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Abstract. In this paper we study interactive “one-shot” analogues of
the classical Slepian–Wolf theorem. Alice receives a value of a random
variable X, Bob receives a value of another random variable Y that is
jointly distributed with X. Alice’s goal is to transmit X to Bob (with
some error probability ε). Instead of one-way transmission we allow them
to interact. They may also use shared randomness.

We show, that for every natural r Alice can transmit X to Bob using(
1 + 1

r

)
H(X|Y )+ r +O(log2

(
1
ε

)
) bits on average in 2H(X|Y )

r
+2 rounds

on average. Setting r = �√H(X|Y )� and using a result of [2] we conclude
that every one-round protocol π with information complexity I can be
compressed to a (many-round) protocol with expected communication
about I + 2

√
I bits. This improves a result by Braverman and Rao [3],

where they had I + 5
√

I. Further, we show (by setting r = �H(X|Y )�)
how to solve this problem (transmitting X) using 2H(X|Y )+O(log2

(
1
ε

)
)

bits and 4 rounds on average. This improves a result of [4], where they
had 4H(X|Y ) + O(log 1/ε) bits and 10 rounds on average.

In the end of the paper we discuss how many bits Alice and Bob may
need to communicate on average besides H(X|Y ). The main question
is whether the upper bounds mentioned above are tight. We provide an
example of (X, Y ), such that transmission of X from Alice to Bob with
error probability ε requires H(X|Y ) + Ω

(
log2

(
1
ε

))
bits on average.

Keywords: Slepian–Wolf theorem · Communication complexity ·
Information complexity

1 Introduction

Assume that Alice receives a value of a random variable X and she wants to
transmit that value to Bob. It is well-known [8] that Alice can do it using one
message over the binary alphabet of expected length less than H(X)+1. Assume
now that there are n independent random variables X1, . . . , Xn distributed as
X, and Alice wants to transmit all X1, . . . , Xn to Bob. Another classical result
from [8] states, that Alice can do it using one message of fixed length, namely
≈ nH(X), with a small probability of error.
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One of the possible ways to generalize this problem is to provide Bob with a
value of another random variable Y which is jointly distributed with X. That is,
to let Bob know some partial information about X for free. This problem is the
subject of the classical Slepian-Wolf Theorem [9] which asserts that if there are n
independent pairs (X1, Y1), . . . , (Xn, Yn), each pair distributed exactly as (X,Y ),
then Alice can transmit all X1, . . . , Xn to Bob, who knows Y1, . . . , Yn, using one
message of fixed length, namely ≈ nH(X|Y ), with a small probability of error1

However, it turns out that a one-shot analogue of this theorem is impossible, if
only one-way communication is allowed.

The situation is quite different, if we allow Alice and Bob to interact, that is,
to send messages in both directions. In [7] Orlitsky studied this problem for the
average-case communication when no error is allowed. He showed that if pair
(X,Y ) is uniformly distributed on it’s support, then Alice may transmit X to
Bob using at most

H(X|Y ) + 3 log2(H(X|Y ) + 1) + 17

bits on average and 4 rounds. For the pairs (X,Y ) whose support is a Cartesian
product Orlitsky showed that error-less transmission of X from Alice to Bob
requires H(X) bits on average.

From a result of Braverman and Rao [3], it follows that for arbitrary (X,Y )
it is sufficient to communicate at most

H(X|Y ) + 5
√

H(X|Y ) + O

(
log2

(
1
ε

))

bits on average (here ε stands for the error probability).
We show that for every positive ε and natural r there is a public-coin protocol

transmitting X from Alice to Bob with error probability at most ε (for each pair
of inputs) using at most

(
1 +

1
r

)
H(X|Y ) + r + O

(
log2

1
ε

)

bits on average in at most
2H(X|Y )

r
+ 2

rounds on average. Furthermore, there is a private-coin protocol with the same
properties plus extra O (log log supp(X,Y )) bits of communication. Our protocol
is inspired by protocol from [1]. The idea of the protocol is essentially the same,
we only apply some technical trick to reduce communication.

