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Abstract

The production of recombinant integral membrane proteins for structural
and functional studies remains technically challenging due to their
relatively low levels of expression. To address this problem, screening
strategies have been developed to identify the optimal membrane sequence
and expression host for protein production. A common approach is to
genetically fuse the membrane protein to a fluorescent reporter, typically
Green Fluorescent Protein (GFP) enabling expression levels, localization
and detergent solubilisation to be assessed. Initially developed for
screening the heterologous expression of bacterial membrane proteins
in Escherichia coli, the method has been extended to eukaryotic hosts,
including insect and mammalian cells. Overall, GFP-based expression
screening has made a major impact on the number of membrane protein
structures that have been determined in the last few years.
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1.1 Introduction

The production of recombinant integral mem-
brane proteins (IMPs) for structural and func-
tional studies is technical challenging due to low
levels of expression often limited by toxicity
to the expression host cells. To overcome these
limitations screening of sequence variants either
engineered or exploiting the natural sequence
diversity of orthologues, has been successfully
used to improve the production of many mem-
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Fig. 1.1 Schematic diagram of workflow for screening for expression of integral membrane proteins

brane proteins. This approach has been greatly
facilitated by genetic fusion to a fluorescent re-
porter protein, typically Green fluorescent protein
(GFP). This enables rapid expression screening
and hence identification of proteins that are stably
inserted into the membrane without the need to
purify the membrane protein (Drew et al. 2005).
Once a well expressed stable protein is identified
the GFP moiety can also be used to monitor
purification and for pre-crystallization screening
(Drew et al. 2006; Kawate and Gouaux 2006).
A generic workflow for this method is shown
in Fig. 1.1. In this chapter the use of GFP as a
reporter for the expression of membrane proteins
in different heterologous hosts will be reviewed.

1.2 Bacteria

Escherichia coli is the most commonly used
prokaryotic host for overexpression of IMPs, fol-
lowed by the Gram positive bacterium, Lactococ-

cus lactis (Kunji et al. 2003; Drew et al. 2006;
Gordon et al. 2008; Frelet-Barrand et al. 2010;
Chen 2012; King et al. 2015). Bacterial hosts
have obvious advantages for the over-expression
of recombinant proteins with rapid growth rates,
inexpensive growth media and the ease of genetic
manipulation. Moreover, the biology of transcrip-
tion, translation and insertion into membranes are
also well characterised, allowing manipulation of
the host cell to facilitate heterologous expression
of proteins. Nevertheless, the expression of mem-
brane proteins in bacteria can be problematical
for a number of reasons. The expressed protein
may prove to be toxic to the host cell (Kunji
et al. 2003) or saturate the membrane insertion
machinery (Loll 2003; Wagner et al. 2006). Rare
codons in the protein or insufficient amino acid
availability (Angov et al. 2008; Marreddy et al.
2010; Bill et al. 2011) or insufficient membrane
capacity (Arechaga et al. 2000) may all limit
the expression of membrane proteins in bacteria.
Therefore, screening for correctly folded protein
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is critical, with fusion to GFP at either the N or
C-terminus now being widely used as a reporter
of insertion into the bacterial membrane (Drew
et al. 2001; Sonoda et al. 2011; Lee et al. 2014a,
b, c). The combination of (1) high-throughput
cloning strategies to construct fusion GFP fusion
vectors with (2) screening in E. coli using in gel-
fluorescence of detergent lysates of whole cells,
enables the expression of large numbers of IMPs
to be evaluated at small scale (Sonoda et al.
2011; Schlegel et al. 2012; Lee et al. 2014a; Bird
et al. 2015). For example, in one study, 47 ortho-
logues of bacterial SEDS (shape, elongation, di-
vision, and sporulation) proteins were cloned and
candidate proteins rapidly identified for further
analysis (Bird et al. 2015). Typically an affinity
purification tag, for example octa-histidine, is in-
cluded with the GFP reporter so that fluorescence
can be used to monitor the mono-dispersity and
integrity of the membrane proteins during purifi-
cation by size exclusion chromatography (Fluo-

rescence detected Size Exclusion Chromatogra-
phy, FSEC) (Drew et al. 2006; Bird et al. 2015).
Thus, fusion to GFP has facilitated purification
to homogeneity and subsequent crystallization of
many IMPs expressed in E. coli, for example,
Pseudomonas aeruginosa lysP, E. coli sodium-
proton NhaA and the Streptococcus thermophilus
peptide transporter PepTSt (Lee et al. 2014b; Nji
et al. 2014).

