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5.1 Hepatocellular Carcinoma: Clinical
Concerns

The wide heterogeneity of HCC and the complexity of its
diagnostic and prognostic assessment (dependent upon
tumor grade/residual liver function contributed by various
etiological factors) have interfered with clinical recommen-
dations and progress. Despite many studies of HCC, the
specific changes associated with its development remain
ill-defined and there is no clear consensus on which of the
many different staging systems introduced around the world
is best [1–6]. Although individuals at high risk for HCC
development are routinely screened by ultrasonography and
serum alpha-fetoprotein (AFP), most patients are diagnosed
at advanced disease stages. AFP evaluation however, can be
nonspecific, vary significantly between ethnic groups and is
only observed in a HCC subgroup with small tumors [7].
Although several additional serum proteins have been sug-
gested to improve HCC diagnosis, they lack sensitivity and
specificity and await confirmatory studies or development of
quantitative methods to evaluate their utility [8–10]. It is
possible that a single marker may not be sufficient to diag-
nose HCC and as such, it may be important to test combi-
nations of markers to improve diagnostic performance. HCC
diagnosis with the AFP marker therefore remains the gold
standard and improvement of the current screening system is
an imperative goal. Liver function impairment and the
expression of multidrug resistance genes renders HCC
treatment especially difficult [11]. Since most HCC patients
are diagnosed at an advanced stage, they are often excluded
from potentially curative therapies such as resection and
liver transplantation. Eligibility for resection (relatively good
liver function and small tumors) or transplantation (Milan
criteria/limited donor livers/long waiting list) is also quite
slim and postsurgical survival is complicated by a predom-
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inant occurrence of tumor recurrence/metastasis [12–14].
Methods to improve survival include percutaneous ethanol
injection, radiofrequency ablation, and transarterial
chemoembolization (TACE) [15, 16].

The current status of HCC emphasizes the importance of
understanding the underlying biology of this disease and the
development of new screening and treatment stratification
programs to refine diagnosis and improve patient outcome.
Relevant biomarkers to assist HCC diagnosis and prognosis
are particularly essential at early HCC stages and can be
used as novel therapeutic agents. The identification of such
biomarkers in a high-throughput fashion is now possible
through the advent of global molecular profiling.

5.2 Molecular Profiling: Technologies
and Platforms

The gene expression profile of a particular cell type or tissue
has been analyzed in earlier years using multiple technologies
including differential screening of cDNA libraries, subtrac-
tive cDNA hybridization, differential display of RNA, and
serial analysis of gene expression (SAGE). More recently,
global expression profiling studies have been conducted
using platforms consisting of genes (cDNA/OLIGO
microarrays), noncoding RNA, proteins (proteome arrays),
tissues (tissue microarray), metabolites (metabolomics), and
genetic aberrations (array CGH/methylation) [17–19]. In
addition, sequencing on the DNA and RNA level has also
increased our capacity to identify the mutation landscape of
HCC [20–22]. Although previous methodologies to study
HCC have advanced the field, molecular profiling of clinical
samples from HCC patients and HCC-related cell lines have
enriched the breadth of HCC knowledge and have allowed
researchers to begin to tackle some of the key disease-related
concepts that still remain.

5.2.1 Molecular Platforms

Microarrays provide genomic information and insight into
biological processes on a genome-wide scale. Their minia-
turized ordered arrangement of targets (nucleic
acids/proteins/tissues) located at defined positions on a solid
support (platform) enables high-throughput parallel analysis
of many targets by specific hybridization. The composition
of an array platform can be global (an entire genome on a
slide) or specific (pathways, cell/tissue type) and allows for
the characterization of multiple layers of signaling

information including the genome, epigenome, transcrip-
tome, proteome, and metabolome. A brief overview of
widely used array platforms is provided below.

5.2.1.1 Genomic Profiling (aCGH, Methylation,
Sequencing)

Array Comparative Genomic Hybridization

An important method of identifying driver genes involved
in HCC is to detect genomic regions that undergo frequent
alterations or are modified. Several types of alterations are
present in the liver including changes in gene copy number,
mutations, and chromosomal rearrangements. Array Com-
parative Genomic Hybridization (aCGH) using the
BAC-based (Bacterial Artificial Chromosome) and
oligonucleotide-based CGH enables high-resolution multi-
loci mapping of small genomic regions with copy number
changes, such as amplification or deletion [23, 24]. BAC
aCGH is limited by costly, time-consuming, low-yield clone
production and noisy data due to nonspecific hybridization
of repetitive sequences. Oligonucleotide aCGH allows for
flexibility in probe design, greater genomic coverage, and
higher resolution (*50 kB). Tiling BAC arrays however,
(where each BAC overlaps with its contiguous BAC) can
increase resolution, signal intensity, and more accurately
define the boundaries of genomic aberrations, but requires a
high concentration of high-quality BAC DNA for good array
performance [25, 26]. Recently, genome-wide approaches,
such as the single nucleotide polymorphism (SNP) 6.0
arrays, have allowed for global analyses of copy number
alterations in HCC. Using these methods, numerous ampli-
fied and deleted genes have been observed in HCC.

Methylation

A few CGH array studies have been followed by bisulfate
DNA sequencing or methylation-specific PCR to identify
HCC-related epigenetic changes [27–29]. Since HCC
develops against a background of chronic liver damage, the
extent of genetic and epigenetic alterations is essential for
our understanding of this cancer. In particular, methylation
at CpG sites in gene promoters can affect the transcription of
important genes in cancer. In fact, several hypermethylation
events have been observed in tumor suppressor genes, sug-
gesting a role for carcinogenesis promotion via this disrup-
tion of normal transcriptional events and induction of
chromosomal instability. Indeed, certain methylation events
have been associated with HCC patient survival and
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recurrence and targeting of the epigenetic machinery has
been the basis of some trials for HCC therapy [30, 31].
Methylation events can occur in several sites, including gene
promoters, gene bodies, repetitive sequences, and intergenic
regions, however the functional importance of specific
alterations currently remains unclear. The induction of
methylation events is also largely unknown, although some
studies have shown that hepatitis viral infections, as well as
nonalcoholic fatty liver disease can induce changes in
methylation [32, 33]. Comprehensive methylation profiles of
HCC are now readily studied by array-based platforms such
as the Human Methylation 450 Bead Array and
next-generation sequencing technology [34]. Our under-
standing of the HCC epigenetic code may allow for the
development of novel diagnostic and therapeutic approaches
for HCC.

Sequencing

High-resolution assessment of the liver cancer genome is
now possible through advances in next-generation
sequencing technologies [35]. An in-depth exploration of
the liver genome has recently been employed through whole
exome sequencing. This method is based on the capture or
enrichment of DNA fragments containing the exonic region
followed by massively parallel sequencing to determine
somatic mutations [36–38]. Using this technology, several
somatic alterations in the protein-coding region have been
identified in HCC. To further identify somatic drivers in
HCC, efforts have also been made to sequence the entire
liver genome. This is referred to as whole genome
sequencing whereby structural rearrangements, substitutions
in noncoding regions, and viral integration sites can be
explored. These methods however, look at rather short
lengths of DNA sequences and thus, the identification of
large genomic alterations is still rather limited. Although
several key molecules have been indentified or validated by
these methods, there seem to be a large number of passenger
mutations present, which makes the identification of key
driving genes in HCC a more complex problem.

RNA sequencing meanwhile, has added to our capacity
for transcriptome profiling by allowing us to explore rear-
rangements in transcripts, noncoding RNAs, and splicing
events. This highly sensitive method provides a more
accurate tool for measuring expression across the transcrip-
tome. Transcript abundance is quantifiable using this
method, along with the identification of both known and
novel features in the coding and noncoding transcriptome.
Overall quality of starting samples, sequencing libraries,
sequencing coverage, as well as time and cost parameters
can have a significant impact on the sensitivity of detection
and data quality in these types of experiments. These

comprehensive genomic analyses however, are enabling
researchers to examine the liver cancer genome at a much
higher resolution with potentially impactful findings that
could advance clinical management of this disease.

