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2.1  Introduction

Microscopes have been used for a long time to observe biological samples. However, 
measurements of tissue- and cell-related parameters were conducted by human 
observers and were consequently ad hoc, not reproducible and restricted to small 
sample numbers. Since computers have become vastly more powerful, life sciences 
now routinely take advantage of new opportunities to couple microscopy and in 
silico methods. Automated image segmentation and analysis of large numbers of 
digital images allow algorithmic recognition of cell and tissue structures and 
 subsequent numeric measurements of cellular parameters. Nevertheless, these new 
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methods also come with technical challenges concerning computational resources 
like processing capacity, memory and disk space, biological sensor limitations, as 
well as algorithm development.

Today, state-of-the-art hardware and cloud computing enable high throughput 
analysis of vast amount of images in reasonable time. In the context of bone 
research, an application for automated analysis is the in silico quantification of 
osteoclasts. Cell culture models using either murine or human osteoclasts offer the 
possibility to study parameters such as osteoclast formation from their mesenchy-
mal precursors, differentiation, maturation, and apoptosis (Marino et al. 2014). 
Advanced molecular imaging of osteoclasts allows to study pathological processes 
and to elucidate the effect of osteoclast-targeted therapies for diseases in which 
excess bone resorption is a crucial pathological process. This includes osteoporosis, 
rheumatoid arthritis, as well as bone tumors such as giant cells tumors, osteosarco-
mas, and bone metastases.

Currently, quantification of multinucleated osteoclasts in culture is performed man-
ually (Marino et al. 2014). When studying the influence of endogenous metabolites, 
hormones or therapeutic agents on osteoclast biology, a lot of potentially valuable and 
relevant information, such as number of nuclei, osteoclast size, number and properties 
of precursor cells, as well as abundance of target proteins in each cell class, cannot be 
assessed reliably by manual evaluation. These parameters, however, could be impor-
tant to elucidate the effects of natural and synthetic agents on osteoclast biology.

To exemplify a typical question in basic osteoclast research, we were looking at 
whether the pineal hormone melatonin affects osteoclast formation in vitro. 
Melatonin has long been sought to exert beneficial effects on bone structure and 
has been proposed to prevent osteoporosis in premenopausal and menopausal 
women (reviewed in Maria and Witt-Enderby (2014)). Melatonin was found to 
favor the differentiation of human adult’s mesenchymal stem cell into osteoblasts 
via binding and signaling through a G-protein-coupled melatonin receptor (Radio 
et al. 2006; Koyama et al. 2002). Thus, beneficial effects of melatonin on bone 
structure were mainly attributed to its effects on osteoblasts (Maria and Witt-
Enderby 2014; Radio et al. 2006). Although melatonin may prevent bone degrada-
tion by inhibiting osteoclast formation directly (Ostrowska et al. 2001), the 
inhibitory effects on osteoclast are also caused by the action of melatonin on osteo-
blasts. This was suggested from studies in mice, where melatonin increased the 
osteoprotegerin expression in osteoblasts, which lead to a reduction in the RANKL-
mediated osteoclast formation (Maria and Witt-Enderby 2014; Koyama et al. 
2002). In a pilot experiment, we re- investigated the possibility of direct effects of 
melatonin on the formation of mouse osteoclasts from bone-derived precursor cells 
specifically by focusing on osteoclast number, cell area, multinuclearity, and 
downregulation of the macrophage (osteoclast precursor cell) marker protein F4/80 
as osteoclast marker. As outlined above, limitations of manual evaluation of osteo-
clast formation would normally prevent the detection of small-scale correlations 
between changes of cell-associated parameters and the effects of the hormone 
melatonin. However, when employing a computerized quantification method, all of 
the abovementioned limitations can be overcome.
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In this chapter, we briefly describe standard procedures for osteoclast culture, 
markers for osteoclast detection, as well as the applied immunofluorescence label-
ing protocol. We provide a brief introduction to digital images and slide-based 
microscopy and discuss software packages for image processing as well as valuable 
tools for handling the workflow.

We then describe the development and application of an image processing algo-
rithm for the detection and quantification of osteoclasts. Principles of ground-truth 
data and their evaluation as well as the algorithms used for osteoclast detection are 
explained. Measurements are introduced, and examples are given on how to apply 
them in real-life scenarios. The described steps are not programming language spe-
cific and can be implemented in the framework of the reader’s choice. However, we 
do not cover implementation details, as these are beyond the scope of this work and 
should be read in existing books on microscopy and digital image processing, for 
example (Gonzalez and Woods 2008; Wu et al. 2008; Burger and Burge 2008; 
Solomon and Breckon 2011). The algorithm, which was developed, has been inte-
grated in the software application StrataQuest (TissueGnostics GmbH, Austria), a 
context-based qualitative image analysis software package. As a “real-life” basic 
research example, we then show the results of our pilot study using StrataQuest to 
quantify the direct effect of melatonin on osteoclast formation in culture which 
yielded novel interesting results that would not have been available without an auto-
mated in silico analysis system.

Many of the image processing problems mentioned in these sections are so- 
called ill-defined problems – e.g., segmentation (Martin et al. 2001; Bakushinskiy 
and Goncharsky 2012) – meaning that there is no unambiguous gold standard to 
compare these algorithms to. Furthermore, the question of how to compare a devel-
oped algorithm to the performance of human experts still remains an important open 
research problem. Thus, to illustrate these difficulties, we cover not only typical 
pitfalls including technical problems but also human intuition and limitations in 
perception and vision that have an influence on the development and evaluation of 
image analysis algorithms.

In summary, the purpose of this chapter is to introduce biologists and medical 
scientists to image processing by using a commercially available automated image 
analysis program to quantify various parameters in osteoclast cultures and exem-
plify this through evaluating the effect of melatonin on osteoclast formation. We 
hope that we can thereby raise the audience’s awareness and interest in the possibili-
ties and limitations of this new, powerful technology.

2.2  Techniques

2.2.1  Culture Conditions for Isolated Murine Osteoclasts

The culture conditions for osteoclasts suitable for an automatic detection method 
were developed from standard protocols (Marino et al. 2014; Akatsu et al. 1992), 
but different culture parameters were evaluated.

2 Toward the Automated Detection and Characterization of Osteoclasts
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Mice (Mus musculus) were culled by neck dislocation following asphyxiation. 
Tibiae and femora were prepared, the caps of the bones were cut off, and the bones 
were rinsed with 10 ml pre-warmed (37 °C) minimum essential medium containing 
antibiotics and antifungals. The cells were diluted to 2 × 106 cells per ml, and osteo-
clast formation-stimulating additives (25 ng/ml Receptor activator of nuclear factor 
kappa-B ligand (RANKL), 15 ng/ml Macrophage colony-stimulating factor 
(M-CSF)) were added. 1 ml of cell suspension was added per well (each containing 
a sterile glass coverslip) of a 24-well culture plate. Culture was maintained at 95 % 
relative humidity/5 % CO2 in an incubator for 7 days. Change of medium was per-
formed every second day.

To investigate the effects of melatonin on osteoclast development from bone 
marrow precursor cells, we applied different doses of melatonin (1, 0.1, and 0.01 μM 
melatonin from a stock solution of 10 mg/1 ml Dimethyl sulfoxide (DMSO)) to the 
osteoclast cultures for the entire cultivation time. The respective controls were 
treated with the solvent only.