Fusion of IMPs to GFP is useful for com-
paring expression in different strains of bacte-
ria (see Fig. 1.2 for an example). The E. coli
strain BL21(DE3) and related strains are most
commonly used for heterologous protein produc-
tion. In these strains, the bacteriophage T7 RNA
polymerase is expressed from the mutant lacUV5
promoter resulting in high-level expression of
a polymerase that is more processive than the
native E. coli RNA polymerase (Iost et al. 1992).
Driving transcription generally leads to higher
levels of heterologous protein production. How-

Fig. 1.2 Screening expression in E.coli of 47 SED
(Sporulation Elongation Division) proteins from a wide
range of bacteria, by in-gel fluorescence. Strains were
grown in Powerbroth (Molecular Dimensions) and expres-
sion induced at 20 ıC overnight. (a) C41(DE3) plysS,
induced with 1 mM IPTG. (b) Lemo21 (DE3), grown in
the presence of 0.625 mM rhamnose and induced with

1 mM IPTG. (c) KRX, induced with 2.5 mM rhamnose
and 1 mM IPTG. Detergent lysates of E. coli cells were
analysed by SDS-PAGE and gels imaged using Blue Epi
illumination and a 530/28 filter. A GFP control is shown
in lane F3 and the numbers to the left refer to the sizes in
kDa of molecular weight markers run in parallel
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ever, for membrane proteins this can result in
saturation of the Sec translocon and subsequent
misfolding of much of the expressed membrane
protein (Wagner et al. 2006, 2007; Klepsch et al.
2011). To avoid this problem, Miroux and Walker
isolated strains of BL21(DE3) that survived the
over-expression of membrane proteins by an un-
known mechanism (Miroux and Walker 1996).
These strains, C41(DE3) and C43(DE3), known
as the Walker strains, are used pragmatically to
express a membrane proteins, though high levels
of expression are not seen for all membrane
proteins (Miroux and Walker 1996; Wagner et al.
2008). Analyses of the Walker strains, using the
bacterial membrane protein YidC fused to GFP
(Wagner et al. 2007), showed that mutations in
the lacUV5 promoter are responsible for the often
improved membrane protein expression (Drews
et al. 1973; Wagner et al. 2008). The muta-
tions that were found, result in lower levels of
mRNA production and hence a slower rate of
protein synthesis. This presumably ensures that
membrane protein translocation machinery is not
saturated.

These data suggested that to optimize ex-
pression levels of folded and functional inserted
IMPs, it is important to match the rate of tran-
scription /translation with the capacity of the Sec
translocon. The Lemo21(DE3) strain has been
specifically engineered according to this principal
and incorporates the gene for T7 lysozyme on a
plasmid under the control of the highly titratable
rhamnose promoter (Giacalone et al. 2006; Wag-
ner et al. 2008). T7 lysozyme is an inhibitor of
T7RNA polymerase, and Schlegel et al. showed
that the expression level of a number of mem-
brane proteins could be optimised by varying the
level of rhamnose in the cell media (Schlegel
et al. 2012). However, not all IMPs express well
in Lemo21(DE3) and screening E. coli strains
with different expression kinetics is important for
achieving expression (Schlegel et al. 2012; Bird
et al. 2015).

Fusion of IMPs with GFP at the C-terminus
of the protein in tandem with the erythromycin
resistance protein (23S ribosomal RNA adenine
N-6 methyl transferase, ErmC) has been used
to evolve both E coli and L. lactis strains for

