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Abstract Reactive oxygen species (ROS), produced by ionizing radiation and

many other environmental agents, damage DNA and RNA. They are also endog-

enously generated in cells by oxygen metabolism. 8-Hydroxy-20-deoxyguanine
(8-OHdG) was first reported in 1983, as a major form of oxidative DNA damage

produced by heated sugar, Fenton-type reagents, and ionizing radiation in vitro.

8-OHdG has been detected in cellular DNA by HPLC-ECD and LC/MS/MS

methods in many laboratories. The increase in the 8-OHdG level in cellular

DNA, detected by these chromatographic methods, is supported by its immuno-

chemical detection and enhanced repair activity. Its analysis in human leukocyte

DNA, and in urine and saliva, is a promising approach toward the assessment of an

individual’s oxidative stress level. The ribonucleoside 8-hydroxyguanosine

(8-OHGuo), in tissue RNA and urine, is also a good marker of oxidative stress
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in vivo. The free 8-hydroxyguanine (8-OHGua) base is also detectable in biological

samples, such as urine, serum, and saliva. In this chapter, the validity of the general

use of 8-OHdG, 8-OHGuo, and 8-OHGua as markers of cellular oxidative stress is

discussed.

Keywords Reactive oxygen species • 8-OHdG • 8-oxodG • 8-OHGuo • 8-

OHGua • DNA damage • Oxidative stress • Biomarker

Abbreviations

8-OHdG 8-Hydroxy-20-deoxyguanosine
8-OHGuo 8-Hydroxyguanosine

8-OHGua 8-Hydroxyguanine

ROS Reactive oxygen species

HPLC-ECD High performance liquid chromatography equipped with an

electrochemical detector

ELISA Enzyme-linked immunosorbent assay

1 Introduction

Many mutagens and carcinogens react with DNA and induce mutations in cancer-

related genes. Reactive oxygen species (ROS) are implicated as a cause of cancer

and lifestyle-related diseases. Ionizing radiation and many environmental

chemicals generate ROS and damage DNA. ROS are also produced endogenously,

as a by-product of oxygen metabolism. Therefore, ROS may also be involved in the

aging process. A major form of oxidative DNA damage, 8-hydroxydeoxyguanosine

(8-OHdG, 7,8-dihydro-8-oxodeoxyguanosine), was discovered in Japan in 1983,

during a study of DNA modifications generated by heated glucose and

ROS-forming agents (Kasai and Nishimura 1983; Kasai et al. 1984a) in vitro

(Fig. 1). Since then, various aspects of this type of oxidative DNA damage, such

as the mechanisms of its formation, its mutagenic effects, and its repair, have been

studied worldwide, clarifying its biological significance. Floyd et al. first developed

a sensitive method to analyze 8-OHdG, using an electrochemical detector with high

performance liquid chromatography (HPLC-ECD) (Floyd et al. 1986). This method

revealed that various ROS-forming carcinogens induce increased levels of 8-OHdG

in cellular DNA (Kasai 1997). Ames and his collaborators were the first to detect

8-OHdG in animal and human urine samples by HPLC-ECD (Shigenaga

et al. 1989). These discoveries triggered further studies on the analysis of

8-OHdG as a biomarker for risk assessment, the molecular epidemiology of

ROS-related diseases, and aging. Patients with various diseases, such as cancer,

diabetes, and Alzheimer’s disease (urine), showed higher levels of 8-OHdG. In

contrast, the consumption of antioxidants, vegetables, fruits, green tea, etc. was
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correlated with a reduction in the amounts of 8-OHdG in urine, serum, and tissue

DNA. Therefore, 8-OHdG seems to be a useful marker for monitoring the cellular

oxidative stress involved in the induction of cancer and in lifestyle-related diseases

and their prevention by antioxidants. In addition, the ribonucleoside

8-hydroxyguanosine (8-OHGuo), in tissue RNA and urine, is a good marker of

oxidative stress in vivo. The free 8-hydroxyguanine base (8-OHGua) has also been

detected in biological samples, such as urine, serum, and saliva. In this chapter, we

summarize the studies on 8-OHdG and its related derivatives, reported over the past

32 years, with a particular focus on their usefulness as biomarkers.

2 Discovery of 8-OHdG and Mechanisms of Formation

The formation of 8-OHdG was first detected during a study on DNA modifications

caused in vitro by mutagenic heated carbohydrates, which were being used as a

model of cooked foods (Kasai et al. 1984a). Methylreductic acid and

hydroxymethylreductic acid were later isolated and identified from heated carbo-

hydrates as major ROS-forming mutagenic compounds (Kasai et al. 1989). Various

ROS-forming agents, such as Fenton-type reagents (Kasai and Nishimura 1984b),

ionizing radiation (Kasai et al. 1984b), metals (Kasai and Nishimura 1984c),

cigarette smoke condensate (Kasai and Nishimura 1991), and asbestos (Kasai and

Nishimura 1984a), also effectively promoted the formation of 8-OHdG in DNA

in vitro. A hydroxyl radical (•OH) is involved in these reactions. The formation of

8-OHGua in vitro was most efficient with the monomer nucleoside, as compared to

that in RNA and DNA polymers (described later in detail). A preliminary account

of these results was reported in 1983 (Kasai and Nishimura 1983). Floyd and his

collaborators found that methylene blue plus visible light specifically induces

8-OHdG in DNA without a strand break, suggesting the involvement of singlet

oxygen in that reaction (Schneider et al. 1990). In collaboration with Cadet’s group,

Fig. 1 Formation of

8-OHGua and its tautomeric

change
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Kasai et al. found that riboflavin plus visible light induces 8-OHdG in DNA by a

non-singlet oxygen mechanism; namely, via a guanine radical cation followed by a

hydration reaction (Kasai et al. 1992). As an interesting example, Barton and his

collaborators demonstrated that photoactivated metallointercalators induced

8-OHdG in DNA at sites 34–200 Å (10–60 base pairs) away from their binding

sites, by long-range electron transfer along the DNA chain (Nunez et al. 1999).

