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4.1 Introduction

The biology of the liver, the biological processes involved in
cancer development, and the etiological factors involved in
liver cancer development provide a focus on the early pro-
cesses and signaling pathways important in primary liver
cancer development. Perhaps, the most important point to
consider is the cell population at risk for initiation of the
cancer process in the liver. Since most hepatocytes are in G0
phase, first proliferation must be stimulated. Under normal
conditions, single cell death is followed by replacement of
that hepatocyte. One hypothesis is that cancer stem cells are
bipotential and can be stimulated to proliferate [4]. Their
(oval cells) outgrowth can occur under situations where a
large percentage of the liver is damaged. The stem cells then
differentiate into hepatocytes or cholangiocytes depending on
the degree and duration of damage. Agents that cause
extensive damage to the liver can result in neoplastic changes
that are fetal in nature. A second hypothesis is that mature
hepatocytes are the cell population at risk for early preneo-
plastic changes [5]. Mature hepatocytes can develop into
focal areas of proliferation that in turn can become nodular
areas of hyperplasia. In this case, both poorly differentiated,
small cell lesions (that are primarily diploid) and large cell,
more highly differentiated (tetraploid or higher ploidy)
lesions develop [6]. Understanding the etiology, proliferative
and differentiation cues for the liver, and the mechanisms of
the carcinogenesis process in the liver is key to understanding
the role of chemicals in the development of HCC.

Chemical, biologic, and physical agents can contribute to
cancer development. Perturbations in single cells lead to the
focal outgrowth of putatively preneoplastic lesions. The
altered areas can evolve into nodular hyperplasia, focus in
nodule pathology, and areas of frank malignancy [6]. To
determine the contributions of chemicals to the carcinogenic
process in the liver, a variety of animal models have been
developed. Since the liver is the primary site for cancer
induction in the bioassays used for carcinogen testing, there
is a need for extrapolation of animal of neoplasms that arise
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at this site to man. The utility of defining common
biomarkers for the conversion of benign to malignant tran-
sition will assist in developing appropriate inter-species
extrapolation. The analysis of early lesions will permit
assessment of the early changes that occur prior to the onset
of clinically detectable disease to our understanding of HCC.

4.2 Liver Cancer Is an Important
Biological Problem

Liver cancer is an important form of cancer worldwide
ranking in the top ten in both incidence and mortality [7, 8].
Hepatocellular carcinoma (HCC) is the primary form of liver
cancer. Primary liver cancer is the sixth most common form
of cancer (750,000 cases/year) in terms of incidence [9]. In
addition, it is the third most common cause of death
(725,000 deaths/year) from cancer [10], with eighty percent
of cases (and deaths) resulting from hepatitis B and/or C
infection and occurring in developing countries. Surveillance
Epidemiology and End Results [11], the National Cancer
Institute’s statistical unit, estimate that 35,000 new cases of
liver and intrahepatic bile duct cancer were diagnosed and
nearly 24,000 people will die from this disease in the US in
2015 [11]. Understanding the processes that contribute to the
cancer development process is an important component of
determining how and where certain compounds contribute to
liver cancer development and progression. Environmental
influences, including carcinogen exposure, are believed to
contribute to the distinct geographical distribution pattern of
primary liver cancer [12]. Another important cause of pri-
mary liver cancer in humans is viral with both HCV and
HBV infection contributing to its incidence. According to
NHANES 3, the number of individuals with chronic HCV
infection is greater than 2 million in the part of the US
population sampled [13, 14]. Chronic infection with hep-
atitis C virus (HCV) is known to be a major risk factor for
development of HCC. In general, HCC develops only after 2
or more decades of HCV infection and in those with
advanced fibrosis [14, 15]. Cirrhosis is also an important
factor associated with the development of primary liver
cancer and hence is an important control for liver cancer
biomarker development, most liver cancer arises in the
context of cirrhosis. In the US, less than 30 % of HCC is
viral in etiology. Excess alcohol use and diabetes mellitus
are independent risk factors for liver cirrhosis and are
associated with liver cancer development in the US [16]. In
addition, smoking may contribute to the risk of liver cancer
development. The residual 10 % of attributable risk of HCC
may be due to or influenced by hereditary metabolic disease
factors (such as hemochromatosis). Although rare genetic

disorders can contribute to liver cancer development, ethanol
and dietary factors are known to contribute to its incidence
and progression [2, 3]. The prevalence of liver cancer and its
high mortality rate indicate the need for appropriate animal
models of this disease in order to develop treatment and
intervention strategies. In addition, the pathogenesis of pri-
mary liver cancer development for different etiologies needs
to be better delineated. The influence of genetic background
and environmental factors on neoplastic development is
readily studied in rodent models of this disease.

4.3 Chemical Carcinogens

Carcinogenesis can be induced by physical, biological or
chemical means. Agents that act to increase the incidence
of cancer in appropriate organisms compared with con-
current and/or historic controls are considered carcinogens.
The identification of a carcinogenic potential for an agent
delineates the conditions of exposure (dose, time and
duration) under which the agent may induce cancer. Ani-
mals are surrogate models of humans since they possess
similar physiology and biochemistry. This similarity is not
absolute; hence any hazard detected must be examined in
the context of human relevance in order to understand the
conditions of exposure that may pose a plausible risk to
humans. Each human HCC is detected at different points
along the pathogenesis continuum and is the result of
distinct etiologies and pathogenesis. Several factors are
important for cancer development including a loss of nor-
mal growth control with contributions from inhibition of
apoptosis and enhanced but altered proliferation control
[17]. In addition, an altered differentiation status can con-
tribute to cancer development and progression. The mor-
phology and certain aspects of the natural history of rodent
and human cancer are coincident although the etiology and
the exact molecular pathogenesis may diverge between
rodents and man. Although several parallel pathways may
be induced, the pathway for cytogenetic alterations
observed in a specific cancer type is similar in rats, mice,
and men. The latency period between initiation of early
precancer changes in a single cell and their selection for
malignant growth comprises the reversible stage of tumor
promotion. In the human, exposure to dietary contaminants
such as aflatoxins, as well as calorie overload, ethanol over
use, and methyl deficiency can contribute to the risk of
primary liver cancer. Certain metals (iron and copper) have
been associated with an increased risk of primary liver
cancer. Thus, a number of classes of chemical agents can
increase the incidence of hepatic neoplasms depending on
their dose and duration of exposure.
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4.3.1 Genotoxic Carcinogens

Chemically induced carcinogenesis has been examined
experimentally for nearly 100 years [18, 19]. Initial studies
provided the compounds typically in the diet for extended
periods of time. For example, the studies of Sasaki and
Yoshida [20] demonstrated that chemicals could cause hep-
atic neoplasms in animals. Provision of o-aminoazotoluene in
the diet led to liver neoplasms in rats. Similarly, Kinoshita
[21] demonstrated that feeding 4-dimethylaminoazobenzene
to rats resulted in liver neoplasms. These findings suggest
that agents can be carcinogenic at sites distant from their
initial application. Importantly, analogues of these agents
have also been examined allowing some structural informa-
tion to be gathered about the properties of agents that have a
carcinogenic potential [22]. There is some tissue specificity
for carcinogenic action as polycyclic aromatic hydrocarbons
are not typically carcinogenic to the liver (except in some
circumstances during the neonatal period), while they are to
the skin [23]. Similarly, certain azo dyes, while carcinogenic
to the liver, do not have this activity in the skin [24]. The
agent 2-acetylaminofluorene but not its related regioisomer,
4-acetylaminofluorene, is carcinogenic in the rodent liver
[25]. However, dialkyl nitrosamines and several analogs are
cytotoxic to the liver and are carcinogenic in rodents and
many other mammals [26]. These activities are dose depen-
dent and high doses induce acute toxicity, while lower doses
are tolerated but can result in neoplasms if the dose and
duration of exposure is sufficient. Similarly, aflatoxin pro-
duced by the fungus Aspergillis flavus is acutely cytotoxic.
This agent is also carcinogenic in all species examined,
although the mouse is relatively resistant to its carcinogenic
action [27]. A variety of other agents in food can also be
carcinogenic to the liver including certain mycotoxins [28] in
addition to aflatoxin (fumonisin in rodents) and pyrrolizidine
[29] alkaloids (found in comfrey and riddelline). In addition,
a dearth of antioxidants and a lack of lipotropes [30, 31] can
lead to cancer development in the rodent.

4.3.1.1 DNA Adducts
This initial class of agents is capable of altering the genetic
material either directly, through one of its metabolites, or
through perturbation of the processes controlling its actions.
Agents that modify the DNA can initiate the carcinogenic
process [32]. Many of these agents can be metabolized to
form DNA adducts or may directly form them. Alternatively,
such agents can alter the methylation status of the DNA. In
each case, the DNA is modified in a manner that results in
heritable changes. In the case of DNA adducts when they are
coupled with cell proliferation mutations can result [33].
Such mutations can alter the function of selected genes, in
some cases inactivating them and in other cases enhancing

their activity [33]. The dose and duration of exposure of an
agent is an important contributing factor to understanding
the carcinogenic risk of an agent at doses to which humans
are exposed. Many agents with a carcinogenic potential can
be metabolized to an electrophilic form. These reactive
metabolites can bind to cellular nucleophiles including
DNA, RNA, proteins, and lipids [24]. The biological con-
sequences of these actions differ. Early studies by Miller and
Miller [34] demonstrated that certain carcinogenic agents did
not directly bind to proteins, but that following incubation of
the compound with tissue extract, the compound or some
derivative could be found bound to protein in normal liver
but not in the resulting neoplasm. This metabolic activation
or reactive metabolite formation would lead to the determi-
nation that the cell could metabolize some compounds to a
reactive form. For example, AAF is metabolized by ring
hydroxylation [35] and by N-hydroxylation [36]. The N-
hydroxy metabolite is more carcinogenic than the parent
AAF [24]. The N-hydroxy AAF is further metabolized by
esterification with glucuronyl, acetyl, and sulfate groups.
Although conjugation can lead to inactivation of reactive
metabolites, in certain cases it can result in more reactive
agents with facile leaving groups. This is the case for some
esters of N-hydroxy AAF [24]. In addition to the formation
of reactive metabolites, certain agents can form free radicals
[37]. Free radicals have no charge, but have an unpaired
electron that makes them reactive. This process can be
facilitated by the presence of free iron or copper. Endoge-
nous processes can form free radicals and metabolism of
certain carcinogenic agents can also lead to their generation
[38]. Many agents with a carcinogenic potential can be
metabolized to reactive forms providing a mechanism to
understand species differences and individual risks. Under-
standing the structural basis for metabolic activation permits
the prediction of agents that are likely to be directly geno-
toxic or that can be metabolized to a genotoxic form. In
addition, it generates a physicochemical basis for under-
standing mutagenesis at specific sites in the DNA and in
specific tissues. Careful analyses of structures of agents that
are positive in rodent bioassays have yielded reactive groups
that yield structural alerts for carcinogenic risk [39, 40].