improved production of membrane proteins
(Linares et al. 2010; Gul et al. 2014). In both
cases the protein is under the regulation of
a titratable promoter, the arabinose inducible
pBAD promoter in E. coli and the NICE (nisin-
inducible controlled gene expression) promoter
in L. lactis. In this approach, the optimum inducer
concentration, induction time and temperature of
induction are established using readout from
the GFP reporter. The cells are then exposed,
under these conditions, to increasing levels of
erythromycin, since the GFP and ErmC are
at the C-terminus, cells that have evolved to
express higher levels of the functional protein
will be resistant to a higher concentration of
erythromycin. The strains are then plated on
erythromycin at the highest concentration used
and the most fluorescent colonies are analysed.
The strains can be cured of the selection plasmid
and it was shown that expression is increased
for proteins other than the test plasmid (Linares
et al. 2010; Gul et al. 2014). The evolved E. coli
when compared with the parental strain showed
up to a tenfold increase in fluorescence levels
and when compared to the Walker strains had
increased levels of expression per unit of biomass
(Gul et al. 2014). Interestingly, deep sequencing
of four evolved E. coli strains revealed that all
had mutations were in the gene encoding DNA-
binding protein, H-NS, which is involved in
chromosome organization and transcriptional
silencing, although the exact mechanism causing
the elevated expression is unclear (Gul et al.
2014). In L. lactis the strain selection led to a two
to eightfold increases in the expression levels of
a variety of proteins. In contrast to E. coli, deep
sequencing of the genome of the evolved strains
identified point mutations in a single gene, nisK,
which is the histidine kinase sensor protein of
the two component regulatory system that directs
nisin-A mediated expression. It seems likely that
the mutations enhance phosphoryl transfer to
NisR and increase transcription from the nisin-A
promoter (Linares et al. 2010).

Most IMPs have been produced in E. coli,
which reflects its popularity as a host for heterol-
ogous expression of soluble proteins. However
other bacterial species may be more suitable
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for IMP production. For example, Gram positive
bacteria, such as L. lactis, express two copies
of the IMP chaperone YiDC and thus may be
better than E. coli at translocating heterologous
proteins and hence may be less susceptible to
saturation of the integration machinery (Zweers
et al. 2008; Funes et al. 2009; Funes et al. 2011;
Schlegel et al. 2014) A number of other features
of L. lactis, like the slower growth rate and
reduced proteolytic activity when compared to E.
coli, may also facilitate IMP production in this
bacterium (Schlegel et al. 2014).

1.3 Yeast

Like E. coli, yeast require relatively low cost
of media, have fast growth rates and can
be easily genetically modified, making them
attractive expression host for IMP production.
Moreover, the post translational modifications
and lipid environment of yeast cells may
be more appropriate for the expression of
eukaryotic IMPs. The two yeast strains that
have been widely used for IMP production are
Saccharomyces cerevisiae and Pichia pastoris
and less commonly, Schizosaccharomyces pombe
(Yang and Murphy 2009; Yang et al. 2009; He
et al. 2014). It is important to note that protein

glycosylation in yeast is not typical of higher
eukaryotic cells with N-linked glycosylation sites
in S. cerevisiae hyper-glycosylated with high
mannose glycoforms. In P. pastoris, the N-linked
glycans are shorter than in S. cerevisiae and
strains have been engineered that add glycoforms
more typical of human glycoproteins (Hamilton
et al. 2006; Darby et al. 2012).

The GFP screening pipeline used with E. coli
has been adapted to both S. cerevisiae and P.
pastoris (Drew et al. 2008; Drew and Kim 2012b;
Brooks et al. 2013; Scharff-Poulsen and Peder-
sen 2013). There are, however, some differences,
for example, as part of the screening process it
can be useful to include a confocal microscope
image to confirm the localization of the IMP-
GFP fusion protein (Newstead et al. 2007; Drew
et al. 2008) (Fig. 1.3). Additionally, S. cerevisiae
cloning can be carried out by in vivo homologous
recombination of PCR products into 2 � based
episomal vectors (Drew and Kim 2012a; Scharff-
Poulsen and Pedersen 2013). The inducible GAL1
promoter is often used to drive expression as the
yields are generally higher compared to consti-
tutive promoters (Newstead et al. 2007). The in-
duction of the IMP-GFP fusion can be optimized
by varying parameters, such as, the timing of
induction, using non-selective media, the addition
of chemical chaperones such as DMSO, glycerol

Fig. 1.3 S. cerevisiae expressing a recombinant Candida albicans TOK1 GFP fusion protein observed under (a) white
light (b) fluorescence optics (Image courtesy of Prof. Per Pedersen, University of Copenhagen)
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and histidine and also by lowering the temper-
ature (Drew and Kim 2012c). Furthermore, the
levels of expression of IMP-GFP fusions can be
improved by the choice of strain and by plasmid
engineering (Pedersen et al. 1996; Drew and
Kim 2012a; Scharff-Poulsen and Pedersen 2013;
Molbaek et al. 2015). For example, Molbaek et
al. produced functional full-length human ERG
KC-GFP fusions by utilizing the strain PAP1500,
which overexpresses the GAL4 transcriptional
activator. This was combined with a vector that
has a strong hybrid CYC-GAL promoter and the
compromised leu2-d gene, which elevates the
episomal copy number to between 200 and 400
plasmids per cell in response to leucine starvation
(Romanos et al. 1992; Molbaek et al. 2015).