This improves the result of Braverman and Rao, since setting r =⌈√
H(X|Y )

⌉
above we obtain the protocol with expected communication at

1 This paper is focused only on the non-symmetric version of this problem. In more
general version Alice and Bob send messages to the 3rd party Charlie, who must
reconstruct both random variables.
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most H(X|Y ) + 2
√

H(X|Y ) + O
(
log2

(
1
ε

))
. In [4], it is established a one-shot

interactive analogue of the Slepian-Wolf theorem for the bounded-round com-
munication. They showed that Alice may transmit X to Bob using at most
O(H(X|Y ) + 1) bits and O(1) rounds on average. More specifically, their proto-
col transmits at most 4H(X|Y ) + log2(1/ε) + O(1) bits on average in 10 rounds
on average. Setting r = �H(X|Y )� above we improve this result. Indeed, we
obtain the protocol with the expected length at most 2H(X|Y ) + O

(
log2

(
1
ε

))

and the expected number of rounds at most 4.
Actually, in [3] a more general result was established. It was shown there that

every one-round protocol π with information complexity I can be compressed
to the (many-round) protocol with expected length at most

≈ I + 5
√

I. (1)

Using the result from [2], we improve Equ. 1. Namely, we show that every one-
round protocol π with information complexity I can be compressed to the (many-
round) protocol with expected communication length at most

≈ I + 2
√

I.

Are there random variables X,Y for which the upper bound of the form
H(X|Y )+O

(√
H(X|Y )

)
is tight? We make a step towards answering this ques-

tion: we provide an example of random variables X,Y such that every public-coin
communication protocol which transmits X from Alice to Bob with error prob-
ability ε (with respect to the input distribution and the protocol’s randomness)
must communicate at least H(X|Y ) + Ω

(
log2

(
1
ε

))
bits on average.

2 Definitions

2.1 Information Theory

Let X, Y be two joint distributed random variables, taking values in the finite
sets, respectively, X and Y.

Definition 1. Shannon Entropy of X is defined by the formula

H(X) =
∑

x∈X
Pr[X = x] log2

(
1

Pr[X = x]

)
.

Definition 2. Conditional Shannon entropy of X with respect to Y is defined
by the formula:

H(X|Y ) =
∑

y∈Y
H(X|Y = y) Pr[Y = y],

where X|Y = y denotes a distribution of X, conditioned on the event {Y = y}.
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If X is uniformly distributed in X then obviously H(X) = log2(|X |). We will
also use the fact that the formula for conditional entropy may be re-written as

H(X|Y ) =
∑

(x,y)∈X×Y
Pr[X = x, Y = y] log2

(
1

Pr[X = x|Y = y]

)
.

Generalization of the Shannon entropy is Renyi entropy.

Definition 3. Renyi entropy of X is defined by the formula

H2(X) = − log2

(
∑

x∈X
Pr[X = x]2

)

.

Concavity of log implies that H(X) ≥ H2(X).
The mutual information of two random variables X and Y , conditioned on

another random variable Z, can be defined as:

I(X : Y |Z) = H(X|Z) − H(X|Y,Z).

For the further introduction in information theory see, for example [11].

2.2 Communication Protocols

Assume that we are given jointly distributed random variables X and Y , taking
values in finite sets X and Y. Let RA, RB be a random variables, taking values
in finite sets RA and RB, such that (X,Y ), RA, RB are mutually independent.

Definition 4. A private–coin communication protocol is a rooted binary tree,
in which each non-leaf vertex is associated either with Alice or with Bob. For
each non-leaf vertex v associated with Alice there is a function fv : X × RA →
{0, 1} and for each non-leaf vertex u associated with Bob there is a function
gu : Y × RB → {0, 1}. For each non-leaf vertex one of an out-going edges is
labeled by 0 and other is labeled by 1. Finally, for each leaf l there is a function
φl : Y × RB → O, where O denotes the set of all possible Bob’s outputs.

