
Low-Rank Approximation of a Matrix: Novel
Insights, New Progress, and Extensions

Victor Y. Pan1,2(B) and Liang Zhao2

1 Departments of Mathematics and Computer Science, Lehman College of the City
University of New York, Bronx, NY 10468, USA

victor.pan@lehman.cuny.edu
2 Ph.D. Programs in Mathematics and Computer Science, The Graduate Center

of the City University of New York, New York, NY 10036, USA
lzhao1@gc.cuny.edu

http://comet.lehman.cuny.edu/vpan/

Abstract. Empirical performance of the celebrated algorithms for low-
rank approximation of a matrix by means of random sampling has been
consistently efficient in various studies with various sparse and structured
multipliers, but so far formal support for this empirical observation has
been missing. Our new insight into this subject enables us to provide
such an elusive formal support. Furthermore, our approach promises sig-
nificant acceleration of the known algorithms by means of sampling with
more efficient sparse and structured multipliers. It should also lead to
enhanced performance of other fundamental matrix algorithms. Our for-
mal results and our initial numerical tests are in good accordance with
each other, and we have already extended our progress to the acceleration
of the Fast Multipole Method and the Conjugate Gradient algorithms.

Keywords: Low-rank approximation of a matrix · Random sam-
pling · Derandomization · Fast multipole method · Conjugate gradient
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1 Introduction

Low-rank approximation of a matrix by means of random sampling is an increas-
ingly popular subject area with applications to the most fundamental matrix
computations [19] as well as numerous problems of data mining and analysis,
“ranging from term document data to DNA SNP data” [20]. See [19,20], and [14,
Sect. 10.4.5], for surveys and ample bibliography; see [7,12,16,17,26], for sample
early works.

All these studies rely on the proved efficiency of random sampling with
Gaussian multipliers and on the empirical evidence that the algorithms work
as efficiently with various random sparse and structured multipliers. So far for-
mal support for this empirical evidence has been missing, however.

Our novel insight into this subject provides such an elusive formal support
and promises significant acceleration of the computations. Next we outline our
progress and then specify it in some detail (see also [23]).
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We recall some basic definitions in the next section and in the Appendix.
As this is customary in the study of matrix computations, we use freely the

concepts “large”, “small”, “near”, “close”, “approximate”, “ill-conditioned” and
“well-conditioned” quantified in the context, although we specify them quanti-
tatively as needed.

The acronym “i.i.d.” stands for “independent identically distributed”, and
we refer to standard Gaussian random variables just as Gaussian.

We call an m×n matrix Gaussian if all its entries are i.i.d. Gaussian variables.
Hereafter “likely” means “with a probability close to 1”, and “flop” stands

for “floating point arithmetic operation”.

Basic Algorithm; its Efficiency with Gaussian Random Multipliers.
nrank(M) denotes numerical rank of an m × n matrix M : a matrix M can be
closely approximated by a matrix of rank at most r if and only if r ≥ nrank(M)
(cf. part 9 of the next section).

The following randomized algorithm (cf. [19, Algorithm 4.1 and Sect. 10])
computes such an approximation by a product FH where F and H are m × l
and l × n matrices, respectively, l ≥ r, and in numerous applications of the
algorithm, l is small compared to m and n.

Algorithm 1. Low-rank approximation of a matrix via random sampling.

Input: An m × n matrix M having numerical rank r where m ≥ n > r > 0.
Initialization: Fix an integer p such that 0 ≤ p < n − r. Compute l = r + p.
Computations: 1. Generate an n × l matrix B. Compute the matrix MB.

2. Orthogonalize its columns, producing matrix Q = Q(MB).
3. Output the rank-l matrix M̃ = QQT M ≈ M and the relative residual

norm Δ = ||M̃−M ||
||M || .

The following theorem supports Algorithm1 with a Gaussian multiplier B.

Theorem 1. The Power of Gaussian random sampling. Approximation of a
matrix M by a rank-l matrix produced by Algorithm1 is likely to be optimal
up to a factor of f having expected value 1 + (1 +

√
m +

√
l) e

p

√
r, provided that

e = 2.71828 . . . , nrank(M) ≤ r, and B is an n × l Gaussian matrix.

This is [19, Theorem 10.6] for a slightly distinct factor f . For the sake of con-
sistency and completeness of our presentation, we prove the theorem in Sect. 4
and then extend it into a new direction.

By combining Algorithm 1 with the Power Scheme of Remark 1, one can
decrease the bound of the theorem dramatically at a low computational cost.