Kohda et al. reported that 8-OHdG is produced in cellular DNA by a treatment with

the carcinogen 4-nitroquinoline 1-oxide, via N7-arylaminated dG followed by

hydrolytic rearrangement (Kohda et al. 1986). Together, these results revealed

that 8-OHdG is produced by a variety of mechanisms.

3 Nomenclature

8-OHdG is considered to exist mainly as the 8-oxo-form in aqueous solutions,

because its UV spectrum resembles that of 7-methyl-8-oxoguanosine (Culp

et al. 1989; Rizkalla et al. 1969), (Fig. 1). An X-ray crystallographic study of

8-OH-9-ethylguanine actually revealed the 8-oxo-structure (Kasai et al. 1987). In

DNA, its 8-oxo-form mispairs with adenine and induces GC to TA transversion

mutations (Shibutani et al. 1991) (Fig. 2). A repair enzyme that removes 8-OHGua

in DNA was identified in mammalian cells and named oxoguanine glycosylase

1 (OGG1) (Lu et al. 1997). Therefore, many researchers, especially those studying

the mutagenic effects and the repair enzymes, use the name 8-oxodG, rather than

8-OHdG. In fact, Cooke et al. recommended using the 8-oxodG nomenclature

(Cooke et al. 2010). However, a drawback is that the correct name of 8-oxodG is

rather complicated, as it is 7,8-dihydro-8-oxo-dG or 8-oxo-7,8-dihydro-dG, etc.

The 7,8-double bond of the guanine skeleton must be saturated before the 8-oxo is

added to the guanine name, in the systematic nomenclature rules used by Chemical

Abstracts, IUPAC, etc. Surprisingly, the incorrect name, 8-oxodeoxyguanosine, is

Fig. 2 Mismatched base

pair caused by 8-OHGua
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quite often used (Table 1). Therefore, the 8-oxo-type nomenclature is somewhat

confusing. There are at least 6 different 8-oxo-type names, excluding abbreviations

(Table 1). In contrast, 8-hydroxy-20-deoxyguanosine is a simple, clear, and suitable

name as a systematic nomenclature. In fact, 60–70% of the published papers have

consistently used 8-OHdG-type names in the titles throughout the past 32 years, as

shown in Table 1. A major tautomeric structure in aqueous solution is not related to

the systematic nomenclature of chemicals and is not always recommended as the

nomenclature. For example, malondialdehyde (MDA, IUPAC name propanedial) is

a widely used name, although it mainly exists in the 3-enol form in aqueous

solution. However, the name 3-hydroxy-2-propenal (or ß-hydroxyacrolein) is not

used for MDA (Marnett 2002).

4 Formation of 8-OHdG In Vivo

What kinds of carcinogenesis-related factors contribute to the generation of

8-OHdG? The relationship between well-known carcinogens and 8-OHdG gener-

ation in DNA has been investigated in animal experiments and human studies, to

clarify the carcinogenic mechanism. The measured levels of 8-OHdG depend on the

balance between its formation and repair, and thus the 8-hydroxyguanine

Table 1 The number of published reports with 8-OHdG in the title

Keywords 1983–2000a 2001–2010b 2011–2015c Total(a+b+c)

8-Hydroxy-20-deoxyguanosine (A) 120 215 107 442

8-Hydroxydeoxyguanosine (B) 156 140 44 340

8-OHdG (C) 16 87 58 161

8-OH-dG (D) 8 19 1 28

(A) or (B) or (C) or (D) 300 461 199* 960*

8-Oxo-7,8-dihydro-2-
0-deoxyguanosine (E)

32 90 43 165

8-Oxo-7,8-dihydrodeoxyguanosine

(F)

3 1 1 5

8-Oxo-20-deoxyguanosine (G) 45 73 18 136

7,8-Dihydro-8-oxo-2-
0-deoxyguanosine (H)

15 15 3 33

7,8-Dihydro-8-oxodeoxyguanosine

(I)

0 7 1 8

8-Oxodeoxyguanosine (J) 17 23 1 41

8-oxodG (K) 7 22 15 44

8-oxo-dG (L) 4 16 11 31

(E) or (F) or (G) or (H) or (I) or (J) or

(K) or (L)

