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Preface

This volume contains the 28 papers presented at CSR 2016, the 11th International
Computer Science Symposium in Russia, held during June 9–13, 2016, in St.
Petersburg, Russia. The symposium was organized by the Steklov Mathematical
Institute at St. Petersburg of the Russian Academy of Sciences (PDMI). The first CSR
took place in 2006 in St. Petersburg, and this was then followed by meetings in
Ekaterinburg (2007), Moscow (2008), Novosibirsk (2009), Kazan (2010), St. Peters-
burg (2011), Nizhny Novgorod (2012), Ekaterinburg (2013), Moscow (2014), and
Listvyanka (2015). CSR covers a wide range of areas in theoretical computer science
and its applications.

The opening lecture at CSR 2016 was given by Christos Papadimitriou (Berkeley).
Four other invited plenary lectures were given by Herbert Edelsbrunner (IST Austria),
Vladimir Kolmogorov (IST Austria), Orna Kupferman (Hebrew University), and
Virginia Vassilevska Williams (Stanford).

We received 71 submissions in total, and out of these the Program Committee
selected 28 papers for presentation at the symposium and for publication in the pro-
ceedings. Each submission was reviewed by at least three Program Committee mem-
bers. We expect the full versions of the papers contained in this volume to be submitted
for publication in refereed journals. The Program Committee also selected the winners
of the two Yandex Best Paper Awards.

Best Paper Award: Meena Mahajan and Nitin Saurabh, “Some Complete and
Intermediate Polynomials in Algebraic Complexity Theory”
Best Student Paper Award: Alexander Kozachinskiy, “On Slepian–Wolf
Theorem with Interaction”

Many people and organizations contributed to the smooth running and the success
of CSR 2016. In particular our thanks go to:

– All authors who submitted their current research to CSR
– Our reviewers and subreferees whose expertise flowed into the decision process
– The members of the Program Committee, who graciously gave their time and

energy
– The members of the local Organizing Committee, who made the conference

possible
– The EasyChair conference management system for hosting the evaluation process
– Yandex
– The Government of the Russian Federation (Grant 14.Z50.31.0030)
– The Steklov Mathematical Institute at St. Petersburg of the Russian Academy of

Sciences
– The European Association for Theoretical Computer Science (EATCS)
– Monomax Congresses and Incentives

June 2016 Alexander S. Kulikov
Gerhard J. Woeginger
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Topological Data Analysis
with Bregman Divergences

Herbert Edelsbrunner
(joint work with Hubert Wagner)

IST Austria (Institute of Science and Technology Austria),
Am Campus 1, 3400 Klosterneuburg, Austria

Given a finite set in a metric space, the topological analysis assesses its multi-scale
connectivity quantified in terms of a 1-parameter family of homology groups. Going
beyond Euclidean distance and really beyond metrics, we show that the basic tools of
topological data analysis also apply when we measure distance with Bregman diver-
gences. While these violate two of the three axioms of a metric, they have been found
more effective for high-dimensional data. Examples are the Kullback–Leibler diver-
gence, which is commonly used for text and images, and the Itakura–Saito divergence,
which is popular for speech and sound.



Complexity Classifications of Valued
Constraint Satisfaction Problems

Vladimir Kolmogorov

IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
vnk@ist.ac.at

Classifying complexity of different classes of optimization problems is an important
research direction in Theoretical Computer Science. One prominent framework is
Valued Constraint Satisfaction Problems (VCSPs) in which the class is parameterized
by a “language” C, i.e. a set of cost functions over a fixed discrete domain D. A in-
stance of VCSP(C) is an arbitrary sum of functions from Gamma (possibly with
overlapping variables), and the goal is to minimize the sum. The complexity of VCSP
(C) depends on how “rich” the set C is. If, for example, C contains only submodular
functions then any instance in VCSP(C) can be solved in polynomial time. If, on the
other hand, C contains e.g. the “not-equal” relation then VCSP(C) can express the jDj-
coloring problem and thus is NP-hard when jDj[ 2.

I will show that establishing complexity classification for plain CSPs (i.e. when
functions in C only take values in f0;1g) would immediately give the classification
for general VCSPs. The key algorithmic tool that we use is a certain LP relaxation
of the problem combined with the assumed algorithm for plain CSPs.

In the second part of the talk I will consider a version where we additionally restrict
the structure of the instance to be planar. More specifically, I will describe a gener-
alization of the Edmonds’s blossom-shrinking algorithm from “perfect matching”
constraints to arbitrary “even D-matroid” constraints. As a consequence of this, we
settle the complexity classification of planar Boolean CSPs started by Dvořák and
Kupec.

Based on joint work with Alexandr Kazda, Andrei Krokhin, Michal Rolínek,
Johann Thapper and Stanislav Živný [1–3].

References

1. Kazda, A., Kolmogorov, V., Rolínek, M.: Even Delta-matroids and the complexity of planar
Boolean CSPs (2016). arXiv: 1602.03124v2

2. Kolmogorov, V., Krokhin, A., Rolínek, M.: The complexity of general-valued CSPs. In: IEEE
56th Annual Symposium on Foundations of Computer Science. FOCS 2015, pp. 1246–1258
(2015)

3. Kolmogorov, V., Thapper, J., Živný, S.: The power of linear programming for general-valued
CSPs. SIAM J. Comput. 44(1), 1–36 (2015)



On High-Quality Synthesis

Orna Kupferman(&)

School of Computer Science and Engineering,
The Hebrew University, Jerusalem, Israel

orna@cs.huji.ac.il

Abstract. In the synthesis problem, we are given a specification w over input
and output signals, and we synthesize a system that realizes w: with every
sequence of input signals, the system associates a sequence of output signals so
that the generated computation satisfies w. The above classical formulation
of the problem is Boolean. First, correctness is Boolean: a computation satisfies
the specification w or does not satisfy it. Then, other important and interesting
measures like the size of the synthesized system, its robustness, price, and so on,
are ignored. The paper surveys recent efforts to address and formalize different
aspects of quality of synthesized systems. We start with multi-valued specifi-
cation formalisms, which refine the notion of correctness and enable the
designer to specify quality, and continue to the quality measure of sensing: the
detail in which the inputs should be read in order to generate a correct com-
putation. The first part is based on the articles [1–3]. The second part is based
on [4, 5].

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement
no. 278410, and from The Israel Science Foundation (grant no. 1229/10).



Algorithm as a Scientific Weltanschauung

Christos Papadimitriou

UC Berkeley, Berkeley, USA
christos@berkeley.edu

The idea of the algorithm, present in the work of Euclid, Archimedes, and Al Khorizmi,
and formalized by Alan Turing only eight decades ago, underlies much of the realm of
science — physical, life, or social. Algorithmic processes are present in the great
objects of scientific inquiry — the cell, the universe, the market, the brain — as well as
in the models developed by scientists over the centuries for studying them. During the
past quarter century this algorithmic point of view has helped make important progress
in science, for example in statistical physics through the study of phase transitions in
terms of the convergence of Markov chain Monte carlo algorithms, and in quantum
mechanics through the lens of quantum computing.

In this talk I will recount a few more instances of this mode of research. Algo-
rithmic considerations, as well as ideas from computational complexity, revealed a
conceptual flaw in the solution concept of Nash equilibrium ubiquitous in economics.
In the study of evolution, a new understanding of century-old questions has been
achieved through purely algorithmic ideas. Finally, current work in theoretical neu-
roscience suggests that the algorithmic point of view may be invaluable in the central
scientific question of our era, namely understanding how behavior and cognition
emerge from the structure and activity of neurons and synapses.



Fine-Grained Algorithms and Complexity

Virginia Vassilevska Williams

Stanford University, Stanford, USA
virgi@cs.stanford.edu

A central goal of algorithmic research is to determine how fast computational problems
can be solved in the worst case. Theorems from complexity theory state that there are
problems that, on inputs of size n, can be solved in tðnÞ time but not in tðnÞ1�e time for
e[ 0. The main challenge is to determine where in this hierarchy various natural and
important problems lie. Throughout the years, many ingenious algorithmic techniques
have been developed and applied to obtain blazingly fast algorithms for many prob-
lems. Nevertheless, for many other central problems, the best known running times are
essentially those of the classical algorithms devised for them in the 1950s and 1960s.

Unconditional lower bounds seem very difficult to obtain, and so practically all
known time lower bounds are conditional. For years, the main tool for proving hard-
ness of computational problems have been NP-hardness reductions, basing hardness on
P6¼NP. However, when we care about the exact running time (as opposed to merely
polynomial vs non-polynomial), NP-hardness is not applicable, especially if the run-
ning time is already polynomial. In recent years, a new theory has been developed,
based on “fine-grained reductions” that focus on exact running times. The goal
of these reductions is as follows. Suppose problem A is solvable in aðnÞ time and
problem B in bðnÞ time, and no aðnÞ1�e and bðnÞ1�e algorithms are known for A and B
respectively. The reductions are such that whenever A is fine-grained reducible to B (for

aðnÞ and bðnÞ), then a bðnÞ1�e time algorithm for B (for any e[ 0) implies an aðnÞ1�e0

algorithm for A (for some e0 [ 0). Now, mimicking NP-hardness, the approach is to

(1) select a key problem X that is conjectured to require tðnÞ1�oð1Þ time, and (2) reduce
X in a fine-grained way to many important problems. This approach has led to the
discovery of many meaningful relationships between problems, and even sometimes to
equivalence classes.

In this talk I will give an overview of the current progress in this area of study, and
will highlight some new exciting developments.
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On High-Quality Synthesis

Orna Kupferman(B)

School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

orna@cs.huji.ac.il

Abstract. In the synthesis problem, we are given a specification ψ over
input and output signals, and we synthesize a system that realizes ψ:
with every sequence of input signals, the system associates a sequence
of output signals so that the generated computation satisfies ψ. The
above classical formulation of the problem is Boolean. First, correctness
is Boolean: a computation satisfies the specification ψ or does not satisfy
it. Then, other important and interesting measures like the size of the
synthesized system, its robustness, price, and so on, are ignored. The
paper surveys recent efforts to address and formalize different aspects of
quality of synthesized systems. We start with multi-valued specification
formalisms, which refine the notion of correctness and enable the designer
to specify quality, and continue to the quality measure of sensing: the
detail in which the inputs should be read in order to generate a correct
computation. The first part is based on the articles [1–3]. The second
part is based on [4,5].

1 Introduction

Synthesis is the automated construction of a system from its specification. The
basic idea is simple and appealing: instead of developing a system and verifying
that it adheres to its specification, we would like to have an automated procedure
that, given a specification, constructs a system that is correct by construction. The
first formulation of synthesis goes back to Church [11]. The modern approach to
synthesis was initiated by Pnueli and Rosner, who introduced LTL (linear tem-
poral logic) synthesis [26]: We are given an LTL formula ψ over sets I and O of
input and output signals, and we synthesize a finite-state system that realizes ψ.
At each moment in time, the system reads a truth assignment, generated by the
environment, to the signals in I, and it generates a truth assignment to the sig-
nals in O. Thus, with every sequence of inputs, the system associates a sequence of
outputs. The system realizes ψ if all the computations that are generated by the
interaction satisfy ψ. Synthesis has attracted a lot of research and interest [30].

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 278410, and from The Israel Science
Foundation (grant no. 1229/10).

c© Springer International Publishing Switzerland 2016
A.S. Kulikov and G.J. Woeginger (Eds.): CSR 2016, LNCS 9691, pp. 1–15, 2016.
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2 O. Kupferman

One weakness of automated synthesis in practice is that it pays no attention
to the quality of the synthesized system. Indeed, the classical setting is Boolean:
a computation satisfies a specification or does not satisfy it. Accordingly, while
the synthesized system is correct, there is no guarantee about its quality. The
formulation of the synthesis problem is Boolean not only because of the Boolean
nature of correctness. It also ignores other important aspects of the synthesized
systems: their size, robustness, price, and so on. This is a crucial drawback, as
designers would be willing to give-up manual design only if automated-synthesis
algorithms return systems of comparable quality.

In recent years, researchers have considered several extensions and vari-
ants of the classical setting of synthesis. One class of extensions stays in the
Boolean setting but releases the requirements that all interactions should sat-
isfy the specification. For example, it allows the user to add assumptions on
the behavior of the environment. An assumption may be direct, say given by
an LTL formula that restricts the set of possible sequences of inputs [9], or
conceptual, say rationality from the side of the environment, which may have
its own objectives [17]. Another class of extensions moves to a quantitative
setting, where a specification may have different satisfaction values in differ-
ent systems. The quantitative setting arises directly in systems with quanti-
tative aspects (multi-valued/probabilistic/fuzzy) [14–16,23,25], but is applied
also with respect to Boolean systems, where it origins from the semantics of
the specification formalism itself [12]. Consider for example the specification
ψ = G(request → F(response grant ∨ response deny)); that is, every request is
eventually responded, with either a grant or a denial. When we evaluate ψ, there
should be a difference between a computation that satisfies it with responses gen-
erated soon after requests and one that satisfies it with long waits. Moreover,
there should be a difference between grant and deny responses, or cases in which
no request is issued.

The issue of generating high-quality hardware and software systems attracts
a lot of attention [19,29]. One approach to formalize quality is introduced in [8].
There, the input to the synthesis problem includes also Mealy machines that
grade different realizing systems. The first part of the paper surveys another
approach, which we introduce in [1–3], and in which quality is part of the spec-
ification formalism. Our working assumption is that different ways of satisfying
a specification should induce different levels of quality, which should be reflected
in the satisfaction value of the specification in the system. Using our approach,
a user can specify quality formally, according to the importance she gives to
components such as security, maintainability, runtime, delays, and more. Specif-
ically, we introduce and study the temporal logics LTL[F ] and LTL[D], as well
as their combination. The logic LTL[F ] extends LTL with propositional quality
operators, which prioritize and weight different ways to satisfy the specifica-
tion. The logic LTL[D] refines the “eventually” operators of the specification
formalism with discounting operators, whose semantics takes into an account
the delay incurred in their satisfaction. In both logics, the satisfaction value of a
specification is a number in [0, 1], which describes the quality of the satisfaction.
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We demonstrate the usefulness of both extensions and study the decidability and
complexity of the decision and search problems for them as well as for extensions
of LTL that combine both types of operators.

The second approach to formalizing quality refers to other measures that
are naturally considered when evaluating systems, like their size or price. Here,
researchers have studied synthesis with a bound on the size of the environ-
ment and/or the generated system [21,27], synthesis that takes into account the
robustness of the generated system [7], and synthesis that refers to the cost of
components from which the system is composed. Here, cost can refer to parame-
ters defined by the designer as well as to the actual price, which takes into an
account economic considerations, like their sharing by other designers [6]. In the
second part of this work we focus on a quality measure that was introduced on
[4] and that is based on the amount of sensing required to the system in order
to realize the specification. Intuitively, the sensing cost quantifies the detail in
which a random input word has to be read in order to decide its membership
in the language. In [5], we studied the application of the notion of sensing as a
quality measure in monitoring and synthesis. In the first, we are given a com-
putation in an on-line manner, and we have to decide whether it satisfies the
specification. The goal is to do it with a minimal number of sensors. In the sec-
ond, in which we focus here, our goal is to design a transducer that realizes a
given specification for all input sequences and minimizes the expected average
number of sensors used for reading the inputs. We show that minimizing sensing
has a price: the synthesis problem becomes exponentially more complex, and the
synthesized systems may be exponentially bigger.

2 Preliminaries

Linear Temporal Logic. The linear temporal logic LTL enables the specifi-
cation of on-going behaviors. Let AP be a set of Boolean atomic propositions.
An LTL formula is one of the following:

– True, False, or p, for p ∈ AP .
– ¬ϕ1, ϕ1 ∨ ϕ2, Xϕ1, or ϕ1Uϕ2, for LTL formulas ϕ1 and ϕ2.

We define the semantics of LTL formulas with respect to infinite compu-
tations over AP . A computation is a word π = π0, π1, . . . ∈ (2AP )ω. We use
πi to denote the suffix πi, πi+1, . . .. The semantics maps a computation π and
an LTL[F ] formula ϕ to the satisfaction value of ϕ in π, denoted [[π, ϕ]]. The
satisfaction value is a value in {True, False}, defined inductively as follows.

– [[π, True]] = True. – [[π, False]] = False.

– [[π, p]] =

{
True if p ∈ π0,

False if p /∈ π0.
– [[π,¬ϕ1]] = ¬[[π, ϕ1]].

– [[π, ϕ1 ∨ ψ2]] = [[π, ϕ1]] ∨ [[π, ϕ2]] – [[π,Xϕ]] = [[π1, ϕ]].
– [[π, ϕUψ]] =

∨
i≥0

([[πi, ϕ2]] ∧
∧

0≤j<i

[[πj , ϕ1]]).
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Automata. A nondeterministic automaton on infinite words is A =
〈Σ,Q,Q0, δ, α〉, where Q is a finite set of states, q0 ⊆ Q is a set of initial states,
δ : Q×Σ � 2Q is a transition function, and α is an acceptance condition. A run
of A on a word w = σ1 · σ2 · · · ∈ Σω is a sequence of states q0, q1, . . . such that
qi+1 ∈ δ(qi, σi+1) for all i ≥ 0. When |Q0| = 1 and |δ(q, σ)| ≤ 1 for all q ∈ Q
and σ ∈ Σ, we say that A is deterministic. Note that a deterministic automaton
has at most one run on a word. A run is accepting if it satisfies the acceptance
condition. A word w ∈ Σω is accepted by A if A has an accepting run on w.
The language of A, denoted L(A), is the set of words that A accepts.

We consider three acceptance conditions. In a Büchi automaton, α ⊆ Q and a
run is accepting if it visits α infinitely often. In a looping automaton, every run is
accepting. Thus, a looping automaton is a special case of a Büchi automaton with
α = Q. Since every run is accepting, we omit the acceptance condition in loop-
ing automata and write A = 〈Σ,Q, q0, δ〉. In a parity automaton, we have that
α : Q → {1, . . . , k} label each state by a color. A run is accepting if the minimal
color that is visited infinitely often is even. We use three letter acronyms to denote
the different types of automata, with the first letter (N or D) refers to the branch-
ing mode of the automaton, the second (B, L, or P) to the acceptance condition,
and the third – W, indicates we consider word automaton. So, for example, NBWs
are nondeterministic Büchi word automata and DLW are deterministic looping
automata.

A language L ⊆ Σω is a safety language if every word w �∈ L has a prefix x
such that for all suffixes y ∈ Σω, we have that x · y �∈ L. It is well known that
DLWs can recognize exactly all safety languages [22,28].

Transducers. For finite sets I and O of input and output signals, respectively,
an I/O transducer is T = 〈I,O,Q, q0, δ, ρ〉, where Q is a finite set of states, q0 ∈
Q is an initial state, δ : Q×2I → Q is a total transition function, and ρ : Q → 2O

is a labeling function on the states. The run of T on a word w = i0 ·i1 · · · ∈ (2I)ω

is the sequence of states q0, q1, . . . such that qk+1 = δ(qk, ik) for all k ≥ 0. The
output of T on w is then o1, o2, . . . ∈ (2O)ω where ok = ρ(qk) for all k ≥ 1. Note
that the first output assignment is that of q1, and we do not consider ρ(q0). This
reflects the fact that the environment initiates the interaction. The computation
of T on w is then T (w) = i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω.

Note that each I/O-transducer T has an underlying DLW AT over the alpha-
bet 2I with a total transition relation. The language of the DLW is (2I)ω, reflect-
ing the receptiveness of T .

Markov Chains and Decision Processes. A Markov chain M = 〈S, P 〉 con-
sists of a finite state space S and a stochastic transition matrix P : S ×S → [0, 1].
That is, for all s ∈ S, we have

∑
s′∈S P (s, s′) = 1. Given an initial state s0, con-

sider the vector v0 in which v0(s0) = 1 and v0(s) = 0 for every s �= s0. The limit-
ing distribution of M is limn→∞

1
n

∑n
m=0 v0Pm. The limiting distribution satisfies

πP = π, and can be computed in polynomial time [18].



On High-Quality Synthesis 5

A Markov decision process (MDP) is M = 〈S, s0, (As)s∈S ,P, cost〉 where S
is a finite set of states, s0 ∈ S is an initial state, As is a finite set of actions that
are available in state s ∈ S. Let A =

⋃
s∈S As. Then, P : S × A × S � [0, 1] is

a partial transition probability function, defining for every two states s, s′ ∈ S
and action a ∈ As, the probability of moving from s to s′ when action a is taken.
Accordingly,

∑
s′∈S P(s, a, s′) = 1. Finally, cost : S × A � IN is a partial cost

function, assigning each state s and action a ∈ As, the cost of taking action a
in state s.

An MDP can be thought of as a game between a player who chooses the
actions and nature, which acts stochastically according to the transition proba-
bilities.

A policy for an MDP M is a function f : S∗ × S → A that outputs
an action given the history of the states, such that for s0, . . . , sn we have
f(s0, . . . , sn) ∈ Asn

. Policies correspond to the strategies of the player. The
cost of a policy f is the expected average cost of a random walk in M in which
the player proceeds according to f . Formally, for m ∈ IN and for a sequence
of states τ = s0, . . . , sm−1, we define Pf (τ) =

∏m−1
i=1 P(si−1, f(s0 · · · si−1), si).

Then, costm(f, τ) = 1
m

∑m
i=1 cost(si, f(s1 · · · si)) and we define the cost of f as

cost(f) = lim infm→∞
1
m

∑
τ :|τ |=m costm(f, τ) · Pf (τ).

A policy is memoryless if it depends only on the current state. We can
describe a memoryless policy by f : S → A. A memoryless policy f induces a
Markov chain Mf = 〈S, Pf 〉 with Pf (s, s′) = P(s, f(s), s′). Let π be the limiting
distribution of Mf . It is not hard to prove that cost(f) =

∑
s∈S πscost(s, f(s)).

Let cost(M) = inf{cost(f) : f is a policy for M}. That is, cost(M) is the
expected cost of a game played on M in which the player uses an optimal
policy.

3 Formalizing Quality: Multi-valued Specification
Formalisms

As opposed to traditional verification, where one considers the question of
whether a system satisfies, or not, a given specification, reasoning about quality
addresses the question of how well the system satisfies the specification. We dis-
tinguish between two approaches to specifying quality. The first, propositional
quality, extends the specification formalism with propositional quality operators,
which prioritize and weight different satisfaction possibilities. The second, tem-
poral quality, refines the “eventually” operators of the specification formalism
with discounting operators, whose semantics takes into an account the delay
incurred in their satisfaction.

In this section, based on [3], we introduce two quantitative extensions of
LTL, one by propositional quality operators and one by discounting operators.
In both logics, the satisfaction value of a specification is a number in [0, 1], which
describes the quality of the satisfaction. We demonstrate the usefulness of both
extensions and study the decidability and complexity of the decision and search
problems for them as well as for extensions of LTL that combine both types of
operators.
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3.1 Propositional Quality: The Temporal Logic LTL[F ]

The linear temporal logic LTL[F ] generalizes LTL by replacing the Boolean
operators of LTL by arbitrary functions over [0, 1]. The logic is actually a family
of logics, each parameterized by a set F of functions.

Let AP be a set of Boolean atomic propositions, and let F ⊆ {f : [0, 1]k →
[0, 1] | k ∈ IN} be a set of functions over [0, 1]. Note that the functions in F may
have different arities. An LTL[F ] formula is one of the following:

– True, False, or p, for p ∈ AP .
– f(ϕ1, ..., ϕk), Xϕ1, or ϕ1Uϕ2, for LTL[F ] formulas ϕ1, . . . , ϕk and f ∈ F .

We define the semantics of LTL[F ] formulas with respect to infinite compu-
tations over AP . The semantics maps a computation π and an LTL[F ] formula
ϕ to the satisfaction value of ϕ in π, denoted [[π, ϕ]], which is a value in [0, 1].
The satisfaction value is defined inductively as follows.1

– [[π, True]] = 1. – [[π, False]] = 0.

– [[π, p]] =

{
1 if p ∈ π0,

0 if p /∈ π0.
– [[π, f(ϕ1, ..., ϕk)]] = f([[π, ϕ1]], ..., [[π, ϕk]]).

– [[π,Xϕ]] = [[π1, ϕ]]. – [[π, ϕUψ]] = max
i≥0

{min{[[πi, ϕ2]], min
0≤j<i

[[πj , ϕ1]]}}.

Note that the satisfaction value of ϕ1Uϕ2 in π is obtained by going over
all suffixes of π, searching for a position i ≥ 0 that maximizes the minimum
between the satisfaction value of ϕ2 in πi (that is, the satisfaction value of the
eventuality) and all the satisfaction values of ϕ1 in πj for 0 ≤ j < i (that is, the
satisfaction value of ϕ1 until the eventuality is taken into account).

It is not hard to prove, by induction on the structure of the formula, that for
every computation π and formula ϕ, it holds that [[π, ϕ]] ∈ [0, 1], and that each
formula has only finitely many possible satisfaction values.

The logic LTL coincides with the logic LTL[F ] for F that corresponds to the
usual Boolean operators. For simplicity, we use these operators as abbreviation,
as described below. In addition, we introduce notations for some useful functions.
Let x, y ∈ [0, 1] be satisfaction values and λ ∈ [0, 1] be a parameter. Then,

• ¬x = 1 − x • x ∨ y = max {x, y} • �λx = λ · x
• x ∧ y = min {x, y} • x → y = max {1 − x, y} • x ⊕λ y = λ · x + (1 − λ) · y

To see that LTL indeed coincides with LTL[F ] for F = {¬,∨,∧}, note that
for this F , all formulas are mapped to {0, 1} in a way that agrees with the
semantics of LTL. In particular, observe that under these notations, we can write
the semantics of [[π, ϕ1Uϕ2]] as

∨
i≥0([[π

i, ϕ2]] ∧
∧

0≤j<i[[π
j , ϕ1]]), which coincides

with the semantics of LTL.

1 The observant reader may be concerned by our use of max and min where sup and
inf are in order. In [3] we prove that there are only finitely many satisfaction values
for a formula ϕ, thus the semantics is well defined.
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Example 1. Consider a scheduler that receives requests and generates grants
and consider the LTL[F ] formula ϕ = ϕ1 ∧ ϕ2, with ϕ1 = G(req → X(grant ⊕ 2

3

Xgrant)) and ϕ2 = ¬(� 3
4
G¬req). The satisfaction value of the formula ϕ1 is 1 if

every request is granted in the next cycle and the grant lasts for two consecutive
cycles. If the grant lasts for only one cycle, then the satisfaction value is reduced
to 2

3 if it is the cycle right after the request, and to 1
3 if it is the next one. In

addition, the conjunction with ϕ2 implies that if there are no requests, then the
satisfaction value is at most 1

4 . The example demonstrates how LTL[F ] can con-
veniently prioritize different scenarios, as well as embody vacuity considerations
in the formula. ��

3.2 Temporal Quality: The Logic LTL[D]

The linear temporal logic LTL[D] generalizes LTL by adding discounting tem-
poral operators. The logic is actually a family of logics, each parameterized by
a set D of discounting functions.

Let IN = {0, 1, ...}. A function η : IN → [0, 1] is a discounting function if
limi→∞ η(i) = 0, and η is strictly monotonic-decreasing. Examples for natural
discounting functions are η(i) = λi, for some λ ∈ (0, 1), and η(i) = 1

i+1 . Note
that the strict monotonicity implies that η(i) > 0 for all i ∈ IN.

Given a set of discounting functions D, we define the logic LTL[D] as follows.
The syntax of LTL[D] adds to LTL a discounting-Until operator ϕUηψ for every
function η ∈ D. Thus, a LTL[D] formula is one of the following:

– True, or p, for p ∈ AP .
– ¬ϕ1, ϕ1 ∨ ϕ2, Xϕ1, ϕ1Uϕ2, or ϕ1Uηϕ2, for LTL[D] formulas ϕ1 and ϕ2, and a

function η ∈ D.

Recall that a logic in the family LTL[F ] need not have functions that corre-
spond to the usual Boolean operators, in particular F need not contains negation.
On the other hand, the logic LTL[D] does include the Boolean operators ¬ and ∨.

The semantics of LTL[D] is defined with respect to a computation π ∈ (2AP )ω

and agrees with that of LTL[F ] on all shared operators. In particular ¬,∨, and X.
For U and Uη, the semantics is as follows.

– [[π, ϕUψ]] = sup
i≥0

{min{[[πi, ψ]], min
0≤j<i

{[[πj , ϕ]]}}}.

– [[π, ϕUηψ]] = sup
i≥0

{min{η(i)[[πi, ψ]], min
0≤j<i

{η(j)[[πj , ϕ]]}}}.

Note that the semantics for U actually coincides with that of LTL[F ], except that
here there may be infinitely many different satisfaction values in the different
suffixes, which requires the use of sup and inf instead of max and min. The
intuition of the discounted-until operator is that events that happen in the future
have a lower influence, and the rate by which this influence decreases depends
on the function η.2 For example, the satisfaction value of a formula ϕUηψ in
2 Observe that in our semantics the satisfaction value of future events tends to 0. One

may think of scenarios where future events are discounted towards another value in
[0, 1] (e.g., discounting towards 1

2
as ambivalence regarding the future).
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a computation π depends on the best (supremum) value that ψ can get along
the entire computation, while considering the discounted satisfaction of ψ at a
position i, as a result of multiplying it by η(i), and the same for the value of ϕ
in the prefix leading to the i-th position.

We add the standard abbreviations Fϕ ≡ TrueUϕ and Gϕ = ¬F¬ϕ, as
well as their quantitative counterparts: Fηϕ ≡ TrueUηϕ, and Gηϕ = ¬Fη¬ϕ.
Note that [[π,Fηϕ]] = supi≥0{min{η(i)[[πi, ϕ]],min0≤j<i{η(j) · 1}}}. Since η is
decreasing and i > j, the latter becomes supi≥0{η(i)[[πi, ϕ]]}. From this we also
get [[π,Gηϕ]] = infi≥0{1 − η(i)(1 − [[πi, ϕ]])}.

Example 2. Consider a lossy-disk: every moment in time there is a chance that
some bit would flip its value. Fixing flips is done by a global error-correcting
procedure. This procedure manipulates the entire content of the disk, such that
initially it causes more errors in the disk, but the longer it runs, the more bits
it fixes.

Let init and terminate be atomic propositions indicating when the error-
correcting procedure is initiated and terminated, respectively. The quality of
the disk (that is, a measure of the amount of correct bits) can be specified by
the formula ϕ = GFη(init ∧ ¬Fμterminate) for some appropriate discounting
functions η and μ. Intuitively, ϕ gets a higher satisfaction value the shorter the
waiting time is between initiations of the error-correcting procedure, and the
longer the procedure runs (that is, not terminated) in between these initiations.
Note that the “worst case” nature of LTL[D] fits here. For instance, running the
procedure for a very short time, even once, will cause many errors.

3.3 Combining Propositional and Temporal Quality

The logic LTL[F ,D] is parameterized by both propositional quality operators
and discounting functions and enables the specification of both propositional and
temporal quality. As studied in [3], some combinations lead to undecidability of
search and decision problems for the logic. We shall get back to this point in
Sect. 3.5.

3.4 The Search and Decision Questions

In the Boolean setting, an LTL formula maps computations to {True, False}.
In the quantitative setting, an LTL[F ,D] formula maps computations to [0, 1].
Classical decision problems, such as model checking, satisfiability, synthesis, and
equivalence, are accordingly generalized to their quantitative analogues, which
are search or optimization problems. Below we specify these questions with
respect to LTL[F ,D] and its fragments.

Satisfiability and Validity. In the Boolean setting, the satisfiability problem
asks, given an LTL formula ϕ, whether ϕ is satisfiable. In the quantitative setting,
it asks what the optimal way to satisfy ϕ is. Thus, the satisfiability problem gets
as input an LTL[F ] formula ϕ and returns sup{[[π, ϕ]] : π is a computation}.
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Dually, the validity problem returns, given an LTL[F ] formula ϕ, the value
inf{[[π, ϕ]] : π is a computation}, describing the least favorable way to satisfy
the specification.

Model Checking. In the Boolean setting of LTL, a system satisfies a formula
ϕ if all its computations satisfy the formula. Adopting this universal approach,
the satisfaction value of an LTL[F ,D] formula ϕ in a system K, denoted [[K, ϕ]],
is induced by the “worst” computation of K, namely the one in which ϕ has the
minimal satisfaction value. Formally, [[K, ϕ]] = inf{[[π, ϕ]] : π is a computation
of K}. Accordingly, in the model-checking problem, the goal is to find, given a
system K and an LTL[F ,D] formula ϕ, the satisfaction value [[K, ϕ]] =. In the
Boolean setting, good model-checking algorithms return a counterexample to
the satisfaction of the specification when it does not hold in the system. The
quantitative counterpart is to return a computation π of K that satisfies ϕ in
the least favorable way.

Realizability and Synthesis. In the Boolean setting, the realizability problem
gets as input an LTL formula over I ∪ O, for sets I and O of input and output
signals, and asks for the existence of an (I,O)-transducer all of whose compu-
tations satisfy the formula. In the quantitative analogue we seek the generation
of high-quality systems. Accordingly, given an LTL[F ,D] formula ϕ over I ∪ O,
the realizability problem is to find max{[[T , ϕ]] : T is an (I,O)-transducer}. The
synthesis problem is then to find a transducer that attains this value.

Decision Problems. The above questions are search and optimization prob-
lems. It is sometimes interesting to consider the decision problems they induce,
when referring to a specific threshold. For example, the model-checking decision-
problem is to decide, given a system K, a specification ϕ, and a threshold t,
whether [[K, ϕ]] ≥ t.

Expected Value. In the above definitions, we refer to the different computations
of the system universally, thus the satisfaction value is the infimum with respect
to all computations. This is similar to the universal approach taken in model
checking and synthesis, where all computations have to satisfy the specification.
Alternatively, one could follow a stochastic approach and refer to the expected
satisfaction value, assuming some distribution on the different computations
(in particular, in the setting of synthesis, assuming some distribution on the
sequences of input signals). See [10] for studies in this direction.

3.5 Solving the Questions

In the Boolean setting, the automata-theoretic approach has proven to be very
useful in reasoning about LTL specifications. The approach is based on trans-
lating LTL formulas to nondeterministic Büchi automata on infinite words [31].
In the quantitative approach, it seems natural to translate formulas to weighted
automata [13,24]. However, these extensively-studied models are complicated and
manyproblemsbecomeundecidable for them(e.g., theuniversalityproblem– [20]).
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In [3], we show that we can construct Boolean automata parameterized by satisfac-
tion values and that decision problems about formulas can be reduced to questions
about such automata. In the case of LTL[F ], we can use the approach taken in [16],
bound the number of possible satisfaction values of LTL[F ] formulas, and use this
bound in order to translate LTL[F ] formulas to Boolean automata. From a tech-
nical point of view, the challenge in LTL[F ] is to maintain the simplicity and the
complexity of the algorithms for LTL, even though the number of possible values
is exponential. Things are much more complicated with LTL[D], where one cannot
bound the number of possible values. Then, the solution goes via examining lasso-
shaped words, in which it is possible to find such a bound, and carefully proving
that restricting attention to such words is sound. In both cases, we assume that
the calculation of the functions in F and D is dominated by the other tasks of the
algorithms.

Theorem 1. Let ϕ be an LTL[F ] formula and P ⊆ [0, 1] be a predicate. There
exists an NBW Aϕ,P such that for every computation π ∈ (2AP )ω, it holds that
[[π, ϕ]] ∈ P iff Aϕ,P accepts π. Furthermore, Aϕ,P has at most 2(|ϕ|2) states.

Theorem 1 implies that the complexities of the questions coincide with these
known for LTL. In particular, in model checking, we solve the complement of the
problem, namely whether there exists a computation π of K such that [[π, ϕ]] < v,
which can be solved by taking the product of the NBW Aϕ,(0,v] from Theorem 1
with the system K and checking for emptiness on-the-fly. Also, since the various
algorithms suggested in the literature for solving the LTL realizability problem
[26] are based on a translation of specifications to automata, we can adopt them.

As mentioned above, the case of LTL[D] is more challenging. In particular, the
construction of the NBW goes through an intermediate alternating automaton.

Theorem 2. Given an LTL[D] formula ϕ and a threshold v ∈ [0, 1], there exists
an NBW Aϕ,v such that for every computation π the following hold:

1. If [[π, ϕ]] > v, then Aϕ,v accepts π.
2. If Aϕ,v accepts π and π is a lasso computation, then [[π, ϕ]] > v.

The size of Aϕ,v depends on the function in D. Essentially, the faster the
functions tend to 0, the smaller the state space is. In particular, it is shown
in [3] that for exponential-decay functions, the model checking problem can be
solved in PSPACE. As for synthesis, [3] provides a partial solution to the decision
problems induced from the realizability and synthesis questions, when referring
to a specific threshold. Consider an LTL[D] formula ϕ, and assume a partition
of the atomic propositions in ϕ to input and output signals. Given a threshold
v ≥ 0, we can use the NBW Aϕ,v in order to address the realizability and
synthesis problems, as stated in the following theorem.

Theorem 3. Consider an LTL[D] formula ϕ over I ∪O. If there exists an I/O-
transducer all of whose computations π satisfy [[π, ϕ]] > v, then we can generate
a finite-state I/O-transducer all of whose computations τ satisfy [[τ, ϕ]] ≥ v.
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As model checking is decidable for LTL[D], one may wish to push the limit
and extend the expressive power of the logic. In particular, of great interest is
the combination of discounting with propositional quality operators. Interest-
ingly, as it turns out, adding certain propositional quality operators renders the
model-checking problem undecidable, while other, simpler operators do not add
expressive power, and do not change the decidability status of the logic. Specif-
ically, it is shown in [3] that the fact the weighted average operator ⊕ is binary
enables its combination with discounting to specify the behavior of a two counter
machine, making the validity problem for LTL[D] augmented with ⊕ undecidable
for every D �= ∅. On the positive side, the construction of the automaton Aϕ,v from
Theorem 2 can be extended to handle the unary �λ operator, making the model
checking and synthesis problems decidable for its combination with LTL[D].

4 Sensing as a Quality Measure

In [4], we define regular sensing as a measure for the number of sensors that
need to be operated in order to recognize a regular language. Formally, we study
languages over an alphabet Σ = 2P , for a finite set P of signals. A letter σ ∈ Σ
corresponds to a truth assignment to the signals, and sensing a signal amounts
to knowing its assignment. Describing sets of letters in Σ, it is convenient to
use Boolean assertions over P . For example, when P = {a, b}, the assertion ¬b
stands for the set {∅, {a}} of two letters.

Consider a language L and a deterministic automaton A = 〈2P , Q, q0, δ, α〉
such that L(A) = L. We assume that δ is total. For a state q ∈ Q and a
signal p ∈ P , we say that p is sensed in q if there exists a set S ⊆ P such that
δ(q, S\{p}) �= δ(q, S∪{p}). Intuitively, a signal is sensed in q if knowing its value
may affect the destination of at least one transition from q. We use sensed(q)
to denote the set of signals sensed in q. The sensing cost of a state q ∈ Q is
scost(q) = |sensed(q)|.3

For a finite run r = q1, . . . , qm of A, we define the sensing cost of r, denoted
scost(r), as 1

m

∑m−1
i=0 scost(qi). That is, scost(r) is the average number of sensors

that A uses during r. Now, for a finite word w, we define the sensing cost of w
in A, denoted scostA(w), as the sensing cost of the run of A on w. Finally, the
sensing cost of A is the expected sensing cost of words of length that tends to
infinity, where we assume that the letters in Σ are uniformly distributed (our
results can be adjusted to a setting in which the letters come from a known
distribution). Thus, scost(A) = limm→∞ |Σ|−m

∑
w∈Σm scostA(w).

In the setting of synthesis, the signals in P are partitioned into sets I and O of
input and output signals. An I/O-transducer T senses only input signals, and we
define its sensing cost as the sensing cost of its underlying DLW AT . We define
the I/O-sensing cost of a realizable specification L ∈ (2I∪O)ω as the minimal

3 We note that, alternatively, one could define the sensing level of states, with
slevel(q) = scost(q)

|P | . Then, for all states q, we have that slevel(q) ∈ [0, 1]. All our

results hold also for this definition, simply by dividing the sensing cost by |P |.
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cost of an I/O-transducer that realizes L. Thus, scostI/O(A) = inf{scost(T ) : T
is an I/O-transducer that realizes L}.

The work in [5] focuses on safety specification, given by DLWs. The realiz-
ability problem for DLW specifications can be solved in polynomial time. Indeed,
given a DLW A, we can view A as a game between a system, which controls the
outputs, and an environment, which controls the inputs. We look for a strat-
egy for the system that never reaches an undefined transition. This amounts to
solving a turn-based safety game, which can be done in polynomial time. When
sensing is introduced, it is not enough for the system to win this game, as it
now has to win while minimizing the sensing cost. Intuitively, not sensing some
inputs introduces incomplete information to the game: once the system gives up
sensing, it may not know the state in which the game is and knows instead only
a set of states in which the game may be. In particular, unlike usual realizability,
a strategy that minimizes the sensing need not use the state space of the DLW.
We start with an example illustrating this.

Example 3. Consider the DLW A appearing in Fig. 1. The DLW is over I =
{p, q} and O = {a}. A realizing transducer over the structure of A (see T1 in
Fig. 2) senses p and q, responds with a if p ∧ q was sensed and responds with ¬a
if ¬p ∧ ¬q was sensed. In case other inputs are sensed, the response is arbitrary
(denoted ∗ in the figure). As T1 demonstrates, every transducer that is based on
the structure of A senses two input signals (both p and q) every second step,
thus its sensing cost is 1. As demonstrated by the transducer T2 in Fig. 3, it is
possible to realize A with sensing cost of 1

2 by only sensing p every second step.
Indeed, knowing the value of p is enough in order to determine the output. Note
that T2 may output sometimes a and sometimes ¬a after reading assignments
that causes A to reach q3. Such a behavior cannot be exhibited by a transducer
with the state-structure of A. ��

Solving games with incomplete information is typically done by some kind
of a subset-construction, which involves an exponential blow up. Unlike usual
games with incomplete information, here the strategy of the system should not
only take care of the realizability but also decides which input signals should be
sensed, where the goal is to obtain a minimally sensing transducer. In order to
address these multiple objectives, we first construct an MDP in which the pos-
sible policies are all winning for the system, and correspond to different choices
of sensing. An optimal policy in this MDP then induces a minimally-sensing
transducer.

Theorem 4. Consider a DLW A over 2I∪O. If A is realizable, then there exists
an MDP M in which an optimal strategy corresponds to a minimally-sensing
I/O-transducer that realizes A. The MDP M has size exponential in |A| and
can be computed in time exponential in |A|.

Consider an MDP M. It is well known that cost(M) can be attained
by a memoryless policy, which can be computed in polynomial time. Hence,
Theorem 4 implies the following.
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q0

q3

q1q2

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

True

a¬a

Fig. 1. The DLW A in Example 3.

∗

∗

a¬a

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

True

a¬a

Fig. 2. The transducer T1 for A.

∗ a¬a
p¬p

Fig. 3. The transducer T2 for A.

Theorem 5. Consider a realizable DLW A over 2I∪O. We can calculate
costI,O(A) and return a minimally-sensing I/O-transducer that realizes A in
time exponential in |A|.

Theorem 4 also implies the upper bound in the following two theorems. In
the second, we consider the corresponding decision problem. Given a DLW A
over 2I∪O and a threshold γ, the synthesis with bounded sensing problem in the
is to decide whether costI,O(A) < γ.

Theorem 6. A minimally-sensing transducer for a realizable DLW A has size
tightly exponential in |A|.

Theorem 7. The synthesis with bounded sensing problem for DLW specifica-
tions is EXPTIME-complete.

As for the lower bounds, they are based on the intuition that small sensing
may significantly (that is, exponentially) reduce the state space of the synthe-
sized transducers. To see why, consider for example a sequence A1, . . . ,Ak of
DLWs. It is well-known that while a witness to the nonemptiness of each DLW
Ai is linear in its size, a witness to the nonemptiness of the product of the DLWs
may be exponential. Assume that we want to synthesize a transducer that gets
as input an index 1 ≤ i ≤ k of a DLW and has to return a word in the language
of Ai. When the product of the DLWs is not empty, the transducer can give up
reading i and simply return a word in the intersection. A shortest such word,
however, may be exponentially longer than words that the transducer can return
if it does read i. Thus, giving up sensing i is possible, but required exponentially
larger transducers. Moreover, since the transducer apply this idea and give up
sensing i only when the intersection of the DLWs is nonempty, checking the
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emptiness of the intersection of a sequence of DLWs can be reduced to ques-
tions about the required sensing. When applied to tree automata, for which the
problem of deciding emptiness of the intersection is EXPTIME-hard, we get the
lower bound in Theorem7.
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Abstract. Sensitivity, block sensitivity and certificate complexity are
basic complexity measures of Boolean functions. The famous sensitiv-
ity conjecture claims that sensitivity is polynomially related to block
sensitivity. However, it has been notoriously hard to obtain even expo-
nential bounds. Since block sensitivity is known to be polynomially
related to certificate complexity, an equivalent of proving this conjec-
ture would be showing that the certificate complexity is polynomially
related to sensitivity. Previously, it has been shown that bs(f) ≤ C(f) ≤
2s(f)−1s(f) − (s(f) − 1). In this work, we give a better upper bound

of bs(f) ≤ C(f) ≤ max
(
2s(f)−1

(
s(f) − 1

3

)
, s(f)

)
using a recent theo-

rem limiting the structure of function graphs. We also examine relations
between these measures for functions with 1-sensitivity s1(f) = 2 and
arbitrary 0-sensitivity s0(f).

1 Introduction

Sensitivity and block sensitivity are two well-known combinatorial complexity
measures of Boolean functions. The sensitivity of a Boolean function, s(f), is just
the maximum number of variables xi in an input assignment x = (x1, . . . , xn)
with the property that changing xi changes the value of f . Block sensitivity,
bs(f), is a generalization of sensitivity to the case when we are allowed to change
disjoint blocks of variables.

Sensitivity and block sensitivity are related to the complexity of computing f
in several different computational models, from parallel random access machines
or PRAMs [7] to decision tree complexity, where block sensitivity has been useful
for showing the complexities of deterministic, probabilistic and quantum decision
trees are all polynomially related [5,6,13].

A very well-known open problem is the sensitivity vs. block sensitivity conjec-
ture which claims that the two quantities are polynomially related. This problem
is very simple to formulate (so simple that it can be assigned as an undergradu-
ate research project). At the same time, the conjecture appears quite difficult to
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solve. It has been known for over 25 years and the best upper and lower bounds
are still very far apart. We know that block sensitivity can be quadratically
larger than sensitivity [3,14,16] but the best upper bounds on block sensitivity
in terms of sensitivity are still exponential [1,11,15].

Block sensitivity is polynomially related to a number of other complexity
measures of Boolean functions: certificate complexity, polynomial degree and
the number of queries to compute f either deterministically, probabilistically or
quantumly [6]. This gives a number of equivalent formulations for the sensitivity
vs. block sensitivity conjecture: it is equivalent to asking whether sensitivity is
polynomially related to any one of these complexity measures.

Among the many equivalent forms of the conjecture, relating sensitiv-
ity to certificate complexity C(f) might be the combinatorially simplest one.
Certificate complexity being at least c simply means that there is an input
x = (x1, . . . , xn) that is not contained in an (n − (c − 1))-dimensional sub-
cube of the Boolean hypercube on which f is constant. Therefore, in this paper
we focus on the “sensitivity vs. certificate complexity” form of the conjecture.

1.1 Related Work

New Approaches to the Sensitivity Conjecture. Recently, there have been
multiple developments in various approaches to the sensitivity conjecture. Gilmer
et. al. interpret the problem through the cost of a novel communication game
[8]. Gopalan et. al. investigate the properties of Boolean functions with low
sensitivity [9]. Lin and Zhang give a bound on block sensitivity in terms of
sensitivity and the alternating number of the function [12].
Upper Bounds on bs(f) and C(f) in Terms of s(f). There has been a
substantial amount of work on reducing the gap between sensitivity and block
sensitivity measures. The first non-trivial upper bound is due to Simon [15]:

bs(f) ≤ 4s(f)s(f). (1)

Kenyon and Kutin [11] improved the bound to

bs(f) ≤ e√
2π

es(f)
√

s(f). (2)

Recently, Ambainis et. al. [1] showed an even better estimate:

bs(f) ≤ 2s(f)−1s(f) − (s(f) − 1). (3)

The essense of this result lies in the following relation between certificate
complexity and sensitivity:

C0(f) ≤ 2s1(f)−1s0(f) − (s1(f) − 1). (4)

Note that any bound for C0(f) also holds for C1(f) symmetrically (in this case,
C1(f) ≤ 2s0(f)−1s1(f) − (s0(f) − 1)).1

1 Here, C0 (C1) and s0 (s1) stand for certificate complexity and sensitivity, restricted
to inputs x with f(x) = 0 (f(x) = 1).
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1.2 Our Results

In this work, we give improved upper bounds for the “sensitivity vs. certificate
complexity” problem. Our main technical result is

Theorem 1. Let f be a Boolean function which is not constant. If s1(f) = 1,
then C0(f) = s0(f). If s1(f) > 1, then

C0(f) ≤ 2s1(f)−1

(
s0(f) − 1

3

)
. (5)

A similar bound for C1(f) follows by symmetry. This implies a new upper
bound on block sensitivity and certificate complexity in terms of sensitivity:

Corollary 1. Let f be a Boolean function. Then

bs(f) ≤ C(f) ≤ max
(

2s(f)−1

(
s(f) − 1

3

)
, s(f)

)
. (6)

On the other hand, the function of Ambainis and Sun [3] gives the separation
of

C0(f) =
(

2
3

+ o(1)
)

s0(f)s1(f) (7)

for arbitrary values of s0(f) and s1(f). For s1(f) = 2, we show an example of f
that achieves

C0(f) =
⌊

3
2
s0(f)

⌋
=

⌊
3
4
s0(f)s1(f)

⌋
. (8)

We also study the relation between C0(f) and s0(f) for functions with low
s1(f), as we think these cases may provide insights into the more general case.

If s1(f) = 1, then C0(f) = s0(f) follows from (4). So, the easiest non-trivial
case is s1(f) = 2, for which (4) becomes C0(f) ≤ 2s0(f) − 1.

For s1(f) = 2, we prove a slightly better upper bound of C0(f) ≤ 9
5s0(f).

We also show that C0(f) ≤ 3
2s0(f) for s1(f) = 2 and s0(f) ≤ 6 and thus our

example (8) is optimal in this case. We conjecture that C0(f) ≤ 3
2s0(f) is a tight

upper bound for s1(f) = 2.
Our results rely on a recent “gap theorem” by Ambainis and Vihrovs [4]

which says that any sensitivity-s induced subgraph G of the Boolean hypercube
must be either of size 2n−s or of size at least 3

22n−s and, in the first case, G
can only be a subcube obtained by fixing s variables. Using this theorem allows
refining earlier results which used Simon’s lemma [15] – any sensitivity-s induced
subgraph G must be of size at least 2n−s – but did not use any more detailed
information about the structure of such G.

We think that further research in this direction may uncover more interesting
facts about the structure of low-sensitivity subsets of the Boolean hypercube,
with implications for the “sensitivity vs. certificate complexity” conjecture.
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2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function on n variables. The i-th variable
of an input x is denoted by xi. For an index set P ⊆ [n], let xP be the input
obtained from an input x by flipping every bit xi, i ∈ P .

We briefly define the notions of sensitivity, block sensitivity and certificate
complexity. For more information on them and their relations to other com-
plexity measures (such as deterministic, probabilistic and quantum decision tree
complexities), we refer the reader to the surveys by Buhrman and de Wolf [6]
and Hatami et al. [10].

Definition 1. The sensitivity complexity s(f, x) of f on an input x is defined as

s(f, x) =
∣∣∣
{

i
∣∣∣ f(x) �= f

(
x{i}

)}∣∣∣ . (9)

The b-sensitivity sb(f) of f , where b ∈ {0, 1}, is defined as max(s(f, x) | x ∈
{0, 1}n, f(x) = b). The sensitivity s(f) of f is defined as max(s0(f), s1(f)).

We say that a vertex x has full sensitivity if s(f, x) = sf(x)(f).

Definition 2. The block sensitivity bs(f, x) of f on an input x is defined as the
maximum number t such that there are t pairwise disjoint subsets B1, . . . , Bt of
[n] for which f(x) �= f

(
xBi

)
. We call each Bi a block. The b-block sensitivity

bsb(f) of f , where b ∈ {0, 1}, is defined as max(bs(f, x) | x ∈ {0, 1}n, f(x) = b).
The block sensitivity bs(f) of f is defined as max(bs0(f), bs1(f)).

Definition 3. A certificate c of f on an input x is defined as a partial assign-
ment c : P → {0, 1}, P ⊆ [n] of x such that f is constant on this restriction. We
call |P | the length of c. If f is always 0 on this restriction, the certificate is a
0-certificate. If f is always 1, the certificate is a 1-certificate.

Definition 4. The certificate complexity C(f, x) of f on an input x is defined
as the minimum length of a certificate that x satisfies. The b-certificate complex-
ity Cb(f) of f , where b ∈ {0, 1}, is defined as max(C(f, x) | x ∈ {0, 1}n, f(x) =
b). The certificate complexity C(f) of f is defined as max(C0(f), C1(f)).

In this work we look at {0, 1}n as a set of vertices for a graph Qn (called
the n-dimensional Boolean cube or hypercube) in which we have an edge (x, y)
whenever x = (x1, . . . , xn) and y = (y1, . . . , yn) differ in exactly one position.
We look at subsets S ⊆ {0, 1}n as subgraphs (induced by the subset of vertices
S) in this graph.

Definition 5. Let c be a partial assignment c : P → {0, 1}, P ⊆ [n]. An (n −
|P |)-dimensional subcube of Qn is a subgraph G induced on a vertex set {x | ∀i ∈
P (xi = c(i))}. It is isomorphic to Qn−|P |. We call the value dim(G) = n − |P |
the dimension and the value |P | the co-dimension of G.
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For example, a subgraph induced on the set {x | x1 = 0, x2 = 1} is a (n− 2)-
dimensional subcube. Note that each certificate of length l corresponds to a
subcube of Qn with co-dimension l.

Definition 6. Let G be a subcube defined by a partial assignment c : P →
{0, 1}, P ⊆ [n]. Let c′ : P → {0, 1} where c′(i) �= c(i) for exactly one i ∈ P .
Then we call the subcube defined by c′ a neighbour subcube of G.

For example, the sets {x | x1 = 0, x2 = 0} and {x | x1 = 0, x2 = 1} induce
two neighbouring subcubes, since their union is a subcube induced on the set
{x | x1 = 0}.

We also extend the notion of Hamming distance to the subcubes of Qn:

Definition 7. Let G and H be two subcubes of Qn. Then the Hamming distance
between G and H is defined as d(G,H) = minx∈G

y∈H
d(x, y), where d(x, y) is the

Hamming distance between x and y.

Definition 8. Let G and H be induced subgraphs of Qn. By G ∩ H denote the
intersection of G and H that is the graph induced on V (G) ∩ V (H). By G ∪ H
denote the union of G and H that is the graph induced on V (G)∪V (H). By G\H
denote the complement of G in H that is the graph induced by V (G) \ V (H).

Definition 9. Let G and H be induced subgraphs of Qn. By R(G,H) denote
the relative size of G in H:

R(G,H) =
|V (G ∩ H)|

|V (H)| . (10)

We extend the notion of sensitivity to the induced subgraphs of Qn:

Definition 10. Let G be a non-empty induced subgraph of Qn. The sensitivity
s(G,Qn, x) of a vertex x ∈ Qn is defined as

∣∣
∣
{

i
∣∣
∣ x{i} /∈ G

}∣∣
∣, if x ∈ G, and

∣
∣∣
{

i
∣
∣∣ x{i} ∈ G

}∣
∣∣, if x /∈ G. Then the sensitivity of G is defined as s(G,Qn) =

max(s(G,Qn, x) | x ∈ G).

Our results rely on the following generalization of Simon’s lemma [15], proved
by Ambainis and Vihrovs [4]:

Theorem 2. Let G be a non-empty induced subgraph of Qn with sensitivity at
most s. Then either R(G,Qn) = 1

2s and G is an (n − s)-dimensional subcube or
R(G,Qn) ≥ 3

2 · 1
2s .

3 Upper Bound on Certificate Complexity
in Terms of Sensitivity

In this section we prove Corollary 1. In fact, we prove a slightly more specific
result.
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Theorem 1. Let f be a Boolean function which is not constant. If s1(f) = 1,
then C0(f) = s0(f). If s1(f) > 1, then

C0(f) ≤ 2s1(f)−1

(
s0(f) − 1

3

)
. (11)

Note that a similar bound for C1(f) follows by symmetry. For the proof, we
require the following lemma.

Lemma 1. Let H1, H2, . . ., Hk be distinct subcubes of Qn such that the Ham-
ming distance between any two of them is at least 2. Take

T =
k⋃

i=1

Hi, T ′ =
{

x
∣∣∣ ∃i

(
x{i} ∈ T

)}
\ T. (12)

If T �= Qn, then |T ′| ≥ |T |.

Proof. If k = 1, then the co-dimension of H1 is at least 1. Hence H1 has a
neighbour cube, so |T ′| ≥ |T | = |H1|.

Assume k ≥ 2. Then n ≥ 2, since there must be at least 2 bit positions for
cubes to differ in. We use an induction on n.

Base case. n = 2. Then we must have that H1 and H2 are two opposite vertices.
Then the other two vertices are in T ′, hence |T ′| = |T | = 2.

Inductive step. Divide Qn into two adjacent (n− 1)-dimensional subcubes Q0
n

and Q1
n by the value of x1. We will prove that the conditions of the lemma hold

for each T ∩Qb
n, b ∈ {0, 1}. Let Hb

u = Hu ∩Qb
n. Assume Hb

u �= ∅ for some u ∈ [k].
Then either x1 = b or x1 is not fixed in Hu. Thus, if there are two non-empty
subcubes Hb

u and Hb
v , they differ in the same bit positions as Hu and Hv. Thus

the Hamming distance between Hb
u and Hb

v is also at least 2. On the other hand,
Qb

n �⊆ T , since then k would be at most 1.
Let Tb = T ∩ Qb

n and T ′
b =

{
x

∣∣∣ x ∈ Qb
n,∃i

(
x{i} ∈ Tb

)} \ Tb. Then by induc-
tion we have that |T ′

b| ≥ |Tb|. On the other hand, T0 ∪ T1 = T and T ′
0 ∪ T ′

1 ⊆ T ′.
Thus

|T ′| ≥ |T ′
0| + |T ′

1| ≥ |T0| + |T1| = |T |. (13)

�

. . .

S0

S1 S2 Sm

Fig. 1. A schematic representation of the 0-certificate S0 and its neighbour cubes
S1, S2, . . . , Sm. The shaded parts represent the vertices in the subcubes for which the
value of f is 1.
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Proof of Theorem 1. Let z be a vertex such that f(z) = 0 and C(f, z) = C0(f).
Pick a 0-certificate S0 of length C0(f) and z ∈ S0. It has m = C0(f) neighbour
subcubes which we denote by S1, S2, . . . , Sm (Fig. 1).

We work with the graph G induced on the vertex set {x | f(x) = 1}. Since
S0 is a minimum certificate for z, Si ∩ G �= ∅ for i ∈ [m].

As S0 is a 0-certificate, it gives 1 sensitive bit to each vertex in G ∩ Si. Then
s(G ∩ Si, Si) ≤ s1(f) − 1.

Suppose s1(f) = 1, then for each i ∈ [m] we must have that G ∩ Si equals to
the whole Si. But then each vertex in S0 is sensitive to its neighbour in G ∩ Si,
so m ≤ s0(f). Hence C0(f) = s0(f).

Otherwise s1(f) ≥ 2. By Theorem 2, either R(G,Si) = 1
2s1(f)−1 or R(G,Si) ≥

3
2s1(f) for each i ∈ [m]. We call the cube Si either light or heavy respectively. We
denote the number of light cubes by l, then the number of heavy cubes is m − l.
We can assume that the light cubes are S1, . . . , Sl.

Let the average sensitivity of the inputs in S0 be as(S0) = 1
|S0|

∑
x∈S0

s0(x).
Since each vertex of G in any Si gives sensitivity 1 to some vertex in S0,∑m

i=1 R(G,Si) ≤ as(S0). Clearly as(S0) ≤ s0(f). We have that

l
1

2s1(f)−1
+ (m − l)

3
2s1(f)

≤ as(S0) ≤ s0(f) (14)

m
3

2s1(f)
− l

1
2s1(f)

≤ as(S0) ≤ s0(f). (15)

Then we examine two possible cases.

Case 1. l ≤ (s0(f) − 1)2s1(f)−1. Then we have

m
3

2s1(f)
− (s0(f) − 1)

2s1(f)−1

2s1(f)
≤ as(S0) ≤ s0(f) (16)

m
3

2s1(f)
≤ s0(f) +

1
2
(s0(f) − 1) (17)

m
3

2s1(f)
≤ 3

2
s0(f) − 1

2
(18)

m ≤ 2s1(f)−1

(
s0(f) − 1

3

)
. (19)

Case 2. l = (s0(f) − 1)2s1(f)−1 + δ for some positive integer δ. Since s1(f) ≥ 2,
the number of light cubes is at least 2(s0(f) − 1) + δ, which in turn is at least
s0(f).

Let F = {F | F ⊆ [l], |F | = s0(f)}. Denote its elements by F1, F2, . . . , F|F|.
We examine H1,H2, . . . ,H|F| – subgraphs of S0, where Hi is the set of vertices
whose neighbours in Sj are in G for each j ∈ Fi. By Theorem 2, G ∩ Si are
subcubes for i ≤ l. Then so are the intersections of their neighbours in S0,
including each Hi.

Let Ni,j be the common neighbour cube of Si and Sj that is not S0. Suppose
v ∈ S0. Then by vi denote the neighbour of v in Si. Let vi,j be the common
neighbour of vi and vj that is in Ni,j .

Next we will show the following:
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Proposition 1. The Hamming distance between any two subcubes Hi and Hj,
i �= j is at least 2.

Proof. Assume there is an edge (u, v) such that u ∈ Hi and v ∈ Hj . Then uk ∈ G
for each k ∈ Fi. Since i �= j, there is an index t ∈ Fj such that t /∈ Fi. The vertex
u is sensitive to Sk for each k ∈ Fi and, since |Fi| = s0(f), has full sensitivity.
Thus ut /∈ G. On the other hand, since each Sk is light, uk has full 1-sensitivity,
hence uk,t ∈ G for all k ∈ Fi. This gives full 0-sensitivity to ut. Hence vt /∈ G, a
contradiction, since v ∈ Hj and t ∈ Fj .

Thus there are no such edges and the Hamming distance between Hi and
Hj is not equal to 1. That leaves two possibilities: either the Hamming distance
between Hi and Hj is at least 2 (in which case we are done), or both Hi and
Hj are equal to a single vertex v, which is not possible, as then v would have a
0-sensitivity of at least s0(f) + 1.

Let T =
⋃|F|

i=1 Hi. We will prove that T �= S0. If each of Hi is empty, then
T = ∅ and T �= S0. Otherwise there is a non-empty Hj . As s1(f) ≥ 2, by
Theorem 2 it follows that dim(G ∩ Sk) = dim(Sk) − s1(f) + 1 ≤ dim(S0) − 1 for
each k ∈ [l]. Thus dim(Hj) ≤ dim(S0)−1, and Hj �= S0. Then it has a neighbour
subcube H ′

j in S0. But since the Hamming distance between Hj and any other
Hi is at least 2, we have that H ′

j ∩ Hi = ∅, thus T is not equal to S0.
Therefore, H1,H2, . . . , H|F| satisfy all the conditions of Lemma1. Let T ′ be

the set of vertices in S0 \T with a neighbour in T . Then, by Lemma 1, |T ′| ≥ |T |
or, equivalently, R(T ′, S0) ≥ R(T, S0).

Then note that R(T ′, S0) ≥ R(T, S0) ≥ δ
2s1(f)−1 , since R(G,Si) = 1

2s1(f)−1

for all i ∈ [l], there are a total of (s0(f) − 1)2s1(f)−1 + δ light cubes and each
vertex in S0 can have at most s0(f) neighbours in G.

Let Sh be a heavy cube, and i ∈ [|F|]. The neighbours of Hi in Sh must not
be in G, or the corresponding vertex in Hi would have sensitivity s0(f) + 1.

Let k ∈ Fi. As Sk is light, all the vertices in G ∩ Sk are fully sensitive,
therefore all their neighbours in Nk,h are in G. Therefore all the neighbours of
Hi in Sh already have full 0-sensitivity. Then all their neighbours must also not
be in G.

This means that vertices in T ′ can only have neighbours in G in light cubes.
But they can have at most s0(f)−1 such neighbours each, otherwise they would
be in T , not in T ′. As R(T ′, S0) ≥ δ

2s1(f)−1 , the average sensitivity of vertices in
S0 is at most

as(S0) ≤ s0(f)R(S0 \ T ′, S0) + (s0(f) − 1)R(T ′, S0) (20)

≤ s0(f)
(

1 − δ

2s1(f)−1

)
+ (s0(f) − 1)

δ

2s1(f)−1
(21)

= s0(f) − δ

2s1(f)−1
. (22)

Then by inequality (15) we have

m
3

2s1(f)
−

(
(s0(f) − 1)2s1(f)−1 + δ

) 1
2s1(f)

≤ s0(f) − δ

2s1(f)−1
. (23)
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Rearranging the terms, we get

m
3

2s1(f)
≤

(
(s0(f) − 1)2s1(f)−1 + δ

) 1
2s1(f)

+ s0(f) − δ

2s1(f)−1
(24)

m
3

2s1(f)
≤ s0(f) +

1
2
(s0(f) − 1) − δ

2s1(f)
(25)

m
3

2s1(f)
≤ 3

2
s0(f) − 1

2
− δ

2s1(f)
(26)

m ≤ 2s1(f)−1

(
s0(f) − 1

3

)
− δ

3
. (27)

�
Theorem 1 immediately implies Corollary 1:

Proof of Corollary 1. If f is constant, then C(f) = s(f) = 0 and the statement
is true. Otherwise by Theorem 1

C(f) = max(C0(f), C1(f)) (28)

≤ max
b∈{0,1}

(
max

(
2s1−b(f)−1

(
sb(f) − 1

3

)
, sb(f)

))
(29)

≤ max
(

2s(f)−1

(
s(f) − 1

3

)
, s(f)

)
(30)

On the other hand, bs(f) ≤ C(f) is a well-known fact. �

4 Relation Between C0(f) and s0(f) for s1(f) = 2

Ambainis and Sun exhibited a class of functions that achieves the best known
separation between sensitivity and block sensitivity, which is quadratic in terms
of s(f) [3]. This function also produces the best known separation between 0-
certificate complexity and 0/1-sensitivity:

Theorem 3. For arbitrary s0(f) and s1(f), there exists a function f such that

C0(f) =
(

2
3

+ o(1)
)

s0(f)s1(f). (31)

Thus it is possible to achieve a quadratic gap between the two measures. As
bs0(f) ≤ C0(f), it would be tempting to conjecture that quadratic separation is
the largest possible. Therefore we are interested both in improved upper bounds
and in functions that achieve quadratic separation with a larger constant factor.

In this section, we examine how C0(f) and s0(f) relate to each other for
small s1(f). If s1(f) = 1, it follows by Theorem 1 that C0(f) = s0(f). Therefore
we consider the case s1(f) = 2.

Here we are able to construct a separation that is better than (31) by a
constant factor.
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Theorem 4. There is a function f with s1(f) = 2 and arbitrary s0(f) such that

C0(f) =
⌊

3
4
s0(f)s1(f)

⌋
=

⌊
3
2
s0(f)

⌋
. (32)

Proof. Consider the function that takes value 1 iff its 4 input bits are in either
ascending or descending sorted order. Formally,

Sort4(x) = 1 ⇔ (x1 ≤ x2 ≤ x3 ≤ x4) ∨ (x1 ≥ x2 ≥ x3 ≥ x4). (33)

One easily sees that C0(Sort4) = 3, s0(Sort4) = 2 and s1(Sort4) = 2.
Denote the 2-bit logical AND function by And2. We have C0(And2) =

s0(And2) = 1 and s1(And2) = 2.

To construct the examples for larger s0(f) values, we use the following fact (it
is easy to show, and a similar lemma was proved in [3]):

Fact 1. Let f and g be Boolean functions. By composing them with OR to f ∨g
we get

C0(f ∨ g) = C0(f) + C0(g), (34)
s0(f ∨ g) = s0(f) + s0(g), (35)
s1(f ∨ g) = max(s1(f), s1(g)). (36)

Suppose we need a function with k = s0(f). Assume k is even. Then by Fact 1

for g =
∨ k

2
i=1 Sort4 we have C0(g) = 3

2k. If k is odd, consider the function g =(∨ k−1
2

i=1 Sort4

)
∨ And2. Then by Fact 1 we have C0(g) = 3 · k−1

2 + 1 =
⌊
3
2k

⌋
. �

A curious fact is that both examples of (31) and Theorem 4 are obtained by
composing some primitives using OR. The same fact holds for the best examples
of separation between bs(f) and s(f) that preceded the [3] construction [14,16].

We are also able to prove a slightly better upper bound in case s1(f) = 2.

Theorem 5. Let f be a Boolean function with s1(f) = 2. Then

C0(f) ≤ 9
5
s0(f). (37)

Proof. Let z be a vertex such that f(z) = 0 and C(f, z) = C0(f). Pick a 0-
certificate S0 of length m = C0(f) and z ∈ S0. It has m neighbour subcubes
which we denote by S1, S2, . . ., Sm. Let n′ = n − m = dim(Si) for each Si.

We work with a graph G induced on a vertex set {x | f(x) = 1}. Let Gi =
G ∩ Si. As S0 is a minimal certificate for z, we have Gi �= ∅ for each i ∈ [m].
Since any v ∈ Gi is sensitive to S0, we have s(Gi, Si) ≤ 1. Thus by Theorem 2
either Gi is an (n′ − 1)-subcube of Si with R(Gi : Si) = 1

2 or R(Gi : Si) ≥ 3
4 .

We call Si light or heavy, respectively.
Let Ni,j be the common neighbour cube of Si, Sj that is not S0. Let Gi,j =

G ∩ Ni,j . Suppose v ∈ S0. Let vi be the neighbour of v in Si. Let vi,j be the
neighbour of vi and vj in Ni,j .
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Let Si, Sj be light. By G0
i , G

0
j denote the neighbour cubes of Gi, Gj in S0. We

call {Si, Sj} a pair, iff G0
i ∪G0

j = S0. In other words, a pair is defined by a single
dimension. Also we have either zi /∈ G or zj /∈ G: we call the corresponding cube
the representative of this pair.

Proposition 2. Let P be a set of mutually disjoint pairs of the neighbour cubes
of S0. Then there exists a 0-certificate S′

0 such that z ∈ S′
0, dim(S′

0) = dim(S0)
and S′

0 has at least |P| heavy neighbour cubes.

Proof. Let R be a set of mutually disjoint pairs of the neighbour cubes of S0.
W.l.o.g. let S1, . . . , S|R| be the representatives of R. Let Fi be the neighbour
cube of Si \ G in S0. Let BR =

⋂|R|
i=1 Fi. Suppose S0 + x is a coset of S0 and

xt = 0 if the t-th dimension is not fixed in S0: let BR(S0 + x) be BR + x.
Pick R ⊆ P with the largest size, such that for each two representatives Si,

Sj of R, BR(Ni,j) is a 0-certificate.
Next we prove that the subcube S′

0 spanned by BR, BR(S1), . . . , BR
(
S|R|

)

is a 0-certificate. It corresponds to an |R|-dimensional hypercube Q|R| where
BR(S0 + x) corresponds to a single vertex for each coset S0 + x of S0.

Let T ⊆ Q|R| be the graph induced on the set {v | v corresponds to BR(S0+
x), BR(S0+x) is not a 0-certificate}. Then we have s(T,Q|R|) ≤ 2. Suppose BR
corresponds to 0|R|. Let Ld be the set of Q|R| vertices that are at distance d

from 0|R|. We prove by induction that Ld ∩ T = ∅ for each d.

Proof. Base case. d ≤ 2. The required holds since all BR, BR(Si), BR(Ni,j) are
0-certificates.

Inductive step. d ≥ 3. Examine v ∈ Ld. As v has d neighbours in Ld−1,
Ld−1 ∩ T = ∅ and s(T,Q|R|) ≤ 2, we have that v /∈ T .

Let k be the number of distinct dimensions that define the pairs of R, then
k ≤ |R|. Hence dim(S′

0) = |R| + dim(BR) = |R| + (dim(S0) − k) ≥ dim(S0).
But S0 is a minimal 0-certificate for z, therefore dim(S′

0) = dim(S0).
Note that a light neighbour Si of S0 is separated into a 0-certificate and a 1-

certificate by a single dimension, hence we have s(G,Si, v) = 1 for every v ∈ Si.
As Si neighbours S0, every vertex in its 1-certificate is fully sensitive. The same
holds for any light neighbour S′

i of S′
0.

Now we will prove that each pair in P provides a heavy neighbour for S′
0.

Let {Sa, Sb} ∈ P, where Sa is the representative. We distinguish two cases:

– BR(Sb) is a 1-certificate. Since Sb is light, it has full 1-sensitivity. Therefore,
v ∈ G for all v ∈ BR(Ni,b), for each i ∈ [|R|]. Let S′

b be the neighbour of
S′
0 that contains BR(Sb) as a subcube. Then for each v ∈ BR(Sb) we have

s(G,S′
b, v) = 0. Hence S′

b is heavy.
– Otherwise, {Sa, Sb} is defined by a different dimension than any of the pairs

in R. Let R′ = R ∪ {Sa, Sb}. Examine the subcube BR′ . By definition of R,
there is a representative Si of R such that BR′(Ni,a) is not a 0-certificate. Let
S′

a be the neighbour of S′
0 that contains BR(Sa) as a subcube. Then there is

a vertex v ∈ BR′(Sa) such that s(G,S′
a, v) ≥ 2. Hence S′

a is heavy. �
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Let P be the largest set of mutually disjoint pairs of the neighbour cubes of
S0. Let l and h = m − l be the number of light and heavy neighbours of S0,
respectively. Each pair in P gives one neighbour in G to each vertex in S0. Now
examine the remaining l−2|P| light cubes. As they are not in P, no two of them
form a pair. Hence there is a vertex v ∈ S0 that is sensitive to each of them.
Then s0(f) ≥ s0(f, v) ≥ |P| + (l − 2|P|) = l − |P|. Therefore |P| ≥ l − s0(f).

Let q be such that m = qs0(f). Then there are qs0(f) − l heavy neighbours
of S0. On the other hand, by Proposition 2, there exists a minimal certificate S′

0

of z with at least l − s0(f) heavy neighbours. Then z has a minimal certificate
with at least (qs0(f)−l)+(l−s0(f))

2 = q−1
2 · s0(f) heavy neighbour cubes.

W.l.o.g. let S0 be this certificate. Then l = qs0(f) − h ≤ (q − q−1
2 )s0(f) =

q+1
2 · s0(f). As each v ∈ Gi for i ∈ [m] gives sensitivity 1 to its neighbour in S0,

l
1
2

+ h
3
4

≤ s0(f). (38)

Since the constant factor at l is less than at h, we have

q + 1
2

· s0(f) · 1
2

+
q − 1

2
· s0(f) · 3

4
≤ s0(f) (39)

By dividing both sides by s0(f) and simplifying terms, we get q ≤ 9
5 . �

This result shows that the bound of Corollary 1 can be improved. However,
it is still not tight. For some special cases, through extensive casework we can
also prove the following results:

Theorem 6. Let f be a Boolean function with s1(f) = 2 and s0(f) ≥ 3. Then

C0(f) ≤ 2s0(f) − 2. (40)

Theorem 7. Let f be a Boolean function with s1(f) = 2 and s0(f) ≥ 5. Then

C0(f) ≤ 2s0(f) − 3. (41)

The proofs of these theorems are available online in the full version of the
paper [2].

These theorems imply that for s1(f) = 2, s0(f) ≤ 6 we have C0(f) ≤ 3
2s0(f),

which is the same separation as achieved by the example of Theorem 4. This leads
us to the following conjecture:

Conjecture 1. Let f be a Boolean function with s1(f) = 2. Then

C0(f) ≤ 3
2
s0(f). (42)

We consider s1(f) = 2 to be the simplest case where we don’t know the actual
tight upper bound on C0(f) in terms of s0(f), s1(f). Proving Conjecture 1 may
provide insights into relations between C(f) and s(f) for the general case.
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Abstract. We consider decidability problems associated with Engel’s
identity ([· · · [[x, y], y], . . . , y] = 1 for a long enough commutator
sequence) in groups generated by an automaton.

We give a partial algorithm that decides, given x, y, whether an
Engel identity is satisfied. It succeeds, importantly, in proving that Grig-
orchuk’s 2-group is not Engel.

We consider next the problem of recognizing Engel elements, namely
elements y such that the map x �→ [x, y] attracts to {1}. Although this
problem seems intractable in general, we prove that it is decidable for Grig-
orchuk’s group: Engel elements are precisely those of order at most 2.

Our computations were implemented using the package Fr within the
computer algebra system Gap.

1 Introduction

A law in a group G is a word w = w(x1, x2, . . . , xn) such that w(g1, . . . , gn) = 1,
the identity element, for all g1, . . . , gn ∈ G; for example, commutative groups
satisfy the law [x1, x2] = x−1

1 x−1
2 x1x2. A variety of groups is a maximal class of

groups satisfying a given law; e.g. the variety of commutative groups (satisfying
[x1, x2]) or of groups of exponent p (satisfying xp

1); see [22,23].
Consider now a sequence W = (w0, w1, . . . ) of words in n letters. Say that

(g1, . . . , gn) almost satisfies W if wi(g1, . . . , gn) = 1 for all i large enough, and say
that G almost satisfies W if all n-tuples from G almost satisfy W . For example,
G almost satisfies (x1, . . . , x

i!
1 , . . . ) if and only if G is a torsion group.

b d

c

a

(2, 2)(1, 1)
(2, 2)

(1, 1)

(2, 2)

(1, 1)

(1, 2), (2, 1)

(1, 1)

(2, 2)

Fig. 1. The Grigorchuk automaton

The problem of deciding algorithmi-
cally whether a group belongs to a given
variety has received much attention (see
e.g. [17] and references therein); we con-
sider here the harder problems of deter-
mining whether a group (respectively a
tuple) almost satisfies a given sequence.
This has, up to now, been investigated
mainly for the torsion sequence above [12].
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The first Grigorchuk group G0 is an automaton group which appears promi-
nently in group theory, for example as a finitely generated infinite torsion
group [14] and as a group of intermediate word growth [15]; see Sect. 2.1. It is
the group of automatic transformations of {1, 2}∞ generated by the five states
of the automaton from Fig. 1, with input and output written as (in, out).

The Engel law is

Ec = Ec(x, y) = [x, y, . . . , y] = [· · · [[x, y], y], . . . , y]

with c copies of ‘y’; so E0(x, y) = x, E1(x, y) = [x, y] and Ec(x, y) =
[Ec−1(x, y), y]. See below for a motivation. Let us call a group (respectively
a pair of elements) Engel if it almost satisfies E = (E0, E1, . . . ). Furthermore,
let us call h ∈ G an Engel element if (g, h) is Engel for all g ∈ G.

A concrete consequence of our investigations is:

Theorem 1. The first Grigorchuk group G0 is not Engel. Furthermore, an ele-
ment h ∈ G0 is Engel if and only if h2 = 1.

We prove a similar statement for another prominent example of automaton
group, the Gupta-Sidki group, see Theorem 2.

Theorem 1 follows from a partial algorithm, giving a criterion for an element
y to be Engel. This algorithm proves, in fact, that the element ad in the Grig-
orchuk group is not Engel. We consider the following restricted situation, which
is general as far as the Engel property is concerned, see Sect. 2: an automaton
group is a group G endowed with extra data, in particular with a family of self-
maps called states, indexed by a set X and written g �→ g@x for x ∈ X; it is
contracting for the word metric ‖ · ‖ on G if there are constants η < 1 and C
such that ‖g@x‖ ≤ η‖g‖ + C holds for all g ∈ G and all x ∈ X. Our aim is to
solve the following decision problems in an automaton group G:

Engel(g, h) Given g, h ∈ G, does there exist c ∈ N with Ec(g, h)?
Engel(h) Given h ∈ G, does Engel(g, h) hold for all g ∈ G?

The algorithm is described in Sect. 3. As a consequence,

Corollary 1. Let G be an automaton group acting on the set of binary sequences
{1, 2}∗, that is contracting with contraction coefficient η < 1. Then, for torsion
elements h of order 2e with 22

e

η < 1, the property Engel(h) is decidable.

The Engel property attracted attention for its relation to nilpotency: indeed
a nilpotent group of class c satisfies Ec, and conversely among compact [21] and
solvable [16] groups, if a group satisfies Ec for some c then it is locally nilpotent.
Conjecturally, there are non-locally nilpotent groups satisfying Ec for some c,
but this is still unknown. It is also an example of iterated identity, see [3,7].
In particular, the main result of [3] implies easily that the Engel property is
decidable in algebraic groups.

It is comparatively easy to prove that the first Grigorchuk group G0 satisfies
no law [1,20]; this result holds for a large class of automaton groups. In fact, if a
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group satisfies a law, then so does its profinite completion. In the class mentioned
above, the profinite completion contains abstract free subgroups, precluding the
existence of a law. No such arguments would help for the Engel property: the
restricted product of all finite nilpotent groups is Engel, but the unrestricted
product again contains free subgroups. This is one of the difficulties in dealing
with iterated identities rather than identities.

If A is a nil algebra (namely, for every a ∈ A there exists n ∈ N with an = 0)
then the set of elements of the form {1 + a : a ∈ A} forms a group 1 + A
under the law (1 + a)(1 + b) = 1 + (a + b + ab). If A is defined over a field of
characteristic p, then 1 + A is a torsion group since (1 + a)pn

= 1 if apn

= 0.
Golod constructed in [13] non-nilpotent nil algebras A all of whose 2-generated
subalgebras are nilpotent (namely, An = 0 for some n ∈ N); given such an A,
the group 1 + A is Engel but not locally nilpotent.

Golod introduced these algebras as means of obtaining infinite, finitely gen-
erated, residually finite (every non-trivial element in the group has a non-trivial
image in some finite quotient), torsion groups. Golod’s construction is highly
non-explicit, in contrast with Grigorchuk’s group for which much can be derived
from the automaton’s properties.

It is therefore of high interest to find explicit examples of Engel groups that
are not locally nilpotent, and the methods and algorithms presented here are a
step in this direction.

An important feature of automaton groups is their amenability to computer
experiments, and even as in this case of rigorous verification of mathematical
assertions; see also [18], and the numerous decidability and undecidability results
pertaining to the finiteness property in [2,11,19].

The proof of Theorem1 relies on a computer calculation. It could be checked
by hand, at the cost of quite unrewarding effort. One of the purposes of this
article is, precisely, to promote the use of computers in solving general questions
in group theory: the calculations performed, and the computer search involved,
are easy from the point of view of a computer but intractable from the point of
view of a human.

The calculations were performed using the author’s group theory package
Fr, specially written to manipulate automaton groups. This package integrates
with the computer algebra system Gap [8], and is freely available from the Gap
distribution site

http://www.gap-system.org

2 Automaton Groups

An automaton group is a finitely generated group associated with an invertible
Mealy automaton. We define a Mealy automaton M as a graph such as that
in Fig. 1. It has a set of states Q and an alphabet X, and there are transitions
between states with input and output labels in X, with the condition that, at
every state, all labels appear exactly once as input and (if M is to be invertible)
once as output on the set of outgoing transitions.

http://www.gap-system.org
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Every state q ∈ Q of M defines a transformation, written as exponentiation
by q, of the set of words X∗ by the following rule: given a word x1 . . . xn ∈
X∗, there exists a unique path in the automaton starting at q and with input
labels x1, . . . , xn. Let y1, . . . , yn be its corresponding output labels. Then declare
(x1 . . . xn)q = y1 . . . yn.

The action may also be defined recursively as follows: if there is a transition
from q ∈ Q to r ∈ Q with input label x1 ∈ X and output label y1 ∈ X, then
(x1x2 . . . xn)q = y1 (x2 . . . xn)r.

By the automaton group associated with the automaton M , we mean the
group G of transformations of X∗ generated by M ’s states. Note that all ele-
ments of G admit descriptions by automata; namely, a word of length n in G’s
generators is the transformation associated with a state in the n-fold product
of the automaton of G. See [10] for the abstract theory of automata, and [9] for
products more specifically.

The structure of the automaton M may be encoded in an injective group
homomorphism ψ : G → GX

� Sym(X) from G to the group of G-decorated per-
mutations of X. This last group — the wreath product of G with Sym(X) — is
the group of permutations of X, with labels in G on each arrow of the permu-
tation; the labels multiply as the permutations are composed. The construction
of ψ is as follows: consider q ∈ Q. For each x ∈ X, let q@x denote the endpoint
of the transition starting at q with input label x, and let xπ denote the output
label of the same transition; thus every transition in the Mealy automaton gives
rise to

q q@x
(x, xπ)

The transformation π is a permutation of X, and we set

ψ(q) = 〈x �→ q@x〉π,

namely the permutation π with decoration q@x on the arrow from x to xπ.
We generalize the notation q@x to arbitrary words and group elements. Con-

sider a word v ∈ X∗ and an element g ∈ G; denote by vg the image of v under
g. There is then a unique element of G, written g@v, with the property

(v w)g = (vg) (w)g@v for all w ∈ X∗.

We call by extension this element g@v the state of g at v; it is the state, in
the Mealy automaton defining g, that is reached from g by following the path
v as input; thus in the Grigorchuk automaton b@1 = a and b@222 = b and
(bc)@2 = cd. There is a reverse construction: by v ∗g we denote the permutation
of X∗ (which need not belong to G) defined by

(v w)v∗g = v wg, wv∗g = w if w does not start with v.

Given a word w = w1 . . . wn ∈ X∗ and a Mealy automaton M of which g is a
state, it is easy to construct a Mealy automaton of which w ∗ g is a state: add a
path of length n to M , with input and output (w1, w1), . . . , (wn, wn) along the
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path, and ending at g. Complete the automaton with transitions to the identity
element. Then the first vertex of the path defines the transformation w ∗ g. For
example, here is 12 ∗ d in the Grigorchuk automaton:

b d 2 ∗ d 12 ∗ d

c

a

(2, 2)(1, 1)
(2, 2)

(1, 1)

(2, 2)

(1, 1)

(1, 2), (2, 1)

(1, 1), (2, 2)

(1, 1)

(2, 2)

(2, 2)

(1, 1)

Note the simple identities (g@v1)@v2 = g@(v1v2), (v1v2) ∗ g = v1 ∗ (v2 ∗ g), and
(v ∗ g)@v = g. Recall that we write conjugation in G as gh = h−1gh. For any
h ∈ G we have

(v ∗ g)h = vh ∗ (gh@v). (1)

An automaton group is called regular weakly branched if there exists a non-
trivial subgroup K of G such that ψ(K) contains KX . In other words, for every
k ∈ K and every v ∈ X∗, the element v ∗ k also belongs to K, and therefore to
G. Abért proved in [1] that regular weakly branched groups satisfy no law.

In this text, we concentrate on the Engel property, which is equivalent to
nilpotency for finite groups. In particular, if an automaton group G is to have
a chance of being Engel, then its image under the map G → GX

� Sym(X) →
Sym(X) should be a nilpotent subgroup of Sym(X). Since finite nilpotent groups
are direct products of their p-Sylow subgroups, we may reduce to the case in
which the image of G in Sym(X) is a p-group. A further reduction lets us assume
that the image of G is an abelian subgroup of Sym(X) of prime order. We
therefore make the following:

Standing Assumption 1. The alphabet is X = {1, . . . , p} and automaton
groups are defined by embeddings ψ : G → Gp

� Z/p, with Z/p the cyclic sub-
group of Sym(X) generated by the cycle (1, 2, . . . , p).

This is the situation considered in the Introduction.
We make a further reduction in that we only consider the Engel property

for elements of finite order. This is not a very strong restriction: given h of
infinite order, one can usually find an element g ∈ G such that the conjugates
{ghn

: n ∈ Z} are independent, and it then follows that h is not Engel. This will
be part of a later article.

2.1 Grigorchuk’s First Group

This section is not an introduction to Grigorchuk’s first group, but rather a brief
description of it with all information vital for the calculation in Sect. 4. For more
details, see e.g. [5].
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Fix the alphabet X = {1, 2}. The first Grigorchuk group G0 is a permutation
group of the set of words X∗, generated by the four non-trivial states a, b, c, d of
the automaton given in Fig. 1. Alternatively, the transformations a, b, c, d may
be defined recursively as follows:

(1x2 . . . xn)a = 2x2 . . . xn, (2x2 . . . xn)a = 1x2 . . . xn,

(1x2 . . . xn)b = 1(x2 . . . xn)a, (2x2 . . . xn)b = 2(x2 . . . xn)c,

(1x2 . . . xn)c = 1(x2 . . . xn)a, (2x2 . . . xn)c = 2(x2 . . . xn)d,

(1x2 . . . xn)d = 1x2 . . . xn, (2x2 . . . xn)d = 2(x2 . . . xn)b

(2)

which directly follow from d@1 = 1, d@2 = b, etc.
It is remarkable that most properties of G0 derive from a careful study of

the automaton (or equivalently this action), usually using inductive arguments.
For example,

Proposition 1 ([14]). The group G0 is infinite, and all its elements have order
a power of 2.

The self-similar nature of G0 is made apparent in the following manner:

Proposition 2 ([4], Sect. 4). Define x = [a, b] and K = 〈x, xc, xca〉. Then K is
a normal subgroup of G0 of index 16, and ψ(K) contains K × K.

In other words, for every g ∈ K and every v ∈ X∗ the element v ∗ g belongs
to G0.

3 A Semi-algorithm for Deciding the Engel Property

We start by describing a semi-algorithm to check the Engel property. It will some-
times not return any answer, but when it returns an answer then that answer
is guaranteed correct. It is guaranteed to terminate as long as the contraction
property of the automaton group G is strong enough.

Algorithm 1. Let G be a contracting automaton group with alphabet X =
{1, . . . , p} for prime p, with the contraction property ‖g@j‖ ≤ η‖g‖ + C.

For n ∈ pN and R ∈ R consider the following finite graph Γn,R. Its vertex
set is B(R)n ∪{fail}, where B(R) denotes the set of elements of G of length at
most R. Its edge set is defined as follows: consider a vertex (g1, . . . , gn) in Γn,R,
and compute

(h1, . . . , hn) = (g−1
1 g2, . . . , g

−1
n g1).

If hi fixes X for all i, i.e. all hi have trivial image in Sym(X), then for all
j ∈ {1, . . . , p} there is an edge from (g1, . . . , gn) to (h1@j, . . . , hn@j), or to fail

if (h1@j, . . . , hn@j) �∈ B(R)n. If some hi does not fix X, then there is an edge
from (g1, . . . , gn) to (h1, . . . , hn), or to fail if (h1, . . . , hn) �∈ B(R)n.
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Given g, h ∈ G with hn = 1: Set t0 = (g, gh, gh2
, . . . , ghn−1

). If there exists
R ∈ N such that no path in Γn,R starting at t0 reaches fail, then Engel(g, h)
holds if and only if the only cycle in Γn,R reachable from t0 passes through
(1, . . . ,1).
If the contraction coefficient satisfies 2nη < 1, then it is sufficient to consider
R = (‖g‖ + n‖h‖)2nC/(1 − 2nη).

Given n ∈ pN: The Engel property holds for all elements of exponent n if and
only if, for all R ∈ N, the only cycle in Γn,R passes through (1, . . . ,1).
If the contraction coefficient satisfies 2nη < 1, then it is sufficient to consider
R = 2nC/(1 − 2nη).

Given G weakly branched and n ∈ pN: If for some R ∈ N there exists a
cycle in Γn,R that passes through an element of Kn \ 1n, then no element of
G whose order is a multiple of n is Engel.
If the contraction coefficient satisfies 2nη < 1, then it is sufficient to consider
R = 2nC/(1 − 2nη).

We consider the graphs Γn,R as subgraphs of a graph Γn,∞ with vertex set
Gn and same edge definition as the Γn,R.

We note first that, if G satisfies the contraction condition 2nη < 1,
then all cycles of Γn,∞ lie in fact in Γn,2nC/(1−2nη). Indeed, consider a cycle
passing through (g1, . . . , gn) with maxi ‖gi‖ = R. Then the cycle contin-
ues with (g(1)1 , . . . , g

(1)
n ), (g(2)1 , . . . , g

(2)
n ), etc. with ‖g

(k)
i ‖ ≤ 2kR; and then

for some k ≤ n we have that all g
(k)
i fix X; namely, they have a trivial

image in Sym(X), and the map g �→ g@j is an injective homomorphism on
them. Indeed, let π1, . . . , πn, π

(i)
1 , . . . , π

(i)
n ∈ Z/p ⊂ Sym(X) be the images of

g1, . . . , gn, g
(i)
1 , . . . , g

(i)
n respectively, and denote by S : Z

n
/p → Z

n
/p the cyclic per-

mutation operator. Then (π(n)
1 , . . . , π

(n)
n ) = (S −1)n(π1, . . . , πn), and (S −1)n =

∑
j Sj

(
n
j

)
= 0 since p|n and Sn = 1. Thus there is an edge from (g(k)1 , . . . , g

(k)
n )

to (g(k+1)
1 @j, . . . , g

(k+1)
n @j) with ‖g

(k+1)
i @j‖ ≤ η‖g

(k)
i ‖+C ≤ η2nR+C. There-

fore, if R > 2nC/(1 − 2nη) then 2nηR + C < R, and no cycle can return to
(g1, . . . , gn).

Consider now an element h ∈ G with hn = 1. For all g ∈ G, there
is an edge in Γn,∞ from (g, gh, . . . , ghn−1

) to ([g, h]@v, [g, h]h@v, [g, h]h
n−1

@v)
for some word v ∈ {ε}  X, and therefore for all c ∈ N there exists d ≤ c

such that, for all v ∈ Xd, there is a length-c path from (g, gh, . . . , ghn−1
) to

(Ec(g, h)@v, . . . , Ec(g, h)hn−1
@v) in Γn,∞.

We are ready to prove the first assertion: if Engel(g, h), then Ec(g, h) = 1
for some c large enough, so all paths of length c starting at (g, gh, . . . , ghn−1

)
end at (1, . . . ,1). On the other hand, if Engel(g, h) does not hold, then all long
enough paths starting at (g, gh, . . . , ghn−1

) end at vertices in the finite graph
Γn,2nC/(1−2nη) so must eventually reach cycles; and one of these cycles is not
{(1, . . . ,1)} since Ec(g, h) �= 1 for all c.

The second assertion immediately follows: if there exists g ∈ G such that
Engel(g, h) does not hold, then again a non-trivial cycle is reached starting
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from (g, gh, . . . , ghn−1
), and independently of g, h this cycle belongs to the graph

Γn,2nC/(1−2nη).
For the third assertion, let k̄ = (k1, . . . , kn) ∈ Kn \ 1n be a vertex of a cycle

in Γn,2nC/(1−2nη). Consider an element h ∈ G of order sn for some s ∈ N. By
the condition that #X = p is prime and the image of G in Sym(X) is a cyclic
group, sn is a power of p, so there exists an orbit {v1, . . . , vsn} of h, so labeled
that vh

i = vi−1, indices being read modulo sn. For i = 1, . . . , sn define

hi = (h@v1)−1 · · · (h@vi)−1,

noting hi(h@vi) = hi−1 for all i = 1, . . . , sn since hsn = 1. Denote by ‘i%n’ the
unique element of {1, . . . , n} congruent to i modulo n, and consider the element

g =
sn∏

i=1

(
vi ∗ khi

i%n

)
,

which belongs to G since G is weakly branched. Let (k(1)
1 , . . . , k

(1)
n ) be the next

vertex on the cycle of k̄. We then have, using (1),

[g, h] = g−1gh =
sn∏

i=1

(
vi ∗ k−hi

i%n

) sn∏

i=1

(
vi−1 ∗ k

hi(h@vi)
i%n

)
=

sn∏

i=1

(
vi ∗ (k(1)

i%n)hi
)
,

and more generally Ec(g, h) and some of its states are read off the cycle of k̄.
Since this cycle goes through non-trivial group elements, Ec(g, h) has a non-
trivial state for all c, so is non-trivial for all c, and Engel(g, h) does not hold.

4 Proof of Theorem1

The Grigorchuk group G0 is contracting, with contraction coefficient η = 1/2.
Therefore, the conditions of validity of Algorithm1 are not satisfied by the Grig-
orchuk group, so that it is not guaranteed that the algorithm will succeed, on
a given element h ∈ G0, to prove that h is not Engel. However, nothing forbids
us from running the algorithm with the hope that it nevertheless terminates. It
seems experimentally that the algorithm always succeeds on elements of order
4, and the argument proving the third claim of Algorithm1 (repeated here for
convenience) suffices to complete the proof of Theorem 1.

Below is a self-contained proof of Theorem 1, extracting the relevant prop-
erties of the previous section, and describing the computer calculations as they
were keyed in.

Consider first h ∈ G0 with h2 = 1. It follows from Proposition 1 that h is
Engel: given g ∈ G0, we have E1+k(g, h) = [g, h](−2)k so E1+k(g, h) = 1 for k
larger than the order of [g, h].

For the other case, we start by a side calculation. In the Grigorchuk group
G0, define x = [a, b] and K = 〈x〉G0 as in Proposition 2, consider the quadruple

A0 = (A0,1, A0,2, A0,3, A0,4) = (x−2x2ca, x−2cax2x2cab, x−2cabx−2, x2)
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of elements of K, and for all n ≥ 0 define

An+1 = (A−1
n,1An,2, A−1

n,2An,3, A−1
n,3An,4, A−1

n,4An,1).

Lemma 1. For all i = 1, . . . , 4, the element A9,i fixes 111112, is non-trivial,
and satisfies A9,i@111112 = A0,i.

Proof. This is proven purely by a computer calculation. It is performed as follows
within Gap:

gap> LoadPackage("FR");

true

gap> AssignGeneratorVariables(GrigorchukGroup);;

gap> x2 := Comm(a,b)^2;; x2ca := x2^(c*a);; one := a^0;;

gap> A0 := [x2^-1*x2ca,x2ca^-1*x2*x2ca^b,(x2ca^-1)^b*x2^-1,x2];;

gap> v := [1,1,1,1,1,2];; A := A0;;

gap> for n in [1..9] do A := List([1..4],i->A[i]^-1*A[1+i mod 4]); od;

gap> ForAll([1..4],i->v^A[i]=v and A[i]<>one and State(A[i],v)=A0[i]);

true

Consider now h ∈ G0 with h2 �= 1. Again by Proposition 1, we have h2e = 1
for some minimal e ∈ N, which is furthermore at least 2. We keep the notation
‘a%b’ for the unique number in {1, . . . , b} that is congruent to a modulo b.

Let n be large enough so that the action of h on Xn has an orbit
{v1, v2, . . . , v2e} of length 2e, numbered so that vh

i+1 = vi for all i, indices being
read modulo 2e. For i = 1, . . . , 2e define

hi = (h@v1)−1 · · · (h@vi)−1,

noting hi(h@vi) = hi−1%2e for all i = 1, . . . , 2e since h2e = 1, and consider the
element

g =
2e∏

i=1

(
vi ∗ Ahi

0,i%4

)
,

which is well defined since 4|2e and belongs to G0 by Proposition 2. We then
have, using (1),

[g, h] = g−1gh =
2e∏

i=1

(
vi ∗ A−hi

0,i%4

) 2e∏

i=1

(
vi−1%2e ∗ A

hi(h@vi)
0,i%4

)
=

2e∏

i=1

(
vi ∗ Ahi

1,i

)
,

and more generally

Ec(g, h) =
2e∏

i=1

(
vi ∗ Ahi

c,i

)
.

Therefore, by Lemma 1, for every k ≥ 0 we have E9k(g, h)@v0(111112)
k = A0,1 �= 1,

so Ec(g, h) �= 1 for all c ∈ N and we have proven that h is not an Engel element.
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5 Other Examples

Similar calculations apply to the Gupta-Sidki group Γ . This is another example
of infinite torsion group, acting on X∗ for X = {1, 2, 3} and generated by the
states of the following automaton:

t

t−1a

a−1

(1, 1)

(2, 2)

(3, 3)

(1, 1)

(2, 2)

(3, 3)
(1, 2), (2, 3), (3, 1)

(2, 1), (3, 2), (1, 3)

(∗, ∗)

The transformations a, t may also be defined recursively by

(1v)a = 2v, (2v)a = 3v, (3v)a = 1v,

(1v)t = 1va, (2v)t = 2va−1
, (3v)t = 3vt.

(3)

The Gupta-Sidki group is contracting, with contraction coefficient η = 1/2.
Again, this is not sufficient to guarantee that Algorithm1 terminates, but it
nevertheless did succeed in proving.

Theorem 2. The only Engel element in the Gupta-Sidki group Γ is the identity.

We only sketch the proof, since it follows that of Theorem1 quite closely. Ana-
logues of Propositions 1 and 2 hold, with [Γ, Γ ] in the rôle of K. An analogue of
Lemma 1 holds with A0 = ([a−1, t], [a, t]a, [t−1, a−1]) and A4,i@122 = A0,i.

6 Closing Remarks

It would be dishonest to withhold from the reader how I arrived at the examples
given for the Grigorchuk and Gupta-Sidki groups. I started with small words
g, h in the generators of G0, respectively Γ , and computed Ec(g, h) for the first
few values of c. These elements are represented, internally to Fr, as Mealy
automata. A natural measure of the complexity of a group element is the size
of the minimized automaton, which serves as a canonical representation of the
element.

For some choices of g, h the size of Ec(g, h) increases exponentially with c,
limiting the practicality of computer experiments. For others (such as (g, h) =
((ba)4c, ad) for the Grigorchuk group), the size increases roughly linearly with c,
making calculations possible for c in the hundreds. Using these data, I guessed
the period p of the recursion (9 in the case of the Grigorchuk group), and searched
among the states of Ec(g, h) and Ec+p(g, h) for common elements; in the exam-
ple, I found such common states for c = 23. I then took the smallest-size quadru-
ple of states that appeared both in Ec(g, h) and Ec+p(g, h) and belonged to
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K, and expressed the calculation taking Ec(g, h) to Ec+p(g, h) in the form of
Lemma 1.

It was already shown by Bludov [6] that the wreath product G4
0 � D4 is not

Engel. He gave, in this manner, an example of a torsion group in which a product
of Engel elements is not Engel. Our proof is a refinement of his argument.

A direct search for elements A0,1, . . . , A0,4 would probably not be successful,
and has not yielded simpler elements than those given before Lemma 1, if one
restricts them to belong to K; one can only wonder how Bludov found the
quadruple (1, d, ca, ab), presumably without the help of a computer.

Acknowledgments. I am grateful to Anna Erschler for stimulating my interest in
this question and for having suggested a computer approach to the problem, and to
Ines Klimann and Matthieu Picantin for helpful discussions that have improved the
presentation of this note.
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mengel@cril.fr

Abstract. We determine the complexity of an optimization problem
related to information theory. Taking a conjunctive propositional formula
over some finite set of Boolean relations as input, we seek a satisfying
assignment of the formula having minimal Hamming distance to a given
assignment that is not required to be a model (NearestSolution, NSol).
We obtain a complete classification with respect to the relations admit-
ted in the formula. For two classes of constraint languages we present
polynomial time algorithms; otherwise, we prove hardness or complete-
ness concerning the classes APX, poly-APX, NPO, or equivalence to
well-known hard optimization problems.

1 Introduction

We investigate the solution spaces of Boolean constraint satisfaction problems
built from atomic constraints by means of conjunction and variable identifica-
tion. We study the following minimization problems in connection with Hamming
distance: Given an instance of a constraint satisfaction problem in the form of
a generalized conjunctive formula over a set of atomic constraints, the problem
asks to find a satisfying assignment with minimal Hamming distance to a given
assignment (NearestSolution,NSol). Note that we do not assume the given assign-
ment to satisfy the formula nor the solution to be different from it as was done
in [4], where NearestOtherSolution (NOSol) was studied. This would change the
complexity classification (e.g. for bijunctive constraints), and proof techniques
would become considerably harder due to inapplicability of clone theory.

The title refers to the Alabama Song by Bertolt Brecht (lyrics), Kurt Weill (music),
and Elisabeth Hauptmann (English translation). Among the numerous cover ver-
sions, the one by Jim Morrison and the Doors became particularly popular in the
1970s.
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This problem appears in several guises throughout literature. E.g., a common
problem in AI is to find solutions of constraints close to an initial configuration;
our problem is an abstraction of this setting for the Boolean domain. Bailleux and
Marquis [3] describe such applications in detail and introduce the decision prob-
lem DistanceSAT: Given a propositional formula ϕ, a partial interpretation I,
and a bound k, is there a satisfying assignment differing from I in no more than
k variables? It is straightforward to show that DistanceSAT corresponds to the
decision variant of our problem with existential quantification (called NSoldpp

later on). While [3] investigates the complexity of DistanceSAT for a few rele-
vant classes of formulas and empirically evaluates two algorithms, we analyze
the decision and the optimization problem for arbitrary semantic restrictions on
the formulas.

As is common, these restrictions are given by the set of atomic constraints
allowed to appear in the instances of the problem. We give a complete classifica-
tion of the complexity of approximation with respect to this parameterization,
applying methods from clone theory. Despite being classical, for NSol this step
requires considerably more non-trivial work than for e.g. satisfiability problems.
It turns out that our problem can either be solved in polynomial time, or it
is complete for a well-known optimization class, or else it is equivalent to a
well-known hard optimization problem.

Our study can be understood as a continuation of the minimization problems
investigated by Khanna et al. in [10], especially that of MinOnes. The MinOnes
optimization problem asks for a solution of a constraint satisfaction problem
with minimal Hamming weight, i.e., minimal Hamming distance to the 0-vector.
Our work generalizes this by allowing the given vector to be arbitrary.

Moreover, our work can also be seen as a generalization of questions in
coding theory. Our problem NSol restricted to affine relations is the problem
NearestCodeword of finding the nearest codeword to a given word, which is the
basic operation when decoding messages received through a noisy channel. Thus
our work can be seen as a generalization of these well-known problems from
affine to general relations.

2 Preliminaries

An n-ary Boolean relation R is a subset of {0, 1}n; its elements (b1, . . . , bn) are
also written as b1 · · · bn. Let V be a set of variables. An atomic constraint, or an
atom, is an expression R(x ), where R is an n-ary relation and x is an n-tuple
of variables from V . Let Γ be a non-empty finite set of Boolean relations, also
called a constraint language. A (conjunctive) Γ -formula is a finite conjunction
of atoms R1(x1) ∧ · · · ∧ Rk(xk ), where the Ri are relations from Γ and the x i

are variable tuples of suitable arity.
An assignment is a mapping m : V → {0, 1} assigning a Boolean value m(x)

to each variable x ∈ V . If we arrange the variables in some arbitrary but fixed
order, say as a vector (x1, . . . , xn), then the assignments can be identified with
vectors from {0, 1}n. The i-th component of a vector m is denoted by m[i] and
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Table 1. List of Boolean functions and relations

x ⊕ y = x + y (mod 2) ork = {0, 1}k
� {0 · · · 0}

x ≡ y = x + y + 1 (mod 2) nandk = {0, 1}k
� {1 · · · 1}

dup3 = {0, 1}3
� {010, 101} even4 = {(a1, a2, a3, a4) ∈ {0, 1}4 |∑4

i=1 ai is even}
nae3 = {0, 1}3

� {000, 111}

corresponds to the value of the i-th variable, i.e., m[i] = m(xi). The Hamming
weight hw(m) = |{i | m[i] = 1}| of m is the number of 1s in the vector m. The
Hamming distance hd(m,m′) = |{i | m[i] �= m′[i]}| of m and m′ is the number
of coordinates on which the vectors disagree. The complement m of a vector m
is its pointwise complement, m[i] = 1 − m[i].

An assignment m satisfies a constraint R(x1, . . . , xn) if (m(x1), . . . ,m(xn)) ∈
R holds. It satisfies the formula ϕ if it satisfies all of its atoms; m is said to be a
model or solution of ϕ in this case. We use [ϕ] to denote the set of models of ϕ.
Note that [ϕ] represents a Boolean relation. In sets of relations represented this
way we usually omit the brackets. A literal is a variable v, or its negation ¬v.
Assignments m are extended to literals by defining m(¬v) = 1−m(v) (Table 1).

Throughout the text we refer to different types of Boolean constraint rela-
tions following Schaefer’s terminology [11] (see also the monograph [8] and the
survey [6]). A Boolean relation R is (1) 1-valid if 1 · · · 1 ∈ R and it is 0-valid if
0 · · · 0 ∈ R, (2) Horn (dual Horn) if R can be represented by a formula in con-
junctive normal form (CNF) having at most one unnegated (negated) variable
in each clause, (3) monotone if it is both Horn and dual Horn, (4) bijunctive
if it can be represented by a CNF having at most two variables in each clause,
(5) affine if it can be represented by an affine system of equations Ax = b over Z2,
(6) complementive if for each m ∈ R also m ∈ R. A set Γ of Boolean relations
is called 0-valid (1-valid, Horn, dual Horn, monotone, affine, bijunctive, comple-
mentive) if every relation in Γ is 0-valid (1-valid, Horn, dual Horn, monotone,
affine, bijunctive, complementive). See also Table 3.

A formula constructed from atoms by conjunction, variable identification,
and existential quantification is called a primitive positive formula (pp-formula).
We denote by 〈Γ 〉 the set of all relations that can be expressed using relations

Table 2. Some Boolean co-clones with bases

iM2{x → y, ¬x, x} iD2{x ⊕ y, x → y} iE2{¬x ∨ ¬y ∨ z, ¬x, x}
iSk

0{ork} iL{even4} iN{dup3}
iSk

1{nandk} iL2{even4, ¬x, x} iN2{nae3}
iSk

00{ork, x → y, ¬x, x} iV{x ∨ y ∨ ¬z} iI0{even4, x → y, ¬x}
iSk

10{nandk, ¬x, x, x → y} iV2{x ∨ y ∨ ¬z, ¬x, x} iI1{even4, x → y, x}
iD1{x ⊕ y, x} iE{¬x ∨ ¬y ∨ z}
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from Γ ∪ {=}, conjunction, variable identification (and permutation), cylindrifi-
cation, and existential quantification. The set 〈Γ 〉 is called the co-clone generated
by Γ . A base of a co-clone B is a set of relations Γ , such that 〈Γ 〉 = B. All co-
clones, ordered by set inclusion, form a lattice. Together with their respective
bases, which were studied in [7], some of them are listed in Table 2. In particu-
lar the sets of relations being 0-valid, 1-valid, complementive, Horn, dual Horn,
affine, bijunctive, 2affine (both bijunctive and affine) and monotone each form
a co-clone denoted by iI0, iI1, iN2, iE2, iV2, iL2, iD2, iD1, and iM2, respectively.
See also Table 3.

We assume that the reader has a basic knowledge of approximation algo-
rithms and complexity theory, see e.g. [2,8]. For reductions among decision
problems we use polynomial-time many-one reduction denoted by ≤m. Many-one
equivalence between decision problems is written as ≡m. For reductions among
optimization problems we employ approximation preserving reductions, also
called AP-reductions, represented by ≤AP. AP-equivalence between optimization
problems is stated as ≡AP. Moreover, we shall need the following approximation
complexity classes in the hierarchy PO ⊆ APX ⊆ poly-APX ⊆ NPO.

An optimization problem P1 AP-reduces to another optimization problem P2

if there are two polynomial-time computable functions f , g, and a constant α ≥ 1
such that for all r > 1 on any input x for P1 the following holds:

– f(x) is an instance of P2;
– for any solution y of f(x), g(x, y) is a solution of x;
– whenever y is an r-approximate solution for the instance f(x), then g(x, y)

provides a (1 + (r − 1)α + o(1))-approximate solution for x.

If P1 AP-reduces to P2 with constant α ≥ 1 and P2 has an f(n)-approximation
algorithm, then there is an αf(n)-approximation algorithm for P1.

We will relate our problems to well-known optimization problems. To this
end we make the following convention: For optimization problems P and Q we
say that Q is P-hard if P ≤AP Q, i.e. if P reduces to it. Moreover, Q is called
P-complete if P ≡AP Q.