Modifications with SRFT and SRHT Structured Random Sampling.
A Gaussian matrix B involves nl random parameters, and we multiply it by M
by using ml(2n − 1) flops. They dominate O(ml2) flops for orthogonalization at
Stage 2 if l � n.
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An n×n matrix B of subsample random Fourier or Hadamard transform1 is
defined by n parameters, and we need just O(mn log(l)) flops, l = O(r log(r)),
in order to multiply an input matrix M by an n × l block of such a matrix B
(cf. [19, Sects. 4.6 and 11]).

Both SRFT and SRHT multipliers are universal, like Gaussian ones: it is
proven that Algorithm 1 is likely to produce correct output with them for any
matrix M , although the known upper bounds on the failure probability increase.
E.g., with SRFT multipliers such a bound grows to O(1/r) from order 3 exp(−p),
for p ≥ 4, with Gaussian ones (cf. [19, Theorems 10.9 and 11.1]).

Empirically the algorithm fails very rarely with SRFT multipliers, l = r + p,
p = 20, and even p = 4 (and similarly with SRHT multipliers), but for special
inputs M , it is likely to fail if l = O(r log(r)) (cf. [19, Remark 11.2]).

Related Work. Similar empirical behavior has been consistently observed by
ourselves and by many other researchers when Algorithm 1 was applied with a
variety of sparse and structured multipliers [19,20,22], but so far formal support
for such empirical observations has been missing from the huge bibliography on
this highly popular subject.

Our Goals and our Progress. In this paper we are going to

(i) fill the void in the bibliography by supplying the missing formal support,
(ii) define new more efficient multipliers for low-rank approximation,
(iii) compare our formal results with those of our numerical tests, and
(iv) extend our findings to another important computational area.

Our basic step is the proof of a dual version of Theorem1, which relies on
the following concept.

Definition 1. Factor Gaussian matrices with small expected rank. For three
integers m, n, and r, m ≥ n > r > 0, define the class G(m,n, r) of m × n factor
Gaussian matrices M = UV with expected rank r such that U is an m × r
Gaussian matrix and V is a r × n Gaussian matrix.

Recall that rectangular Gaussian matrices have full rank with probability 1 and
are likely to be well-conditioned (see Theorems 9 and 10), and so the matrices
M ∈ G(m,n, r) are likely to have rank r indeed, as we state in the definition.

Theorem 2. The Duality Theorem.2

The claims of Theorem1 still hold if we assume that the m×n input matrix M
is a small-norm perturbation of a factor Gaussian matrix with expected numerical
rank r and if we allow a multiplier B to be any n × l well-conditioned matrix of
full rank l.

1 Hereafter we use the acronyms SRFT and SRHT.
2 It is sufficient to prove the theorem for the matrices in G(m,n, r). The extension to

their small-norm perturbation readily follows from Theorem 3 of the next section.
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Theorem 2 implies that Algorithm1 produces a low-rank approximation to
average input matrix M that has numerical rank r under the mildest possible
restriction on the choice of a multiplier provided that average matrix is defined
under the Gaussian probability distribution. This provision is customary, and it
is quite natural in view of the Central Limit Theorem.

Our novel point of view implies formal support for the cited empirical obser-
vations and for almost unrestricted choice of efficient multipliers, which can
be viewed as derandomization of Algorithm 1 and which promises significant
improvement of its performance. This promise, based on our formal analysis,
turned out to be in good accordance with our initial numerical tests in Sect. 5
and [23].

In Sect. 3 we describe some promising candidate sparse and structured mul-
tipliers, in particular those simplifying the matrices of SRHT, and we test our
recipes numerically, thus fulfilling our goals (ii) and (iii). As we prove in Sect. 4,
the accuracy of low-rank approximations output by Algorithm1 is likely to be
reasonable even where the oversampling integer p vanishes and to increase fast
as this integer grows. Moreover we can increase the accuracy dramatically by
applying the Power Scheme of Remark 1 at a low computational cost.

Our progress can be extended to various other computational tasks, e.g. (see
Sect. 6), to the acceleration of the Fast Multipole Method3 of [5,15], listed as
one of the 10 most important algorithms of the 20th century, widely used, and
increasingly popular in Modern Matrix Computations.

The extension to new tasks is valid as long as the definition of their average
inputs under the Gaussian probability distribution is appropriate and relevant.
For a specific input to a chosen task we can test the validity of extension by
action, that is, by applying our algorithms and checking the output accuracy.