5.2.1.2 Transcriptomic Profiling
(CDNA/OLIGO/Noncoding RNA)

The cDNA microarray reports differences in gene expression
levels between samples and functions on the basis of specific
and high-affinity molecular recognition between comple-
mentary cDNA strands (PCR-derived cDNA or 20–60mer
OLIGO fragments) representing exonic regions of the gen-
ome [39]. Multiplexed target profiling of hundreds of tran-
scripts is also readily available through newer applications
such as Nanostring [40]. In addition, the regulation of
mRNAs can be analyzed using noncoding arrays (e.g.,
microRNA, pre-microRNA, snoRNA), which globally
interrogate the expression of small endogenous (21–35 nt)
RNA species. Platforms that detect mature and precursor
forms of >2000 miRNAs are now commercially available
[41–43].

5.2.1.3 Proteomic Profiling (Proteome/Tissue)
Although mRNAs are transcribed, they may not be trans-
lated and thus mRNA copy number may not reflect the
number of functional protein molecules in a cell. Thus,
proteome arrays may provide a better view to understand
gene function. Protein function or protein detecting arrays
involve immobilization of antibody probes to detect antigens
in a sample, or vice versa. These arrays can be used to
quantify proteins, determine posttranslational modifications,
and correlate proteins with disease advancement or with
certain treatments/environments [44]. Tissue microarrays
(TMA) allow tissue-based profiling using small cylinders of
formalin-fixed tissues arrayed in a single paraffin block [45].
Protein arrays are limited by the protein concentration range
required for direct detection within a given sample and
current instrumentation allows for only a fraction of the
proteome to be examined. The measurement of low abun-
dance targets also remains a challenge, but high-affinity
probes, such as SELEX (systematic evolution of ligands by
exponential enrichment) aptamers may help to resolve this
problem [46]. Comprehensive proteomic characterization
has been performed for certain cancer types, such as colon
and rectal, however there is currently a lack of such studies
for HCC [47].

5.2.1.4 Metabolomic Profiling
Cancer metabolite profiling (metabolomics) is a promising
new approach to understand the biological mechanisms
underlying cancer development and progression. Metabo-
lomics provides a global view of metabolites, the
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biochemical end products of cellular processes, enabling the
characterization of cancer through metabolic changes, whose
regulation are tightly linked with a certain pathological state
[48]. In fact, metabolites are the best molecular indicators of
cell status, since metabolic fluxes can change in a matter of
seconds versus the comparatively slower turnover of mRNA
and proteins [49, 50]. Thus, metabolic alterations are an
extremely sensitive measure of cellular phenotype. Although
genomics-based studies have been performed to extensively
profile human tumors [51–56], relatively little is known
about the global metabolite alterations that characterize
cancer and how all of these events are intertwined as a
network leading to aggressive disease and poor outcome.
A systematic assessment of the pathways in which these
genes and biochemical molecules contribute may lead to a
more precise set of alterations that may serve as key
biomarkers or drug targets for clinical interrogation in cancer
patients suffering dismal prognosis.

5.2.2 Computational Analysis

Methodologies for analysis of large-scale omics data can be
either unsupervised or supervised [57, 58]. Unsupervised
methods attempt to characterize the components of a dataset
without a priori input or knowledge of a training set. Internal
structure or relationships in datasets are found by feature
determination which groups genes/molecules with interest-
ing properties (principal component analysis), cluster
determination which groups genes or samples with similar
patterns of gene/molecule expression or abundance (nearest
neighbor clustering, self-organizing maps, k-means cluster-
ing, and one- and two-dimensional hierarchical clustering),
and network determination which graphs gene–gene or
gene–phenotype interactions (Boolean networks, Bayesian
networks, and relevance networks). On the other hand,
supervised methods are used to determine molecular features
that fit a predetermined pattern [59]. This technique finds
genes/molecules with expression or abundance levels that
are significantly different between groups of samples (e.g.,
cancer classification) and can be used to find
genes/molecules that accurately predict a characteristic of
that sample (e.g., survival or metastasis). The significance
found by supervised methods has been evaluated using
parametric, nonparametric, and analysis of variance proce-
dures which involve permutations, random partitioning of
the studied dataset, and false discovery limits. These meth-
ods are employed to assess the validity of signatures asso-
ciated with a tested feature and to rule out the identification
of a signature by random chance.

Several criteria exist for determining differential expres-
sion or abundance, including absolute or ratio of expression
or abundance levels across samples and subtractive degree of

change between groups. These methods include the nearest
neighbor approach, decision trees, neural networks, and
support vector machines. Corrective statistics are also used
when identifying genes/molecules of interest, to account for
multiple testing in large datasets, including adjusted p-value,
false discovery cutoffs, and Bonferroni corrections [60]. Due
to the high complexity and sheer magnitude of current
datasets, such as those ensuing from sequencing studies, new
techniques and methods are constantly being explored,
updated, and created to adequately analyze data. Many of
these methods rely on algorithms and codes, most based on
the R programming language, and in-house or stand-alone
software associated with new technologies. A gold standard
has been proposed for analysis of array studies which
involves the use of a training dataset to initially identify a
signature, a test dataset to assess its predictive/classification
capacity, and an independent set for validation studies [61–
63]. Importantly, biomarkers and signatures of interest need
to not only be tested in retrospective cohorts, but also in
prospective studies and in context of therapeutic strategies
for HCC.

5.3 Tumor Signatures

Array studies have provided vast amounts of information
concerning the genes, proteins, metabolites, and genomic
changes that occur in HCC-related disease. These investi-
gations have revealed changes that occur across the spectrum
of cirrhosis, HCC tumors, the HCC microenvironment, HCC
subtypes, epigenetic alterations, and progressive phenotypes
(metastasis/recurrence). A general overview of these studies
along with a synopsis of emerging perspectives gleaned
from these analyses is provided in this section.

5.3.1 Tumor-Based Diagnostic HCC
Signatures

5.3.1.1 Tumor Biomarkers (Tumor Vs.
Nontumor)

Array studies have enhanced our understanding of how the
HCC process alters the regulatory network of genes, pro-
teins, metabolites, and epigenetic effects, in a way that dif-
fers from the respective normal tissue or disease-free
samples. For example, cDNA analysis of HCC versus nor-
mal samples have found 38 differentially expressed genes
while HBV-related cell lines revealed signatures (356 genes)
composed of upregulated ribosomal-related genes [64, 65].
TIPUH1, a regulator of transcription and RNA processing of
growth control genes has also been shown to be upregulated
in HCC by cDNA array [66]. It has also been shown that five
genes (GPC-3, PEG10, MDK, SERPINI1 and QP-C) are
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elevated in HCC samples, even in those with low AFP status
compared to normal tissue [55]. A cDNA array of
non-HBV/HCV-infected HCC versus normal tissues
revealed 61 differentially expressed genes [67]. A number of
studies have also found alterations in genes involved in
protein synthesis, growth factors, oncogenesis, stress,
inflammation, cell proliferation, transcription, protein
degradation, p53, Wnt/b-catenin, metabolism, and tumori-
genesis pathways in HCC [68–70]. Integrin and Akt/NFKB
signaling were also upregulated in HCC along with a serum
biomarker (CSTB) using cDNA arrays [71, 72]. Similar
studies have shown that activators of neutrophils, anti-
apoptotic genes, interferon response genes and proteins
related to cell differentiation or development are differen-
tially expressed in HCV-HCC [73]. OLIGO arrays have
shown that p53-related genes (n = 83) are affected by HCV
infection and alter immune response, transcription, transport,
signal transduction, and metabolism in tumors [74]. Several
of these pathways, along with growth factor alterations were
found in cDNA arrays comparing HBV or HCV-positive
tumor versus nontumor tissue [75]. A clear distinction was
found between HBV and HCV samples, where HBV affec-
ted genes involved in apoptosis, p53 and the G1/S transition
while HCV affected genes were more heterogeneous. In a
separate cDNA array study, upregulation of
mitosis-promoting genes was observed in the majority of
HBV or HCV tumors versus nontumor while differentially
expressed genes between HBV and HCV tumors encoded
enzymes that metabolize carcinogens and/or anticancer
agents associated with malignant/invasive phenotype,
apoptosis, or immune regulation [76].