To prove our results, we refer to the following optimization problems defined
and analyzed in [10]. Like our problems they are parameterized by a constraint
language Γ .

Problem MinOnes(Γ ). Given a conjunctive formula ϕ over relations from Γ , any
assignment m satisfying ϕ is a feasible solution. The goal is to minimize the
Hamming weight hw(m).

Problem WeightedMinOnes(Γ ). Given a conjunctive formula ϕ over relations
in Γ and a weight function w : V → N on the variables V of ϕ, solutions are
again all assignments m satisfying ϕ. The objective is to minimize the value∑

x∈V :m(x)=1 w(x).
We now define some well-studied problems to which we will relate our prob-

lems. Note that these problems do not depend on any parameter.

Problem NearestCodeword. Given a matrix A ∈ Z
k×l
2 and m ∈ Z

l
2, any vector x ∈

Z
k
2 is a solution. The objective is to minimize the Hamming distance hd(xA,m).
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Problem MinHornDeletion. For a given conjunctive formula ϕ over relations from
the set {[¬x ∨ ¬y ∨ z], [x], [¬x]}, an assignment m satisfying ϕ is sought. The
objective is given by the minimum number of unsatisfied conjuncts of ϕ.

NearestCodeword and MinHornDeletion are known to be NP-hard to approxi-
mate within a factor 2Ω(log1−ε(n)) for every ε > 0 [1,10]. Thus if a problem P is
equivalent to any of these problems, it follows that P /∈ APX unless P = NP.

We also use the classic satisfiability problem SAT(Γ ), given a conjunctive
formula ϕ over relations from Γ , asking if ϕ is satisfiable. Schaefer presented
in [11] a complete classification of complexity for SAT. His dichotomy theorem
proves that SAT(Γ ) is polynomial-time decidable if Γ is 0-valid (Γ ⊆ iI0), 1-valid
(Γ ⊆ iI1), Horn (Γ ⊆ iE2), dual Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2), or affine
(Γ ⊆ iL2); otherwise it is NP-complete.

3 Results

This section presents the formal definition of the considered problem, parame-
terized by a constraint language Γ , and our main result; the proofs follow in
subsequent sections.

Problem NearestSolution(Γ ), NSol(Γ )
Input: A conjunctive formula ϕ over relations from Γ and an assignment m of
the variables occurring in ϕ, which is not required to satisfy ϕ.
Solution: An assignment m′ satisfying ϕ (i.e. a codeword of the code described
by ϕ).
Objective: Minimum Hamming distance hd(m,m′).

Theorem 1 (illustrated in Fig. 1). For a given Boolean constraint language Γ
the optimization problem NSol(Γ ) is

(i) in PO if Γ is
(a) 2affine (Γ ⊆ iD1) or
(b) monotone (Γ ⊆ iM2);

(ii) APX-complete if
(a) 〈Γ 〉 contains the relation [x ∨ y] and Γ ⊆ 〈x1 ∨ · · · ∨ xk, x → y,¬x, x〉

(iS2
0 ⊆ 〈Γ 〉 ⊆ iSk

00) for some k ∈ N, k ≥ 2, or
(b) Γ is bijunctive and 〈Γ 〉 contains the relation [x ∨ y] (iS2

0 ⊆ 〈Γ 〉 ⊆ iD2),
or

(c) 〈Γ 〉 contains the relation [¬x∨¬y] and Γ ⊆ 〈¬x1∨· · ·∨¬xk, x → y,¬x, x〉
(iS2

1 ⊆ 〈Γ 〉 ⊆ iSk
10) for some k ∈ N, k ≥ 2, or

(d) Γ is bijunctive and 〈Γ 〉 contains the relation [¬x∨¬y] (iS2
1 ⊆ 〈Γ 〉 ⊆ iD2);

(iii) NearestCodeword-complete if Γ is exactly affine (iL ⊆ 〈Γ 〉 ⊆ iL2);
(iv) MinHornDeletion-complete if Γ is

(a) exactly Horn (iE ⊆ 〈Γ 〉 ⊆ iE2) or
(b) exactly dual Horn (iV ⊆ 〈Γ 〉 ⊆ iV2);

(v) poly-APX-complete if Γ does not contain an affine relation and it is
(a) either 0-valid (iN ⊆ 〈Γ 〉 ⊆ iI0) or
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(b) 1-valid (iN ⊆ 〈Γ 〉 ⊆ iI1); and
(vi) NPO-complete otherwise (iN2 ⊆ 〈Γ 〉).

The considered optimization problem can be transformed into a decision
problem in the usual way. We add a bound k ∈ N to the input and ask if the
Hamming distance satisfies the inequality hd(m,m′) ≤ k. This way we obtain
the corresponding decision problem NSold. Its complexity follows immediately
from the theorem above. All cases in PO become polynomial-time decidable,
whereas the other cases, which are APX-hard, become NP-complete. This way
we obtain a dichotomy theorem classifying the decision problem as polynomial
or NP-complete for all finite sets Γ of Boolean relations.

4 Applicability of Clone Theory and Duality

We show that clone theory is applicable to the problem NSol, as well as a pos-
sibility to exploit inner symmetries between co-clones, which shortens several
proofs as we continue.

There are two natural versions of NSol(Γ ). In one version the formula ϕ is
quantifier free while in the other one we do allow existential quantification. We
call the former version NSol(Γ ) and the latter NSolpp(Γ ). Fortunately, we will
now see that both versions are equivalent.

Let NSold(Γ ) and NSoldpp(Γ ) be the decision problems corresponding to
NSol(Γ ) and NSolpp(Γ ), asking whether there is a satisfying assignment within
a given bound.

Lemma 2. For finite sets Γ we have the equivalences NSold(Γ ) ≡m NSoldpp(Γ )
and NSol(Γ ) ≡AP NSolpp(Γ ).

Proof. The reduction from left to right is trivial in both cases. For the other
direction, consider first an instance with formula ϕ, assignment m, and bound k
for NSoldpp(Γ ). Let x1, . . . , xn be the free variables of ϕ and let y1, . . . , y� be the
existentially quantified variables, which can be assumed to be disjoint. For each
variable z we define a set B(z) as follows:

B(z) =

{
{xj

i | j ∈ {1, . . . , (n + � + 1)2}} if z = xi for some i ∈ {1, . . . , n},

{yi} if z = yi for some i ∈ {1, . . . , �}.

We construct a quantifier-free formula ϕ′ over the variables
⋃n

i=1 B(xi) ∪
⋃�

i=1 B(yi) that contains for every atom R(z1, . . . , zs) from ϕ the atom
R(z′

1, . . . , z
′
s) for every combination (z′

1, . . . , z
′
s) from B(z1) × · · · × B(zs). More-

over, we construct an assignment B(m) of ϕ′ by assigning to every variable xj
i

the value m(xi) and to yi the value 0. Note that because there is an upper bound
on the arities of relations from Γ , this is a polynomial time construction.

We claim that ϕ has a solution m′ with hd(m,m′) ≤ k if and only if ϕ′ has a
solution m′′ with hd(B(m),m′′) ≤ k(n+�+1)2+�. First, observe that if m′ with
the desired properties exists, then there is an extension m′

e of m′ to the yi that
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satisfies all atoms. Define m′′ by setting m′′(xj
i ) := m′(xi) and m′′(yi) := m′

e(yi)
for all i and j. Then m′′ is clearly a satisfying assignment of ϕ′. Moreover, m′′

and B(m) differ in at most k(n+�+1)2 variables among the xj
i . Since there exist

only � other variables yi, we get hd(m′′, B(m)) ≤ k(n + � + 1)2 + � as desired.
Now suppose m′′ satisfies ϕ′ with hd(B(m),m′′) ≤ k(n+ �+1)2 + �. We may

assume for each i that m′′(x1
i ) = · · · = m′′(x(n+�+1)2

i ). Indeed, if this is not the
case, then setting all xj

i to B(m)(xj
i ) = m(xi) will give us a satisfying assignment

closer to B(m). After at most n iterations we get some m′′ as desired. Now
define an assignment m′ to ϕ by setting m′(xi) := m′′(x1

i ). Then m′ satisfies ϕ,
because the variables yi can be assigned values as in m′′. Moreover, whenever
m(xi) differs from m′(xi), the inequality B(m)(xj

i ) �= m′′(xj
i ) holds for every j.

Thus we obtain (n + � + 1)2 hd(m,m′) ≤ hd(B(m),m′′) ≤ k(n + � + 1)2 + �.
Therefore, we have the inequality hd(m,m′) ≤ k + �/(n + � + 1)2 and hence
hd(m,m′) ≤ k. This completes the many-one reduction.

We claim that the above construction is an AP-reduction, too. To this
end, let m′′ be an r-approximation for ϕ′ and B(m), i.e., hd(B(m),m′′) ≤
r · OPT(ϕ′, B(m)). Construct m′ as before, so (n + � + 1)2 hd(m,m′) ≤
hd(B(m),m′′) ≤ r ·OPT(ϕ′, B(m)). Since OPT(ϕ′, B(m)) is at most (n+�+1)2

OPT(ϕ,m) + � as before, we get (n + � + 1)2 hd(m,m′) ≤ r((n + � + 1)2

OPT(ϕ,m) + �). This implies the inequality hd(m,m′) ≤ r · OPT(ϕ,m) + r ·
�/(n + � + 1)2 = (r + o(1)) · OPT(ϕ,m) and shows that the construction is an
AP-reduction with α = 1. ��
Remark 3. Note that in the reduction from NSoldpp(Γ ) to NSold(Γ ) we construct
the assignment B(m) as an extension of m by setting all new variables to 0.
In particular, if m is the constant 0-assignment, then so is B(m). We use this
observation as we continue.

We can also show that introducing explicit equality constraints does not
change the complexity of our problem.

Lemma 4. For constraint languages Γ we have NSold(Γ ) ≡m NSold(Γ ∪ {=})
and NSol(Γ ) ≡AP NSol(Γ ∪ {=}).

Although a proof of this statement can be established by similar methods as
those used in Lemma 2, it is a technically rather involved case distinction whose
length exceeds the scope of this presentation. The proof is therefore omitted.

Lemmas 2 and 4 are very convenient, because they allow us to freely switch
between formulas with quantifiers and equality and those without. This allows
us to give all upper bounds in the setting without quantifiers and equality while
freely using them in all hardness reductions. In particular it follows that we
can use pp-definability when implementing a constraint language Γ by another
constraint language Γ ′. Hence it suffices to consider Post’s lattice of co-clones to
characterize the complexity of NSol(Γ ) for every finite set of Boolean relations Γ .

Corollary 5. For constraint languages Γ , Γ ′ such that Γ ′ ⊆ 〈Γ 〉, we have
the reductions NSold(Γ ′) ≤m NSold(Γ ) and NSol(Γ ′) ≤AP NSol(Γ ). Thus, if
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〈Γ ′〉 = 〈Γ 〉 is satisfied, then the equivalences NSold(Γ ) ≡m NSold(Γ ′) and
NSol(Γ ) ≡AP NSol(Γ ′) hold.

Next we prove that, in certain cases, unit clauses in the formula do not change
the complexity of NSol.

Lemma 6. We have the equivalence NSol(Γ ) ≡AP NSol(Γ ∪{[x], [¬x]}) for any
constraint language Γ where the problem of finding feasible solutions of NSol(Γ )
is polynomial-time decidable.

Proof. The direction from left to right is obvious. For the other direction, we
show an AP-reduction from NSol(Γ ∪ {[x], [¬x]}) to NSol(Γ ∪ {[x ≡ y]}). Since
[x ≡ y] is by definition in every co-clone and thus in 〈Γ 〉, the result follows from
Corollary 5.

The idea of the construction is to introduce two sets of variables y1, . . . , yn2

and z1, . . . , zn2 such that in any feasible solution all yi and all zi take the same
value. Then setting m(yi) = 1 and m(zi) = 0 for each i, any feasible solution m′

of small Hamming distance to m will have m′(yi) = 1 and m′(zi) = 0 for all i as
well, because deviating from this would be prohibitively expensive. Finally, we
simulate unary relations x and ¬x by x ≡ y1 and x ≡ z1, respectively. We now
describe the reduction formally.

Let the formula ϕ and the assignment m be a Γ ∪ {[x], [¬x]}-formula over
the variables x1, . . . , xn with a feasible solution. We construct a Γ ∪ {[x ≡ y]}-
formula ϕ′ over the variables x1, . . . xn, y1, . . . , yn2 , z1, . . . , zn2 and an assign-
ment m′. We get ϕ′ from ϕ by substituting every occurrence of a constraint [xi]
for some variable xi by xi ≡ y1 and substituting every occurrence [¬xi] for every
variable xi by xi ≡ z1. Finally, add yi ≡ yj for all i, j ∈ {1, . . . , n2} and zi ≡ zj

for all i, j ∈ {1, . . . , n2}. Let m′ be the assignment of the variables of ϕ′ given
by m′(xi) = m(xi) for each i ∈ {1, . . . , n}, and m′(yi) = 1 and m′(zi) = 0 for
all i ∈ {1, . . . , n2}. To any feasible solution m′′ of ϕ′ we assign g(ϕ,m,m′′) as
follows.

1. If ϕ is satisfied by m, we define g(ϕ,m,m′′) to be equal to m.
2. Else if m′′(yi) = 0 holds for all i ∈ {1, . . . , n2} or m′′(zi) = 1 for all i in

{1, . . . , n2}, we define g(ϕ,m,m′′) to be any satisfying assignment of ϕ.
3. Otherwise, m′′(yi) = 1 for all i ∈ {1, . . . , n2} and m′′(zi) = 0, we define

g(ϕ,m,m′′) to be the restriction of m′′ onto x1, . . . , xn.

Observe that all variables yi and all zi are forced to take the same value in
any feasible solution, respectively, so g(ϕ,m,m′′) is always well-defined. The
construction is an AP-reduction. Assume that m′′ is an r-approximate solution.
We will show that g(ϕ,m,m′′) is also an r-approximate solution.
Case 1: g(ϕ,m,m′′) computes the optimal solution, so there is nothing to show.
Case 2: Observe first that ϕ has a solution by assumption, so g(ϕ,m,m′′) is
well-defined and feasible by construction. Observe that m′ and m′′ disagree on
all yi or on all zi, so hd(m′,m′′) ≥ n2 holds. Moreover, since ϕ has a feasible
solution, it follows that OPT(ϕ′,m′) ≤ n. Since m′′ is an r-approximate solution,
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we have that r ≥ hd(m′,m′′)/OPT(ϕ′,m′) ≥ n. Consequently, the distance
hd(m, g(ϕ,m,m′′)) is bounded above by n ≤ r ≤ r · OPT(ϕ,m), where the last
inequality holds because ϕ is not satisfied by m and thus the distance of the
optimal solution from m is at least 1.
Case 3: The variables xi for which [xi] is a constraint all have g(ϕ,m,m′′)(xi) = 1
by construction. Moreover, we have g(ϕ,m,m′′)(xi) = 0 for all xi for which [¬xi]
is a constraint of ϕ. Consequently, g(ϕ,m,m′′) is feasible. Again, OPT(ϕ′,m′) ≤
n, so the optimal solution to (ϕ′,m′) must set all variables yi to 1 and all zi

to 0. It follows that OPT(ϕ,m) = OPT(ϕ′,m′). Thus we get

hd(m, g(ϕ,m,m′′)) = hd(m′,m′′) ≤ r · OPT(ϕ′,m′) = r · OPT(ϕ,m),

which completes the proof. ��
Given a relation R ⊆ {0, 1}n, its dual relation is dual(R) = {m | m ∈ R},

i.e., the relation containing the complements of vectors from R. Duality natu-
rally extends to sets of relations and co-clones. We define dual(Γ ) = {dual(R) |
R ∈ Γ} as the set of dual relations to Γ . Duality is a symmetric relation. If a
relation R′ (a set of relations Γ ′) is a dual relation to R (a set of dual relations
to Γ ), then R (Γ ) is also dual to R′ (to Γ ′). By a simple inspection of the bases
of co-clones in Table 2, we can easily see that many co-clones are dual to each
other. For instance iE2 is dual to iV2. The following lemma shows that it is
sufficient to consider only one half of Post’s lattice of co-clones.

Lemma 7. For any set Γ of Boolean relations we have NSold(Γ ) ≡m

NSold(dual(Γ )) and NSol(Γ ) ≡AP NSol(dual(Γ )).

Proof. Let ϕ be a Γ -formula and m an assignment to ϕ. We construct a dual(Γ )-
formula ϕ′ by substitution of every atom R(x ) by dual(R)(x ). The assignment m
satisfies ϕ if and only if m satisfies ϕ′, where m is the complement of m. Moreover,
hd(m,m′) = hd(m,m′). ��

5 Finding the Nearest Solution

This section contains the proof of Theorem1. We first consider the polynomial-
time cases followed by the cases of higher complexity.

5.1 Polynomial-Time Cases

Proposition 8. If a constraint language Γ is both bijunctive and affine (Γ ⊆
iD1), then NSol(Γ ) can be solved in polynomial time.

Proof. Since Γ ⊆ iD1 = 〈Γ ′〉 with Γ ′ := {[x ⊕ y], [x]}, we have the reduction
NSol(Γ ) ≤AP NSol(Γ ′) by Corollary 5. Every Γ ′-formula ϕ is equivalent to a
linear system of equations over the Boolean ring Z2 of the type x ⊕ y = 1 and
x = 1. Substitute the fixed values x = 1 into the equations of the type x⊕ y = 1
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and propagate. After an exhaustive application of this rule only equations of the
form x ⊕ y = 1 remain. For each of them put an edge {x, y} into E, defining an
undirected graph G = (V,E), whose vertices V are the unassigned variables. If
G is not bipartite, then ϕ has no solutions, so we can reject the input. Otherwise,
compute a bipartition V = L∪̇R. We assume that G is connected; if not perform
the following algorithm for each connected component. Assign the value 0 to
each variable in L and the value 1 to each variable in R, giving the satisfying
assignment m1. Swapping the roles of 0 and 1 w.r.t. L and R we get a model m2.
Return min{hd(m,m1),hd(m,m2)}. ��
Proposition 9. If a constraint language Γ is monotone (Γ ⊆ iM2), then
NSol(Γ ) can be solved in polynomial time.

Proof. We have iM2 = 〈Γ ′〉 where Γ ′ := {[x → y], [¬x], [x]}. Thus Corollary 5
and Γ ⊆ 〈Γ ′〉 imply NSol(Γ ) ≤AP NSol(Γ ′). The relations [¬x] and [x] determine
the unique value of the considered variable, therefore we can eliminate the unit
clauses built from the two latter relations and propagate. We consider formu-
las ϕ built only from the relation [x → y], i.e., formulas containing only binary
implicative clauses of the type x → y.

Let V the set of variables of the formula ϕ. According to the value assigned
to the variables by the vector m, we can divide V into two disjoint subsets V0

and V1, such that Vi = {x ∈ V | m(x) = i}. We transform the formula ϕ to
an integer programming problem P . First, for each clause x → y from ϕ we
add to P the relation y ≥ x. For each variable x ∈ V we add the constraints
x ≥ 0 and x ≤ 1, with x ∈ {0, 1}. Finally, we construct the linear function fϕ

by defining

fϕ(m′) =
∑

xi∈V0

m′(xi) +
∑

xj∈V1

(1 − m′(xj))

for assignments m′ of ϕ. Obviously, fϕ(m′) counts the number of variables
changing their parity between m and m′, i.e., fϕ(m′) = hd(m,m′). As P is
totally unimodular, the minimum of fϕ can be computed in polynomial time
(see e.g. [12]). ��

5.2 Hard Cases

We start off with an easy corollary of Schaefer’s dichotomy.

Lemma 10. Let Γ be a finite set of Boolean relations. If iN2 ⊆ 〈Γ 〉, then
NSol(Γ ) is NPO-complete; otherwise, NSol(Γ ) ∈ poly-APX.

Proof. If iN2 ⊆ 〈Γ 〉 holds, finding a solution for NSol(Γ ) is NP-hard by Schaefer’s
theorem [11], hence NSol(Γ ) is NPO-complete.

We give an n-approximation algorithm for the other case. Let a formula ϕ
and a model m be an instance of NSol(Γ ). If m is a solution of ϕ, return m.
Otherwise, compute an arbitrary solution m′ of ϕ, which is possible by Schaefer’s
theorem, and return m′.
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The approximation ratio of this algorithm is n. Indeed, if m satisfies ϕ, this
is obviously true, because we return the exact solution. Otherwise, we have
OPT(ϕ,m) ≥ 1 and so, trivially, hd(m,m′) ≤ n whence the claim follows. ��

We start with reductions from the optimization version of vertex cover. Since
the relation [x ∨ y] is a straightforward Boolean encoding of vertex cover, we
immediately get the following result.

Proposition 11. NSol(Γ ) is APX-hard for every constraint language Γ sat-
isfying the inclusion iS2

0 ⊆ 〈Γ 〉 or iS2
1 ⊆ 〈Γ 〉.

Proof. We have iS2
0 = 〈{[x ∨ y]}〉, whereas iS2

1 = 〈{[¬x ∨ ¬y]}〉. So we discuss
the former case, the latter one being symmetric and provable from the first one
by Corollary 5.

We encode VertexCover into NSol({[x ∨ y]}) ≤AP NSol(Γ ) (see Corollary 5).
For each edge {x, y} ∈ E of a graph G = (V,E) we add the clause (x ∨ y) to the
formula ϕG. Every model m′ of ϕG yields a vertex cover {v ∈ V | m′(v) = 1}, and
conversely, the characteristic function of any vertex cover satisfies ϕG. Taking
m = 0, then hd(0,m′) is minimal if and only if the number of 1s in m′ is minimal,
i.e., if m′ is a minimal model of ϕG, i.e., if m′ represents a minimal vertex cover
of G. Since VertexCover is APX-complete (see e.g. [2]), the result follows. ��
Proposition 12. We have NSol(Γ ) ∈ APX for constraint languages Γ ⊆ iD2.

Proof. As {x ⊕ y, x → z} is a basis of iD2, it suffices to show that
NSol({x ⊕ y, x → y}) is in APX by Corollary 5. Let (ϕ,m) be an input of this
problem. Feasibility for ϕ can be written as an integer program as follows:
Every constraint xi ⊕ xj induces a linear equation xi + xj = 1. Every con-
straint xi → xj can be written as xi ≤ xj . If we restrict all variables to
{0, 1} by the appropriate inequalities, it is clear that any assignment m′ sat-
isfies ϕ if it satisfies the linear system with inequality side conditions. We com-
plete the construction of the linear program by adding the objective function
c(m′) :=

∑
i:m(xi)=0 m′(xi) +

∑
i:m(xi)=1(1 − m′(xi)). Clearly, for every m′ we

have c(m′) = hd(m,m′). The 2-approximation algorithm from [9] for integer
linear programs, in which in every inequality at most two variables appear, com-
pletes the proof. ��
Proposition 13. We have NSol(Γ ) ∈ APX for constraint languages Γ ⊆ iS�

00

with � ≥ 2.

Proof. Due to {x1 ∨ · · · ∨ x�, x → y,¬x, x} being a basis of iS�
00 and Corollary 5,

it suffices to show NSol({x1 ∨ · · · ∨ x�, x → y,¬x, x}) ∈ APX. Let formula ϕ
and assignment m be an instance of that problem. We will use an approach
similar to that for the corresponding case in [10], again writing ϕ as an inte-
ger program. Every constraint xi1 ∨ · · · ∨ xi�

is translated to an inequality
xi1 + · · · + xi�

≥ 1. Every constraint xi → xj is written as xi ≤ xj . Each
¬xi is turned into xi = 0, every constraint xi yields xi = 1. Add xi ≥ 0 and
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xi ≤ 1 for each variable xi. Again, it is easy to check that feasible Boolean solu-
tions of ϕ and the linear system coincide. Defining again the objective function
c(m′) =

∑
i:m(xi)=0 m′(xi)+

∑
i:m(xi)=1(1−m′(xi)), we have hd(m,m′) = c(m′)

for every m′. Therefore it suffices to approximate the optimal solution for the
linear program.

To this end, let m′′ be a (generally non-integer) solution to the relaxation of
the linear program which can be computed in polynomial time. We construct m′

by setting m′(xi) = 0 if m′′(xi) < 1/� and m′(xi) = 1 if m′′(xi) ≥ 1/�. As � ≥ 2,
we get hd(m,m′) = c(m′) ≤ �c(m′′) ≤ � ·OPT(ϕ,m). It is easy to check that m′

is a feasible solution, which completes the proof. ��
Lemma 14. We have MinOnes(Γ ) ≤AP NSol(Γ ) for any constraint language Γ .

Proof. MinOnes(Γ ) is a special case of NSol(Γ ) where m is the constant 0-as-
signment. ��
Proposition 15 (Khanna et al. [10, Theorem 2.14]). The problem MinOnes(
Γ ) is NearestCodeword-complete for constraint languages Γ satisfying 〈Γ 〉 = iL2.

Corollary 16. For a constraint language Γ satisfying iL ⊆ 〈Γ 〉, the problem
NSol(Γ ) is NearestCodeword-hard.

Proof. Let Γ ′ := {even4, [x], [¬x]}. Since 〈Γ ′〉 = iL2, NearestCodeword is equiva-
lent to MinOnes(Γ ′), which reduces to NSol(Γ ′) by Lemma 14. We have now
the AP-equivalence NSol(Γ ′) ≡AP NSol({even4}) by appealing to Lemma 6
and the reduction NSol({even4}) ≤AP NSol(Γ ) due to even4 ∈ iL ⊆ 〈Γ 〉 and
Corollary 5. ��
Proposition 17. We have NSol(Γ ) ≤AP MinOnes({even4, [¬x], [x]}) for any
constraint language Γ ⊆ iL2.

Proof. The set Γ ′ := {even4, [¬x], [x]} is a basis of iL2, therefore by Corollary 5
it is sufficient to show NSol(Γ ′) ≤AP MinOnes(Γ ′).

We proceed by reducing NSol(Γ ′) to a subproblem of NSolpp(Γ ′), where only
instances (ϕ,0) are considered. Then, using Lemma2 and Remark 3, this reduces
to a subproblem of NSol(Γ ′) with the same restriction on the assignments, which
is exactly MinOnes(Γ ′). Note that [x ⊕ y] is equal to [∃z∃z′(even4(x, y, z, z′) ∧
¬z ∧ z′] so we can freely use [x ⊕ y] in any Γ ′-formula. Let formula ϕ and
assignment m be an instance of NSol(Γ ′). We copy all clauses of ϕ to ϕ′. For
each variable x of ϕ for which m(x) = 1, we take a new variable x′ and add the
constraint x ⊕ x′ to ϕ′. Moreover, we existentially quantify x. Clearly, there is
a bijection I between the satisfying assignments of ϕ and those of ϕ′: For every
solution s of ϕ we get a solution I(s) of ϕ′ by setting for each x′ introduced in
the construction of ϕ′ the value I(s)(x′) to the complement of m(x). Moreover,
we have that hd(m, s) = hd(0, I(s)). This yields a trivial AP-reduction with
α = 1. ��
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Proposition 18 (Khanna et al. [10]). The problems MinOnes({x ∨ y ∨
¬z, x,¬x}) and WeightedMinOnes({x ∨ y ∨ ¬z, x ∨ y}) are MinHornDeletion-
complete.

Lemma 19. NSol({x ∨ y ∨ ¬z}) ≤AP WeightedMinOnes({x ∨ y ∨ ¬z, x ∨ y}).

Proof. Let formula ϕ and assignment m be an instance of NSol(x ∨ y ∨ ¬z)
over the variables x1, . . . , xn. If m satisfies ϕ then the reduction is trivial. We
assume in the remainder of the proof that OPT(ϕ,m) > 0. Let T (m) be the
set of variables xi with m(xi) = 1. We construct a {x ∨ y ∨ ¬z, x ∨ y}-formula
from ϕ by adding for each xi ∈ T (m) the constraint xi ∨ x′

i where x′
i is a new

variable. We set the weights of the variables of ϕ′ as follows. For xi ∈ T (m) we
set w(xi) = 0, all other variables get weight 1. To each satisfying assignment
m′ of ϕ′ we construct the assignment m′′ which is the restriction of m′ to the
variables of ϕ. This construction is an AP-reduction.

Note that m′′ is feasible if m′ is. Let m′ be an r-approximation of OPT(ϕ′).
Note that whenever for xi ∈ T (m) we have m′(xi) = 0 then m′(x′

i) = 1. The
other way round, we may assume that whenever m′(xi) = 1 for xi ∈ T (m) then
m′(x′

i) = 0. If this is not the case, then we can change m′ accordingly, decreasing
the weight that way. It follows that w(m′) = n0 + n1 where we have

n0 = |{i | xi ∈ T (m),m′(xi) = 0}| = |{i | xi ∈ T (m),m′(xi) �= m(xi)}|
n1 = |{i | xi /∈ T (m),m′(xi) = 1}| = |{i | xi /∈ T (m),m′(xi) �= m(xi)}| ,

which means that w(m′) equals hd(m,m′′). Analogously, the optima in both
problems correspond, that is we have OPT(ϕ′) = OPT(ϕ,m). From this we
deduce the final inequality hd(m,m′′)/OPT(ϕ,m) = w(m′)/OPT(ϕ′) ≤ r. ��

Table 3. Sets of Boolean relations with their names determined by co-clone inclusions

Γ ⊆ iI0 ⇔ Γ is 0-valid Γ ⊆ iI1 ⇔ Γ is 1-valid

Γ ⊆ iE2 ⇔ Γ is Horn Γ ⊆ iV2 ⇔ Γ is dual Horn

Γ ⊆ iM2 ⇔ Γ is monotone Γ ⊆ iD2 ⇔ Γ is bijunctive

Γ ⊆ iL2 ⇔ Γ is affine Γ ⊆ iD1 ⇔ Γ is 2affine

Γ ⊆ iN2 ⇔ Γ is complementive Γ ⊆ iI ⇔ Γ is both 0- and 1-valid

Proposition 20. For every dual Horn constraint language Γ ⊆ iV2 we have the
reduction NSol(Γ ) ≤AP WeightedMinOnes({x ∨ y ∨ ¬z, x ∨ y}).

Proof. Since {x∨y∨¬z, x,¬x} is a basis of iV2, by Corollary 5 it suffices to prove
the reduction NSol({x∨y∨¬z, x,¬x}) ≤AP WeightedMinOnes({x∨y∨¬z, x∨y}).
To this end, first reduce NSol({x∨y∨¬z, x,¬x}) to NSol(x∨y∨¬z) by Lemma 6
and then use Lemma 19. ��
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Fig. 1. Lattice of coclones with complexity classification for NSol
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Proposition 21. NSol(Γ ) is MinHornDeletion-hard for finite Γ with iV2 ⊆ 〈Γ 〉.
Proof. For Γ ′ := {x∨ y ∨ ¬z, x,¬x} we have MinHornDeletion ≡AP MinOnes(Γ ′)
by Proposition 18. Now it follows MinOnes(Γ ′) ≤AP NSol(Γ ′) ≤AP NSol(Γ ) using
Lemma 14 and Corollary 5 on the assumption Γ ′ ⊆ iV2 ⊆ 〈Γ 〉. ��
Proposition 22. The problem NSol(Γ ) is poly-APX-hard for constraint lan-
guages Γ verifying iN ⊆ 〈Γ 〉.
Proof. The constraint language Γ1 := {even4, x → y, x} is a base of iI1.
MinOnes(Γ1) is poly-APX-hard by Theorem 2.14 of [10] and reduces to NSol(Γ1)
by Lemma 14. Since (x → y) = dup3(0, x, y) = ∃z(dup3(z, x, y)∧¬z), we have the
reductions NSol(Γ1) ≤AP NSol(Γ1 ∪ {¬x,dup3}) ≤AP NSol({even4,dup3, x,¬x})
by Corollary 5. Lemma 6 implies NSol({even4,dup3, x,¬x}) ≡AP NSol({even4,
dup3}); the latter problem reduces to NSol(Γ ) because of {even4,dup3} ⊆ iN ⊆
〈Γ 〉 and Corollary 5 ��

6 Concluding Remarks

Considering the optimization problem NSol is part of a more general research
program (cf. [4,5]) studying the approximation complexity of Boolean constraint
satisfaction problems in connection with Hamming distance. The studied prob-
lems fundamentally differ in the resulting complexity classification as well as in
the methods applicable to them (e.g. stability under pp-definitions and applica-
bility of classical Galois theory for Boolean clones vs. the need for minimal weak
bases for weak co-clones).

The problem NSol is in PO for constraints, which are both bijunctive and
affine, or both Horn and dual Horn (also called monotone). In the interval of
constraint languages starting from those encoding vertex cover up to those encod-
ing hitting set for fixed arity hypergraphs or up to bijunctive constraints, NSol
becomes APX-complete. This indicates that the solution structure for these types
of constraints is more complex, and it becomes even more complicated for Horn
or dual Horn constraints. The next complexity stage of the solution structure is
characterized by affine constraints. In fact, these represent the error correcting
codes used in real-word applications. Even if we know that the given assignment
satisfies the constraint – contrary to the real-word situation in the case of nearest
neighbor decoding – the optimization problem NSol is surprisingly equivalent to
the one of finding the nearest codeword. The penultimate stage of solution struc-
ture complexity is given by 0-valid or 1-valid constraint languages, where one
finds poly-APX-completeness. This implies that we cannot get a suitable approx-
imation for these problems. It is implicit in NSol to check for the existence of at
least one solution. For the last case, when the constraint language is equivalent
to NAESAT, this is hard, where membership in iN2 implies intractability of the
SAT problem. Hence, a polynomial-time approximation is not possible at all.

It can be observed that NSol has a similar complexity classification as the
problem MinOnes. However, the relations inhabiting these classification cases
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are different. For instance, the Horn case is in PO for MinOnes, whereas it is
MinHornDeletion-complete for NSol. Another diffence w.r.t. MinOnes is that our
complexity classification preserves duality, i.e. that NSol(Γ ) and NSol(dual(Γ ))
always have the same complexity.
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Abstract. For a fixed graph F , we study the parameterized complexity
of a variant of the F -free Editing problem: Given a graph G and a
natural number k, is it possible to modify at most k edges in G so that
the resulting graph contains no induced subgraph isomorphic to F? In
our variant, the input additionally contains a vertex-disjoint packing H
of induced subgraphs of G, which provides a lower bound h(H) on the
number of edge modifications required to transform G into an F -free
graph. While earlier works used the number k as parameter or struc-
tural parameters of the input graph G, we consider instead the parame-
ter � := k − h(H), that is, the number of edge modifications above the
lower bound h(H). We show fixed-parameter tractability with respect
to � for K3-Free Editing, Feedback Arc Set in Tournaments, and
Cluster Editing when the packing H contains subgraphs with bounded
solution size. For K3-Free Editing, we also prove NP-hardness in case
of edge-disjoint packings of K3s and � = 0, while for Kq-Free Editing

and q ≥ 6, NP-hardness for � = 0 even holds for vertex-disjoint packings
of Kqs.

Keywords: NP-hard problem · Fixed-parameter algorithm · Subgraph
packing · Kernelization · Graph-based clustering · Feedback arc set ·
Cluster editing

1 Introduction

Graph modification problems are a core topic of algorithmic research [8,21,29]:
given a graph G, the aim is to transform G by a minimum number of modi-
fications (like vertex deletions, edge deletions, or edge insertions) into another
graph G′ fulfilling certain properties. Particularly well-studied are hereditary
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graph properties, which are closed under vertex deletions and are characterized
by minimal forbidden induced subgraphs: a graph fulfills such a property if and
only if it does not contain a graph F from a property-specific family F of graphs
as induced subgraph. All nontrivial vertex deletion problems and many edge
modification and deletion problems for establishing hereditary graph properties
are NP-complete [1,2,20,21,29].

One approach to cope with the NP-hardness of these problems are fixed-
parameter (tractable) algorithms, which run in f(k) · nO(1) time for a problem-
specific parameter k and input size n and can efficiently solve instances in which
the parameter k is small, even if the input size n is large. For vertex deletion,
edge deletion, and edge modification problems, there is a generic fixed-parameter
tractability result: If the desired graph property has a finite forbidden induced
subgraph characterization, then the corresponding problems are fixed-parameter
tractable with respect to the number of modifications k [8]. When combined
with additional data reduction and pruning rules, the corresponding search tree
algorithms can yield competitive solvers [17,24]. Nevertheless, the number of
modifications is often too large. Thus, smaller parameters should be considered.

A natural approach to obtain smaller parameters is “parameterization above
guaranteed values” [11,15,22,23]. The idea is to use a lower bound h on the
solution size and to use � := k − h as parameter instead of k. This idea has
been applied successfully to Vertex Cover, the problem of finding at most
k vertices such that their deletion removes all edges (that is, all K2s) from G.
Since the size of a smallest vertex cover is large in many input graphs, above-
guarantee parameterizations have been considered for the lower bounds “size
of a maximum matching M in the input graph” and “optimum value L of the
LP relaxation of the standard ILP-formulation of Vertex Cover”. After a
series of improvements [11,15,22,26], the current best running time is 3� · nO(1),
where � := k − (2 · L − |M |) [15].

We aim to extend this approach to edge modification problems, where the
number k of modifications tends to be even larger than for vertex deletion prob-
lems. For example, in the case of Cluster Editing, which asks to destroy
induced paths on three vertices by edge modifications, the number of modifica-
tions is often larger than the number of vertices in the input graph [6]. Hence,
above-guarantee parameterization seems even more relevant for edge modifica-
tion problems. Somewhat surprisingly, this approach has not been considered
so far. We thus initiate research on above-guarantee parameterization in this
context. As a starting point, we focus on graph properties that are characterized
by one small forbidden induced subgraph.

Lower Bounds by Packings of Bounded-Cost Graphs. Following the approach of
parameterizing Vertex Cover above the size of a maximum matching, we can
parameterize F -free Editing above a lower bound obtained from packings of
induced subgraphs containing F .

Definition 1.1. A vertex-disjoint (or edge-disjoint) packing of induced sub-
graphs of a graph G is a set H = {H1, . . . , Hz} such that each Hi is an induced
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subgraph of G and such that the vertex sets (or edge sets) of the Hi are mutually
disjoint.

While it is natural to consider packings of F -graphs to obtain a lower bound on
the solution size, a packing of other graphs that contain F as induced subgraph
might yield better lower bounds and thus a smaller above-guarantee parameter.
For example, a K4 contains several triangles and two edge deletions are neces-
sary to make it triangle-free.1 Thus, if a graph G has a vertex-disjoint packing
of h3 triangles and h4 K4s, then at least h3+2·h4 edge deletions are necessary to
make it triangle-free. Moreover, when allowing arbitrary graphs for the packing,
the lower bounds provided by vertex-disjoint packings can be better than the
lower bounds provided by edge-disjoint packings of F . A disjoint union of h K4s,
for example, has h edge-disjoint triangles but also h vertex-disjoint K4s. Hence,
the lower bound provided by packing vertex-disjoint K4s is twice as large as the
one provided by packing edge-disjoint triangles for this graph.

Motivated by this benefit of vertex-disjoint packings of arbitrary graphs, we
mainly consider lower bounds obtained from vertex-disjoint packings, which we
assume to receive as input. Thus, we arrive at the following problem, where
τ(G) denotes the minimum size of an F -free editing set for a graph G:

Problem 1.2 (F -free Editing with Cost-t Packing).
Input: A graph G = (V,E), a vertex-disjoint packing H of induced subgraphs

of G such that 1 ≤ τ(H) ≤ t for each H ∈ H, and a natural number k.
Question: Is there an F-free editing set S ⊆

(
V
2

)
of size at most k such

that GΔS := (V, (E \ S) ∪ (S \ E)) does not contain F as induced subgraph?

In the context of a concrete variant of F -free Editing, we refer to an F -free
editing set as solution and call a solution optimal if it has minimum size. The
special case of F -free Editing with Cost-t Packing where only F -graphs
are allowed in the packing is called F -free Editing with F -Packing.

From the packing H, we obtain the lower bound h(H) :=
∑

H∈H τ(H) on
the size of an F -free editing set, which allows us to use the excess � := k − h(H)
over this lower bound as parameter, as illustrated in Fig. 1. Since F is a fixed
graph, we can compute the bound h(H) in f(t) · |G|O(1) time using the generic
search tree algorithm [8] for each H ∈ H. In the same time we can also verify
whether the cost-t property is fulfilled.

Packings of forbidden induced subgraphs have been used in implementations
of fixed-parameter algorithms to prune the corresponding search trees tremen-
dously [17]. By showing fixed-parameter algorithms for the above-guarantee
parameters, we hope to explain the fact that these packings help in obtaining
fast algorithms.

Our Results. We first state the negative results since they justify the focus on
concrete problems and, to a certain extent, also the focus on parameterizing

1 Bounds of this type are exploited, for example, in so-called cutting planes, which are
used in speeding up the running time of ILP solvers for concrete problems.
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Fig. 1. An instance of Triangle Deletion. The packing graphs have gray back-
ground. Left: A vertex-disjoint packing of two triangles giving � = 1. Right: A vertex-
disjoint packing of a triangle and a K4 giving � = 0. The solution consists of the three
dashed edges.

edge modification problems above vertex-disjoint packings. We show that, if F
is a triangle and H is an edge-disjoint packing of h triangles in a graph G,
then it is NP-hard to decide whether G has a triangle deletion set of size h
(that is, � = 0). Thus, parameterization by � is hopeless for this packing lower
bound. Moreover, we show that K6-free Editing with K6-Packing is NP-
hard for � = 0 above vertex-disjoint packings. This proves, in particular, that a
general fixed-parameter tractability result as it is known for the parameter k [8]
cannot be expected. We also show that extending the parameterization “above
maximum matching” for Vertex Cover to d-Hitting Set in a natural way
leads to intractable problems. This is achieved by showing that, for all q ≥ 3,
Pq-free Vertex Deletion with Pq-Packing is NP-hard even if � = 0.

On the positive side, we study three variants of F -free Editing with

Cost-t Packing in detail, namely the ones in which F is a triangle (that is,
a K3) or a path on three vertices (that is, a P3). The first case is known as
Triangle Deletion, the second one as Cluster Editing. We also consider
the case in which the input is a tournament graph and F is a directed cycle
on three vertices. This is known as Feedback Arc Set in Tournaments.
Using a general approach described in Sect. 2, we obtain fixed-parameter algo-
rithms for these variants of F -free Editing with Cost-t Packing parame-
terized by t and �. This implies, in particular, fixed-parameter tractability for
F -free Editing with F -Packing parameterized by �. Specifically, we obtain
the following positive results:

(i) For Triangle Deletion, we show an O(t · �)-vertex problem kernel for
cost-t packings and a (2t + 3)� · 2O(t) · nO(1)-time algorithm for cost-t packings.

(ii) For Cluster Editing, we obtain a 2O(t·�) · nO(1) time algorithm and
an O(t · �)-vertex kernel for cost-t packings, and a 4� · nO(1)-time algorithm for
P3-packings.

(iii) For Feedback Arc Set in Tournaments, we show an O(t · �)-vertex
problem kernel and a 2O(

√
(2t+1)�) · nO(1)-time algorithm for cost-t packings.

For the kernelization results, we need to assume that t ∈ O(log n) to guar-
antee polynomial running time of the data reduction. Hence, in the context of
problem kernelization, we consider t to be part of the problem, whereas for the
fixed-parameter algorithms, t can be considered a part of the input.
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Due to space constraints, most proofs are deferred to a full version of the paper.

Notation. Unless stated otherwise, we consider only undirected, simple, finite
graphs G = (V,E), with a vertex set V (G) := V and an edge set E(G) := E ⊆(
V
2

)
:= {{u, v} | u, v ∈ V ∧ u 	= v}. Let n := |V | denote the order of the graph

and m := |E| its number of edges. A set S ⊆
(
V
2

)
is an edge modification set

for G. For an edge modification set S for G, let GΔS := (V, (E \ S) ∪ (S \ E))
denote the graph obtained by applying S to G. If S ⊆ E, then S is called an
edge deletion set and we write G \ S instead of GΔS. The open neighborhood
of a vertex v ∈ V is defined as NG(v) := {u ∈ V | {u, v} ∈ E}. Also, for V ′ ⊆
V , let G[V ′] := (V ′, E ∩

(
V ′

2

)
) denote the subgraph of G induced by V ′. A

directed graph (or digraph) G = (V,A) consists of a vertex set V (G) and an arc
set A(G) := A ⊆ {(u, v) ∈ V 2 | u 	= v}. A tournament on n vertices is a directed
graph (V,A) with |V | = n such that, for each pair of distinct vertices u and v,
either (u, v) ∈ A or (v, u) ∈ A.

For parameterized complexity basics, we refer to [10,12]. A kernelization is a
polynomial-time algorithm mapping an instance (x, k) of L to an instance (x′, k′)
of L such that (x, k) ∈ L if and only if (x′, k′) ∈ L, |x′| ≤ g(k), and k′ ≤ h(k)
for some computable functions g and h. A kernelization often consists of data
reduction rules, which transform an instance (x, k) in polynomial time into an
instance (x′, k′) and are correct if (x, k) is a yes-instance if and only if (x′, k′) is.

2 General Approach

Recall that τ(H) is the minimum number of edge modifications required to
make a graph H F -free. Our fixed-parameter algorithms for F -free Editing

with Cost-t Packing parameterized by the combination of t and � := k−h(H),
where h(H) :=

∑
H∈H τ(H), are based on the following approach. We show that,

for each induced subgraph H of G in a given packing H, we face essentially two
situations. Either we find an optimal solution for H that is a subset of an optimal
solution for G, or we find a certificate witnessing that (a) H needs to be solved
suboptimally or that (b) a vertex pair containing exactly one vertex from H
needs to be modified. Thus, we arrive at a classic win-win scenario [13] where we
can either apply data reduction or show that the packing size |H| is bounded.

Lemma 2.1. Let (G,H, k) be an instance of F -free Editing with Cost-t
Packing and let S be a size-k solution that contains, for each H = (W,F ) ∈ H,

(a) at least τ(H) + 1 vertex pairs from
(
W
2

)
, or

(b) at least one vertex pair {v, w} with v ∈ V \ W and w ∈ W .

Then, |H| ≤ 2�.

Proof. Denote by Ha ⊆ H the set of all graphs in H that fulfill property (a)
and let pa := |Ha|. Let Hb := H \ Ha denote the set containing the remaining
packing graphs (fulfilling property (b)) and let pb := |Hb|. Thus, |H| = pa + pb.
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Furthermore, let ha :=
∑

H∈Ha
τ(H) denote the lower bound obtained from

the graphs in Ha and let hb := h(H) − ha denote the part of the lower bound
obtained by the remaining graphs.

The packing graphs in Ha cause ha + pa edge modifications inside of them.
Similarly, the packing graphs in Hb cause at least hb edge modifications inside
of them, and each packing graph in Hb additionally causes modification of at
least one vertex pair that contains exactly one vertex from this graph. Call this
vertex pair crossing and observe that every such pair can be a crossing pair
of at most two different packing graphs (since the packing graphs are pairwise
vertex-disjoint). Consequently, at least hb + pb/2 edge modifications are caused
by the graphs in Hb. This implies that

k ≥ ha + hb + pa + pb/2
⇔ k − h(H) ≥ pa + pb/2
⇔ 2� ≥ 2pa + pb ≥ |H|. �

Lemma 2.1 allows us to upper-bound k in t and �, which we can then exploit in
fixed-parameter algorithms.

Lemma 2.2. Let (G,H, k) be a yes-instance of F -free Editing with Cost-t
Packing such that |H| ≤ 2�. Then, k ≤ (2t + 1)�.

Proof. By definition, k = � + h(H) ≤ � + t · |H| ≤ � + t · 2� = (2t + 1)�. �

3 Triangle Deletion

The first application of our framework is Triangle Deletion, the problem
of destroying all induced triangles (K3s) in a graph by at most k edge dele-
tions. Triangle Deletion is NP-complete [29]. It allows for a trivial reduc-
tion to 3-Hitting Set since edge deletions do not create new triangles [16].
Combining this approach with the currently fastest known algorithms for 3-

Hitting Set [4,28] gives an algorithm for Triangle Deletion with running
time O(2.076k + nm). Finally, Triangle Deletion admits a problem kernel
with at most 6k vertices [7].

We show that Triangle Deletion with Cost-t Packing is fixed-
parameter tractable with respect to the combination of t and � := k −
h(H). More precisely, we obtain a kernelization and a search tree algo-
rithm. Both make crucial use of the following generic reduction rule for
Triangle Deletion with Cost-t Packing.

Reduction Rule 3.1. If there is an induced subgraph H ∈ H and a set T ⊆
E(H) of τ(H) edges such that deleting T destroys all triangles of G that contain
edges of H, then delete T from G, H from H and decrease k by τ(H).

If Reduction Rule 3.1 is not applicable to H, then we define a certificate to be
a set T of triangles in G, each containing exactly one distinct edge of H, such
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that |T | = τ(H) + 1 or τ(H ′) > τ(H) − |T |, where H ′ is the subgraph obtained
from H by deleting, for each triangle in T , its edge shared with H.

In the following, let f(G, k) denote the running time of the fastest algorithm
that returns a minimum triangle-free deletion set of size at most k if it exists.
We assume that f is monotonically nondecreasing in both the size of G and in k.
Currently f(G, k) = O(2.076k + |V (G)| · |E(G)|).

Lemma 3.2. Reduction Rule 3.1 is correct. Moreover, in O(nm + n · f(H∗, t))
time, we can check and apply it to all H ∈ H and output a certificate T if it does
not apply to some H ∈ H. Herein, H∗ is the largest graph in H.

Proof. We first show correctness. Let (G,H, k) be the instance to which Reduc-
tion Rule 3.1 is applied and let (G′,H \ {H}, k − τ(H)) with G′ := G \ T be the
result. We show that (G,H, k) is a yes-instance if and only if (G′,H \ {H}, k −
τ(H)) is.

First, let S be a solution of size at most k for (G,H, k). Let SH := S ∩E(H)
denote the set of edges of S that destroy all triangles in H. By definition, |SH | ≥
τ(H). Since SH ⊆ E(H), only triangles containing at least one edge of H are
destroyed by deleting SH . It follows that the set of triangles destroyed by SH is a
subset of the triangles destroyed by T . Hence, (S\SH)∪T has size at most k and
clearly is a solution for (G,H, k) that contains all edges of T . Thus, deleting T
from G, H from H, and decreasing k by τ(H) yields an equivalent instance.

For the converse direction, let S′ be a solution of size at most k − τ(H)
for (G′,H \ {H}, k − τ(H)). Since T ⊆ E(H), it holds that every triangle con-
tained in G that does not contain any edge of H is also a triangle in G′. Thus, S′

is a set of edges whose deletion in G destroys all triangles that do not contain
any edge of H. Since T destroys all triangles containing an edge of H, we have
that T ∪ S′ is a solution for G. Its size is k.

We now show the running time. First, in O(nm) time, we compute for all H ∈
H all triangles T that contain exactly one edge e ∈ E(H). These edges are labeled
in each H ∈ H. Then, for each H ∈ H, in f(H, t) time we determine the size τ(H)
of an optimal triangle-free deletion set for H. Let t∗ denote the number of labeled
edges of H and let H ′ denote the graph obtained from H by deleting the labeled
edges. If t∗ > τ(H), then we return as certificate τ(H) + 1 triangles of T , each
containing a distinct of τ(H) + 1 arbitrary labeled edges. Otherwise, observe
that, after deleting the labeled edges, each remaining triangle of G that contains
at least one edge of H is contained in H ′. Thus, we now determine whether H ′

can be made triangle-free by τ(H)−t∗ edge deletions in f(H ′, τ(H)−t∗) time. If
this is the case, then the rule applies and the set T consists of the solution for H ′

plus the previously deleted edges. Otherwise, destroying all triangles that contain
exactly one edge from H leads to a solution which needs more than τ(H) edge
deletions and thus the rule does not apply and we return the certificate T for
this H ∈ H. The overall running time now follows from the monotonicity of f ,
from the fact that |H| ≤ n, and from the fact that one pass over H is sufficient
since deleting edges in each H does not produce new triangles and does not
destroy triangles in any H ′ 	= H. �
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Observe that Reduction Rule 3.1 never increases the parameter � since we
decrease both k as well as the lower bound h(H) by τ(H). After application of
Reduction Rule 3.1, we can upper-bound the solution size k in terms of t and �.

Lemma 3.3. Let (G,H, k) be a yes-instance of Triangle Deletion with

Cost-t Packing such that Reduction Rule 3.1 is inapplicable. Then,
k ≤ (2t + 1)�.

Proof. Since (G,H, k) is reduced with respect to Reduction Rule 3.1, for each
graph H = (W,F ) in H, there is a set of edges between W and V \W witnessing
that any optimal solution for H does not destroy all triangles containing at least
one edge from H. Consider any optimal solution S. For each graph H ∈ H, there
are two possibilities: Either at least τ(H)+1 edges inside H are deleted by S, or
at least one external edge of H is deleted by S. Therefore, S fulfills the condition
of Lemma 2.1 and thus |H| ≤ 2�. �

This implies a kernelization with respect to � for every fixed value of t. The
kernel can be obtained by applying the known kernelization to an instance that
is reduced with respect to Reduction Rule 3.1.

Theorem 3.4. For every fixed t ≥ 1, Triangle Deletion with Cost-t
Packing admits a problem kernel with at most (12t + 6)� vertices that can be
computed in O(nm + n · f(H, t)) time, where H is the largest graph in H.

Proof. Let (G = (V,E),H, k) be the input instance. First, compute in O(nm +
n · f(H, t)) time an instance that is reduced with respect to Reduction Rule 3.1.
Afterwards, by Lemma 3.3, we can reject if k > (2t + 1)�.

Otherwise, we apply the known kernelization algorithm for Triangle Dele-

tion to the instance (G, k) (that is, without H). This kernelization produces
in O(m

√
m) = O(nm) time a problem kernel (G′, k′) with at most 6k ≤

(12t + 6)� vertices and with k′ ≤ k [7]. Adding an empty packing gives
an equivalent instance (G′, ∅, k′) with parameter �′ = k′ ≤ (2t + 1)� of
Triangle Deletion with Cost-t Packing. �

We can also devise a search tree algorithm for the combined parameter (t, �).

Theorem 3.5. Triangle Deletion with Cost-t Packing can be solved
in O((2t + 3)� · (nm + n · f(H, t))) time, where H is the largest graph in H.

Proof. First, apply Reduction Rule 3.1 exhaustively in O(nm + nf(H, t)) time.
Now, consider a reduced instance. If � < 0, then we can reject the instance.
Otherwise, consider the following two cases.

Case 1: H contains a graph H. Let t′ := τ(H) ≤ t. Since Reduction Rule 3.1 does
not apply to H, there is a certificate T of t′′ ≤ t′ + 1 triangles, each containing
exactly one distinct edge of H such that deleting the edges of these triangles
contained in H produces a subgraph H ′ of H that cannot be made triangle-free
by t′ − t′′ edge deletions. Thus, branch into the following (2t′′ + 1) cases: First,
for each triangle T ∈ T , create two cases, in each deleting a different one of the
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two edges of T that are not in H. In the remaining case, delete the t′′ edges of H
and replace H by H ′ in H.

Case 2: H = ∅. Either G is triangle-free, then we are done. Otherwise, pick an
arbitrary triangle in G and add it to H.

It remains to show the running time by bounding the search tree size. In
Case 2, no branching is performed and the parameter is decreased by at least one.
In Case 1, the parameter value is decreased by one in each branch: in the first 2t′′

cases, an edge that is not contained in any packing graph is deleted. Thus, k
decreases by one while h(H) remains unchanged. In the final case, the value of k
decreases by t′′ since this many edge deletions are performed. However, τ(H ′) ≥
τ(H) − t′′ + 1. Hence, the lower bound h(H) decreases by at most t′′ − 1 and
thus the parameter � decreases by at least one. Note that applying Reduction
Rule 3.1 never increases the parameter. Hence, the depth of the search tree is at
most �. �

For the natural special case t = 1, that is, for triangle packings, we immediately
obtain the following running time.

Corollary 3.6. Triangle Deletion with Triangle Packing is solvable in
O(5�nm) time.

We complement these positive results by the following hardness result for the
case of edge-disjoint triangle packings:

Theorem 3.7. Triangle Deletion with Edge-Disjoint Triangle Pack-

ing is NP-hard even if � = 0.

We prove Theorem 3.7 using a reduction from 3-SAT.

Problem 3.8 (3-SAT).
Input: A Boolean formula φ = C1 ∧ . . . ∧ Cm in conjunctive normal form over

variables x1, . . . , xn with at most three variables per clause.
Question: Does φ have a satisfying assignment?

Construction 3.9. Given a Boolean formula φ, we create a graph G and an
edge-disjoint packing H of triangles such that G can be made triangle-free by
exactly |H| edge deletions if and only if there is a satisfying assignment for φ. We
assume that each clause of φ contains exactly three pairwise distinct variables.
The construction is illustrated in Fig. 2.

For each variable xi of φ, create a triangle Xi on the vertex set {x1
i , x

2
i , x

3
i }

with two distinguished edges xT
i := {x1

i , x
2
i } and xF

i := {x2
i , x

3
i } and add Xi

to H. For each clause Cj = (l1, l2, l3) of φ, create a triangle Yj on the vertex
set {c1j , c

2
j , c

3
j} with three edges cl1

j , cl2
j , and cl3

j . Connect the clause gadget Yj

to the variable gadgets as follows: If lt = xi, then connect the edge clt
j =: {u, v}

to the edge xT
i = {x1

i , x
2
i } via two adjacent triangles Aij := {u, v, x1

i } and
Bij := {v, x1

i , x
2
i } sharing the edge {v, x1

i }. The triangle Aij is added to H.
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Y1 Y2

x
T
i x

F
i

Fig. 2. Construction for the formula C1 ∧ C2, where C1 = (xi) and C2 = (¬xi). The
triangles on a gray background are contained in the mutually edge-disjoint triangle
packing H. Deleting the dashed edges corresponds to setting xi to true and, thus,
satisfying C1. Note that it is impossible to destroy triangle Y2 by |H| edge deletions if
we delete xT

i . This corresponds to the fact that C2 cannot be satisfied by setting xi = 1.

If lt = ¬xi, then connect the edge clt
j =: {u, v} to the edge xF

i = {x2
i , x

3
i }

via two adjacent triangles Aij := {u, v, x3
i } and Bij := {v, x2

i , x
3
i } sharing the

edge {v, x3
i }. The triangle Aij is added to H.

Proof (of Theorem 3.7). First, observe that Construction 3.9 introduces no edges
between distinct clause gadgets or distinct variable gadgets. Thus, under the
assumption that each clause contains each variable at most once, the only tri-
angles in the constructed graph are the Xi, the Yj , the Aij and Bij for all
variables xi and the incident clauses Cj .

Now, assume that φ allows for a satisfying assignment. We construct a set of
edges S of size |H| such that G′ := (V,E \S) is triangle-free. For each variable xi

that is true, add xT
i to S. For each variable xi that is false, add xF

i to S. By this
choice, the triangle Xi is destroyed in G′ for each variable xi. Additionally, for
each clause Cj and its true literals l ∈ {xi,¬xi}, the triangle Bij is destroyed.
To destroy Aij , we add to S the edge of Aij shared with Yj , which also destroys
the triangle Yj . For each clause Cj containing a false literal l ∈ {xi,¬xi}, we
destroy Bij and, simultaneously, Aij , by adding to S the edge of Aij shared
with Bij .

Conversely, assume that there is a set S of size |H| such that G′ = (V,E \S)
is triangle-free. We construct a satisfying assignment for φ. First, observe that,
since the triangles in H are pairwise edge-disjoint, S contains exactly one edge
of each triangle in H. Thus, of each triangle Xi, at most one of the two edges xF

i

and xT
i is contained in S. The set S contains at least one edge e of each Yj .

This edge is shared with a triangle Aij . Since Aij ∈ H and, with e, S already
contains one edge of Aij , S does not contain the edge shared between Aij and Bij .
Since Bij /∈ H, S has to contain an edge of Bij shared with another triangle
in H. If the clause Cj contains xi, then the only such edge is xT

i and we set xi to
true. If the clause Cj contains ¬xi, then the only such edge is xF

i and we set xi
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to false. In both cases, clause Cj is satisfied. Since at most one of xT
i and xF

i is
in S, the value of each variable xi is well-defined. �

4 Feedback Arc Set in Tournaments

In this section, we study the following problem.

Problem 4.1 (Feedback Arc Set in Tournaments (FAST)).
Input: An n-vertex tournament G = (V,A) and a natural number k.
Question: Does G have a feedback arc set S ⊆ A, that is, a set S such that

reversing all arcs in S yields an acyclic tournament, of size at most k?

FAST is NP-complete [1] but fixed-parameter tractable with a currently best
known running time of 2O(

√
k) + nO(1) [18]. Moreover, a problem kernel with

(2 + ε)k vertices for any fixed ε > 0 is known [3] as well as a simpler 4k-vertex
kernel [25]. It is well-known that a tournament is acyclic if and only if it does
not contain a directed triangle (cycle on 3 vertices). Hence, the problem is to
find a set of arcs whose reversal leaves no directed triangle in the tournament.

We show fixed-parameter tractability of FAST with Cost-t Packing para-
meterized by the combination of t and � := k − h(H) and a problem kernel with
respect to � for fixed t. Recall that h(H) :=

∑
H∈H τ(H) ≥ |H|, where τ(G) is

the size of a minimum feedback arc set for a directed graph G. The approach
is the same as for Triangle Deletion in Sect. 3, that is, we upper-bound the
solution size k in t and � and apply the fixed-parameter algorithm for k [18].

Reduction Rule 4.2. If there is a subtournament H ∈ H and a feedback arc
set T ⊆ A(H) of size τ(H) such that reversing the arcs in T leaves no directed
triangles in G containing arcs of H, then reverse the arcs in T , remove H from H,
and decrease k by τ(H).

Although Reduction Rule 4.2 is strikingly similar to Reduction Rule 3.1, its cor-
rectness proof is significantly more involved.

Exhaustive application of Reduction Rule 4.2 allows us to show that k ≤
(2t + 1)� in any yes-instance (analogous to Lemma 3.3). Having established the
bound for k, we obtain the following two fixed-parameter tractability results,
where f(G, k) denotes the running time of the fastest algorithm that finds a
minimum feedback arc set of size at most k for a given tournament G if it exists.
We assume that f is monotonically nondecreasing in both the size of G and in k.
Currently, f(G, k) = 2O(

√
k) + |G|O(1) [18].

Theorem 4.3. Feedback Arc Set in Tournaments with Cost-t Pack-

ing is solvable in 2O(
√

(2t+1)�) + nO(1) + nf(G, t) time.
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Theorem 4.4. For every fixed t ≥ 1, Feedback Arc Set in Tournaments

with Cost-t Packing admits a problem kernel with at most (8t + 4)� vertices.

5 Cluster Editing

We now apply our framework to Cluster Editing, a well-studied edge modi-
fication problem in parameterized complexity [5,9,14,19].

Problem 5.1 (Cluster Editing).
Input: A graph G = (V,E) and a natural number k.
Question: Is there an edge modification set S ⊆

(
V
2

)
of size at most k such

that GΔS is a cluster graph, that is, a disjoint union of cliques?

A graph is a cluster graph if and only if it is P3-free [27]. Thus, Cluster Editing

is the problem of destroying all P3s by few edge modifications. For brevity, we
refer to the connected components of a cluster graph (which are cliques) and
to their vertex sets as clusters. The currently fastest algorithm for Cluster

Editing parameterized by the solution size k runs in O(1.62k + |G|) time [5].
Assuming the exponential-time hypothesis, Cluster Editing cannot be solved
in 2o(k) · |G|O(1) time [14,19]. Cluster Editing admits a problem kernel with
at most 2k vertices [9].

Several kernelizations for Cluster Editing are based on the following obser-
vation: If G contains a clique such that all vertices in this clique have the same
closed neighborhood, then there is an optimal solution that treats these vertices
in a similar manner. That is, it puts these vertices into the same cluster. This
implies that the edges of this clique are never deleted. The following rule is based
on a generalization of this observation.

Reduction Rule 5.2. If G = (V,E) contains an induced subgraph H = (W,F )
having an optimal solution S of size τ(H) such that for all vertices u, v ∈ W :

– NG(v) \ W = NG(u) \ W if u and v are in the same cluster of HΔS, and
– NG(v) \ W ∩ NG(u) \ W = ∅ otherwise,

then replace G by GΔS and decrease k by τ(H).

Let f(G, k) denote the running time of the fastest algorithm that returns an opti-
mal solution of size at most k if it exists; we assume again that f is monotonically
nondecreasing in both the size of G and in k. Currently f(G, k) = O(1.62k+|G|).
The following lemma asserts that the rule is correct.

Lemma 5.3. Let (G,H, k) be an instance of Cluster Editing with Cost-t
Packing and let H = (W,F ) ∈ H. Then, in O(nm+ |W |2+f(H, t)) time we can
determine whether Reduction Rule 5.2 applies. If this is the case, then (G,H \
{H}, k − τ(H)) is an equivalent instance.
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Observe that since k is decreased by τ(H), the parameter � does not increase
when the rule is applied. As for the previous problems, applying the rule to
each H ∈ H is sufficient for showing fixed-parameter tractability with respect
to (t, �).

Theorem 5.4. Cluster Editing with Cost-t Packing is solvable in
O(2O(t·�) · n + nm) time.

Finally, we observe that, if t is not part of the input, then we obtain a problem
kernel with a linear number of vertices.

Theorem 5.5. Cluster Editing with Cost-t Packing admits a problem
kernel with (4t + 2)� vertices which can be computed in O(mn + 1.62t · n) time.

For Cluster Editing with P3-Packing, the generic algorithm based on
Reduction Rule 5.2 (with t = 1) using the currently best Cluster Editing

running time leads to a running time of O(4.26�+nm); we can show an improved
running time.

Theorem 5.6. Cluster Editing with P3-Packing can be solved in 4� ·nO(1)

time.

6 Hardness Results

In this section, we show that there are edge modification problems which are
NP-hard even for constant-size forbidden subgraphs and if � = 0.

Theorem 6.1. For every fixed q ≥ 6, Kq-free Deletion with Kq-Packing

is NP-hard for � = 0.

We prove Theorem 6.1 by giving a reduction from 3-SAT.

Construction 6.2. Let φ be a Boolean formula with variables x1, . . . , xn and
clauses C1, . . . , Cm. We assume that each clause Cj contains exactly three pair-
wise distinct variables. We create a graph G and a vertex-disjoint Kq-packing H
as follows.

For each variable xi, add a q-clique Xi to G that has two distinguished
disjoint edges xF

i and xT
i . For each clause Cj = (l1 ∧ l2 ∧ l3) with literals l1, l2,

and l3, add a q-clique Yj to G that has three distinguished and pairwise disjoint
edges el1 , el2 , and el3 (which exist since q ≥ 6). Finally, if lt = xi, then identify
the edge elt with xT

i and if lt = ¬xi, then identify the edge elt with xF
i . The

packing H consists of all Xi introduced for the variables xi of φ.

Lemma 6.3. Let G be the graph output by Construction 6.2 and let H be an
induced Kq in G. Then, H is either one of the Xi or one of the Yj .
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Proof. First, note that the Xi are pairwise vertex-disjoint since Construction 6.2
only identifies edges of Yjs with edges of Xis and no edge in any Yj is identified
with edges in different Xi. For any Xi and Yj , the vertices in V (Xi) \ V (Yj)
are nonadjacent to those in V (Yj) \ V (Xi). Similarly, for Yi and Yj , the vertices
in V (Yi)\V (Yj) are nonadjacent to those in V (Yj)\V (Yi) for i 	= j. Thus, every
clique in G is entirely contained in one of the Xi or Yj . �
Lemma 6.3 allows us to prove Theorem 6.1.

Proof (of Theorem 6.1). We show that φ is satisfiable if and only if G can be
made Kq-free by k = |H| edge deletions (that is, � = 0).

First, assume that there is an assignment that satisfies φ. We construct a
Kq-free deletion set S for G as follows: if the variable xi is set to true, then
put xT

i into S. If the variable xi is set to false, then add xF
i to S. Thus, for

each Xi, we add exactly one edge to S. Since H consists of the Xi, we have
|S| = |H|. Moreover, since each clause Cj contains a true literal, at least one
edge of each Yj is contained in S. Thus, G \ S is Kq-free, since, by Lemma 6.3,
the only Kqs in G are the Xi and Yj and, for each of them, S contains at least
one edge.

Now, assume that G can be made Kq-free by deleting a set S of |H| edges.
Then, S deletes exactly one edge of each Xi and at least one edge of each Yj . We
can assume without loss of generality that S contains either the edge xT

i or xF
i

for each Xi since deleting one of these edges instead of another edge in Xi always
yields a solution by Construction 6.2. Thus, the deletion set S corresponds to a
satisfying assignment for φ. �

Finally, one can show NP-hardness of the problem of destroying all induced
paths of a fixed length q ≥ 3 by at most h vertex deletions even if a packing of h
vertex-disjoint induced Pqs in the input graph G is provided as input.
Theorem 6.4. For every fixed q ≥ 3, Pq-free Vertex Deletion with Pq-

Packing is NP-hard even if � = 0.

7 Conclusion

It is open to extend our framework to further problems. The most natural can-
didates appear to be Cograph Editing which is the problem of destroying
all induced P4s, K4-free Editing, and Claw-free Editing. In the case of
vertex-deletion problems, Triangle Vertex Deletion appears to be the most
natural open case. Furthermore, it would be nice to obtain more general the-
orems separating the tractable from the hard cases for this parameterization.
For Cluster Editing and Triangle Deletion improved running times are
desirable. Maybe more importantly, it is open to determine the complexity of
Cluster Editing and Feedback Arc Set in Tournaments parameterized
above the size of edge-disjoint packings of forbidden induced subgraphs. Finally,
our framework offers an interesting tradeoff between running time and power of
generic data reduction rules. Exploring such tradeoffs seems to be a rewarding
topic for the future. The generic rules presented in this work can be easily imple-
mented, which asks for subsequent experiments to evaluate their effectiveness.
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In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016: Theoretical Infor-
matics. LNCS, vol. 9644. Springer, Heidelberg (2016)

3. Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.:
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Abstract. Open Shop is a classical scheduling problem: given a set J
of jobs and a set M of machines, find a minimum-makespan schedule
to process each job Ji ∈ J on each machine Mq ∈ M for a given
amount piq of time such that each machine processes only one job at a
time and each job is processed by only one machine at a time. In Rout-
ing Open Shop, the jobs are located in the vertices of an edge-weighted
graph G = (V,E) whose edge weights determine the time needed for
the machines to travel between jobs. The travel times also have a nat-
ural interpretation as sequence-dependent family setup times. Routing
Open Shop is NP-hard for |V | = |M| = 2. For the special case with
unit processing times piq = 1, we exploit Galvin’s theorem about list-
coloring edges of bipartite graphs to prove a theorem that gives a suf-
ficient condition for the completability of partial schedules. Exploiting
this schedule completion theorem and integer linear programming, we
show that Routing Open Shop with unit processing times is solvable
in 2O(|V ||M|2 log |V ||M|) ·poly(|J |) time, that is, fixed-parameter tractable
parameterized by |V | + |M|. Various upper bounds shown using the
schedule completion theorem suggest it to be likewise beneficial for the
development of approximation algorithms.

Keywords: NP-hard scheduling problem · Fixed-parameter algorithm ·
Edge list-coloring · Sequence-dependent family or batch setup times

1 Introduction

One of the most fundamental and classical scheduling problems is Open
Shop [18], where the input is a set J := {J1, . . . , Jn} of jobs, a set M :=
{M1, . . . ,Mm} of machines, and the processing time piq that job Ji needs on
machine Mq; the task is to process all jobs on all machines in a minimum amount
of time such that each machine processes at most one job at a time and each job
is processed by at most one machine at a time.
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Averbakh et al. [3] introduced the variant Routing Open Shop, where the
jobs are located in the vertices of an edge-weighted graph whose edge weights
determine the time needed for the machines to travel between jobs. Initially,
the machines are located in a depot. The task is to minimize the time needed
for processing all jobs by all machines and returning all machines to the depot.
Routing Open Shop models, for example, tasks where machines have to per-
form maintenance work on stationary objects in a workshop [3]. Routing Open
Shop has also been interpreted as a variant of Open Shop with sequence-
dependent family or batch setup times [1,36]. Formally, Routing Open Shop
is defined as follows.

Definition 1.1 (ROUTING OPEN SHOP). An instance of Routing Open
Shop consists of a graph G = (V,E) with a depot v∗ ∈ V and travel times c : E →
N, jobs J = {J1, . . . , Jn} with locations L : J → V , machines M = {M1, . . . ,
Mm}, and, for each job Ji and machine Mq, a processing time piq ∈ N.

A route with s stays is a sequence R := (Ri)s
i=1 of stays Ri = (ai, vi, bi) ∈

N×V ×N from time ai to time bi in vertex vi for 1 ≤ i ≤ s such that v1 = vs = v∗,
a1 = 0, and bi + c(vi, vi+1) ≤ ai+1 ≤ bi+1 for 1 ≤ i ≤ s − 1. The length of R is
the end bs of the last stay.

A schedule S : J ×M → N is a total function determining the start time S(Ji,
Mq) of each job Ji on each machine Mq. That is, each job Ji is processed by
each machine Mq in the half-open time interval [S(Ji,Mq), S(Ji,Mq) + piq).
A schedule is feasible with respect to routes (RMq

)Mq∈M if

(i) no machine Mq processes two jobs Ji �= Jj at the same time, that is,
S(Ji,Mq) + piq ≤ S(Jj ,Mq) or S(Jj ,Mq) + pjq ≤ S(Ji,Mq) for all
jobs Ji �= Jj and machines Mq,

(ii) no job Ji is processed by two machines Mq,Mr at the same time, that is,
S(Ji,Mq) + piq ≤ S(Ji,Mr) or S(Ji,Mr) + pir ≤ S(Ji,Mq) for all jobs Ji

and machines Mq �= Mr,
(iii) machines stay in the location L(Ji) while executing a job Ji, that is, for each

job Ji and machine Mq with route RMq
= (Rk)s

k=1, there is a k ∈ {1, . . . , s}
such that Rk = (ak,L(Ji), bk) with ak ≤ S(Ji,Mq) ≤ S(Ji,Mq) + piq ≤ bk.

A schedule S is feasible and has length L if there are routes (RMq
)Mq∈M of

length L such that S is feasible with respect to (RMq
)Mq∈M. An optimal solution

to a Routing Open Shop instance is a feasible schedule of minimum length.

Preemption and Unit Processing Times. Open Shop is NP-hard for |M| =
3 machines [18]. Thus, so is Routing Open Shop with |V | = 1 vertex and
|M| = 3 machines. Routing Open Shop remains (weakly) NP-hard even for
|V | = |M| = 2 [3]; there are approximation algorithms both for this special and
the general case [2,11,27,35]. However, Open Shop is solvable in polynomial
time if

(1) job preemption is allowed, or
(2) all jobs Ji have unit processing time piq = 1 on all machines Mq.

It is natural to ask how these results transfer to Routing Open Shop.
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Regarding (1), Pyatkin and Chernykh [31] have shown that Routing Open
Shop with allowed preemption is solvable in polynomial time if |V | = |M| = 2,
yet NP-hard for |V | = 2 and an unbounded number |M| of machines.

Regarding (2), Routing Open Shop with unit processing times models
tasks where machines process batches of equal jobs in several locations and where
the transportation of machines between the locations takes significantly longer
than processing each individual job in a batch. Herein, there are conceivable
situations where the number of machines and locations is small.

Routing Open Shop with unit processing times clearly is NP-hard even for
|M| = 1 machine since it generalizes the metric travelling salesperson problem.
It is not obvious whether it is solvable in polynomial time even when both |V |
and |M| are fixed. We show the even stronger result that Routing Open Shop

with unit processing times is solvable in 2O(|V ||M|2 log |V ||M|) · poly(|J |) time,
that is, fixed-parameter tractable.

Fixed-Parameter Algorithms. Fixed-parameter algorithms are an approach
towards efficiently and optimally solving NP-hard problems: the main idea is
to accept the exponential running time for finding optimal solutions to NP-hard
problems, yet to confine it to some smaller problem parameter k [12,14,16,30].
A problem with parameter k is called fixed-parameter tractable (FPT) if there
is an algorithm that solves any instance I in f(k)poly(|I|) time, where f is
an arbitrary computable function. The corresponding algorithm is called fixed-
parameter algorithm. In contrast to algorithms that merely run in polynomial
time for fixed k, fixed-parameter algorithms can potentially solve NP-hard prob-
lems optimally and efficiently if the parameter k is small.

Recently, the field of fixed-parameter algorithmics has shown increased inter-
est in scheduling [5,7,9,10,15,23,25,29] and routing [6,8,13,19–22,34], yet fixed-
parameter algorithms for routing scheduling problems are unexplored so far.

Our Results. Using Galvin’s theorem on list-coloring edges of bipartite
graphs [17,33], in Sect. 3 we prove a sufficient condition for the polynomial-
time completability of a partial schedule, which does not necessarily assign start
times to all jobs on all machines, into a feasible schedule.

We use the schedule completion theorem to prove upper bounds on various
parameters of optimal schedules, in particular on their lengths in Sect. 4.

Using these bounds and integer linear programming, in Sect. 5 we show that
Routing Open Shop with unit processing times is fixed-parameter tractable
parameterized by |V | + |M| (unlike the general case when assuming P �= NP).

Since the schedule extension theorem is a useful tool for proving upper bounds
on various parameters of optimal schedules, we expect the schedule completion
theorem to be likewise beneficial for approximation algorithms.

Due to space constraints, some proofs are deferred to a full version of the paper.

Input Encoding. In general, a Routing Open Shop instance requires at least
Ω(|J | · |M| + |V | + |E|) bits in order to encode the processing time of each job
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on each machine and the travel time for each edge. We call this the standard
encoding. In contrast, an instance of Routing Open Shop with unit process-
ing times can be encoded using O(|V |2 · log cmax + |V | · log |J |) bits by simply
associating with each vertex in V the number of jobs it contains, where cmax is
the maximum travel time. We call this the compact encoding.

All running times in this article are stated for computing and outputting a
minimum-length schedule, whose encoding requires at least Ω(|J | · |M |) bits for
the start time of each job on each machine. Thus, outputting the schedule is
impossible in time polynomial in the size of the compact encoding. We therefore
assume to get the input instance in standard encoding, like for general Routing
Open Shop.

However, we point out that the decision version of Routing Open Shop
with unit processing times is fixed-parameter tractable parameterized by |V | +
|M| even when assuming the compact encoding: our algorithm is able to decide
whether there is a schedule of given length L in 2O(|V ||M|2 log |V ||M|)·poly(|I|) time,
where I is an instance given in compact encoding. To this end, the algorithm does
not apply the schedule completion Theorem 3.4 to explicitly construct a schedule
but merely to conclude its existence.

2 Preprocessing for Metric Travel Times

In this section, we show how any instance can be transformed into an equivalent
instance with travel times satisfying the triangle inequality. This will allow us
to assume that, in an optimal schedule, a machine only stays in a vertex if it
processes at least one job there: otherwise, it could take a “shortcut” bypassing
the vertex.

Lemma 2.1. Let I be a Routing Open Shop instance and I ′ be obtained
from I by replacing the graph G = (V,E) with travel times c : E → N by a
complete graph G′ on the vertex set V with travel times c′ : {v, w} �→ distc(v, w),
where distc(v, w) is the length of a shortest path between v and w in G with
respect to c.

Then, any schedule for I is a schedule of the same length for I ′ and vice
versa. Moreover, c′ satisfies the triangle inequality c′({v, w}) ≤ c′({v, u}) +
c′({u,w}) for all u, v, w ∈ V and can be computed in O(|V |3) time.

Lemma 2.2. Let S be a feasible schedule of length L for a Routing Open
Shop instance satisfying the triangle inequality.

Then, S is feasible with respect to machine routes (RMq
)Mq∈M of length at

most L such that, for each route R = ((ak, vk, bk))s
k=1 and each stay (ak, vk, bk)

on R, except, maybe, for k ∈ {1, s}, there is a job Ji ∈ J with S(Ji,Mq) ∈
[ak, bk).

Clearly, from Lemma 2.2, we get the following:

Observation 2.3. Vertices v ∈ V \ {v∗} with Jv = ∅ can be deleted from a
Routing Open Shop instance satisfying the triangle inequality, where v∗ is the
depot.
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From now on, we assume that our input instances of Routing Open Shop
satisfy the triangle inequality and exploit Lemma2.2 and Observation 2.3.

3 Schedule Completion Theorem

In this section, we present a theorem that allows us to complete partial schedules,
which do not necessarily assign a start point to each job on each machine, into
feasible schedules.

In the following, we consider only Routing Open Shop with unit process-
ing times and say that a machine Mq processes a job Ji at time S(Ji,Mq)
if it processes job Ji in the time interval [S(Ji,Mq), S(Ji,Mq) + 1). We use
S(Ji,Mq) = ⊥ to denote that the processing time of job Ji on machine Mq is
undefined.

Definition 3.1 (Partial schedule). A partial schedule with respect to given
routes (RMq

)Mq∈M of length at most L is a partial function S : J × M → N

satisfying Definition 1.1(i–iii) for those jobs Ji, Jj ∈ J and machines Mq,Mr ∈
M for which S(Ji,Mq) �= ⊥ and S(Jj ,Mr) �= ⊥. For a partial schedule S : J ×
M → N, we introduce the following terminology:

J S
Mq

:= {Ji ∈ J | S(Ji,Mq) = ⊥} is the set of jobs that lack processing by
machine Mq,

MS
Ji

:= {Mq ∈ M | S(Ji,Mq) = ⊥} is the set of machines that job Ji lacks
processing of (note that Ji ∈ J S

Mq
if and only if Mq ∈ MS

Ji
),

T S
Ji

:= {t ≤ L | ∃Mq ∈ M : S(Ji,Mq) = t} is the set of time units where job Ji

is being processed,
T S

Mq
:= {t ≤ L | ∃Ji ∈ J : S(Ji,Mq) = t} is the set of time units where

machine Mq is processing,
T RMq

v := {t ≤ L | there is a stay (ai, v, bi) on RMq
such that ai ≤ t < bi} are

the time units where Mq stays in a vertex v ∈ V , and
Jv := {Ji ∈ J | L(Ji) = v} is the set of jobs in vertex v ∈ V of G.

The schedule completion theorem will allow us to turn any completable par-
tial schedule into a feasible schedule. Intuitively, a schedule is completable if a
machine has enough “free time” in each vertex to process all yet unprocessed
jobs and to wait for other machines in the vertex to free their jobs.

Definition 3.2 (Completable schedule). Let (RMq
)Mq∈M be a family of

routes and, for each vertex v ∈ V , let
⋃gv

s=1 Ms
v := M be a partition of machines

such that, for any two machines Mq ∈ Ms
v and Mr ∈ Mt

v with s �= t, one has
T RMq

v ∩ T RMr
v = ∅.

A partial schedule S : J ×M → N with respect to (RMq
)Mq∈M is completable

if, for each vertex v ∈ V , each 1 ≤ s ≤ gv, each machine Mq ∈ Ms
v, and each

job Ji ∈ J S
Mq

∩ Jv, it holds that

|T RMq
v \ (T S

Ji
∪ T S

Mq
)| ≥ max

⎧
⎨

⎩

max
Mr∈Ms

v

|J S
Mr

∩ Jv|,

max
Jj∈Jv

|MS
Jj

∩ Ms
v|.

(3.1)
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Example 3.3. Let (RMq
)Mq∈M be routes such that all machines are in the

same vertex at the same time, that is, T RMq
v = T RMr

v for all vertices v ∈ V
and machines Mq,Mr ∈ M. Moreover, assume that each machine Mq ∈ M
stays in each vertex v ∈ V at least max{|Jv|, |M|} time, that is, |T RMq

v | ≥
max{|Jv|, |M|}. Then the empty schedule is completable and, by the following
schedule completion theorem, there is a feasible schedule with respect to the
routes (RMq

)Mq∈M.

Theorem 3.4 (Schedule completion theorem). If a partial schedule S : J ×
M → N with respect to routes (RMq

)Mq∈M is completable, then there is a feasible
schedule S′ ⊇ S with respect to the routes (RMq

)Mq∈M and it can be computed
in time polynomial in |J | + |M| + |V | +

∑
v∈V,Mq∈M |T RMq

v |.

We prove Theorem 3.4 using Galvin’s theorem about properly list-coloring the
edges of bipartite graphs [17,33].

Definition 3.5 (Proper edge coloring, list chromatic index). A proper
edge coloring of a graph G = (V,E) is a coloring C : E → N of the edges of G
such that C(e1) �= C(e2) if e1 ∩ e2 �= ∅.

A graph G = (V,E) is k-edge-choosable if, for every family {Le ⊆ N | e ∈ E}
satisfying |Le| ≥ k for all e ∈ E, G allows for a proper edge coloring C : E → N

with C(e) ∈ Le. The list chromatic index χ′
�(G) of G is the least integer k such

that G is k-edge-choosable.

Theorem 3.6 (Galvin [17]). For any bipartite multigraph G, it holds that
χ′

�(G) = Δ(G), where Δ(G) is the maximum degree of G.
Moreover, given a bipartite multigraph G = (V,E) and, for each edge e ∈ E,

a set Le ⊆ N with |Le| ≥ Δ(G), a proper edge coloring C : E → N with C(e) ∈ Le

is computable in polynomial time.

Before Galvin [17] proved Theorem3.6, its special case with G = Kn,n being
a complete bipartite graph was known as Dinitz’ conjecture. A self-contained
proof of Theorem3.6 was later given by Slivnik [33], who also pointed out the
polynomial-time computability of the coloring. We now use Theorem3.6 to prove
Theorem 3.4.

Proof (of Theorem 3.4). Let B = (J ∪M,X) be a bipartite graph with an edge
{Ji,Mq} ∈ X if and only if S(Ji,Mq) = ⊥ for Ji ∈ J and Mq ∈ M. We compute
a proper edge coloring C of B such that, for each edge {Ji,Mq} ∈ X, we have

C({Ji,Mq}) ∈ T RMqL(Ji) \ (T S
Ji

∪ T S
Mq

) (3.2)

and define S′(Ji,Mq) :=

{
C({Ji,Mq}) if {Ji,Mq} ∈ X and
S(Ji,Mq) otherwise.

It remains to show that (1) the edge coloring C is computable in time polynomial
in |J | + |M| + |V | +

∑
v∈V,Mq∈M |T RMq

v | and that (2) S′ is a feasible schedule.
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(1) We obtain the proper edge coloring C by independently computing, for
each induced subgraph Bvs := B[Jv∪Ms

v] for all v ∈ V and 1 ≤ s ≤ gv, a proper
edge coloring Cvs satisfying (3.2). To this end, observe that the maximum degree
of Bvs is

Δ := max

⎧
⎨

⎩

max
Mr∈Ms

v

|J S
Mr

∩ Jv|,

max
Jj∈Jv

|MS
Jj

∩ Ms
v|.

By Theorem 3.6, if, for each edge e ∈ X, we have a list Le of colors with |Le| ≥ Δ,
then Bvs has a proper edge coloring Cvs with Cvs(e) ∈ Le for each edge e of Bvs.
For each edge {Ji,Mq} of Bvs, we choose

L{Ji,Mq} := T RMq
v \ (T S

Ji
∪ T S

Mq
).

Since S is completable (Definition 3.2), we have |Le| ≥ Δ for each edge e of Bvs.
Thus, Bvs admits a proper edge coloring Cvs satisfying (3.2).

We now let C :=
⋃

v∈V,1≤s≤gv
Cvs. This is a proper edge coloring for the

bipartite graph B since, for edges evs of Bvs and ewt of Bwt with v �= w or s �= t,
we have Levs

∩Lewt
= ∅: for any vertex v ∈ V and machines Mq ∈ Ms

v,Mr ∈ Mt
v

with s �= t, one has T RMq
v ∩ T RMr

v = ∅, and for any machine Mq ∈ M and
v �= w ∈ V , one has T RMq

v ∩T RMq
w = ∅. Moreover, C satisfies (3.2) since each Cvs

for v ∈ V and 1 ≤ s ≤ gv satisfies (3.2).
Regarding the running time, it is clear that, for each v ∈ V and 1 ≤ s ≤

gv, the bipartite graph Bvs and the sets L{Jj ,Mq} of allowed colors for each
edge {Jj ,Mq} are computable in time polynomial in |J |+ |M|+ |T RMq

v |.1 More-
over, by Theorem 3.6, the sought edge coloring Cvs for each Bvs is computable
in time polynomial in |Bvs| +

∑
e∈E(Bvs)

|Le|.
(2) We first show that S′ is a schedule. For each job Ji ∈ J and each

machine Mq ∈ M we have S(Ji,Mq) �= ⊥ or {Ji,Mq} ∈ X. Thus, S′(Ji,Mq) =
S(Ji,Mq) �= ⊥ or S′(Ji,Mq) = C({Ji,Mq}) �= ⊥ and S′ is a schedule. We show
that S′ is feasible.

First, let Ji ∈ J be a job and Mq,Mr ∈ M be distinct machines. We show
that S′(Ji,Mq) �= S′(Ji,Mr). We distinguish three cases. If S(Ji,Mq) �= ⊥
and S(Ji,Mr) �= ⊥, then S′(Ji,Mq) = S(Ji,Mq) �= S(Ji,Mr) = S′(Ji,Mr). If
S(Ji,Mq) = ⊥ = S(Ji,Mr), then S′(Ji,Mq) = C({Ji,Mq}) �= C({Ji,Mr}) =
S′(Ji,Mr). Finally, if S(Ji,Mq) = ⊥ and S(Ji,Mr) �= ⊥, then S′(Ji,Mq) �=
S′(Ji,Mr) since S′(Ji,Mq) = C({Ji,Mq}) ∈ T RMq

v \ (T S
Ji

∪ T S
Mq

) and
S(Ji,Mr) ∈ T S

Ji
.

Now, let Ji, Jj ∈ J be distinct jobs and Mq ∈ M be a machine. We show
S′(Ji,Mq) �= S′(Jj ,Mq). We distinguish three cases. If S(Ji,Mq) �= ⊥ and
S(Jj ,Mq) �= ⊥, then S′(Ji,Mq) = S(Ji,Mq) �= S(Jj ,Mq) = S′(Jj ,Mq). If
S(Ji,Mq) = ⊥ = S(Jj ,Mq), then S′(Ji,Mq) = C({Ji,Mq}) �= C({Jj ,Mq}) =
S′(Jj ,Mq). Finally, if S(Ji,Mq) = ⊥ and S(Jj ,Mq) �= ⊥, then S′(Ji,
Mq) �= S′(Jj ,Mq) since S′(Ji,Mq) = C({Ji,Mq}) ∈ T RMq

v \ (T S
Ji

∪ T S
Mq

) and
S′(Jj ,Mq) ∈ T S

Mq
. ��

1 We abstain from a more detailed running time analysis since no such analysis is
available for the forthcoming application of Theorem 3.6 (yet).
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4 Upper and Lower Bounds

In this section, we show lower and upper bounds on the lengths of optimal
solutions to Routing Open Shop with unit processing times. These will be
exploited in our fixed-parameter algorithm and make first steps towards approx-
imation algorithms.

We assume Routing Open Shop instances to be preprocessed to satisfy the
triangle inequality. By Lemma2.1, this does not change the length of optimal
schedules. However, it ensures that the minimum cost of a cycle visiting each
vertex of the graph G = (V,E) with travel times c : E → N at most once coin-
cides with the minimum cost of a cycle doing so exactly once [32], that is, of a
Hamiltonian cycle.

A simple lower bound is given by the fact that, in view of Observation 2.3,
all machines have to visit each vertex at least once and to process |J | jobs.

Observation 4.1. Let H be a minimum-cost Hamiltonian cycle in the
graph G = (V,E) with metric travel times c : E → N. Then, any feasible schedule
has length at least c(H) + |J |.

A trivial upper bound can be given by letting the machines work sequentially.

Observation 4.2. Given a Hamiltonian cycle H for the graph G = (V,E) with
travel times c : E → N, a feasible schedule of length c(H) + |J | + |M| − 1 is
computable in O(|J | · |M| + |V |) time.

This bound can be improved if c(H) + 1 ≤ |M| ≤ |J | or c(H) + 1 ≤ |J | ≤ |M|:

Proposition 4.3. Given a Hamiltonian cycle H for the graph G = (V,E) with
travel times c : E → N, a feasible schedule of length 2c(H) + max{|J |, |M|} is
computable in O(|J |2 + |M| + |V |) time.

We next study for which instances one gets an upper bound that matches the
lower bound from Observation 4.1. In Example 3.3, we have already seen that
arbitrary machine routes that stay in each vertex v at least max{|Jv|, |M|} time
can be completed into a feasible schedule. We therefore distinguish vertices v for
which staying |Jv| time is both necessary and sufficient.

Definition 4.4 (Criticality of vertices). For a vertex v ∈ V , we denote by

k(v) := max{0, |M| − |Jv|} the criticality of v, and by

K :=
∑

v∈V
k(v) the total criticality.

A vertex v ∈ V is critical if k(v) > 0, that is, if |Jv| < |M|.

Proposition 4.5. Given a Hamiltonian cycle H for the graph G = (V,E) with
travel times c : E → N, a feasible schedule of length at most c(H) + |J | + K can
be computed in polynomial time.
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Proof. Let H = (v1, v2, . . . , v|V |) and v|V |+1 := v1. Without loss of generality,
assume that v1 = v∗, where v∗ is the depot vertex. Each machine Mq ∈ M uses
the same route R of |V | + 1 stays (a1, v1, b1), . . . , (a|V |+1, v|V |+1, b|V |+1), where

a1 := 0, b|V |+1 := a|V |+1,

ai+1 := bi + c(vi, vi+1), bi := ai + |Jvi
| + k(vi), for i ∈ {1, . . . , |V |}.

Each stay (ai, vi, ai) lasts |Jvi
|+k(vi) = max{|Jvi

|, |M|} time. By Theorem 3.4,
the empty schedule S is completable into a feasible schedule S′ with respect to
the route R for each machine and S′ is computable in time polynomial in |J | +
|M| +

∑
v∈V |T R

v | ∈ O(|J | + |M| + K) ⊆ O(|J | + |M| + |V | · |M|). Finally, the
route R has length

b|V |+1 = a|V |+1 = b|V | + c(v|V |, v1) +
|V |∑

i=1

(|Jvi
| + k(vi)) = c(H) + |J | + K. ��

Combining Observation 4.1 and Proposition 4.5 and that a minimum-cost Hamil-
tonian cycle is computable in O(2|V | · |V |2) time using the algorithm of
Bellman [4], Held and Karp [24], we obtain a first fixed-parameter tractabil-
ity result:

Corollary 4.6. Routing Open Shop with unit processing times is fixed-pa-
rameter tractable parameterized by |V | if there are no critical vertices.

Corollary 4.6 makes clear that, given the schedule completion theorem, criti-
cal vertices are the main obstacle for solving Routing Open Shop with unit
processing times: while staying |Jv| time in a noncritical vertex v ∈ V is both
necessary and sufficient, staying in critical vertices |M| time is sufficient, but
not necessary. Indeed, as shown in Fig. 1, in the presence of critical vertices,
there might not even be optimal schedules in which the machines travel along
Hamiltonian cycles.

J1

J2

J3

12

1

S M1 M2 M3 M4 M5 M6 M7

J1 0 1 2 6 7 8 3
J2 2 3 7 4 5 6 1
J3 5 6 4 1 2 3 7

Fig. 1. On the left: a graph with one job in each vertex, travel times as denoted on
the edges, and the depot being J1. On the right: a schedule S of length 9 to process
these jobs on seven machines. Note that machine M7 does not travel along a Hamil-
tonian cycle, but along route J1, J2, J1, J3, J1. One can show that any schedule in which
machines travel along Hamiltonian cycles has length at least 10.



82 R. van Bevern and A.V. Pyatkin

5 Fixed-Parameter Algorithm

In this section, we present a fixed-parameter algorithm for Routing Open Shop
with unit processing times, which is our main algorithmic result:

Theorem 5.1. Routing Open Shop with unit processing times is solvable in
2O(|V ||M|2 log |V ||M|) · poly(|J |) time.

The outline of the algorithm for Theorem5.1 is as follows: in Sect. 5.1, we use
the schedule completion Theorem 3.4 to show that the routes of a minimum-
length schedule comply with one of 2O(|V ||M|2 log |V ||M|) pre-schedules, which
determines the sequence of vertices that each machine stays in, the durations of
stays in critical vertices, and the time offsets between stays in critical vertices.

In Sect. 5.2, we use integer linear programming to compute, for each pre-
schedule, shortest complying routes so that each machine stays in each non-
critical vertex v for at least |Jv| time. The schedule for noncritical vertices is
then implied by the schedule completion Theorem3.4, whereas we compute the
schedule for critical vertices using brute force.

5.1 Enumerating Pre-schedules

One can show that the routes of a minimum-length schedule comply with some
pre-schedule:

Definition 5.2 (Pre-schedule). A pre-stay is a triple (Mq, v, σ) ∈ M × V ×
{1, . . . , |V ||M| + 2}, intuitively meaning that machine Mq ∈ M has its σ-th stay
in vertex v ∈ V. We call T = ((Mqi , vi, σi))s

i=1 a pre-stay sequence if,

(i) for each Mq ∈ M, the σi with qi = q increase in steps of one for increasing i.

Machine routes (RMq
)Mq∈M, where RMq

= ((aq
k, wq

k, bq
k))tq

k=1, comply with a
pre-stay sequence if

(ii) route RMq
has a stay (aq

k, wq
k, bq

k) if and only if (Mq, w
q
k, k) is in T and,

(iii) for pre-stays (Mqi , vi, σi) and (Mqj , vj , σj) with i < j, one has aqi
σi

≤ a
qj
σj .

Let K := {i ≤ s | vi is critical} be the indices of pre-stays in critical ver-
tices of T . A length assignment is a map A : K → {0, . . . , 2|M| − 1}. Machine
routes (RMq

)Mq∈M comply with a length assignment A if,

(iv) for each pre-stay (Mqi , vi, σi) on T with i ∈ K, one has bqi
σi

− aqi
σi

= A(i).

A displacement is a map D : K → {0, . . . , 2|M|}. The machine routes
(RMq

)Mq∈M comply with a displacement D if

(v) for two pre-stays (Mqi , vi, σi) and (Mqj , vj , σj) with i, j ∈ K and k /∈ K for
all k with i < k < j, one has

aqj
σj

≥ aqi
σi

+ 2|M | if D(j) = 2|M| and

aqj
σj

= aqi
σi

+ D(j) if D(j) < 2|M|.
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We call (T,A,D) a pre-schedule and say that machine routes comply with
(T,A,D) if they comply with each of T , A, and D, that is, (i)–(v) hold.

We show that an optimal solution for Routing Open Shop with unit
processing times can be found by solving instances of the following problem:

Problem 5.3.
Input: An instance I of Routing Open Shop with unit processing times, a

pre-schedule (T,A,D), and a natural number L.
Task: Compute a schedule whose machine routes (RMq

)Mq∈M have length at
most L and comply with (T,A,D), if such a schedule exists.

Proposition 5.4. For a Routing Open Shop instance I with unit processing
times there is a set I of 2O(|V ||M|2 log |V ||M|) instances of Problem 5.3 such that

(i) if some instance (I, (T,A,D), L) ∈ I has a solution S, then S is a schedule
of length at most L for I and

(ii) there is a minimum-length schedule S for I such that S is a solution for at
least one instance (I, (T,A,D), L) ∈ I, where L is the length of S.

Moreover, the set I can be generated in 2O(|V ||M|2 log |V ||M|) · poly(|J |) time.

Having Proposition 5.4, for proving Theorem5.1, it remains to solve Problem5.3
in 2O(|V ||M|2 log |V ||M|) ·poly(|J |) time since a shortest schedule for an instance I
of Routing Open Shop with unit processing times can be found by solving the
instances (I, (T,A,D), L) ∈ I for increasing L. The proof of Proposition 5.4 is
based on proving that there are at most 2O(|V ||M|2 log |V ||M|) pre-schedules and
the following two lemmas.

Lemma 5.5. Each of the routes (RMq
)Mq∈M of an optimal schedule consists of

at most |V ||M| + 2 stays.

Proof. Let H be a minimum-cost Hamiltonian cycle for the graph G with travel
times c : E → N. Let Mq ∈ M be an arbitrary machine. It has to stay in all
vertices and return to the depot, that is, its tour RMq

has at least |V | + 1 stays.
Moreover, by Observation 4.1, its length is at least c(H) + |J |. By Lemma 2.2,
each additional stay has length at least one.

Thus, if RMq
had more than |V |+K +1 stays, where K is the total critically

of vertices in the input instance (cf. Definition 4.4), then it would have length
at least c(H) + |J | + K + 1, contradicting the optimality of the schedule by
Proposition 4.5. Thus, the number of stays on RMq

is at most

|V | + K + 1 = |V | +
∑

v∈V

max{0, |M| − |Jv|} + 1 ≤ |V ||M| + 2

since, by Observation 2.3, only for the depot v∗ one might have Jv∗ = ∅. ��

Lemma 5.5 implies that there is a pre-stay sequence that the routes (RMq
)Mq∈M

of an optimal schedule comply with. The following lemma implies that there
are also length assignments and displacements that (RMq

)Mq∈M comply with.
For the notation used in Lemma5.6, recall Definition 3.1.
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Lemma 5.6. For each feasible schedule S with respect to routes (RMq
)Mq∈M,

there is a feasible schedule S′ of the same length with respect to
routes (R′

Mq
)Mq∈M such that |T R′

Mqv | ≤ max{|Jv|, |M|} + |M| − 1 for each
vertex v ∈ V .

Proof. For each machine Mq ∈ M, construct the route R′
Mq

from the
route RMq

= ((ak, vk, bk))s
k=1 as follows:

1. If |T RMq
v | ≤ max{|Jv|, |M|} + |M| − 1, then R′

Mq
:= RMq

,
2. Otherwise, let R′

Mq
:= ((a′

1, v1, b
′
1))

s
k=1, where ai ≤ a′

i ≤ b′
i ≤ bi for 1 ≤ i ≤ s

are chosen arbitrarily with |T R′
Mqv | = max{|Jv|, |M|} + |M| − 1.

Denote by M := {Mq ∈ M | RMq
�= R′

Mq
} the set of machines whose tours

have been altered. If M = ∅, then there is nothing to prove. Henceforth, assume
M �= ∅. Then, S might not be a feasible schedule for the routes (R′

Mq
)Mq∈M but

S∗(Ji,Mq) :=

{
⊥ if Mq ∈ M,

S(Ji,Mq) otherwise

is a partial schedule for the routes (R′
Mq

)Mq∈M since the machines in M do
not process any jobs in S∗. We show that S∗ is completable with respect
to (R′

Mq
)Mq∈M in terms of Definition 3.2.

To this end, choose an arbitrary vertex v ∈ V and an arbitrary machine Mq ∈
M with some unprocessed job Ji ∈ J S∗

Mq
. Then, Mq ∈ M, since only machines

in M have unprocessed jobs in S∗. Moreover, |T S∗
Ji

| ≤ |M| − 1, since at least
the machine Mq does not process Ji. Finally T S∗

Mq
= ∅ since Mq does not process

any jobs in S∗. Thus,

|T R′
Mq

v \ (T S∗
Ji

∪ T S∗
Mq

)| ≥ max{|Jv|, |M|} + |M| − 1 − (|M| − 1)
= max{|Jv|, |M|}

and Theorem 3.4 shows how to complete S∗ into a feasible schedule S′ for the
routes (R′

Mq
)Mq∈M. ��

Remark 5.7. Lemma 5.6 gives an upper bound of max{|Jv|, |M|} + |M| − 1 on
the total amount of time that each machine stays in a vertex v in an optimal
schedule. Note that neither Example 3.3 nor Proposition 4.5 give such an upper
bound: these show that, in order to obtain a feasible schedule, it is sufficient
that each machine stays in each vertex v for at least max{|Jv|, |M|} time. They
do not exclude that, in an optimal schedule, a machine might stay in a vertex
significantly longer in order to enable other machines to process their jobs faster.

5.2 Computing Routes and Completing the Schedule

In this section, we provide the last missing ingredient for our fixed-parameter
algorithm for Routing Open Shop with unit processing times:
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Proposition 5.8. Problem 5.3 is solvable 2O(|V ||M|2 log |V ||M|) · poly(|J |) time.

By Proposition 5.4, this proves Theorem 5.1. The key to our algorithm for Propo-
sition 5.8 is the following lemma.

Lemma 5.9. Let (I, (T,A,D), L) be an instance of Problem5.3 that has
a solution. Then, for arbitrary routes (RMq

)Mq∈M of length L complying
with (T,A,D) and satisfying |T RMq

v | ≥ |Jv| for each non-critical vertex v ∈ V ,

(i) there is a partial schedule S with respect to (RMq
)Mq∈M such that S(Ji,

Mq) �= ⊥ if and only if L(Ji) is critical,
(ii) any such partial schedule is completable with respect to (RMq

)Mq∈M.

Lemma 5.9 shows that, to solve Problem 5.3, it is sufficient to compute routes
(RMq

)Mq∈M of length L that comply with a given pre-schedule (T,A,D) and
stay in each uncritical vertex v for at least |Jv| units of time. If no such routes
are found, then the instance of Problem5.3 has no schedule of length L since any
feasible schedule has to spend at least |Jv| units of time in each vertex v. If such
routes are found, then a feasible schedule with respect to them can be computed
independently using the schedule completion Theorem3.4 for noncritical vertices
by Lemma 5.9(ii) and using brute force for critical vertices:

Lemma 5.10. Let (I, (T,A,D), L) be an instance of Problem5.3 and
(RMq

)Mq∈M be arbitrary routes complying with (T,A,D).
If there is a partial schedule S for I that satisfies Lemma 5.9(i), then we can

find it in 2O(|V ||M|2 log |M|) · poly(|J |) time.

Proof. Observe that, in total, there are at most |V | · |M| jobs in critical vertices.
Thus, we determine S(Ji,Mq) for at most |V | · |M|2 pairs (Ji,Mq) ∈ J ×M. By
Lemma 5.6, each machine can process all of its jobs in a critical vertex staying
there no longer than 2|M| − 1 units of time. Thus, for each of the at most
|V | · |M|2 pairs (Ji,Mq) ∈ J × M, we enumerate all possibilities of choosing
S(Ji,Mq) among the smallest 2|M| − 1 numbers in T RMqL(Ji). There are (2|M| −
1)|V |·|M|2 ∈ 2O(|V ||M|2 log |M|) possibilities to do so. ��
Finally, we compute the routes required by Lemma5.9 by testing the feasibility of
an integer linear program with O(|M| · (|V ||M| + 2)) variables and constraints,
which, by Lenstra’s theorem below, works in 2O(|V ||M|2 log |V ||M|) time. Together
with Lemma 5.10 and Theorem 3.4, this completes the proof of Proposition 5.8.

Theorem 5.11. (Lenstra [28]; see also Kannan [26]). A feasible solution to
an integer linear program with p variables and m constraints is computable in
pO(p) · poly(m) time, if such a feasible solution exists.

6 Conclusion

We have proved the schedule completion Theorem 3.4 and used it for a fixed-
parameter algorithm for Routing Open Shop with unit processing times. Pre-
cisely, we used it to prove upper bounds on various parameters of optimal sched-
ules. This suggests that Theorem 3.4 will be likewise beneficial for approximation
algorithms. Indeed, our Sect. 4 makes first steps into this direction.
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A natural direction for future research is determining the parameterized com-
plexity of Routing Open Shop with unit processing times parameterized by
the number |V | of vertices. Even the question whether the problem is polynomial-
time solvable for constant |V | is open, yet we showed fixed-parameter tractability
in the absence of critical vertices (Corollary 4.6). Finally, it would be desirable
to find a fast polynomial-time algorithm for finding the coloring whose existence
is witnessed by Galvin’s theorem (Theorem 3.6).
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Abstract. A semilinear relation S ⊆ Q
n is max-closed if it is pre-

served by taking the componentwise maximum. The constraint satis-
faction problem for max-closed semilinear constraints is at least as hard
as determining the winner in Mean Payoff Games, a notorious problem
of open computational complexity. Mean Payoff Games are known to be
in NP∩co-NP, which is not known for max-closed semilinear constraints.
Semilinear relations that are max-closed and additionally closed under
translations have been called tropically convex in the literature. One of
our main results is a new duality for open tropically convex relations,
which puts the CSP for tropically convex semilinear constraints in gen-
eral into NP ∩ co-NP. This extends the corresponding complexity result
for scheduling under and-or precedence constraints, or equivalently the
max-atoms problem. To this end, we present a characterization of max-
closed semilinear relations in terms of syntactically restricted first-order
logic, and another characterization in terms of a finite set of relations L
that allow primitive positive definitions of all other relations in the class.
We also present a subclass of max-closed constraints where the CSP is
in P; this class generalizes the class of max-closed constraints over finite
domains, and the feasibility problem for max-closed linear inequalities.
Finally, we show that the class of max-closed semilinear constraints is
maximal in the sense that as soon as a single relation that is not max-
closed is added to L, the CSP becomes NP-hard.

1 Introduction

A relation R ⊆ Q
n is semilinear if R has a first-order definition in (Q; +,≤, 1);

equivalently, R is a finite union of finite intersections of (open or closed) linear
half spaces; see Ferrante and Rackoff [15]. In this article we study the computa-
tional complexity of constraint satisfaction problems with semilinear constraints.
Informally, a constraint satisfaction problem (CSP) is the problem of deciding
whether a given finite set of constraints has a common solution. It has been a
fruitful approach to study the computational complexity of CSPs depending on
the type of constraints allowed in the input.

Formally, we fix a set D, a set of relation symbols τ = {R1, R2, . . . }, and
a τ -structure Γ = (D;RΓ

1 , RΓ
2 , . . . ) where RΓ

i ⊆ Dki is a relation over D of
arity ki. For finite τ the computational problem CSP(Γ ) is defined as follows:

INSTANCE: a finite set of formal variables x1, . . . , xn, and a finite set of expres-
sions of the form R(xi1 , . . . , xik) with R ∈ τ .
c© Springer International Publishing Switzerland 2016
A.S. Kulikov and G.J. Woeginger (Eds.): CSR 2016, LNCS 9691, pp. 88–101, 2016.
DOI: 10.1007/978-3-319-34171-2 7
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QUESTION: is there an assignment xs
1, . . . , x

s
n ∈ D such that (xs

i1
, . . . , xs

ik
) ∈ RΓ

for all constraints of the form R(xi1 , . . . , xik) in the input?
When the domain of Γ is the set of rational numbers Q, and all relations

of Γ are semilinear, we say that Γ is semilinear. It is possible, and sometimes
essential, to also define CSP(Γ ) when the signature τ is infinite. However, in this
situation it is important to discuss how the symbols from τ are represented in
the input of the CSP. For instance, in the semilinear setting, the most natural
choice is often to assume that the relations are given as quantifier-free formulas,
say in disjunctive normal form, with coefficients in binary.

A famous example of a computational problem that can be formulated as
CSP(Γ ) for a semilinear structure Γ is the feasibility problem for linear pro-
gramming: this CSP is well-known to be in P [25]. Here, it is natural to assume
that the relations in the input are represented as linear inequalities with coeffi-
cients in binary. It follows that the CSP for any semilinear Γ (represented, say,
in dnf) is in NP, because we can non-deterministically select a disjunct from
the representation of each of the given constraints, and then verify in polynomial
time whether the obtained set of linear inequalities is satisfiable.

We would like to systematically study the computational complexity of
CSP(Γ ) for all semilinear structures Γ . This is a very ambitious goal. Several
partial results are known [5,6,8,23,24]. Let us also mention that it is easy to
find for every structure Δ with a finite domain a semilinear structure Γ so that
CSP(Δ) and CSP(Γ ) are the same computational problem. But already the
complexity classification of CSPs for finite structures is open [14].

Even worse, there are concrete semilinear structures whose CSP has an open
computational complexity. An important example of this type is the max-atoms
problem [4], which is the CSP for the semilinear structure Γ that contains all
ternary relations of the form

Mc
def=

{
(x1, x2, x3) | x1 + c ≤ max(x2, x3)

}

where c ∈ Q is represented in binary. It is an open problem whether the max-
atoms problem is in P, but it is known to be polynomial-time equivalent to
determining the winner in mean payoff games [27], which is in NP∩ co-NP. Note
that here the assumption that c is represented in binary is important: when c is
represented in unary, or when we drop all but a finite number of relations in Γ ,
the resulting problem is in P.

