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Abstract

Most of the previous content of this book has focused on obtaining the
structures of membrane proteins. In this chapter we explore how those
structures can be further used in two key ways. The first is their use in
structure based drug design (SBDD) and the second is how they can be
used to extend our understanding of their functional activity via the use of
molecular dynamics. Both aspects now heavily rely on computations. This
area is vast, and alas, too large to consider in depth in a single book chapter.
Thus where appropriate we have referred the reader to recent reviews for
deeper assessment of the field. We discuss progress via the use of examples
from two main drug target areas; G-protein coupled receptors (GPCRs)
and ion channels. We end with a discussion of some of the main challenges
in the area.
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12.1 Structures in Drug Design

One of the most active areas where recent crystal
structures have begun to inform drug design in
a significant way has been the GPCR renais-
sance (Jazayeri et al. 2015). In the past, structure
based drug design (SBDD) has been the pre-
serve of soluble proteins that readily crystallise.
Membrane proteins have remained problematic
because of the difficulties associated with gener-
ating high-resolution data. However, as described
elsewhere in this book, various advances have
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begun to make SBDD a real possibility for many
membrane protein targets including GPCRs (Tate
2012). Structures of ion channels, many of which
are key therapeutic targets, have also started to
appear.

One structure on its own can be tremendously
informative, but the appearance of many related
structures allows comparative analysis to be
done, which can help to define conserved motifs
and highlight functionally relevant positions.
This is exactly what has been done for GPCRs
and has shown conserved interaction networks
and characteristic features of ligand binding
(Venkatakrishnan et al. 2013). It can also lead
to unifying theories of activation (Tehan et al.
2014). Moreover, such analysis is tremendously
helpful in developing tools that can be used
to assess the quality of models derived from
simulation and modelling (Heifetz et al. 2013a).
This kind of approach, in conjunction with the
huge wealth of mutagenesis data (Isberg et al.
2014), is part of the reason for the renewed
interest in GPCRs as drug targets. Today, crystal
structures exist for almost every representative
sub-branch of the GPCR genome.

A similar approach has been adopted for the
analysis of the cys-loop family of ion channels
(Spurny et al. 2015) although the variation in the
structures, and the fact that many are bacterial
in origin, makes cross-comparative work like this
more difficult to interpret. The cys-loop family of
receptors contains a large number of therapeutic
targets, particularly for the treatment of central
nervous system (CNS) related disorders. For ex-
ample, the homomeric ’7 nicotinic acetylcholine
receptor has been considered a target for the
treatment of many disease states associated with
cognitive impairment (Uteshev 2014) and there
have been several reports of allosteric modulators
which may offer therapeutic potential in the fu-
ture (Young and Geyer 2013).

Ionotropic glutamate receptors on the other
hand have the distinct advantage that the ligand-
binding domain can be expressed as a soluble
construct (that maintains almost wild type bind-
ing affinity (Armstrong and Gouaux 2000)) and
is readily crystallisable. The AMPA subtype has
been recognised as a therapeutic target for neuro-

logical disorders including schizophrenia (Ward
et al. 2010, 2015; Partin 2015), and structural
information has been an important factor in drug
design considerations (Harms et al. 2013). In-
deed, crystallography has already been integrated
with lead optimization methods for the devel-
opment of new positive allosteric modulators of
AMPA receptors (Ward et al. 2010, 2015). A
number of patents in this area have been filed
(Pirotte et al. 2013) and it also appears to be an
area in which academic laboratories are also start-
ing to contribute directly to (Partin 2015; Harms
et al. 2013; Caldwell et al. 2015; Chen et al. 2013;
Jamieson et al. 2011; Timm et al. 2011; Weeks
et al. 2014). Another type of glutamate receptor,
the NMDA receptor, can also be modulated in
an allosteric fashion at different sites as recently
reviewed by Strong et al. (2014). Indeed there is
renewed interest in NMDA receptors as therapeu-
tic targets and structural information is starting to
guide this in a rational way (Khatri et al. 2014).

Rational approaches to designing compounds
acting at the orthosteric binding site of glutamate
receptors have also been employed (Demmer
et al. 2015; Venskutonytė et al. 2014; Assaf
et al 2013; Juknaitė et al 2012; Bunch and
Krogsgaard-Larsen 2009; Sivaprakasam et al.
2009). An important goal at this point is
to develop sub-type specific compounds, not
necessarily as drugs, but as chemical probes.
One of the main issues with targeting glutamate
receptors is targeting the correct receptor subunit
in right part of the brain, but at the present
time this is hindered by a lack sub-type specific
chemical probes.

In the next sections we briefly highlight some
of the principles employed before going on to de-
scribe some case studies where these approaches
have been used in on going drug-design projects.

12.1.1 In-sillico SBDD

Once one has the structure of a particular target, it
can be used as the basis for SBDD and/or virtual
screening (Forli and Olson 2015). This is often
considered the most promising approach for the
discovery of new ligands (Lounnas et al. 2013).
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The presence of structural information in a drug-
discovery program can lead to a step change in
progress; Structure activity relationship (SAR)
results can be rationalised, new avenues can be
rationally explored and improved hypotheses
generated.