Proteomic and TMA arrays have also been used to
address the differences that occur following tumor forma-
tion. A proteomic analysis of human HCV-related HCC
found alterations in glycolysis enzymes, mitochondrial
b-oxidation pathways, and cytoskeletal proteins when
compared to nontumor tissue [77]. Other HCC-related pro-
tein classifiers include those involved in heat shock
response, glycolysis, fatty acid transport and trafficking,
amino acid metabolism, cell cycle regulation and cell stress,
and metabolism related enzymes [78–80]. Other upregulated
genes in HCC include insulin growth factor II, metallopro-
teases, signal transducers and activators of transcription
(STAT), suppressors of cytokine signaling and cyclin D1
while collagens and SMAD pathways were downregulated
[81]. Quantitative proteomics revealed that the SET complex
is associated with HCC [82], while complement C3a was
suggested as a HCC biomarker in HCV-HCC [83]. Serum
monocyte chemoattractant protein-1 and prolactin have also
been identified as potential tumor markers in HCC [84].
A TMA study of HCC versus nontumor found HCC-specific
expression of the transcription repressor Zinc fingers and

homeoboxes 2 (ZHX2) protein expression which correlated
with differentiation stage [85].

Multiple studies have aimed to determine HCC-related
regions of genetic gain or loss. Most studies have found
similar regions of gain (1p, 4q, 8p, 13q, 16q, and 17p) and
loss (1q, 6p, 8q) in HCC [86, 87]. In addition, a study of 120
HCC samples found LOH at 6q and 9p in small,
well-differentiated tumors [88]. A comparison of tumor
versus nontumor HCC samples using BAC aCGH included
frequent DNA copy number gains of 20q, and found that
high Jab1 levels correlated with chromosome 8q gain in
HCC [87]. In a study of 20 HCC cases, oncogenes were
amplified in 1q, 8p, and 11q regions while loss occurred at
13q and 4q [89]. A study of HCV-HCC revealed that
increases of DNA copy number were frequent at 10p while
decreases were frequent at 10q [86]. These authors found
increases in copy numbers of the LAMC2, TGFB2, and
AKT3 genes (located on 1q) and decreases in copy numbers
of FGR/SRC2 and CYLD (located on 1p and 16q, respec-
tively) in tumors. In a study of HBV-HCC, gains on 1q, 6p,
8q, 9p were observed while losses in 1p, 16q, and 19p
occurred in most patients [90]. Midorikawa et al. showed a
frequent gain of 1q, 8q, 12q, 17q, and 20q as well as a loss
of 4q, 8p, 13q, and 17p in HCC [91]. Gains in regions
encoding MET, c-myc, and FGF4 were also found in a CGH
study of HCC while a separate study identified narrow
regions of frequent amplification on chromosome 1p, fre-
quent deletion on 17q, and alterations in 7q21 encoding
Paternally expressed 10 (PEG10) [92, 93].

miRNAs have recently been utilized as potential HCC
diagnostic markers. Expression profiling studies have
defined the liver-specific miR-122 to be highly downregu-
lated in HCC tumors and cell lines [94, 95]. miRNA array
studies have also demonstrated that miR-21 can contribute to
HCC growth and spread by modulating PTEN [96]. In other
miRNA-based studies, mir-224, a 16-miRNA set, and a
novel mRNA-like noncoding RNA named highly upregu-
lated in liver cancer (HULC) were found to be significantly
upregulated in HCC [97–99]. In another study comparing
HCC samples and adjacent nontumor, 8 miRNAs were
shown to be significantly altered, 5 of which were down-
regulated in HCC and could predict HCC with 97 % accu-
racy [100]. More recently, microRNAs present in the
circulation have also been identified as potential biomarkers
for HCC [101, 102].

DNA methylation-based prognosis and epidrivers for
HCC have also been studied. Villaneuva et al. identified a
signature of 36 DNA methylation markers that predicts HCC
patient survival and harbor mRNA signatures of tumors with
progenitor cell features [103]. Deng et al. applied methylated
DNA immunoprecipitation to identify 15 genes preferen-
tially methylated in HCV-HCC [104]. Using a 27 K
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Infinium array, thousands of differentially methylated genes
in HCC were found, several of which could be assayed in
plasma [34]. Tumor from nontumor specimens could be
readily indentified in a methylation study of HCC using a
450 K array. Methylation events in p53, CTNNB1, GSTP1,
MGMT, RASSF1A and in promoter CpG islands of
CDKN2A have also been identified in HCC [105–108].

Array-based comparisons have also been made between
early neoplastic stages (fibrosis/cirrhosis) and HCC. A study
of 59 preneoplastic chronic liver diseases (CLDs) including
hepatitis, autoimmune hepatitis, primary biliary cirrhosis
found genes associated with high or low risk of HCC
development [109]. This 273-gene signature was validated
in three independent cohorts and included 12 secretory genes
in the top geneset. In separate cDNA array-based studies, 25
cirrhosis-specific genes were identified that were related to
inflammatory status of adjacent HCC tissue and 129 genes
were altered in HCC compared to liver cirrhosis samples
[110]. In an OLIGO array-based study of fibrosis, carbohy-
drate metabolism genes were elevated in HCC patients when
compared to cases with F3–4 fibrosis [111]. In a comparison
of HCC with CLD (either HBV or HCV positive) or HCC
without CLD in an OLIGO array, genes involved in tran-
scription, metabolism, and cell growth were differentially
expressed [112]. An RT-based study of cirrhosis versus
HCV-HCC showed that eight genes were significantly
altered (GPC3, TERT, Survivin, XLKD1, and CDH1) [113].
MiRNA platforms have also demonstrated that 35 miRNAs
including let7 and miR-181 family members differ between
HCC and cirrhosis [114]. Circulating microRNAs have also
been shown as important modulators in early stage HCC
[115]. aCGH of 63 HCCs found etiology-dependent copy
number gains, including 8q24 and MYC overexpression in
viral and alcohol-related HCCs [116]. The use of compre-
hensive proteomic profiling of sera to differentiate HCC
from CLD found 250 significantly different proteins, while
an 11-peak SELDI profile or 4-peptide panel could distin-
guish HCC from HCV-related cirrhosis and was an inde-
pendent predictor of HCC [117, 118]. In other studies, and
CD5L and Annexin A2 were found as discriminative can-
didates in HCC [119, 120].

5.3.1.2 Tumor Biomarkers (Epigenetic
Signatures)

HCC development is thought to be a multistep process, not
only involving accumulation of genetic changes, but also
epigenetic changes, such as methylation, which can rever-
sibly alter regulatory genes. Several studies have begun to
address the epigenetic changes that occur in HCC. In a
cDNA/bisulfite PCR study, the demethylating agent
5-Aza-dC was used to identify hepatocyte growth factor
(HAI-2/PB) as a frequent hypermethylated gene in HCC
[121]. In another cDNA array and bisulfite PCR study,

insulin-like growth factor binding protein was found to be
hypermethylated and downregulated in HCC [122]. An
OLIGO-based analysis of human HCC cell lines showed that
treatment with 5-Aza-dC resulted in a decrease of the tissue
factor pathway inhibitor TFPI-2 [123]. In addition, Pang
et al. found a loss of an unmethylated 6q allele in HCC
encoding a putative tumor suppressor gene [124]. However,
in a study of 60 primary HCCs using aCGH and
methylation-specific PCR a causal relationship was not
observed between the methylation status of nine CpG
islands, including p16, COX2, and APC, and patient out-
come [125]. A promoter methylation study of 30 HCC
tumors showed that they exhibit specific DNA methylation
signatures associated with major risk factors and tumor
progression stage, with potential clinical applications in
HCC diagnosis [126].