A computation according to a protocol runs as follows. Alice is given x ∈ X ,
Bob is given y ∈ Y. Assume that RA takes a value ra and RB takes a value rb.
Alice and Bob start at the root of the tree. If they are in the non-leaf vertex v
associated with Alice, then Alice sends fv(x, ra) to Bob and they go by the edge
labeled by fv(x, ra). If they are in a non-leaf vertex associated with Bob then
Bob sends gv(y, rb) to Alice and they go by the edge labeled by gv(y, rb). When
they reach a leaf l Bob outputs the result φl(y, rb).

A protocol is called deterministic if fv, gu and φl do not depend on the values
of RA, RB .

A randomized communication protocol is a distribution over private-coin pro-
tocols with the same X for Alice and the same Y for Bob. The random variable
with this distribution (public randomness) is denoted below by R. Before the
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execution starts, Alice and Bob sample R to choose the private-coin protocol to
be executed.

A protocol is called public-coin if it is a distribution over deterministic pro-
tocols.

We distinguish between average-case communication complexity and the
worst-case communication complexity. The (worst-case) communication com-
plexity of a protocol π, denoted by CC(π), is defined as the maximal possible
depth of the leaf Alice and Bob may reach in π.

We say that protocol π communicates d bits on average (or expected length
of the protocol is equal to d), if the expected depth of the leaf that Alice and Bob
reach during the execution of the protocol π is equal to d, where the expectation
is taken over X, Y and the protocol’s randomness.

For the further introduction in Communication Complexity see [5].

3 Slepian-Wolf Theorem with Interaction

Consider the following auxiliary problem. Let A be a finite set. Assume that
Alice receives an arbitrary a ∈ A and Bob receives an arbitrary probability
distribution μ on A. Alice wants to communicate a to Bob in about log(1/μ(a))
bits with small probability of error.

Lemma 1. Let ε be a positive real and r a positive integer. There exists a public
coin randomized communication protocol such that for all a in the support of μ
the following hold:

– in the end of the communication Bob outputs b ∈ A which is equal to a with
probability at least 1 − ε;

– the protocol communicates at most

log2

(
1

μ(a)

)
+

log2
(

1
μ(a)

)

r
+ r + log2

(
1
ε

)
+ 2

bits, regardless of the randomness.
– the number of rounds in the protocol does not exceed

2 log2
(

1
μ(a)

)

r
+ 2.

Proof. Alice and Bob interpret each portion of |A| consecutive bits from the
public randomness source as a table of a random function h : A → {0, 1}. That
is, we will think that they have access to a large enough family of mutually
independent random functions of the type A → {0, 1}. Those functions will be
called hash functions and their values hash values below.

The first set k =
⌈
log2

(
1
ε

)⌉
. Then for all i = 0, 1 . . . Bob sets:

Si =
{
x ∈ A |μ(x) ∈ (2−i−1, 2−i]

}
.
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At the beginning Alice sends k hash values of a. Then Alice and Bob work
in stages numbered 1, 2 . . . .

On Stage t:

1. Alice sends r new hash values of a to Bob so that the total number of hash
values of a available to Bob be k + rt.

2. For each i ∈ {r(t − 1), . . . , rt − 1} Bob computes set S′
i, which consists of all

elements from Si, which agree with all Alice’s hash values.
3. If there exists i ∈ {r(t−1), . . . , rt−1} such that S′

i 	= ∅, then Bob sends 1 to
Alice, outputs any element of S′

i and they terminate. Otherwise Bob sends 0
to Alice and they proceed to Stage t + 1.

Let us at first show that the protocol terminates for all a in the support of μ.
Assume that Alice has a and Bob has μ. Let i =

⌊
log2

(
1

μ(a)

)⌋
so that a ∈ Si.

The protocol terminates on Stage t where

r(t − 1) ≤ i ≤ rt − 1 (2)

or earlier. Indeed all hash values of a available to Bob on Stage t coincide with
hash values of some element of Si (for instance, with those of a).

Thus Alice sends at most k + rt bits to Bob and Bob sends at most t bits
to Alice. The left-hand size of (2) implies that t ≤ i

r + 1. Therefore Alice’s
communication is bounded by

k + rt ≤ k + r

(
i

r
+ 1
)

=
⌈
log2

(
1
ε

)⌉
+ i + r

≤ log2

(
1

μ(a)

)
+ r + log2

(
1
ε

)
+ 1,

and Bob’s communication is bounded by

t ≤ i

r
+ 1 ≤

log2
(

1
μ(a)

)

r
+ 1.