In the absence of a structure, drug design
typically precedes using ligand-based techniques,
but these have well known limitations. Aside
from the obvious limitation of the lack of in-
formation on how the ligand interacts with its
target, it is often the case that any newly dis-
covered molecules will have a similar chemo-
type to the parent molecule(s) and that can lead
to intellectual property (IP) protection problems
which render the process non-viable. Additional
problems are that activity cliffs cannot be easily
rationalized and it is not always possible to isolate
effects of chemical modifications. If structural
information is available with an important drug
or lead compound, then new interactions between
ligands and the target can be devised on simple
chemical intuition and molecular mechanics prin-
ciples. It is also easier to design molecules that
are completely novel from an IP sense.

Structure-based virtual screening (SBVS) (Li-
onta et al. 2014) is a useful tool in terms of pro-
viding initial filtering of huge chemical libraries
and to provide plausible suggestions (Cerqueira
et al. 2015) that can be taken forward in a drug-
discovery program (Shoichet 2004). However,
the detailed prediction of precise modes of action
and prediction of affinity, or even more difficult,
efficacy (see below in Sect. 12.3.2), is still in-
credibly challenging and indeed over the years
this aspect was arguably overhyped (Seddon et al.
2012). Despite these limitations, the low cost
of virtual screening means that it is something
employed in most drug design strategies to pro-
vide some initial assessment of potential binding
modes.

SBVS has been around for a number of years
and its development and use have been reviewed
substantially (Lounnas et al. 2013; Lionta et al.
2014; Cheng et al. 2012). SBVS is based on high
throughput docking where one has the structure
of a target (protein usually but not necessarily)
and a large (thousands to millions) compounds

library. Compounds from this library are then
docked to this target structure and ranked ac-
cording to some kind of scoring function. SBVS
relies on these functions, but whilst the ability
of these methods to predict accurate poses (typ-
ically defined as within 2 Å RMSD of the crys-
tallographic model) is quite reasonable, expert
knowledge is often required to obtain that level of
performance (Cross et al. 2009). Care must also
be taken to ensure that due consideration is given
to factors like explicit solvent and the flexibility
of the binding pocket (Elokely and Doerksen
2013).

12.1.2 HomologyModelling
of Related Targets

Although there has been a steady increase in
the number of membrane protein structures being
solved, there are still a large number of important
targets for which no high resolution structure
is available and thus if one wants to pursue
any kind of structure-based approach, homology
modelling is the only viable solution (Schmidt
et al. 2014). Furthermore, even if structural in-
formation is available for one complex, if the
timescale of obtaining that data is too slow, then
homology modelling is often used instead. It is
generally considered that in order for homology
models to be useful for screening, there needs to
be a high quality template with high sequence
similarity, although it has been argued that for
some approaches, such as off-target prediction,
low-to moderate resolution structures can still
be of value (Skolnick et al. 2013). Indeed it
has also been argued for GPCRs that theoretical
models can perform equally as well for some
aspects of the drug discovery process (Tang et al.
2012). Similarly, a retrospective comparison for
the Dopamine D3 receptor also concluded that
well-built homology models can perform as well
as crystal structures in terms of in silico dock-
ing (Levoin et al. 2011). Even in cases where
the sequence identity to the target is very low,
careful model building in conjunction with site-
directed mutagenesis and binding assays can be
very useful in aiding the future direction of a
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Fig. 12.1 A summary schematic of the Hierarchical
GPCR Modelling Protocol (HGMP) developed at Evotec
in collaboration with the University of Oxford, illustrating

the various components that contribute to the modelling
procedure

drug discovery program or indeed rationalizing
existing SAR data (Lee et al. 2015).

These approaches can be incorporated into
workflows. An example such workflow is the
hierarchical GPCR modelling protocol (HGMP),
which was developed to support SBDD programs
(see Fig. 12.1). The HGMP generates a GPCR
model and its potential complexes with small
molecules by applying a series of computational
methods in a workflow. The protocol makes use
of homology modelling following by Molecu-
lar dynamics (MD) simulations and docking to
predict binding poses and functions of ligands
bound to GPCRs. The HGMP is equipped with
GPCR-specific “plugins” including for example
the GPCR-likeness assessment score (GLAS) to
evaluate model quality (Heifetz et al. 2013a). The
HGMP also includes a pairwise protein compari-
son method (ProS) used to cluster structural data
and can distinguish between different activation
sub-states (Heifetz et al. 2013a). Recently, the
capabilities of HGMP have been extended by
the addition of GPCR biased ligand tools. The
HGMP has been used within real drug-discovery

projects at the biotech company Evotec, some of
which we briefly outline as case studies below.

12.1.3 SBDD Case Studies

12.1.3.1 Discovery of Selective 5-HT2C
Agonists for the Treatment
of Metabolic Disorders

In this project, which was performed prior to
the crystal structures of 5-HT2B and 5-HT1B

being solved, the challenge was to find novel
5-HT2c agonists that were selective in that they
did not activate 5-HT2A and 5-HT2B receptors.
The HGMP was applied to model both active
and inactive receptor conformations, referred to
as 5-HT2C

active and 5-HT2C
inactive respectively.