4.3.1.2 Mutations and Their Consequences
The reaction of electrophilic substances with the DNA results
in physicochemical changes in the DNA. The high prevalence
of cancer in individuals with an inability to remove DNA
adducts in DNA repair deficiencies indicate the important role
of DNA damage in cancer induction [41]. Similarly, the high
incidences of mutations in selected genes in animal models of
cancer further demonstrate that DNA damage is the basis of
early cancer development [42]. Alkylation of DNA can occur
by carcinogenic agents that can be metabolized to reactive
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forms. In this case, the reactive metabolite can covalently
adduct to the DNA [43]. For example, aflatoxin B1 can be
metabolized to 8,9 epoxide of AFB1, which then binds to N7
guanosine leading to mutations [44]. Mutation of G to T can
occur at multiple sites, most notably at 249Ser of P53 [45].
Methylation, ethylation, and other alkylations can occur with
each of the bases as well as the sugar and phosphate backbone
[46, 47]. Direct acting electrophiles can bind to the N7 of
guanine, while softer electrophiles can bind to the ring oxy-
gens of the bases. Formation of bulky adducts can occur on
the purine ring, while small alkylations can occur more
ubiquitously. At lower exposures, selective alkylation can
occur, which may or may not be repaired. The presence of
DNA adducts and the repair of these lesions can result in
mutation. As the adduct burden increases with increased
dose/duration of exposure, the repair can be more extensive
and over a greater span of the DNA. In addition, as
dose/duration increases more cell types may become involved
as metabolism shifts and conjugation reserves are depleted.
Repair can outpace adduct conversion to mutations under
some circumstances. When the lesion is repaired, either the
base is removed or a larger segment of DNA is removed. Each
of these processes can have different rates and consequences
and each is dose dependent.

Point mutations, frameshift mutations, chromosome
aberrations, and aneuploidy can occur following chemical
administration. Because the degree of adduct formation, the
site of adduct formation, the ability of adducts to be repaired,
and the degree of metabolism to reactive forms, differential
activity can be seen in individual cells, tissues, organisms and
species. One consequence of the presence of DNA adducts is
cell death. Apoptosis is observed at lower concentrations
followed at higher exposures and degrees of damage by
necrosis. Direct-acting carcinogens are reactive without
requiring metabolic activation and are often carcinogenic at
the sites of exposure in multiple species [48]. Methylation or
ethylation of DNA can lead to base mispairing [46, 49].
Because these simple alkylations are similar to or can result
from endogenous processes, they are not as actively repaired.
In part, the more persistent DNA adducts/lesions are the ones
that have an important mutagenic consequence. For example,
ethylating agents can adduct at O6 alkylguanine and O4
alkylthymidine. The O6 adduct is readily repaired, while the
O4 adduct is more persistent leading to base mispairing with
different consequences for both lesions [50, 51].

The consequence of bulky adduct presence is to block
DNA synthesis resulting in noncoding [47]. However, the
DNA synthetic machinery can bypass such lesions placing in
its stead the most abundant nucleotide, generally an adenine
[52]. Since bulky adducts typically occur at guanines, this is a
useful endogenous strategy that can however result in more
marked consequences when more than one base is affected or
the adduct was not at guanine. Using 2-AAF as an example,

the parent is not mutagenic, but it can be metabolized to the
sulfate ester that is highly reactive; binding to the N7 of
guanine as well as the N3 of guanine [24]. In contrast to the
formation of a covalent bulky adduct by 2-AAF that distorts
the DNA structure, 2-aminofluorene, which also forms bulky
adducts at the same sites, sits outside of the helix and does not
distort it. As a consequence, 2AF can induce point mutations,
while 2AAF can lead to frameshift mutations [53]. Biological
consequence of the presence of DNA adducts is a function of
their persistence in the DNA [54] and impacts their tissue and
species specificity. The persistence of DNA adducts in viable
cells has consequences when cell proliferation occurs to fix
the mutation before repair can occur [33]. Once the mutation
is fixed, its location in the genome, the expression of that
DNA and the importance of the affected gene in that stage of
the differentiation of the cell, both impact its consequent
mutation and the ultimate consequence of a given adduct.
Although susceptibility to cancer induction can be modified
by polymorphisms in DNA repair genes [41], carcinogen
metabolism [55], and immune system [56] differences, genes
that regulate cell growth and proliferation are more fre-
quently the targets of carcinogens. Both protooncogene and
tumor suppressor gene function can be altered by carcinogen
exposure [57–59]. For example, oncogenes such as Ha-ras
can be activated by a single point mutation [60]. Activation of
Ha-ras is an important mechanism of HCC induction and
development in the mouse [42, 61], but not in rats or humans
[19]. In the liver, activation and mutation of b-catenin (and
possibly axin) is an important aspect of some types of liver
cancer [62, 63]. Similarly, mutations in HNF1 can result in
loss of differentiation status as evidenced by loss of expres-
sion of a number of drug metabolizing genes in the neoplasm.
Although mutations have been observed in a number of genes
in HCC development and progression, only a few genes have
been described with non-random mutations. Etiologic agents
have been examined with respect to the resulting mutations
observed in specific genes including p53, b-catenin and
HNF1. There appear to be multiple pathways that can lead to
HCC initiation and progression [63].

Endogenous DNA modifications can be perturbed and
this perturbation can contribute to chemical carcinogenesis.
Hydroxylation of DNA bases can also occur both through
endogenous processes and by certain DNA damaging agents
[64]. Repair processes for oxidative damage are pervasive in
most cell types nonetheless oxidized bases can persist [65].
Although all of the DNA bases can be oxidized, the most
common are 8-hydroxy deoxyguanosine [66] and
5-hydroxymethylthymine [67]. These oxidative bases likely
arise through endogenous processes [68] and they are readily
repaired. The most prevalent endogenous modification of
DNA is methylation of deoxycytidine [69, 70]. Chemical
carcinogens can perturb this process by adduct formation,
altered one-carbon pools, single strand break formation, or
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inactivation of the enzymes involved in the methylation
process [71]. Diets deficient in lipotropes can result in
marked steatosis followed in time by HCC formation in
rodents [31]. Methyl deficient diets can result in DNA
hypomethylation. Global hypomethylation results in
re-expression of genes in general, while hypermethylation
results in their silencing [72]. Perturbation of nucleosomes,
of minor and major groove protein binding, and the DNA
repair process can likewise lead to DNA perturbations. The
presence of a DNA adduct does not mean that a mutation
will occur, but it does increase the probability. Both
endogenous and exogenous derived DNA alterations can
result in cancer initiation [64].

4.3.1.3 The Role of Cell Proliferation in Cancer
Initiation

The presence of DNA adducts coupled with cell proliferation
can lead to mutation. This process is called fixation wherein
the mutation is fixed when an adduct or other DNA alter-
ation persists through a cycle of DNA synthesis [33]. Thus,
the rate of cell proliferation and DNA synthesis can impact
DNA damage [73]. In situations where repair processes are
normal, high rates of cell proliferation can still lead to
mutations. Inherited defects in DNA repair lead to an
increased risk of neoplasia [47] in many cell types especially
in the GI tract with its high rate of exposure to potentially
mutagenic agents and its high rate of proliferation. Hepato-
cytes turn over slowly by comparison except in circum-
stances of persistent inflammation induced by hepatitis
(viral, alcohol, or drug induced). DNA polymerases are not
completely faithful in their replication of the DNA [74, 75].
Since a variety of types of DNA damage can occur, many
processes exist to remedy their activity. Excision repair can
remove either a modified base or nucleotide. The presence of
an adduct will result in excision and repair with more bases
removed and potentially misrepaired for nucleotide excision
compared with base excision repair. Single strand breaks are
readily repaired. The repair of double strand breaks is more
problematic [76] and a nonhomologous end joining process
is used that is error prone [77]. Mismatch repair can occur
when bases are mispaired or when it appears that they are
mispaired due to the presence of a DNA modification [78].
Perturbation of the mismatch repair process can result in
mutations. Larger DNA damage including amplifications,
deletions, and aneuploidy can occur. Agents that lead to
these lesions contribute to the carcinogenesis process by
altering gene dosage of critical genes and/or perturbing their
expression. Although mutations alone do not lead directly to
neoplasia, they can contribute to the process when they
occur in genes critical for cell survival, proliferation, apop-
tosis, and differentiation status.

4.3.2 Non-genotoxic Mechanisms of Chemical
Carcinogenesis

A variety of compounds other than mutagenic agents can
contribute to liver cancer development. These agents have in
common the ability to alter cell survival either by increasing
cell proliferation or decreasing apoptosis. Agents that have
this activity include those that cause cytotoxicity and those
that perturb signaling pathways associated with growth
factors, some of which act through nuclear receptors [19,
79]. Certain agents are cytotoxic at either high doses or with
chronic administration [80]. These agents such as chloro-
form do not pose a risk when exposure occurs below the
threshold for cytotoxicity [81]. For example, chronic high
dose ethanol consumption results in high levels of
acetaldehyde generation [82]. Aldehydes can covalent
adduct to proteins through Schiff base reactions and with
other cellular components. In addition, CYP2E1 that gen-
erates acetaldehyde is loosely coupled to oxidoreductase
resulting in the generation of reactive oxygen species.
Acetaldehyde can result in exocyclic etheno DNA adducts
[83]. The resulting oxidant damage and lipid peroxidation
can lead to chronic hepatitis. In addition, the marked
steatosis that can occur in conjunction with excess alcohol
consumption may perturb the insulin/IGF1 signaling path-
way of cell survival in the liver [83]. Similarly, the one
carbon cycle with eventual folate/choline depletion can
contribute to cancer development [84]. Ethanol over con-
sumption in conjunction with HCV increases the risk of
cancer development [85]. In addition, alcohol abuse in the
context of hemochromatosis increases both cirrhosis and
HCC risk [86]. In part this may be due to increased oxidant
stress in the presence of both increased lipid deposition and
increased iron. Low alcohol intake does not appear associ-
ated with an increased risk of HCC, while higher levels are
associated with an increase in risk of both cirrhosis and HCC
[87]. In some parts of the world, alcohol is made with moldy
food staples containing other liver toxins that can compound
the problem. Similarly, intake of high levels of iron in
conjunction with alcohol can similarly exacerbate the oxi-
dant stress in the liver leading to cirrhosis. Since cirrhosis is
associated with more than 60 % of HCC in the human [8],
this is an important pathway through which ethanol con-
tributes to primary liver cancer development.