For P. pastoris, strain development is more
complicated. Since genes to be expressed have to
be integrated into the yeast genome using a resis-
tance marker such as zeocin and typically use the
methanol inducible AOX1 promoter (Logez et al.
2012). This means that a shuttle vector has to
be constructed and different P. pastoris transfor-
mants have to be characterised to identify the best
recombinant strain for IMP expression. Again,
fusion to GFP enables the expression screening
of integrated clones using a plate based assay. For
example, using this methodology Brooks et al.
isolated a clone of mouse PEMT (ER associated
phosphatidyl ethanolamine N-methyl transferase)
that gave a final yield of 5 mg/L of purified
protein (Brooks et al. 2013). In an interesting
development, Parcej et al. reported the use of
fusions to different fluorophores to monitor the
expression of the human heterodimeric ATP bind-
ing cassette (ABC) transporter associated with
antigen processing (TAP) in P. pastoris. The sub-
units were tagged with either monomeric venus
and a HIS10 tag or monomeric cerulean with a
strepII tag, dual wavelength monitoring was then
used to monitor expression of individual subunits
and purification of the complex (Parcej et al.
2013). This approach could clearly be applied to
the expression of multi-subunit IMPs in other cell
hosts.

Yeast is clearly a very useful host for ex-
pression of IMPs, however in a study of 43
eukaryotic membrane proteins Newstead et al.

showed that while 25 out of 29 yeast membrane
proteins were produced to greater than 1 mg/L in
S. cerevisiae, only 4 of the 14 membrane proteins
from higher eukaryotic organisms were produced
at this level, suggesting that a higher eukaryotic
heterologous expression systems is often neces-
sary for higher eukaryotic proteins (Newstead
et al. 2007).

1.4 Insect and Mammalian Cells

Insect cells are widely used for the production
of eukaryotic recombinant proteins, including
IMPs. The cells are easy to handle and in general
give higher yields of recombinant proteins than
transfected mammalian cells. The main cell lines
in use are from Spodoptera frugiperda (Sf9 and
Sf21) and Trichoplusia ni (High Five) with the
gene of interest typically introduced using the
baculovirus expression vector system (BEVS)
(Zhang et al. 2008; Mus-Veteau 2010; Milic
and Veprintsev 2015). Transient transfection
with plasmid vectors has also been reported
for rapid screening of IMP expression using
GFP fusion proteins (Chen et al. 2013). In
addition, Drosophilia melanogaster S2 cells in
combination with inducible plasmid vectors have
been used for the expression of recombinant
IMPs (Brillet et al. 2010). However, it is
important to note that the lipid composition
of insect cell membranes differs from those of
mammalian and bacterial cells. For example, the
main sterol in mammalian cells is cholesterol,
whereas it is ergosterol in insect cells (and yeast):
there are no sterols in bacterial cell membranes
(Lagane et al. 2000; Eifler et al. 2007). In
addition, N-glycosylation in insect cells consists
of short so-called pauci-mannose glycoforms,
which are not found on mammalian IMPs.

GFP-tagging can be used for expression
screening in insect cells in the same way as for
E. coli and yeast. However in contrast to E. coli
cells, there is evidence of GFP-tagged proteins
produced in insect cells that are misfolded but
still show GFP fluorescence (Thomas and Tate
2014). Fusion to GFP remains a convenient
way for screening many constructs in parallel at
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Fig. 1.4 Fluorescence detected size exclusion profiles
(FSEC) and in-gel fluorescence (inset) of detergent ex-
tracts of the total membrane fraction from SF9 insect
cells expressing Caenorhabditis elegans GTG1 fused to
GFP. Membranes were extracted in the following deter-
gents (1 % final concentration plus 0.2 % cholesterol): n-

Decyl-“-D-Maltoside (DM: lane 1, dark blue trace); n-
Dodecyl-“-D-Maltoside (DDM: lane 2, dark green trace);
Lauryldimethylamine-N-Oxide (LDAO: lane 3, yellow
trace); 6-Cyclohexyl-1-Hexyl-“-D-Maltoside (cymal-6:
lane 4, blue trace); n-Dodecylphosphocholine (FC12; lane
5, green trace)

small scale, particularly different orthologues, in
order to identify the best expressed candidate for
purification and crystallization (Lee and Stroud
2010; He et al. 2014; Hu et al. 2015). Analysis
of the subsequent products by FSEC (see Fig. 1.4
for an example) enables the optimal detergent for
solubilisation to be identified and any misfolded
fusion proteins to be detected.