Thus, numerous array studies have shown that multiple
tumor-specific alterations occur during hepatocarcinogene-
sis. A detailed exploration of these changes may offer new
insight regarding HCC biology and provide avenues for
diagnostic advances. Across platforms however, marker sets
are quite different from one another, despite a similarity in
comparison groups which could be due to platform makeup,
sample heterogeneity, etiological differences, or ethnicity
among samples. In addition, many of these studies lack
validation and are only drawn from relatively small datasets
and therefore further studies will be needed to determine
whether the identified changes can be widely useful for
diagnostic or HCC classification purposes. In sum, these
studies clearly demonstrate that measurable changes occur
during HCC development that may be useful for early
detection.

5.3.2 Tumor-Based Prognostic Signatures

Metastasis and recurrence are major factors affecting the
outcome of patients with HCC. Understanding the mecha-
nisms involved in the process of tumor invasion and
metastasis is a major challenge. Biomarkers related to these
processes may have clinical prognostic utility. Important
questions related to metastasis involve initiation, the rela-
tionship between primary and metastatic tumors and whether
these metastatic changes are inherent to the cell or are
acquired through time and/or environmental status. The
current metastasis model suggests a multistage carcinogenic
process initiated by rare genetic alterations in a single cell,
followed by clonal selection and population expansion
[127]. In HCC however, such stepwise and specific
progression-related genetic changes have not been
illustrated.

The transcriptome, proteome, and genome of metastatic
HCC cells have been studied using array technology.
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Comprehensive cDNA analysis of HCV-related HCCs has
identified 35 genes involved in portal vein invasion
(PVI) including the inhibitor of DNA binding 2 (ID2),
encoding a liver-rich dominant-negative helix-loop-helix
protein which was validated by qRT-PCR, western blot
analyses, and in an independent set [128]. A 91-gene vas-
cular invasion signature was also found in a separate cDNA
study and 90 clones were correlated with intrahepatic
metastasis in a study of 22 HCC foci [129, 130]. A cDNA
array was also employed to profile gene expression patterns
in two subtypes of HCC, solitary large HCC (SLHCC) and
nodular HCC (NHCC), which differ significantly in meta-
static incidence [131]. A significant decrease in RhoC
expression in SLHCC compared to NHCC was strongly
correlated with HCC metastasis, implicating RhoC as a
potential prognosis marker and therapeutic target for HCC
[132]. Another cDNA study of HCC found 217 genes
associated with differentiation status and metastasis,
including ANXA2 [133]. Another cDNA-based study found
that HCC with high expression of ubiquitin-cojugating
enzyme Ube2c, displayed PVI and poor disease-free survival
rates while 906 genes were found to differ between HCC and
surrounding tissue, generating clusters (A and B) that were
associated with patient survival [134, 135]. OLIGO array
studies have also shown that MAPK pathway and angio-
genesis factors such as VEGF and HGF are associated with
HCV-HCC while 39 genes were significantly correlated with
metastasis, including Cortactin, a cortical actin-associated
protein substrate of Src [136, 137]. cDNA arrays have also
been used to show that intrahepatic metastatic lesions are
indistinguishable from their primary HCC while primary
metastasis-free HCC was distinct from primary HCC with
metastasis [53]. These data indicate that primary HCC with
metastatic potential is an inherent quality of the primary
tumor rather than a capability acquired over time through
mutation. The 153-HCC metastasis gene signature, whose
lead gene was osteopontin (OPN), could accurately classify
metastatic HCC. It has also been investigated whether cer-
tain miRNAs are associated with HCC metastasis [138]. We
identified a unique 20-miRNA metastasis signature that
could significantly predict (p < 0.001) primary HCC tissues
with venous metastases from metastasis-free solitary tumors.
A survival risk prediction analysis revealed that a majority of
the metastasis-related miRNAs were associated with sur-
vival. Furthermore, the 20-miRNA tumor signature was
validated in 110 additional cases as a significant independent
predictor of survival (p = 0.009) and was significantly
associated with survival and early stage HCC. These 20
miRNAs may provide a simple profiling method to assist in
identifying HCC patients who are likely to develop
metastases/recurrence.

TMAs and aCGH have also been used to study HCC
metastasis. The clinical significance of FGF3 overexpression

was studied by TMA in 60 pairs of primary/metastatic HCCs
and showed that overexpression of FGF3 was significantly
associated with HCC metastasis and recurrence (p < 0.01)
[139]. ZHX2, described earlier as a possible HCC diagnostic
marker was also found by TMA to be expressed significantly
higher in primary lesions with metastasis than in those
without this phenotype [85]. A significant overexpression of
clusterin (CLU) was found in metastatic HCC in a paired
tissue study (n = 104) and Id-1 (inhibitor of
differentiation/DNA synthesis) as well as Rac and VEGF,
key angiogenic factors in cancer progression, were corre-
lated with HCC metastasis by TMAs [140, 141]. Meanwhile,
aCGH array analysis of early and advanced components of
nodule-in-nodule HCC found that genetic inactivation of the
APC gene played a significant role in the progression of
sporadic HCC, possibly through activation of the
Wnt/beta-catenin pathway [142]. Another study revealed
that loss of 17p13.3 and 8q11 were independent prognostic
indicators of poor HCC patient survival [143]. LOH has also
been observed at 16q and 17q in HCC and occurred more
frequently in metastatic lesions [144]. The authors suggest
that upregulation of PFTK1, in particular, may confer a
motile phenotype in malignant hepatocytes that correlates
with metastasis. Proteomics has also been applied to
understand HCC progression. Tan et al. recently used
comparative proteomics to identify proteins to differentiate
patients who relapse from those who do not [145]. Pro-
teomics has also been used to identify Talin-1 upregulation
to be associated with HCC prognosis [146].

Tumor recurrence complicates resection in a large per-
centage of cases due either to true metastases or develop-
ment of de novo tumors. Vascular invasion, multinodularity,
and degree of differentiation are the major predictors of
recurrence. Kurokawa et al. identified a 20-gene signature
using a PCR-based platform that could predict recurrence
with 70 % accuracy in an independent cohort of 40 patients
[147]. A cDNA-based study of 18 HCCs found a 14-gene
signature that differed between vascular invasion status and
could predict postresection recurrence [148]. cDNA array of
HCCs identified claudin-10 expression level to be associated
with disease recurrence and was validated by qRT-PCR and
associated with survival in multivariate Cox regression
analysis [149]. Meanwhile, a 12-gene OLIGO array-based
signature has also been shown to predict recurrence within 1
year postsurgery with 93 % accuracy [150]. A recent
follow-up study showed that 3 of these 12 genes
(HLA-DRA, DDX17, and LAPTM5) could predict early
intrahepatic recurrence with 81 % accuracy and was an
independent risk factor associated with recurrence in a
multivariate analysis [151]. Another OLIGO study identified
a 57-gene signature that could predict recurrent disease at
diagnosis with 84 % accuracy and was validated in an
independent test set [152]. In addition, cDNA analyses
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found gene sets linked to early intrahepatic recurrence
including a downregulation of immune response-related
genes encoding MHC class II antigens (HLA-DRA,
HLA-DRB1, HLA-DG, and HLA-DQA) [153, 154]. cDNA
arrays have also been used to identify a 46-gene signature
associated with extrahepatic recurrence [155]. The
20-miRNA metastasis signature identified was also signifi-
cantly associated with recurrence in early stage HCC [138].