2.2.2  Staining Protocol

At the beginning of the development of an algorithm, characteristic features of the 
target structure or cell need to be defined by biological experts, preferably in a 
written document for later reference. In the case of osteoclasts, the biological 
experts defined two important criteria to identify mature osteoclasts: criterion 1, 
the amount of nuclei per cell (≥3) (Andersson and Marks 1989) and criterion 2, a 
low to undetectable expression of the macrophage-antigen F4/80 (van de Wijngaert 
et al. 1987). The expression of the latter marker is reduced or lost due to the dif-
ferentiation from precursor cells to osteoclasts. Therefore, the staining protocol 
included (1) labeling of the nuclei with blue DAPI, (2) staining of the cells with an 
antibody directed against F4/80 macrophage marker (eBioscience.com), probed 
with red Alexa Fluor 568 (Invitrogen molecular probes), and (3) making all cells 
(osteoclasts and precursors alike) “visible” using one antibody against the mem-
brane-bound calcitonin receptor (Acris) and one antibody against the cytoskeleton 
component α-tubulin (Sigma Aldrich), both probed with Alexa Fluor 647 
(Invitrogen molecular probes; far red, appearing white in the image). In the 
acquired images (e.g., Fig. 2.1), mature osteoclasts appear white (due to the stain-
ing for α-tubulin and reduced expression of F4/80 staining), while precursor cells 
appear red or pink from the α-tubulin – calcitonin receptor – F4/80 overlay. It 
should be kept in mind however that differentiation and fusion of cells to generate 
mature osteoclasts is a continuous process. Therefore, mononucleated cells with 
rather low F4/80 staining can be present in the culture (visible in Fig. 2.1) as well 
as multinucleated cells with higher expression levels of F4/80. It is up to the bio-
logical experts to define a threshold level of mean F4/80 intensity/cell that dis-
criminates between “true” osteoclasts (≥3 nuclei per cell, mean fluorescence 
intensity of F4/80 < set threshold) and “true” precursor cells (1–2 nuclei/cell, mean 
fluorescence intensity of F4/80 > set threshold).

A. Heindl et al.
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Cells were fixed using a 4 % formaldehyde solution, and the remaining aldehyde 
groups were quenched with 50 mm NH4Cl. The cells were incubated with blocking/
permeabilization buffer (0.5 % Triton X-100 + 1 % bovine serum albumin in 
phosphate- buffered saline (PBS)) for 60 min. After this period, the primary antibod-
ies were applied directly in the culture plate at a dilution of 1:1,000 in blocking 
buffer (parallel approach) for 60 min. After washing with PBS, the secondary anti-
bodies were applied in the dark at a dilution of 1:1,000 in blocking buffer (parallel 
approach) for 30 min. To stain the nuclei, the cells were incubated for 15 min with 
DAPI (1 μg/ml) in aqua bidestilata. The coverslips were finally mounted with 
Fluoromount-G (SouthernBiotech) on conventional microscope slides.

Images of the stained cells were acquired using an automated Axio Imager epi-
fluorescence microscope (Zeiss) equipped with TissueFAXS™ hardware and soft-
ware (TissueGnostics GmbH, Austria) using a 40× Neofluar 1.4 (oil) objective. For 
special considerations concerning the acquisition process, see the following 
sections.

2.2.3  Digital Images

Before algorithm development can commence, images have to be acquired and 
stored. The digitalization of specimens requires a suitable representation of the cap-
tured light by an electronic sensor (camera) that can be further processed by the 

Fig. 2.1 This image shows one immunofluorescence-labeled osteoclast cell in culture surrounded 
by precursor cells. The osteoclast is marked up in green. The perimeter of the target cell is created 
on a separate layer so that the original content of the image is not modified. This additional layer 
can later be extracted and processed by computer-based algorithms
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computer. Exposure time controls the amount of light that is able to hit the sensor 
elements. Finally, quantification transforms these values to a limited set of intensi-
ties that can be further processed by the computer. Typical ranges of 256 (=28 = 8 
Bit), 4096 (=212 = 12 Bit), or 65,536 (=216 = 16 Bit) are used to represent these inten-
sity values. An example of an 8-bit image with a corresponding gray-level matrix is 
shown in Fig. 2.2.

2.2.4  Automated Slide-Based Microscopy

Sampling of images from large-scale experiments necessitates automation of the 
acquisition process. A suitable microscope with a fully motorized stage has to be 
used to automatically acquire images. During acquisition, the stage moves the slides 
in such a way that the camera captures each region of interest as a set of overlapping 
field of views (FOVs). For this image acquisition, we used a TissueFAXS™ system 
(TissueGnostics GmbH, Austria), which offers a convenient workflow to acquire up 
to eight slides automatically. This was a requirement for further statistical analysis 
to analyze global effects of various compounds on the growth and formation of 
osteoclasts in culture. If these cultures contain huge cells, in this case osteoclasts, 
then stitching (tiling together of the single FOVs to one big image) of acquired 
regions is essential for further steps, as these cells may have been only partially 
captured at the border of a FOV. Automatic-stitching algorithms have two main 
components: finding the best alignment for two neighboring images and finding the 

Fig. 2.2 This figure illustrates the digital representation of a captured image derived from fluores-
cence microscopy. The small insert on the right side shows the gray level value of the selected pixel 
(8-bit image: a value between 0 and 255)
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best alignment taking into account all neighboring images. TissueFAXS already 
includes stitching during and after acquisition.

2.2.5  Software for Image Processing

Commercial state-of-the-art solutions like StrataQuest (TissueGnostics GmbH, 
Austria), in which the osteoclast detection algorithm we have developed was finally 
incorporated, can automatically detect tissue structures on a digital slide by integrat-
ing the detection of objects into detailed context-based quantitative analysis (Stadler 
et al. 2015; Schmid et al. 2015). StrataQuest allows the  analysis of interactions 
between different types of data like nuclei counts, cell area,  protein staining intensi-
ties, and the different cell types present via an  easy-to-use graphical user interface 
(GUI). Coupled with TissueFAXS, acquisition and analysis are possible in a homo-
geneous workflow and CE-marked analysis environment for use in research and 
in vitro diagnostics. An open source alternative, which requires only basic knowl-
edge of image processing, is Cell Profiler.1 This application suite offers a framework 
to build versatile pipes (algorithms) for various biological applications. Many pre-
defined pipes for various applications can be downloaded from the online forum and 
are free of charge. For immunohistochemically stained images, GemIdent2 (Holmes 
et al. 2009) is also a versatile tool. A good overview of available software packages 
is provided in Eliceiri et al. (2012).

However, when designing a new algorithm, a developing framework has to be 
chosen. Common tools like GNU Image Manipulation Program (GIMP) or Adobe 
Photoshop are not suitable for algorithm development due to lack of a powerful and 
fast scripting language. High-performance algorithms made image software tools 
like OpenCV,3 ImageJ (Rasband 1997), and Matlab4 however are very popular: 
They offer special image-processing toolboxes that are optimized for high through-
put while still being relatively easy-to-use for rapid prototyping of image analysis 
algorithms. For rapid prototyping of image  analysis problems, Matlab and ImageJ 
are good choices. The disadvantage of Matlab and ImageJ is that they are computa-
tionally slow compared to OpenCV – so if speed is an issue, algorithms have to be 
developed or ported to this framework.

In any case, independent of the used framework, generation of ground-truth 
markups should be started as early as possible so that there is a continuous flow of 
data. Ground-truth data represent a set of images provided by biological experts that 
include counts, location, and key features of the objects of interest (Krig 2014). This 
dataset is then used to evaluate the newly developed algorithms, train machine- 
learning systems, and optimize parameters throughout the whole development 
process.