An important tool to study the computational complexity of CSP(Γ ) is the
concept of primitive positive definability. A primitive positive formula is a first-
order formula of the form ∃x1, . . . , xn(ψ1 ∧ · · · ∧ ψm) where ψ are atomic for-
mulas (in primitive positive formulas, no disjunction, negation, and universal
quantification is allowed). Jeavons, Gyssens, and Cohen [21] showed that the
CSP for expansions of Γ by finitely many primitive positive definable relations
is polynomial-time reducible to CSP(Γ ).

Primitive positive definability in Γ can be studied using the polymorphisms
of Γ , which are a multi-variate generalization of endomorphisms. We say that
f : Γ k → Γ is a polymorphism of a τ -structure Γ if
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(
f(a1

1, . . . , a
k
1), . . . , f(a1

m, . . . , ak
m)

) ∈ RΓ

for all R ∈ τ and (a1
1, . . . , a

1
m), . . . , (ak

1 , . . . , a
k
m) ∈ RΓ . For finite structures Γ ,

a relation R is primitive positive definable in Γ if and only if R is preserved
by all polymorphisms of Γ . And indeed, the tractability conjecture of Bulatov,
Jeavons, and Krokhin [11] in a reformulation due to Kozik and Barto [3] states
that CSP(Γ ) is in P if and only if Γ has a polymorphism f which is cyclic, this
is, has arity n ≥ 2 and satisfies ∀x1, . . . , xn f(x1, . . . , xn) = f(x2, . . . , xn, x1).

Polymorphisms are also relevant when Γ is infinite. For example, a semilinear
relation is convex if and only if it has the cyclic polymorphism (x, y) �→ (x+y)/2,
hence this polymorphism identifies the semilinear CSPs which are tractable by
linear programming. Indeed, when Γ has a cyclic polymorphism, and assuming
the tractability conjecture, Γ cannot interpret1 primitively positively any hard
finite-domain CSP, which is the standard way of proving that a CSP is NP-hard.

A fundamental cyclic operation is the maximum operation, (x, y) �→
max(x, y). The constraints for the max-atoms problem are examples of semi-
linear relations that are not convex, but that have max as a polymorphism; we
also say that they are max-closed. When a finite structure is max-closed, with
respect to some ordering of the domain, then the CSP for this structure is known
to be in P [20]. The complexity of the CSP for max-closed semilinear constraints,
on the other hand, is open.

2 Results

We show that the CSP for semilinear max-closed relations that are translation-
invariant, that is, have the polymorphism x �→ x+c for all c ∈ Q, is in NP∩ co-NP
(Sect. 5). Such relations have been called tropically convex in the literature [13]2.
This class is a non-trivial extension of the max-atoms problem (for instance it
contains relations such as x ≤ (y + z)/2), and it is not covered by the known
reduction to mean payoff games [1,2,27]. Indeed, it is open whether the CSP
for tropically convex semilinear relations can be reduced to mean payoff games
(in fact, Zwick and Paterson [30] believe that mean payoff games are “strictly
easier” than simple stochastic games, which reduce to our problem via the results
presented in Sect. 4). The containment in NP∩co-NP can be slightly extended to
the CSP for the structure that includes additionally all relations x = c for c ∈ Q

(represented in binary). It follows from our results (Corollary 8) that the class
of semilinear tropically convex sets is the smallest class of semilinear sets that
has the same polymorphisms as the max atoms constraints x ≤ max(y, z) + c
with c ∈ Q.

In our proof, we first present a characterization of max-closed semilinear
relations in terms of syntactically restricted first-order logic (Sect. 3). We show

1 Interpretations in the sense of model theory; we refer to Hodges [19] since we do not
need this concept further.

2 The original definition of tropical convexity is for the dual situation, considering min
instead of max.
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that a semilinear relation is max-closed if and only if it can be defined by a
semilinear Horn formula, which we define as a finite conjunction of semilinear
Horn clauses, that is, finite disjunctions of the form

m∨

i=1

ā�
i x̄ �i ci

where

1. ā1, . . . , ām ∈ Q
n and there is a k ≤ n such that āi,j ≥ 0 for all i and j = k,

2. x̄ = (x1, . . . , xn) is a vector of variables,
3. �i ∈ {≥, >} are strict or non-strict inequalities, and
4. c1, . . . , cm ∈ Q are coefficients.

Example 1. The ternary relation Mc from the max-atoms problem can be defined
by the semilinear Horn clause x2 − x1 ≥ c ∨ x3 − x1 ≥ c.

Example 2. A linear inequality a1x1 + · · · + anxn ≥ c is max-closed if and only
if at most one of a1 . . . an is negative.

Example 3. Conjunctions of implications of the form

(x1 ≤ c1 ∧ · · · ∧ xn ≤ cn) ⇒ xi < c0 (1)

are max-closed since such an implication is equivalent to the semilinear Horn
clause

(−xi > −c0) ∨
∨

i

xi > ci .

It has been shown by Jeavons and Cooper [20] that over finite ordered domains,
a relation is max-closed3 if and only if it can be defined by finite conjunctions
of implications of the form (1). Over infinite domains, this is no longer true, as
demonstrated by the relations in the previous examples.

We also show that the classes C of max-closed semilinear relations and Ct

of tropically convex semilinear relations are finitely generated in the sense of
universal algebra, this is, there exists a finite subset L0 of C (resp. Lt of Ct)
that can primitively positively define all other relations in C (resp. Ct). The
primitive positive definitions in our finite bases can even be computed efficiently
from semilinear Horn formulas with coefficients in binary, hence this infinite set
of relations and any finite basis (either in the case of C or Ct) have CSPs of
polynomially related complexity. This is in sharp contrast to the situation for
max-atoms.

Our proof of the containment in NP ∩ co-NP is based on a duality for
open tropically convex semilinear sets, which extends the duality that has been
3 Also the results in Jeavons and Cooper [20] have been formulated in the dual situa-

tion for min instead of max.
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Fig. 1. An overview of our results

observed for the max-atoms problem in [18]. To prove the duality, we translate
instances of our problem into a condition on associated mean payoff stochastic
games (also called limiting average payoff stochastic games; see [16] for a gen-
eral reference), and then exploit the symmetry implicit in the definition of such
games. The connections between the max-atoms problem, mean payoff deter-
ministic games, and tropical polytopes have been explored extensively in the
computer science literature. However, the theory of stochastic games introduces
profound changes over the deterministic setting, and employs additional non-
trivial techniques. Even though this field is active since the 70s, to the best of
our knowledge, no application of its results to semilinear feasibility problems
has been published yet. Note that solving mean payoff stochastic games is in
NP ∩ co-NP, as a consequence of the existence of optimal positional strategies;
see [17,26]. However, we cannot use this fact directly, because stochastic games
only relate to a subset of tropically convex sets. We conclude our argument com-
bining the duality with semilinear geometry techniques. Interestingly, at several
places in our proofs, we need to replace Q with appropriate non-Archimedean
structures.

Our next result is the identification of a class of max-closed semilinear rela-
tions whose CSP can be solved in polynomial time (Sect. 6). This class consists
of the semilinear relations that can be defined by restricted Horn clauses, which
are semilinear Horn clauses satisfying the additional condition that there are
k ≤ n and l ≤ m such that āi,j ≥ 0 for all (i, j) = (k, l).
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Finally, we observe that for every relation R that is not max-closed, the
problem CSP(Γ0, R) is NP-hard.

Caveat: All proofs are sketches, full details in the full paper [7].

3 A Syntactic Characterization of Max-Closure

In this section, the letter F will denote an ordered field: for technical reasons we
need to work in this slightly more general setting.

Definition 4. A semilinear Horn clause is called closed if all inequalities are
non-strict. We say that X ⊂ Fn is a basic max-closed set if it is the graph of a
semilinear Horn clause, i.e. there is k ≤ n such that X can be written as a finite
union

X =
⋃

i

{
(x1, . . . , xn) | ai,1x1 + · · · + ai,nxn �i ci

}

where �i can be either > or ≥, and ai,j ≥ 0 for all i and all j = k. We say
that X is basic closed max-closed if it is the graph of a closed semilinear Horn
clause.

Theorem 5

1. Let X ⊂ Fn be a semilinear set. Then X is max-closed if and only if it is a
finite intersection of basic max-closed sets.

2. Let X ⊂ Fn be a closed semilinear set. Then X is max-closed if and only if
it is a finite intersection of basic closed max-closed sets.

3. X ⊂ Q
n is primitive positive definable in Γ0 = (Q;<, 1,−1, S1, S2,M0) where

S1 =
{
(x, y) | 2x ≤ y

}
S2 =

{
(x, y, z) | x ≤ y + z

}

M0 =
{
(x, y, z) | x ≤ y ∨ x ≤ z

}

if and only if X is semilinear and max-closed.
4. X ⊂ Q

n is primitively positively definable in Γ ′
0 = (Q; 1,−1, S1, S2,M0) if

and only if X is semilinear closed and max-closed.

Definition 6. We say that X ⊂ Fn is a basic tropically convex set if it is a
basic max-closed set

X =
⋃

i

{
(x1, . . . , xn) | ai,1x1 + · · · + ai,nxn �i ci

}

as in Definition 4 and
∑

j ai,j = 0 for all i.

Theorem 7

1. Let X ⊂ Fn be a semilinear set. Then X is tropically convex if and only if it
is a finite intersection of basic tropically convex sets.
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2. X ⊂ Q
n is primitive positive definable in Γt = (Q;<,T1, T−1, S3,M0) where

T±1 =
{
(x, y) | x ≤ y ± 1

}
S3 =

{
(x, y, z) | x ≤ y + z

2

}

if and only if X is semilinear and tropically convex.

Corollary 8. A semilinear set X ⊂ Q
n is tropically convex if and only if it is

preserved by every polymorphism that preserves the max-atoms language (i.e. all
sets of the form

{
(x, y, z) | x ≤ max(y, z) + c

}
for c ∈ Q).

Proof. Translations and maximum are polymorphisms of max-atoms, so one
direction is trivial. For the converse, by Theorem 7 (2), it suffices to prove that
the relations <, T1, T−1, S3, and M0 are preserved by all polymorphisms of max-
atoms. This is immediate for T1, T−1, and M0 since they have primitive positive
definitions over max-atoms. The relation <, on the other hand, is an ascending
union of max-atoms constraints

⋃
c∈Q,c>0

{
(x, y) | x ≤ y − c

}
and S3 is an

intersection of max-atoms constraints
⋂

c∈Q

{
(x, y, z) | z ≤ max(y + c, z − c)

}
.

It’s well known that ascending unions and arbitrary intersections of primitive
positive definable sets are preserved by polymorphisms [28]. ��
The following observation is important in view of its implications on the com-
plexity of the constraint satisfaction problems.

Observation 9. Given a max-closed (resp. tropically convex) set X written as a
finite intersection of basic max-closed (resp. basic tropically convex) sets with the
constants represented in binary, we can compute in polynomial time a primitive
positive definition of X in the structure Γ0 (resp. Γt).

In this extended abstract, we will omit the proof of the existence of a finite
basis, i.e. Theorem 5 (3 and 4) and the proof of Theorem 7.

Definition 10. We say that x ∈ X ⊂ Fn is of type k in X, with k = 1, . . . , n,
if

x − Qk
def= {x − y | y ∈ Qk} ⊂ X

where
Qk =

{
y ∈ (F≥0)n | yk = 0

}

Observe that if X is the complement of a max-closed set, then every point of X
is of type k in X for at least one k (Figure 2).

Proof (Proof of Theorem 5 (2)). The if part is immediate, hence we concentrate
on the only if. Let X̄ be Fn \ X. Consider the subsets X̄1, . . . , X̄n of the points
in X̄ of type 1, . . . , n respectively. Since X is max-closed, each point of X̄ is of
type k for some k = 1, . . . , n, hence X̄ = X̄1 ∪ · · · ∪ X̄n moreover, each of these
sets is open and semilinear. By standard techniques, we can further split each of
the sets X̄i into a finite union X̄i = X̄i,1 ∪ · · · ∪ X̄i,mi

of convex open semilinear
sets. Now, by definition, X̄i = X̄i − Qi (i.e. {x − y | x ∈ X̄i, y ∈ Qi}), hence
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Points of type 1

Points of type 2

x1

x2

Fig. 2. A max-closed set in Q
2

we can replace the sets X̄i,j with X̃i,j = X̄i,j − Qi. The sets X̃i,j are convex,
hence they are intersections of half spaces (see [12, Corollary 4.9] and also [29]).
Therefore, for each i, j, the set Xi,j = Fn \ X̃i,j is a union of half spaces, we can
conclude that it is semilinear Horn observing that only the coefficient of xi can
be negative, by the construction of X̃i,j . ��
Proof (Proof of Theorem 5—(2 )→(1 )). We apply (2) to the field of formal Lau-
rent series F ((ε)) with coefficients in F . The semilinear set X ⊂ Fn has a
unique extension X∗ to F ((ε))n, which is the set defined by the same formula
that defines X. First we modify the extension X∗ of X locally to obtain a closed
semilinear max-closed set X̃ ⊂ F ((ε))n such that X̃ ∩ Fn = X. To this aim,
decompose X∗ into relatively open convex facets. Consider for each facet its ε-
interior, defined as the points of the facet that are at least ε far from its relative
boundary. Finally let X̃ be the closure under max of the ε-interiors.

By (2), X̃ is an intersection of basic max-closed sets. The coefficients appear-
ing in the intersection are, in general, elements of F ((ε)). We need to to replace
these coefficients with elements of F . More precisely, we have to rewrite terms
of the form

a1x1 + · · · + anxn − c ≥ 0 (�)

where a1, . . . , an, c ∈ F ((ε)) and x1, . . . , xn range over F as positive boolean
combinations of F -linear terms of the form

a′
1x1 + · · · + a′

nxn − c′ � 0

with a′
1, . . . , a

′
n, c′ ∈ F . Moreover, we know that at most one of the ai, say

a1, is negative, and we must make sure that all our a′
i except at most a′

1 are
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non-negative. Without loss of generality, we can divide the term (�) by the
absolute value of its largest coefficient, as a result we can assume that the leading
term of (�) has coefficients in F . Now, (�) is equivalent to

leading term > 0 ∨ (
leading term ≥ 0 ∧ remaining terms > 0

)

This forms the basis of an inductive procedure. To ensure termination, at each
step, we divide the remaining terms again by the largest coefficient, so the num-
ber of coefficients not in F decreases. The requirement that the coefficients
of x2, . . . , xn must be positive is not necessarily preserved by the remaining
terms, however if some coefficient ai = (ai)0 + ε(ai)>0 has (ai)>0 negative,
then the leading term (ai)0 of the same coefficient must be positive, hence we
can force the positivity condition by adding to the remaining terms a suitable
multiple of the leading terms. ��

4 A Duality for Max-Plus-Average Inequalities

Let On be the class of functions mapping
(
Q ∪ {+∞})n to Q ∪ {+∞} of either

of the following forms

(x1, . . . , xn) �→ max(xj1 + k1, . . . , xjm + km)
(x1, . . . , xn) �→ min(xj1 + k1, . . . , xjm + km) (��)

(x1, . . . , xn) �→ α1xj1 + · · · + αmxjm

α1 + · · · + αm
+ k

where k, ki ∈ Q and αi ∈ Q
>0.

For any given vector of operators ō ∈ On
n we consider the following satisfia-

bility problems: the primal P (ō) and the dual D(ō)

P (ō) :

{
x̄ ∈ Q

n

x̄ < ō(x̄)
D(ō) :

{
ȳ ∈ (Q ∪ {+∞})n \ {+∞}n

ȳ ≥ ō(ȳ)

where < and ≥ are meant to hold component-wise.

Theorem 11. For any ō ∈ On
n one and only one of the problems P (ō) and D(ō)

is satisfiable.

For the proof of Theorem 11, we make use of zero-sum stochastic games with
perfect information, in the flavours known as the discounted and the limiting
average payoff. A stochastic game is played by two players, max and min, moving
a token along the edges of a directed graph G. Each vertex v of G is either
assigned to one of the players, that moves when the token is on v, or it is a
stochastic vertex. Each edge e of G has a payoff po(e) ∈ Q. The out-edges of a
stochastic vertex have also a probability pr(e) ∈ Q of being taken when exiting
that vertex. We assume that all vertices have at least one out-edge, so a play
never ends.
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Let e1, e2, . . . be the edges traversed during a play p of the game G. The
discounted payoff vβ(p) of p with discounting factor β ∈ [0, 1[ and the limiting
average payoff v1 are

vβ(p) def= (1 − β)
∞∑

i=1

po(ei)βi−1 v1(p) def= lim inf
T→∞

1
T

T∑

i=1

po(ei)

In such formulas we suppress the dependency on G, to ease the notation. Clearly
the objective of max is to maximize the payoff, that of min is to minimize it.

Our argument is based on the fact below (see [16] Theorem 6.3.7 plus
Theorem 6.3.5 and its proof). An alternate approach would have been to use
the normal form described in [9]. In fact, probably, the duality and the existence
of a normal form in the sense of [9] imply each other. However we obtain our
result via a different method.

Observation 12. For any stochastic game G with perfect information:

1. Both players possess positional strategies πmax and πmin which are optimal
for the limiting average payoff and for all discount factors β sufficiently close
to 1. We denote by vβ(v) the expected vβ when the game is started from
vertex v and both players follow their optimal strategies.

2. Calling vβ = (vβ(v))v∈G the value vector of G with discount factor β, we
have that the value vector for the limiting average payoff can be written as
v1 = limβ→1 vβ.

3. The vector vβ can be written as a power series in (1 − β).

We map each vector of operators ō ∈ On
n to a stochastic game Gō with n

vertices {v1, . . . , vn} corresponding to the n components of ō. Each vertex vi is
assigned to max, min, or is stochastic according to whether ōi is max, min, or a
weighted average. When the variable xj appears in oi, we put an edge between
vi and vj . In this case, by (��), the operator oi must be of the form

(x1, . . . , xn) �→ max(. . . , xj + k, . . . )
(x1, . . . , xn) �→ min(. . . , xj + k, . . . )

(x1, . . . , xn) �→ · · · + αxj + · · ·
· · · + α + · · · + k

and we assign payoff k to the edge vi → vj . The probabilities are the weights for
the weighted average operators.

Lemma 13. Let ō ∈ On
n be a vector of operators, and let v1 denote the value

vector of the game Gō with the limiting average payoff. The problem P (ō) is
satisfiable if and only if v1(vi) > 0 for all vertices vi of Gō.

Proof. (if direction) Contrary to the intuition, the mean payoff value vector v1

of Gō is not a solution of P (ō), nor can a solution be computed from the value
vector, as exemplified by the case of ergodic games [10].
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Using Fact 12 (3), let āi ∈ R
n for i = 1, . . . ,∞ be the coefficients of the series

representing the discounted payoff value vector of Gō

vβ =
∞∑

i=0

āi(1 − β)i

For N denoting a (large) real number, define x̄N ∈ R
n by

(x̄N )j = N(ā0)j + (ā1)j

We claim that, for large enough N , the vector x̄N satisfies P (ō).
The claim can be verified writing the limit discount equation for Gō, which

vβ must satisfy, and then truncating the series expansion on both sides to the
second term.

(only if direction) Fix a solution x̄ of P (ō). For each pair of vertices vi and vj

of Gō replace the payoff po(vi, vj) with po(vi, vj) + x̄j − x̄i. It is easy to check
that this new game is equivalent to Gō, because in any given play the corrections
x̄j − x̄i form a telescopic sum, then the player max can always avoid negative
payoffs. ��
Lemma 14. Let ō ∈ On

n be a vector of operators, and let v1 denote the value
vector of the game Gō with the limiting average payoff. The problem D(ō) is
satisfiable if and only if v1(vi) ≤ 0 for some vertex vi of Gō.

Theorem 11 follows immediately from Lemmas 13 and 14.

5 Complexity of Tropically Convex CSPs

In this section, we will apply our duality to tropically convex constraint satis-
faction problems. By Theorem 7, we know that the tropically convex relations
are precisely those primitively positively definable in the structure Γt = (Q;<,
T1, T−1, S3,M0). The CSP of Γt subsumes max-atoms (see [4]), but is more gen-
eral than it.

Theorem 15. The problem CSP(Γt) is in NP ∩ co-NP.

We would like to stress that, instead of the finite constraint language of Γt,
we could have chosen to work with basic tropically convex sets (in the sense of
Sect. 3) encoded with the constants expressed in binary. In view of Observation 9
this choice is immaterial. We begin with a corollary of Theorem 11 for non-strict
inequalities.

Corollary 16. For any vector of operators ō ∈ On
n we consider the following

satisfiability problems: the primal P ′(ō) and the dual D′(ō)

P ′(ō) :

{
x̄ ∈ Q

n

x̄ ≤ ō(x̄)
D′(ō) :

{
ȳ ∈ (Q ∪ {+∞})n \ {+∞}n

ȳ > ō(ȳ)

where ≤ and > are meant to hold component-wise, and we stipulate that +∞ >
+∞. Then one and only one of the problems P ′(ō) and D′(ō) is satisfiable.
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To prove Theorem 15 we need this technical statement.

Definition 17. Consider a quantifier free semilinear formula φ(t, x̄) with ratio-
nal coefficients, where t denotes a variable and x̄ denotes a tuple of variables.
We say that φ(t, x̄) is satisfiable in 0+ if

∃t0 > 0 ∀t ∈ ]0, t0] ∃x̄ φ(t, x̄)

Lemma 18. The problem, given φ as in Definition 17 with coefficients encoded
in binary, of deciding whether φ is satisfiable in 0+ is in NP.

Proof (Proof of Theorem 15). First we replace each strict inequality A < B in
the input by ∃ε > 0 A ≤ B − ε. Hence we can apply Corollary 16, so we get
that our problem is not satisfiable if and only if for all ε > 0 some D′(ōε) is
satisfiable. We then conclude by Lemma 18. ��

6 Tractable and Intractable Cases

We present an algorithm that tests satisfiability of a given restricted Horn for-
mula Φ. Recall that each restricted Horn clause has at most one literal which
contains a variable with a negative coefficient. We call this literal the positive
literal of the clause, and all other literals the negative literals.

Solve(Φ)
Do

Let Ψ be the clauses in Φ that contain at most one literal.
If Ψ is unsatisfiable then return unsatisfiable.
For all negative literals φ in clauses from Φ

If Ψ ∧ φ is unsatisfiable, then Ψ implies ¬φ:
remove φ from all clauses in Φ.

Loop until no literal has been removed
Return satisfiable.

For testing whether conjunctions of literals are satisfiable, we use a polynomial
time algorithm for linear program feasibility see [22,25]. Since the algorithm
always removes false literals, it is clear that if the algorithm returns unsatisfiable,
then Φ is indeed unsatisfiable. Suppose now that we are in the final step of the
algorithm and the procedure returns satisfiable. Then for each negative literal φ
of Φ the set Ψ ∧ φ has a solution. The maximum of these solutions must be a
satisfying assignment for Φ.

Proposition 19. Let R ⊆ Q
n an n-ary relation that is not max-closed. Then

CSP(Γ0, R) is NP-hard.

Proof. Follows from [20, Theorems 6.5 and 6.6]. ��
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Abstract. Given a set of directed paths (called lines) L, a public trans-
portation network is a directed graph GL = (VL, AL) which contains
exactly the vertices and arcs of every line l ∈ L. An st-route is a pair
(π, γ) where γ = 〈l1, . . . , lh〉 is a line sequence and π is an st-path in GL

which is the concatenation of subpaths of the lines l1, . . . , lh, in this order.
Given a threshold β, we present an algorithm for listing all st-paths π for
which a route (π, γ) with |γ| ≤ β exists, and we show that the running
time of this algorithm is polynomial with respect to the input and the
output size. We also present an algorithm for listing all line sequences γ
with |γ| ≤ β for which a route (π, γ) exists, and show how to speed it up
using preprocessing. Moreover, we show that for the problem of finding
an st-route (π, γ) that minimizes the number of different lines in γ, even
computing an o(log |V |)-approximation is NP-hard.

1 Introduction

Motivation. Given a public transportation network (in the following called tran-
sit network) and two locations s and t, a common goal is to find a fastest route
from s to t, i.e. an st-route whose travel time is minimum among all st-routes.
A fundamental feature of any public transportation information system is to
provide, given s, t and a target arrival time tA, a fastest st-route that reaches t
no later than at time tA. This task can be solved by computing a shortest path
in an auxiliary graph that also reflects time [16]. However, if delays occur in the
network (which often happens in reality), then the goal of computing a robust
st-route that is likely to reach t on time, naturally arises.

The problem of finding robust routes received much attention in the literature
(for a survey, see, e.g., [1]). Recently, Böhmova et al. [4,5] proposed the following
two-stage approach for computing robust routes. In the first step, all st-routes
ignoring time are listed explicitly, and only after that, timetables and historic
traffic data are incorporated to evaluate the robustness of each possible route.
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However, from a practical point of view it is undesirable to list all possible st-
routes, for two reasons: (1) the number of listed routes might be huge, leading
to a non-satisfactory running time, and (2) many routes might be inacceptable
for the user, e.g., because they use many more transfers than necessary. Having
a huge number of transfers is not only uncomfortable, but usually also has a
negative impact on the robustness of routes, since each transfer bears a risk of
missing the next connection when vehicles are delayed.

Our Contribution. The main contribution of the present paper are three algo-
rithms that list all st-routes for which the number of transfers does not exceed
a given threshold β. The running time of our algorithms are polynomial with
respect to the sum of the input and the output size. As a subroutine of this algo-
rithm we need to compute a route with a minimum number of transfers which is
known to be solvable efficiently [16]. However, we show that finding a route with
a minimum number of different lines cannot be approximated within (1− ε) ln n
for any ε > 0 unless NP = P.

We note that for bus networks it is reasonable to consider directed networks
(instead of undirected ones), because real-world transportation networks (such
as the one in the city of Barcelona) may contain one-way streets in which buses
can only operate in a single direction.

Related Work. Listing combinatorial objects (such as paths, cycles, spanning
trees, etc.) in graphs is a widely studied field in computer science (see, e.g., [2]).
The currently fastest algorithm for listing all st-paths in directed graphs was
presented by Johnson [13] in 1975 and runs in time O((n + m)(κ + 1)) where n
and m are the number of vertices and arcs, respectively, and κ is the number
of all st-paths (i.e., the size of the output). For undirected graphs, an optimal
algorithm was presented by Birmelé et al. [3]. A related problem is the K-
shortest path problem, which asks, for a given constant K, to compute the
first K distinct shortest st-paths. Yen [19] and Lawler [15] studied this problem
for directed graphs. Their algorithm uses Dijkstra’s algorithm [8] and can be
implemented to run in time O(K(nm + n2 log n)) using Fibonacci heaps [11].
For undirected graphs, Katoh et al. [14] proposed an algorithm with running
time O(K(m + n log n)). Eppstein [10] gave an O(K + m + n log n) algorithm
for listing the first K distinct shortest st-walks, i.e., paths in which vertices are
allowed to appear more than once. Recently, Rizzi et al. [17] studied a different
parameterization of the K shortest path problem where they ask to list all
st-paths with length at most α for a given α. The difference to the classical
K shortest path problem is that the lengths (instead of the overall number)
of the paths output is bounded. Thus, depending on the value of α, K might
be exponential in the input size. The running time of the proposed algorithm
coincides with the running time of the algorithm of Yen and Lawler for directed
graphs, and with the running time of the algorithm of Katoh et al. for undirected
graphs. However, the algorithm of Rizzi et al. uses only O(n + m) space which
is linear in the input size. All these algorithms cannot directly be used for our
listing problem, since we have the additional constraint to list only paths for
which a route of length at most β exists, and since lines can share multiple
transfers. A more detailed explanation is given in Sect. 4.
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2 Preliminaries

Mathematical Preliminaries. Let G = (V,A) be a directed graph. A walk in G
is a sequence of vertices 〈v0, . . . , vk〉 such that (vi−1, vi) ∈ A for all i ∈ [1, k].
For a walk w = 〈v0, . . . , vk〉 and a vertex v ∈ V , we write v ∈ w if and only
if there exists an index i ∈ [0, k] such that v = vi. Analogously, for a walk
w = 〈v0, . . . , vk〉 and an arc a = (u, v) ∈ A, we write a ∈ w if and only if there
exists an index i ∈ [1, k] such that u = vi−1 and v = vi. The length of a walk
w = 〈v0, . . . , vk〉 is k, the number of arcs in the walk, and is denoted by |w|.
A walk w of length |w| = 0 is called degenerate, and non-degenerate otherwise.
For two walks w1 = 〈u0, . . . , uk〉 and w2 = 〈v0, . . . , vl〉 with uk = v0, w1 · w2

denotes the concatenation 〈u0, . . . , uk = v0, . . . , vl〉 of w1 and w2. A path is a
walk π = 〈v0, . . . , vk〉 such that vi �= vj for all i �= j in [0, k], i.e. a path is a walk
without crossings. Given a path π = 〈v0, . . . , vk〉, every contiguous subsequence
π′ = 〈vi, . . . , vj〉 is called a subpath of π. A path π = 〈s = v0, v1, . . . , vk−1, vk = t〉
is called an st-path. For a vertex v ∈ V , let N−

G (v) denote the out-neighborhood
of v. Given two integers i, j, we define the function δij (Kronecker delta) as 1 if
i = j and 0 if i �= j.

Lines and Transit Networks. Given a set of non-degenerate paths (called
lines) L, the transit network induced by L is the graph GL = (VL, AL) where
VL contains exactly the vertices v for which L contains a line l with v ∈ l, and
AL contains exactly the arcs a for which L contains a line l with a ∈ l. This
definition is similar to the definition of the station graph in [18], and it does
not include travel times or timetables since we are only interested in the struc-
ture of the network. The modeling differs from classical graph-based models like
the time-expanded or the time-dependent model which incorporate travel times
explicitly by adding additional vertices or cost functions in the arcs, respectively
(see, e.g., [6,16] for more information on these models). However, for finding
robust routes with the approach in [5], the above definition is sufficient since
travel times are integrated at a later stage. In the following, let ML =

∑
l∈L |l|

denote the sum of the lengths of all lines. In the rest of this paper, we omit the
index L from VL, AL and ML to simplify the notation.

Given a path π = 〈v0, . . . , vk〉 in GL and a sequence of lines γ = 〈l1, . . . , lh〉,
we say that the pair (π, γ) is a route if π is equal to the concatenation of non-
degenerate subpaths π1, . . . , πh of the lines l1, . . . , lh, in this order. Notice that
a line might occur multiple times in γ (see Fig. 1); however, we assume that any
two consecutive lines in γ are different. For every i ∈ {1, . . . , h − 1}, we say that
a line change between the lines li and li+1 occurs. The length of the route (π, γ)
is |γ|, i.e. the number of line changes plus one. Given two vertices u, v ∈ V , a
uv-route is a route (π, γ) such that π is a uv-path. A minimum uv-route has
smallest length among all uv-routes in GL, and we define the L-distance dL(u, v)
from u to v as the length of a minimum uv-route. For a path π and a line l ∈ L,
let l−π be the union of (possibly degenerate) paths that we obtain after removing
every vertex v ∈ π and its adjacent arcs from l (see Fig. 1). For simplicity, we also
call each of these unions of paths a line, although they might be disconnected
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Fig. 1. A transit network with one-way streets induced by a line l1 = 〈v1, . . . , v12〉
(solid) and a line l2 = 〈v13, v2, v11, v14〉 (dotted). To travel from s = v1 to t = v12, it
is reasonable to use l1 until v2, after that use l2 from v2 to v11 and from there use l1
again. We have l1 − l2 = 〈v1, v3, v4, . . . , v10, v12〉, and l2 − l1 = 〈v13, v14〉.

and/or degenerated. However, we note that all algorithms in this paper also work
for disconnected and/or degenerate lines. Given a path π and a set L of lines, let
L − π = {l − π | l ∈ L} denote the set of all lines in which every vertex from π
has been removed. Analogously to our previous definitions, given a path π and
a graph G, we define G − π as the graph from which every vertex v ∈ π and its
adjacent arcs have been removed.

Problems. An algorithm that systematically lists all or a specified subset of
solutions of a combinatorial optimization problem is called a listing algorithm.
The delay of a listing algorithm is the maximum of the time elapsed until the first
solution is output and the times elapsed between any two consecutive solutions
are output [12,17].

Problem 1 (Finding a minimum st-route). Given a transit network GL = (V,A)
and two vertices s, t ∈ V , find a minimum route from s to t.

Problem 2 (Finding an st-route with a minimum number of different lines).
Given a transit network GL = (V,A) and two vertices s, t ∈ V , find a route from
s to t that uses a minimum number of different lines from L.

Notice that, although Problems 1 and 2 sound similar, they are in general
not equivalent. Figure 2 shows an example for a transit network in which the
optimal solutions of the problems differ.

A natural listing problem is to list all possible st-routes. However, this for-
mulation has the disadvantage that the number of possible solutions is huge,
and that there might exist many redundant solutions since a path π can give
rise to multiple distinct routes (e.g., if some arc of π is shared by two lines) and
vice versa. Moreover, from a practical point of view, also routes that contain
many line changes are undesirable. Thus, we formulate the following two listing
problems.

Problem 3 (Listing β-bounded st-paths). Given a transit network GL = (V,A),
two vertices s, t ∈ V , and β ∈ N, output all st-paths π such that there exists at
least one route (π, γ) with length at most β.
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Fig. 2. A transit network induced by the lines l1 = 〈s, a〉, l2 = 〈a, b〉, l3 = 〈b, t〉,
l4 = 〈d, e, s, c〉 and l5 = 〈e, t, c, d〉. The route r1 = (〈s, a, b, t〉, 〈l1, l2, l3〉) is an optimal
solution for Problem 1. It uses three different lines and two transfers. However the
optimal solution for Problem 2 is the route r2 = (〈s, c, d, e, t〉, 〈l4, l5, l4, l5〉) which uses
only two different lines but three transfers.

Problem 4 (Listing β-bounded line sequences). Given a transit network GL =
(V,A), two vertices s, t ∈ V , and β ∈ N, output all line sequences γ such that
there exists at least one route (π, γ) with length at most β.

3 Finding an Optimal Solution

In this section we discuss solutions to the Problems 1 and 2. As a preliminary
observation we show that for undirected lines (i.e., undirected connected graphs
where every vertex has degree 2 or smaller) and undirected transit networks, the
problems are equivalent and can be solved in time Θ(M). Essentially they are
easy because lines can always be traveled in both directions. Of course, this does
not hold in the case of directed graphs (see Fig. 2). While Problem 1 can be
solved in time Θ(M) using Dial’s (implementation of Dijkstra’s) algorithm [7]
on an auxiliary graph similar to the one presented in [16], Problem 2 turns out
to be NP-hard to approximate.

Theorem 1. If all lines in L are undirected and GL is the undirected induced
transit network, then Problems 1 and 2 coincide and can be solved in time Θ(M)
where M =

∑
l∈L |l| is the input size.

Proof. Let r = (π, γ) with π = (π1, . . . , πh) and γ = (l1, . . . , lh) be an optimal
solution to Problem 2. We first show that there always exists an optimal solution
r̄ = (π̄, γ̄) that uses every line in γ̄ exactly once. Suppose that some line l
occurred multiple times in γ. Let i be the smallest index such that li = l, and let
j be the largest index such that lj = l. Let v be the first vertex on πi (i.e., the first
vertex on the subpath served by the first occurrence of l), and let w be the last
vertex on πj (i.e., the last vertex on the subpath served by the last occurrence
of l). Let πsv be the subpath of π starting in s and ending in v, πvw be a subpath
of l from v to w, and πwt be the subpath of π starting in w and ending in t. The
route r′ = (π′, γ′) with π′ = πsv ·πvw ·πwt and γ′ = (l1, . . . , li−1, l, lj+1, . . . , lh) is
still an st-route, it uses the line l exactly once, and overall it does not use more
different lines than r does. Thus, repeating the above argument for every line l
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that occurs multiple times, we obtain a route r̄ = (π̄, γ̄) which uses every line in
γ̄ exactly once and which is still an optimal solution to Problem 2.

The above argument can also be applied to show that every optimal solution
(π, γ) to Problem 1 uses every line in γ exactly once. Now it easy to see that
Problem 1 has a solution with exactly k line changes if and only if Problem 2
has a solution with exactly k +1 different lines. Therefore, Problems 1 and 2 are
equivalent. They can efficiently be solved as follows. For a given transit network
GL = (V,A), consider the vertex-line incidence graph G′ = (V ·∪ L,A′) where

A′ = {{v, l} | v ∈ V ∧ l ∈ L ∧ line l contains vertex v}. (1)

Breadth-first search can be used to find a shortest st-path 〈s, l1, v1, . . . , vk−1,
lk, t〉 in G′. Let γ = (l1, . . . , lk) be the sequence of lines in this path. Now we
use a simple greedy strategy to find a path π in the transit network GL such
that π is the concatenation of subpaths of l1, . . . , lk: we start in s, follow l1 in
an arbitrary direction until we find the vertex v1; if v1 is not found, we traverse
l1 in the opposite direction until we find v1. From v1 we search v2 on line l2,
and continue correspondingly until we reach t on line lk. Now the pair (π, γ) is
a route with a minimum number of transfers (and, with a minimum number of
different lines).

We have |V ·∪ L| ∈ O(M) and |A′| ∈ Θ(M), thus the breadth-first search
runs in time Θ(M). Furthermore, G′ can be constructed from GL in time Θ(M).
Thus, for undirected lines and undirected transit networks, Problems 1 and 2
can be solved in time Θ(M). �	

To solve Problem 1 for a directed transit network GL = (V,A), one can
construct a weighted auxiliary graph Γ [GL] = (V [Γ ], A[Γ ]) such that V ⊆ V [Γ ],
and for any two vertices s, t ∈ V the cost of a shortest st-path in Γ [GL] is
exactly dL(s, t). For a given vertex v ∈ V , let Lv ⊆ L be the set of all lines that
contain v. We add every vertex v ∈ V to V [Γ ]. Additionally, for every vertex
v ∈ V and every line l ∈ Lv, we create a new vertex vl and add it to V [Γ ]. The
set A[Γ ] contains three different types of arcs:

(1) For every arc a = (u, v) in a line l, we create a traveling arc (ul, vl) with
cost 0. These arcs are used for traveling along a line l.

(2) For every vertex v and every line l ∈ Lv, we create a boarding arc (v, vl)
with cost 1. These arcs are used to board the line l at vertex v.

(3) For every vertex v and every line l ∈ Lv, we create a leaving arc (vl, v) with
cost 0. These arcs are used to leave the line l at vertex v.

This construction is a simplified version of the realistic time-expanded graph for
the Minimum Number of Transfers Problem described in [16]. We nevertheless
describe and analyse it explicitly because it will be used as a subroutine in the
listing algorithms in Sect. 4, and the details of the construction are important
for the running time analysis of our listing algorithms.

Theorem 2. Problem 1 is solvable in time Θ(M) where M =
∑

l∈L |l| is the
input size.
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s = va1 vb1 va2 va3 va4 t = vb5

X = {x1, x2, x3, x4, x5}
S1 = {x2, x4, x5}

x1 x2 x3 x4 x5

l1

vb2 vb3 vb4 va5
laux

Fig. 3. The correspondence between a set S1 ⊆ X and a line li of the transit network.

Proof. Let GL = (V,A) be a transit network and s, t ∈ V be arbitrary.
We compute the graph Γ [GL] and run Dial’s algorithm [7] on the vertex s.
Let πst be a shortest st-path in Γ [GL]. It is easy to see that the cost of πst

is exactly dL(s, t) [16]. Furthermore, πst induces an st-path in GL by replac-
ing every traveling arc (vl, wl) by (v, w), and ignoring the arcs of the other two
types [18]. Analogously the line sequence can be extracted from πst by consider-
ing the lines l of all boarding arcs (v, vl) in πst (or, alternatively, by considering
the lines l of all leaving arcs (vl, v) in πst).

For every vertex v served by a line l, Γ [GL] contains at most two vertices
(namely, vl and v), thus we have |V [Γ ]| ∈ O(M). Furthermore, A[Γ ] contains
every arc a of every line, and exactly two additional arcs for every vertex vl.
Thus we obtain |A[Γ ]| ∈ O(M). Since the largest arc weight is C = 1 and Dial’s
algorithm runs in time O(|V [Γ ]|C + |A[Γ ]|), Problem 1 can be solved in time
O(M). �	

In contrast to the previous Theorem, we will show now that finding a route
with a minimum number of different lines is NP-hard to approximate.

Theorem 3. Problem 2 is NP-hard to approximate within (1 − ε) ln n for any
ε > 0 unless NP = P.

Proof. We construct an approximation preserving reduction from SetCover.
The reduction is similar to the one presented in [20] for the minimum-color path
problem. Given an instance I = (X,S) of SetCover, where X = {x1, . . . , xn}
is the ground set, and S = {S1, . . . , Sm} is a family of subsets of X, the goal is
to find a minimum cardinality subset S ′ ⊆ S such that the union of the sets in
S ′ contains all elements from X.

We construct from I a set of lines L that induces a transit network GL =
(V,A) as follows. See Fig. 3 along with the construction. The set L consists of
m+1 lines and induces 2n vertices. The vertex set V = {va

1 , vb
1, v

a
2 , vb

2, . . . , v
a
n, vb

n}
contains two vertices va

i and vb
i for each element xi of the ground set X. Let V O =

〈va
1 , vb

1, . . . , v
a
n, vb

n〉 be the order naturally defined by V . The set of lines L =
{l1, . . . , lm, laux} contains one line for each set in S, plus one auxiliary line laux.
For a set Si ∈ S, consider the set of vertices that correspond to the elements
in Si and order them according to V O to obtain 〈va

i1
, vb

i1
, va

i2
, vb

i2
, . . . , va

ir
, vb

ir
〉.

Now we define the line li as 〈va
ir

, vb
ir

, va
i(r−1)

, vb
i(r−1)

, . . . , va
i1

, vb
i1

〉. The auxiliary
line laux is defined as 〈vb

n−1, v
a
n, vb

n−2, v
a
n−1, . . . , v

b
1, v

a
2 〉. Observe that the set of
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arcs A induced by L contains two types of arcs. First, there are arcs of the form
(va

i , vb
i ) or in the form (vb

i , v
a
i+1) for some i ∈ [1, n]. These are the only arcs in

A whose direction agrees with the order V O, and we refer to them as forward
arcs. Second, for all the other arcs (u, v) ∈ A we have u > v with respect to the
order V O, and we refer to these arcs as backward arcs. We note that every line li
is constructed so that the forward arcs of li correspond to those elements of X
that are contained in Si, and the backward arcs connect the forward arcs, in the
order opposite to V O, thus making the lines connected. The auxiliary line laux

consists of all the forward arcs in the form (vb
i , v

a
i+1), that are again connected

in the opposite order by backward arcs.
Now, for s = va

1 and t = vb
n, we show that an st-route with a minimum

number of different lines in the given transit network GL provides a minimum
SetCover for I, and vice versa. Since t is after s in the order V O, and the only
forward arcs in GL are of the form (va

i , vb
i ) or (vb

i , v
a
i+1) for some i, it follows

that any route from s to t in GL goes via all the vertices, in the order V O. Thus,
for each st-route r = (π, γ), there exists an st-route r′ = (π′, γ′) which does not
use any additional lines to those used in r, but contains no backward arc. That
is, γ′ is a subsequence of γ, and π′ = 〈va

1 , vb
1, v

a
2 , vb

2, . . . , v
a
n, vb

n〉. In particular,
there exists an st-route that minimizes the number of different lines, and its
path is 〈va

1 , vb
1, v

a
2 , vb

2, . . . , v
a
n, vb

n〉. Clearly, laux must be used in every st-route, as
it represents the only way to reach va

i+1 from vb
i . Now, if a line li is used in the

st-route r, all the forward arcs in li correspond to the arcs (va
i , vb

i ) of the path
in r and in this way the line li “covers” these arcs. Since there is a one to one
mapping between the lines l1, . . . , lm and the sets in S, by finding an st-route
with k+1 different lines, one finds a solution of size k to the original SetCover.
Similarly each solution of size k to the original SetCover can be mapped to an
st-route with k + 1 lines. Thus our reduction is approximation preserving, and
based on the inapproximability of SetCover [9] this concludes the proof. �	

4 Listing All Solutions

Motivation. In [5], the authors describe an algorithm for Problem 4 whose worst-
case running time might be exponential in β, independently of κ, the number
of listed line sequences. A näıve approach for solving Problem 3 is to use this
algorithm to generate all feasible line sequences γ and then to compute the
corresponding paths (there might be more than one) for each feasible γ. However,
this approach does not only have the disadvantage of a possibly huge running
time, also for every path π there might be many line sequences γ such that (π, γ)
is route in GL. Since we want to output every path π at most once, we would
need to store Ω(κ) many paths.

Another straightforward idea to solve Problem 3 might be to construct an
auxiliary graph from GL and then use one the well-known algorithms for listing
paths, e.g., Yen’s algorithm. For example, one could create a directed graph
GX = (V,AX) where AX contains an arc between v and w if there exists a line
that visits v before w. Any path between s and t in GX of length at most β
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induces an st-path in GL. However, as before, exponentially many paths in GX

might correspond to one path in GL which again might lead to an exponential
gap between the running time and the sum of the input and the output size.

Improved Idea for Problem 3. Let Pβ
st(L) denote the set of all st-paths π such

that there exists a route (π, γ) with length at most β in the transit network GL.
To obtain a polynomial delay algorithm that uses only O(M) space, we use the
so-called binary partition method described in [3,17]: The transit network GL

is traversed in a depth first search fashion starting from s, and the solution
space Pβ

st(L) is recursively partitioned at every call until it contains exactly one
solution (i.e., one path) that is then output.

When the algorithm considers a partial su-path πsu, we first check whether
u = t. In that case, πsu is output. Otherwise, we compute the graph G′ that
is the transit network GL from which all vertices (and all adjacent edges) in
πsu are removed. To bound the running time of the algorithm we maintain the
invariant that the current partition (i.e., the paths in Pβ

st(L) with prefix πsu)
contains at least one solution. More concretely, we require that G′ contains at
least one ut-path πut that extends πsu so that πsu · πut ∈ Pβ

st(L). The idea
behind this algorithm is similar to the one in [17] for listing all α-bounded
paths; here, however, new ideas to maintain the invariant are necessary because
our objective is to list only paths π for which a length-bounded route (π, γ)
in GL exists (instead of listing all paths whose length itself is bounded).

Checking Whether to Recurse or Not. Let πsu be the su-path that the algorithm
currently considers, L′ = L − πsu, G′ = GL − πsu = GL′ , and v ∈ N−

GL
(u) ∩ G′,

i.e., v is a neighbor of u that is not contained in πsu. We recursively continue
on πsu · (u, v) only if the invariant (I) is satisfied, i.e., if Pβ

st(L) contains a path
with prefix πsu · (u, v).

Let dGL
(πsu, (u, v), li) be the length of a minimum route (πsu · (u, v), γ) in

GL such that li is the last line of γ. Let dL′
G′(v, t, lj) be the L′-distance from v

to t in G′ such that lj is the first line used. For a vertex v ∈ V , let Lv ⊆ L
be the set of all lines that contain an outgoing arc from v. Analogously, for an
arc (u, v) ∈ A, let L(u,v) be the set of all lines that contain (u, v). Now, the set
Pβ

st(L) contains a path with prefix πsu · (u, v) if and only if

min
{
dGL

(πsu, (u, v), li) − δij + dL′
G′(v, t, lj) | li ∈ L(u,v) and lj ∈ Lv

} ≤ β . (2)

Basically, min{dGL
(πsu, (u, v), li) − δij + dL′

G′(v, t, lj) | li ∈ L(u,v) and lj ∈ Lv} is
the length of the minimum route that has prefix πsu · (u, v).

Computing dGL
(πsu, (u, v), li) and dL′

G′(v, t, lj). We can use the solution for Prob-
lem 1 to compute the values dGL

(πsu, (u, v), li) and dL′
G′(v, t, lj). The values

dGL
(πsu, (u, v), li) need to be computed only for arcs (u, v) ∈ A with v /∈ πsu (i.e.,

only for arcs from u to a vertex v ∈ N−
GL

(u) ∩ G′), and only for lines li ∈ L(u,v).
Consider the graph G′′ that contains every arc from πsu and every arc (u, v) ∈ A
with v /∈ πsu, and that contains exactly the vertices incident to these arcs.
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Now we compute H = Γ [G′′] and run Dial’s algorithm on the vertex s. For
every v ∈ N−

GL
(u) ∩ G′ and every line li ∈ L(u,v), the length of a shortest path

in H from s to vli is exactly dGL
(πsu, (u, v), li). For computing dL′

G′(v, t, lj), we
can consider the L′-distances from t in the reverse graph G′R (with all the arcs
and lines in L′ reversed). Considering G′ instead of GL ensures that lines do not
use vertices that have been deleted in previous recursive calls of the algorithm.
Thus we compute Γ [G′R] and run Dial’s algorithm on the vertex t. Then, the
length of a shortest path in Γ [G′R] from t to vlj is exactly dL′

G′(v, t, lj).

Algorithm. Algorithm 1 shows the details of the aforementioned approach. To
limit the space consumption of the algorithm, we do not pass the graph G′

as a parameter to the recursive calls, but compute it at the beginning of each
recursive call from the current prefix πsu. For the same reason, we do not perform
the recursive calls immediately in step 8, but first create a list VR ⊆ V of vertices
for which the invariant (I) is satisfied, and only then recurse on (v, πsu · (u, v))
for every v ∈ VR. To list all paths in Pβ

st, we invoke ListPaths(s, 〈s〉).

Algorithm 1. ListPaths(u, πsu)

if u = t then Output(πsu); return1

L′ ← L − πsu; G′ ← GL − πsu2

Compute dGL
(πsu, (u, v), li) for each v ∈ N−

GL
(u) ∩ G′ and li ∈ L(u,v)3

Compute dL′
G′(v, t, lj) for each v ∈ N−

GL
(u) ∩ G′ and lj ∈ Lv4

VR ← ∅5

for v ∈ N−
GL

(u) ∩ G′ do6

d ← min{dGL
(πsu, (u, v), li)+ dL′

G′(v, t, lj)− δij | i ∈ L(u,v) and lj ∈ Lv}7

if d ≤ β then VR ← VR ∪ {v}8

for v ∈ VR do9

ListPaths(v, πsu · (u, v))10

Theorem 4. Algorithm 1 has delay O(nM), where n is the number of vertices
in GL and M =

∑
l∈L |l| is the input size. The total time complexity is O(nM ·κ),

where κ is the number of returned solutions. Moreover, the space complexity is
O(M).

Proof. We first analyse the cost of a given call to the algorithm without including
the cost of the recursive calls performed inside. Theorem 2 states that steps 3
and 4 can be performed in time O(M). We will now show that steps 6–8 can be
implemented in time O(M). Notice that for a fixed prefix πsu and a fixed vertex
v ∈ N−

GL
(u)∩G′, for computing the minimum in step 7, we need to consider only

the values dGL
(πsu, (u, v), li) that are minimum among all dGL

(πsu, (u, v), ·),
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and only the values dL′
G′(v, t, lj) that are minimum among all dL′

G′(v, t, ·). Let
Λv ⊆ L(u,v) be the list of all lines li for which dGL

(πsu, (u, v), li) is minimum
among all dGL

(πsu, (u, v), ·). Analogously, let Λ′
v ⊆ Lv be the list of all lines lj

for which dL′
G′(v, t, lj) is minimum among all dL′

G′(v, t, ·). Let

μv = min
{
dGL

(πsu, (u, v), li) | li ∈ Λv

}
(3)

μ′
v = min

{
dL′

G′(v, t, lj) | lj ∈ Λ′
v

}
(4)

be the minimum values of dGL
(πsu, (u, v), ·) and dL′

G′(v, t, ·), respectively. Both
values as well as the lists Λv and Λ′

v can be computed in steps 3 and 4, and
their computation only takes overall time O(M). Now the expression in step 7
evaluates to μv +μ′

v if Λv ∩Λ′
v = ∅, and to μv +μ′

v −1 otherwise. Assuming that
Λv and Λ′

v are ordered ascendingly by the index of the contained lines li, it can
easily be checked with |Λv| + |Λ′

v| ≤ |L(u,v)| + |Lv| many comparisons if their
intersection is empty or not. Using this method, each of the values dGL

(πsu, ·, ·)
and dL′

G′(·, t, ·) is accessed exactly once (when computing Λv and Λ′
v), and since

each of these values has a unique corresponding vertex in the graphs H and
Γ [G′R], there exist at most O(M) many such values. Thus, the running time of
the steps 6–8 is bounded by O(M) which is also an upper bound on the running
time of Algorithm 1 (ignoring the recursive calls).

We now look at the structure of the recursion tree. The height of the recursion
tree is bounded by n, since at every level of the recursion tree a new vertex is
added to the current partial solution and any solution has at most n vertices.
Solutions are output in the leaves. Since the length of a path between any two
leaves in the recursion tree is at most 2n, the delay is in O(nM).

For analysing the space complexity, observe that L′, G′ and the values
dGL

(πsu, (u, v), li) and dL′
G′(v, t, lj) can be removed from the memory after step 8

since they are not needed any more. Thus, we only need to store the lists VR

between the recursive calls. Consider a path in the recursion tree, and for each
recursive call i, let ui be the vertex u and V i

R be the list VR of the i-th recur-
sive call. Since V i

R contains only vertices adjacent to ui and ui is never being
considered again in any succeeding recursive call j > i, we have

∑

i

|V i
R| ≤ |AL|, (5)

which proves the space complexity of O(M). �	

A More Efficient Solution to Problem 4. We can now combine the ideas from
above with the ideas in [5] to develop a polynomial delay listing algorithm for
Problem 4. We first compute the values dL

GL
(v, t, l) for every vertex v and every

line l that contains v (using the solution to Problem 1). After that, assume that
a partial line sequence γ = 〈l1, . . . , lk〉, k ≤ β, was already computed and that
u is the earliest vertex on lk which can be reached from lk−1 among all possible
st-routes (π, γ); see Fig. 4 for an example. If lk visits t after u, then we output
the line sequence γ. We also have to check whether γ can be extended. Figure 1
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shows why this can be reasonable even if t is reachable via lk. We compute a
set L′ of possible line candidates l that can be reached from lk after u, and also
the transfer vertices vl by which l is reached as early as possible (i.e., there is
no vertex v′

l visited by lk after u that is visited by l before vl). This can be done
by considering the successors of u on lk with increasing distance from u, and
keeping track of the optimal transfer from lk. Now, for each l ∈ L′, we check
whether dL

GL
(vl, t, l) ≤ β −k. In such a case there exists a vlt-route starting with

the line l, and extending γ by l gives a route of length at most β. Otherwise,
there either is no vlt-route starting with l, or it uses too many transfers.

Algorithm 2 shows the details. To solve Problem 4, it is sufficient to invoke
ListLineSequences(s, 〈l〉) for every l ∈ Ls where dL

GL
(s, t, l) ≤ β. The idea

of extending the partial line sequence step-by-step and how to find the optimal
transfer vertex is similar to [5]; here, however, we only extend γ by l′ if this
definitely leads to a solution that is output. As the following theorem shows,
this guarantees a polynomial delay.

Algorithm 2. ListLineSequences(u, 〈l1, . . . , lk〉)
Compute dL

GL
(v, t, l) for each v ∈ GL and l ∈ L1

for l ∈ L do vl ← ∞2

for each successor v of u on lk in increasing order do3

if v = t then Output(〈l1, . . . , lk〉)4

for l ∈ Lv do5

if vl = ∞ or l visits v earlier than vl then vl ← v6

for l ∈ L do7

if vl �= ∞ and dL
GL

(vl, t, l) ≤ β − k then8

ListLineSequences(vl, 〈l1, . . . , lk, l〉)9

Theorem 5. Algorithm 2 has delay O(βM), and its total time complexity is
O(βM ·κ), where M =

∑
l∈L |l| is the input size and κ is the number of returned

solutions. Moreover, the space complexity is O(M).

Proof. As before, step 1 can be computed using O(M) operations and requires
O(M) space. Steps 3–6 can also be implemented to run in time O(M), as every
step 6 takes only constant time and is performed at most once for every vertex
v and every line l containing v. Since the recursive calls in step 9 are only
performed if it is guaranteed to output a solution, we observe that the height
of the recursion tree is bounded by O(β), hence the delay of the algorithm is
O(βM). The time complexity of O(βM · κ) immediately follows. �	
As in [5], we assumed in the above running time analysis that the test whether
a given vertex v is visited by a line l can be performed in constant time using
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Fig. 4. The earliest transfer from l3 to l1 is v3. However, the earliest transfer using the
line sequence 〈l4, l3, l1〉 is v4. We have f(l2, l1, v1) = v2 and f(l2, l1, vk) = ∞ for every
k �= 1. We have f(l3, l1, v5) = f(l3, l1, v6) = ∞, f(l3, l1, v3) = f(l3, l1, v4) = v5 and
f(l3, l1, v1) = f(l3, l1, v2) = v3. Moreover, f(l3, l4, vk) = ∞ for every k.

suitable hash tables. The same is true for the test whether a line visits a vertex
v earlier than some other vertex w. Moreover, when the algorithm is invoked
with the parameters γ = 〈l1, . . . , lk〉 and u, and if additionally t is visited by lk
after u, then in practice the successors of t on lk do not have to be visited any
more in step 3 of the Algorithm 2, hence the current call of the algorithm can
terminate after γ is output in step 4.

A Faster Algorithm with Preprocessing. Although the enumerating all length-
bounded routes is already reasonably fast for urban transportation networks
like the one in Zürich [4], an overall running time of O(βM · κ) is undesirable
from a practical point of view. Algorithm 2 has delay O(βM) for two reasons:
(1) initially we compute the values dL

GL
(·, t, ·), and (2) for every partial line

sequence 〈l1, . . . , lk〉 we investigate all possible transfer vertices from lk to other
lines to find the optimal one for every line. Issue (1) can easily be solved by
computing the values dL

GL
(v, t, l) for every v, t ∈ V and every line l ∈ L in

advance and then storing them. Since for every t there are at most O(M) many
values dL

GL
(·, t, ·) and all of them can be computed in time O(M), we need overall

time O(M |V |). To solve issue (2), we precompute for every line l, every vertex
v on l and every line l′ �= l the vertex f(l, l′, v) which is visited by l after v and
by which l′ is reached as early as possible (on l′). If no such a vertex exists, we
set f(l, l′, v) = ∞. For every line l = 〈v1, . . . , vk〉 ∈ L, the values f(l, ·, ·) can be
computed as follows. We consider the vertices vk, . . . , v1 in this order. We set
f(l, l′, vk) = ∞ for every l′ ∈ L. After that, considering a vertex vi, we set

f(l, l′, vi) =

⎧
⎪⎨

⎪⎩

vi+1 if l′ ∈ Lvi+1 and f(l, l′, vi+1) = ∞
vi+1 if l′ ∈ Lvi+1 and l′ visits vi+1 before f(l, l′, vi+1)
f(l, l′, vi+1) otherwise

(6)

Since the computation of each entry requires only constant time, the values
f(l, l′, v) can be computed using time and space O(M |L|). Hence, for preprocess-
ing time and space O(M(|V |+|L|)) suffice. Now, however, st-route listing queries
can be performed much faster using the following algorithm.
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Algorithm 3. ListLineSequences(u, 〈l1, . . . , lk〉)
if lk visits t after u then Output(〈l1, . . . , lk〉)1

for l ∈ L do2

vl ← f(lk, l, u)3

if vl �= ∞ and dL
GL

(vl, t, l) ≤ β − k then4

ListLineSequences(vl, 〈l1, . . . , lk, l〉)5

Theorem 6. The values dL
GL

(v, t, l) and f(l, l′, v) can be precomputed using time
and space O(M(|V | + |L|)). Assuming that these values have been precomputed,
Algorithm 3 has delay O(β|L|), and its total time complexity is O(β|L|·κ), where
|L| is the number of lines and κ is the number of returned solutions.

Proof. The straightforward proof is similar to the proof of Theorem 5. �	
To see the speedup, remember that Algorithm 2 has a delay of O(βM) while

Algorithm 3 has a delay of only O(β|L|). In real networks, M =
∑

l∈L |l| is
usually way larger than |L| is.
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Abstract. In this paper, we study the model of stochastic timed
automata and we target the definition of adequate composition opera-
tors that will allow a compositional approach to the design of stochastic
systems with hard real-time constraints. This paper achieves the first
step towards that goal. Firstly, we define a parallel composition operator
that (we prove) corresponds to the interleaving semantics for that model;
we give conditions over probability distributions, which ensure that the
operator is well-defined; and we exhibit problematic behaviours when this
condition is not satisfied. We furthermore identify a large and natural
subclass which is closed under parallel composition. Secondly, we define
a bisimulation notion which naturally extends that for continuous-time
Markov chains. Finally, we importantly show that the defined bisimula-
tion is a congruence w.r.t. the parallel composition, which is an expected
property for a proper modular approach to system design.

1 Introduction

Compositional design and compositional verification are two crucial aspects of
the development of computerised systems for which correctness needs to be guar-
anteed or quantified. It is indeed convenient and natural to model separately each
component of a system and model their interaction, and it is easier and probably
less error-prone than to model at once the complete system.

In the last twenty years a huge effort has been made to design expressive
models, with the aim to faithfully represent computerised systems. This is for
instance the case of systems with real-time constraints for which the model of
timed automata [1,2] is successfully used. Many applications like communication
protocols require models integrating both real-time constraints and randomised
aspects (see e.g. [25]), which requires the development of specific models. Recently,
a model of stochastic timed automata (STA) has been proposed as a natural
extension of timed automata with stochastic delays and stochastic edge choices
(see [8] for a survey of the results so far concerning this model). Advantages of the
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STA model are twofold: (i) it is based on the well-understood and powerful model
of timed automata, allowing to express hard real-time constraints like deadlines
(unlike for the widely used model of continuous-time Markov chains (CTMCs in
short)); (ii) it enjoys nice decidability properties (see [8,9]). On the other hand,
there is no obvious way of designing in a compositional manner a complex system
using this model.

In this paper we are inspired by the approach of [24], and we target the
definition of (parallel) composition operators allowing for a component-based
modelling framework for STA. This paper achieves the first steps towards that
goal:

1. We define a parallel composition operator that (we prove) corresponds to
the interleaving semantics for that model; we give conditions over families
of distributions over delays, which ensure that the operator is well-defined;
we exhibit problematic behaviours when this condition is not satisfied. We
furthermore identify a class of such well-behaving STA that is closed under
parallel composition. Note that this class of well-behaving systems encom-
passes the class of CTMCs.

2. We define a bisimulation notion which naturally extends that for CTMCs
[5,6,17], and we importantly show that the bisimulation is a congruence w.r.t.
parallel composition; this is an expected property for a proper modular app-
roach to system design.

The next step will be to extend the current composition operator with some
synchronisation between components. For CTMCs, this has required much effort
over the years to come up with a satisfactory solution, yielding for instance the
model of interactive Markov chains (IMCs) [21,22]. We believe we will benefit
a lot from this solution and plan to follow a similar approach for STA; we leave
it as further work (the current work focuses on races between components and
establishes all useful properties at the level of STA).

Related Works. We do not list all works concerned with the verification of sto-
chastic real-time systems, but will focus on those interested in compositional
design. The first natural related work is that on interactive Markov chains (IMCs
in short) [21,22], which extend CTMCs with interaction, and for which compo-
sitional verification methods have been investigated [13,23]. However in this
model, only soft real-time constraints can be evaluated (that is, they may not
be always satisfied by the system, but their likelihood is then quantified), and
the model cannot evolve differently, depending on constraints over clocks. Our
ultimate goal is to extend the elegant approach of IMCs to a model based on
timed automata.

Other related approaches are based on process algebras (note that origi-
nally IMCs presented as a process algebra as well [21]). There have been several
proposals, among which the IGSMP calculus [12], whose semantics is given as
generalised semi-Markov processes (GSMPs); and the stochastic process algebra
♤ [15,16], whose semantics is given as ♤-stochastic timed automata (we write
♤-STA). Our model very much compares to the latter, so we will briefly describe
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it. In such a system, when a clock variable is activated, it is sampled according
to a predefined distribution, and then it acts as a countdown timer: when time
elapses, the clock variables decrease down to 0. Transitions can be fired once all
clocks specified on the transition have reached value 0. First notice that both
STA and ♤-STA allow to express hard real-time constraints, e.g. strict deadlines
to be satisfied by the system (which is not the case of CTMCs or IMCs). Then
the ♤-STA model is at the basis of several modelling languages like Modest [10]
and comes with several notions of bisimulations with nice congruence proper-
ties, and with a complete equational theory. It is interesting to mention as well
that ♤-STA allow for infinitely many states and clock variables, whereas STA
do not (they have been defined on top of timed automata, with desirable decid-
ability properties in mind). Similarly to ♤-STA, STA extend (finite-state and
finite-variable) GSMPs,1 but for different reasons: ♤-STA allows for fixed-delay
events and non-determinism, whereas STA allows for more intricate timing con-
straints and branchings.2 Finally, it is worth mentioning the modelling language
Modest [10], whose semantics is given as a very general notion of stochastic
timed automata (we call them Modest-STA), which comes with an interesting
tool suite [19,20], and which encompasses all the models we have mentioned.
STA in general, and the subclass that is closed under parallel composition while
enjoying decidability properties, can be viewed as a fragment of Modest-STA.

The full version of this work and detailed proofs are given in [11].

2 Stochastic Timed Automata

In this section, we recall the notion of timed automaton [2], and that of stochastic
timed automaton [8]. Let X = {x1, . . . , xn} be a finite set of real-valued variables
called clocks. A clock valuation over X is a mapping ν : X → R+ where R+ is
the set of nonnegative real numbers. We write R

X
+ for the set of clock valuations

over X. If ν ∈ R
X
+ , we write νi for ν(xi) and we then denote ν by (ν1, . . . , νn). If

τ ∈ R+, we write ν + τ for the clock valuation defined by (ν1 + τ, . . . , νn + τ).
If Y ∈ 2X (the power set of X), [Y ← 0]ν is the valuation that assigns to x, 0 if
x ∈ Y and ν(x) otherwise. A guard3 over X is a finite conjunction of expressions
of the form xi ∼ c where c ∈ N and ∼ ∈ {<,>}. We denote by G(X) the set of
guards over X. We write ν |= g if ν satisfies g, which is defined in a natural way.

Definition 1. A timed automaton (TA in short) is a tuple A =
(L,L0,X,E,AP,L) where: (i) L is a finite set of locations, (ii) L0 ⊆ L is a set
of initial locations, (iii) X is a finite set of clocks, (iv) E ⊆ L×G(X)×2X ×L is
a finite set of edges, (v) AP is a set of atomic propositions and (vi) L : L → 2AP

is a labelling function.

1 This can be seen using the residual-time semantics given in [14,18].
2 Somehow, the clock behaviour in GSMPs and in ♤-STA is that of countdown timers

(which can be seen as event-predicting clocks of [3]), which is not as rich as general
clocks in standard timed automata.

3 We restrict to open guards for technical reasons due to stochastic aspects.
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The semantics of a TA is a labelled timed transition system TA =
(Q,Q0,R+ ×E,→,AP,L) where Q = L×R

X
+ is the set of states, Q0 = L0 ×0X

is the set of initial states (valuation 0X assigns 0 to each clock), L : Q → 2AP

labels each state q = (l, ν) ∈ Q by L(l) and → ⊆ Q × (R+ × E) × Q is the
transition relation defined as follows: if e = (l, g, Y, l′) ∈ E and τ ∈ R+, then
we have (l, ν)

τ,e−→ (l′, ν′) if (ν + τ) |= g and ν′ = [Y ← 0](ν + τ). If q = (�, ν),
for every τ ≥ 0, q + τ denotes (�, ν + τ). A finite (resp. infinite) run ρ is a
finite (resp. infinite) sequence ρ = q1

τ1,e1−−→ q2
τ2,e2−−→ . . .. Given q ∈ Q, we write

Runs(A, q) for the set of infinite runs in A from q. Given q ∈ Q and e ∈ E we
define I(q, e) = {τ ∈ R+ | ∃q′ ∈ Q s.t. q

τ,e−→ q′} and I(q) =
⋃

e∈E I(q, e).
We now define the notion of stochastic timed automaton [8], by equipping

every state of a TA with probabity measures over both delays and edges.

Definition 2. A stochastic timed automaton (STA in short) is a tuple
A = (L,L0,X,E,AP,L, (μq, pq)q∈L×RX

+
) where (L,L0,X,E,AP,L) is a timed

automaton and for every q = (l, ν) ∈ L × R
X
+ ,

(i) μq is a probability distribution over I(q) and pq is a probability distribution
over E such that for each e = (l, g, Y, l′) ∈ E, pq(e) > 0 iff ν |= g,

(ii) μq is equivalent to the restriction of the Lebesgue measure on I(q),4 and
(iii) for each edge e, the function pq+•(e) : R+ → [0, 1] that assigns to each t ≥ 0

the value pq+t(e), is measurable.

We fix A a STA, with the notations of the definition. We let Q = L × R
X
+

be the set of states of A, and pick q ∈ Q. We aim at defining a probability
distribution PA over Runs(A, q). Let e1, . . . , ek be edges of A, and C ⊆ R

k
+ be

a Borel set. The (constrained) symbolic path starting from q and determined
by e1, . . . , ek and C is the following set of finite runs: πC(q, e1, . . . , ek) = {ρ =
q

τ1,e1−−→ q1 · · · τk,ek−−→ qk | (τ1, . . . , τk) ∈ C}. Given a symbolic path π, we define the
cylinder generated by π as the subset Cyl(π) of Runs(A, q) containing all runs
ρ with a prefix ρ′ in π.

We inductively define a measure over the set of symbolic paths as follows:

PA(πC(q, e1, . . . , ek)) =
∫

t1∈I(q,e1)

pq+t1(e1)PA(πC[τ1/t1](qt1 , e2, . . . , ek)) dμq(t1),

where for every t1 ≥ 0, qt1 is such that q
t1,e1−−→ qt1 and C[τ1/t1] replaces variable

τ1 by t1 in C; we initialise with PA(π(q)) = 1. The formula for PA relies on the
fact that the probability of taking transition e1 at time t1 coincides with the
probability of waiting t1 time units and then choosing e1 among the enabled
transitions, i.e. pq+t1(e1) dμq(t1). Now, one can extend PA to the cylinders by
PA(Cyl(π)) = PA(π), where π is a symbolic path. Using some extension theorem
as Carathéodory’s theorem, we can extend PA in a unique way to the σ-algebra
generated by the cylinders starting in q, which we denote Ωq

A.

4 Two measures μ and ν on the same measurable space are equivalent whenever for
every measurable set A, μ(A) > 0 iff ν(A) > 0.
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Fig. 1. The IPv4 Zeroconf STA.
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Fig. 2. A1 /∈ CSTA.

Proposition 1 ([8]). Let A = (L,L0,X,E,AP,L, (μq, pq)q∈L×RX
+

) be a STA.
For every state q ∈ Q, PA is a probability measure over (Runs(A, q), Ωq

A).

Remark 1. Among others, the set of Zeno runs is measurable in Ωq
A;5 writing

CM,k for {(τ1, . . . , τk) ∈ R
k
+ | τ1 + . . . + τk ≤ M} it is indeed expressible as

follows: ⋃

M∈N

⋂

k∈N0

⋃

(e1,...,ek)∈Ek

Cyl(πCM,k
(q, e1, . . . , ek)).

Remark 2. A CTMC can be viewed as a STA with trivial guards on transitions
and exponential distributions over delays.

We now give an example of STA.

Example 1. We model the IPv4 Zeroconf protocol using STA as done in [8]
(see Fig. 1). This protocol aims at configuring IP addresses in a local network
of appliances. When a new appliance is plugged, it selects an IP address at
random, and broadcasts several probe messages to the network to know whether
this address is already used or not. If it receives in a bounded delay an answer
from the network informing that the IP is already used, then a new IP address
is chosen. It may be the case that messages get lost, in which case there is an
error. In [7], a simple model for the IPv4 Zeroconf protocol is given as a discrete-
time Markov chain, which abstracts away timing constraints. In Fig. 1, we model
the protocol as a STA with a single clock x, and exponential distributions (of
parameters μ and λ) and this allows us to explicitly express the delay bound.

Discussion on the Model. STA have been defined and studied in a series of papers
from 2007, with a complete journal version published as [8]. They can be used
for modelling systems with stochastic aspects and real-time constraints (they
are based on the standard model of timed automata [2] and extend the model of
CTMCs) and are amenable to automatic verification. The class of almost-surely
fair STA6 is of particular interest. Indeed:

5 We recall that a run ρ = q
τ1,e1−−→ q1

τ2,e2−−→ . . . is Zeno if
∑

i≥1 τi < +∞.
6 A STA is said almost-surely fair whenever PA(fair) = 1, where a run is fair if and

only if (roughly speaking) any edge enabled infinitely often is taken infinitely often.



122 P. Bouyer et al.

Theorem 1 ([8]). The almost-sure model-checking problem is decidable for the
class of almost-surely fair STA, with regards to ω-regular properties or properties
given as deterministic timed automata.

There exists surprisingly simple examples of STA which are not almost-surely fair
(see for example [8, Fig. 9]), but large classes of STA have been identified in [8],
that are almost-surely fair (they include single-clock STA and (weak-)reactive
STA). Deciding whether a STA is almost-surely fair is an open problem

The approach adopted so far for modelling and verifying is monolithic. We
target modular design of STA and describe a class of STA in which composition
can safely be applied.

3 Parallel Composition of Stochastic Timed Automata

Compositional design is desirable for building computerised systems. Inspired
by the approach of [24], we first define a parallel composition operator for STA,
which corresponds to an interleaving semantics. This operator involves complex
behaviours that are due to races between components. We therefore give condi-
tions under which STA can be safely composed.

Remark 3. As already mentioned earlier, we focus here on an interleaving par-
allel composition operator between STA, and study the races between compo-
nents. Extension to a parallel composition operator with some synchronisation
is part of our future work, and we plan to adopt the idea of interactive Markov
chains [21,22], which extend CTMCs with interactive actions, for the purpose of
synchronisation.

3.1 Definition of the Parallel Composition

We consider two STA Ai = (Li, L
(i)
0 ,Xi, Ei,APi,Li, (μ

(i)
q , p

(i)
q )

q∈Li×R
Xi
+

) for i =

1, 2 with X1 ∩ X2 = ∅, and we first recall the standard (interleaving) parallel
composition for the underlying TA. It is the TA (L,L0,X,E,AP,L) where L =
L1 × L2, L0 = L

(1)
0 × L

(2)
0 , X = X1 ∪ X2, AP = AP1 ∪ AP2, L : L → 2AP is

such that L((l1, l2)) = L1(l1) ∪ L2(l2) and where E = E1,• ∪ E•,2 with E1,• =
{((l1, l2), g, Y, (l′1, l2)) | (l1, g, Y, l′1) ∈ E1, l2 ∈ L2}.

Back to the STA, the parallel composition A1 ‖ A2 has as underlying TA the
one above; it remains to equip each state q = (q1, q2) ∈ Q1×Q2 with probability
distributions over both delays and edges, with the following constraints:

– distributions over delays from state (q1, q2) should reflect a race between the
two components A1 and A2 from respectively states q1 and q2;

– distributions over edges should be state-based (or memoryless), that is, should
not depend on how long has been waited before taking that edge, or which
other actions have been done meanwhile by other components;
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– globally, the product-automaton should correspond to the interleaving of A1

and A2, which we express as follows: given a property ϕ1 that only concerns A1

and a property ϕ2 that only concerns A2, PA1‖A2(ϕ1∧ϕ2) = PA1(ϕ1)·PA2(ϕ2).

Example 2 will illustrate the intricacy of getting these conditions satisfied.
Let A be a STA and let q = (l, ν) ∈ Q be a state of A. We write fq for

the density function of μq w.r.t. the Lebesgue measure. We write Fq for the
cumulative function associated to fq.

We now define a first class of STA, called CSTA, which is suitable to define
a parallel composition. We say that a STA A is in CSTA if:

(A) for every state q of A, the density function associated with μq, denoted by
fq, is continuous everywhere on R+ except in a finite number of points, and

(B) the family of probability distributions (μq)q∈Q is weakly-memoryless, i.e. for
every t, t′ ≥ 0, PA(Xq ≥ t + t′ | Xq ≥ t) = PA(Xq+t ≥ t′), where Xq (resp.
Xq+t) is a random variable with density function fq (resp. fq+t).

This second condition is a consistency condition between states which belong
to the same ‘time-elapsing fiber’, that is, sets of the form F = {q + t | t ∈
R and q + t ∈ Q}. Indeed, Xq (resp. Xq+t) represents the delay after which we
leave state q (resp. q + t) via an edge. Hence if q0 is the minimal (for time-
elapsing) element of F , then for every q = q0 + t ∈ F , the law of Xq has to be
equal to the law of Xq0 conditioned by the fact that t time units have already
passed. The distribution in q0 can be taken arbitrary (satisfying condition (A)),
and distributions for q ∈ F can then be inferred.

Condition (B) can equivalently be written as: for every t, t′ ≥ 0,

fq(t + t′) = (1 − Fq(t))fq+t(t′) (1)

Remark 4. Let q0 be an initial element of a fiber, we can check that for instance,

– if I(q0) is a bounded subset of R+ and if μq0 is a uniform distribution over
I(q0), then for every t ∈ R+, (B) imposes that μq0+t is also uniform over
I(q0 + t);

– similarly, if I(q0) = R+, and if μq0 is an exponential distribution with para-
meter λ (denoted Exp(λ)), then for every t ∈ R+, (B) imposes that μq0+t

is also an Exp(λ)-distribution. This corresponds to the classical memoryless
property assumed in CTMCs.

We can now explain how to build the probability distributions associated
with a state q = (q1, q2) of A1 ‖ A2. Since we leave state q = (q1, q2) as soon as
we leave q1 or q2, we naturally define the distribution over the delays from q as
the minimum of the distributions over delays from q1 and q2. Under hypothesis
(A) for the distributions from q1 and q2, one can show that the density function
fq for the minimum satisfies fq(t) = fq1(t)(1−Fq2(t))+fq2(t)(1−Fq1(t)) almost-
surely for every t ≥ 0 (w.r.t. the Lebesgue measure).

In order to define the probability distribution pq over the enabled edges in
q, one could consider that from state q, both systems A1 and A2 are in a race
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to win the next edge, i.e. A1 wins the race if the first edge taken from q is in
E1. Hence, given t ∈ I(q), and an edge e ∈ E1 enabled in q + t, one would like
that pq+t(e) = w1

q(t)pq1+t(e) where w1
q(t) is the probability that, starting from

q, A1 wins the race knowing that it was won after a delay of t time units. This
can be formalized, and under hypothesis (A) for fq1 and fq2 , we can show that
if fq(t) �= 0, then w1

q(t) = fq1 (t)(1−Fq2 (t))

fq(t)
almost-surely.

Definition 3. Let Ai = (Li, L
(i)
0 ,Xi, Ei, APi,Li, (μ

(i)
q , p

(i)
q )

q∈Li×R
Xi
+

) for i =
1, 2 be two STA. We say that A1 and A2 are composable if A1 and A2 are in
CSTA and X1 ∩ X2 = ∅. In that case, we define the parallel composition of A1

and A2 as the STA A1 ‖ A2 = (L,L0,X,E,AP,L, (μq, pq)q∈L×RX
+

), where for
any state q = (q1, q2) of A1 ‖ A2,

(i) (L,L0,X,E,AP,L) is the composition of the underlying TA A1 and A2,
(ii) μq is defined by its density function fq = fq1(1 − Fq2) + fq2(1 − Fq1), and
(iii) for any t ∈ I(q), pq+t is defined as follows:

pq+t(e) = 1E1(e)w
1
q(t)pq1+t(e) + 1E2(e)w

2
q(t)pq2+t(e)

for every e ∈ E, where wi
q = fqi

fq
(1 − Fq3−i

) on I(q), for i = 1, 2.

3.2 Properties of the Parallel Composition

We are now ready to prove that this parallel composition operator satisfies all
the expected properties. We assume the notations of Definition 3. First:

Lemma 1. The distributions μq and pq are well-defined, and the STA A1 ‖ A2

belongs to the class CSTA.

We now give an example of a family of probability measures that do not
satisfy hypothesis (B), which yields undesirable properties in the parallel com-
position.

Example 2 (Counter-example for condition (B)). We consider the single-clock
STA A1 depicted in Fig. 2. We assume μq1 is an exponential distribution of
parameter λ1 (resp. λ′

1) if q1 = (l1, ν1) with ν1 < 1 (resp. ν1 ≥ 1), and with
λ1 �= λ′

1. Then for each ν1 ∈ [0, 1[, μq1 does not satisfy hypothesis (B). We then
compose A1 with the STA A2. Each state q2 = (l2, ν2) is equipped with an
exponential distribution of parameter λ2 = λ′

1 over the delays. It can be shown
that the probability to reach B1 in A1 corresponds to the probability to reach
(B1, B2) in A1 ‖ A2 iff ln(λ1) − ln(λ2) = λ1 − λ2, which is not true in general.

Example 3. In order to illustrate the notion of composition, we composed two
independent copies of the STA modelling the IPv4 Zeroconf protocol (see Exam-
ple 1). Part of the composed STA is depicted in Fig. 3.
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2

Fig. 3. The product of two STA modelling the IPv4 Zeroconf
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e1,x1>2
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Fig. 4. A2 is Zeno

It remains to identify when the parallel composition really coincides with an
interleaving semantics. This is in general not true, as already shown in Example 2
(which does not satisfy Condition (B)), and witnessed further by Example 4
below (which satisfies both conditions (A) and (B)).

Example 4. We consider the STA A1 and A2 of Fig. 4, equipped resp. with an
Exp(λ)-distribution and a uniform distribution. Let q = (q1, q2) be a state of
A1 ‖ A2, with qi = (li, 0). One can easily check that PA1‖A2(q →∗ e1−→) = 0 while
PA1(Cyl(π(q1, e1))) = 1 which contradicts the independence property we expect.
One can notice that A2 is Zeno with probability 1.

Hence we define a subclass CSTA∗ of CSTA; A ∈ CSTA will be in CSTA∗ if:

(C) A is almost-surely non-Zeno.

Remark 5. Hypothesis (C) is not too restrictive since Zeno runs can be seen
as faulty behaviours (they perform infinitely many actions in a finite amount of
time, which is not realistic). We will see that hypothesis (C) is sufficient (together
with (A) and (B)) to show that the parallel composition really coincides with
an interleaving semantics. Note that condition (C) can be decided in various
subclasses of STA [8].

We give some more notations. Let A be a STA and let ϕ be a property for
A. Given a state q, we say that ϕ is measurable from q if the set of runs starting
from q satisfying ϕ is in Ωq

A; we write this set {q |= ϕ}. Now let A1 and A2

be two composable STA. For i = 1, 2, we write ιi for the natural projection of
Runs(A1 ‖ A2, (q1, q2)) onto Runs(Ai, qi), and given a measurable property ϕi

in Ai from qi, we write {(q1, q2) |= ϕ̃i} for the set ι−1
i ({qi |= ϕi}). The following

theorem states that the defined parallel composition is indeed interleaving.

Theorem 2. Let A1,A2 ∈ CSTA∗ be composable. Then A1 ‖ A2 ∈ CSTA∗.
Moreover, for every state q = (q1, q2) of A1 ‖ A2, for every properties ϕ1 mea-
surable in A1 from q1 and ϕ2 measurable in A2 from q2, we have

PA1‖A2({q |= ϕ̃1} ∩ {q |= ϕ̃2}) = PA1({q1 |= ϕ1}) · PA2({q2 |= ϕ2}). (2)

Proof (Sketch). Given A1 and A2 in CSTA∗, thanks to Lemma 1, it suffices to
prove that A1 ‖ A2 is almost-surely non-Zeno. This will be ensured by (2) and
the fact that non-Zenoness is a measurable property.
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The important first step to prove (2) consists in showing that, given an edge
e1 of A1, the probability in A1 ‖ A2 that e1 is the first edge from A1 (with
possibly edges from A2 taken before) performed from q = (q1, q2) in a given
set of delays Δ corresponds to the probability in A1 that e1 is the first edge
performed from q1 in the same set of delays Δ. In order to do so, hypothesis (B)
is crucial. The rest of the proof is long and technical but does not contain major
difficulties. ��
Remark 6. Note that an almost-surely non-Zeno STA A equipped with uniform
or exponential distributions such that it satisfies conditions (A) and (B) (i.e.
as in Remark 4), it holds that A is in CSTA∗. As said before, we have large
classes of STA that are almost-surely fair. For (weak-)reactive STA, it holds that
they are almost-surely non-Zeno. Equipping them with uniform or exponential
distributions as in Remark 4) make them also composable.

4 Bisimulation and Congruence

In this section, we define a notion of bisimulation for STA which naturally
extends that for CTMCs [4,6,17]. We importantly show that the defined bisimu-
lation is a congruence w.r.t. parallel composition: this means that, in a complex
system, a component can be replaced by an equivalent one without affecting the
global behaviour of the system.

4.1 Bisimulation

To define a bisimulation relation between STA, we are inspired by the approach
of [17], which considers continuous-time Markov processes (CTMPs) – CTMPs
generalize CTMCs to general continuous state-spaces; this definition of bisim-
ulation that is given for CTMPs can be adapted to our context (note however
that STA cannot be seen as particular CTMPs).

We first define some notions. A subset P ⊆ R
n is a polyhedral set if it is

defined by a (finite) boolean combination of constraints of the form A1x ≤ b1
or A2x < b2, where x = (x1, . . . , xn) is a variable, A1 ∈ R

m1×n, b1 ∈ R
m1 ,

A2 ∈ R
m2×n and b2 ∈ R

m2 .
Let A be a STA, Q be its set of states, and P (Q) = {∪l∈L{l} × Cl | ∀l ∈

L, Cl polyhedral set of R
n
+} where n is the number of clocks of A. The set

P (Q) is a proper subset of the Borel σ-algebra over L × R
n
+, which is closed by

projection (contrary to the Borel σ-algebra). We then define the closure of R
w.r.t. polyhedral sets, and we write pcl(R) as the following set pcl(R) = {A ∈
P (Q) | (a ∈ A ∧ aRb) ⇒ b ∈ A}. One can notice that pcl(R) corresponds to
the set of all polyhedral unions of equivalence classes. Given two equivalence
relations R and R′ over S we say that R′ is coarser than R or that R is finer
than R′ if R ⊆ R′.

Definition 4. Let A = (L,L0,X,E,AP,L, (μq, pq)q∈L×RX
+

) be a STA. An
equivalence relation R over Q = L × R

X
+ is a bisimulation for A if for all
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q, q′ ∈ Q with qRq′: (i) L(q) = L(q′), and (ii) for every I ∈ B(R+), for every
C ∈ pcl(R),

PA
({q |= I,E−→ C}) = PA

({q′ |= I,E−→ C}),

where {q |= I,E−→ C} stands for {ρ ∈ Runs(A, q) | ∃τ ∈ I, ∃e ∈ E, ρ = q
τ,e−→

q1 → · · · ∧ q1 ∈ C}. States q and q′ are bisimilar (written q ∼ q′) if there is a
bisimulation that contains (q, q′).

Given q ∈ Q, I ∈ B(R+) and C ∈ pcl(R) the value PA
({q |= I,E−→ C}) can be

expressed:

PA
({q |= I,E−→ C}) =

∫

t∈I

Pq+t(C)fq(t) dt

where the value Pq+t(C) corresponds to the probability to reach instantaneously
C from state q+t. Formally: Pq+t(C) =

∑
l′∈L

∑
e∈El′

pq+t(e)1Cl′ (e,ν)(t) for each
t ≥ 0 and each C ∈ pcl(R), where, given l′ ∈ L, El′ is the set of edges with
target l′, and given e = (l, g, Y, l′), Cl′(e, ν) = {t ∈ R+ | [Y ← 0](ν + t) ∈ Cl′}.
It can be shown that for every t ≥ 0, Pq+t is a probability measure over Q.

Also, given a STA A, one can show that ∼ is the coarsest bisimulation for A.
The above natural definition enjoys the following very nice characteriza-

tion, which shows that our definition is conservative w.r.t. bisimulation over
CTMCs [4,6].

Proposition 2. Let A be a STA and let R be a bisimulation for A. Then for
all q, q′ ∈ Q, qRq′ if and only if (i) L(q) = L(q′), (ii) μq = μq′ , and (iii) for
every C ∈ pcl(R), Pq+t(C) = Pq′+t(C) almost-surely for every t ≥ 0.

Proof (Sketch). Point (i) is obvious, and points (ii) and (iii) come from the fact
that qRq′ if for each C ∈ pcl(R) and for each I ∈ B(R+),

∫

t∈I

Pq+t(C)fq(t) dt =
∫

t∈I

Pq′+t(C)fq′(t) dt.

With C = L×B(Rn
+), where n is the number of clocks, we get that Pq+t(C) = 1

and thus fq = fq′ almost-surely, i.e. μq = μ′
q. It can then be easily shown that

point (iii) holds. ��
We now illustrate the notion of bisimulation on a simple example.

Example 5. Let us consider the simple STA A with two clocks on Fig. 5. We
assume exponential distributions with parameter λ for every state at l1 or l2,
and from a state of the form q = (l0, (ν1, ν2)) with ν1 < 1 or ν2 < 1, I(q) =
[0, 1 − min(ν1, ν2)[ and so we can equip q with a uniform distribution on the
interval I(q) for the delays.

The coarsest bisimulation ∼ can easily be computed and is shown on the
right part of Fig. 5: at location l0, it is described by the following equivalence
classes, for each ν ∈ [0, 1[: Aν = {l0} ×

({(ν1, ν) | ν1 ≥ ν} ∪ {(ν, ν2) | ν2 ≥ ν}).
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Fig. 5. A simple example for bisimulation.

l′0

B
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l′1

{b}
0<x<1

Fig. 6. B is bisimilar to A.

We extend the previous notion of bisimulation to two STA in a standard way
(see [7]), by considering the union of the two STA, and a bisimulation relation
between the initial states. If A1 and A2 are two STA, we write A1 ∼ A2 when
the two STA are bisimilar.

Example 6. Let us consider the one-clock STA B (Fig. 6). Assuming that we have
the same probability distributions as STA A of Fig. 5, it can be easily established
that B ∼ A by noticing that for each ν ∈ [0, 1[, (l′0, ν) is bisimilar to each state
of Aν .

4.2 Congruence

One of the main objectives of defining behavioural equivalences is to aim at
modular design and proof of correctness. This is only possible if bisimulation is
a congruence w.r.t. parallel composition, that is, if A1 ∼ A2, then for every B,
A1 ‖ B ∼ A2 ‖ B. We first prove the following natural lemma which is a key
point for proving the congruence of the bisimulation w.r.t. parallel composition.
Though very intuitive, the result is surprisingly quite technical to prove.

Lemma 2. Let A,B ∈ CSTA∗ with sets of states resp. QA and QB. If R is a
bisimulation for A then the equivalence relation R′ over QA × QB defined by
R′ = {((q1, q), (q2, q)) | q1Rq2 and q ∈ QB}, is a bisimulation for A ‖ B.

We can now state the main result of this section:

Theorem 3. Bisimulation is a congruence w.r.t. parallel composition. That is:
if A1, A2 and B are three STA in CSTA∗, if A1 ∼ A2 then A1 ‖ B ∼ A2 ‖ B.

5 Conclusion

In this paper we have described a formal framework for compositional design of
stochastic timed automata. We have established properties that should be sat-
isfied by distributions over delays for well-defined parallel composition between
components. We have proposed a natural notion of bisimulation and proven that



Compositional Design of Stochastic Timed Automata 129

it is a congruence w.r.t. parallel composition. We have also identified a subclass
of STA which is closed under parallel composition.

We plan to extend our current work to so-called interactive STA (follow-
ing [21,22]): the idea will be to add non-guarded interactive synchronizing events
which take priority over delays when they are enabled. We hope that a parallel
composition with synchronisation can be nicely defined in that setting, and that
the model will enjoy nice properties as is the case in this paper.

There are many other plans for the future:

– Following the approach of [5,17], we would like to give a logical characteriza-
tion of the bisimulation using (a subset of) CSL;

– We would like to be able, given a STA, to compute a small quotient automaton
that would allow reduce the size of the system;

– All algorithms that have been developed so far for analyzing STA require a
unique STA describing the system under analysis; we target the development
of compositional verification (or approximation) methods, as it is done for
instance for interactive Markov chains [13,23]. We would then like to see how
this performs in practice.
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TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014)

21. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002)

22. Hermanns, H., Katoen, J.-P.: The how and why of interactive Markov chains. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 311–337. Springer, Heidelberg (2010)
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Abstract. Though competitive analysis is often a very good tool for the
analysis of online algorithms, sometimes it does not give any insight and
sometimes it gives counter-intuitive results. Much work has gone into
exploring other performance measures, in particular targeted at what
seems to be the core problem with competitive analysis: the comparison
of the performance of an online algorithm is made to a too powerful
adversary. We consider a new approach to restricting the power of the
adversary, by requiring that when judging a given online algorithm, the
optimal offline algorithm must perform as well as the online algorithm,
not just on the entire final request sequence, but also on any prefix
of that sequence. This is limiting the adversary’s usual advantage of
being able to exploit that it knows the sequence is continuing beyond
the current request. Through a collection of online problems, including
machine scheduling, bin packing, dual bin packing, and seat reservation,
we investigate the significance of this particular offline advantage.

1 Introduction

An online problem is an optimization problem where requests from a request
sequence I are given one at a time, and for each request an irrevocable decision
must be made for that request before the next request is revealed. For a min-
imization problem, the goal is to minimize some cost function, and if Alg is
an online algorithm, we let Alg(I) denote this cost on the request sequence I.
Similarly, for a maximization problem, the goal is to maximize some value func-
tion (a.k.a. profit), and if Alg is an online algorithm, we let Alg(I) denote this
value on the request sequence I.

1.1 Performance Measures

Competitive analysis [27,34] is the most common tool for comparing online algo-
rithms. For a minimization problem, an online algorithm is c-competitive if there
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exists a constant α such that for all input sequences I, Alg(I) ≤ cOpt(I) + α.
Here, Opt denotes an optimal offline algorithm. The (asymptotic) competitive
ratio of Alg is the infimum over all such c. Similarly, for a maximization prob-
lem, an online algorithm is c-competitive if there exists a constant α such that for
all input sequences I, Alg(I) ≥ cOpt(I) − α. Again, Opt denotes an optimal
offline algorithm. The (asymptotic) competitive ratio of Alg is the supremum
over all such c. In both cases, if the inequality can be established using α = 0,
we refer to the result as being strict (some authors use the terms absolute or
strong). Note that for maximization problems, we use the convention of compet-
itive ratios smaller than 1.

For many online problems, competitive analysis gives useful and meaningful
results. However, researchers also realized from the very beginning that this is not
always the case: Sometimes competitive analysis does not give any insight and
sometimes it even gives counter-intuitive results, in that it points to the worse of
two algorithms as the better one. A recent list of examples with references can be
found in [21]. Much work has gone into exploring other performance measures,
in particular targeted at what seems to be the core problem with competitive
analysis that the comparison of the performance of an online algorithm is made
to a too powerful adversary, controlling an optimal offline algorithm.

Four main techniques for addressing this have been employed, sometimes in
combination. We discuss these ideas below. No chronological order is implied by
the order the techniques are presented in. First, one could completely eliminate
the optimal offline algorithm by comparing algorithms to each other directly.
Measures taking this approach include max/max analysis [8], relative worst order
analysis [12], bijective and average analysis [3], and relative interval analysis [20].
Second, one could limit the resources of the optimal offline algorithm, or cor-
respondingly increase the resources of the online algorithm, as is done in extra
resource analysis [31,34]. Thus, the offline algorithm’s knowledge of the future
is counter-acted by requiring that it solves a harder version of the problem than
the online algorithm. Alternatively, the online algorithm could be given lim-
ited knowledge of the future in terms of some form of look-ahead, as has been
done for paging. In those set-ups, one assumes that the online algorithm can
see a fixed number � of future requests, though it varies whether it is simply
the next � requests, or, for instance, the next � expensive requests [36], the next
� new requests [16], or the next � distinct requests [1]. Third, one could limit
the adversary’s control over exactly which sequence is being used to give the
bound by grouping sequences and/or considering the expected value over some
set as has been done with the statistical adversary [33], diffuse adversary [30],
random order analysis [29], worst order analysis [12], Markov model [28], and
distributional adversary [25].

Finally, one could limit the adversary’s choice of sequences it is allowed to
present to the online algorithm. An early approach to this, which at the same
time addressed issues of locality of reference, was the access graph model [9],
where a graph defines which requests are allowed to follow each other. Another
locality of reference approach was taken in [2], limiting the maximum number
of different requests allowed within some fixed-sized sliding window. Both of
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these models were targeted at the paging problem, and the techniques are not
meant to be generally applicable to online algorithm analysis. A resource-based
approach is taken in [14], where only sequences that could be fully accommo-
dated given some resource are considered, eliminating some pathological worst-
case sequences. A generalization of this, where the competitive ratio is found
in the limit, appears in [13,15]. All of these approaches are aimed at removing
pathological sequences from consideration such that the worst-case (or, in prin-
ciple, expected case) behavior is taken over a smaller and more realistic set of
sequences, thereby obtaining results corresponding better with observed behav-
ior in practice. A similar concept for scheduling problems is the “known-Opt”
model, where the cost of an optimal offline solution is known in advance [6].
Finally, loose competitive analysis [37] allows for a a set of sequences, asymptot-
ically smaller than the whole infinite set of input sequences, to be disregarded,
while the remaining sequences should either be c-competitive or have small cost.
In this way, infrequent pathological as well as unimportant (due to low cost)
sequences can be eliminated.

1.2 Online Bounded Analysis

Much work can be done in all of these four categories. In this paper, we consider
a new approach to restricting the power of the adversary that does not really
fit into any of the known categories. Given an online algorithm, we require that
the optimal offline algorithm perform as well as the online algorithm, not just
on the entire final request sequence, but also on any prefix of that sequence. In
essence, this is limiting the adversary’s usual advantage of being able to exploit
that it knows the sequence is continuing beyond the current request, without
completely eliminating this advantage. Since the core of the problem of the
adversary’s strength is its knowledge of the future, is seems natural to try to
limit that advantage directly.

This new measure is generally applicable to online problems, since it is only
based on the objective function. Comparing with other measures, it is a new
element that the behavioral restriction imposed on the optimal offline algorithm
is determined by the online algorithm, which is the reason we name this tech-
nique online bounded analysis. It is adaptive in the sense that online algorithms
attempting non-optimal behavior face increasingly harder conditions from the
adversary the farther the online algorithm goes in the direction of non-optimality
(on prefixes). The measure judges greediness more positively than does competi-
tive analysis, since making greedy choices limits the adversary’s options more, so
the focus shifts towards the quality of a range of greedy or near-greedy decisions.

Behavioral restrictions on the optimal offline algorithm have been seen before,
as in [17], where it is used as a tool to arrive at the final result. Here they first
show a O(1)-competitive result against an offline algorithm restricted to, among
other things, using shortest remaining processing time for job selection. Later
they show that this gives rise to a schedule at most three times as bad as for an
unrestricted offline algorithm. Thus, the end goal is the usual competitive ratio,
and the restriction employed in the process is problem specific.



134 J. Boyar et al.

1.3 Our New Measure

If I is an input sequence for some optimization problem and A is a deterministic
online algorithm for this problem, we let A(I) denote the objective function
value returned by A on the input sequence I.

We let OptA denote the offline algorithm which is optimal under the restric-
tion that it can never be worse than A on any prefix of an input sequence,
i.e., for all sequences I, and all prefixes I ′ of I, for a minimization problem
OptA(I ′) ≤ A(I ′) (for a maximization problem, OptA(I ′) ≥ A(I ′)), and no
algorithm with that property is strictly better than OptA on any sequence. We
say that OptA is the online bounded optimal solution (for A).

For a minimization problem, if for some constant, c, it holds for all sequences I
that A(I) ≤ cOptA(I), then we say that A has an online bounded ratio of at
most c. The online bounded ratio of A is the infimum over all such c. Similarly,
for a maximization problem, if for some constant, c, it holds for all sequences I
that A(I) ≥ cOptA(I), then we say that A has an online bounded ratio of at
least c. The online bounded ratio of A is the supremum over all such c. Note that
we use the convention that an online bounded ratio for a minimization problem
is at least 1, while this ratio for a maximization problem is at most 1.

1.4 Results

Through a collection of online problems, including machine scheduling, bin pack-
ing, dual bin packing, and seat reservation, we investigate the workings of online
bounded analysis. As is apparent from the large collection of measures that have
been defined, there is not any one measure which is best for everything. With
our approach, we try to learn more about the nature of online problems, greedi-
ness, and robustness. As a first approach, we study this new idea in the simplest
possible setting, but many measures combine ideas, so in future work, it would
be natural to investigate this basic idea in combination with elements from other
measures.

First, we observe that some results from competitive analysis carry over.
Then we note that some problem characteristics imply that a greedy algorithm
is optimal.

For machine scheduling, we obtain the following results. For minimizing
makespan on m ≥ 2 identical machines, we get an online bounded ratio of 2− 1

m−1

for Greedy. Though this is smaller than the competitive ratio of 2 − 1
m [26], it

is a comparable result, demonstrating that non-greedy behavior is not the key
to the adversary performing better by a factor close to two for large m. For two
uniformly related machines, we prove that Greedy has online bounded ratio
1. This is consistent with competitive ratio results, where Greedy has been
proven optimal [18,24]. For the case where the faster machine is at least φ (the
golden ratio) times faster than the slower machine, competitive analysis finds
that Greedy and Fast, the algorithm that only uses the faster machine, are
equally good. Using relative worst order analysis, Greedy is deemed the bet-
ter algorithm [23], which seems reasonable since Greedy is never worse on any
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sequence than Fast, and sometimes better. We also obtain this positive distinc-
tion, establishing the online bounded ratios 1 and s+1

s (if the faster machine is
s times faster than the slower one) for Greedy and Fast, respectively.

For the Santa Claus machine scheduling problem [7], we prove that Greedy

is optimal for identical machines with respect to the online bounded ratio. For
two related machines with speed ratio s, we present an algorithm with an online
bounded ratio better than 1

s and show that no online algorithm has a higher
online bounded ratio. For this problem, it is known that the best possible com-
petitive ratio for identical machines is 1

m , and the best possible competitive ratio
for two related machines is 1

s+1 [5,22,35].
For classic bin packing, we show that any Any-Fit algorithm has an online

bounded ratio of at least 3
2 . We observe that for bin covering, the best online

bounded ratio is equal to the best competitive ratio [19]. For these problems,
asymptotic measures are used. We show a connection between results concerning
the competitive ratio on accommodating sequences and the online bounded ratio.
For dual bin packing (namely, the multiple knapsack problem with equal capacity
knapsacks and unit weights items), we show that the online bounded ratio is the
same as the competitive ratio on accommodating sequences (that is, sequences
where Opt packs all items) for a large class of algorithms including First-Fit,
Best-Fit, and Worst-Fit. It then follows from results in [13] that any algorithm
in this class has an online bounded ratio of at least 1

2 . Furthermore, the online
bounded ratio of First-Fit and Best-Fit is 5

8 , and that of Worst-Fit is 1
2 . We

also note that, for any dual bin packing algorithm, an upper bound on the
competitive ratio on accommodating sequences is also an upper bound on the
online bounded ratio. Using a result from [13], this implies that any (possibly
randomized) algorithm has an online bounded ratio of at most 6

7 .
For seat reservation, we have preliminary results, and conjecture that results

are similar to machine scheduling for identical machines, in that ratios similar
to but slightly better than those obtained using competitive analysis can be
established.

We found that the new measure sometimes leads to the same results as the
standard competitive ratio, and in some cases it leads to a competitive ratio of 1.
However, there are problem variants for which we obtain an intermediate value,
which confirms the relevance of our approach.

The proofs which have been omitted can be found in the full paper [10].

2 Online Bounded Analysis

Before considering concrete problems, we discuss some generic properties.

2.1 Measure Properties

The online bounded ratio of an algorithm is never further away from 1 than the
competitive ratio, since the online algorithm’s performance is being compared
to a (possibly) restricted “optimal” algorithm.
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Since algorithms are compared with different optimal algorithms, one might
be concerned that two algorithms, A and O, could have online bounded ratio 1,
and yet one algorithm could do better on some sequences than the other. This
is not possible. To see this, consider some sequence I and assume that A does
better than O on I, yet both algorithms have online bounded ratio 1.

If their online bounded ratio is 1, there is no point where one algorithm
makes a decision which changes the objective value more than the other does,
since the adversary could end the sequence there and the one algorithm would
not have online bounded ratio 1. Thus, both algorithms have the same objective
function value at all points, so they always compete against the same adversary.
If algorithm A performs better than algorithm O on I, then algorithm O does
not have online bounded ratio 1.

For some problems, such as paging, OptA is the same as Opt under com-
petitive analysis for all algorithms A, because Opt’s behavior on any sequence
is also optimal on any prefix of that sequence. Thus, the competitive analysis
results for paging and similar problems also hold with this measure, giving the
same online bounded ratio as competitive ratio.

2.2 Greedy is Sometimes Optimal

It is sometimes the case that there is one natural greedy algorithm that always
has a unique greedy choice in each step. In such situations, the greedy algo-
rithm is optimal with respect to this measure, having online bounded ratio 1.
For example, consider the weighted matching in a graph where the edges arrive
in an online fashion (the edge-arrival model) and the algorithm in each step
decides if the current edge is added to the matching or discarded. Here, the
greedy algorithm, denoted by Greedy, adds the current edge if adding the edge
will keep the solution feasible (that is, its two end-vertices are still exposed by
the matching that the algorithm created so far) and the weight of the edge is
strictly positive. Note that indeed the online bounded ratio of Greedy is 1, as
the solution constructed by OptGreedy must coincide with the solution created
by Greedy. The last claim follows by a trivial induction on the number of edges
considered so far by both Greedy and OptGreedy. If Greedy adds the current
edge, then by the definition of OptGreedy, we conclude that OptGreedy adds
the current edge. If Greedy discards the current edge because at least one of
its end-vertices is matched, then OptGreedy cannot add the current edge either
(using the induction assumption). Last, if Greedy discards the current edge
since its weight is non-positive, then we can remove the edge from the bounded
optimal solution, OptGreedy, if it was added (removing it from OptGreedy will
not affect the future behavior of OptGreedy since OptGreedy must accept an
edge whenever Greedy does). Similar proofs hold in other cases when there
is a unique greedy choice for Opt in each step. Note that for the weighted
matching problem where vertices arrive in an online fashion and when a vertex
arrives the edge set connecting this vertex to earlier vertices is revealed with
their weights (the vertex-arrival model), the standard lower bound for weighted
matching holds as can be seen in the following lower bound construction.
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The first three vertices arrive in the order 1, 2, 3 and when vertex 3 arrives,
two edges {1, 3}, {2, 3} are revealed each of which has weight of 1 (vertices 1
and 2 are not connected). At this point, an online algorithm with a finite online
bounded ratio must add one of these edges to the matching. Then, either 1 or 2
are matched in the current solution, and in the last step, vertex 4 arrives with an
edge of weight M connecting 4 to the vertex among 1 and 2 that was matched by
the algorithm. Observe that when vertex 3 arrives, the algorithm adds an edge
to the matching while the bounded optimal solution can add the other edge, and
this will allow the bounded optimal solution to add the last edge as well.

The argument for the optimality of Greedy for the weighted matching
problem in the edge-arrival model clearly holds if all weights are 1 also. This
unweighted matching problem in the edge-arrival model is an example of a max-
imization problem in the online complexity class Asymmetric Online Covering
(AOC) [11]:

Definition 1. An online accept-reject problem, P , is in Asymmetric Online
Covering (AOC) if, for the set Y of requests accepted:

For minimization (maximization) problems, the objective value of Y is |Y |
if Y is feasible and ∞ (−∞) otherwise, and any superset (subset) of a feasible
solution is feasible.

For all maximization problems in the class AOC, there is an obvious greedy
algorithm, Greedy, which accepts a request whenever acceptance maintains fea-
sibility. The argument above showing that the online bounded ratio of Greedy

is 1 for the weighted matching problem in the edge-arrival model generalizes to
all maximization problems in AOC.

Theorem 1. For any maximization problem in AOC, the online bounded ratio
of Greedy is 1. Thus, Greedy is optimal according to online bounded analysis
for Online Independent Set in the vertex-arrival model, Unweighted Matching in
the edge-arrival model, and Online Disjoint Path Allocation where requests are
paths.

Note that this does not hold for all minimization problems in AOC. For
example, Cycle Finding in the vertex-arrival model, the problem of accepting
as few vertices as possible, but accepting enough so that there is a cycle in the
induced subgraph accepted, is AOC-Complete. However, consider the first vertex
requested in a graph with only one cycle. Greedy is forced to accept it, since
the vertex could be part of the unique cycle, but OptGreedy will reject the vertex
if it is not in that cycle.

However, there are online bounded optimal greedy algorithms for minimiza-
tion problems in AOC, such as Vertex Cover, which are complements of maxi-
mization problems in AOC (Independent Set in the case of Vertex Cover). By
complement, we mean that set S is a maximal feasible set in the maximiza-
tion problem if and only if the requests not in S are a feasible solution for
the minimization problem. The greedy algorithm in the case of these minimiza-
tion problems would be the algorithm that accepts exactly those requests that
Greedy for the complementary maximization problem rejects.
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3 Machine Scheduling: Makespan

We consider the load balancing problem of minimizing makespan for online job
scheduling on m identical machines without preemption, and analyze the classic
greedy algorithm (also known as list scheduling). At any point, Greedy sched-
ules the next job on a least loaded machine. Since the machines are identical,
ties can be resolved arbitrarily without loss of generality. It is known that the
competitive ratio of Greedy is 2 − 1

m [26]. With the more restricted optimal
algorithm, we get a smaller value of 2 − 1

m−1 as the online bounded ratio of
Greedy.

Lemma 1. For the problem of minimizing makespan for online job scheduling
on m identical machines, Greedy has online bounded ratio of at most 2− 1

m−1 .

Proof. Consider a sequence I. Let j be the first job in I that is completed at the
final makespan of Greedy, and assume that it has size w. Let t and s be the
starting times of j in OptGreedy and Greedy, respectively, and let � and �′ be
the makespans of OptGreedy and Greedy, respectively, just before the arrival
of j. Let V denote the total size of the jobs in I just before j arrives.

We have the following inequalities: OptGreedy ≥ t + w and OptGreedy ≥ �.
In addition, since, just before j arrived, the machine where OptGreedy placed j
had load t and the other machines had load at most �, V ≤ t + (m − 1)�. Since
m − 1 ≥ 1, V ≤ (m − 1)(t + �).

Because Greedy placed j on its least loaded machines, all machines had load
at least s before j arrived. At least one machine had load �′, so V ≥ (m−1)s+�′.
By the definition of online bounded analysis, � ≤ �′. Thus, V ≥ (m − 1)s + �.
Combining the upper and lower bounds on V gives (m−1)s ≤ (m−1)t+(m−2)�
and s ≤ t + m−2

m−1�. We now bound Greedy’s makespan:

Greedy(I) = s + w = (s − t) + (t + w)
≤

(
m−2
m−1

)
· � + OptGreedy(I) ≤

(
2 − 1

m−1

)
OptGreedy(I)

��
Lemma 2. For the problem of minimizing makespan for online job scheduling
on m identical machines, Greedy has online bounded ratio of at least 2− 1

m−1 .

By Lemmas 1 and 2 we find the following.

Theorem 2. For the problem of minimizing makespan for online job scheduling
on m identical machines, Greedy has online bounded ratio 2 − 1

m−1 .

Most interestingly, Theorem 2 establishes the existence of an online algo-
rithm, Greedy, for makespan minimization on two identical machines with an
online bounded ratio of 1. Next, we generalize this last result to the case of two
uniformly related machines. Note that for two uniformly related machines we
can assume that machine number 1 is strictly faster than machine number 2,
and the two speeds are s > 1 and 1.
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We define Greedy as the algorithm that assigns the current job to the
machine such that adding the job there results in a solution of a smaller makespan
breaking ties in favor of assigning the job to the slower machine (that is, to
machine number 2). If an algorithm breaks ties in favor of assigning the job
to the faster machine (let this algorithm be called Greedy

′), then its online
bounded ratio is strictly above 1, as the following example implies. The first job
has size s − 1 (and it is assigned to machine 1), and the second job has size 1
(and assigning it to any machine will result in the current makespan 1). The first
job must be assigned to machine 1 by OptGreedy

′ , and it assigns the second job
to the second machine. A third job of size s + 1 arrives. This job is assigned to
the first machine by OptGreedy

′ , obtaining a makespan of 2. Greedy
′ will have

a makespan of at least min{2 + 1/s, s + 1} > 2 as s > 1.

