describe the model
transformations, the QVT Operational language3 is used. The structure of the
repository is derived from the repository structure model and implemented using
Java and the Eclipse CDO4 framework.

3 http://www.omg.org/spec/QVT/.
4 http://www.eclipse.org/cdo/.

http://www.omg.org/spec/QVT/.
http://www.eclipse.org/cdo/.

A Model Repository Description Language - MRDL 363

We have successfully applied our approach in the context of the FP7
TERESA (Trusted computing Engineering for Resource constrained Embedded
Systems Applications) project by applying the approach to Pattern-Based Sys-
tem Engineering (PBSE). Specifically, we have developed Semcomdt5 (SEMCO
Model Development Tools) as an MDE tool chain to support all steps of our app-
roach. As visualized in Fig. 6, Semcomdtoffers the following features:

– Gaya as a repository platform (structure and interfaces) that conforms to
SARM,

– Tiqueo for specifying models of S&D properties that conform to GPRM,
– Arabion for specifying patterns that conform to SEPM,
– Admin for repository management,
– Retrieval for repository access.

Fig. 6. An overview of the tool components

The server portion of Gaya consists of two components: (1) GayaServer,
which provides the implementation of the common API, and (2) GayaMARS,
which provides the storage mechanisms. The client portion of Gaya provides
interfaces, such as Gaya4Pattern (which implements API4PatternDesigner),
Gaya4Property (which implements API4PropDesigner), Gaya4Admin (which
implements API4Admin) and Gaya4SystemDeveloper (which implements
API4PatternUser).

For populating the repository, we have built two design tools: (1) the prop-
erty design tool (Tiqueo), to be used by a property designer, and (2) the pat-
tern design tool (Arabion), to be used by a pattern designer. Arabion (resp.
Tiqueo) interacts with the Gaya repository for publication purposes through the
Gaya4Pattern (resp. Gaya4Property) API. Furthermore, Arabion includes mech-
anisms for verifying the conformity of the pattern with the SEPM metamodel
and for publishing the results to the repository.

For management of the repository by a repository manager, the Admin fea-
tures provide a set of tools for the organization and usage and usage of the

5 http://www.semcomdt.org/.

http://www.semcomdt.org/

364 B. Hamid

Fig. 7. Access tool/pattern tailoring

repository through the Gaya4Admin API. We also provide basic features such
as user and artifact management. Moreover, we provide features to support the
management of the relationships among artifact specifications and between arti-
fact specifications and their complementary models.

For access to the repository by a system engineer, the Retrieval tool pro-
vides a set of functionalities to assist in the search, selection and sorting
of patterns. The access tools interact with the Gaya repository through the
Gaya4SystemDeveloper API. For instance, as shown on the right-hand side of
Fig. 7, the tool offers assistance in selecting appropriate patterns through key
word searches and lifecycle stage searches. The results are displayed in the search
result tree as System, Architecture, Design and Implementation patterns. The
tool includes features for export and tailoring using dialogs, primarily based on
model transformation techniques, to adapt pattern models to the target devel-
opment environment. Moreover, the tool includes dependency-checking mech-
anisms. For example, a pattern cannot be tailored when a property library is
missing; an error message will be thrown.

6 Conclusion and Future Work

The promoted model-based approach for software application development relies
on a repository of models and focuses on the problem of software system engi-
neering through a design philosophy that fosters reuse. The primary purpose of
such a repository is to share expertise in a manner that interacts with existing

A Model Repository Description Language - MRDL 365

engineering processes to facilitate the construction of applications for various
domains. The proposed framework for building a repository is based on meta-
modeling techniques that enable the specification of the repository structure
and interfaces, on content in the form of modeling artifacts, and on model trans-
formation techniques for the purposes of generation. We begin by specifying a
conceptual model of the desired model-based repository and proceed by design-
ing modeling languages that are appropriate for the content. The results of these
efforts are then used to specify and build the repository. Furthermore, we propose
an operational architecture for a tool suite to support the proposed approach.
We have successfully applied our approach in a case study of PBSE. Specifically,
we have developed a tool suite, named Semcomdt, was built using EMFT and
a CDO-based repository and is currently provided in the form of Eclipse plug-
ins. In addition, the tool suite promotes the separation of concerns during the
development process by distinguishing the roles of the stakeholders. Primarily,
access to the repository is customized with regard to the development phases
and the stakeholders’ domain and system knowledge.

In our future work, we plan to complete the case study and assess whether
domain experts agree on the benefits of adopting the our specification language
in a real industrial context. This requires an instantiation of the full software
engineering tool and method and an evaluation across the experiences of many
users across many domains. We intend to validate the feasibility and effective-
ness of the proposed specification and design frameworks - how our approach
may significantly reduce the cost of engineering a system compared to current
practice. In addition, we will study the automation of the model search and tai-
loring tasks, and a framework to allow the simpler specification of constraints
would be beneficial. Our vision is for modeling artifacts to be inferred from the
browsing history of users and constructed from a set of already developed appli-
cations. In addition, we will study the customization of the tool suite, primarily
the access tool, with regard to the development phases and the stakeholders’
domain and system knowledge. We would also like to study the integration of
our tools with other MDE tools. Concurrently, more sophisticated techniques to
manage artifacts relationships at a metamodel level can be implemented.

References

1. McClure, C.: Software Reuse Techniques: Adding Reuse to the System Develop-
ment Process. Prentice-Hall Inc, Upper Saddle River (1997)

2. Agresti, W.: Software reuse: developers’ experiences and perceptions. J. Softw.
Eng. Appl. 4(1), 48–58 (2011)

3. Krueger, C.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
4. Morisio, M., Ezran, M., Tully, C.: Success and failure factors in software reuse.

IEEE Trans. Softw. Eng. 28(4), 340–357 (2002)
5. Frakes, W., Kang, K.: Software reuse research: status and future. IEEE Trans.

Softw. Eng. 31(7), 529–536 (2005)
6. Bernstein, P.A., Dayal, U.: An overview of repository technology. In: Proceedings

of the 20th International Conference on Very Large Data Bases, VLDB 1994, pp.
705–713. Morgan Kaufmann Publishers Inc. (1994)

366 B. Hamid

7. Apache Software Foundation, Ivy (2015). http://ant.apache.org/ivy/
8. Apache Software Foundation: Maven (2015). https://maven.apache.org/what-is-

maven.html
9. GRADLE INC., Gradle (2015). https://gradle.org/why/robust-dependency-

management/
10. Bundler Core Team, Bundler (2015). http://bundler.io/
11. Berre, D.L., Rapicault, P.: Dependency management for the eclipse ecosystem:

eclipse p2, metadata and resolution. In: Proceedings of the 1st International Work-
shop on Open Component Ecosystems, pp. 21–30. ACM (2009)

12. Sriplakich, P., Blanc, X., Gervais, M.: Supporting transparent model update in
distributed CASE tool integration. In: Proceedings of the ACM Symposium on
Applied Computing, SAC 2006, pp. 1759–1766. ACM, New York (2006)

13. Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W.,
Schwinger, W.: Towards a semantic infrastructure supporting model-based tool
integration. In: Proceedings of the International Workshop on Global Integrated
Model Management, GaMMa 2006, pp. 43–46. ACM, New York (2006)

14. Mayr, C., Zdun, U., Dustdar, S.: Reusable architectural decision model for model
and metadata repositories. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E.
(eds.) FMCO 2008. LNCS, vol. 5751, pp. 1–20. Springer, Heidelberg (2009)

15. France, R.B., Bieman, J., Cheng, B.H.C.: Repository for model driven development
(ReMoDD). In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 311–317.
Springer, Heidelberg (2007)

16. Lloyd, C.M., Lawson, J.R., Hunter, P.J., Nielsen, P.F.: The CellML model reposi-
tory. Bio./Comput. Appl. Biosci. 24, 2122–2123 (2008)

17. ebXML: Oasis Registry Services Specification v2.5 (2003)
18. freebXML: Oasis ebxml registry reference implementation project (2007). http://

ebxmlrr.sourceforge.net/
19. Milanovic, N., Kutsche, R.-D., Baum, T., Cartsburg, M., Elmasgünes, H., Pohl, M.,

Widiker, J.: Model & metamodel, metadata and document repository for software
and data integration. In: MoDELS, pp. 416–430 (2008)

20. Sapia, C., Blaschka, M., Höfling, G.: GraMMi: Using a standard repository man-
agement system to build a generic graphical modeling tool. In: Proceedings of the
33rd Hawaii International Conference on System Sciences, HICSS 2000, vol. 8, p.
8058. IEEE Computer Society (2000)

21. Gomes, P., Pereira, F., Paiva, P., Seco, N., Carreiro, P., Ferreira, J., Bento, C.:
Using wordnet for case-based retrieval of UML models. AI Commun. 17, 13–23
(2004)

22. Lucrédio, D., de M. Fortes, R.P., Whittle, J.: MOOGLE: A model search engine.
In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 296–310. Springer, Heidelberg (2008)

23. Hein, C., Ritter, T., Wagner, M.: Model-driven tool integration with modelbus. In:
Workshop Future Trends of Model-Driven Development, pp. 50–52 (2009)

24. Holmes, T., Zdun, U., Dustdar, S.: MORSE: A model-aware service environment.
In: APSCC (2009)

25. Bislimovska, B., Bozzon, A., Brambilla, M., Fraternali, P.: Graph-based search
over web application model repositories. In: Auer, S., Dı́az, O., Papadopoulos,
G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 90–104. Springer, Heidelberg (2011)

26. Rosa, M.L., Aalst, H.R.W.V.D., Dijkman, R., Mendling, J., Dumas, M., Garćıa-
Bañuelos, L.: APROMORE: An advanced process model repository. Expert Syst.
Appl. 38(6), 7029–7040 (2011)

http://ant.apache.org/ivy/
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://gradle.org/why/robust-dependency-management/
https://gradle.org/why/robust-dependency-management/
http://bundler.io/
http://ebxmlrr.sourceforge.net/
http://ebxmlrr.sourceforge.net/

A Model Repository Description Language - MRDL 367

27. Yan, Z., Dijkman, R.M., Grefen, P.: Business process model repositories - frame-
work and survey. Inf. Softw. Technol. 54(4), 380–395 (2012)

28. Hamid, B.: SEMCO Project (System and software Engineering for embedded sys-
tems applications with Multi-COncerns support). http://www.semcomdt.org

29. TERESA: TERESA Project (Trusted Computing Engineering for Resource Con-
strained Embedded Systems Applications). http://www.teresa-project.org/

30. OMG: MetaObject Facility 2.4.2, Specification (2014). http://www.omg.org/spec/
MOF/2.4.2/

31. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, August
2011. http://www.omg.org/spec/UML/2.4.1

32. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)

33. Ziani, A., Hamid, B., Trujillo, S.: Towards a unified meta-model for resources-
constrained embedded systems. In: 37th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pp. 485–492. IEEE (2011)

34. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Depen. Secur. Comput. 1,
11–33 (2014)

35. Hamid, B., Gurgens, S., Jouvray, C., Desnos, N.: Enforcing S&D pattern design in
RCES with modeling and formal approaches. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 319–333. Springer, Heidelberg (2011)

http://www.semcomdt.org
http://www.teresa-project.org/
http://www.omg.org/spec/MOF/2.4.2/
http://www.omg.org/spec/MOF/2.4.2/
http://www.omg.org/spec/UML/2.4.1

Reverse-Engineering Reusable
Language Modules from Legacy

Domain-Specific Languages

David Méndez-Acuña1(B), José A. Galindo1, Benoit Combemale1,
Arnaud Blouin1, Benoit Baudry1, and Gurvan Le Guernic2

1 INRIA and University of Rennes 1, Rennes, France
{david.mendez-acuna,jagalindo,benoit.combemale,arnaud.blouin,

benoit.baudry}@inria.fr
2 DGA Mâıtrise de l’Information, Bruz, France

gurvan.le-guernic@intradef.gouv.fr

Abstract. The use of domain-specific languages (DSLs) has become a
successful technique in the development of complex systems. Neverthe-
less, the construction of this type of languages is time-consuming and
requires highly-specialized knowledge and skills. An emerging practice
to facilitate this task is to enable reuse through the definition of lan-
guage modules which can be later put together to build up new DSLs.
Still, the identification and definition of language modules are complex
and error-prone activities, thus hindering the reuse exploitation when
developing DSLs. In this paper, we propose a computer-aided approach
to (i) identify potential reuse in a set of legacy DSLs; and (ii) capitalize
such potential reuse by extracting a set of reusable language modules
with well defined interfaces that facilitate their assembly. We validate
our approach by using realistic DSLs coming out from industrial case
studies and obtained from public GitHub repositories.

1 Introduction

A domain-specific language (DSL) is a software language whose expressiveness is
limited to a well-defined domain. A DSL offers the abstractions (a.k.a., language
constructs) needed to describe an aspect of a system under construction. For
example, we find DSLs to build graphical user interfaces [22] and to specify
security policies [15]. The use of DSLs has become a successful technique to
achieve separation of concerns in the development of complex systems [7].

Naturally, the adoption of such a language-oriented vision relies on the avail-
ability of the DSLs necessary to describe all the aspects of the system [3]. This
implies the development of many DSLs, which is a challenging task due the spe-
cialized knowledge it demands. The ultimate value of DSLs has been severely
limited by the cost of the associated tooling (i.e., editors, parsers, etc.) [13].