Organization of the Paper. We organize our presentation as follows. In the
next section and in the Appendix we recall some basic definitions. In Sect. 3 we
specify our results for low-rank approximation, by elaborating upon Theorems 1
and 2. In Sect. 4 we prove these theorems. Section 5 covers our numerical experi-
ments, which are the contribution of the second author. In Sect. 6 we extend our
results to the acceleration of the FMM.

In our report [23], we extend them further to the acceleration of the Conjugate
Gradient celebrated algorithms and include a proof of our Theorem7 and test
results omitted due to the limitation on the paper size.

2 Some Definitions and Basic Results

We recall some relevant definitions and basic results for random matrices in the
Appendix. Next we list some definitions for matrix computations (cf. [14]).

For simplicity we assume dealing with real matrices, but our study can be
readily extended to the complex case.

1. Ig is a g × g identity matrix. Ok,l is the k × l matrix filled with zeros.
3 Hereafter we use the acronym FMM.



356 V.Y. Pan and L. Zhao

2. (B1 | B2 | · · · | Bk) is a block vector of length k, and diag(B1, B2, . . . , Bk) is
a k × k block diagonal matrix, in both cases with blocks B1, B2, . . . , Bk.

3. Wk,l denotes the k×l leading (that is, northwestern) block of an m×n matrix
W for k ≤ m and l ≤ n. WT denotes its transpose.

4. An m × n matrix W is called orthogonal if WT W = In or if WWT = Im.
5. W = SW,ρΣW,ρT

T
W,ρ is compact SVD of a matrix W of rank ρ with SW,ρ and

TW,ρ orthogonal matrices of its singular vectors and ΣW,ρ = diag(σj(W ))ρ
j=1

the diagonal matrix of its singular values in non-increasing order; σρ(W ) > 0.
6. W+ = TW,ρΣ

−1
W,ρS

T
W,ρ is the Moore–Penrose pseudo inverse of the matrix W .

(W+ = W−1 for a nonsingular matrix W .)
7. ||W || = σ1(W ) and ||W ||F = (

∑ρ
j=1 σ2

j (W ))1/2 ≤ √
n ||W || denote its spectral

and Frobenius norms, respectively. (||W+|| = 1
σρ(W ) ; ||U || = ||U+|| = 1,

||UW || = ||W || and ||WU || = ||W || if the matrix U is orthogonal.)
8. κ(W ) = ||W || ||W+|| = σ1(W )/σρ(W ) ≥ 1 denotes the condition number of

a matrix W . A matrix is called ill-conditioned if its condition number is large
in context and is called well-conditioned if this number κ(W ) is reasonably
bounded. (An m × n matrix is ill-conditioned if and only if it has a matrix
of a smaller rank nearby, and it is well-conditioned if and only if it has full
numerical rank min{m,n}.)

9. Theorem 3. Suppose C and C +E are two nonsingular matrices of the same
size and ||C−1E|| = θ < 1. Then ‖|(C + E)−1 − C−1|| ≤ θ

1−θ ||C−1||. In
particular, ‖|(C + E)−1 − C−1|| ≤ 0.5||C−1|| if θ ≤ 1/3.

Proof. See [24, Corollary 1.4.19] for P = −C−1E.

3 Randomized Low-Rank Approximation of a Matrix

Primal and Dual Versions of Random Sampling. In the next section we
prove Theorems 1 and 2 specifying estimates for the output errors of Algorithm1.
They imply that the algorithm is nearly optimal under each of the two random-
ization policies:

(p) primal: if nrank(M) = r and if the multiplier B is Gaussian and
(d) dual: if B is a well-conditioned n× l matrix of full rank l and if the input

matrix M is average in the class G(m,n, r) up to a small-norm perturbation.
We specify later some multipliers B, which we generate and multiply with

a matrix M at a low computational cost, but here is a caveat: we prove that
Algorithm 1 produces accurate output when it is applied to average m×n matrix
M with nrank(M) = r � n ≤ m, but (unlike the cases of its applications with
Gaussian and SRFT multipliers) does not do this for all such matrices M .

E.g., Algorithm 1 is likely to fail in the case of an n × n matrix M =
P diag(Il, On−l)P ′, two random permutation matrices P and P ′, and sparse
and structured orthogonal multiplier B = (Ol,n−l | Il)T of full rank l.

Our study of dual randomization implies, however (cf. Corollary 2), that such
“bad” pairs (B,M) are rare, that is, application of Algorithm1 with sparse and
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structured multipliers B succeeds for a typical input M , that is, for almost any
input with only a narrow class of exceptions.