These two bounds imply that the total communication length is at most

log2
(

1
μ(a)

)
+

log2( 1
μ(a) )
r + r + log2

(
1
ε

)
+ 2. The number of rounds equals the

length of Bob’s communication, multiplied by 2. Hence this number is at most
2 log2( 1

μ(a) )
r + 2. We conclude that the communication and the number of rounds

are as short as required.
It remains to bound the error probability. An error may occur, if for some t a set

Si considered on Stage t has an element b 	= a which agrees with hash values sent
from Alice. At that time Bob has already k + rt ≥ k + i + 1 hash values, where
the inequality follows from (2). The probability that k + i + 1 hash values of b
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coincide with those of a is 2−k−i−1. Hence by union bound error probability does
not exceed

∞∑

i=0

|Si|2−k−i−1 = 2−k
∞∑

i=0

|Si|2−i−1 < 2−k
∞∑

i=0

∑

x∈Si

μ(x)

= 2−k
∑

x∈A

μ(x) = 2−k = 2−�log2( 1
ε )� ≤ ε.

Theorem 1. Let X, Y be jointly distributed random variables that take values
in the finite sets X and Y. Then for every positive ε and positive integer r there
exists a public-coin protocol with the following properties.

– For every pair (x, y) from the support of (X,Y ) with probability at least 1 − ε
Bob outputs x;

– The expected length of communication is at most

H(X|Y ) +
H(X|Y )

r
+ r + log2

(
1
ε

)
+ 2.

– The expected number of rounds is at most

2H(X|Y )
r

+ 2.

Proof. On input x, y, Alice and Bob run protocol of Lemma1 with A = X , a = x
and μ equal to the distribution of X, conditioned on the event Y = y. Notice
that Alice knows a and Bob knows μ.

Let us show that all the requirements are fulfilled for this protocol. The
first requirement immediately follows from the first property of the protocol of
Lemma 1.

From the second and the third property of the protocol of Lemma1 it follows
that for input pair x, y out protocol communicates at most:

log2

(
1

Pr[X = x|Y = y]

)
+

log2
(

1
Pr[X=x|Y =y]

)

r
+ r + log2

(
1
ε

)
+ 2

bits in at most
log2

(
1

Pr[X=x|Y =y]

)

r
+ 2

rounds. Recalling that

H(X|Y ) =
∑

(x,y)∈X×Y
Pr[X = x, Y = y] log2

(
1

Pr[X = x|Y = y]

)

we see on average the communication and the number of rounds are as short as
required.
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Theorem 1 provides a trade off between the communication and the number
of rounds.

– To obtain a protocol with minimal communication set r =
⌈√

H(X|Y )
⌉
. For

such r the protocol communicates at most H(X|Y )+2
√

H(X|Y )+O
(
log2

1
ε

)

bits on average.
– To obtain a protocol with a constant number of rounds on average set, for

example, r = �H(X|Y )�. For such r the protocol communicates at most
2H(X|Y ) + O

(
log2

1
ε

)
bits on average in at most 4 rounds on average.

– In a same manner for every δ ∈ (0, 0.5) we can obtain a protocol with
the expected communication at most H(X|Y ) + O

(
H(X|Y )0.5+δ

)
and the

expected number of rounds at most O
(
H(X|Y )0.5−δ

)
.

Remark. One may wonder whether there exists a private-coin communication
protocol with the same properties as the protocol of Theorem 1. Newman’s theo-
rem [6] states that every public-coin protocol can be transformed into a private-
coin protocol at the expense of increasing the error probability by δ and the
worst case communication by O(log log |X × Y| + log 1/δ) (for any positive δ).
Lemma 1 provides an upper bound for the error probability and communica-
tion of our protocol for each pair of inputs. Repeating the arguments from the
proof of Newman’s theorem, we are able to transform the public-coin protocol
of Lemma 1 into a private-coin one with the same trade off between the increase
of error probability and the increase of communication length. It follows that
for our problem there exists a private-coin communication protocol which errs
with probability at most ε and communicates on average as many bits as the
public-coin protocol from Theorem1 plus extra O(log log |X × Y|) bits.