Metastasis and recurrence continue to plague HCC
patient outcome. Array profiling methods have identified
many alterations that occur in HCC metastasis, some
involving well-known metastasis associated factors such as
the angiogenesis-related VEGF and others identifying novel
players related to this phenotype. In addition, permissive
microenvironments have also been shown to influence HCC
metastasis. These metastasis signatures have broadened our
knowledge of the biological pathways that are affected
during this process and have highlighted particular
biomarkers that may be useful to identify HCC patients who
are prone to metastasis/recurrence and are tools that can be
used to stratify patients for adjuvant therapy. However, the
signatures discussed above are largely nonoverlapping,
suggesting a significant heterogeneity. Although some of
these markers have been associated with outcome, future
validation and functional/mechanistic studies will be needed
to assess their prognostic significance.

5.4 Microenvironment Signatures

Studies have suggested that while tumor cells affect meta-
static capacity, the organ microenvironment can also con-
tribute to this phenotype [156–158]. To determine the role of
the hepatic microenvironment in HCC metastasis, the cDNA
profiles of noncancerous surrounding hepatic tissues
(n = 115) from HCC patients with venous metastases, ter-
med a metastasis-inclined microenvironment (MIM) sample
to those without detectable metastases, termed a metastasis-
averse microenvironment (MAM) sample were compared
[54]. A unique change in the gene expression profiles
associated with a metastatic phenotype was identified which
was refined to 17 immune-related genes. This signature was
inherently different from a signature found in HCC tumor
tissues and was validated in an independent cohort (n = 95).
The nontumor signature could successfully predict venous
and extrahepatic metastases by follow-up with >92 %
overall accuracy and was a superior and independent prog-
nostic indicator when compared to other available clinical
parameters for determining patient survival or recurrence.
Dramatic changes in cytokine responses, favoring an
anti-inflammatory microenvironmental condition, occur in
MIM samples, where a predominant Th2-like cytokine
profile, favoring a humoral response, was associated with

MIM cases. Colony-stimulating factor-1 (CSF1) may be one
of the cytokines overexpressed in the liver milieu that is
responsible for this shift. Gene expression profiling of
nontumor specimens from HCC patients was also used to
identify a molecular signature from formalin-fixed
paraffin-embedded tissues. This poor prognosis signature
was related to impaired liver function and inflammation,
particularly interleukin-6. In addition, Hoshida et al.
demonstrated that profiles of the surrounding nontumoral
liver tissue were highly correlated with survival among
Japanese, US, and European patients with HCC [159, 160].
These findings help to solidify the role of the field effect,
whereby environmental exposures may play a role in tumor
development and progression.

It has also been demonstrated that the expression levels of
certain small RNAs, termed microRNAs, are altered in HCC
metastasis. In a follow-up study, this 20-microRNA signa-
ture was validated and the role of a particular microRNA,
let-7g in HCC progression, was determined [161]. It was
confirmed that the level of let-7g was significantly lower in
metastatic compared to nonmetastatic HCC and was pre-
dictive of poor survival. Functional studies indicated that
let-7g could significantly inhibit cell migration and cell
growth through targeting of soluble collagens. These results
suggest that let-7g may suppress HCC metastasis through
targeting collagen and that let-7g could be used as a tool to
predict poor survival.

Given the predominant underlying fibrotic and cirrhotic
conditions of the liver in those individuals prone to HCC and
its recurrence, alterations of components of the inflammatory
milieu have been suggested as factors which propel the
formation and advancement of HCC. In particular, the
activity of hepatic stellate cells (HSC), key features of
fibrosis and cirrhosis, have been suggested as contributors to
the HCC-prone microenvironment. A HSC-specific gene
expression signature among tissue specimens of 319 HCC
patients was recently identified and validated that is signif-
icantly and independently associated with HCC recurrence
and survival [162]. Further computational analyses and
immunohistochemical validation in a cohort of 143 HCC
patients showed that the majority of alterations in patients
with poor prognosis defined by HSC status were associated
with peritumoral, rather than tumoral tissues. Furthermore,
coculture studies demonstrate that HSCs preferentially affect
monocyte populations, particularly CD14+ cells, within the
microenvironment, that are related to a Th2-cytokine pro-
moting shift in their inflammatory state. The interactions
between HSCs and monocytes induce protumorigenic and
progressive features of HCC cells by enhancing cell prolif-
eration, migration, and tumor sphere formation. In sum,
these results show that HSCs play a significant role in pro-
moting HCC progression via interaction with and alteration
of monocyte activities within the liver microenvironment.
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Another hepatic stellate cell signature was recently identified
in hepatitis C patients and was validated retrospectively in
HCC patients to identify those with poor prognosis [163].
Thus, disrupting the interactions and signaling events
between the inflammatory milieu and components of the
microenvironment may be useful therapeutic strategies for
preventing HCC tumor relapse. In addition, Tao et al. ana-
lyzed hepatocytes isolated from HBV-HCC cases on a 27 K
array and identified hypermethylated genes. Overall, these
studies highlight the significant role of the field cancerization
effect to initiate and drive cancer progression [164]. More
recently, other factors, such as the diet and the microbiome,
are being studied to determine their roles in influencing the
liver microenvironment [165].

5.5 Tumor Heterogeneity
and Subclassification

Tumor heterogeneity may result from different cells of ori-
gin, range in patient ethnicity, etiology, underlying disease,
and diversity of genomic and epigenomic changes which
drive tumor development. Molecular differences between
tumors from different patients, intertumor heterogeneity, and
between different areas of an individual tumor, intratumor
heterogeneity, have been recognized, possibly emanating
from the presence of cancer stem cells or selection by clonal
evolution. Cancer genomic heterogeneity thereby results in
varying degrees of clinical presentation and tumor biology,
which impedes treatment options and poses a significant
challenge to cancer management [166]. An emerging chal-
lenge in HCC clinical management is intratumor hetero-
geneity, whereby distinct cell populations within a given
tumor may result in poor response or resistance to therapy
[167]. Some initial attempts have been made to characterize
the extent of intratumor heterogeneity in HCC. In a recent
study of 120 tumor areas from 23 HCC, intratumor hetero-
geneity measured by morphology, imunohistochemistry,
and/or gene mutation status was found in the majority of
specimens [168]. A comprehensive omics approach geared
toward this feature of tumor biology is necessary for
improving HCC clinical management. Findings of this type
indicate that single tumor biopsies and the data collected
from such specimens may not provide the entire portrait of
alterations occurring in a given tumor. This nonuniformity of
molecular changes currently represents a significant chal-
lenge in the development of targeted therapy for HCC.

Several HCC array studies have also compared HCC
tumors to identify subtypes or to compare various tumor
stages or nodular status to understand the changes that occur
between early and late tumorigenesis. In a cDNA study of
HCC and HCC cell lines, two subgroups of HCC were
identified that were either related to IFN-associated

inflammation or apoptosis while another cDNA study com-
posed of 19 HCC cell lines, found two subtypes that were
correlated with AFP expression [169, 170]. In a comparison
of multinodular and solitary HCC, cDNA arrays revealed
230 genes that were specific to multinodular recurrence,
while only 36 were commonly expressed [171]. A separate
cDNA study of HCCs from 10 patients found several genes
related to histological subtype [172]. In an OLIGO study of
well-differentiated HCC versus hepatocellular ademonas, 63
genes were found to be differentially expressed, demon-
strating molecular differences despite similarities in mor-
phology [173]. Another OLIGO study identified 31 genes
that differed between early and advanced HCV-HCCs [174].
In other OLIGO-based studies analyzing nodule-in-nodule
HCC, dysplastic nodules, and HCCs, the authors found 40
genes involved in the transition from dysplasia to early stage
tumors and 240 genes that could accurately classify tumors
according to histological grade [175, 176]. TMA has also
been applied to identify tumor subgroups. Recently, Tan
et al. applied comparative proteomics to HCC tumor tissues
and identified a three-protein panel (HSP70, ASS1, and
UGP2) that could stratify HCC patients into two groups
[145]. A miRNA-based classification of three subclasses of
HCC has also recently been proposed [177]. Among the
proliferation class, miR-517a is an oncogenic miRNA that
promotes tumor progression. Thus, there is a rationale for
developing therapies that target miR-517a for patients with
HCC.