Managing Rare Failures of Algorithm 1. If the relative residual norm Δ of
the output of Algorithm1 is large, we can re-apply the algorithm, successively
or concurrently, for a fixed set of various sparse or structured multipliers B or of
their linear combinations. We can also define multipliers as the leftmost blocks
of some linear combinations of the products and powers (including inverses) of
some sparse or structured square matrices. Alternatively we can re-apply the
algorithm with a multiplier chosen at random from a fixed reasonably narrow
class of such sparse and structured multipliers (see some samples below).

If the application still fails, we can re-apply Algorithm1 with Gaussian or
SRFT universal multiplier, and this is likely to succeed. With such a policy we
would compute a low-rank approximation at significantly smaller average cost
than in the case where we apply a Gaussian or even SRFT multiplier.

Sparse Multipliers. ASPH and AH Matrices. For a large class of well-
conditioned matrices B of full rank, one can compute the product MB at a
low cost. For example, fix an integer h, 1 ≤ h ≤ n/l, define an l × n matrix
H = (Il | Il | · · · | Il | Ol,n−hl) with h blocks Il, choose a pair of random or
fixed permutation matrices P and P ′, write B = PHT P ′, and note that the
product MB can be computed by using just (h − 1)ln additions. In particular
the computation uses no flops if h = 1. The same estimates hold if we replace
the identity blocks Il with l × l diagonal matrices filled with the values ±1. If
instead we replace the blocks Il with arbitrary diagonal matrices, then we would
need up to hln additional multiplications.

In the next example, we define such multipliers by simplifying the SRHT
matrices in order to decrease the cost of their generation and multiplication by
a matrix M . Like SRHT matrices, our multipliers have nonzero entries spread
quite uniformly throughout the matrix B and concentrated in neither of its
relatively small blocks.

At first recall a customary version of SRHT matrices, H = DCP , where P
is a (random or fixed) n × n permutation matrix, n = 2k, k is integer, D is a
(random or fixed) n × n diagonal matrix, and C = Hk is an n × n core matrix
defined recursively, for d = k, as follows (cf. [M11]):

Hj =
(

Hj−1 Hj−1

Hj−1 −Hj−1

)

, j = k, k − 1, . . . , k − d + 1; Hk−d =
(

I2k−d I2k−d

I2k−d −I2k−d

)

.

By choosing small integers d (instead of d = k) and writing B = C = Hd, we
arrive at n × n Abridged Scaled Permuted Hadamard matrices. For D = P = In,
they turn into Abridged Hadamard matrices.4 Every column and every row of
such a matrix is filled with 0s, except for its 2d entries. Its generation and
multiplication by a vector are greatly simplified versus SRHT matrices.

4 Hereafter we use the acronyms ASPH and AH.
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We have defined ASPH and AH matrices of size 2h × 2h for integers h, but
we use their n × l blocks (e.g., the leading blocks) with 2k ≤ n < 2k+1 and any
positive integer l, for ASPH and AH multipliers B in Algorithm 1.

The l columns of such a multiplier have at most l2d nonzero entries. The
computation of the product MB, for an m×n matrix M , involves at most ml2d

multiplications and slightly fewer additions and subtractions. In the case of AH
multipliers (filled with ±1 and 0) no multiplications are needed.

4 Proof of Two Basic Theorems

Two Lemmas and a Basic Estimate for the Residual Norm. We use the
auxiliary results of the Appendix and the following simple ones.

Lemma 1. Suppose that H is an n × r matrix, Σ = diag(σi)n
i=1, σ1 ≥ σ2 ≥

· · · ≥ σn > 0, Σ′ = diag(σ′
i)

r
i=1, σ′

1 ≥ σ′
2 ≥ · · · ≥ σ′

r > 0. Then

σj(ΣHΣ′) ≥ σj(H)σnσ′
r for all j.

Lemma 2. (Cf. [14, Theorem 2.4.8].) For an integer r and an m × n matrix
M where m ≥ n > r > 0, set to 0 the singular values σj(M), for j > r, and let
Mr denote the resulting matrix. Then

||M − Mr|| = σr+1(M) and ||M − Mr||2F =
n∑

j=r+1

σ2
j .

Next we estimate the relative residual norm Δ of the output of Algorithm1
in terms of the norm ||(MrB)+||; then we estimate the latter norm.

Suppose that B is a Gaussian n× l matrix. Apply part (ii) of Theorem8, for
A = Mr and H = B, and deduce that rank(MrB) = r with probability 1.