4 One-Round Compression

Information complexity of the protocol π with inputs (X,Y ) is defined as

ICμ(π) = I(X : Π|Y,R) + I(Y : Π|X,R)
= I(X : Π|Y,R,RB) + I(Y : Π|X,R,RA)
= I(X : Π,R,RB |Y ) + I(Y : Π,R,RA|X),

where R,RA, RB denote (shared, Alice’s and Bob’s) randomness, μ stands for
the distribution of (X,Y ) and Π stands for the concatenation of all bits sent in
π (Π is called a transcript). The first term is equal to the information which Bob
learns about Alice’s input and the second term is equal to the information which
Alice learns about Bob’s input. Information complexity is an important concept
in the Communication Complexity. For example, information complexity plays
the crucial role in the Direct-Sum problem [10].

We will consider the special case when π is one-round. In this case Alice
sends one message Π to Bob, then Bob outputs the result (based on his input,
his randomness, and Alice’s message) and the protocol terminates. Since Alice
learns nothing, information complexity can be re-written as



On Slepian–Wolf Theorem with Interaction 215

I = ICμ(π) = I(X : Π|Y,R).

Our goal is to simulate a given one-round protocol π with another protocol
τ which has the same input space (X,Y ) and whose expected communication
complexity is close to I. The new protocol τ may be many-round. The quality
of simulation will be measured by the statistical distance. Statistical distance
between random variables A and B, both taking values in the set V , equals

δ(A,B) = max
U⊂V

|Pr[A ∈ U ] − Pr[B ∈ U ]| .

One of the main results of [3] is the following theorem.

Theorem 2. For every one-round protocol π and for every probability distrib-
ution μ there is a public-coin protocol τ with expected length (with respect to μ
and the randomness of τ) at most I + 5

√
I + O

(
log2

1
ε

)
such that for each pair

of inputs (x, y) after termination of τ Bob outputs a random variable Π ′ with
δ ((Π|X = x, Y = y) , (Π ′|X = x, Y = y)) ≤ ε.

We will show that Theorem 1 and together with the main result of [2] imply
that we can replace 5

√
I by about 2

√
I in this theorem. More specifically,

Theorem 3. For every one-round protocol π and for every probability distrib-
ution μ there is a public-coin protocol τ with expected length (with respect to μ
and the randomness of τ) at most

I + log2(I + O(1)) + 2
√

I + log2(I + O(1)) + O

(
log2

1
ε

)

such that for each pair of inputs (x, y) in the protocol τ Bob outputs Π ′ with
δ ((Π|X = x, Y = y) , (Π ′|X = x, Y = y)) ≤ ε

We want to transmit Alice’s message Π to Bob (who knows Y and his ran-
domness R) in many rounds so that the expected communication length is small.
By Theorem 1 this task can be solved with error ε in expected communication

H(Π|Y,R) + 2
√

H(Π|Y,R) + O

(
log2

1
ε

)
. (3)

Assume first that the original protocol π uses only public randomness. Then

I = I(X : Π|Y,R) = H(Π|Y,R) − H(Π|X,Y,R) = H(Π|Y,R).

Indeed, H(Π|X,Y,R) = 0, since Π is defined by X,R. Thus (3) becomes

I + 2
√

I + O

(
log2

1
ε

)

and we are done.
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In general case, when the original protocol uses private randomness, I can
be much smaller than H(Π|Y,R). Fortunately, by the following theorem from
[2] we can remove private coins from the protocol with only a slight increase in
information complexity.

Theorem 4. For every one-round protocol π and for every probability distribu-
tion μ there is a one-round public-coin protocol π′ with information complexity
ICμ(π′) ≤ I + log2(I + O(1)) such that for each pairs of inputs (x, y) in the
protocol π′ Bob outputs Π ′ for which Π ′|X = x, Y = y and Π|X = x, Y = y are
identically distributed.