123 247 93 463

*The numbers of these items are less than the sum of the above-described numbers, because some

papers overlap
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(8-OHGua) repair activity (OGG1 type) should also be assayed in evaluations of the

cellular oxidative stress (Table 2). For example, when ethanol (under nutrition-

deficient conditions) (Asami et al. 2000), 30-methyl-4-dimethylaminoazobenzene

(Hirano et al. 2000), ferric nitrotriacetate (Fe-NTA) (Yamaguchi et al. 1996),

potassium bromate (KBrO3) (Lee et al. 1996), and asbestos (Yamaguchi

et al. 1999) were administered to rats, increases in both the 8-OHdG level and the

repair activity were observed in the target organs, esophagus, liver, kidney, and

lung. Cigarette smoking also increased the levels of both 8-OHdG and its repair

activity in human leukocytes (Asami et al. 1996). In contrast, cancer preventive

physical exercise induced an increase in the repair activity and a decrease in the

8-OHdG level (Asami et al. 1998a). The administration of cadmium (Cd) to rats,

under conditions of glutathione depletion, impaired the 8-OHGua repair activity in

the target organ, testis, while the 8-OHdG levels in the DNA were increased

(Hirano et al. 1997). When rats were exposed to diesel exhaust particles (DEP)

by intratracheal administration (Tsurudome et al. 1999), or to a hexavalent chro-

mium (Cr) mist by inhalation (Maeng et al. 2003), again the repair activity was

decreased in the lungs, while the 8-OHdG levels in the DNA were increased. These

potent carcinogens, Cd, Cr, and DEP, may enhance the accumulation of 8-OHdG by

impairing the repair activity.

One of the mechanisms of asbestos fiber genotoxicity appears to be the gener-

ation of ROS, either from its surface by reactions involving catalytic iron or from its

phagocytosis by frustrated phagocytes (Kamp and Weitzman 1999). For example,

increased levels of 8-OHdG were observed in rat and hamster lung DNA after the

intra-tracheal instillation of crocidolite asbestos (Yamaguchi et al. 1999). These

results agreed well with our prediction and suggested that one of the mechanisms of

asbestos-induced lung cancer or mesothelioma is 8-OHdG generation in DNA. A

positive correlation between the 8-OHdG levels in leukocyte DNA and the grades

of asbestosis at a Chinese asbestos plant (Takahashi et al. 1997) was also observed.

Table 2 The 8-OHdG levels are dependent on the balance between formation and repair

8-OHdG Repair activity

Level in DNA (OGG1 type)

Cultured cell γ-Rays % &
Arsenite % &

Animal organ Chromium (VI) % &
Cadmium (GSH depletion) % &
Diesel exhaust particles % &
Ethanol (Nutrition-deficient) % %
30-Me-4-DAB % %
Fe-NTA % %
Asbestos % %
KBrO3 % %

Human leukocyte Cigarette smoking % %
Physical exercise & %

152 H. Kasai and K. Kawai



A German group conducted a large-scale study of asbestos-exposed workers, to

determine whether asbestos induces the formation of 8-OHdG in white blood cells

(Marczynski et al. 2000). The data from that study revealed a 1.7–2-fold increase in

8-OHdG due to asbestos exposure ( p< 0.001). These data support the hypothesis

that asbestos fibers damage cells through an oxidative mechanism. Based on these

results, preventive and therapeutic approaches using antioxidants may be possible.

The various chemicals and environmental factors that induced increases in 8-OHdG

levels are listed in Table 3.

5 Ionizing Radiation

Oxidative DNA damage is one of the major causes of radiation injury. 8-OHdG and

8-OHGua are increased in a linear fashion by 20–300 mGy of gamma irradiation to

aqueous solutions of dG and Gua, respectively (Li et al. 2013b). These markers are

considered to have sufficient sensitivity for detecting oxidative damage by ionizing

radiation. The adverse health effects of radiation doses around 100 mSv have been

vigorously discussed, especially in terms of cancer induction. Meanwhile, we

reported that the threshold radiation level for increasing the 8-OHdG level in

mouse urine was about 100–200 mGy (Li et al. 2013b), which supports the

threshold theory of some reliable epidemiological studies on atomic bomb survi-

vors (Land 1980; Shimizu et al. 1992). However, in most reports, an increase in

8-OHdG could be detected after irradiation with doses greater than a few

Gy. Furthermore, most of the human data were collected from patients undergoing

radiotherapy, who usually get quite high doses of radiation. It is essential to collect

lower dose data to clarify the contribution of oxidative damage to the adverse health

effects and to develop protective measures. In addition, the radiation health effects

change with the radiation dose rate (Gy/min) (Tanooka 2011). At present, the

evidence for the effects of low dose rate radiation is insufficient, especially for

the human population. In cells, low molecular weight antioxidants and

ROS-scavenging enzymes may process some of the ROS generated by radiation

and prevent cellular DNA and nucleotide damage. In addition, the higher 8-OHdG

levels induced in tissue DNA may decrease as time passes. This is due to the

cellular DNA repair systems, such as nucleotide excision repair, base excision

repair, and damaged nucleotide sanitization. As a result, oxidized nucleosides and

bases accumulate in the urine. Therefore, urinary 8-OHdG is a sensitive marker for

radiation-induced oxidative damage in vivo. The published data on the increased

formation of 8-OHdG by ionizing radiation are summarized in Table 4.
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Table 3 Occupational, environmental exposure and 8-OHdG

Chemicals or

occupation

Ratio to

control Species Sample Method Reference

Asbestos 1.31 Human Urine HPLC-ECD Tagesson

et al. (1993)

1.45 Human Urine HPLC-ECD Takahashi

et al. (1997)

1.37–1.64 Hamster,

rat

Lung HPLC-ECD Yamaguchi

et al. (1999)

1.7 Human White

blood cell

DNA

Marczynski

et al. (2000)

PAHs % Human Urine LC-MS/MS Li

et al. (2015)

1.19 Human Urine HPLC-ECD Harri

et al. (2005)

1.63 Human White

blood cell

DNA

HPLC-ECD Marczynski

et al. (2009)

Refractory

materials

1.54 Human White

blood cell

DNA

HPLC-ECD ibid.