Theorem 4. Estimating the relative residual norm of the output of Algorithm1
in terms of the norm ||(MrB)+||.

Suppose that B is an n × l matrix, Δ = ||M̃−M ||
||M || = ||M−Q(MB)QT (MB)M ||

||M ||
denotes the relative residual norm of the output of Algorithm1, Mr is the matrix
of Lemma 2, E′ = (M − Mr)B, and so ||E′||F ≤ ||B||F ||M − Mr||F . Then

||M − Mr||F ≤ σr+1(M)
√

n − r

and

Δ ≤ σr+1(M)
σ1(M)

+
√

8 ||(MrB)+|| ||E′||F + O(||E′||2F ).

Proof. Recall that ||M − Mr||2F =
∑n

j=n−r+1 σj(M)2 ≤ σ2
r+1(M) (n − r), and

this implies the first claim of the theorem.
Now let Mr = SrΣrT

T
r be compact SVD. Then Q(MrB)Q(MrB)T Mr = Mr.

Therefore (cf. Lemma 2)

||M − Q(MrB)Q(MrB)T M || = ||M − Mr|| = σr+1(M). (1)
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Apply [22, Corollary C.1], for A = MrB and E = E′ = (M − Mr)B, and obtain

||Q(MB)Q(MB)T − Q(MrB)Q(MrB)T || ≤
√

8||(MrB)+|| ||E′||F + O(||E′||2F ).

Combine this bound with Eq. (1) and obtain

||M−Q(MB)QT (MB)M || ≤ σr+1(M)+
√

8||M || ||(MrB)+|| ||E′||F +O(||E′||2F ).

Divide both sides of this inequality by ||M || and substitute ||M || = σ1(M).

Assessing Some Immediate Implications. By ignoring the smaller order
term O(||E′||2), deduce from Theorem 4 that

Δ ≤ σr+1(M)
σr(M)

(1 +
√

8(n − r) σr(M) ||B||F ||(MrB)+||). (2)

The norm ||B||F is likely to be reasonably bounded, for Gaussian, SRFT, SRHT,
and various other classes of sparse and structured multipliers B, and the ratio
σr+1(M)
σr(M) is presumed to be small. Furthermore σr(M) ≤ ||M ||. Hence the random

variable Δ, representing the relative residual norm of the output of Algorithm1,
is likely to be small unless the value ||(MrB)+|| is large.

For some bad pairs of matrices M and B, however, the matrix MrB is ill-
conditioned, that is, the norm ||(MrB)+|| is large, and then Theorem4 only
implies a large upper bound on the relative residual norm ||M̃ − M ||/||M ||.

If l < n, then, clearly, every matrix M belongs to such a bad pair, and so
does every matrix B as well. Our quantitative specification of Theorems 1 and 2
(which we obtain by estimating the norm ||(MrB)+||) imply, however, that the
class of such bad pairs of matrices is narrow, particularly if the oversampling
integer p = l − r is not close to 0.

Next we estimate the norm ||(MrB)+ in two ways, by randomizing either the
matrix M or the multiplier B. We call these two randomization policies primal
and dual, respectively.

(i) Primal Randomization. Let us specify bound (2), for B ∈ Gm×l. Recall
Theorem 9 and obtain ||B||F = νF,m,l ≤ νm,l

√
l, and so E(||B||F ) < (1 +√

m +
√

l)
√

l.

Next estimate the norm ||(MrB)+||.
Theorem 5. Suppose that B is an n × l Gaussian matrix. Then

||(MrB)+|| ≤ ν+
r,l/σr(M), (3)

for the random variable ν+
r,l of Theorem10.
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Proof. Let Mr = SrΣrT
T
r be compact SVD.

By applying Lemma 3, deduce that Gr,l = TT
r B is a r × l Gaussian matrix.

Hence MrB = SrΣrT
T
r B = SrΣrGr,l.

Write H = ΣrGr,l and let H = SHΣHTT
H be compact SVD where SH is a

r × r orthogonal matrix.
It follows that S = SrSH is an m × r orthogonal matrix.
Hence MrB = SΣHTT

H and (MrB)+ = TH(ΣH)+ST are compact SVDs of
the matrices MrB and (MrB)+, respectively.

Therefore ||(MrB)+|| = ||(ΣH)+|| = ||(ΣrGr,l)+|| ≤ ||G+
r,l|| ||Σ+

r ||.
Substitute ||G+

r,l|| = ν+
r,l and ||Σ+

r || = 1/σr(M) and obtain the theorem.