Combining this theorem with our main result (Theorem1), we obtain
Theorem 3.

5 A Lower Bounds for the Average-Case Communication

Let (X,Y ) be a pair of jointly distributed random variables. Assume that π is
a deterministic protocol to transmit X from Alice to Bob who knows Y . Let
π(X,Y ) stand for the result output by the protocol π for input pair (X,Y ). We
assume that for at least 1 − ε input pairs this result is correct:

Pr[π(X,Y ) 	= X)] ≤ ε.

It is not hard to see that in this case the expected communication length
cannot be much less than H(X|Y ) bits on average. Moreover, this applies for
communication from Alice to Bob only.

Proposition 1. For every deterministic protocol as above the expected commu-
nication from Alice to Bob is at least H(X|Y ) − ε log2 |X | − 1.

The proof of this proposition is omitted due to space constraints.
There are random variables for which this lower bound is tight. For instance,

let Y be empty and let X take the value x ∈ {0, 1}n with probability ε/2n

(for all such x) and let X = (the empty string) with the remaining probability
1− ε. Then the trivial protocol with no communication solves the job with error
probability ε and H(X|Y ) ≈ ε log2 |X |.

In this section we consider the following question: are there a random
variables (X,Y ), for which for every public-coin communication protocol the
expected communication is significantly larger than H(X|Y ), say close to the
upper bound H(X|Y ) + 2

√
H(X|Y ) + log2

(
1
ε

)
of Theorem 1?

Orlitsky [7] showed that if no error is allowed and the support of (X,Y ) is a
Cartesian product, then every deterministic protocol must communicate H(X)
bits on average.

Proposition 2. Let (X,Y ) be a pair of jointly distributed random variables
whose support is a Cartesian product. Assume that π is a deterministic protocol,
which transmits X from Alice to Bob who knows Y and

Pr[π(X,Y ) 	= X)] = 0.

Then the expected length of π is at least H(X).
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This result can be easily generalized to the case when π is public-coin.
The main result of this section states that there are random variables (X,Y )

such that transmission of X from Alice to Bob with error probability ε requires
H(X|Y ) + Ω

(
log2

(
1
ε

))
bits on average.

The random variables X,Y are specified by two parameters, δ ∈ (0, 1/2) and
n ∈ N. Both random variables take values in {0, 1, . . . , n} and are distributed as
follows: Y is distributed uniformly in {0, 1, . . . , n} and X = Y with probability
1 − δ and X is uniformly distributed in {0, 1, . . . , n} \ {X} with the remaining
probability δ. That is,

Pr[X = i, Y = j] =
(1 − δ)δij + δ

n (1 − δij)
n + 1

,

where δij stands for the Kronecker’s delta. Notice that X is uniformly distributed
on {0, 1, . . . , n} as well. A straightforward calculation reveals that

Pr[X = i|Y = j] =
Pr[X = i, Y = j]

Pr[Y = j]
= (1 − δ − δ

n
)δij +

δ

n

and

H(X|Y ) = (1 − δ) log2

(
1

1 − δ

)
+ δ log2

(n

δ

)
= δ log2 n + O(1).

We will think of δ as a constant, say 1/4. For one-way protocol we are able
to show that communication length must be close to log n, which is about 1/δ
times larger than H(X|Y ):

Proposition 3. Assume that π is a one-way deterministic protocol, which trans-
mits X from Alice to Bob who knows Y and

Pr[π(X,Y ) 	= X)] ≤ ε.

Then the expected length of π is at least
(
1 − ε

δ

)
log2(n + 1) − 2.

This result explains why the one-way one-shot analogue of the Slepian–Wolf
theorem is not possible.

Proof. Let S be the number of leafs in π. For each j ∈ {0, 1, . . . , n}
# {i ∈ {0, 1, . . . , n} | π(i, j) = i} ≤ S.

Hence the error probability ε is at least (n + 1 − S) δ
n . This implies that

S ≥ n
(
1 − ε

δ

)
+ 1 ≥ (n + 1)

(
1 − ε

δ

)
.