Models were also built of the off targets, 5-HT2A

and 5-HT2B. Flexible docking was then applied
to predict the binding modes of compounds with
5-HT2A, 5-HT2B and 5-HT2C. The binding site
of 5-HT2C

inactive was proposed to be shallower
compared to the binding site of 5-HT2C

active

due to residues from TM3 and TM6 forming
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stabilizing inter-helical interactions in the
5-HT2C

inactive binding site. It was proposed that
these inter-helical interactions are broken in the
active conformation of the 5-HT2C receptor,
which is stabilized by agonist molecules entering
deeper into the binding site and compensating
via interactions with various other residues,
including W3246.48, a key residue previously
identified as a “transmission switch” residue
(Han et al. 1997; Holst et al. 2010; Schwartz
et al. 2006) and which may form part of a larger
“hydrophobic hindering mechanism” recently
suggested (Tehan et al. 2014). Agonists were
suggested to interact with W3246.48, thereby
pushing the intracellular half of TM6 in to the
active conformation. Agonists were proposed
to interact simultaneously with both TM3 and
TM6 in 5-HT2C

active thus increasing the overall
stability of 5-HT2C

active and promoting activation.
Furthermore, these modeling observations
(which are directly supported by the published
SDM data) were incorporated into the design
of novel 5-HT2C agonists (Tye et al. 2011).

Hits were also assessed for hERG liability via
docking to a model of the hERG channel. The
result was the discovery of a novel compound
(EC50 D 8.4, 762, 73 nM for 5-HT2C, 2A, 2B and
hERG inhibition of 11 % @ 10 CM). The whole
design cycle for this project can be summarized
in Fig. 12.2.

12.1.3.2 Fighting Obesity
with a Sugar-Based Library

Obesity is an increasingly common disease. Al-
though antagonism of the melanin-concentrating
hormone-1 receptor (MCH-1R) has been widely
reported as a promising therapeutic avenue for
obesity treatment, no MCH-1R antagonists have
reached the market. Discovery and optimization
of new compounds targeting MCH-1R was
hindered by low high throughput screening
(HTS) success rates and a lack of structural
information about the MCH-1R binding site. In
this project, a conceptually pioneering approach
that integrated GPCR modelling with design,
synthesis and screening of a diverse library of
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Fig. 12.2 Design cycle for potent, selective and hERG ‘clean’ 5HT2C antagonists
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Fig. 12.3 Summary schematic of the VAST-GPCR modelling workflow which led to the discovery of new MCH-1R
antagonists

sugar-based compounds from the VAST technol-
ogy (Versatile Assembly on Stable Templates)
was used, to provide structural insights on the
MCH-1R binding site (Heifetz et al. 2013a, b, c).
The 490 VAST compounds obtained from this
library design were screened against MCH-1R,
resulting in the discovery of a potent MCH-1R
antagonist, ACL21823 (radioligand binding to
MCH-1R gave an IC50 D 306 nM, see Fig. 12.3).
The discovery of ACL21823 was utilized in the
construction of a high quality MCH-1R model
and the refinement of its antagonist binding
site. The quality of the MCH-1R model was
demonstrated by a virtual enrichment experiment
and the model-driven structure-based expansion
of ACL21823, which allowed the generation
of a list of key MCH-1R residues potentially
involved in antagonist binding. The GPCR-VAST
method demonstrates how ligand SAR data,
when combined with modelling, can provide a
useful source of structural information on GPCR
binding sites (Heifetz et al. 2013a, b, c). The
usefulness of the GPCR-VAST method to drug

discovery was demonstrated by a structure-based
virtual screen, which achieved a hit rate of 14 %
and yielded 10 new chemotypes of MCH-1R
antagonists including EOAI3367472 (IC50 D 131
nM) and EOAI3367474 (IC50 D 213 nM). This
approach creates a cost-efficient new avenue for
structure-based drug discovery (SBDD) against
GPCR targets.

12.1.3.3 Discovery of Potent
and Selective OX2 Receptor
Antagonists

The orexin receptors (OX1 and OX2) are
linked to a range of different physiological
functions including the control of feeding, energy
metabolism, modulation of neuro-endocrine
function and regulation of the sleep-wake cycle.
The key challenges of this project were to
increase the OX2 activity and selectivity over
OX1. This was particularly difficult as OX1

and OX2 receptors have over 80 % sequence
similarity. This project was completed before the
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Fig. 12.4 Schematic summarizing how interaction maps derived from structural models and MD data can be used to
provide synthesis recommendations

crystal structure of OX2 bound to Suvorexant
was solved. We used Molecular Dynamics (MD)
simulations to study the OX1 vs OX2 selectivity
(Heifetz et al. 2012). The MD process allowed
refinement of the models that was not possible
with static crystal structures or homology models
alone. This study suggested that differences in
intra-helical interactions resulted in differences
in conformations of transmembranes (TMs)
and differences in topology of the binding
pocket. These are small differences but sufficient
enough to design molecules with OX2 selectivity.
This rational design significantly decreased
the amount of synthesis by focusing the
effort to the relevant portion of the ligand
structure as demonstrated in Fig. 12.4. The
final compound, EP-009-0513, had inhibition
constants, Ki, of 4363 and 5.7 nM for OX1 and
OX2 respectively.