Carbon electrodes 3.23 Human White

blood cell

DNA

HPLC-ECD ibid.

Converter workers 1.26 Human White

blood cell

DNA

HPLC-ECD ibid.

PAH,

anthraquinone

% Human Urine ELISA Wei

et al. (2010)

DEP PM2.5 2.14 Human Urine ELISA Lee

et al. (2010)

PM 2.5 1.15 Human Urine ELISA Kim

et al. (2004)

% Human Urine ELISA Lee

et al. (2012)

>3 Human Urine ELISA Wei

et al. (2009)

% Human Urine HPLC-ECD Neophytou

et al. (2013)

Coke oven worker % Human Urine Guo

et al. (2014)

Top 1.20

Side 1.53

Human Urine HPLC-ECD Nguyen

et al. (2014)

% Human Urine LC-MS/MS Chao

et al. (2008)

Coke production 1.4 Human White

blood cell

DNA

HPLC-ECD Marczynski

et al. (2009)

(continued)
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Table 3 (continued)

Chemicals or

occupation

Ratio to

control Species Sample Method Reference

Coke plant,

policeman, taxi

driver

% Human Urine Capillary

electrophorasis-

ECD

Zhang

et al. (2013)

Bottom ash treat-

ment plant, fly ash

treatment plant

1.46 Human Urine ELISA Liu

et al. (2008)

Diesel exhaust

emission inspector

>3 Human Urine ELISA Wei

et al. (2009)

Bus driver 1.3 Human Urine HPLC-ECD Loft

et al. (1999)

1.27–1.45 Human Urine ELISA Rossner

et al. (2008)

Bus drivers,

garagemen

2.59 Human Urine HPLC-ECD Bagryantseva

et al. (2010)

Long distance bus

driver

Adjusted

OR¼ 9.4

Human Urine ELISA Han

et al. (2010)

Traffic policeman % Human Leukocyte

DNA

HPLC-ECD Arayasiri

et al. (2010)

Subway workers 1.07

( p¼ 0.038)

Human Urine ELISA Mehrdad

et al. (2015)

Foundry workers 2.72 Human Urine ELISA Liu et al.,

(2009)

Toner-exposed 1.03 Human Urine HPLC-ECD Kitamura

et al. (2009)

Wildland

firefighter

% Human Urine ELISA Gaughan

et al. (2014)

Temple workers,

incense smoke

% Human Leukocyte

DNA

HPLC-ECD Navasumrit

et al. (2008)

Benzene % 8-OHdG,

8-OHGuo,

8-OHGua

Human Urine LC-MS/MS Manini

et al. (2010)

1.25–8.00 Human Leukocyte

DNA

HPLC-ECD Liu

et al. (1996)

% Human Urine HPLC-ECD Nilsson

et al. (1996)

% 8-OHdG,

8-OHGuo

Human Urine MS Andreoli

et al. (2012)

Styrene exposed

workers

1.03–1.23 Human Urine LC-MS/MS Manini

et al. (2009)

Styrene 1.47 Human Peripheral

blood

DNA

HPLC-ECD Marczynski

et al. (1997)

Gas station atten-

dant, taxi driver

% Human Urine ELISA Goeethel

et al. (2014)

(continued)
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Table 3 (continued)

Chemicals or

occupation

Ratio to

control Species Sample Method Reference

Ethylbenzene 4.21 Human Urine ELISA Chang

et al. (2011)

Di-(2-ethylhexyl)

phthalate plastic

recycling

1.27 Human Urine HPLC-ECD Wang

et al. (2011)

Smoker 2.15 Human Urine ELISA Lu

et al. (2014)

1.5 Human Urine HPLC-ECD Loft

et al. (1992)

1.43 Human Lung HPLC-ECD Asami

et al. (1997)

2.13 Human Leukocytes HPLC-ECD Lodovici

et al. (2000)

Iron, smoking % Human Urine LC-MS/MS Hossain

et al. (2014)

Environmental

tobacco smoke

% Human Plasma LC-MS/MS Chiang

et al. (2012)

Hexavalent chro-

mium

electroplating

worker

1.64 Human Urine ELISA Zhang

et al. (2011)

Chromium 1.57 Human Urine HPLC-ECD Kuo

et al. (2003)

Chromate % Human Urine ELISA Li

et al. (2014)

Arsenic 4 Human Saliva LC-MS/MS Hinhumpatch

et al. (2013)

1.12 Human Urine ELISA Wong

et al. (2005)

As, heavy metals % Human Serum ELISA Szymanska-

Chabowska

et al. (2009)

As, Cd % Human Urine LC-MS/MS Engstrom

et al. (2010)

As, Cd, Ni, Se % Human Urine ELISA Lin

et al. (2012)

Nickel-cadmium 1.05–2.55

8-OHGua

Human Urine HPLC-ECD Yoshioka

et al. (2008)