1 http://cellprofiler.org
2 http://gemident.com
3 http://opencv.org/
4 www.mathworks.com/

2 Toward the Automated Detection and Characterization of Osteoclasts

http://cellprofiler.org
http://gemident.com
http://opencv.org/
www.mathworks.com/


38

2.3  Evaluation of Expert Markups and Developed  
Image- Processing Algorithms

After and during development, the performance of newly implemented algorithms 
needs to be measured in an unbiased way. For this purpose, visual inspection is the 
most commonly used method. Unfortunately, this step is error prone and highly 
dependent on the observer who in many cases will still be a computer scientist 
rather than a qualified biological researcher. A better method for this evaluation is 
to let biological domain experts do markups to obtain the so-called ground-truth 
data from original images (Krig 2014). This can be done using any graphics-editing 
program like GIMP or Adobe Photoshop. The idea of this markup is to point out 
those objects of interest (e.g., cells, tissue structures) that should be detected by the 
algorithm solely by using the provided images without any additional information. 
The number of markups needed differs from project to project. In case of the osteo-
clast detection algorithm, about 100 FOVs were manually marked up for osteo-
clasts. It is essential to draw these markups on a second “layer” (like a “transparency 
film” on top of the original image) of the target image so that no information from 
the original image is lost. Alternatively, markups can be stored as simple polygons 
using popular tools such as Fiji (Schindelin et al. 2015). Either way, manual mark-
ups can then be automatically compared to automatically generated masks by the 
algorithm, ensuring that the newly developed tool and the tissue experts produce 
comparable results. Supervised machine-learning classifiers like support vector 
machines, logistic regression, and random forests require ground-truth data as an 
input to build their decision model.

Before starting to develop an algorithm, the agreement between different human 
experts has to be confirmed. If this is very low, meaning that there is no consensus 
between the different human experts, even the best detection algorithm cannot suc-
ceed, and therefore development should be postponed, until an agreement between 
human experts has been achieved. The quality of the ground-truth data can be 
increased if several human experts provide markups of the same set of images. It is 
very important that the markups done by humans are performed independently by 
other experts and by the algorithm developer so that a reliable ground truth can be 
obtained. A comparison between the experts can be calculated by computing the 
correlation between the markups. In some cases, like cell recognition covered in this 
chapter, pixel-level (meaning that the experts actually would have to draw exactly 
the same lines around the cells) scoring is not very reasonable; therefore, evaluation 
on a higher level of abstraction, e.g., object-based evaluation, is preferable. This 
approach counts the number of detected objects and compares it with those that are 
found in the ground-truth data. Overlaps between detected objects can be used to 
compute a rough-place agreement beyond the number of detected objects.

In both cases (pixel-/object-based evaluation), having more than one human 
expert can generate a more objective ground truth (Srivastava et al. 2013), e.g., by 
performing a majority voting. As the name suggests, majority voting selects those 
pixels/objects (e.g., osteoclasts) that are marked up by the majority of the human 
experts.

A. Heindl et al.



39

The next step is the evaluation of the algorithm output. In various scenarios  
(e.g., segmentation), algorithms have a vast set of parameters. Optimizing them 
manually is an impossible task, because it would mean evaluating several hundreds 
of thousands of images by hand. Therefore exhaustive parameter-optimization tech-
niques are applied that compare their output with previously created ground-truth 
data. This technique runs the algorithm with a large set of possible parameter com-
binations and returns those that have the highest agreement compared to the human 
experts’ ground-truth data. Care must be taken to prevent overfitting, i.e., choosing 
seemingly optimal parameters, which are only performing well due to chance and 
only on the images that were used for parameter optimization. Therefore, not all 
data should be used for this technique – some data should be held back for a final 
reevaluation of the best parameter settings. This technique is not new and well stud-
ied for machine-learning algorithm evaluations: for example, in cross validation, the 
input data is separated in equally sized sets, employing one for training and one for 
testing the learned model.

One question that arises is how to compute a score of agreement between the 
human experts and the algorithm. On pixel level we can calculate the F-score to 
rank different algorithm output-masks. The F-score (Chinchor and Sundheim 1993) 
is composed of precision and recall. Informally, precision represents the percentage 
of relevant pixels retrieved and is also known as positive prediction rate. Recall on 
the other hand is also called sensitivity or true positive rate and corresponds to the 
ratio of correctly classified pixels versus all possible pixels. Formally they are 
defined as follows:

 
Precision

TP

TP FP
=

+  

 
Recall

TP

TP FN
=

+  

TP represents the true positive pixel, those that were marked up by both the 
expert and the algorithm, whereas TN (true negative) stands for pixels that were not 
marked by either of them. If the pixel was only detected by the algorithm, then it is 
called a false positive (FP). Similarly, pixels that were not assigned as belonging to 
the object of interest by the algorithm but were marked up by the expert are called 
false negative (FN). With these measures, the balanced F-score is defined as:

 
F1 2=

+
⋅ ⋅Precision Recal

Precision Recall  

Other common metrics for pixel-level evaluation of segmentation results are the 
Jaccard index (1912) and Dice coefficient (1945). Former is defined as the size of 
the intersection divided by the size of the union of both sets:

 

J A B
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∪
=

∩
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J denotes the Jaccard index. A denotes the set of pixels marked up by the expert 
and B the set of pixels detected by the automated segmentation algorithm.

The Dice coefficient is a similarity measure closely related to the Jaccard index 
and often used in ecology. It is less prone to outliers and better suited for heteroge-
neous data sets (McCune et al. 2002). Formally it is defined as follows:

 

s
A B

A B
=

∩
+

2

 

where s denotes the Dice coefficient, A the sets of pixels marked up by the expert, 
and B the automated segmentation algorithm.

The above measures were used in recent state-of-the-art literature to evaluate the 
performance between expert and machine or between various machine-derived seg-
mentations (Hunter et al. 2013; Esteves et al. 2013; Maska et al. 2014). Besides 
pixel- and object-based comparison, there are other methods, which may be more 
suitable for specific scenarios. An extensive survey of segmentation methods was 
published in Zhang (1996). Segmentation is a well-studied topic in computer vision 
but still a challenging task. Several evaluation methods have been published (Zhang 
2001; Smochina 2010; Benes and Zitova 2015). Recently, even crowdsourcing was 
employed to evaluate segmentation results of experts with various levels in exper-
tise and automated image processing systems (Irshad et al. 2015).

When applying these discussed points to the example of osteoclast detection, diffi-
culties with their practical implementation become obvious. An example markup of a 
target cell can be seen in Fig. 2.1 (the green line indicates the manually drawn perim-
eter of an osteoclast). Since the number of osteoclasts is the desired output of the algo-
rithm, an object-based evaluation is more suitable than a pixel- based one. In this case it 
is less important whether a specific pixel belongs to the osteoclast or to the background 
as long as the number, general location, and size of the objects (= osteoclasts) agree 
with the ground-truth data. As mentioned above, to obtain a general detection algo-
rithm which does not only model the specific knowledge of one expert alone, multiple 
experts with biological background and experience with osteoclast cultures should 
deliver ground-truth data. In our setting, two experts provided osteoclast markups, and 
only those osteoclasts that had been identified by both human experts were considered 
to be “real.” When we evaluated the object-level agreement between these two experts 
in seven different regions (about 70 images) of osteoclast cultures (Fig. 2.3), the mean 
agreement (matched) between the two experts was 70 ± 17 %. This shows that even 
though the manual markup of osteoclasts appears simple in theory (i.e., on an image 
with a clearly isolated osteoclast as shown in Fig. 2.3), in many other “real-world” 
images (i.e., in images with osteoclasts and precursor cells in close proximity), the 
opinions of the human experts as to what qualifies as an osteoclast and what does not 
can be quite incongruent. Reasons why human-based classification may be error prone 
were published in Baak (1991) and are discussed later in Sect. 2.5. Comparing our 
algorithm to the experts’ matched markup, 86 % of osteoclasts identified by both 
human experts were also classified as osteoclasts by the algorithm. In most experi-
ments however, the algorithm classified more osteoclasts than the matched results of 

A. Heindl et al.



41

both human experts (Fig. 2.3). Thus, not only the comparison of the algorithm perfor-
mance to the matched human experts’ ground truth but also the reliability of the ground 
truth itself will have an impact on the values of precision and recall.