Studies in animal models indicate that agents that act
through selected nuclear receptors are associated with the
ability to regulate cell proliferation/survival, apoptosis, and
differentiation can promote tumor development [18, 19, 79].
Such agents can promote the outgrowth of cells with genetic
damage into preneoplastic lesions and hence can under
certain circumstances of exposure increase the incidence of
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hepatic neoplasia in rodents and humans. Tumor promoting
agents are believed to alter the balance between proliferation
and apoptosis in initiated cells relative to the normal sur-
rounding cells [88, 89]. Studies with prototypical hepatic
tumor promoting agents including phenobarbital, PPARa
agonists, and ethinyl estradiol indicate that a generalized
mitosuppression of non-focal hepatocytes is an early and
sustained activity of such agents. In addition, reversible
alteration of gene expression is associated with tumor pro-
motion. Furthermore, tumor promotion is reversible and
exhibits a threshold for the selction of initiated cells [27].

4.3.2.1 Phenobarbital
Phenobarbital and related agents are not genotoxic, yet they
can result in the development of cancer in susceptible
organisms [90]. While selected mouse strains can develop
neoplastic lesions following chronic exposure to Phenobar-
bital or related agents, certain rat strains can develop ade-
nomas and rarely adenocarcinomas after chronic exposure.
At therapeutic doses, man does not appear susceptible to liver
tumor development with chronic Phenobarbital administra-
tion (c.f. [91]). Initiation-promotion studies indicate that
Phenobarbital has a promoting action [92]. Importantly, a
dose dependent promoting activity is observed that exhibits a
threshold [92, 93]. Interestingly, phenobarbital and related
agents can increase the background proliferation rate tran-
siently in the liver [94]. Specifically, Phenobarbital increases
the focal relative to the non-focal hepatic labeling index [95].
Importantly, Phenobarbital promotes eosinophilic, but not
basophilic lesions [96]. In addition, a mitosuppression can be
observed in the non-focal hepatocytes [97], while the discrete
focal hepatocytes have an increased rate of proliferation
compared with control hepatocytes or the surrounding nor-
mal appearing ones [98, 99]. Phenobarbital increased DNA
synthesis and decreased apoptosis in hepatocytes in vitro [99,
100]. Studies with Phenobarbital showed that only the pro-
moting dose resulted in changes in gene expression associ-
ated with apoptosis suppression and cell proliferation, while
dose dependent changes in selected drug metabolizing agents
was observed [100]. It has been suggested that the increased
growth rate of the eosinophilic lesions compared with the
surround is due to the decreased responsiveness of the altered
focal cells to TGFb family members that are responsible for
apoptosis [101, 102]. IGF2R modulates cell proliferation in
response to insulin and IGF family members and apoptosis in
response to TGFb. The expression pattern is altered in focal
compared with non-focal areas of the liver for IGF2R and
TGFbR [102, 103]. Phenobarbital can promote those initiated
cells with a low level of TGFbR, while increasing ligand
expression in surrounding hepatocytes [102–104]. TGFb is a
potent mitoinhibitor of hepatocytes and phenobarbital
increases this ligand in non-focal hepatocytes and TGFb is

increased at the protein level during mitosuppression induced
by Phenobarbital exposure [103, 104].

Previous work has demonstrated that Phenobarbital-like
compounds cause the increase in gene expression of a
number of genes including CYP2B1/2 [105] and is tran-
scriptionally regulated [106]. The tumor promoting action of
this type of agent is correlated with the induction of CYP2B1
[107]; therefore, the mechanism underlying tumor promotion
by phenobarbital and related compounds has been associated
with the mechanism of CYP2B1 induction. Since a struc-
turally diverse group of compounds act in a similar manner, it
has been under consideration as to whether a receptor was
responsible for this action. The constitutive androstane
receptor (CAR) plays a role in the induction of CYP2B
family members [108]. Agents that act to alter the metabo-
lism of testosterone derivatives, specifically androstenedione,
can alter endogenous activation of the CAR receptor [109].
There are two forms of CAR and Phenobarbital can displace
the ligand from CARb [109]. Agents such as phenobarbital
activate the CAR receptor to perturb gene expression [110–
113]. Studies in knock-out mice indicate that certain genes
are expressed or repressed when the CAR receptor is present
while a separate set is affected when it is not present [113,
114]. It is clear that CAR is associated with the gene
expression acutely associated with phenobarbital exposure,
but how this is associated with tumor promotion is unclear.
CAR knock-out mice have been used to confirm that CYP2B
expression is dependent on CAR [112]. Nonetheless, CAR
knock-out mice are resistant to Phenobarbital induced hepatic
tumor promotion [114]. Interestingly, chronic Phenobarbital
administration results in DNA hypomethylation that is
CAR-dependent [115]. The mouse strain susceptible to
spontaneous and chemical carcinogenesis is sensitive to
promotion by Phenobarbital, while the resistant strain
C57B6l6 is resistant. The tumors arising spontaneously in
C3H mice are Ha-ras-mutation positive [116], lack CAR, and
are not promoted by phenobarbital [117]. These tumors lack
CAR, but express b-catenin and are promoted by phenobar-
bital [117, 118].

Nuclear receptors are frequent targets of drugs and of
environmental chemicals. The function of these ligand
activated transcription factor receptors is to regulate
endogenous metabolism; hence, homeostasis can be per-
turbed when their function is modulated. Drugs and envi-
ronmental chemicals can alter the effects of multiple nuclear
receptors due to their broad and overlapping substrate
specificity. The interaction of nuclear receptors with coac-
tivators and corepressors provides another level of control of
their function within cells. The CAR is a nuclear receptor
that regulates the expression of drug metabolizing enzymes
[110–113]. CAR is an important regulator of many genes
involved in drug metabolism including a number of P450s,
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phase 2 enzymes, and transporters. Species specificity in
response to CAR agonists have been detected although that
of Phenobarbital (PB) is only 1.5 fold (the human is less
sensitive) and human CAR is not sensitive to the same bile
acids as mice [119]. The mode of action of phenobarbital for
hepatic tumor promotion has been reviewed [120].

4.3.2.2 Estrogenic Agents
In the human, certain estrogenic formulations can result in
adenoma development and rarely in carcinomas. Estrogenic
agents can be carcinogenic to rat liver, but tend to inhibit
cancer development in the mouse liver. Estrogenic agents are
clearly promoting toward the rat liver, but the basis for this
action is unknown [121–126]. Estrogenic agents can increase
cell proliferation in the rat liver and can induce focal prolif-
eration with mitosuppression in the surrounding hepatocytes
[127, 128]. Examination of altered gene expression during
the mitosuppression observed with chronic ethinyl estradiol
treatment demonstrated an increase in TGFb and
IGF2R/M6PR without a change in myc or CEBPa levels
[129, 130]. The increase in TGFb leads to CKI induction that
may lead more directly to the mitoinhibition [131]. Similarly,
EE exposure induces TGFb1 expression. Hepatocytes with
decreased levels of TGFbR are at a selective growth advan-
tage compared to cells without this characteristic [102].
Hepatocytes that survive TGFb exposure have decreased
HNF4a activity, but increased fos, jun, myc, and ras levels
[132]. Oncogene expression can confer tumor characteristics
that TGFb responsiveness can limit [133]; thus, loss of TGFb
responsiveness is permissive to acquisition of the tumor
phenotype. In certain, hepatocarcinogenesis protocols
administration of tamoxifen results in the regression of a
component of the lesions suggesting an estrogen- (and
estrogen receptor-) dependence for those lesions [134–136].

Sustained estrogen receptor activation is known to
increase the incidence of liver neoplasms in animals and
humans [137–140]. An increase in adenomas was observed
in young women taking an early form of oral contraceptives
(with a higher dose and different formulation to the current
available forms). Rarely, HCC were observed in women
taking early formulations of estrogens for oral contraceptive
purposes [90, 137]. Estrogenic agents are effective tumor
promoting agents in the rat liver and their action to initiate
cells through catechol estrogen formation [138] or induction
of aneuploidy [139] needs to be assessed at physiological
concentrations. For example, certain estrogenic agents can
cause a burst of increased proliferation in the rodent liver
[140]. This transient increase in cell proliferation is associ-
ated with stimulation of the estrogen receptor [124, 128].
There is a mitosuppression in the normal appearing hepa-
tocytes, while the focal, putatively, preneoplastic hepato-
cytes have a sustained increase in proliferation [128, 129,
141]. Although the incidence of HCC in humans following

chronic (greater than 5 years) estrogen exposure is low, the
incidence is definable and permits one to anchor the inci-
dence in rats where a clear carcinogenic response to high
dose, potent carcinogens is observed under defined exposure
conditions. This observation permits more accurate risk
assessment from animal hazard identification studies.
Extrapolation of potential for risk across species could be
performed using the low incidence human tumor data as an
anchor for the calculations.

Estrogenic agents have a carcinogenic potential at several
sites including the mammalian liver [90]. Estrogenic agents
are known liver tumor promoting agents in the rat [122, 123,
135] and in the human [142]. There is an apparent threshold
for promoting action [142–144]. The mechanism of tumor
promotion is not known although an increase in focal pro-
liferation and a decrease in focal apoptosis have contributing
roles. Although tamoxifen has an estrogenic action in the
liver that may contribute to its promoting action, the phe-
notypes of the liver lesions that arise with mestranol and
tamoxifen treatment differ [145]. In addition, tamoxifen can
inhibit the development of mestranol promoted lesions
indicating a divergent mechanism of action [124, 135]. The
mechanism of estrogenic/antiestrogenic action for tamoxifen
is only incompletely understood. While this action may in
part be due to an interaction with the estrogen receptor, other
factors may also be involved. For example, antiestrogens
bind to sites other than the estrogen receptor including
covalent binding to P450s [146], tubulin [147], and other
interactions with “antiestrogenic binding sites” [148]. In
addition, antiestrogens inhibit protein kinase C and
calmodulin activity [149]. In addition, antiestrogens alter the
production of several peptide growth factors including TGFa
[150], TGFb [151], and IGF1 [152], and affect some calcium
dependent processes [153]. Estrogenic and antiestrogenic
agents additionally alter cholesterol metabolism [148].
Tamoxifen appears to promote the diploid hepatocyte pop-
ulation [154], similar to ethinyl estradiol [155]. The triph-
enylethylene antiestrogens have differential effects on the
hepatic proliferative rate in the rat [156, 157]. In the liver
itself, triphenylethylene antiestrogens have an estrogenic
action; however these drugs are mixed agonist/antagonists in
a species, strain, tissue, gene, and hormone status basis.