Theorem 3. For the problem of minimizing makespan for online job scheduling
on two uniformly related machines, Greedy has online bounded ratio 1.

We now consider the algorithm Fast that simply schedules all jobs on the
faster machine. In contrast to Greedy, Fast does not have an online bounded
ratio of 1. This also contrasts with competitive analysis, since Fast has an
optimal competitive ratio for s ≥ φ, where φ = 1+

√
5

2 ≈ 1.618.

Theorem 4. For two related machines with speed ratio s, Fast has an online
bounded ratio of s+1

s .

By Theorem 2, the result of Theorem 3 cannot be extended to three or more
identical machines for Greedy. We conclude this section by proving that such
a generalization is impossible, not only for Greedy, but for any deterministic
online algorithm.

Theorem 5. Let m ≥ 3. For the problem of minimizing makespan for online
job scheduling on m identical machines, any deterministic online algorithm A
has online bounded ratio of at least 4

3 .

An obvious next step would be to try to match the general lower bound
of 4

3 by designing an algorithm that places each job on the most loaded machine
where the bound of 4

3 would not be violated. However, even for m = 3, this would
not work, as seen by the input sequence I = 〈34 , 1

4 , 5
12 , 1

6 , 7
12 , 5

6 〉. The algorithm
would combine the first two jobs on one machine and the following two on
another machine. Since the optimal makespan at this point is 3

4 , the algorithm
will schedule the fifth job on the third machine. When the last job arrives, all
machines have a load of at least 7

12 , resulting in a makespan of 17
12 > 1.4. Note

that I can be scheduled such that each machine has a load of exactly 1. Since the
algorithm has a makespan of 1 already after the second job, the online bounded
restriction is actually no restriction on Opt for this sequence.
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4 Machine Scheduling: Santa Claus

In contrast to makespan, the objective in Santa Claus scheduling is to maximize
the minimum load. Traditionally, the algorithm Greedy for this problem assigns
any new job to a machine achieving a minimum load in the schedule that was
created up to the time just before the job is added to the solution (breaking ties
arbitrarily). For identical machines, this algorithm is equivalent to the greedy
algorithm for makespan minimization. Unlike the makespan minimization prob-
lem, where this algorithm has online bounded ratio of 1 only for two identical
machines, here we show that Greedy has an online bounded ratio of 1 for any
number of identical machines.

Theorem 6. For the Santa Claus problem on m identical machines, Greedy

has online bounded ratio 1.

Proof. Let a configuration be a multi-set of the current loads on all of the
machines, i.e., without any annotation of which machine is which. As long as
OptGreedy also assigns each job to a machine with minimum load, the configu-
rations of Greedy and OptGreedy are identical.

Consider the first time OptGreedy does something different from Greedy.
If, when that job j arrives, there is a unique machine with minimum load,
OptGreedy would have a worse objective value than Greedy after placing j,
so, by definition of online bounded analysis, this cannot happen. Now consider
the situation where k ≥ 2 machines have minimum load. Then, after process-
ing j, Greedy has k − 1 machines with minimum load, whereas OptGreedy

has k. In that case, no more than k − 2 further jobs can be given. This is seen
as follows: If k − 1 jobs were given, Greedy would place one on each of its
k − 1 machines with minimum load, and, thus, raise the minimum. OptGreedy,
on the other hand, would not be able to raise (at this step) the minimum of all
of its k machines with minimum load, and would therefore not be optimal; a
contradiction.

Thus, OptGreedy can only have a different configuration than Greedy after
Greedy (and OptGreedy) have obtained their final (and identical) objective
value, and so, the online bounded ratio of Greedy is 1. ��

Next, we show that unlike the makespan minimization problem, for which
there is an online algorithm with online bounded ratio of 1 even for the case of
two uniformly related machines (Theorem 3), such a result is impossible for the
Santa Claus problem on two uniformly related machines.

Theorem 7. For the Santa Claus problem on two uniformly related machines
with speed ratio s, no deterministic online algorithm has an online bounded ratio
larger than 1

s .

Proof. For any online algorithm A, we consider a setting of two uniformly related
machines with speeds 1 and s. The input consists of exactly two jobs. After the
first job is assigned by A, the objective function value remains zero, and only if
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the algorithm assigns the two jobs to distinct machines, will it have a positive
objective function value. Thus, when there are only two jobs, OptA is simply
the optimal solution for the instance. The first job is of size 1. If A assigns the
job to the machine of speed s, then the next job is of size s. At this point OptA

has value 1 (by assigning the first job to the slower machine and the second to
the faster machine), but A has either zero value (if both jobs are assigned to the
faster machine) or a value of 1

s . In the second case where A assigns the first job
(of size 1) to the slower machine of speed 1, the second job has size 1

s . At this
point OptA has value 1

s (by assigning the first job to the faster machine and
the second to the slower machine), but A has either zero value (if both jobs are
assigned to the slower machine) or a value of 1/s

s . ��
Interestingly, the online bounded ratio of the following simple algorithm

matches this bound. The algorithm G assigns each job to the least loaded
machine. While for identical machines, this algorithm and Greedy are equiv-
alent, for related machines this is not the case. The same algorithm is the one
that achieves the best possible competitive ratio 1

s+1 [22].

Theorem 8. For the Santa Claus problem on two uniformly related machines
with speed ratio s, the online bounded ratio of G is 1

s .

5 Classic Bin Packing and Bin Covering

In classic bin packing, the input is a sequence of items of sizes s, 0 < s ≤ 1,
that should be packed in as few bins of size 1 as possible. We say that a bin is
open if at least one item has been placed in the bin. An Any-Fit algorithm is
an algorithm that never opens a new bin if the current item fits in a bin that is
already open. In this section, we use the asymptotic online bounded ratio. Thus,
we allow for an additive constant, exactly as with the asymptotic (non-strict)
competitive ratio.

Theorem 9. Any Any-Fit algorithm has an online bounded ratio of at least 3
2 .

In classic bin covering, the input is as in bin packing, and the goal is to assign
items to bins so as to maximize the number of bins whose total assigned size is
at least 1. For this problem, it is known that a simple greedy algorithm (which
assigns all items to the active bin until the total size assigned to it becomes 1
or larger, and then it moves to the next bin and defines it as active) has the
best possible competitive ratio 1

2 . The negative result [19] is proven using inputs
where the first batch of items consists of a large number of very small items, and
it is followed by a set of large identical items of sizes close to 1 (where the exact
size is selected based on the actions of the algorithm). The total size of the very
small items is strictly below 1, so as long as large items were not presented yet,
the value of any algorithm is zero. An optimal offline solution packs the very
small items such that packing every large item results in a bin whose contents
have a total size of exactly 1. Thus, no algorithm can perform better on any
prefix, and this construction shows that the online bounded ratio is at most 1

2 .
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6 Dual Bin Packing

As in the previous section, we use the asymptotic online bounded ratio here. Dual
bin packing is like the classic bin packing problem, except that there is only a
limited number, n, of bins and the goal is to pack as many items in these n bins
as possible. Known results concerning the competitive ratio on accommodating
sequences can be used to obtain results for the online bounded ratio.

In general, accommodating sequences [14,15] are defined to be those
sequences for which Opt does not get a better result by having more resources.
For the dual bin packing problem, accommodating sequences are sequences of
items that can be fully accommodated in the n bins, i.e., Opt packs all items.

We show that, for a large class of algorithms for dual bin packing containing
First-Fit and Best-Fit, the online bounded ratio is the same as the competitive
ratio on accommodating sequences. To show that this does not hold for all algo-
rithms, we also give an example of a 2

3 -competitive algorithm on accommodating
sequences that has an online bounded ratio of 0.

Dual bin packing is an example of a problem in a larger class of problems
which includes the seat reservation problem discussed below. A problem is an
accept/reject accommodating problem if algorithms can only accept or reject
requests, the goal is accept as many requests as possible, and the accommodating
sequences are those where Opt accepts all requests.

Theorem 10. For any online algorithm Alg for any accept/reject accommo-
dating problem, the competitive ratio of Alg on accommodating sequences is
equal to the online bounded ratio of Alg on accommodating sequences.

Note that this result applies to all algorithms for dual bin packing. Since any
accommodating sequence is also a valid adversarial sequence for the case with no
restrictions on the sequences, we obtain the following corollary of Theorem 10.

Corollary 1. For any online algorithm Alg for any accept/reject accommodat-
ing problem, any upper bound on the competitive ratio of Alg on accommodating
sequences is also an upper bound on the online bounded ratio of Alg.

A fair algorithm for dual bin packing is an algorithm that never rejects an
item that it could fit in a bin. A rejection-invariant algorithm is an algorithm
that does not change its behavior based on rejected items.

Theorem 11. For any fair, rejection-invariant dual bin packing algorithm Alg,
the online bounded ratio of Alg equals the competitive ratio of Alg on accom-
modating sequences.

One algorithm which is fair and rejection-invariant is First-Fit, which packs
each item in the first bin it fits in (and rejects it if no such bin exists). Another
example of a fair, rejection-invariant algorithm is Best-Fit, which packs each
item in a most full bin that can accommodate it. Worst-Fit is the algorithm
that packs each item in a most empty bin.
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Corollary 2. Best-Fit and First-Fit have online bounded ratios of 5
8 . Worst-Fit

has an online bounded ratio of 1
2 .

Corollary 3. Any fair, rejection-invariant dual bin packing algorithm has an
online bounded ratio of at least 1

2 . Any (possibly randomized) dual bin packing
algorithm has an online bounded ratio of at most 6

7 .

The algorithm Unfair-First-Fit (Uff) defined in [4] is designed to work well
on accommodating sequences. Whenever an item larger than 1

2 arrives, Uff

rejects the item unless it will bring the number of accepted items below 2
3 of the

total number of items that are accepted by an optimal solution of the prefix of
items given so far (for an accommodating sequence this is the number of items in
the prefix). The competitive ratio of Uff on accommodating sequences is 2

3 [4].
We show that, in contrast to Theorem 11, Uff has an online bounded ratio of 0.

Theorem 12. Unfair-First-Fit has an online bounded ratio of 0.

7 Unit Price Seat Reservation

Since even the unit price seat reservation problem has a terrible competitive
ratio, depending on the number of stations, this problem has often been studied
using the competitive ratio on accommodating sequences, which for the seat
reservation problem restricts the input sequences considered to those where Opt

could have accepted all of the requests. By Theorem 10, for accommodating
sequences, the competitive ratio and the online bounded ratio are identical.

The unit price seat reservation problem has competitive ratio Θ(1/k), where
k is the number of stations. This does not change for the online bounded ratio,
even though, both the original proof, showing that no deterministic fair online
algorithm (that does not reject an interval if it is possible to accept it) for the
unit price problem is more than 8

k+5 -competitive [14], and the proof improving
this to 4

k−2
√
k−1+4

[32], used an optimal offline algorithm which rejected some
requests before the online algorithm did. The main ideas in these proofs was
that the adversary could give small request intervals which Opt could place
differently from the algorithm, allowing it to reject some long intervals and still
be fair. Rejecting long intervals allowed it to accept many short intervals which
the algorithm was forced to reject. By using small intervals involving only the
last few stations, one can arrange that the online algorithm has to reject intervals
early. Then, giving nearly the same sequence as for the 8

k+5 bound, using two
fewer stations, Opt can still reject the same long intervals and do just as badly
asymptotically. Note that we reuse the [k − 3, k − 2) intervals.

Theorem 13. No deterministic fair online algorithm for the unit price seat
reservation problem has an online bounded ratio of more than 11

k+7 .

Using a similar proof, one can show that the online bounded ratios of First-
Fit and Best-Fit are at least 5

k+1 . The major difference is that in the first part,
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First-Fit and Best-Fit each reject n/2 intervals, so in the second part, O can also
reject n/2 intervals. Since any fair online algorithm for the unit price problem
is 2/k-competitive, any fair online algorithm for the unit price problem has an
online bound ratio of at least 2/k.
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Abstract. We introduce a quantum-like classical computational con-
cept, called affine computation, as a generalization of probabilistic com-
putation. After giving the basics of affine computation, we define affine
finite automata (AfA) and compare it with quantum and probabilistic
finite automata (QFA and PFA, respectively) with respect to three basic
language recognition modes. We show that, in the cases of bounded and
unbounded error, AfAs are more powerful than QFAs and PFAs, and, in
the case of nondeterministic computation, AfAs are more powerful than
PFAs but equivalent to QFAs.

1 Introduction

Using negative amplitudes, allowing interference between states and configura-
tions, is one of the fundamental properties of quantum computation that does not
exist in classical computation. Therefore, it is interesting to define a quantum-
like classical system allowing to use negative values. However, both quantum
and probabilistic systems are linear and it seems not possible to define a classi-
cal linear computational systems using negative values (see also the discussions
regarding fantasy quantum mechanics in [1]). On the other hand, it is possible
to define such a system almost linearly, as we do in this paper.

A probabilistic state is a l1-norm 1 vector defined on non-negative real num-
bers, also called a stochastic vector. A probabilistic operator is a linear operator
mapping probabilistic states to probabilistic states, which is also called a sto-
chastic matrix. Equivalently, a matrix is stochastic if each of its columns is a
probabilistic state. Similarly, a quantum state is a l2-norm 1 vector defined over
complex numbers. A quantum operator is a linear operator mapping quantum

The arXiv number is 1602.04732 [4].
Dı́az-Caro was partially supported by STIC-AmSud project 16STIC04 FoQCoSS.
Yakaryılmaz was partially supported by CAPES with grant 88881.030338/2013-01
and some parts of the work were done while Yakaryılmaz was visiting Buenos
Aires in July 2015 to give a lecture at ECI2015 (Escuela de Ciencias Informáticas
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states to quantum states, which is also called a unitary matrix. Equivalently, a
matrix is unitary if each of its columns (also each row) is a quantum state.

Our aim is to define a new system that (1) is a generalization of probabilistic
system, (2) can have negative values, (3) evolves linearly, and (4) is defined in
a simple way like the probabilistic and quantum systems. When working on
non-negative real numbers, l1-norm is the same as the summation of all entries.
So, by replacing “l1-norm 1” condition with “summation to 1” condition, we
can obtain a new system that allows negative values in its states. The linear
operators preserving the summation of vectors are barycentric-preserving, also
called affine transformations, which can give the name of our new system: affine
system. Thus, the state of an affine system is called an affine state, the entries
of which sum to 1. Moreover, a matrix is an affine transformation if each of its
columns is an affine state. It is clear that an affine system is a probabilistic one
if negative values are not used. Thus, the new affine system satisfies all four
conditions above.

The only renaming detail is how to get information from the system. For this
purpose, we define an operator similar to the measurement operator in quantum
computation that projects the computation into the computational basis. It is
intuitive that the “weights” of negative and positive values should be same if
their magnitudes are the same. Moreover, each state should be observed with
the probability calculated based on the value of its magnitude. Therefore, we
normalize each magnitude (since the summation of all magnitudes can be bigger
than 1) and each normalized magnitude gives us the probability of “observing”
the corresponding state. We call this operator as weighting operator.

In the paper, we give the basics of affine systems in detail and start to
investigate affine computation by defining the affine finite automaton (AfA) (due
to the simplicity of automata models). Then, we compare it with probabilistic
finite automata (PFAs) and quantum finite automata (QFAs) with respect to
the basic language recognition modes. We show that, in the cases of bounded
and unbounded error, AfAs are more powerful than QFAs and PFAs, and, in
the case of nondeterministic computation, AfAs are more powerful than PFAs
but equivalent to QFAs. Our results are also the evidence that although an AfA
has a finite number of basis states, it can store more information. This is why
we use small “f” in the abbreviation of AfA.

Throughout the paper, we focus on the finite dimensional systems. In Sect. 2,
we give the basics of probabilistic and quantum systems. In Sect. 3, we describe
the basics of affine systems. Then, we give the definitions of classical and quan-
tum finite automata in Sect. 4. The definition of affine finite automaton is given
in Sect. 5. Our results are given in Sect. 6. We close the paper with Sect. 7.

2 Probabilistic and Quantum Systems

A probabilistic system has a finite number of states, say E = {e1, . . . , en} (n > 0),
called deterministic states of the system. At any moment, the system can be in
a probabilistic distribution of these states: v = (p1 p2 · · · pn)T , where pj
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represents the probability of system being in state ej (1 ≤ j ≤ n). Here v is
called a probabilistic state, which is a stochastic (column) vector, i.e.

0 ≤ pi ≤ 1 and
n∑

i=1

pi = 1.

It is clear that v is a vector in R
n and all the deterministic states form the

standard basis of R
n. Moreover, all the probabilistic states form a simplex in

R
n, represented by linear equation x1 +x2 + · · ·+xn = 1 whose variables satisfy

0 ≤ xj ≤ 1 (1 ≤ j ≤ n).
The system evolves from a probabilistic state to another one by a linear oper-

ator: v′ = Av, where A is an n × n matrix and A[k, j] represents the probability
of going from ej to ek (1 ≤ j, k ≤ n). Since v′ is a probabilistic state and so
a stochastic vector, A is a (left) stochastic matrix, each column of which is a
stochastic vector. Assume that the system is in v0 at the beginning, and At is the
probabilistic operator at the t-th time step (t = 1, 2, . . .). Then, the evolution of
the system is as follows: vt = AtAt−1 · · · A1v0. At the t-th step, the probability
of observing the j-th state is vt[j].

A quantum system is a non-trivial linear generalization of a probabilistic
one, which forms a Hilbert space (a complex vector space with inner product).
A basis of the Hilbert space, say Hn, can be seen as the set of “deterministic
states” of the system. Unless otherwise is specified, the standard basis is used:
B = {|q1〉, . . . , |qn〉}, where each |qj〉 is a zero vector except the j-th entry, which
is 1. Remark that Hn = span{|q1〉, . . . , |qn〉}. At any moment, the system can
be in a linear combination of basis states:

|v〉 =

⎛

⎜⎜⎜⎝

α1

α2

...
αn

⎞

⎟⎟⎟⎠ ∈ Hn,

where αj ∈ C is called the amplitude of the system being in state |qj〉. Moreover,
the value |αj |2 represents the probability of the system being in state |qj〉. We call
|v〉 the (pure) quantum state of the system, which is a norm-1 (column) vector:√〈v|v〉 = 1 ⇔ 〈v|v〉 = 1 ⇔ ∑n

j=1 |αj |2 = 1. Remark that all the quantum states
from a sphere in C

n, i.e. x2
1 + x2

2 + · · · + x2
n = 1.

Similar to the probabilistic case, the system evolves from a quantum state to
another one by a linear operator: |v′〉 = U |v〉, where U is an n × n matrix and
U [k, j] represents the transition amplitude of going from |qj〉 to |qk〉 (1 ≤ j, k ≤
n). Since |v′〉 is a quantum state and so a norm-1 vector, U is a unitary matrix,
the columns/rows of which form an orthonormal set. Moreover, U−1 = U†.

To retrieve information from a quantum system, we apply measurement oper-
ators. In its simplest form, when in quantum state |v〉, we can make a measure-
ment in the computation basis and then we can observe |qj〉 with probability
pj = |αj |2 and so the new state becomes |qj〉 (if pi > 0). We can also split the set
B into m disjoint subsets: B = B1∪· · ·∪Bm and Bj ∩Bk = ∅ for 1 ≤ j 
= k ≤ m.
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Based on this classification, Hn is split into m pairwise orthogonal subspaces:
Hn = H1 ⊕ · · · ⊕ Hm where Hj = span{|q〉 | |q〉 ∈ Bj}. We can design a projec-
tive measurement operator P to force the system to be observed in one of these
subspaces, i.e.

P =

⎧
⎨

⎩P1, . . . , Pm | Pj =
∑

|q〉∈Bj

|q〉〈q| and 1 ≤ j ≤ m

⎫
⎬

⎭ ,

where Pj is a zero-one projective matrix that projects any quantum state to Hn
j .

More formally, |v〉 = |ṽ1〉 ⊕ · · · ⊕ |ṽm〉, |ṽj〉 = Pj |v〉 ∈ Hn
j . Each Pj is called a

projective operator and the index is called a measurement outcome. Then, the
probability of observing the outcome “j” is calculated as pj = 〈ṽj |ṽj〉. If it is
observed (pj > 0), then the new state is obtained by normalizing |ṽj〉, which is
called unnormalized (quantum) state, |vj〉 = |ṽj〉√

pj
.

From a mathematical point of view, any quantum system defined on Hn can
be simulated by a quantum system straightforwardly defined on R

2n (e.g. [8]).
Therefore, we can say that the main distinguishing property of quantum systems
is using negative amplitudes rather than using complex numbers.

After making projective measurements, for example, the quantum system
can be in a mixture of pure quantum states, i.e.

⎧
⎨

⎩(pj , |vj〉) | 1 ≤ j ≤ m,

m∑

j=1

pj = 1

⎫
⎬

⎭ .

We can represent such a mixture as a single mathematical object called density
matrix, an (n × n)-dimensional matrix: ρ =

∑m
j=1 pj |vj〉〈vj |, which is called the

mixed state of the system. A nice property of ρ is that the k-th diagonal entry
represents the probability of the system of being in the state |qk〉, i.e. Tr(ρ) = 1.

It is clear that unitary operators are not the generalizations of stochastic
operators. However, by interacting a quantum system with an auxiliary system,
more general quantum operators can be applied on the main quantum system.
They are called superoperators.1 Formally, a superoperator E is composed by a
finite number of operation elements {Ej | 1 ≤ j ≤ m}, where m > 0, satisfying
that

∑m
j=1 E†

j Ej = I. When E is applied to the mixed state ρ, the new mixed
state is obtained as

ρ′ = E(ρ) =
m∑

j=1

EjρE†
j .

In fact, a superoperator includes a measurement and the indices of operation
elements can be seen as the outcomes of the measurement(s). When E is applied
to pure state |v〉, we can obtain up to m new pure states. The probability of

1 A superoperator can also be obtained by applying a series of unitary and measure-
ments operators where the next unitary operator is selected with respect to the last
measurement outcome.
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observing the outcome of “j”, say pj , calculated as pj = 〈ṽj |ṽj〉, |ṽj〉 = Ej |v〉,
where |ṽj〉 is called an unnormalized state vector if it is not a zero vector. If
the outcome “j” is observed (pj > 0), then the new state becomes, |vj〉 = |ṽj〉√

pj
.

Remark that using unnormalized state vectors sometimes make the calculations
easier since the probabilities can be calculated directly from them.

If we apply the projective measurement P = {Pj | 1 ≤ j ≤ m} to the mixed
state ρ, where m > 0, the probability of observing the outcome j, say pj , and
the new state, say ρj , is calculated as follows:

ρ̃j = PjρPj , pj = Tr(ρ̃j), and ρj =
ρ̃j

pj
(if pj > 0).

The reader may ask how a quantum system can be a linear generalization of a
probabilistic system. We omit the details here but any probabilistic operator can
be implemented by a superoperator. Moreover, a mixed-state can be represented
as a single column vector, and each superoperator can be represented as a single
matrix. Then, all computations can be represented linearly. We refer the reader
to [12,14,17] for the details.

3 Affine Systems

Inspired from quantum systems, we define the finite-dimensional affine system
(AfS) as a non-linear generalization of a probabilistic system by allowing to use
negative “probabilities”. Let E = {e1, . . . , en} be the set of basis states, which
are the deterministic states of an n-dimensional probabilistic system. Any affine
state is a linear combination of E

v =

⎛

⎜⎜⎜⎝

a1

a2

...
an

⎞

⎟⎟⎟⎠

such that each entry can be an arbitrary real number but the summation of all
entries must be 1:

n∑

i=1

ai = 1.

So, any probabilistic state, a stochastic column vector, is an affine state. However,
on contrary to a probabilistic state, an affine state can contain negative values.
Moreover, all the affine states form a surface in R

n, i.e. x1 + x2 + · · · + xn = 1.
Both, probabilistic and quantum states, form finite objects (simplex and

sphere, respectively). For example, in R
2, all the probabilistic states form the

line x+y = 1 on (R+∪{0})2 with length
√

2 and all the quantum states form the
unit circle with length 2π. On the other hand, affine states form infinite objects
(plane). In R

2, all the affine states form the infinite line x + y = 1. Therefore, it
seems that, with the same dimension, affine systems can store more information.
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In this paper, we provide some evidences to this interpretation. On the other
hand, affine systems might not be comparable with quantum systems due to the
fact of forming different geometrical objects (e.g. line versus circle).

Any affine transformation is a linear operator, that is, a mapping between
affine states. We can easily show that any matrix is an affine operator if and only
if for each column, the summation of all entries is equal to 1. The evolution of
the system is as follows: when in affine state v, the new affine state v′ is obtained
by v′ = Av, where A is the affine transformation such that A[j, k] represents the
transition value from ek to ej .

In quantum computation, the sign of the amplitudes does not matter when
making a measurement. We follow the same idea for affine systems. More pre-
cisely, the magnitude of an affine state is the l1-norm of the state:

|v| = |a1| + |a2| + · · · + |an| ≥ 1.

Then, we can say that the probability (weight) of observing the j-th state is
|aj |
|v| , where 1 ≤ j ≤ n. To retrieve this information, we use an operator (possible
non-linear) called weighting operator, which can be seen as a counterpart of the
measurements in the computational basis for quantum systems. Therefore, we
can make a weighting in the basis E and the system collapses into a single
deterministic state.

One may ask whether we can use a weighting operator similar to a projective
measurement. Assume that the system is in the following affine state

v =

⎛

⎝
1

−1
1

⎞

⎠

and we make weighting based on the separation {e1} and {e2, e3}. Then, we
can observe the system in the first state with weight 1

3 and in the second and
third states with weight 2

3 . But, in the latter case, the new state is not an affine
state since the summation of entries will always be zero whatever normalization
factor is used. Therefore, once we make a weighting, the system must collapse
to a single state. On the other hand, one may still define an affine system with
extended weighting by allowing this kind of weighting with the assumption that
if the new state has a zero summation, then the system terminates, i.e. no further
evolution can occur. Such kind of assumptions may be used cleverly to gain some
computational power.

One may also define an affine state as a l1-norm 1 vector on the real numbers
and require that each new state is normalized after each linear affine operator.
A straightforward calculation shows that the weighting results will be exactly
the same as the previous definition, so both systems are equivalent. However,
this time the overall evolution operator, a linear affine operator followed by
normalization, is not linear. With respect to this new definition, say normalized
affine systems, all the affine states form finite objects: |x1|+ |x2|+ · · ·+ |xn| = 1.
It is, for example, a square on R

2: |x| + |y| = 1. One could see this square as an
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approximation of the unit circle but remark that we cannot use unitary operators
as affine operators directly. On the other hand, we may define a more general
model by replacing linear affine operators with arbitrary linear operators. We call
this system general affine systems or general normalized affine systems. In this
paper, we focus only on the standard definition where the states are vectors with
a barycentric sum to 1, and the transformations are affine operators preserving
such barycenters.

4 Classical and Quantum Automata

Unless otherwise specified, we denote the input alphabet as Σ, not containing the
left end-marker ¢ and the right end-marker $. The set of all the strings generated
on Σ is denoted by Σ∗. We define Σ̃ = Σ ∪ {¢, $} and w̃ = ¢w$ for any string
w ∈ Σ∗. For any given string w ∈ Σ∗, |w| is the length of the string, |w|σ is the
number of occurrences of the symbol σ in w, and wj is the j-th symbol of w.

For a given machine/automaton M , fM (w) denotes the accepting probability
(value) of M on the string w.

A probabilistic finite automaton (PFA) [10] P is 5-tuple

P = (E,Σ, {Aσ | σ ∈ Σ̃}, es, Ea),

where E is the set of deterministic states, es ∈ E is the starting state, Ea ⊆ E
is the set of accepting state(s), and Aσ is the stochastic transition matrix for
the symbol σ ∈ Σ̃. Let w ∈ Σ∗ be the given input. The input is read as w̃ from
left to right, symbol by symbol. After reading the j-th symbol, the probabilistic
state is vj = Aw̃j

vj−1 = Aw̃j
A ˜wj−1 · · · Aw̃1v0, where v0 = es and 1 ≤ j ≤ |w̃|.

The final state is denoted vf = v|w̃|. The accepting probability of P on w is
calculated as fP (w) =

∑
ek∈Ea

vf [k].
A quantum finite automaton (QFA) [2] M is a 5-tuple

M = (Q,Σ, {Eσ | σ ∈ Σ̃}, qs, Qa),

where Q is the set of basis states, Eσ is the transition superoperator for symbol
σ, qs is the starting state, and Qa ⊆ Q is the set of accepting states. For a
given input w ∈ Σ∗, the computation of M on w is traced as ρj = Ew̃j

(ρj−1),
where ρ0 = |qs〉〈qs| and 1 ≤ j ≤ |w̃|. The final state is denoted ρf = ρ|w̃|. The
accepting probability of M on w is calculated as fM (w) =

∑
qj∈Aa

ρf [j, j].
If we restrict the entries of the transitions matrices of a PFA to zeros and

ones, we obtain a deterministic finite automaton (DFA). A DFA is always in a
single state during the computation and the input is accepted if and only if the
computation ends in an accepting state. A language is said to be recognized by
a DFA (then called regular [11]) if and only if any member of the language is
accepted by the DFA. The class of regular languages are denoted by REG.

Let λ ∈ [0, 1) be a real number. A language L is said to be recognized by a
PFA P with cutpoint λ if and only if

L = {w ∈ Σ∗ | fP (w) > λ}.
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Any language recognized by a PFA with a cutpoint is called stochastic language
[10] and the class of stochastic languages are denoted by SL, a superset of REG.
A language is said to be recognized by a PFA P with unbounded error if L or
the complement of L is recognized by P with cutpoint [17]. (Remark that it is
still not known whether SL is closed under complement operation.)

As a special case, if λ = 0, the PFA is also called a nondeterministic finite
automaton (NFA). Any language recognized by a NFA is also regular.

A language L is said to be recognized by P with isolated cutpoint λ if and
only if there exists a positive real number δ such that (1) fP (w) ≥ λ + δ for any
w ∈ L and (2) fP (w) ≤ λ − δ for any w /∈ L. When the cutpoint is required to
be isolated, PFAs are not more powerful than DFAs: Any language recognized
by a PFA with isolated cutpoint is regular [10].

Recognition with isolated cutpoint can also be formulated as recognition
with bounded error. Let ε ∈ [0, 1

2 ). A language L is said to be recognized by
a PFA P with error bound ε if and only if (1) fP (w) ≥ 1 − ε for any w ∈ L
and (2) fP (w) ≤ ε for any w /∈ L. As a further restriction of bounded error, if
fP (w) = 1 for any w ∈ L, then it is called negative one-sided error bound, and,
if fP (w) = 0 for any w /∈ L, then it is called positive one-sided error bound.
If the error bound is not specified, it is said that L is recognized by P with
[negative/positive one-sided] bounded error.

A language L is called exclusive stochastic language [9] if and only if there
exists a PFA P and a cutpoint λ ∈ [0, 1] such that L = {w ∈ Σ∗ | fP (w) 
= λ}.
The class of exclusive stochastic languages is denoted by SL�=. Its complement
class is denoted by SL= (L ∈ SL�= ↔ L ∈ SL=). Note that for any language in
SL�= we can pick any cutpoint between 0 and 1 but not 0 or 1 since when fixing
the cutpoint to 0 or 1, we can recognize only regular languages. Note that both
SL�= and SL= are supersets of REG (but it is still open whether REG is a proper
subset of SL�= ∩ SL=).

In the case of QFAs, they recognize all and only regular languages with
bounded-error [7] and stochastic languages with cutpoint [15,17]. However, their
nondeterministic versions (NQFAs) are more powerful: NQAL, the class of lan-
guages defined by NQFAs (QFAs with cutpoint 0), is identical to SL�= [16].

5 Affine Finite Automaton

Now we define the affine finite automaton (AfA). An AfA M is a 5-tuple

M = (E,Σ, {Aσ | σ ∈ Σ̃}, es, Ea),

where all the components are the same as that of PFA except that Aσ is an
affine transformation matrix. Let w ∈ Σ∗ be the given input. After reading the
whole input, a weighting operator is applied and the weights of the accepting
states determine the accepting probability of M on w, i.e.

fM (w) =
∑

ek∈Ea

|vf [k]|
|vf | ∈ [0, 1].
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The languages recognized by AfAs are defined similarly to PFAs and QFAs.
Any language recognized by an AfA with cutpoint is called affine language. The
class of affine languages is denoted AfL. Any language recognized by an AfA
with cutpoint 0 (called nondeterministic AfA (NAfA)) is called nondetermin-
istic affine language. The related class is denoted NAfL. A language is called
exclusive affine language if and only if there exists an AfA M and a cutpoint
λ ∈ [0, 1] such that L = {w ∈ Σ∗ | fM (w) 
= λ}. The class of exclusive affine lan-
guages is denoted AfL�= and its complement class is denoted AfL=. Any language
recognized by an AfA with bounded error is called bounded affine language. The
related class is denoted BAfL. If it is a positive one-sided error (all non-members
are accepted with value 0), then the related class is denoted BAfL0, and, if it is
a negative one (all members are accepted with value 1), then the related class
is denoted BAfL1. Note that if L ∈ BAfL0, then L ∈ BAfL1, and vice versa. Any
language recognized by an AfA with zero-error is called exact affine language
and the related class is denoted EAfL.

6 Main Results

We present our results under three subsections.

6.1 Bounded-Error Languages

We start with a 2-state AfA, say M1, for the language EQ = {w ∈ {a, b}∗ |
|w|a = |w|b}. Let E = {e1, e2} be the set of states, where e1 is the initial and
only accepting state. None of the end-markers is used (or the related operators

are the identity). At the beginning, the initial affine state is v0 =
(

1
0

)
. When

reading symbols a and b, the following operators are applied:

Aa =
(

2 0
−1 1

)
Ab =

(
1
2 0
1
2 1

)
,

respectively. Then, the value of the first entry of the affine state is multiplied
by 2 for each a and by 1

2 for each b, and so, the second entry takes the value of
“1 minus the value of the first entry”, i.e. if M reads m as and n bs, then the

new affine state is
(

2m−n

1 − 2m−n

)
. That is, for any member, the final affine state

is vf =
(

1
0

)
and so the input is accepted with value 1. For any non-member,

the final state can be one of the followings

· · · ,

(
8

−7

)
,

(
4

−3

)
,

(
2

−1

)
,

(
1
2
1
2

)
,

(
1
4
3
4

)
,

(
1
8
7
8

)
, · · · .



Affine Computation and Affine Automaton 155

Thus, the maximum accepting value is obtained when vf =
(

2
−1

)
, which gives

the accepting value |2|
|2|+|−1| = 2

3 . Therefore, we can say that the language EQ can
be recognized by the AfA M1 with isolated cutpoint 5

6 (the isolation gap is 1
6 ).

Since it is a nonregular language, we can follow that AfAs can recognize more
languages than PFAs and QFAs with isolated cutpoints (bounded error).

By using 3 states, we can also design an AfA M2(x) recognizing EQ with better
error bounds, where x ≥ 1: M2(x) = {{e1, e2, e3}, {a, b}, {Aa, Ab}, e1, {e1}},

where Aa =

⎛

⎝
1 0 0
x 1 0

−x 0 1

⎞

⎠ and Ab =

⎛

⎝
1 0 0

−x 1 0
x 0 1

⎞

⎠ . The initial affine state is v0 =

(1, 0, 0) and after reading m as and n bs, the affine state will be

⎛

⎝
1

(m − n)x
(n − m)x

⎞

⎠ .

Then, the accepting value will be 1 if m = n, and, 1
2x|m−n|+1 if m 
= n. Notice

that it is at most 1
2x+1 if m 
= n. Thus, by picking larger x, we can get smaller

error bound.

Theorem 1. REG � BAfL1 and REG � BAfL0 ⊆ NAfL.

The knowledable readers can notice that in the algorithm M2(x), we actu-
ally implement a blind counter [5]2. Therefore, by using more states, we can
implement more than one blind counter.

Corollary 1. Any language recognized by a deterministic multi-blind-counter
automaton is in BAfL1.

Since AfA is a generalization of PFA, we can also obtain the following result.

Theorem 2. Any language recognized by a probabilistic multi-blind-counter
automaton with bounded-error is in BAfL.

6.2 Cutpoint Languages

Lapinš [6] showed that the language LAPINŠ = {ambncp | m4 > n2 > p > 0} is
nonstochastic and it is not in SL. It is clear that the following language is also
nonstochastic: LAPINŠ′ = {w ∈ {a, b, c}∗ | |w|4a > |w|2b > |w|c} or equivalently
LAPINŠ′ = {w ∈ {a, b, c}∗ | |w|2a > |w|b and |w|2b > |w|c}.

2 A counter is blind if its status (whether its value is zero or not) cannot be accessible
during the computation. A multi-blind-counter finite automaton is an automaton
having k > 0 blind counter(s) such that in each transition it can update the value(s)
of its counter(s) but never access the status of any counter. Moreover, an input can
be accepted by such automaton only if the value of every counter is zero at the end
of the computation.
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Theorem 3. The language LAPINŠ′ is recognized by an AfA with cutpoint 1
2 .

Proof. We start with a basic observation about AfAs. Let
(

m
1 − m

)
be an affine

state, where m is an integer. Then:

– If m > 0, |m| > |1 − m| = m − 1 since m − 1 is closer to 0.
– If m ≤ 0, |m| = −m < |1 − m| = −m + 1 since −m is closer to 0.

So, if the first state is an accepting state and the second one is not, then we can
determine whether m > 0 with cutpoint 1

2 , which can be algorithmically useful.
For a given input w ∈ {a, b, c}∗, we can easily encode |w|a, |w|b, and |w|c into

the values of some states. Our aim is to determine |w|2a > |w|b and |w|2b > |w|c.
Even though PFAs and QFAs can make the similar encodings, they can make
only a single comparison. Here, we show that AfAs can make both compressions.

First we present some encoding integer matrices. If we apply matrix
(

1 0
1 1

)
m

times to
(

1
0

)
, the value of the second entry becomes m:

(
1 0
1 1

)(
1
0

)
=

(
1
1

)
and

(
1 0
1 1

) (
1
x

)
=

(
1

x + 1

)
⇒

(
1 0
1 1

)m (
1
0

)
=

(
1
m

)
.

For obtaining m2, we can use the following initial state and matrix:
⎛

⎝
1 0 0
2 1 0
0 1 1

⎞

⎠

⎛

⎝
1
0
0

⎞

⎠ =

⎛

⎝
1
1
0

⎞

⎠ and

⎛

⎝
1 0 0
2 1 0
0 1 1

⎞

⎠

⎛

⎝
1

2x − 1
(x − 1)2

⎞

⎠ =

⎛

⎝
1

2x + 1
x2

⎞

⎠

⇒
⎛

⎝
1 0 0
2 1 0
0 1 1

⎞

⎠
m ⎛

⎝
1
0
0

⎞

⎠ =

⎛

⎝
1

2m − 1
m2

⎞

⎠ .

We can easily embed such matrices into affine operators (by using some addi-
tional states) and then we can obtain the value like |w|a and |w|2a as the values
of some states. If required, the appropriate initial states can be prepared on the
left end-marker. Moreover, on the right end-marker, we can make some basic
arithmetic operations by using a combination of more than one affine operators.
Furthermore, we can easily tensor two AfA and obtain a single AfA that indeed
can simulate both machines in parallel.

Let |w|a = x, |w|b = y, and |w|c = z, and, M1 and M2 be two AfAs that
respectively have the following final states after reading w:

vf (M1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

x2

y
1 − x2 − y

0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and vf (M2) =

⎛

⎜⎜⎜⎜⎜⎝

y2 − z
1 − y2 + z

0
...
0

⎞

⎟⎟⎟⎟⎟⎠
.
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If we tensor both machines and apply an affine transformation to arrange the
values in a certain way, the final state will be

vf =
(

x2(y2 − z) x2(1 − y2 + z) y
1 − T

2
1 − T

2
0 · · · 0

)T

,

where T is the summation of the first three entries. We select the first and
fourth states as accepting states. Then, the difference between the accepting
and the remaining values is Δ = x2(|y2 − z| − |1 − y2 + z|) − y. Remark that
δ = |y2 − z| − |1 − y2 + z| is either 1 or −1.

– If w is a member, then Δ = x2(1) − y, which is greater than 0.
– If w is not a member, then we have different cases.

• x2 ≤ y: Δ will be either x2 − y or −x2 − y and in both case it is equal to
zero or less than zero.

• x2 > y but y2 ≤ z: Δ will be −x2 − y and so less than zero.

Thus, the final AfA can recognize LAPINŠ′ with cutpoint 1
2 . ��

Since AfAs can recognize a nonstochastic language with cutpoint, they are
more powerful than PFAs and QFAs with cutpoint (and also with unbounded-
error).

Corollary 2. SL � AfL.

6.3 Nondeterministic Languages

Now, we show that NAfAs are equivalent to NQFAs.

Lemma 1. SL�= ⊆ NAfL.

Proof. Let L be a language in SL�=. Then, there exists an n-state PFA P such
that L = {w ∈ Σ∗ | fP (w) 
= 1

2}, where n > 0. Let A$ be the transition
matrix for the right end-marker and vf (w) be the final probabilistic state for
the input w ∈ Σ∗. We can trivially design a probabilistic transition matrix A′

$

such that the first and second entries of the probabilistic state v′
f (w) = A′

$vf (w)
are 1 − fP (w) and fP (w), respectively, and the others are zeros. Let A′′

$ be the
following affine operator: ⎛

⎝
1 −1 0
0 2 0
0 0 I

⎞

⎠ .

Then, the first and second entries of v′′
f = A′′

$v′
f are 1 − 2fP (w) and 2fP (w),

respectively, and the others are zeros. So, based on P , we can design an AfA M
by making at most two modifications: (i) the single accepting state of M is the
first one and (ii) the affine operator for the right end-marker is A′′

$A′
$A$. Then,

if fP (w) = 1
2 if and only if fM (w) = 0. That is, L ∈ NAfL. ��

Lemma 2. NAfL ⊆ NQAL.
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Proof. Let L ∈ NAfL. Then, there exists an AfA M = (E,Σ, {Aσ | σ ∈
Σ̃, es, Ea}) such that w ∈ L if and only if fM (w) > 0 for any input w ∈ Σ∗.
Now, we design a nondeterministic QFA M ′ = {E ∪ F,Σ, {Eσ | σ ∈ Σ}, es, Ea}
for language L, where F is a set of finite states and E ∩ F = ∅.

We provide a simulation of M by M ′. The idea is to trace the computation
of M through a single pure state. Let w ∈ Σ∗ be the input string. The initial
affine state is v0 = es and the initial quantum state is |v0〉 = |es〉. Assume that
each superoperator has k > 0 operation elements.

A superoperator can map a pure state to more than one pure state. Therefore,
the computation of M ′ can be also traced/shown as a tree, say Tw. We build
the tree level by level. The root is the initial state. For the first level, we apply
E¢ to the initial state and obtain k vectors:

|ṽ(j)〉 = E¢,j |v0〉, 1 ≤ j ≤ k,

some of which are unnormalized pure states and maybe the others are zero
vectors. We connect all these vectors to the root. For the second level, we apply
Ew̃2 to each vectors on the first level. Although it is clear that zero vectors can
always be mapped to zero vectors, we keep them for simplicity. From the node
corresponding |ṽ(j)〉, we obtain the following children:

|ṽ(j,j′)〉 = Ew̃2,j′ |ṽ(j)〉, 1 ≤ j′ ≤ k.

We continue in this way (by increasing the indices of vectors by one in each
level) and at the end, we obtain k|w̃| vectors at the leafs, some of which are un-
normalized pure states. The indices of the vectors at the leafs are from (1, . . . , 1)
to (k, . . . , k). Remark that |ṽ(1,...,1)〉 is calculated as

|ṽ(1,...,1)〉 = Ew̃|w̃|,1Ew̃|w̃|−1,1 · · · Ew̃1,1|v0〉,

where all the operation elements are the ones having index of 1. Remark that if α
is a value of an accepting state in one of these pure states, then its contribution
to the total accepting probability will be |α|2.

This tree facilities to describe our simulation. Each superoperator Eσ =
{Eσ,1, . . . , Eσ,k} is defined based on Aσ. Among the others, Eσ,1 is the spe-
cial one that keeps the transitions of Aσ and all the others exist for making Eσ

a valid operator. The details of Eσ,1 and the other operation elements of Eσ are
as follows:

Eσ,1 =
1
lσ

(
Aσ 0
0 I

)
and Eσ,j =

1
lσ

(
0 0
∗ ∗

)
, (2 ≤ j ≤ k)

where lσ ≥ 1 is a normalization factor and the parts denoted by “∗” can be
arbitrary filled to make Eσ a valid operator. (Note that there have already been
some methods to fill the parts denoted by “∗” in a straightforward way [16,17].)

The Hilbert space of M ′ can be decomposed into two orthogonal subspaces:
He = span{|e〉 | e ∈ E} and Hf = span{|f〉 | f ∈ F}. So, any pure state |v〉 can
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be decomposed as |v〉 = |ve〉 ⊕ |vf 〉, where |ve〉 ∈ He and |vf 〉 ∈ Hf . It is clear
that any Eσ,1 (σ ∈ Σ̃) keeps the vector inside of the subspaces: Eσ,1 : He → He

and Eσ,1 : Hf → Hf . Then, Eσ,1 maps |v〉 = |ve〉 ⊕ |vf 〉 to 1
lσ

Aσ|ve〉 ⊕ 1
lσ

|vf 〉.
Therefore, when Eσ,1 is applied, the part of computation in Hf never affects the
part in He.

All the other operational elements map any vector inside Hf and so they
never affect the part in He. Remark that any pure state lies in Hf never produce
an accepting probability since the set of accepting states are a subset of E.

Now, we have enough details to show why our simulation works. When con-
sidering all leaves of Tw, only |ṽ(1,...,1)〉 lies in He and all the others lie in Hf .
Then, the accepting probability can be produced only from |ṽ(1,...,1)〉, the value
of which can be straightforwardly calculated as

|ṽ(1,...,1)〉 =
1
lw

(vf , ∗, . . . , ∗), lw =
|w̃|∏

j=1

lw̃j
,

where “∗” are some values of the states in F . It is clear that fM (w) = 0 if and
only if fM ′(w) = 0.

Remark that each superoperator can have a different number of operation
elements and this does not change our simulation. Moreover, the size of F can
be arbitrary. If it is small, then we need to use more operation elements and if
it is big enough, then we can use less operation elements. ��
Theorem 4. NAfL = NQAL.

Proof. The equality follows from the fact that SL�= = NQAL [16] and the previous
two lemmas: NQAL ⊆ SL�= ⊆ NAfL ⊆ NQAL ��

7 Concluding Remarks

We introduce affine computation as a generalization of probabilistic computation
by allowing to use negative “probabilities”. After giving the basics of the new
system, we define affine finite automaton and compare it with probabilistic and
quantum finite automata. We show that our new automaton model is more
powerful than the probabilistic and quantum ones in bounded- and unbounded-
error language recognitions and equivalent to quantum one in nondeterministic
language recognition mode. After the paper was accepted, we also showed that
exclusive affine languages form a superset of exclusive quantum and stochastic
languages [4]. Moreover, some other new results on computational power and
succinctness of AfAs were recently obtained in [3,13]. These are only the initial
results. We believe that the further investigations on the affine computational
models can provide new insights on using negative transition values.

Acknowledgements. We thank Marcos Villagra for his very helpful comments. We
also thank the anonymous reviewers for their very helpful comments.
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Abstract. The edge dominating set problem (EDS) is to compute a min-
imum edge set such that every edge is dominated by some edge in it. This
paper considers a variant of EDS with extensions of multiple and con-
nected dominations combined. In the b-EDS problem, each edge needs to
be dominated b times. Connected EDS requires an edge dominating set
to be connected while it has to form a tree in Tree Cover. Although
each of EDS, b-EDS, and Connected EDS (or Tree Cover) has been
well studied, each known to be approximable within 2 (or 8/3 for b-EDS
in general), nothing is known when these extensions are imposed simulta-
neously on EDS unlike in the case of the (vertex) dominating set problem.

We consider Connected 2-EDS and 2-Tree Cover (i.e., a combi-
nation of 2-EDS and Tree Cover), and present a polynomial algorithm
approximating each within 2. Moreover, it will be shown that the single
tree computed is no larger than twice the optimum for (not necessar-
ily connected) 2-EDS, thus also approximating 2-EDS equally well. It
also implies that 2-EDS with clustering properties can be approximated
within 2 as well.

1 Introduction

In an (undirected) graph G = (V,E) a vertex is said to dominate itself and all
the vertices adjacent to it, and a vertex set S ⊆ V is a dominating set for G if
every vertex in G is dominated by some in S. The problem of computing a min-
imum size dominating set is called Dominating Set (DS). Domination is one
of the most fundamental concepts in graph theory with numerous applications
to a variety of areas [1,10]. The two books [24,25] contain the main results and
applications of domination in graphs.

Many variants of the basic concepts of domination have appeared in the
literature, and two of them are relevant to the current work. One is multiple
domination, introduced by Fink and Jacobson [18,19] with an obvious motiva-
tion of fault tolerance and/or robustness, and in fact there exist various types
of multiple domination; k-domination requires every vertex not in S ⊆ V to be
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dominated by k members of S while k-tuple domination requires every vertex
in G to be by k members of S (A survey on combinatorial properties of theirs
and other multiple dominations can be found in [8]). Another well-known vari-
ant of DS demands connectivity on dominating sets, and S ⊆ V is a connected
dominating set for G if S is a dominating set for G inducing a connected sub-
graph of G. The problem Connected Dominating Set has been studied in
graph theory for many years, and recently it has become a hot topic due to
its application in wireless networks for virtual backbone construction [7,12,13].
Moreover, a unifying generalization of multiple and connected dominations has
recently received considerable attention, leading to the concept of k-connected
m-dominating set problem [11]. A minimum vertex set S ⊆ V is sought here such
that S is an m-dominating set and simultaneously the subgraph G[S] induced
by S is k-connected, where various approximation results are becoming available
mainly for unit-disk graphs [22,27] as well as for general graphs [33,38].

In this paper we focus on the algorithmic aspects of Edge Dominating Set
(EDS), which is yet another natural variant of DS, and its generalizations. Here,
an edge is said to dominate itself and all the edges incident to it, and an edge
set F ⊆ E is an edge dominating set (eds) for G if every edge in G is dominated
by some in F . The multiple domination variant of EDS is known as the b-Edge
Dominating Set (b-EDS) problem, and here, F ⊆ E is a b-edge dominating set
(b-eds) if every edge in G is dominated by b members of F (and hence, it corre-
sponds to the b-tuple DS on line graphs). The Connected Edge Dominating
Set problem is a connected variant of EDS, and it is also known as Tree Cover,
the problem of covering all the edges in G by the vertex set of a tree, as any con-
nected eds is necessarily cycle-free if it is minimal. Despite the fact that EDS is
equivalent to the special case of DS with G restricted to line graphs, EDS seems
to have its own history of being a topic of research. Since it was shown to be NP-
complete by Yannakakis and Gavril [37], the computational complexity of EDS
has been well explored. Computing any maximal matching is a 2-approximation
to EDS since it is equivalent to the problem of computing the minimum maxi-
mal matching [23]. No better approximation has been found in the general case
although EDS admits a PTAS for some special cases [4,26], and some nontriv-
ial approximation lower bounds have been derived (under some likely complexity
hypothesis) [9,14,31]. The parameterized complexity of EDS has also been exten-
sively studied [6,14,15,20,36]. The general case of b-EDS is known to be approx-
imable within 8/3 [5], but within 2 for b ≤ 3 [21], and Connected EDS can be
within 2 [2,30]. Interestingly though, to the best of our knowledge, no counter-
part of the k-connected m-dominating set problem for EDS has appeared in the
literature, and nothing is known for Connected b-EDS for b ≥ 2.

1.1 Our Work

The main subject of the paper is the Connected 2-EDS problem (C2-EDS);
that is, the problem of computing a minimum 2-eds inducing a connected sub-
graph. Another way of imposing the connectivity on b-EDS is to enforce a solu-
tion to be a subgraph of certain types in the spirit of Arkin et al. [2]. It is natural
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to define 2-Tree Cover (2-TC) as the problem of computing a smallest tree,
termed a 2-tree cover, in connected G such that its edge set forms a 2-eds for
G. Notice that a spanning tree is always a 2-tree cover (assuming G is a feasible
instance) and that C2-EDS and 2-TC are not equivalent as an optimal solution
for the former is not necessarily a tree.

To explain the contributions of the current work and their implications, con-
sider the following natural integer program formulation of 2-EDS, the version
where solutions are not required to be connected:

min {x(E) | x(δ(e)) ≥ 2 and xe ∈ {0, 1},∀e ∈ E} ,

where x(F ) =
∑

e∈F xe for F ⊆ E, and δ(e) = {e}∪{e′ ∈ E | e′ is adjacent to e}
for e ∈ E. Replacing the integrality constraints by linear constraints 0 ≤ xe

results in the LP and its dual in the following forms:

LP:(P) min zP (x) = x(E) LP:(D) max zD(y) =
∑

e∈E

2ye

subject to: x(δ(e)) ≥ 2, ∀e ∈ E subject to: y(δ(e)) ≤ 1, ∀e ∈ E

xe ≥ 0, ∀e ∈ E ye ≥ 0, ∀e ∈ E

Let dual2(G) denote the optimal value of LP:(D) above for graph G. The main
contribution of the paper is to present an approximation algorithm for 2-TC such
that (1) it computes a tree where the edge set of which is a 2-eds for G, and (2)
the tree computed is of a size no larger than 2 · dual2(G). Since dual2(G) lower
bounds the minimum size of 2-eds, it follows that 2-TC as well as C2-EDS can be
approximated within 2. It also implies in turn that 2-EDS can be approximated
by a tree within 2. It is also worth pointing out that, considering the case of G
being a complete graph, the gap of LP:(P) from the integral optimum for C2-EDS
can be arbitrarily close to 2. As mentioned earlier, satisfying both connectivity
and multiple domination has been already considered in the case of the vertex
domination. It then tends to be harder to approximate, however, even for unit-
disk graphs [32,34,35], than when satisfying either one only, in good contrast
with the case of EDS as shown in this paper.

A vertex set C ⊆ V is a vertex cover (vc) if every edge in G is incident to
some member of C, a connected vertex cover if it is a vc inducing a connected
subgraph, and it is called a t-total vertex cover (t-tvc) (t ≥ 1) if it is a vc such that
each connected component of the subgraph induced by C has at least t vertices.
Hence, if C is a t-tvc, each member of the vertex cover C belongs to a “cluster”
containing at least t members of C. Having such clustering properties could be
desirable or required in some applications, and variants with such properties
enforced are considered in other combinatorial optimization problems as well,
such as r-gatherings [3]. The problem t-TVC of computing a minimum t-tvc
was introduced in [17,29], and was further studied in [16], where t-TVC was
shown approximable within 2 for each t ≥ 1 [17]. This is based on the Savage’s
algorithm computing a connected vc of size no larger than twice the minimum vc
size [30]. Our algorithm reveals the existence of a similar phenomenon between
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2-EDS and C2-EDS, and when 2-EDS with clustering properties is considered,
the above result implies that it can be approximated within 2 for any cluster
size t (≥ 1) (Note: No such relation is known between EDS and CEDS).

2 Preliminaries

For a vertex set U ⊆ V , Γ (U) denotes the set of all the vertices in G which are
adjacent to at least one vertex of U (i.e., Γ (U) = {v ∈ V | {u, v} ∈ E for some u ∈
U}), and Γ (u) means Γ ({u}). For a vertex u ∈ V let δ(u) denote the set of edges
incident to u. The degree of a vertex u is denoted by deg(u). An empty tree is
meant to be one consisting of a single node (and no edge).

2.1 Gallai-Edmonds Decomposition

For any graph G denote by D the set of such vertices in G that are not covered
by some maximum matchings of G. Let A denote the set of vertices in V − D
adjacent to at least one vertex in D, and let C = V − A − D. A graph G is
called factor-critical if removal of any vertex from G results in a graph having a
perfect matching. For a bipartite graph G with bipartition (X,Y ), the surplus
of a set W ⊆ X is defined by |Γ (W )| − |W |, and the surplus of the bipartite
graph G is the minimum surplus of non-empty subsets of X.

This decomposition, which can be computed in polynomial time via the
Edmonds matching algorithm, provides important information concerning all
the maximum matchings in G:

Theorem 1 (the Gallai-Edmonds structure theorem. See [28]).

1. The components of the subgraph induced by D are factor-critical.
2. The subgraph induced by C has a perfect matching.
3. The bipartite graph obtained from G by deleting the vertices of C and the

edges in G[A] and by contracting each component of D to a single vertex has
positive surplus (as viewed from A).

Call a vertex in A an a-node and one in D a d-node. The set of a-nodes in a
subgraph H of G is denoted by A(H) and that of d-nodes by D(H).

3 Algorithm Design Overview

One possible way to relate 2-EDS and matchings is to observe that (1/2)yM is
dual feasible to LP:(D) for any matching M ⊆ E and the incidence vector yM ∈
{0, 1}E of M , which implies that the minimum 2-eds size is lower bounded by
|M | (or the minimum b-eds size in general lower bounded by b|M |/2). Therefore,
any 2-eds of size bounded by 2|M | for some matching M is a 2-approximation to
2-EDS, and in fact such a 2-eds always exists [21]. When it has to be additionally
connected, however, such a graph can be easily found where any connected 2-eds
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is larger than 2|M | even if M is a maximum matching, and we take the following
measures to deal with this; (1) locate and identify subgraphs of G, with the help
of the Gallai-Edmonds decomposition of G, where matching based duals do not
work, and (2) devise more elaborate dual assignments for such subgraphs. The
algorithm is thus designed, based on the G-E decomposition of G, to compute a
forest F of trees in G s.t.

Property 1. F spans A∪C entirely and all the nontrivial components of G[D].
Property 2. Every a-node has degree of at least 2 (i.e., non-leaf) in F .

The nodes in G not spanned by F then are singletons in G[D] only (by Prop-
erty 1), and they are adjacent only to a-nodes, each of which is of degree at
least 2 in F (by Property 2). It thus follows that a feasible 2-eds for G can
be computed by minimally connecting all the trees in F into a single tree. In
fact it is relatively easy to find a forest satisfying the properties above for the
following reasons. To defer the consideration on how to span nontrivial compo-
nents of G[D], suppose each of them is shrunken into a single d-node, which we
call a fat d-node, and let G′ denote the resulting graph. It can be induced from
Theorem 1.3 that G′[A ∪ D] contains a forest such that every node in A has
degree 2 in it (see [28]). Thus, by additionally using a tree spanning each com-
ponent of G[C] (and trees spanning nontrivial components of G[D] at the end),
a forest satisfying both Properties 1 and 2 can be obtained.

We also need to be concerned with the quality of solutions thus computed,
and to bound the approximation ratio of the algorithm, we consider additionally
imposing the following two properties on F :

Property 3. F is “compact” enough that all the trees can be glued together,
using only extra edges (and no extra nodes).

Property 4. There exists a dual feasible y ∈ R
E s.t. y(E[T ]) ≥ (|E(T )| + 1)/4

for each T ∈ F , where E[T ] denotes the set of edges induced by V (T ).

Suppose a tree Tfin is constructed by minimally connecting all the trees in F , and
to do so, it suffices to use (|E(T )| + 1) edges per tree T ∈ F due to Property 3.
The total number of edges in Tfin is thus no larger than

∑

T∈F
(|E(T )| + 1) ≤

∑

T∈F
4y(E[T ]) ≤

∑

e∈E

4ye ≤ 2 · dual2(G),

for some dual feasible y ∈ R
E , where the first inequality is due to Property 4,

implying that this is a 2-approximation algorithm for 2-EDS.
Our main goal is thus to devise a way to compute a forest F satisfying

Properties 3 and 4 on top of 1 and 2. It is noted here that Property 3 follows easily
when T (or the component T spans) has a perfect matching M , by assigning 1/4
to ye for each edge e ∈ M . For this and some other reasons to be explained later,
it is not so hard to deal with the components in G[C] as well as the nontrivial
components in G[D], and much of the work will be spent in computing trees in
G′[A ∪ D].
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3.1 Two Types of Trees

To ensure Property 2 in building trees in G′[A ∪ D], a path (u, v, w) of length 2
with an a-node v in the middle will be taken as an “unit-edge”, which we call a
2-edge. A tree composed of 2-edges only, with any 2-edge (u, v, w) treated as an
“edge” {u,w}, is called a 2-tree.

Basic Trees. A 2-edge (u, v, w) is called a (dad)-edge when both of u and w
are d-nodes. A tree consisting of (dad)-edges only is called basic. Clearly, for any
basic tree T , every a-node is of degree 2 in T , and all the leaves of T are d-nodes.

A basic tree T is maximal if no node of T is adjacent to an a-node outside of
T ; that is, if Γ (V (T ))\V (T ) ⊆ D. It will be shown that maximal basic trees can
be efficiently computed in G′[A ∪ D], and as will be seen, maximal basic trees
constitute basic building blocks in construction of a forest in G′[A ∪ D].

Bridged Trees. Recall that D is an independent set in G′ (as nontrivial compo-
nents are shrunken to singletons) while A is not in general, and there could be
edges among a-nodes. Therefore, there could be two disjoint basic trees and an
edge connecting them at an a-node in each of them, for instance, and they can
never be maximal basic trees. To avoid such situation we introduce an additional
type of tree comprised of 2-edges.

A 2-edge (u, v, w) is called a (aad)-edge when one of u and w is an a-node
and the other is a d-node. A path P = (d1, a1, a2, d2) of length 3 is called
a bridge-path when both of the end-nodes d1 and d2 are d-nodes and both of
the mid-nodes a1 and a2 are a-nodes. A tree T constructed by starting with a
bridge-path and inductively extending T by attaching either a (dad)-edge or an
(aad)-edge is called a bridged tree, where an (aad)-edge is always attached only
at an a-node of T .

As in a basic tree, an a-node cannot occur at a leaf in any bridged tree, from
the way it is constructed, and hence, its degree is at least 2 (which can be larger
unlike basic trees). Also observe that a bridged tree is perfectly matchable, unlike
a basic tree, implying that it possesses Property 4. Once again, a bridged tree
T in G is called maximal if no node of T is adjacent to an a-node outside of T ;
that is, if Γ (V (T )) \ V (T ) ⊆ D.

4 Algorithms

4.1 Tree Construction

Let H be a connected component of G′[A ∪ D]. We describe here how to con-
struct within H either a maximal basic tree or a maximal bridged tree, and out-
line three procedures used for this purpose, basicTree(s), basicTree&Path(s),
and bridgedTree(s) (More detailed and precise descriptions for them will be
provided in the full version).
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1. The procedure basicTree(s), when called with an initial d-node s, returns a
basic tree T containing s. It computes T in the DFS fashion (using a stack
data structure to keep currently active d-nodes), starting with s, by repeatedly
extending T by a (dad)-edge from the currently visited d-node d if there exists
an a-node in Γ (d) \ A(T ) while backtracking to a previous d-node if no such
a-nodes exist. It differs from the ordinary DFS-tree construction in how to
handle a case where the addition of a new edge would introduce a cycle in T .
Suppose there exists an unvisited a-node a in the neighbor of the currently
visited d-node d. Let d′ be another d-node adjacent to a. If d′ �∈ D(T ), adding
the 2-edge (d, a, d′) to T extends T to a larger basic tree. If d′ ∈ D(T ),
on the other hand, T ∪ {(d, a, d′)} contains a cycle. Denote this cycle by
B. Then, as |A(B)| = |D(B)|, there must exist an edge (a′, d′′) s.t. a′ ∈
A(B) and d′′ �∈ D(B) due to Theorem 1.3 If d′′ �∈ D(T ) this time, by adding
both (d, a, d′) and (a′, d′′) while removing the cycle (by dropping one edge
incident to a′), T can be properly extended to a larger basic tree. Certainly, it
could be the case again that d′′ ∈ D(T ), and hence, adding (a′, d′′) introduces
another cycle in T . In such a case, let B denote the union of these cycles,
and repeat the same argument and procedure. It would eventually find an
(ad)-edge of which the d-node lies outside of T , and at that point, T can be
properly extended by adding some number of (ad)-edges, on top of the initial
(d, a, d′), and removing the same number of (ad)-edges within T . This part
will be taken care of by procedure processCycle.
The procedure basicTree(s) thus extends an edge from any d-node to any
neighboring a-node if it is not yet a part of the tree. Therefore, it computes
a basic tree T s.t. Γ (D(T )) ⊆ A(T ). It may not be maximal, however, as
there could be an a-node in T adjacent to another a-node outside of T , and
the next procedure basicTree&Path(s) computes a tree T , starting with a
single d-node s, s.t. T is either a maximal basic tree or otherwise, T contains
a single bridge-path joining two vertex disjoint basic trees.

2. The procedure basicTree&Path(s), which is a slightlymodified basicTree(s),
returns a tree T containing s s.t. T is either maximal basic or T contains a single
bridge-path joining two vertex disjoint basic trees. It uses a flag bridged (ini-
tially, false) so that T contains at most one bridge-path. It constructs a tree
T just like basicTree(s) does, but when trying to extend T from a current d-
node d, it first checks whether a bridge-path P exists emanating from d (before
the existence of a (dad)-edge incident to d), and if exists, it extends T along P ,
as long as bridged is false (that is when no bridge-path is yet contained in T ).
Because the extension via a bridge-path has a higher priority over that via a
(dad)-edge, all the nodes in P must have been unvisited except for d when P is
found, and the other end of P becomes the next active d-node (while bridged
is set to true).
basicTree&Path(s) behaves exactly same as basicTree(s) once bridged
becomes true, except that we also need to modify the way to handle possi-
ble occurrences of cycles so that the middle edge (a1, a2) of a bridge-path
P = (d1, a1, a2, d2) already contained in T , is never deleted (as it would
destroy the “bridgedness”). This can be easily handled by treating P as if
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P = (d1, a1, d2) (or P = (d1, a2, d2) depending on the particular case).
Clearly, basicTree&Path(s) returns T such that it is either a basic tree
or it contains a single bridge-path joining two vertex disjoint basic trees.
Observe that, in the former case, no bridge-path has been found throughout
the process of extending T , which implies that no a-node of T is adjacent
to another a-node (i.e., Γ (A(T )) ⊆ C ∪ D). Therefore, when T returned by
basicTree&Path(s) is basic (i.e., bridged is false), it must be a maximal
basic tree.

3. The procedure bridgedTree(s) returns a tree T containing a d-node s s.t. T
is either a basic or a bridged tree, and maximal one in either case. It first
calls basicTree&Path(s), which returns a tree T . If T is basic, the proce-
dure ends here. Otherwise, it must be a tree consisting of a single bridge-
path P = (d1, a1, a2, d2) joining two vertex disjoint basic trees, T1 and T2.
We extend T to a maximal bridged tree. Recall that either T1 or T2 is
no longer extendable from any of its d-nodes as they are constructed by
basicTree&Path(s), but they can possibly be from the a-nodes of them by
(aad)-edges. Besides, it might be also possible to further grow T by extend-
ing it from each of a1 and a2. Therefore, we first collect all of these a-nodes
of T in midAs, and check if any unvisited node a′ exists in Γ (a) for each
a ∈ midAs. If it doesn’t, extension from a is complete and a is removed from
midAs. If it does exist, on the other hand, any d-node d′ adjacent to a′ must
be unvisited, and we undertake the following steps: compute a basic tree T ′

by calling basicTree(d′), extend T by attaching T ′ via 2-edge (a, a′, d′), and
add all the a-nodes of T ′ together with a′ to midAs. These operations are
repeated as long as midAs is nonempty, and when the procedure terminates,
T must be a maximal bridged tree.

4.2 Forest Construction

Assuming again that H is a connected component of G′[A ∪ D], we describe
how to build a forest FH in H so that all the nodes in A(H) are spanned by
the trees in FH . A call of bridgedTree(·) returns a maximal 2-tree T , but it
may not span A(H) entirely because of structural constraints imposed on T . We
therefore construct a forest FH of trees, basic and bridged, in H by repeatedly
calling bridgedTree(·), so that every a-node in H becomes a part of some tree
in it, and we do so paying attention to an additional property to be imposed on
FH . We say that a forest F is compact if the set of vertices of the trees in it
induces a connected subgraph in G′.

If a forest FH is compact, all the trees in it can be connected together using
a minimum number of edges, and such FH can be easily computed by restarting
bridgedTree(·) every time from a node adjacent to an already computed tree.
algorithm buildForest(H):

1. Initialize the forest FH to be empty, and set i = 1.
2. Pick any d-node r1 in H.
3. While there exists a node in A(H) not spanned by any tree in FH do
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(a) Call bridgedTree(ri), let Ti be the tree returned, and add Ti to FH .
(b) Pick an unvisited ri+1 adjacent to some Tj for 1 ≤ j ≤ i if it exists, and

increment i.
4. Output FH .

Let FH = {T1, T2, · · · , Tk} be the forest constructed by buildForest(H). It
is straightforward to observe the following:

– (1) ri belongs to Ti, and (2) there exists j (1 ≤ j < i) and an edge (aji , ri) in
H s.t. the a-node aji belongs to Tj , for all i (1 ≤ i ≤ k). It follows that FH is
compact as all of the Ti’s can be connected together by those (k − 1) edges.

– The tree T1 is maximal within H, and when Hi denotes the graph remaining
after all the vertices of earlier constructed Tj ’s (1 ≤ j ≤ i − 1) are removed
from H, Ti is maximal within Hi, for all i (1 ≤ i ≤ k).

Thus, any node remaining unvisited after Ti is constructed must be a d-node if it
is adjacent to Tj for some 1 ≤ j ≤ i, and if no such nodes exist in the last step of
this algorithm, no unvisited a-node can remain in H, and hence, the while-loop
terminates immediately when this occurs. It also follows from the observation
above that:

Lemma 1. Let FH = {T1, T2, · · · , Tk} be the forest constructed by buildForest
(H). If an edge (u, v) exists between Ti and Tj (i.e., u ∈ V (Ti) and v ∈ V (Tj)),

– exactly one of u and v is an a-node and the other is a d-node.
– if u ∈ A then i < j, and otherwise, i > j.

4.3 Forest Modification

Let FC denote a forest of trees each spanning a distinct component of G[C],
and FH the forest computed by buildForest(H) for a connected component H
of G′[A ∪ D]. Then, the trees in FH ’s for all the components H of G′[A ∪ D],
together with those in FC and those trees each of which spanning a nontrivial
component of G[D] can be seen to constitute a forest F satisfying Properties 1
through 3. Such F may not satisfy Property 4, however, and this subsection
describes how to modify FH ’s so that F satisfies all of them.

Clearly all the nodes in A(H) ∪ C are spanned by the trees in FH and FC .
Moreover, FH is a compact forest as already observed. As will be treated in the
next section, one can satisfy Property 4 by assigning dual values within E[T ] s.t.

y(E[T ]) ≥ |E(T )| + 1
4

and y(δ(u)) ≤ 1
2
, ∀u ∈ V (T )

when T is either a tree spanning a component in G[C], a bridged tree in G′[A∪D],
or a basic tree in G′[A∪D] containing a fat d-node. In a case where T is a basic
tree with no fat d-nodes in it, on the other hand, it may no longer be possible to
assign dual values in E[T ] satisfying all of these bounds (just think of the case
of Ks,s+1 for instance). Yet it will be shown (in the next section) how to assign
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dual values in E[T ] so that y is feasible when restricted to within E[T ] and
y(E[T ]) ≥ (|E(T )| + 1)/4 for a basic tree T whereas y(δ(u)) is not necessarily
bounded by 1/2, ∀u ∈ V (T ). A problem here is that such y may not yield a
dual feasible solution when extended to a whole y ∈ R

E as there could be a node
u ∈ V (T ) with y(δ(u)) > 1/2 and an edge (u, v) with v �∈ V (T ). To avoid such
a situation, therefore, we consider using basic trees of a more specific type.

Let T ′ be a basic tree in FH . We say that T ′ is internally closed if none of
the a-nodes of T ′ is adjacent to another tree in FH ∪ FC . A basic tree T ∈ FH

containing an internally closed tree as its sub 2-tree is called internal whereas
it is external if every nonempty sub 2-tree is not internally closed. Observe that

– if no inter-tree edge is incident to A(T ) for a basic tree T ∈ FH , T is internally
closed (and hence, internal), but T could be external even if only one of such
exists, and

– in the forest output by buildForest(H), the last tree Tk constructed must be
internally closed (and hence, internal as well), if it is basic and not adjacent
to C, due to the property specified by Lemma 1.

Let Ti ∈ FH be a basic tree rooted at ri and introduce the natural ancestor-
descendant relation among nodes in it for each Ti of FH . The following procedure
tears apart Ti into parts, paste them to other trees in FH ∪ FC using external
edges, and the only remnant of Ti is an internally closed 2-tree or otherwise, it is
just a single node, which, being of no use for us, will be subsequently discarded.
algorithm resolveTree(Ti):

1. Given a basic tree Ti, if it is empty or internally closed, exit here.
2. Otherwise, there must exist an inter-tree edge (a, u) s.t. a ∈ A(Ti), and either

u ∈ D(T ′) for T ′ ∈ FH or u ∈ V (T ′) for T ′ ∈ FC .
3. Let (d1, a, d2) be the 2-edge of Ti into which (a, u) is incident, and let d1 be

closer to the root of Ti than d2.
4. Replace the 2-edge (d1, a, d2) of Ti by (d1, a, u).
5. By the operation of the previous step, Ti is divided into two, and the one

containing the root is immediately attached to T ′ via edge (a, u). The other
is a sub 2-tree of Ti, which is basic by itself, and this tree is named anew as
Ti rooted at d2.

6. Recursively call resolveTree(Ti).

Observation 1. In case that T ′ referred to in Step 2 of resolveTree(Ti) is
a tree in FH , it must have been constructed by buildForest(H) later than Ti

because of the existence of the inter-tree edge (a, u) (Lemma 1).

Let FH = {T1, T2, · · · , Tk} be the forest computed by buildForest(H). We’d
like to eliminate from FH any external basic tree having no fat d-node, and
an obvious approach is to apply resolveTree(Ti) to such Ti’s. Recall that FH

computed by buildForest(H) is a compact forest, and a call of resolveTree(Ti)
could result in removal of a d-node from Ti, and hence, the compactness of FH

could be lost if resolveTree(·) is applied to trees in it in an arbitrary order.
To avoid this, FH will be modified by the next procedure, using Observation 1,
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by applying resolveTree(Ti) to each of external basic trees without fat d-nodes
Ti ∈ FH in the reversal of the order they were created by buildForest(H).
algorithm modifyForest(H):

1. For i = k − 1 downto 1 do
(a) If Ti is a basic tree with no fat d-node in it and not internally closed, call

resolveTree(Ti).
(b) If Ti is a single node, remove it from FH .

2. return FH .

Lemma 2. The forest FH computed by modifyForest(H) has the following
properties:

1. Every tree in FH is either a basic tree or a bridged tree, and every basic tree
is internal if it does not contain a fat d-node.

2. Let F ′ denote the set of trees in FC involved when resolveTree(Ti) was
applied during modifyForest(H). Then, FH ∪ F ′ is compact.

Proof.

1. If Ti is a basic tree without a fat d-node and not yet internally closed, then
resolveTree(Ti) is called by which Ti becomes either empty or internally
closed. Therefore, every basic tree remaining in FH must be internal or oth-
erwise, it must contain a fat d-node.

2. Recall r1 denotes the root of T1 in FH . To see that FH ∪ F ′ is compact, it
suffices to show that every node in it can reach r1 by passing only the nodes
of trees belonging to FH ∪ F ′. Before running modifyForest(H), FH was
compact. To be more precise, every node of Ti can reach r1 using only the
nodes of T1, · · · , Ti. Consider now the run of modifyForest(H), and suppose
resolveTree(Ti) is applied to Ti. At this point of time any of T1 through Ti−1

has been kept intact, and application of resolveTree(Ti) can affect the reach-
ability with r1 only for the nodes in Ti through Tk. It cannot, however, if all
the nodes of Ti remain in FH ∪ F ′ after application of resolveTree(Ti), and
thus we consider now the case when a node u of Ti disappears from any tree
of FH ∪ F ′ as a result of resolveTree(Ti). It must be the case then that u
was a leaf d-node of Ti before resolveTree(Ti) was applied to Ti. Then, any
other node of Ti can be seen to remain reachable from r1 even after removal
of u, but so must be any node of trees Ti+1 through Tk because no edge can
exist in the first place between u and those trees (Lemma 1). 	


4.4 Overall Algorithm

Now that all of the component procedures have been presented, the entire algo-
rithm, which we refer to as C2EDS, can be described as follows:

1. Compute the Gallai-Edmonds decomposition (A,C,D) of G.
2. Compute a forest FC of trees each spanning every component of G[C].
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3. Shrink every nontrivial component of G[D] into a fat d-node and denote the
resulting graph by G′.

4. For each connected component H of G′[A ∪ D] do
(a) Construct a forest FH by running buildForest(H).
(b) Restructure FH ∪ FC by running modifyForest(H).

5. For each fat d-node d in G′ do
(a) Let H be the component of G′[A∪D] containing d, and Td be a spanning

tree of the original component of G[D] shrunk into d.
(b) If d belongs to T ∈ FH ∪ FC , modify T by inserting Td into T in place

of d,
(c) Else (i.e., d does not belong to any tree in FH ∪ FC), add Td to FH .

6. Let F̃ be the forest of all the trees in FC and FH ’s for all the components
H of G′[A ∪ D]. Compute and output a tree by minimally connecting all the
trees in F̃ .

Lemma 3. The forest F̃ obtained in Step 6 of C2EDS is a compact forest consisting
of the following types of trees, where, in cases 1, 2 and 5, any fat d-node d in G′ is
replaced by a spanning tree of the original component shrunken into d:

1. a tree T spanning a component of G[C], with possibly some number of basic
trees T ′ attached to T , where exactly one leaf u of T ′ is superimposed with a
node of T ,

2. a bridged tree in G′[A ∪ D],
3. an internal basic tree in G′[A ∪ D] with no fat d-node in it,
4. a tree spanning a nontrivial component of G[D],
5. a basic tree in G′[A ∪ D] containing a fat d-node.

Proof. It is clear from Lemma 2.1 and the way FC and FH ’s are constructed in
G′ that F̃ consists of only trees of those types listed above. It remains to show
that F̃ is compact in G. Shrink every spanning tree of a nontrivial component
in G[D] to a fat d-node in F̃ . It follows from Lemma 2.2 and the fact that A∪C
is spanned by F̃ that it is compact in G′. But then, when every fat d-node is
replaced back to a spanning tree of the original component in G[D], the resulting
F̃ must be compact in G. 	


5 Analysis

To see that the tree T output by the algorithm C2EDS of Sect. 4.4 is indeed a
connected 2-eds, it suffices to verify that each vertex of G not belonging to T is
non-adjacent to a leaf of T . Observe that any vertex u of G not spanned by T
must occur in D as a singleton component of G[D]. Thus, u is adjacent only to
nodes in A, and none of them can be a leaf of T as every a-node is of degree at
least 2 in T . Therefore,

Lemma 4. The tree computed by the algorithm C2EDS is a 2-edge dominating
set for G.



On Approximating (Connected) 2-Edge Dominating Set by a Tree 173

The remainder of the paper is devoted to an analysis of the approximation
performance of the algorithm. For a matching M in a graph H, y ∈ R

E(H) is
called an M -dual if ye = 1/2 for each e ∈ M and ye = 0 for each e �∈ M .
Furthermore, it is called an M -dual respecting u for u ∈ V (H) if M leaves
u unmatched. Easily, an M -dual y is dual feasible for any matching M and
y(δ(u)) = 0 if it is an M -dual respecting u. For any attachment of a basic tree
T ′ to an existing tree T where a leaf u of T ′ is superimposed with a node of T ,
we use an M ′-dual yT ′ respecting u for the dual assignment on T ′, where M ′

is any maximum matching in T ′ respecting u. Then, because M ′ matches all
the nodes of T ′ but u, yT ′ by itself has the objective value of |E(T ′)|/2, enough
for accounting for the size of T ′, and such an attachment can be dropped from
further consideration as its dual would not interfere with the one on T when
assigned as described in the proof of the next lemma. It thus suffices to show
how to assign duals for those trees T listed in Lemma 3, ignoring the existence
of any attachment of basic trees.

Lemma 5. For each tree T listed below, there exists dual feasible y ∈ R
E[T ] with

y(E[T ]) ≥ (|E(T )| + 1)/4, where, in cases 1, 2 and 5, any fat d-node d in G′ is
replaced by a spanning tree of the original component shrunken into d:

1. a tree spanning a component of G[C],
2. a bridged tree in G′[A ∪ D],
3. an internally closed basic tree in G′[A ∪ D] with no fat d-node in it,
4. a tree spanning a nontrivial component of G[D],
5. a basic tree in G′[A ∪ D] containing a fat d-node.

Moreover, y(δ(u)) ≤ 3/4 if u is an a-node in an internally closed basic tree in
G′[A ∪ D] and y(δ(u)) ≤ 1/2 for all the other nodes u in G.

Proof. Shrunken into d is factor-critical (Theorem 1.1), and suppose d appears
as a node of some tree T computed by C2EDS. When duals are assigned by an
M -dual for a matching M on T , only one edge e of M is incident to d. Let u
denote the unique node of B into which e is incident when d is expanded back to
original B. It is assumed in what follows that dual values are assigned within B
by an MB-dual for a perfect matching MB in B − {u}, for any of such d-nodes
contained in the following trees of cases 1, 2 and 5, excluding the fat d-node d′

referred to in case 5.

1. A tree spanning a component B of G[C].
Let MB denote a perfect matching for B, and let y be an MB-dual. Then,
y(E[T ]) = |V (B)|/4 = (|E(T )| + 1)/4 for any spanning tree T for B.

2. A bridged tree in G′[A ∪ D]. Observe that there exists a matching in any
2-tree T of size |E(T )|/2, one edge per 2-edge, while any bridged tree T ′

has a perfect matching M in it; a matching consisting of two edges from the
bridge-path and a half of the edges from each of the 2-trees attached to the
bridge-path. It thus follows by considering an M -dual for T ′ that there exists
dual feasible y ∈ R

E(T ′) such that y(E(T ′)) ≥ (|E(T ′)| + 1)/4.
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3. An internally closed basic tree in G′[A ∪ D] with no fat d-node in it.
Omitted due to the space limitation.

4. A tree spanning a nontrivial component B of G[D].
Omitted due to the space limitation.

5. A basic tree containing a fat d-node.
Suppose T is a basic tree in G′[A ∪ D] containing a fat d-node d′. Let yT
denote the M -dual where M is the maximum matching for T respecting d′.
For the nontrivial component B′ of G[D] into which d′ is unshrunken, let T ′

be any spanning tree for B′ and let yB′ denote the dual assignment on E(B′)
specified in the previous item (of “A tree spanning a nontrivial component
B of G[D]”). For any fat d-node d′′ contained in T other than d′, consider
the corresponding component B′′ of G[D] and a spanning tree T ′′ for B′′. As
exactly one node u in B′′ is matched by M , there exists a matching M ′′ in
E(B′′) perfectly matching all the nodes in B′′ but u, and it can be seen that
yT +yB′ added with the M ′′-dual yB′′ can remain dual feasible. It then follows
that the total duals thus assigned within B = G[V (T ) ∪ V (B′) ∪ V (B′′)] is
|E(T )|/4 + |V (B′)|/4 added with (|V (B′′)| − 1)/4, that is

y(E(B))=
|E(T )| + (|E(T ′)| + 1) + |E(T ′′)|

4
=

|E(T ) ∪ E(T ′) ∪ E(T ′′)| + 1
4

.

This way, even if T contains more fat d-nodes in G′[A ∪ D], letting T̃ denote
T with all of them replaced by the corresponding spanning trees for the
components into which they become unshrunken, it can be seen there exists
dual feasible y defined on G[V (T̃ )] such that y(E(B)) = (|E(T̃ )| + 1)/4. 	

By Lemma 5 there is a way y ∈ R

E[T ] to assign dual values within E[T ] for
each tree T ∈ F̃ s.t. y(E[T ]) ≥ (|E(T )|+1)/4. Let y denote the combination of all
the dual assignments involved. It can be verified that y(δ(e)) ≤ 1 for each e ∈ E
as follows. Certainly, it is the case when e ∈ E[T ] for some T ∈ F̃ as y restricted
to E[T ] is dual feasible. For e �∈ E[T ] for any T ∈ F̃ , recall that y(δ(u)) ≤ 1/2
for all u ∈ V unless u is an a-node in an internally closed basic tree. Since e is
not incident to an a-node of any internally closed basic tree, y(δ(e)) ≤ 1 holds.
Therefore, y thus determined is dual feasible as a whole, and since the final tree
output by the algorithm is constructed by minimally connecting all the trees
in the compact forest F̃ , the number of additional edges used is one less than
the number of the trees in it. The size of the tree output is thus bounded by
4
∑

e∈E ye − 1 = 2 · zD(y) − 1 ≤ 2 · dual2(G) − 1.

Theorem 2. Given a connected graph G, the algorithm C2EDS outputs a tree,
dominating every edge at least twice, of size bounded by 2 · dual2(G) − 1.

Corollary 1. The algorithm C2EDS computes a tree approximating 2-EDS, C2-
EDS, and 2-TC each within a factor of 2.
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Abstract. We investigate the parameterized complexity of the graph
editing problem called Editing to a Graph with a Given Degree

Sequence where the aim is to obtain a graph with a given degree
sequence σ by at most k vertex or edge deletions and edge additions.
We show that the problem is W[1]-hard when parameterized by k for
any combination of the allowed editing operations. From the positive

side, we show that the problem can be solved in time 2O(k(Δ+k)2)n2 log n
for n-vertex graphs, where Δ = max σ, i.e., the problem is FPT when
parameterized by k+Δ. We also show that Editing to a Graph with a

Given Degree Sequence has a polynomial kernel when parameterized
by k + Δ if only edge additions are allowed, and there is no polynomial
kernel unless NP ⊆ coNP/poly for all other combinations of allowed
editing operations.

1 Introduction

The aim of graph editing (or graph modification) problems is to modify a given
graph by applying a bounded number of permitted operations in order to satisfy
a certain property. Typically, vertex deletions, edge deletions and edge additions
are the considered as the permitted editing operations, but in some cases other
operations like edge contractions and vertex additions are also permitted.

We are interested in graph editing problems where the aim is to obtain a
graph satisfying some given degree constraints. These problems usually turn out
to be NP-hard (with rare exceptions). Hence, we are interested in the parameter-
ized complexity of such problems. Before we state our results we briefly discuss
the known related (parameterized) complexity results.

Related Work. The investigation of the parameterized complexity of the edit-
ing problems with degree constraints was initiated by Moser and Thilikos in [21]
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and Mathieson and Szeider [20]. In particular, Mathieson and Szeider [20] con-
sidered the Degree Constraint Editing problem that asks for a given graph
G, nonnegative integers d and k, and a function δ : V (G) → 2{0,...,d}, whether
G can be modified into a graph G′ such that the degree dG′(v) ∈ δ(v) for each
v ∈ V (G′), by using at most k editing operations. They classified the (parame-
terized) complexity of the problem depending on the set of allowed editing oper-
ations. In particular, they proved that if only edge deletions and additions are
permitted, then the problem can be solved in polynomial time for the case where
the set of feasible degrees |δ(v)| = 1 for v ∈ V (G). Without this restriction on
the size of the sets of feasible degrees, the problem is NP-hard even on subcu-
bic planar graphs whenever only edge deletions are allowed [9] and whenever only
edge additions are allowed [15]. If vertex deletions can be used, then the problem
becomes NP-complete and W[1]-hard with parameter k, even if the sets of feasible
degrees have size one [20]. Mathieson and Szeider [20] showed that Degree Con-

straint Editing is FPT when parameterized by d+k. They also proved that the
problem has a polynomial kernel in the case where only vertex and edge deletions
are allowed and the sets of feasible degrees have size one. Further kernelization
results were obtained by Froese, Nichterlein and Niedermeier [15]. In particular,
they proved that the problem with the parameter d admits a polynomial kernel if
only edge additions are permitted. They also complemented these results by show-
ing that there is no polynomial kernel unless NP ⊆ coNP/poly if only vertex or
edge deletions are allowed. Golovach proved in [17] that, unless NP ⊆ coNP/poly,
the problem does not admit a polynomial kernel when parameterized by d + k if
vertex deletion and edge addition are in the list of operations, even if the sets of
feasible degrees have size one. The case where the input graph is planar was con-
sidered by Dabrowski et al. in [13]. Golovach [16] introduced a variant of Degree

Constraint Editing in which, besides the degree restrictions, it is required that
the graph obtained by editing should be connected. This variant for planar input
graphs was also considered in [13].

Froese, Nichterlein and Niedermeier [15] also considered the Π-Degree

Sequence Completion problem which, given a graph G, a nonnegative inte-
ger k, and a property Π of graph degree sequences, asks whether it is possible
to obtain a graph G′ from G by adding at most k edges such that the degree
sequence of G′ satisfies Π. They gave some conditions when the problem is
FPT/admits a polynomial kernel when parameterized by k and the maximum
degree of G. There are numerous results (see, e.g., [4,8,11,12]) about the graph
editing problem where the aim is to obtain a (connected) graph whose vertices
satisfy some parity restrictions on their degree. In particular, if the obtained
graph is required to be a connected graph with vertices of even degree, we obtain
the classical Editing to Eulerian Graph problem (see. [4,12]).

Another variant of graph editing with degree restrictions is the Degree

Anonymization problem, motivated by some privacy and social networks
applications. A graph G is h-anonymous for a positive integer h if for any
v ∈ V (G), there are at least h − 1 other vertices of the same degree. Degree

Anonymization asks, given a graph G, a nonnegative h, and a positive integer
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k, whether it is possible to obtain an h-anonymous graph by at most k edit-
ing operations. The investigation of the parameterized complexity of Degree

Anonymization was initiated by Hartung et al. [18] and Bredereck et al. [6]
(see also [5,19]). In particular, Hartung et al. [18] considered the case where
only edge additions are allowed. They proved that the problem is W[1]-hard
when parameterized by k, but it becomes FPT and has a polynomial kernel
when parameterized by the maximum degree Δ of the input graph. Bredereck et
al. [6] considered vertex deletions. They proved that the problem is W[1]-hard
when parameterized by h+k, but it is FPT when parameterized by Δ+h or by
Δ+k. Also the problem was investigated for the cases when vertex additions [5]
and edge contractions [19] are the editing operations.

Our Results. Recall that the degree sequence of a graph is the nonincreasing
sequence of its vertex degrees. We consider the graph editing problem where the
aim is to obtain a graph with a given degree sequence by using the operations
vertex deletion, edge deletion, and edge addition, denoted by vd , ed , and ea,
respectively. Formally, the problem is stated as follows. Let S ⊆ {vd , ed , ea}.

Editing to a Graph with a Given Degree Sequence

Instance: A graph G, a nonincreasing sequence of nonnegative integers
σ and a nonnegative integer k.

Question: Is it possible to obtain a graph G′ with the degree sequence σ
from G by at most k operations from S?

It is worth highlighting here the difference between this problem and the
Editing to a Graph of Given Degrees problem studied in [15,17,20]. In
Editing to a Graph of Given Degrees, a function δ : V (G) → {1, . . . , d}
is given along with the input and, in the target graph G′, every vertex v is
required to have the specific degree δ(v). In contrast, in the Editing to a

Graph with a Given Degree Sequence, only a degree sequence is given
with the input and the requirement is that the target graph G′ has this degree
sequence, without specifying which specific vertex has which specific degree.
To some extend, this problem can be seen as a generalization of the Degree

Anonymization problem [5,6,18,19], as one can specify (as a special case)
the target degree sequence in such a way that every degree appears at least h
times in it.

In practical applications with respect to privacy and social networks, we might
want to appropriately “smoothen” the degree sequence of a given graph in such a
way that it becomes difficult to distinguish between two vertices with (initially)
similar degrees. In such a setting, it does not seem very natural to specify in
advance a specific desired degree to every specific vertex of the target graph. Fur-
thermore, for anonymization purposes in the case of a social network, where the
degree distribution often follows a so-called power law distribution [2], it seems
more natural to identify a smaller number of vertices having all the same “high”
degree, and a greater number of vertices having all the same “small” degree, in
contrast to the more modest h-anonymization requirement where every different
degree must be shared among at least h identified vertices in the target graph.
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In Sect. 2, we observe that for any nonempty S ⊆ {vd , ed , ea}, Editing to a

Graph with a Given Degree Sequence is NP-complete and W[1]-hard when
parameterized by k. Therefore, we consider a stronger parameterization by k+Δ,
where Δ = max σ. In Sect. 3, we show that Editing to a Graph with a Given

Degree Sequence is FPT when parameterized by k+Δ. In fact, we obtain this
result for the more general variant of the problem, where we ask whether we can
obtain a graph G′ with the degree sequence σ from the input graph G by at most
kvd vertex deletions, ked edge deletions and kea edge additions. We show that the
problem can be solved in time 2O(k(Δ+k)2)n2 log n for n-vertex graphs, where k =
kvd +ked +kea. The algorithm uses the random separation techniques introduced
by Cai, Chan and Chan [7] (see also [1]). First, we construct a true biased
Monte Carlo algorithm, that is, a randomized algorithm whose running time is
deterministic and that always returns a correct answer when it returns a yes-
answer but can return a false negative answer with a certain (small) probability.
Then we explain how it can be derandomized. In Sect. 4, we show that Editing
to a Graph with a Given Degree Sequence has a polynomial kernel when
parameterized by k+Δ if S = {ea}, but for all other nonempty S ⊆ {vd , ed , ea},
there is no polynomial kernel unless NP ⊆ coNP/poly.

2 Basic Definitions and Preliminaries

Graphs. We consider only finite undirected graphs without loops or multiple
edges. The vertex set of a graph G is denoted by V (G) and the edge set is
denoted by E(G).

For a set of vertices U ⊆ V (G), G[U ] denotes the subgraph of G induced by
U , and by G−U we denote the graph obtained from G by the removal of all the
vertices of U , i.e., the subgraph of G induced by V (G) \ U . If U = {u}, we write
G − u instead of G − {u}. Respectively, for a set of edges L ⊆ E(G), G[L] is a
subgraph of G induced by L, i.e., the vertex set of G[L] is the set of vertices of
G incident to the edges of L, and L is the set of edges of G[L]. For a nonempty
set U ,

(
U
2

)
is the set of unordered pairs of elements of U . For a set of edges L,

by G − L we denote the graph obtained from G by the removal of all the edges
of L. Respectively, for L ⊆ (

V (G)
2

)
, G + L is the graph obtained from G by the

addition of the edges that are elements of L. If L = {a}, then for simplicity, we
write G − a or G + a.

For a vertex v, we denote by NG(v) its (open) neighborhood, that is, the
set of vertices which are adjacent to v, and for a set U ⊆ V (G), NG(U) =
(
⋃

v∈U NG(v)) \ U . The closed neighborhood NG[v] = NG(v) ∪ {v}, and for a
positive integer r, Nr

G[v] is the set of vertices at distance at most r from v. For
a set U ⊆ V (G) and a positive integer r, Nr

G[U ] =
⋃

v∈U Nr
G[v]. The degree

of a vertex v is denoted by dG(v) = |NG(v)|. The maximum degree Δ(G) =
max{dG(v) | v ∈ V (G)}.

For a graph G, we denote by σ(G) its degree sequence. Notice that σ(G)
can be represented by the vector δ(G) = (δ0, . . . , δΔ(G)), where δi = |{v ∈
V (G) | dG(v) = i}| for i ∈ {0, . . . , Δ(G)}. We call δ(G) the degree vector of G.
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For a sequence σ = (σ1, . . . , σn), we define δ(σ) = (δ0, . . . , δr), where r = max σ
and δi = |{σj | σj = i}| for i ∈ {0, . . . , r}. Clearly, δ(G) = δ(σ(G)), and the
degree vector can be easily constructed from the degree sequence and vice versa.
Slightly abusing notation, we write for two vectors of nonnegative integers, that
(δ0, . . . , δr) = (δ′

0, . . . , δ
′
r′) for r ≤ r′ if δi = δ′

i for i ∈ {0, . . . , r} and δ′
i = 0 for

i ∈ {r + 1, . . . , r′}.

Parameterized Complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimen-
sion is the input size n and another one is a parameter k. It is said that a problem
is fixed parameter tractable (or FPT), if it can be solved in time f(k) · nO(1) for
some function f . A kernelization for a parameterized problem is a polynomial
algorithm that maps each instance (x, k) with the input x and the parameter k
to an instance (x′, k′) such that (i) (x, k) is a YES-instance if and only if (x′, k′)
is a YES-instance of the problem, and (ii) |x′| + k′ is bounded by f(k) for a
computable function f . The output (x′, k′) is called a kernel. The function f is
said to be a size of a kernel. Respectively, a kernel is polynomial if f is polyno-
mial. A decidable parameterized problem is FPT if and only if it has a kernel,
but it is widely believed that not all FPT problems have polynomial kernels. In
particular, Bodlaender et al. [3] introduced techniques that allow to show that
a parameterized problem has no polynomial kernel unless NP ⊆ coNP/poly. We
refer to the recent books of Cygan et al. [10] and Downey and Fellows [14] for
detailed introductions to parameterized complexity.

Solutions of Editing to a Graph with a Given Degree Sequence.
Let (G, σ, k) be an instance of Editing to a Graph of Given Degree

Sequence. Let U ⊂ V (G), D ⊆ E(G − U) and A ⊆ (
V (G)\U

2

)
. We say that

(U,D,A) is a solution for (G, σ, k), if |U | + |D| + |A| ≤ k, and the graph
G′ = G − U − D + A has the degree sequence σ. We also say that G′ is obtained
by editing with respect to (U,D,A). If vd , ed or ea is not in S, then it is assumed
that U = ∅, D = ∅ or A = ∅ respectively. If S = {ea}, then instead of (∅, ∅, A)
we simply write A.

We conclude this section by observing that Editing to a Graph with a

Given Degree Sequence is hard when parameterized by k.

Theorem 1. For any nonempty S ⊆ {vd , ed , ea}, Editing to a Graph with

a Given Degree Sequence is NP-complete and W[1]-hard when parameter-
ized by k.

3 FPT-algorithm for Editing to a Graph with a Given
Degree Sequence

In this section we show that Editing to a Graph with a Given Degree

Sequence is FPT when parameterized by k + Δ, where Δ = max σ. In fact, we
obtain this result for the more general variant of the problem:
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Extended Editing to a Graph with a Given Degree Sequence

Instance: A graph G, a nonincreasing sequence of nonnegative integers
σ and a nonnegative integers kvd, ked, kea.

Question: Is it possible to obtain a graph G′ with σ(G′) = σ from G by
at most kvd vertex deletions, ked edge deletions and kea edge
additions?

Notice that we can solve Editing to a Graph with a Given Degree

Sequence using an algorithm for Extended Editing to a Graph with

a Given Degree Sequence by trying all possible values of kvd, ked and kea

with kvd + ked + kea = k.

Theorem 2. Extended Editing to a Graph with a Given Degree

Sequence can be solved in time 2O(k(Δ+k)2)n2 log n for n-vertex graphs, where
Δ = max σ and k = kvd + ked + kea.

Proof. First, we construct a randomized true biased Monte Carlo FPT-algorithm
for Extended Editing to a Graph with a Given Degree Sequence

parameterized by k + Δ based on the random separation techniques introduced
by Cai, Chan and Chan [7] (see also [1]). Then we explain how this algorithm
can be derandomized. 	


Let (G, σ, kvd, ked, kea) be an instance of Extended Editing to a Graph

with a Given Degree Sequence, n = |V (G)|.
On the first stage of the algorithm we preprocess the instance to get rid of

vertices of high degree or solve the problem if we have a trivial no-instance by
the following reduction rule.

Vertex Deletion Rule. If G has a vertex v with dG(v) > Δ + kvd + ked, then
delete v and set kvd = kvd − 1. If kvd < 0, then stop and return a NO-answer.

To show that the rule is safe, i.e., by the application of the rule we either
correctly solve the problem or obtain an equivalent instance, assume that
(G, σ, kvd, ked, kea) is a yes-instance of Extended Editing to a Graph with

a Given Degree Sequence. Let (U,D,A) be a solution. We show that if
dG(v) > δ + kvd + ked, then v ∈ U . To obtain a contradiction, assume that
dG(v) > δ + kvd + ked but v /∈ U . Then dG′(v) ≤ Δ, where G′ = G − U − D + A.
It remains to observe that to decrease the degree of v by at least kvd + ked + 1,
we need at least kvd + ked + 1 vertex or edge deletion operations; a contradic-
tion. We conclude that if (G, σ, kvd, ked, kea) is a yes-instance, then the instance
obtained by the application of the rule is also a yes-instance. It is straightfor-
ward to see that if (G′, σ, k′

vd, ked, kea) is a yes-instance of Extended Editing

to a Graph with a Given Degree Sequence obtained by the deletion of
a vertex v and (U,D,A) is a solution, then (U ∪ {v},D,A) is a solution for the
original instance. Hence, the rule is safe.

We exhaustively apply the rule until we either stop and return a NO-answer
or obtain an instance of the problem such that the degree of any vertex v is at
most Δ + k. To simplify notations, we assume that (G, σ, kvd, ked, kea) is such
an instance.
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On the next stage of the algorithm we apply the random separation technique.
We color the vertices of G independently and uniformly at random by three
colors. In other words, we partition V (G) into three sets Rv, Yv and Bv (some
sets could be empty), and say that the vertices of Rv are red, the vertices of
Yv are yellow and the vertices of Bv are blue. Then the edges of G are colored
independently and uniformly at random by either red or blue. We denote by Re

the set of red and by Be the set of blue edges respectively.
We are looking for a solution (U,D,A) of (G, σ, kvd, ked, kea) such that the

vertices of U are colored red, the vertices incident to the edges of A are yellow and
the edges of D are red. Moreover, if X and Y are the sets of vertices incident to
the edges of D and A respectively, then the vertices of (N2

G[U ]∪NG[X∪Y ])\(U ∪
Y ) and the edges of E(G)\D incident to the vertices of NG[U ]∪X ∪Y should be
blue. Informally speaking, the elements of a solution should be marked red in the
case of deleted vertices and edges, and the end-vertices of added edges should be
marked yellow. Then to separate the elements of a solution, we demand that the
vertices and edges that are sufficiently close to it but not included in a solution
should be blue. Formally, we say that a solution (U,D,A) of (G, σ, kvd, ked, kea)
is a colorful solution if there are R∗

v ⊆ Rv, Y ∗
v ⊆ Yv and R∗

e ⊆ Re such that the
following holds.

(i) |R∗
v| ≤ kvd, |R∗

e | ≤ ked and |Y ∗
v | ≤ 2kea.

(ii) U = R∗
v, D = R∗

e , and for any uv ∈ A, u, v ∈ Y ∗
v and |A| ≤ kea.

(iii) If u, v ∈ Rv∪Yv and uv ∈ E(G), then either u, v ∈ R∗
v∪Y ∗

v or u, v /∈ R∗
v∪Y ∗

v .
(iv) If u ∈ Rv ∪ Yv and uv ∈ Re, then either u ∈ R∗

v ∪ Y ∗
v , uv ∈ R∗

e or u /∈
R∗

v ∪ Y ∗
v , uv /∈ R∗

e .
(v) If uv, vw ∈ Re, then either uv, vw ∈ R∗

e or uv, vw /∈ R∗
e .

(vi) If distinct u, v ∈ Rv and NG(u) ∩ NG(v) �= ∅, then either u, v ∈ R∗
v or

u, v /∈ R∗
v.

(vii) If u ∈ Rv and vw ∈ Re for v ∈ NG(u), then either u ∈ R∗
v, vw ∈ R∗

e or
u /∈ R∗

v, vw /∈ R∗
e .

We also say that (R∗
v, Y ∗

v , R∗
e) is the base of (U,D,A).

Our aim is to find a colorful solution if it exists. We do is by a dynamic
programming algorithm based on the following properties of colorful solutions.

Let

L = Re ∪{e ∈ E(G) | e is incident to a vertex of Rv}∪{uv ∈ E(G) | u, v ∈ Yv},

and H = G[L]. Denote by H1, . . . , Hs the components of H. Let Ri
v = V (Hi) ∩

Re, Y i
v = V (Hi) ∩ Yv and Ri

e = E(Hi) ∩ Re for i ∈ {1, . . . , s}.

Claim A. If (U,D,A) is a colorful solution and (R∗
v, Y ∗

v , R∗
e) is its base, then

if Hi has a vertex of R∗
v ∪ Y ∗

v or an edge of R∗
e , then Ri

v ⊆ R∗
v, Y i

v ⊆ Y ∗
v and

Ri
e ⊆ R∗

r for i ∈ {1, . . . , s}.

Proof (of Claim A). Suppose that Hi has u ∈ R∗
v ∪ Y ∗

v or e ∈ R∗
e .

If v ∈ Ri
v∪Y i

v , then Hi has a path P = x0 . . . x� such that u = x0 or e = x0x1,
and x� = v. By induction on �, we show that v ∈ R∗

v or v ∈ Y ∗
v respectively. If
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� = 1, then the statement follows from (iii) and (iv) of the definition of a colorful
solution. Suppose that � > 1. We consider three cases.

Case 1. x1 ∈ Rv ∪Yv. By (iii) and (iv), x1 ∈ R∗
v ∪Y ∗

v and, because the (x1, x�)-
subpath of P has length � − 1, we conclude that v ∈ R∗

v or v ∈ Y ∗
v by induction.

Assume from now that x1 /∈ Rv ∪ Yv.

Case 2. x0x1 ∈ Re. Clearly, if for the first edge e of P , e ∈ R∗
e , then x0x1 =

e ∈ R∗
e . Suppose that for the first vertex u = x0 of P , u ∈ R∗

v ∪ Y ∗
v . Then by

(iv), x0x1 ∈ R∗
e . If x1x2 ∈ Re, then x1x2 ∈ R∗

e by (v). Since x1x2 ∈ R∗
e and

the (x1, x�)-subpath of P has length � − 1, we have that v ∈ R∗
v or v ∈ Y ∗

v by
induction. Suppose that x1x2 /∈ Re. Then because x1x2 ∈ L, x2 ∈ Rv and by
(vii), x2 ∈ R∗

v. If � = 2, then x� ∈ R∗
v. Otherwise, as the (x2, x�)-subpath of P

has length � − 2, we have that v ∈ R∗
v or v ∈ Y ∗

v by induction.

Case 3. x0x1 /∈ Re. Then u = x0 ∈ R∗
v ∪ Y ∗

v . Because x0x1 ∈ L, x0 ∈ R∗
v. If

x1x2 ∈ Re, then x1x2 ∈ R∗
e by (vii). Since x1x2 ∈ R∗

e and the (x1, x�)-subpath
of P has length � − 1, we have that v ∈ R∗

v or v ∈ Y ∗
v by induction. Suppose

that x1x2 /∈ Re. Then because x1x2 ∈ L, x2 ∈ Rv and by (vi), x2 ∈ R∗
v. If � = 2,

then x� ∈ R∗
v. Otherwise, as the (x2, x�)-subpath of P has length � − 2, we have

that v ∈ R∗
v or v ∈ Y ∗

v by induction.

Suppose that e′ ∈ Ri
e. Then Hi has a path P = x0 . . . x� such that u = x0 or

e = x0x1, and x�−1x� = e′. Using the same inductive arguments as before, we
obtain that e′ ∈ R∗

e . �

By Claim A, we have that if there is a colorful solution (U,D,A), then for
its base (R∗

v, Y ∗
v , R∗

e), R∗
v =

⋃
i∈I Ri

v, Y ∗
v =

⋃
i∈I Y i

v and R∗
e =

⋃
i∈I Ri

e for some
set of indices I ⊆ {1, . . . , s}.

The next property is a straightforward corollary of the definition of H.

Claim B. For distinct i, j ∈ {1, . . . , s}, if u ∈ V (Hi)and v ∈ V (Hj)are adjacent
in G,then either u, v ∈ Bv or (u ∈ Y i

v and v ∈ Bv) or (u ∈ Bv and v ∈ Y j
v ).

We construct a dynamic programming algorithm that consecutively for
i = 0, . . . , s, constructs the table Ti that contains the records of values of the
function γ:

γ(tvd, ted, tea,X, δ) = (U,D,A, I),

where

(i) tvd ≤ kvd, ted ≤ ked and tea ≤ kea,
(ii) X = {d1, . . . , dh} is a collection (multiset) of integers, where h ∈

{1, . . . , 2tea} and di ∈ {0, . . . , Δ} for i ∈ {1, . . . , h},
(iii) δ = (δ0, . . . , δr), where r = max{Δ,Δ(G)} and δi is a nonnegative integer

for i ∈ {0, . . . , r},

such that (U,D,A) is a partial solution with the base (R∗
v, Y ∗

v , R∗
e) defined by

I ⊆ {1, . . . , i} with the following properties.
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(iv) R∗
v =

⋃
i∈I Ri

v, Y ∗
v =

⋃
i∈I Y i

v and R∗
e =

⋃
i∈I Ri

e, and tvd = |R∗
v| and

ted = |R∗
e |.

(v) U = R∗
v, D = R∗

e , |A| = tea and for any uv ∈ A, u, v ∈ Y ∗
v .

(vi) The multiset {dG′(y) | y ∈ Y ∗
v } = X, where G′ = G − U − D + A.

(vii) δ(G′) = δ.

In other words, tvd ,ted and tea are the numbers of deleted vertices, deleted edges
and added edges respectively, X is the multiset of degrees of yellow vertices in
the base of a partial solution, and δ is the degree vector of the graph obtained
from G by the editing with respect to a partial solution. Notice that the values
of γ are defined only for some tvd, ted, tea,X, δ that satisfy (i)–(iii), as a partial
solution with the properties (iv)–(vii) not necessarily exists, and we only keep
records corresponding to the arguments tvd, ted, tea,X, δ for which γ is defined.

Now we explain how we construct the tables for i ∈ {0, . . . , s}.

Construction of T0. The table T0 contains the unique record (0, 0, 0, ∅, δ) =
(∅, ∅, ∅, ∅), where δ = δ(G) (notice that the length of δ can be bigger than the
length of δ(G)).

Construction of Ti for i ≥ 1. We assume that Ti−1 is already constructed.
Initially we set Ti = Ti−1. Then for each record γ(tvd, ted, tea,X, δ) = (U,D,A, I)
in Ti−1, we construct new records γ(t′vd, t

′
ed, t

′
ea,X ′, δ′) = (U ′,D′, A′) and put

them in Ti unless Ti already contains the value γ(t′vd, t
′
ed, t

′
ea,X ′, δ′). In the last

case we keep the old value.
Let (tvd, ted, tea,X, δ) = (U,D,A, I) in Ti−1.

– If tvd+|Ri
v| > kvd or ted+|Ri

e| > ked or tea+2|Y i
v | > kea, then stop considering

the record. Otherwise, let t′vd = tvd + |Ri
v| and t′ed = ted + |Ri

e|.
– Let F = G − U − D + A − Ri

v − Ri
e.

– Let
⋃

j∈I Y j
v = {x1, . . . , xh}, dF (xf ) = df for f ∈ {1, . . . , h}. Let Y i

v =

{y1, . . . , y�}. Consider every E1 ⊆ (
Y i
v
2

) \ E(F [Y i
v ]) and E2 ⊆ {xfyi |

1 ≤ f ≤ h, 1 ≤ j ≤ �} such that |E1| + |E2| ≤ kea − tea, and set
αf = |{xfyj | xfyj ∈ E2, 1 ≤ j ≤ �}| for f ∈ {1, . . . , h} and set
βj = |{e | e ∈ E1, e is incident to yj}| + |{xfyj | xfyj ∈ E2, 1 ≤ f ≤ h}|
for j ∈ {1, . . . , �}.
• If df + αf > Δ for some f ∈ {1, . . . , h} or dF (yj) + βj > Δ for some

j ∈ {1, . . . , �}, then stop considering the pair (E1, E2).
• Set t′ea = tea + |E1| + |E2|, X ′ = {d1 + α1, . . . , dh + αh, dF (y1) +

β1, . . . , dF (y�) + β�}.
• Let F ′ = F + E1 + E2. Construct δ′ = (δ′

0, . . . , δ
′
r) = δ(F ′).

• Set U ′ = U ∪ Ri
v, D′ = D ∪ Ri

e, A′ = A ∪ E1 ∪ E2, I ′ = I ∪ {i}, set
γ(t′vd, t

′
ed, t

′
ea,X ′, δ′) = (U ′,D′, A′, I ′) and put the record in Ti.