2.4  How to Design an Image-Processing Algorithm 
Exemplified on Osteoclast Detection in Culture

In this chapter we present the development of an algorithm for osteoclast detection 
in vitro, starting with the already acquired and stitched images. It follows the gen-
eral scheme of algorithms for image processing (Fig. 2.4). Most of the existing 
published image-processing algorithms were derived from this or a similar work-
flow. Before designing an algorithm, criteria to distinguish between objects of inter-
ests (osteoclast) and the remaining objects (precursors) have to be specified. The 
detailed staining protocol can be found in Sect 2.2. Osteoclasts are defined as mul-
tinucleated cells with at least three nuclei (Criterion 1). Additionally, they should 
not exhibit significant expression levels of F4/80 macrophage marker that identifies 
only the osteoclast precursor cells (Criterion 2). Such biological criteria should be 
written down in a document called customer requirement specification (CRS) to 
prevent unexpected results due to misinterpretation by the algorithm developer. The 
following sections refer to the respective steps of Fig. 2.4: (1) illumination correc-
tion, (2) segmentation, (3) post-processing, and (4) labeling).
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Fig. 2.3 This chart exemplifies the consensus between two human experts. It shows the number 
of osteoclasts (y-axis) detected in seven acquired regions from different cultures (x-axis). In each 
region, the first and the second column represent the osteoclast number detected by each expert 
(Expert 1, Expert 2), whereas the third column shows the number of osteoclasts detected congru-
ently by both experts (matched)
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2.4.1  Illumination Correction

This first step of the detection algorithm is critical, because all further steps will 
operate on the generated output. Misalignment due to shifts in camera setup or the 
optical path of the microscope causes uneven illumination (Fig. 2.5a, b) which 
might not even be visible to the naked eye but can greatly affect the automated 

Fig. 2.4 This flowchart 
demonstrates the general 
scheme of image- 
processing algorithms. 
Four major processing 
steps must be distinguished

a b

Fig. 2.5 This figure illustrates the effect of a post-acquisition illumination-correction (processing 
step 1) on images obtained by epifluorescence microscopy. In the original image (a), an 
illumination- gradient is clearly visible from the left upper corner to the right lower corner. This 
gradient is removed after the application of illumination-correction (b)

A. Heindl et al.
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image analysis. To compensate for this introduced bias, an illumination correction 
function can be computed (Wu et al. 2008; Wang et al. 2015). It represents a special 
illumination image that contains the overall pattern of illumination in all future-
acquired images. Various publications deal with this process, e.g., (Zhu et al. 2003), 
Ljosa and Carpenter (2009), and Smith et al. (2015). If the approximation of the 
illumination function fails, adaptive thresholding can be applied, which is discussed 
in the next section.

2.4.2  Segmentation

Step 2 splits the pixels in two groups, those belonging to the foreground (cells, 
including osteoclasts) and those belonging to the background (Fig. 2.6a). This sepa-
ration can be achieved by applying intelligent thresholding. Examples are the clas-
sical triangle algorithm (Zack et al. 1977) or machine-learning-based classifiers 
with appropriate features (Kapelner et al. 2007). Most of these image segmentation 
techniques operate on histograms. A histogram is a discrete distribution function of 
the image’s intensity values. It counts the number of gray values that pertain to each 
of the single categories/bins (intensity values, 0–255 in case of an 8-bit image). The 
triangle algorithm obtains a threshold to distinguish between background  

a b

Fig. 2.6 This figure illustrates the results of (a) segmentation (processing step 2) and (b) post- processing 
(processing step 3) on images obtained by epifluorescence microscopy. In (a), the output image of 
processing, step 1 (see Fig. 2.5b) has been subjected to automated image segmentation. White structures 
represent identified objects. This segmentation may introduce artifacts visible as small white blobs that 
do not belong to actual structures. Gray circles indicate example areas where these artifacts are visible. 
Due to size and shape criteria, they can subsequently be removed resulting in image (b)
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(< threshold) and foreground (≥ threshold) by computing two local maxima of this 
histogram. Now these two peaks are connected, and the maximum distance (an 
orthogonal vector to the line connecting the two peaks) between the line and the 
histogram is computed (see Fig. 2.7 for an example). The intensity value indicated 
by the maximum distance is the threshold value. Everything greater or equal 
(brighter) is considered as foreground. Every value beneath this threshold (darker) 
is classified as background. The machine-learning-based methods are more com-
plex and require extensive knowledge in learning theory. The interested reader 
should refer to the publication mentioned above.

If illumination correction (step 1) did not produce an acceptable result, adaptive 
thresholding can be used to partition images into foreground and background as 
well. Compared to a single threshold like in the triangle approach, this is a more 
sophisticated process that chooses different thresholds for each pixel of the image. 
Because of this method of operation, this is sometimes also called local or dynamic 
thresholding (Gonzalez and Woods 2008; Stockman and Shapiro 2001; Burger and 
Burge 2016; Korzynska et al. 2013).

For our osteoclast detection algorithm, we used adaptive thresholding (Liu et al. 
2002) and computed local thresholds for each subregion of the image. The threshold 
is chosen by examining the intensity values of the local neighborhood of each pixel, 
computing the median intensity. An important parameter of this approach is the 
neighborhood size which can be determined by thresholding the image with differ-
ent neighborhood sizes (e.g., 100 pixel, 200 pixel, etc.) and comparing the seg-
mented image with the previously discussed ground-truth markup of the expert. The 
neighborhood size with the highest concordance is chosen and every subsequent 
image of the same type processed with the optimized parameter.

2.4.3  Post-processing

Step 3 implements a cleanup step, which removes artifacts (Fig. 2.6a, b) and 
unwanted cells such as osteoclast precursor cells. This is often achieved by binary 
operations such as area opening or the computation of morphological features that 

Fig. 2.7 Histogram 
illustrating the triangle 
threshold method. The 
optimal threshold is 
selected where the 
maximum distance (dotted 
line) intersects with the 
base line at the bottom
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can be used to distinguish between the object of interest and other objects. Area 
opening removes all objects with an area smaller than a chosen threshold. If this 
condition is not specific enough, morphological features such as eccentricity, solid-
ity, convex hull, etc., can be used to distinguish between the desired cell and 
unwanted artifacts. In case of our developed osteoclast detection algorithm, we have 
also used features from specific staining, i.e., Criterion 1 (osteoclasts: ≥3 nuclei) 
and Criterion 2 (osteoclast: F4/80 mean intensity/cell <20).

2.4.4  Labeling

Step 4 performs a labeling of the remaining cells (Fig. 2.8a, b) (Samet and Tamminen 
1988; He 2012). This is done to directly denominate each single cell on the image so 
that further measurements can be computed by directly addressing the single cells.

As a side note, the image context is also of great importance during feature cal-
culation. Figure 2.9a, c show two osteoclasts. Reasoning from the example at the 
top, a feature such as the distance between the nuclei may perfectly identify the 
target cell. Unfortunately, in the same region, another osteoclast can be found 
(Fig. 2.9c) where the distance is much larger than in the upper example. So if one 
were to try and detect osteoclasts only in the DAPI channel, i.e., by looking at the 
nuclei alone, this might produce false positives or negatives. This is why we 

a b

Fig. 2.8 This figure shows the labeling (processing step 4) of images obtained by epifluorescence 
microscopy. In image (a), an enlarged area of the output image of processing step 3 (see Fig. 2.6b) 
is shown. In image (b), the labeling of the segmented image is illustrated. For demonstration pur-
pose, each object is labeled in a different shade of gray. Internally, this would be represented by 
assigning a unique number to each object
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introduced the additional immunofluorescence stainings of the microtubules, the 
calcitonin receptor, and the F4/80 macrophage marker to assign the detected nuclei 
to whole cells (Fig. 2.9b, d).