Mestranol is a synthetic steroidal estrogen that is
metabolized [158] to the potent rat liver tumor-promoting
agent, ethinyl estradiol [150]. Mestranol use in oral contra-
ceptives was associated with an increased incidence of
hepatic adenomas and a few HCCs in young women [90,
159–161]. Studies in rats indicate that mestranol and its
active metabolite ethinyl estradiol promotes the development
of previously initiated liver cells through induction of ele-
vated cell proliferation levels. Mestranol does not have a
marked effect on P450 profiles in the liver [162], but it can
cause cholestasis [163] and clearly enhances liver growth
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[162]. Chronic administration of ethinyl estradiol results in
mitosuppression of liver cells with selection of resistant
hepatocytes for outgrowth [127, 128] and this in combina-
tion with its ability to increase cell proliferation [124, 164];
is believed responsible for its tumor promoting properties
[121–124, 127, 128, 144, 165, 166]. Tumor promotion by
ethinyl estradiol is effected through the estrogen receptor,
since it can be inhibited by tamoxifen [135, 136]. At low
doses and for short durations of administration, ethinyl
estradiol can increase hepatic hypertrophy and a transient
increase in cell proliferation [124, 164], while with chronic
administration a mito-inhibition is observed [124, 127].

4.3.2.3 PPAR Agonists
The peroxisome proliferators activated receptors (PPARs)
are members of the steroid/retinoid receptor superfamily.
Three mammalian nuclear receptors of the PPAR class have
been isolated including PPAR alpha, delta, and gamma
[167]. The PPAR alpha receptor is a ligand activated nuclear
transcription factor that is responsible for the regulation of
lipid catabolism [168]. The PPARa receptor and the retinoid
X receptor nuclear receptor (RXR) can heterodimerize and
bind to peroxisome proliferator response elements (PPRE) to
alter the transcription of genes including those that are
involved in lipid metabolism [169–171]. Peroxisome pro-
liferators include structurally diverse chemicals that can
activate the PPARa receptor including industrial chemicals,
plasticizers, herbicdes, and some lipid lowering drugs [171–
173]. Agonists of PPARa induce peroxisome proliferation
[173, 174], hepatomegly [173, 175], cell proliferation [173,
176, 177], and liver neoplasms in rodents [171, 177, 178].
Although numerous theories exist regarding the mechanism
of hepatocarcinogenesis in the rodent following chronic
exposure to PPARa agonists, the mechanism is not fully
understood. In general, PPARa agonists are not genotoxic
and demonstrate a promoting activity [179]. Similar to other
receptor-mediated, non-genotoxic rodent carcinogens,
PPARa agonists, including WY14, 643, methylclofenapate,
Nafenopin and clofibric acid increase the TGFb1 ligand,
while these agents excluding clofibric acid increase expres-
sion of the IGFII/Man6P receptor [180]. Sustained PPARa
receptor activation is required for induction of liver tumors,
since PPARa knock-out mice do not develop hepatic neo-
plasms even after a one year exposure to a PPARa agonists
[181]. Similarly, peroxisome proliferation and gene expres-
sion regulated by PPARa are not altered by exposure to
PPARa agonists in the knock-out mice [181]. The lack of
carcinogenic action in the human relative to the rodent has
been explored with human PPARa receptor knock-in mice
[182]. Although the precise mechanism of the hepatocar-
cinogenesis of PPARa agonists in rodents is not fully
understood, it appears dependent upon PPARa receptor
activation [183–185]. Thus, PPARa agonists are

non-genotoxic carcinogens that function through receptor
activation [186] and appear to be carcinogenic in the rodent,
but not in primates.

4.3.2.4 AhR Agonists
The aryl hydrocarbon receptor (AhR) is structurally distinct
from the nuclear receptors, and contains a bHLH-PAS
domain [187–189]. The ligand bound receptor interacts with
arnt and this dimerization partner regulates the expression of
specific genes. The ligand-binding domain of AhR is within
the PAS domain. The PAS domain of AhR binds ligand,
binds to a repressor (probably hsp90) and has some of the
interaction function with arnt. The function of excess AhR
ligand may be to block the function at the other sites of arnt
binding. The low affinity allele of AhR found in some mouse
strains is similar to that observed in humans [190–192]. In
addition, the transactivation domain part of AhR is highly
divergent with only a 60 % identity between rat and human
[192]. This suggests that human gene expression in response
to an AhR ligand will differ qualitatively as well as in mag-
nitude from that in rats and mice containing the high affinity
AhR allele.

TCDD and related agents can induce a range of toxicities
that may be mediated by AhR [187]. Dioxin lacks any
genotoxic activity, yet increases the incidence of hepatic
neoplasms in rats [193]. Dioxin can cause marked cytotox-
icity at higher doses and this may contribute to its tumor
promoting activity. Activation of arylhydrocarbon receptor
(AhR) by 2,3,7,8 tetrachlorodibenzoparadioxin (TCDD) and
related compounds of the furan and PCB classes results in
alterations in gene expression including an induction of
CYP1A1 [194]. Although the role of CYP1A1, if any, in
tumor promotion is unclear, CYP1A1 expression is a useful
marker for ascertaining exposure to this class of compounds.
Over 100 genes may be regulated by AhR activation [195].
Genetic differences between mouse strains have been used to
demonstrate that TCDD-mediated liver tumor promotion is
AhR dependent [196]. Transgenic mice overexpressing a
constitutively active AhR are more sensitive to
diethylnitrosamine-initiation resulting in a higher yield of
preneoplastic lesions than the genetically matched control
animals [197]. Knock-out animals have been generated
[198–200]. The gene expression patterns [201] and toxicity
[202] have been examined after acute but not chronic
administration of TCDD to the knock-out animals. The
genetic background of the animal is important for its
potential to develop neoplasms in response to TCDD
administration. Since a selection for neoplastic clones
resistant to the toxic insult that permits their outgrowth
occurs, Ha-ras mutated hepatocytes might be resistant to
AhR dependent toxicity. Liver tumors from TCDD treated
mice have a high incidence of Ha-ras mutations [203] sug-
gesting that the C3H background would be exquisitely
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sensitive to TCDD induced tumor promotion [119]. When
IL1-like knock out mice are generated on an AhR knock-out
background, hepatic tumor induction by TCDD is decreased
[203] similar to the dual receptor dependence on the IL1R
and AhR receptor for TCDD-induced hepatotoxicity.

Initiation-promotion studies in the rat [204, 205] indicate
that there is a threshold for the promoting action of TCDD
and related compounds. A variety of studies indicate that
TCDD causes a generalized mitosuppression in the liver
[206, 207]. However, an increased cell turnover in focal
lesions was noted relative to the surrounding liver [208,
209]. The initiated cell population is resistant to apoptosis
[209, 210]. Interestingly, the AhR null hepatocytes both
secrete TGFb ligands and are quite sensitive to the apoptosis
induced by TGFb [210], indicating that AhR deficiency
leads to increased TGFb ligand production wherein selection
for resistance to its apoptotic effects would permit promo-
tion. Perhaps, TGFbR or processing of TGFb through
IGF2R would confer selective growth advantage to AhR−/−
mouse hepatocytes that secrete TGFb ligands. The AhR null
mice have been used to demonstrate that the gene induction
profile associated with AhR activation are altered [201] and
the acute toxicities associated with AhR activation are
diminished [202]. For example CAR is increased by AhR
activation [211], while growth hormone receptor and janus
kinase 2 are decreased [212]. Future studies should address
the question of carcinogenicity in mice with AhR overex-
pressing and null alleles on different mouse strain back-
grounds. In the human, exposure to TCDD has been
associated, but not causally linked to an increased cancer
risk [213, 214]. In part, the human AhR receptor is less
sensitive to activation by AhR ligands [192] and in part, the
exposure level in humans has been below that required to
cause sustained tumor promotion [214]. Other agents in the
class including certain of the polychlorinated biphenyls and
the tetrachlorofurans may act in part through an
AhR-dependent mechanism. Each agent has a unique con-
tribution of AhR, CAR, and ER-dependent activity, as well
as other actions including cytotoxicity that may contribute to
its carinogenicity in rodents and provide a potential risk to
the human. Certain exposures to mixtures of PCBs and
furans have been associated with an increased risk of human
liver disease and cirrhosis [215], but a causal link has not
been made to cancer. Even in worker populations, the low
incidence and lack of consistent dose trend prohibits the
conclusion of causality [216]. The risks at high dose expo-
sure differ from the risks posed by ambient exposures, sine
multiple modes of action occur at the higher exposures.

4.3.2.5 Ethionine
Ethionine is an antimetabolite of the amino acid methionine
when administered in the diet for extended periods can result
in the development of liver cancer in rats [30]. This was the

first example of direct interference with the metabolism of a
normal metabolic constituent, resulting in the development of
cancer. Ethionine induces marked steatosis that progresses to
NASH, cirrhosis and HCC [31, 217]. Its ability to disturb
one-carbon pools (rats are ten times more sensitive than
humans to choline deficiency), folate metabolism, and to
induce steatosis is similar to alcohol-induced changes that
progress to cirrhosis and ultimately to HCC. This compound
interferes with methylation causing hypomethylation upon
chronic administration [217]. This agent is not used in the
human.