To improve cost-benefit when using DSLs, the research community in soft-
ware languages engineering has proposed mechanisms to increase reuse during

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 368–383, 2016.
DOI: 10.1007/978-3-319-35122-3 24

Reverse-Engineering Reusable Language Modules 369

the language development process. The idea is to leverage previous engineer-
ing efforts and minimize implementation from scratch. In particular, there are
approaches that take ideas from Component-Based Software Engineering [4] in
the construction of DSLs (e.g., [17,24]). Language constructs are grouped into
interdependent language modules that can be later integrated as part of the
specification of future DSLs. Current approaches for the modular development
of DSLs are focused on providing foundations and tooling that allow language
designers to specify dependencies among language modules as well as to provide
the composition operators needed during the subsequent assembly process.

In practice, however, reuse not necessarily achieved through monolithic
processes where language designers define language modules while trying to pre-
dict that they will be useful in future DSLs. Contrariwise, the exploitation of
reuse is often an iterative process where reuse opportunities are discovered in
the form of replicated functionalities during the construction of individual DSLs.
Those functionalities can be extracted in reusable language modules. For exam-
ple, many DSLs offer expression languages with simple imperative instructions,
variables management, and mathematical operators. Xbase [1] is a successful
experiment that shows that, using compatible tooling, such replicated function-
ality can be encapsulated and (re)used in different DSLs.

A major complexity of this reuse process is that both, the identification of
replicated functionalities and the extraction of the corresponding language mod-
ules are manually-performed activities. Language designers must compare DSL
specifications to identify replicated language constructs, and then, to perform a
refactoring process to extract those replications in language modules. Due the
large number of language constructs defined within a DSL, and the dependencies
among them, this process is tedious and error-prone [9]. As a result, modulariza-
tion approaches are often discarded, and non-systematic reuse practices such as
simple copy&paste are still quite popular in DSLs development processes. This
type of solutions produce many code clones within DSLs’ specifications thus
replicating bugs and increasing maintenance costs [26].

In this paper, we propose the use of reverse-engineering techniques to auto-
matically extract reusable language modules from a given set of legacy DSLs.
To this end, we define some comparison operators that allow the identifica-
tion of replicated language constructs. These operators take into account not
only the names of the constructs but also the inter-constructs relationships and
the semantics. Then, we extract replicated constructs as interdependent lan-
guage modules whose dependencies are expressed through well-defined inter-
faces. Those language modules can be later assembled among them to build up
new DSLs. The approach presented in this paper is implemented in a language
workbench on top of the Eclipse Modeling Framework.

The validation of our approach is twofold. Firstly, we apply the reverse-
engineering strategy to a case study, deeply explained by Crane et al. [8], and
composed of a set of DSLs for finite state machines. Secondly, we explore pub-
lic GitHub repositories in search of insights that indicate how common is the
phenomenon of specification clones in DSLs development process.

370 D. Méndez-Acuña et al.

The reminder of this paper is organized as follows: Sect. 2 introduces a set of
preliminary definitions/assumptions that we use all along the paper. Section 3
presents a motivation to the problem by introducing a concrete development
scenario. Section 4 describes the proposed approach. Section 5 presents the vali-
dation. Section 6 discusses the related work. Section 7 concludes the paper.

2 Background: Domain-Specific Languages in a Nutshell

We use this section to introduce some basic definitions intended to establish a
unified vocabulary that facilitates the comprehension of the ideas presented in
the rest of the paper.

DSLs Specification. Like general purpose languages, domain specific languages
are defined regarding three implementation concerns: abstract syntax, concrete
syntax, and semantics [11]. The abstract syntax refers to the structure of the
DSL expressed as the set of concepts that are relevant to the domain and the
relationships among them. The concrete syntax relates language concepts to a
set of symbols that facilitate the usage of the DSL. These representations are
usually supported by editors acting as the user interface of the DSL. Finally,
the semantics of a DSL assigns a precise meaning to each of its language con-
structs. More precisely, static semantics constrains the sets of valid programs
while dynamic semantics specifies how they are evaluated.

Technological Space. There are diverse technological spaces available for the
implementation of the aforementioned concerns [18]. The abstract syntax can be
specified using context-free grammars or metamodels. The concrete syntax can
be either textual or graphical. The static semantics can be expressed through
diverse constraint languages. Finally, the dynamic semantics can be defined oper-
ationally, denotationally, or axiomatically [20].

In this paper, we are interested in executable domain-specific modeling lan-
guages (xDSMLs) where the abstract syntax is specified by means of metamod-
els, and dynamic semantics is specified operationally as a set of domain-specific
actions [5]. Domain-specific actions are weaved on the metaclasses of a meta-
model [12]. The concrete syntax and static semantics are out of the scope of this
paper.

Example: A DSL for Finite State Machines. Figure 1 shows a DSL for finite
states machines. In that case, the metamodel that implements the abstract syn-
tax contains three metaclasses: StateMachine, State, and Transition. There
are some references among those metaclasses representing the relationships exist-
ing among the corresponding language constructs.

The domain-specific actions at the right of the Fig. 1 introduce the opera-
tional semantics to the DSL. In this example, there is one domain-specific action
for each metaclass. In executable metamodeling, the interactions among domain-
specific actions can be internally specified in their implementation by means of
the interpreter pattern, or externalized in a model of computation [5].

Reverse-Engineering Reusable Language Modules 371

Fig. 1. A simple DSL for finite state machines

3 Motivating Scenario

Suppose a team of language designers working on the construction of the DSL for
finite state machines presented in Sect. 2. During that process, language designers
implement the constructs typically required for expressing finite state machines:
states, transitions, events, and so on. Besides, a constraint language that allows
final users to express guards on the transitions should be provided, as well as an
expression language for the specification of actions in the states.

After language designers release the DSL for state machines, they are required
to build another DSL. The new DSL is intended to manipulate the traditional
Logo turtle, which is often used in elementary schools for teaching the first foun-
dations of programming [21]. Instead of states and transitions, Logo offers some
primitives (such as Forward, Backward, Left, and Right) to move a character
(i.e., the turtle) within a bounded canvas. Still, Logo also requires an expres-
sion language to specify complex movements. For example, final users may write
instructions such as: forward (x + 2).

At this point, language designers face the problem of reusing the expression
language they already defined for the state machine DSL. Because this expression
language was not implemented separately from the DSL for state machines, the
typical approach is to copy&paste its corresponding specification segment in
the second DSL. In doing so, language designers introduce specification clones
all along the project. This practice is repeated in the construction of each new
DSL where some reuse is needed. For example, if our language designers team
is required to build a third DSL such as a flowchart language that uses not only
expressions but also constraints, they will (again) copy&paste the corresponding
specification segments. After some iterations, we obtain a set of DSLs with many
specification clones, which is quite expensive to maintain.

372 D. Méndez-Acuña et al.

Fig. 2. Approach overview

4 Proposed Approach

We propose the use of reverse-engineering techniques to deal with the problem
illustrated above. Our proposal, summarized in Fig. 2, starts from a classical
language development process where a team of language designers develops a set
DSLs (a.k.a., the DSLs portfolio) introducing specification clones by copy&paste
repeated constructs. This portfolio is the input of a reverse-engineering strategy
to extract a set of reusable language modules. Those modules are useful for two
purposes. First, they can be assembled to build a new version of the portfolio that
does not contain specification clones, thus reducing maintenance costs. Second,
they can be used in the construction of future DSLs. In that case, language
designers might have to build new language modules.

4.1 Principles of Reverse-Engineering for Language Reuse

Our reverse-engineering strategy is based on five principles that will be intro-
duced in this section. Then, we explain how we use those principles to extract a
catalog of reusable language modules.

Principle 1: DSL specifications are comparable. Hence, specification
clones can be automatically detected. Two DSL specifications can be com-
pared each other. This comparison can be either coarse-grained indicating if the
two specifications are equal regarding both syntax and semantics, or fine-grained
detecting segments of the specifications that match. The latter approach permits
to identify specification clones between two DSLs and supposes the comparison
of each specification element. In the case of the technological space discussed in
this paper, specification elements for the abstract syntax are metaclasses whereas
specification elements for the semantics are domain-specific actions.

For the case of comparison of metaclasses, we need to take into account
that a metaclass is specified by a name, a set of attributes, and a set of references

Reverse-Engineering Reusable Language Modules 373

to other metaclasses. Two metaclasses are considered as equal (and so, they are
clones) if all those elements match. Formally, comparison of metaclasses can be
specified by the operator �.

� : MC × MC → bool (1)

MCA � MCB = true =⇒
MCA.name = MCB .name ∧
∀a1 ∈ MCA.attr | (∃a2 ∈ MCB .attr | a1 = a2) ∧
∀r1 ∈ MCA.refs | (∃r2 ∈ MCB.refs | r1 = r2) ∧
|MCA.attr| = |MCB .attr| ∧ |MCA.refs| = |MCB .refs|

(2)

In turn, for the case of comparison for domain-specific actions we need
to take into account that –like methods in Java– domain-specific actions have
a signature that specifies its contract (i.e., return type, visibility, parameters,
name, and so on), and a body where the behavior is implemented. Two domain-
specific actions are equal if they have the same signature and body.

Whereas comparison of signatures can be performed by syntactic comparison
of the signature elements, comparison of bodies can be arbitrary difficult. If we
try to compare the behavior of the domain-specific actions, then we will have
to address the semantic equivalence problem, which is known to be undecid-
able [16]. To address this issue, we conceive bodies comparison in terms of its
abstract syntax tree as proposed by Biegel et al. [2]. In other words, to compare
two bodies, we first parse them to extract their abstract syntax tree, and then we
compare those trees. Note that this decision makes sense because we are detect-
ing specification clones more than equivalent behavior. Formally, comparison of
domain-specific actions (DSAs) is specified by the operator �.

� : DSA × DSA → bool (3)

DSAA � DSAB = true =⇒
DSAA.name = DSAB .name ∧
DSAA.returnType = DSAB .returnType ∧
DSAA.visibility = DSAB .visibility ∧
∀p1 ∈ DSAA.params | (∃p2 ∈ DSAB .params | p1 = p2) ∧
|DSAA.params| = |DSAB .params| ∧
DSAA.AST = DSAB.AST

(4)

Principle 2: Specification clones are viewed as overlapping. If a DSL
specification is viewed as sets of metaclasses and domain-specific actions, then
specification clones can be viewed as intersections (a.k.a., overlapping) of those
sets. Figure 3 illustrates this observation for the case of the motivation scenario
introduced in Sect. 3. We use two Venn diagrams to represent both syntax and
semantic overlapping. In that case, the fact that the expression language is used

374 D. Méndez-Acuña et al.

in all the DSLs is represented by the intersection in the center of the diagram
where the three sets overlap the metaclass Expression (and its domain-specific
actions). In turn, the intersection between the state machines DSL and Logo
shows that they overlap the metaclass Constraint that belongs to the constraint
language. Note that the identification of such overlapping is only possible when
there are comparison operators (principle 1) that formalize the notion of equality.

Fig. 3. Syntactic and semantic overlapping in a set of DSLs

Principle 3: Breaking down overlapping produces reusable language
modules. According to principle 2, overlapping between two DSLs implies
the existence of repeated metaclasses/domain-specific actions (i.e., specification
clones). Those repeated elements can be specified once and reused in the two DSLs
[25, pp. 60–61]. Hence, reusable language modules can be obtained by breaking-
down the overlapping existing among DSL specifications as illustrated in Fig. 4;
each different intersection is encapsulated in a different language module.

Fig. 4. Breaking down overlapping for obtaining reusable language modules

Principle 4: Abstract syntax first, semantics afterwards. As aforemen-
tioned, the abstract syntax of a DSL specifies its structure in terms of meta-
classes and relationships among them. Then, the domain-specific actions add
executability to the metaclasses. Hence, the abstract syntax is the backbone of
the DSL specification, and so, the process of breaking down overlapping should
be performed for the abstract syntax first. Afterwards, we can do the proper

Reverse-Engineering Reusable Language Modules 375

for the semantics. In doing so, we need to take into consideration the phenom-
enon of semantic variability. That is, two cloned metaclasses might have different
domain-specific actions. That occurs when two DSLs share some syntax specifi-
cation but differ in their semantics.

Principle 5: Metamodels are directed graphs. Hence, breaking down a
metamodel is a graph partitioning problem. The metamodel that specifies
the abstract syntax of a DSL can be viewed as a directed graph G.

G =< V,A >

where:

– V: is the set of vertices each of which represents a metaclass.
– A: is the set of arcs each of which represents a relationships between two

meta-classes (i.e., references, containments, and inheritances).

This observation is quite useful at the moment of breaking down a metamodel
to satisfy the principle 4. Breaking down a metamodel can be viewed as a graph
partitioning problem where the result is a finite set of subgraphs. Each subgraph
represents the metamodel of a reusable language module.

4.2 Reverse-Engineering Process: The 5 Principles in Action

The reverse-engineering strategy to produce a catalog of reusable modules is
illustrated in Fig. 5. It is composed of two steps: identifying overlapping and
breaking down.

Fig. 5. Breaking down the input set by cutting overlapping

Identifying Overlapping: match and merge. To identify syntactic overlap-
ping in a given set of DSLs, we start by producing a graph for each DSL according
to the principle 5. Then, we identify specification clones (the matching phase)

376 D. Méndez-Acuña et al.

using the comparison operators defined in principle 1. After that, we have a set
of graphs (one for each DSL) and a set of matching relationships among some
of the vertex. At that point we can proceed to create the overlapping defined
in principle 2. To this end, we merge the matched vertex as illustrated in the
second square of Fig. 5. This merging permits to remove cloned metaclasses.

To identify semantic overlapping, we check whether the domain-specific
actions of the matched metaclasses are equal as well. If so, they can be consid-
ered as clones in the semantic specification, so there is semantic overlapping. In
that case, these domain-specific actions are merged. If not all the domain-specific
actions associated to the matched metaclasses are the same, different clusters of
domain-specific actions are created, thus establishing semantic variation points.