Having computed all these features, it is now possible to create statistics and 
draw conclusions about treatment- or disease-related morphological intensity-based 
difference or staining intensity-based (i.e., associated protein levels) difference. Our 
final developed algorithm for image-based osteoclast detection has since been 
incorporated into the StrataQuest image analysis software package.

2.4.5  Practical Example: Influence of Melatonin  
on Osteoclast Formation

To exemplify the use of this novel automated system for relevant questions in basic 
biological bone research, we have investigated the effect of pharmacological (μM) 
doses of melatonin on osteoclast formation in vitro (Bubenik et al. 1998). Using the 
automated osteoclast detection algorithm in StrataQuest, a multitude of parameters 
were measured and computed including (mean) intensity values of labeled proteins 

a b

c d

Fig. 2.9 The importance of context is illustrated in this figure. Figures (a–d) show two different 
image details of immunofluorescence-labeled osteoclast cultures. White circles indicate osteo-
clasts. During the staining process, cell nuclei are stained with DAPI (a, c). Additionally, microtu-
bules and a membrane receptor are immunofluorescence-labeled to visualize cell bodies (b, d). An 
important criterion of mature osteoclasts is to have three or more nuclei. An algorithm that oper-
ates only on the nuclei (DAPI channel) would probably miss the osteoclast in (c) due to the larger 
distance between the nuclei in contrast to (a). Taking the additional staining of cell bodies and 
borders into account, the same nuclei in (b) and (d) are now allocated to one cell, and consequently 
these cells are identified as osteoclasts
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per cell (exemplified for F4/80 staining, Fig. 2.10a, c), number of nuclei per cell 
(Fig. 2.10a, c), total or relative number of individual cells, or mean cell area 
(Fig. 2.10b, d). Results are displayed for two out of the four discriminated cell 
populations, namely, the multinucleated osteoclasts with mean F4/80 intensity lev-
els <20 (arbitrary threshold, range 0–255) and the mononucleated precursor cells 
with mean F4/80 intensity levels >20 (Fig. 2.10 upper and lower graphs, respec-
tively). While, in analogy to published data (Koyama et al. 2002), we could not see 
any influence of melatonin on osteoclast number (Fig. 2.10b); we found a strong 
increase ranging from 130 % of control values with 10 nM melatonin to 200 % of 
control values with 1 μM melatonin in the mean area of osteoclasts after treatment 
with melatonin, an effect which was not seen for the precursor cells (Fig. 2.10b). In 
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Fig. 2.10 Effect of in melatonin treatment (Mel: 1 μM, 0.1 μM, 0.01 μM) or solvent (S) on cul-
tured osteoclasts (a, b) and precursor cells (c, d). (a, c) Mean number of nuclei/cell and mean 
intensity levels of F4/80 staining/cell. (b, d) Relative (% of total) cell number and mean cell area 
(μm2). Data from a typical experiment for multinucleated cells with mean intensity levels of F4/80 
staining <20 (1.3–2.6 % of cells) and mononucleated cells (precursor cells) with mean intensity 
levels of F4/80 staining >20 (51–74 % of cells) are shown
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correlation, also the mean number of nuclei/osteoclast increased up to 140 % of 
control values (Fig. 2.10a). The classical evaluation by humans would have only 
retrieved the number of osteoclasts/area or well, which in our experiment has not 
been influenced. The observation that the mean area of and the mean number of 
nuclei/osteoclast increased (but not of the precursor cells) indicates that melatonin 
has a stimulating effect on the fusion of osteoclast precursor cells to mature osteo-
clasts. Whether the morphological alterations are associated with an increased 
bone-resorbing activity of the osteoclasts needs to be determined in functional 
assays, e.g., measurement of pit formation on dentine slices (Takahashi et al. 2007). 
Nevertheless, the results gained by automated evaluation for the first time demon-
strate a direct effect of melatonin on bone-resorbing cells, which together with the 
well-established stimulatory influence on osteoblast activity would greatly influ-
ence bone turnover.

2.5  Common Pitfalls

Although high-end microscopy technologies open up new ways to examine tissue 
and cell culture samples, it also requires detailed knowledge of biology, optics, 
electronics, and computer science. This includes appropriate sampling of the tis-
sues, optimized cell-culture conditions, furthermore well-chosen fixation, and stain-
ing protocols. It also includes the selection of the most appropriate microscopic 
equipment for acquisition of the specific experiment (Pearson 2007). However, in 
this section we want to focus on those common problems that occur during image 
acquisition and evaluation. We discuss pitfalls like uneven illumination, uneven 
staining, touching clumps of nuclei, and psychological aspects resulting in fallacies 
due to gestalt laws. For basics about microscopy and optics, please refer to Spector 
and Goldman (2006).

2.5.1  Imaging-Based Errors

2.5.1.1  Illumination
To perform a quantitative measurement, each step of image acquisition has to be as 
exact as possible. Noise is often a result of a misaligned light source and increases 
the error rate in all following algorithm steps. Therefore, having an evenly illumi-
nated image is of great importance. To achieve this goal, calibration slides can be 
used to align the light source properly before recording microscopy images. 
Applying an illumination-correction function (as discussed in Sect. 4.1) afterwards 
is a measure of last resort since it modifies the intensity values of the image and 
might distort the “real” microscopic picture. If this is done in the channel containing 
the target protein, the researcher has to consider that she/he may have created an 
artificial (= false) staining due to the applied correction function. Using these results 
for further statistical analysis is problematic and may lead to wrong conclusions. 
The most common optical problem, nonaligned condensers, causes a type of uneven 
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illumination that is almost impossible to repair with image-processing techniques. 
A priori detection and elimination of illumination gradients before recording images 
therefore save a lot of effort and avoid unnecessary image manipulation, thus 
increasing the significance of derived quantitative biological results.

2.5.1.2  Acquisition Parameters
Acquiring the same sample on different instruments or with different settings on the 
same instrument often results in different-looking images. Depending on the set-
tings and the experience of the user who controls the microscope, image quality 
may vary. Currently, there is no standard (Yagi and Gilbertson 2005), so the compa-
rability between various acquisition systems is impossible. An example simulating 
the effect of different acquisition settings on the same FOV is shown in Fig. 2.11. 
The first image (Fig. 2.11a) of this figure is in focus and has balanced color values 
as it should be. Figure 2.11b is out of focus; consequently segmentation will prove 
difficult and unreliable because borders are blurred. To prevent out-of-focus images, 
techniques like the so-called extended focus (Abrahamsson et al. 2006) can be used: 
first, a stack of images of the same FOV on five different focal planes is acquired. A 
subsequent fusing step merges all images per stack and takes only those parts that 
are in focus on each plane. As a result, the amount of unfocused cells is reduced to 
a minimum. Figure 2.11c illustrates overexposure. Saturated areas are visible as 

a b

c d

Fig. 2.11 This figure illustrates the effect of acquisition conditions in image processing. Image 
(a) represents an ideal acquisition, showing the cells in focus with balanced color values. In image 
(b), cells are out of focus, and their borders are no longer clearly visible. Image (c) is overexposed 
(exposure time set too long). Saturated areas make further quantitative analysis impossible. Finally, 
image (d) has a significantly increased red value (background) that may mislead the observer. 
Note: These images have been processed for demonstration purposes
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white spots and prevent useful feature computation. An increased red level is illus-
trated in Fig. 2.11d. This may mislead the observer to draw incorrect conclusions 
about the expression of a certain marker.