Let Π(X) denote the leaf Alice and Bob reach in π (since the protocol is
one-way, the leaf depends only on X). The expected length of Π(X) is at least
H(Π) (identify each leaf with the binary string, written on the path from the
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root to this leaf in the protocol tree; the set of all these strings is prefix–free).
Let l1, l2, . . . , lS be the list of all leaves in the support of the random variable
Π(X). As X is distributed uniformly, we have

Pr[Π = li] ≥ 1
n + 1

for all i. The statement follows from

Lemma 2. Assume that p1, . . . , pk, q1, . . . , qk ∈ (0, 1) satisfy

k∑

i=1

pi = 1,

∀i ∈ {1, . . . , k} pi ≥ qi.

Then
k∑

i=1

pi log2
1
pi

≥
k∑

i=1

qi log2
1
qi

− 2.

The proof of this technical lemma is omitted due to space constraints. The lemma
implies that

H(Π) =
S∑

i=1

Pr[Π = li] log2

(
1

Pr[Π = li]

)

≥ S

n + 1
log2(n + 1) − 2 ≥

(
1 − ε

δ

)
log2(n + 1) − 2.

The next theorem states that for any fixed δ every two-way public-coin proto-
col with error probability ε must communicate about H(X|Y )+(1−δ) log2(1/ε)
bits on average.

Theorem 5. Assume that π is a public-coin communication protocol which
transmits X from Alice to Bob who knows Y and

Pr[X ′ 	= X] ≤ ε,

where X ′ denotes the Bob’s output and the probability is taken with respect to
input distribution and public randomness of π. Then the expected length of π is
at least

(1 − δ − δ/n) log2

(
δ

ε + δ/n

)
+ (δ − 2ε) log2(n + 1) − 2δ.

The lower bound in this theorem is quite complicated and comes from its
proof. To understand this bound assume that δ is a constant, say δ = 1/4,
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and 1
n ≤ ε ≤ 1

log2 n . Then H(X|Y ) = (1/4) log2 n + O(1) and the lower bound
becomes

(
1 − 1

4
− 1

4n

)
log2

( 1
4

ε + 1
4n

)
+ (1/4 − 2ε) log2(n + 1) − 1

2

Condition 1
n ≤ ε implies that the first term is equal to

(3/4) log2

(
1
ε

)
− O(1).

Condition ε ≤ 1
log2 n implies that the seconds term is equal to

(1/4) log2 n − O(1).

Therefore under these conditions the lower bound becomes

(1/4) log2 n + (3/4) log2

(
1
ε

)
− O(1) = H(X|Y ) + (3/4) log2

(
1
ε

)
− O(1).

Proof. Let us start with the case when π is deterministic. Let Π = Π(X,Y )
denote the leaf Alice and Bob reach in the protocol π for input pair (X,Y ).
As we have seen, the expected length of communication is at least the entropy
H(Π(X,Y )). Let l1, . . . , lS denote all the leaves in the support of the random
variable Π(X,Y ). The set {(x, y) | Π(x, y) = li} is a combinatorial rectangle
Ri ⊂ {0, 1, . . . , n} × {0, 1, . . . , n}. Imagine {0, 1, . . . , n} × {0, 1, . . . , n} as a table
in which Alice owns columns and Bob owns rows. Let hi be the height of Ri and
wi be the width of Ri. Let di stand for the number of diagonal elements in Ri

(pairs of the form (j, j)). By definition of (X,Y ) we have

Pr[Π(X,Y ) = li] =
(1 − δ)di

n + 1
+

δ(hiwi − di)
n(n + 1)

. (4)

The numbers {Pr[Π(X,Y ) = li]}S
i=1 define a probability distribution over the

set {1, 2, . . . , S} and its entropy equals H(Π(X,Y )). Equation (4) represents

this distribution as a weighted sum of the following distributions:
{

di

n+1

}S

i=1

and
{

hiwi

(n+1)2

}S

i=1
. That is, Eq. (4) implies that

{Pr[Π = li]}S
i=1 = (1 − δ − δ/n)

{
di

n + 1

}S

i=1

+ (δ + δ/n)
{

hiwi

(n + 1)2

}S

i=1

.