Breaking Down: cut and encapsulate. Once overlapping among the DSLs
of the portfolio has been identified, we extract a set of reusable language mod-
ules. This process corresponds to break-down the graph produced in the last
phase using a graph partitioning algorithm. The algorithm receives the graph(s)
obtained from the merging process and returns a set of vertex clusters: one clus-
ter for each intersection of the Venn diagram. Arcs defined between vertices in
different clusters can be considered as cross-cutting dependencies between clus-
ters. Then, we encapsulate each vertex cluster in the form of language modules.
Each module contains a metamodel, a set of domain-specific actions, and a set
of dependencies towards other language modules.

Dependencies between language modules can be viewed through the clas-
sical required and provided roles in components-based software development
illustrated in Fig. 6. There is a requiring module that uses some constructs pro-
vided by a providing module. The requiring module has a dependency relation-
ship towards the providing one. To avoid direct references between modules, we
introduce the notion of interfaces for dealing with modules’ dependencies. The
requiring language has a required interface whereas the providing one has the
provided interface. A required interface contains the set of constructs required
by the requiring module that are supposed to be replaced by actual construct
provided by another module(s).

Fig. 6. Interfaces for language modules

We use model types [23] to express both required and provided interfaces.
A module can have some references to the constructs declared in its required

Reverse-Engineering Reusable Language Modules 377

interface. In turn, the relationship between a module and its provided interface
is implements (deeply explained in [9]). A module implements the functionality
exposed in its model type. If the required interface is a subtype of the pro-
vided interface, then the provided interface fulfills the requirements declared in
a required interface.

Implementation. The approach presented in this paper is implemented in the
Puzzle tool suite1, which is developed on top of the Eclipse Modeling Frame-
work (EMF). In that context, metamodels are specified in the Ecore language
whereas domain-specific actions are specified as methods in Xtend. The map-
ping between metaclasses and domain-specific actions are specified through the
notion of aspect introduced by Kermeta [12] and Melange [9].

5 Evaluation

The evaluation of our approach is twofold. First, we evaluate the correctness of
the approach using a test oracle that consists of a well-documented case study
where we exactly know the existing overlapping among the involved DSLs. We
execute the reverse-engineering on the case study, and we check that the pro-
duced language modules are consistent with the known overlapping. Second, we
evaluate relevance of our proposal. More concretely, we use empirical data to
demonstrate that the phenomenon of specification clones actually appears in
DSLs that we obtain from public GitHub repositories.

5.1 Evaluating Correctness: The State Machines Case Study

Test Oracle. To evaluate the correctness of our approach, we use the case study
introduced by Crane et al. [8]. It is composed of three different DSLs for express-
ing state machines: UML state diagrams, Rhapsody, and Harel’s state charts.
These three DSLs have some commonalities since they are intended to express
the same formalism. For example, all of them provide basic concepts such as
StateMachine, State, and Transition. According to the development scenario
we address in this paper, these commonalities will be materialized as clones in
the DSL specifications. However, not all those DSLs are exactly equal. They
have both syntactic and semantic differences.

Syntactic differences are reified by the fact that not all the DSLs provide
the same constructs. There are differences in the support for transition’s trig-
gers and pseudostates. Whereas Rhapsody only supports atomic triggers, both
Harel’s statecharts and UML provide support for composite triggers. In Harel’s
statecharts triggers can be composed by using AND, OR, and NOT operators. In
turn, in UML triggers can be composed by using the AND operator. In addition,
whereas there are pseudostates that are supported by all the DSLs (Fork, Join,

1 Puzzle’s website: http://damende.github.io/puzzle/.

http://damende.github.io/puzzle/

378 D. Méndez-Acuña et al.

ShallowHistory, and Junction); there are two psueudostates i.e., DeepHistory
and Choice that are only supported by UML. The Conditional pseudostate is
only provided by Harel’s state charts. Figure 7 shows a table with the language
constructs provided by each DSL.

Fig. 7. Oracle for evaluation of correctness

In turn, semantic differences are reified by the fact that not all the DSLs have
the same behavior at execution time. For example, whereas Harel’s statecharts
attend simultaneous events in parallel, both UML and Rhapsody follow the run
to completion principle. So, simultaneous events are attended sequentially [8].
Consequently, not all the domain-specific actions are the same. In particular, the
domain-specific actions eval() and step() in the StateMachine metaclass are
different in each DSL.

Results. Figure 8 presents the results produced by Puzzle for the first part of the
analysis: identification of overlapping. The figure shows the Venn diagrams for
both syntactic and semantic overlapping. In the case of the syntactic overlap-
ping, the cardinalities of the intersections in the Venn diagram match the test
oracle. In turn, the domain-specific actions eval() and step() associated to the
StateMachine metaclass are correctly identified as different in each DSL.

Figure 9 presents the results for the second part of the approach: breaking
down overlapping. There is a language module that contains all the constructs
shared by the three DSLs. That is, the constructs existing in the intersection
Harel∩UML∩Rhapsody. Note that the behavioral differences are materialized by
several implementations of the semantics, i.e., semantic variation points.

Also, other language modules encapsulate pseudostates and triggers sepa-
rately. This is because pseudostates and triggers are supported differently in the
DSLs, so they should be specified in different language modules. In this way,
language designers can pick the desired constructs to build a particular DSL.
Particularly, to obtain the Harel’s statecharts DSL, we need to compose the
modules 1, 2, and 5. In turn, to obtain UML we need to compose modules 1, 3,
and 4. Finally, to obtain Rhapsody we need to compose modules 1 and 5. The
instructions to replicate this experiment are available online2.

2 Website for experiment 1: http://puzzlestatemachines.weebly.com/.

http://puzzlestatemachines.weebly.com/

Reverse-Engineering Reusable Language Modules 379

Fig. 8. Overlapping detected by Puzzle in the state machines case study.

5.2 Evaluating Relevance: Are Specification Clones a Real
Phenomenon in DSLs Development Processes?

Although our experience indicates that copy&paste is a real practice in language
development processes so it is normal to find specification clones, we still need
to verify that it is a phenomenon that appears in other development teams,
and industrial contexts. To answer that question, we explored public GitHub
repositories in search of DSLs that are built on the same technological space that
we used in our approach. The intention is to confirm the existence of specification
clones among those DSLs. The results are presented in this section, and all the
data and tooling needed to replicate these experiments are available on-line3.

Data. We conducted an automatic search on GitHub repositories to find Ecore
metamodels enriched with operational semantics written as Kermeta aspects
in Xtend. As a result of this search, we obtained a data set composed 2423
metamodels. Nevertheless, because Kermeta 3 and its implementation in Xtend
is a quite recent idea, we found very few data for the semantics part. Besides, all
of them have been developed in our research team. We decided to conduct the
analysis only in the metamodels since we consider that detection of specification
clones at the level of the abstract syntax can give us a good insight about the
existence of copy&paste practices in DSLs development processes.

Experiment. To identify specification clones in the metamodels from our data
set, we performed a pair-wise comparison among all the metamodels (w.r.t. the �
operator introduced in Sect. 4). Then, we compute the matrix O(i, j) where each
cell (i, j) contains the number of cloned metaclasses between the metamodels
i and j. O(i, j) = 0 means that there is no cloned metaclasses between the
metamodels i and j. We are interested in the cells (i, j) such that O(i, j) 	= 0
3 Website for experiment 2: http://empiricalpuzzle.weebly.com/.

http://empiricalpuzzle.weebly.com/

380 D. Méndez-Acuña et al.

Fig. 9. Language modules extracted by Puzzle in the state machines case study.

and i 	= j. Those cells correspond to a pair of metamodels with some specification
clones. Then, we analyze the matrix with two questions in mind: (1) how many
metamodels have some specification clones among them?; and (2) how many
classes are cloned from one metamodel to the other?

Results. Figure 10 shows two charts with the results to the experiment. The chart
at the left is intended to answer the first question. In this chart, each entry x of
the horizontal axis represents one metamodel of the data set. In turn, the vertical
axis i.e., y(x) shows the amount of metamodels with some specification clones
for x. Formally, y(x) = (+k| 0 ≥ k ≥ 2423 ∧ O(x, k) > 0 : 1). For example, the
metamodel with ID 1.053 has some specification clones with 272 metamodels.
Note that each point located up the zero line of the vertical axis represents a
metamodel with some specification clones with one or more metamodels, thus
suggesting that specification clones is a real phenomenon.

The chart at the right of the Fig. 10 is intended to answer the second question.
In this chart, each entry x of the vertical axis represents one metamodel of the
data set. The vertical axis i.e., z(x) shows the average amount of cloned classes
for x. Formally, z(x) = 1/y(x) ∗ (+k| 0 ≥ k ≥ 2423 : O(x, k)) For example, the
metamodel 1.928 shares, in average, 99.4 metaclasses with other metamodels.
Note that there is an important amount of metamodels whose average over-
lapping size is between 0 and 100 metaclasses. Note also that there are four
metamodels that share about 600 metaclasses. This case corresponds to a set of
different versions of a metamodel for UML.

6 Related Work

Reuse in DSLs Development Processes. The research community in software
language engineering has previously studied mechanisms to leverage reuse in
the development of DSLs. In this context, languages modularization is probably

Reverse-Engineering Reusable Language Modules 381

Fig. 10. Results for the evaluation of overlapping in GitHub metamodels

the most popular approach. We can find approaches supporting complex mod-
ularization scenarios such languages extension (e.g., [10]) applicable to diverse
technological spaces such as metamodeling [24] or attribute grammars [17].

Another approach to leverage reuse in DSLs is the definition of domain-
specific metamodeling languages [14,26]. The idea is to define abstract language
constructs that can be useful in several DSLs, and to provide mechanisms to spe-
cialize such abstract constructs to particular application contexts. For example,
a language designer can define a DSL for finite state machines with an abstract
behavior, and adapt it to several DSLs according to the needs of the final users.

More recent approaches are focused on facilitating the reuse process itself.
For instance, Melange [9] is a tool-supported language that introduces some
operators (such as slice, inheritance, and merge) intended to manipulate legacy
DSLs in such a way that they can be easily integrated into new developments.

The main contribution of our approach is the advance towards the automa-
tion of the reuse process. We show that, under certain conditions, the process
can be automated through reverse-engineering techniques. We exploit the reuse
opportunities in the form of specification clones, thus reducing maintenance costs
and facilitating the construction of future DSLs.

Déjà vu in Object-Oriented Programming? There is a symbiosis between exe-
cutable metamodeling and object-oriented programming. Besides, there are sev-
eral approaches intended to extract reusable modules from legacy object-oriented
software systems (e.g., [6,19]). Our approach, however, should not be viewed as
yet another technique to extract reusable object-oriented components. Rather,
we propose to take advantage of such symbiosis and use advances achieved in
object-oriented programming to solve problems that also occur during the devel-
opment of executable DSL. Indeed, there is still large room to exploit those ideas
to improve reverse-engineering techniques in DSLs. In doing so, the central issue
to consider is the separation of concerns in DSL specifications. That is, the fact
that the syntax and semantics of the DSLs are usually specified separately, in
many cases, using different metalanguages.

382 D. Méndez-Acuña et al.

7 Conclusion

In this paper, we presented an approach to exploit reuse during the construction
of DSLs. We show that it is possible to automate the reuse process by identify-
ing specification clones in DSLs and automatically extracting reusable language
modules that can be later used in the construction of new DSLs. We evaluated
our approach in an industrial case study, and we demonstrate that there is an
important amount of potential reuse in DSLs we obtain from public repositories.

Acknowledgments. This work is supported by the ANR INS Project GEMOC
(ANR-12-INSE-0011), the bilateral collaboration VaryMDE between Inria and Thales,
and the bilateral collaboration FPML between Inria and DGA.