2.5.1.3  File Formats
Another pitfall can be the file format used to store the image. Lossless formats 
should always be preferred to prevent quantification artifacts. A good choice for 
storing high-quality images would be the portable network graphics (PNG) 
(Fig. 2.12a). This format can be read by a variety of tools and supports lossless 
compression. Besides PNG, the tagged image file format (TIFF) is popular for stor-
ing acquired images. Compared to PNG, it offers a wide range of storage options, 
which is also the drawback of this format. It cannot be guaranteed that other appli-
cations which offer TIFF support are able to read and correctly interpret the chosen 
TIFF settings. The most commonly used Joint Photographic Experts Group (JPEG) 
graphics format has to be avoided (Fig. 2.12b). The intention of its compression is 
to remove details that are not visible to the human eye. Obviously, this alters inten-
sity values and can limit the applicability of machine-learning and image- processing 
techniques as well as quantification of biological features.

For the osteoclast detection, we selected PNG due to the portability of the format 
to different operating systems like Windows, Mac OS X, and Linux, since prelimi-
nary experiments indicated about 30 % less disk space usage than when using com-
pressed TIFF images.

2.5.2  Errors Related to the Gestalt Laws

The origin of the term Gestalt (the essence of an entity’s complex form) goes back 
to Ernst Mach in 1886 (Mach 1886). Since that time, gestalt laws are extensively 
examined in psychology. An example of these laws is grouping of objects due to 
proximity, similarity, closure, good continuation, and connectedness. A summary 

a b

Fig. 2.12 The importance of file formats in image processing is illustrated in this figure. Images 
(a, b) represent the same image detail derived from an immunofluorescence-labeled osteoclast 
culture. While image (a) was stored as PNG (with lossless compression), image (b) was saved as 
JPEG. JPEG may reduce image quality dramatically and may introduce rectangular artifacts that 
could affect machine-learning classification
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published in Scientific American describes and illustrates these gestalt laws com-
prehensively (Rock and Palmer 1990). Especially when ground-truth data is cre-
ated, gestalt laws play an important role. Human recognition of shapes is still a 
research field with many open questions. One way to reduce the effect of gestalt 
laws is to make people aware of it: Training them with examples can increase the 
output quality of ground-truth data, thus improving detection accuracy of the algo-
rithm. As a result, interdisciplinary projects should be preferred to avoid such 
imprinted pitfalls.

Up to this day, there are scenarios where image processing cannot compete with 
human intuition. One frequently occurring example in osteoclast detection is the 
problem of touching clumps of nuclei (Moffat et al. 2006). Figure 2.13a exemplifies 
a case where image processing may fail, although nuclei can be intuitively separated 
by a human (Fig. 2.13b), and different human observers are remarkably consistent 
in where they separate the given nuclei. Analyses that require identification of a 
single nucleus fail if no proper segmentation of these clumps is available. There are 
several approaches to divide clumps in a single nucleus in culture and tissues 
(Rogojanu et al. 2010; Zhang et al. 2015; Sheeba et al. 2014) like applying water-
shed algorithms (Sheeba et al. 2014), cutting of nuclei due to angles in the morpho-
logical shape (Cloppet and Boucher 2010; Wang et al. 2012), level-set-based 
processes (Xiong et al. 2006), or dynamic programming that tries to model the 
human expertise (Nandy et al. 2007). However, each of these approaches has sce-
narios where they fail, so currently there is no computational algorithm available 
that can handle all different cases of clumps.

Trying to model this method is tricky due the fact that it is not yet known how the 
human brain recognizes objects (Liu et al. 2009). Figure 2.14 illustrates an idealized 
decision-making process of a human. In real life, this process is assumed to be less 

a b

Fig. 2.13 This figure illustrates the limitations of automated image segmentation in comparison 
to human-object recognition. Figure (a) shows an image detail of an osteoclast culture, where cell 
nuclei are labeled with DAPI. Clusters of nuclei, i.e., overlapping nuclei, are visible. The result of 
a segmentation of these nuclei is indicated in image (b). The detected perimeters derived from 
automated image segmentation are drawn as solid white lines, while the dotted lines represent the 
additional separation of the overlapping nuclei, as a human would intuitionally draw them
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structured and contains trained template recognition, which is believed to be present in 
the human subconscious and instantly available (Baak 1991; Lennert and Stein 1981) – 
an example would be recognition of numbers or letters in literate humans. In contrast 
to the human brain, slight variations in size, staining, orientation, and illumination are 
not accounted for by the computer and therefore result in poor recognition perfor-
mance. Currently, image processing uses features (e.g., curvature, intensity changes, 
homogenous textures, edges, etc.) that seem to be too different and too “weak” to 
model the human performance of perception.

Nevertheless, visual perception is not the only source of error; verbal expression 
differs from expert to expert. An example would be the size of osteoclasts. One 
human expert may assume that a “huge” osteoclast is one with up to 6 nuclei, whereas 
for another expert, “huge” osteoclast means more than 16 nuclei. Obviously, 

Fig. 2.14 This flowchart shows an assumed human diagnostic process of an idealized decision- 
making situation (Modified after Baak (1991))
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development of an algorithm requires background knowledge of the target cell struc-
ture and texture. Ideally, the computer scientist obtains this information during inter-
views with the biological expert, and they create a CRS together at the beginning of 
the project instead of relying on verbal-communicated information only. Quantitative 
evaluation is given by ground-truth data which should agree with explicit knowledge 
given in the CRS, and over the course of the project, the CRS should be regularly 
discussed and possibly adapted. The interpretation of the given features to classify 
the target cells varies depending on the final knowledge of the algorithm engineer. 
This was shown for pathologists in Livesey et al. (1978), Pool et al. (1979). However, 
nowadays when pathological interpretations are quantified by computer-based evalu-
ation, computer scientists take the place of the pathologists by developing tools to 
support their diagnoses. Clearly, they face the same problems with less medical and 
biological experience, and additionally they interpret the data based on their techni-
cal background which may lead to problems of overgeneralization.

2.5.3  Benefits of Automated Osteoclast Detection

Despite these pitfalls, automated segmentation and analysis of osteoclasts as exem-
plified in this chapter has significant advantages. Large amount of data is process-
able – for the results shown in Fig. 2.10, we have processed regions up to 42 mm2, 
and the only limits for further scale-up are the acquisition of the images and the 
computer’s processing and memory capacity. Our computer-based evaluation is 
faster by about two orders of magnitude compared to a trained human expert. 
Additionally, the result after manual quantification is just the number of osteoclasts, 
whereas our algorithm yields many more informative measures, such as total cell 
number, total and relative numbers of osteoclasts and their precursor cells, total area 
of all cells, total and relative area of osteoclasts and their precursor cells, numbers 
of nuclei, quantification of associated proteins, and many morphological and statis-
tical features. Furthermore, it is highly unlikely that the human quantification on 
large regions is reproducible or consistent if compared to another human expert 
(due to fatigue and different interpretations by different humans). However, reap-
plying an algorithm to the same set of images always yields the identical result.

 Conclusion
Applying image processing and machine-learning techniques to biological and 
medical images can improve the quality of research and diagnostics dramati-
cally; automated analysis produces consistent quantitative measures. Small dif-
ferences not visible for the human eye, but possibly linked to disease states, can 
be detected. Currently applied visual inspection normally produces an overall 
score rather than measuring each cell. The human mind also cannot keep track of 
the multiple informative measures of cells or tissue and is generally less able to 
integrate many weak predictive measures. It should also be emphasized again 
that machine-based analysis is more efficient after development and can operate 
24 h, 7 days a week.
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One domain that especially benefits from such systems is bone research. 
Osteoclast quantification is currently done manually, so that large-scale experi-
ments cannot be conducted. The intra- and inter-variability between experts is 
normally very high, which is in contrast to an automated system that detects and 
quantifies these cells, improves the quality of the result, and is always consistent. 
Applying the algorithm, in addition, enables to measure parameters, which can-
not be assessed manually. Indeed, practical application of the novel osteoclast 
detection system in the software StrataQuest enabled us to identify a direct influ-
ence of the indolamine melatonin on in vitro murine osteoclast size and multi-
nuclearity which would not have been accessible without in silico-based image 
analysis.