4.4 Pathogenesis of HCC

The pathogenesis of human HCC has been examined
extensively [6–8, 218]. Generally, the neoplasms are detec-
ted at late stage when many concurrent genetic changes are
apparent. Tracing the earliest genetic changes in clinical
samples has been limited. Studies using CGH arrays and
gene expression analysis indicate that multiples pathways
and multiple mechanisms lead to HCC development and
progression due in part to different etiologies and time dur-
ing pathogenesis of clinical detection. Primary liver cancer
associated with cirrhosis evolves from precancerous lesions.
Dysplastic nodules have variable degrees of atypia and can
exhibit a focus or nodule in nodule appearance that can
range from normal appearing to neoplastic in appearance.
The formation of dysplastic nodules is not required for HCC
development. Large cell dysplasia appears to be a response
to injury and is not strictly a preneoplastic lesion although it
is associated with an increased risk of HCC in a cirrhosis
background of more than 3 fold [6]. On the other hand, small
cell dysplasia seems more characteristic of preneoplastic
change with greater than a 6 fold risk [6]. These small cell
dysplastic cells are more diploid and less differentiated in
character than the large cell dysplasias.

4.4.1 Rodent Models of Hepatocarcinogenesis

Examination of the epidemiology of liver cancer in humans
indicates that both genetic and environmental factors are
involved in the etiology and evolution of this disease.
Studies in rodents can provide insight into the various fac-
tors involved in liver carcinogenesis. Early studies on
rodents exposed to carcinogens indicated that male rodents
are more likely to develop liver tumors [219, 220]. Rats,
although relatively resistant to the spontaneous induction of
liver neoplasms, will develop hepatic tumors later in life
with a sex-bias in incidence that differs between strain and
study [221]. This compilation of strain background effects
on spontaneous liver tumors in rats suggests that females
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have a slightly higher rate in Charles River CD,
Osborne-Mendel, and Fischer rats and the incidence in males
being marginally greater in the Wistar strain. Hepatic tumors
can be readily induced in the rat by a variety of carcinogenic
agents, with the male generally more sensitive than the
female. The cancer bioassay is performed in 2 species of
rodent, the rat and mouse. The sex specificity of liver tumor
induction is, however, carcinogen specific due in large part
to the sex dependence of the metabolic pathways.

4.4.2 Rat Models

The rat liver has been used extensively as a model of the
carcinogenic process [5, 17]. Three basic protocols with
numerous variations have been described including resistant
hepatocyte model, neonatal rat model, and the partial hepa-
tectomy model. These models couple carcinogen adminis-
tration with a period of rapid cell proliferation due to the
intrinsic growth of the tissue in the neonate, the wave of
proliferation that occurs following surgical resection, or the
extensive necrosis induced by excessive carcinogen admin-
istration. These studies can be used to examine very early
changes in the pathogenesis of preneoplasia in the rat liver.
The initiation-promotion-progression (IPI) model [222], the
Solt-Farber model [223], and transgenic [224] rat models can
be used to analysis later focal hepatic lesions, adenomas and
carcinomas. The utility of the rodent as a model lies in the
ability to assess the changes associated with early premalig-
nant changes that would not be detected in clinical samples
that present late in the progression process. In addition,
rodents can be used to model gene-environment interactions
in a controlled manner. Thus, the early premalignant changes,
as well as the initial stages and pathways in progression of
primary liver cancer are tractable in rodent models, while
human cases are more amenable to analysis of later
progression.

The rat has been used extensively as a model in which to
examine the process of liver cancer development and to
ascertain which compounds can influence cancer develop-
ment in the liver. Studies by Bannasch [225] indicate that
two pathways that evolve toward HCC in the rat are thy-
roidmimetic and insulinmimetic (insulin signaling pathway)
with resulting glycogen accumulation phenotype). With
progression, a shift from anabolic to catabolic glucose uti-
lization occurs in the insulin dependent signaling pathway.
Similarly in humans, diabetes mellitus predisposes to HCC
development as an independent risk factor [16]. This effect is
observed in livers of rats treated with Phenobarbital and
related types of agents that promote eosinophilic lesions,
while a thyroid like effect is observed for the basophilic
lesions that arise with PPARa agonist administration [225].
Although PGST has been used as a marker of putatively

preneoplastic lesions in the rat and is increased in expression
in single cells following carcinogen exposure, in focal
lesions with promotion, and in some neoplastic nodules and
neoplasms, a deficiency of glucose 6-phosphatase expression
may be more representative of hepatic lesions that will
progress to neoplasia [225, 226].

Analysis of the gene expression changes across the car-
cinogenesis process and especially in preneoplastic lesions
or following carcinogen exposure can illuminate the pro-
cesses impacted by carcinogens. Recently, gene expression
analysis has been applied to gain a clearer understanding of
the changes that accompany liver cancer development in the
rat. Many of these studies have been performed using vari-
ations on the Solt-Farber selection model for rat liver cancer
induction [223]. Preneoplastic lesions have a higher level of
expression of genes that are anti-apoptotic (p53, NK-kB and
Bcl-2 pathways) and pro-proliferation [226]. Proliferation
gene changes are also common in liver tumors, while
apoptosis was decreased [227, 228]. Early nodules demon-
strate a decrease in both growth hormone receptor and
growth hormone binding proteins [229]. Specifically, IGF2
is expressed during liver cancer development, while IGF1 is
decreased during liver cancer development [230]. These
more fetal-like gene expression patterns are observed during
early tumor development [231]. The increased expression of
TGFa and HGF and their respective receptors, EGFR and
met, observed in early nodules is lost with neoplastic pro-
gression [232]. Gene expression analysis demonstrates many
genes in common between neoplastic nodules and HCC with
only a few genes uniquely observed in HCC [226, 232].

4.4.2.1 Multistage Nature of Cancer
Development

Molecular analysis of the pathogenesis of the natural history
of liver cancer induction and progression has been exten-
sively examined in the rodent. In the rat, single hepatocytes
aberrantly expressing glutathione S transferase P (GSTP)
can be observed within two days of carcinogen exposure
[233–238]. Under many conditions, GST expression has
been suggested to represent a population of initiated hepa-
tocytes in the rat liver [235, 236, 238]. This is true for
several types of genotoxic carcinogens including diethylni-
trosamine [233, 238], an alkylating agent, aflatoxin B1 [233]
that results in the formation of bulky DNA adducts, and
choline deficient diet that result in depletion of methyl pools
[237]. Single GSTP expressing hepatocytes are found in a
dose-dependent manner following carcinogen administration
[233]. Some subset of these cells will grow into colonies of
hepatocytes also expressing GSTP. These findings suggest
that the single GSTP expressing cells are precursors of those
that form colonies and by definition of some of those that
will progress into hepatic neoplastic nodules and HCC.
Single hepatocytes expressing GST have the characteristics
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associated with initiated liver cells; namely, dose dependent
induction with carcinogen administration, rapid appearance
after carcinogen treatment, enhanced intrinsic proliferation
compared with surrounding apparently normal hepatocytes,
and response to the selective growth pressure exerted by a
promoting agent [233]. Expression of genes at the single cell
level has been inadequately characterized, but GSTP and
GGT are increased in certain hepatocytes following car-
cinogen administration.

4.4.2.2 Promotion
The promotion stage of cancer development has been oper-
ationally defined as the clonal expansion of the initiated cell
population. The growth kinetics of GST expressing hepato-
cytes can be followed over time through the analysis of the
size and volume fraction of the liver occupied by GST
expressing hepatocytes [233]. The hepatocytes within AHF
during promotion are primarily diploid [239, 240] and
additionally lack demonstrable karyotypic changes [240].
Promoting agents stimulate the growth of the focal hepato-
cytes in a reversible manner and this can be determined by
assessment of the size of the observed (GST expressing)
hepatic lesions and by determination of focal increase in the
expression of cell proliferation markers [234]. The net
growth rate of GST expressing hepatocyte colonies can be
determined from the volume fraction occupied by such
lesions as a function of time. The net growth rate thus reflects
the balance between the birth and death rate within this
population in relation to that observed in the surrounding
apparently normal cells. While many of the GSTP expressing
lesions will regress, the nodules that concurrently express
GSTP and gamma glutamyltranspeptidase (GGT) appear to
be the ones that progress. The loss of expression of glucose
6-phosphatase has also been associated with progression, but
it is unclear whether this is through a different mechanism
than for GSTP expressing lesions. Gene expression has been
examined in these early putatively preneoplastic lesions that
precede nodule-in nodule of HCC.

4.4.2.3 Progression
The stage of progression encompasses the spectrum of
changes that occur in the conversion of preneoplastic cells
into malignant neoplasia [32]. There is not as yet a validated
method for the quantitation of hepatocytes in the stage of
progression. This stage is characterized by an evolving
karyotypic instability and aneuploidy indicating the necessity
of understanding alternative pathways in progression of liver
neoplasia. Morphologically, the focus in nodule configura-
tion is the earliest endpoint for detection of progression in the
liver [32, 222, 241, 242]. Interestingly, gene expression dif-
ferences between resistance and sensitivity of rat strains to
liver cancer progression have been described [243].

4.4.3 Mouse Models

Certain mouse strains are more susceptible to spontaneous
[244] and chemically induced [245] hepatic tumors than
other strains. An upregulation of c-jun may mark single
altered cells in the mouse liver [246] analogous to the
increased GSTP expression in the rat. The focal areas of
change can be detected in frozen sections by the loss of
expression of glucose 6Phosphatase. Alternatively, H&E
stained sections demonstrate the presence of two distinct
lesion types (A and B). Discussions by Schwartz indicate
that one class contains Ha-ras mutations, while the other
class contains b-catenin mutations. The C57Bl/6 (resistant)
and the C3H (sensitive) strains differ in their susceptibility to
spontaneous and chemically induced liver cancer develop-
ment [247]. The hepatocarcinogenesis susceptibility allele
(Hcs) is autosomal and is inherited in a semi-dominant
manner with the F1 between the sensitive and resistant strain
demonstrating an intermediate phenotype. This phenotype is
believed to be cell autonomous factor [248]. In a study
performed by Drinkwater et al. [249], BXH (RI strains
developed from a cross between C57Bl/6 (B) and C3H
(H) mice were subjected to neonatal ENU administration.
BXH strains 6, 14, and 10 were resistant, while BXH strains
8, 9, 7, and 3 were sensitive to ENU induced increases in
liver tumor multiplicity. A number of susceptibility gene loci
have been described genetically for mouse liver cancer
development. These cancer modifier loci have been mapped
to specific chromosomal locations based on the Mendelian
inheritance patterns in inbred mouse strains that are sensitive
and resistant to cancer development [250]. Strain differences
in sensitivity to liver cancer development were described by
Andervont [244] indicating a genetic component to the
spontaneous development of liver cancer in mice. A few of
these genes have been identified by positional cloning
approaches. In addition, human homologues of cancer sen-
sitivity and resistance alleles have been proposed. The C3H
strain is susceptible to spontaneous and carcinogen induced
liver cancer development, while the C57/Bl6 mouse is by
comparison resistant. The hepatocarcinogenesis sensitivity
(HCS) and resistance (HRS) alleles have been defined for the
mouse. A hepatic susceptibility locus on mouse chromosome
1 accounts for 85 % of the variance between these two
mouse strains [247, 251]. Studies with other mouse strains
and other carcinogens have also been performed [252].