References

1. Bettini, L., Stoll, D., Völter, M., Colameo, S.: Approaches and tools for implement-
ing type systems in xtext. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS,
vol. 7745, pp. 392–412. Springer, Heidelberg (2013)

2. Biegel, B., Diehl, S.: Jccd: a flexible and extensible api for implementing custom
code clone detectors. In: Proceedings of the International Conference on Automated
Software Engineering, ASE 2010, pp. 167–168, Antwerp, Belgium. ACM (2010)

3. Clark, T., Barn, B.S.: Domain engineering for software tools. In: Reinhartz-Berger,
I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering: Prod-
uct Lines, Languages, and Conceptual Models, pp. 187–209. Springer, Heidelberg
(2013)

4. Cleenewerck, T.: Component-based DSL development. In: Pfenning, F., Macko, M.
(eds.) GPCE 2003. LNCS, vol. 2830, pp. 245–264. Springer, Heidelberg (2003)

5. Combemale, B., Hardebolle, C., Jacquet, C., Boulanger, F., Baudry, B.: Bridg-
ing the chasm between executable metamodeling and models of computation. In:
Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 184–203. Springer,
Heidelberg (2013)

6. Constantinou, E., Naskos, A., Kakarontzas, G., Stamelos, I.: Extracting reusable
components: a semi-automated approach for complex structures. Inf. Process. Lett.
115(3), 414–417 (2015)

7. Cook, S.: Separating concerns with domain specific languages. In: Lightfoot, D.E.,
Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 1–3. Springer, Heidelberg
(2006)

8. Crane, M., Dingel, J.: Uml vs. classical vs. rhapsody statecharts: not all models
are created equal. Softw. Syst. Mod. 6(4), 415–435 (2007)

9. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.-M.: Melange: a
meta-language for modular and reusable development of dsls. In: Proceedings of
the International Conference on Software Language Engineering, SLE 2015, pp.
25–36, Pittsburgh, PA, USA. ACM (2015)

10. Erdweg, S., Rieger, F.: A framework for extensible languages. In: Proceedings of
the International Conference on Generative Programming, GPCE 2013, pp. 3–12,
Indianapolis, USA. ACM (2013)

11. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

Reverse-Engineering Reusable Language Modules 383

12. Jézéquel, J.-M., Combemale, B., Barais, O., Monperrus, M., Fouquet, F.: Mashup
of metalanguages and its implementation in the kermeta language workbench.
Softw. Syst. Mod. 14(2), 905–920 (2015)

13. Jézéquel, J.-M., Méndez-Acuña, D., Degueule, T., Combemale, B., Barais, O.:
When systems engineering meets software language engineering. In: Boulanger,
F., Krob, D., Morel, G., Roussel, J.-C. (eds.) CSD&M 2014, pp. 1–13. Springer
International Publishing, Heidelberg (2015)

14. de Lara, J., Guerra, E.: Domain-specific textual meta-modelling languages for
model driven engineering. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 259–274. Springer,
Heidelberg (2012)

15. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: a UML-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

16. Lucanu, D., Rusu, V.: Program equivalence by circular reasoning. In: Johnsen,
E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 362–377. Springer, Heidelberg
(2013)

17. Mernik, M.: An object-oriented approach to language compositions for software
language engineering. J. Syst. Softw. 86(9), 2451–2464 (2013)

18. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

19. Mishra, S., Kushwaha, D., Misra, A.: Creating reusable software component from
object-oriented legacy system through reverse engineering. J. Object Technol. 8(5),
133–152 (2009)

20. Mosses, P.D.: The varieties of programming language semantics. In: Bjørner, D.,
Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 165–190. Springer,
Heidelberg (2001)

21. Olson, A., Kieren, T., Ludwig, S.: Linking logo, levels and language in mathematics.
Educ. Stud. Math. 18(4), 359–370 (1987)

22. Oney, S., Myers, B., Brandt, J.: Constraintjs: programming interactive behaviors
for the web by integrating constraints and states. In: Proceedings of the Annual
Symposium on User Interface Software and Technology, UIST 2012, pp. 229–238,
Cambridge, Massachusetts, USA. ACM (2012)

23. Steel, J., Jézéquel, J.-M.: On model typing. Softw. Syst. Mod. 6(4), 401–414 (2007)
24. Voelter, M.: Language and IDE modularization and composition with MPS. In:

Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2011. LNCS, vol. 7680, pp. 383–
430. Springer, Heidelberg (2013)

25. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and
Using Domain-Specific Languages. CreateSpace Independent Publishing Platform,
Hamburg (2013). dslbook.org

26. Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid, A.: Domain-specific
metamodelling languages for software language engineering. In: van den Brand,
M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 334–353. Springer,
Heidelberg (2010)

http://dslbook.org

A Framework for Enhancing the Retrieval
of UML Diagrams

Alhassan Adamu1,2(&) and Wan Mohd Nazmee Wan Zainoon1

1 School of Computer Sciences, Universiti Sains Malaysia,
11800 George Town, Penang, Malaysia

kofa062@gmail.com, nazmee@usm.my
2 Department of Computer Science,

Kano University of Science and Technology, Wudil, Kano 3422, Nigeria

Abstract. Software design is one of the demanding task that requires a lot of
experience, expertise, and knowledge in many different design alternatives.
Experience software designer’s knowledge is considers as a vital asset to the
software development company, especially in current competitive market
environment. In order to benefit from the knowledge of experienced software
designers, Software Company needs a tool to store these design knowledge for
future use and retrieved those design from repository when needed, especially
before developing a new system. This tool should complement the effort
required to design a new system from scratch and be able to compare the
requirement of a new project with the requirements of the old projects in the
repository. This paper proposes a framework for reusing UML diagrams.

Keywords: Software reuse � UML � Retrieval � Pre-filtering � Meta-models

1 Introduction

Software development consists of mainly a few different phases: analysis, design,
implementation, testing, and documentation. Each of these phases generate new
knowledge that can be utilize by the organization for future system development. One
kind of knowledge that is most valuable to the organization is the software design,
which is usually being a modeled using UML (Unified Modeling Language) diagram.
These diagrams are often the de facto used by many software engineers during the
software design stage. This paper aim to propose an approach that could establish an
efficient approach to navigate through the query and repository models for matching
and retrieval of these diagrams.

2 Proposed Approach

The proposed UML diagrams retrieval approach is hinged around the fact that software in
the same or similar domain has the same or similar requirements. For example, software
in the banking domain may have some attributes like account name, account number,
bank name, account type, and bank address which are usually common. Developing new

© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 384–390, 2016.
DOI: 10.1007/978-3-319-35122-3_25

software from scratch will resulted in duplicated software artifacts, increased mainte-
nance costs, and inefficient use of software specialists. Reusing of similar software design
models to create a new software system can overcome these challenges.

This section discusses the architecture of the proposed reuse framework. The
framework consists of three main modules: meta-model pre-processing, query pro-
cessor, and similarity assessment module as shown in Fig. 1.

2.1 Meta-models Pre-processing

The meta-model processing received a collection of models specified in XMI (XML
Metadata Interchange) extract from repository as input data source. First, the XMI
parser injects the structure of the entire projects. This is to propagate through the
document and mine as much information about the structure of the existing projects so
that information regarding metadata of the project can be extracted. The document are
checked to make sure it conforms to XMI standard, if the file are well-formed then the
parser identify UML model elements in the XMI document (e.g. classes, attributes,
methods, etc.). Other elements to be found include structure relation in class diagram
(e.g. association, aggregation, realization etc.) or message send or received in sequence
diagrams.

2.2 Pre-filtering Process

The pre-filtering technique is aim at minimizing the retrieval time of models from
repository. The aim is to select the subset of repository models that are potentially
similar to the new requirement in a computationally inexpensive way. The subsets of the

Fig. 1. Schematic Diagram of the proposed reuse system

A Framework for Enhancing the Retrieval of UML Diagrams 385

repository are then compared in a subsequent computationally expensive stage to
ascertain the actual degree of similarity between query (Q) and repository (R) models.
This process in return eliminate the need to load all the repository models into computer
primary during retrieval, as such additional speed up can be achieved. We propose using
three type of metadata which were previously obtained: conceptual data, functional data
and metric data [1]. Both these set of metadata are automatically extracted from
requirement specifications when new software are stored in the repository, and subse-
quently changes made to the existing software. Conceptual data is obtained based on the
concepts contained in the new requirement with the aid of ontology. The concept here
referred are class, method and attribute name in class diagrams, or object name in
sequence diagram. The functional data represent the interaction between the system and
its users [2]. Metric data provides the quantitative measures of software models, for
example total number of classes, attributes, methods in class diagram, number of
exchanges messages between object in sequence diagrams [3].

2.3 Query Processor

Query is one of the pre-requisite for software retrieval. The query stands as the initial
draft of new software to be developed. It is a way of formulating a request that can
select a number of diagrams as a result of satisfying some similarity criteria. To find the
most similar diagram out of a set of previous UML diagrams from repository means the
user should formulate a query and send the query to the repository for possible
matching and retrieval.

The query processor module deals with the query input from the user interface, the
query processing and retrieval. The query processing module index the query in exactly
the same way repository diagrams was indexed. The retrieval module takes the query
and performs the actual search for relevant diagrams with respect to the query. During
the searching for the actual diagram, query expansion is performed by comparing the
concepts (classifies’) in query and repository diagrams. The concept expansion is done
through the domain ontology, based on a threshold value α[0,1], with 1 indicating
maximum similarity and 0 indicating optimal dissimilarity between concept. Table 1
adapted from [4] shows the level of similarity and dissimilarity between the diagrams
(i.e. if the relationship connecting two class diagrams exist).

2.4 Retrieval Engine

Retrieval involves the process of matching the query and repository diagrams focusing
on the most useful related to the problem at hand. A similarity measure has to be applied
to allow the process of retrieving the most similar diagrams. The retrieved diagrams
provide a solution to the new problem at hand. The retrieval engine consists of old
problems and their solutions stored in the repository. The repository is a library system
for storing and managing of software components for building business applications. It
supports the storing, registration and management of all software artifacts produce
during software development lifecycle, and support the reuse of those components. It
can contain different information, depending on the scope of the system [5].

386 A. Adamu and W.M.N.W. Zainoon

2.5 Similarity Computation

In similarity computation, query and repository diagrams are retrieved based on mea-
suring their similarity. The usefulness of a diagram is estimated based on the presence or
absence of similar features between the query and repository. The similarity is access
through numeric computation and reflected as a single value; for example weighted sum,
which shows all aspect of the similarity. There are three similarity metrics to be used by
the retrieval engine: Concept Similarity computation (CSim), Functional Similarity

Computation (FSim) and Metric Based Similarity Computation (MBSim). Concept
similarity computation is performed by comparing the concept name appearing in both
query and repository models with the aid of WordNet ontology, details can be found in
our earlier work [3].

If the concept appearing in query and repository are not a valid English word, the
similarity computation can break since WordNet ontology is centered on the use of
valid English words. In this case, N-Gram similarity is applied to compute the simi-
larity based on the number identical substrings of length n contained in both strings.

The second approach of similarity computation is the Metric Based which com-
putes the similarity between query and repository by comparing the metric values of
both query and repository diagrams. It is expected that the corresponding metric for
similar software should not differ significantly.

3 Case Study

To show how the retrieval and matching is performed in this framework, an example is
presented in this section. Currently only class diagrams is considered, in the future we
plan to extend it to other diagrams such as sequence and state machine diagrams.

Given a query Q containing classes in its diagram cQ and Repository containing
four class diagrams cR1-4 shown in Fig. 2.

Firstly, words found in the query are extracted, such as the “class name”. For
example the class name “AccountType” is considered as two words (Account and
Type) and then search for similar words in the repository diagrams. Table 2 shows the

Table 1. Normalized diagrams relationship distance adapted from [4]

R Type Ass Agr Com Dep Gen Rea Int

Ass 0 0.11 0.11 0.45 0.45 0.66 0.77
Agr 0.11 0 0.11 0.45 0.45 0.66 0.77
Com 0.11 0.11 0 0.45 0.45 0.66 0.77
Dep 0.49 0.49 0.49 0 0.28 0.21 0.32
Gen 0.49 0.49 0.49 0.28 0 0.49 0.6
Rea 0.83 0.83 0.83 0.34 0.62 0 0.11
Int 1 1 1 0.51 0.79 0.17 0

Ass: Association, Agr: Aggregation, Com:
Composition, Dep: Dependency, Gen: Generalization,
Rea: Realization, Int: Interface Realization.

A Framework for Enhancing the Retrieval of UML Diagrams 387

truth table for the similarity function which is used to compute the similarity futures
between the Q and R diagrams. The similarity function is defined as function S of any
two diagrams D1 and D2 such that S(D1, D2) is defined as a tri-function such that D1
and D2 exist in either Q or R [6, 7].

In Table 3 shows similarity matrix representing the dimensional matching between
Q1 through R1 – R4.

The computation of similarity matching score in Table 3 was performed using the
formula in (1) and (2). It is worth to note that the formula was adopted from [8], in
which the similarity between use case diagrams was calculated (Table 4).

TotalMatched TMð Þ ¼
Xn

i¼1 1 ð1Þ

Sim Q;Rð Þ ¼ TMPm
j¼1 Q

ð2Þ

Sim Q;Dið Þ ¼
X

all similarity items;S
a � ðSim Q;Rð Þþ 1 að Þ � SimrelðQ;RÞ ð3Þ

R3

Q R1 R2

R4

Fig. 2. Query and repository diagrams

Table 2. Similarity function truth table

D1 D2 Sim(D1,D2)

0 0 0
0 1 0
1 1 1

388 A. Adamu and W.M.N.W. Zainoon

Where Simcon is the similarity between the concepts in Q and R, Simrel is the
similarity between relationships (association, composition etc.), and α is the corre-
sponding weight that affects the formula [4]. The similarity between relationship in Q
and R is calculated as a distance between their topology with the aid of Table 1 as
follows.

simrel Q;R1ð Þ ¼ ðdist Association; Generalizationð Þ; dist Association; Associationð Þ;
dist Generalization; Generalizationð Þ; dist Generalization; Associationð ÞÞ

Simrel Q;R1ð Þ ¼ 0:11; 0; 0; 0:11ð Þ ¼ 0:11

From result in Table 5, the diagram R4 will be presented first to the reuser as the
most relevant to the query.

Table 3. Concept similarity computation

Query words Diagrams matching
R1 R2 R3 R4 Q

Customer 1 1 0 0 1
Account 0 1 0 1 1
Saving 0 1 0 1 1
Checking 0 1 0 1 1
Type 0 0 0 0 1
Total
matched

1 4 0 3 5

Sim(Q,R) 0.2 0.8 0 0.6 1

Table 4. Ranked list of similarity scoring

Dm% Matched Diagrams ranking
R2 R4 R1 R3 #Retrieved

100 5 0
80 4 0.8 1
60 3 0.8 0.6 2
40 2 0.8 0.6 2
20 1 0.8 0.6 0.2 3

Table 5. Ranked diagrams

S(Q,Ri)

R4 R2 R1 R3
0.825 0.625 0.325 0

A Framework for Enhancing the Retrieval of UML Diagrams 389

4 Conclusion

This paper proposes a reuse approach based on UML, a modeling language widely
used during the software design stage. The design stage of software development plays
an important role in the area of software reuse, in which ability of matching and
retrieving previous software design knowledge is a key factor for successful design
reuse. A UML retrieval framework is presented, supported by multi similarity matching
techniques.