We consecutively construct T1, . . . , Ts. The algorithm returns a YES-answer
if Ts contains a record (tvd, ted, tea,X, δ) = (U,D,A, I) for δ = δ(σ) and (U,D,A)
is a colorful solution in this case. Otherwise, the algorithm returns a NO-answer.

The correctness of the algorithm follows from the next claim.
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Claim C. For each i ∈ {1, . . . , s}, the table Ti contains a record
γ(tvd, ted, tea,X, δ) = (U,D,A, I), if and only if there are tvd, ted, tea,X, δ satisfy-
ing (i)-(iii) such that there is a partial solution (U∗,D∗, A∗) and I∗ ⊆ {1, . . . , i}
that satisfy (iv)-(vii). In particular tvd, ted, tea,X, δ, (U,D,A) and I satisfy (i)–
(vii) if γ(tvd, ted, tea,X, δ) = (U,D,A, I) is in Ti.

Proof (of Claim C). We prove the claim by induction on i. It is straightforward
to see that it holds for i = 0. Assume that i > 0 and the claim is fulfilled for
Ti−1.

Suppose that a record γ(t′vd, t
′
ed, t

′
ea,X ′, δ′) = (U ′,D′, A′, I ′) was added in

Ti. Then ether γ(t′vd, t
′
ed, t

′
ea,X ′, δ′) = (U ′,D′, A′, I ′) was in Ti−1 or it was

constructed for some record (tvd, ted, tea,X, δ) = (U,D,A, I) from Ti−1. In
the first case, t′vd, t

′
ed, t

′
ea,X ′, Q′, (U ′,D′, A′) and I ′ ⊆ {1, . . . , i} satisfy (i)–

(vii) by induction. Assume that γ(t′vd, t
′
ed, t

′
ea,X ′, δ′) = (U ′,D′, A′, I ′) was con-

structed for some record (tvd, ted, tea,X,Q) = (U,D,A, I) from Ti−1. Notice
that i ∈ I ′ in this case. Let I = I ′ \ {i}. Consider

⋃
j∈I Y j

v = {x1, . . . , xh} and
Y i

v = {y1, . . . , y�}. By Claim B, xf and yj are not adjacent for f ∈ {1, . . . , h} and
j ∈ {1, . . . , �}. Then it immediately follows from the description of the algorithm
that t′vd, t

′
ed, t

′
ea,X ′, δ′, (U ′,D′, A′) and I ′ satisfy (i)–(vii).

Suppose that there are tvd, ted, tea,X, δ satisfying (i)-(iii) such that there is a
partial solution (U∗,D∗, A∗) and I∗ ⊆ {1, . . . , i} that satisfy (iv)-(vii). Suppose
that i /∈ I∗. Then Ti−1 contains a record γ(tvd, ted, tea,X, δ) = (U,D,A, I) by
induction and, therefore, this record is in Ti. Assume from now that i ∈ I∗. Let
I ′ = I∗ \ {i}. Consider R′

v =
⋃

j∈I′ Rj
v and Y ′

v =
⋃

j∈I′ Y j
v . Let E1 = {uv ∈ A |

u, v ∈ T i
v} and E2 = {uv ∈ A | u ∈ Y ′

v , v ∈ Y i
v }. Define U ′ = U \Ri

v, D′ = D\Ri
e

and A′ = A \ (E1 ∪ E2). Let t′vd = |U ′|, ted = |D′| and tea = |A′|. Consider the
multiset of integers X ′ = {dF (v) | v ∈ Y ′

v} and the sequence δ′ = (δ′
1, . . . , δ

′
r) =

δ(F ) for F = G − U ′ − D′ + A′. We obtain that t′vd, t
′
ed, t

′
ea,X ′, δ′, (U ′,D′, A′)

and I ′ ⊆ {1, . . . , i − 1} satisfy (i)-(vii). By induction, Ti−1 contains a record
γ(t′vd, t

′
ed, t

′
ea,X ′, δ′) = (U ′′,D′′, A′′, I ′′). Let Y ′

v = {x1, . . . , xh},
⋃

j∈I′′ Y j
v =

{x′
1, . . . , x

′
h} and assume that dF (xf ) = dF ′(x′

f ) for f ∈ {1, . . . , h}, where F ′ =
G − U ′′ − D′′ + A′′. Consider E′

2 obtained from E2 by the replacement of every
edge xfv by x′

fv for f ∈ {1, . . . , h} and v ∈ Y i
v . It remains to observe that

when we consider γ(t′vd, t
′
ed, t

′
ea,X ′, δ′) = (U ′′,D′′, A′′, I ′′) and the pair (E1, E

′
2),

we obtain γ(tvd, ted, tea,X, δ) = (U,D,A, I) for U = U ′′ ∪ Ri
v, D = D′′ ∪ Ri

e,
A = A′′ ∪ E1 ∪ E′

2 and I = I ′′ ∪ {i}. �

Now we evaluate the running time of the dynamic programming algorithm.
First, we upper bound the size of each table. Suppose that

γ(tvd, ted, tea,X, δ) = (U,D,A, I) is included in a table Ti. By the definition
and Claim C, δ = δ(G′) for G′ = G − U − D + A. Let δ = {δ0, . . . , δr} and
δ(G) = (δ′

0, . . . , δ
′
r). Let i ∈ {0, . . . , r}. Denote Wi = {v ∈ V (G) | dG(v) = i}.

Recall that δ(G) ≤ Δ+k. If δ′
i > δi, then at least δ′

i −δi vertices of Wi should be
either deleted or get modified degrees by the editing with respect to (U,D,A).
Since at most kvd vertices of Wi can be deleted and we can modify degrees of at
most (k + Δ)kvd + 2(ked + kea) vertices, δ′

i − δi ≤ (k + Δ + 1)kvd + 2(ked + kea).
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Similarly, if δi > δ′
i, then at least δi−δ′

i vertices of V (G)\Wi should get modified
degrees. Since we can modify degrees of at most (k+Δ)kvd+2(ked+kea) vertices,
δi − δ′

i ≤ (k + Δ)kvd + 2(ked + kea). We conclude that for each i ∈ {0, . . . , r},

δ′
i − (k + Δ + 1)kvd + 2(ked + kea) ≤ δi ≤ δ′

i + (k + Δ)kvd + 2(ked + kea)

and, therefore, there are at most (2(k + Δ)kvd + 4(ked + kea) + 1)r distinct
vectors δ. Since r = max{Δ,Δ(G)} ≤ Δ+ k, we have 2O((Δ+k) log(Δ+k)) distinct
vectors δ. The number of distinct multisets X is at most (Δ + 1)2k and there
are at most 3(k + 1) possibilities for tvd, ted, tea. We conclude that each Ti has
2O((Δ+k) log(Δ+k)) records.

To construct a new record γ(t′vd, t
′
ed, t

′
ea,X ′, δ′) = (U ′,D′, A′, I ′) from

γ(tvd, ted, tea,X, δ) = (U,D,A, I) we consider all possible choices of E1 and
E2. Since these edges have their end-vertices in a set of size at most 2kea and
|E1| + |E2| ≤ kea, there are 2O(k log k) possibilities to choose E1 and E2. The
other computations in the construction of γ(t′vd, t

′
ed, t

′
ea,X ′, δ′) = (U ′,D′, A′, I ′)

can be done in linear time. We have that Ti can be constructed from Ti−1 in
time 2O((Δ+k) log(Δ+k)) · n for i ∈ {1, . . . , s}. Since s ≤ n, the total time is
2O((Δ+k) log(Δ+k)) · n2.

We proved that a colorful solution can be found in time 2O((Δ+k) log(Δ+k)) ·n2

if it exists. Clearly, any colorful solution is a solution for (G, σ, kvd, ked, kea) and
we can return it, but nonexistence of a colorful solution does not imply that
there is no solution. Hence, to find a solution, we run the randomized algorithm
N times, i.e., we consider N random colorings and try to find a colorful solution
for them. If we find a solution after some run, we return it and stop. If we do not
obtain a solution after N runs, we return a NO-answer. The next claim shows
that it is sufficient to run the algorithm N = 62k(Δ+k)2 times.

Claim D. There is a positive p that does not depend on the instance such that if
the randomized algorithm has not found a solution for (G, σ, kvd, ked, kea) after
N = 62k(Δ+k)2 executions, then the probability that (G, σ, kvd, ked, kea) is a no-
instance is at least p.

Proof (of Claim D). Suppose that (G, σ, kvd, ked, kea) has a solution (U,D,A).
Let X be the set of end-vertices of the edges of D and Y is the set of end-
vertices of A. Let W = N2

G[U ] ∪ NG[X ∪ Y ] and denote by L the set of edges
incident to the vertices of NG[U ] ∪ X ∪ Y . The algorithm colors the vertices of
G independently and uniformly at random by three colors and the edges are
colored by two colors. Notice that if the vertices of W and the edges of L are
colored correctly with respect to the solution, i.e., the vertices of U are red, the
vertices of Y are yellow, all the other vertices are blue, the edges of D are red
and all the other edges are blue, then (U,D,A) is a colorful solution. Hence, the
algorithm can find a solution in this case.

We find a lower bound for the probability that the vertices of W and the edges
of L are colored correctly with respect to the solution. Recall that Δ(G) ≤ Δ + k.
Hence, |W | ≤ kvd(Δ + k)2 + 2(ked + kea)(Δ + k) ≤ 2k(Δ + k)2 and |L| ≤
kvd(Δ + k)2 + 2(ked + kea)(Δ + k) ≤ 2k(Δ + k)2. As the vertices are colored
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by three colors and the edges by two, we obtain that the probability that the
vertices of W and the edges of L are colored correctly with respect to the solution
is at least 3−2k(Δ+k)2 · 2−2k(Δ+k)2 = 6−2k(Δ+k)2 .

The probability that the vertices of W and the edges of L are not colored
correctly with respect to the solution is at most 1 − 6−2k(Δ+k)2 , and the prob-
ability that these vertices are not colored correctly with respect to the solution
for neither of N = 62k(Δ+k)2 random colorings is at most (1 − 1/N)N , and the
claim follows. �

Claim D implies that the running time of the randomized algorithm is
2O(k(Δ+k)2) · n2.

The algorithm can be derandomized by standard techniques (see [1,7])
because random colorings can be replaced by the colorings induced by universal
sets. Let m and r be positive integers, r ≤ m. An (m, r)-universal set is a collec-
tion of binary vectors of length m such that for each index subset of size r, each
of the 2r possible combinations of values appears in some vector of the set. It
is known that an (m, r)-universal set can be constructed in FPT-time with the
parameter r. The best construction is due to Naor, Schulman and Srinivasan [22].
They obtained an (m, r)-universal set of size 2r · rO(log r) log m, and proved that
the elements of the sets can be listed in time that is linear in the size of the set.

In our case we have m = |V (G)| + |E(G)| ≤ ((Δ + k)/2 + 1)n and r =
4k(Δ+k)2, as we have to obtain the correct coloring of W and L corresponding
to a solution (U,D,A). Observe that colorings induced by a universal set are
binary and we use three colors. To fix it, we assume that the coloring of the
vertices and edges is done in two stages. First, we color the elements of G by two
colors: red and green, and then recolor the green elements by yellow or blue. By
using an (m, r)-universal set of size 2r · rO(log r) log m, we get 4r · rO(log r) log m
colorings by three colors. We conclude that the running time of the derandomized
algorithm is 2O(k(Δ+k)2) · n2 log n. 	


4 Kernelization for Editing to a Graph with a Given
Degree Sequence

In this section we show that Editing to a Graph with a Given Degree

Sequence has a polynomial kernel when parameterized by k + Δ if S = {ea},
but for all other nonempty S ⊆ {vd , ed , ea}, there is no polynomial kernel unless
NP ⊆ coNP/poly.

Theorem 3. If S = {ea}, then Editing to a Graph with a Given Degree

Sequence parameterized by k + Δ has a kernel with O(kΔ2) vertices, where
Δ = max σ.

Proof. Let (G, σ, k) be an instance of Editing to a Graph with a Given

Degree Sequence and Δ = max σ. If Δ(G) > Δ, (G, σ, k) is a no-instance,
because by edge additions it is possible only to increase degrees. Hence, we
immediately stop and return a NO-answer in this case. Assume from now that
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Δ(G) ≤ Δ. For i ∈ {0, . . . , Δ}, denote Wi = {v ∈ V (G) | dG(v) = i} and
δi = |Wi|. Let si = min{δi, 2k(Δ + 1)} and let W ′

i ⊆ Wi be an arbitrary set of
size si for i ∈ {0, . . . , Δ}. We consider W =

⋃Δ
i=0 W ′

i and prove the following
claim.

Claim A. If (G, σ, k) is a yes-instance of Editing to a Graph with a Given

Degree Sequence, then there is A ⊆ (
V (G)

2

) \ E(G) such that σ(G + A) = σ,
|A| ≤ k and for any uv ∈ A, u, v ∈ W .

Proof (of Claim A). Suppose that A ⊆ (
V (G)

2

) \ E(G) is a solution for (G, σ, k),
i.e., σ(G + A) = σ and |A| ≤ k, such that the total number of end-vertices of
the edges of A in V (G) \ W is minimum. Suppose that there is i ∈ {0, . . . , Δ}
such that at least one edge of A has at least one end-vertex in Wi \ W ′

i . Clearly,
si = 2k(Δ + 1). Denote by {x1, . . . , xp} the set of end-vertices of the edges of
A in Wi and let {y1, . . . , yq} be the set of end-vertices of the edges of A in
V (G) \ Wi. Since p + q ≤ 2k, Δ(G) ≤ Δ and si = 2k(Δ + 1), there is a set
of vertices {x′

1, . . . , x
′
p} ⊆ W ′

i such that the vertices of this set are pairwise
nonadjacent and are not adjacent to the vertices of {y1, . . . , yq}. We construct
A′ ⊆ (

V (G)
2

) \ E(G) by replacing every edge xiyj by x′
iyj for i ∈ {1, . . . , p} and

j ∈ {1, . . . , q}, and every edge xixj is replaced by x′
ix

′
j for i, j ∈ {1, . . . , p}. It

is straightforward to verify that A′ is a solution for (G, σ, k), but A′ has less
end-vertices outside W contradicting the choice of A. Hence, no edge of A has
an end-vertex in V (G) \ W . �

If δi ≤ 2k(Δ + 1) for i ∈ {0, . . . , Δ}, then we return the original instance
(G, σ, k) and stop, as |V (G)| ≤ 2k(Δ + 1)2. From now we assume that there is
i ∈ {0, . . . , Δ} such that δi > 2k(Δ + 1). We construct the graph G′ as follows.

– Delete all the vertices of V (G) \ W .
– Construct h = Δ + 2 new vertices v1, . . . , vh and join them by edges pairwise

to obtain a clique.
– For any u ∈ W such that r = |NG(u) ∩ (V (G) \ W )| ≥ 1, construct edges

uv1, . . . , uvr.

Notice that dG′(v1) ≥ . . . ≥ dG′(vh) ≥ Δ + 1 and dG′(u) = dG(u) for u ∈ W .
Now we consider the sequence σ and construct the sequence σ′ as follows.

– The first h elements of σ′ are dG′(v1), . . . , dG′(vh).
– Consider the elements of σ in their order and for each integer i ∈ {0, . . . , Δ}

that occurs ji times in σ, add ji − (δi − si) copies of i in σ′.

We claim that (G, σ, k) is a yes-instance of Editing to a Graph with a Given

Degree Sequence if and only if (G′, σ′, k) is a yes-instance of the problem.
Suppose that (G, σ, k) is a yes-instance of Editing to a Graph with a

Given Degree Sequence. By Claim A, it has a solution A ⊆ (
V (G)

2

) \ E(G)
such that for any uv ∈ A, u, v ∈ W . It is straightforward to verify that σ(G′ +
A) = σ′, i.e., A is a solution for (G′, σ′, k). Assume that A ⊆ (

V (G′)
2

) \ E(G) is
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a solution for (G′, σ′, k). Because dG′(v1), . . . , dG′(vh) are the first h elements of
σ′ and dG′(u) = dG(u) ≤ Δ for u ∈ W , for any uv ∈ A, u, v ∈ W . Then it is
straightforward to check that σ(G + A) = σ, i.e., A is a solution for (G, σ, k). 	


We complement Theorem 3 by showing that it is unlikely that Editing to

a Graph with a Given Degree Sequence parameterized by k + Δ has a
polynomial kernel for S �= {ea}. The proof is based on the cross-composition
technique introduced by Bodlaender, Jansen and Kratsch [3].

Theorem 4. If nonempty S ⊆ {vd , ed , ea} but S �= {ea}, then Editing to a

Graph with a Given Degree Sequence has no polynomial kernel unless
NP ⊆ coNP/poly when the problem is parameterized by k + Δ for Δ = max σ.
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Abstract. Baxter permutations are a class of permutations which are
in bijection with a class of floorplans that arise in chip design called
mosaic floorplans. We study a subclass of mosaic floorplans called Hier-
archical Floorplans of Order k defined from mosaic floorplans by placing
certain geometric restrictions. This naturally leads to studying a subclass
of Baxter permutations. This subclass of Baxter permutations are char-
acterized by pattern avoidance. We establish a bijection, between the
subclass of floorplans we study and a subclass of Baxter permutations,
based on the analogy between decomposition of a floorplan into smaller
blocks and block decomposition of permutations. Apart from the charac-
terization, we also answer combinatorial questions on these classes. We
give an algebraic generating function (but without a closed form solu-
tion) for the number of permutations, an exponential lower bound on
growth rate, and a linear time algorithm for deciding membership in
each subclass. Based on the recurrence relation describing the class, we
also give a polynomial time algorithm for enumeration. We finally prove
that Baxter permutations are closed under inverse based on an argument
inspired from the geometry of the corresponding mosaic floorplans. This
proof also establishes that the subclass of Baxter permutations we study
are also closed under inverse. Characterizing permutations instead of the
corresponding floorplans can be helpful in reasoning about the solution
space and in designing efficient algorithms for floorplanning.

Keywords: Floorplanning · Pattern avoidance · Baxter permutation

1 Introduction

Baxter permutations are a well studied class of pattern avoiding permutations
having real world applications. One such application is to represent floorplans
in chip design. A floorplan is a rectangular dissection of a given rectangle into
a finite number of indivisible rectangles using axis parallel lines. These indivis-
ible rectangles are locations in which modules of a chip can be placed. In the
floorplanning phase of chip design, relative positions of modules are decided so
as to optimize cost functions like wire length, routing, area etc. Given a set of
modules and an associated cost function, the floorplanning problem is to find an
c© Springer International Publishing Switzerland 2016
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optimal floorplan. The floorplanning problem for typical objective functions is
NP-hard [8, p. 94]. Hence combinatorial search algorithms like simulated anneal-
ing [11] are used to find an optimal floorplan. The optimality of the solution and
performance of such algorithms depends on the class of floorplans comprising
the search space and their representation. Wong and Liu [11] were the first to
use combinatorial search for solving floorplanning problems. They worked with
a class of floorplans called slicing floorplans which are obtained by recursively
subdividing a given rectangle into two smaller rectangles either by a horizontal
or a vertical cut. The slicing floorplans correspond to a class of permutations
called separable permutations [1]. Later research in this direction focused on
characterizing and representing bigger classes of floorplans so that search algo-
rithms have bigger search spaces, potentially including the optimum. One such
category of floorplans is mosaic floorplans which are a generalization of slicing
floorplans. Ackerman et al. [1] proved a bijection between mosaic floorplans and
Baxter permutations. We study a subclass of mosaic floorplans obtained by some
natural restrictions on mosaic floorplans. We use the bijection of Ackerman et
al. [1] as a tool to characterize and answer important combinatorial problems
related to this class of floorplans. For the characterization of these classes we
also use characterization of a class of permutations called simple permutations
studied by Albert and Atkinson [2].

Given a floorplan and dimensions of its basic rectangles, the area minimiza-
tion problem is to decide orientation of each cell which goes into basic rectan-
gles so as to minimize the total area of the resulting placement. This problem
is NP-hard for mosaic floorplans [10], but is polynomial time for both slicing
floorplans [10] and Hierarchical Floorplans of Order 5 [4]. Hence Hierarchical
Floorplans of Order k is an interesting class of floorplans with provably better
performance in area minimization [4] than mosaic floorplans. But the only rep-
resentation of such floorplans is through a top-down representation known as
hierarchical tree [4] and is known only for Hierarchical Floorplans of Order 5.
Prior to this work it was not even known which floorplans with k rooms are
non-sliceable and is not constructible hierarchically from mosaic floorplans of
k − 1-rooms or less. Such a characterization is needed to extend the polynomial
time area minimization algorithm based on non-dominance given in [4]. We give
such a characterization and provide an efficient representation for such floorplans
by generalizing generating trees to Skewed Generating Trees of Order k. We also
give an exact characterization in terms of equivalent permutations.

Our main technical contributions are (i) We establish a subclass of floorplans
called Hierarchical Floorplans of Order k; (ii) We characterize this subclass of
floorplans using a subclass of Baxter permutations; (iii) We show that the sub-
class is exponential in size; (iv) We present an algorithm to check the membership
status of a permutation in the subclass of Hierarchical Floorplans of Order k and
(v) We present a simple proof of closure under inverse operation for Baxter per-
mutations using the mapping between the permutations and floorplans, and the
geometry of the rectangular dissection.
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The remainder of the paper is organized as follows: in Sect. 2, we introduce
the necessary background on floorplans and pattern avoiding permutations. In
Sect. 3, we motivate and characterize the subclasses of Baxter permutations
studied in this paper. Section 4 is devoted to answering interesting combina-
torial problems of growth, and giving generating function on these subclasses.
Section 5 gives an algorithm for membership in each class as well as for deciding
given a Baxter permutation the smallest k for which it is Hierarchical Floorplans
of Order k. Section 6 proves the closure of Baxter permutations under inverse.
Section 7 lists some open problems.

2 Preliminaries

A floorplan is a dissection of a given rectangle by line segments which are axis
parallel. The rectangles in a floorplan which do not have any other rectangle
inside are called basic rectangles or rooms. For the remainder of the paper we
will refer to them as rooms. A floorplan captures the relative position of the
rooms via four relations defined between rooms. Given a floorplan f , the “left-of”
relation denoted by Lf is defined as (a, b) ∈ Lf if there is a vertical line segment
of f going through the right edge of room a and left edge of room b or if there
is a room c such that (a, c) ∈ Lf and (c, b) ∈ Lf . When (a, b) ∈ Lf we say that
a is to the “left-of” b and is denoted by a <l b. For example in the floorplan
given in Fig. 1a the room labeled b is to the left of room labeled d because there
is vertical segment through the right boundary of room b and left boundary
of room d. Similarly for a floorplan f the “above” relation denoted by Af is
defined as (a, b) ∈ Af if there is a horizontal line segment of f going through the
bottom edge of room a and through the top edge of room b or if there is a room
c such that (a, c) ∈ Af and (c, b) ∈ Af . The other two relations are inverses of
these relations: “right-of” is defined as Rf = {(a, b) | (b, a) ∈ Lf} and “below”
is defined as Bf = {(a, b) | (b, a) ∈ Af}. A cross junction in a floorplan is an
intersection of two line segments such that the intersection point is not an end
point of either of the line segments. A mosaic floorplan is a floorplan where there
are no cross junctions. This restriction is to ensure that, in a mosaic floorplan
between any two rooms, exactly one of Lf , Rf , Bf , Af holds [1, Observation 3.3].
We denote the set of all mosaic floorplans with k rooms by Mk. The relations
X ∈ {Lf , Af , Rf , Bf} can be naturally extended to that between rooms and line
segments, by defining (a, l) ∈ X if room a is supported by line segment l from
the respective direction X in f . We call two mosaic floorplans f1, f2 equivalent
if there is a bijective mapping ψ : f1 → f2 such that (a, b) ∈ Xf1 if and only if
(ψ (a) , ψ (b)) ∈ Xf2 where X ∈ {L,R,A,B}, i.e. ψ preserves the relative position
of rooms and line segments. For example floorplans labeled a, b in Fig. 1b are
equivalent under this definition whereas a and c are not equivalent.

In this paper we study a subclass of mosaic floorplans called Hierarchical
Floorplans of Order k. The subclass Hierarchical Floorplans of Order k for
k ≥ 2, k ∈ N (abbreviated as HFOk in the remainder of the paper) is obtained
by placing the following restriction on mosaic floorplans: a mosaic floorplan is
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(a) ABLR relationships in a
floorplan

(b) Equivalence of Floor-
plans - a ≡ b, but a �≡ c

Fig. 1. ABLR and equivalence under ABLR

HFOk if it can be constructed using mosaic floorplans with at most k rooms by
repeated application of an operation which we call insertion.

Definition 1 (Insertion). Given a mosaic floorplan with k rooms f ∈ Mk

and some fixed labeling of its rooms, insertion of f by k mosaic floorplans
f1, f2, f3, . . . , fk denoted by f(f1, . . . , fk) is the mosaic floorplan obtained by
placing in fi in ith room of f .

Figure 2a illustrates insertion of a floorplan with two rooms by two other floor-
plans. In insertion, if two adjacent rooms in f (say a and b) have two segments
coming from inserted floorplans fa, fb of same alignment (i.e., either both hor-
izontal or both vertical) touching each other making a cross junction, then to
make the resulting floorplan mosaic, one of the line segments is moved by a small
δ > 0 as shown in Fig. 2b. Moving a line segment by a small δ does not change
the relative position of rooms. This ensures that insertion produces floorplans
which are mosaic.

We define a mosaic floorplan f to be decomposable if there exists k > 1 for
which there is a g ∈ Mk and k mosaic floorplans g1, . . . , gk at least one of which
is non trivial (i.e., has more than one room) and f = g(g1, . . . , gk). A mosaic
floorplan is called in-decomposable if it is not decomposable.

(a) Insertion
operation on
floorplan

(b) Avoiding
cross junction

Fig. 2. Insertion operation for mosaic floorplans

Ackerman et al. [1] established a representation for mosaic floorplans in
terms of a class of pattern avoiding permutations called Baxter permutations.
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Fig. 3. HFO2 building blocks

The bijection is established via two algorithms, one which produces a Baxter
permutation given a mosaic floorplan and another which produces a mosaic
floorplan given a Baxter permutation. For explaining the results in this paper
we only need the algorithm which produces a Baxter permutation πf given a
mosaic floorplan f . This algorithm has two phases, a labeling phase where every
room in the mosaic floorplan f is given a unique number in [n] and an extraction
phase where the labels of the rooms are read off in a specific order to form a
permutation πf ∈ Sn. The labeling is done by successively removing the top-left
room of current floorplan by sliding it out of the boundary by pulling the edge
which ends at a T junction (since no cross junctions are allowed in a mosaic
floorplan, for any room every edge which is within the dissected rectangle is
either a horizontal segment ending in a vertical segment forming a � or is a hori-
zontal segment on which a vertical segment ends forming a ⊥). The ith floorplan
to be removed in the above process is labeled room i in the original floorplan.
After the labeling phase we obtain a mosaic floorplan whose rooms are num-
bered from [n]. The permutation corresponding to the floorplan is obtained in
the second phase called extraction where rooms from the bottom-left corner are
successively removed by pulling the edge ending at a T junction. The ith entry
of the permutation πf is the label of the ith room removed in the extraction
phase.

Figure 5a demonstrates the labeling phase and Fig. 5b demonstrates the
extraction phase. If room i is labeled before room j then room i is to the left or
above of room j, whereas if the room i is removed before room j, i.e., π−1 [i] <
π−1 [j] then room i is to the left of or below room j (see [1, Observation 3.4]).
Since the permutation captures both the label and position of a room, it cap-
tures the above, below, left or right relations between rooms. Ackerman et al.
(see [1, Observation 3.5]) also proved that two rooms share an edge in a mosaic
floorplan f if and only if either their labels are consecutive or their positions
in πf are consecutive. For the rest of the paper we refer to this Algorithm of
Ackerman et al. as FP2BP.

We now describe permutation classes which are used in this paper, including
Baxter permutations mentioned earlier. For the convenience of defining pattern
avoidance in permutations, we will assume that permutations are given in the
one-line notation (for ex., π = 3142). A permutation π ∈ Sn is said to contain a
pattern σ ∈ Sk if there are k indices i1, . . . , ik with 1 � i1 < · · · < ik � n such
that π [ii] , π [i2] , π [i3] , . . . , π [ik] called text has the same relative ordering as σ,
i.e., π [ij ] < π [il] if and only if σj < σl. Note that the sub-sequence need not
be formed by consecutive entries in π. If π contains σ it is denoted by σ ≤ π.
A permutation π avoids σ if it does not contain σ. For example π = 4321 avoids
σ = 12 because in 4321 every number to the right of a number is smaller than
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itself, but π contains the pattern ρ = 21 because numbers at any two indices
of π are in decreasing order. A permutation π is called separable if it avoids
the pattern σ1 = 3142 and its reverse σ2 = 2413. Baxter permutations are a
generalization of separable permutations in the following sense: they are allowed
to contain 3142/2413 as long as any π [i1] , π [i2] , π [i3] , π [i4] which has the same
relative ordering as 3142/2413 has |π [i1] − π [i4]| > 1. For example π = 41532 is
not Baxter as text 4153 in π matches pattern 3142 and the absolute difference
of entry matching 3 and entry matching 2 is 4 − 3 = 1. However π = 41352
is a Baxter permutation as the only text which matches 3142 is 4152 and the
absolute difference of entries matching 3, 2 is 4 − 2 = 2 which is greater than 1.

Another class of permutations important to this study is the class of simple
permutations. They are a class of block in-decomposable permutations. To define
this in-decomposability we need the following definition : a block of a permutation
is a set of consecutive positions such that the values from these positions form
an interval [i, j] of N. Note that the values in the block need not be in ascending
order as it is in the interval corresponding to the block [i, j]. The notion of block
in-decomposability is defined by a decomposition operation called inflation. We
recall the definition from Sect. 2 of [2].

Definition 2 (Inflation). Given a permutation σ ∈ Sk, inflation of σ by k
permutations ρ1, ρ2, ρ3, . . . , ρk, denoted by σ (ρ1, . . . , ρk) is the permutation π
where each element σi of σ is replaced with a block of length |ρi| whose elements
have the same relative ordering as ρi, and the blocks among themselves have the
same relative ordering as σ.

For example inflation of 3124 by 21, 123, 1 and 12 results in π = 65 123 4 78
where 65 is the block corresponding to 21, 123 corresponds to 123, 4 corresponds
to 1 and 78 corresponds to 12. If π = σ (ρ1, . . . , ρk) then σ (ρ1, . . . , ρk) is called a
block-decomposition of π. A block-decomposition σ (ρ1, ρ2, . . . , ρk) is non-trivial
if σ ∈ Sk for k > 1 and at least one ρi is a non-singleton permutation (i.e.
of more than one element). A permutation is block-in-decomposable if it has no
non-trivial block-decomposition. Note that inflation on permutations as defined
above is analogous to insertion on mosaic floorplans defined earlier.

Block in-decomposable permutations can be thought of as building blocks
of all other permutations by inflations. Albert and Atkinson [2] studied simple
permutations which are permutations whose only blocks are the trivial blocks
(which is either a single point π [i] or the whole permutation π [1 . . . n]). They
also defined a sub class of simple permutations called exceptionally simple per-
mutations which are defined based on an operation called one-point deletion.
A one-point deletion on a permutation π ∈ Sn is deletion of a single element at
some index i and getting a new permutation π′ ∈ Sn−1 by rank ordering the
remaining elements. For example one-point deletion at index 5 of 41352 gives
4135 which when rank ordered gives the permutation 3124. A permutation π
is exceptionally simple if it is simple and no one-point deletion of π yields a
simple permutation. Albert and Atkinson [2] characterized exceptionally simple
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permutations and proved that for any permutation π ∈ Sn which is exceptionally
simple there exists two successive one-point deletions which yields a simple per-
mutation π′ ∈ Sn−2.

3 Characterizing Hierarchical Floorplans of Order k

In this section we characterize Hierarchical Floorplans of Order k in terms of
corresponding permutations using the notion of block decomposition defined
earlier.

We note that this connection can be seen for a level of the hierarchy well stud-
ied in literature, namely HFO2. HFO2, the class of floorplans which can be built
by repeated application of insertion of the two basic floorplans shown in Fig. 3
are also called slicing floorplans. Slicing floorplans are known [1] to be in bijec-
tive correspondence with separable permutations. Separable permutations are
also the class of permutations π such that it can be obtained repeated inflation
of 1 (the singleton permutation) by, 12 or 21. Note that both 12, 21 are simple
permutations. Even though HFO2 is well studied in literature and is known to
be in bijective correspondence with separable permutations, the connection to
block decomposition of permutations was not explicitly observed.

HFO5 floorplans are also studied in the literature, but the only characteriza-
tion till date for these floorplans is based on a discrete structure called generating
trees. We generalize this structure for an arbitrary k in the following sense : a
generating tree of order k is a rooted tree, where each node is labeled by an
in-decomposable mosaic floorplan, say g of at most k rooms, and the number
of children of a node is equal to the number of rooms in the floorplan labeling
the node. The children are arranged in the order π−1

g from left to right. That is
the left most child corresponds to the first room to be removed in the extraction
phase of FP2BP and second from left corresponds to second room to be removed
and so on and so forth. The generating tree captures the top down application
of insertion’s to yielding the given floorplan in the following sense : an inter-
nal node of a generating tree represents insertion of f - the floorplan labeling
the node - by the floorplans labeling its children, f1, . . . , fk (ordered from left
to right). There could be more than one generating tree for a floorplan owing
to the fact there is ambiguity in consecutive vertical slices and in consecutive
horizontal slices, as illustrated in Fig. 4. But this can be removed (proved later)
by introducing two disambiguation rules called “skew”. Skew rule insists that
when there are multiple parallel vertical (respectively, horizontal) line segments
touching the bounding box of the floorplan f , we consider only the insertion
operation f1, f2 where f2 is the floorplan contained to the right of (respectively,
above) the first parallel line segment from left (respectively, bottom) and f1 is
the floorplan contained to the left of (respectively below) the first parallel line
segment from left (respectively, bottom). Hence only the tree labeled a satisfies
“skew” rule among the generating trees in Fig. 4. A generating tree satisfying
“skew” rule is called Skewed Generating Tree.

The connection between insertion and block decomposition and the fact the
bijection of Ackerman et al. [1] preserves this connection is the central idea
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Fig. 4. Ambiguity in vertical cuts

(a) FP2BP labeling phase (b) FP2BP extraction phase

Fig. 5. FP2BP algorithm

of our paper. The following observation about the algorithm FP2BP, though
not mentioned in the original paper, is not hard to see, but is useful for the
characterization of HFOk.

Lemma 1. For a mosaic floorplan f let πf denote the unique Baxter permu-
tation obtained by algorithm FP2BP. If f = g(g1, . . . , gk) i.e., it is obtained by
insertion of g ∈ Mk by g1, . . . , gk, then

πf = πg (πg1 , . . . , πgk
)

where πg (πg1 , . . . , πgk
) denotes the permutation obtained by inflating πg with

πg1 , . . . , πgk
.

See full version of the paper [3] for a proof. We obtain the following useful
corollary from Lemma 1

Corollary 1. A mosaic floorplan f is in-decomposable if and only if the Baxter
permutation πf corresponding to it is block in-decomposable.

For the characterization we will also need the following connection between
generating trees and block decomposition of permutations. Let Tf be a gener-
ating tree corresponding to f , satisfying the “skew” rule, then Tf captures the
unique block decomposition of a permutation as defined in [2, Proposition 2].
Label every node of Tf by Baxter permutation πfi

corresponding to the mosaic
floorplan fi labeling it. Mosaic floorplan g corresponding to the sub-tree rooted
at fi is obtained by the insertion of fi by the floorplans labeling its children
fi1 , . . . , fik . Hence by applying Lemma1 we get that πg = πfi

(
πfi1

, . . . , πfik

)
.

So generating trees labeled by Baxter permutations πfi
captures the block

decomposition of Baxter permutation πf corresponding to the floorplan f .
Figure 6 illustrates the correspondence between inflation and insertion by show-
ing the equivalence between inflating 3124 with 123, 21, 1 and 24, and inserting



200 S. Balachandran and S. Koroth

Fig. 6. Correspondence between inflation and insertion

the floorplan corresponding to 3124 with floorplans corresponding to 123, 21, 1
and 24.

Theorem 1. Skewed Generating Trees of Order k are in bijective correspon-
dence with HFOk floorplans. Moreover they capture the block decomposition of
the Baxter permutation corresponding to the floorplan.

Proof. It follows from definition of HFOk that there is a generating tree of order
k capturing the successive applications of insertions resulting in the final floor-
plan. Since HFOk are a subclass of mosaic floorplans which are in bijective
correspondence with Baxter permutations, there is unique Baxter permutation
πf corresponding to the floorplan f . Lemma 1 can now be used to prove that a
generating tree of order k captures the block decomposition of πf , by induction
on the height of the tree. Consider the base case to be h = 1, i.e., the whole
tree is one node labeled by an in-decomposable mosaic floorplan f and by Corol-
lary 1, πf is block in-decomposable. Assume that for any h < l, generating trees
of order k captures the block decomposition of πf . Take a tree of height h = l
corresponding to a floorplan f , and let the root node be labeled by g and chil-
dren be labeled g1, . . . , gk. By Lemma 1, πf = πg (πg1 , . . . , πgk

). We can apply
induction hypothesis on the children to get the decomposition of πg1 , . . . , πgk

.
To prove the uniqueness of skewed generating trees we use the following

theorem by Albert and Atkinson [2, Proposition 2] proving the uniqueness of
the block-decomposition represented by skewed generating trees.

Theorem 2 [2, Proposition 2]. For every non singleton permutation π there
exists a unique simple non singleton permutation σ and permutations α1, . . . , αn

such that π = σ (α1, . . . , αn). Moreover if σ �= 12, 21 then α1, . . . , αn are also
uniquely determined. If σ = 12 (respectively, 21) then α1 and α2 are also
uniquely determined subject to the additional condition that α1 cannot be written
as (12) [β, γ] (respectively as (21) [β, γ])

The proof is completed by noting that the decomposition obtained by
Skewed Generating Trees of Order k satisfies the properties of the decompo-
sition described in the above theorem. In a skewed generating tree if parent is
σ = 12 (respectively, 21), then its left child cannot be 12 (respectively, 21).
Hence the block-decomposition corresponding to the left child, α1, cannot be
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(12) [β, γ] (respectively, (21) [β, γ]). Since such a decomposition is unique, the
skewed generating tree also must be unique. Hence the theorem.

To characterize HFOk in terms of pattern avoiding permutations the follow-
ing insight is used: if a permutation π is Baxter then it corresponds to a mosaic
floorplan. Every mosaic floorplan is HFOk for some k. Hence for a Baxter permu-
tation π the corresponding floorplan fπ is not HFOk for some specific k, it will be
because of existence of a node in the unique skewed generating tree correspond-
ing to fπ, which is labeled by an in-decomposable mosaic floorplan g ∈ HFOl

for some l > k. Since π is obtained by inflation of permutations including πg

corresponding to g, π will have some text which matches the pattern πg because
of the Lemma 2. Thus if we can figure out all the patterns which correspond to
in-decomposable mosaic floorplans which are HFOl for some l > k then HFOk

would be all Baxter permutations which avoid those patterns. These insights are
formalized by the following lemmas.

Lemma 2. If π = σ (ρ1, . . . , ρk), then π contains all patterns which any of
σ, ρ1, ρ2, . . . , ρk contains.

Lemma 3. If π = σ (ρ1, . . . , ρk), then any block in-decomposable pattern in π
has a matching text which is completely contained in one of σ, ρ1, ρ2, . . . , ρk.

Refer the full version of the paper [3] for proof of the above lemma. Let f be an
in-decomposable mosaic floorplan which is HFOl for some fixed l ∈ N. By Corol-
lary 1, the permutation corresponding to f , πf would be block in-decomposable
and hence it will be a simple permutation of length l. It is known (see [2, The-
orem 5]) that a simple permutation of length l has either a one-point deletion
which yields another simple permutation or two one-point deletions giving a
simple permutation. Hence by successive applications of one-point deletions we
can reduce πf to a simple permutation of length k, or an exceptionally simple
permutation of length k + 1 (at which point there is no further one one-point
deletion giving a simple permutation) for any k < l. Also if π′ is obtained from π
by a one-point deletion at index i, then π [1, . . . , i − 1, i + 1, . . . , n] matches the
pattern π′. That is π contains all patterns π′ which are permutations obtained
by one point deletion of π at some index. Also since pattern containment is tran-
sitive by definition, if π′′ is obtained by one-point deletion of π′ which in turn
obtained from π by a one-point deletion, then π′′ ≤ π′ and π′ ≤ π implies that
π′′ ≤ π. From these observations we get the following characterization of HFOk.

Theorem 3. A mosaic floorplan f is HFOk if and only if the permutation πf

corresponding to f (obtained by algorithm FP2BP) does not contain patterns
from simple permutations of length k + 1 or exceptionally simple permutations
of length k + 2.

Proof. By Theorem 1, for any HFOk floorplan f there is a unique Skewed Gen-
erating Trees of Order k, Tf such that it captures the block-decomposition of πf .
And in the block-decomposition of a generating tree of order k, permutations
corresponding to the nodes are labeled by HFOk permutations of length at most
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k. Hence the block-decomposition of πf contains only block in-decomposable per-
mutations of length at most k. By Lemma 3 πf cannot contain patterns which
are block in-decomposable permutations of length strictly more than k. Thus
πf cannot contain patterns from simple permutations of length k + 1 or from
exceptionally simple permutations of length k + 2 as they are both classes of
block in-decomposable permutations of length strictly greater than k.

For the reverse direction, we prove that any mosaic floorplan which is
HFOl, l > k contains either a simple permutation of length k + 1 or an excep-
tionally simple permutation of length k+2. From the fact that by definition any
mosaic floorplan is HFOj for some j and the forward direction that no HFOk

floorplan contains either a simple permutation of length k+1 or an exceptionally
simple permutation of length k + 2 proof is completed. Suppose if it is HFOl

for l > 0 then πf would have a text matching a pattern σ ∈ Sl which is a
simple permutation. Because the generating tree Tf will have σ and so would
the block decomposition of the sub-tree rooted at node σ. And by Lemma 2,
πf would also contain σ. From σ we can obtain by successive one-point dele-
tions a permutation σ′ which is either a simple permutation of length k or is
an exceptionally simple permutation of length k + 1. And σ′ would match a
text in πf because πf had a text matching σ and σ contains this permutation,
i.e., σ′′ ≤ σ ≤ πf =⇒ σ′′ ≤ πf .

From the above characterization it can be proved that the hierarchy HFOk

(it is a hierarchy because by definition HFOi ⊆ HFOi+1) is strict for k � 7, i.e.
there is at least one floorplan which is HFOk but is not HFOi for any i < k. The
natural candidates for such separation are in-decomposable mosaic floorplans on
k rooms which corresponds to simple permutations of length k which are Baxter.
It is easy to verify that for k = 5, π5 = 41352 is such a permutation. Note that π5

is of the form π [n − 1] = n and π [n] = 2. From π5 we can obtain π7 = 6413572
by inserting 7 between 5 and 2 and appending 6 at the beginning. It can be
verified that π7 is not HFO5. It turns out that all permutations of length at
most 4 which are Baxter are also HFO2, making HFO5 the first odd number
from where one can prove the strictness of the hierarchy. Also every HFO6 is
HFO5, hence for even numbers separation theorem can only start from 8. Hence
we prove the separation theorem for k ≥ 7 generalizing the earlier stated idea.
The generalization builds a πk+2 from a πk which is an in-decomposable HFOk

having π [n − 1] = n and π [n] = 2, by setting πk+2 [1] = n + 1, πk+2 [i] =
πk [i − 1] , 2 � i � n, πk+2 [n + 1] = n + 2 and πk+2 [n + 2] = 2.

Theorem 4. For any k ≥ 7, there exists a floorplan f which is in HFOk+2 but
is not in HFOl for any l ≤ k + 1 See the full version of the paper [3] for a
complete proof of the above theorem.

4 Combinatorial Study of HFOk

We first prove for any fixed k the existence of a rational generating function
for HFOk, which leads to a dynamic programming based algorithm for counting
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the number of HFOk with n rooms. Since we have proved that the number of
distinct HFOk floorplans with n rooms is equal to the number of distinct Skewed
Generating Trees of Order k with n leaves, it suffices to count such trees. Let tkn
denote the number of distinct Skewed Generating Trees of Order k with n leaves
and tk1 represent a rectangle for any k. To provide a rational generating function
for number of distinct HFOk floorplans with n rooms, it suffices to provide one
for the count tkn.

We describe the method for HFO5, which can be generalized for an arbi-
trary k. For simplicity of notation let ti = t5i . Skewed Generating Trees of Order
5 are labeled by simple permutation of length at most 5 which are Baxter. There
are only four of them - 12, 21, 25314 and 41352. Thus the root node of such a tree
also must be labeled from one these four permutations. We obtain a recurrence
by partitioning the set of Skewed Generating Trees of Order 5 into four classes
decided by the label of the root. Let an denote the number of Skewed Generating
Trees of Order 5 with n leaves whose root is labeled 12, bn denote the number of
Skewed Generating Trees of Order 5 with n leaves whose root is labeled 21, cn

denote the number of Skewed Generating Trees of Order 5 with n leaves whose
root is labeled 41352 and dn the number denote the Skewed Generating Trees
of Order 5 with n leaves whose root is labeled 25314. Since these are the only
in-decomposable HFOk permutations for k � 5, the root (and also any internal
node) has to labeled by one of these permutations. Hence we get the following
recurrence for t5n, t5n = an + bn + cn + dn.

In a skewed tree if the root is labeled 12, its left child cannot be 12 but
it can be 21, 41352, 25314 or a leaf node. Hence the left child of the root of
a tree in an has to be labeled from b, c or d, but the right child has no such
restriction. By definition of skewed generating trees if the root is labeled by a
permutation of length l, it will have l children, such that the number of leaves
of the children sum to n. Hence if root is labeled by 12, the two children will
have leaves n − i and i for some i, 1 ≤ i ≤ n − 1. This along with the skew rule
dictates that an =

∑n−1
i=1 bn−iti + cn−iti +dn−iti. Similarly if the root is 21 then

its left child cannot be 21 but it can be 12, 41352, 25314 or a leaf node. But
for trees whose roots are labeled 41352/25314, they can have any label for any
of the five children. Hence we get, an = t5n−1.1 + Σn−1

i=2 (bi + ci + di)t5n−i, bn =
t5n−1.1 + Σn−1

i=2 (ai + ci + di)t5n−i, cn = Σ{i,j,k,l,m≥1|i+j+k+l+m=n}t5i t
5
j t

5
kt5l t

5
m and

dn = Σ{i,j,k,l,m≥1|i+j+k+l+m=n}t5i t
5
j t

5
kt5l t

5
m note that cn = dn. Since a node

labeled 41352/25314 ought to have five children, cn,dn = 0 for n < 5. Summing
up an and bn and using the identity t5i = ai + bi + ci + di we get a recurrence
for t5n.

Note that in a similar way recurrence relation for any HFOk can be con-
structed. Even though the above recurrence failed to give us a closed form solu-
tion, it lead to a natural dynamic programming based algorithm for counting
the number of HFOk floorplans with n rooms for any fixed k. For example the
recurrence for HFO5 is given by a sixth order recurrence relation. Hence there is
an O

(
n6

)
tabular algorithm computing the value of tn using dynamic program-

ming which recursively computes all t5i for all i < n and then computes t5n from
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the recurrence relation we obtained. In general HFOk has a recurrence relation
of order k, and hence the algorithm for tkn would run in time O

(
nk+1

)
using a

similar strategy.
Using the argument which proved existence of an in-decomposable HFOk

floorplan for any k, we can get a simple lower bound on the number of HFOk

floorplans with n rooms which are not HFOj for any j < k. It is known [9]

that the number of HFO2 floorplans with n rooms is θ

(
n! (

3+
√
8)n

n1.5

)
. If in the

generating tree corresponding to an HFO2 floorplan an in-decomposable HFOk

floorplan is inserted replacing one of the leaves (to be uniform, say the right most
leaf), the resulting generating tree would be of order k and hence by Theorem 1,
would correspond to an HFOk floorplan. Hence the number of HFOk floorplans
with n rooms which are not HFOl is at least the number of generating trees of
order 2 with n−k+1 leaves. And the number of generating trees of order 2 with
n leaves equals the number of HFO2 floorplans with n rooms thus giving the fol-
lowing exponential lower bound. For any k ≥ 7, the number of HFOk floorplans

with n rooms which are not HFOj for any j < k is at least
(n−k)!(3+

√
8)n−k

(n−k)1.5

5 Algorithm for Membership

For arriving at an algorithm for membership in HFOk we note that if a given
permutation is Baxter then it is HFOk for some k. And if it is HFOk by Theo-
rem 1 there exits an order k generating tree corresponding to the permutation.
By Theorem 1 the generating tree also captures the block decomposition of the
permutation. Our algorithm identifies the block-decomposition corresponding to
the generating tree of order k, level by level. And it rejects a permutation if such
a reduction is not possible. The algorithm runs in time O(n2) for a fixed k. See
the full version of the paper [3] for a formal description and proof of correctness.

For a fixed k one can also achieve linear time for membership owing to a new
fixed parameter algorithm of Marx and Guillemot [5] which given two permuta-
tions σ ∈ Sk and π ∈ Sn checks if σ avoids π in time 2O(k2 log k)n and a linear
time algorithm for recognizing Baxter permutations by Hart and Johnson [6].
Both results [5,6] are highly non-trivial and deep. Theorem3 guarantees that it
is enough to ensure that π is Baxter and π and avoids simple permutations of
length k + 1 and exceptionally simple permutations of length k + 2. Using the
algorithm given by Hart and Johnson [6] we can check in linear time whether
a given permutation is Baxter or not. Since there are at most (k + 1)! simple
permutations of length k and at most (k+2)! exceptionally simple permutations
of length (k + 2) using the algorithm given in [5] as a sub-routine we can do the
latter in O((k + 2)!2c(k+2)2 log(k+2)n) time. Since k is a fixed constant we get a
linear time algorithm.

If the value k is unknown our algorithm can be used to get an O(n4) algorithm
with a few modifications to find out the minimum k for which the input permu-
tation is HFOk. One can also obtain a context free grammar based poly-time
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algorithm for checking a given Baxter permutation is HFOk, as the generating
tree of an HFOk floorplan can be thought of a parse tree of a corresponding gram-
mar and the number of non-terminals is the number of different HFOj floorplans
with l rooms where h, l ≤ k. See full version of the paper [3] for details.

6 Closure Properties of Baxter Permutations

Only recently it has been proved that Baxter permutations are closed under
inverse [7]. The proof in [7] uses an argument based on permutations and pat-
terns. We give a simple alternate proof of this fact using the geometrical intuition
derived from mosaic floorplans. We prove that the floorplan obtained by taking
a mirror image of a floorplan along the horizontal axis is a floorplan whose per-
mutation (under the bijection of Ackerman) is the inverse of the permutation
corresponding to the starting floorplan.

The intuition is that when the floorplan’s mirror image about the horizontal
axis is taken, it does not change the relationship between two rooms if one is to
the left of the other. But if a room is below the other, it flips the relationship
between the corresponding rooms. For any Baxter permutation π and two indices
i, j where i < j, if π[i] < π[j], since π[i] appears before π[j] by the property of
the algorithm FP2BP π[i] is to the left of π[j] in πf . In the inverse of π, π−1

indices π[i] and π[j] will be mapped to i and j respectively. Hence if π−1 is
Baxter, or equivalently there is a mosaic floorplan corresponding to π−1, π−1

f ,
the rooms labeled by i and j will be such that i precedes j in the top-left deletion
ordering(as i < j) and also in bottom left deletion ordering(as π[i] < π[j]). Hence
i is to the left of j in π−1

f . If π[i] > π[j], since π[i] appears before π[j] by by the
property of the algorithm FP2BP, π[i] is below π[j] in πf . In the inverse of π,
π−1 indices π[i] and π[j] will again be mapped to i and j respectively. Hence if
there is a mosaic floorplan corresponding to π−1, π−1

f , the rooms labeled by i
and j will be such that i precedes j in the top-left deletion ordering(as i < j)
but in bottom left deletion ordering j precedes i(as π[i] < π[j]). Hence i is above
j in π−1

f . Thus mirror image about horizontal axis satisfies all these constraints
on the rooms. For the formal proof of closure under inverse see the full paper.
Figure 7 illustrates the link between inverse and the geometry.

Fig. 7. Obtaining a mosaic floorplan corresponding to the inverse of a Baxter
permutation

From the closure of Baxter permutations under inverse one can also get that
HFOk permutations are also closed under inverse by using the characterization
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based on generating trees of order k and applying the inverse Baxter permutation
on each node of the tree. We also observe that there is a geometric interpretation
for reverse of a Baxter permutation. It is easy to see that Baxter permutations
are closed under reverse because the patterns they avoid are reverses of each
other (3142/2413). We observe, without giving a proof, that for a Baxter per-
mutation π its reverse πr corresponds to the mosaic floorplan that is obtained
by first rotating by 90◦ clockwise and then by taking a mirror image along the
horizontal axis.

7 Open Problems

One natural open problem arising from this work is that of exact formulae for
the number of HFOk floorplans. The only k for which exact count is known is
k = 2. Our proof of closure under inverse for Baxter permutation gives rise to
the following open problem. For a class of permutations characterized by pattern
avoidance, like Baxter permutations, to be closed under inverse is it enough that
the forbidden set of permutations defining the class is closed under inverse.
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Abstract. In this paper we study interactive “one-shot” analogues of
the classical Slepian–Wolf theorem. Alice receives a value of a random
variable X, Bob receives a value of another random variable Y that is
jointly distributed with X. Alice’s goal is to transmit X to Bob (with
some error probability ε). Instead of one-way transmission we allow them
to interact. They may also use shared randomness.

We show, that for every natural r Alice can transmit X to Bob using(
1 + 1

r

)
H(X|Y )+ r +O(log2

(
1
ε

)
) bits on average in 2H(X|Y )

r
+2 rounds

on average. Setting r = �√H(X|Y )� and using a result of [2] we conclude
that every one-round protocol π with information complexity I can be
compressed to a (many-round) protocol with expected communication
about I + 2

√
I bits. This improves a result by Braverman and Rao [3],

where they had I + 5
√

I. Further, we show (by setting r = �H(X|Y )�)
how to solve this problem (transmitting X) using 2H(X|Y )+O(log2

(
1
ε

)
)

bits and 4 rounds on average. This improves a result of [4], where they
had 4H(X|Y ) + O(log 1/ε) bits and 10 rounds on average.

In the end of the paper we discuss how many bits Alice and Bob may
need to communicate on average besides H(X|Y ). The main question
is whether the upper bounds mentioned above are tight. We provide an
example of (X, Y ), such that transmission of X from Alice to Bob with
error probability ε requires H(X|Y ) + Ω

(
log2

(
1
ε

))
bits on average.

Keywords: Slepian–Wolf theorem · Communication complexity ·
Information complexity

1 Introduction

Assume that Alice receives a value of a random variable X and she wants to
transmit that value to Bob. It is well-known [8] that Alice can do it using one
message over the binary alphabet of expected length less than H(X)+1. Assume
now that there are n independent random variables X1, . . . , Xn distributed as
X, and Alice wants to transmit all X1, . . . , Xn to Bob. Another classical result
from [8] states, that Alice can do it using one message of fixed length, namely
≈ nH(X), with a small probability of error.
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One of the possible ways to generalize this problem is to provide Bob with a
value of another random variable Y which is jointly distributed with X. That is,
to let Bob know some partial information about X for free. This problem is the
subject of the classical Slepian-Wolf Theorem [9] which asserts that if there are n
independent pairs (X1, Y1), . . . , (Xn, Yn), each pair distributed exactly as (X,Y ),
then Alice can transmit all X1, . . . , Xn to Bob, who knows Y1, . . . , Yn, using one
message of fixed length, namely ≈ nH(X|Y ), with a small probability of error1

However, it turns out that a one-shot analogue of this theorem is impossible, if
only one-way communication is allowed.

The situation is quite different, if we allow Alice and Bob to interact, that is,
to send messages in both directions. In [7] Orlitsky studied this problem for the
average-case communication when no error is allowed. He showed that if pair
(X,Y ) is uniformly distributed on it’s support, then Alice may transmit X to
Bob using at most

H(X|Y ) + 3 log2(H(X|Y ) + 1) + 17

bits on average and 4 rounds. For the pairs (X,Y ) whose support is a Cartesian
product Orlitsky showed that error-less transmission of X from Alice to Bob
requires H(X) bits on average.

From a result of Braverman and Rao [3], it follows that for arbitrary (X,Y )
it is sufficient to communicate at most

H(X|Y ) + 5
√

H(X|Y ) + O

(
log2

(
1
ε

))

bits on average (here ε stands for the error probability).
We show that for every positive ε and natural r there is a public-coin protocol

transmitting X from Alice to Bob with error probability at most ε (for each pair
of inputs) using at most

(
1 +

1
r

)
H(X|Y ) + r + O

(
log2

1
ε

)

bits on average in at most
2H(X|Y )

r
+ 2

rounds on average. Furthermore, there is a private-coin protocol with the same
properties plus extra O (log log supp(X,Y )) bits of communication. Our protocol
is inspired by protocol from [1]. The idea of the protocol is essentially the same,
we only apply some technical trick to reduce communication.

This improves the result of Braverman and Rao, since setting r =⌈√
H(X|Y )

⌉
above we obtain the protocol with expected communication at

1 This paper is focused only on the non-symmetric version of this problem. In more
general version Alice and Bob send messages to the 3rd party Charlie, who must
reconstruct both random variables.



On Slepian–Wolf Theorem with Interaction 209

most H(X|Y ) + 2
√

H(X|Y ) + O
(
log2

(
1
ε

))
. In [4], it is established a one-shot

interactive analogue of the Slepian-Wolf theorem for the bounded-round com-
munication. They showed that Alice may transmit X to Bob using at most
O(H(X|Y ) + 1) bits and O(1) rounds on average. More specifically, their proto-
col transmits at most 4H(X|Y ) + log2(1/ε) + O(1) bits on average in 10 rounds
on average. Setting r = �H(X|Y )� above we improve this result. Indeed, we
obtain the protocol with the expected length at most 2H(X|Y ) + O

(
log2

(
1
ε

))

and the expected number of rounds at most 4.
Actually, in [3] a more general result was established. It was shown there that

every one-round protocol π with information complexity I can be compressed
to the (many-round) protocol with expected length at most

≈ I + 5
√

I. (1)

Using the result from [2], we improve Equ. 1. Namely, we show that every one-
round protocol π with information complexity I can be compressed to the (many-
round) protocol with expected communication length at most

≈ I + 2
√

I.

Are there random variables X,Y for which the upper bound of the form
H(X|Y )+O

(√
H(X|Y )

)
is tight? We make a step towards answering this ques-

tion: we provide an example of random variables X,Y such that every public-coin
communication protocol which transmits X from Alice to Bob with error prob-
ability ε (with respect to the input distribution and the protocol’s randomness)
must communicate at least H(X|Y ) + Ω

(
log2

(
1
ε

))
bits on average.

2 Definitions

2.1 Information Theory

Let X, Y be two joint distributed random variables, taking values in the finite
sets, respectively, X and Y.

Definition 1. Shannon Entropy of X is defined by the formula

H(X) =
∑

x∈X
Pr[X = x] log2

(
1

Pr[X = x]

)
.

Definition 2. Conditional Shannon entropy of X with respect to Y is defined
by the formula:

H(X|Y ) =
∑

y∈Y
H(X|Y = y) Pr[Y = y],

where X|Y = y denotes a distribution of X, conditioned on the event {Y = y}.
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If X is uniformly distributed in X then obviously H(X) = log2(|X |). We will
also use the fact that the formula for conditional entropy may be re-written as

H(X|Y ) =
∑

(x,y)∈X×Y
Pr[X = x, Y = y] log2

(
1

Pr[X = x|Y = y]

)
.

Generalization of the Shannon entropy is Renyi entropy.

Definition 3. Renyi entropy of X is defined by the formula

H2(X) = − log2

(
∑

x∈X
Pr[X = x]2

)

.

Concavity of log implies that H(X) ≥ H2(X).
The mutual information of two random variables X and Y , conditioned on

another random variable Z, can be defined as:

I(X : Y |Z) = H(X|Z) − H(X|Y,Z).

For the further introduction in information theory see, for example [11].

2.2 Communication Protocols

Assume that we are given jointly distributed random variables X and Y , taking
values in finite sets X and Y. Let RA, RB be a random variables, taking values
in finite sets RA and RB, such that (X,Y ), RA, RB are mutually independent.

Definition 4. A private–coin communication protocol is a rooted binary tree,
in which each non-leaf vertex is associated either with Alice or with Bob. For
each non-leaf vertex v associated with Alice there is a function fv : X × RA →
{0, 1} and for each non-leaf vertex u associated with Bob there is a function
gu : Y × RB → {0, 1}. For each non-leaf vertex one of an out-going edges is
labeled by 0 and other is labeled by 1. Finally, for each leaf l there is a function
φl : Y × RB → O, where O denotes the set of all possible Bob’s outputs.

A computation according to a protocol runs as follows. Alice is given x ∈ X ,
Bob is given y ∈ Y. Assume that RA takes a value ra and RB takes a value rb.
Alice and Bob start at the root of the tree. If they are in the non-leaf vertex v
associated with Alice, then Alice sends fv(x, ra) to Bob and they go by the edge
labeled by fv(x, ra). If they are in a non-leaf vertex associated with Bob then
Bob sends gv(y, rb) to Alice and they go by the edge labeled by gv(y, rb). When
they reach a leaf l Bob outputs the result φl(y, rb).

A protocol is called deterministic if fv, gu and φl do not depend on the values
of RA, RB .

A randomized communication protocol is a distribution over private-coin pro-
tocols with the same X for Alice and the same Y for Bob. The random variable
with this distribution (public randomness) is denoted below by R. Before the
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execution starts, Alice and Bob sample R to choose the private-coin protocol to
be executed.

A protocol is called public-coin if it is a distribution over deterministic pro-
tocols.

We distinguish between average-case communication complexity and the
worst-case communication complexity. The (worst-case) communication com-
plexity of a protocol π, denoted by CC(π), is defined as the maximal possible
depth of the leaf Alice and Bob may reach in π.

We say that protocol π communicates d bits on average (or expected length
of the protocol is equal to d), if the expected depth of the leaf that Alice and Bob
reach during the execution of the protocol π is equal to d, where the expectation
is taken over X, Y and the protocol’s randomness.

For the further introduction in Communication Complexity see [5].

3 Slepian-Wolf Theorem with Interaction

Consider the following auxiliary problem. Let A be a finite set. Assume that
Alice receives an arbitrary a ∈ A and Bob receives an arbitrary probability
distribution μ on A. Alice wants to communicate a to Bob in about log(1/μ(a))
bits with small probability of error.

Lemma 1. Let ε be a positive real and r a positive integer. There exists a public
coin randomized communication protocol such that for all a in the support of μ
the following hold:

– in the end of the communication Bob outputs b ∈ A which is equal to a with
probability at least 1 − ε;

– the protocol communicates at most

log2

(
1

μ(a)

)
+

log2
(

1
μ(a)

)

r
+ r + log2

(
1
ε

)
+ 2

bits, regardless of the randomness.
– the number of rounds in the protocol does not exceed

2 log2
(

1
μ(a)

)

r
+ 2.

Proof. Alice and Bob interpret each portion of |A| consecutive bits from the
public randomness source as a table of a random function h : A → {0, 1}. That
is, we will think that they have access to a large enough family of mutually
independent random functions of the type A → {0, 1}. Those functions will be
called hash functions and their values hash values below.

The first set k =
⌈
log2

(
1
ε

)⌉
. Then for all i = 0, 1 . . . Bob sets:

Si =
{
x ∈ A |μ(x) ∈ (2−i−1, 2−i]

}
.
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At the beginning Alice sends k hash values of a. Then Alice and Bob work
in stages numbered 1, 2 . . . .

On Stage t:

1. Alice sends r new hash values of a to Bob so that the total number of hash
values of a available to Bob be k + rt.

2. For each i ∈ {r(t − 1), . . . , rt − 1} Bob computes set S′
i, which consists of all

elements from Si, which agree with all Alice’s hash values.
3. If there exists i ∈ {r(t−1), . . . , rt−1} such that S′

i 	= ∅, then Bob sends 1 to
Alice, outputs any element of S′

i and they terminate. Otherwise Bob sends 0
to Alice and they proceed to Stage t + 1.

Let us at first show that the protocol terminates for all a in the support of μ.
Assume that Alice has a and Bob has μ. Let i =

⌊
log2

(
1

μ(a)

)⌋
so that a ∈ Si.

The protocol terminates on Stage t where

r(t − 1) ≤ i ≤ rt − 1 (2)

or earlier. Indeed all hash values of a available to Bob on Stage t coincide with
hash values of some element of Si (for instance, with those of a).

Thus Alice sends at most k + rt bits to Bob and Bob sends at most t bits
to Alice. The left-hand size of (2) implies that t ≤ i

r + 1. Therefore Alice’s
communication is bounded by

k + rt ≤ k + r

(
i

r
+ 1
)

=
⌈
log2

(
1
ε

)⌉
+ i + r

≤ log2

(
1

μ(a)

)
+ r + log2

(
1
ε

)
+ 1,

and Bob’s communication is bounded by

t ≤ i

r
+ 1 ≤

log2
(

1
μ(a)

)

r
+ 1.

These two bounds imply that the total communication length is at most

log2
(

1
μ(a)

)
+

log2( 1
μ(a) )
r + r + log2

(
1
ε

)
+ 2. The number of rounds equals the

length of Bob’s communication, multiplied by 2. Hence this number is at most
2 log2( 1

μ(a) )
r + 2. We conclude that the communication and the number of rounds

are as short as required.
It remains to bound the error probability. An error may occur, if for some t a set

Si considered on Stage t has an element b 	= a which agrees with hash values sent
from Alice. At that time Bob has already k + rt ≥ k + i + 1 hash values, where
the inequality follows from (2). The probability that k + i + 1 hash values of b
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coincide with those of a is 2−k−i−1. Hence by union bound error probability does
not exceed

∞∑

i=0

|Si|2−k−i−1 = 2−k
∞∑

i=0

|Si|2−i−1 < 2−k
∞∑

i=0

∑

x∈Si

μ(x)

= 2−k
∑

x∈A

μ(x) = 2−k = 2−�log2( 1
ε )� ≤ ε.

Theorem 1. Let X, Y be jointly distributed random variables that take values
in the finite sets X and Y. Then for every positive ε and positive integer r there
exists a public-coin protocol with the following properties.

– For every pair (x, y) from the support of (X,Y ) with probability at least 1 − ε
Bob outputs x;

– The expected length of communication is at most

H(X|Y ) +
H(X|Y )

r
+ r + log2

(
1
ε

)
+ 2.

– The expected number of rounds is at most

2H(X|Y )
r

+ 2.

Proof. On input x, y, Alice and Bob run protocol of Lemma1 with A = X , a = x
and μ equal to the distribution of X, conditioned on the event Y = y. Notice
that Alice knows a and Bob knows μ.

Let us show that all the requirements are fulfilled for this protocol. The
first requirement immediately follows from the first property of the protocol of
Lemma 1.

From the second and the third property of the protocol of Lemma1 it follows
that for input pair x, y out protocol communicates at most:

log2

(
1

Pr[X = x|Y = y]

)
+

log2
(

1
Pr[X=x|Y =y]

)

r
+ r + log2

(
1
ε

)
+ 2

bits in at most
log2

(
1

Pr[X=x|Y =y]

)

r
+ 2

rounds. Recalling that

H(X|Y ) =
∑

(x,y)∈X×Y
Pr[X = x, Y = y] log2

(
1

Pr[X = x|Y = y]

)

we see on average the communication and the number of rounds are as short as
required.
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Theorem 1 provides a trade off between the communication and the number
of rounds.

– To obtain a protocol with minimal communication set r =
⌈√

H(X|Y )
⌉
. For

such r the protocol communicates at most H(X|Y )+2
√

H(X|Y )+O
(
log2

1
ε

)

bits on average.
– To obtain a protocol with a constant number of rounds on average set, for

example, r = �H(X|Y )�. For such r the protocol communicates at most
2H(X|Y ) + O

(
log2

1
ε

)
bits on average in at most 4 rounds on average.

– In a same manner for every δ ∈ (0, 0.5) we can obtain a protocol with
the expected communication at most H(X|Y ) + O

(
H(X|Y )0.5+δ

)
and the

expected number of rounds at most O
(
H(X|Y )0.5−δ

)
.

Remark. One may wonder whether there exists a private-coin communication
protocol with the same properties as the protocol of Theorem 1. Newman’s theo-
rem [6] states that every public-coin protocol can be transformed into a private-
coin protocol at the expense of increasing the error probability by δ and the
worst case communication by O(log log |X × Y| + log 1/δ) (for any positive δ).
Lemma 1 provides an upper bound for the error probability and communica-
tion of our protocol for each pair of inputs. Repeating the arguments from the
proof of Newman’s theorem, we are able to transform the public-coin protocol
of Lemma 1 into a private-coin one with the same trade off between the increase
of error probability and the increase of communication length. It follows that
for our problem there exists a private-coin communication protocol which errs
with probability at most ε and communicates on average as many bits as the
public-coin protocol from Theorem1 plus extra O(log log |X × Y|) bits.

4 One-Round Compression

Information complexity of the protocol π with inputs (X,Y ) is defined as

ICμ(π) = I(X : Π|Y,R) + I(Y : Π|X,R)
= I(X : Π|Y,R,RB) + I(Y : Π|X,R,RA)
= I(X : Π,R,RB |Y ) + I(Y : Π,R,RA|X),

where R,RA, RB denote (shared, Alice’s and Bob’s) randomness, μ stands for
the distribution of (X,Y ) and Π stands for the concatenation of all bits sent in
π (Π is called a transcript). The first term is equal to the information which Bob
learns about Alice’s input and the second term is equal to the information which
Alice learns about Bob’s input. Information complexity is an important concept
in the Communication Complexity. For example, information complexity plays
the crucial role in the Direct-Sum problem [10].

We will consider the special case when π is one-round. In this case Alice
sends one message Π to Bob, then Bob outputs the result (based on his input,
his randomness, and Alice’s message) and the protocol terminates. Since Alice
learns nothing, information complexity can be re-written as
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I = ICμ(π) = I(X : Π|Y,R).

Our goal is to simulate a given one-round protocol π with another protocol
τ which has the same input space (X,Y ) and whose expected communication
complexity is close to I. The new protocol τ may be many-round. The quality
of simulation will be measured by the statistical distance. Statistical distance
between random variables A and B, both taking values in the set V , equals

δ(A,B) = max
U⊂V

|Pr[A ∈ U ] − Pr[B ∈ U ]| .

One of the main results of [3] is the following theorem.

Theorem 2. For every one-round protocol π and for every probability distrib-
ution μ there is a public-coin protocol τ with expected length (with respect to μ
and the randomness of τ) at most I + 5

√
I + O

(
log2

1
ε

)
such that for each pair

of inputs (x, y) after termination of τ Bob outputs a random variable Π ′ with
δ ((Π|X = x, Y = y) , (Π ′|X = x, Y = y)) ≤ ε.

We will show that Theorem 1 and together with the main result of [2] imply
that we can replace 5

√
I by about 2

√
I in this theorem. More specifically,

Theorem 3. For every one-round protocol π and for every probability distrib-
ution μ there is a public-coin protocol τ with expected length (with respect to μ
and the randomness of τ) at most

I + log2(I + O(1)) + 2
√

I + log2(I + O(1)) + O

(
log2

1
ε

)

such that for each pair of inputs (x, y) in the protocol τ Bob outputs Π ′ with
δ ((Π|X = x, Y = y) , (Π ′|X = x, Y = y)) ≤ ε

We want to transmit Alice’s message Π to Bob (who knows Y and his ran-
domness R) in many rounds so that the expected communication length is small.
By Theorem 1 this task can be solved with error ε in expected communication

H(Π|Y,R) + 2
√

H(Π|Y,R) + O

(
log2

1
ε

)
. (3)

Assume first that the original protocol π uses only public randomness. Then

I = I(X : Π|Y,R) = H(Π|Y,R) − H(Π|X,Y,R) = H(Π|Y,R).

Indeed, H(Π|X,Y,R) = 0, since Π is defined by X,R. Thus (3) becomes

I + 2
√

I + O

(
log2

1
ε

)

and we are done.
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In general case, when the original protocol uses private randomness, I can
be much smaller than H(Π|Y,R). Fortunately, by the following theorem from
[2] we can remove private coins from the protocol with only a slight increase in
information complexity.

Theorem 4. For every one-round protocol π and for every probability distribu-
tion μ there is a one-round public-coin protocol π′ with information complexity
ICμ(π′) ≤ I + log2(I + O(1)) such that for each pairs of inputs (x, y) in the
protocol π′ Bob outputs Π ′ for which Π ′|X = x, Y = y and Π|X = x, Y = y are
identically distributed.

Combining this theorem with our main result (Theorem1), we obtain
Theorem 3.

5 A Lower Bounds for the Average-Case Communication

Let (X,Y ) be a pair of jointly distributed random variables. Assume that π is
a deterministic protocol to transmit X from Alice to Bob who knows Y . Let
π(X,Y ) stand for the result output by the protocol π for input pair (X,Y ). We
assume that for at least 1 − ε input pairs this result is correct:

Pr[π(X,Y ) 	= X)] ≤ ε.

It is not hard to see that in this case the expected communication length
cannot be much less than H(X|Y ) bits on average. Moreover, this applies for
communication from Alice to Bob only.

Proposition 1. For every deterministic protocol as above the expected commu-
nication from Alice to Bob is at least H(X|Y ) − ε log2 |X | − 1.

The proof of this proposition is omitted due to space constraints.
There are random variables for which this lower bound is tight. For instance,

let Y be empty and let X take the value x ∈ {0, 1}n with probability ε/2n

(for all such x) and let X = (the empty string) with the remaining probability
1− ε. Then the trivial protocol with no communication solves the job with error
probability ε and H(X|Y ) ≈ ε log2 |X |.

In this section we consider the following question: are there a random
variables (X,Y ), for which for every public-coin communication protocol the
expected communication is significantly larger than H(X|Y ), say close to the
upper bound H(X|Y ) + 2

√
H(X|Y ) + log2

(
1
ε

)
of Theorem 1?

Orlitsky [7] showed that if no error is allowed and the support of (X,Y ) is a
Cartesian product, then every deterministic protocol must communicate H(X)
bits on average.

Proposition 2. Let (X,Y ) be a pair of jointly distributed random variables
whose support is a Cartesian product. Assume that π is a deterministic protocol,
which transmits X from Alice to Bob who knows Y and

Pr[π(X,Y ) 	= X)] = 0.

Then the expected length of π is at least H(X).
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This result can be easily generalized to the case when π is public-coin.
The main result of this section states that there are random variables (X,Y )

such that transmission of X from Alice to Bob with error probability ε requires
H(X|Y ) + Ω

(
log2

(
1
ε

))
bits on average.

The random variables X,Y are specified by two parameters, δ ∈ (0, 1/2) and
n ∈ N. Both random variables take values in {0, 1, . . . , n} and are distributed as
follows: Y is distributed uniformly in {0, 1, . . . , n} and X = Y with probability
1 − δ and X is uniformly distributed in {0, 1, . . . , n} \ {X} with the remaining
probability δ. That is,

Pr[X = i, Y = j] =
(1 − δ)δij + δ

n (1 − δij)
n + 1

,

where δij stands for the Kronecker’s delta. Notice that X is uniformly distributed
on {0, 1, . . . , n} as well. A straightforward calculation reveals that

Pr[X = i|Y = j] =
Pr[X = i, Y = j]

Pr[Y = j]
= (1 − δ − δ

n
)δij +

δ

n

and

H(X|Y ) = (1 − δ) log2

(
1

1 − δ

)
+ δ log2

(n

δ

)
= δ log2 n + O(1).

We will think of δ as a constant, say 1/4. For one-way protocol we are able
to show that communication length must be close to log n, which is about 1/δ
times larger than H(X|Y ):

Proposition 3. Assume that π is a one-way deterministic protocol, which trans-
mits X from Alice to Bob who knows Y and

Pr[π(X,Y ) 	= X)] ≤ ε.

Then the expected length of π is at least
(
1 − ε

δ

)
log2(n + 1) − 2.

This result explains why the one-way one-shot analogue of the Slepian–Wolf
theorem is not possible.

Proof. Let S be the number of leafs in π. For each j ∈ {0, 1, . . . , n}
# {i ∈ {0, 1, . . . , n} | π(i, j) = i} ≤ S.

Hence the error probability ε is at least (n + 1 − S) δ
n . This implies that

S ≥ n
(
1 − ε

δ

)
+ 1 ≥ (n + 1)

(
1 − ε

δ

)
.

Let Π(X) denote the leaf Alice and Bob reach in π (since the protocol is
one-way, the leaf depends only on X). The expected length of Π(X) is at least
H(Π) (identify each leaf with the binary string, written on the path from the
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root to this leaf in the protocol tree; the set of all these strings is prefix–free).
Let l1, l2, . . . , lS be the list of all leaves in the support of the random variable
Π(X). As X is distributed uniformly, we have

Pr[Π = li] ≥ 1
n + 1

for all i. The statement follows from

Lemma 2. Assume that p1, . . . , pk, q1, . . . , qk ∈ (0, 1) satisfy

k∑

i=1

pi = 1,

∀i ∈ {1, . . . , k} pi ≥ qi.

Then
k∑

i=1

pi log2
1
pi

≥
k∑

i=1

qi log2
1
qi

− 2.

The proof of this technical lemma is omitted due to space constraints. The lemma
implies that

H(Π) =
S∑

i=1

Pr[Π = li] log2

(
1

Pr[Π = li]

)

≥ S

n + 1
log2(n + 1) − 2 ≥

(
1 − ε

δ

)
log2(n + 1) − 2.

The next theorem states that for any fixed δ every two-way public-coin proto-
col with error probability ε must communicate about H(X|Y )+(1−δ) log2(1/ε)
bits on average.

Theorem 5. Assume that π is a public-coin communication protocol which
transmits X from Alice to Bob who knows Y and

Pr[X ′ 	= X] ≤ ε,

where X ′ denotes the Bob’s output and the probability is taken with respect to
input distribution and public randomness of π. Then the expected length of π is
at least

(1 − δ − δ/n) log2

(
δ

ε + δ/n

)
+ (δ − 2ε) log2(n + 1) − 2δ.

The lower bound in this theorem is quite complicated and comes from its
proof. To understand this bound assume that δ is a constant, say δ = 1/4,
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and 1
n ≤ ε ≤ 1

log2 n . Then H(X|Y ) = (1/4) log2 n + O(1) and the lower bound
becomes

(
1 − 1

4
− 1

4n

)
log2

( 1
4

ε + 1
4n

)
+ (1/4 − 2ε) log2(n + 1) − 1

2

Condition 1
n ≤ ε implies that the first term is equal to

(3/4) log2

(
1
ε

)
− O(1).

Condition ε ≤ 1
log2 n implies that the seconds term is equal to

(1/4) log2 n − O(1).

Therefore under these conditions the lower bound becomes

(1/4) log2 n + (3/4) log2

(
1
ε

)
− O(1) = H(X|Y ) + (3/4) log2

(
1
ε

)
− O(1).

Proof. Let us start with the case when π is deterministic. Let Π = Π(X,Y )
denote the leaf Alice and Bob reach in the protocol π for input pair (X,Y ).
As we have seen, the expected length of communication is at least the entropy
H(Π(X,Y )). Let l1, . . . , lS denote all the leaves in the support of the random
variable Π(X,Y ). The set {(x, y) | Π(x, y) = li} is a combinatorial rectangle
Ri ⊂ {0, 1, . . . , n} × {0, 1, . . . , n}. Imagine {0, 1, . . . , n} × {0, 1, . . . , n} as a table
in which Alice owns columns and Bob owns rows. Let hi be the height of Ri and
wi be the width of Ri. Let di stand for the number of diagonal elements in Ri

(pairs of the form (j, j)). By definition of (X,Y ) we have

Pr[Π(X,Y ) = li] =
(1 − δ)di

n + 1
+

δ(hiwi − di)
n(n + 1)

. (4)

The numbers {Pr[Π(X,Y ) = li]}S
i=1 define a probability distribution over the

set {1, 2, . . . , S} and its entropy equals H(Π(X,Y )). Equation (4) represents

this distribution as a weighted sum of the following distributions:
{

di

n+1

}S

i=1

and
{

hiwi

(n+1)2

}S

i=1
. That is, Eq. (4) implies that

{Pr[Π = li]}S
i=1 = (1 − δ − δ/n)

{
di

n + 1

}S

i=1

+ (δ + δ/n)
{

hiwi

(n + 1)2

}S

i=1

.

Since entropy is concave, we have

H(Π) = H
({Pr[Π = li]}S

i=1

)

≥ (1 − δ − δ/n)H

({
di

n + 1

}S

i=1

)

+ (δ + δ/n)H

({
hiwi

(n + 1)2

}S

i=1

)

(5)
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The lower bound of the theorem follows from lower bounds of the entropies of
these distributions.

A lower bound for H

({
di

n+1

}S

i=1

)
. In each row of Ri there is at most 1

element (x, y), for which π(x, y) = x. The rectangle Ri consists of di diagonal
elements and hence there are at least d2i − di elements (x, y) in Ri for which
π(x, y) 	= x. Summing over all i we get

ε ≥
S∑

i=1

δ(d2i − di)
n(n + 1)

and thus
S∑

i=1

(
di

n + 1

)2

≤ ε + δ/n

δ
.

Since Renyi entropy is a lower bound for the Shannon entropy, we have

H

({
di

n + 1

}S

i=1

)

≥ log2

⎛

⎜⎜
⎝

1
S∑

i=1

(
di

n+1

)2

⎞

⎟⎟
⎠ ≥ log2

(
δ

ε + δ/n

)
.

A lower bound for H

({
hiwi

(n+1)2

}S

i=1

)
. In Ri, there are at most hi good pairs

(for which π works correctly). At most di of them has probability 1−δ
n+1 . Hence

Pr[Π = li, π(X,Y ) = X] ≤ (1 − δ)di

n + 1
+

δ(hi − di)
n(n + 1)

and

1 − ε ≤ Pr[π(X,Y ) = X] =
S∑

i=1

Pr[Π = li, π(X,Y ) = X]

≤
S∑

i=1

(
(1 − δ)di

n + 1
+

δ(hi − di)
n(n + 1)

)
= 1 − δ − δ/n +

δ

n(n + 1)

S∑

i=1

hi.

The last inequality implies that

S∑

i=1

hi ≥ (1 − ε/δ)(n + 1)2.

Since hi ≤ n + 1, we have

S∑

i=1

hiwi

(n + 1)2
log2

(
(n + 1)2

hiwi

)
≥

S∑

i=1

hiwi

(n + 1)2
log2

(
(n + 1)2

(n + 1)wi

)

= − log2(n + 1)+
S∑

i=1

hi
wi

(n + 1)2
log2

(
(n + 1)2

wi

)
.
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Obviously wi

(n+1)2 ≥ 1
(n+1)2 . By Lemma 2 we get

S∑

i=1

hi
wi

(n + 1)2
log2

(
(n + 1)2

wi

)
≥
(

S∑

i=1

hi

)
1

(n + 1)2
log2

(
(n + 1)2

)− 2

≥ (2 − 2ε/δ) log2(n + 1) − 2.

Thus

H

({
hiwi

(n + 1)2

}S

i=1

)

≥ (1 − 2ε/δ) log2(n + 1) − 2,

and the theorem is proved for deterministic protocols.
Assume now that π is a public-coin protocol with public randomness R and

let r be a possible value of R. Let πr stand for the deterministic communication
protocol obtained from π by fixing R = r. For any protocol τ let ‖τ‖ denote the
random variable representing communication length of τ (which may depend on
the input and the randomness). Finally, set εr = Pr[X ′ 	= X|R = r]

Note that πr transmits X from Alice to Bob with error probability at most
εr (with respect to input distribution). Since πr is deterministic, the expected
length of πr is at least:

E‖πr‖ ≥ (1 − δ − δ/n) log2

(
δ

εr + δ/n

)
+ (δ − 2εr) log2(n + 1) − 2δ.

Since Er∼Rεr = ε and by concavity of log:

E‖π‖ = Er∼RE‖πr‖

≥ Er∼R

[
(1 − δ − δ/n) log2

(
δ

εr + δ/n

)
+ (δ − 2εr) log2(n + 1) − 2δ

]

≥ (1 − δ − δ/n) log2

(
δ

ε + δ/n

)
+ (δ − 2ε) log2(n + 1) − 2δ.
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Level Two of the Quantifier Alternation
Hierarchy over Infinite Words
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Abstract. The study of various decision problems for logic fragments
has a long history in computer science. This paper is on the member-
ship problem for a fragment of first-order logic over infinite words; the
membership problem asks for a given language whether it is definable
in some fixed fragment. The alphabetic topology was introduced as part
of an effective characterization of the fragment Σ2 over infinite words.
Here, Σ2 consists of the first-order formulas with two blocks of quanti-
fiers, starting with an existential quantifier. Its Boolean closure is BΣ2.
Our first main result is an effective characterization of the Boolean clo-
sure of the alphabetic topology, that is, given an ω-regular language
L, it is decidable whether L is a Boolean combination of open sets in
the alphabetic topology. This is then used for transferring Place and
Zeitoun’s recent decidability result for BΣ2 from finite to infinite words.

1 Introduction

Over finite words, the connection between finite monoids and regular languages is
highly successful for studying logic fragments, see e.g. [2,19]. Over infinite words,
the algebraic approach uses infinite repetitions. Not every logic fragment can
express whether some definable property P occurs infinitely often. For instance,
the usual approach for saying that P occurs infinitely often is as follows: for every
position x there is a position y > x satisfying P (y). Similarly, P occurs only
finitely often if there is a position x such that all positions y > x satisfy ¬P (y).
Each of these formulas requires (at least) one additional change of quantifiers,
which not all fragments can provide. It turns out that topology is a very useful
tool for restricting the infinite behaviour of the algebraic approach accordingly,
see e.g. [3,5,10,22]. In particular, the combination of algebra and topology is con-
venient for the study of languages in Γ∞, the set of finite and infinite words over
the alphabet Γ . In this paper, an ω-regular language is a regular subset of Γ∞.

Topological ideas have a long history in the study of ω-regular languages.
The Cantor topology is the most famous example in this context. We write G
for the Cantor-open sets and F for the closed sets. The open sets in G are the
languages of the form WΓ∞ for W ⊆ Γ ∗. If X is a class of languages, then
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Xδ consists of the countable intersections of languages in X and Xσ are the
countable unions; moreover, we write BX for the Boolean closure of X. Since
F contains the complements of languages in G, we have BF = BG. The Borel
hierarchy is defined by iterating the operations X �→ Xδ and X �→ Xσ. The Borel
hierarchy over the Cantor topology has many appearances in the context of ω-
regular languages. For instance, an ω-regular language is deterministic if and
only if it is in Gδ, see [8,21]. By McNaughton’s Theorem [9], every ω-regular
language is in B(Gδ) = B(Fσ). The inclusion BG ⊂ Gδ ∩ Fσ is strict, but the
ω-regular languages in BG and Gδ ∩ Fσ coincide [17].

G

F

BG = BF Gδ ∩ Fσ

Gδ

Fσ

B(Gδ) = B(Fσ)

open

closed

⊆deterministic

⊆

ω-regular

Let FOk be the fragment of first-order logic which uses (and reuses) at most k
variables. By Σm we denote the formulas with m quantifier blocks, starting with
a block of existential quantifiers. Here, we assume that x < y is the only binary
predicate. Let us consider FO1 as a toy example. With only one variable, we
cannot make use of the binary predicate x < y. Therefore, in FO1 we can say
nothing but which letters occur, that is, a language is definable in FO1 if and
only if it is a Boolean combination of languages of the form Γ ∗aΓ∞ for a ∈ Γ .
Thus FO1 ⊆ BG. It is an easy exercise to show that an ω-regular language is
in FO1 if and only if it is in BG and its syntactic monoid is both idempotent and
commutative. The algebraic condition without the topology is too powerful since
this would also include the language {a, b}∗

aω, which is not definable in FO1.
For the fragment BΣ1, the same topology BG with a different algebraic condition
works, cf. [10, Theorems VI.3.7,VI.7.4 and VIII.4.5].

In the fragment Σ2, we can define the language {a, b}∗
ab∞ which is not

deterministic and hence not in Gδ. Since the next level of the Borel hierarchy
already contains all ω-regular languages, another topology is required. For this
purpose, Diekert and the first author introduced the alphabetic topology [3]: the
open sets in this topology are arbitrary unions of languages of the form uA∞

for u ∈ Γ ∗ and A ⊆ Γ . They showed that an ω-regular language is definable
in Σ2 if and only if it satisfies some particular algebraic property and if it is open
in the alphabetic topology. Therefore, the canonical ingredient for an effective
characterization of BΣ2 is the Boolean closure of the open sets in the alphabetic
topology. Our first main result, Theorem2, shows that, for a given ω-regular
language L, it is decidable whether L is a Boolean combination of open sets in
the alphabetic topology. As a by-product, we see that every ω-regular language
which is a Boolean combination of arbitrary open sets in the alphabetic topology
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can be written as a Boolean combination of ω-regular open sets. This resembles
a similar result for the Cantor topology [17].

A major breakthrough in the theory of regular languages over finite words is
due to Place and Zeitoun [14]. They showed that, for a given regular language
L ⊆ Γ ∗, it is decidable whether L is definable in BΣ2. This solved a longstand-
ing open problem, see e.g. [13, Section 8] for an overview. To date, no effective
characterization of BΣ3 is known. Our second main result, Theorem 4, is to show
that this decidability result transfers to languages in Γ∞. If V2 is the algebraic
counterpart of BΣ2 over finite words, then we show that V2 combined with
the Boolean closure of the alphabetic topology yields a characterization of BΣ2

over Γ∞. Combining the decidability of V2 with our first main result, the latter
characterization is effective. The proof that BΣ2 satisfies both the algebraic and
the topological restrictions follows a rather straightforward approach. The main
difficulty is to show the converse: every language satisfying both the algebraic
and the topological conditions is definable in BΣ2.

2 Preliminaries

Words

Let Γ be a finite alphabet. By Γ ∗ we denote the set of finite words over Γ ;
we write 1 for the empty word. The set of infinite words is Γω and the set of
finite and infinite words is Γ∞ = Γ ∗ ∪ Γω. By u, v, w we denote finite words
and by α, β, γ we denote words in Γ∞. In this paper a language is a subset of
Γ∞. Let L ⊆ Γ ∗ and K ⊆ Γ∞. As usual L∗ is the union of powers of L and
LK = {uα | u ∈ L,α ∈ K} ⊆ Γ∞ is the concatenation of L and K. By Lω we
denote the set of words which are an infinite concatenation of words in L and the
infinite concatenation uu · · · of the word u is written uω. A word u = a1 . . . an

is a scattered subword of v if v ∈ Γ ∗a1Γ
∗ . . . anΓ ∗. The alphabet of a word is

the set of all letters which appear in the word. The imaginary alphabet im(α)
of a word α ∈ Γ∞ is the set of letters which appear infinitely often in α. Let
Aim = {α ∈ Γ∞ | im(α) = A} be the set of words with imaginary alphabet A.
In the following, we restrict ourselves to the study of ω-regular languages. A lan-
guage L ⊆ Γ ∗ is regular if it is recognized by a (deterministic) finite automaton.
A language K ⊆ Γω is ω-regular if it is recognized by a Büchi automaton. A
language L ⊆ Γ∞ is ω-regular if L ∩ Γ ∗ is regular and L ∩ Γω is ω-regular.

First-Order logic

We consider first order logic FO over Γ∞. Variables range over positions of the
word. The atomic formulas in this logic are 	 for true, x < y to compare two
positions x and y and λ(x) = a which is true if the word has an a at position x.
One may combine those atomic formulas with the boolean connectives ¬,∧ and
∨ and quantifiers ∀ and ∃. A sentence ϕ is an FO formula without free variables.
We write α |= ϕ if α ∈ Γ∞ satisfies the sentence ϕ. The language defined by
ϕ is L(ϕ) = {α ∈ Γ∞ | α |= ϕ}. We classify the formulas of FO by counting
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the number of quantifier alternations, that is the number of alternations of ∃
and ∀. The fragment Σi of FO contains all FO-formulas in prenex normal form
with i blocks of quantifiers ∃ or ∀, starting with a block of existential quantifiers.
The fragment BΣi contains all Boolean combinations of formulas in Σi. We are
particularly interested in the fragment Σ2 and the Boolean combinations of for-
mulas in Σ2. A language L is definable in a fragment F (e.g. F is Σ2 or BΣ2) if
there exists a formula ϕ ∈ F such that L = L(ϕ), i.e., if L is definable by some
ϕ ∈ F . The classes of languages defined by Σi and BΣi form a hierarchy, the
quantifier alternation hierarchy. This hierarchy is strict, i.e., Σi � BΣi � Σi+1

holds for all i, cf. [1,20].

Monomials

A monomial is a language of the form A∗
0a1A

∗
1a2 · · · A∗

n−1anA∞
n for n ≥ 0, ai ∈ Γ

and Ai ⊆ Γ . The number n is called the degree. In particular, A∞
0 is a monomial

of degree 0. A monomial is called k-monomial if it has degree at most k. In [3]
it is shown that a language L ⊆ Γ∞ is in Σ2 if and only if it is a finite union of
monomials. We are interested in BΣ2 and thus in finite Boolean combination of
monomials. For this, let ≡∞

k be the equivalence relation on Γ∞ such that α ≡∞
k β

if α and β are contained in exactly the same k-monomials. Thus, ≡∞
k -classes are

Boolean combinations of monomials and every language in BΣ2 is a union of
≡∞

k -classes for some k. Further, since there are only finitely many monomials of
degree k, there are only finitely many ≡∞

k -classes. The equivalence class of some
word α in ≡∞

k is denoted by [α]∞k . Note, that such a characterization of BΣ2 in
terms of monomials does not yield a decidable characterization.

Our characterization of languages L ⊆ Γ∞ in BΣ2 is based on the char-
acterization of languages in BΣ2 over finite words. For this, we also intro-
duce monomials over Γ ∗. A monomial over Γ ∗ is a language of the form
A∗

0a1A
∗
1a2 · · · A∗

n−1anA∗
n for n ≥ 1, ai ∈ Γ and Ai ⊆ Γ . The degree is defined as

above. Let ≡k be the congruence on Γ ∗ which is defined by u ≡k v if and only
if u and v are contained in the same k-monomials over Γ ∗. Again, a language
L ⊆ Γ ∗ is in BΣ2 if and only if it is a union of ≡k-classes for some k.

Algebra

In this paper all monoids are either finite or free. Finite monoids are a common
way for defining regular and ω-regular languages. A monoid element e is idem-
potent if e2 = e. An ordered monoid (M,≤) is a monoid equipped with a partial
order which is compatible with the monoid multiplication, i.e., s ≤ t and s′ ≤ t′

implies ss′ ≤ tt′. Every monoid can be ordered using the identity as partial order.
A homomorphism h : (N,≤) → (M,≤) between two ordered monoids must hold
s ≤ t ⇒ h(s) ≤ h(t) for s, t ∈ N . A divisor is the homomorphic image of a
submonoid. A class of monoids which is closed under division and finite direct
products is a pseudovariety. Eilenberg showed a correspondence between certain
classes of languages (of finite words) and pseudovarieties [4]. A pseudovariety
of ordered monoids is defined the same way as with unordered monoids, using
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homomorphisms of ordered monoids. The Eilenberg correspondence also holds
for ordered monoids [12]. Let V3/2 be the pseudovariety of ordered monoids
which corresponds to Σ2 and V2 be the pseudovariety of monoids which cor-
responds to languages in BΣ2. Since Σ2 ⊆ BΣ2, we obtain V3/2 ⊆ V2 when
ignoring the order. The connection between monoids and languages is given by
the notion of recognizability. A language L ⊆ Γ ∗ is recognized by an ordered
monoid (M,≤) if there is a monoid homomorphism h : Γ ∗ → M such that
L = ∪{

h−1(t)
∣
∣ s ≤ t for some s ∈ h(L)

}
. If M is not ordered, then this means

that L is an arbitrary union of languages of the form h−1(t).
For ω-languages L ⊆ Γ∞ the notion of recognizability is slightly more tech-

nical. For simplicity, we only consider recognition by unordered monoids. Let
h : Γ ∗ → M be a monoid homomorphism. If the homomorphism h is under-
stood, we write [s] for the language h−1(s). We call (s, e) ∈ M ×M a linked pair
if e2 = e and se = s. By Ramsey’s Theorem [15] for every word α ∈ Γ∞ there
exists a linked pair (s, e) such that α ∈ [s][e]ω. A language L ⊆ Γ∞ is recognized
by h if

L =
⋃

{[s][e]ω | (s, e) is a linked pair with [s][e]ω ∩ L �= ∅} .

Since 1ω = 1, the language [1]ω also contains finite words. We thus obtain
recognizability of languages of finite words as a special case.

Next, we define syntactic homomorphisms and syntactic monoids; these
are the minimal recognizers of an ω-regular language. Let L ⊆ Γ∞ be an
ω-regular language. The syntactic monoid of L is defined as the quotient
Synt(L) = Γ ∗/ ≈L where u ≈L v holds if and only if for all x, y, z ∈ Γ ∗ we
have both xuyzω ∈ L ⇔ xvyzω and x(uy)ω ∈ L ⇔ x(vy)ω ∈ L. The syntactic
monoid can be ordered by the partial order �L defined by u �L v if for all
x, y, z ∈ Γ ∗ we have xuyzω ∈ L ⇒ xvyzω and x(uy)ω ∈ L ⇒ x(vy)ω ∈ L.
The syntactic homomorphism hL : Γ ∗ → Synt(L) is given by hL(u) = [u]≈L

.
One can effectively compute the syntactic homomorphism of L. The syntactic
monoid Synt(L) satisfies the property that L is ω-regular if and only if Synt(L)
is finite and the syntactic homomorphism hL recognizes L, see e.g. [10,21]. Every
pseudovariety is generated by its syntactic monoids [4], i.e., every monoid in a
given pseudovariety is a divisor of a direct product of syntactic monoids. The
importance of the syntactic monoid of a language L ⊆ Γ∞ is that it is the
smallest monoid recognizing L:

Lemma 1. Let L ⊆ Γ∞ be a language which is recognized by a homomorphism
h : Γ ∗ → (M,≤). Then, (Synt(L),�L) is a divisor of (M,≤).

Proof. We assume that h is surjective and show that Synt(L) is a homomorphic
image of M . If h is not surjective, we can therefore conclude that Synt(L) is
a divisor of M . We show that h(u) ≤ h(v) ⇒ u �L v. Let u, v be words with
h(u) ≤ h(v) and denote h−1(h(w)) = [h(w)] for words w. Assume xuyzω ∈ L,
then there exists an index i such that (h(xuyzi), h(z)ω) is a linked pair. Thus,
[h(xuyzi)][h(z)]ω ⊆ L and by h(u) ≤ h(v) also [h(xvyzi)][h(z)]ω ⊆ L. This
implies xvyzω ∈ L. The proof that x(uy)ω ∈ L ⇒ x(vy)ω ∈ L is similar. Thus,
u �L v holds which shows the claim. ��
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3 Alphabetic Topology

As mentioned in the introduction, combining algebraic and topological condi-
tions is a successful approach for characterizations of language classes over Γ∞.
A topology on a set X is given by a family of subsets of X (called open) which
are closed under finite intersections and arbitrary unions. We define the alpha-
betic topology on Γ∞ by its basis {uA∞ | u ∈ Γ ∗, A ⊆ Γ}. Hence, an open set
is given by

⋃
A WAA∞ with WA ⊆ Γ ∗. The alphabetic topology has been intro-

duced in [3], where it is used as a part of the characterization of Σ2.

Theorem 1 ([3]). Let L ⊆ Γ∞ be an ω-regular language. Then L ∈ Σ2 if and
only if Synt(L) ∈ V3/2 and L is open in the alphabetic topology.

The alphabetic topology has by itself been the subject of further study [16]. We
are particularly interested in Boolean combinations of open sets. An effective
characterization of a language L being a Boolean combination of open sets in
the alphabetic topology is given in the theorem below.

Theorem 2. Let L ⊆ Γ∞ be an ω-regular language which is recognized by h :
Γ ∗ → M . Then the following are equivalent:

1. L is a Boolean combination of open sets in the alphabetic topology where each
open set is ω-regular.

2. L is a Boolean combination of open sets in the alphabetic topology.
3. For all linked pairs (s, e), (t, f) it holds that if there exists an alphabet C and

words ê, f̂ with h(ê) = e, h(f̂) = f , alph(ê) = alph(f̂) = C and s · h(C∗) =
t · h(C∗), then [s][e]ω ⊆ L ⇔ [t][f ]ω ⊆ L.

Proof. “1 ⇒ 2”: This is immediate.
“2 ⇒ 3”: Let L be a Boolean combination of open sets in the alphabetic

topology. Note that for P,Q ⊆ Γ ∗ and A,B ⊆ Γ it holds PA∞ ∩ QB∞ =
(PA∗ ∩ QB∗)(A ∩ B)∞. Therefore, we may assume

L =
n⋃

i=1

(

(PiA
∞
i ) \

(
mi⋃

j=1

Qi,jB
∞
i,j

))

for some Pi, Qi,j ⊆ Γ ∗ and alphabets Ai, Bi,j ⊆ Γ .
Let (s, e) and (t, f) be some linked pairs, C ⊆ Γ be an alphabet such that

s ·h(C∗) = t ·h(C∗) holds and there exist words ê, f̂ with h(ê) = e, h(f̂) = f and
alph(ê) = alph(f̂) = C. Assume [s][e]ω ⊆ L, but [t][f ]ω �⊆ L. Since h recognizes
L, it suffices to show that [t][f ]ω ∩ L is nonempty to obtain a contradiction. Let
uêω ∈ [s][e]ω ⊆ L for some u ∈ [s]. Since s · h(C∗) = t · h(C∗), we may choose
x, y ∈ C∗ such that s · h(x) = t and t · h(y) = s.

The idea is to find an increasing sequence of words u� ∈ [s] and sets I� ⊆
{1, . . . , n} such that u�C

∞ ∩
(
PiA

∞
i \

(⋃mi

j=1 Qi,jB
∞
i,j

))
= ∅ for all i ∈ I�. We

can set u0 = u and I0 = ∅. Consider the word u�ê
ω ∈ L. There exists an index i ∈
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s = h(u ) t = h(u êkx)

h(x)

h(y)

h(ê) h(f̂)

Fig. 1. Part of the right Cayley graph of M in the proof of “2 ⇒ 3”.

{1, . . . , n}\I� such that u�ê
ω ∈ PiA

∞
i \

(⋃mi

j=1 Qi,jB
∞
i,j

)
. Choose a number k, such

that u�ê
k ∈ PiA

∗
i . Since C = alph(ê) ⊆ Ai, we conclude β� = u�ê

kxf̂ω ∈ PiA
∞
i .

By construction we have β� ∈ [t][f ]ω and therefore, assuming [t][f ]ω ∩ L = ∅,
there exists an index j such that β� ∈ Qi,jB

∞
i,j . Analogously, there exists k′

such that u�ê
kxf̂k′

yC∞ ⊆ Qi,jB
∞
i,j . Hence we can choose u�+1 = u�ê

kxf̂k′
y and

I�+1 = I� ∪ {i}. Figure 1 gives an overview of the construction.
Since u�[e]ω ⊆ L ∩ u�C

∞, this construction has to fail at an index 
 ≤ n.
Therefore, the assumption is not justified and we have [t][f ]ω ∩ L �= ∅, proving
the claim.

“3 ⇒ 1”: Let α ∈ [s][e]ω ⊆ L for a linked pair (s, e) and let C = im(α) denote
the imaginary alphabet of α. By α ∈ [s][e]ω and the definition of C, there exists
an ê ∈ C∗ with alph(ê) = C and h(ê) = e. Define

L(s, C) = [s]C∞ \
(

⋃

D�C

Γ ∗D∞ ∪
⋃

s �∈t·h(C∗)

[t]C∞
)

.

We have α ∈ L(s, C) and L(s, C) is a Boolean combination of open sets in the
alphabetic topology where each open set is ω-regular. There are only finitely
many sets of the type L(s, C). The idea is to saturate L with sets of this type,
i.e., it suffices to show L(s, C) ⊆ L. For C = ∅, we have L(s, C) = [s] ⊆ L. Thus,
we may assume C �= ∅. Let β ∈ L(s, C) be an arbitrary element and let (t, f) be
a linked pair such that β ∈ [t][f ]ω. Since β is in L(s, C), there exists a prefix u
of β such that β ∈ uCω and u ∈ [s].

By β ∈ [t][f ]ω, one gets β = vβ′ with v ∈ [t], β′ ∈ [f ]ω. Using tf = t and
C �= ∅, we may assume that u is a prefix of v, which implies β′ ∈ Cω. Hence we
have t = h(v) ∈ h(uC∗) = s · h(C∗). By construction β �∈ ⋃

s �∈t·h(C∗)[t]C
∞ and

therefore s ∈ t · h(C∗). It follows s · h(C∗) = t · h(C∗). Since β �∈ ⋃
D�C Γ ∗D∞,

there must be a preimage of f of full alphabet C. Therefore, β ∈ [t][f ]ω ⊆ L. ��
The alphabetic topology above is a refinement of the well-known Cantor

topology. The Cantor topology is given by the basis uΓ∞ for u ∈ Γ ∗. An ω-
regular language L is a Boolean combination of open sets in the Cantor topology
if and only if [s][e]ω ⊆ L ⇔ [t][f ]ω ⊆ L for all linked pairs (s, e) and (t, f) of
the syntactic monoid of L with s R t; cf. [3,10,21]. Here s R t denotes one of
Green’s relations: s R t if and only if s · Synt(L) = t · Synt(L). Theorem 2 is a
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similar result, but one had to consider the alphabetic information of the linked
pairs. Hence, one does not have s R t as condition, but rather R-equivalence
within a certain alphabet C.

Remark 1. The strict alphabetic topology on Γ∞, which is introduced in [3],
is given by the basis

{
uA∞ ∩ Aim

∣
∣ u ∈ Γ ∗, A ⊆ Γ

}
and the open sets are of

the form
⋃

A WAA∞ ∩ Aim with WA ⊆ Γ ∗. Reusing the proof of Theorem2 it
turns out, that it is equivalent to be a Boolean combination of open sets in
the alphabetic topology and in the strictly alphabetic topology. Since uA∞ =⋃

B⊆A uA∗B∞ ∩ Bim, every open set in the alphabetic topology is also open in
the strict alphabetic topology. Further, one can adapt the proof of “2 ⇒ 3” of
Theorem 2 to show that if L is a Boolean combination of open sets in the strict
alphabetic topology, then item 3 of Theorem 2 holds.

4 The Fragment BΣ2

Place and Zeitoun have shown that BΣ2 is decidable over finite words. In par-
ticular, they have shown that, given the syntactic homomorphism of a language
L ⊆ Γ ∗, it is decidable if L ∈ BΣ2. Since every pseudovariety is generated by its
syntactic monoids, the result of Place and Zeitoun can be stated as follows:

Theorem 3 ([14]). The pseudovariety V2 corresponding to the BΣ2-definable
languages in Γ ∗ is decidable.

Our second main result charaterizes BΣ2-definable ω-regular languages. We use
Theorem 3 as a black-box result.

Theorem 4. Let L ⊆ Γ∞ be ω-regular. Then the following are equivalent:

1. L is a finite Boolean combination of monomials.
2. L is definable in BΣ2.
3. The syntactic homomorphism h of L satisfies:

(a) Synt(L) ∈ V2 and
(b) for all linked pairs (s, e), (t, f) it holds that if there exists an alphabet C

and words ê, f̂ with h(ê) = e, h(f̂) = f , alph(ê) = alph(f̂) = C and
s · h(C∗) = t · h(C∗), then [s][e]ω ⊆ L ⇔ [t][f ]ω ⊆ L.

Note that item 3 of Theorem 4 is decidable: 3a is decidable by Theorem 3
and 3b is decibable since we can effectively compute the syntactic homomor-
phism h and h(C∗) for all alphabets C.1 We start with the difficult direction “3
⇒ 1” in the proof of Theorem 4. This is Proposition 1. The following lemma is
an auxiliary result for Proposition 1.

1 During the preparation of this submission, we learned that Pierron, Place and
Zeitoun [11] independently found another proof for the decidability of BΣ2 over
infinite words. For documenting the independency of the two proofs, we also include
the technical report of our submission in the list of references [6].
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Lemma 2. For all k there exists a number 
 such that for every set {M1, . . . ,Md}
of k-monomials over Γ ∗ and everyw withw ∈ Mi for all i ∈ {1, . . . , d}, there exists
an 
-monomial N over Γ ∗ with w ∈ N and N ⊆ ⋂

Mi.

Proof. Since the number of k-monomials over Γ ∗ is bounded, this induces a
bound on d and one can iterate the statement. Therefore, it suffices to show the
case d = 2. Consider two k-monomials M1 = A∗

0a1A
∗
1a2 · · · A∗

n−1anA∗
n and M2 =

B∗
0b1B

∗
1b2 · · · B∗

m−1bmB∗
m. Since w ∈ M1 and w ∈ M2, it admits factorizations

w = u0a1u1a2 · · · un−1anun and w = v0b1v1b2 · · · vm−1bmvm such that ui ∈ A∗
i

and vj ∈ B∗
j . The factorizations mark the positions of the ais and the bjs and

pose an alphabetic condition for the factors in between. Thus, there exists a
factorization w = w0c1w1c2 · · · w�−1c�w�, such that the positions of ci are exactly
those, that are marked by ai or bj , i.e., ci = aj or ci = bj for some j. The words
wi are over some alphabet Ci such that Ci = Aj ∩ Bk for some j and k induced
by the factorizations. In the case of consecutive marked positions, one can set
Ci = ∅. Thus, we obtain a monomial N = C∗

0 c1C
∗
1 c2 · · · cp−1C

∗
p−1cpC

∗
p with

Cp = An ∩ Bm. An illustration of this construction can be found in Fig. 2. By
construction N ⊆ M1, N ⊆ M2 and w ∈ N holds. Since there are only finitely
many monomials of degree k, the size of the number 
 is bounded. ��

u0 a1 u1 a2 u2 un−1 an un
w = | ...

w0 c1 w1 c2 c3 w3 c4 wp−2 cp−1wp−1cp wp
w = | ...

v0 b1 v1 b2 vm−1 bm vm
w = | ...

Fig. 2. Different factorizations in the proof of Lemma 2. In the situation of the figure
it holds C0 = A0 ∩ B0, C1 = A1 ∩ B0, C2 = ∅, C3 = A2 ∩ B1, Cp−2 = An−1 ∩ Bm−1,
Cp−1 = An−1 ∩ Bm and Cp = An ∩ Bm.

An analysis of the proof of Lemma 2 yields the bound 
 ≤ nk · k, where nk is
the number of distinct k-monomials over Γ ∗. Next, we show that a language which
is in V2 and is a Boolean combination of alphabetic open sets is a finite Boolean
combination of monomials. One ingredient of the proof is Lemma2: we are able
to compress the information of a set of k-monomials which contain a fixed word
into the information of a single 
-monomial that contains this fixed word.

Proposition 1. Let L ⊆ Γ∞ be a Boolean combination of alphabetic open sets
such that Synt(L) ∈ V2. Then L is a finite Boolean combination of monomials.
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Proof. Let h : Γ ∗ → Synt(L) be the syntactic homomorphism of L and consider
the languages h−1(p) for p ∈ Synt(L). By Theorem 3 we obtain h−1(p) ∈ BΣ2.
Thus, there exists a number k such that for every p ∈ M the language h−1(p) is
saturated by ≡k, i.e., u ≡k v ⇒ h(u) = h(v). By Lemma 2 there exists a number

 such that for every set {M1, . . . ,Mn} of k-monomials and every w with w ∈ Mi

for all i ∈ {1, . . . , n}, there exists an 
-monomial N with w ∈ N ⊆ ∩n
i=1Mi. Let

α ≡∞
� β and α ∈ L. We show β ∈ L which implies L = ∪α∈L[α]∞� and thus that

L is a finite Boolean combination of 
-monomials. Using Boolean combinations
of monomials of the form Γ ∗aA∞, one can test the imaginary alphabet of α and
β. Hence we obtain im(α) = im(β) for the imaginary alphabets. For simplicity,
we write C = {c1, . . . , cm} for the imaginary alphabet of α and β.