Manufacturing

surgical instru-

ment (nickel)

r¼ 0.41,

p< 0.0001

Human Urine ELISA Sughis

et al. (2012)

Rubber 1.38 Human Urine HPLC-ECD Tagesson

et al. (1993)

Roofers 1.2 Human Urine HPLC-ECD Toraason

et al. (2001)

(continued)
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6 Diseases

Oxidative stress leads to many kinds of diseases. Examinations of the oxidative

damage in connection with diseases are quite important for their treatment and

prevention. In epidemiological studies, chronic oxidative stress is a cancer risk

factor. For example, higher levels of 8-OHdG were observed in the stomach tissues

of children (Baik et al. 1996) and cancer patients with Helicobacter pylori infec-
tion. Increased levels of 8-OHdG have been reported in various types of cancer.

Oxidative stress engenders vascular complications and pancreatic beta cell damage,

which induces insulin resistance and diabetes. In these patients, the 8-OHdG and

8-OHGua levels in urine or plasma were higher than those in the control group. In

addition to patients with hypertension or cardiac infarcts, those with Alzheimer’s or

Table 3 (continued)

Chemicals or

occupation

Ratio to

control Species Sample Method Reference

Azo-dye 1.79 Human Urine HPLC-ECD Tagesson

et al. (1993)

Cooking oil fume 1.46 Human Urine HPLC-ECD Pan

et al. (2008)

Cooking oil fume % human urine HPLC-ECD Ke

et al. (2009)

Zinc oxide

nanoparticle

% Rat Blood Chuang

et al. (2014)

Nanoparticles

from photocopiers

% Human Urine Khatri

et al. (2013)

Metal

nanoparticles

% Mouse Urine,

bone mar-

row, liver

HPLC-ECD Song

et al. (2012)

PCDD, dibenzo-

furans, etc.

3.84 Human Urine HPLC-ECD Wen

et al. (2008)

Aroclor 1254 >5 Mouse Liver HPLC-ECD Faux

et al. (1992)

TCDD >20 Mouse Urine ELISA Shertzer

et al. (1998)

2,3,7,8-TCDD % Human Plasma LC-MS/MS Pelclova

et al. (2011)

Trichloroethylene % Human Urine LC-MS/MS Abusoglu

et al. (2014)

Agricultural

worker

% Human Urine HPLC-ECD Kisby

et al. (2009)

Antineoplasic

drugs

1.38 Human Urine ELISA Huang

et al. (2012)

VOCs*, hair salon 7.5 Human Serum ELISA Ma

et al. (2010)

*VOCs: volatile organic compounds
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Parkinson’s disease also have higher levels of 8-OHdG. Interestingly, patients with
mental disorders, such as schizophrenia, bipolar disorder, and autism, also have

higher levels of 8-OHdG and 8-OHGuo. Examples of recent publications describ-

ing increased 8-OHdG levels in various diseases are provided in Table 5.

7 Lifestyle

Lifestyle factors are closely related to the individual oxidative status. Epidemio-

logical studies have suggested that lifestyle improvements can lead to the preven-

tion of cancers and lifestyle-related diseases, such as diabetes. A well-balanced diet

rich in vegetables and fruits reduced the 8-OHdG levels in the body, as an oxidative

stress marker. In contrast, alcohol consumption and job stress increased the oxida-

tive stress. Interestingly, the BMI of smokers showed an inverse correlation

between the 8-OHdG level (Mizoue et al. 2006), which partly supports the

U-shaped relation between BMI and cancer risk, concluded from epidemiological

studies (Inoue et al. 2004). Namely, cancer risk increases with a very low BMI,

especially in smokers (Kabat and Wynder 1992). A very thin state may induce

oxidative stress, due to a high metabolic rate (Shah et al. 1988). Smoking seems to

be one of the worst factors for inducing oxidative damage. Moderate exercise

reduced the 8-OHdG levels in leukocyte DNA, by the induction of either

ROS-scavenging enzymes (SOD, catalase, and glutathione peroxidase) (Mena

et al. 1991) or repair enzymes [OGG1 and MTH1 (Sato et al. 2003)]. Representative

references describing the effects of lifestyle factors on 8-OHdG levels are provided

in Table 6.

8 Antioxidants

Antioxidants help to keep the body healthy. There are several methods for evalu-

ating antioxidant activity. Among them, the measurement of 8-OHdG as an oxida-

tive damage marker is the most widely used method for in vivo experiments,

including human studies. The 8-OHdG reducing effects of typical antioxidants on

induced oxidative stress are shown in Table 7. Vitamin C intake significantly

decreased the 8-OHdG levels induced by periodontitis, ischemia, and chronic

hemodialysis. Alpha-tocopherol reduced the increased 8-OHdG levels caused by

heavy athletic training or iron therapy. The combined effects of alpha-tocopherol,

ascorbic acid, beta-carotene, acetylsalicylic acid, and sesamin were reported. Many

components in fruits or vegetables, such as astaxanthin (Aoi et al. 2003), lycopene

(Devaraj et al. 2008), resveratrol (Sirerol et al. 2015), green tea polyphenols (Luo

et al. 2006), quercetin (Ozyurt et al. 2014), and curcumin (Okada et al. 2001), were

also reported to reduce 8-OHdG levels.
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Table 6 Lifestyle and 8-OHdG