Since entropy is concave, we have

H(Π) = H
({Pr[Π = li]}S

i=1

)

≥ (1 − δ − δ/n)H

({
di

n + 1

}S

i=1

)

+ (δ + δ/n)H

({
hiwi

(n + 1)2

}S

i=1

)

(5)
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The lower bound of the theorem follows from lower bounds of the entropies of
these distributions.

A lower bound for H

({
di

n+1

}S

i=1

)
. In each row of Ri there is at most 1

element (x, y), for which π(x, y) = x. The rectangle Ri consists of di diagonal
elements and hence there are at least d2i − di elements (x, y) in Ri for which
π(x, y) 	= x. Summing over all i we get

ε ≥
S∑

i=1

δ(d2i − di)
n(n + 1)

and thus
S∑

i=1

(
di

n + 1

)2

≤ ε + δ/n

δ
.

Since Renyi entropy is a lower bound for the Shannon entropy, we have

H

({
di

n + 1

}S

i=1

)

≥ log2

⎛

⎜⎜
⎝

1
S∑

i=1

(
di

n+1

)2

⎞

⎟⎟
⎠ ≥ log2

(
δ

ε + δ/n

)
.

A lower bound for H

({
hiwi

(n+1)2

}S

i=1

)
. In Ri, there are at most hi good pairs

(for which π works correctly). At most di of them has probability 1−δ
n+1 . Hence

Pr[Π = li, π(X,Y ) = X] ≤ (1 − δ)di

n + 1
+

δ(hi − di)
n(n + 1)

and

1 − ε ≤ Pr[π(X,Y ) = X] =
S∑

i=1

Pr[Π = li, π(X,Y ) = X]

≤
S∑

i=1

(
(1 − δ)di

n + 1
+

δ(hi − di)
n(n + 1)

)
= 1 − δ − δ/n +

δ

n(n + 1)

S∑

i=1

hi.

The last inequality implies that

S∑

i=1

hi ≥ (1 − ε/δ)(n + 1)2.

Since hi ≤ n + 1, we have

S∑

i=1

hiwi

(n + 1)2
log2

(
(n + 1)2

hiwi

)
≥

S∑

i=1

hiwi

(n + 1)2
log2

(
(n + 1)2

(n + 1)wi

)

= − log2(n + 1)+
S∑

i=1

hi
wi

(n + 1)2
log2

(
(n + 1)2

wi

)
.
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Obviously wi

(n+1)2 ≥ 1
(n+1)2 . By Lemma 2 we get

S∑

i=1

hi
wi

(n + 1)2
log2

(
(n + 1)2

wi

)
≥
(

S∑

i=1

hi

)
1

(n + 1)2
log2

(
(n + 1)2

)− 2

≥ (2 − 2ε/δ) log2(n + 1) − 2.

Thus

H

({
hiwi

(n + 1)2

}S

i=1

)

≥ (1 − 2ε/δ) log2(n + 1) − 2,

and the theorem is proved for deterministic protocols.
Assume now that π is a public-coin protocol with public randomness R and

let r be a possible value of R. Let πr stand for the deterministic communication
protocol obtained from π by fixing R = r. For any protocol τ let ‖τ‖ denote the
random variable representing communication length of τ (which may depend on
the input and the randomness). Finally, set εr = Pr[X ′ 	= X|R = r]

Note that πr transmits X from Alice to Bob with error probability at most
εr (with respect to input distribution). Since πr is deterministic, the expected
length of πr is at least:

E‖πr‖ ≥ (1 − δ − δ/n) log2

(
δ

εr + δ/n

)
+ (δ − 2εr) log2(n + 1) − 2δ.

Since Er∼Rεr = ε and by concavity of log:

E‖π‖ = Er∼RE‖πr‖

≥ Er∼R

[
(1 − δ − δ/n) log2

(
δ

εr + δ/n

)
+ (δ − 2εr) log2(n + 1) − 2δ

]

≥ (1 − δ − δ/n) log2

(
δ

ε + δ/n

)
+ (δ − 2ε) log2(n + 1) − 2δ.
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