By extension, together with automated staining systems, a reproducible, vali-
dated, and fully automatic workflow for medium to high throughput evaluation 
of basic osteoclast biology, but also routine clinical screening, is conceivable. Of 
course, legal issues have to be considered before such algorithms can success-
fully be applied to standard diagnosis in hospitals, and the results of automated 
quantifications are dependent on a number of parameters like correct staining 
and acquisition. Image processing will never replace human experts completely, 
because the final diagnosis and interpretation is still up to human expertise, but it 
can relieve the scientists or physicians from a huge amount of repetitive work 
and at the same time increase the significance of the obtainable results.

Acknowledgements This project was funded by FFG (Bridge 818094). We also want to express 
our deepest thanks to Caroline Brünner-Kubarth, Kathrin Burger, Andrea Nußbaumer, Ayse Okay, 
Magdalena Pilz, Radu Rogojanu, and Roland Stumberger for their contributions and dedication to 
our project.

References

Abrahamsson, S., Usawa, S., & Gustafsson, M. (2006) A new approach to extended focus for high-
speed, high-resolution biological microscopy. In Biomedical Optics 2006 (pp. 60900N-60900N). 
International Society for Optics and Photonics.

Akatsu T, Tamura T, Takahashi N, Udagawa N, Tanaka S, Sasaki T, Yamaguchi A, Nagata N, Suda 
T (1992) Preparation and characterization of a mouse osteoclast-like multinucleated cell popu-
lation. J Bone Miner Res 7(11):1297–1306

Andersson GN, Marks SC Jr (1989) Tartrate-resistant acid ATPase as a cytochemical marker for 
osteoclasts. J Histochem Cytochem 37(1):115–117

Baak JPA (1991) Manual of quantitative pathology in cancer diagnosis and prognosis. Springer, 
Berlin/New York, [1991] ©1991

Bakushinskiy A, Goncharsky A (2012) Ill-posed problems: theory and applications. Springer, 
Netherlands

Benes M, Zitova B (2015) Performance evaluation of image segmentation algorithms on micro-
scopic image data. J Microsc 257(1):65–85

Bubenik GA, Blask DE, Brown GM, Maestroni GJ, Pang SF, Reiter RJ, Viswanathan M, Zisapel 
N (1998) Prospects of the clinical utilization of melatonin. Biol Signals Recept 7(4):195–219

Burger W, Burge MJ (2008) Digital image processing – an algorithmic introduction using java. 
Springer, London, XX, 565 pp

A. Heindl et al.



55

Burger W, Burge MJ (2016) Digital image processing: an algorithmic introduction using java. 
Springer, London

Chinchor N, Sundheim B (1993) MUC-5 evaluation metrics. Association for Computational 
Linguistics, Baltimore, pp 69–78

Cloppet F, Boucher A (2010) Segmentation of complex nucleus configurations in biological 
images. Pattern Recogn Lett 31(8):755–761

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 
26(3):297–302

Eliceiri KW, Berthold MR, Goldberg IG, Ibanez L, Manjunath BS, Martone ME, Murphy RF, Peng H,  
Plant AL, Roysam B, Stuurman N, Swedlow JR, Tomancak P, Carpenter AE (2012) Biological 
imaging software tools. Nat Methods 9(7):697–710

Esteves T, Oliveira MJ, & Quelhas P (2013) Cancer cell detection and morphology analysis based 
on local interest point detectors. In Iberian Conference on Pattern Recognition and Image 
Analysis. Springer Berlin Heidelberg, 624–631

Gonzalez RC, Woods RE (2008) Digital image processing. Prentice Hall, Upper Saddle River
He L, Chao Y, & Suzuki K. (2012) A new two-scan algorithm for labeling connected components 

in binary images. In Proceedings of the World Congress on Engineering, 2:1141–1146
Holmes S, Kapelner A, Lee PP (2009) An interactive java statistical image segmentation system: 

GemIdent. J Stat Softw 30(10):i10
Hunter LA, Krafft S, Stingo F, Choi H, Martel MK, Kry SF, Court LE (2013) High quality 

machine-robust image features: identification in nonsmall cell lung cancer computed tomogra-
phy images. Med Phys 40(12):121916

Irshad H, Montaser-Kouhsari L, Waltz G, Bucur O, Nowak JA, Dong F, Knoblauch NW, Beck AH 
(2015) Crowdsourcing image annotation for nucleus detection and segmentation in computa-
tional pathology: evaluating experts, automated methods, and the crowd. Pac Symp Biocomput: 
(p. 294). NIH Public Access.

Jaccard P (1912) The distribution of the flora in the alpine zone. 1. New Phytol 11(2):37–50
Zhu J, Liu B, & Schwartz SC (2003) General illumination correction and its application to face 

normalization. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP’03). 
2003 IEEE International Conference on. IEEE (Vol. 3, pp. III–133)

Kapelner A, Lee PP, & Holmes S (2007) An interactive statistical image segmentation and visual-
ization system. In Medical Information Visualisation-BioMedical Visualisation, 2007. MediVis 
2007. International Conference on. IEEE 81–86

Korzynska A, Roszkowiak L, Lopez C, Bosch R, Witkowski L, Lejeune M (2013) Validation of 
various adaptive threshold methods of segmentation applied to follicular lymphoma digital 
images stained with 3,3′-Diaminobenzidine&Haematoxylin. Diagn Pathol 8:48

Koyama H, Nakade O, Takada Y, Kaku T, Lau KH (2002) Melatonin at pharmacologic doses 
increases bone mass by suppressing resorption through down-regulation of the RANKL- 
mediated osteoclast formation and activation. J Bone Miner Res 17(7):1219–1229

Krig S (2014) Ground truth data, content, metrics, and analysis. Apress, Berkeley, pp 283–311
Lennert K, Stein H (1981) Histopathology of non-Hodgkin’s lymphomas: based on the kiel clas-

sification. Springer, Berlin
Liu F, Song X, Luo Y, Hu D (2002) Adaptive thresholding based on variational background. 

Electron Lett 38(18):1017–1018
Liu H, Agam Y, Madsen JR, Kreiman G (2009) Timing, timing, timing: fast decoding of object 

information from intracranial field potentials in human visual cortex. Neuron 62(2):281–290
Livesey AE, Sutherland FI, Brown RA, Beck JS, Macgillivray JB, Slidders W (1978) Cytological 

basis of histological typing of diffuse Hodgkin’s disease. Demonstration of an implied misno-
mer in the terminology of the Rye classification. J Clin Pathol 31(6):551–559

Ljosa V, Carpenter AE (2009) Introduction to the quantitative analysis of two-dimensional fluores-
cence microscopy images for cell-based screening. PLoS Comput Biol 5(12):e1000603

Mach E (1886) Beiträge zur Analyse der Empfindungen. G. Fischer, Jena
Maria S, Witt-Enderby PA (2014) Melatonin effects on bone: potential use for the prevention and 

treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting 
procedures. J Pineal Res 56(2):115–125

2 Toward the Automated Detection and Characterization of Osteoclasts



56

Marino S, Logan JG, Mellis D, Capulli M (2014) Generation and culture of osteoclasts. Bonekey 
Rep 10(3):570

Martin DR, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and 
its application to evaluating segmentation algorithms and measuring ecological statistics. 
EECS Department, University of California, Berkeley