We recently hypothesized that AFP+ and AFP− HCC
tumors differ biologically. Using global microRNA profil-
ing, we found that miR-29 family members were signifi-
cantly downregulated in AFP+ tumors with a significant
inverse correlation between miR-29 and DNMT3A gene
expression [178]. We also showed that AFP+ and AFP−

HCC tumors have distinct global DNA methylation patterns,
with an increased DNA methylation in AFP+ HCC. AFP
expression induces protumorigenic features along with
miR-29a inhibition and DNMT3A induction. AFP also
inhibited transcription of the miR-29a/b-1 locus via c-MYC
binding to the miR-29a/b-1 transcript. Further, AFP
expression promotes tumor growth of AFP− HCC cells in
nude mice. Thus, tumor biology differs considerably
between AFP+ HCC and AFP− HCC and that AFP is a
functional antagonist of miR-29, which may contribute to
global epigenetic alterations and poor prognosis in HCC.

Recent attempts have been made to utilize profiling data
to molecularly classify HCC in order to identify common
homogenous subgroups of this disease which may respond
more preferably to certain types of treatment. Studies indi-
cate that aberrant activation of signaling pathways involved
in cellular proliferation (e.g., epidermal growth factor and
RAS/mitogen-activated protein kinase pathways), survival
(e.g., Akt/mechanistic target of rapamycin pathway),
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differentiation (e.g., Wnt and Hedgehog pathways), and
angiogenesis (e.g., vascular endothelial growth factor and
platelet-derived growth factor) are present in particular
groups of HCC tumors [179, 180]. These cancer genes are
thus ideal targets for biotherapies, underscoring the impor-
tance of tumor biology to medicine.

5.6 Stem Cell-Based Signatures

The heterogeneic nature of HCC and variability of its
prognosis suggests that this disease may comprise several
distinct biological subtypes. As discussed, microarrays have
aided in characterizing separate HCC subtypes with distinct
molecular features. Differences in HCC subtypes may arise
from activation of different oncogenic pathways during
tumorigenesis and/or from different cell origins. Microarray
analysis can aid in determining the characteristics of separate
HCC subtypes that can provide insight into the cellular
origin of the tumor.

Recent studies suggest that HCC may arise from liver
stem cells or cells with stem cell-like features which are
capable of cellular plasticity, dynamic cell motility, and
integral interaction with the microenvironment and are
associated with poor outcome. Integrated gene expression
data from fetal hepatoblasts and adult hepatocytes with HCC
from human and mouse models found that individuals with
HCC who shared a gene expression pattern with fetal hep-
atoblasts had a poor prognosis [52]. The gene subset inclu-
ded markers of hepatic oval cells, suggesting that HCC of
this subtype may arise from hepatic progenitor cells and
analyses of gene networks revealed an activation of AP-1
transcription factors. cDNA arrays were used to identify a
HCC subtype with features of hepatic stem cells that
expresses AFP and a cell surface hepatic stem cell marker,
EpCAM [56, 181]. EpCAM-positive cells from this subtype
have self-renewal and differentiation traits and can initiate
highly invasive HCC in NOD/SCID mice [182]. The
Wnt/b-catenin signaling pathway is augmented in this sub-
type suggesting that therapeutic approaches geared toward
Wnt/b-catenin signaling inhibitors may impact the survival
of HCC patients with this stem cell-like subtype.

It was also recently found that miRNAs are associated
with this stem cell-like HCC subtype, suggesting that tar-
geting miRNA pathways may alleviate the poor prognosis of
HCC patients [183]. A global microRNA microarray
approach was used to explore whether certain microRNAs
were associated with HCC stem cells. It was found that the
conserved microRNA-181 family members were upregu-
lated in HCC stem cells. Inhibition of microRNA-181 led to
a reduction in number and tumor initiating activity of HCC
stem cells while addition of microRNA-181 led to an
enrichment of this cell type. In further studies,

microRNA-181 could directly target transcriptional regula-
tors of differentiation in the liver and an inhibitor of
Wnt-beta-catenin signaling. In addition, Wnt/beta-catenin
signaling transcriptionally activates microRNA-181s in
HCC [184]. These results suggest a novel regulatory link
between microRNA-181 family members, Wnt/beta-catenin
signaling, and liver cancer stem cells and implies that
molecular targeting of microRNA-181 or Wnt/beta-catenin
signaling may eradicate hepatocellular carcinoma (HCC).

Studies have also recently explored whether specific
microRNAs exist in hepatic cancer stem cells (CSCs) that
are not expressed in normal hepatic stem cells by assessing
the microRNA transcriptome of HCC specimens by small
RNA deep sequencing [185]. It was found that miR-150,
miR-155, and miR-223 were preferentially highly expressed
in EpCAM+ HCC cells and their gene surrogates were
associated with patient prognosis. Further studies showed
that suppressing miR-155 resulted in reduction of EpCAM
+ HCC cells, reduced HCC tumorigenicity, and shortened
overall survival and time to recurrence of HCC patients.
Thus, miR-155 was highly elevated in EpCAM1 HCC cells
and might serve as a molecular target to eradicate the
EpCAM+ CSC population in human HCCs.

While EpCAM seems to be a positive marker of HCC
CSCs, others have shown that HCC cells may also be pos-
itive for CD133 or CD90, indicating that these antigens are
also features of cancer stem cells [186, 187]. Thus, it appears
that hepatic cancer stem cells may also be heterogeneous. It
has yet to be determined whether such heterogeneity is due
to transformation of different types of stem/progenitor cells
or dedifferentiation of mature cells.

Recent studies have identified stem cell-like/progenitor
cell-like subtypes of HCC that are associated with poor
outcome. A clear understanding of these HCC subtypes may
identify specific factors that determine more aggressive
HCC. Biomarkers associated with these subtypes may help
to refine treatment options by allowing more sensitive HCC
subtype classification. Furthermore, functional/mechanistic
follow-up studies of these stem cell-related biomarkers will
aid the generation of novel therapeutic approaches to block
pathways associated with poor outcome and thus help to
alleviate dismal prognosis.

5.7 Future Directions

5.7.1 Sequencing

Recently, a more comprehensive view of the genome has
been made through the use of sequencing technology. We
are now able to define specific mutations in the
protein-coding region (exome), the whole genome, and
various RNA transcripts. These approaches have led to the
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discovery of novel genes in HCC. For example, whole
exome sequencing has identified alterations of ARID1A,
RPS6KA3, IRF2, NFE2L2-KEAP1, KMT2A in HCC [20,
188]. In addition, ARID2 has been implicated in
HCV-associated HCC by whole exome sequencing, while
CTNNB1 was found to have a pivotal role in HBV-HCC
[189, 190]. This method has also been used to identify
important genes associated with HCC metastasis, including
CUL9, FGD6, KDM6A, AKAP4, and RNF139 [191].