12.1.3.4 Discovery of Selective Dual
Antagonists of H3 and H4

Receptors
An approach that integrates the HGMP with frag-
ment based drug discovery (FBDD) had been
applied for the discovery of selective and dual
H3 and H4 histamine receptor antagonists (see
Fig. 12.5). FBDD has emerged as a new tool for
drug discovery in recent years and is typically

aimed at a target for which a crystal structure
can be determined in order to rationally guide
fragment-hit expansion. While the majority of
historical fragment screens have been focused
towards biochemical targets, only a few examples
have been published in which this method has
been used to identify ligands for GPCRs. This
is due to the current infeasibility of regularly
crystallizing the GPCR-fragment complexes that
are essential for further fragment expansion.

The HGMP was used to generate initial mod-
els of these receptors. Primary fragment screens
yielded 44 H3 selective, 21 H4 selective and
20 dual selective fragment hits. These fragments
were used to construct new high-quality H3 and
H4 models followed by binding site exploration
and a structure based virtual screen. Overall, 172
compounds were purchased for testing based on
these virtual screening results. Of the 74 com-
pounds predicted to have dual activity, 33 had
activity against one or other of the two receptors
(44 %), of which 17 had activity against both. Of
the 19 compounds predicted to be H3 selective,
13 were active against H3 (68 %) and 10 of
these also had selectivity over H4. Of the 79
compounds predicted to be H4 selective, 36 were
active against H4 (45 %) and 2 of these also
had selectivity over H3. This approach highlights
a cost-efficient avenue for structure-based drug
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Fig. 12.5 Schematic of the HGMP-FBDD workflow to perform virtual screening

design (SBDD) against GPCR targets (Heifetz
et al. 2013b).

12.2 Exploration of the Dynamic
Nature of Membrane
Proteins

Membrane proteins, by functional necessity, are
often very dynamic entities. Indeed, this is one
of the reasons why they have been recalcitrant to
crystallization efforts. Ion channels have gating
machinery for example, whilst GPCRs need to
enable a wide variety of signalling pathways
through changes in their response to different
ligands. Crystal structures and modelling can
provide a step-change in our understanding of
membrane proteins and in the processes outlined
above with SBDD. However, the structure is
also the start point for one to be able to exam-
ine these dynamic responses and consequently

address more complex questions about recep-
tor flexibility and function. Molecular dynamics
simulations can be used in a variety of ways
including refinement of the structure in a more
realistic membrane environment, the analysis of
solvent and the discovery of so-called “cryptic
sites” which may offer alternative pathways for
therapy. We outline some of these aspects below.

12.2.1 Exploration of Membrane
Protein Dynamics

Crystal structures are often obtained under con-
ditions that are somewhat artificial and thus, care
must be taken to interpret the data in a mean-
ingful way (Wlodawer et al. 2008, 2013). MD
simulations can provide refinement of homology
models (as alluded to above) and can give in-
formation on lipid and solvent interactions for
example. The dynamic and heterogeneous nature
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Fig. 12.6 Example simulation box. In case the protein is
a homology model of human P-glycoprotein based on the
refined mouse structure 4M1M (transmembrane helices
1–6 and 7–12 are red and orange respectively) embedded
within a bilayer system comprised of 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine (POPC; blue),
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
(POPE; purple) 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoserine (POPS; dark grey), sphingomeylin (light
grey) and cholesterol (green). The lipids in front of the
protein have been removed for clarity. It is usual for
researchers to sodium and chloride ions in the solvent to
a concentration that is representative of in vivo or in vitro
studies (150 mM NaCl for example) (Figure courtesy of
Laura Domicevica)

of lipid bilayers can make the analysis of interac-
tions with membrane proteins difficult. In a typi-
cal approach the coordinates are extracted form
the PDB and inserted into a lipid bilayer (see
Fig. 12.6). Many methods have been published
over the years to achieve this and the reader is
referred to a specific review on this aspect (Biggin
and Bond 2015).

Simulations can provide a unique and molec-
ular view of the interaction of lipids with mem-
brane proteins. Due to its abundance in mam-
malian membranes, cholesterol has been investi-
gated in great depth (Grouleff et al. 2015) par-
ticularly for GPCRs (Sengupta and Chattopad-
hyay 2015), but as parameters for other lipids
become available we can expect analysis of other

important lipids and the interactions of more
complex membrane systems (Goose and Sansom
2013) including negatively charged ones (Kalli
et al. 2013). There is increasing evidence that
the energetics of protein-lipid interactions can
directly impact the functional properties of the
protein (Mondal et al. 2014a, b). Simulations can
also provide atomic level information on systems
where it would be at best, very challenging if not
impossible, to obtain information experimentally.
For example, the response of the voltage sensor of
potassium channels to a transmembrane voltage
can be studied with MD simulations (Jensen et al.
2012) providing unique insight into these func-
tionally important features at an atomistic level
of detail.
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MD simulations also allow one to explore
the possibility of allosteric and cryptic binding
pockets (Frembgen-Kesner and Elcock 2006).
The latter are not exposed to bulk solvent all
of the time and so may be hidden in certain
crystallographic structures. MD allows these sites
to manifest themselves (Lukman et al. 2014) and
so permit docking and similar protocols to be
followed in the usual manner. Simulations are
also essential for understanding the mechanisms
of allosteric modulation. This aspect of GPCRs
has been investigated in terms of searching for
“hidden” allosteric sites, which may be potential
binding pockets (Miao et al. 2014; Ivetac and
McCammon 2010). In ion channels, the effect of
anesthetic on members of the cys-loop receptor
has been postulated to be an allosteric effect, act-
ing at the transmembrane region of the receptor
(Murail et al. 2012; Murail et al. 2011 and Salari
et al. 2014).