This paper demonstrated the concept similarity computation by comparing the
concept in query class diagram and that of repository (class diagram name). It also
show how the retrieved diagrams can be ranked by similarity through computing the
weighted sum of concept name similarity and relationship type similarity.

As our future work, we are currently working to fine-tune our matching approach to
include other diagrams elements, such as attributes, operations and parameters.

Acknowledgments. The author would like to acknowledge the publication support for this
paper from the Ministry of Higher Education (MOHE), Exploratory Research Grant
Scheme No. 203/PKOMP/673140.

References

1. Adamu, A., Zainon, W.M.N.W., Salami, H.O.: Pre-filtering repository models. In: The 9th
Malaysian Software Engineering Conference (MySec 2015), Kuala Lumpur, Malaysia,
pp. 200–205 (2015). ISBN: 978-1-14799-5439-1

2. Ahmed, M.: Towards the development of integrated reuse environments for UML artifacts. In:
ICSEA 2011, The Sixth International Conference on Software Engineering Advances (2011)

3. Salami, H.O., Ahmed, M.: A framework for reuse of multi-view UML artifacts. arXiv preprint
arXiv:1402.0160 (2014)

4. Robles, K., et al.: Towards an ontology-based retrieval of UML Class Diagrams. Inf. Softw.
Technol. 54(1), 72–86 (2012)

5. Subedha, V., Sridhar, S.: Design of a conceptual reference framework for reusable software
components based on context level. IJCSI Int. J. Comput. Sci. Issues 9(1), 26–31 (2012)

6. Srinivas, C., Radhakrishna, V., Rao, C.: Clustering and classification of software component
for efficient component retrieval and building component reuse libraries. Procedia Comput.
Sci. 31, 1044–1050 (2014)

7. Srinivas, C., Radhakrishna, V., Guru Rao, C.: Clustering software components for program
restructuring and component reuse using hybrid XOR similarity function. AASRI Procedia 4,
319–328 (2013)

8. Srisura, B., et al.: Retrieving use case diagram with case-based reasoning approach. J. Theor.
Appl. Inf. Technol. 19(2), 68–78 (2010)

390 A. Adamu and W.M.N.W. Zainoon

http://arxiv.org/abs/1402.0160

Tool Demonstrations

Puzzle: A Tool for Analyzing and Extracting
Specification Clones in DSLs

David Méndez-Acuña(B), José A. Galindo, Benoit Combemale,
Arnaud Blouin, and Benoit Baudry

INRIA, University of Rennes 1, Rennes, France
{david.mendez-acuna,jagalindo,benoit.combemale,arnaud.blouin,

benoit.baudry}@inria.fr

Abstract. The use of domain-specific languages (DSLs) is a successful
technique in the development of complex systems. Indeed, the construc-
tion of new DSLs addressing the particular needs of software projects has
become a recurrent activity. In this context, the phenomenon of specifica-
tion cloning has started to appear. Language designers often copy&paste
some parts of the specification from legacy DSLs to “reuse” formerly
defined language constructs. As well known, this type of practices intro-
duce problems such as bugs propagation, thus increasing of maintenance
costs. In this paper, we present Puzzle, a tool that uses static analysis
to facilitate the detection of specification clones in DSLs implemented
under the executable metamodeling paradigm. Puzzle also enables the
extraction specification clones as reusable language modules that can be
later used to build up new DSLs.

1 Introduction

A domain-specific language (DSL) is a software language whose expressiveness is
limited to a well-defined domain. A DSL offers the abstractions (a.k.a., language
constructs) needed to describe an aspect of a system under construction. The
use of DSLs has become a successful technique to achieve separation of concerns
in the development of complex systems [5].

Naturally, the adoption of such a language-oriented vision relies on the avail-
ability of the DSLs necessary to describe all the aspects of the system under con-
struction [3]. As a result, the DSLs development has become a frequent activity
in software projects [7]. In this context, the phenomenon of specification cloning
has started to appear. Language designers often copy& paste some parts of the
specification from legacy DSLs with the objective to “reuse” formerly defined
language constructs. This practice might have some problems such as bug repli-
cations that increase maintenance costs [11].

Ideally, reuse should correspond to a systematic practice where the language
constructs that are used in more than one DSL are defined in interdependent
language modules that can be used as plug-in pieces during the DSLs devel-
opment process. In this paper, we present Puzzle, a tool to assist refactoring

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 393–396, 2016.
DOI: 10.1007/978-3-319-35122-3 26

394 D. Méndez-Acuña et al.

processes intended to remove specification clones in a given set of legacy DSLs.
More precisely, Puzzle offers the following features:

Detection of Specification Clones. Puzzle provides a set of comparison
operators that enable automatic detection of specification clones in a given set
of DSLs. These operators take into account not only the names of the constructs,
but also the inter-constructs relationships and their semantics. Additionally, the
implementation of Puzzle is flexible enough to permit the definition of new
comparison operators. Hence, the detection strategy can be easily improved or
adapted to particular contexts.

Quantification of Potential Reuse. Puzzle comes out with a set of metrics
(inspired in [1]) to quantify the potential reuse emerging from the existing spec-
ification clones. The objective is to provide a mechanism that allows language
designers to estimate (in an objective fashion) the benefit of a refactoring process
intended to remove specification clones in a given set of DSLs. For example, Puz-
zle measures the amount and percentage of language constructs cloned in a set
of DSLs, as well as how different is a given DSL with respect to the others. All
these metrics are presented in the form of charts implemented as HTML reports
that can be easily shared and published.

Extraction of Reusable Language Modules. Puzzle enables a reverse engi-
neering process to extract reusable language modules from the detected specifi-
cation clones [8]. This strategy is based on a principle illustrated in Fig. 1: if a
DSL specification is viewed as a set of specification elements, then specification
clones can be viewed as sets overlapping, and reusable language modules can be
obtained by breaking down that overlapping [10]. The language modules result-
ing from this refactoring process can be later assembled in the construction of
new DSLs.

Fig. 1. Breaking down overlapping for obtaining reusable language modules

2 Puzzle

Technological Space. Like general purpose languages, DSLs are implemented
in terms of syntax and semantics. Nowadays, there are diverse technological
spaces available for the implementation of such implementation concerns [9].
Puzzle supports DSLs such that the syntax is specified through metamodels
whereas semantics is specified operationally through domain-specific actions [4].

Puzzle: A Tool for Analyzing and Extracting Specification Clones in DSLs 395

Fig. 2. Tool’s architecture

Architecture. The architecture of Puzzle
is composed of two parts illustrated in Fig. 2:
the infrastructure and the superstructure. The
infrastructure is a set of plug-ins that enable
the specification of DSLs according to the tech-
nological space described above. In turn, the
superstructure is a set of plug-ins that provides
analysis and reverse-engineering techniques on
the DSLs specified on top of the infrastructure.

The Puzzle’s infrastructure is based on
the Eclipse Modeling Framework (EMF). EMF
provides a modeling language, called Ecore,
which we use to specify metamodels. In turn,
we use the notion of aspects provided Kermeta
[6] to specify operational semantics. An aspect
encapsulates a set of domain-specific actions
that are weaved into a metaclass of the meta-
model. The mapping between metamodels and
aspects is specified in Melange1.

In turn, the superstructure of Puzzle cor-
responds to a set plug-ins that can be divided into three categories according
to their functionalities: comparison, metrics, and reverse-engineering. Compari-
son plug-ins implement the comparison operators needed to detect specification
clones at the level of abstract syntax and semantics (for the case of comparison of
semantics, Puzzle uses JCCD [2]. The metrics plug-ins compute a set of metrics
for the detected specification clones and present the results as a set of HTML
reports that display those metrics in the form of charts. The reverse-engineering
plug-ins implement the algorithms that extract reusable language modules from
the detected specification clones.

Tool Demonstration. In the rest of this section, we provide three videos (avail-
able in the papers’ website2) that show the way in which a set of DSL defined
in the Puzzle’s infrastructure is analyzed by the Puzzle’s superstructure. The
Puzzle’s source code is available in the project’s website3.

The input of Puzzle is a Melange script that references a set of DSLs. The
analysis starts by comparing the DSLs specifications (at the level of the abstract
syntax and the semantics) and produces a first report indicating whether there
are any specification clones or not. This report looks like a Venn diagram where
each DSL is represented by a set, and intersections among sets indicate specifi-
cation clones (video 1: detecting specification clones). Then, a set of metrics is
computed from those specification clones. These metrics are intended to quantify
the specification clones among the DSLs to objectively measure the associated
potential reuse (video 2: measuring specification clones). Finally, a set of reusable

1 Melange website: http://melange-lang.org/.
2 Tool demonstration: http://puzzle-demo.weebly.com/.
3 Puzzle’s website: http://damende.github.io/puzzle/.

http://melange-lang.org/
http://puzzle-demo.weebly.com/
http://damende.github.io/puzzle/

396 D. Méndez-Acuña et al.

language modules is extracted from those specification clones. Those language
modules can be later assembled among them to produce new DSLs (video 3:
Reverse-engineering reusable language modules).

Acknowledgments. This work is supported by the ANR INS Project GEMOC
(ANR-12-INSE-0011), the bilateral collaboration VaryMDE between Inria and Thales,
and the bilateral collaboration FPML between Inria and DGA.

References

1. Berger, C., Rendel, H., Rumpe, B., Busse, C., Jablonski, T., Wolf, F.: Product line
metrics for legacy software in practice. In: Workshop Proceedings of the Interna-
tional Software Product Lines Conference, SPLC 2010, pp. 247–250, Jeju Island,
South Korea. Springer (2010)

2. Biegel, B., Diehl, S.: JCCD: A flexible and extensible API for implementing custom
code clone detectors. In: Proceedings of the International Conference on Automated
Software Engineering, ASE 2010, pp. 167–168. ACM, Antwerp, Belgium (2010)

3. Clark, T., Barn, B.S.: Domain engineering for software tools. In: Reinhartz-Berger,
I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering: Prod-
uct Lines, Languages, and Conceptual Models, pp. 187–209. Springer, Heidelberg
(2013)

4. Combemale, B., Hardebolle, C., Jacquet, C., Boulanger, F., Baudry, B.: Bridg-
ing the chasm between executable metamodeling and models of computation. In:
Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 184–203. Springer,
Heidelberg (2013)

5. Cook, S.: Separating concerns with domain specific languages. In: Lightfoot, D.E.,
Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 1–3. Springer, Heidelberg
(2006)

6. Jézéquel, J.-M., Combemale, B., Barais, O., Monperrus, M., Fouquet, F.: Mashup
of metalanguages and its implementation in the kermeta language workbench.
Softw. Syst. Model. 14(2), 905–920 (2015)

7. Jézéquel, J.-M., Méndez-Acuña, D., Degueule, T., Combemale, B., Barais, O.:
When systems engineering meets software language engineering. In: Boulanger, F.,
Krob, D., Morel, G., Roussel, J.-C. (eds.) Complex Systems Design & Management,
pp. 1–13. Springer, Heidelberg (2015)

8. Méndez-Acuña, D., Galindo, J.A., Combemale, B., Blouin, A., Baudry, B.: Reverse-
engineering reusable language modules from legacy domain-specific languages. In:
Kapitsaki, G., Santana de Almeida, E. (eds.) ICSR 2016. LNCS, vol. 9679, pp.
368–383. Springer, Heidelberg (2016)

9. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

10. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages (2013). http://dslbook.org

11. Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid, A.: Domain-specific
metamodelling languages for software language engineering. In: van den Brand,
M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 334–353. Springer,
Heidelberg (2010)

http://dslbook.org

FeatureIDE: Scalable Product Configuration
of Variable Systems

Juliana Alves Pereira1(B), Sebastian Krieter1, Jens Meinicke1,2,
Reimar Schröter1, Gunter Saake1, and Thomas Leich2

1 University of Magdeburg, Magdeburg, Germany
juliana.alves-pereira@ovgu.de

2 METOP GmbH, Magdeburg, Germany

Abstract. In the last decades, variability management for similar prod-
ucts is one of the main challenges in software systems. In this context,
feature models are used to describe the dependencies between reusable
common and variable artifacts, called features. However, for large fea-
ture models it is a complex task to find a valid feature combination as
product configuration. Our Eclipse plug-in FeatureIDE provides sev-
eral mechanisms, such as information hiding and decision propagation,
which support the configuration process to combine the reusable artifacts
in various manners. We illustrate the applications of these mechanisms
from a user’s point of view.

1 Introduction

Variable software systems are essential to fulfill the individual requirements of
several users. Such systems are commonly based on reusable but interdependent
artifacts represented by a set of features that can be combined to form custom
products [7]. Feature models are a common notation to define features and their
interdependencies [3]. As feature models specify the set of valid products (i.e.
a selection of features that fulfills all interdependencies), they form the basis of
the product configuration process.

In industry feature models often define several thousand features. Hence, it
is impractical for the user to keep track of all features and their dependencies
during the configuration process. On the one hand, it may be difficult for a user
to specify a valid configuration, especially since also features of no interest need
to fulfill their dependencies. On the other hand, the user can unintentionally
introduce conflicts by specifying mutually exclusive features. However, the user
can be guided to configure valid products using specialized tool support.

In this paper, we present the configuration support of our tool Feature
IDE [4,8]. With a close connection to FeatureIDE’s feature-model editor, the
configuration editor can provide several mechanisms that guide the user. With
automated decision propagation, we ensure that any partially configured prod-
uct is in accordance to the feature model so that the result only describes valid

Demo Video. https://youtu.be/zM9K3wqUiVE.

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 397–401, 2016.
DOI: 10.1007/978-3-319-35122-3 27

https://youtu.be/zM9K3wqUiVE.