Substitute our estimates for the norms ||B||F and ||(MrB)+)|| into bound
(2) and obtain the following result.

Corollary 1. Relative Residual Norm of Primal Gaussian Low-Rank Approxi-
mation. Suppose that Algorithm1 has been applied to a matrix M having numer-
ical rank r and to a Gaussian multiplier B.

Then the relative residual norm, Δ = ||M̃−M ||
||M || , of the output approximation

M̃ to M is likely to be bounded from above by f σr(M)
σr+2(M) , for a factor of f having

expected value 1 + (1 +
√

m +
√

l) e
p

√
r and for e = 2.71828 . . . .

Hence Δ is likely to have optimal order σr+1(M)
σr(M) up to this factor f .

(ii) Dual Randomization. Next we extend Theorem 5 and Corollary 1 to the
case where M = UV + E is a small-norm perturbation of an m × n factor
Gaussian matrix of rank r (cf. Definition 1) and B is any n× l matrix having
full numerical rank l. At first we readily extend Theorem 4.

Theorem 6. Suppose that we are given an n×l matrix B and an m×r matrix U
such that m ≥ n > l ≥ r > 0, nrank(B) = l, and nrank(U) = r. Let M = UV +E
where V ∈ Gr×n, ||(UV )+|| = 1

σr(UV ) = 1
σr(M) , and ||E||F = σr+1(M)

√
n − r.

Write E′ = EB and M̃ = Q(MB)QT (MB)M . Then

||M̃ − M ||
||M || ≤ σr+1(M)

σ1(M)
+

√
8 ||(UV B)+|| ||E′||F + O(||E′||2F ). (4)

By extending estimate (3), the following theorem, proved in [23], bounds the
norm ||(UV B)+|| provided that U is an m × r matrix that has full rank r and
is well-conditioned.

Theorem 7. Suppose that

(i) an m × r matrix U has full numerical rank r,
(ii) V = Gr,n is a r × n Gaussian matrix, and
(iii) B is a well-conditioned n × l matrix of full rank l such that m ≥ n > l ≥ r

and ||B||F = 1.
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Then ||(UV B)+|| ≤ ||U+|| ν+
r,l ||B+|| = ||(UV )+|| ||B+||.

In particular the theorem is likely to hold where U is an m×r Gaussian matrix
because such a matrix is likely to have full rank r and to be well-conditioned,
by virtue of Theorems 8 and 10, respectively.

Now we combine and slightly expand the assumptions of Theorems 6 and 7
and then extend Corollary 1 to a small-norm perturbation M + E of a factor
Gaussian matrix M with expected rank r as follows.

Corollary 2. Relative Residual Norm of Dual Gaussian Low-Rank Approxi-
mation. Suppose that m ≥ n > l ≥ r > 0, all the assumptions of Theorem7
hold, M = UV + E, M̃ = Q(MB)QT (MB)M , ||(UV )+|| = 1

σr(UV ) = 1
σr(M) ,

||E||F = σr+1(M)
√

n − r, and E′ = EB. Then

||M̃ − M ||
||M || ≤ σr+1(M)

σr(M)
(1 + κ(B)

√
8(n − r)l ) + O(σr+1(M)2).

Proof. Note that ||E′|| ≤ ||B||F ||B||F ≤ ||B|| ||E|| √
(n − r)l, and so ||E′|| ≤

||B|| σr+1(M)
√

(n − r)l.
By combining Theorem 7 and equation ||(UV )+|| = 1

σr(M) , obtain ||(UV B)+|| ≤
||B+||/σr(M).
Substitute these bounds on the norms ||E′|| and ||(UV B)+|| into estimate (4).

Remark 1. The Power Scheme of increasing the output accuracy of Algorithm 1.
Define the Power Iterations Mi = (MT M)iM , i = 1, 2, . . . . Then σj(Mi) =
(σj(M))2i+1 for all i and j [19, equation (4.5)]. Therefore, at a reasonable compu-
tational cost, one can dramatically decrease the ratio σr+1(M)

σr(M) and thus decrease
accordingly the bounds of Corollaries 1 and 2.