At a more fundamental level, there are ques-
tions of trying to understand the dynamics of
protein targets as fully as possible (Micheletti
2013) with a view to comparing not just the
structural similarity but also the dynamic simi-
larity (Münz et al. 2010, 2012). The power of
MD simulations to improve our understanding
of function has meant growing interest in its
potential in drug discovery (Durrant and McCam-
mon 2011). It can be used in conjunction with
many other tools including virtual screening to
improve the prospects of finding a new compound
(Nichols et al. 2011). The use of MD trajectories
to generate an ensemble of possible receptor
conformations is best highlighted by the so-called
“relaxed complex scheme” (Amaro et al. 2008;
Lin et al. 2002), where there has been some
success in for soluble targets like HIV integrase
(Schames et al. 2004) and the tumor suppressor,
p53 (Wassman et al. 2013). The increasing via-
bility of MD simulations with an ever-growing
appreciation of the role of protein flexibility and
solvent has meant that simulations are starting to
attract the attention of the industrial community
(Moroni et al. 2015).

12.2.2 The Role of Water Molecules
in Receptor-Ligand Binding

Only high-resolution crystal structures will give
any reliable indication as to the presence of
waters molecules, yet it is known that water-
mediated interactions between ligands and
protein targets are extremely common (Lu et al.
2007). As it has been shown that the displacement
of ordered water molecules can directly affect a
ligand’s binding affinity (Clarke et al. 2001; Lam
et al. 1994), this has been the focus of many
drug design strategies with the aim of designing
compounds that can displace these waters (Lam
et al. 1994; Chen et al. 1998; Wissner et al. 2000).

As one often does not have the presence of
water molecules in key positions confirmed by
experiment, the first task is the prediction of these
sites. In recent years, many methods have been
developed to tackle this problem and in general
the results are good. Knowledge of the presence
of water in binding sites can be useful in its own
right and indeed several reports over the years
have demonstrated how this is useful for mem-
brane proteins including ligand-gated receptors
(Sahai and Biggin 2011; Vijayan et al. 2010; Yu
et al. 2014) and GPCRs (Mason et al. 2012).

The issue then is to compute whether it is
likely that the water will be displaceable and
indeed whether that displacement will give a
favourable contribution to the overall free en-
ergy of binding. This latter aspect has proven
surprisingly difficult to achieve reliable results
for, though there have been some reported suc-
cess mainly for soluble proteins (Mondal et al.
2014a, b; Pearlstein et al. 2013). The prediction
of water molecule networks and their perturba-
tion has also been examined in terms of the
relationship to kinetics (and residence time –
see Sect. 11.3.3 for a series of adenosine A2A
receptor antagonists (Bortolato et al. 2013).

Running MD or Monte Carlo (MC) simu-
lations and observing the peaks in water den-
sity (Henchman and McCammon 2002; Alvarez-
Garcia and Barril 2014) can provide the location

http://dx.doi.org/10.1007/978-3-319-35072-1_11
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of water binding sites. However, these can be
time-consuming to run, especially with buried
cavities due to the long time it takes for water
to permeate within the protein. Grand Canonical
Monte Carlo methods can significantly reduce the
length of the simulation, though even that can be
quite demanding on resource. Thus, there have
been several attempts to develop fast methods.
JAWS for example is a grid-based MC method
that estimates the free energy of displacing a wa-
ter molecule into bulk (Michel and Essex 2010;
Michel et al. 2009). An integral theory approach
(3D-RISM) has also reported success in predict-
ing solvation structure within ligand-binding sites
(Imai et al. 2009) and protein cavities (Imai et al.
2007). Short molecular simulations can be used
as the data for inhomogeneous fluid solvation the-
ory (IFST), as reported by Lazaridis (1998a, b).
This method has the distinct advantage that the
free energy can be broken down into enthalpic
and entropic components (Li and Lazaridis 2003,
2005a, b). IFST also forms the framework for
WaterMap and has been used in number of cases
(Abel et al. 2008; Robinson et al. 2010; Young
et al. 2006) including glutamate receptors (Fry-
denvang et al. 2010), the ompC channel (Tran
et al. 2013) and GPCRs (Higgs et al. 2010;
Newman et al. 2012)

An even faster method, that exploits the dock-
ing program AutoDock Vina (Trott and Olson
2010) was found to reproduce water positions
to a high degree of accuracy and could also
predict whether a water molecule was displaced
or conserved to an accuracy of 75 % (Ross et al.
2012). Figure 12.7 shows an example prediction
for AMPA bound to ligand-binding domain of
the GluA2 ionotropic glutamate receptor. This
compromise between speed and accuracy may be
desirable at the high-throughput stage of virtual
screening.