398 J.A. Pereira et al.

Fig. 1.An overview of FeatureIDE’s configuration support: 1© feature model editor, 2©–
4© configuration editor (2© showing all features, 3© showing direct children, 4© finalizing
configuration). (Colour figure online)

combination of reusable artifacts. Furthermore, we help the user with informa-
tion hiding mechanisms that let them focus on the parts of the configuration that
are of interest. Finally, we present how we guide the user to a valid configuration.

2 Preventing Conflicting Feature Combinations

Product configuration is a decision process to form a valid feature combina-
tion, where the interdependencies of all features are considered [7]. Especially
when dealing with large feature models with complex feature dependencies, a
configuration process without tool support is an error-prone and tedious task.
Completely configuring products and checking validity afterwards is henceforth
not advisable as at least one feature dependency is probably violated.

To ease the configuration process, FeatureIDE provides an iterative strat-
egy, which only allows feature selections that comply with the feature model’s
dependencies. Thus, similar to the tools SPLOT [5] and fmp [1], FeatureIDE
prevents the user to introduce conflicts in their configuration. This functional
characteristic of FeatureIDE is based on two concepts: (a) a close coupling
between configurations and their feature models and (b) decision propagation.

Close Connection of Feature Models and Configurations. The feature
model and the configuration editor of FeatureIDE are closely connected and
influence each other. On the one hand, the configuration editor of FeatureIDE
uses the same hierarchical structure as the corresponding feature model. Fur-
thermore, the feature model influences configurations so that, for instance, a
renaming of a feature also renames the feature in each configuration. On the

FeatureIDE: Scalable Product Configuration of Variable Systems 399

other hand, each selection in a configuration forces a validity check considering
the corresponding feature model. In addition, all implied and excluded features
are automatically (de)selected and a change of their selection is forbidden. In
Fig. 1 1©– 2©, we depict this functionality for the product line EShop. In Fig. 1 1©,
the dependencies of the feature model are hard to resolve. However, the repre-
sentation in the configuration editor (see Fig. 1 2©) allows an iterative selection
of features according to the feature model.

Decision Propagation. Based on the close connection between feature mod-
els and configurations, FeatureIDE’s configuration editor prevents conflicts in
each iteration of the configuration process using decision propagation. In detail,
if a (de)selection of a feature forces the (de)selection of another feature, Fea-
tureIDE automatically adopts the implied configuration changes. For instance,
if we select the feature Welcomemessage in the product line EShop (see Fig. 1 2©),
all parent feature will be also selected.

3 Information Hiding

Configuring a product can be a difficult process as users usually do not know all
features and their dependencies, especially for large feature models [2]. Conse-
quently, showing all features (see in Fig. 1 2©) is impractical as a user can only
focus on one part of the configuration at once. However, a user may already know
their features of interest. To ease the configuration process, we provide informa-
tion hiding mechanisms that focus the user’s view on the relevant configuration
space. The user can select one of these mechanisms via the configuration editor’s
menu bar (see the blue rectangle in Fig. 1 3©).

Focused View. FeatureIDE aims to focus on the part of the con-
figuration that is currently modified. Thus, it initially does not expand
all features. When the user selects a feature, they are probably inter-
ested in its sub-features (e.g., fine-grained features of the same area).
We provide a specialized expand algorithm that automatically expands
and shows the sub-features after a feature is selected. This behavior is
exemplary illustrated in Fig. 1 3©. Initially, only the feature Storefront is
expanded. After the user selects the feature Homepage, the expand algo-
rithm shows the sub-features Staticcontent and Dynamiccontent. With the
focus on direct children only, we reduce the number of presented configura-
tion options significantly and present only features that are of interest at the
moment.

Finalize Partial Configurations. Decision propagation and specialized
expand algorithms can only help to configure partial configurations. Still, a con-
figuration needs to fulfill all dependencies defined in the feature model. Auto-
matic selection of features is an efficient way to create a valid configuration
based on the given partial configuration (e.g., the auto-completing mechanism
presented by SPLOT [5]). However, such algorithms arbitrarily select features
without considering the user’s intentions. Thus, undesired features might be

400 J.A. Pereira et al.

selected as well. In order to address this challenge, the tools VISIT-FC [6] and
FaMa [9] introduce dependency visualization mechanisms to support the user in
configuring products, but both tools present all features to the user. In contrast,
FeatureIDE provides a mechanism that guides the user to a valid configura-
tion, reasoning from a smaller number of features. Based on unsatisfied clauses of
the feature model’s CNF-representation [2], its mechanism shows the user which
decisions are necessary to finish the configuration process by highlighting the
corresponding features. As each clause needs to be satisfied, the user can focus
on one clause at a time. Thus, again the number of configuration options pre-
sented to the user is reduced to a minimum. We exemplary show this behavior in
Fig. 1 4©. As shown, only the current open clause (displayed in the tooltip of Phys-
icalgoods) is expanded. The feature Producttype was automatically selected by
decision propagation. Thus, at least one of its children (highlighted with green)
has to be selected to satisfy the open clause. A deselection of a feature might
also satisfy a clause as shown in Fig. 1 3© with a blue highlighting of the feature
Homepage. After a clause is satisfied by the user’s (de)selection, the focus will
automatically change to the next unsatisfied clause. Using this mechanism, the
user can efficiently finish the configuration process and simultaneously prevent
undesired feature selections.

4 Conclusion

Feature models describe the dependencies between features in order to specify
valid product configurations. However, the actual process of configuring prod-
ucts for large feature models is an error-prone and tedious task. In this paper, we
illustrate FeatureIDE’s facilities to support this process by providing advanced
configuration support, such as decision propagation and information hiding. This
approach ensures a valid and complete configuration while simultaneously main-
taining efficiency as the user can focus on their features of interest.

Acknowledgments. This work was partially supported by the CNPq grant
(202368/2014-9) and the BMBF grant (01IS14017A, 01IS14017B).

References

1. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: feature modeling plug-in for eclipse.
In: Eclipse, pp. 67–72. ACM (2004)

2. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–708 (2010)

3. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report CMU/SEI-90-TR-21,
Software Engineering Institute (1990)

4. Meinicke, J., Thüm, T., Schöter, R., Krieter, S., Benduhn, F., Saake, G., Leich,
T.: FeatureIDE: Taming the preprocessor wilderness. In: ICSE. ACM (2016). (to
appear)

FeatureIDE: Scalable Product Configuration of Variable Systems 401

5. Mendonça, M., Branco, M., Cowan, D.: S.P.L.O.T.: Software product lines online
tools. In: OOPSLA, pp. 761–762. ACM (2009)

6. Nestor, D., Thiel, S., Botterweck, G., Cawley, C., Healy, P.: Applying visualisation
techniques in software product lines. In: SoftVis, pp. 175–184. ACM (2008)

7. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

8. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: FeatureIDE:
An extensible framework for feature-oriented software development. Sci. Comput.
Program. 79, 70–85 (2014)

9. Trinidad, P., Cortés, A.R., Benavides, D., Segura, S.: Three-dimensional feature
diagrams visualization. In: SPLC, pp. 295–302 (2008)

Recalot.com: Towards a Reusable, Modular,
and RESTFul Social Recommender System

Matthäus Schmedding1, Michael Fuchs2, Claus-Peter Klas1(B), Felix Engel1,
Holger Brock1, Dominic Heutelbeck1, and Matthias Hemmje1

1 Faculty for Mathematics and Computer Science, University of Hagen,
58084 Hagen, Germany

{matthaeus.schmedding,felix.engel,holger.brock,dominic.heutelbeck,
matthias.hemmje}@fernuni-hagen.de,

claus-peter.klas@gesis.org
2 Wilhelm Büchner University of Applied Sciences, Darmstadt, Germany

michael.fuchs@ftk.de

Abstract. Many different recommender system (RS) frameworks have
been developed by the research community. Most of these RS frameworks
are designed only for research purposes and offline evaluation of different
algorithms. A reuse of such frameworks in a productive environment is
only possible with high effort. In this paper, we present a concept of a
generic reusable RESTful recommender web service framework, designed
to perform directly offline and online analysis for research and to use the
recommender algorithms in production.

Keywords: Recommender systems · Web service · Modular
development

1 Introduction

Many different approaches exist how recommendation can be computed and
libraries that offer these functionalities. However, these RS libraries often
focus on a special use cases and neglect other areas. Scientific libraries, like
MyMediaLite [3], LenKit [2], recommender101 [8], or librec [5], are easily extend-
able and can perform different offline evaluations out-of-box. However, a pro-
ductive usage or an online evaluation requires additional work and a specific
knowledge about the library. On the other hand, commercial libraries, like fact-
finder1, or epoq2, can perform online evaluation and can be used productive, but
are often closed-source and the underlying recommendation strategies are usually
hidden. Within the portal of the EU-funded RAGE (Realising an Applied Gam-
ing Eco-system) project3, we developed a generic recommender system for web

1 http://www.fact-finder.de/.
2 http://www.epoq.de/de/.
3 http://www.rageproject.eu/.

c© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 402–406, 2016.
DOI: 10.1007/978-3-319-35122-3 28

http://www.fact-finder.de/
http://www.epoq.de/de/
http://www.rageproject.eu/

Recalot.com: Towards a Reusable, Modular, and RESTFul Social 403

portals with a social data structure. Based on a requirement analysis we com-
pared different RS libraries, but none matched our objectives. Thus, we decided
to develop the RS framework4, which provides the necessary functionality and
can be used in varying environments.

2 Developing a RS Framework

Framework Requirements. There are several requirements we want our
framework to meet (see Table 1). As we want to support multiple applications
simultaneously and evaluate different RS approaches, our library needs to be
able to manage different and several data sources at once. In addition, that data
model needs to handle the entities users, items, relationships, ratings and the
relations between these entities. Since, the framework should be able to process
the information in the data model, it should contain RS approaches from the
area Social RS [6], but also be able to compute approaches from the classic cat-
egories Collaborative Filtering, Content-based RS, and Hybrid RS [1]. Finally,
as the framework should be used to compare recommendation algorithms, it is
important to provide a wide range of these build in.

The usage of the framework can be distinguished into scientific and produc-
tive usage (as library/API). For the scientific usage, it is important that the
framework can be easily extended, can perform off- and on-line evaluation [4].
For the productive usage, the library has to be fast, reliable, distributable, eas-
ily integrable and accessible. However, since the requirement ‘speed’ is strongly
dependent on the running recommendation approach, we did not consider these
requirements as part of our objectives. These can be overcome e.g. by distribut-
ing the algorithms over several computation nodes. However, the requirements
integrability and accessibility play an important role for us and will be met by
using a RESTful web service.

Table 1. Framework analysis according to our requirements

Library

M
ul
ti
pl
e

D
at
a
So

ur
ce
s

R
el
at
io
ns
hi
ps

D
at
a
M
od

el

C
ol
la
bo

ra
ti
ve

F
ilt
er
in
g

C
on

te
nt

-b
as
ed

R
S

H
yb

ri
d
R
S

So
ci
al

R
S

C
on

te
xt

-A
w
ar
e
R
S

P
la
tf
or
m

in
de

pe
nd

en
t

E
xt
en

da
bl
e

O
ffl
in
e

E
v a
lu
at
io
n

O
nl
in
e

E
v a
lu
at
io
n

R
E
ST

fu
l

W
eb

Se
rv
ic
e

MyMediaLite[3] x x x x x x x x x
LensKit[2] x x x x x
LibRec[5] x x x x x x x x x
Apache Mahout[10] x x x x x x
PREA[9] x x x x x x x x
Duine[12] x x x x x
easyrec[11] x x x x x
Recommender101[8] x x x x x x

4 https://github.com/mys3lf/recalot.com.

https://github.com/mys3lf/recalot.com

404 M. Schmedding et al.

Framework Evaluation. We analyzed existing open-source frameworks and
libraries according to our requirements down to the source-code level, depicted
in Table 1. None of these met our requirements, as they are focused on specific
research agendas. Therefore we decided to implement our own framework, re-
using the approaches of the existing systems and extending them into one generic
framework.

Therefore, we identified frequently used open-source libraries and frameworks
from scientific works and the open-source community. We examined LensKit [2]
the library behind movielens.org, LibRec [5] that contains many current RS
approaches, Mahout [10] from the Apache Software Foundation, MyMediaLite [3]
that is written in C# and optimized for mono, PREA [9] the Personalized Rec-
ommendation Algorithms Toolkit, Duine [12] that had been developed by the
Telematica Instituut / Novay, easyrec [11] a recommendation REST web ser-
vice, and Recommender101 [8] that was developed by the Technical University
of Dortmund.

As our framework needs to be easily extensible, platform independent and
able to perform off- and online evaluations, we decided to rely on the modu-
lar development technology OSGi in its implementation on Apache Felix. To
be integrated in existing frameworks, we will propagate the functionality via
a full RESTful web service. The actual implementation will use Java EE and
follow the software-as-a-service paradigm for easy deployment, also in the cloud
for efficiency purposes. As displayed in Fig. 1, we distinguish between data-,
recommendations-, and experiments components, as well as model-, view-, and
controller components. Following the concepts of modular or component-based
programming [7], each component is an independent and interchangeable module
within the OSGi framework.

Framework Design and Development. In order to meet our needs and to
develop an easily extensible system, which is platform independent, can perform
off- and on-line evaluation, and will be deployed as a RESTful Web service, we
opted for the modular development technology OSGi and the implementation
Apache Felix.