5 Numerical Tests

We have tested Algorithm 1, with both AH and ASPH multipliers, applied on
one side and both sides of the matrix M , as well as with one-sided dense mul-
tipliers B = B(±1, 0) that have i.i.d. entries ±1 and 0, each value chosen with
probability 1/3. We generated the input matrices M for these tests by extend-
ing the customary recipes of [18, Sect. 28.3]: at first, we generated two matrices
SM and TM by orthogonalizing a pair of n × n Gaussian matrices, then wrote
ΣM = diag(σj)n

j=1, for σj = 1/j, j = 1, . . . , r, σj = 10−10, j = r + 1, . . . , n,
and finally computed the n × n matrices M defined by their compact SVDs,
M = SMΣMTT

M . (In this case ||M || = 1 and κ(M) = ||M || ||M−1|| = 1010).
Table 1 represents the average relative residuals norms Δ of low-rank approx-

imation of the matrices M over 1000 tests for each pair of n and r, n =
256, 512, 1024, r = 8, 32, and various multipliers B of the five classes B above.
For all classes and all pairs of n and r, average relative residual norms ranged
from 10−7 to about 10−9 in these tests.

In [23] we present similar results of our tests with matrices M involved in
the discrete representation of PDEs and data analysis.



362 V.Y. Pan and L. Zhao

6 An Extension

Our acceleration of low-rank approximation implies acceleration of various
related popular matrix computations for average input matrices, and thus sta-
tistically for most of the inputs, although possibly not for all inputs of practical
interest. Next, for a simple example, we accelerate the Fast Multipole Method
for average input matrix. In [23] we further extend the resulting algorithm to
the acceleration of the Conjugate Gradient algorithms.

In order to specify the concept of “average” to the case of FMM applications,
we recall the definitions and basic results for the computations with HSS matri-
ces5, which naturally extend the class of banded matrices and their inverses,
are closely linked to FMM, and have been intensively studied for decades (cf.
[1,3,5,10,13,15,26–33], and the bibliography therein).

Definition 2. (Cf. [21].) A neutered block of a block diagonal matrix is the
union of a pair of its off-block-diagonal blocks sharing their column sets.

Definition 3. (Cf. [1,5,15,30–32].)
An m × n matrix M is called a r-HSS matrix, for a positive integer r, if

(i) this is a block diagonal matrix whose diagonal blocks consist of O((m+n)r)
entries and

(ii) r is the maximum rank of its neutered blocks.

Remark 2. Many authors work with (l, u)-HSS rather than r-HSS matrices M
where l and u are the maximum ranks of the sub- and super-block-diagonal
blocks, respectively. The (l, u)-HSS and r-HSS matrices are closely related.
Indeed, if a neutered block N is the union of a sub-block-diagonal block B−
and a super-block-diagonal block B+, then rank(N) ≤ rank(B−) + rank(B+),
and so an (l, u)-HSS matrix is a p-HSS matrix, for p ≤ l + u, while clearly a
r-HSS matrix is a (q, s)-HSS matrix, for q ≤ r and s ≤ r.

Table 1. Low-rank approximation: residual norms with AH, ASPH, and B(±1, 0)
multipliers.

n r Pre- and Post-multiplication Pre-multiplication only

AH ASPH AH ASPH B(±1, 0)

256 8 8.43e-09 4.89e-08 2.25e-08 2.70e-08 2.52e-08

256 32 3.53e-09 5.47e-08 5.95e-08 1.47e-07 3.19e-08

512 8 7.96e-09 3.16e-09 4.80e-08 2.22e-07 4.76e-08

512 32 1.75e-08 7.39e-09 6.22e-08 8.91e-08 6.39e-08

1024 8 6.60e-09 3.92e-09 5.65e-08 2.86e-08 1.25e-08

1024 32 7.50e-09 5.54e-09 1.94e-07 5.33e-08 4.72e-08

5 We use the acronym for “hierarchically semiseparable”.
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The FMM enables us to exploit the r-HSS structure of a matrix as follows
(cf. [1,10,28]).

(i) At first we should cover all its off-block-diagonal entries with a set of
neutered blocks that pairwise have no overlaps and then

(ii) express every h × k block N of this set as the product N = FGT of two
generator matrices, F of size h × r and G of size r × k. Call such a pair of
F and G a length r generator of the neutered block N .

(iii) Suppose that, for an r-HSS matrix M of size m × n having s diagonal
blocks, such an HSS representation via generators of length at most r has
been computed. Then we can readily multiply the matrix M by a vector by
using O((m + n)r log(s)) flops and

(iv) in a more advanced application of FMM we can solve a nonsingular r-HSS
linear system of n equations by using O(nr log3(n)) flops under some mild
additional assumptions on the input.

This approach is readily extended to (r, ε)-HSS matrices, that is, matrices
approximated by r-HSS matrices within perturbation norm ε where a positive
tolerance ε is small in context (e.g., is the unit round-off). Likewise, one defines
an (r, ε)-HSS representation and (r, ε)-generators. (r, ε)-HSS matrices (for r small
in context) appear routinely in modern computations, and computations with
such matrices are performed efficiently by using the above techniques.