12.3 Challenges for the Future

Experience has shown that the deepest insight can
only be achieved when there is good interdisci-
plinary collaboration between experimental and
theoretical groups. Challenges that will require

Fig. 12.7 An example of water position prediction from
the WaterDock program performed on the ligand-binding
domain of the GluA2 ionotropic glutamate receptor in
complex with AMPA (shown in liquorice sticks). Red
spheres: water molecules observed in at least two crystal
structures. Yellow spheres: predicated water sites. Wa-
terDock is able to predict all of the crystallographically
observed water molecules (Figure taken from Ross et al.
(2012))

this approach include understanding the confor-
mational changes that are ligand dependent in
GPCRs and how those are conveyed to the in-
tracellular signalling cascades (see Bermudez and
Wolber 2015 for a recent review). Properties such
as accurate prediction of affinity, kinetics, the
ever-increasing size and amount of data and the
integration of structure into higher-order models
are also areas of increasing interest. In this final
section, we outline some of these challenges.

12.3.1 Deeper Understanding
of Receptor-Ligand
Interactions

As we have discussed, structural information of
the target plays a central role in the rationaliza-
tion, efficiency and cost-effectiveness of the drug
design process. However, even with the crystal
structure in hand, the simple molecule mechanics
based approaches to rationalising affinity can-
not always explain the full complexity of the
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chemical interactions between ligand and target.
Quantum mechanics (QM) can provide the most
complete description of the interactions including
otherwise neglected components such as charge
fluctuations and dynamic polarization that can
make significant contributions to affinity. How-
ever, traditional QM methods are simply not fea-
sible for large biological systems because of their
huge computational cost. In recent years though,
new QM based methods, such as the fragment
molecular orbital (FMO) method developed by
Fedorov and Kitaura offers a way forward (Fe-
dorov and Kitaura 2007). The FMO method gives
considerable computational speed up over other
traditional QM methods and can be applied to
membrane proteins and their ligand-complexes.
Furthermore, the FMO method has the potential
to contribute to the refinement process in terms of
X-ray crystallographic data with drug complexes.
This better understanding of the enthalpic con-
tributions can help chemists in an intuitive way.
However, the omission of entropic effects must be
kept in mind and the prediction of the overall free
energy of binding, �G, is still a major challenge
as we discuss in the next section.

12.3.2 Affinity and Efficacy

Although docking programs generally do a rea-
sonable job of pose-prediction, the correct pre-
diction of binding affinity or even predicting the
order of binding for a series of compounds, is
much more error prone. The development of a
generic scoring function that can successfully
rank ligands across diverse targets is unlikely to
be forthcoming in the near future and indeed it
has been mathematically proven that specialized
functions will always out-perform any generic
scoring function (Ross et al. 2013). At the molec-
ular level, a drug must associate with the receptor
in order to cause a response, and the strength
of such association is described by its affinity.
The availability of structural data was thought
to directly provide the information needed to
interpret ligand-protein interactions and estimate
the affinity of small molecules for any binding
pocket (Beddell et al. 1976; Cohen 1977). It was
soon realised however that while structural data

is necessary, it is not sufficient on its own to
describe drug-receptor association as it is in fact
a complex process, with significant entropic and
solvent effects in most instances that can hardly
be explained by structure observation alone (Mar-
shall 2012; Mobley and Dill 2009; Gilson and
Zhou 2007). For these reasons, despite decades
of efforts in computational studies on the effects
of ligand binding to a receptor, the ability to
predict affinity is still challenging. Nonetheless,
in the last decade there have been continuous
improvements in theory and computation that are
improving binding affinity prediction methodolo-
gies (Chodera et al. 2011; Chipot 2014).

Currently, the most rigorous statistical
mechanics approaches to estimate affinities
rely upon Molecular Dynamics or Monte Carlo
simulations for the sampling of the receptor,
ligand and solvent conformations and their
associated energies (Chipot 2014; Michel et al.
2010; Gohlke and Klebe 2002). The so called
“alchemical” methods are based on a non-
physical thermodynamic cycle, where binding
free energy is computed as the sum of multiple
steps during which the ligand is removed from
the solution and inserted into the binding pocket.
Steered or pulling methods follow instead a
physical pathway, by applying a force that pulls
the ligand away from the protein and calculating
the work involved in this process (Chipot 2014).
The advantage over scoring functions or implicit
solvent approaches is that the full flexibility of
protein and ligand is taken into account, as well
as the discrete nature of the solvent.

While the prediction of absolute binding
affinities still faces many challenges, the
estimation of relative binding free energies, i.e.
the difference in binding affinities between two
ligands, appears to be more mature and ready to
be applied to a wide range of biological targets
(Shirts et al. 2007; Mobley and Klimovich 2012).
Recent studies have shown how the prediction of
relative affinities can guide medicinal chemistry
efforts in lead optimisation (Jorgensen 2009).
For instance, the Jorgensen lab has combined
computational and medicinal chemistry in the
development of potent HIV reverse transcriptase
inhibitors (Bollini et al. 2011; Jorgensen
et al. 2011). In one study, Bollini et al. used
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relative affinity calculations to identify the most
promising modifications for an initial 5 �M
affinity, which was later turned into a sub-
nanomolar ligand. The authors demonstrated how
the use of computational methods was pivotal
for the identification of optimal substitution
patters (Bollini et al. 2011). Similarly, Jorgensen
et al. reported the evolution of three low affinity
hits into potent inhibitor (<10 nM) of both the
wild type and Y181C variant of HIV-1 reverse
transcriptase. The use of free energy calculations
allowed the identification of these potent and
dual-target inhibitors while synthesizing only
about 30 compounds (Jorgensen et al. 2011).