Habit

Ratio to

control Species Sample Method Reference

Fruit and vegetable

intake

Lower

8-OHdG

(P for trend,

0.05)

Human Urine ELISA Cocate

et al. (2014)

Light-colored vege-

table, soybean prod-

uct, rice, BMI

& Human Urine HPLC-

ECD

Irie et al. (2005)

Working hours, cig-

arette smoke

% Human Urine HPLC-

ECD

Irie et al. (2005)

Fruit, daily physical

activity, healthy

meal

& Human Urine HPLC-

ECD

Tamae

et al. (2009)

Cigarette, alcohol % Human Urine HPLC-

ECD

Tamae

et al. (2009)

Fish intake & Human Urine ELISA Muzembo

et al. (2012)

Job stress % Human Urine ELISA Inoue et al. (2009)

Age % Human Urine ELISA Sakano

et al. (2009)

BMI % 2.7% /

unit BMI &
Human Urine HPLC-

ECD

Mizoue

et al. (2007)

Smoking 1.6 Human Leukocyte

DNA

HPLC-

ECD

Asami

et al. (1996)

1.43 Human Lung HPLC-

ECD

Asami

et al. (1997)

3.34 Human Leukocyte

DNA

HPLC-

ECD

Lodovici

et al. (2005)

Environmental

smoke

1.55 Human Leukocyte

DNA

HPLC-

ECD

Lodovici

et al. (2005)

Physical activity

(subject n¼ 6,422)

& Human Urine HPLC-

ECD

Hara

et al. (in press)

2 weeks, moderate

intensity exercise

after primary therapy

0.67 Human

(colorectal

cancer)

Urine LC-MS Allgayer

et al. (2008)

Race (African

American/

caucasian)

1.3 Human Urine ELISA Huang

et al. (2000)

Regular exercise 1.16 Human Urine ELISA Huang

et al. (2000)

Wrestling exercise & Human Serum ELISA Hamurcu

et al. (2010)

Exercise 0.53 Human Leukocyte

DNA

HPLC-

ECD

Asami

et al. (1998a)

Forced exercise 1.9–2.4 Rat Heart,

lung, liver

HPLC-

ECD

Asami

et al. (1998b)

(continued)
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9 Formation of 8-OHGuo in RNA

In the previously mentioned in vitro experiments, the formation of 8-OHGuo in

RNA was higher than that in DNA (Kasai and Nishimura 1984c). One reason for

this may be the more open structure of single-stranded RNA than double-stranded

DNA. In fact, Fiala et al. reported that the hepatocarcinogen 2-nitropropane induces

8-hydroxyguanosine (8-OHGuo) in rat liver RNAmuch more efficiently (11-fold as

compared to control) than 8-OHdG in DNA (3.6-fold as compared to control) (Fiala

et al. 1989). This may also be due to the rapid removal of 8-OHGua from DNA by

repair enzymes, or to the higher reactivity of ROS, produced by the metabolism of

2-nitropropane, with cytoplasmic single-stranded RNA. When doxorubicin

(adriamycin) was administered to rats, a significant increase of 8-OHGuo in the

liver RNA, but not 8-OHdG in the DNA, was observed (Hofer et al. 2006).

Malayappan et al. observed increased levels of 8-OHGuo and 8-OHdG in smoker’s
urine, as compared to control nonsmokers (Malayappan et al. 2007). As other

examples, analyses of ribonucleoside 8-OHGuo levels in tissue RNA or biological

fluids were reported in relation to aging, calorie restriction, exercise (rat liver RNA)

(Seo et al. 2006), cisplatin treatment in cancer patients (urine) (Andreoli

et al. 2012), Alzheimer’s disease (cerebrospinal fluid) (Isobe et al. 2009), hereditary
hemochromatosis (urine) (Broedbaek et al. 2009), exposure to benzene (human

urine) (Manini et al. 2010), and the effect of antioxidants in cherry juice (human

urine) (Traustadottir et al. 2009). In those studies, higher formation of 8-OHGuo

than 8-OHdG was observed, which is compatible with the general tendency that the

ultimate reactive forms of carcinogens, such as aflatoxin B1 (Garner and Wright

1975) or N-nitrosopyrrolidine (Wang and Hecht 1997), induced more modifications

in RNA than in DNA. Therefore, the ribonucleoside 8-OHGuo is also a promising

biomarker for oxidative stress (Poulsen et al. 2012).

High levels of the ribonucleoside triphosphate 8-OHGTP may also be produced

in cells, in addition to 8-OHdGTP (see next paragraph). The MTH1 protein, a

Table 6 (continued)

Habit

Ratio to

control Species Sample Method Reference

Ultramarathon % mid race

&post race

Human Urine HPLC-

ECD

Miyata

et al. (2008)

Sunlight OR: 4.35 Human Urine ELISA Kato et al. (2011)

UVB, 280–350 nm 1.73 Rabbit Eye HPLC-

ECD

Lodovici

et al. (2009)

UVA1, 364 nm Ar

laser

2.56 Mouse Skin HPLC-

ECD

Ikehata

et al. (2008)

UVA, 364 nm 2.7 Drosophila HPLC-

ECD

Negishi

et al. (2007)
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mutT-related protein that catalyzes the hydrolysis of 8-OHdGTP to 8-OHdGMP,

also hydrolyzed the ribonucleotide 8-OHGTP (Fujikawa et al. 2001). In oxidative

stress-related diseases induced by aging, 8-OHGuo formation in RNA, by either the

incorporation of 8-OHGTP or the direct oxidation of RNA, caused a reduction in

translation or an increase in mistranslation, which induced the accumulation of

nonfunctional proteins (Poulsen et al. 2012). For example, in Alzheimer’s disease
patients, increased 8-OHGuo in RNA- and reduced MTH1 activity were observed

in their hippocampi (Song et al. 2011). These results suggested that increased

oxidative stress and MTH1 deficiency during aging might be causative factors for

this disease.