The National Toxicology Program assesses cancer risk in
the B6C3 F1 mouse that carries the dominant susceptibility
allele for liver cancer development. The most common
experimental cancer assessment tool is the neonatal mouse
model [253] as first described by Vessilinovitch [254].
Numerous models of human liver diseases exist. Many of
these are developed as a complicated toxin or carcinogen
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regimen [18]. In addition, genetically modified mice have
been made against signaling pathway members believed
important in liver cancer development [224]. These rarely
are a complete recapitulation of the human disease, but are
nonetheless useful for modeling one component of the dis-
ease [224]. The challenge is to couple etiologic agents, with
pathway perturbations and disease models to unravel com-
ponents of the pathogenesis of human primary liver cancer
[18, 224, 255]. Analysis of early and progressive lesions that
arise in the mouse, rat, and human will provide a mechanism
by which to develop models of human liver cancer devel-
opment, pathogenesis, and progression.

4.5 Etiology in the Human

Patients at risk for HCC include those with chronic hepatitis
B virus (HBV) and/or HCV infection [14, 256], certain
metabolic liver diseases, such as hereditary hemochromato-
sis [257], Wilson’s disease, a-anti-trypsin deficiency, and
porphyria cutanea tarda [7, 8]. Individuals with cirrhosis are
at risk of HCC [7, 258]. Heavy alcohol consumption is also a
common major risk factor for developing HCC [7, 8, 83, 85,
258]. Other predisposing factors include gender (males are
times more likely to develop HCC than females), smoking,
and diabetes [258]. Environmental influences, including
carcinogen exposure and viral hepatitis prevalence, are
believed to contribute to its distinct geographical distribution
pattern [8]. Specifically, chronic infection with HBV and
exposure to aflatoxin in the diet contribute to high-risk levels
of HCC [259]. Thus, primary liver cancer is a product of
environmental exposures with genetic consequences. In the
US, the largest cross-sectional study of HCC identified
infection with HCV and/or HBV as the most common risk
factor for HCC (47 % HCV, 15 % HBV, 5 % both)
Approximately, 33 % of primary liver cancer in the US are
not associated with HBV or HCV) [8]. The incidence of
HCC is increasing in the US primarily due to an increase in
HCV infection [8]. It has also been proposed that the rising
incidence of obesity, type 2 diabetes, and non-alcoholic liver
disease contributes to this increased incidence of HCC [120].

4.5.1 Cirrhosis

Individuals with cirrhosis, regardless of its etiology are at
risk for HCC [7, 258]. Fibrosis of the liver can result as a
response to liver injury or as a component of selected genetic
diseases [260, 261]. Cirrhosis is the endstage of fibrotic
disease. Cirrhosis of the liver can occur during the pro-
gression of alcoholic hepatitis, non-alcoholic steatohepatitis
(NASH), viral hepatitis, and cholestatic liver diseases [262].
Viral hepatitis (HBV and HCV) and alcohol are the primary

causal factors in liver cirrhosis, while NASH, certain genetic
diseases (e.g. hemochromatosis), and immune-mediated
damage provides other contributing factors [7, 8]. There is
an increased risk of primary liver cancer in individuals with
hepatitis C associated cirrhosis and diabetes mellitus [263].
In some conditions, cirrhosis can progress to HCC.

4.5.2 Non-alcoholic Steatohepatitis (NASH)

Nonalcoholic fatty liver disease (NAFLD) is the most
common cause of elevated serum enzymes indicative of liver
injury and may be due to many etiologies [264–269]. An
independent diagnostic test or disease marker is not available
for NAFLD. The NAFLD disease continuum, which has a
worldwide prevalence of 20 %, is defined to exclude viral
hepatitis, autoimmune diseases, metabolic changes due to
hemochromatosis, alpha 1 antitrypsin, and ceruloplasmin
changes, and alcoholic liver disease despite the similarities
of disease presentation. Steatosis appears to be a benign
condition, but steatohepatitis is progressive [264, 265, 267].
Essentially all morbidly obese individuals have NAFLD and
approximately 25–50 % exhibit steatohepatitis. For NASH
patients (prevalence of 1–5 % in the general population)
approximately 20 % will progress to cirrhosis, with a small
percentage of these progressing to HCC. Approximately
10 % of individuals with NASH will die of liver related
diseases [265, 266]. NASH is common in type two diabetes
and has a prevalence of 60 % [265–267, 269, 270]. Morbid
obesity is another risk factor for NASH. Approximately, 2–
3 % of lean individuals exhibit NASH, while 15–20 % of
obese individuals have steatohepatitis at non-liver initiated
autopsies. Individuals that have insulin resistance are sus-
ceptible to the development of steatosis (fatty liver) and its
progression to NASH. In some individuals, steatohepatitis
can progress to cirrhosis and in a limited number of cases
can progress to primary liver cancer [270]. Recently animal
models of NAFLD and NASH have been developed, but
these do not completely recapitulate the pathogenesis of the
related diseases and do not progress to cirrhosis or HCC
without additional provocation [271, 272]. Current trends
suggest that the NAFLD continuum is not as benign as once
thought and that progression to NASH, cirrhosis, and
potentially HCC can occur depending on the interaction of
genetic, environmental factors and underlying disease
including diabetes, HFE, among others [273–276].

4.5.3 Viral Hepatitis

Chronic infection with HBV or HCV is the predominant risk
factor for development of HCC, accounting for up to 80 %
of liver cancer cases in geographic regions of high incidence
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of the disease [7, 8, 277]. Although much of the HCC
incidence is attributable to chronic HBV infection, only a
low percentage of individuals that are infected with HBV go
on to develop progressive liver disease even though 80 % or
more develop chronic infection. Approximately one third of
individuals with chronic infection will develop cirrhosis and
HCC develops in less than 5 % of those that develop cir-
rhosis [278]. Carriers of HBV have100 fold risk of devel-
oping HBV [14] that has been suggested to be closer to 5–15
fold in case control studies with a lifetime risk of 10–25 %.
The annual incidence in HBV carriers is less than 1 % [14].
It increases to greater than 1 % in those with hepatitis and to
2–3 % in those with cirrhosis. Although rates of infection
with the viruses are similar in men and women, there is some
evidence that progression of the disease is more likely to
occur in men [7]. Among chronic carriers of hepatitis B
surface antigen (HBsAg) in Taiwan, the ratio of men to
women was 1.2 for asymptomatic individuals, but there were
six times as many men as women among patients with
chronic liver disease [279] in concert with the greater
prevalence of chronic hepatitis and cirrhosis in men [279].
A prospective study of liver cancer development among men
in Taiwan has indicated a relationship between serum
testosterone levels and risk for HCC [279, 280]. Men, whose
testosterone levels was in the highest tertile (>5.7 ng/ml),
had a relative risk of 2 for development of HCC when
compared with men having lower testosterone levels. When
other risk factors, including HBsAg carrier status, anti-HCV
positivity, and alcohol consumption, were take into account,
the relative risk for men with high testosterone levels was 4
[14, 278]. However, this difference may have been due to a
higher proportion of HBsAg carriers among the liver cancer
cases. In developed countries, HCV infection is a more
prevalent risk factor for HCC. HCV infection results in a 15–
fold increase in risk of HCC compared with uninfected
individuals. Approximately, 90 % of HCV carriers develop
hepatitis, while 20 % of HCV carriers develop cirrhosis.
Cirrhotic HCV patients develop HCC at a rate of 1–4 % per
year [7, 8, 5 286]. The high rate of cirrhosis development
results in a risk of HCC over the lifetime of 1–3 %. The risk
of HCC is further increased in HCV carriers for alcohol
excess and HFE carriers [14, 278].

4.5.4 Aflatoxin and Other Dietary
Carcinogens

A number of dietary factors have been associated with HCC
risk including exposure to aflatoxin (a fungal product of
Aspergillus flavus and related species. The risk of HCC is
exposure (dose and duration) dependent [27, 281]. The risk
is heightened in those with HBV [282]. This toxic substance
is produced by certain strains of the mold Aspergillus flavus.

Aflatoxin B1 is one of the most potent hepatocarcinogenic
agent known and has produced neoplasms in rodents and
primates [27]. This agent is a potential contaminant of many
farm products (the common food staples, grain and peanuts)
that are stored under warm and humid conditions for some
time. Aflatoxin B1 and related compounds may cause some
of the toxic hepatitis and hepatic neoplasia seen in various
parts of Africa and the Far East [283]. Thus, an important
environmental and experimental hepatocarcinogenic agent is
aflatoxin B1. Other products of molds and fungi are poten-
tially carcinogenic in humans and animals including fumo-
nosins [284]. Other fungal [285, 286] and microbial products
[287] may similarly be associated with HCC risk. Certain
alkaloids are cytotoxic to the liver and may be associated
with an increased risk of liver cancer. A number of plants,
some of which are edible, also contain chemical carcino-
genic agents whose structures have been elucidated [288].
These include the pyrrolizidine alkaloids are found in
comfrey, and riddeline [289]. The use of Senecio, Crotalaria,
Heliotropium, and Synphytum species can result in
veno-occlusive disorder. Acute toxicity can occur with high
dose exposure, but lower doses and longer durations of
treatment can result in chronic disease. While these agents
are used as teas and herbal remedies, they have been asso-
ciated with acute toxicity and when there is a genotoxic
metabolite in addition to cytotoxicity the combination of
DNA adduct formation and cell proliferation permits muta-
tion induction and fixation. Similarly, a low intake of reti-
noids, selenium, Vitamin E and other antioxidants may also
be associated with an increased risk when combined with
other risk factors [290–294].