Wang et al. (2015) reported instead a large
retrospective study with over 200 ligands and
10 protein targets, and using an improved
force field. The authors showed how the
predictions correlated extremely well (weighted
average R-value of 0.75) and were mostly
within 1.0 kcal/mol of the experimental values.
Additionally, it was shown how the use of the
calculations on two prospective studies involving
IRAK4 and TYK2 allowed deprioritizing a
large number of compounds and enriching the
synthesis of tight-binding ligands.

Predicting absolute free energies prospec-
tively, on the other hand, is still a challenge as
shown by the latest SAMPL exercise, where
participants were asked to predict affinities of
HIV integrase inhibitors in the catalytic core
domain (Mobley 2014). Whilst in relative affinity
calculations sampling issues might have minor
effects (Mobley and Klimovich 2012), these
are more likely to have large repercussions
when calculating absolute binding free energies.
Mobley et al. (2007a) showed how under-
sampling even a valine side-chain reorientation
upon binding can lead to an error of several
kcal/mol in the binding affinity prediction.
For these reasons, prospective applications
of absolute binding free energy are still rare
and most efforts have focused on retrospective
validation of the methodology. One of the most
studied macromolecular systems has been the
binding pocket of engineered T4 lysozymes.
The binding of small fragments to such system
has been calculated by Mobley et al. and Boyce
et al., achieving root mean square errors just

below 2 kcal/mol (Boyce et al. 2009; Mobley
et al. 2007b). Another popular test system has
been the FK506-binding protein (FKBP12). For
this system the binding of drug-like molecules
was tested computationally and RMS errors were
still around 2 kcal/mol (Wang et al. 2006; Fujitani
et al. 2005). More recently, Aldeghi et al. (2016)
also achieved good success with absolute free
energy calculations performed on a diverse set of
drugs against a bromodomain. The RMS errors
reported were of the order of 1 kca/mol.

While such level of accuracy would in fact
be useful in a drug design context when screen-
ing compound libraries (Mobley and Klimovich
2012; Shirts et al. 2010), the performance of
the approach still needs to be validated against
more complex targets and small molecules. In
fact, application to more complex proteins such
as ion channels and GPCR where conformational
changes play an important role in the function of
the receptor (Jensen et al. 2012; Dror et al. 2015;
Burg et al. 2015) amplify the challenges that
need to be overcome in order to obtain reliable
predictions. Similarly to the sampling issue of
a side-chain rotation, slow degrees of freedoms
like conformational changes upon binding cause
significant sampling issues for the timescales
currently accessible computationally.

Lin et al. (Lin and Roux 2013; Lin et al. 2013)
have however, provided an elegant study that took
a large conformational change into account when
calculating binding affinity by dividing the cal-
culation in two steps, showing how such calcula-
tions are still feasible given sufficient knowledge
of the system at hand. Investigating the molecular
reasons of Gleevec selectivity, the free energy
change from DFG-in to –out conformations of
Abl and c-Src kinases was first calculated, fol-
lowed by the affinity calculation of Gleevec for
both DFG-out conformations. The selectivity of
Gleevec for Abl over c-Src was found to be a
combination of conformational selection, due to
the larger work needed to move the loop in c-Src,
and differences in binding affinities to the DFG-
out conformation (Lin and Roux 2013; Lin et al.
2013).

Considering the challenges that binding affin-
ity predictions face, it is clear that predicting
efficacy will be even more challenging at least in
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terms of separating the effects out from affinity.
Additionally, efficacy is likely not to depend
only on the thermodynamic quantity of affinity,
but also the kinetics of the binding event, with
residence times in the binding site playing a role
in the biological response of the receptor to the
bound drug. Experimentally, dissecting these var-
ious contributions out is also extremely difficult.
However, for some ligand-gated ion channels
such as the glycine receptor (Yu et al. 2014; Lape
et al. 2008), where single channel behavior can
be observed, there is the genuine prospect that
progress can be made in this area, although there
is no doubt that it will be extremely challenging.

Overall, predicting absolute ligand binding
affinities is still a challenge for most systems and
in particular large, complex membrane proteins.
However, it is possible to foresee a point in the
near future where binding affinity predictions
will be routine and part of the valuable set of
computational tools available to accelerate drug
discovery. On the other hand, while prediction of
efficacy is the natural next step, it will need a
deeper mechanistic understanding of membrane
protein systems before a solid foundation for such
calculations can be laid.

12.3.3 Kinetics and Its Relationship
to Structure

In recent years there has been growing interest
in trying to relate structure to kinetics (Swinney
2009). The kinetics of drug-binding (Keserü and
Swinney 2015) are increasingly being recognized
as being important for the clinical effectiveness
of drugs (Cusack et al. 2015). Indeed it has
been shown experimentally that there is a positive
correlation between functional efficacy and its so-
called “residence time” at the receptor (Guo et al.
2012, 2014). A long residence time is thought
to be important in many cases as it can extend
the duration of pharmacodynamic activity during
the body. It can thus not only increase the in-vivo
efficacy but also reduce the potential of off-target
effects (Cusack et al. 2015). For a recent review
of how residence time has been considered in the
development of some compounds the reader is
referred to (Hoffmann et al. 2015).