Let u′ ≤ α and v′ ≤ β be prefixes such that for every 
-monomial N = N ′·C∞

with α, β ∈ N we have that some prefix of u′, v′ is in N ′. Further, let α = uα′

and β = vβ′ such that

– u′ ≤ u = u′u′′, v′ ≤ v = v′v′′,
– (c1c2 · · · cm)k is a scattered subword of u′′ and v′′,
– and there exists linked pairs (s, e) and (t, f) such that s = h(u), t = h(v),α′ ∈

[e]ω and β′ ∈ [f ]ω.

Note that, by the choice of u′, v′, we have α′, β′ ∈ C∞. We show that s ·h(C∗) =
t · h(C∗), which implies β ∈ L by Theorem 2. By symmetry, it suffices to show
t ∈ s ·h(C∗). Consider the set of k-monomials Ni = N ′

iC
∞ which hold at u, i.e.,

such that u ∈ N ′
i and α′ ∈ C∞. By the choice of 
, there exists an 
-monomial

N ′ such that u ∈ N ′ and N ′ ⊆ ⋂
i N ′

i . Since u ∈ N ′, we obtain α ∈ N := N ′C∞

and by α ≡∞
� β the membership β ∈ N holds. By construction of v, there exists

a word v̂ with v̂ ≤ v′ ≤ v, v̂ ∈ N ′ and β̂ ∈ C∞ with β̂ being defined by β = v̂β̂.
Let v = v̂x, then x ∈ C∗. The situation is depicted in Fig. 3. We show that
ux ≡k v which then implies t ∈ sh(C∗).

u ∈ N

u αα = || ...

v̂ ∈ N v v β

x
β = || ...

∃

Fig. 3. Factorization of α and β in the proof of Proposition 1

Let M be a k-monomial. If ux ∈ M , then there exists a factorization M =
M1M2 where M1,M2 are k-monomials with u ∈ M1 and x ∈ M2. Since uβ′ ∈
M1C

∞, we obtain v̂ ∈ N ′ ⊆ M1 by the definition of N ′. We conclude that
v = v̂x ∈ M1M2 = M .

If v = v̂x ∈ M , then there exists a factorization of the monomial M = M1M2

where M1,M2 are k-monomials with v̂ ∈ M1 and x ∈ M2. Since (c1c2 · · · cm)k
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is a scattered subword of x, there must be some A∗
i in the monomial M2 such

that C ⊆ Ai by the pigeonhole principle. Thus, there exists a factorisation
M2 = M21M22 in k-monomials M21,M22 such that M21 ·C∗ = M21. Let x = x′x′′

such that x′ ∈ M21 and x′′ ∈ M22 and consider β = v̂xβ′ ∈ M1M21 · C∞. Since
α ≡∞

� β, we obtain α ∈ M1M21 · C∞. By construction, some prefix of u is in
M1M21 and by M21 · C∗ = M21 and x′ ∈ C∗, we obtain ux′ ∈ M1M21. Thus,
ux = ux′ · x′′ ∈ M1M21 · M22 = M holds. We conclude ux ≡k v and thus
t = h(v) = h(ux) ∈ s · h(C∗). ��

It is well-known, that the direct product (g × h) : Γ ∗ → M × N,w �→
(g(w), h(w)) of the homomorphisms g : Γ ∗ → M and h : Γ ∗ → N recognizes
Boolean combinations:

Lemma 3. Let L and K be languages such that L is recognized by g : A∗ → M
and K is recognized by h : A∗ → N . Then, any Boolean combination of L and
K is recognized by (g × h).

Proof. Since L ∩ [s][e]ω �= ∅ implies [s][e]ω ⊆ L for some linked pair (s, e),
we obtain L = ∪{

[s][e]ω
∣
∣ [s][e]ω ∩ L �= ∅}

for the complement of L. Thus, it
suffices to show that L ∪ K is recognized by (g × h). Obviously, L is covered by
[(s, t)][(e, f)]ω, where (s, e) is a linked pair of M with [s][e]ω ⊆ L and (t, f) is
any linked pair of N . Similiarly one can cover K and thus M × N recognizes
L ∪ K. ��

Next, we show that the algebraic characterisation V2 of BΣ2 over finite words
also holds over finite and infinite words simultaneously. The proof of this is based
on the fact that the algebraic part of the characterisation of Σ2 over finite words
and finite and infinite words is the same [3] and on the fact that every language
of Σ2 is in BΣ2, i.e., V3/2 ⊆ V2.

Lemma 4. If L ⊆ Γ∞ is definable in BΣ2, then Synt(L) ∈ V2.

Proof. By definition, L ∈ BΣ2 implies that L is a Boolean combination of lan-
guages Li ∈ Σ2. We have Synt(Li) ∈ V3/2 ⊆ V2 by [3]. Since L is a Boolean
combination of Li, the direct product of all Synt(Li) recognizes L by Lemma 3.
In particular, Synt(L) is a divisor of the direct product of Synt(Li) by Lemma 1.
Hence, we obtain Synt(L) ∈ V2. ��
The proof that monomials are definable in Σ2 is straightforward which yields:

Lemma 5. Every monomial L ⊆ Γ∞ is definable in Σ2.

Proof. Let L = A∗
0a1A

∗
1a2 · · · A∗

n−1anA∞
n . The Σ2-formula

∃x1 . . . ∃xn∀y :
n∧

i=1

λ(xi) = ai ∧
n−1∧

i=1

xi < y < xi+1 ⇒ λ(y) ∈ Ai ∧

(y > xn ⇒ λ(y) ∈ An) ∧ (y < x1 ⇒ λ(y) ∈ A0).

defines L. ��
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Combining our results we are ready to prove Theorem4.

Proof (Theorem 4). “1 ⇒ 2”: Since BΣ2 is closed under Boolean combinations, it
suffices to find a Σ2-formula for a single monomial. This is provided by Lemma5.

“2 ⇒ 3”: 3a is proved by Lemma 4. Since A∗
0a1A

∗
1a2 · · · A∗

n−1an is a set of finite
words, a monomial A∗

0a1A
∗
1a2 · · · A∗

n−1anA∞
n is open in the alphabetic topology.

The languages in Σ2 are unions of such monomials [3] and thus languages in
BΣ2 are Boolean combinations of open sets. This implies 3b by Theorem2.

“3 ⇒ 1”: This is Proposition 1 and Theorem 2. ��
Example 1. In this example we show that Synt(L) ∈ V2 for some language L ⊆
Γ∞ does not imply L ∈ BΣ2, i.e., the topological property 3b of Theorem4 is
necessary. For this define L = ({a, b}∗

aa {a, b}∗)ω. We show that Synt(L) ∈ V2,
but L is not a Boolean combination of open sets of the alphabetic topology.
Computing the syntactic monoid of L yields Synt(L) = {1, a, b, aa, ab, ba}. The
equations b2 = b, xaa = aax = aa and bab = b hold in Synt(L). In particular,
(ab)2 = ab and (aa)2 = aa. Thus, (s, e) = (aa, aa) and (t, f) = (aa, ab) are
linked pairs. Let h denote the syntactic homomorphism of L. Choosing aab
as a preimage for aa ∈ Synt(L) yields the alphabetic condition alph(aab) =
alph(ab) = C on the idempotents. Since s = t, we trivially have s · h(C∗) =
t · h(C∗). However, [aa][ab]ω ∩ L = ∅ but [aa][aa]ω ⊆ L. Thus, L does not satisfy
the topological condition 3b of Theorem4. It remains to check Synt(L) ∈ V2. It
is enough to show that the preimages are in BΣ2.

– [1] = 1
– [a] = (ab+)∗a

– [b] = (b+a)∗b+

– [ab] = (ab+)+
– [ba] = (b+a)+

– [aa] = {a, b}∗
aa {a, b}∗

One can find BΣ2 formulas for these languages, e.g., [ab] = L(ϕ) with

ϕ ≡ (∃x∀y : x ≤ y ∧ λ(x) = a) ∧ (∃x∀y : x ≥ y ∧ λ(x) = b) ∧
(∀x∀y : x ≥ y ∨ (∃z : x < z < y) ∨ (λ(x) �= λ(y))

and thus Synt(L) ∈ V2. ♦

5 Summary and Open Problems

The alphabetic topology is an essential ingredient in the study of the fragment
Σ2. Thus, in order to study Boolean combinations of Σ2 formulas, i.e., the
fragment BΣ2 over infinite words, we looked closely at properties of Boolean
combinations of its open sets. It turns out, that it is decidable whether an ω-
regular language is a Boolean combination of open sets. This does not follow
immediately from the decidability of the open sets. We used linked pairs of the
syntactic homomorphism (which are effectively computable) to get decidability
of the topological condition. Combining this result with the decidability of V2

we obtained an effective characterization of BΣ2 over Γ∞, the finite and infinite
words over the alphabet Γ .
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In this paper we dealt with BΣ2, which is the second level of the Straubing-
Thérien hierarchy. Another well-known hierarchy is the dot-depth hierarchy. On
the level of logic, the difference between the Straubing-Thérien hierarchy and the
dot-depth hierarchy is that formulas for the dot-depth hierarchy may also use the
successor predicate. A deep result of Straubing is that over finite words each level
of the Straubing-Thérien hierarchy is decidable if and only if it is decidable in
the dot-depth hierarchy [18]. Thus, the decidability result for BΣ2 by Place and
Zeitoun also yields a decidability result of BΣ2[<,+1]. The fragment Σ2[<,+1]
is decidable for ω-regular languages [5]. This result also uses topological ideas,
namely the factor topology. The open sets in this topology describe which factors
of a certain length k may appear in the “infinite part” of the words. The study
of Boolean combinations of open sets in the factor topology is an interesting line
of future work, and it may yield a decidability result for BΣ2[<,+1] over infinite
words.

Another interesting class of predicates are modular predicates. In [7] the
authors have studied Σ2[<,MOD] over finite words. The results of [7] can be
generalised to infinite words by adapting the alphabetic topology to the modu-
lar setting. As for successor predicates, we believe that an appropriate effective
characterization of this topology might help in deciding BΣ2[<,MOD] over infi-
nite words. To the best of our knowledge however, modular predicates have not
yet been considered over infinite words.
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Institut für Formale Methoden der Informatik,
Universität Stuttgart, Stuttgart, Germany

{kufleitner,jan-philipp.waechter}@fmi.uni-stuttgart.de

Abstract. Overfinitewords, there is a tight connectionbetween thequan-
tifier alternation hierarchy inside two-variable first-order logic FO2 and a
hierarchyof finitemonoids: theTrotter-WeilHierarchy.Thevariousways of
climbing up this hierarchy include Mal’cev products, deterministic and co-
deterministic concatenation as well as identities of ω-terms. We show that
the word problem for ω-terms over each level of the Trotter-Weil Hierar-
chy is decidable; this means, for every variety V of the hierarchy and every
identity u = v of ω-terms, one can decide whether all monoids in V satisfy
u = v. More precisely, for every fixed variety V, our approach yields non-
deterministic logarithmic space (NL) and deterministic polynomial time
algorithms, which are more efficient than straightforward translations of
the NL-algorithms. From a language perspective, the word problem for ω-
terms is the following: for every language varietyV in theTrotter-WeilHier-
archyand every languagevarietyW givenbyan identity ofω-terms, one can
decide whether V ⊆ W. This includes the case where V is some level of the
FO2 quantifier alternation hierarchy. As an application of our results, we
show that the separation problems for the so-called corners of the Trotter-
Weil Hierarchy are decidable.

1 Introduction

For the study of many regular language classes, it turned out to be fruitful if
one finds multiple characterizations for the class. For instance, one can consider
the class of languages recognized by extensive deterministic finite automata (i. e.
automata whose states can be ordered topologically). This is algebraically charac-
terized by the varietyR of R-trivial monoids [3, Chap. 10]. Another example is the
class of star-free languages: it is the class of languages definable by a regular expres-
sion which may use complementation instead of Kleene’s star. Schützenberger’s
famous theorem [20] yields an algebraic characterization for this class: it coincides
with the class of languages which are recognized by aperiodic monoids. A monoid
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M is aperiodic if x|M |! = x|M |!x holds for all x ∈ M . In the case of star-free lan-
guages (as in many other cases), this algebraic characterization is particularly use-
ful as it makes it possible to decide whether a given language is star-free: compute
the language’s syntactic monoid M (which, for a regular language, must be finite)
and check it for aperiodicity. The latter can be achieved by checking the equation
x|M |! = x|M |!x for all x ∈ M . Often, this equation is also stated as xω = xωx since
this notation is independent of the monoid’s size. More formally, we can see the
equation as a pair of ω-terms: these are finite words built using letters, which are
interpreted as variables, concatenation and an additional formal ω power. In order
to check whether the equation α = β consisting of the two ω-terms α and β holds
in a monoid M , one first substitutes the formal ω exponents in α and β by |M |!,
which results in a finite word in variables. One, then, needs to substitute each vari-
able by all element of M , which is possible if M is finite. These substitutions yield
a monoid element belonging to α and one belonging to β. If and only if the respec-
tive pairs of monoid elements are equal for all variable substitutions, the equation
holds in M .

Often, the question whether an equation holds is not only interesting for
a single finite monoid but for a (possibly infinite) class of such monoids. For
example, one may ask whether all monoids in a certain class are aperiodic. This
is trivially decidable if the class is finite. But what if it is infinite? If the class
forms a variety (of finite monoids, sometimes also referred to as a pseudo-variety),
i. e. a class of finite monoids closed under (possibly empty) direct products,
submonoids and homomorphic images, then this problem is called the variety’s
word problem for ω-terms. Usually, the study of a variety’s word problem for
ω-terms also gives more insight into the variety’s structure, which is interesting
in its own right. McCammond showed that the word problem for ω-terms of
the variety A of aperiodic finite monoids is decidable [14]. The problem was
shown to be decidable in linear time for J by Almeida [1] and for R by Almeida
and Zeitoun [2]. Later Moura applied their ideas to show decidability in time
O((nk)5) where k is the maximal nesting depth of the ω-power (which can be
linear in n) of the problem for the variety DA [16]. The variety DA is the class
of finite monoids whose regular D-classes form aperiodic semigroups. This class
is interesting because of another characterization of A and, therefore, star-free
languages: a language is star-free if and only if it can be defined by a sentence
in first-order logic over words [15]. It is easy to see that any first-order sentence
over words is equivalent to one which uses only three variables. Therefore, it is
a natural question to ask what happens if one restricts the number of variables
to two. This leads to two-variable first-order logic (over words). As it turns out,
this class of languages is characterized by DA [23]; see [22] for a survey.

In this paper, we consider the word problems for ω-terms of the varieties of
the Trotter-Weil Hierarchy. Trotter and Weil [24] used the good understanding
of the band varieties (cf. [4]) for studying the lattice of sub-varieties of DA;
bands are semigroups satisfying x2 = x. An important aspect of the Trotter-
Weil Hierarchy is its connection with the quantifier alternation hierarchy inside
two-variable first-order logic. In addition, many characterizations of two-variable
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first-order logic naturally appear within this hierarchy, see [8]. The Trotter-Weil
Hierarchy has a zig-zag shape, see Fig. 3. There are non-symmetric varieties, the
so-called corners; amongst them is the variety R as well as its symmetric dual L,
the variety of L-trivial monoids. Then there are the intersections of corners, the
intersection levels; and finally there are the joins of the corners, the join levels.
Two-variable quantifier alternation corresponds to the intersection levels [11]; in
particular, the variety J of J -trivial monoids is one of them. The union of all
levels is DA [10].
In this paper, we present the following results.
– Our main tool for studying a variety V of the Trotter-Weil Hierarchy is a

family of finite index congruences ≡V,n for n ∈ N. These congruences have
the property that a monoid M is in V if and only if there exists n for which
M divides a quotient by ≡V,n. The congruences are not new but they differ in
some minor but crucial details (and these details necessitate new proofs). In
the literature, the congruences are usually introduced in terms of rankers [8,
11,12].

– We lift the combinatorics from finite words to ω-terms using the “linear order
approach” introduced by Huschenbett and the first author [6]. They showed
that, over varieties of aperiodic monoids, one can use the order N+Z·Q+(−N)
for the formal ω-power. In this paper, we use the simpler order N+(−N). We
show that two ω-terms α and β are equal in some variety V of the Trotter-
Weil hierarchy if and only if �α�N+(−N) ≡V,n �β�N+(−N) for all n ∈ N. Here,
�α�N+(−N) denotes the labeled linear order obtained from replacing every ω-
power by the linear order N + (−N). Note that this order is tailor-made for
the Trotter-Weil Hierarchy and does not result from simple arguments which
work in any variety.

– We show that one can effectively check whether �α�N+(−N) ≡V,n �β�N+(−N)

for all n ∈ N. For some varieties in the Trotter-Weil Hierarchy this is rather
straightforward but for the so-called intersection levels it additionally requires
some kind of synchronization.

– We further improve the algorithms and show that, for every variety V of the
Trotter-Weil Hierarchy, the word problem for ω-terms over V is decidable
in nondeterministic logarithmic space. The main difficulty is to avoid some
blow-up which (naively) is caused by the nesting depth of the ω-power. For
the variety R of R-trivial monoids, this result is incomparable to Almeida
and Zeitoun’s linear time algorithm [2].

– We also introduce polynomial time algorithms, which are more efficient than
the direct translation of these NL algorithms.

– As an application, we show that the separation problem for each corner of the
Trotter-Weil Hierarchy is decidable; for J we adapt the proof of van Rooijen
and Zeitoun [25].

– With little additional effort, we also obtain all of the above results for the
limit of the Trotter-Weil hierarchy, the variety DA. The decidability of the
separation problem re-proves a result of Place, van Rooijen and Zeitoun [19].
The algorithms for the word problem for ω-terms are more efficient than
Moura’s results [16].
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Separability of the join-levels and the intersection-levels is still open. We
conjecture that these problems can be solved with similar but more technical
reductions.

Proofs omitted from this paper can be found in the technical report [9].

2 The Trotter-Weil Hierarchy

Let N = {1, 2, . . . }, N0 = {0, 1, . . . } and −N = {−1,−2, . . . }. For the rest of this
paper, we fix a finite alphabet Σ. By Σ∗, we denote the set of all finite words
over the alphabet Σ, including the empty word ε; Σ+ denotes that excluding
the empty word. Let w = a1a2 . . . an ∈ Σ∗ be a word of length n ∈ N0. The set
{ai | i = 1, 2, . . . , n} of letters appearing in w shall be denoted by alph(w). As
a finite word w ∈ Σ∗ can be seen as a mapping w : {1, 2, . . . , n} → Σ, we use
dom(w) to denote the set of positions in w.

For a pair (l, r) ∈ ({−∞} � dom(w)) × (dom(w) � {+∞}), define w(l,r) as
the restriction of w (seen as a mapping) to the set of positions (strictly) larger
than l and (strictly) smaller than r. Note that w = w(−∞,+∞) and w(l,r) = ε for
any pair (l, r) with no position between l and r.

Monoids, Divisors, Congruences and Recognition. In this paper, the term
monoid refers to a finite monoid (except when stated otherwise). It is well known
that, for any monoid M , there is a smallest number n ∈ N such that mn is idem-
potent (i. e. m2n = mn) for every element m ∈ M ; this number is called the
exponent of M and shall be denoted by M ! = n.1 A monoid N is a divisor of
(another) monoid M , written as N ≺ M , if N is an homomorphic image of a
submonoid of M .

A congruence (relation) in a (not necessarily finite) monoid M is an equiv-
alence relation C ⊆ M × M such that x1 C x2 and y1 C y2 implies x1y1 C x2y2
for all x1, x2, y1, y2 ∈ M . If M is a (possibly infinite) monoid and C ⊆ M × M
is a congruence, then the set of equivalence classes of C, denoted by M/C, is a
well-defined monoid (which might still be infinite), whose size is called the index
of C. For any two congruences C1 and C2, one can define their join C1 ∨ C2 as
the smallest congruence which includes C1 and C2; its index is at most as large
as the index of C1 and the index of C2.

A (possibly infinite) monoid M recognizes a language of finite words L ⊆ Σ∗

if there is a homomorphism ϕ : Σ∗ → M with L = ϕ−1 (ϕ(L)). A language is
regular if and only if it is recognized by a finite monoid. It is well known that
there is a unique smallest monoid which recognizes a given regular language: the
syntactic monoid.

Varieties, π-Terms and Equations. A variety (of finite monoids) – sometimes
also referred to as a pseudo-variety – is a class of monoids which is closed under
submonoids, homomorphic images and – possibly empty – finite direct prod-
ucts. For example, the class R of R-trivial monoids and the class L of L-trivial
1 Note that all statements remain valid if one assumes that M ! is used to denote |M |!.
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w = a b b a b b b b b a b b b a b a b b a b

l Xa(w; l) r

w(l,r) · XL
a w(l,r) · XR

a

Fig. 1. Application of XL
a and XR

a to an example word.

monoids both form a variety, see e.g. [18]. Clearly, if V and W are varieties,
then so is V ∩ W. For example, the class J = R ∩ L is a variety; in fact, it is
the variety of all J -trivial monoids. For two varieties V and W, the smallest
variety containing V ∪ W, the so called join, is denoted by V ∨ W.

Many varieties can be defined in terms of equations (or identities). Because
it will be useful later, we take a more formal approach towards equations by
using π-terms2. A π-term is a finite word, built using letters, concatenation and
an additional formal π-power (and appropriate parentheses), whose π-exponents
act as a placeholder for a substitution value.

To state equations using π-terms, one needs to substitute these placeholders
by actual values resulting in an ordinary finite word. We define �γ�n as the result
of substituting the π-exponents in γ by n ∈ N0. An equation α = β consists of
two π-terms α and β over the same alphabet Σ, which, here, can be seen as a set
of variables. A homomorphism σ : Σ∗ → M is called an assignment of variables
in this context. An equation α = β holds in a monoid M if for every assignment
of variables σ (�α�M !) = σ (�β�M !) is satisfied. It holds in a variety V, if it holds
in all monoids in V.

Relations for the Trotter-Weil Hierarchy. In this paper, we approach the Trotter-
Weil Hierarchy by using certain congruences. First, however, we give some defi-
nitions for factorizations of words at the first or last a-position (i. e. an a-labeled
position). For a word w, a position p ∈ dom(w)�{−∞} and a letter a ∈ alph(w),
let Xa(w; p) denote the first a-position (strictly) larger than p (or the first a-
position in w if p = −∞). It is undefined if there is no such position. Define
Ya(w; p) symmetrically as the first a-position from the right which is (strictly)
smaller than p.

Let w be a word, define

w · XL
a = w(−∞,Xa(w;−∞)), w · XR

a = w(Xa(w;−∞),+∞),

w · Y L
a = w(−∞,Ya(w;+∞)) and w · Y R

a = w(Ya(w;+∞),+∞)

for all a ∈ alph(w). Additionally, define Ca,b as a special form of applying XL
a

first and then Y R
b which is only defined if Xa(w;−∞) is strictly larger than

Yb(w; +∞). For an example of XL
a and XR

a acting on a word see Fig. 1. Note that
we have w = (w ·XL

a )a(w ·XR
a ) = (w ·Y L

a )a(w ·Y R
a ) = (w ·Y L

b )b(w ·Ca,b)a(w ·XR
a )

(whenever these factors are defined).
2 Usually, π-terms are referred to as ω-terms. In this paper, however, we use ω to

denote the order type of the natural numbers. Therefore, we follow the approach of
Perrin and Pin [17] and use π instead of ω.
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u = b b c a a b c a

v = b c b a b c a a

X

X

Y X

Y X

≡
Ym

−
1
,n−

1

≡
Xm

,n−
1

Fig. 2. ≡X
m,n illustrated.

With these definitions in place, we define the
relations3 ≡X

m,n, ≡Y
m,n and ≡WI

m,n of words for m,n ∈
N. The idea is that these relations hold on two words
u and v if both words allow for the same sequence
of factorizations at the first or last occurrence of a
letter. The parameter m is the remaining number of
direction changes (which are caused by an XL

a or Y R
a

factorizations) in such a sequence and the parameter
n is the number of remaining factorization moves
(independent of their direction). Thus, if m or n is
zero, then all of the three relations shall be satisfied
for all words. For m and n larger than zero, our first
assertion is that both words have the same alphabet;
otherwise, one of them would admit a factorization
at a letter while the other would not, as the letter
is not in its alphabet. Furthermore, for u ≡X

m,n v

to hold, we require u · XL
a ≡Y

m−1,n−1 v · XL
a and u · XR

a ≡X
m,n−1 v · XR

a for
all a in the common alphabet of u and v. The former states that, after an Xa

factorization, the left parts of this factorization in both words have to admit the
same factorization sequences where the number of moves as well as the direction
changes has decreased by one. We lose one direction change because we factorize
at the first a to the right of the words’ beginnings but take the factors to the left.
On the other hand, if we take the factors to the right, we only lose one move but
no change in direction; this is stated in the latter requirement. Figure 2 gives a
graphical overview of this. Additionally, we can also change the starting point of
our factorization (which, normally, is the beginning of the words for ≡X

m,n); for
this, we lose one move and one change in direction. Therefore, we also require
u ≡Y

m−1,n−1 v for u ≡X
m,n v to hold.

Symmetrically, we define u ≡Y
m,n v if and only if we have alph(u) = alph(v),

u ≡X
m−1,n−1 v and u · Y L

a ≡Y
m,n−1 v · Y L

a as well as u · Y R
a ≡X

m−1,n−1 v · Y R
a for

all a ∈ alph(u). Additionally, we define ≡R
m,n as the intersection for ≡X

m,n and
≡Y

m,n for all m,n ∈ N.
For u ≡WI

m,n v with m,n ∈ N to hold, we require alph(u) = alph(v) and, for all
a ∈ alph(u), u ·XL

a ≡WI
m−1,n−1 v ·XL

a , u ·XR
a ≡WI

m,n−1 v ·XR
a , u ·Y L

a ≡WI
m,n−1 v ·Y L

a

and u · Y R
a ≡WI

m−1,n−1 v · Y R
a , as well as that u · Ca,b and v · Ca,b are either

both undefined or both defined and u · Ca,b ≡WI
m−1,n−1 v · Ca,b holds. All of these

requirements except for the last one are analogous to the cases for ≡X
m,n and

≡Y
m,n. The last assertion states that the first a is to the right of the last b in u if

3 The presented relations could also be defined by (condensed) rankers (as it is done
in [11,12]). Rankers were introduced by Weis and Immerman [26] who reused the
turtle programs by Schwentick, Thérien and Vollmer [21]. Another concept related
to condensed rankers is the unambiguous interval temporal logic by Lodaya, Pandya
and Shah [13].
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and only if it is so in v and that, in this case, we can continue to factorize in the
middle part between b and a with one less move and one less direction change.

By simple inductions, one can see that the relations are congruences of finite
index over Σ∗. Also note that u ≡Z

m,n v implies u ≡Z
m,k v and, if m > 0, also

u ≡Z
m−1,k v for all k ≤ n and Z ∈ {X,Y,R,WI}.

R2 ∩ L2 = J = R1 = L1

R = R2 L2 = L

R2 ∨ L2

R3 ∩ L3

R3 L3

m
∈ N

R
m

∨
L
m

=
D
A

Fig. 3. Trotter-Weil Hierarchy

The Trotter-Weil Hierarchy. Using these rela-
tions, we can define the Trotter-Weil Hierarchy.
As the name implies, this hierarchy was first
studied by Trotter and Weil [24], who obtained
it by taking a different approach. For more infor-
mation on the equivalence of the two definitions
see also [7,12] and [5, Corollary 4.3].

The Trotter-Weil Hierarchy consists of cor-
ners, join levels and intersection levels. The cor-
ners of the layer m ∈ N are the varieties Rm

and Lm. A monoid M is in Rm if and only if
M ≺ Σ∗/≡X

m,n for an n ∈ N0 and it is in Lm if
and only if M ≺ Σ∗/≡Y

m,n for an n ∈ N0. The
corresponding join level is Rm ∨ Lm and the corresponding intersection level is
Rm∩Lm. A monoid M is in Rm∨Lm if and only if M ≺ Σ∗/≡R

m,n for an n ∈ N

and it is in Rm ∩ Lm if and only if M ≺ Σ∗/≡WI
m,n for an n ∈ N.

The term “hierarchy” is justified by the following inclusions: we have Rm ∩
Lm ⊆ Rm,Lm ⊆ Rm ∨ Lm and Rm ∨ Lm ⊆ Rm+1 ∩ Lm+1. The Trotter-Weil
Hierarchy contains some well known varieties: we have R1 = L1 = J, R2 = R
and L2 = L (for the last two, see [18]).

By taking the union of all varieties in the hierarchy, one gets the variety DA
[10], which is usually defined as the class of monoids whose regular D-classes
form aperiodic semigroups4. Though we state this as a fact here, it can also
be seen as the definition of DA for this paper. These considerations yield the
graphic representation given in Fig. 3. We also note that the intersection levels
corresponds to the quantifier alternation hierarchy of first-order logic with at
most two variables [11]. A first-order sentence using at most two variables belongs
to FO2

m if, on any path in its syntax tree, there is no quantifier after the first
negation and there are at most m blocks of quantifiers. A language is definable
by a sentence in FO2

m if and only if its syntactic monoid is in Rm+1 ∩ Lm+1.

3 Relations and Equations

Order Types. A linearly ordered set (P,≤P ) consists of a (possibly infinite) set P
and a linear ordering relation ≤P of P , i. e. a reflexive, anti-symmetric, transitive

4 For finite monoids, D-classes coincide with J -classes; a D-class is called regular if it
contains an idempotent. A semigroup is called aperiodic (or group-free) if it has no
divisor which is a nontrivial group.
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and total binary relation ≤P ⊆ P ×P . To simplify notation we define two special
objects −∞ and +∞. The former is always smaller with regard to ≤P than any
element in P while the latter is always larger. We call two linearly ordered
sets (P,≤P ) and (Q,≤Q) isomorphic if there is an order-preserving bijection
ϕ : P → Q. Isomorphism between linearly order sets is an equivalence relation;
its classes are called (linear) order types.

The sum of two linearly ordered sets (P,≤P ) and (Q,≤Q) is (P � Q,≤P+Q)
where P�Q is the disjoint union of P and Q and ≤P+Q orders all elements of P to
be smaller than those of Q while it behaves as ≤P and ≤Q on elements from their
respective sets. Similarly, the product of (P,≤P ) and (Q,≤Q) is (P × Q,≤P∗Q)
where (p, q) ≤P∗Q (p̃, q̃) holds if and only if either q ≤Q q̃ and q = q̃ or q = q̃
and p ≤P p̃ holds. Sum and product of linearly ordered sets are compatible with
taking the order type. This allows for writing μ + ν and μ ∗ ν for order types μ
and ν.

We re-use n ∈ N0 to denote the order type of ({1, 2, . . . , n},≤). One should
note that this use of natural numbers to denote order types does not result in
contradictions with sums and products: the usual calculation rules apply. Besides
finite linear order types, we need ω, the order type of (N,≤), and its dual ω∗ the
order type of (−N,≤). Another important order type in the scope of this paper
is ω + ω∗, whose underlying set is N � (−N). Note that, here, natural numbers
and the (strictly) negative numbers are ordered as 1, 2, 3, . . . , . . . ,−3,−2,−1;
therefore, in this order type, we have for example −1 ≥ω+ω∗ 1.

Generalized Words. As already mentioned, any finite word w = a1a2 . . . an of
length n ∈ N0 with ai ∈ Σ can be seen as a function which maps a position i ∈
dom(w) to the corresponding letter ai (or, possibly, the empty map). By relaxing
the requirement of dom(w) to be finite, one obtains the notion of generalized
words: a (generalized) word w over the alphabet Σ of order type μ is a function
w : dom(w) → Σ, where dom(w) is a linearly ordered set in μ. For dom(w), we
usually choose (N,≤), (−N,≤) and (N � (−N),≤ω+ω∗) as representative of ω,
ω∗ and ω + ω∗, respectively. The order type of a finite word of length n is n.

Like finite words, generalized words can be concatenated, i. e. we write u to
the left of v and obtain uv. In that case, the order type of uv is the sum of
the order types of u and v. Beside concatenation, we can also take powers of
generalized words. Let w be a generalized word of order type μ which belongs
to (Pμ,≤μ) and let ν be an arbitrary order type belonging to (Pν ,≤ν). Then,
wν is a generalized word of order type μ ∗ ν which determines the ordering of
its letters; w maps (p1, p2) ∈ Pμ × Pν to w(p1). If ν = n for some n ∈ N, then
wν = wn is equal to the n-fold concatenation of w.

In this paper, the term word refers to a generalized word. If it is important
for a word to be finite, it is referred to explicitly as a finite word. One may verify
that all previous results still apply if a “word” is considered to be a generalized
word instead of a finite word and that previous definitions extend naturally
to generalized words. Especially, we can define alph(w) as the image of w and
apply the ≡Z

m,n relations also to generalized words. We also extend the notation
�γ�μ to arbitrary order types μ. The result of the π-substitution now, of course,
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is a generalized word. Only useful for generalized words, however, is the following
congruence: for m ∈ N0 and Z ∈ {X,Y,R,WI}, define u ≡Z

m v ⇔ ∀n ∈ N :
u ≡Z

m,n v.

Word Problem for π-terms. The word problem for π-terms over a variety V is
the problem to decide whether α = β holds in V for the input π-terms α and β.

In order to solve the word problem for π-terms over the varieties in the
Trotter-Weil Hierarchy, one can use the following connection between the rela-
tions defined above and equations in these varieties, which is straightforward if
one make the transition from finite to infinite words. Besides its use for the word
problem for π-terms, this connection is also interesting in its own right as it can
be used to prove or disprove equations in any of the varieties. As the class of
monoids in which an equation α = β holds is a variety, one can see the assertion
for the join levels as an implication of the ones for the corners.

Theorem 1. Let α and β be two π-terms. For every m ∈ N, we have:

�α�ω+ω∗ ≡X
m �β�ω+ω∗ ⇔ α = β holds in Rm

�α�ω+ω∗ ≡Y
m �β�ω+ω∗ ⇔ α = β holds in Lm

�α�ω+ω∗ ≡R
m �β�ω+ω∗ ⇔ α = β holds in Rm ∨ Lm

�α�ω+ω∗ ≡WI
m �β�ω+ω∗ ⇔ α = β holds in Rm+1 ∩ Lm+1

Corollary 1.
(∀m ∈ N : �α�ω+ω∗ ≡R

m �β�ω+ω∗
) ⇔ α = β holds in DA

4 Decidability

In the previous section, we saw that checking whether α = β holds in a variety of
the Trotter-Weil Hierarchy boils down to checking �α�ω+ω∗ ≡Z

m �β�ω+ω∗ (where
≡Z

m depends on the variety in question). In this section, we give an introduction
on how to do this. The presented approach works uniformly for all varieties in
the Trotter-Weil Hierarchy (in particular, it also works for the intersection levels,
which tend to be more complicated) and is designed to yield efficient algorithms.

The definition of the relations which need to be tested is inherently recur-
sive. One would factorize �α�ω+ω∗ and �β�ω+ω∗ on the first a and/or last b (for
a, b ∈ Σ) and test the factors recursively. Therefore, the computation is based on
working with factors of words of the form �γ�ω+ω∗ where γ is a π-term. We have
already introduced the notation w(l,r) to denote the factor of a finite w which
arises by restricting the domain of w to the open interval (l, r). This notation
can easily be extended to the case of generalized words.

What happens if we consecutively factorize at a first/last a is best understood
if one considers the structure of �(α)π�ω+ω∗ =

(
�α�ω+ω∗

)ω+ω∗
= uω+ω∗

= w,
which is schematically represented in Fig. 4.
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u u u . . . . . . u u u

1 2 3 −3 −2 −1

ω-part ω∗-part

Fig. 4. Representation of uω+ω∗

Suppose u only contains a single a and
we start with the whole word w(−∞,+∞). If
we factorize on the first a taking the part
to the right, then we end up with the fac-
tor w(Xa(w;−∞),+∞) with Xa(w;−∞) = (p, 1)
where p is the single a-position in u. If we do
this again, we obtain w((p,2),+∞). If we now
factorize on the next a but take the part to
the left, then we get w((p,2),(p,3)). Notice that
the difference between 2 and 3 is 1 and that there is no way of getting a (finite)
difference larger than one by factorizing on the respective first a. On the other
hand, we can reach any number in N as long as the right position is not in the
ω-part.

Notice that there is also no way of reaching (p,−2) as left border without
having (q,−1) or (q,−2) as right border for a position q ∈ dom(u). These obser-
vations (and their symmetrical duals) lead to the notion of normalizable pairs
of positions.

The choice of words indicates that normalizability of a pair (l, r) can be used
to define a normalization. We omit a formal – unfortunately, quite technical –
definition of this, but give a description of its idea. Let us refer back to the
schematic representation of �(α)π�ω+ω∗ = w as given in Fig. 4. Basically, there
are three different cases for relative positions of the left border l and the right
border r which describe the factor w(l,r):

1. l is in the ω-part and r is in the ω∗-part,
2. l and r are either both in the ω-part or both in the ω∗-part and have the

same value there, or
3. l and r are either both in the ω-part or both in the ω∗-part but r has a value

exactly larger by one than l.

This is ensured by the normalizability of (l, r). Now, in the first case, we can
safely move l to value 1 (the first position) and r to value −1 (the last position)
without changing the described factor. In the second and third case, we can move
l and r to any value – as long as we retain the difference between the values –
without changing the described factor. Here, we move them to the left-most
values (which are 1, 1 or 1, 2). Afterwards, we go on recursively.

Unfortunately, things get a bit more complicated because l might be −∞
and r might be +∞. In these cases, we normalize to the left-most or right-most
value without changing the factor.

For concatenations of π-terms, we have a similar situation: either l and r
belong both to the left or to the right factor, in which case we can continue
by normalization with respect to that, or l belongs to the left factor and r
belongs to the right one. In this case, we have to continue the normalization
with (l,+∞) and (−∞, r) in the respective concatenation parts, as this ensures
that the described factor remains unchanged.
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One should note that if we normalize a normalizable pair (l, r), then the
resulting pair is normalizable itself. Indeed, if we normalize an already normal-
ized pair again, we do not change any values.

Another observation is crucial for the proof of the decidability: after normal-
izing a pair (l, r) the values belonging to the ω + ω∗ parts for the two positions
are all in {1, 2,−2,−1}. But: there are only finitely many such positions in any
word w = �γ�ω+ω∗ for a π-term γ. Because the normalization preserves the
described factor, this means that there are only finitely many factors which can
result from a sequence of first/last a factorizations.

Plugging all these ideas and observations together yields a proof for the next
theorem (note that decidability for DA has already been shown by Moura [16]).
Here, we only give a sketch of the proof.

Theorem 2. The word problems for π-terms over Rm, Lm, Rm ∨ Lm and
Rm ∩Lm are decidable for any m ∈ N. Moreover, the word problem for π-terms
over DA is decidable.

Proof (Sketch). The proof is structurally equivalent for all stated varieties.
Though it can also be proved directly, decidability for the join levels can be
seen as an implication of the decidability for the corners.

The basic idea is to construct a finite automaton for each input π-term γ.
The nodes consist of the normalized position pairs and the edges are labeled
by ZD

a for variables a, Z ∈ {X,Y } and D ∈ {L,R}. The node (l, r) has an
out-going ZD

a -edge if w′ = w(l,r) · ZD
a is defined for w = �γ�ω+ω∗ ; its target is

obtained by normalizing the pair describing w′. Except for DA, we additionally
have to keep track of the alternations between Xa and Ya factorizations; this can
be done by taking the intersection of two automata. For the intersection levels,
we also need Ca,b-edges which are defined analogously. If there is a path labeled
by Z1Z2 . . . Zk in the automaton for α but not in the one for β, we know that
�α�ω+ω∗ is not in relation with �β�ω+ω∗ under the appropriate relation given
by Theorem 1. Therefore, checking α = β reduces to checking the automata’s
symmetric difference for emptiness. ��

In the presented algorithm, we have to store and compute normalized pairs of
positions in words of the form �γ�ω+ω∗ for a π-term γ. To store a single position
of such a pair, one could simply store the values for the π-exponents and a
position in γ. While this would be sufficient to exactly determine the position, it
is impossible to do in logarithmic space. With some additional ideas, however, it
is, in fact, possible to solve the problems in nondeterministic logarithmic space,
which we state in the following theorem (see the technical report [9] for more
details).

Theorem 3. The word problems for π-term over Rm, Lm, Rm∨Lm, Rm∩Lm

and DA can be solved by a nondeterministic Turing machine in logarithmic space
(for every m ∈ N).

While NL is quite efficient from a complexity class perspective, directly trans-
lating the algorithm to polynomial time does not result in a better running time



248 M. Kufleitner and J.Ph. Wächter

than the algorithm for DA given by Moura [16]. However, with some additional
tweaks, the algorithm’s efficiency can be improved, which yields the following
theorem [9].

Theorem 4. The word problems for π-terms over Rm, Lm, Rm∨Lm and Rm∩
Lm can be solved by a deterministic algorithm with running time in O(n7m2)
where n is the length of the input π-terms. Moreover, the word problem for π-
terms over DA can be solved by a deterministic algorithms in time O(n7).

5 Separability

Two languages L1, L2 ⊆ Σ∗ are separable by a variety V if there is a language
S ⊆ Σ∗ with L1 ⊆ S and L2 ∩S = ∅ such that S can be recognized by a monoid
M ∈ V. The separation problem of a variety V is the problem to decide whether
two regular input languages of finite words are separable by V.

We are going to show the decidability of the separations problems of Rm for
all m ∈ N as well as for DA using the techniques presented in this paper5. Note
that, by symmetry, this also shows decidability for Lm.

The general idea is as follows. If the input languages are separable, then
we can find a separating language S which is recognized by a monoid in the
variety in question. This, we can do by recursively enumerating all monoids
and all languages in a suitable representation. For the other direction, we show
that, if the input languages are inseparable, then there are π-terms α and β
which witness their inseparability. Since we can also recursively enumerate these
π-terms, we have decidability.

To construct suitable π-terms we need an additional combinatoric property
of the ≡X

m,n relations (which, in a slightly different form, can also be found
in [12]). Using that, one can prove the following lemma concerning the π-term
construction and plug everything together.

Lemma 1. Let M be a monoid, ϕ : Σ∗ → M a homomorphism and m ∈ N0. Let
(un, vn)n∈N0 be an infinite sequence of word pairs (un, vn)n∈N0 with un, vn ∈ Σ∗,
un ≡X

m,n vn, ϕ(un) = mu and ϕ(vn) = mv for fixed monoid elements mu,mv ∈
M and all n ∈ N0. Then, the sequence yields π-terms α and β (over Σ) such
that ϕ (�α�M !) = mu, ϕ (�β�M !) = mv and �α�ω+ω∗ ≡X

m �β�ω+ω∗ hold.

Theorem 5. The separation problem for Rm and Lm is decidable for all m ∈ N.

Proof (idea). The idea is to recursively enumerate all separating languages and
also all the π-terms which, by the last lemma, witness inseparability. ��

Since two languages are separable by Rm for some m ∈ N which depends
only on the size of Σ [26] if they are separable by DA, we also get decidability
for DA, which has already been shown by Place, van Rooijen and Zeitoun [19].

Corollary 2. The separation problem for DA is decidable.
5 Decidability for DA is already known [19]. The proof, however, uses a fix point

saturation, which is different from our approach.
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Abstract. We provide a list of new natural VNP-Intermediate poly-
nomial families, based on basic (combinatorial) NP-Complete problems
that are complete under parsimonious reductions. Over finite fields, these
families are in VNP, and under the plausible hypothesis ModpP �⊆ P/poly,
are neither VNP-hard (even under oracle-circuit reductions) nor in VP.
Prior to this, only the Cut Enumerator polynomial was known to be
VNP-intermediate, as shown by Bürgisser in 2000.

We next show that over rationals and reals, two of our intermedi-
ate polynomials, based on satisfiability and Hamiltonian cycle, are not
monotone affine polynomial-size projections of the permanent. This aug-
ments recent results along this line due to Grochow.

Finally, we describe a (somewhat natural) polynomial defined inde-
pendent of a computation model, and show that it is VP-complete under
polynomial-size projections. This complements a recent result of Durand
et al. (2014) which established VP-completeness of a related polynomial
but under constant-depth oracle circuit reductions. Both polynomials
are based on graph homomorphisms. A simple restriction yields a family
similarly complete for VBP.

1 Introduction

The algebraic analogue of the P versus NP problem, famously referred to as
the VP versus VNP question, is one of the most significant problem in alge-
braic complexity theory. Valiant [27] showed that the Permanent polynomial
is VNP-Complete (over fields of char �= 2). A striking aspect of this polynomial is
that the underlying decision problem, in fact the search problem, is in P. Given
a graph, we can decide in polynomial time whether it has a perfect matching,
and if so find a maximum matching in polynomial time [11]. Since the under-
lying problem is an easier problem, it helped in establishing VNP-Completeness
of a host of other polynomials by a reduction from the Permanent polynomial
(cf. [3]). Inspired from classical results in structural complexity theory, in par-
ticular [19], Bürgisser [4] proved that if Valiant’s hypothesis (i.e. VP �= VNP)
is true, then, over any field there is a p-family in VNP which is neither in VP
nor VNP-Complete with respect to c-reductions. Let us call such polynomial
families VNP-Intermediate (i.e. in VNP, not VNP-Complete, not in VP). Fur-
ther, Bürgisser [4] showed that over finite fields, a specific family of polynomials
c© Springer International Publishing Switzerland 2016
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is VNP-Intermediate, provided the polynomial hierarchy PH does not collapse
to the second level. On an intuitive level these polynomials enumerate cuts in
a graph. This is a remarkable result, when compared with the classical P-NP
setting or the BSS-model. Though the existence of problems with intermedi-
ate complexity has been established in the latter settings, due to the involved
“diagonalization” arguments used to construct them, these problems seem highly
unnatural. That is, their definitions are not motivated by an underlying combina-
torial problem but guided by the needs of the proof and, hence, seem artificial.
The question of whether there are other naturally-defined VNP-Intermediate
polynomials was left open by Bürgisser [3]. We remark that to date the cut enu-
merator polynomial from [4] is the only known example of a natural polynomial
family that is VNP-Intermediate.

The question of whether the classes VP and VNP are distinct is often phrased
as whether Permn is not a quasi-polynomial-size projection of Detn. The impor-
tance of this reformulation stems from the fact that it is a purely algebraic
statement, devoid of any dependence on circuits. While we have made very lit-
tle progress on this question of determinantal complexity of the permanent, the
progress in restricted settings has been considerable. One of the success stories
in theoretical computer science is unconditional lower bound against monotone
computations [1,23,24]. In particular, Razborov [24] proved that computing
the permanent over the Boolean semiring requires monotone circuits of size at
least nΩ(log n). Jukna [17] observed that if the Hamilton cycle polynomial is a
monotone p-projection of the permanent, then from the observation that the
clique polynomial is a monotone projection of the Hamiltonian cycle [27] and
that the clique requires monotone circuits of exponential size [1], one would get
a lower bound of 2nΩ(1)

for monotone circuits computing the permanent, thus
improving on [24]. The importance of this observation is also highlighted by the
fact that such a monotone p-projection, over the reals, would give an alternate
proof of the fact that computing permanent by monotone circuits over R requires
size at least 2nΩ(1)

. Jerrum and Snir [16] proved that the permanent requires
monotone circuits of size 2Ω(n) over R and tropical semiring. The first progress
on this question, raised in [17], was made recently by Grochow [14]. He showed
that the Hamiltonian cycle polynomial is not a monotone sub-exponential-size
projection of the permanent. This answered Jukna’s question in its entirety, but
Grochow [14] using his techniques further established that polynomials like the
perfect matching polynomial, and even the VNP-Intermediate cut enumerator
polynomial of Bürgisser [4], are not monotone polynomial-size projections of the
permanent. This raises an intriguing question of whether there are other such
non-negative polynomials which share this property.

While the Perm vs Det problem has become synonymous with the VP vs
VNP question, there is a strange feeling about it. This rises from two facts:
one, that the VP-hardness of the determinant is known only under the more
powerful quasi-polynomial-size projections, and, second, the lack of natural
VP-complete polynomials (with respect to polynomial-size projections) in the
literature. (In fact, with respect to p-projections, the determinant is complete
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for the possibly smaller class VBP of polynomial-sized algebraic branching pro-
grams.) To remedy this situation, it seems crucial to understand the computation
in VP. Bürgisser [3] showed that a generic polynomial family constructed using
a topological sort of a generic VP circuit, while controlling the degree, is com-
plete for VP. Raz [22], using the depth reduction of [28], showed that a family
of “universal circuits” is VP-Complete. Thus both families directly depend on
the circuit definition or characterization of VP. Last year, Durand et al. [10]
made significant progress and provided a natural, first of its kind, VP-Complete
polynomial. However, the natural polynomials studied by Durand et al. lacked a
bit of punch because their completeness was established under polynomial-size
constant depth c-reductions rather than projections.

In this paper, we make progress on all three fronts. First, we provide a list of
new natural polynomial families, based on basic (combinatorial) NP-Complete
problems [13] whose completeness is via parsimonious reductions [26], that are
VNP-Intermediate over finite fields (Theorem 1). Then, we show that over reals,
some of our intermediate polynomials are not monotone affine polynomial-size
projections of the permanent (Theorem 2). As in [14], the lower bound results
about monotone affine projections are unconditional. Finally, we improve upon
[10] by characterizing VP and establishing a natural VP-Complete polynomial
under polynomial-size projections (Theorem5). A modification yields a family
similarly complete for VBP (Theorem 6).

2 Preliminaries

Algebraic Complexity: We say that a polynomial f is a projection of g if f
can be obtained from g by setting the variables of g to either constants in the
field, or to the variables of f . A sequence (fn) is a p-projection of (gm), if fn is a
projection of gt such that t is polynomially bounded in n. There are other notions
of reductions between families of polynomials, like c-reductions (polynomial-size
oracle circuit reductions), constant-depth c-reductions, and linear p-projections.
For more on these reductions, see [3].

An arithmetic circuit is a directed acyclic graph with leaves labeled by vari-
ables or constants from an underlying field, internal nodes labeled by field opera-
tions + and ×, and a designated output gate. Each node computes a polynomial
in a natural way. The polynomial computed by a circuit is the polynomial com-
puted at its output gate. A parse tree of a circuit captures monomial generation
within the circuit. For a complete definition see [20]. A circuit is said to be skew
if at every × gate, at most one incoming edge is the output of another gate.

A family of polynomials (fn(x1, . . . , xm(n))) is called a p-family if both the
degree d(n) of fn and the number of variables m(n) are polynomially bounded.
A p-family is in VP (resp. VBP) if a circuit family (skew circuit family, resp.)
(Cn) of size polynomially bounded in n computes it. A sequence of polynomials
(fn) is in VNP if there exist a sequence (gn) in VP, and polynomials m and t such
that for all n, fn(x̄) =

∑
ȳ∈{0,1}t(x̄) gn(x1, . . . , xm(n), y1, . . . , yt(n)). (VBP denotes

the algebraic analogue of branching programs. Since these are equivalent to skew
circuits, we directly use a skew circuit definition of VBP.)
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Boolean Complexity: We need some basics from Boolean complexity theory.
Let P/poly denote the class of languages decidable by polynomial-sized Boolean
circuit families. A function φ : {0, 1}∗ → N is in #P if there exists a polynomial
p and polynomial time deterministic Turing machine M such that for all x ∈
{0, 1}∗, f(x) = |{y ∈ {0, 1}p(|x|) | M(x, y) = 1}|. For p a prime, define

#pP = {ψ : {0, 1}∗ → Fp | ψ(x) = φ(x) mod p for some φ ∈ #P},

ModpP = {L ⊆ {0, 1}∗ | for some φ ∈ #P, x ∈ L ⇐⇒ φ(x) ≡ 1 mod p}

It is easy to see that if φ : {0, 1}∗ → N is #P-complete with respect to par-
simonious reductions, then the language L = {x | φ(x) ≡ 1 mod p} is ModpP-
complete with respect to many-one reductions.

Graph Theory: We consider the treewidth and pathwidth parameters for an
undirected graph. We will work with a “canonical” form of decompositions which
is generally useful in dynamic-programming algorithms.

A (nice) tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )),
where T is a tree, rooted at Xr, whose every node t is assigned a vertex subset
Xt ⊆ V (G), called a bag, such that the following conditions hold:

1. Xr = ∅, |X�| = 1 for every leaf � of T , and ∪t∈V (T )Xt = V (G).
That is, the root contain the empty bag, the leaves contain singleton sets,
and every vertex of G is in at least one bag.

2. For every (u, v) ∈ E(G), there exists a node t of T such that {u, v} ⊆ Xt.
3. For every u ∈ V (G), the set Tu = {t ∈ V (T ) | u ∈ Xt} induces a connected

subtree of T .
4. Every non-leaf node t of T is of one of the following three types:

– Introduce node: t has exactly once child t′, and Xt = Xt′ ∪{v} for some
vertex v /∈ Xt′ . We say that v is introduced at t.

– Forget node: t has exactly one child t′, and Xt = Xt′\{w} for some
vertex w ∈ Xt′ . We say that w is forgotten at t.

– Join node: t has two children t1, t2, and Xt = Xt1 = Xt2 .

The width of a tree decomposition T is one less than the size of the largest bag;
that is, maxt∈V (T ) |Xt|−1. The tree-width of a graph G is the minimum possible
width of a tree decomposition of G.

In a similar way we can also define a nice path decomposition of a graph. For
a complete definition we refer to [7].

A sequence (Gn) of graphs is called a p-family if the number of vertices in
Gn is polynomially bounded in n. It is further said to have bounded tree(path)-
width if for some absolute constant c independent of n, the tree(path)-width of
each graph in the sequence is bounded by c.

A homomorphism from G to H is a map from V (G) to V (H) preserving
edges. A graph is called rigid if it has no homomorphism to itself other than
the identity map. Two graphs G and H are called incomparable if there are no
homomorphisms from G → H as well as H → G. It is known that asymptotically
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almost all graphs are rigid, and almost all pairs of nonisomorphic graphs are also
incomparable. For the purposes of this paper, we only need a collection of three
rigid and mutually incomparable graphs. For more details, we refer to [15].

3 VNP-Intermediate

In [4], Bürgisser showed that unless PH collapses to the second level, an explicit
family of polynomials, called the cut enumerator polynomial, isVNP-intermediate.
He raised the question, recently highlighted again in [14], of whether there are other
such natural VNP-intermediate polynomials. In this section we show that in fact
his proof strategy itself can be adapted to other polynomial families as well. The
strategy can be described abstractly as follows: Find an explicit polynomial family
h = (hn) satisfying the following properties.

M: Membership. The family is in VNP.
H: Hardness. The monomials of h encode solutions to a problem that is #P-

hard via parsimonious reductions. Thus if h is in VP, then the number of
solutions, modulo p, can be extracted using coefficient computation.

E: Ease. Over a field Fq of size q and characteristic p, h can be evaluated in P.
Thus if h is VNP-hard, then we can efficiently compute #P-hard functions,
modulo p.

Then, unless ModpP ⊆ P/poly (which in turn implies that PH collapses to the
second level, [18]), h is VNP-intermediate.

We provide a list of p-families that, under the same condition ModpP �⊆
P/poly, are VNP-intermediate. All these polynomials are based on basic combi-
natorial NP-complete problems that are complete under parsimonious reduction.

(1) The satisfiablity polynomial Satq = (Satqn): For each n, let Cln denote the
set of all possible clauses of size 3 over 2n literals. There are n variables
X̃ = {Xi}n

i=1, and also 8n3 clause-variables Ỹ = {Yc}c∈Cln , one for each
3-clause c.

Satqn :=
∑

a∈{0,1}n

(
n∏

i=1

X
ai(q−1)
i

)
⎛

⎜
⎝

∏

c ∈Cln
a satisfies c

Y q−1
c

⎞

⎟
⎠ .

(2) The vertex cover polynomial VCq = (VCq
n): For a complete graph Gn on n

nodes, we have the set of variables X̃ = {Xe}e∈En
and Ỹ = {Yv}v∈Vn

.

VCq
n :=

∑

S⊆Vn

(
∏

e∈En : e is incident on S

Xq−1
e

) (
∏

v∈S

Y q−1
v

)

.

(3) The clique/independent set polynomial CISq = (CISqn):

CISqn :=
∑

T⊆En

(
∏

e∈T

Xq−1
e

) (
∏

v incident on T

Y q−1
v

)

.
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(4) The 3D-matching polynomial 3DMq = (3DMq
n): Consider the complete tri-

partite hyper-graph, where each part in the partition contain n nodes, and
each hyperedge has exactly one node from each part. There are variables Xe

for hyperedge e and Yv for node v.

3DMq
n :=

∑

M⊆An×Bn×Cn

(
∏

e∈M

Xq−1
e

)
⎛

⎜
⎜
⎝

∏

v∈M
(counted only once)

Y q−1
v

⎞

⎟
⎟
⎠ .

(5) The clow polynomial Clowq = (Clowq
n): A clow in an n-vertex graph is a

closed walk of length exactly n, in which the minimum numbered vertex
(called the head) appears exactly once.

Clowq
n :=

∑

w: clow of length n

⎛

⎝
∏

e: edges in w

Xq−1
e

⎞

⎠

⎛

⎜
⎜
⎝

∏

v: vertices in w
(counted only once)

Y q−1
v

⎞

⎟
⎟
⎠ .

(If an edge e is used k times in a clow, it contributes X
k(q−1)
e to the mono-

mial.)

We show that if ModpP �⊆ P/poly, then all five polynomials defined above are
VNP-intermediate.

Theorem 1. Over a finite field Fq of characteristic p, the polynomial families
Satq, VCq, CISq, 3DMq, and Clowq, are in VNP. Further, if ModpP �⊆ P/poly,
then they are all VNP-intermediate; that is, neither in VP nor VNP-hard with
respect to c-reductions.

Proof (Sketch). (M) An easy way to see membership in VNP is to use Valiant’s
criterion ([27]; see also Proposition 2.20 in [3]); the coefficient of any monomial
can be computed efficiently, hence the polynomial is in VNP.

We illustrate the rest of the proof by showing that the polynomial Satq sat-
isfies the properties (H), (E).

(H): Assume (Satqn) is in VP, via polynomial-sized circuit family {Cn}n≥1.
We will use Cn to give a P/poly upper bound for computing the number of
satisfying assignments of a 3-CNF formula, modulo p. Since this question is
complete for ModpP, the upper bound implies ModpP is in P/poly.

Given an instance φ of 3SAT, with n variables and m clauses, consider the
projection of Satqn obtained by setting all Yc for c ∈ φ to t, and all other
variables to 1. This gives the polynomial Satqφ(t) =

∑m
j=1 djt

j(q−1) where dj is
the number of assignments (modulo p) that satisfy exactly j clauses in φ. Our
goal is to compute dm.

We convert the circuit C into a circuit D that compute elements of Fq[t]
by explicitly giving their coefficient vectors, so that we can pull out the desired
coefficient. (Note that after the projection described above, C works over the
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polynomial ring Fq[t]). Since the polynomial computed by C is of degree m(q−1),
we need to compute the coefficients of all intermediate polynomials too only upto
degree m(q − 1). Replacing + by gates performing coordinate-wise addition, ×
by a sub-circuit performing (truncated) convolution, and supplying appropriate
coefficient vectors at the leaves gives the desired circuit. Since the number of
clauses, m, is polynomial in n, the circuit D is also of polynomial size. Given the
description of C as advice, the circuit D can be evaluated in P, giving a P/poly
algorithm for computing #3-SAT(φ) mod p. Hence ModpP ⊆ P/poly.

(E) Consider an assignment to X̃ and Ỹ variables in Fq. Since all exponents
are multiples of (q − 1), it suffices to consider 0/1 assignments to X̃ and Ỹ .
Each assignment a contributes 0 or 1 to the final value; call it a contributing
assignment if it contributes 1. So we just need to count the number of con-
tributing assignments. An assignment a is contributing exactly when ∀i ∈ [n],
Xi = 0 =⇒ ai = 0, and ∀c ∈ Cln, Yc = 0 =⇒ a does not satisfy c. These two con-
ditions, together with the values of the X and Y variables, constrain many bits of
a contributing assignment; an inspection reveals how many (and which) bits are
so constrained. If any bit is constrained in conflicting ways (for example, Xi = 0,
and Yc = 0 for some clause c containing the literal x̄i), then no assignment is
contributing (either ai = 1 and the X part becomes zero due to Xai

i , or ai = 0
and the Y part becomes zero due to Yc). Otherwise, some bits of a potentially
contributing assignment are constrained by X and Y , and the remaining bits can
be set in any way. Hence the total sum is precisely 2(# unconstrained bits) mod p.

Now assume Satq is VNP-hard. Let L be any language in ModpP, witnessed
via #P-function f . (That is, x ∈ L ⇐⇒ f(x) ≡ 1 mod p.) By the results of [3,5],
there exists a p-family r = (rn) ∈ VNPFp

such that ∀n, ∀x ∈ {0, 1}n, rn(x) =
f(x) mod p. By assumption, there is a c-reduction from r to Satq. We use the
oracle circuits from this reduction to decide instances of L. On input x, the
advice is the circuit C of appropriate size reducing r to Satq. We evaluate this
circuit bottom-up. At the leaves, the values are known. At + and × gates, we
perform these operations in Fq. At an oracle gate, the paragraph above tells us
how to evaluate the gate. So the circuit can be evaluated in polynomial time,
showing that L is in P/poly. Thus ModpP ⊆ P/poly. �

It is worth noting that the cut enumerator polynomial Cutq, showed by
Bürgisser to be VNP-intermediate over field Fq, is in fact VNP-complete over
the rationals if q = 2, [8]. Thus the above technique is specific to finite fields.

4 Monotone Projection Lower Bounds

We now show that some of our intermediate polynomials are not monotone p-
projections of the Permanent polynomial. The results here are motivated by
the recent results of Grochow [14]. Recall that a polynomial f(x1, . . . , xn) is a
projection of a polynomial g(y1, . . . , ym) if f(x1, . . . , xn) = g(a1, . . . , am), where
ai’s are either constants or xj for some j. The polynomial f is an affine projection
of g if f can be obtained from g by replacing each yi with an affine linear function
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�i(x̃). Over any subring of R, or more generally any totally ordered semi-ring,
a monotone projection is a projection in which all constants appearing in the
projection are non-negative. We say that the family (fn) is a (monotone affine)
projection of the family (gn) with blow-up t(n) if for all sufficiently large n, fn

is a (monotone affine) projection of gt(n).

Theorem 2. Over the reals (or any totally ordered semi-ring), for any q,
the families Satq and Clowq are not monotone affine p-projections of the
Permanent family. Any monotone affine projection from Permanent to Satq

must have a blow-up of at least 2Ω(
√

n). Any monotone affine projection from
Permanent to Clowq must have a blow-up of at least 2Ω(n).

Before giving the proof, we set up some notation. For more details, see [2,14,25].
For any polynomial p in n variables, let Newt(p) denote the polytope in R

n that
is the convex hull of the vectors of exponents of monomials of p. For any Boolean
formula φ on n variables, let p-SAT(φ) denote the polytope in R

n that is the
convex hull of all satisfying assignments of φ. Let Kn = (Vn, En) denote the
n-vertex complete graph. The travelling salesperson (TSP) polytope is defined
as the convex hull of the characteristic vectors of all subsets of En that define a
Hamiltonian cycle in Kn.

For a polytope P , let c(P ) denote the minimal number of linear inequalities
needed to define P . A polytope Q ⊆ R

m is an extension of P ⊆ R
n if there is an

affine linear map π : Rm → R
n such that π(Q) = P . The extension complexity

of P , denoted xc(P ), is the minimum size c(Q) of any extension Q (of any
dimension) of P . The following are straightforward, see for instance [12,14].

Fact 3. 1. c(Newt(Permn)) � 2n.
2. If polytope Q is an extension of polytope P , then xc(P ) � xc(Q).

We use the following recent results.

Proposition 1. 1. Let f(x1, . . . , xn) and g(y1, . . . , ym) be polynomials over a
totally ordered semi-ring R, with non-negative coefficients. If f is a monotone
projection of g, then the intersection of Newt(g) with some linear subspace is
an extension of Newt(f). In particular, xc(Newt(f)) � m + c(Newt(g)). [14]

2. For every n there exists a 3SAT formula φ with O(n) variables and O(n)
clauses such that xc(p-SAT(φ)) � 2Ω(

√
n). [2]

3. The extension complexity of the TSP polytope is 2Ω(n). [25]

Proof (of Theorem 2). Let φ be a 3SAT formula with n variables and m clauses
as given by Proposition 1(2). For the polytope P = p-SAT(φ), xc(P ) is high.

Let Q be the Newton polytope of Satqn. It resides in N dimensions, where
N = n+ |Cln| = n+8n3, and is the convex hull of vectors of the form (q −1)〈ãb̃〉
where ã ∈ {0, 1}n, b̃ ∈ {0, 1}N−n, and for all c ∈ Cln, ã satisfies c iff bc = 1. For
each ã ∈ {0, 1}n, there is a unique b̃ ∈ {0, 1}N−n such that (q − 1)〈ãb̃〉 is in Q.

Define the polytope R, also in N dimensions, to be the convex hull of vectors
that are vertices of Q and also satisfy the constraint

∑
c∈φ bc ≥ m. This con-

straint discards vertices of Q where ã does not satisfy φ. Thus R is an extension
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of P (projecting the first n coordinates of points in R gives a (q−1)-scaled version
of P ), so by Fact 3(2), xc(P ) ≤ xc(R). Further, we can obtain an extension of R
from any extension of Q by adding just one inequality; hence xc(R) ≤ 1+xc(Q).

Suppose Satq is a monotone affine projection of Permn with blow-up t(n). By
Fact 3(1) and Proposition 1(1), xc(Newt(Satq)) = xc(Q) ≤ t(n) + c(Permt(n)) ≤
O(t(n)). From the preceding discussion and By Proposition 1(2), we get 2Ω(

√
n) ≤

xc(P ) ≤ xc(R) ≤ 1 + xc(Q) ≤ O(t(n)). It follows that t(n) is at least 2Ω(
√

n).
For the Clowq polynomial, let P be the TSP polytope and Q be Newt(Clowq).

The vertices of Q are of the form (q − 1)ãb̃ where ã ∈ {0, 1}(n
2) picks a subset of

edges, b̃ ∈ {0, 1}n picks a subset of vertices, and the picked edges form a length-
n clow touching exactly the picked vertices. Define polytope R by discarding
vertices of Q where

∑
i∈[n] bi < n. Now the same argument as above works,

using Proposition 1(3) instead of (2). �

5 Complete Families for VP and VBP

The quest for a natural VP-Complete polynomial has generated a significant
amount of research [3,6,10,21,22]. The first success story came from [10]. They
studied naturally defined homomorphism polynomials and showed that a host
of them are complete for the class VP. But the results came with minor caveats.
When the completeness was established under projections, there were non-trivial
restrictions on the set of homomorphisms H, and sometimes even on the target
graph H. On the other hand, when all homomorphisms were allowed, complete-
ness could only be shown under seemingly more powerful reductions, namely,
constant-depth c-reductions. Furthermore, the graphs were either directed or
had weights on them. It is worth noting that the reductions in [10] actually do
not use the full power of generic constant-depth c-reductions; a closer analy-
sis reveals that they are in fact linear p-projection. That is, the reductions are
linear combinations of polynomially many p-projections (see Chap. 3, [3]). Still,
this falls short of p-projections.

In this work, we remove all such restrictions and show that there is a simple
explicit homomorphism polynomial that is complete for VP under p-projections.
More formally, there is a p-family (Gm) of bounded tree-width graphs such that
the family of homomorphism polynomial (fGm,Hm,Hom(Ȳ ))m is complete for VP
with respect to projections.

We start the discussion with an upper bound for computing a generic
homomorphism polynomial defined over bounded tree-width graphs. Let G =
(V (G), E(G)) and H = (V (H), E(H)) be two graphs. Consider the set of vari-
ables Z̄ ∪ Ȳ where Z̄ := {Zu,a | u ∈ V (G) and a ∈ V (H)} and Ȳ := {Y(u,v) |
(u, v) ∈ E(H)}. Let H be a set of homomorphisms from G to H. The generalised
homomorphism polynomial fG,H,H is defined as follows:

fG,H,H =
∑

φ∈H

⎛

⎝
∏

u∈V (G)

Zu,φ(u)

⎞

⎠

⎛

⎝
∏

(u,v)∈E(G)

Y(φ(u),φ(v))

⎞

⎠ .
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In [10], it was shown that the homomorphism polynomial fTm,Kn,Hom where
Tm is a binary tree on m leaves, Kn is a complete graph on n nodes, and Hom
is the set of all homomorphisms, is computable by an arithmetic circuit of size
O(m3n3). Their proof idea is based on recursion: group the homomorphisms
based on where they map the root of Tm and its children, and recursively com-
pute the sub-polynomials within each group. The sub-polynomials of a specific
group have a special set of variables in their monomials. Hence, the homomor-
phism polynomial can be computed by suitably combining partial derivatives of
the sub-polynomials.

Generalizing the above idea to polynomials where Tm is not a binary tree but
a bounded tree-width graph seems hard. The very first obstacle we encounter
is to generalize the concept of partial derivative to monomial extension. Com-
bining sub-polynomials to obtain the original polynomial also gets hairy and
unnecessarily complicated, if possible.

We present a simple algorithm (based on dynamic programming [9]) showing
that the homomorphism polynomial fG,H,Hom is computable by an arithmetic
circuit of size at most 2|V (G)|·|V (H)|tw(G)+1 ·(2|V (H)|+2|E(H)|), where tw(G)
is the tree-width of G. From this algorithm we obtain the following theorem.

Theorem 4. Consider the family of homomorphism polynomials (fm), where
fm = fGm,Hm,Hom(Z̄, Ȳ ) and, (Hm) is a p-family of complete graphs.

– If (Gm) is a p-family of graphs of bounded tree-width, (fm) ∈ VP.
– If (Gm) is a p-family of graphs of bounded path-width, (fm) ∈ VBP.

Proof (Sketch). We use a nice tree decomposition T = (T, {Xt}t∈V (T )) of G. For
each t ∈ V (T ), let Mt be the set of all mappings from Xt to V (H). Let Tt be
the subtree of T rooted at node t, Vt :=

⋃
t′∈V (Tt)

Xt′ , and Gt := G[Vt] be the
subgraph of G induced on Vt. Let r be the root of T ; note that Gr = G.

The circuit is built inductively. For each t ∈ V (T ) and φ ∈ Mt, we have
gates 〈t, φ〉 and 〈t, φ〉′ in the circuit. The gate 〈t, φ〉 computes the sum of all
monomials corresponding to those homomorphisms from Gt to H that map Xt

according to φ. The gate 〈t, φ〉′, computes the “partial derivative” (or, quotient)
of the polynomial computed at 〈t, φ〉 with respect to the monomial given by φ.
Due to the normal form of the decomposition, a reasonably straightforward
decomposition works. The output gate of the circuit is 〈r, ∅〉.

A path decomposition has no join nodes and yields a skew circuits. �

(Note that the circuit constructed above is a constant-free circuit. This was
the case with [10] too. Furthermore, the same construction specialises from
treewidth to pathwidth and gives skew circuits. The algorithm from [10] does
not give skew circuits when Tm is a path. It seems the obstacle there lies in
computing partial-derivatives using skew circuits.)

We now turn towards establishing VP-hardness of the homomorphism poly-
nomials. We show that there exist a p-family (Gm) of bounded tree-width graphs
such that (fGm,Hm,Hom(Z̄, Ȳ )) is hard for VP under projections. For our hard-
ness proof, the Z̄ variables are in fact redundant and can be set to 1.
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I0

I1 I1

I2 I2 I2 I2

I1 I1 I1 I1 I1 I1 I1 I1

path with cmax vertices

Fig. 1. The graph Gm.

We use rigid and mutually incomparable graphs in the construction of Gm.
Let I := {I0, I1, I2} be a fixed set of three connected, rigid and mutually incom-
parable graphs. Note that they are necessarily non-bipartite. Let cIi

= |V (Ii)|.
Choose an integer cmax > max {cI0 , cI1 , cI2}. Identify two distinct vertices
{v0

� , v0
r} in I0, three distinct vertices {v1

� , v1
r , v1

p} in I1, and three distinct vertices
{v2

� , v2
r , v2

p} in I2.
For every m a power of 2, we denote a complete (perfect) binary tree with

m leaves by Tm. We construct a sequence of graphs Gm (Fig. 1) from Tm as
follows: first replace the root by the graph I0, then all the nodes on a particular
level are replaced by either I1 or I2 alternately (cf. Fig. 1). Now we add edges;
suppose we are at a ‘node’ which is labeled Ii and the left child and right child
are labeled Ij , we add an edge between vi

� and vj
p in the left child, and an edge

between vi
r and vj

p in the right child. Finally, to obtain Gm we expand each
added edge into a simple path with cmax vertices on it (cf. Fig. 1). That is, a
left-edge connection between two incomparable graphs in the tree looks like,
Ii(vi

�) − (path with cmaxvertices) − (vj
p)Ij .

Theorem 5. Over any field, the family of homomorphism polynomials (fm),
with fm(Ȳ ) = fGm,Hm,Hom(Ȳ ), where

– Gm is defined as above (see Fig. 1), and
– Hm is an undirected complete graph on poly(m), say m6, vertices,

is complete for VP under p-projections.

Proof (Sketch). Membership in VP follows from Theorem 4.
We sketch the hardness proof here. The idea is to obtain the VP-complete

universal polynomial from [22] as a projection of fm. Let Cn denote the universal
circuit in a nice normal form as described in [10]. Our starting point is the related
graph J ′

n in [10]. In [10], it was observed that there is a one-to-one correspondence
between parse trees of Cn and subgraphs of J ′

n that are rooted at rootL and
isomorphic to T2k(n) .
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We now transform J ′
n using the set I = {I0, I1, I2}. This is similar to the

transformation we did to the balanced binary tree Tm. We replace each node by
a graph in I; rootL gets I0 and the rest of the layers get I1 or I2 alternately (as
in Fig. 1). Edge connections are made so that a left/right child is connected to
its parent via the edge (vj

p, v
i
�)/(vj

p, v
i
r). Finally we replace each edge connection

by a path with cmax vertices on it (as in Fig. 1), to obtain the graph Jn. All edges
of Jn are labeled 1, except for the following edges. Every input node contains
the same rigid graph Ii. It has a vertex vi

p. Each path connection to other nodes
has this vertex as its end point. Label such path edges that are incident on vi

p

by the label of the input gate.
Let m := 2k(n). The choice of poly(m) is such that 4sn � poly(m), where

sn is the size of Jn. The Ȳ variables are set to {0, 1, x̄} such that the non-zero
variables pick out the graph Jn. From the observations of [10] it follows that for
each parse tree p-T of Cn, there exists a homomorphism φ : G2k(n) → Jn such
that mon(φ) is exactly equal to mon(p-T). By mon(·) we mean the monomial
associated with an object. We claim that these are the only valid homomorphisms
from G2k(n) → Jn. We observe the following properties of homomorphisms from
G2k(n) → Jn, from which the claim follows.

(i) Any homomorphic image of a rigid-node-subgraph of G2k(n) in Jn, cannot
split across two mutually incomparable rigid-node-subgraphs in Jn. That is,
there cannot be two vertices in a rigid subgraph of G2k(n) such that one of
them is mapped into a rigid subgraph say n1, and the other one is mapped
into another rigid subgraph say n2. This follows because homomorphisms
do not increase distance.

(ii) Because of (i), with each homomorphic image of a rigid node gi ∈ G2k(n) , we
can associate at most one rigid node of Jn, say ni, such that the homomor-
phic image of gi is a subgraph of ni and the paths (corresponding to incident
edges) emanating from it. But such a subgraph has a homomorphism to ni

itself: fold each hanging path into an edge and then map this edge into an
edge within ni. (For instance, let ρ be a path hanging off ni and attached to
ni at u, and let v be any neighbour of u within ni. Mapping vertices of ρ to u
and v alternately preserves all edges and hence is a homomorphism.) There-
fore, we note that in such a case we have a homomorphism from gi → ni.
By rigidity, gi must be the same as ni. The other scenario, where we cannot
associate any ni because gi is mapped entirely within a path, is not possible
since it contradicts non-bipartiteness of mutually-incomparable graphs.

Root Must be Mapped to the Root: The rigidity of I0 and Property
(ii) implies that I0 ∈ G2k(n) is mapped identically to I0 in Jn.

Every Level Must be Mapped Within the Same Level: The children
of I0 in G2k(n) are mapped to the children of the root while respecting left-
right behaviour. Firstly, the left child cannot be mapped to the root because
of incomparability of the graphs I1 and I0. Secondly, the left child cannot be
mapped to the right child (or vice versa) even though they are the same graphs,
because the minimum distance between the vertex in I0 where the left path
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emanates and the right child is cmax+1 whereas the distance between the vertex
in I0 where the left path emanates and the left child is cmax. So some vertex
from the left child must be mapped into the path leading to the right child and
hence the rest of the left child must be mapped into a proper subgraph of right
child. But this contradicts rigidity of I1. Continuing like this, we can show that
every level must map within the same level and that the mapping within a level
is correct. �

Finally, we show that homomorphism polynomials are rich enough to char-
acterize computation by algebraic branching programs. Here we establish that
there exist a p-family (Gk) of undirected bounded path-width graphs such that
the family (fGk,Hk,Hom(Ȳ )) is VBP-complete with respect to p-projections.

We note that for VBP-completeness under projections, the construction
in [10] required directions on their graph, whereas in the undirected setting they
could establish hardness under linear p-projection using 0-1 valued weights.

As before, we use rigid and mutually incomparable graphs in the construction
of Gk. Let I := {I1, I2} be a set of connected, non-bipartite, rigid and mutually
incomparable graphs. Let cIi

= |V (Ii)|, and cmax = max{cI1 , cI2}. Consider
the sequence of graphs Gk (Fig. 2); for every k, there is a simple path with
(k − 1) + 2cmax edges between a copy of I1 and I2. The path is between the
vertices u ∈ V (I1) and v ∈ V (I2). These vertices are arbitrarily chosen. The
path between vertices a and b in Gk contains (k − 1) edges.

I1(u) a b (v)I2

cmax edges k − 1 edges cmax edges

Fig. 2. The graph Gk.

Theorem 6. Over any field, the family of homomorphism polynomials (fk), fk

(Ȳ ) = fGk,Hk,Hom(Ȳ ), where

– Gk is defined as above (see Fig. 2),
– Hk is undirected complete graph on O(k2) vertices,

is complete for VBP with respect to p-projections.
If the field characteristic is not 2, then completeness also holds when Gk is

the simple undirected cycle of length 2k + 1.

6 Conclusion

In this paper, we have shown that over finite fields, five families of polynomials
are intermediate in complexity between VP and VNP, assuming the PH does
not collapse. Over rationals and reals, we have established that two of these
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families are provably not monotone p-projections of the permanent polynomials.
Finally, we have obtained a natural family of polynomials, defined via graph
homomorphisms, that is complete for VP with respect to projections; this is the
first family defined independent of circuits and with such hardness. An analogous
family is also shown to be complete for VBP.

Several interesting questions remain.
The definitions of our intermediate polynomials use the size q of the field Fq,

not just the characteristic p. Can we find families of polynomials with integer
coefficients, that are VNP-intermediate (under some natural complexity assump-
tion of course) over all fields of characteristic p? Even more ambitiously, can we
find families of polynomials with integer coefficients, that are VNP-intermediate
over all fields with non-zero characteristic? at least over all finite fields? over
fields Fp for all (or even for infinitely many) primes p?

Equally interestingly, can we find an explicit family of polynomials that is
VNP-intermediate in characteristic zero?

A related question is whether there are any polynomials defined over the
integers, that are VNP-intermediate over Fq (for some fixed q) but that are
monotone p-projections of the permanent.

Can we show that the remaining intermediate polynomials are also not
polynomial-sized monotone projections of the permanent? Do such results have
any interesting consequences, say, improved circuit lower bounds?
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Abstract. An arithmetic read-once formula (ROF) is a formula (circuit
of fan-out 1) over +,× where each variable labels at most one leaf. Every
multilinear polynomial can be expressed as the sum of ROFs. In this
work, we prove, for certain multilinear polynomials, a tight lower bound
on the number of summands in such an expression.

1 Introduction

Read-once formulas (ROF) are formulas (circuits of fan-out 1) in which each
variable appears at most once. A formula computing a polynomial that depends
on all its variables must read each variable at least once. Therefore, ROFs com-
pute some of the simplest possible functions that depend on all of their variables.
The polynomials computed by such formulas are known as read-once polynomi-
als (ROPs). Since every variable is read at most once, ROPs are multilinear1.
But not every multilinear polynomial is a ROP. For example, x1x2+x2x3+x1x3.

We investigate the following question: Given an n-variate multilinear polyno-
mial, can it be expressed as a sum of at most k ROPs? It is easy to see that every
bivariate multilinear polynomial is a ROP. Any tri-variate multilinear polyno-
mial can be expressed as a sum of 2 ROPs. With a little thought, we can obtain
a sum-of-3-ROPs expression for any 4-variate multilinear polynomial. An easy
induction on n then shows that any n-variate multilinear polynomial, for n ≥ 4,
can be written as a sum of at most 3 × 2n−4 ROPs. Also, the sum of two mul-
tilinear monomials is a ROP, so any n-variate multilinear polynomial with M
monomials can be written as the sum of �M/2� ROPs. We ask the following
question: Does there exist a strict hierarchy among k-sums of ROPs? We answer
this affirmatively for k ≤ �n/2�. In particular, for k = �n/2�, we describe an
explicit n-variate multilinear polynomial which cannot be written as a sum of
less than k ROPs but it admits a sum-of-k-ROPs representation.

Note that n-variate ROPs are computed by linear sized formulas. Thus if an
n-variate polynomial p is in

∑k ·ROP, then p is computed by a formula of size
O(kn) where every intermediate node computes a multilinear polynomial. Since
superpolynomial lower bounds are already known for the model of multilinear
formulas [8], we know that for those polynomials (including the determinant and

1 A polynomial is multilinear if the individual degree of each variable is at most one.
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the permanent), a
∑k ·ROP expression must have k at least quasi-polynomial

in n. However the best upper bound on k for these polynomials is only exponen-
tial in n, leaving a big gap between the lower and upper bound. On the other
hand, our lower bound is provably tight.

A counting argument shows that a random multilinear polynomial requires
exponentially many ROPs; there are multilinear polynomials requiring k =
Ω(2n/n2). Our general upper bound on k is O(2n), leaving a gap between the
lower and upper bound. One challenge is to close this gap. A perhaps more inter-
esting challenge is to find explicit polynomials that require exponentially large
k in any

∑k ·ROP expression.
A natural question to ask is whether stronger lower bounds than the above

result can be proven. In particular, to separate
∑k−1 ·ROP from

∑k ·ROP, how
many variables are needed? The above hierarchy result says that 2k−1 variables
suffice, but there may be simpler polynomials (with fewer variables) witnessing
this separation. We demonstrate another technique which improves upon the
previous result for k = 3, showing that 4 variables suffice. In particular, we
show that over the field of reals, there exists an explicit multilinear 4-variate
multilinear polynomial which cannot be written as a sum of 2 ROPs. This lower
bound is again tight, as there is a sum of 3 ROPs representation for every
4-variate multilinear polynomial.

Our Results and Techniques: We now formally state our results.

Theorem 1. For each n ≥ 1, the n-variate degree n − 1 symmetric polynomial
Sn−1

n cannot be written as a sum of less than �n/2� ROPs, but it can be written
as a sum of �n/2� ROPs.

The idea behind the lower bound is that if g can be expressed as a sum
of less than �n/2� ROFs, then one of the ROFs can be eliminated by taking
partial derivative with respect to one variable and substituting another by a field
constant. We then use the inductive hypothesis to arrive at a contradiction. This
approach necessitates a stronger hypothesis than the statement of the theorem,
and we prove this stronger statement in Lemma 3 as part of Theorem 7.

Theorem 2. There is an explicit 4-variate multilinear polynomial f which can-
not be written as the sum of 2 ROPs over R.

The proof of this theorem mainly relies on a structural lemma (Lemma 6)
for sum of 2 read-once formulas. In particular, we show that if f can be written
as a sum of 2 ROPs then one of the following must be true: 1. Some 2-variate
restriction is a linear polynomial. 2. There exist variables xi, xj ∈ Var(f) such
that the polynomials xi, xj , ∂xi

(f), ∂xj
(f), 1 are linearly dependent. 3. We can

represent f as f = l1 ·l2+l3 ·l4 where (l1, l2) and (l3, l4) are variable-disjoint linear
forms. Checking the first two conditions is easy. For the third condition we use the
commutator of f , introduced in [9], to find one of the li’s. The knowledge of one of
the li’s suffices to determine all the linear forms. Finally, we construct a 4-variate
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polynomial which does not satisfy any of the above mentioned conditions. This
construction does not work over algebraically closed fields. We do not yet know
how to construct an explicit 4-variate multilinear polynomial not expressible as
the sum of 2 ROPs over such fields, or even whether such polynomials exist.

Related Work: Despite their simplicity, ROFs have received a lot of attention
both in the arithmetic as well as in the Boolean world [2–5,9,10]. The most
fundamental question that can be asked about polynomials is polynomial identity
testing (PIT): Given an arithmetic circuit C, is the polynomial computed by C
identically zero? PIT has a randomized polynomial time algorithm: Evaluate the
polynomial at random points. It is not known whether PIT has a deterministic
polynomial time algorithm. In 2004, Kabanets and Impagliazzo established a
connection between PIT algorithms and proving general circuit lower bounds [6].
However, for restricted arithmetic circuits, no such result is known. For instance,
consider the case of multilinear formulas. Even though strong lower bounds are
known for this model, there is no efficient deterministic PIT algorithm. For this
reason, PIT was studied for the weaker model of sum of read-once formulas.
Notice that multilinear depth 3 circuits are a special case of this model.

Shpilka and Volkovich gave a deterministic PIT algorithm for the sum of a
small number of ROPs [10]. Interestingly, their proof uses a lower bound for a
weaker model, that of 0-justified ROFs (setting some variables to zero does not
kill any other variables). In particular, they show that the polynomial Mn =
x1x2 · · · xn, consisting of just a single monomial, cannot be represented as a sum
of less than n/ 3 weakly justified ROPs. More recently, Kayal showed that if Mn

is represented as a sum of powers of low degree (at most d) polynomials, then
the number of summands is at most exp(Ω(n/d)) [7]. He used this lower bound
to give a PIT algorithm. Our lower bound from Theorem 1 is orthogonal to both
these results and is provably tight. An interesting question is whether it can be
used to give a PIT algorithm.

Similar to ROPs, one may also study read-restricted formulas. For any num-
ber k, RkFs are formulas that read every variable at most k times. For k > 1,
RkFs for k ≥ 2 need not be multilinear, and thus are strictly more powerful
than ROPs. However, even when restricted to multilinear polynomials, they are
more powerful; in [1], Anderson, Melkebeek and Volkovich show that there is a
multilinear n-variate polynomial in R2F requiring Ω(n) summands when written
as a sum of ROPs.

Organization: The paper is organized as follows. In Sect. 2 we give the basic
definitions and notations. In Sect. 3, we establish Theorem 1. showing that the
hierarchy of k-sums of ROPs is proper. In Sect. 4 we establish Theorem 2, show-
ing an explicit 4-variate multilinear polynomial that is not expressible as the
sum of two ROPs. We conclude in Sect. 5 with some further open questions.
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2 Preliminaries

For a positive integer n, we denote [n] = {1, 2, . . . , n}. For a polynomial f , Var(f)
denotes the set of variables occurring in f . Further, for a variable xi and a field
element α, we denote by f |xi=α the polynomial resulting from setting xi = α.
Let f be an n-variate polynomial. We say that g is a k-variate restriction of f if g
is obtained by setting some variables in f to field constants and |Var(g)| ≤ k. A
set of polynomials f1, f2, . . . , fk over the field F is said to be linearly dependent
if there exist constants α1, α2, . . . , αk such that

∑
i∈[k] αifi = 0.

The n-variate degree k elementary symmetric polynomial, denoted Sk
n, is

defined as follows: Sk
n(x1, . . . , xn) =

∑
A⊆[n],|A|=k

∏
i∈A xi.

A circuit is a directed acyclic graph with variables and field constants labeling
the leaves, field operations +,× labeling internal nodes, and a designated output
node. Each node naturally computes a polynomial; the polynomial at the output
node is the polynomial computed by the circuit. If the underlying undirected
graph is a tree, then the circuit is called a formula. A formula is said to be
read-k if each variable appears as a leaf label at most k times. For read-once
formulas, it is more convenient to use the following “normal form” from [10].

Definition 1 (Read-once formulas [10]). A read-once arithmetic formula
(ROF) over a field F in the variables {x1, x2, . . . , xn} is a binary tree as follows.
The leaves are labeled by variables and internal nodes by {+,×}. In addition,
every node is labeled by a pair of field elements (α, β) ∈ F

2. Each input vari-
able labels at most once leaf. The computation is performed as follows. A leaf
labeled by xi and (α, β) computes αxi + β. If a node v is labeled by � ∈ {+,×}
and (α, β) and its children compute the polynomials f1 and f2, then v computes
α(f1 � f2) + β.

We say that f is a read-once polynomial (ROP) if it can be computed by a ROF,
and is in

∑k ·ROP if it can be expressed as the sum of at most k ROPs.

Proposition 1. For every n, every n-variate multilinear polynomial can be writ-
ten as the sum of at most �3 × 2n−4� ROPs.

Proposition 2. For every n, every n-variate multilinear polynomial with M
monomials can be written as the sum of at most �M

2 � ROPs.

The partial derivative of a polynomial is defined naturally over continuous
domains. The definition can be extended in more than one way over finite fields.
However, for multilinear polynomials, these definitions coincide. We consider
only multilinear polynomials in this paper, and the following formulation is most
useful for us: The partial derivative of a polynomial p ∈ F[x1, x2, . . . , xn] with
respect to a variable xi, for i ∈ [n], is given by ∂xi

(p) � p |xi=1 −p |xi=0. For
multilinear polynomials, the sum, product, and chain rules continue to hold.

Fact 3 ([10]). The partial derivatives of ROPs are also ROPs.
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Proposition 3 (3-variate ROPs). Let f ∈ F[x1, x2, x3] be a 3-variate ROP.
Then there exists i ∈ [3] and a ∈ F such that deg(f |xi=a) ≤ 1.

A special case of ROFs, multiplicative ROFs defined below, will be relevant.

Definition 2 (Multiplicative Read-once formulas). A ROF is said to be
a multiplicative ROF if it does not contain any addition gates. We say that f is
a multiplicative ROP if it can be computed by a multiplicative ROF.

Fact 4 ([10] (Lemma 3.10)). A ROP p is a multiplicative ROP if and only
if for any two variables xi, xj ∈ Var(p), ∂xi

∂xj
(p) �= 0.

Multiplicative ROPs have the following useful property, observed in [10]. (See
Lemma 3.13 in [10]. For completeness, and since we refer to the proof later, we
include a proof sketch here.)

Lemma 1 ([10]). Let g be a multiplicative ROP with |Var(g)| ≥ 2. For every
xi ∈ Var(g), there exists xj ∈ Var(g)\{xi} and γ ∈ F such that ∂xj

(g) |xi=γ= 0.

Proof. Let ϕ be a multiplicative ROF computing g. Pick any xi ∈ Var(g). As
|Var(ϕ)| = |Var(g)| ≥ 2, ϕ has at least one gate. Let v be the unique neighbour
(parent) of the leaf labeled by xi, and let w be the other child of v. We denote
by Pv(x̄) and Pw(x̄) the ROPs computed by v and w. Since v is a × gate and
we use the normal form from Definition 1, Pv is of the form (αxi + β) × Pw for
some α �= 0.

Replacing the output from v by a new variable y, we obtain from ϕ another
multiplicative ROF ψ in the variables {y}∪Var(g)\Var(Pv). Let ψ compute the
polynomial Q; then g = Q |y=Pv

.
Note that the sets Var(Q), {xi},Var(Pw) are non-empty and disjoint, and

form a partition of {y} ∪ {Var(g)}.
By the chain rule, for every variable xj ∈ Var(Pw) we have:

∂xj
(g) = ∂y(Q) · ∂xj

(Pv) = ∂y(Q) · (αxi + β) · ∂xj
(Pw)

It follows that for γ = −β/α, ∂xj
(g) |xi=γ= 0. 	


Along with partial derivatives, another operator that we will find useful is the
commutator of a polynomial. The commutator of a polynomial has previously
been used for polynomial factorization and in reconstruction algorithms for read-
once formulas, see [9].

Definition 3 (Commutator [9]). Let P ∈ F[x1, x2, . . . , xn] be a multilinear
polynomial and let i, j ∈ [n]. The commutator between xi and xj, denoted �ijP ,
is defined as follows.

�ijP =
(
P |xi=0,xj=0

) · (
P |xi=1,xj=1

) − (
P |xi=0,xj=1

) · (
P |xi=1,xj=0

)

The following property of the commutator will be useful to us.

Lemma 2. Let f = l1(x1, x2) · l2(x3, x4) + l3(x1, x3) · l4(x2, x4) where the li’s
are linear polynomials. Then l2 divides �12(f).
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3 A Proper Hierarchy in
∑k ·ROP

This section is devoted to proving Theorem 1.
We prove the lower bound for Sn−1

n by induction. This necessitates a stronger
induction hypothesis, so we will actually prove the lower bound for a larger class
of polynomials. The upper bound will also hold for this larger class. For any
α, β ∈ F, we define the polynomial Mα,β

n = αSn
n +βSn−1

n . We note the following
recursive structure of Mα,β

n :

(Mα,β
n ) |xn=γ= Mαγ+β,βγ

n−1 ; ∂xn
(Mα,β

n ) = Mα,β
n−1 .

We show below that each Mα,β
n is expressible as the sum of �n/2� ROPs

(Lemma 4); however, for any non-zero β �= 0, Mα,β
n cannot be written as the

sum of fewer than �n/2� ROPs (Lemma 3). At α = 0, β = 1, we get Sn−1
n , the

simplest such polynomials, establishing Theorem 1.

Lemma 3. Let F be a field. For every α ∈ F and β ∈ F \ {0}, the polynomial
Mα,β

n = αSn
n + βSn−1

n cannot be written as a sum of k < n/2 ROPs.

Proof. The proof is by induction on n. The cases n = 1, 2 are easy to see. We
now assume that k ≥ 1 and n > 2k. Assume to the contrary that there are ROPs
f1, f2, . . . , fk over F[x1, x2, . . . , xn] such that f �

∑

m∈[k]

fm = Mα,β
n . The main

steps in the proof are as follows:

1. Show using the inductive hypothesis that for all m ∈ [k] and a, b ∈ [n],
∂xa

∂xb
(fm) �= 0.

2. Conclude that for all m ∈ [k], fm must be a multiplicative ROP. That is, the
ROF computing fm does not contain any addition gate.

3. Use the multiplicative property of fk to show that fk can be eliminated by
taking partial derivative with respect to one variable and substituting another
by a field constant. If this constant is non-zero, we contradict the inductive
hypothesis.

4. Otherwise, use the sum of (multiplicative) ROPs representation of Mα,β
n to

show that the degree of f can be made at most (n − 2) by setting one of the
variables to zero. This contradicts our choice of f since β �= 0.

We now proceed with the proof.

Claim 5. For all m ∈ [k] and a, b ∈ [n], ∂xa
∂xb

(fm) �= 0.

Proof. Suppose to the contrary that ∂xa
∂xb

(fm) = 0. Assume without loss of
generality that a = n, b = n − 1, m = k, so ∂xn

∂xn−1(fk) = 0. Then,
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Mα,β
n = f =

k∑

m=0

fm (by assumption)

∂xn
∂xn−1(Mα,β

n ) =
k∑

m=0

∂xn
∂xn−1(fm) (by additivity of partial derivative)

Mα,β
n−2 =

k−1∑

m=0

∂xn
∂xn−1(fm) (by recursive structure of Mn,

and since ∂xn
∂xn−1(fk) = 0)

Thus Mα,β
n−2 can be written as the sum of k − 1 polynomials, each of which is a

ROP (by Fact 3). By the inductive hypothesis, 2(k − 1) ≥ (n − 2). Therefore,
k ≥ n/2 contradicting our assumption. 	


From Claim 5 and Fact 4, we can conclude:

Observation 6. For all m ∈ [k], fm is a multiplicative ROP.

Observation 6 and Lemma 1 imply that for each m ∈ [k] and a ∈ [n], there exist
b �= a ∈ [n] and γ ∈ F such that ∂xb

(fm) |xa=γ= 0. There are two cases.
First, consider the case when for some m,a and the corresponding b, γ, it

turns out that γ �= 0. Assume without loss of generality that m = k, a = n − 1,
b = n, so that ∂xn

(fk) |xn−1=γ= 0. (For other indices the argument is symmetric.)
Then

Mα,β
n =

∑

i∈[k]

fi (by assumption)

∂xn
(Mα,β

n ) |xn−1=γ =
∑

i∈[k]

∂xn
(fi) |xn−1=γ (additivity of partial derivative)

Mα,β
n−1 |xn−1=γ =

∑

i∈[k−1]

∂xn
(fi) |xn−1=γ (since γ is chosen from Lemma 1)

Mαγ+β,βγ
n−2 =

∑

i∈[k−1]

∂xn
(fi) |xn−1=γ (recursive structure of Mn)

Therefore, Mαγ+β,βγ
n−2 can be written as a sum of at most k − 1 polynomials,

each of which is a ROP (Fact 3). By the inductive hypothesis, 2(k − 1) ≥ n − 2
implying that k ≥ n/2 contradicting our assumption.

(Note: the term Mαγ+β,βγ
n−2 is what necessitates a stronger induction hypoth-

esis than working with just α = 0, β = 1.)
It remains to handle the case when for all m ∈ [k] and a ∈ [n], the corre-

sponding value of γ to some xb (as guaranteed by Lemma 1) is 0. Examining the
proof of Lemma 1, this implies that each leaf node in any of the ROFs can be
made zero only by setting the corresponding variable to zero. That is, the linear
forms at all leaves are of the form aixi.
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Since each ϕm is a multiplicative ROP, setting xn = 0 makes the variables
in the polynomial computed at the sibling of the leaf node anxn redundant.
Hence setting xn = 0 reduces the degree of each fm by at least 2. That is,
deg(f |xn=0) ≤ n−2. But Mα,β

n |xn=0 equals Mβ,0
n−1 = βSn−1

n−1 , which has degree
n − 1, contradicting the assumption that f = Mα,β

n . 	


The following lemma shows that the above lower bound is indeed optimal.

Lemma 4. For any field F and α, β ∈ F, the polynomial f = αSn
n + βSn−1

n can
be written as a sum of at most �n/2� ROPs.

Proof. (Sketch) For n odd, this follows immediately from Proposition 2. For
even n, a small tweak works: combine αSn

n with any one pair of monomials from
βSn−1

n to get a single ROP. 	

Combining the results of Lemmas 3 and 4, we obtain the following theorem.

At α = 0, β = 1, it yields Theorem 1.

Theorem 7. For each n ≥ 1, any α ∈ F and any β ∈ F \ {0}, the polynomial
αSn

n + βSn−1
n is in

∑k ·ROP but not in
∑k−1 ·ROP, where k = �n/2�.

4 A 4-Variate Multilinear Polynomial Not in
∑2 ·ROP

This section is devoted to proving Theorem 2. We want to find an explicit
4-variate multilinear polynomial that is not expressible as the sum of 2 ROPs.

Note that the proof of Theorem 1 does not help here, since the polynomials
separating

∑2 ·ROP from
∑3 ·ROP have 5 or 6 variables. One obvious approach

is to consider other combinations of the symmetric polynomials. This fails too;
we can show that all such combinations are in

∑2 ·ROP.

Proposition 4. For every choice of field constants ai for each i ∈ {0, 1, 2, 3, 4},
the polynomial

∑4
i=0 aiS

i
4 can be expressed as the sum of two ROPs.

Instead, we define a polynomial that gives carefully chosen weights to the
monomials of S2

4 . Let fα,β,γ denote the following polynomial:

fα,β,γ = α · (x1x2 + x3x4) + β · (x1x3 + x2x4) + γ · (x1x4 + x2x3).

To keep notation simple, we will omit the superscript when it is clear from the
context. In the theorem below, we obtain necessary and sufficient conditions on
α, β, γ under which f can be expressed as a sum of two ROPs.

Theorem 8 (Hardness of representation for sum of 2 ROPs). Let f be
the polynomial fα,β,γ = α · (x1x2 + x3x4) + β · (x1x3 + x2x4) + γ · (x1x4 + x2x3).
The following are equivalent:

1. f is not expressible as the sum of two ROPs.
2. α, β, γ satisfy all the three conditions C1, C2, C3 listed below.
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C1: αβγ �= 0.
C2: (α2 − β2)(β2 − γ2)(γ2 − α2) �= 0.
C3: None of the equations X2 − di = 0, i ∈ [3], has a root in F, where

d1 = (+α2 − β2 − γ2)2 − (2βγ)2

d2 = (−α2 + β2 − γ2)2 − (2αγ)2

d3 = (−α2 − β2 + γ2)2 − (2αβ)2

Remark 1. 1. It follows that 2(x1x2 + x3x4) + 4(x1x3 + x2x4) + 5(x1x4 + x2x3)
cannot be written as a sum of 2 ROPs over reals, yielding Theorem 2.

2. If F is an algebraically closed field, then for every α, β, γ, condition C3 fails,
and so every fα,β,γ can be written as a sum of 2 ROPs. However we do
not know if there are other examples, or whether all multilinear 4-variate
polynomials are expressible as the sum of two ROPs.

3. Even if F is not algebraically closed, condition C3 fails if for each a ∈ F, the
equation X2 = a has a root.

Our strategy for proving Theorem 8 is a generalization of an idea used in [11].
While Volkovich showed that 3-variate ROPs have a nice structural property in
terms of their partial derivatives and commutators, we show that the sums of
two 4-variate ROPs have at least one nice structural property in terms of their
bivariate restrictions, partial derivatives, and commutators. Then we show that
provided α, β, γ are chosen carefully, the polynomial fα,β,γ will not satisfy any
of these properties and hence cannot be a sum of two ROPs.

To prove Theorem 8, we first consider the easier direction, 1 ⇒ 2, and prove
the contrapositive.

Lemma 5. If α, β, γ do not satisfy all of C1,C2,C3, then the polynomial f can
be written as a sum of 2 ROPs.

Proof. C1 false: If any of α, β, γ is zero, then by definition f is the the sum of
at most two ROPs.
C2 false: Without loss of generality, assume α2 = β2, so α = ±β. Then f is
computed by f = α · (x1 ± x4)(x2 ± x3) + γ · (x1x4 + x2x3).
C1 true; C3 false: Without loss of generality, the equation X2 − d1 = 0 has a
root τ . We try to express f as

α(x1 − ax3)(x2 − bx4) + β(x1 − cx2)(x3 − dx4).

The coefficients for x3x4 and x2x4 force ab = 1, cd = 1, giving the form

α(x1 − ax3)(x2 − 1
a
x4) + β(x1 − cx2)(x3 − 1

c
x4).

Comparing the coefficients for x1x4 and x2x3, we obtain the constraints

−α

a
− β

c
= γ; − αa − βc = γ
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Expressing a as −γ−βc
α , we get a quadratic constraint on c; it must be a root of

the equation

Z2 +
−α2 + β2 + γ2

βγ
Z + 1 = 0.

Using the fact that τ2 = d1 = (−α2 + β2 + γ2)2 − (2βγ)2, we see that indeed
this equation does have roots. The left-hand size splits into linear factors, giving

(Z − δ)(Z − 1
δ
) = 0 where δ =

α2 − β2 − γ2 + τ

2βγ
.

It is easy to verify that δ �= 0 and δ �= − γ
β (since α �= 0). Further, define

μ = −(γ+βδ)
α . Then μ is well-defined (because α �= 0) and is also non-zero. Now

setting c = δ and a = μ, we satisfy all the constraints, and we can write f as
the sum of 2 ROPs as f = α(x1 − μx3)(x2 − 1

μx4) + β(x1 − δx2)(x3 − 1
δ x4). 	


Now we consider the harder direction: 2 ⇒ 1. Again, we consider the con-
trapositive. We first show (Lemma 6) a structural property satisfied by every
polynomial in

∑2 ·ROP: it must satisfy at least one of the three properties
C1′, C2′, C3′ described in the lemma. We then show (Lemma 7) that under the
conditions C1, C2, C3 from the theorem statement, f does not satisfy any of
C1′, C2′, C3′; it follows that f is not expressible as the sum of 2 ROPs.

Lemma 6. Let g be a 4-variate multilinear polynomial over the field F which can
be expressed as a sum of 2 ROPs. Then at least one of the following conditions
is true:

C1’: There exist i, j ∈ [4] and a, b ∈ F such that g |xi=a,xj=b is linear.
C2’: There exist i, j ∈ [4] such that xi, xj , ∂xi(g), ∂xj (g), 1 are linearly dependent.
C3’: g = l1 ·l2+l3 ·l4 where lis are linear forms, l1 and l2 are variable-disjoint,
and l3 and l4 are variable-disjoint.

Proof. Let ϕ be a sum of 2 ROFs computing g. Let v1 and v2 be the children of
the topmost + gate. The proof is in two steps. First, we reduce to the case when
|Var(v1)| = |Var(v2)| = 4. Then we use a case analysis to show that at least one
of the aforementioned conditions hold true. In both steps, we will repeatedly
use Proposition 3, which showed that any 3-variate ROP can be reduced to a
linear polynomial by substituting a single variable with a field constant. We now
proceed with the proof.

Suppose |Var(v1)| ≤ 3. Applying Proposition 3 first to v1 and then to the
resulting restriction of v2, one can see that there exist i, j ∈ [4] and a, b ∈ F such
that g |xi=a,xj=b is a linear polynomial. So condition C1′ is satisfied.

Now assume that |Var(v1)| = |Var(v2)| = 4. Depending on the type of gates
of v1 and v2, we consider 3 cases.

Case 1: Both v1 and v2 are × gates. Then g can be represented as M1 · M2 +
M3 · M4 where (M1,M2) and (M3,M4) are variable-disjoint ROPs.
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Suppose that for some i, |Var(Mi)| = 1. Then, g |Mi→0 is a 3-variate restric-
tion of f and is clearly an ROP. Applying Proposition 3 to this restriction, we
see that condition C1′ holds.

Otherwise each Mi has |Var(Mi)| = 2.
Suppose (M1,M2) and (M3,M4) define distinct partitions of the variable set.

Assume without loss of generality that g = M1(x1, x2) ·M2(x3, x4)+M3(x1, x3) ·
M4(x2, x4). If all Mis are linear forms, it is clear that condition C3′ holds. If not,
assume that M1 is of the form l1(x1) · m1(x2) + c1 where l1,m1 are linear forms
and c1 ∈ F. Now g |l1→0= c1 · M2(x3, x4) + M ′

3(x3) · M4(x2, x4). Either set x3 to
make M ′

3 zero, or, if that is not possible because M ′
3 is a non-zero field constant,

then set x4 → b where b ∈ F. In both cases, by setting at most 2 variables, we
obtain a linear polynomial, so C1′ holds.

Otherwise, (M1,M2) and (M3,M4) define the same partition of the vari-
able set. Assume without loss of generality that g = M1(x1, x2) · M2(x3, x4) +
M3(x1, x2) ·M4(x3, x4). If one of the Mis is linear, say without loss of generality
that M1 is a linear form, then g |M4→0 is a 2-variate restriction which is also
a linear form, so C1′ holds. Otherwise, none of the Mis is a linear form. Then
each Mi can be represented as li ·mi + ci where li,mi are univariate linear forms
and ci ∈ F. We consider a 2-variate restriction which sets l1 and m4 to 0. (Note
that Var(l1) ∩ Var(m4) = ∅.) Then the resulting polynomial is a linear form, so
C1′ holds.

Case 2: Both v1 and v2 are + gates. Then g can be written as f = M1 + M2 +
M3 + M4 where (M1,M2) and (M3,M4) are variable-disjoint ROPs.

Suppose (M1,M2) and (M3,M4) define distinct partitions of the variable set.
Suppose further that there exists Mi such that |Var(Mi)| = 1. Without loss

Of generality, Var(M1) = {x1}, {x1, x2} ⊆ Var(M3), and x3 ∈ Var(M4). Any
setting to x2 and x4 results in a linear polynomial, so C1′ holds.

So assume without loss of generality that g = M1(x1, x2) + M2(x3, x4) +
M3(x1, x3) + M4(x2, x4). Then for a, b ∈ F, g |x1=a,x4=b is a linear polynomial,
so C1′ holds.

Otherwise, (M1,M2) and (M3,M4) define the same partition of the variable
set. Again, if say |Var(M1)| = 1, then setting two variables from M2 shows
that C1′ holds. So assume without loss of generality that g = M1(x1, x2) +
M2(x3, x4) + M3(x1, x2) + M4(x3, x4). Then for a, b ∈ F, g |x1=a,x3=b is a linear
polynomial, so again C1′ holds.

Case 3: One of v1, v2 is a + gate and the other is a × gate. Then g can be written
as g = M1 + M2 + M3 · M4 where (M1,M2) and (M3,M4) are variable-disjoint
ROPs. Suppose that |Var(M3)| = 1. Then g |M3→0 is a 3-variate restriction
which is a ROP. Using Proposition 3, we get a 2-variate restriction of g which
is also linear, so C1′ holds. The same argument works when |Var(M4)| = 1. So
assume that M3 and M4 are bivariate polynomials.

Suppose that (M1,M2) and (M3,M4) define distinct partitions of the variable
set. Assume without loss of generality that g = M1+M2+M3(x1, x2)·M4(x3, x4),
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and x3, x4 are separated by M1,M2. Then g |M3→0 is a 2-variate restriction which
is also linear, so C1′ holds.

Otherwise (M1,M2) and (M3,M4) define the same partition of the vari-
able set. Assume without loss of generality that g = M1(x1, x2) + M2(x3, x4) +
M3(x1, x2) ·M4(x3, x4). If M1 (or M2) is a linear form, then consider a 2-variate
restriction of g which sets M4 (or M3) to 0. The resulting polynomial is a linear
form. Similarly if M3 (or M4) is of the form l · m + c where l,m are univariate
linear forms, then we consider a 2-variate restriction which sets l to 0 and some
xi ∈ Var(M4) to a field constant. The resulting polynomial again is a linear
form. In all these cases, C1′ holds.

The only case that remains is that M3 and M4 are linear forms while M1 and
M2 are not. Assume that M1 = (a1x1+b1)(a2x2+b2)+c and M3 = a3x1+b3x2+
c3. Then ∂x1(g) = a1(a2x2 + b2) + a3M4 and ∂x2(g) = (a1x1 + b1)a2 + b3M4. It
follows that b3 ·∂x1(g)−a3 ·∂x2(g)+a1a2a3x1 −a1a2b3x2 = a1b2b3 − b1a2a3 ∈ F,
and hence the polynomials x1, x2, ∂x1(g), ∂x2(g) and 1 are linearly dependent.
Therefore, condition C2′ of the lemma is satisfied. 	

Lemma 7. If α, β, γ satisfy conditions C1, C2, C3 from the statement of The-
orem 8, then the polynomial fα,β,γ does not satisfy any of the properties C1′,
C2′, C3′ from Lemma 6.

Proof. C1 ⇒ ¬C1′: Since αβγ �= 0, f contains all possible degree 2 monomials.
Hence after setting xi = a and xj = b, the monomial xkxl where k, l ∈ [4]\{i, j}
still survives.

C2 ⇒ ¬C2′: The proof is by contradiction. Assume to the contrary that for
some i, j, without loss of generality say for i = 1 and j = 2, the polynomials
x1, x2, ∂x1(f), ∂x2(f), 1 are linearly dependent. Note that ∂x1(f) = αx2 + βx3 +
γx4 and ∂x2(f) = αx1 + γx3 + βx4. This implies that the vectors (1, 0, 0, 0, 0),
(0, 1, 0, 0, 0), (0, α, β, γ, 0), (α, 0, γ, β, 0) and (0, 0, 0, 0, 1) are linearly dependent.
This further implies that the vectors (β, γ) and (γ, β) are linearly dependent.
Therefore, β = ± γ, contradicting C2.