Transient expression in Human Embryonic
Kidney cells (HEK293) provides a rapid way
of screening protein expression, including IMPs
and has become the system of choice for the
production of secreted/cell surface glycoproteins
for structural biology (Aricescu and Owens
2013). In particular HEK-293 cells deficient in
N-acetylglucosamine tranferase I (HEK Gnt1
�/�) are used to produce proteins containing
only a high mannose glycoform, which can be
removed by endoglycosidase treatment following
purification. Simplifying the N-glycosylation of
proteins appears to favour crystallization since
sample heterogeneity is reduced (Chang et al.
2007). This approach is equally relevant for

modifying the N-glycans of IMPs which may
in turn aid crystallization.

The use of GFP fusions in combination with
transient expression in HEK cells was introduced
by Gouaux and co-workers (Kawate and Gouaux
2006) for optimizing the expression of the ATP-
gated ion channel P2X4. Protein production for
crystallization was subsequently transferred to
insect cells (Kawate et al. 2009). For IMP pro-
duction in mammalian cells, inducible stable cell
lines are usually required to generate sufficient
biomass without the problem of toxicity from
constitutive expression (Chaudhary et al. 2011,
2012). Although this requires more time and ef-
fort than using insect cells, there are now a num-
ber of structures of membrane proteins produced
in this way. In all cases, multiple constructs were
initially screened by transient expression using
fusion to GFP as a reporter of protein expression
and stability by FSEC analysis. Although recom-
binant protein yields from mammalian cells are
generally lower than either microbial or insect
cell over-expression systems, there may be a sig-
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nificant advantage in using mammalian cells for
the production of human/mammalian IMPs. The
proteins will be produced in a cellular context
with native post-translational modifications and
lipid environment, it is becoming increasingly
apparent that this leads to improved protein qual-
ity due to lower levels of misfolded aggregates
(Yamashita et al. 2005; Chaudhary et al. 2011).

An alternative to the production of stable
cell lines for IMP production is the use of
baculovirus mediated gene transduction for
large-scale production of IMPs in mammalian
cells, typically HEK Gnt1 �/� (Goehring
et al. 2014). The so-called BacMam system
(Dukkipati et al. 2008) involves the inclusion of
a mammalian cell transcription unit(s) within a
baculovirus transfer vector so that on generation
of a recombinant virus, the inserted gene can
be expressed in mammalian cells. The same
plasmid vector can be used for small-scale
transient transfection of HEK cells to identify
the optimal construct and then to generate a
BacMam baculovirus for scaling up of protein
production by bulk transduction of HEK cells for
further characterization (Goehring et al. 2014).
Using this protocol, sample preparation can be
accomplished in 4–6 weeks, which is at least
half the time required to generate and scale-up
stable cell lines. The approach has been used by
the Gouaux group to produce a number of IMPs
for structural determination (Althoff et al. 2014;
Baconguis et al. 2014; Dürr et al. 2014; Lee et al.
2014c; Wang et al. 2015).

1.5 Summary and Conclusions

Initially developed for screening the expression
of bacterial membrane proteins in Escherichia
coli, the use of GFP fusions has been successfully
extended to eukaryotic hosts, including insect and
mammalian cells. Although E. coli and yeast are
useful tools for the over-expression of recombi-
nant membrane proteins, there is a marked dif-
ference in the lipid compositions of membranes
from prokaryotes and eukaryotes. This in turn
may affect the quality and quantity of heterolo-
gous proteins inserted into the host membrane.

Given that the host cell determines the nature of
post-translational modifications, such as glycosy-
lation and phosphorylation, in choosing an ex-
pression host for screening, it may the appropriate
to match the host cell to the recombinant product
for example, human IMPs in mammalian cells.
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