The computation of (r, ε)-generators for a (r, ε)-HSS representation of a (r, ε)-
HSS matrix M (that is, for low-rank approximation of the blocks in that repre-
sentation) turned out to be the bottleneck stage of such applications of FMM.

Indeed, suppose one applies random sampling Algorithm1 at this stage. Mul-
tiplication of a k × k block by k × r Gaussian matrix requires (2k − 1)kr flops,
while standard HSS-representation of an n×n HSS matrix includes k ×k blocks
for k ≈ n/2. Therefore the cost of computing such a representation of the matrix
M is at least quadratic in n and thus dramatically exceeds the above estimate
of O(rn log(s)) flops at the other stages of the computations if r � n.

Alternative customary techniques for low-rank approximation rely on com-
puting SVD or rank-revealing factorization of an input matrix and are at least
as costly as the computations by means of random sampling.

Can we fix such a mishap? Yes, by virtue of Corollary 2, we can perform this
stage at the dominated randomized arithmetic cost O((k + l)r) in the case of
average (r, ε)-HSS input matrix of size k × l, if we just apply Algorithm1 with
AH, ASPH, or other sparse multipliers.

By saying “average”, we mean that Corollary 2 can be applied to low-rank
approximation of all the off-block diagonal blocks in a (r, ε)-HSS representation
of a (r, ε)-HSS matrix.
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Appendix

A Gaussian Matrices

Theorem 8. Assume a nonsingular n × n matrix A and an n × n matrix H
whose entries are linear combinations of finitely many i.i.d. Gaussian variables.

Let det((AH)l,l) vanish identically in them for neither of the integers l,
l = 1, . . . , n. Then the matrices (AH)l,l, for l = 1, . . . , n, are nonsingular with
probability 1.

Proof. The theorem follows because the equation det((AH)l,l) for any integer l
in the range from 1 to n defines an algebraic variety of a lower dimension in the
linear space of the input variables (cf. [2, Proposition 1]).

Lemma 3. (Rotational invariance of a Gaussian matrix.) Suppose that k, m,
and n are three positive integers, G is an m × n Gaussian matrix, and S and T
are k × m and n × k orthogonal matrices, respectively.

Then SG and GT are Gaussian matrices.

We keep stating all results and estimates for real matrices, but estimates
similar to the ones of the next theorems in the case of complex matrices can be
found in [4,6,9], and [11].

Write νm,n = ||G||, ν+
m,n = ||G+||, and ν+

m,n,F = ||G+||F , for a Gaussian
m × n matrix G, and write E(v) for the expected value of a random variable v.

Theorem 9. (Cf. [8, Theorem II.7].) Suppose that m and n are positive inte-
gers, h = max{m,n}, t ≥ 0. Then

(i) Probability{νm,n > t +
√

m +
√

n} ≤ exp(−t2/2) and
(ii) E(ν+

m,n) < 1 +
√

m +
√

n.

Theorem 10. Let Γ (x) =
∫ ∞
0

exp(−t)tx−1dt denote the Gamma function and
let x > 0. Then

(i) Probability {ν+
m,n ≥ m/x2} < xm−n+1

Γ (m−n+2) for m ≥ n ≥ 2,
(ii) Probability {ν+

n,n ≥ x} ≤ 2.35
√

n/x for n ≥ 2,
(iii) E((ν+

F,m,n)2) = m/|m − n − 1|, provided that |m − n| > 1, and
(iv) E(ν+

m,n) ≤ e
√

m/|m − n|, provided that m 	= n and e = 2.71828 . . . .

Proof. See [4, Proof of Lemma 4.1] for part (i), [25, Theorem 3.3] for part (ii),
and [19, Proposition 10.2] for parts (iii) and (iv).

Theorem 10 provides probabilistic upper bounds on ν+
m,n. They are reason-

able already for square matrices, for which m = n, but become much stronger
as the difference |m − n| grows large.

Theorems 9 and 10 combined imply that an m × n Gaussian matrix is well-
conditioned unless the integer m + n is large or the integer m − n is close to 0
and that such a matrix can still be considered well-conditioned (possibly with
some grain of salt) if the integer m is not large and if the integer |m−n| is small
or even vanishes. These properties are immediately extended to all submatrices
because they are also Gaussian.



Low-Rank Approximation of a Matrix: Novel Insights, New Progress 365

References
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