The identification of genomic alterations in the full gen-
ome has also been attempted to understand the alterations
occurring in noncoding regions and by structural rear-
rangements of the genome (Table 5.1). Several thousand
somatic mutations and numerous chromosomal alterations
were found by whole genome sequencing of a single
HCV-HCC case by Totoki et al. In a study of mainly
HBV-HCC, the JAK/STAT and WNT/Bcatenin pathways
were found to be important drivers [192]. Recently, this
work has been expanded in over 500 liver cancer cases,
uncovering 30 candidate driver genes and 11 core pathways
including metabolic enzymes, chromatin remodelers, and
TERT as a central and ancestry-independent node in HCC
[193]. In addition, DNA mismatch repair genes and chro-
matin regulators, including ARID1A, ARID2, and MLL3
were mutated in a study of HCC including both HBV and
HCV patients [21]. In an exome sequencing study by
Schulze et al., TERT promoter mutations were identified as
early events in HCC, while TP53, CTNNB1, CDKN2A and
FGF family members were related to more advanced HCC
stages [194]. Whole genome sequencing has also allowed for
the identification of viral integration sites caused by the
DNA virus, HBV, and genomic aberrations that occur near
those sites. Important integration sites include TERT,
MLL4, FN1, and CCNE1 [22, 195]. Retrotransposon
insertions and repetitive sequences have also been explored
by whole genome sequencing. Two long interspersed

nuclear element-mediated somatic changes in MCC and
ST18 have recently been described in HCC [196].

RNA sequencing, meanwhile, provides an extension of
transcriptomic profiling by allowing for the assessment of
translocation and inversions of transcripts, noncoding RNAs,
and splicing events. Splicing variants for several genes have
been reported in HCC including TCF4, KLF6, p73, and
LLGL1 [197]. RNA editing events have also been explored
by this methodology and have identified a gain of function
activity in the AZIN1 gene in HCC along with RNA editing
roles of BLCAP [198–200]. These studies are rather small in
sample number and await further exploration in larger
datasets.

5.7.2 Circulating Tumor Cells

Although hepatic resection and liver transplantation are the
main modalities of curative HCC treatment, approximately
40 % of hepatectomy patients and 10 % of transplant
patients develop postoperative recurrences. One factor that is
thought to underlie this outcome is the presence of circu-
lating tumor cells (CTCs) which may be released from the
primary tumor or metastatic lesions. In the last decade, effort
has been placed on identifying and improving technology
and methods to detect CTCs, understand their role in tumor
biology and usefulness as tumor biomarkers. These include
enrichment methods based on physical characteristics and/or
immunological markers, microfilters, density gradient cen-
trifugation, and microfluidic chips [201, 202]. Once enriched
and isolated, various methods are used to characterize CTCs
including nucleic acid analysis, cytometric analysis, and
functional analysis. The characterization and enumeration of
CTCs may be a significant advance in our understanding of
tumor heterogeneity, patient stratification for treatment or
treatment response, and risk of relapse.

Table 5.1 A summary of HCC DNA sequencing studies

Platform* Sample size Candidate driver genes Study/year References

Whole genome 147 ATM, CTNNB1, ARID1A, IGSF10, TP53, Fujimoto et al. (2012) [218]

Whole genome 88 CTNNBI, LRP1B TP53 Kan et al. (2013) [22]

Whole genome 608 CTNNB1, TERT, TP53 Totoki et al. (2014) [193]

Whole exome 149 ARID1A, AXIN, CTNNB1, RPS6KA3, TP53 Guichard et al. (2012) [219]

Whole exome 11 TERT Woo et al. (2014) [190]

Whole exome 110 ARID1A, TP53 Huang et al. (2012) [191]

Whole exome 87 CTNNB1, TP53 Cleary et al. (2013) [188]

Whole exome 235 ALB, ARID1A, AXIN1, CTNNB1, TERT, TP53 Schulze et al. (2015) [194]
*Manuscripts were selected based on the use of next-generation sequencing methods in human cohorts. Candidate driver genes are presented in
alphabetical order and represent those genes found at greater than 10 % frequency in the noted study
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A few studies have been published regarding CTC
detection and characterization in HCC. The clinical useful-
ness of CTC counts was reported in a preliminary study by
Vona et al. in 44 HCC patients showing association of CTCs
with later disease stage and shorter survival [203]. Detection
of CD45(−)CD90(+)CD44(+) or EpCAM(+) cells have also
been employed to predict HCC recurrence and metastasis
[204–206]. Current strategies are focused on further char-
acterizing CTCs and understanding their modes of release
and circulation in order to prevent or reduce the risk of
recurrence, metastasis, and improve survival rates.

Our ability to define specific CTCs by single markers or
overlap of specific markers will also aid in understanding the
pools of CTCs that may be present in a given tumor or tumor
subtype that could allow us to better identify and stratify
HCC patients for effective treatment, etc. This may also lead
to strategies for targeting and/or eliminating CTCs in order
to prolong patient survival. Although the amount of data and
evidence concerning CTCs are growing in the HCC field,
currently there is still a lack of definitive evidence that the
detected cells are specific to HCC, capable of stem-like
abilities and initiate metastasis or recurrence. In addition,
current CTC capture techniques will need to be improved in
order to increase the purity of isolated cells and their yield.
Overall, CTCs represent an important new strategy to
identify markers for patient relapse and poor survival and
may be targetable populations to reduce these outcomes.

5.7.3 Data Integration

While array-based technologies have allowed us to define
molecular alterations at various levels of the genome, it is
important to note that these factors do not act on their own,
but rather, make up complex networks that span several
levels of genomic and genetic signaling. In this vein, it is
important for us to be able to understand how these factors
interact and/or are affected by one another to produce the
final phenotype that is observed. Thus, many researchers
involved in high-throughput genomics have begun to
explore signaling networks, rather than single molecules, as
methods of defining important molecular nodes and drivers
of HCC. Such integrated approaches are thought to be an
improved strategy of resolving the important and key
molecules that cause HCC and allow it to progress
(Table 5.2).

We have also recently used integrative approaches to
identify HCC driver genes. For example, we have combined
high-resolution, array-based comparative genomic
hybridization, and transcriptome analysis of HCC samples to
identify and validate a 10-gene signature associated with
chromosome 8p loss and poor outcome [207]. Functional
studies demonstrated that three gene products among the
10-gene signature have tumor suppressive properties. Inte-
grated genomics has also recently been used to identify
YY1AP1 as an oncogenic driver in stem-like HCC [208]. In

Table 5.2 A summary of HCC integrated omics studies

Integrated platforms* Sample
size

Candidates/signatures Study/year References

Double platform integration

Transcriptome + Metabolomics 356 SCD1 (lipid signature) Budhu et al.
(2013)

[210]

Transcriptome + aCGH 61 Metastasis genes Roessler et al.
(2015)

[220]

Transcriptome + aCGH 76 PROSC, SH2D4A, and SORBS3 (tumor suppressors) Roessler et al.
(2012)

[207]

Transcriptome + aCGH 380 YY1AP1 (metastasis/stem cell) Zhao et al. (2015) [208]

miRNA + mRNA 100 miR-148-ACVR1/BMP Li et al. (2015) [209]

RNA Seq + DNA Seq 2 BLCAP (RNA editing) Hu et al. (2015) [199]

Methylation + Transcriptome 71 SMPD3, NEFH (tumor suppressors) Revill et al.
(2013)

[213]

Methylation + Transcriptome 128 CFH, MYRIP, PSRC1, MRE11A and MYO1E (tumor
recurrence)

Yang et al.
(2011)

[214]

Triple platform integration

RNA Seq + DNA Seq + SNP 174 TTK (mitotic checkpoint) Miao et al. (2014) [217]

Methylation + Transcriptome + aCGH 63 PER3, IGFALS, protein Z (tumor suppressors) Neumann et al.
(2012)

[216]

Methylation + Transcriptome + SNP
array

49 COL1A1 (survival) Hayashi et al.
(2014)

[215]

*Manuscripts were selected based on the integration of two or more omic platforms and the use of human cohorts
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an integration study of miRNA and mRNA profiles, the
miR148a-ACVR1/BMP circuit was useful in defining a stem
cell-like aggressive subtype of HCC [209]. Metabolite and
mRNA profiles have also been integrated to define key
signaling events that can alter the fitness of EpCAM+ AFP
+ HCC cancer stem cells [210]. Our analysis revealed
tumor-specific and stem cell-like-specific metabolites linked
to patient survival along with correlating significant genes in
the stem cell-like tumor subgroup. In particular, stearoyl
CoA desaturase (SCD), a key enzyme involved in fatty acid
biosynthesis, and its related metabolites were highly elevated
in stem cell-like HCC and are associated with HCC survival
and may functionally contribute to HCC stemness and
aggressiveness. We have also recently compared and con-
trasted global metabolic profiles between liver, breast, and
pancreatic cancer tissues and found that metabolites are
principally unique to each tissue and cancer type. Thus,
metabolic profiling could be applied as cancer classification
tools to differentiate tumors based on tissue of origin [211].