C1 ∧ C2 ∧ C3 ⇒ ¬C3′: Suppose, to the contrary, that C3′ holds. That is, f
can be written as f = l1 · l2 + l3 · l4 where (l1, l2) and (l3, l4) are variable-disjoint
linear forms. By the preceding arguments, we know that f does not satisfy C1′

or C2′.
First consider the case when (l1, l2) and (l3, l4) define the same partition

of the variable set. Assume without loss of generality that Var(l1) = Var(l3),
Var(l2) = Var(l4), and |Var(l1)| ≤ 2. Setting the variables in l1 to any field
constants yields a linear form, so f satisfies C1′, a contradiction.

Hence it must be the case that (l1, l2) and (l3, l4) define different partitions
of the variable set. Since all degree-2 monomials are present in f , each pair xi,
xj must be separated by at least one of the two partitions. This implies that
both partitions have exactly 2 variables in each part. Assume without loss of
generality that f = l1(x1, x2) · l2(x3, x4) + l3(x1, x3) · l4(x2, x4).
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At this point, we use properties of the commutator of f ; recall Definition 3.
By Lemma 2, we know that l2 divides �12f . We compute �12f explicitly for
our candidate polynomial:

�12f = (αx3x4)(α + (β + γ)(x3 + x4) + αx3x4)
− (βx4 + γx3 + αx3x4)(βx3 + γx4 + αx3x4)

= −βγ(x2
3 + x2

4) + (α2 − β2 − γ2)x3x4

Since l2 divides �12f , �12f is not irreducible but is the product of two linear
factors. Since �12f(0, 0) = 0, at least one of the linear factors of �12f must
vanish at (0, 0). Let x3 − δx4 be such a factor. Then �12(f) vanishes not only
at (0, 0), but whenever x3 = δx4. Substituting x3 = δx4 in �12f , we get

−δ2βγ − βγ + δ(α2 − β2 − γ2) = 0

Hence δ is of the form

δ =
−(α2 − β2 − γ2) ± √

(α2 − β2 − γ2)2 − 4β2γ2

−2βγ

Hence 2βγδ−(α2−β2−γ2) is a root of the equation X2−D1 = 0, contradicting
the assumption that C3 holds.

Hence it must be the case that C3′ does not hold. 	

With this, the proof of Theorem 8 is complete.
The conditions imposed on α, β, γ in Theorem 8 are tight and irredundant.

Below we give some explicit examples over the field of reals.

1. f = 2(x1x2 +x3x4)+2(x1x3 +x2x4)+3(x1x4 +x2x3) satisfies conditions C1
and C3 from the Theorem but not C2; α = β. A

∑2 ·ROP representation for
f is f = 2(x1 + x4)(x2 + x3) + 3(x1x4 + x2x3).

2. f = 2(x1x2 + x3x4) − 2(x1x3 + x2x4) + 3(x1x4 + x2x3) satisfies conditions
C1 and C3 but not C2; α = −β. A

∑2 ·ROP representation for f is f =
2(x1 − x4)(x2 − x3) + 3(x1x4 + x2x3).

3. f = (x1x2 + x3x4) + 2(x1x3 + x2x4) + 3(x1x4 + x2x3) satisfies conditions C1
and C2 but not C3. A

∑2 ·ROP representation for f is f = (x1 + x3)(x2 +
x4) + 2(x1 + x2)(x3 + x4).

5 Conclusions

1. We have seen in Proposition 1 that every n-variate multilinear polynomial
(n ≥ 4) can be written as the sum of 3 × 2n−4 ROPs. A counting argument
shows that there exist multilinear polynomials f requiring exponentially many
ROPs summands; if f ∈ ∑k ·ROP then k = Ω(2n/n2). Our general upper
bound on k is O(2n), leaving a small gap between the lower and upper bound.
What is the true tight bound? Can we find explicit polynomials that require
exponentially large k in any

∑k ·ROP expression?
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2. We have shown in Theorem 1 that for each k,
∑k ·ROP can be separated

from
∑k−1 ·ROP by a polynomial on 2k −1 variables. Can we separate these

classes with fewer variables? Note that any separating polynomial must have
Ω(log k) variables.

3. In particular, can 4-variate multilinear polynomials separate sums of 3 ROPs
from sums of 2 ROPs over every field? If not, what is an explicit example?
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Abstract. In algorithmic statistics quality of a statistical hypothesis
(a model) P for a data x is measured by two parameters: Kolmogorov
complexity of the hypothesis and the probability P (x). A class of models
Sij that are the best at this point of view, were discovered. However
these models are too abstract.

To restrict the class of hypotheses for a data, Vereshchaginintroduced
a notion of a strong model for it. An object is called normal if it can be
explained by using strong models not worse than without this restriction.
In this paper we show that there are “many types” of normal strings.
Our second result states that there is a normal object x such that all
models Sij are not strong for x. Our last result states that every best fit
strong model for a normal object is again a normal object.

Keywords: Algorithmic statistics · Minimum description length ·
Stochastic strings · Total conditional complexity · Sufficient statistic ·
Denoising

1 Introduction

Let us recall the basic notion of algorithmic information theory and algorithmic
statistics (see [4,6,8] for more details).

We consider strings over the binary alphabet {0, 1}. The set of all strings is
denoted by {0, 1}∗ and the length of a string x is denoted by l(x). The empty
string is denoted by Λ.

1.1 Algorithmic Information Theory

Let D be a partial computable function mapping pairs of strings to strings.
Conditional Kolmogorov complexity with respect to D is defined as

CD(x|y) = min{l(p) | D(p, y) = x}.

In this context the function D is called a description mode or a decompressor.
If D(p, y) = x then p is called a description of x conditional to y or a program
mapping y to x.
c© Springer International Publishing Switzerland 2016
A.S. Kulikov and G.J. Woeginger (Eds.): CSR 2016, LNCS 9691, pp. 280–293, 2016.
DOI: 10.1007/978-3-319-34171-2 20
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A decompressor D is called universal if for every other decompressor D′

there is a string c such that D′(p, y) = D(cp, y) for all p, y. By Solomonoff—
Kolmogorov theorem [2] universal decompressors exist. We pick arbitrary univer-
sal decompressor D and call CD(x|y) the Kolmogorov complexity of x conditional
to y, and denote it by C(x|y). Then we define the unconditional Kolmogorov
complexity C(x) of x as C(x|Λ).

Kolmogorov complexity can be naturally extended to other finite objects
(pairs of strings, finite sets of strings, etc.). We fix some computable bijection
(“encoding”) between these objects are binary strings and define the complexity
of an object as the complexity of the corresponding binary string. It is easy to see
that this definition is invariant (change of the encoding changes the complexity
only by O(1) additive term).

In particular, we fix some computable bijection between strings and finite
subsets of {0, 1}∗; the string that corresponds to a finite A ⊂ {0, 1}∗ is denoted
by [A]. Then we understand C(A) as C([A]). Similarly, C(x|A) and C(A|x) are
understood as C(x|[A]) and C([A]|x), etc.

1.2 Algorithmic Statistics: Basic Notions

Algorithmic statistics studies explanations of observed data that are suitable in
the algorithmic sense: an explanation should be simple and capture all the algo-
rithmically discoverable regularities in the data. The data is encoded, say, by a
binary string x. In this paper we consider explanations (statistical hypotheses) of
the form “x was drawn at random from a finite set A with uniform distribution”.

Kolmogorov suggested in a talk [3] in 1974 to measure the quality of an
explanation A � x by two parameters: Kolmogorov complexity C(A) of A and
the log-cardinality log |A|1 of A. The smaller C(A) is the simpler the explanation
is. The log-cardinality measures the fit of A—the lower is |A| the more A fits as
an explanation for any of its elements. For each complexity level m any model A
for x with smallest log |A| among models of complexity at most m for x is called
a best fit hypothesis for x. The trade off between C(A) and log |A| is represented
by the profile of x.

Definition 1. The profile of a string x is the set Px consisting of all pairs (m, l)
of natural numbers such that there exists a finite set A � x with C(A) ≤ m and
log2 |A| ≤ l.

Both parameters C(A) and log |A| cannot be very small simultaneously unless
the string x has very small Kolmogorov complexity. Indeed, C(A) + log |A| �
C(x), since x can be specified by A and its index in A. A model (we also use the
word “statistic”) A � x is called sufficient if C(A) + log |A| ≈ C(x). The value

δ(x|A) = C(A) + log |A| − C(x)

is called the optimality deficiency of A as a model for x. On Fig. 1 parameters
of sufficient statistics lie on the segment BD. A sufficient statistic that has the
1 by log we denote log2.
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Fig. 1. The profile Px of a string x.

minimal complexity is called minimal (MSS), its parameters are represented by
the point B on Fig. 1.

Example 1. Consider a string x ∈ {0, 1}2n such that leading n bits of x are
zeros, and the remaining bits are random, i.e. C(x) ≈ n. Consider the model A
for x that consists of all strings from {0, 1}2n that have n leading zeros. Then
C(A) + log |A| = log n + O(1) + n ≈ C(x), hence A is a sufficient statistic for x.
As the complexity of A is negligible, A is a minimal sufficient statistic for x.

The string from this example has a sufficient statistic of negligible complexity.
Such strings are called stochastic. Are there strings that have no sufficient statis-
tics of negligible complexity? The positive to this question was obtained in [7].
Such strings are called non-stochastic. Moreover, under some natural constraints
for every set P there is a string whose profile is close to P . The constraints are
listed in the following theorem:

Theorem 1. Let x be a string of length n and complexity k. Then Px has the
following properties:

(1) (k + O(log n), 0) ∈ Px.
(2) (O(log n), n) ∈ Px.
(3) if (a, b + c) ∈ Px then (a + b + O(log n), c) ∈ Px.
(4) if (a, b) ∈ Px then a + b > k − O(log n).

In other words, with logarithmic accuracy, the boundary of Px contains a
point (0, a) with a ≤ l(x), contains the point (C(x), 0), decreases with the slope
at least −1 and lies above the line C(A) + log |A| = C(x). Conversely, given a
curve with these property that has low complexity one can find a string x of
length n and complexity about k such that the boundary of Px is close to that
curve:
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Theorem 2 [10]. Assume that we are given k, n and an upward closed set P of
pairs of natural numbers such that (0, n), (k, 0) ∈ P , (a, b+c) ∈ P ⇒ (a+c, b) ∈ P
and (a, b) ∈ P ⇒ a + b ≥ k. Then there is a string x of length n and complexity
k +O(log n) whose profile is C(P )+O(log n)-close to P . (We call subsets of N2

ε-close if each of them is in the ε-neighborhood of the other.) By C(P ) we denote
the Kolmogorov complexity of the boundary of P , which is a finite object.

1.3 Universal Models

Assume that A is a sufficient statistic for x. Then A provides a two-part code
y = (the shortest description of A, the index of x in A) for x whose total
length is close to the complexity of x. The symmetry of information implies that
C(y|x) ≈ C(y) + C(x|y) − C(x). Obviously, the term C(x|y) here is negligible
and C(y) is at most its total length, which by assumption is close to C(x).
Thus C(y|x) ≈ 0, that is, x and y have almost the same information. That
is, the two-part code y for x splits the information from x in two parts: the
shortest description of A, the index of x in A. The second part of this two-part
code is incompressible (random) conditional to the first part (as otherwise, the
complexity of x would be smaller than the total length of y). Thus the second
part of this two-part code can be considered as accidental information (noise) in
the data x. In a sense every sufficient statistic A identifies about C(x) − C(A)
bits of accidental information in x. And thus any minimal sufficient statistic for
x extracts almost all useful information from x.

However, it turns out that this viewpoint is inconsistent with the existence of
universal models, discovered in [1]. Let Lm denote the list of strings of complexity
at most m. Let p be an algorithm that enumerates all strings of Lm in some order.
Notice that there is such algorithm of complexity O(log m). Denote by Ωm the
cardinality of Lm. Consider its binary representation, i.e., the sum:

Ωm = 2s1 + 2s2 + ... + 2st , where s1 > s2 > ... > st.

According to this decomposition and p, we split Lm into groups: first 2s1 ele-
ments, next 2s2 elements, etc. Let us denote by Sp

m,s the group of size 2s from
the partition. Notice that Sp

m,s is defined only for s that correspond to ones in
the binary representation of Ωm, so m ≥ s.

If x is a string of complexity at most m, it belongs to some group Sp
m,s and

this group can be considered as a model for x. We may consider different values of
m (starting from C(x)). In this way we get different models Sp

m,s for the same x.
The complexity of Sp

m,s is m−s+O(log m+C(p)). Indeed, chop Lm into portions
of size 2s each, then Sp

m,s is the last full portion and can be identified by m, s
and the number of full portions, which is less than Ωm/2s < 2m−s+1. Thus if m
is close to C(x) and C(p) is small then Sp

m,s is a sufficient statistic for x. More
specifically C(Sp

m,s) + log |Sp
m,s| = C(Sp

m,s) + s = m + O(log m + C(p)).
For every m there is an algorithm p of complexity O(log m) that enumerates

all strings of complexity at most m. We will fix for every m any such algorithm
pm and denote Spm

m,s by Sm,s.
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The models Sm,s were introduced in [1]. The models Sp
m,s are universal in

the following sense:

Theorem 3 [10]. 2Let A be any finite set of strings containing a string x of
length n. Then for every p there are s ≤ m ≤ n + O(1) such that

(1) x ∈ Sp
m,s,

(2) C(Sp
m,s|A) = O(log n+C(p)) (and hence C(Sp

m,s) ≤ C(A)+O(log n+C(p))),
(3) δ(x|Sp

m,s) ≤ δ(x|A) + O(log n + C(p)).

It turns out that the model Sp
m,s has the same information as the the number

Ωm−s:

Lemma 1 [10]. For every a ≤ b and for every s ≤ m:

(1) C(Ωa|Ωb) = O(log b).
(2) C(Ωm−s|Sp

m,s) = O(log m + C(p)) and C(Sp
m,s|Ωm−s) = O(log m + C(p)).

(3) C(Ωa) = a + O(log a).

By Theorem 3 for every data x there is a minimal sufficient statistic for x
of the form Sm,s. Indeed, let A be any minimal sufficient statistic for x and let
Sm,s be any model for x that exists by Theorem 3 for this A. Then by item 3
the statistic Sm,s is sufficient as well and by item 2 its complexity is also close
to minimum. Moreover, since C(Sm,s|A) is negligible and C(Sm,s) ≈ C(A), by
symmetry of information C(A|Sm,s) is negligible as well. Thus A has the same
information as Sm,s, which has the same information as Ωm−s (Lemma 1(2)).
Thus if we agree that every minimal sufficient statistic extracts all useful infor-
mation from the data, we must agree also that information is the same as the
information in the number of strings of complexity at most i for some i.

1.4 Total Conditional Complexity and Strong Models

The paper [9] suggests the following explanation to this situation. Although
conditional complexities C(Sm,s|A) and C(Sm,s|x) are small, the short programs
that map A and x, respectively, to Sm,s work in a huge time. A priori their work
time is not bounded by any total computable function of their input. Thus it
may happen that practically we are not able to find Sm,s (and also Ωm−s) from
a MSS A for x or from x itself.

Let us consider now programs whose work time is bounded by a total com-
putable function for the input. We get the notion of total conditional complexity
CT (y|x), which is the length of the shortest total program that maps x to y.
Total conditional complexity can be much greater than plain one, see for exam-
ple [5]. Intuitively, good sufficient statistics A for x must have not only negligible

2 This theorem was proved in [10, TheoremVIII.4] with accuracy O(max{log C(y) |
y ∈ A} + C(p)) instead of O(log n). Applying [10, Theorem VIII.4] to A′ = {y ∈ A |
l(y) = n} we obtain the theorem in the present form.
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conditional complexity C(A|x) (which follows from definition of a sufficient sta-
tistic) but also negligible total conditional complexity CT (A|x). The paper [9]
calls such models A strong models for x.

Is it true that for some x there is no strong MSS Sm,s for x? The positive
answer to this question was obtained in [9]: there are strings x for which all
minimal sufficient statistics are not strong for x. Such strings are called strange.
In particular, if Sm,s is a MSS for a strange string x then CT (Sm,s|x) is large.
However, a strange string has no strong MSS at all. An interesting question is
whether there are strings x that do have strong MSS but have no strong MSS of
the form Sm,s? This question was left open in [9]. In this paper we answer this
question in positive. Moreover, we show that there is a “normal” string x that
has no strong MSS of the form Sm,s (Theorem 7). A string x is called normal if
for every complexity level i there is a best fitting model A for x of complexity
at most i (whose parameters thus lie on the border of the set Px) that is strong.
In particular, every normal string has a strong MSS.

Our second result answers yet another question asked in [9]. Assume that
A is a strong MSS for a normal string x. Is it true that the code [A] of A is a
normal string itself? Our Theorem10 states that this is indeed the case.

Our last result (which comes first in the following exposition) states that
there are normal strings with any given profile, under the same restrictions as
in Theorem 1 (Theorem 4 in Sect. 2).

2 Normal Strings with a Given Profile

In this section we prove an analogue of Theorem 2 for normal strings. We start
with a rigorous definition of strong models and normal strings.

Definition 2. A set A � x is called ε-strong statistic (model) for a string x if
CT (A|x) < ε.

To represent the trade off between size and complexity of ε-strong models for x
consider the ε-strong profile of x:

P ε
x = {(a, b) | ∃A � x : CT (A|x) ≤ ε, C(A) ≤ a, log |A| ≤ b}.

It is not hard to see that the set P ε
x satisfies the item (3) from Theorem 1:

for all x ∈ {0, 1}n if (a, b+ c) ∈ P ε
x then (a+ b+O(log n), c) ∈ P

ε+O(log n)
x .

It follows from the definition that P ε
x ⊂ Px for all x, ε. Informally a string is

called normal if for a negligible ε we have Px ≈ P ε
x.

Definition 3. a string x is called (ε, δ)-normal if (a, b) ∈ Px implies
(a + δ, b + δ) ∈ P ε

x for all a, b.

The smaller ε, δ are the stronger is the property of (ε, δ)-normality. The main
result of this section shows that for some ε, δ = o(n) for every set P satisfying
the assumptions of Theorem 1 there is an ε, δ-normal string of length n with
Px ≈ P :
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Theorem 4. Assume that we are given an upward closed set P of pairs
of natural numbers satisfying assumptions of Theorem2. Then there is an
(O(log n), O(

√
n log n))-normal string x of length n and complexity k + O(log n)

whose profile Px is C(P ) + O(
√

n log n)-close to P .

To prove this theorem we do an excursus to Algorithmic statistics with models
of restricted type.

Models of Restricted Type. It turns out that Theorems 1 and 2 remain valid
(with smaller accuracy) even if we restrict (following [11]) the class of models
under consideration to models from a class A provided the class A has the
following properties.

(1) The family A is enumerable. This means that there exists an algorithm
that prints elements of A as lists of strings, with some separators (saying where
one element of A ends and another one begins).

(2) For every n the class A contains the set {0, 1}n.
(3) There exists some polynomial p with the following property: for every

A ∈ A, for every natural n and for every natural c < |A| the set of all n-bit
strings in A can be covered by at most p(n) · |A|/c sets of cardinality at most c
from A.

Any family of finite sets sets of strings that satisfies these three conditions is
called acceptable.

Let us define the profile of x with respect to A:

PA
x = {(a, b) | ∃A � x : A ∈ A, C(A) ≤ a, log |A| ≤ b}.

Obviously PA
x ⊆ Px. Let us fix any acceptable class A of models.

Theorem 5 [11]. Let x be a string of length n and complexity k. Then PA
x has

the following properties:

(1) (k + O(log n), 0) ∈ PA
x .

(2) (O(log n), n) ∈ PA
x .

(3) if (a, b + c) ∈ PA
x then (a + b + O(log n), c) ∈ PA

x .
(4) if (a, b) ∈ PA

x then a + b > k − O(log n).

Theorem 6 [11]. Assume that we are given k, n and an upward closed set P of
pairs of natural numbers such that (0, n), (k, 0) ∈ P , (a, b+c) ∈ P ⇒ (a+c, b) ∈ P
and (a, b) ∈ P ⇒ a + b ≥ k. Then there is a string x of length n and complexity
k +O(log n) such that both sets PA

x and Px are C(P )+O(
√

n log n)-close to P .

Remark 1. Originally, the conclusion of Theorem6 stated only that the set PA
x

is close to the given set P . However, as observed in [8], the proof from [11] shows
also that Px is close to P .

Proof (Proof of Theorem 4). We will derive this theorem from Theorem 6. To
this end consider the following family B of sets. A set B is in this family if it has
the form

B = {uv | v ∈ {0, 1}m},
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where u is an arbitrary binary string and m is an arbitrary natural number.
Obviously, the family B is acceptable, that is, it satisfies the properties (1)–(3)
above.

Note that for every x and for every A � x from B the total complexity of A

given x is O(log n). So PB
x ⊆ P

O(log n)
x . By Theorem 6 there is a string x such

that Px and PB
x are C(P ) + O(

√
n log n)-close to P . Since PB

x ⊆ P
O(log n)
x ⊆ Px

we conclude that x is (O(log n), O(
√

n log n))-normal.

Instead of using Theorem 4 one can, in special cases, show this result directly
even within a better accuracy range.

For instance, this happens for the smallest set P , satisfying the assumptions
of Theorem 6, namely for the set

P = {(m, l) | m ≥ k, or m + l ≥ n}.

Strings with such profile are called “antistochastic”.

Definition 4. A string x of length n and complexity k is called ε-antistochastic
if for all (m, l) ∈ Px either m > k − ε, or m + l > n − ε (Fig. 2).

Fig. 2. The profile of an ε-antistochastic string x for a small ε.

We will need later the fact that for every n there is an O(log n)-antistochastic
string x of length n and that such strings are normal:

Lemma 2. For all n and all k ≤ n there is an O(log n)-antistochastic string x
of length n and complexity k+O(log n). Any such string x is (O(log n),O(log n))-
normal.
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Proof. Let x be the lexicographic first string of length n that is not covered by
any set A of cardinality 2n−k and complexity less than k. By a direct counting
such a string exists. The string x can be computed from k, n and the number of
halting programs of length less than k hence C(x) ≤ k +O(log n). To prove that
x is normal it is enough to show that for every i ≤ k there is a O(log n)-strong
statistics Ai for x with C(Ai) ≤ i + O(log n) and log |Ai| = n − i.

Let Ak = {x} and for i < k let Ai be the set of all strings of length n whose the
first i bits are the same as those of x. By the construction C(Ai) ≤ i + O(log n)
and log |Ai| = n − i.

3 Normal Strings Without Universal MSS

Our main result of this section is Theorem 7 which states that there is a normal
string x such that no set Sm,l is a strong MSS for x.

Theorem 7. For all large enough k there exist an (O(log k), O(log k))-normal
string x of complexity 3k + O(log k) and length 4k such that:

(1) The profile Px of x is O(log k)-close to the gray set on Fig. 3.
(2) The string x has a strong MSS. More specifically, there is an O(log k)-strong

model A for x with complexity k + O(log k) and log-cardinality 2k.
(3) For all simple q and all m, l the set Sq

m,l cannot be a strong sufficient statistic
for x. More specifically, for every ε-strong ε-sufficient model Sq

m,l for x of
complexity at most k + δ we have O(ε + δ + C(q)) ≥ k − O(log k)

(The third condition means that there are constants r and t such that r(ε + δ +
C(q)) ≥ k − t log k for all large enough k).

In the proof of this theorem we will need a rigorous definition of MSS and a
related result from [9].

Fig. 3. The profile Px of a string x from Theorem 7.
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Definition 5. A set A is called a (δ, ε,D)-minimal sufficient statistic (MSS)
for x if A is an ε-sufficient statistic for x and there is no model B for x with
C(B) < C(A) − δ and C(B) + log |B| − C(x) < ε + D log C(x).

The next theorem states that for every strong MSS B and for every sufficient
statistic A for x the total conditional complexity CT (B|A) is negligible.

Theorem 8 ([9], Theorem 13). For some constant D if B is ε-strong (δ, ε,D)-
minimal sufficient statistic for x and A is an ε-sufficient statistic for x then
CT (B|A) = O(ε + δ + log C(x)).

Let us fix a constant D satisfying Theorem 8 and call a model (δ, ε)-MSS if
it is (δ, ε,D)-MSS. Such models have the following property.

Theorem 9 ([9], Theorem 14). Let x be a string of length n and A be an
ε-strong ε-sufficient statistic for x. Then for all b ≥ log |A| we have

(a, b) ∈ Px ⇔ (a + O(ε + log n), b − log |A| + O(ε + log n)) ∈ P[A]

and for b ≤ log |A| we have (a, b) ∈ Px ⇔ a + b ≥ C(x) − O(log n).

Proof (The proof of Theorem 7). Define x as the concatenation of strings y and z,
where y is an O(log k)-antistochastic string of complexity k and length 2k (exist-
ing by Lemma 2) and z is a string of length 2k such that C(z|y) = 2k −O(log k)
(and hence C(x) = 3k + O(log k)). Consider the following set A = {yz′ | l(z′) =
2k}. From the shape of Px it is clear that A is an (O(log k), O(log k))-MSS
for x. Also it is clear that A is an O(log k)-strong model for x. So, by Theorem 9
the profile of x is O(log k)-close to the gray set on Fig. 3. From normality of y
(Lemma 2) it is not difficult to see that x is (O(log k), O(log k))-normal.

Let Sq
m,l be an ε-strong ε-sufficient model for x of complexity at most k + δ.

We claim that Sq
m,l is an (ε, δ + O(log k))-MSS for x.

By Theorem 8 we get CT (Sq
m,l|A) = O(ε + δ + log k) and thus CT (s0|y) =

O(ε + δ + log k), where s0 is the lexicographic least element in Sq
m,l. Denote by

p a total program of length O(ε + δ + log k) that transforms y to s0. Consider
the following set B := {p(y′) | l(y′) = 2k}. We claim that if ε and δ are not very
big, then the complexity of any element from B is not greater than m. Indeed, if
ε+δ ≤ dk for a small constant d, then l(p) < k−O(log k) and hence every element
from B has complexity at most C(B) + log |B| + O(log k) ≤ 3k − O(log k) ≤ m.
The last inequality holds because Sq

m,l is a model for x and hence m ≥ C(x) =
3k + O(log k). (Otherwise, if ε + δ > dk then the conclusion of the theorem is
straightforward.)

Let us run the program q until it prints all elements from B. Since s0 ∈ B,
there are at most 2l elements of complexity m that we have been printed yet.
So, we can find the list of all strings of complexity at most m from B, q and
some extra l bits. Since this list has complexity at least m − O(log m) (as from
this list and m we can compute a string of complexity more than m), we get
O(C(B) + C(q)) + l ≥ m − O(log m).
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Recall that the C(Sq
m,l) + log |Sq

m,l| is equal to m + O(log m + C(q)) and is
at most C(x) + ε (since Sq

m,l is the strong statistic for x). Hence m ≤ 4k unless
ε > k + O(log k + C(q)). Therefore the term O(log m) in the last inequality can
be re-written as O(log k).

Recall that the complexity of Sq
m,l is m− l+O(log m+C(q)). From the shape

of Px it follows that C(Sq
m,l) ≥ k − O(log k) or C(Sq

m,l) + log |Sq
m,l| ≥ C(x) +

k − O(log k). In the latter case ε ≥ k − O(log k) and we are done. In the former
case m − l ≥ k − O(log k + C(q)) hence O(C(B) + C(q)) ≥ k − O(log k + C(q))
and so O(ε + δ + C(q)) ≥ k − O(log k).

4 Hereditary of Normality

In this section we prove that every strong MSS for a normal string is itself normal.
Recall that a string x is called (ε, δ)-normal if for every model B for x there is a
model A for x with CT (A|x) ≤ ε and C(A) ≤ C(B) + δ, log |A| ≤ log |B| + δ.

Theorem 10. There is a constant D such that the following holds. Assume that
A is an ε-strong (δ, ε,D)-MSS for an (ε, ε)-normal string x of length n. Assume
that ε ≤ √

n/2. Then the code [A] of A is O((ε + δ + log n) · √
n)-normal.

The rest of this section is the proof of this theorem. We start with the fol-
lowing lemma, which is a simple corollary of Theorem 3 and Lemma 1.

Lemma 3. For all large enough D the following holds: if A is a (δ, ε,D)-MSS
for x ∈ {0, 1}n then C(ΩC(A)|A) = O(δ + log n).

We fix a constant D satisfying Lemma 3 and call a model (δ, ε)-MSS if it (δ, ε,D)-
MSS. This D is the constant satisfying Theorem 10

A family of sets A is called partition if for every A1, A2 ∈ A we have A1∩A2 �=
∅ ⇒ A1 = A2. Note that for a finite partition we can define its complexity. The
next lemma states that every strong statistic A can be transformed into a strong
statistic A1 such that A1 belongs to some partition of similar complexity.

Lemma 4. Let A be an ε-strong statistic for x ∈ {0, 1}n. Then there is a set
A1 and a partition A of complexity at most ε + O(log n) such that:

(1) A1 is ε + O(log n)-strong statistic for x.
(2) CT (A|A1) < ε + O(log n) and CT (A1|A) < ε + O(log n).
(3) |A1| ≤ |A|.
(4) A1 ∈ A.

Proof. Assume that A is an ε-strong statistic for x. Then there is a total program
p such that p(x) = A and l(p) ≤ ε.

We will use the same construction as in Remark 1 in [9]. For every set B
denote by B′ the following set: {x′ ∈ B | p(x′) = B, x′ ∈ {0, 1}n}. Notice that
CT (A′|A), CT (A|A′) and CT (A′|x) are less than l(p) + O(log n) = ε + O(log n)
and |A′| ≤ |A|.

For any x1, x2 ∈ {0, 1}n with p(x1) �= p(x2) we have p(x1)′ ∩ p(x2)′ = ∅.
Hence A := {p(x)′|x ∈ {0, 1}n} is a partition of complexity at most ε+O(log n).
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By Theorem 3 and Lemma 1 for every A � x there is a B � x such that B is
informational equivalent to ΩC(B) and parameters of B are not worse than those
of A. We will need a similar result for normal strings and for strong models.

Lemma 5. Let x be an (ε, α)-normal string with length n such that ε ≤ n,
α <

√
n/2. Let A be an ε-strong statistic for x. Then there is a set H such that:

(1) H is an ε-strong statistic for x.
(2) δ(x|H) ≤ δ(x|A) + O((α + log n) · √n) and C(H) ≤ C(A).
(3) C(H|ΩC(H)) = O(

√
n).

Proof (Sketch of proof). Consider the sequence A1, B1, A2, B2, . . . of statistics
for x defined as follows. Let A1 := A and let Bi be an improvement of Ai such
that Bi is informational equivalent to ΩC(Bi), which exists by Theorem 3. Let
Ai+1 be a strong statistic for x that has a similar parameters as Bi, which exists
because x is normal. (See Fig. 4.)

Denote by N the minimal integer such that C(AN ) − C(BN ) ≤ √
n. For

i < N the complexity of Bi is more than
√

n less that of Ai. On the other hand,
the complexity of Ai+1 is at most α <

√
n/2 larger than that of Bi. Hence N =

O(
√

n). Let H := AN . By definition AN (and H) is strong. From N = O(
√

n)
it follows that the second condition is satisfied. From C(AN ) − C(BN ) ≤ √

n
and definition of BN it is follows that the third condition is satisfied too (use
symmetry of information).

Proof (Sketch of proof of Theorem 10). Assume that A is a ε-strong (δ, ε,D)-
minimal statistic for x, where D satisfies Lemma 3. By Lemma 3 A is informa-
tional equivalent to ΩC(A). We need to prove that the profile of [A] is close to
the strong profile of [A].

Fig. 4. Parameters of statistics Ai and Bi
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Fig. 5. Px is located log |A1| higher than P[A1]

Let A be a simple partition and A1 a model from A which exists by Lemma 4
applied to A, x. As the total conditional complexities CT (A1|A) and CT (A|A1)
are small, the profiles of A and A1 are close to each other. This also applies to
strong profiles. Therefore it suffices to show that (the code of) A1 is normal.

Let (a, b) ∈ P[A1]. The parameters (complexity and log-cardinality) of A1

are not larger than those of A and hence A1 is a sufficient statistic for x. By
Theorem 9 we have (a, b + log |A1|) ∈ Px (see Fig. 5).

As x is normal, the pair (a, b + log |A1|) belongs to the strong profile of x
as well. By Lemma 5 there is a strong model M for x that has low complexity
conditional to ΩC(M) and whose parameters (complexity, optimality deficiency)
are not worse than those of A1.

We claim that C(M |A1) is small. As A is informational equivalent to ΩC(A),
so is A1. From ΩC(A) we can compute ΩC(M) (Lemma 1) and then compute M
(as C(M |ΩC(M)) ≈ 0). This implies that C(M |A1) ≈ 0.

However we will need a stronger inequality CT (M |A1) ≈ 0. To find such M ,
we apply Lemma 4 to M,x and change it to a model M1 with the same para-
meters that belongs to a simple partition M. Item (2) of Lemma 4 guarantees
that M1 is also simple given A1 and that M1 is a strong model for x. Since
C(M |A1) ≈ 0, we have C(M1|A1) ≈ 0 as well.

As A1 lies on the border line of Px and C(M1|A1) ≈ 0, the intersection
A1∩M1 cannot be much less than A1, that is, log |A1∩M1| ≈ log |A1| (otherwise
the model A1 ∩ M1 for x would have much smaller cardinality and almost the
same complexity as A1). The model M1 can be computed by a total program
from A1 and its index among all M ′ ∈ M with log |A1 ∩ M ′| ≈ log |A1|. As M
is a partition, there are few such sets M ′. Hence CT (M1|A1) ≈ 0.
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Finally, let H = {A′ ∈ A | log |A′ ∩ M1| = log |A1 ∩ M1|}. The model H
for A1 is strong because the partition A is simple and CT (M1|A1) ≈ 0. The
model H can be computed from M1, A and log |A1 ∩ M1|. As A is simple, we
conclude that C(H) � C(M1). Finally log |H| ≤ log |M1| − log |A1|, because A
is a partition and thus it has few sets that have log |A1 ∩M1| ≈ log |A1| common
elements with M1.

Thus the complexity of H is not larger than that of M1 and the sum of
complexity and cardinality of H is at most a+ b− log |A1|. As the strong profile
of x has the third property from Theorem1, we can conclude that it includes
the point (a, b).
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11. Vitányi, P., Vereshchagin, N.: On algorithmic rate-distortion function. In: Pro-
ceedings of 2006 IEEE International Symposium on Information Theory, Seattle,
Washington, 9–14 July 2006

http://www.lirmm.fr/~ashen/kolmbook-eng.pdf
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf


Subquadratic Algorithms for Succinct
Stable Matching

Daniel Moeller, Ramamohan Paturi, and Stefan Schneider(B)

University of California, San Diego, La Jolla, USA
{dmoeller,paturi,stschnei}@cs.ucsd.edu

Abstract. We consider the stable matching problem when the prefer-
ence lists are not given explicitly but are represented in a succinct way
and ask whether the problem becomes computationally easier. We give
subquadratic algorithms for finding a stable matching in special cases of
two very natural succinct representations of the problem, the d-attribute
and d-list models. We also give algorithms for verifying a stable match-
ing in the same models. We further show that for d = ω(log n) both
finding and verifying a stable matching in the d-attribute model requires
quadratic time assuming the Strong Exponential Time Hypothesis. The
d-attribute model is therefore as hard as the general case for large enough
values of d.

Keywords: Stable matching · Attribute model · Subquadratic
algorithms · Conditional lower bounds · SETH

1 Introduction

The stable matching problem has applications that vary from coordinating buy-
ers and sellers to assigning students to public schools and residents to hospitals
[16,21,27]. Gale and Shapley [14] proposed a quadratic time deferred acceptance
algorithm for this problem which has helped clear matching markets in many
real-world settings. For arbitrary preferences, the deferred acceptance algorithm
is optimal and even verifying that a given matching is stable requires quadratic
time [15,24,28]. This is reasonable since representing all participants’ preferences
requires quadratic space. However, in many applications the preferences are not
arbitrary and can have more structure. For example, top doctors are likely to
be universally desired by residency programs and students typically seek highly
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ranked schools. In these cases participants can represent their preferences suc-
cinctly. It is natural to ask whether the same quadratic time bounds apply with
compact and structured preference models that have subquadratic representa-
tions. This will provide a more nuanced understanding of where the complexity
lies: Is stable matching inherently complex, or is the complexity merely a result of
the large variety of possible preferences? To this end, we examine two restricted
preference models originally proposed by Bhatnagar et al. [7], the d-attribute
and d-list models. Using a wide range of techniques we provide algorithms and
conditional hardness results for several settings of these models.

In the d-attribute model, we assume that there are d different attributes
(e.g. income, height, sense of humor, etc.) with a fixed, possibly objective, rank-
ing of the men for each attribute. Each woman’s preference list is based on a
linear combination of the attributes of the men, where each woman can have dif-
ferent weights for each attribute. Some women may care more about, say, height
whereas others care more about sense of humor. Men’s preferences are defined
analogously. This model is applicable in large settings, such as online dating
systems, where participants lack the resources to form an opinion of every other
participant. Instead the system can rank the members of each gender accord-
ing to the d attributes and each participant simply needs to provide personal-
ized weights for the attributes. The combination of attribute values and weights
implicitly represents the entire preference matrix. Bogomolnaia and Laslier [8]
show that representing all possible n × n preference matrices requires n − 1
attributes. Therefore it is reasonable to expect that when d � n − 1, we could
beat the worst case quadratic lower bounds for the general stable matching
problem.

In the d-list model, we assume that there are d different rankings of the men.
Each women selects one of the d lists as her preference list. Similarly, each man
chooses one of d lists of women as his preference list. This model captures the
setting where members of one group (i.e. student athletes, sorority members,
engineering majors) may all have identical preference lists. Mathematically, this
model is actually a special case of the d-attribute model where each participant
places a positive weight on exactly one attribute. However, its motivation is
distinct and we can achieve improved results for this model.

Chebolu et al. prove that approximately counting stable matchings in the
d-attribute model for d ≥ 3 is as hard as the general case [11]. Bhatnagar et al.
showed that sampling stable matchings using random walks can take exponential
time even for a small number of attributes or lists but left it as an open question
whether subquadratic algorithms exist for these models [7].

We show that faster algorithms exist for finding a stable matching in some
special cases of these models. In particular, we provide subquadratic algorithms
for the d-attribute model, where all values and weights are from a small set,
and the one-sided d-attribute model, where one side of the market has only one
attribute. These results show we can achieve meaningful improvement over the
general setting for some restricted preferences.
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While we only provide subquadratic algorithms to find stable matchings in
special cases of the attribute model, we have stronger results concerning ver-
ification of stable matchings. We demonstrate optimal subquadratic stability
testing algorithms for the d-list and boolean d-attribute settings as well as a
subquadratic algorithm for the general d-attribute model with constant d. These
algorithms provide a clear distinction between the attribute model and the gen-
eral setting. Moreover, these results raise the question of whether verifying and
finding a stable matching are equally hard problems for these restricted models,
as both require quadratic time in the general case.

Finally, we show that the stable matching problem in the d-attribute model
for d = ω(log n) cannot be solved in subquadratic time under the Strong Expo-
nential Time Hypothesis (SETH) [18,20]. We show SETH-hardness for both
finding and verifying a stable matching, even if the weights and attributes are
boolean. This adds the stable matching problem to a growing list of SETH-
hard problems, including Fréchet distance [9], edit distance [5], string match-
ing [1], k-dominating set [25], orthogonal vectors [30], model checking on sparse
graphs [10], and vector domination [19]. Thus the quadratic time hardness of the
stable matching problem in the general case extends to the more restricted and
succinct d-attribute model. This limits the space of models where we can hope
to find subquadratic algorithms.

Dabney and Dean [12] study an alternative succinct preference representation
where there is a canonical preference list for each side and individual deviations
from this list are specified separately. They provide an adaptive O(n + k) time
algorithm for the special one-sided case, where k is the number of deviations.
Bartholdi and Trick [6] present a subquadratic time algorithm for stable room-
mates with narcissistic, single-peaked preferences. Arkin et al. [4] derive a sub-
quadratic algorithm for stable roommates with constant dimensional geometric
preferences.

2 Summary of Results

Section 4.1 gives an O(C2dn(d+log n)) time algorithm for finding a stable match-
ing in the d-attribute model if both the attributes and weights are from a set of
size at most C. This gives a strongly subquadratic algorithm (i.e. O(n2−ε) for
ε > 0) if d < 1

2 log C log n.
Section 4.2 considers an asymmetric case, where one side of the matching

market has d attributes, while the other side has a single attribute. We allow
both the weights and attributes to be arbitrary real values. Our algorithm for
finding a stable matching in this model has time complexity Õ(n2−1/�d/2�), which
is strongly subquadratic for constant d.

In Sect. 5.1 we consider the problem of verifying that a given matching is
stable in the d-attribute model with real attributes and weights. The time com-
plexity of our algorithm is Õ(n2−1/2d), which is again strongly subquadratic for
constant d.
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Section 5.2 gives an O(dn) time algorithm for verifying a stable matching in
the d-list model. This is linear in its input size and is therefore optimal.

In Sect. 5.3 we give a randomized Õ(n2−1/O(c log2(c))) time algorithm for d =
c log n for verifying a stable matching in the d-attribute model when both the
weights and attributes are boolean. This algorithm is strongly subquadratic for
d = O(log n).

Finally, in Sect. 6 we give a conditional lower bound for both finding and
verifying a stable matching in the d-attribute model. We show that there is
no strongly subquadratic algorithm when d = ω(log n) assuming the Strong
Exponential Time Hypothesis.

3 Preliminaries

A matching market consists of a set of men M and a set of women W with
|M | = |W | = n. We further have a permutation of W for every m ∈ M , and a
permutation of M for every w ∈ W , called preference lists. Note that representing
a general matching market requires size Ω(n2).

For a perfect bipartite matching μ, a blocking pair with respect to μ is a pair
(m,w) �∈ μ where m ∈ M and w ∈ W , such that w appears before μ(m) in
m’s preference list and m appears before μ(w) in w’s preference list. A perfect
bipartite matching is called stable if there are no blocking pairs. In settings where
ties in the preference lists are possible, we consider weakly stable matchings
where (m,w) is a blocking pair if and only if both strictly prefer each other to
their partner.

Gale and Shapley’s deferred acceptance algorithm [14] works as follows. While
there is an unmatched man m, have m propose to his most preferred woman who
has not already rejected him. A woman accepts a proposal if she is unmatched
or if she prefers the proposing man to her current partner, leaving her current
partner unmatched. Otherwise, she rejects the proposal. This process finds a
stable matching in time O(n2).

A matching market in the d-attribute model consists of n men and n women
as before. A participant p has attributes Ai(p) for 1 ≤ i ≤ d and weights αi(p)
for 1 ≤ i ≤ d. For a man m and woman w, m’s value of w is given by valm(w) =
〈α(m), A(w)〉 =

∑d
i=1 αi(m)Ai(w). m ranks the women in decreasing order of

value. Symmetrically, w’s value of m is valw(m) =
∑d

i=1 αi(w)Ai(m). Note that
representing a matching market in the d-attribute model requires size O(dn).
Unless otherwise specified, both attributes and weights can be negative.

A matching market in the d-list model is a matching market where both sides
have at most d distinct preference lists. Describing a matching market in this
model requires O(dn) numbers.

Throughout the paper, we use Õ to suppress polylogarithmic factors in the
time complexity.
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4 Finding Stable Matchings

4.1 Small Set of Attributes and Weights

We first present a stable matching algorithm for the d-attribute model when the
attribute and weight values are limited to a set of constant size. In particular,
we assume that the number of possible values for each attribute and weight for
all participants is bounded by a constant C.

Theorem 1. There is an algorithm to find a stable matching in the d-attribute
model with at most a constant C distinct attribute and weight values in time
O(C2dn(d + log n)).

Proof. First group the women into sets Si with a set for each of the O(C2d)
types of women. (O(Cd) possible attribute values and O(Cd) possible weight
vectors.) Observe that each man is indifferent between the women in a given set
Si because each woman has identical attribute values. Thus we can enumerate
the full preference list over the sets Si for each man. Moreover, the women in
a set Si share the same ranking of the men, since they have identical weight
vectors. Therefore we can treat each set of women Si as an individual entity in
a many to one stable matching problem where the capacity for each Si is the
number of women it contains. With these observations, we can run the standard
deferred acceptance algorithm for many-one stable matching and the stability
follows directly from the stability of this algorithm.

Grouping the women requires O(C2d + dn) time to initialize the groups and
place each woman in the appropriate group. Creating the men’s preference lists
requires O(dC2dn) time to evaluate and sort the groups of women for every
man. The deferred acceptance algorithm requires O(C2dn(d + log n)) time since
each man will propose to at most C2d sets of women and each proposal requires
O(d + log n) time since we must evaluate the proposer and keep track of which
tentative partner is least preferred (using a min-heap). This results in an overall
running time of O(C2dn(d + log n)).

As long as d < 1
2 log C log n, the time complexity in Theorem 1 will be sub-

quadratic. It is worth noting that the algorithm and proof actually do not rely on
any restriction of the men’s attribute and weight values. Thus, this result holds
whenever one side’s attributes and weight values come from a set of constant
size. Pseudocode for the algorithm can be found in the full version of the paper.

4.2 One-Sided Real Attributes

In this section we consider a one-sided attribute model with real attributes and
weights. In this model, women have d attributes and men have d weights, and the
preference list of a man is given by the weighted sum of the women’s attributes as
in the two-sided attribute model. On the other hand there is only one attribute
for the men. The women’s preferences are thus determined by whether they have
a positive or negative weight on this attribute. For simplicity, we first assume that
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all women have a positive weight on the men’s attribute and show a subquadratic
algorithm for this case. Then we extend it to allow for negative weights.

To find a stable matching when the women have a global preference list over
the men, we use a greedy approach: process the men from the most preferred to
the least preferred and match each man with the highest unmatched woman in
his preference list. This general technique is not specific to the attribute model
but actually works for any market where one side has a single global preference
list. (e.g. [12] uses a similar approach for their algorithm.) The complexity lies in
repeatedly finding which of the available women is most preferred by the current
top man.

This leads us to the following algorithm: for every woman w consider a point
with A(w) as its coordinates and organize the set of points into a data structure.
Then, for the men in order of preference, query the set of points against a
direction vector consisting of the man’s weight and find the point with the largest
distance along this direction. Remove that point and repeat.

The problem of finding a maximal point along a direction is typically con-
sidered in its dual setting, where it is called the ray shooting problem. In the
ray shooting problem we are given n hyperplanes and must maintain a data
structure to answer queries. Each query consists of a vertical ray and the data
structure returns the first hyperplane hit by that ray.

The relevant results are in Lemma 1 which follows from several papers for
different values of d. For an overview of the ray shooting problem and related
range query problems, see [2].

Lemma 1 [13,17,23]. Given an n point set in R
d for d ≥ 2, there is a data

structure for ray shooting queries with preprocessing time Õ(n) and query time
Õ(n1−1/�d/2�). The structure supports deletions with amortized update time Õ(1).

For d = 1, queries can trivially be answered in constant time. We use this
data structure to provide an algorithm when there is a global list for one side of
the market.

Lemma 2. For d ≥ 2 there is an algorithm to find a stable matching in the one-
sided d-attribute model with real-valued attributes and weights in Õ(n2−1/�d/2�)
time when there is a single preference list for the other side of the market.

Proof. For a man m, let dim(m) denote the index of the last non-zero weight,
i.e. αdim(m)+1(m) = · · · = αd(m) = 0. We assume dim(m) > 0, as otherwise m
is indifferent among all women and we can pick any woman as μ(m). We assume
without loss of generality αdim(m)(m) ∈ {−1, 1}. For each d′ such that 1 ≤ d′ ≤ d

we build a data structure consisting of n hyperplanes in R
d′

. For each woman
w, consider the hyperplanes

Hd′(w) =

⎧
⎨

⎩
xd′ =

d′−1∑

i=1

Ai(w)xi − Ad′(w)

⎫
⎬

⎭
(1)
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and for each d′ preprocess the set of all hyperplanes according to Lemma 1. Note
that Hd′(w) is the dual of the point (A1(w), . . . , Ad′(w)).

For a man m we can find his most preferred partner by querying the dim(m)-
dimensional data structure. Let s = αdim(m)(m). Consider a ray r(m) ∈ R

dim(m)

originating at

(−α1(m)
s

, . . . ,−αdim(m)−1(m)
s

,−s · ∞) (2)

in the direction (0, . . . , 0, s). If αdim(m) = 1 we find the lowest hyperplane inter-
secting the ray, and if αdim(m) = −1 we find the highest hyperplane. We claim
that the first hyperplane r(m) hits corresponds to m’s most preferred woman. Let
woman w be preferred over woman w′, i.e. valm(w) =

∑dim(m)
i=1 Ai(w)αi(m) ≥

∑dim(m)
i=1 Ai(w′)αi(m) = valm(w′). Since the ray r(m) is vertical in coordinate

xd′ , it is sufficient to evaluate the right-hand side of the definition in Eq. 1. Indeed
we have valm(w) ≥ valm(w′) if and only if

dim(m)−1∑

i=1

−Ai(w)
αi(m)

s
− Adim(m)(w) ≤

dim(m)−1∑

i=1

−Ai(w′)
αi(m)

s
− Adim(m)(w′)

(3)
when s = 1. The case s = −1 is symmetrical.

Note that the query ray is the standard dual of the set of hyperplanes with
normal vector (α1(m), . . . , αd(m)).

Now we pick the highest man m in the (global) preference list, consider
the ray as above and find the first hyperplane Hdim(m)(w) hit by the ray. We
then match the pair (m,w), remove H(w) from all data structures and repeat.
Correctness follows from the correctness of the greedy approach when all women
share the same preference list and the properties of the halfspaces proved above.

The algorithm preprocesses d data structures, then makes n queries and
dn deletions. The time is dominated by the n ray queries each requiring time
Õ(n1−1/�d/2�). Thus the total time complexity is bounded by Õ(n2−1/�d/2�), as
claimed.

We use the following lemma to extend the above algorithm to account for
positive and negative weights for the women. It deals with settings where the
women choose one of two lists (σ1, σ2) as their preference lists over the men while
the men’s preferences can be arbitrary.

Lemma 3. Suppose there are k women who use σ1. If the top k men in σ1 are
in the bottom k places in σ2, then the women using σ1 will only match with those
men and the n − k women using σ2 will only match with the other n − k men in
the woman-optimal stable matching.

Proof. Consider the operation of the woman-proposing deferred acceptance algo-
rithm for finding the woman-optimal stable matching. Suppose the lemma is false
so that at some point a woman using σ1 proposed to one of the last n − k men
in σ1. Let w be the first such woman. w must have been rejected by all of the
top k, so at least one of those men received a proposal from a woman, w′, using σ2.
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However, since the top k men in σ1 are the bottom k men in σ2, w′ must have been
rejected by all of the top n−k men in σ2. But there are only n−k women using σ2,
so one of the top n − k men in σ2 must have already received a proposal from a
woman using σ1. This is a contradiction because w was the first woman using σ1

to propose to one of the bottom n − k men in σ1 (which are the top n − k men
in σ2).

We can now prove the following theorem where negative values are allowed
for the women’s weights.

Theorem 2. For d ≥ 2 there is an algorithm to find a stable matching in
the one-sided d-attribute model with real-valued attributes and weights in time
Õ(n2−1/�d/2�).

Proof. Suppose there are k women who have a positive weight on the men’s
attribute. Since the remaining n − k women’s preference list is the reverse, we
can use Lemma 3 to split the problem into two subproblems. Namely, in the
woman-optimal stable matching the k women with a positive weight will match
with the top k men, and the n − k women with a negative weight will match
with the bottom n − k men. Now the women in each of these subproblems all
have the same list. Therefore we can use Lemma 2 to solve each subproblem.
Splitting the problem into subproblems can be done in time O(n) so the running
time follows immediately from Lemma 2.

Table 1. Preference lists where a greedy approach will not work

σ1 σ2 π1 π2

m1 m3 w1 w3

m2 m5 w2 w5

m3 m1 w3 w1

m4 m4 w4 w4

m5 m2 w5 w2

Man List Woman List

m1 π1 w1 σ2

m2 π1 w2 σ2

m3 π2 w3 σ1

m4 π1 w4 σ2

m5 π2 w5 σ1

As a remark, this “greedy” approach where we select a man, find his most
preferred available woman, and permanently match him to her will not work
in general. Table 1 describes a simple 2-list example where the unique stable
matching is (m1w2,m2w3,m3w5,m4w4,m5w1). In this instance, no participant
is matched with their top choice. Therefore, the above approach cannot work for
this instance. This illustrates to some extent why the general case seems more
difficult than the one-sided case.

5 Verification

We now turn to the problem of verifying whether a given matching is stable.
While this is as hard as finding a stable matching in the general setting, the
verification algorithms we present here are more efficient than our algorithms
for finding stable matchings in the attribute model.
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5.1 Real Attributes and Weights

In this section we adapt the geometric approach for finding a stable matching
in the one-sided d-attribute model to the problem of verifying a stable matching
in the (two-sided) d-attribute model. We express the verification problem as a
simplex range searching problem in R

2d, which is the dual of the ray shooting
problem. In simplex range searching we are given n points and answer queries
that ask for the number of points inside a simplex. In our case we only need
degenerate simplices consisting of the intersection of two halfspaces. Simplex
range searching queries can be done in sublinear time for constant d.

Lemma 4 [22]. Given a set of n points in R
d, one can process it for simplex

range searching in time O(n log n), and then answer queries in time Õ(n1− 1
d ).

For 1 ≤ d′ ≤ d we use the notation (x1, . . . , xd, y1, . . . , yd′−1, z) for points in
R

d+d′
. We again let dim(w) be the index of w’s last non-zero weight, assume

without loss of generality αdim(w) ∈ {−1, 1}, and let sgn(w) = sgn(αdim(w)). We
partition the set of women into 2d sets Wd′,s for 1 ≤ d′ ≤ d and s ∈ {−1, 1}
based on dim(w) and sgn(w). Note that if dim(w) = 0, then w is indifferent
among all men and can therefore not be part of a blocking pair. We can ignore
such women.

For a woman w, consider the point

P (w) = (A1(w), . . . , Ad(w), α1(w), . . . , αdim(w)−1(w), valw(m)) (4)

where m = μ(w) is the partner of w in the input matching μ. For a set Wd′,s we
let Pd′,s be the set of points P (w) for w ∈ Wd′,s. The basic idea is to construct
a simplex for every man and query it against all sets Pd′,s.

Given d′,s, and a man m, let H1(m) be the halfspace
{

d∑

i=1

αi(m)xi > valm(w)

}

(5)

where w = μ(m). For w′ ∈ Wd′,s we have P (w′) ∈ H1(m) if and only if m strictly
prefers w′ to w. Further let H2(m) be the halfspace

⎧
⎨

⎩

d′−1∑

i=1

Ai(m)yi + Ad′(m)s > z

⎫
⎬

⎭
(6)

For w′ ∈ Wd′,s we have P (w′) ∈ H2(m) if and only if w′ strictly prefers m to
μ(w′). Hence (m,w′) is a blocking pair if and only if P (w′) ∈ H1(m) ∩ H2(m).

Using Lemma 4 we immediately have an algorithm to verify a stable
matching.

Theorem 3. There is an algorithm to verify a stable matching in the d-attribute
model with real-valued attributes and weights in time Õ(n2−1/2d)
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Proof. Partition the set of women into sets Wd′,s for 1 ≤ d′ ≤ d and s ∈ {−1, 1}
and for w ∈ Wd′,s construct P (w) ∈ R

d+d′
as above. Then preprocess the sets

according to Lemma 4. For each man m query H1(m)∩H2(m) against the points
in all sets. By the definitions of H1(m) and H2(m), there is a blocking pair if
and only if for some man m there is a point P (w) ∈ H1(m) ∩ H2(m) in one
of the sets Pd′,s. The time to preprocess is O(n log n). There are 2dn queries of
time Õ(n1−1/2d). Hence the whole process requires time Õ(n2−1/2d) as claimed.

5.2 Lists

Algorithm 1. Verify d-List Stable Matching
for i = 1 to d do

for j = 1 to d do
w ← head(πi, j).
m ← head(σj , i).
while m �= ⊥ and w �= ⊥ do

if rank(w, i) > rank(μ(m), i) then
m ← next(m, j).

else
if rank(m, j) > rank(μ(w), j) then

w ← next(w, i).
else

return (m,w) is a blocking pair.

return μ is stable.

When there are d preference orders for each side, and each participant uses
one of the d lists, we provide a more efficient algorithm. Here, assume μ is the
given matching between M and W . Let {πi}d

i=1 be the set of d permutations
on the women and {σi}d

i=1 be the set of d permutations on the men. Define
rank(w, i) to be the position of w in permutation πi. This can be determined in
constant time after O(dn) preprocessing of the permutations. Let head(πi, j) be
the first woman in πi who uses permutation σj and next(w, i) be the next highest
ranked woman after w in permutation πi who uses the same permutation as w
or ⊥ if no such woman exists. These can also be determined in constant time
after O(dn) preprocessing by splitting the lists into sublists, with one sublist for
the women using each permutation of men. The functions rank, head, and next
are defined analogously for the men.

Theorem 4. There is an algorithm to verify a stable matching in the d-list
model in O(dn) time.

Proof. We claim that Algorithm 1 satisfies the theorem. Indeed, if the algorithm
returns a pair (m,w) where m uses πi and w uses σj , then (m,w) is a blocking
pair because w appears earlier in πi than μ(m) and m appears earlier in σj

than μ(w).
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On the other hand, suppose the algorithm returns that μ is stable but there is
a blocking pair, (m,w), where m uses πi and w uses σj . The algorithm considers
permutations πi and σj since it does not terminate early. Clearly if the algorithm
evaluates m and w simultaneously when considering permutations πi and σj , it
will detect that (m,w) is a blocking pair. Therefore, the algorithm either moves
from m to next(m, j) before considering w or it moves from w to next(w, i)
before considering m. In the former case, rank(μ(m), i) < rank(w′, i) for some
w′ that comes before w in πi. Therefore m prefers μ(m) to w. Similarly, in the
latter case, rank(μ(w), j) < rank(m′, i) for some m′ that comes before m in
σj so w prefers μ(w) to m. Thus (m,w) is not a blocking pair and we have a
contradiction.

The for and while loops proceed through all men and women once for each
of the d lists in which they appear. Since at each step we are either proceeding
to the next man or the next woman unless we find a blocking pair, the algorithm
requires time O(dn). This is optimal since the input size is dn.

5.3 Boolean Attributes and Weights

In this section we consider the problem of verifying a stable matching when the
d attributes and weights are restricted to boolean values and d = c log n. The
algorithm closely follows an algorithm for the maximum inner product problem
by Alman and Williams [3]. The idea is to express the existence of a blocking pair
as a probabilistic polynomial with a bounded number of monomials and use fast
rectangular matrix multiplication to evaluate it. A probabilistic polynomial for
a function f is a polynomial p such that for every input x, Pr[f(x) �= p(x)] ≤ 1

3 .
We construct a probabilistic polynomial that outputs 1 if there is a blocking

pair. To minimize the degree of the polynomial, we pick a parameter s and
divide the men and women into sets of size at most s. The polynomial takes
the description of s men m1, . . . ,ms and s women w1, . . . , ws along with their
respective partners as input, and outputs 1 if and only if there is a blocking pair
(mi, wj) among the s2 pairs of nodes with high probability.

Proofs for this section, using lemmas from [26,29,31] are omitted here and
can be found in the full version.

Lemma 5. Let u be a large constant and s = n1/uc log2 c. There is a probabilistic
polynomial with the following inputs:

– The attributes and weights of s men, A(m1), . . . , A(ms), α(m1), . . . , α(ms)
– The attributes of women matched with these men, A(μ(m1)), . . . , A(μ(ms))
– The attributes and weights of s women, A(w1), . . . , A(ws), α(w1), . . . , α(ws)
– The attributes of men matched with these women, A(μ(w1)), . . . , A(μ(ws))

The output of the polynomial is 1 if and only if there is a blocking pair with respect
to the matching μ among the s2 pairs in the input. The number of monomials is
at most n0.17 and the polynomial can be constructed efficiently.

Given such a probabilistic polynomial, we can decide if a given matching is
stable by evaluating the polynomial on

(
n
s

)2 inputs efficiently.
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Theorem 5. In the d-attribute model with n men and women, and d = c log n
boolean attributes and weights, there is a randomized algorithm to decide if a
given matching is stable in time Õ(n2−1/O(c log2(c))) with error probability at
most 1/3.

6 Conditional Hardness

6.1 Background

The Strong Exponential Time Hypothesis has proved useful in arguing condi-
tional hardness for a large number of problems. We show SETH-hardness for
both verifying and finding a stable matching in the d-attribute model, even if
the weights and attributes are boolean.

Definition 1 [18,20]. The Strong Exponential Time Hypothesis (SETH) stip-
ulates that for each ε > 0 there is a k such that k-SAT requires Ω(2(1−ε)n) time.

The main step of the proof is a reduction from the maximum inner product
problem, which is known to be SETH-hard. For any d and input l, the maximum
inner product problem is to decide if two input sets U, V ⊆ R

d with |U | = |V | = n
have a pair u ∈ U , v ∈ V such that 〈u, v〉 ≥ l. The boolean maximum inner
product problem is the variant where U, V ⊆ {0, 1}d.

Lemma 6 [3,20,30]. Assuming SETH, for any ε > 0, there is a c such that
solving the boolean maximum inner product problem on d = c log n dimensions
requires time Ω(n2−ε).

6.2 Finding Stable Matchings

In this subsection we give a fine-grained reduction from the maximum inner
product problem to the problem of finding a stable matching in the boolean d-
attribute model. This shows that the stable matching problem in the d-attribute
model is SETH-hard, even if we restrict the attributes and weights to booleans.

Theorem 6. Assuming SETH, for any ε > 0, there is a c such that finding
a stable matching in the boolean d-attribute model with d = c log n dimensions
requires time Ω(n2−ε).

Proof. The proof is a reduction from maximum inner product to finding a stable
matching. Given an instance of the maximum inner product problem with sets
U, V ⊆ {0, 1}d where |U | = |V | = n and threshold l, we construct a matching
market with n men and n women. For every u ∈ U we have a man mu with
A(mu) = u and α(mu) = u. Similarly, for vectors v ∈ V we have women wv with
A(wv) = v and α(wv) = v. This matching market is symmetric in the sense that
for mu and wv, valmu

(wv) = valwv
(mu) = 〈u, v〉.

We claim that any stable matching contains a pair (mu, wv) such that the
inner product 〈u, v〉 is maximized. Indeed, suppose there are vectors u ∈ U ,
v ∈ V with 〈u, v〉 ≥ l but there exists a stable matching μ with 〈u′, v′〉 < l for
all pairs (mu′ , wv′) ∈ μ. Then (mu, wv) is clearly a blocking pair for μ which is
a contradiction.
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6.3 Verifying Stable Matchings

In this section we give a reduction from the maximum inner product problem
to the problem of verifying a stable matching, showing that this problem is also
SETH-hard.

Theorem 7. Assuming SETH, for any ε > 0, there is a c such that verifying
a stable matching in the boolean d-attribute model with d = c log n dimensions
requires time Ω(n2−ε).

Proof. We give a reduction from maximum inner product with sets U, V ⊆
{0, 1}d where |U | = |V | = n and threshold l. We construct a matching mar-
ket with 2n men and women in the d′-attribute model with d′ = d + 2(l − 1).
Since d′ < 3d the theorem then follows immediately from the SETH-hardness of
maximum inner product.

For u ∈ U , let mu be a man in the matching market with attributes and
weights A(mu) = α(mu) = u ◦ 1l−1 ◦ 0l−1 where we use ◦ for concatenation.
Similarly, for v ∈ V we have women wv with A(wv) = α(wv) = v ◦ 0l−1 ◦ 1l−1.
We further introduce dummy women w′

u for u ∈ U with A(w′
u) = α(w′

u) = 0d ◦
1l−1◦0l−1 and dummy men m′

v for v ∈ V with A(m′
v) = α(m′

v) = 0d◦0l−1◦1l−1.
We claim that the matching consisting of pairs (mu, w′

u) for all u ∈ U and
(m′

v, wv) for all v ∈ V is stable if and only if there is no pair u ∈ U , v ∈ V
with 〈u, v〉 ≥ l. For u, u′ ∈ U we have valmu

(w′
u′) = valw′

u′ (mu) = l − 1, and
for v, v′ ∈ V we have valwv

(m′
v′) = valm′

v′ (wv) = l − 1. In particular, any pair
in μ has (symmetric) value l − 1. Hence there is a blocking pair with respect to
μ if and only if there is a pair with value at least l. For u �= u′ and v �= v′ the
pairs (mu, w′

u′) and (wv,m′
v′) can never be blocking pairs as their value is l − 1.

Furthermore for any pair of dummy nodes w′
u and m′

v we have valm′
v
(w′

u) =
valw′

u
(m′

v) = 0, thus no such pair can be a blocking pair either. This leaves pairs
of real nodes as the only candidates for blocking pairs. For non-dummy nodes
mu and wv we have valmu

(wv) = valwv
(mu) = 〈u, v〉 so (mu, wv) is a blocking

pair if and only if 〈u, v〉 ≥ l.

7 Conclusion and Open Problems

We give subquadratic algorithms for finding and verifying stable matchings in
the d-attribute model and d-list model. We also show that, assuming SETH, one
can only hope to find such algorithms if the number of attributes d is bounded
by O(log n).

For a number of cases there is a gap between the conditional lower bound and
the upper bound. Our algorithms with real attributes and weights are only sub-
quadratic if the dimension is constant. It would be interesting to either close or
explain this gap. Even for small constants our algorithm to find a stable match-
ing is not tight, as it is not subquadratic for any d = O(log n). The techniques
we use when the attributes and weights are small constants do not readily apply
to the more general case.
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We also lack a subquadratic time algorithm for the problem of finding a
stable matching with general real attributes and weights. Even for the arbitrary
2-list case we do not currently have a subquadratic algorithm. This 2-list case
seems to be a good starting place for further research.

Acknowledgment. We would like to thank Russell Impagliazzo, Vijay Vazirani, and
the anonymous reviewers for helpful discussions and comments.
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Abstract. We consider the black-box polynomial identity testing (PIT)
problem for a sub-class of depth-4 ΣΠΣΠ(k, r) circuits. Such circuits
compute polynomials of the following type: C(X) =

∑k
i=1

∏di
j=1 Qi,j ,

where k is the fan-in of the top Σ gate and r is the maximum degree of
the polynomials {Qi,j}i∈[k],j∈[di], and k, r = O(1). We consider a sub-
class of such circuits satisfying a generic algebraic-geometric restriction,
and we give a deterministic polynomial-time black-box PIT algorithm
for such circuits.

Our study is motivated by two recent results of Mulmuley (FOCS
2012, [Mul12]), and Gupta (ECCC 2014, [Gup14]). In particular, we
obtain the derandomization by solving a particular instance of derandom-
ization problem of Noether’s Normalization Lemma (NNL). Our result
can also be considered as a unified way of viewing the depth-4 PIT prob-
lems closely related to the work of Gupta [Gup14], and the approach
suggested by Mulmuley [Mul12].

1 Introduction

Polynomial Identity Testing (PIT) is the following problem: Given an arithmetic
circuit C computing a polynomial in F[x1, . . . , xn], decide whether C(X) ≡ 0 or
not. The problem can be presented either in white-box model or in black-box
model. In the white-box model, the arithmetic circuit is given explicitly as the
input. In the black-box model, the arithmetic circuit is given as a black-box, and
the circuit can be evaluated over any point in the field (or in a suitable extension
field). Over the years, the problem has played pivotal role in many important
results in complexity theory and algorithms: Primality Testing [AKS04], the
PCP Theorem [ALM+98], IP = PSPACE [Sha90], graph matching algorithms
[Lov79,MVV87]. The problem PIT admits a co-RP algorithm via the Schwartz-
Zippel Lemma [Sch80,Zip79], but an efficient derandomized algorithm is not
known.

An important result of Impagliazzo and Kabanets [KI04] (also, see [HS80])
showed a connection between the derandomization of PIT and arithmetic circuit
lower bound. In particular, it is now known that if PIT can be derandomized
using a certain type of pseudo-random generator, then the Permanent polyno-
mial can not be computed by a polynomial-size arithmetic circuit [Agr05,KI04].
As a result, it will prove the algebraic analogue of P vs NP problem: VP �= VNP.
c© Springer International Publishing Switzerland 2016
A.S. Kulikov and G.J. Woeginger (Eds.): CSR 2016, LNCS 9691, pp. 309–323, 2016.
DOI: 10.1007/978-3-319-34171-2 22
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We refer the reader to the survey of Shpilka and Yehudayoff [SY10] for the exposi-
tion to many important results in arithmetic circuit complexity, and polynomial
identity testing problem.

In a surprising result, Agrawal and Vinay [AV08] showed that the derandom-
ization of PIT only for depth-4 ΣΠΣΠ circuits is sufficient to derandomize the
PIT for the general arithmetic circuits. The main technical ingredient in their
proof is an ingenious depth-reduction technique. As a result, it is now known
that a sufficiently strong lower bound for only ΣΠΣΠ circuits (even for depth-3
ΣΠΣ circuits over large fields [GKKS13b]) will separate VP from VNP. Cur-
rently, there are many impressive partial results in this direction showing depth
four lower bounds for explicit polynomials in VP and in VNP. All these papers
use the shifted partial derivative technique (for example, see [GKKS13a]).

Motivated by the results of [KI04,Agr05,AV08], a large body of works con-
sider the polynomial identity testing problem for restricted classes of depth-3
and depth-4 circuits. A particularly popular model in depth three arithmetic
circuits is ΣΠΣ(k) circuit, where the fan-in of the top Σ gate is bounded.
Dvir-Shpilka showed a white-box quasi-polynomial time deterministic PIT algo-
rithm for ΣΠΣ(k) circuits [DS07]. Kayal-Saxena gave a polynomial-time white-
box algorithm for the same problem [KS07]. Following the result of [KS07],
Arvind-Mukhopadhyay gave a somewhat simpler algorithm of same running
time [AM10]. Karnin and Shpilka gave the first black-box quasi-polynomial
time algorithm for ΣΠΣ(k) circuits [KS11]. Later, Kayal and Saraf [KS09]
gave polynomial-time deterministic black-box PIT algorithm for the same class
of circuits over Q or R. Finally, Saxena and Sheshadhri settled the situation
completely by giving a deterministic polynomial-time black-box algorithm for
ΣΠΣ(k) circuits [SS12] over any field.

For ΣΠΣΠ circuits, relatively a fewer deterministic algorithms are known.
Just like in depth three, in depth four also the model ΣΠΣΠ(k) is of con-
siderable interest (where the top Σ gate is of bounded fan-in). Karnin et al.
showed a quasi-polynomial time black-box identity testing algorithm for multi-
linear ΣΠΣΠ(k) circuits [KMSV13]. Later, Saraf and Volkovich improved it to a
deterministic polynomial time algorithm [SV11]. In 2013, Beecken et al. [BMS13]
considered an algebraic restriction on ΣΠΣΠ(k) circuits: bounded transcen-
dence degree, and they showed an efficient deterministic black-box algorithm for
such a class of circuits. Finally, Agrawal et al. showed that all these results can
be proved under a unified framework using Jacobian Criterion [ASSS12].

Now we briefly discuss the recent results of Mulmuley [Mul12] and Gupta
[Gup14]. Noether’s Normalization Lemma (NNL) is a fundamental result in
algebraic geometry. Recently, Mulmuley observed a close connection between
a certain formulation of derandomization of NNL, and the problem of showing
explicit circuit lower bounds in arithmetic complexity [Mul12]. His main result is
that these seemingly different looking problems are computationally equivalent.
We explain the setting briefly.

Let V ⊆ P(Cn) be any projective variety and dimV = m. Then any homoge-
neous and random (generic) linear map Ψ : Pn → P

m restricts to a finite-to-one
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surjective closed map: Ψ : V → P
m. By derandomization of NNL, we mean

an explicit construction of the map Ψ for all explicit variety. Mulmuley showed
that this problem is equivalent to the problem of black-box derandomization of
polynomial identity testing (PIT) [Mul12]. Here we note that efficient explicit
derandomization of NNL is known for particular explicit varieties [FS13a]. This
result is closely related to the breakthrough result of the same authors where
they first showed a quasi-polynomial time black-box derandomization of non-
commutative ABPs [FS13b].

In a recent work, Gupta [Gup14] takes a fresh approach to the black-box iden-
tity testing of depth-4 circuits. He considers a class of depth-4 circuits denoted
by ΣΠΣΠ(k, r). Such a circuit C computes a polynomial (over a field F) of the
following form: C(X) =

∑k
i=1 Qi =

∑k
i=1

∏di

j=1 Qi,j(x1, . . . , xn), where Qi,js are
polynomials over F of maximum degree r and {x1, x2, . . . , xn} are the variables
appearing in the polynomial, and k, r = O(1). It is an open problem to find
an efficient deterministic black-box algorithm to identity test the circuit class
ΣΠΣΠ(k, r). Gupta considers an interesting sub-class of ΣΠΣΠ(k, r) circuits
by applying an algebraic-geometric restriction which he defines as Sylvester-
Gallai property. By standard reasoning it can be assumed that Qijs are homo-
geneous polynomials over the variables x0, . . . , xn. For that reason we can just
work in a projective space P

n over C. The circuit C is not Sylvester-Gallai (SG)
if the following property is true:

∃ik ∈ [k] : V (Qi1 , . . . , Qik−1) �⊆ V (Qik). (1)

It is easy to observe that such a circuit class is generic in the sense that, when
the polynomials Qi,js are selected uniformly and independently at random, the
circuit is not SG with high probability. The indices i1, . . . , ik−1 are the indices
in [k] \ {ik}. Gupta gives an efficient deterministic polynomial-time algorithm
for polynomial identity testing for such a class of depth-4 circuits. He further
conjectures that if C is SG, then the transcendence degree of the polynomials
Qijs is O(1). Then one can use the result of [BMS13], to solve the problem
completely. His algorithm is interesting for several reasons. Firstly, his approach
gives a clean and systematic algebraic-geometric approach to an interesting sub-
class of depth-4 identity testing. Secondly, the algorithm connects the classical
algebraic-geometric results such as Bertini’s Theorem, and Ideal Membership
Testing to the PIT problem for depth four circuits. We note that for ΣΠΣ(k)
circuits, Arvind-Mukhopadhyay [AM10] used ideal membership testing to give
a simplified and alternative proof of Kayal-Saxena’s algorithm [KS07].

Our Results

The main motivation of our study comes from the work of Mulmuley [Mul12],
and from the work of Gupta [Gup14]. In this paper, we try to connect their
approaches from a conceptual perspective. More precisely, we try to answer the
following question: is there an interesting sub-class of ΣΠΣΠ(k, r) circuits for
which we can find a black-box polynomial-time deterministic PIT algorithm by
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derandomizing a special instance of NNL? We give an affirmative answer. One
of our key ideas is to start from a slightly different assumption (than Gupta’s
assumption) on the algebraic structure of the circuit, which is still generic.

The Class of Circuits (C): Let max{di} ≤ D. The family of ΣΠΣΠ(k, r)
circuits that we consider has the following property P. There exists distinct
indices i1, i2, . . . , ik−1 ∈ [k], and j1, j2, . . . , jk−1 ∈ [D] such that ∀S ⊆ [D] of size
at most rk, the following is true: In P

n1,

dim(V (Qi1,j1 , . . . , Qik−1,jk−1 ,
∏

jk∈S

Qik,jk)) < dim(V (Qi1,j1 , . . . , Qik−1,jk−1)).

(2)
It is shown in Lemma 3 that the family C does not contain the identically zero
polynomial. Our main result is the following.

Theorem 1. Suppose that we are given an arithmetic circuit C by a black-box
with the promise that either C ∈ C or C ≡ 0. Then there is a deterministic
polynomial-time algorithm that always decides correctly whether C ≡ 0 or not
and runs in time (D · n)rO(k2)

. Moreover, the derandomization is achieved by
solving a special instance of NNL deterministically.

It is straightforward to observe that the class of circuits that we consider
(for identity testing) is subsumed by the result of Gupta [Gup14]. By Observa-
tion 1 and Hilbert’s Nullstellnesatz, for each S ⊆ [D] of size at most rk, we have
that

∏
jk∈S Qik,jk �∈ √〈Qi1,j1 , . . . , Qik−1,jk−1〉. By the Lemma 2, it follows that

Qik �∈ √〈Qi1 , . . . , Qik−1〉. Again, applying Hilbert’s Nullstellnesatz, we observe
that V (Qi1 , . . . , Qik−1) �⊆ V (Qik). In this work, our main motivation is to find
deterministic identity testing algorithm for a generic class of depth-4 circuits,
which can be obtained by efficient derandomization of some special instance of
Noether’s Normalization Lemma. In this context, our result should be seen as
a very tiny step where Mulmuley’s formulation to attack general PIT is imple-
mented for a subclass of depth four circuits. Another difference of our work with
[Gup14] is that we avoid the use of deep results from algebraic geometry like
Bertini’s second theorem and sharp nullstellnesatz result of Dubé.

Some Comments About the Circuit Class C: Why the circuit class C is
interesting? The fact that the top Σ gate fan-in k is O(1) is not a serious com-
plain. Even for depth-3 results such restriction is there. If r = 1 the situation is
already complicated for identity testing and it is finally resolved after a series
of serious works as we have already mentioned [DS07,KS07,KS09,KS11,SS12].
To the best of our knowledge, the identity testing for ΣΠΣΠ(k, 2) is still open.
Given the situation, a natural way to progress is to identify some structural
weakness in some special subclass of ΣΠΣΠ(k, r) circuits and try to exploit
that for algorithm design. This is precisely the reason behind considering such
1 We work in the projective spaces Pn, since by standard reason the polynomials Qi,js

can be assumed to be homogeneous polynomials over n + 1 variables.
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a model. We hope that when the circuit does not satisfy the property P, there
must be some intrinsic reason for that which can be exploited to tackle the situa-
tion completely. The fact that the property P is a generic property follows easily
from the fact that when the polynomials Qi,j are selected uniformly and inde-
pendently at random, the circuit will have the property P with high probability.
The genericness of our circuit class should not be confused with the following
algorithmic idea: Fix any point ā ∈ P

n. Sample a circuit C uniformly from the
class of circuits C. Since it is a generic circuit class, it will be almost always
the case that C(ā) �= 0. So we can essentially ignore the input circuit. This
situation has nothing to do with our problem. Notice that our algorithm never
makes mistake. Thus, although the average case solution of the PIT problem for
the circuit class C is trivial (which is the case for general PIT too), we do not
see any completely elementary way to solve it in the worst case. Our algorithm
still uses at least one classical concept from basic algebraic geometry: Noether’s
Normalization Lemma. Now we present the overview of our algorithm.

Variable Reduction. In this stage, our idea is to construct an explicit linear
transformation T such that C(X) ≡ 0 if and only if C(T (X)) ≡ 0, and that T
transforms the polynomial computed by C over a fewer number of variables. In
particular, ∀i, T : xi �→ Li(y0, . . . , y2k−1) where Li’s are linear forms. We use
Proposition 2 to argue that such a transformation always exists. The idea of this
section is inspired by the work of Gupta in [Gup14] (in particular, Theorem 13,
and Lemma 14), but with a key difference. Since our starting assumption on the
circuit is different than Gupta’s assumption, we do not need to use the classical
result of Bertini directly (Theorem 13, [Gup14]).

Explicit Subspace Construction. In this stage, we find the sufficient alge-
braic conditions that the coefficients of the linear forms Li : 0 ≤ i ≤ n should
satisfy. This section contains the main technical idea of our work, where we con-
nect the problem to the derandomization of a particular instance of NNL. The
idea is inspired by the work of [Mul12]. The main derandomization tool is the
multivariate resultant. Using multivariate resultant, we reduce our problem to
the problem of finding a hitting point of a product of a small number of sparse
polynomials.

Hitting Set Construction. In this stage, we complete the algorithm by con-
structing a hitting set by applying the result of Klivans and Spielman [KS01].
More precisely, using the theory of multivariate resultant, and the hitting set con-
struction of Klivans-Spielman, we argue that there is a small collection of points
for the coefficients of Lis, such that at least for one such point C(T (X)) �≡ 0
if C(X) �≡ 0. Moreover, C(T (X)) is a polynomial over O(1) variables and the
individual degree of each variable is small. Then we can use the combinatorial
nullstellensatz [Alo99] to find a small size hitting set for such a circuit.
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The paper is organized as follows. In Sect. 1.1, we state the necessary results
from algebraic geometry. In Sect. 1.2, we collect the necessary background from
arithmetic complexity. We define our problem precisely in Sect. 2. The main
algorithm and the proof of Theorem 1 are given in Sects. 3, 4, 4.1 and 5.

1.1 Algebraic Geometry

We recall the necessary background briefly. In this work, we focus in the setting
of projective spaces. We recall the standard definition from Chap. 8 of [CLO07].
Complex projective n-space P

n is the set of (n + 1)-tuples a0, . . . , an of com-
plex numbers, not all zero, modulo the equivalence relation: (a0, . . . , an) ∼
(λa0, . . . , λan), where λ ∈ C \ {0}. A projective variety is the set of common
zeros of a system of homogeneous polynomial equations in P

n.
There are many ways to define the dimension of a variety. We use the fol-

lowing definition of dimension of a projective variety (Definition 10, page 453,
[CLO07]).

Definition 1. Dimension of V ⊆ P
n, denoted by dim(V ) is the degree of the

Hilbert polynomial of the corresponding homogeneous ideal I(V ).

Intuitively, r generic polynomials define a variety of dimension n − r.
Co-dimension of a variety V ⊆ P

n is denoted by codim(V ) and it is defined
as n − dim(V ). The following basic facts are useful for us. Those can be found
in the standard text [CLO07].

Proposition 1. The following facts extend our intuition from standard linear
algebra:

1. Let f ∈ C[x0, . . . , xn] be a non-zero homogenous polynomial. Then
dim(V (f)) = n − 1 in P

n.
2. Let V,W ⊆ P

n. If V ⊆ W then dim(V ) ≤ dim(W ).
3. V ∩ W has co-dimension ≤ codim(V ) + codim(W ) in P

n.

We state the following version of Hilbert’s Nullstellnesatz from Theo-
rem 2 of Chap. 4 [CLO07]. Let f, f1, . . . , fs are polynomials in C[x1 . . . , xn].
Then, V (f1, f2, . . . , fs) ⊆ V (f) if and only if f ∈ √〈f1, f2, . . . , fs〉, where√〈f1, f2, . . . , fs〉 is the radical generated by f1, . . . , fs.

Noether’s Normalization. We recall the following version of Noether’s Nor-
malization Lemma from the book by Mumford [Mum76]. Consider the following
class of maps: Yi =

∑n
j=0 ai,jXj , 0 ≤ i ≤ r′, be r′ + 1 independent linear forms.

Let L ⊂ P
n be the (n − r′ − 1)-dimensional linear space V (Y0, . . . , Yr′). Define

the projection pL : Pn − L −→ P
r′

by (b0, . . . , bn) −→ (
∑

a0,jbj , . . . ,
∑

ar′,jbj).

Theorem 2 (Corollary 2.29, [Mum76]). Let V be an r′-dimensional variety
in P

n. Then there is a linear subspace L of dimension n − r′ − 1 such that
L ∩ V is empty. For all such L, the projection pL restricts to a finite-to-one
surjective closed map: pL : V −→ P

r′
, and the homogeneous coordinate ring

C[X0, . . . , Xn]/I(V ) of V is a finitely generated module over C[Y0, . . . , Yr′ ].
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Notice that from the definition of dimension it follows easily that every n−r′

dimensional subspace intersects V non trivially. For example, it can be formally
derived using the Proposition 7 in page 461 of [CLO07]. But the fact that there
exists a n−r′ −1 dimensional subspace that does not intersect V is non-trivial2.

One can derive the following algorithmically useful consequence of the above
theorem (See Lemma 2.14, [Mul12]).

Lemma 1. Let V ⊆ P
n be the variety defined by a set of homogeneous polyno-

mials f1, . . . , fk ∈ C[x0, . . . , xn], and dim(V ) be the dimension of V . Consider
the random linear forms, Lj(x) =

∑n
�=0 b�,jx�; 0 ≤ j ≤ s. Let Hj ⊆ P

n be
the hyperplane defined by Lj(x) = 0. If s < dim(V ), then V ∩ ⋂

j Hj �= φ. If
s = dim(V ), then with high probability, V ∩ ⋂

j Hj is empty.

If s = dim(V ), then Theorem 2 implies the existence of a linear subspace
L =

⋂
j Hj of dimension n − s − 1 such that V ∩ L = φ. Lemma 1 implies that

such a linear subspace L can be randomly picked with high probability.
Next, we recall the concept of multivariate resultant from Chap. 3 of [CLO05].

Suppose we have n+1 homogeneous polynomials F0, F1, . . . , Fn in the variables
x0, . . . , xn, and assume that each Fi has positive total degree. We get n + 1
equations in n + 1 unknowns: F0(x0, . . . , xn) = . . . = Fn(x0, . . . , xn) = 0.

The multivariate resultant answers precisely the following question: what
conditions must the coefficients of F0, . . . , Fn satisfy in order that the system in
equation above has a nontrivial solution. Suppose di be the total degree of Fi.
Then Fi can be written as Fi =

∑
α:|α|=di

ci,αxα. For each pair i, α, we introduce
a variable ui,α. Now we are ready to state the following important Theorem.

Theorem 3 (Theorem 2.3, [CLO05]). There is a unique irreducible polynomial
Res[ui,α] ∈ Z[ui,α] such that the above system of polynomial equations has a
nontrivial solution if and only if Res[ci,α] = 0 (i.e. we substitute ui,α by ci,α).

For our application, we need an upper bound on the degree of the polynomial
Res[ui,α]. If di ≤ d for i ∈ [0;n], deg(Res) ≤ (n+1) ·dn (Theorem 3.1, [CLO05]).

1.2 Arithmetic Complexity

An arithmetic circuit over a field F with the set of variables x1, x2, . . . , xn is
a directed acyclic graph such that the internal nodes are labelled by addition
or multiplication gates and the leaf nodes are labelled by the variables or the
field elements. The node with fan-out zero is the output gate. An arithmetic
circuit computes a polynomial in the polynomial ring F[x1, x2, . . . , xn]. Size of
an arithmetic circuit is the number of nodes and the depth is the length of a
longest path from the root to a leaf node.

Usually a depth-4 circuit over a field F is denoted by ΣΠΣΠ. The circuit
has an addition gate at the top, then a layer of multiplication gates, followed
by a layer of addition gates, and a bottom layer of multiplication gates. In this

2 Notice that a zero dimensional variety contains a finite number of points.
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work we focus on a class of ΣΠΣΠ circuits that we denote by ΣΠΣΠ(k, r),
where k is the fan-in of the top Σ gate and r is the upper bound on the fan-
in of the bottom Π gate. A ΣΠΣΠ(k, r) circuit C computes a polynomial of
the following form: C(X) =

∑k
i=1 Qi =

∑k
i=1

∏di

j=1 Qi,j(x1, . . . , xn), where Qi,js
are polynomials over F and {x1, x2, . . . , xn} are the variables appearing in the
polynomial. In this work, we will consider depth four circuits with k, r = O(1).
We will also assume that ∀i : di ≤ D. Also, we always assume that the circuit is
given as a black-box.

We can homogenize the circuit w.r.t a new variable x0 by obtaining the black-
box for C ′ = xd

0C(x1
x0

, . . . , xn

x0
), where d is the degree of the polynomial computed

by C. Clearly, C ′ ≡ 0 ⇐⇒ C ≡ 0. We can also factorize the polynomials Qijs to
their irreducible factors3. Since the degrees of the polynomials Qij are bounded
by r, each Qij can be factored in at most r irreducible factors, increasing the
fan-in of the Π-gate in the second layer by a factor r. We continue to use the
notation C to represent the homogeneous circuit, and use D for the fan-in upper
bound of the Π gates in the second layer.

We use the following version of Combinatorial Nullstellensatz from [Alo99].

Theorem 4. Let f(x1, x2, . . . , xn) be a polynomial in n variables over an arbi-
trary field F. Suppose that the degree of f as a polynomial in xi is at most ti,
for 1 ≤ i ≤ n and let Si ⊆ F such that |Si| ≥ ti + 1. If f(a1, a2, . . . , an) = 0 for
all n-tuples in S1 × S2 × · · · × Sn, then f ≡ 0.

Let C be a family of arithmetic circuits computing n-variate polynomials over
a field F. A hitting set for C is a subset H of Fn, such that for any non-zero circuit
C ∈ C, there exists b ∈ H such that C(b) �= 0. If H can be constructed in deter-
ministic polynomial time (in the input size), then we say that H is an efficiently
computable explicit hitting set. The problem of black-box derandomization and
efficient explicit hitting set construction are equivalent. A multivariate polyno-
mial f ∈ F[x1, . . . , xn] is t-sparse if it has at most t non-zero monomials.

For integers a, b ≥ 0, the notation [a; b] = {x ∈ Z : a ≤ x ≤ b}. We use
the notation C(X) to denote the multivariate polynomial output of a circuit
C. Otherwise, we use the notation Q(x) to denote a multivariate polynomial
Q(x1, . . . , xn).

2 The Problem

The circuit C (computing a polynomial in C[x0, . . . , xn]) is given by a black-box
and we need to test whether C ≡ 0 or not. Here we consider an assumption that
either C ≡ 0 or C satisfies a generic property that we call the property P. We
recall it here from the introduction for the sake of reading.

3 We do not explicitly use the fact that Qi,js are irreducible in the analysis. This fact
is useful if we would like to formulate a conjecture in the similar spirit of Conjecture
1 in [Gup14].
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We say that the circuit C satisfies the property P, if there exist distinct
indices i1, i2, . . . , ik−1 ∈ [k], and j1, j2, . . . , jk−1 ∈ [D] such that ∀S ⊆ [D] of size
at most rk, the following is true.

In the projective space P
n,

dim(V (Qi1,j1 , . . . , Qik−1,jk−1 ,
∏

jk∈S

Qik,jk)) < dim(V (Qi1,j1 , . . . , Qik−1,jk−1)).

(3)
The following observation is obvious from the above assumption.

Observation 1. For all S ⊆ [D] of size at most rk, V (Qi1,j1 , . . . , Qik−1,jk−1) �⊆
V (

∏
jk∈S Qik,jk). This is true for any i1, j1 . . . , ik−1, jk−1, and ik satisfying the

condition in 3.

For the simplicity, we will assume that (w.l.o.g) i1 = 1, . . . , ik−1 = k−1, ik =
k, and j1 = j2 = . . . = jk−1 = 1. Using Bézout’s theorem Gupta made the
following simple but very useful observation.

Lemma 2 ([Gup14], Claim 11). Let P1, . . . , Pd, Q1, . . . , Qk ∈ C[x0, . . . , xn] be
homogeneous polynomials and degree of each Qi is at most r. Then, P1 . . . Pd ∈√〈Q1, . . . , Qk〉 ⇐⇒ ∃{i1, . . . , irk} ⊆ [d] : Pi1 . . . Pi

rk
∈ √〈Q1, . . . , Qk〉.

We use the above lemma to observe that if C satisfies property P, then C �≡ 0.

Lemma 3. If C is a circuit computing a polynomial that satisfies the property
P, then C can not compute an identically zero polynomial.

Proof. By Hilbert Nullstellensatz and from Observation 1,
∏

j∈S Qk,j �∈
√〈Q1,1, Q2,1, . . . , Qk−1,1〉 for any S of size at most rk. Now using Lemma 2,
we get that Qk �∈ √〈Q1,1, Q2,1, . . . , Qk−1,1〉, which is not possible if C ≡ 0.

3 Variable Reduction Phase

The goal of this section is to find an efficiently computable explicit linear trans-
formation T such that C(X) ≡ 0 if and only if C(T (X)) ≡ 0, and C(T (X)) is a
polynomial over a fewer number of variables.

Let QS =
∏

j∈S Qk,j . Recall that the subset S is of size at most rk, and
for each such S, V (Q1,1, Q2,1, . . . , Qk−1,1) �⊆ V (QS). The total number of such
sets are only ≤ Drk

which is polynomially bounded for r, k = O(1). Notice
that ∀S : codim(V (Q1,1, Q2,1, . . . , Qk−1,1, QS)) ≤ k (Proposition 1). Now, we
mention the following simple fact. It can be easily seen using the Exercise 8 in
page 464 of [CLO07].

Proposition 2. For a variety V ⊆ P
n of co-dimension c and a generic(random)

linear subspace Λ of co-dimension ≤ n − c − 1, codim(V ∩ Λ) = codim(V ) +
codim(Λ).
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It was first observed and used by Gupta [Gup14].
From Proposition 2, we know that for each S, ∃ a subspace ΛS such that

codim(V (Q1,1, . . . , Qk−1,1, QS , ΛS) = codim(V (Q1,1, . . . , Qk−1,1, QS)) + codim(ΛS),

and the dimension of ΛS = 2k − 14.
Since the number of possible sets S is small (polynomially bounded), by an

union bound, one can observe that ∃Λ of dimension 2k − 1 that satisfies the
above property for all S simultaneously5. The following fact is also immediately
clear.

Lemma 4. There exists a subspace Λ of co-dimension n − (2k − 1) in
P

n such that, ∀S ⊆ [D] of size at most rk the following is true :
dim(V (Q1,1, . . . , Qk−1,1, QS , Λ)) = dim(V (Q1,1, . . . , Qk−1,1, QS) − (n − 2k + 1),
and dim(V (Q1,1, . . . , Qk−1,1, QS , Λ)) < dim(V (Q1,1, . . . , Qk−1,1, Λ)).

The following is an easy observation.

Observation 2. FromProposition 1, we get that inPn, dim(V (Q1,1, . . . , Qk−1,1))
≥ n − (k − 1) and dim(V (Q1,1, . . . , Qk−1,1, QS)) = dim(V (Q1,1, . . . , Qk−1,1)) − 1
for all subsets S ⊆ [D] of size at most rk.

Now our goal is to explicitly construct the subspace Λ (of dimension 2k −
1) such that ∀S ⊆ [D] of size at most rk, dim(V (Q1,1, . . . , Qk−1,1, QS , Λ)) =
dim(V (Q1,1, . . . , Qk−1,1, QS)) − (n − (2k − 1)) in P

n.
We fix a subspace Λ of co-dimension n − (2k − 1) in P

n as follows. For each
i ∈ {0, 1, . . . , n}, set xi =

∑2k−1
j=0 aijyj , where aij ∈ C are the constants to be spe-

cialized later in the analysis. We define the matrix A = (ai,j)0≤i≤2k−1,0≤j≤2k−1.
To ensure that the dimension of the subspace Λ is 2k − 1, we will choose the
constants in such a way that the symbolic determinant det(A) is non-zero.

After the above substitution, we identify the polyno-
mials Q1,1, . . . , Qk−1,1, QS over the variables y0, y1, . . . , y2k−1 with coefficients
as polynomials in C[{ai,j}0≤i≤n,0≤j≤2k−1]. Notice that the degree of coefficient
polynomials ≤ rk+16, and also the coefficient polynomials are (2k(n + 1))rk+1

-
sparse. In the next section, we fix the coefficients {ai,j}0≤i≤n,0≤j≤2k−1 explic-
itly, using an application of Noether’s Normalization Lemma. To summarize, the
transformation T does the following: 0 ≤ i ≤ n : T : xi → ∑2k−1

j=0 aijyj . After
the substitution by the map T , we identify the variety V (Q1,1, . . . , Qk−1,1, Λ)
by V (Q1,1(y), . . . , Qk−1,1(y)). Also, for any subset S, we identify the variety
V (Q1,1, . . . , Qk−1,1, QS , Λ) by V (Q1,1(y), . . . , Qk−1,1(y), QS(y)).

4 Notice that codim(ΛS) = n − (2k − 1) ≤ n − k − 1 for k ≥ 2.
5 In the next section, we show how to construct such a subspace deterministically.
6 Recall that deg(QS) ≤ rk+1 for any S.
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4 An Explicit Subspace Construction

In P
n, for each subset S, n − k ≤ dim(V (Q1,1, . . . , Qk−1,1, QS)) ≤ n − 1. Let

s0 = dim(V (Q1,1, . . . , Qk−1,1, QS)) − (n − 2k + 1). Clearly k − 1 ≤ s0 ≤ 2k − 2,
but notice that we do not know the exact value of s0. For each s ∈ [k−1; 2k−2],
we apply Lemma 1 to construct linear subspaces

⋂
0≤j≤s Hj given by: Hj(y) :

Lj(y) =
∑2k−1

�=0 w�,jy�; 0 ≤ j ≤ s, where w�,j ∈ C are constants to be fixed. To
ensure that the dimension of the varieties V (Q1,1(y), . . . , Qk−1,1(y), QS(y)) are
exactly s, we consider the multivariate resultant of the system of polynomial
equations (for each fixed S): Q1,1(y) = . . . = Qk−1,1(y) = QS(y) = 0, and
Hj(y) : Lj(y) =

∑2k−1
�=0 w�,jy� = 0; 0 ≤ j ≤ s.

We use the following ideas from (Lemma 2.14, [Mul12]). It can be derived
by applying the formulation of NNL in Lemma 1. For each S, we construct the
following system of polynomials. FS

j (y) =
∑k−1

i=1 zi,jQi,1(y) + zjQS(y), 0 ≤ j ≤
(2k − 1) − (s + 1) and, Lj(y) =

∑2k−1
�=0 w�,jy�, 0 ≤ j ≤ s. Notice that for each

j and S, the polynomial FS
j is a generic linear combination of the polynomials

Q1,1, . . . , Qk−1,1, QS .

Remark 1. From Lemma 2.11, and Lemma 2.14 of [Mul12], one observes that to
implement the above idea, the polynomials Q1,1(y), . . . , Qk−1,1(y), QS(y) should
be of same degree . This can be ensured by raising each Qi,1 to the power(∏k−1

j=1 deg(Qj,1) · deg(QS)
)

/deg(Qi,1). For the polynomial QS , we raise it to

the power
(∏k−1

j=1 deg(Qj,1)
)
. So the final degree of each polynomial is at most

rO(k).

For any subset S, the coefficients of the above system of poly-
nomials (in the variables y0, . . . , y2k−1) are polynomials in the ring
C[{ai,j}0≤i≤n,0≤j≤2k−1, {zij , zj}1≤i≤k−1,0≤j≤(2k−1)−(s+1), {w�,j}0≤�≤2k−1,0≤j≤s].

So, the coefficients of the polynomials Q1,1(y), . . . , Qk−1,1(y), QS(y) can be
viewed as polynomials with at most N = ((2k(n+1)+2k(s+1)+k(2k −1− s))
variables and degree bounded by rO(k).

Now we use the estimate on the degree of the multivariate resultant polyno-
mial given in Sect. 1.1.

Observation 3. For each fixed S, the multivariate resultant polynomial cor-
responding to the above system of polynomials {FS

j (y)}0≤j≤(2k−1)−(s+1), and
{Lj(y)}0≤j≤s is a ≤ (2k) · (rO(k))2k · (rO(k))-degree polynomial in at most N
variables.

So the polynomials are NrO(k2)
-sparse. Also, the number of such resul-

tant polynomials are bounded by Drk

. Suppose we choose the subspace Λ
(by fixing the indeterminates {ai,j}0≤i≤n,0≤j≤2k−1 over C) in such a way that
s0 = dim(V (Q1,1(y), . . . , Qk−1,1(y), QS(y)) = dim(V (Q1,1, . . . , Qk−1,1, QS) −
(n − 2k + 1). Then if s = s0, for each S, the resultant polynomial RS is a
non-identically zero polynomial. It follows as a consequence of NNL that the
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above system of polynomial equations has only trivial solution for some rational
values of zi,j ’s, zj ’s and w�,j ’s, when s = s0. This point is discussed explic-
itly in Lemma 2.14 of [Mul12]. This also implies that the resultant polynomials
RS(zi,j , zj , w�,j) are non identically zero. So, in particular, when s = s0 and the
subspace Λ is not fixed, the resultant polynomials RS(ai,j , zi,j , zj , w�,j) are non
identically zero polynomials.

Next, our idea is to specialize the values of the N indeterminates using the
hitting set construction of Kilvans-Spielman [KS01] for the product of NrO(k2)

-
sparse polynomials, so that all the resultant polynomials and the polynomial
det(A), evaluate to nonzero at some point in the hitting set. In the next section,
we explain that such an idea is sufficient for our problem.

4.1 The Correctness Proof

In Sect. 4, we repeat the construction for all possible values for the parameter
s ∈ [k−1; 2k−2]. From the discussion in the last section, we know that if s = s0,
the resultant polynomials RS are non identically zero polynomials.

Using the hitting set construction of [KS01], we can specialize the indeter-
minates so that for each S, the polynomial RS and det(A) evaluate to non-
zero. Once we fix the values for {ai,j}0≤i≤n,0≤j≤2k−1 to {a∗

i,j}0≤i≤n,0≤j≤2k−1,
we also define the subspace Λ. Moreover, since det(A) �= 0, we ensure that
codim(Λ) = n − (2k − 1).

Lemma 5. Let ({a∗
i,j}, {z∗

ij , z
∗
j }, {w∗

�,j}) be a hitting point for
∏

S∈([D]
rk )RS ·

det(A). Then on such a point dim(V (Q1,1(y), . . . , Qk−1,1(y), QS(y))) = s0.

Proof. If dim(V (Q1,1(y), . . . , Qk−1,1(y), QS(y))) is more than s0, then
dim(V ({FS

j }0≤≤(2k−1)−(s0+1))) is also more than s0. The dimension of the linear
space defined by {Lj(y)}0≤j≤s0 is ≥ (2k−1)−(s0+1). Then using the Definition 1,
and the Proposition 7 in page 461 of [CLO07], we can easily see that the system of
polynomials {FS

j }0≤≤(2k−1)−(s0+1)), {Lj(y)}0≤j≤s0 has a nontrivial solution and
RS = 0. Since the codim(Λ) = n − (2k − 1) on the point {a∗

i,j}0≤i≤n,0≤j≤2k−1, it
is not possible that dim(V (Q1,1(y), . . . , Qk−1,1(y), QS(y))) < s0.

From Lemma 5, it is obvious that for s = s0 and on a hitting point, the
following is true: ∀S ⊆ [D]; |S| ≤ rk : dim(Q1,1(y), . . . , Qk−1,1(y), QS(y)) <
dim(Q1,1(y), . . . , Qk−1,1(y)), which implies that, ∀S ⊆ [D]; |S| ≤ rk :
V (Q1,1(y), . . . , Qk−1,1(y)) �⊆ V (QS) (Observation 1). Finally we conclude that,
∀S ⊆ [D]; |S| ≤ rk : QS(y) �∈ √〈Q1,1(y), . . . , Qk−1,1(y)〉.

The last relation follows from the Hilbert Nullstellensatz. Now we apply
Lemma 2, to deduce that Qk(y) �∈ √〈Q1,1(y), . . . , Qk−1,1(y)〉 ⇒ C(Y) �≡ 0.
Recall that in the Remark 1, the degrees of Q1,1, . . . , Qk−1,1, QS are pretended
to be increased by appropriate powering, is only for the analysis purpose.

The degree of each variable in C(Y) is bounded by D · r, and also C(Y) is
a 2k-variate polynomial. We use Combinatorial Nullstellensatz (Theorem 4) to
construct a hitting set for C(Y). In the next section, we formally explain the
construction of the final hitting set.
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5 The Hitting Set Construction

Let Ht,m,N,d ⊂ C
N be a hitting set for the product of ≤m polynomials in N

variables such that each polynomial is t-sparse, and of degree ≤d. One can con-
struct Ht,m,N,d ⊂ C

N efficiently following the result of Klivans and Spielman
[KS01].

For each s ∈ [k − 1; 2k − 2], we do the following. We use the hitting set
Hs = H

N(s)r
O(k2)

,Drk+1,N(s),rO(k2) to substitute values to the indeterminates,

{ai,j}0≤i≤n,0≤j≤2k−1, {zij , zj}1≤i≤k−1,0≤j≤(2k−1)−(s+1), {w�,j}0≤�≤2k−1,0≤j≤s.

For each such substitution, we construct the subspace Λ by setting ∀i ∈ [0;n] :
xi =

∑2k−1
j=0 ai,jyj . Next we fix a set S ⊂ Q such that S = D · r + 1, and test

whether C(Y)
∣
∣
y∈S2k = 0. From the correctness proof (Sect. 4.1), we know that if

C(X) �≡ 0, then for one of the subspaces Λ that we have constructed, ∃b ∈ S2k

such that C(b) �= 0.

The Final Algorithm

We state our final algorithm formally.

1. For each s ∈ [k − 1; 2k − 2], we do the following.
(a) For each point in the hitting set Hs, specialize the values for

{aij}0≤i≤n,0≤j≤2k−1.
(b) For each such specialization for {aij}0≤i≤n,0≤j≤2k−1, construct the sub-

space Λ by substituting 0 ≤ i ≤ n : xi =
∑2k−1

j=0 aijyj .
(c) Check whether C(Y)

∣
∣
y∈S2k = 0, where S = {1, . . . , D · r + 1}. If anytime

C evaluates to a non-zero value, we stop the procedure and announce
that C �≡ 0.

2. Otherwise, output that C ≡ 0.

The cost of our algorithm is bounded by (2k − 2) · maxs

∣
∣Hs| · (D · r + 1)2k.

Using the known estimate of maxs

∣
∣Hs|, one can easily upper bound the cost by

(D ·n)rO(k2)
. This also completes the proof of Theorem 1. Finally, what remains

to tackle is the case when the circuit does not have the generic property P. Can
this structural information be exploited?

Acknowledgement. I thank K.V. Subrahmanyam for many helpful discussions.
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Abstract. A graph G is k-connected if it has k internally-disjoint st-
paths for every pair s, t of nodes. Given a root s and a set T of terminals
is k-(s, T )-connected if it has k internally-disjoint st-paths for every t ∈
T . We consider two well studied min-cost connectivity augmentation
problems, where we are given an integer k ≥ 0, a graph G = (V,E), and
and an edge set F on V with costs. The goal is to compute a minimum
cost edge set J ⊆ F such that G + J has connectivity k + 1. In the
k-Connectivity Augmentation problem G is k-connected and G+J should
be (k+1)-connected. In the k-(s, T )-Connectivity Augmentation problem
G is k-(s, T )-connected and G+ J should be (k + 1)-(s, T )-connected.

For the k-Connectivity Augmentation problem we obtain the following
results. For n ≥ 3k − 5, we obtain approximation ratios 3 for directed
graphs and 4 for undirected graphs,improving the previous ratio 5 of [26].
For directed graphs and k = 1, or k = 2 and n odd, we further improve
to 2.5 the previous ratios 3 and 4, respectively.

For the undirected 2-(s, T )-Connectivity Augmentation problem we
achieve ratio 4 2

3
, improving the previous best ratio 12 of [24]. For the

special case when all the edges in F are incident to s, we give a polynomial
time algorithm, improving the ratio 4 17

30
of [21,25] for this variant.

1 Introduction

1.1 Problems and Results

A graph is k-connected if it has k internally-disjoint paths from any of its
nodes to any other node. A graph with a root s and a set T of terminals is
k-(s, T )-connected if it has k internally-disjoint st-paths for every t ∈ T . We
consider two extensively studied min-cost connectivity augmentation problems.
In both problems we are given an integer k ≥ 0, a graph G = (V,E), and an
edge set F on V with costs. The goal is to compute a minimum cost edge set
J ⊆ F such that G + J has connectivity k + 1.

k-Connectivity Augmentation
Here G is k-connected and G + J should be (k + 1)-connected.

c© Springer International Publishing Switzerland 2016
A.S. Kulikov and G.J. Woeginger (Eds.): CSR 2016, LNCS 9691, pp. 324–339, 2016.
DOI: 10.1007/978-3-319-34171-2 23
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k-(s, T )-Connectivity Augmentation
Here we are also given a root node s and a set T ⊆ V of terminals, G is
k-(s, T )-connected, and G + J should be (k + 1)-(s, T )-connected.

One important particular case of k-(s, T )-Connectivity Augmentation is when
all edges of positive cost are incident to s. This variant is closely related to Source
Location problems, see [12,21].

Both problems were studied extensively, see [1,3,4,7,10,12,17,19–21,24–26,
29] for only a small sample of papers in the area. For k = 0 and undirected
graphs our problems include the Minimum Spanning Tree problem and the Steiner
Tree problem; for directed graphs we get the Minimum Cost Strongly Connected
Subgraph problem (that admits ratio 2 by taking a union of minimum cost in-
and out-arborescences), and the Directed Steiner Tree problem.

We now state our results for the k-Connectivity Augmentation problem. Let
n = |V |. In general, for both directed and undirected graphs, the problem admits
ratio O

(
log n

n−k

)
(which is a constant unless k = n − o(n)), and also ratio

O(log(n − k)) [26]. Specifically, for n ≥ 3k − 5, the previous best ratio was 5,
for both directed and undirected graphs. For small values of k better ratios are
known: k + 2 for k ≤ 2 in the case of directed graphs [20], and �k/2� + 1 for
k ≤ 6 in the case of undirected graphs [2,6,20]. We prove the following.

Theorem 1. k-Connectivity Augmentation with n ≥ 3k−5 admits approximation
ratio 3 for directed graphs and 4 for undirected graphs. Furthermore, for directed
graphs the problem admits ratio 2.5 if k = 1, or if k = 2 and n is odd.

For directed graphs our ratio improves over the previous ratios for any k ≥ 1.
For undirected graphs our ratio matches the best known ratio 4 for k = 6, 7, and
it improves over the previous ratios for any k ≥ 8.

Let H(k) denote the kth harmonic number. The best known ratio for k-(s, T )-
Connectivity Augmentation is O(k log k), and it was 12 for k = 2 [24]. For the
version when all edges are incident to s the best ratio was 2H(2k+1) [21], which
for k = 2 is 2H(5) = 417

30 > 4.5. We consider the case k = 2, and significantly
improve the previous best known ratios. Specifically, we prove the following.

Theorem 2. Undirected 2-(s, T )-Connectivity Augmentation admits ratio 42
3 ; if

all edges in F are incident to s, then the problem admits a polynomial time
algorithm.

In fact, our result for k-Connectivity Augmentation is more general that the
one stated in Theorem1. To state our generic result, we need some definitions.
Let q be the largest integer such that 2q − 1 ≤ n − k, namely, q = �n−k+1

2 	. Let

μ =
⌊

n

q + 1

⌋
=

⌊
n

�(n − k + 3)/2	
⌋
=

⎧
⎪⎪⎨
⎪⎪⎩

⌊
2n

n−k+3

⌋
if n − k is odd

⌊
2n

n−k+2

⌋
if n − k is even

.

It is not hard to see that:
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– μ = 1 if and only if k = 0, or k = 1, or k = 2 and n is odd.
– μ = 2 if and only if one of the following holds: k = 2 and n is even, or k ≥ 3

and one of the following holds: n ≥ 3k − 8 and n, k have distinct parities, or
n ≥ 3k − 5 and n, k have the same parity.

– μ ≤ 3 if and only if one of the following holds: n ≥ 2k − 5 and n, k have
distinct parities, or n ≥ 2k − 3 and n, k have the same parity.

The previous best known approximation ratio for k-Connectivity Augmentation
was 2H(μ) + 2 for both directed and undirected graphs [26], except the better
ratios for small values of k listed above. We prove the following theorem, that
implies Theorem1; for comparison with previous ratios see Table 1.

Table 1. Previous and our ratios for k-Connectivity Augmentation; for k = 2 our ratio
2.5 for directed graphs is valid when n is odd.

Range µ H(µ) Directed Undirected

Previous This paper Previous This paper

k = 0 1 1 2 in P

k = 1, 2 1 1 3, 4 [20] 2.5 2 [2,18]

3 ≤ k ≤ 6 2 1.5 5 [26] 3 �k/2� + 1 [6,20]

n ≥ 3k − 5 2 1.5 5 [26] 3 5 [26] 4

n ≥ 2k − 3 3 1 5
6

5 2
3
[26] 3 1

3
5 2
3
[26] 4 2

3

n < 2k − 3 2H(µ) + 2 [26] H(µ) + 1.5 2H(µ) + 2 [26] 2H(µ) + 1

Theorem 3 (Implies Theorem 1). k-Connectivity Augmentation admits the
following approximation ratios:

(i) For directed graphs, ratio H(μ) + 3
2 . In particular:

• For k = 1, and for k = 2 and n odd, μ = 1, H(μ) = 1, so the ratio is 2.5.
• For n ≥ 3k − 5, μ ≤ 2, H(μ) ≤ 3/2, so the ratio is 3.
• For n ≥ 2k − 3, μ ≤ 3, H(μ) ≤ 11/6, so the ratio is 31

3 .
(ii) For undirected graphs, ratio 2H(μ)+1. In particular, for n ≥ 3k −5, μ ≤ 2,

H(μ) ≤ 3/2, so the ratio is 4.