4.5.5 Alcohol and Tobacco

Alcohol abuse has been associated with HCC development
that occurs in a background of hepatitis and cirrhosis [258,
295]. Alcohol abuse can potentiate HCV and HBV to
increase the incidence of HCC [87]. This incidence is
markedly increased in individuals with high AFP levels,
high cell proliferation index, and in uncompensated patients
with atypical macroregenerative nodules. In those with
compensated liver fibrosis, the risk of HCC is 3 % [87, 296,
297]. Both case-control and prospective studies have indi-
cated that excessive alcohol consumption increases the risk
of liver cancer development by up to 3-fold, a result likely
due to the induction of liver cirrhosis [296, 298, 299]. Liver
cirrhosis due to excessive alcohol intake is an important risk
factor in countries with a low incidence of HCC. Since
chronic alcohol abuse is more prevalent among men than
women, this risk factor may also contribute to the higher
incidence of HCC in men than women [300]. Alcohol abuse
may be an independent risk factor for HCC in areas of
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endemic HBV or HCV infection with an attributable risk of
approximately 20 % in one study [299]. Alternatively,
associations between gender and lifestyle-associated risk
factors, including smoking and alcohol consumption, have
been suggested as potential determinants of the sex differ-
ence in HCC risk resulting in a male bias in the prevalence
of this disease. There is a positive impact of cigarette
smoking on HCC risk [301–307] and a higher rate of HCC
are observed in heavier smokers when all other risk factors
were taken into account [307]. Thus, the lifestyle factors of
smoking and alcohol intake contribute to the induction and
progression of HCC in a dose dependent and synergistic
manner in both high and low risk geographical areas [304,
305]. Alcohol abuse can increase the risk of HCC in hep-
atitis virus carriers at least 2 fold [87].

4.5.6 Steroids

The factors underlying the sex difference in human risk of
developing liver cancer have not been determined. However,
the geographical and ethnic diversity in the populations at
risk indicate that sex hormone-related factors may underlie
the higher incidence of liver cancer development in men.
Similarly elevated levels of testosterone result in an
increased incidence of hepatic adenomas [308]. In men
taking anabolic steroids, an increased incidence of liver
adenomas has also been observed [309–311] and these
lesions may or may not regress upon cessation of androgen
therapy [312, 313]. Oxymetholone, methyltestosterone, and
danazol administration were associated with hepatic neo-
plasms in certain cases. HCC were associated with oxy-
metholone and methyltestosterone in some patients, while
adenomas were associated with danazol exposure [311].
These studies support the potential for elevated testosterone
levels to contribute to the development of HCC development
[259, 279]. Significant associations have been observed
between polymorphisms in three hormone related genes and
HCC. These include androgen receptor, 5 alpha reductase,
and cytochrome P450 17 alpha [259].

Exposure to either anabolic steroids or certain oral con-
traceptive formulations has been associated with the
increased incidence of hepatic adenomas and in rare
instances with HCC development in humans. The earliest
report of an association between liver cancer induction and
exposure to exogenous sex hormones described seven cases
of benign hepatomas in young women with a history of oral
contraceptive use [314]. Women of child-bearing age appear
to be sensitive to the induction of benign hepatic adenomas
and the induction of these liver tumors is enhanced by
exposure to oral contraceptives. These tumors respond to
hormonal manipulations such that they regress upon cessa-
tion of hormonal administration [142] and grow or progress

upon continued administration of these agents. While a dose
(estrogenic potency) and duration effect is seen for oral
contraceptive use and adenoma development, the association
with carcinoma induction is very low and only detectable
with greater than 8 years of exposure [315]. Several inves-
tigators reported that the relative risk for adenoma devel-
opment increased sharply beyond 5 years of oral
contraceptive use [142, 316]. While formulations containing
mestranol and ethinyl estradiol have led to equivalent risks,
the incidence of liver cancer among women using high
potency oral contraceptives was significantly greater than
that for users of low potency formulations. Oral contracep-
tive use has also resulted in an increased risk for malignant
liver cancer [317]. Case-control studies in the United States,
Britain, and Italy demonstrated a 5-fold increased risk for
HCC among women with more than 5 years use of oral
contraceptives relative to women with exposures of shorter
duration [315, 317–319]. In contrast, estrogen replacement
therapy does not increase the risk for HCCs [315]. Thus,
excess exposure to hormonally active agents can increase the
risk of HCC.

4.5.7 Genetic Disorders

A number of metabolic diseases have been associated with
an increased risk of HCC [7, 8]. These include hemochro-
matosis, tyrosinemia, citrullinemia, porphyrias, and a1
antitrypsin. Individuals with cirrhosis and genetic
hemachromatosis have a markedly increased rate and
shortened time until HCC development that is exacerbated
by viral infection and alcohol abuse [273, 279]. Other
metabolic diseases can increase the risk of HCC but to lesser
degree. These include Wilson’s disease, fructose intolerance,
and type I and III glycogen storage disease. Thus, the variety
of the underlying disease base that contributes to HCC
demonstrates the multifactorial risk profile for primary liver
cancer development.

4.5.7.1 Metal Overload Disorders
Iron overload [257, 320, 321] has been associated with
hepatic fibrosis, cirrhosis, and HCC. Hereditary disturbances
in iron uptake [322–324] and metabolism results in one form
of iron overload and dietary ingestion excess [325] a second.
A variety of iron overload conditions have been associated
with HCC even in the absence of cirrhosis including sider-
oblastic anemia and thalassemia [320, 326]. In certain areas
of sub-Saharan Africa, the natives ingest drinks with con-
centrated iron. These individuals have an increased inci-
dence of both cirrhosis and HCC [325]. Porphyrias occur
due to defects in the heme biosynthetic pathway. Both acute
intermittent porphyria and porphyria cutanea tarda have been
associated with an increased risk of HCC [324]. The
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mechanism is unknown, but the presence of free iron in the
tissue may be a contributory factor. In combination with
HBV infection, HCV infection, alcohol cirrhosis, iron
overload induced an increase in lipid peroxidation and the
rate of progression to steatohepatitis, cirrhosis and HCC [86,
258]. Underlying liver disease including cholestasis,
steatosis, and cirrhosis can impact the degree and latency to
disease onset and progression with iron overload syndromes.

Hereditary hemochromatosis was first described as a
hereditary disease associated with HLA linkage and a form
of pigment associated cirrhosis typically associated with
diabetes. A prevalent gene mutation [323] was found to
underlie hereditary hemochromatosis (HFE) and a knock-out
mouse [327]. Although several genetic factors can be
involved in iron overload, the most common is in HFE (85–
90 %). Although several polymorphisms exist, the most
prevalent is C282Y (85–100 % attribution to HFE). The
prevalence is 1 in 250 with an allelic frequency of 5 %. The
second polymorphism allele that is common in HFE is
H63D. Carriers of this allele comprise 15–20 % of the
American population, but the consequence of this allele is
not known [323]. The HFE is an MHC class 1 molecule that
is associated with b2 microglobulin (B2M) and the major
polymorphism C282Y prohibits this interaction. Studies in a
B2M knock-out mouse demonstrate an iron overload syn-
drome [328]. In the HFE knockout mouse, periportal iron
deposition in conjunction and elevated transferrin saturation
[327]. Interestingly, HFE and B2M are in a complex with
transferrin receptor HFE results in an increase in intestinal
iron absorption. HFE mutation carriers cannot facilitate iron
update by transferrin receptor resulting in an upregulation of
the iron responsive gene dimetal transporter 1 that enhancing
iron uptake [329, 330]. Transferrin receptor Ser142 alleles
are increased in liver cancer cases and in addition, TfR
expression is increased in hepatic preneoplasia and in HCC
[330]. The odds ratio for C282Y allele carriers with
TFR142Ser alleles for HCC is 17.2, while it is 62.8 in those
with cirrhosis for HCC development demonstrating the
contribution of TfR to risk of HCC [321].

The long term consequences of iron overload on the liver
include fibrosis and cirrhosis that can be exacerbated by the
presence of underlying liver disease [257, 320]. The inci-
dence of HCC in HH is increased over 100X relative to a
comparative control population [257, 320]. Outcomes in
heterozygotes for HFE seem similar to wildtype, except for
those 1–2 % individuals who are compound heterozygotes
with C263Y/H63D [331, 332]. The odds ratio of HCC in
HFE C282Y carriers or homozygotes is 3.5, while it is 7 in
those with cirrhosis indicating that HFE is a risk factor for
HCC [332]. The HCC population is enriched for C282Y
carriers than is found in the general population indicating a
possible risk factor for its development and progression
[331–333]. The increased risk from HFE alleles is found in

alcoholic cirrhosis and some cases of HCV viral hepatitis,
but not HBV viral hepatitis patients [331, 333]. Animal
models of liver disease in combination with iron overload
also demonstrate an increase in disease progression [334].
For example, transgenic mice overexpressing the HCV
polyprotein fed a diet enriched in iron develop microvesic-
ular steatosis indicative of mitochondrial damage and
impaired energy use with fatty acid retention and earlier
onset of HCC than their littermates similar to those humans
that develop fatty liver with HCV infection [334]. A wide
range of hepatic tumor phenotypes is observed in human
HFE [335]. Interestingly, a high incidence of p53 mutations
has been observed in one series of HCC from HFE patients
[336]. Importantly, epigenetic defects are observed in liver
tissue from 75 % of the HFE patients examined prior to the
onset of cirrhosis with hypermethylation and hence gene
expression decreases [337].

Wilson’s disease or inherited copper-overload disease can
result in cirrhosis, hepatitis, and HCC. Wilson’s disease is
found in 1:30000 with a carrier rate of 1:250 [338]. Cerru-
loplasmin is decreased in the serum of Wilson’s disease
patients. This autosomal recessive disorder is due to a
mutation in the P-type ATPase responsible for biliary copper
excretion (ATP7B) located in the trans golgi network [339].
The most prevalent mutation, H1069Q, is observed in 30 %
of Wilson’s patients of European decent. Other mutations of
the ATP7B gene exist and can also result in Wilson’s disease
[338]. In addition, modifier genes that impact the severity of
the disease also exist. Copper is normally ingested and
absorbed through the GI tract and excreted through the bile.
Copper is transported in the serum bound to histidine.
Copper binds to glutathione or metallothionein, and cerru-
loplasmin. It is excreted into the bile in part through a
secretory pathway involving ATP7B. The Long Evans
Cinnamon rat is susceptible to non-viral hepatitis with sub-
sequent formation of liver neoplasms, the male is more
susceptible to the development of liver tumors [340, 341].
The LEC rat is a model of Wilson’s disease that develops a
non-viral hepatitis due to copper overload. These rats also
have disturbances in iron metabolism. Those animals that
survive the hepatitis will develop HCC. The toxic milk
mouse has a mutation in M1356 V and G712D have defects
in copper transport [342] and a knock out mouse (ATP7B)
has also been generated [343]. If intracellular copper accu-
mulates beyond the ability of the hepatocyte to buffer it, then
hepatic damage will ensue with copper release into the cir-
culation and its accumulation in other tissues.