Fig. 1. Architecture of the generic recommender web service

Recalot.com: Towards a Reusable, Modular, and RESTFul Social 405

We implement our framework by the usage of Java EE and by following the
software-as-a-service paradigm, which allows to run the framework at a central
location and to use it on multiple applications. Our architecture follows the
MVC design pattern for the development of the RESTful RS web service. As
displayed in Fig. 1, we distinguish between data-, recommendations-, and exper-
iments components, as well as model-, view-, and controller components. Follow-
ing the concepts of modular or component-based programming, each component
is an independent and interchangeable module within the OSGi framework.

The modular design allows the usage of individual components without
changing the entire framework. An extension of the framework is done by adding
OSGi bundles with new functionality (e.g. recommender algorithms).

3 Conclusion and Outlook

In this paper we presented the rational and requirements why to implement our
own RS framework. The main features are on- and offline evaluation, extentabil-
ity and the use as a research framework and in productive environments. The
framework is available at: https://github.com/mys3lf/recalot.com and we cur-
rently adding more RS algorithms and integrate it as recommender in different
use cases.

4 Acknowledgements and Disclaimer

This publication has been produced in the context of the RAGE
project. The project has received funding from the European
Union’s Horizon 2020 research and innovation programme under
grant agreement No 644187. However, this paper reflects only the

author’s view and the European Commission is not responsible for any use that
may be made of the information it contains.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

2. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender
systems. Found. Trends Hum. Comput. Interact. 4(2), 81–173 (2011)

3. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: MyMediaLite: A
free recommender system library. In: Proceedings of the 5th ACM Conference on
Recommender Systems (RecSys 2011) (2011)

4. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recom-
mendation tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)

5. Guo, G., Zhang, J., Sun, Z., Yorke-Smith, N.: Librec: A java library for recom-
mender systems. In: Posters, Demos, Late-breaking Results and Workshop Pro-
ceedings of the 23rd Conference on User Modeling, Adaptation, and Personaliza-
tion (UMAP 2015) (2015)

https://github.com/mys3lf/recalot.com

406 M. Schmedding et al.

6. He, J.: A Social Network-based Recommender System. Ph.D. thesis, Los Angeles,
CA, USA, AAI3437557 (2010)

7. Heineman, G.T., Councill, W.T.: Component-Based Software Engineering: Putting
the Pieces Together. Addison-Wesley, Boston (2001)

8. Jannach, D., Lerche, L., Gedikli, F., Bonnin, G.: What recommenders recommend
– an analysis of accuracy, popularity, and sales diversity effects. In: Carberry, S.,
Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899,
pp. 25–37. Springer, Heidelberg (2013)

9. Lee, J., Sun, M., Lebanon, G.: A Comparative Study of Collaborative Filtering
Algorithms. ArXiv e-prints, May 2012

10. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in Action. Manning Pub-
lications Co., Greenwich, CT, USA (2011)

11. Surhone, L., Tennoe, M., Henssonow, S.: EASYREC. Betascript Publishing,
Saarbrücken (2010)

12. van Setten, M., Reitsma, J., Ebben, P.: Duine Toolkit: User Manual. Telematica
Instituut, 2.0.3rd edn. (2006)

CORPO-DS: A Tool to Support Decision Making
for Component Reuse Through Profiling with Ontologies

Savvas Loumakos and Andreas S. Andreou(✉)

Department of Computer Engineering and Informatics, Cyprus University of Technology,
Lemesos, Cyprus

sp.loumakos@edu.cut.ac.cy, andreas.andreou@cut.ac.cy

Abstract. This paper introduces a software tool that supports the activities of a
novel, reuse-based development framework, which focuses on assessing the suit‐
ability level of candidate components. The tool enables the creation of a specifi‐
cations profile using a semi-formal natural language, which describes the desired
functional and non-functional properties of the component(s) sought. It also offers
the means to parse the profile automatically and translate it into instance values
of a dedicated CBSE ontology. Finally, the tool performs matching between
required and offered component properties at the level of ontology items and
suggests the most suitable components to consider for integration based on a
suitability ratio calculated.

Keywords: Components · Reuse · Matching · Software tool · Decision-Support

1 Introduction

The present paper introduces the CORPO-DS (COmponent Reuse through Profiling with
Ontologies Decision Support) system, a web-based software tool that builds upon the
notions of the approach in [1] and fully supports the process described therein for
locating and retrieving the most appropriate software components according to func‐
tionality previously expressed as a set of properties. The main novelty of this tool is that
it offers a user friendly and efficient decision support tool for CBSE that boosts the
capabilities of reusers and helps them deal with trivial yet time consuming issues for
determining the suitability of components for integration. To the best of our knowledge,
existing tools do not offer such automated management and full support of components’
reuse processes at the practical level.

Although the relevant literature for component search and retrieval is rich with
studies reporting mechanisms for matching components, it lacks focus on tools that
support and enhance the reuse process. A very brief report on relevant studies follows:
Chen et al. [2] proposed a database management system that supports a suitable data
modeling language and allowed automatic mapping of component specifications with
goal specifications. Klein and Bernstein [3] presented an ontology-based approach for
web-services (including component implementations) using characteristics from a
process taxonomy, while Park [4] reports on a software component retrieval method
using static sampling of components’ input-output behavior based on concept analysis.

© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 407–410, 2016.
DOI: 10.1007/978-3-319-35122-3_29

The present paper aspires to fill this gap in literature by offering a fully functional and
easy to use software tool to support a certain reuse process.

2 The CORPO-DS Tool

The present paper introduces an efficient software tool that was developed to support the
framework described in [1] for automatic matching of software components using semi-
formal specifications supported by a CBSE ontology. This framework utilizes a specific
profiling scheme and automatically delivers the most suitable components in three simple
steps: The first step involves describing the desired functional and non-functional proper‐
ties of the component(s) sought in a specifications profile using a semi-formal natural
language. Each component is profiled with information revolving around three axes
describing functional, non-functional and reusability properties. Component properties are
expressed in the Extended Backus-Naur Form (EBNF). In the second step, the profile is
automatically parsed and translated into instance values of a dedicated CBSE ontology. The
third and final step performs matching between required and offered components’ proper‐
ties at the level of ontology items and a numerical suitability ratio is calculated that takes
into account the nature of the properties a reuser seeks for, either mandatory (constraints)
or desired. Two types of properties are supported, one of binary type (offered ‘yes’/‘no’) and
one of numerical type (e.g. price, response time). The suitability ratio essentially measures
the distance of available components from the required one in terms of binary and numer‐
ical properties and finally suggests which components are considered more appropriate
(closest matches) to consider for possible integration.

(b)

(a)

(c)

Fig. 1. Profiling information for (a) Functional, (b) Reusability, (c) Non-functional properties

408 S. Loumakos and A.S. Andreou

As Fig. 1 shows, the profiling information is organized in three different categories-
screens, one for each of the axes described earlier. A user is guided through drop-down lists
and predefined values to describe certain properties, while in other cases she/he is quite
flexible to define property descriptions through free text which is then parsed and analyzed
semantically.

The Search process is depicted in Fig. 2. Using the form shown in Fig. 2(a), the user
can search the database to find components based on the preferences inserted. Compo‐
nent characteristics are selected from dropdown lists and their type, either “constraint”
(a property that the component sought for must possess) or “desired” (a property that if
offered will raise its suitability ratio) is defined on the right. By selecting value “All” or
“Any” for a specific characteristic the user instructs the system that this characteristic
is indifferent and that matching of that property should return all values found in the
database. When all properties have been filled in pressing the button “Search” triggers
the matching process which searches the database, locates suitable candidates working
at the level of ontology instances and calculates their suitability level, the latter being
used to rank components and return them in the “Results” page presented in Fig. 2(b).
The user may further filter the components appearing in the list by selecting one or more
properties appearing on the left column which were declared as indifferent in the original
search. If the user wishes to see more information about a particular component she/he
may do so by pressing the “More Info” button. In such a case a popup window will show
up, which contains more details on the functional characteristics of that component and
the option to reveal its full profile along with a link to the vendor’s page so that the user
may proceed and purchase the component.

(a) (b)

Fig. 2. Searching for components: (a) Property values are inserted on the left and their type on
the right, (b) The most suitable components are returned appearing from top to bottom

The tool was initially released under an alpha version that was tested in a controlled
environment using 1000 synthetic component instances which were generated to cover the
needs of this testing stage, as well as those of the next (beta). The tool has successfully
completed the first level of assessment and has moved on to its beta version. This version is
already handed to a group of 25 subjects, 20 of which are graduate (master) students at the

CORPO-DS: A Tool to Support Decision Making 409

Cyprus University of Technology and 5 are software practitioners. The students hold an
undergraduate degree in Computer Science and/or Engineering that included courses in
Software Engineering (SE) and presently follow an advanced SE course with emphasis on
CBSE and reusability. The practitioners consist of software developers, 3 of which exten‐
sively make use of component reuse for the last 5 years and 2 produce components for
internal reuse in their company for the last 3 years. All subjects underwent a short period of
training (2 h) on the proposed approach (profiling scheme and semi-formal structures of the
natural language used) and the functionality of the tool. The aim is to conclude the second
stage correcting potential bugs prior to the final release of the tool that will make it freely
accessible by the scientific community (http://seiis.cut.ac.cy/tools/corpo).

3 Conclusions

This paper presented an efficient web-based software tool that supports component-
based development. The CORPO-DS tool enhances reuse by offering a user friendly
way for locating and retrieving components stored in a repository easily and most
importantly with high accuracy. CORPO-DS is based on a framework that expresses
functional and non-functional component characteristics using a certain form of profile
written in EBNF. The profile is transformed to instances of a dedicated component-based
ontology developed to support the component specification matching activities. The
latter transformation enables comparison at the level of ontology tree instances which
is used to assess if hard constraints are violated (i.e., absolutely necessary properties
required are not offered by candidates) and if not, to calculate a similarity metric that
dictates the level of appropriateness of components for possible integration. Future work
will concentrate on expanding the tool incorporating an “intelligent” engine which will
receive multiple preferences of a reuser reflecting various components, along with some
special-purpose information (e.g. cost minimization or openness constraints), and will
select the most appropriate synthesis of components available in the repository resulting
in the automatic construction of large parts of the software under development.

References

1. Andreou, A.S., Papatheocharous, E.: Automatic matching of software component
requirements using semi-formal specifications and a CBSE ontology. In: International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), pp. 118–
128. IEEE (2015)

2. Chen, P., Hennicker, C.R., Jarke, M.: On the retrieval of reusable software components. In:
Software Reusability, Selected Papers from the Second International Workshop on Advances
in Software Reuse, pp. 99–108. IEEE (1993)

3. Klein, M., Bernstein, A.: Searching for services on the semantic web using process ontologies.
In: The Emerging Semantic Web (2001)

4. Park, Y.: Software retrieval by samples using concept analysis. J. Syst. Softw. 54(3), 179–183
(2000)

410 S. Loumakos and A.S. Andreou

http://seiis.cut.ac.cy/tools/corpo

Author Index

Adamu, Alhassan 384
Alam, Omar 122
Ali, Shaukat 89
Amorim, Luiz 73
Ampatzoglou, Apostolos 149
Andreou, Andreas S. 407
Arcega, Lorena 39

Bagheri, Ebrahim 20
Ballarin, Manuel 215
Bashari, Mahdi 20
Baudry, Benoit 368, 393
Belloir, Nicolas 122
Ben Sassi, Sihem 300
Bendraou, Reda 333
Bibi, Stamatia 149
Bissyandé, Tegawendé F. 267
Blouin, Arnaud 368, 393
Braga, Rosana T. Vaccare 231
Brock, Holger 402

Cetina, Carlos 39, 215
Chatzigeorgiou, Alexander 149
Cleophas, Loek 63
Coelho, Duarte 284
Collet, Philippe 122
Combemale, Benoit 122, 368, 393

DeAntoni, Julien 122
Du, Weichang 20

Engel, Felix 402
Engels, Gregor 199

Fazal-Baqaie, Masud 199
Feloni, Daniel 231
Filho, Domenico Schettini 231
Font, Jaime 39
Fuchs, Michael 402

Galindo, José A. 368, 393
Gervais, Marie-Pierre 333
Gomaa, Hassan 181

Gottardi, Thiago 231
Grieger, Marvin 199

Hamid, Brahim 350
Haugen, Øystein 39
He, Keqing 106
Hebig, Regina 333
Hemmje, Matthias 402
Heutelbeck, Dominic 402
Hoch, Ralph 138

Jin, Xiaoyu 247

Kaindl, Hermann 138
Khatwani, Charu 247
Khelladi, Djamel Eddine 333
Kienzle, Jörg 122
Klas, Claus-Peter 402
Klein, Jacques 122, 267
Klenke, Markus 199
Krieter, Sebastian 397

Lapeña, Raúl 215
Le Guernic, Gurvan 368
Le Traon, Yves 267
Leich, Thomas 397
Li, Hongtao 106
Li, Wenchao 315
Lity, Sascha 3
Liu, Chao 89
Loumakos, Savvas 407

Männistö, Tomi 55
Martinez, Jabier 267
Meinicke, Jens 397
Méndez-Acuña, David 368, 393
Mendonça, Manoel 73
Morbach, Thomas 3
Mussbacher, Gunter 122
Myllärniemi, Varvana 55

Niu, Nan 247
Nyamsuren, Enkhbold 165

Pacini, Karen 231
Papadakis, Mike 267
Paschali, Maria-Eleni 149
Pathirage, Don 181
Peng, Zhenlian 106
Pereira, Juliana Alves 397
Popp, Roman 138

Raatikainen, Mikko 55
Robin, Jacques 333
Rumpe, Bernhard 122

Saake, Gunter 397
Saidi, Hassen 315
Sanchez, Huascar 315
Santos, André L. 284
Savolainen, Juha 247
Schaefer, Ina 3, 63
Schäf, Martin 315
Schmedding, Matthäus 402
Schöttle, Matthias 122
Schröter, Reimar 397