10 The Nucleotide Pool Is a Significant Target

In the initial in vitro study, the formation of 8-OHdG in the monomer nucleoside

(dG) was 15 times higher than that in the DNA (Kasai and Nishimura 1984c). This

suggests that the modification of dGTP to 8-OHdGTP in the nucleotide pool is more

important than the formation of 8-OHdG in the DNA. In vivo, an E. coli mutT-
deletion mutant, which lacks the 8-OHdGTP sanitization system, showed a

100–10,000 times higher spontaneous mutation rate than the wild type (Maki and

Sekiguchi 1992), while the rate in a mutM-deletion mutant, which lacks the system

to remove 8-OHGua from DNA, was only 6–14 times higher than that of the wild

type (Cabrera et al. 1988; Michaels et al. 1992). In fact, Russo et al. reported that

8-OHdGTP is a significant contributor to genetic instability in mismatch repair-

deficient cells (Russo et al. 2004). Harms-Ringdahl and his collaborators detected

considerable amounts of 8-OHdG in the nucleotide pool fraction, which were much

higher (35-fold) than those in the DNA fraction, and concluded that the nucleotide

pool is a significant oxidative modification target (Haghdoost et al. 2006). They also

reported that the reduction of 8-OHdGTP in the nucleotide pool by hMTH1 leads to

fewer mutations in the human lymphoblastoid cell line TK6, exposed to UVA

(Fotouhi et al. 2011). Kaczmarek et al. described the efficient formation of

8-OHdGTP from the Ni(II)-dGTP or Ni(II)-dGTP-His complex in the presence of

H2O2, which may be an underlying mechanism of the potent carcinogenic effects of

nickel compounds (Kaczmarek et al. 2005). Together, these results suggest that

8-OHdG formation in the nucleotide pool is more important than that in the DNA,

in relation to mutagenesis and carcinogenesis (Fig. 3). It is worth mentioning that

the nucleotide pool is also a significant target of alkylation in N-methyl-N-

nitrosourea-induced mutagenesis and carcinogenesis (Topal and Baker 1982).
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11 Accurate Measurement of 8-OHdG as a Reliable

Marker

The need to accurately measure 8-OHdG has long been discussed (Kasai 1997). In

the case of 8-OHdG measurements in cellular DNA, special precautions must be

taken to prevent sample auto-oxidation. An antioxidant (NaI) and a metal chelator

(Desferal, EDTA) must be used during DNA isolation, especially in the lysis step.

When a DNA digest was stored at 10 �C, the 8-OHdG levels significantly increased

in a few hours. In contrast, when stored at �80 �C, no increase was observed

(Kawai et al. 2007).

For the measurement of urinary 8-OHdG, an automated HPLC-ECD system to

analyze urinary 8-OHdG with higher accuracy was developed (Kasai 2003). Dis-

parity in the results has occurred frequently, depending upon the measurement

methods (Shimoi et al. 2002). There are considerable discrepancies between the

results obtained by the ELISA and HPLC methods. Usually, the 8-OHdG levels are

2–3 times higher in the ELISAmethods, as compared to the HPLCmethods, and the

data observed with ELISA are quite variable. Recently, urea was recognized as a

major cause of this problem (Song et al. 2009). A high concentration of urea in the

sample (urine or blood) could cross-react with the anti-8-OHdG antibody in the

ELISA. Although various approaches, including the performance of the ELISA at

4 �C, a pretreatment with urease, and a pretreatment by solid-phase extraction

(SPE), have been taken to resolve this issue, satisfactory results have not been

achieved (Rossner et al. 2013). Regarding this situation, Watanabe et al. reported a

good correlation between the ELISA and HPLC methods for the 8-OHdG values by

the ELISA method, following urease treatment and ethanol precipitation. Urea is

considered to be a major interfering substance in ELISA, but there are still other

cross-reacting components, such as 8-OHGuo (Song et al. 2012) and creatinine

(Rossner et al. 2008). Most reports of the 8-OHdG levels in serum or saliva were

obtained by the direct use of ELISA for these fluids. The levels of 8-OHdG in

plasma and saliva measured by LC-MS/MS were several hundred times lower than

Fig. 3 8-OHdG formation

and repair in vivo
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those reported by scientists using the commercial ELISA kit (Hu et al. 2010b).