To aid in the integration of multiple omics data, we have
proposed an integrative subgraph mining approach, called
iSubgraph to discover patterns of miRNA-gene networks
which could be used for patient stratification in HCC [212].
This algorithm could detect cooperative regulation of miR-
NAs and genes with highly stable class predictions.
The HCC subgroups identified by the algorithm have dif-
ferent survival characteristics with key roles of specific
genes in HCC subgroups. Thus, our method can integrate
various omics data derived from different platforms and with
different dynamic scales to better define molecular tumor
subtypes.

Integrative genomic analysis of genome-wide methyla-
tion and gene expression data identified possible key targets
in HCC. Recently, using this method, the tumor suppressive
roles of SMPD3 and NEFH have been demonstrated in HCC
[213]. Evidence was provided that SMPD3 is a potent tumor
suppressor gene that could affect tumor aggressiveness,
while a reduced level of SMPD3 is an independent prog-
nostic factor for early recurrence of HCC. This method was
also used to identify genes associated with HCC recurrence,
including CFH, MYRIP, PSRC1, MRE11A, and MYO1E
[214]. Triple-combination array analysis of expression
arrays, SNP array, and methylation array successfully iden-
tified COL1A1 as a candidate survival-related gene in
HCCs. Epigenetic downregulation of COL1A1 mRNA
expression might have a role as a prognostic biomarker of
HCC [215]. A combination of genome-wide methylation,
array CGH, and gene expression was also used to identify
PER3, IGFALS, protein Z as HCC tumor suppressors [216].
Whole genome sequencing has been integrated with tran-
scriptome sequencing and SNP genotyping to identify a
dual-specificity protein kinase, TTK as a prognostic indica-
tor of HCC [217].

Integration among various levels of omics signaling may
help to further define the key players that promote HCC and
affect its progression. For clinical application, it is also
useful to integrate omic information with current clinical
triage methods, including tumor staging and pathology, to
further refine patients into risk groups. This combined
information can then be applied to stratify patients for the
most appropriate and likely to be most effective treatment
regimens. This strategy underlies the topic of precision
medicine, whereby a more individualistic approach based on
the combination of science and medicine is used to manage
patient care.

5.8 Summary

The advent of array technology has provided a
high-throughput methodology to assess the genome-wide
changes that occur during hepatocarcinogenesis and its
progression. Using multiple sample types, array platforms
and data analysis methods, the mechanisms related to HCC
carcinogenesis can be elucidated and related to disease
pathogenesis and clinical measures. The definition of
molecular markers from these studies has the potential to
revolutionize the diagnosis and prognosis of patients with
HCC.

Arrays have steadily become more comprehensive and
stable, not only increasing the number of elements that can
be arrayed but also expanding with regard to the types of
material that can be analyzed. Despite advances in stability
and composition of arrays, several fundamental issues still
remain to be resolved. These include multiple sources of
variation (among samples, within arrays, mixed cell types,
user-related error, etc.) which may lead to overinterpretation
or spurious functional gene associations. In addition, the
need for physical destruction of cells/tissues limits conse-
quential assays conducted on the same material. Advanced
technique such as laser capture microdissection and
automation has somewhat improved these challenges. The
overall quality and amount of starting material is a major
challenge and is limited by the amount and complexity of the
sample as well as user-related handling. In addition, many
oncogenic processes are not accounted for by array analysis
since they are regulated posttranscriptionally. Therefore,
elements such as protein localization and modification are
important elements to be included in HCC profiling. Diffi-
culties in data comparison and integration must also be
addressed which ensues from the use of multiple array
platforms and data algorithms among published studies as
well as frequent updates of genomic databases. Such prob-
lems may be alleviated by setting adherence guidelines for
array statistical analysis and reporting such as those estab-
lished by the International Microarrays Gene Expression
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Data group, the REMARK guidelines, or incorporation of
proper study design that is suitable for array-based biosta-
tistical analyses (227–229). Resolution range is a large
limitation in array analysis, whereby important changes may
not be assessed or studied due to the cutoff criteria in the
analysis. Lastly, each array can only provide information
concerning the targets that are included in that array. Thus,
integrative analysis of multiple platforms may be required in
order to define the exact cancer-related molecular changes
on multiple biological levels and to distinguish the key
players from their downstream effects. Advancement in
statistical methods to integrate multiple platforms will also
be required to make such assessments. Recently, systems
have been developed that offer whole genome analysis using
a massive parallel sequencing that is useful for discoveries in
genomics, epigenomics, gene expression, and
protein-nucleic acid studies. Such systems offer an extremely
high-throughput method to complete large-scale global
studies in a cost-effective and accurate manner and may

allow for ease in cross-platform-type analyses since an
enormous multilevel dataset can be achieved with a rela-
tively small amount of the same starting material. Overall,
integrating global molecular profiling data along with
mechanistic/functional studies may improve the diagnosis,
treatment, and prognosis of HCC patients.

Although multiple publications have identified and vali-
dated diagnostic and/or prognostic HCC markers, critical
challenges in translating the findings to clinical practice
remain. To reach clinical applicability, the measurement of
biomarkers must be reproducible, reliable, and easily
accessible by noninvasive methods. In addition, the bio-
marker sets will need to be refined to a smaller number of
informative biomarkers to be useful for clinical interroga-
tion. Large prospective studies will need to be performed to
assess appropriate sample size for accurate diagnostics and
appropriate validation cohorts will be needed to incorporate
gender, race, and underlying etiological differences among
HCC patients. Nonetheless, the biomarkers that have been

Fig. 5.1 Functional and integrated omic profiling for biomarker
identification, validation, and clinical utility. Widescreen genomic
profiling of hepatocellular carcinoma (HCC) has identified multiple
biomarkers on the gene, protein, and genomic scale. These biomarkers
are useful for understanding HCC biology and clinical application. The
mechanistic and clinical information gleaned from genomic profiling

studies can be combined using computational strategies to identify
promising novel therapeutic markers for diagnosis, treatment, and
prognosis of HCC. Such methods will allow progression toward
precision medicine encompassing new and selective therapeutics and
preventative therapy
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identified through gene profiling, particularly those expres-
sed in serum, are an unprecedented advance toward useful
clinical application.

Overall, molecular profiling studies have become pow-
erful methods to incorporate global genomic readouts with
biological effects and are conduits for the discovery of
biomarkers with potential clinical application (Fig. 5.1). The
HCC-related genomic expression studies presented in this
chapter along with future studies and advances in array
technology, experimental design, and statistical analyses will
undoubtedly lead to crucial and important progress in our
understanding of the molecular mechanisms and biology of
HCC. Moreover, these studies have revealed molecular
markers that provide the framework toward predictive and
personalized care for HCC patients. We are now at the brink
of clinically implementing biomarkers identified from global
array profiling to improve HCC diagnosis, treatment, and
outcome.
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