Schweitzer, Pascal 315
Seidl, Christoph 63
Shin, Michael 181
Stamelos, Ioannis 149

Thüm, Thomas 3
Tiihonen, Juha 55

van der Vegt, Wim 165

Wagner, Michael 247
Wang, Jian 106
Watson, Bruce W. 63
Westera, Wim 165

Yue, Tao 89

Zainoon, Wan Mohd Nazmee Wan 384
Zeidler, Christian 138
Zhang, Huihui 89
Ziadi, Tewfik 267

412 Author Index

	Preface
	Organization
	Contents
	Software Product Lines
	Applying Incremental Model Slicing to Product-Line Regression Testing
	1 Introduction
	2 Foundations
	3 Automated Retest Decisions Based on Slice Changes
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Automated Composition of Service Mashups Through Software Product Line Engineering
	1 Introduction
	2 Problem Statement and Background
	2.1 Feature Models
	2.2 Business Process Execution Language (BPEL)

	3 Proposed Approach
	3.1 Domain Model Specification
	3.2 Proposed Solution

	4 Experiments
	4.1 Workflow Generation
	4.2 Workflow Optimization

	5 Related Work
	6 Conclusion
	References

	Feature Location in Model-Based Software Product Lines Through a Genetic Algorithm
	1 Introduction
	2 Formalizing the Variability
	2.1 The Induction Hobs Domain Specific Language (IHDSL)
	2.2 The Common Variability Language Applied to IHs

	3 Genetic Algorithm for Feature Location
	3.1 Encoding of the Population
	3.2 Initialize Population
	3.3 Fitness Function
	3.4 Selection of Parents
	3.5 Crossover
	3.6 Mutation

	4 Case Study
	4.1 Case Study Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	Carrying Ideas from Knowledge-Based Configuration to Software Product Lines
	1 Introduction
	2 Previous Work
	3 Ideas from Knowledge Based Configuration
	3.1 I1: Separating Types and Instances
	3.2 I2: Conceptual Clarity
	3.3 I3: Separate Domain Phenomena, Concepts and Representations

	4 Discussion and Conclusions
	References

	Tax-PLEASE---Towards Taxonomy-Based Software Product Line Engineering
	1 Introduction
	2 SPL Engineering
	3 Software Taxonomies
	4 A Taxonomy-Based SPLE Process
	4.1 Domain Analysis
	4.2 Domain Design and Implementation

	5 Related Work
	6 Conclusion
	References

	Business Aspects of Software Reuse
	A Method to Support the Adoption of Reuse Technology in Large Software Organizations
	Abstract
	1 Introduction
	2 Background
	2.1 The Adoption of a Software Technology
	2.2 The Adoption of Software Reuse Technology
	2.3 Organizational Culture, Belief System and Knowledge
	2.4 Cognitive Models that Represent the Way People Act

	3 A Method Based on an Action Model Reasoned on Classes of Beliefs to Support the Adoption of Softwa ...
	3.1 Classes of Beliefs
	3.2 The Re-Signification of Beliefs
	3.3 A Catalog of Software Reuse Beliefs’

	4 A Industrial Case Study with Ethnography
	4.1 Case Study Description
	4.2 Re-Signification of Beliefs Identified

	5 Conclusions and Further Works
	References

	A Practical Use Case Modeling Approach to Specify Crosscutting Concerns
	Abstract
	1 Introduction
	2 Background
	2.1 Running Example
	2.2 RUCM
	2.3 UCMeta

	3 The AspectRUCM Approach
	3.1 Domain Model
	3.2 AspectRUCM Profile
	3.3 Definition of Weaving Directive Specification
	3.4 Modeling Guidelines
	3.5 Weaver

	4 Evaluation
	4.1 Case Studies
	4.2 AspectRUCM Evaluation
	4.3 Empirical Evaluation of RUCM

	5 Related Work
	6 Conclusion
	Acknowledgement
	References

	An Approach for Prioritizing Software Features Based on Node Centrality in Probability Network
	1 Introduction
	2 Feature Model
	3 Software Feature Prioritization
	3.1 Overall Framework
	3.2 Generating a Feature Probability Network
	3.3 Computation of Node Centrality in Network
	3.4 Feature Prioritization Algorithm

	4 Evaluation
	4.1 Setup
	4.2 Ground Truth Building
	4.3 Evaluation Indicator
	4.4 Results and Analysis
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	VCU: The Three Dimensions of Reuse
	1 Introduction
	2 The VCU Approach -- Definitions
	2.1 Usage Interface
	2.2 Customization Interface
	2.3 Variation Interface
	2.4 VCU Approach to Reuse

	3 VCU Interfaces Across Levels of Abstraction
	3.1 Variation Interface Models
	3.2 Requirements Models
	3.3 Design Models
	3.4 Hardware Models
	3.5 Reusing Authorization

	4 VCU Interfaces Across Reuse Techniques
	5 Conclusion
	References

	Reuse vs. Reusability of Software Supporting Business Processes
	1 Introduction
	2 Related Work
	3 Integrated Software and Business Process Reuse
	4 Comparison of R&R Trade-offs
	5 Conclusion
	References

	Component-Based Reuse
	A Case Study on the Availability of Open-Source Components for Game Development
	Abstract
	1 Introduction
	2 Background Information
	2.1 Software Reuse
	2.2 Component-Based Software Engineering
	2.3 Game Engineering
	2.4 An Algorithm for Component Identification

	3 Case Study Design
	3.1 Research Question
	3.2 Case Selection
	3.3 Data Collection
	3.4 Data Analysis

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

	RAGE Reusable Game Software Components and Their Integration into Serious Game Engines
	Abstract
	1 Introduction
	2 The RAGE Architecture
	3 Communications Between Assets and the Game Engine
	3.1 Communications with the Asset Manager and Other Assets
	3.2 Communications Through a Game Method Call
	3.3 Communications Through a Web-Service Call
	3.4 Communications Through a Publish/Subscribe Event

	4 The Heterogeneous Adaptive Gaming Asset (HAT)
	5 The TileZero Game
	6 Integrating Assets with Game Engines
	6.1 MonoGame Implementation of TileZero
	6.2 HAT Asset Integration
	6.3 The Reuse of Libraries by Using the RAGE Architecture
	6.4 Portability Across Game Engines and Platforms

	7 Conclusion
	Acknowledgement
	References

	Reusable Secure Connectors for Secure Software Architecture
	Abstract
	1 Introduction
	2 Related Work
	3 Concepts of Reusable Secure Connectors
	4 Design of Reusable Secure Connectors
	5 Secure Synchronous Communication with Reply Connector
	5.1 Design of Secure Synchronous Communication with Reply Connector
	5.2 Example of Secure Synchronous Communication with Reply Connector

	6 Validation of Reusable Secure Connectors
	6.1 Implementation of Reusable Secure Connectors
	6.2 Reusability of Secure Connectors

	7 Conclusions
	Acknowledgement
	References

	Reuse-Based Software Engineering
	Concept-Based Engineering of Situation-Specific Migration Methods
	1 Introduction
	2 Concept Modeling
	3 Method Base
	3.1 Method Fragments
	3.2 Method Patterns

	4 Method Pattern Evaluation
	5 Industrial Project
	5.1 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	Leveraging Feature Location to Extract the Clone-and-Own Relationships of a Family of Software Products
	1 Introduction
	2 Clone-and-Own Extraction Approach
	2.1 Model-Based Feature Location
	2.2 Feature Isolation
	2.3 Code Comparison
	2.4 Similarity Comparison

	3 Evaluation
	3.1 The Induction Hobs Domain
	3.2 Extracted Clone-and-Own Relationships
	3.3 Clone-and-Own Relationships for Automatic Implementation
	3.4 Clone-and-Own Relationships for Manual Implementation
	3.5 Limitations

	4 Related Work
	4.1 Feature Location at the Code Level
	4.2 Feature Location at the Model Level

	5 Conclusions
	References

	AIRES: An Architecture to Improve Software Reuse
	1 Introduction
	2 AIRES Overview
	3 AIRES Elements Detailing
	3.1 Requirements - Use Cases Overview
	3.2 Architecture Overview
	3.3 Conceptual Model
	3.4 AIRES Asset Life Cycle

	4 AIRES Evaluation
	5 Related Work
	6 Conclusions and Future Work
	A Private Services Interface Definition
	References

	Pragmatic Software Reuse in Bioinformatics: How Can Social Network Information Help?
	1 Introduction
	2 Background and Related Work
	2.1 Biomedical Software Discovery
	2.2 Pragmatic Software Reuse
	2.3 Development Social Networks

	3 Study Design
	3.1 Participants
	3.2 Tasks
	3.3 Procedure

	4 Results and Analysis
	4.1 Information Needs in Pragmatic Software Reuse
	4.2 Supporting the Needs with Social Network Information
	4.3 Threats to Validity

	5 Conclusions
	References

	Software Reuse Tools
	Feature Location Benchmark for Software Families Using Eclipse Community Releases
	1 Introduction
	2 Background
	2.1 Feature Location
	2.2 The Eclipse Project

	3 Eclipse as a Standard Case Study Subject
	4 Eclipse Feature Location Benchmarking Framework
	4.1 Benchmark Construction
	4.2 Benchmark Usage

	5 Example of EFLBench Usage
	5.1 Background Algorithms
	5.2 Feature Location Techniques
	5.3 Results

	6 Related Work
	7 Conclusion
	References

	Java Extensions for Design Pattern Instantiation
	1 Introduction
	2 Running Example
	3 Project Lombok and AST Transformations
	4 Java Extensions
	4.1 Pattern Instantiation Properties
	4.2 Singleton Pattern
	4.3 Visitor Pattern
	4.4 Decorator Pattern
	4.5 Observer Pattern

	5 Analysis
	6 Discussion
	7 Related Work
	8 Conclusions
	References

	Towards a Semantic Search Engine for Open Source Software
	1 Introduction
	2 OntoFLOSS Ontology
	2.1 Semantic Normalization
	2.2 Knowledge Formalization
	2.3 Operationalization

	3 OSS Search System Description
	3.1 The Indexing Process
	3.2 The Search Process

	4 Experimentation
	5 Conclusion
	References

	Detecting Similar Programs via The Weisfeiler-Leman Graph Kernel
	1 Introduction
	2 Preliminaries
	3 Similarities
	4 Graph-Based Program Representations
	4.1 API Call Graph
	4.2 Inter-procedural Data-Flow Graph

	5 Evaluation
	5.1 Evaluation of Code Similarity Using IDFG
	5.2 Evaluation of ACG Similarity

	6 Related Work
	7 Conclusion
	References

	Domain Analysis and Modelling
	Metamodel and Constraints Co-evolution: A Semi Automatic Maintenance of OCL Constraints
	1 Introduction
	2 Factors Influencing the Resolution Strategies
	3 A Co-evolution Approach of OCL Constraints
	3.1 Metamodel Changes During Evolution
	3.2 Identification of Impacted OCL Constraints
	3.3 Obtaining the Influencing Factors
	3.4 Resolution Strategies
	3.5 Proposing Resolution Strategies
	3.6 Automated Application of the Constraints' Resolutions

	4 Implementation
	5 Evaluation
	5.1 Dataset
	5.2 Co-evolution Results as Occurred in Practice
	5.3 Co-evolution Results by Our Approach
	5.4 Comparison of the Results:``Our Approach'' VS ``in Practice''
	5.5 Discussion and Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

	A Model Repository Description Language - MRDL
	1 Introduction
	2 Related Work
	3 Conceptual Model of a Model-based Repository
	3.1 Requirements
	3.2 System and Software Artifact Repository Conceptual Model (SARM)
	3.3 Metamodel of the Repository Structure

	4 Definition of a Repository Model
	5 Tool Support
	6 Conclusion and Future Work
	References

	Reverse-Engineering Reusable Language Modules from Legacy Domain-Specific Languages
	1 Introduction
	2 Background: Domain-Specific Languages in a Nutshell
	3 Motivating Scenario
	4 Proposed Approach
	4.1 Principles of Reverse-Engineering for Language Reuse
	4.2 Reverse-Engineering Process: The 5 Principles in Action

	5 Evaluation
	5.1 Evaluating Correctness: The State Machines Case Study
	5.2 Evaluating Relevance: Are Specification Clones a Real Phenomenon in DSLs Development Processes?

	6 Related Work
	7 Conclusion
	References

	A Framework for Enhancing the Retrieval of UML Diagrams
	Abstract
	1 Introduction
	2 Proposed Approach
	2.1 Meta-models Pre-processing
	2.2 Pre-filtering Process
	2.3 Query Processor
	2.4 Retrieval Engine
	2.5 Similarity Computation

	3 Case Study
	4 Conclusion
	Acknowledgments
	References

	Tool Demonstrations
	Puzzle: A Tool for Analyzing and Extracting Specification Clones in DSLs
	1 Introduction
	2 Puzzle
	References

	FeatureIDE: Scalable Product Configuration of Variable Systems
	1 Introduction
	2 Preventing Conflicting Feature Combinations
	3 Information Hiding
	4 Conclusion
	References

	Recalot.com: Towards a Reusable, Modular, and RESTFul Social Recommender System
	1 Introduction
	2 Developing a RS Framework
	3 Conclusion and Outlook
	4 Acknowledgements and Disclaimer
	References

	CORPO-DS: A Tool to Support Decision Making for Component Reuse Through Profiling with Ontologies
	Abstract
	1 Introduction
	2 The CORPO-DS Tool
	3 Conclusions
	References

	Author Index