4.5.7.2 Alpha-1 Anti-trypsin
Alpha-1 Anti-trypsin (AAT) is a prevalent protease inhibitor
(Pi) found in the plasma [344]. The most prevalent mutation
is a Glu342Lys caused by a G to A transition called the Z
mutation [345, 346]. Adult males that are homozygous for
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the Z mutation (PiZZ) may have an increased risk of cir-
rhosis and HCC [345–347]. Alpha 1 antitrypsin results in an
increased risk of HCC in the absence of cirrhosis in
homozygotes [347]. Carriers (PiZ) are also believed to be at
an increased risk for HCC [348] especially in combination
with other risk factors [349, 350]. While the mechanism of
a1AT alleles on disease etiology is unclear, the altered
protein structure may induce the unfolded protein response.
Alternatively, this acute phase serum protein, which acts as
an inhibitor of elastase and is synthesized by the liver and
macrophage is retained in the liver resulting in a plasma
insufficiency. Retention in the liver and consequent poly-
merization can result in cirrhosis and to HCC [345, 346].

4.5.7.3 Hereditary Tyrosinemia
Tyrosinemia is an autosomal recessive disorder that can lead
to HCC. This inborn error of metabolism results [351] from
inactivation of fumaryl acetoacetate hydrolase (FAH) result-
ing in the buildup of its substrate fumarylacetoacetate
(FAA) and malylacetoacetate (MAA). As a consequence,
these individuals excrete high levels of succinylacetone into
the urine [352]. MAA and more specifically FAA have
multiple effects on liver cells including apoptosis, ER stress
response, redox balance including GSH depletion, and cell
cycle arrest. Since the last step in the catabolism of tyrosine
is blocked, tyrosine is elevated in the serum. These patients
have a rapid conversion from micro to macronodular cir-
rhosis and later conversion to dysplasia and HCC. Without
pharmacological (nitisinone) treatment or now surgical
intervention, the prognosis was poor with acute liver failure
predominant, followed by HCC [352, 353]. A mouse model
has been developed in which FAH is knocked out [354].
This mutant recapitulates the pathogenesis of human
hereditary tyrosinemia type 1 and can be protected by
nitisinone [355]. Intervention with nitisinone does not
reverse gene expression changes associated with tyrosinemia
[356]. Thus, pharmacological treatment can delay, but may
not prevent HCC development. Genetic manipulation
reversal of double mutant FAH mice formed through ENU
mutagenesis do not develop preneoplastic lesions or HCC,
suggesting that the lack of complete reversal of the pheno-
type by pharmacological intervention is due to incomplete
blockage of the formation of toxic intermediates [357].

4.5.7.4 Citrullinemia
The inborn errors of disease associated with the urea cycle
[358, 359]; namely, mutation of arginosuccinate results in
acute liver toxicity [360]. Citrullinemia type I is an autoso-
mal recessive disorder that is caused by a deficiency in the
rate limiting enzyme in the urea cycle, argininosuccinate
synthetase (ASS1). In severe cases, a hyerammonia can
occur that is fatal neonatally. An argininosuccinic aciduria
with an increase in citrulline and ammonia in the serum is

observed. Since citrulline is essential in nitrogen home-
ostasis, disruption of ammonia removal results in toxicity to
the liver. There is a broad mutational pattern and each
genotype has different phenotypes [360]. A knock out mouse
has been generated that has high citrilline blood levels and a
severe hyperammonemic phenotype [361, 362]. The
aspartate-glutamate carrier (AGC), SLC25A13, gene muta-
tions result in citrin deficiency [363] and may develop
hepatic steatosis and steatohepatitis [364]. These type 2
citrullinemia patients have an increased level of pancreas
derived trypsin inhibitor and are associated with pancre-
atistis [363]. A decrease in this mitochondrial ACG, citrin,
results in hepatic apoptosis through a caspase pathway in
which the bax to bcl2 ratio is inverted [357]. A knock-out
model has been described, but does not recapitulate all of the
pathologies associated with adult onset type 2 citrullinemia
[363]. The citrin/mitochondrial glycerol-3-phosphate dehy-
drogenase double knock-out mutant is a better model for
type 2 citrullinemia [365]. Urea cycle disruption and per-
turbations of nitrogen removal can have adverse effects on
the liver as exemplified by citrullinemia.

4.5.8 Genomic Landscape of HCC

The genomic landscape of cancer has evolved as a concept in
cancer to account for the many genetic changes observed in
neoplasms [366–368]. It has been suggested that primary
hepatocarcinoma has an average of 6 mutations per megabase
of DNA [369]. This high number may in part due to the late
stage of life in which the cancer is detected as well as the late
stage of its lifecycle when it is detected. The genetic changes
observed in cancer especially liver cancer are considered to
have an environmental and lifestyle component reflected in
the genetic and epigenetic changes observed [370]. The recent
ability to deeply sequence whole exomes or entire sequences
as compared with single genes has emphasized this point.
While many genetic signatures have been detected in neo-
plasms [366–368], six have been demonstrated in liver cancer
using COSMIC [369; http://cancer.sanger.ac.uk/cosmic].
Specifically, the genetic landscape of hepatocellular adeno-
carcinoma has been associated with the etiology of the dis-
ease, while the stage of disease has been more correlated with
the expression and pathway alterations although these two
factors and sets of changes are interdependent. One of the
primary genetic signatures present in HCC (COSMIC signa-
ture 1B) is that of C > T that has been associated with aging.
This may in fact reflect oxidative stress that is prevalent in
cirrhosis and in viral and alcohol induced liver cancer and
which can be found in aflatoxin excess. In this situation, a
helix-distorting adenine adducts at GpCpN on the transcribed
strand are contributory. Similarly, diseases such as
NAFLD/NASH and hemochromatosis also have ongoing
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oxidative stress and damage that would contribute to this type
of genetic signature and to HCC development. A second
signature (COSMIC signature 5) has a similar, albeit less
prominent pattern of C > T changes that in this case are
associated with dinucleotide mutation and strand synthesis
bias. In the third signature (COSMIC signature 6), interstitial
deletions at nucleotide repeats are common. This microsat-
telite instability is associated with mismatched repair defi-
ciency resulting in high C > T, lower C > A, and even lower
levels of T > C. The fourth identified gene mutation pattern
for HCC (this is COSMO signature 4) is associated with the
transcribed strand and has not been associated with a single
predominant mutation, but rather may be associated with the
infidelity of the polymerase and of transcription-coupled
repair. In the fifth signature associated with HCC (COSMIC
signature 16), a high level of T > C is observed and has been
associated with transcription-coupled repair. In addition, a
high level of T to C transversions is associated with the
presence of G adducts as are frequently observed following
polyaromatic hydrocarbon exposure as observed, although
not exclusively, with tobacco smoke and exposure to other
combustible products. A final predominant signature associ-
ated with HCC has a high level of T > G and a medium
amount of T > C changes (COSMIC signature 17). The
genetic landscape of a cancer reflects the cumulative envi-
ronmental exposure, the impact of underlying liver disease,
the etiology of the neoplasm, and its pathogenesis. This has
been examined extensively in liver cancer for p53 and ras loci,
but has now been extended across the genome. This whole
genome examination has been instrumental in deciphering the
complexity and heterogeneity of HCC. Genomewide analysis
is now possible with the combined development of deep
sequencing and big data based bioinformatics approaches.
Besides mutations, insertions, deletions and amplifications,
copy number variants and other factors that alter gene
expression. In addition, mechanisms that impact gene dosage
are important in liver cancer development and progression.

With respect to gene expression, a number of kinases and
potentially phosphatases are of importance in altered gene
expression in the liver and with liver cancer development
[370, 371]. Specifically, Met, EGFR, and IGFR families
have been implicated in liver cancer development and pro-
gression. Other receptors including VEGF2, PDGF, and
FGF have roles in HCC pathogenesis. In addition, down-
stream signaling pathways (MAPK and AKT) and tran-
scription factors (ras, mTOR, and have been implicated in
HCC development and progression. One of the most
important signaling pathways associated with HCC is the
WNT pathway [370, 371]. An inflammatory mechanism is
associated with some HCC and may be associated with
estrogen-dependent regulation of IL6, NFkB and other
mechanisms including those that signal through JAK/STS
and TGFb. Recent, studies of mutations in HCC have

confirmed the incidence of mutations in p53 and
beta-catenin. Furthermore, the many mutations have been
mapped against pathways and network to reveal the impor-
tance of proliferation, apoptosis, tumor microenvironment,
neural signaling, metabolic pathways, and circadian path-
ways [371]. These pathways include cell cycle, p53 signal-
ing, Wnt, MAPK, PI3 K/AKT and apoptosis, but also
calcium signaling and Hippo pathways based on TGAC
analysis. While these pathways are associated in general
with HCC, their association with etiology, pathogenesis, and
prognosis requires additional analysis. Additionally, chro-
matin- remodeling genes are altered in HCC. These include
ARIAD1a/d, ARID2, MLL, MLL3, TERT among others
[372]. The advent of deep sequencing as applied to the
whole genome or all exons in conjunction with improved
bioinformatics tools and well characterized sample banks of
well defined pathology samples and their accompanying
metadata have enabled important insights into the genomic
landscape of liver cancer as demonstrated with the TGAC
and COSMIC databases [373, 374].

4.5.9 Summary

Chemicals from a variety of chemical classes can initiate,
promote, and lead to the development or progression of HCC.
The effects of chemical agents occur on the background of a
variety of genetic alterations and disease backgrounds. Ani-
mal models have proven invaluable in the assessment of the
early pathogenesis of primary liver cancer by chemicals. The
late stage neoplasms analyzed from the human demonstrate
that multiple etiologies, molecular pathways, and genetic
changes accompany neoplastic development in the liver.
Combinations of genetic factors, environmental exposures,
and background liver disease will be modeled in increasing
complex ways in the future to better recapitulate the role of
chemicals in HCC development and progression. Systems
biology tools as applied to the pathogenesis of HCC will be
informative about the pathways that chemicals disregulate in
different genetic and disease backgrounds to lead to HCC
development and progression.
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