Can we extract relationships between struc-
tures (of ligands and/or proteins) and their ki-
netics (so called Structure-kinetics-relationships,
SKRs)? This area of research is still young, but
there is tremendous interest in it, because the
human body is anything but in equilibrium, and
thus kinetics is presumably very important.

As with initial use of affinity, there was some
naivety concerning assumptions (for example,
that similar ligands would have similar k on rates,
etc). The situation has been shown, at least for
soluble proteins (like kinases), to be more com-
plex (Schneider et al. 2013) than first hoped. It is
also hindered by the fact that there is not only a
multitude of ways of performing the experiments
but also the manner in which they are reported
(Klebe 2015). Nevertheless, efforts have been
made to systematically bring together observa-
tions across discrete families (Miller et al. 2012)
and to analyse properties most likely to influence
dissociation rates, with molecular weight appar-
ently contributing the most (Miller et al. 2012).
There have also been studies that have success-
fully developed new compounds against Kv 11.1
potassium channel targets with different off-rates
(Yu et al. 2015). Such a consideration may be
critical in the consideration of cardiotoxicity.

How do structural features of proteins dic-
tate kinetics? To address that is going to be
extremely challenging indeed and certainly much
more difficult than the relationship to affinity.
Nevertheless, some early attempts to examine
this have been impressive in their ambition and
the potential insight they can reveal; see (Cavalli
et al. 2015). One of the biggest hurdles is simply
ensuring that there are enough observations of
both “on” and “off” rates and this ultimately
comes down to a sampling problem. Various
lines of approach have been devised ranging from
brute force (i.e. simulate for a very long time
using specialized hardware and simply count the
on/off rates and residence times) as for example
reported for ligand-GPCR binding.

A study of benzamine-trypsin (Buch et al.
2011) showed that 495 � 100 ns simulations
could produce 187 binding events. By recon-
structing the binding pathway, they were able to
show that two intermediate binding states could
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be found between the solvent and the final bound
state. Another study examined the binding of
ligands to GPCRs and highlighted the specific
role that dehydration can play in the ligand-
binding process (Dror et al. 2011). The use of a
large number of simulations for example via “the
cloud” (Harvey and De Fabritiis 2015), together
with Markov Modelling (Pande et al. 2010) and
sophisticated sampling techniques (Doerr and De
Fabritiis 2014) is a maturing field that is starting
to show exciting results for ligand-binding events
and indeed how they can be applied in terms of
protein modulation (Shukla et al. 2015).

In addition to the approaches highlighted
above, the use of metadynamics has also proven
useful in the analysis of ligand-binding events
both in term of binding (Limongelli et al. 2013)
and unbinding (Tiwary et al. 2015). Metady-
namics employs a sampling (in a non-systematic
way) along a set of collective variables. A bias
is added in a history-dependent fashion that adds
Gaussian contributions to the potential energy
surface to prevent the system visiting regions
of the conformational space that have already
been visited. The free energy surface can then be
reconstructed as a function of the collective vari-
ables. The technique has the advantage that it can
provide these insights on fewer computational

resources than the Markovian reconstruction
approach outlined above. However, the results
tend to be sensitive to the choice of collective
variables (Barducci et al. 2011).

12.3.4 Data, Pipelining and Unified
Models

The previous section alluded to the fact that kinet-
ics can be assessed via the use of a large number
of trajectories. In fact this poses part of a more
generic problem – the sheer volume of data and
how to deal it. This is not a problem specific to
simulation or computational methods per se, but
is particularly acute for this field. Furthermore,
the problem is more than just a data storage issue,
managing data across several different compute
systems, and in the cloud, requires some consid-
erable strategic thought (Pronk et al. 2011).

However, once a strategy has been devised
for simulation and data management more ad-
vanced protocols can be developed that can bring
added-value to existing data. One such example
is MemProtMD (Stansfeld et al. 2015), which
is a simulation pipeline for predicting the loca-
tion of membrane proteins within a lipid bilayer
(Fig. 12.8). It will be interesting in the future to

Fig. 12.8 The MemProtMD pipeline for inserting mem-
brane proteins into bilayers. The first step is to detect
the protein structures from the PDB, here shown for the
GluA2 ionotropic glutamate receptor (PDB: 3KG2). The
second is to set up a lipid, water, and protein simulation
system. Coarse-grained (CG) simulations are then run

(1 �s duration) to assemble and equilibrate a bilayer
around each membrane protein structure. The CG simula-
tion system is then converted to atomic resolution, allow-
ing detailed analysis of lipid bilayer/protein interactions
(Figure courtesy of Dr Phillip Stansfeld)
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see how well computational pipelines can be in-
tegrated with high-throughput structural biology
pipelines. Another challenge for the future will
be how to stitch together the different levels of
treatment both in terms of physical models (e.g.
coarse-graining (Ayton et al. 2010)) and higher
level models that are often called systems biology
(Pei et al. 2014).

There are many complex challenges to be
solved and even small steps of progress can give
important insight for drug design. The chang-
ing landscape of the pharmaceutical sector also
means that collaborations between academia and
industry are likely to play central roles in moving
the field forward in the coming decades (Heifetz
et al. 2015).
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