Maska M, Ulman V, Svoboda D, Matula P, Matula P, Ederra C, Urbiola A, Espana T, Venkatesan 
S, Balak DM, Karas P, Bolckova T, Streitova M, Carthel C, Coraluppi S, Harder N, Rohr K, 
Magnusson KE, Jalden J, Blau HM, Dzyubachyk O, Krizek P, Hagen GM, Pastor-Escuredo D, 
Jimenez-Carretero D, Ledesma-Carbayo MJ, Munoz-Barrutia A, Meijering E, Kozubek M, 
Ortiz-de-Solorzano C (2014) A benchmark for comparison of cell tracking algorithms. 
Bioinformatics 30(11):1609–1617

McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software 
Design, Gleneden Beach

Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, Eisenhaure TM, 
Luo B, Grenier JK, Carpenter AE, Foo SY, Stewart SA, Stockwell BR, Hacohen N, Hahn WC, 
Lander ES, Sabatini DM, Root DE (2006) A lentiviral RNAi library for human and mouse 
genes applied to an arrayed viral high-content screen. Cell 124(6):1283–1298

Nandy K, Gudla PR, & Lockett SJ (2007) Automatic segmentation of cell nuclei in 2D using 
dynamic programming. In Proceedings of 2nd Workshop on Microsopic Image Analysis with 
Applications in Biology

Ostrowska Z, Kos-Kudla B, Swietochowska E, Marek B, Kajdaniuk D, Ciesielska-Kopacz N 
(2001) Influence of pinealectomy and long-term melatonin administration on GH-IGF-I axis 
function in male rats. Neuro Endocrinol Lett 22(4):255–262

Pearson H (2007) The good, the bad and the ugly. Nature 447(7141):138–140
Pool CW, Diegenbach PC, Ockeloen BJ (1979) Quantitative succinate-dehydrogenase histochem-

istry. II. A comparison between visual and quantitative muscle fibre typing. Histochemistry 
64(3):263–272

Radio NM, Doctor JS, Witt-Enderby PA (2006) Melatonin enhances alkaline phosphatase activity 
in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 
melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 40(4):332–342

Rasband WS (1997–2015) ImageJ. U. S. National Institutes of Health, Bethesda
Rock I, Palmer S (1990) The legacy of Gestalt psychology. Sci Am 263(6):84–90
Rogojanu R, Bises G, Smochina C, & Manta, V (2010) Segmentation of cell nuclei within com-

plex configurations in images with colon sections. In Intelligent Computer Communication and 
Processing (ICCP), 2010 IEEE International Conference on. IEEE 243–246

Samet H, Tamminen M (1988) Efficient component labeling of images of arbitrary dimension 
represented by linear bintrees. IEEE Trans Pattern Anal Mach Intell 10(4):579–586

Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform 
for biomedical image analysis. Mol Reprod Dev 82(7-8):518–529

Schmid M, Dufner B, Durk J, Bedal K, Stricker K, Prokoph LA, Koch C, Wege AK, Zirpel H, van 
Zandbergen G, Ecker R, Boghiu B, Ritter U (2015) An emerging approach for parallel quanti-
fication of intracellular protozoan parasites and host cell characterization using TissueFAXS 
cytometry. PLoS One 10(10):e0139866

Sheeba F, Thamburaj R, Mammen JJ, & Nagar AK (2014) Splitting of Overlapping Cells in 
Peripheral Blood Smear Images by Concavity Analysis. In International Workshop on 
Combinatorial Image Analysis. Springer International Publishing 238–249

Smith K, Li Y, Piccinini F, Csucs G, Balazs C, Bevilacqua A, Horvath P (2015) CIDRE: an 
illumination- correction method for optical microscopy. Nat Methods 12(5):404–406

Smochina C, Manta V, Rogojanu R (2010) New discrepancy measure for evaluation of segmenta-
tion quality, In Proc. 11th IASTED International Conference on Computer Graphics and 
Imaging, Innsbruck, Austria, track 679–053

Solomon C, Breckon T (2011) Fundamentals of digital image processing: a practical approach 
with examples in matlab. Wiley Publishing, Chichester

A. Heindl et al.



57

Spector DL, Goldman RD (2006) Basic methods in microscopy protocols and concepts from cells: 
a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

Srivastava G, Yoder JA, Park J, Kak AC (2013) Using objective ground-truth labels created by 
multiple annotators for improved video classification: a comparative study. Comput Vis Image 
Underst 117(10):1384–1399

Stadler M, Walter S, Walzl A, Kramer N, Unger C, Scherzer M, Unterleuthner D, Hengstschlager M, 
Krupitza G, Dolznig H (2015) Increased complexity in carcinomas: analyzing and modeling the 
interaction of human cancer cells with their microenvironment. Semin Cancer Biol 35:107–124

Stockman G, Shapiro LG (2001) Computer vision. Prentice Hall PTR, Upper Saddle River
Takahashi N, Udagawa N, Kobayashi Y, Suda T (2007) Generation of osteoclasts in vitro, and 

assay of osteoclast activity. Methods Mol Med 135(1543-1894 (Print)):285–301
van de Wijngaert FP, Tas MC, Burger EH (1987) Characteristics of osteoclast precursor-like cells 

grown from mouse bone marrow. Bone Miner 3(2):111–123
Wang H, Zhang H, Ray N (2012) Clump splitting via bottleneck detection and shape classification. 

Pattern Recogn 45(7):2780–2787
Wang HF, Wang GP, Wang XY, Wang BJ, Zhao XD (2015) Novel background calibration algo-

rithm for image in non-uniform illumination field. Imaging Sci J 63(5):285–289
Wu Q, Merchant F, Castleman K (2008) Microscope image processing. Elsevier Inc., Amsterdam
Xiong G, Zhou X, Ji L, Bradley P, Perrimon N, & Wong S (2006) Segmentation of drosophila 

RNAi fluorescence images using level sets. In 2006 International Conference on Image 
Processing. IEEE 73–76

Yagi Y, Gilbertson JR (2005) Digital imaging in pathology: the case for standardization. J Telemed 
Telecare 11(3):109–116

Zack GW, Rogers WE, Latt SA (1977) Automatic measurement of sister chromatid exchange 
frequency. J Histochem Cytochem 25(7):741–753

Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recog 
29(8):1335–1346

Zhang YJ (2001) A review of recent evaluation methods for image segmentation. Kuala Lumpur, 
Malaysia, pp 148–151

Zhang C, Sun C, Su R, Pham TD (2015) Clustered nuclei splitting via curvature information and 
gray-scale distance transform. J Microsc 259(1):36–52

2 Toward the Automated Detection and Characterization of Osteoclasts


	2: Toward the Automated Detection and Characterization of Osteoclasts in Microscopic Images
	2.1	 Introduction
	2.2	 Techniques
	2.2.1	 Culture Conditions for Isolated Murine Osteoclasts
	2.2.2	 Staining Protocol
	2.2.3	 Digital Images
	2.2.4	 Automated Slide-Based Microscopy
	2.2.5	 Software for Image Processing

	2.3	 Evaluation of Expert Markups and Developed Image-Processing Algorithms
	2.4	 How to Design an Image-Processing Algorithm Exemplified on Osteoclast Detection in Culture
	2.4.1	 Illumination Correction
	2.4.2	 Segmentation
	2.4.3	 Post-processing
	2.4.4	 Labeling
	2.4.5	 Practical Example: Influence of Melatonin on Osteoclast Formation

	2.5	 Common Pitfalls
	2.5.1	 Imaging-Based Errors
	2.5.1.1	 Illumination
	2.5.1.2	 Acquisition Parameters
	2.5.1.3	 File Formats

	2.5.2	 Errors Related to the Gestalt Laws
	2.5.3	 Benefits of Automated Osteoclast Detection

	 Conclusion
	References