Although serum and saliva are quite useful materials, pretreatments for concentra-

tion and cleanup, such as SPE treatment, are needed before ELISA and HPLC

measurements because of the low concentration of 8-OHdG, and for the removal of

cross-reacting materials, especially in ELISA. From an overall consideration,

although ELISA measurements have revealed certain rough trends in large-scale

analyses, the HPLC methods (HPLC-ECD or LC-MS/MS) are recommended for

the accurate measurement of 8-OHdG. The urine analysis data obtained by our

method (HPLC-ECD) are almost identical to those obtained by LC-MS/MS, as

judged by ESCULA (European Standard Committee on Urinary Lesion Analysis)

(Barregard et al. 2013). For urinary 8-OHGua analysis, diets containing 8-OHGua

must be considered, because 90% of the 8-OHGua administered to rats was

excreted into the urine (Kawai et al. 2006). The CE-2 diet, which is generally

used for animal experiments, contains a large amount of 8-OHGua. Therefore, in

animal experiments, nucleic acid-free diets, such as those with egg white as the

protein source, should be used. For human studies, the intake of various 8-OHGua-

containing foods, especially fish products, must be minimized before urine

collection.

It is also important to check the stability of 8-OHdG under various conditions,

and to determine whether it is formed from dG in biological fluids, such as urine, for

its general use as an oxidative stress marker. Urinary 8-OHdG is stable at �20 �C
for 15 years (Loft et al. 2006) and at 25 �C for 24 h (nonsmokers) (Matsumoto

et al. 2008). However, the levels of urinary 8-OHdG from smokers showed a

tendency to increase over 24 h at 25 �C (Matsumoto et al.). This may occur because

(1) smoker’s urine contains lower levels of antioxidants than that of nonsmokers,

and/or (2) smoking-related substances in urine generate ROS. Shigenaga

et al. injected 3H-8-OHdG into the tail veins of rats, and 24 h urine samples were

analyzed by HPLC (Shigenaga et al. 1989). They found no degradation of 8-OHdG

after administration and excretion. When 3H-dG was stored in urine for 19 days at

4 �C, no 8-OHdG was produced, indicating that the chemical transformation of dG

to 8-OHdG did not occur in rat urine (Shigenaga et al. 1989).

8-OHGua is rather unstable, as compared to 8-OHdG (Hu et al. 2010a). Its

solution (pH 7) is stable at room temperature for 6 days, at 4 �C for 45 days, and at

�20 �C for 87 days. After these periods, its degradation was observed.

12 Sources of 8-OHdG, 8-OHGuo, and 8-OHGua

Generation and Validity of Their Analyses

Urinary 8-OHdG is generated by either nucleotide excision repair (NER) from

oxidized DNA or hydrolysis of 8-OHdGTP by the sanitization enzyme MTH1. The

free 8-OHGua base is produced by base excision repair (BER) from oxidized DNA

or by the oxidation of guanine (formed by the hydrolytic degradation of DNA,
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RNA, and the nucleotide) before the salvage pathway (Kasai et al. 2008) (Fig. 4).

8-OHGuo may be produced by the hydrolysis of 8-OHGTP by MTH1 or by the

degradation of oxidized RNA.

A human study revealed a correlation between the 8-OHdG levels in lymphocyte

DNA and the urinary 8-OHdG levels (Gedik et al. 2002). A correlation between the

concentrations of 8-OHdG in human urine, plasma, and saliva was also observed

(Hu et al. 2010b), based on accurate LC-MS/MS measurements. In mouse exper-

iments, correlations were observed between the urinary 8-OHdG and 8-OHGua

levels, between the serum 8-OHGua and urinary 8-OHdG levels, and between the

serum 8-OHGua and urinary 8-OHGua levels (Li et al. 2013a).

There are few direct studies of the relationship between 8-OHdG-related oxida-

tive markers and cancer risks in humans, such as cohort studies, because of the

length of time required to form conclusions (Loft et al. 2006). Considering the time

needed to collect data for the large-scale analysis of 8-OHdG-related markers, the

amounts of direct evidence for use as a predictor of cancer development are

expected to increase in the future.

As described in this chapter, many chemical carcinogens, as well as UV- and

ionizing radiation (UVA, gamma-ray, X-ray, etc.), induced 8-OHdG in animal

experiments, while many antioxidants, which are known to suppress cancer,

reduced the 8-OHdG levels, as indicated in Tables 4 and 7. In human studies,

asbestos, azo-dyes, benzene, and chemicals used in the rubber industry, which were

all concluded to be human carcinogens with sufficient evidence by the IARC

(Lagorio et al. 1994; Tagesson et al. 1993), induced an increase in the urinary

8-OHdG level.

Furthermore, many lifestyle habits for cancer prevention, such as cessation of

smoking, avoiding drinking and a high-fat diet, following the recommended levels

of fish, fruit and vegetable consumption, and exercising moderately, are supported

by the data showing increased or decreased 8-OHdG levels by these factors, in

human studies. Urinary analyses of cancer high-risk groups (dermatomyositis,

polymyositis, systemic sclerosis, cholangiocarcinogenesis) revealed higher levels

of urinary 8-OHdG, as compared to those of the healthy control groups (Kasai

et al. 2007; Thanan et al. 2008). In cancer- or aging-related genetic diseases, such as

Fanconianemia, Bloom syndrome, and Xeroderma pigmentosum, the urinary

8-OHdG levels were also increased (Lloret et al. 2008).

Fig. 4 8-OHGua formation

and repair in vivo
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Based on the direct and indirect evidence described herein, we consider 8-OHdG

(or its related compounds) to be a useful marker for monitoring the oxidative stress

involved in the induction of cancer and ROS-related diseases, if analyses are

performed with the precautions mentioned above.
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