1.2 Techniques

Let us briefly describe how we achieve these improvements, starting with the
k-Connectivity Augmentation problem. Given J ⊆ F let us say that A ⊆ V is
a tight set if |Γ (A)| = k and A∗ = V \ (A ∪ Γ (A)) �= ∅, where Γ (A) is the
set of neighbors of A in G + J ; A is a small tight set if |A| ≤ �n−k+1

2 	 and
a large tight set otherwise. Inclusionwise minimal tight sets are called cores.
By Menger’s Theorem, the graph G+J is (k+1)-connected if and only if it has
no cores. In the case of undirected graphs, if A is a large tight set then A∗ is a
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small tight set, and thus just the absence of small cores already implies (k + 1)-
connectivity. In what follows, let τ denote the optimal value of the standard
LP-relaxation for the problem, see Sect. 2.

Let us discuss the case of directed graphs. In this case, even if G+ J has no
small cores, it may not be (k + 1)-connected, since large cores may exist. We
will show, by a novel proof, that instances with one small core admit ratio 3/2;
the previous ratio for this subproblem was H(μ)+2. Obtaining an instance with
one core is done in two steps. In the first step, we use an algorithm from [26]
that for directed graphs computes an edge-set J1 of cost ≤ τ such that G + J1

has at most μ small cores. In the second step, we use an algorithm of [7,26] to
compute an edge set J2 that reduces the number of small cores from μ to 1 by
cost τ(H(μ)−1). The overall ratio is therefore 1+(H(μ)−1)+3/2 = H(μ)+3/2.

In the case of undirected graphs, G+J is (k+1)-connected if and only if it has
no small cores. We will show that instances with two small cores admit ratio 2;
the previous ratio for this subproblem was 3. The other parts are similar to those
of the directed case, but the bounds are c(J1) ≤ 2τ and c(J2) ≤ 2τ(H(μ)−3/2).
Thus the overall ratio we get is 2 + 2(H(μ) − 3/2) + 2 = 2H(μ) + 1.

For k-(s, T )-Connectivity Augmentation our approach follows [24], where the
problem is decomposed into a small number of “good” subproblems. Specifi-
cally, [24] decomposes 2-(s, T )-Connectivity Augmentation into 6 subproblems of
covering an uncrossable biset family; the latter admits ratio 2. The number of
subproblems is determined by the chromatic number of a certain auxiliary graph,
and in [24] it was shown that in the case k = 2 this graph is 5-colorable. We will
show that in the case k = 2 this graph is a forest, and thus is 2-colorable. This
gives just 3 subproblems. Furthermore, we observe that 2 of the 3 uncrossable
families needed to be covered are of a special type, for which we can get ratio
4/3 using a result of Fukunaga [13]. Overall, we get ratio 2 · 4/3 + 2 = 42

3 .

1.3 Some Previous and Related Work

We consider node-connectivity problems for which classic techniques like the pri-
mal dual method [15] and iterative rounding [16] do not seem to be applicable
directly. Ravi and Williamson [28] gave an example of a k-Connectivity Augmen-
tation instance when the primal dual method has ratio Ω(k). Aazami et al. [1]
presented a related instance for which the basic optimal solution to the cut-LP
relaxation has all variables of value O(1/

√
k), ruling out the iterative round-

ing method. On the other hand, several works showed that node-connectivity
problems can be decomposed into a small number p of “good” problems. The
bound on p was subsequently improved, culminating in the currently best known
bounds O(log n

n−k ) for directed/undirected k-Connectivity Augmentation [26], and
O(k) for undirected k-(s, T )-Connectivity Augmentation [24]. In fact, [23] shows
that for k = Ω(n) the approximability of the directed and undirected variants
of these problems is the same, up to a factor of 2. We refer the reader to [22] for
various hardness results on k-(s, T )-Connectivity Augmentation. We note that the
version of k-Connectivity Augmentation when any edge can be added by a cost
of 1 can be solved in polynomial time for both directed [10] and undirected [29]
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graphs. But for general costs, determining whether k-Connectivity Augmentation
admits a constant ratio for k = n− o(n) is one of the most challenging problems
in connectivity network design.

We mention some related work on the more general k-Connected Sub-
graph problem, where we seek a min-cost k-connected spanning subgraph.
k-Connectivity Augmentation is a particular case, when the target connectivity
is k + 1 and the edges of cost zero of the input graph form a k-connected
spanning subgraph. Many papers that considered k-Connected Subgraph built
on the Frank Tardos [11] algorithm for a related problem of finding a min-
cost k-outconnected subgraph [2–4,6,7,18,19], but most papers that considered
high values of k in fact designed algorithms for k-Connectivity Augmentation
[4,7,19,26]. These papers use the fact that approximation ratio ρ w.r.t. the
biset LP-relaxation for k-Connectivity Augmentation implies approximation ratio
ρH(k) = ρ · O(log k) for k-Connected Subgraph [27]. Recently, Cheriyan and
Végh [3] showed that for undirected graphs with n = Ω(k4) this O(log k) fac-
tor can be saved and ratio 6 can be achieved; the bound n = Ω(k4) of [3] was
improved to n = Ω(k3) in [14]. This algorithm easily extends to arbitrary cross-
ing supermodular functions.

In the more general Survivable Network problem, we are given connectivity
requirements {ruv : u, v ∈ V }. The goal is to compute a min-cost subgraph that
has ruv internally-disjoint uv-paths for all u, v ∈ V . For undirected graphs the
problem admits ratio O(k3 log n) due to Chuzhoy and Khanna [5]. For directed
graphs, no non-trivial ratio is known even for 2-(s, T )-Connectivity Augmentation.

2 Preliminaries on Biset Families

We cast our problems in terms of bisets (called also “setpairs”). Most concepts
related to bisets that we need are summarized in this section.

Definition 1. An ordered pair A = (A,A+) of subsets of a groundset V is called
a biset if A ⊆ A+; A is the inner part and A+ is the outer part of A, and
∂A = A+ \ A is the boundary of A. The co-set of a biset A = (A,A+) is
A∗ = V \ A+; the co-biset of A is A

∗ = (A∗, V \ A).

Definition 2. A biset family is a family of bisets. The co-family of a biset
family F is F∗ = {A∗ : A ∈ F}. F is symmetric if F = F∗.

Definition 3. An edge covers a biset A if it goes from A to A∗. Let δE(A)
denote the set of edges in E that cover A. The residual family of a biset family
F w.r.t. an edge-set /graph J is denoted FJ and it consists of the members in
F not covered by any e ∈ J , namely, FJ = {A ∈ F : δJ(A) = ∅}. We say that
an edge set/graph J covers F or that J is an F-edge-cover if every A ∈ F
is covered by some e ∈ J , namely, if FJ = ∅.

Given an instance of k-(s, T )-Connectivity Augmentation we will assume that
G has no edge between s and T , by subdividing by a new node every edge ts ∈ E
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with t ∈ T . The biset families Fk and Fk-(s,T ) we need to cover in k-Connectivity
Augmentation and k-(s, T )-Connectivity Augmentation, respectively, are:

Fk = {A : |∂A| = k, δE(A) = ∅, A �= ∅, A∗ �= ∅} (1)
Fk-(s,T ) = {A : |∂A| = k, δE(A) = ∅, A ∩ T �= ∅, s ∈ A∗} (2)

By the node-connectivity version of Menger’s Theorem we have the following.

Fact 1

(i) Let G be k-connected graph. Then |∂A| ≥ k for any biset A on V with
δE(A) = ∅ and A,A∗ �= ∅. Furthermore, G + J is (k + 1)-connected if and
only if J covers the family Fk in (1).

(ii) Let G be a k-(s, T )-connected graph (without edges between s and T ). Then
|∂A| ≥ k for any biset A on V \ {s} with A ∩ T �= ∅ and δE(A) = ∅.
Furthermore, G + J is (k + 1)-(s, T )-connected if and only if J covers the
family Fk-(s,T ) in (2).

We thus consider the following generic algorithmic problem.

Biset-Family Edge-Cover
Instance: A graph (V, F ) with edge-costs {ce : e ∈ F} and a biset family F .
Objective: Find a minimum cost F-edge-cover J ⊆ F .

Here the biset family F may not be given explicitly, and a polynomial time
implementation in n = |V | of our algorithms requires that the following query
can be answered in time polynomial in n: Given an edge set/graph J on V and
s, t ∈ V , find the inclusionwise minimal and the inclusionwise maximal members
of the family {A ∈ FJ : s ∈ A, t ∈ V \ A+}, if non-empty. For biset families
arising from our problems, this query can be answered in polynomial time using
max-flow min-cut computation (we omit the standard implementation details).

Definition 4. The intersection and the union of two bisets A,B are defined
by A ∩ B = (A ∩ B,A+ ∩ B+) and A ∪ B = (A ∪ B,A+ ∪ B+). The biset A \ B

is defined by A \ B = (A \ B+, A+ \ B). We say that B contains A and write
A ⊆ B if A ⊆ B and A+ ⊆ B+.

Definition 5. Let A,B be bisets and T be a set of terminals. We say that A,B:

– T -intersect if A ∩ B ∩ T �= ∅.
– T -cross if both A ∩ B ∩ T and A∗ ∩ B∗ ∩ T are nonempty.
– T -co-cross if both A ∩ B∗ ∩ T and B ∩ A∗ ∩ T are nonempty

In the case T = V we omit the prefix “T -”, and say that A,B: intersect, cross,
or co-cross, respectively.

The following definition gives two fundamental types of biset families for
which good approximation ratios are known.
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Definition 6. A biset family F is:

– intersecting if A ∩ B,A ∪ B ∈ F for any A,B ∈ F that intersect.
– uncrossable if A ∩ B,A ∪ B ∈ F or A \ B,B \ A ∈ F for any A,B ∈ F .

Let τ(F) denote the optimal value of a standard biset LP-relaxation for
the problem of edge-covering a biset family F , namely:

τ(F) = min

⎧
⎨
⎩

∑
e∈F

cexe :
∑

e∈δF (A)

xe ≥ 1 ∀A ∈ F , x ≥ 0

⎫
⎬
⎭ .

Directed Biset-Family Edge-Cover with intersecting F admits a polynomial
time algorithm that computes an F-edge-cover of cost τ(F) [9]; for undirected
graphs the cost is 2τ(F) for intersecting F (by a standard “bidirection” reduction
to the directed case) and for uncrossable F [8]. But the biset families arising from
our problems have weaker “uncrossing” properties.

Definition 7. We say that a biset family F is:

– crossing if A ∩ B,A ∪ B ∈ F for any A,B ∈ F that cross.
– k-regular if for any intersecting A,B ∈ F the following holds: A ∩ B ∈ F if

|A ∪ B| ≤ n − k, and A ∪ B ∈ F if |A ∪ B| ≤ n − k − 1.
– T -uncrossable if for any A,B ∈ F the following holds: A ∩ B,A ∪ B ∈ F if

A,B T -intersect, and A \ B,B \ A ∈ F if A,B T -co-cross.

The following properties of bisets are known and easy to verify.

Fact 2 For any bisets A,B the following holds. If a directed/undirected edge e
covers one of A ∩ B,A ∪ B then e covers one of A,B; if e is an undirected edge,
then if e covers one of A \ B,B \ A, then e covers one of A,B. Furthermore

|∂A| + |∂B| = |∂(A ∩ B)| + |∂(A ∪ B)| = |∂(A \ B)| + |∂(B \ A)| .

The following known lemma (c.f. [17,24]) can be easily deduced from Fact 2.

Lemma 3.

(i) If G is k-connected then Fk and F∗
k are crossing and k-regular.

(ii) If G is undirected and k-(s, T )-connected then Fk-(s,T ) is T -uncrossable.

Note also that Fact 2 implies that if F is intersecting, crossing, or k-regular,
then so is the residual family FJ of F , for any J . For an undirected edge set J
this is also so if F is uncrossable or T -uncrossable.

In terms of bisets, we prove the following theorem that implies Theorem3.

Theorem 4 (Implies Theorem 3). Let F be a crossing biset family such that
both F and F∗ are k-regular and such that |∂A| = k for all A ∈ F . If n ≥ k + 3
then Biset-Family Edge-Cover with such F admits the following approximation
ratios w.r.t. the biset LP-relaxation:
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(i) For directed graphs, ratio H(μ) + 3
2 . In particular:

• For k = 1, and for k = 2 and n odd, μ = 1,H(μ) = 1, so the ratio is
2.5.
• For n ≥ 3k − 5, μ ≤ 2, H(μ) ≤ 3/2, so the ratio is 3.
• for n ≥ 2k − 3, μ ≤ 3, H(μ) ≤ 11/6, so the ratio is 31

3 .
(ii) For undirected graphs, ratio 2H(μ) + 1. In particular, for n ≥ 3k − 5, μ ≤
2,H(μ) ≤ 3/2, so the ratio is 4.

For formulating Theorem2 purely in terms of bisets, the T -uncrossability
property is not enough. In Sect. 4 we state additional properties of the family
F2-(s,T ) that we need, see Lemma 10.

The following definition plays a key role in our algorithms.

Definition 8. The inclusionwise minimal members of a biset family F are called
F-cores, or simply cores, if F is clear from the context. Let C(F) denote the
family of F-cores, and let ν(F) = |C(F)| denote the number of F-cores. For
C ∈ C(F), the halo-family F(C) of C is the family of those members of F that
contain C and contain no F-core distinct from C.

3 Algorithm for Crossing k-Regular Families (Theorem4)

We mention some results from [7,26] needed for the proof of Theorem4.

Definition 9. A biset family F is intersection-closed if A ∩ B ∈ F for any
intersecting A,B ∈ F . An intersection-closed F is q-semi-intersecting if |A| ≤
q for every A ∈ F and if A∪B ∈ F for any intersecting A,B ∈ F with |A∪B| ≤ q.

We obtain a q-semi-intersecting family from a k-regular family as follows.

Definition 10. The q-truncated family of F is F≤q := {A ∈ F : |A| ≤ q}.
Lemma 4. Let F be a k-regular biset family. If 2q−1 ≤ n−k and q ≤ n−k−1
(in particular if q ≤ ⌊

n−k+1
2

⌋
and n ≥ k + 3) then F≤q is q-semi-intersecting.

Proof. Let A,B ∈ F≤q intersect. Then |A ∪ B| ≤ |A|+ |B| − 1 ≤ 2q − 1 ≤ n − k.
Thus A ∩ B ∈ F≤q. If |A ∪ B| ≤ q ≤ n − k − 1 then A ∪ B ∈ F≤q. Hence if both
2q − 1 ≤ n − k and q ≤ n − k − 1, then F≤q is q-semi-intersecting. ��

The following theorem is the main result of [26].

Theorem 5 [26]. Directed Biset-Family Edge-Cover with q-semi-intersecting F
admits a polynomial time algorithm that computes an edge-set J ⊆ E such that
ν(FJ) ≤ �n/(q + 1)	 and c(J) ≤ τ(F).

From Theorem5 and Lemma4 we have the following.

Corollary 1. Directed Biset-Family Edge-Cover with k-regular F and n ≥ k + 3
admits a polynomial time algorithm that for any q ≤ �n−k+1

2 	 computes J ⊆ E
such that ν(FJ

≤q) ≤ �n/(q + 1)	 and c(J) ≤ τ(F≤q).
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Definition 11. Two biset families A,B are cross/intersect-independent if
no A ∈ A and B ∈ B cross/intersect.

It is easy to see that if F is intersection-closed then halo families of distinct
F-cores are intersect-independent. Thus by Lemma 4, if F is k-regular and
n ≥ k + 3, then for any q ≤ �n−k+1

2 	, F≤q(Ci) and F≤q(Cj) are intersect
independent for distinct F≤q-cores Ci and Cj . Furthermore, note that if F is
intersection-closed and J covers some halo family F(C), then any A ∈ FJ that
contains C contains an F-core distinct from C, and thus ν(FJ) ≤ ν(F)−1. The
following statement summarizes several similar relevant properties of crossing
biset families, c.f. [7,20,26].

Lemma 5. For any crossing biset family F the following holds.

(i) For any F-core C, the co-family of F(C) is an intersecting family.
(ii) Halo families of distinct F-cores are cross-independent.
(iii) For every F-core C, if J is a directed edge set that covers F(C), then any

A ∈ FJ that contains C contains an F-core distinct from C. Furthermore,
if J is an inclusionwise minimal edge set that covers F(C), then J covers
no biset in other halo families, and thus C(FJ) = C(F) \ {C}.

In what follows, note that if A,B are two cross-independent subfamilies of F ,
then no directed edge can cover A ∈ A and B ∈ B, and thus τ(A)+τ(B) ≤ τ(F).
Now let F be a crossing family. By part (i) of Lemma5, for any core C, an optimal
F(C)-cover JC of cost τ(F(C)) can be computed in polynomial time; this is since
an edge set JC covers F(C) if and only if the reverse edge set of JC covers the
co-family of FC. By part (ii),

∑
C∈C(F) c(JC) ≤ τ(F). Thus for any C ⊆ C(F),

there exists C ∈ C with c(JC) ≤ τ(F)/|C|. Based on Lemma5, consider the
following algorithm that given C ⊆ C(F) and 0 ≤ t ≤ |C|, computes J ⊆ E such
that C(FJ) = C(F) \ C′ for some C′ ⊆ C with |C′| = |C| − t. Start with a partial
solution J = ∅, and while |C(FJ ) ∩ C| ≥ t + 1, add to J a minimum cost cover
JC of the halo family in FJ of a core C ∈ C(FJ) ∩ C with c(JC) minimal. By
part (iii) of the lemma, at iteration i we have |C(FJ)∩C| ≥ |C|− i+1, and thus
c(JC) ≤ τ(F)/(|C| − i + 1) at iteration i. Consequently, we have:

Theorem 6 [7,26]. Directed Biset-Family Edge-Cover with crossing F admits a
polynomial time algorithm that given C ⊆ C(F) and an integer 0 ≤ t ≤ |C|
computes an edge set J ⊆ E such that the following holds:

– C(FJ) = C(F) \ C′ for some C′ ⊆ C with |C′| = |C| − t.
– c(J) ≤ (H(|C|)− H(t)) · τ(F ′), where F ′ is the family of those members of F

that contain no core in C(F) \ C.
In particular, for t = 0, J covers the family of those members of F that contain
no core in C(F) \ C and c(J) ≤ H(|C|)τ(F ′); if also C = C(F) then J covers F
and has cost c(J) ≤ H(ν(F)) · τ(F).
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We note that each of the statements in Theorem5, Corollary 1, and Theo-
rem6, applies also for undirected graphs and symmetric F , but with an addi-
tional factor of 2 in the cost. In this case we have c(J) ≤ 2τ(F) in Theorem5
and Corollary 1, and c(J) ≤ 2H(|C|) · τ(F ′) in Theorem6. This is achieved by
the following standard reduction. In each of the cases, we bidirect the edges of
G (namely, replace every undirected edge e with endnodes u, v by two opposite
directed edges uv, vu of cost ce each), compute a set of directed edges for the
obtained directed problem, and return the corresponding set of undirected edges.

In what follows assume that n ≥ k + 3, q = �n−k+1
2 	, and |∂A| = k for all

A ∈ F . We say that A is a small biset/core if |A| ≤ q, and A is a large
biset/core otherwise. At this point we will split the proof of Theorem4 into
two cases: the case of directed graphs and the case of undirected graphs.

3.1 Directed Graphs

To prove the directed part of Theorem 4 we prove the following lemma.

Lemma 6. Suppose that F is crossing, F∗ is k-regular, and |∂A| = k for all
A ∈ F , and that n ≥ k + 3 and q = �n−k+1

2 	. Then directed Biset-Family Edge-
Cover admits a polynomial time algorithm if ν(F≤q) = 0 and approximation ratio
3/2 if ν(F≤q) = 1.

Lemma6 together with Corollary 1 and Theorem6 implies the directed part
of Theorem4. Note that the following algorithm uses all the assumptions on F in
Theorem4: F is k-regular in Corollary 1, crossing in Theorem6, and in Lemma6
F is crossing, F∗ is k-regular, and |∂A| = k for all A ∈ F . In the algorithm, we
sequentially compute three edge sets:

1. J1 reduces the number of small cores to μ by cost τ (Corollary 1).
2. J2 further reduces the number of small cores to 1 by cost (H(μ) − H(1))τ

(Theorem6).
3. J3 covers the remaining members of F by cost 3

2τ (Lemma 6).

Algorithm 1: Directed-Cover(F , G, c)

Using the algorithm from Corollary 1 compute J1 ⊆ E such that1

ν(FJ1
≤q) ≤ μ and c(J1) ≤ τ(F≤q).

Using the algorithm from Theorem 6 with C = C(FJ1
≤q) and t = 1,2

compute J2 ⊆ E \ J1 such that
ν

(
FJ1∪J2

≤q

)
≤ 1 and c(J2) ≤ (H(μ) − 1)τ

(FJ1
)
.

Using the algorithm from Lemma 6 compute an FJ1∪J2-cover3

J3 ⊆ E \ (J1 ∪ J2) such that c(J3) ≤ 3
2τ(FJ1∪J2).

return J = J1 ∪ J2 ∪ J34

Clearly, the algorithm computes a feasible solution. The approximation ratio
is bounded by 1 + (H(μ) − 1) + 3/2 = H(μ) + 3/2.
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The proof of Lemma6 follows. For a biset family A let us say that A-cover
admits LP-ratioρ if there exists a polynomial time algorithm that computes
an A-cover of cost ρ · τ(A). The proof of Lemma6 relies on the following lemma,
in which cross-independence is exploited in a novel way.

Lemma 7. Let A,B be subfamilies of a crossing family F such that A ∪ B = F
and the families A \ B and B \ A are cross-independent. If AJ -cover admits LP-
ratio α and BJ -cover admits LP-ratio β for any J ⊆ E, then F-cover admits
LP-ratio α + β − αβ

α+β .

Proof. We claim that the following algorithm achieves LP-ratio α + β − αβ
α+β :

Algorithm 2: Cross-Independent-Cover(A,B, G, c)

JA ← α-approximate A-cover J ′
B ← β-approximate BJA -cover1

JB ← β-approximate B-cover J ′
A ← α-approximate AJB -cover2

return the cheaper edge set J among JA ∪ J ′
B, JB ∪ J ′

A.3

Note that since A \ B and B \ A are cross-independent, so are BJA and AJB .
Thus no B ∈ BJA and A ∈ AJB cross, so no directed edge can cover both A and
B. Therefore

τ
(BJA

)
+ τ

(AJB
) ≤ τ(F).

Denoting τ = τ(F) and τ ′ = τ
(BJA

)
, we have τ

(AJB
) ≤ τ − τ ′. We also have:

c(JA) ≤ ατ(A) ≤ ατ c(J ′
B) ≤ βτ

(BJA
)
= βτ ′

c(JB) ≤ βτ(B) ≤ βτ c(J ′
A) ≤ ατ

(AJB
) ≤ α(τ − τ ′)

Thus the cost of the edge set produced by the algorithm is bounded by

c(J) = min{c(JA) + c(J ′
B), c(JB) + c(J ′

A)} ≤ min {ατ + βτ ′, βτ + α(τ − τ ′)} .

The worst case is when ατ + βτ ′ = βτ + α(τ − τ ′), namely τ ′ = β
α+β τ . Then

c(J) = ατ + βτ ′ = τ

(
α +

β2

α + β

)
= τ

α2 + αβ + β2

α + β
= τ

(
α + β − αβ

α + β

)
.

This concludes the proof of the lemma. ��
We show that the following two subfamilies A,B of F satisfy the assumptions

of Lemma7 with α = β = 1; note that then α + β − αβ
α+β = 3/2.

– A is the family of bisets in F that contain some small F-core;
– B is the family of bisets in F that contain some large F-core.

Lemma 8. The families A,B above satisfy the assumption properties of
Lemma 7 with α = ν(F≤q) (so α = 1 if ν(F≤q) = 1) and β = 1.
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Proof. Clearly, A∪B = F . We prove that A\B and B\A are cross-independent.
Let A ∈ A and B ∈ B cross. Then A ∩B ∈ F , since F is a crossing family. Thus
A ∪ B contains an F-core C. If C is small then A,B ∈ A and thus B /∈ B \ A.
If C is large then A,B ∈ B and thus A /∈ A \ B. In both cases we cannot have
A ∈ A \ B and B ∈ B \ A, hence A \ B and B \ A are cross-independent.

To prove the claimed approximability of covering A and B, we show that A∗

is a union of ν(F≤q) intersecting biset families, and that B∗ is an intersecting
biset family. For a core C denote FC = {A ∈ F : C ⊆ A}. Note that A =

⋃ FC

and A∗ =
⋃ F∗

C, where the union is taken over all small cores C of F . It is easy
to see that since F is crossing, then each family F∗

C is an intersecting family.
Hence A∗ is a union of ν(F≤q) intersecting families.

We prove that B∗ is an intersecting family. Consider the inclusionwise maxi-
mal members of B∗; each maximal member of B∗ is the co-biset C∗ of some large
F-core C. We claim that if Ci,Cj are distinct large F-cores then C∗

i ∩ C∗
j = ∅.

Note that |Ci|, |Cj | ≥ q + 1, hence |C∗
i |, |C∗

j | ≤ n − k − q − 1. If C∗
i ∩ C∗

j �= ∅
then for q ≥ n−k−2

2 , and in particular for q = �n−k+1
2 	, we have

|C∗
i ∪ C∗

j | ≤ |C∗
i | + |C∗

j | − 1 ≤ 2n − 2k − 2q − 3 ≤ n − k − 1

Since F∗ is k-regular, we get that C∗
i ∪ C

∗
j ∈ F∗, contradicting the maximality

of C∗
i ,C

∗
j . This implies that if A,B ∈ B∗ intersect, then A,B are contained in

the same inclusionwise maximal member of B∗, namely, A,B ⊆ C
∗ for some

large F-core C
∗. Note that C ⊆ A

∗ ∩ B
∗. Thus if A,B cross, and since F∗ is a

crossing family, A ∩ B,A ∪ B ∈ F∗. Moreover, A ∩ B,A ∪ B ⊆ C
∗, which implies

A ∩ B,A ∪ B ∈ B∗. Consequently, B∗ is an intersecting family. ��
Lemma6 easily follows from Lemmas 7 and 8, and thus the proof of the

directed part of Theorem4 is complete.

3.2 Undirected Graphs

To prove the undirected part of Theorem4 we prove the following lemma.

Lemma 9. Suppose that F is symmetric k-regular and |∂A| = k for all A ∈ F ,
and that n ≥ k + 3 and q = �n−k+1

2 	. Then undirected Biset-Family Edge-Cover
admits a polynomial time algorithm if ν(F≤q) = 1, and ratio 2 if ν(F≤q) = 2.

Proof. We claim that if ν(F≤q) ≤ 2 then there exist a pair s, t ∈ V such that

ν
(
F{st}

≤q

)
≤ ν(F≤q) − 1. (3)

Namely, adding the edge st reduces the number of small cores by at least 1.
Note that such a pair s, t can be found in polynomial time by computing ν(F≤q)

and ν
(
F{st}

≤q

)
for every s, t ∈ V . Once such pair s, t is found, we compute a

minimum cost edge cover Jst of the biset family {Fst = A ∈ F : s ∈ A, t ∈ A∗}.
This family is intersecting and has a unique core; such a family is sometimes
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called a ring family. Thus we get that in the case ν(F≤q) ≤ 2, the problem of
edge covering F is reduced to edge covering ν(F≤q) ring families. It is known that
Biset-Family Edge-Cover with a ring family admits a polynomial time algorithm
that computes a solution of cost τ(F). Consequently, we get a polynomial time
algorithm if ν(F≤q) = 1 and ratio 2 if ν(F≤q) = 2.

We now prove existence of a pair s, t as above. Let C ∈ C(F≤q) and let MC

be the family of inclusionwise maximal bisets in F≤q that contain C. If MC

has a unique biset M, then (3) holds for any s ∈ C and t ∈ M∗. Suppose that
|MC| ≥ 2. Note that by Lemma 4 and by the symmetry of F , if A,B ∈ F≤q

intersect, then A∪B ∈ F≤q or (A ∪ B)∗ ∈ F≤q. Thus for any distinct A,B ∈ MC,
(A ∪ B)∗ ∈ F≤q holds, by the maximality of the bisets in MC. Consequently,
since ν(F≤q) ≤ 2, there is a unique F≤q-core C

′ distinct from C, such that
C

′ ⊆ (A ∪ B)∗ for any distinct A,B ∈ MC. This implies that (3) holds for any
s ∈ C and t ∈ C ′. ��

Let us now show that Lemma9 implies the undirected part of Theorem4.
The algorithm is similar to the one for the directed case; it returns a solution
J = J1 ∪ J2 ∪ J3 where:

1. J1 reduces the number of small cores to μ by cost 2τ (Corollary 1).
2. If μ ≥ 3 then J2 further reduces the number of small cores to 2 by cost

2(H(μ) − H(2))τ (Theorem6).
3. J3 covers the remaining members of F by cost τ if μ = 1 and by cost 2τ

otherwise (Lemma 9).

Clearly, the algorithm computes a feasible solution. In the case μ ≥ 2 the
approximation ratio is 2 + 2(H(μ) − H(2)) + 2 = 2H(μ) + 1. This is so also in
the case μ = 1, since then the ratio is 2 + 1 = 3 = 2H(1) + 1.

This concludes the proof of the undirected part of Theorem4.

4 Proof-Sketch of Theorem2

Let G = (V,E) be a 2-(s, T )-connected graph and let F = F2-(s,T ) be as in (2).
One can prove the following “uncrossing” properties of the bisets in F .

Lemma 10. Let A,B ∈ F such that A∩B ∩T = ∅. Then either ∂A∩B, ∂B∩A
are both empty, or the following holds:

(i) Each one of the sets ∂A ∩ B, ∂A ∩ B∗, ∂B ∩ A, ∂B ∩ A∗ is a singleton.
(ii) If B ∩ A∗ ∩ T �= ∅ then B \ A ∈ F ; if A ∩ B∗ ∩ T �= ∅ then A \ B ∈ F .
(iii) If |A ∩ T | ≥ 2 and |B ∩ T | ≥ 2 then A,B T -co-cross.

Corollary 2. Let A,B ∈ C(F). Then either A ⊆ B
∗ and B ⊆ A

∗, or each one
of the sets A∩T,B ∩T is a singleton, and ∂B∩A = A∩T and ∂A∩B = B ∩T .

For A ⊆ F the U-mesh graph G = G(A, U) of A has node set A and edge
set {AiAj : ∂Ai ∩ Aj ∩ U �= ∅ or ∂Aj ∩ Ai ∩ U �= ∅}. Using Lemma10, one can
also prove the following key statement.
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Lemma 11. Let A ⊆ F . If Ai ∩ Aj ∩ T = ∅ for any distinct Ai,Aj ∈ A then
the V -mesh graph G of A is a forest.

Corollary 3. Let A be obtained by picking for each core Ci ∈ C(F) a biset Ai

in the halo-family F(Ci) of Ci. Then the V -mesh graph of A is a forest.

Proof. Since F is T -uncrossable, bisets from distinct halo families cannot T -
intersect. Thus Ai ∩Aj ∩T = ∅ for distinct Ai,Aj ∈ A, and the V -mesh graph of
A is a forest by Lemma 11. We prove that if Ai = Ci for each i then G has no node
of degree ≥ 3. Otherwise, G has a node C0 with 3 distinct neighbors C1,C2,C3.
Then Ci ∩ Cj ∩ T = ∅ for distinct 0 ≤ i, j ≤ 3. By Corollary 2 Ci ∩ T ⊆ ∂C0 for
i = 1, 2, 3, and we get the contradiction |∂C0| ≥ 3. ��
Corollary 4. Let C be the set family of the inner parts of the bisets in C(F).
Then the maximum degree of a node in the hypergraph (V, C) is at most 2.

Proof. Let v ∈ V and let Cv = {C ∈ C(F) : v ∈ C} be the family of cores whose
inner part contains v. Consider the the V -mesh graph Gv of Cv. By Corollary 2
Gv is a clique, while by Corollary 3 Gv is a path. Thus Gv has at most 2 nodes.��

A simple biset family F has no biset that contains 2 distinct cores, namely,
F is the union of its halo families. The best known ratio for edge-covering
uncrossable F is 2, even for set families. Fukunaga [13] showed that for sim-
ple uncrossable biset families one can achieve ratio 4/3. We prove the following.

Theorem 7. If Biset-Family Edge-Cover admits approximation ratio α for sim-
ple uncrossable families and approximation ratio β for uncrossable families, then
2-(s, T )-Connectivity Augmentation admits approximation ratio 2α + β.

The currently best known values of α and β are α = 4/3 [13] and β = 2 [8],
so we get ratio 2 · 4/3 + 2 = 42

3 .
We now prove Theorem7. The following lemma from [24] is easy to verify.

Lemma 12 [24]. Let F be an arbitrary T -uncrossable biset family and let Ai ∈
F(Ci) and Aj ∈ F(Cj), where Ci,Cj ∈ C(F) (possibly i = j).

(i) If i = j (so Ai,Aj contain the same F-core) then Ai ∩ Aj ,Ai ∪ Aj ∈ F(Ci).
(ii) If i �= j and Ai, Aj T -co-cross then Ai \ Aj ∈ F(Ci) and Aj \ Ai ∈ F(Cj).

Lemma12(i) implies that if F is T -uncrossable, then for every Ci ∈ C(F),
the halo family of Ci has a unique maximal member (the union of the bisets in
F(Ci)). The following statement easily follows from Lemma12.

Corollary 5 [24]. Let F be an arbitrary T -uncrossable biset family and let A
be the family of the maximal members of the halo families of the F-cores. Let
A′ be an independent set in the T -mesh graph of A. Then the union of the halo
families of the bisets in A′ is a simple uncrossable biset family.



338 Z. Nutov

Let now F = F2-(s,T ). Let G be the T -mesh graph of A as in Corollary 5. By
Lemma11 G is a forest. Thus G is 2-colorable, so its nodes can be partitioned
into 2 independent sets A′ and A′′. The rest of the analysis coincides with [24].
Let C′ and C′′ the set of F-cores that correspond to A′ and A′′, respectively. By
Corollary 5, each one of the families F ′ =

⋃
C∈C′ F(C) and F ′′ =

⋃
C∈C′′ F(C) is

uncrossable and simple. Thus the problem of covering F ′ ∪ F ′′ admits ratio 2β.
After the family F ′ ∪ F ′′ is covered, the inner part of every core of the residual
family contains at least 2 terminals. Hence by Lemma10(iii), the residual family
is uncrossable, and thus the problem of covering it admits ratio β. Consequently,
the overall ratio is 2α + β, as claimed in Theorem7.

In the case when all edges in F are incident to s, J ⊆ F is a feasible solution
for the problem if and only if the set {v ∈ V : sv ∈ J} is a hitting set of
the hypergraph formed by the inner parts of the F-cores. By Corollary 4, the
maximum degree in this hypergraph is ≤ 2, and thus its minimum-weight hitting
set can be found in polynomial time. This concludes the proof of Theorem2.
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Abstract. A famous theorem by Greibach (“The hardest context-free
language”, SIAM J. Comp., 1973) states that there exists such a context-
free language L0 that every context-free language over any alphabet is
reducible to L0 by a homomorphic reduction—in other words, is rep-
resentable as an inverse homomorphic image h−1(L0), for a suitable
homomorphism h. This paper establishes similar characterizations for
conjunctive grammars, that is, for grammars extended with a conjunc-
tion operator.

1 Introduction

One of the central notions in the theory of computation is that of a hard set for
a class, to which all other sets from that class can be reduced : that is to say, the
membership problem for each set in this class can be solved by mapping an ele-
ment to be tested to an instance of the membership problem for the hardest set,
using a relatively easily computable reduction function. Most computational com-
plexity classes have their hardest sets, and their existence forms the fundamental
knowledge in the area. For example, the set of Turing machines recognizing co-
finite languages is complete for Σ2

0 under recursive reductions, whereas Boolean
formula satisfiability is complete for NP under polynomial-time reductions.

In the world of formal grammars, there is a result similar in spirit, estab-
lished for a much more restricted notion of reducibility (which indicates a stronger
result). In 1973, Greibach [8] proved that among the languages defined by the for-
mal grammars of the ordinary kind (“context-free languages”), there is a hard-
est set under reductions by homomorphisms—that is, by functions mapping each
symbol of the target language’s alphabet to a string over the alphabet of the hard-
est language. To be precise, Greibach’s hardest language theorem presents a par-
ticular context-free language L0 over an alphabet Σ0, with the following property:
for every context-free language L over any alphabet Σ, there exists such a homo-
morphism h : Σ → Σ+

0 , that a string w ∈ Σ∗ is in L if and only if its image h(w)
belongs to L0. This language L0 is then called the hardest context-free language,
for the reason that every context-free language is reducible to it.

Among formal language theorists, this result is regarded as a representa-
tion theorem, in the sense that every language in the family is representable by

c© Springer International Publishing Switzerland 2016
A.S. Kulikov and G.J. Woeginger (Eds.): CSR 2016, LNCS 9691, pp. 340–351, 2016.
DOI: 10.1007/978-3-319-34171-2 24
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applying a certain operation to base languages of a restricted form. In case of
Greibach’s theorem, there is just one base language L0, and every context-free
language L is represented as an inverse homomorphic image L = {w | h(w) ∈
L0 } = h−1(L0). For context-free languages, it is additionally known that they
are closed under taking inverse homomorphisms, and thus Greibach’s theorem [8]
gives a necessary and sufficient condition: a language is context-free if and only
if it is representable as h−1(L0), for some h. Another famous example of a rep-
resentation theorem is the Chomsky–Schützenberger theorem.

The possibility of having hardest sets under homomorphic reductions was also
investigated for a few other families of formal languages. Already Greibach [9]
showed that for the family of deterministic languages—that is, the languages
described by LR(1) grammars—there cannot be a hardest language under homo-
morphic reductions. Greibach [8] has also proved a variant of her theorem for
a certain restricted type of Turing machines. Čuĺık and Maurer [6] similarly
found the same kind of a hardest language in the complexity class NSPACE(n).
Boasson and Nivat [5] proved that there is no hardest language in the family
described by linear grammars, Autebert [2] proved the same negative result for
one-counter automata, whereas Čuĺık and Maurer [6] showed such a result for
the regular languages.

The purpose of this paper is to prove the existence of the hardest language
for the family of conjunctive grammars [12,16], which allow a conjunction of any
syntactic conditions to be expressed in a rule. Consider that a rule A → BC in
an ordinary grammar states that if a string w is representable as BC—that is, as
w = uv, where u has the property B and v has the property C—then w has the
property A. In a conjunctive grammar, one can define a rule of the form A →
BC &DE, which asserts that every string w representable both as BC (with w =
uv) and at the same time as DE (with w = xy) therefore has the property A. The
importance of conjunctive grammars is justified by two facts: on the one hand,
they add useful logical operations to standard inductive definitions of syntax, and
these operations allow one to express some syntactic constructs beyond the scope
of ordinary grammars. On the other hand, conjunctive grammars have generally
the same parsing algorithms as ordinary grammars [1,16], and the same subcubic
upper bound on the time complexity of parsing [17]. Among numerous theoretical
results on conjunctive grammars, the one particularly relevant for this paper is
the closure of the language family described by conjunctive grammars under
inverse homomorphisms [11]. For more information on this grammar family, the
reader is directed to a recent survey paper [16].

The result presented in this paper is that there exists a hardest language
for conjunctive grammars. Unlike much of the previous work on conjunctive
grammars, which worked out by directly extending the corresponding results
from the case of ordinary grammars, a conjunctive version of Greibach’s theorem
has to be proved in quite a different way. Consider that Greibach’s own proof of
her theorem requires a grammar in the Greibach normal form [7], with all rules
of the form A → aα, where a is a symbol of the alphabet. No analogue of this
normal form has been established for conjunctive grammars, and for this reason,



342 A. Okhotin

the proof of the hardest language theorem presented in this paper has to rely
upon an entirely different normal form defined by Okhotin and Reitwießner [18].
Using that normal form instead of the Greibach normal form requires a new
construction, which is quite different from the construction used by Greibach [7]
for ordinary grammars.

2 Conjunctive Grammars

Rules in ordinary formal grammars may concatenate substrings to each other,
and may use disjunction of syntactic conditions, represented by multiple rules
for a nonterminal symbol. Conjunctive grammars extend this logic by allowing
conjunction within the same kind of definitions.

Definition 1. A conjunctive grammar is a quadruple G = (Σ,N,R, S), in
which:

– Σ is the alphabet of the language being defined;
– N is a finite set of symbols for the syntactic categories defined in the grammar

(“nonterminal symbols”);
– R is a finite set of rules, each of the form

A → α1 & . . . & αm, (1)

where A ∈ N , m � 1 and α1, . . . , αm ∈ (Σ ∪ N)∗;
– S ∈ N is a symbol representing the property of being a syntactically well-

formed sentence of the language (“the initial symbol”).

Each concatenation αi in a rule (1) is called a conjunct. If a grammar has a
unique conjunct in every rule (m = 1), it is an ordinary grammar (Chomsky’s
“context-free”).

Each rule (1) means that any string representable as each concatenation αi

therefore has the property A. These dependencies form parse trees with shared
leaves, where the subtrees corresponding to different conjuncts in a rule (1) define
multiple interpretations of the same substring, and accordingly lead to the same
set of leaves, as illustrated in Fig. 1. This understanding can be formalized in
several equivalent ways: by term rewriting [12], by logical deduction [15] and by
language equations [13].

Consider one of those definitions, which extends Chomsky’s definition of ordi-
nary grammars by string rewriting, using terms instead of strings.

Definition 2 [12]. Let G = (Σ,N,R, S) be a conjunctive grammar, and con-
sider terms over concatenation and conjunction, with symbols from Σ ∪ N and
the empty string ε as atomic terms. The relation of one-step rewriting on such
terms (=⇒) is defined as follows.

– Using a rule A → α1 & . . . & αm ∈ R, any atomic subterm A ∈ N of any term
may be rewritten by the term (α1 & . . . & αm).

. . . A . . . =⇒ . . . (α1 & . . . & αm) . . .
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Fig. 1. Parse trees in conjunctive grammars: a subtree with root A → α1 & . . .&αm,
representing m parses of a substring ai . . . aj .

– A conjunction of several identical strings may be rewritten to one such string.

. . . (w & . . . & w) . . . =⇒ . . . w . . . (w ∈ Σ∗)

The language generated by a term ϕ is the set of all strings over Σ obtained from
it in a finite number of rewriting steps.

LG(ϕ) = {w | w ∈ Σ∗, ϕ =⇒∗ w }

The language generated by the grammar is the language generated by its initial
symbol.

L(G) = LG(S) = {w | w ∈ Σ∗, S =⇒∗ w }
Example 1 [12]. The following conjunctive grammar generates the language
{ anbncn | n � 0 }.

S → AB &DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

The proof of an inverse homomorphic characterization for conjunctive gram-
mars presented in this paper is based upon a normal form that extends the
operator normal form for ordinary grammars. This normal form, called the odd
normal form, derives its name from the fact that all strings generated by all
nonterminal symbols (except maybe the initial symbol), are of odd length.

Theorem A (Okhotin and Reitwießner [18]). For every conjunctive gram-
mar there exists and can be effectively constructed a conjunctive grammar
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G = (Σ,N,R, S) generating the same language, which is in the odd normal
form, that is, with all rules of the following form.

A → B1a1C1 & . . . & BmamCm (m � 1, Bi, Ci ∈ N, ai ∈ Σ)
A → a (a ∈ Σ)

If the initial symbol S is never used in the right-hand sides of any rules, then the
rules of the form S → aA, with a ∈ Σ and A ∈ N , and S → ε are also allowed.

For the purposes of this paper, the crucial quality of the odd normal form is
that every conjunct contains a symbol of the alphabet, such as a in BaC. The
homomorphic image h(a) of that symbol shall, in particular, encode the conjunct
BaC. A substring can then be parsed according to that conjunct, beginning from
the image h(a), and then proceeding in both directions to parse the appropriate
substrings according to B and to C.

3 Hardest Language for Conjunctive Grammars

The goal is to establish the following analogue of Greibach’s hardest language
theorem for conjunctive grammars.

Theorem 1. There exists such a conjunctive language L0 over the alphabet
Σ0 = {a, b, c, d,#}, that for every conjunctive language L over any alphabet
Σ, there is such a homomorphism h : Σ → Σ∗

0 , that L = h−1(L0) if ε /∈ L and
L = h−1(L0 ∪ {ε}) if ε ∈ L.

Let G = (Σ,N,R,X) be any conjunctive grammar, in which every con-
junct is of the form Y sZ, Y s, sZ or s, where Y,Z ∈ N and s ∈ Σ; in par-
ticular, every grammar in the odd normal form satisfies this condition. Let
C = {α1, α2, . . . , α|C|}, with αi ∈ NΣN ∪ ΣN ∪ NΣ ∪ Σ, be an enumeration of
all distinct conjuncts used in the grammar, so that each rule is of the form

A → αi1 & . . . & αim , with m � 1 and i1, . . . , im ∈ {1, . . . , |C|}. (2)

The proposed encoding of G consists of definitions of conjuncts. For each
conjunct αi = Y sZ, its definition is included in the image of the symbol s, so
that a substring h(usv) could be parsed according to Y sZ beginning from h(s)
in the middle. The definition consists of all possible expansions of a conjunct,
with any rules for Y and for Z substituted instead of Y and Z. Consider any
two such rules.

Y → αi1 & . . . &αim

Z → αj1 & . . . &αjn

The expansion of conjunct number i with this pair of rules represents them as
two lists of conjunct numbers: the list of conjuncts {i1, . . . , im} to be used on
the left, representing the rule for Y , and the list of conjuncts {j1, . . . , jn} on the



The Hardest Language for Conjunctive Grammars 345

right. This expansion is then encoded in the image of the symbol s as a triple({i1, . . . , im}, i, {j1, . . . , jn})
. The image of s contains such triples for every

conjunct Y sZ and for every choice of rules for Y and for Z.
The encoding uses a five-symbol alphabet Σ0 = {a, b, c, d,#}, in which the

symbols have the following meaning.

– Symbols a are used to represent any reference to each conjunct αi as ai.
– Symbols b are used to mark each expansion of a conjunct αi = Y sZ by bi.
– The symbol c represents conjunction in the right-hand side of any rule. Each

rule (2) has the following symmetric left and right representations that list all
conjuncts used in the rule.

λ(A → αi1 & . . . & αim) = caim . . . cai1

ρ(A → αi1 & . . . & αim) = ai1c . . . aimc

Any expansion of a conjunct αk = Y sZ consists of a marker bk preceded by
a left representation of a rule r for Y and followed by a right representation
of a rule r′ for Z. This is a string λ(r)bkρ(r′). For a conjunct αk = Y s with
Z omitted, its expansion accordingly omits ρ(r′) and is of the form λ(r)bk.
Similarly, a conjunct αk = sZ is expanded as bkρ(r′), where r′ is a rule for Z.
A conjunct αk = s has a unique expansion bk.

– The symbol d is used to separate any expansions of conjuncts with the same
symbol s in the middle. The definition of a conjunct αk, denoted by σ(αk), is
the following concatenation of all its expansions (using the product notation
for concatenations over all rules).

σ(αk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏
r is a rule for Y

∏
r′ is a rule for Z λ(r)bkρ(r′)d, if αk = Y sZ

∏
r is a rule for Y λ(r)bkd, if αk = Y s

∏
r′ is a rule for Z bkρ(r′)d, if αk = sZ

bkd, if αk = s

– The separator symbol # ∈ Σ0 concludes the image h(s) of any symbol s ∈ Σ.

The image of every symbol s ∈ Σ under h consists of two parts. It begins
with the set of all rules for the initial symbol, which will actually be used only
in the image of the first symbol of a string. Next, after a double separator dd,
there is the list of all expansions of all conjuncts containing the symbol s. The
image is concluded with the separator symbol #.

hG(s) =
( ∏

r is a rule for S

ρ(r)d
)

· d ·
( ∏

αk∈C
αk∈NsN∪sN∪Ns∪{s}

σ(αk)
)

· #

These definitions are illustrated on the following grammar.
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Example 2. Let Σ = {s, t} and consider a grammar G = (Σ, {X,Y,Z}, R,X),
with the following rules.

X → tY

Y → Y sZ & ZsZ | t

Z → t

The parse tree of the string ttst is presented in Fig. 2.
Let the conjuncts in G be numbered as α1 = tY , α2 = Y sZ, α3 = ZsZ and

α4 = t. Then its rules have the following left and right representations.

λ(X → tY ) = ac ρ(X → tY ) = ca
λ(Y → Y sZ &ZsZ) = ca3ca2 ρ(Y → Y sZ & ZsZ) = a2ca3c

λ(Y → t) = a4c ρ(X → tY ) = ca4

λ(Z → t) = a4c ρ(Z → tY ) = ca4

The image of the symbol s begins with the rule for the initial symbol X and
continues with the expansions of the conjuncts Y sZ and ZsZ (that is, of all
conjuncts containing the symbol s). The conjunct Y sZ has two expansions, one
with the first rule for Y and the other with the second rule for Y . The conjunct
ZsZ has only one expansion, because Z has a unique rule Z → t.

hG(s) = ac︸︷︷︸
ρ(X→tY )

dd

λ(Y →Y sZ &ZsZ)
︷ ︸︸ ︷
ca2ca3 b2 a4c︸︷︷︸

ρ(Z→t)

d

λ(Y →t)
︷︸︸︷
ca4 b2 a4c︸︷︷︸

ρ(Z→t)

d

λ(Z→t)
︷︸︸︷
ca4 b3 a4c︸︷︷︸

ρ(Z→t)

d#

The image of t begins with the same rule for the initial symbol X. Then, there
are two conjuncts to expand: tY and t. The former conjunct has two expansions
corresponding to the two rules for Y , whereas the conjunct α4 = t has a unique
expansion not referring to any rules (b4).

hG(t) = ac︸︷︷︸
ρ(X→tY )

dd b a4c︸︷︷︸
ρ(Y →t)

d b

ρ(Y →Y sZ &ZsZ)
︷ ︸︸ ︷
a2ca3cd b4d#,

Accordingly, the string ttst ∈ L has the following image.

hG(ttst) = acddba4cdba2ca3cdb4d# acddba4cdba2ca3cdb4d#

acddca2ca3b2a4cdca4b2a4cdca4b3a4cd# acddba4cdba2ca3cdb4d#

Figure 2 illustrates, how the parse tree of the string ttst for the grammar in
Example 2 can be reconstructed by following the pointers inside this image.

In the general case, the goal is to construct a single conjunctive grammar that
describes this kind of structure. The desired grammar G0 = (Σ0, N0, R0, S0) uses
the following set of nonterminal symbols; the purpose of each of them is explained
below, along with the rules of the grammar.

N0 = {S0, A,B,C,D,
−→
E ,

−→
E+,

−→
F ,

←−
E ,

←−
E+,

←−
F ,

−→
E0,

−→
F0}
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Fig. 2. How a parse tree of the string w = ttst is reconstructed by analyzing its
image h(w).

The main task carried out in the grammar G0 is parsing a substring w ∈ Σ∗

according to a rule r of G, given its image h(w). Unless w is the whole string, the
matching begins in the image of either of the symbols adjacent to w. Assume
that this is the symbol immediately preceding w (the other case is handled
symmetrically), and let t ∈ Σ∗ be that symbol.

The grammar G0 implements this by defining a string ρ(r)dx#hG(w), where
ρ(r)dx# is a suffix of h(t) that begins with an encoding of the desired rule, and
the remaining symbols in h(t) are denoted by x ∈ {a, b, c, d}∗. Such a string
is defined by the nonterminal symbol

−→
E , which should verify that each of the

conjuncts listed in ρ(r) generates the substring w.
Let the rule r be A → αi1 & . . . &αim , so that its right representa-

tion is ρ(r) = ai1c . . . aimc. Then,
−→
E describes the form of the string

ai1cai2c . . . aimcdx#hG(w) by checking that w can be parsed as the con-
junct αi1 , and at the same time by applying the same test to the string
ai2c . . . aimcdx#hG(w), in order to check the rest of the conjuncts of this rule (the
self-reference actually uses a variant of

−→
E , denoted by

−→
E+, which is explained

later).
Consider how the first conjunct αi1 is checked by

−→
E . Assume that it is of

the form αi1 = Y sZ, with Y,Z ∈ N and s ∈ Σ. For w to be generated by
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this conjunct, there should exist a partition w = usv, with u generated by
Y using some rule r′, and with v generated by Z using a rule r′′. Then the
image of s contains a substring λ(r′)bi1ρ(r′′) corresponding to this case, with
h(s) = x′λ(r′)bi1ρ(r′′)x′′. The task for

−→
E is to locate this substring and then

apply another instance of
−→
E to the suffix ρ(r′′)x′′h(v), to test the generation

of v by r′′; the prefix h(u)x′λ(r′′) is similarly checked by a symbol
←−
E with

symmetrically defined rules, ensuring that u is generated by r′.

−→
F

︷ ︸︸ ︷

ai1cai2c . . . aimcdx# ·

←−
E

︷ ︸︸ ︷
h(u) · x′ λ(r′) bi1

−→
E

︷ ︸︸ ︷
ρ(r′′) x′′ · h(v) ∈ LG0(

−→
E )

Two rules are defined for
−→
E . The first rule begins the test for an encoded

rule r, as explained above, with the first conjunct using an intermediate symbol−→
F to check the conjunct’s number and to apply

←−
E to the correct substring, and

with the second conjunct skipping ai1c and invoking
−→
E+ to test the rest of the

rule r, beginning with the conjunct i2.

−→
E → −→

F
−→
E &Ac

−→
E+ (3a)

A → aA | a (3b)

The other rule for
−→
E handles the case when the rule r is entirely missing, and

the image of t contains an encoding of a conjunct Xt or t. In this case,
−→
E has

to ensure that w is empty, which is handled by the following rule.

−→
E → dC# (3c)
C → aC | bC | cC | dC | ε (3d)

The rules for
−→
F are responsible for matching the conjunct’s code ai1 to the

corresponding code bi1 for this conjunct’s expansion, and then skip the rest of
the image h(t) to apply

←−
E to h(u)x′λ(r′′).

−→
F → a

−→
F b | acC#

←−
Eb (3e)

The rest of the conjuncts of this rule (αi2 , . . . , αim) are checked in exactly the
same way, using the symbol

−→
E+ with the same main rule. Once all the conjuncts

are handled, the second rule for
−→
E+ skips the remaining string dx#h(w).

−→
E+ → −→

F
−→
E &Ac

−→
E+ | dC#D (3f)

D → C#D | ε (3g)

Symmetrically to
−→
E , the symbol

←−
E describes a string hG(w)xλ(r), with λ(r) =

caim . . . cai2cai1 and x ∈ {a, b, c, d}∗, as long as w is generated by each of the
conjuncts αi1 , . . . , αim .
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←−
E → ←−

E
←−
F &

←−
E+cA | Cd (3h)

←−
E+ → ←−

E
←−
F &

←−
E+cA | DCd (3i)

←−
F → b

←−
F a | b

−→
ECca (3j)

It remains to define the rules for the initial symbol S0, which should describe an
encoding hG(w) if and only if S generates w in the grammar G. Let w = a1 . . . a�.
The image of its first symbol a1 (just like the image of any subsequent symbol)
begins with the list of all the rules for S in G; the rule for S0 chooses one of
these encoded rules and then uses another variant of

−→
E , called

−→
E0, to match the

whole string w according to this rule.

S0 → BdS0 | −→
F0

−→
E &Ac

−→
E0 (3k)

B → aB | cB | a | c (3l)

The reason for using a new symbol
−→
E0 rather than

−→
E+ is that some conjuncts of

the encoded rule for S may be of the form sY or just s, and in this case one has
to match a rule written in the first part of h(a1) to its definition included in the
second part of the image of the same symbol.

−→
E0 → −→

F0
−→
E & Ac

−→
E0 | dC#D (3m)

−→
F0 → a

−→
F0b | acCdb | ac

←−
Eb (3n)

This completes the construction of the “hardest” conjunctive grammar G0.

Lemma 1. Let G = (Σ,N,R,X) be a conjunctive grammar with all conjuncts
of the form Y sZ, Y s, sZ or s, where Y,Z ∈ N and s ∈ Σ. Then, a string h(w),
with w ∈ Σ+, is in L(G0) if and only if w is in L(G).

A proof of the lemma can be given by induction on the length of strings,
along the lines of the above explanation. The lemma then implies Theorem1.

Suggested future work on this characterization of conjunctive grammars is to
construct a different hardest language that would have a simpler grammar, or
perhaps some theoretically interesting explanation, similar to Greibach’s “non-
deterministic version of the Dyck set” [8].

4 Further Characterizations

A similar hardest language theorem can be established for the family of Boolean
grammars [14,16], which are a further extension of conjunctive grammars fea-
turing a negation operator. A Boolean grammar allows such rules as A →
BC &¬DE, which expresses all strings representable as BC, but not repre-
sentable as DE; this definition is formalized using language equations [10,14].
The hardest language theorem is proved by a slight extension of the construction
in Sect. 3, and will be included in the full version of this paper.
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Another noteworthy extension of ordinary formal grammars are the multi-
component grammars of Vijay-Shanker et al. [20] and of Seki et al. [19]. In these
grammars, a nonterminal symbol may deal with several substrings at once, and
those substrings may be arbitrarily concatenated in the rules. The maximum
number of substrings handled at once is the dimension of the grammar, and there
is an infinite hierarchy of representable languages with respect to this dimension.
Since the language family described by grammars of every fixed dimension d is
closed under inverse homomorphisms, there cannot be a single hardest language
for all dimensions. However, it is possible that there is a hardest language for
each dimension, and checking that is left for future studies.

A similar question can be asked about grammars with context operators,
recently defined by Barash and Okhotin [3,4], which further extend conjunctive
grammars and pertain to implementing the notion of a rule applicable in a con-
text. It is not yet known whether they are closed under inverse homomorphisms,
and establishing an analogue of the odd normal form might be a challenging
task. Nevertheless, the existence of a hardest language is conjectured.
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Abstract. Empirical performance of the celebrated algorithms for low-
rank approximation of a matrix by means of random sampling has been
consistently efficient in various studies with various sparse and structured
multipliers, but so far formal support for this empirical observation has
been missing. Our new insight into this subject enables us to provide
such an elusive formal support. Furthermore, our approach promises sig-
nificant acceleration of the known algorithms by means of sampling with
more efficient sparse and structured multipliers. It should also lead to
enhanced performance of other fundamental matrix algorithms. Our for-
mal results and our initial numerical tests are in good accordance with
each other, and we have already extended our progress to the acceleration
of the Fast Multipole Method and the Conjugate Gradient algorithms.

Keywords: Low-rank approximation of a matrix · Random sam-
pling · Derandomization · Fast multipole method · Conjugate gradient
algorithms

1 Introduction

Low-rank approximation of a matrix by means of random sampling is an increas-
ingly popular subject area with applications to the most fundamental matrix
computations [19] as well as numerous problems of data mining and analysis,
“ranging from term document data to DNA SNP data” [20]. See [19,20], and [14,
Sect. 10.4.5], for surveys and ample bibliography; see [7,12,16,17,26], for sample
early works.

All these studies rely on the proved efficiency of random sampling with
Gaussian multipliers and on the empirical evidence that the algorithms work
as efficiently with various random sparse and structured multipliers. So far for-
mal support for this empirical evidence has been missing, however.

Our novel insight into this subject provides such an elusive formal support
and promises significant acceleration of the computations. Next we outline our
progress and then specify it in some detail (see also [23]).
c© Springer International Publishing Switzerland 2016
A.S. Kulikov and G.J. Woeginger (Eds.): CSR 2016, LNCS 9691, pp. 352–366, 2016.
DOI: 10.1007/978-3-319-34171-2 25
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We recall some basic definitions in the next section and in the Appendix.
As this is customary in the study of matrix computations, we use freely the

concepts “large”, “small”, “near”, “close”, “approximate”, “ill-conditioned” and
“well-conditioned” quantified in the context, although we specify them quanti-
tatively as needed.

The acronym “i.i.d.” stands for “independent identically distributed”, and
we refer to standard Gaussian random variables just as Gaussian.

We call an m×n matrix Gaussian if all its entries are i.i.d. Gaussian variables.
Hereafter “likely” means “with a probability close to 1”, and “flop” stands

for “floating point arithmetic operation”.

Basic Algorithm; its Efficiency with Gaussian Random Multipliers.
nrank(M) denotes numerical rank of an m × n matrix M : a matrix M can be
closely approximated by a matrix of rank at most r if and only if r ≥ nrank(M)
(cf. part 9 of the next section).

The following randomized algorithm (cf. [19, Algorithm 4.1 and Sect. 10])
computes such an approximation by a product FH where F and H are m × l
and l × n matrices, respectively, l ≥ r, and in numerous applications of the
algorithm, l is small compared to m and n.

Algorithm 1. Low-rank approximation of a matrix via random sampling.

Input: An m × n matrix M having numerical rank r where m ≥ n > r > 0.
Initialization: Fix an integer p such that 0 ≤ p < n − r. Compute l = r + p.
Computations: 1. Generate an n × l matrix B. Compute the matrix MB.

2. Orthogonalize its columns, producing matrix Q = Q(MB).
3. Output the rank-l matrix M̃ = QQT M ≈ M and the relative residual

norm Δ = ||M̃−M ||
||M || .

The following theorem supports Algorithm1 with a Gaussian multiplier B.

Theorem 1. The Power of Gaussian random sampling. Approximation of a
matrix M by a rank-l matrix produced by Algorithm1 is likely to be optimal
up to a factor of f having expected value 1 + (1 +

√
m +

√
l) e

p

√
r, provided that

e = 2.71828 . . . , nrank(M) ≤ r, and B is an n × l Gaussian matrix.

This is [19, Theorem 10.6] for a slightly distinct factor f . For the sake of con-
sistency and completeness of our presentation, we prove the theorem in Sect. 4
and then extend it into a new direction.

By combining Algorithm 1 with the Power Scheme of Remark 1, one can
decrease the bound of the theorem dramatically at a low computational cost.

Modifications with SRFT and SRHT Structured Random Sampling.
A Gaussian matrix B involves nl random parameters, and we multiply it by M
by using ml(2n − 1) flops. They dominate O(ml2) flops for orthogonalization at
Stage 2 if l � n.
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An n×n matrix B of subsample random Fourier or Hadamard transform1 is
defined by n parameters, and we need just O(mn log(l)) flops, l = O(r log(r)),
in order to multiply an input matrix M by an n × l block of such a matrix B
(cf. [19, Sects. 4.6 and 11]).

Both SRFT and SRHT multipliers are universal, like Gaussian ones: it is
proven that Algorithm 1 is likely to produce correct output with them for any
matrix M , although the known upper bounds on the failure probability increase.
E.g., with SRFT multipliers such a bound grows to O(1/r) from order 3 exp(−p),
for p ≥ 4, with Gaussian ones (cf. [19, Theorems 10.9 and 11.1]).

Empirically the algorithm fails very rarely with SRFT multipliers, l = r + p,
p = 20, and even p = 4 (and similarly with SRHT multipliers), but for special
inputs M , it is likely to fail if l = O(r log(r)) (cf. [19, Remark 11.2]).

Related Work. Similar empirical behavior has been consistently observed by
ourselves and by many other researchers when Algorithm 1 was applied with a
variety of sparse and structured multipliers [19,20,22], but so far formal support
for such empirical observations has been missing from the huge bibliography on
this highly popular subject.

Our Goals and our Progress. In this paper we are going to

(i) fill the void in the bibliography by supplying the missing formal support,
(ii) define new more efficient multipliers for low-rank approximation,
(iii) compare our formal results with those of our numerical tests, and
(iv) extend our findings to another important computational area.

Our basic step is the proof of a dual version of Theorem1, which relies on
the following concept.

Definition 1. Factor Gaussian matrices with small expected rank. For three
integers m, n, and r, m ≥ n > r > 0, define the class G(m,n, r) of m × n factor
Gaussian matrices M = UV with expected rank r such that U is an m × r
Gaussian matrix and V is a r × n Gaussian matrix.

Recall that rectangular Gaussian matrices have full rank with probability 1 and
are likely to be well-conditioned (see Theorems 9 and 10), and so the matrices
M ∈ G(m,n, r) are likely to have rank r indeed, as we state in the definition.

Theorem 2. The Duality Theorem.2

The claims of Theorem1 still hold if we assume that the m×n input matrix M
is a small-norm perturbation of a factor Gaussian matrix with expected numerical
rank r and if we allow a multiplier B to be any n × l well-conditioned matrix of
full rank l.

1 Hereafter we use the acronyms SRFT and SRHT.
2 It is sufficient to prove the theorem for the matrices in G(m,n, r). The extension to

their small-norm perturbation readily follows from Theorem 3 of the next section.
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Theorem 2 implies that Algorithm1 produces a low-rank approximation to
average input matrix M that has numerical rank r under the mildest possible
restriction on the choice of a multiplier provided that average matrix is defined
under the Gaussian probability distribution. This provision is customary, and it
is quite natural in view of the Central Limit Theorem.

Our novel point of view implies formal support for the cited empirical obser-
vations and for almost unrestricted choice of efficient multipliers, which can
be viewed as derandomization of Algorithm 1 and which promises significant
improvement of its performance. This promise, based on our formal analysis,
turned out to be in good accordance with our initial numerical tests in Sect. 5
and [23].

In Sect. 3 we describe some promising candidate sparse and structured mul-
tipliers, in particular those simplifying the matrices of SRHT, and we test our
recipes numerically, thus fulfilling our goals (ii) and (iii). As we prove in Sect. 4,
the accuracy of low-rank approximations output by Algorithm1 is likely to be
reasonable even where the oversampling integer p vanishes and to increase fast
as this integer grows. Moreover we can increase the accuracy dramatically by
applying the Power Scheme of Remark 1 at a low computational cost.

Our progress can be extended to various other computational tasks, e.g. (see
Sect. 6), to the acceleration of the Fast Multipole Method3 of [5,15], listed as
one of the 10 most important algorithms of the 20th century, widely used, and
increasingly popular in Modern Matrix Computations.

The extension to new tasks is valid as long as the definition of their average
inputs under the Gaussian probability distribution is appropriate and relevant.
For a specific input to a chosen task we can test the validity of extension by
action, that is, by applying our algorithms and checking the output accuracy.

Organization of the Paper. We organize our presentation as follows. In the
next section and in the Appendix we recall some basic definitions. In Sect. 3 we
specify our results for low-rank approximation, by elaborating upon Theorems 1
and 2. In Sect. 4 we prove these theorems. Section 5 covers our numerical experi-
ments, which are the contribution of the second author. In Sect. 6 we extend our
results to the acceleration of the FMM.

In our report [23], we extend them further to the acceleration of the Conjugate
Gradient celebrated algorithms and include a proof of our Theorem7 and test
results omitted due to the limitation on the paper size.

2 Some Definitions and Basic Results

We recall some relevant definitions and basic results for random matrices in the
Appendix. Next we list some definitions for matrix computations (cf. [14]).

For simplicity we assume dealing with real matrices, but our study can be
readily extended to the complex case.

1. Ig is a g × g identity matrix. Ok,l is the k × l matrix filled with zeros.
3 Hereafter we use the acronym FMM.
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2. (B1 | B2 | · · · | Bk) is a block vector of length k, and diag(B1, B2, . . . , Bk) is
a k × k block diagonal matrix, in both cases with blocks B1, B2, . . . , Bk.

3. Wk,l denotes the k×l leading (that is, northwestern) block of an m×n matrix
W for k ≤ m and l ≤ n. WT denotes its transpose.

4. An m × n matrix W is called orthogonal if WT W = In or if WWT = Im.
5. W = SW,ρΣW,ρT

T
W,ρ is compact SVD of a matrix W of rank ρ with SW,ρ and

TW,ρ orthogonal matrices of its singular vectors and ΣW,ρ = diag(σj(W ))ρ
j=1

the diagonal matrix of its singular values in non-increasing order; σρ(W ) > 0.
6. W+ = TW,ρΣ

−1
W,ρS

T
W,ρ is the Moore–Penrose pseudo inverse of the matrix W .

(W+ = W−1 for a nonsingular matrix W .)
7. ||W || = σ1(W ) and ||W ||F = (

∑ρ
j=1 σ2

j (W ))1/2 ≤ √
n ||W || denote its spectral

and Frobenius norms, respectively. (||W+|| = 1
σρ(W ) ; ||U || = ||U+|| = 1,

||UW || = ||W || and ||WU || = ||W || if the matrix U is orthogonal.)
8. κ(W ) = ||W || ||W+|| = σ1(W )/σρ(W ) ≥ 1 denotes the condition number of

a matrix W . A matrix is called ill-conditioned if its condition number is large
in context and is called well-conditioned if this number κ(W ) is reasonably
bounded. (An m × n matrix is ill-conditioned if and only if it has a matrix
of a smaller rank nearby, and it is well-conditioned if and only if it has full
numerical rank min{m,n}.)

9. Theorem 3. Suppose C and C +E are two nonsingular matrices of the same
size and ||C−1E|| = θ < 1. Then ‖|(C + E)−1 − C−1|| ≤ θ

1−θ ||C−1||. In
particular, ‖|(C + E)−1 − C−1|| ≤ 0.5||C−1|| if θ ≤ 1/3.

Proof. See [24, Corollary 1.4.19] for P = −C−1E.

3 Randomized Low-Rank Approximation of a Matrix

Primal and Dual Versions of Random Sampling. In the next section we
prove Theorems 1 and 2 specifying estimates for the output errors of Algorithm1.
They imply that the algorithm is nearly optimal under each of the two random-
ization policies:

(p) primal: if nrank(M) = r and if the multiplier B is Gaussian and
(d) dual: if B is a well-conditioned n× l matrix of full rank l and if the input

matrix M is average in the class G(m,n, r) up to a small-norm perturbation.
We specify later some multipliers B, which we generate and multiply with

a matrix M at a low computational cost, but here is a caveat: we prove that
Algorithm 1 produces accurate output when it is applied to average m×n matrix
M with nrank(M) = r � n ≤ m, but (unlike the cases of its applications with
Gaussian and SRFT multipliers) does not do this for all such matrices M .

E.g., Algorithm 1 is likely to fail in the case of an n × n matrix M =
P diag(Il, On−l)P ′, two random permutation matrices P and P ′, and sparse
and structured orthogonal multiplier B = (Ol,n−l | Il)T of full rank l.

Our study of dual randomization implies, however (cf. Corollary 2), that such
“bad” pairs (B,M) are rare, that is, application of Algorithm1 with sparse and
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structured multipliers B succeeds for a typical input M , that is, for almost any
input with only a narrow class of exceptions.

Managing Rare Failures of Algorithm 1. If the relative residual norm Δ of
the output of Algorithm1 is large, we can re-apply the algorithm, successively
or concurrently, for a fixed set of various sparse or structured multipliers B or of
their linear combinations. We can also define multipliers as the leftmost blocks
of some linear combinations of the products and powers (including inverses) of
some sparse or structured square matrices. Alternatively we can re-apply the
algorithm with a multiplier chosen at random from a fixed reasonably narrow
class of such sparse and structured multipliers (see some samples below).

If the application still fails, we can re-apply Algorithm1 with Gaussian or
SRFT universal multiplier, and this is likely to succeed. With such a policy we
would compute a low-rank approximation at significantly smaller average cost
than in the case where we apply a Gaussian or even SRFT multiplier.

Sparse Multipliers. ASPH and AH Matrices. For a large class of well-
conditioned matrices B of full rank, one can compute the product MB at a
low cost. For example, fix an integer h, 1 ≤ h ≤ n/l, define an l × n matrix
H = (Il | Il | · · · | Il | Ol,n−hl) with h blocks Il, choose a pair of random or
fixed permutation matrices P and P ′, write B = PHT P ′, and note that the
product MB can be computed by using just (h − 1)ln additions. In particular
the computation uses no flops if h = 1. The same estimates hold if we replace
the identity blocks Il with l × l diagonal matrices filled with the values ±1. If
instead we replace the blocks Il with arbitrary diagonal matrices, then we would
need up to hln additional multiplications.

In the next example, we define such multipliers by simplifying the SRHT
matrices in order to decrease the cost of their generation and multiplication by
a matrix M . Like SRHT matrices, our multipliers have nonzero entries spread
quite uniformly throughout the matrix B and concentrated in neither of its
relatively small blocks.

At first recall a customary version of SRHT matrices, H = DCP , where P
is a (random or fixed) n × n permutation matrix, n = 2k, k is integer, D is a
(random or fixed) n × n diagonal matrix, and C = Hk is an n × n core matrix
defined recursively, for d = k, as follows (cf. [M11]):

Hj =
(

Hj−1 Hj−1

Hj−1 −Hj−1

)

, j = k, k − 1, . . . , k − d + 1; Hk−d =
(

I2k−d I2k−d

I2k−d −I2k−d

)

.

By choosing small integers d (instead of d = k) and writing B = C = Hd, we
arrive at n × n Abridged Scaled Permuted Hadamard matrices. For D = P = In,
they turn into Abridged Hadamard matrices.4 Every column and every row of
such a matrix is filled with 0s, except for its 2d entries. Its generation and
multiplication by a vector are greatly simplified versus SRHT matrices.

4 Hereafter we use the acronyms ASPH and AH.
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We have defined ASPH and AH matrices of size 2h × 2h for integers h, but
we use their n × l blocks (e.g., the leading blocks) with 2k ≤ n < 2k+1 and any
positive integer l, for ASPH and AH multipliers B in Algorithm 1.

The l columns of such a multiplier have at most l2d nonzero entries. The
computation of the product MB, for an m×n matrix M , involves at most ml2d

multiplications and slightly fewer additions and subtractions. In the case of AH
multipliers (filled with ±1 and 0) no multiplications are needed.

4 Proof of Two Basic Theorems

Two Lemmas and a Basic Estimate for the Residual Norm. We use the
auxiliary results of the Appendix and the following simple ones.

Lemma 1. Suppose that H is an n × r matrix, Σ = diag(σi)n
i=1, σ1 ≥ σ2 ≥

· · · ≥ σn > 0, Σ′ = diag(σ′
i)

r
i=1, σ′

1 ≥ σ′
2 ≥ · · · ≥ σ′

r > 0. Then

σj(ΣHΣ′) ≥ σj(H)σnσ′
r for all j.

Lemma 2. (Cf. [14, Theorem 2.4.8].) For an integer r and an m × n matrix
M where m ≥ n > r > 0, set to 0 the singular values σj(M), for j > r, and let
Mr denote the resulting matrix. Then

||M − Mr|| = σr+1(M) and ||M − Mr||2F =
n∑

j=r+1

σ2
j .

Next we estimate the relative residual norm Δ of the output of Algorithm1
in terms of the norm ||(MrB)+||; then we estimate the latter norm.

Suppose that B is a Gaussian n× l matrix. Apply part (ii) of Theorem8, for
A = Mr and H = B, and deduce that rank(MrB) = r with probability 1.

Theorem 4. Estimating the relative residual norm of the output of Algorithm1
in terms of the norm ||(MrB)+||.

Suppose that B is an n × l matrix, Δ = ||M̃−M ||
||M || = ||M−Q(MB)QT (MB)M ||

||M ||
denotes the relative residual norm of the output of Algorithm1, Mr is the matrix
of Lemma 2, E′ = (M − Mr)B, and so ||E′||F ≤ ||B||F ||M − Mr||F . Then

||M − Mr||F ≤ σr+1(M)
√

n − r

and

Δ ≤ σr+1(M)
σ1(M)

+
√

8 ||(MrB)+|| ||E′||F + O(||E′||2F ).

Proof. Recall that ||M − Mr||2F =
∑n

j=n−r+1 σj(M)2 ≤ σ2
r+1(M) (n − r), and

this implies the first claim of the theorem.
Now let Mr = SrΣrT

T
r be compact SVD. Then Q(MrB)Q(MrB)T Mr = Mr.

Therefore (cf. Lemma 2)

||M − Q(MrB)Q(MrB)T M || = ||M − Mr|| = σr+1(M). (1)
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Apply [22, Corollary C.1], for A = MrB and E = E′ = (M − Mr)B, and obtain

||Q(MB)Q(MB)T − Q(MrB)Q(MrB)T || ≤
√

8||(MrB)+|| ||E′||F + O(||E′||2F ).

Combine this bound with Eq. (1) and obtain

||M−Q(MB)QT (MB)M || ≤ σr+1(M)+
√

8||M || ||(MrB)+|| ||E′||F +O(||E′||2F ).

Divide both sides of this inequality by ||M || and substitute ||M || = σ1(M).

Assessing Some Immediate Implications. By ignoring the smaller order
term O(||E′||2), deduce from Theorem 4 that

Δ ≤ σr+1(M)
σr(M)

(1 +
√

8(n − r) σr(M) ||B||F ||(MrB)+||). (2)

The norm ||B||F is likely to be reasonably bounded, for Gaussian, SRFT, SRHT,
and various other classes of sparse and structured multipliers B, and the ratio
σr+1(M)
σr(M) is presumed to be small. Furthermore σr(M) ≤ ||M ||. Hence the random

variable Δ, representing the relative residual norm of the output of Algorithm1,
is likely to be small unless the value ||(MrB)+|| is large.

For some bad pairs of matrices M and B, however, the matrix MrB is ill-
conditioned, that is, the norm ||(MrB)+|| is large, and then Theorem4 only
implies a large upper bound on the relative residual norm ||M̃ − M ||/||M ||.

If l < n, then, clearly, every matrix M belongs to such a bad pair, and so
does every matrix B as well. Our quantitative specification of Theorems 1 and 2
(which we obtain by estimating the norm ||(MrB)+||) imply, however, that the
class of such bad pairs of matrices is narrow, particularly if the oversampling
integer p = l − r is not close to 0.

Next we estimate the norm ||(MrB)+ in two ways, by randomizing either the
matrix M or the multiplier B. We call these two randomization policies primal
and dual, respectively.

(i) Primal Randomization. Let us specify bound (2), for B ∈ Gm×l. Recall
Theorem 9 and obtain ||B||F = νF,m,l ≤ νm,l

√
l, and so E(||B||F ) < (1 +√

m +
√

l)
√

l.

Next estimate the norm ||(MrB)+||.
Theorem 5. Suppose that B is an n × l Gaussian matrix. Then

||(MrB)+|| ≤ ν+
r,l/σr(M), (3)

for the random variable ν+
r,l of Theorem10.
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Proof. Let Mr = SrΣrT
T
r be compact SVD.

By applying Lemma 3, deduce that Gr,l = TT
r B is a r × l Gaussian matrix.

Hence MrB = SrΣrT
T
r B = SrΣrGr,l.

Write H = ΣrGr,l and let H = SHΣHTT
H be compact SVD where SH is a

r × r orthogonal matrix.
It follows that S = SrSH is an m × r orthogonal matrix.
Hence MrB = SΣHTT

H and (MrB)+ = TH(ΣH)+ST are compact SVDs of
the matrices MrB and (MrB)+, respectively.

Therefore ||(MrB)+|| = ||(ΣH)+|| = ||(ΣrGr,l)+|| ≤ ||G+
r,l|| ||Σ+

r ||.
Substitute ||G+

r,l|| = ν+
r,l and ||Σ+

r || = 1/σr(M) and obtain the theorem.

Substitute our estimates for the norms ||B||F and ||(MrB)+)|| into bound
(2) and obtain the following result.

Corollary 1. Relative Residual Norm of Primal Gaussian Low-Rank Approxi-
mation. Suppose that Algorithm1 has been applied to a matrix M having numer-
ical rank r and to a Gaussian multiplier B.

Then the relative residual norm, Δ = ||M̃−M ||
||M || , of the output approximation

M̃ to M is likely to be bounded from above by f σr(M)
σr+2(M) , for a factor of f having

expected value 1 + (1 +
√

m +
√

l) e
p

√
r and for e = 2.71828 . . . .

Hence Δ is likely to have optimal order σr+1(M)
σr(M) up to this factor f .

(ii) Dual Randomization. Next we extend Theorem 5 and Corollary 1 to the
case where M = UV + E is a small-norm perturbation of an m × n factor
Gaussian matrix of rank r (cf. Definition 1) and B is any n× l matrix having
full numerical rank l. At first we readily extend Theorem 4.

Theorem 6. Suppose that we are given an n×l matrix B and an m×r matrix U
such that m ≥ n > l ≥ r > 0, nrank(B) = l, and nrank(U) = r. Let M = UV +E
where V ∈ Gr×n, ||(UV )+|| = 1

σr(UV ) = 1
σr(M) , and ||E||F = σr+1(M)

√
n − r.

Write E′ = EB and M̃ = Q(MB)QT (MB)M . Then

||M̃ − M ||
||M || ≤ σr+1(M)

σ1(M)
+

√
8 ||(UV B)+|| ||E′||F + O(||E′||2F ). (4)

By extending estimate (3), the following theorem, proved in [23], bounds the
norm ||(UV B)+|| provided that U is an m × r matrix that has full rank r and
is well-conditioned.

Theorem 7. Suppose that

(i) an m × r matrix U has full numerical rank r,
(ii) V = Gr,n is a r × n Gaussian matrix, and
(iii) B is a well-conditioned n × l matrix of full rank l such that m ≥ n > l ≥ r

and ||B||F = 1.
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Then ||(UV B)+|| ≤ ||U+|| ν+
r,l ||B+|| = ||(UV )+|| ||B+||.

In particular the theorem is likely to hold where U is an m×r Gaussian matrix
because such a matrix is likely to have full rank r and to be well-conditioned,
by virtue of Theorems 8 and 10, respectively.

Now we combine and slightly expand the assumptions of Theorems 6 and 7
and then extend Corollary 1 to a small-norm perturbation M + E of a factor
Gaussian matrix M with expected rank r as follows.

Corollary 2. Relative Residual Norm of Dual Gaussian Low-Rank Approxi-
mation. Suppose that m ≥ n > l ≥ r > 0, all the assumptions of Theorem7
hold, M = UV + E, M̃ = Q(MB)QT (MB)M , ||(UV )+|| = 1

σr(UV ) = 1
σr(M) ,

||E||F = σr+1(M)
√

n − r, and E′ = EB. Then

||M̃ − M ||
||M || ≤ σr+1(M)

σr(M)
(1 + κ(B)

√
8(n − r)l ) + O(σr+1(M)2).

Proof. Note that ||E′|| ≤ ||B||F ||B||F ≤ ||B|| ||E|| √
(n − r)l, and so ||E′|| ≤

||B|| σr+1(M)
√

(n − r)l.
By combining Theorem 7 and equation ||(UV )+|| = 1

σr(M) , obtain ||(UV B)+|| ≤
||B+||/σr(M).
Substitute these bounds on the norms ||E′|| and ||(UV B)+|| into estimate (4).

Remark 1. The Power Scheme of increasing the output accuracy of Algorithm 1.
Define the Power Iterations Mi = (MT M)iM , i = 1, 2, . . . . Then σj(Mi) =
(σj(M))2i+1 for all i and j [19, equation (4.5)]. Therefore, at a reasonable compu-
tational cost, one can dramatically decrease the ratio σr+1(M)

σr(M) and thus decrease
accordingly the bounds of Corollaries 1 and 2.

5 Numerical Tests

We have tested Algorithm 1, with both AH and ASPH multipliers, applied on
one side and both sides of the matrix M , as well as with one-sided dense mul-
tipliers B = B(±1, 0) that have i.i.d. entries ±1 and 0, each value chosen with
probability 1/3. We generated the input matrices M for these tests by extend-
ing the customary recipes of [18, Sect. 28.3]: at first, we generated two matrices
SM and TM by orthogonalizing a pair of n × n Gaussian matrices, then wrote
ΣM = diag(σj)n

j=1, for σj = 1/j, j = 1, . . . , r, σj = 10−10, j = r + 1, . . . , n,
and finally computed the n × n matrices M defined by their compact SVDs,
M = SMΣMTT

M . (In this case ||M || = 1 and κ(M) = ||M || ||M−1|| = 1010).
Table 1 represents the average relative residuals norms Δ of low-rank approx-

imation of the matrices M over 1000 tests for each pair of n and r, n =
256, 512, 1024, r = 8, 32, and various multipliers B of the five classes B above.
For all classes and all pairs of n and r, average relative residual norms ranged
from 10−7 to about 10−9 in these tests.

In [23] we present similar results of our tests with matrices M involved in
the discrete representation of PDEs and data analysis.
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6 An Extension

Our acceleration of low-rank approximation implies acceleration of various
related popular matrix computations for average input matrices, and thus sta-
tistically for most of the inputs, although possibly not for all inputs of practical
interest. Next, for a simple example, we accelerate the Fast Multipole Method
for average input matrix. In [23] we further extend the resulting algorithm to
the acceleration of the Conjugate Gradient algorithms.

In order to specify the concept of “average” to the case of FMM applications,
we recall the definitions and basic results for the computations with HSS matri-
ces5, which naturally extend the class of banded matrices and their inverses,
are closely linked to FMM, and have been intensively studied for decades (cf.
[1,3,5,10,13,15,26–33], and the bibliography therein).

Definition 2. (Cf. [21].) A neutered block of a block diagonal matrix is the
union of a pair of its off-block-diagonal blocks sharing their column sets.

Definition 3. (Cf. [1,5,15,30–32].)
An m × n matrix M is called a r-HSS matrix, for a positive integer r, if

(i) this is a block diagonal matrix whose diagonal blocks consist of O((m+n)r)
entries and

(ii) r is the maximum rank of its neutered blocks.

Remark 2. Many authors work with (l, u)-HSS rather than r-HSS matrices M
where l and u are the maximum ranks of the sub- and super-block-diagonal
blocks, respectively. The (l, u)-HSS and r-HSS matrices are closely related.
Indeed, if a neutered block N is the union of a sub-block-diagonal block B−
and a super-block-diagonal block B+, then rank(N) ≤ rank(B−) + rank(B+),
and so an (l, u)-HSS matrix is a p-HSS matrix, for p ≤ l + u, while clearly a
r-HSS matrix is a (q, s)-HSS matrix, for q ≤ r and s ≤ r.

Table 1. Low-rank approximation: residual norms with AH, ASPH, and B(±1, 0)
multipliers.

n r Pre- and Post-multiplication Pre-multiplication only

AH ASPH AH ASPH B(±1, 0)

256 8 8.43e-09 4.89e-08 2.25e-08 2.70e-08 2.52e-08

256 32 3.53e-09 5.47e-08 5.95e-08 1.47e-07 3.19e-08

512 8 7.96e-09 3.16e-09 4.80e-08 2.22e-07 4.76e-08

512 32 1.75e-08 7.39e-09 6.22e-08 8.91e-08 6.39e-08

1024 8 6.60e-09 3.92e-09 5.65e-08 2.86e-08 1.25e-08

1024 32 7.50e-09 5.54e-09 1.94e-07 5.33e-08 4.72e-08

5 We use the acronym for “hierarchically semiseparable”.
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The FMM enables us to exploit the r-HSS structure of a matrix as follows
(cf. [1,10,28]).

(i) At first we should cover all its off-block-diagonal entries with a set of
neutered blocks that pairwise have no overlaps and then

(ii) express every h × k block N of this set as the product N = FGT of two
generator matrices, F of size h × r and G of size r × k. Call such a pair of
F and G a length r generator of the neutered block N .

(iii) Suppose that, for an r-HSS matrix M of size m × n having s diagonal
blocks, such an HSS representation via generators of length at most r has
been computed. Then we can readily multiply the matrix M by a vector by
using O((m + n)r log(s)) flops and

(iv) in a more advanced application of FMM we can solve a nonsingular r-HSS
linear system of n equations by using O(nr log3(n)) flops under some mild
additional assumptions on the input.

This approach is readily extended to (r, ε)-HSS matrices, that is, matrices
approximated by r-HSS matrices within perturbation norm ε where a positive
tolerance ε is small in context (e.g., is the unit round-off). Likewise, one defines
an (r, ε)-HSS representation and (r, ε)-generators. (r, ε)-HSS matrices (for r small
in context) appear routinely in modern computations, and computations with
such matrices are performed efficiently by using the above techniques.

The computation of (r, ε)-generators for a (r, ε)-HSS representation of a (r, ε)-
HSS matrix M (that is, for low-rank approximation of the blocks in that repre-
sentation) turned out to be the bottleneck stage of such applications of FMM.

Indeed, suppose one applies random sampling Algorithm1 at this stage. Mul-
tiplication of a k × k block by k × r Gaussian matrix requires (2k − 1)kr flops,
while standard HSS-representation of an n×n HSS matrix includes k ×k blocks
for k ≈ n/2. Therefore the cost of computing such a representation of the matrix
M is at least quadratic in n and thus dramatically exceeds the above estimate
of O(rn log(s)) flops at the other stages of the computations if r � n.

Alternative customary techniques for low-rank approximation rely on com-
puting SVD or rank-revealing factorization of an input matrix and are at least
as costly as the computations by means of random sampling.

Can we fix such a mishap? Yes, by virtue of Corollary 2, we can perform this
stage at the dominated randomized arithmetic cost O((k + l)r) in the case of
average (r, ε)-HSS input matrix of size k × l, if we just apply Algorithm1 with
AH, ASPH, or other sparse multipliers.

By saying “average”, we mean that Corollary 2 can be applied to low-rank
approximation of all the off-block diagonal blocks in a (r, ε)-HSS representation
of a (r, ε)-HSS matrix.
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Appendix

A Gaussian Matrices

Theorem 8. Assume a nonsingular n × n matrix A and an n × n matrix H
whose entries are linear combinations of finitely many i.i.d. Gaussian variables.

Let det((AH)l,l) vanish identically in them for neither of the integers l,
l = 1, . . . , n. Then the matrices (AH)l,l, for l = 1, . . . , n, are nonsingular with
probability 1.

Proof. The theorem follows because the equation det((AH)l,l) for any integer l
in the range from 1 to n defines an algebraic variety of a lower dimension in the
linear space of the input variables (cf. [2, Proposition 1]).

Lemma 3. (Rotational invariance of a Gaussian matrix.) Suppose that k, m,
and n are three positive integers, G is an m × n Gaussian matrix, and S and T
are k × m and n × k orthogonal matrices, respectively.

Then SG and GT are Gaussian matrices.

We keep stating all results and estimates for real matrices, but estimates
similar to the ones of the next theorems in the case of complex matrices can be
found in [4,6,9], and [11].

Write νm,n = ||G||, ν+
m,n = ||G+||, and ν+

m,n,F = ||G+||F , for a Gaussian
m × n matrix G, and write E(v) for the expected value of a random variable v.

Theorem 9. (Cf. [8, Theorem II.7].) Suppose that m and n are positive inte-
gers, h = max{m,n}, t ≥ 0. Then

(i) Probability{νm,n > t +
√

m +
√

n} ≤ exp(−t2/2) and
(ii) E(ν+

m,n) < 1 +
√

m +
√

n.

Theorem 10. Let Γ (x) =
∫ ∞
0

exp(−t)tx−1dt denote the Gamma function and
let x > 0. Then

(i) Probability {ν+
m,n ≥ m/x2} < xm−n+1

Γ (m−n+2) for m ≥ n ≥ 2,
(ii) Probability {ν+

n,n ≥ x} ≤ 2.35
√

n/x for n ≥ 2,
(iii) E((ν+

F,m,n)2) = m/|m − n − 1|, provided that |m − n| > 1, and
(iv) E(ν+

m,n) ≤ e
√

m/|m − n|, provided that m 	= n and e = 2.71828 . . . .

Proof. See [4, Proof of Lemma 4.1] for part (i), [25, Theorem 3.3] for part (ii),
and [19, Proposition 10.2] for parts (iii) and (iv).

Theorem 10 provides probabilistic upper bounds on ν+
m,n. They are reason-

able already for square matrices, for which m = n, but become much stronger
as the difference |m − n| grows large.

Theorems 9 and 10 combined imply that an m × n Gaussian matrix is well-
conditioned unless the integer m + n is large or the integer m − n is close to 0
and that such a matrix can still be considered well-conditioned (possibly with
some grain of salt) if the integer m is not large and if the integer |m−n| is small
or even vanishes. These properties are immediately extended to all submatrices
because they are also Gaussian.
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Abstract. This paper considers several representations of the analytic
functions on the unit disk and their mutual translations. All translations
that are not already computable are shown to be Weihrauch equivalent
to closed choice on the natural numbers. Subsequently some similar con-
siderations are carried out for representations of polynomials. In this case
in addition to closed choice the Weihrauch degree LPO∗ shows up as the
difficulty of finding the degree or the zeros.

Keywords: Computable analysis · Analytic function · Weihrauch
reduction · Polynomials · Closed choice · LPO*

1 Introduction

In order to make sense of computability questions in analysis, the spaces of
objects involved have to be equipped with representations: A representation
determines the kind of information that is provided (or has to be provided)
when computing on these objects. When restricting from a more general to more
restrictive setting, there are two options: Either to merely restrict the scope to
the special objects and retain the representation, or to actually introduce a new
representation containing more information.

As a first example of this, consider the closed subsets of [0, 1]2 and the closed
convex subsets of [0, 1]2 (following [8]). The former are represented by an enu-
meration of open balls exhausting their complement. The latter are represented
as the intersection of a decreasing sequence of rational polygons. Thus, prima
facie the notion of closed set which happens to be convex and convex closed set
are different. In this case it turns out they are computably equivalent after all
(the proof, however, uses the compactness of [0, 1]2).

This paper focuses on a different example of the same phenomenon: The dif-
ference between an analytic function and a continuous function that happens to
be analytic. It is known that these actually are different notions. Sections 3.1 and
3.2 quantify how different they are using the framework of Weihrauch reducibil-
ity. As a further example Sects. 3.3 and 3.4 consider continuous functions that
c© Springer International Publishing Switzerland 2016
A.S. Kulikov and G.J. Woeginger (Eds.): CSR 2016, LNCS 9691, pp. 367–381, 2016.
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happen to be polynomials versus analytic functions that happen to be polynomi-
als versus polynomials. All translations turn out to be either computable, or
Weihrauch equivalent to one of the two well-studied principles CN and LPO∗.
The results are summarized in Fig. 3 on Page 377 and Fig. 5 on Page 379.

The additional information one needs about an analytic function over a con-
tinuous function can be expressed by a single natural number – the same holds
for the other examples studied. Thus, this can be considered as an instance of
computation with discrete advice as introduced in [20]. That finding this number
is Weihrauch equivalent to CN essentially means that while the number can be
chosen to be verifiable (i.e. wrong values can be detected eventually), this is the
only computationally relevant restriction on how complicated the relationship
between object and associated number can be.

Before ending this introduction, we shall briefly mention two alternative per-
spectives on the phenomenon: Firstly, recall that in intuitionistic logic a negative
translated statement behaves like a classical one, and that double negations gen-
erally do not cancel. In this setting the difference boils down to considering either
analytic functions or continuous functions that are not analytic. Secondly, from
a topological perspective, Weihrauch equivalence of a translation to CN implies
that the topologies induced by the representations differ. Indeed, the suitable
topology on the space of analytic functions is not just the subspace topology
inherited from the space of continuous functions but in fact obtained as a direct
limit.

A version of this paper containing all the proofs can be found on the
arXiv [17].

2 Background

This section provides a very brief introduction to the required concepts from
computable analysis, Weihrauch reducibility, and then in more detailed intro-
duction of the representations of analytic functions that are considered. For a
more in depth introduction into computable analysis and further information,
the reader is pointed to the standard textbook in computable analysis [19], and
to [14]. Also, [18] should be mentioned as an excellent source, even though the
approach differs considerably from the one taken here. The research programme
of Weihrauch reducibility was formulated in [2], a more up-to-date introduction
to Weihrauch reducibility can be found in the introduction of [3].

2.1 Represented Spaces

Recall that a represented space X = (X, δX) is given by a set X and a partial
surjection δX :⊆ N

N → X from Baire space onto it. The elements of δ−1
X (x)

should be understood as encodings of x and are called the X-names of x. Since
Baire space inherits a topology, each represented space can be equipped with
a topology: The final topology of the chosen representation. We usually refrain
from mentioning the representation of a represented space in the same way as
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the topology of a topological space is usually not mentioned. For instance the
set of natural numbers is regarded as a represented space with the representa-
tion δN(p) := p(0). Therefore, from now on denote by N not only the set or the
topological space, but the represented space of natural numbers. If the set
that is to be represented already inherits a topology, we always choose the rep-
resentation such that it fits the topology. This can be checked easily for the case
N above, where the final topology of the representation is the discrete topology.

If X is a represented space and Y is a subset of X, then Y can be turned into
a represented space by considering the range restriction of the representation of
X on it. We denote the represented space arising in this way by X|Y . Note that
here only set inclusion is considered. The set Y may be a subset of many different
represented spaces and the restrictions need not coincide. They often turn out
to be inappropriate. We use the same notation X|Y if Y is a represented space
already. In this case, however, no information about the representation of Y is
carried over to X|Y.

The remainder of this section introduces the represented spaces that are
needed for the content of the paper.

Sets of Natural Numbers. Let O(N) resp. A(N) denote the represented
spaces of open resp. closed subsets of N. The underlying set of both O(N)
and A(N) is the power set of N. The representation of O(N) is defined by

δO(N)(p) = O ⇔ O = {p(n) − 1 | p(n) > 0}.

That is: A name of an open set is an enumeration of that set, however, to include
the empty set, the enumeration is allowed to not return an element of the set in
each step. The closed sets A(N) are represented as complements of open sets:

δA(N)(p) = A ⇔ δO(N)(p) = Ac.

Normed Spaces, R, C, C(D). Given a triple M = (M,d, (xn)n∈N) such that
(M,d) is a separable metric space and xn is a dense sequence, M can be turned
into a represented space by equipping it with the representation

δM(p) = x ⇔ ∀n ∈ N : d(x, xp(n)) < 2−n.

In this way R, R
d, C (where the dense sequences are standard enumerations

of the rational elements) and C([0, 1]), C(D) (where D is a compact subset of
R

d and the dense sequences are standard enumerations of the polynomials with
rational coefficients) can be turned into represented spaces.

Sequences in a Represented Space. For a represented space X there is a
canonical way to turn the set of sequences in X into a represented space XN:
Let 〈·, ·〉 : N×N → N be a standard paring function (i.e. bijective, recursive with
recursive projections). Define a function 〈·〉 :

(
N

N
)N → N

N by

〈(pk)k∈N〉(〈m,n〉) := pm(n).
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For a represented space X define a representation of the set XN of the sequences
in the set X underlying X by

δXN(〈(pk)k∈N〉) = (xk)k∈N ⇔ ∀m ∈ N : δX(pm) = xm.

In particular the spaces RN and C
N of real and complex sequences are considered

represented spaces in this way. Also C(D)N briefly shows up in Sect. 3.2.

2.2 Weihrauch Reducibility

Recall that a multivalued function f from X to Y (or X to Y) is an assignment
that assigns to each element x of its domain a set f(x) of acceptable return
values. Multivaluedness of a function is indicated by f : X ⇒ Y. The domain of
a multivalued function is the set of elements such that the image is not empty.
Furthermore, recall that we write f :⊆ X → Y if the function f is allowed to be
partial, that is if its domain can be a proper subset of X.

Definition 1. A partial function F :⊆ N
N → N

N is a realizer of a multivalued
function f :⊆ X ⇒ Y if δY(F (p)) ∈ f(δX(p)) for all p ∈ δ−1

X (dom(f)) (compare
Fig. 1).

Fig. 1. Realizer.

A function between represented spaces is called com-
putable if it has a computable realizer, where computabil-
ity on Baire space is defined via oracle Turing machines (as
in e.g. [6]) or via Type-2 Turing machines (as in e.g. [19]).
The computable Weierstraß approximation theorem can
be interpreted to state that an element of C([0, 1]) is com-
putable if and only if it has a computable realizer as func-
tion on the represented space R.

Every multivalued function f :⊆ X ⇒ Y corresponds
to a computational task. Namely: ‘given information about
x and the additional assumption x ∈ dom(f) find suitable information about
some y ∈ f(x)’. What information about x resp. f(x) is provided resp. asked
for is reflected in the choice of the representations for X and Y. The following
example of this is very relevant for the content of this paper:

Definition 2. Let closed choice on the integers be the multivalued function
CN :⊆ A(N) ⇒ N defined on nonempty sets by

y ∈ CN(A) ⇔ y ∈ A.

The corresponding task is ‘given an enumeration of the complement of a set
of natural numbers and provided that it is not empty, return an element of the
set’. CN does not permit a computable realizer: Whenever a machine decides
that the name of the element of the set should begin with n, it has only read a
finite beginning segment of the enumeration. The next value might as well be n.

From the point of view of multi-valued functions as computational tasks, it
makes sense to compare their difficulty by comparing the corresponding multival-
ued functions. This paper uses Weihrauch reductions as a formalization of such a
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comparison. Weihrauch reductions define a rather fine pre-order on multivalued
functions between represented spaces.

Definition 3. Let f and g be partial, multivalued functions between represented
spaces. Say that f is Weihrauch reducible to g, in symbols f ≤W g, if there
are computable functions K :⊆ N

N × N
N → N

N and H :⊆ N
N → N

N such
that whenever G is a realizer of g, the function F := (p 
→ K(p,G(H(p)))) is a
realizer for f .

Fig. 2. Weihrauch reduc-
tion.

H is called the pre-processor and K the post-
processor of the Weihrauch reduction. This defin-
ition and the nomenclature is illustrated in Fig. 2.
The relation ≤W is reflexive and transitive. We use
≡W to denote that reductions in both directions
exist and <W the other reduction does not exist.
The equivalence class of a multivalued function with
respect to the equivalence relation ≡W is called the
Weihrauch degree of the function. A Weihrauch
degree is called non-computable if it contains no
computable function.

The Weihrauch degree corresponding to CN has
received significant attention (see for instance [1–
3,10–13]). In particular, as shown in [15], a function
between computable Polish spaces is Weihrauch
reducible to CN if and only if it is piecewise com-
putable or equivalently is effectively Δ0

2-measurable.
For the purposes of this paper, the following rep-

resentatives of this degree are also relevant:

Lemma 1 [16]. The following are Weihrauch equivalent:

– CN, that is closed choice on the natural numbers.
– max :⊆ O(N) → N defined on the bounded sets in the obvious way.
– Bound :⊆ O(N) ⇒ N, where n ∈ Bound(U) iff ∀m ∈ U : n ≥ m.

In the later chapters of this paper another non-computable Weihrauch degree
is encountered: LPO∗. Here, LPO is short for ‘limited principle of omniscience’.
We refrain from stating LPO∗ explicitly as it would need more machinery than
we introduced. Instead we characterize it by specifying the representative that
is used in the proofs: Consider the function

minB : NN → N, p 
→ min{p(n) | n ∈ N}.

Here, the index B is for Baire space and to distinguish the function from the
integer minimum function used on the right hand side of the definition.
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Proposition 1. minB is a representative of the Weihrauch degree LPO∗.

LPO∗ is also called the Weihrauch degree of finitely many mind changes: To
obtain the minimum of an element of Baire space you may guess that it is the
smallest value assumed on arguments up to n, and you will only be wrong a
finite number of times.

To give a little more intuition as to why this Weihrauch degree shows up in
this paper, note the following: LPO∗ is derived from the maybe simplest non-
computable Weihrauch degree LPO : NN → {0, 1} defined via

LPO(p) :=

{
1 if p is the zero function, i.e. ∀n : p(n) = 0.
0 otherwise.

In computable analysis LPO shows up as the Weihrauch degree of the equality
test for real (or complex) numbers =: R×R. Now, LPO∗ corresponds to carrying
out a fixed finite but arbitrary high number of equality tests on the real or
complex numbers. It is known that LPO <W LPO∗ <W CN.

2.3 Representations of Analytic Functions

Recall that a function is analytic if it is locally given by a power series:

Definition 4. Let D ⊆ C be a set. A function f : D → C is called analytic, if
for every x0 ∈ D there is a neighborhood U of x0 and a sequence (ak)k∈N ∈ C

N

such that for each x ∈ U ∩ D

f(x) =
∑

k∈N

akxk.

The set of analytic functions is denoted by Cω(D). Each analytic function is
continuous, that is Cω(D) ⊆ C(D). If D is open, the analytic functions on D are
smooth, i.e. infinitely often differentiable. An analytic function can be analyti-
cally extended to an open superset of its domain.

Definition 5. A pair (x, (ak)k∈N) is called germ of f ∈ Cω(D) if x is an ele-
ment of D and (ak)k∈N ∈ C

N is a series expansion of f around x.

As long as the domain is connected, an analytic function is uniquely determined
by each of its germs. The one to one correspondence of germs and analytic func-
tions only partially carries over to the computability and complexity realm: It is
well known that an analytic function on the unit disk is computable if and only
if the germ around any computable point of the domain is computable [5]. How-
ever, the proofs of these statements are inherently non-uniform. The operations
of obtaining a germ from a function and a function from a germ are discontinu-
ous and therefore not computable [9]. This paper classifies them to be Weihrauch
equivalent to closed choice on the naturals in Theorems 3 and 4.

There is a more suitable representation for the analytic functions than the
restriction of the representation of continuous functions. This representation has
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been investigated by different authors for instance in [4,7,9]. For simplicity we
restrict to the case of analytic functions on the unit disk. Thus, let D denote the
closed unit disk from now on. And let Um denote the open ball Brm

(0) of radius
rm := 2

1
m+1 around zero. Recall from the introduction that the space C(D)

of continuous functions is represented as a metric space (where C is identified
with R

2).

Definition 6. Let Cω(D) denote the represented space of analytic func-
tions on D, where the representation is defined as follows: A q ∈ N

N is a name
of an analytic function f on D, if and only if f extends analytically to the clo-
sure of Uq(0), the extension is bounded by q(0) and n 
→ q(n + 1) is a name of
f ∈ C(D).

Note that the representation of Cω(D) arises from the restriction of the rep-
resentation of continuous functions by adding discrete additional information.
This information is quantified by the advice function AdvCω :⊆ C(D) → N

whose domain are the analytic functions and that on those is defined by

AdvCω (f) := {q(0) | q is a Cω(D)-name of f)}
= {m ∈ N | f has an analytic cont. to Um bounded by m}.

(1)

This function turns up in the results of this paper. In the terminology of [4], one
would say that Cω(D) arises from the restriction C(D)|Cω(D) by enriching with
the discrete advice AdvCω .

The topology induced by the representation of Cω(D) is well known and used
in analysis: It can be constructed as a direct limit topology and makes Cω(D) a
so called Silva-Space. For more information on this topology and its relation to
computability and complexity theory also compare [7].

Consider the set of germs around zero, i.e. of power series with radius of
convergence strictly larger than 1. Since the base point 0 is fixed, it is often
omitted and the germ identified with a sequence. This set may be represented
as follows:

Definition 7. Let O denote the represented space of germs around zero, where
the representation is defined as follows: A q ∈ N

N is a name of a germ
(0, (ak)k∈N), if and only if

∀k ∈ N : |ak| ≤ 2− k
q(0)+1 q(0)

and n 
→ q(n + 1) is a name of the sequence (ak)k∈N as element of CN.

As above, this representation is related to the restriction of the representation
of CN by means of the advice function AdvO :⊆ C

N ⇒ N whose domain are the
sequences with radius of convergence strictly larger than one and that is defined
on those by

AdvO((ak)k∈N) := {q(0) | q is a O-name of (ak)k∈N}
= {n ∈ N | ∀k ∈ N : |ak| ≤ 2− k

n+1 · n} (2)
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Again, the topology induced by this representation is well known and used in
analysis: It is the standard choice of a topology on the set of germs and can be
introduced as a direct limit topology.

Proofs that the following holds can be found in [4] or [9]:

Theorem 1 (Computability of Summation). The assignment

O → Cω(D), (ak)k∈N 
→
(

x 
→
∑

k

akxk

)

is computable.

A proof of the following can be found in [4]:

Theorem 2. Differentiation is computable as mapping from Cω(D) to Cω(D).

3 The Results

We open this chapter with an addition to Lemma1. Given p ∈ N
N denote the

support of this function by supp(p) := {n ∈ N | p(n) > 0}. Furthermore, for a
set A denote the number of elements of that set by #A.

Lemma 2. The function Count :⊆ N
N → N, defined via

dom(Count) = {p ∈ N
N | supp(p) is finite} Count(p) = #supp(p)

is Weihrauch equivalent to CN, that is: Closed choice on the naturals.

3.1 Summing Power Series

In Sect. 2.3 it was mentioned that the operation of summing a power series is not
computable on C

N. Recall that AdvO was the advice function of the representa-
tion of the represented space O of germs around zero of analytic functions on the
unit disk. The computational task corresponding to this multivalued function is
to find from a sequence that is guaranteed to have radius of convergence bigger
than one a constant witnessing the exponential decay of the absolute value of the
coefficients (compare Eq. 2 on page 373). Theorem 1 states that summation is
computable on O. Therefore, the advice function AdvO cannot be computable.
The following theorem classifies the difficulty of summing power series and AdvO
in the sense of Weihrauch reductions.

Theorem 3. The following are Weihrauch-equivalent:

– CN, that is: Closed choice on the naturals.
– Sum, that is: The partial mapping from C

N to C(D) defined on the sequences
with radius of convergence strictly larger than one by

Sum((ak)k∈N)(x) :=
∑

k∈N

akxk.

I.e. summing a power series.
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– AdvO, that is: The function from Eq. (2) on page 373. I.e. obtaining the
constant from the series.

Proof (Ideas). Build a Weihrauch reduction circle:

CN ≤W Sum: Lemma 2 permits to replace CN by Count. Let the pre-processor
assign to p ∈ N

N the sequence

ak :=

{
1 if p(k) > 0
0 if p(k) = 0

.

For the post-processor use a realizer of the evaluation in 1.
Sum ≤W AdvO: Follows from Theorem 1.
AdvO ≤W CN: Let the pre-processor be the function that maps a given name p

of (ak)k∈N ∈ C
ω to an A(N)-name of the set AdvO((ak)k∈N). Note that an

enumeration of the complement of this set can be extracted from p as follows:
For all k and m ∈ N dovetail the test |ak| > 2− k

m+1 m. If it holds for some k,
return m as an element of the complement. Applying closed choice to this set
will give result in a valid return value.

3.2 Differentiating Analytic Functions

In Sect. 2.3 it was remarked that it is not possible to compute the germ of an
analytic function just from a name as continuous function. The proof that this
is in general impossible from [9], however, argues about analytic functions on
an interval. The first lemma of this chapter proves that for analytic functions
on the unit disk it is possible to compute a germ if its base point is well inside
of the domain. We only consider the case where the base point is zero, but the
proof works whenever a lower bound on the distance of the base point to the
boundary of the disk is known.

Lemma 3. Germ, that is: The partial mapping from C(D) to C
N defined on

analytic functions by mapping them to their series expansion around zero, is
computable.

Proof (Sketch). Use the Cauchy integral Formula.

The next theorem is very similar to Theorem 3. Both the advice function
AdvCω and computing a germ around a boundary point are shown to be
Weihrauch equivalent to CN. Note that the coefficients of the series expansion
(ak)k∈N of an analytic function f around a point x0 are related to the derivatives
f (k) of the function via k!ak = f (k)(x0). Therefore, computing a series expansion
around a point is equivalent to computing all the derivatives in that point.

Theorem 4. The following are Weihrauch equivalent:

– CN, that is closed choice on the naturals.
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– Diff, that is the partial mapping from C(D) to C defined on analytic func-
tions by

Diff(f) := f ′(1).

I.e. evaluating the derivative of an analytic function in 1.
– AdvCω , that is the function from Eq. (1). I.e. obtaining the constant from the

function.

Proof (Outline). By building a circle of Weihrauch reductions:

CN ≤W Diff: Use Lemma 2 and show Count ≤W Diff instead. For the preproces-
sor fix a computable sequence of analytic functions fn : D → C such that
f ′

n(1) = 1 and |fn(x)| < 2−n for all x ∈ D (compare Fig. 4). For p ∈ N
N

consider the function

f(x) :=
∑

n∈supp(p)

fn(x).

Note that applying Diff to the function f results in

Diff(f) = f ′(1) =
∑

n∈supp(p)

f ′
n(1) = #supp(p).

Therefore, the post-processor K(p, q) := q results in a Weihrauch reduction.
Diff ≤W AdvCω : Use Theorem 2.
AdvCω ≤W CN: Theorem 3 proved that AdvO ≡W CN.

Let the pre-processor be a realizer of the function Germ from Lemma 3.
Applying AdvO will return a constant n for the sequence. Set m := 4(n+1)2,
then for |x| ≤ 2

1
m+1 ≤ 2

1
2(n+1)

∣
∣
∣
∣
∣

∑

k∈N

akxk

∣
∣
∣
∣
∣
≤

∑

k∈N

2− k
2(n+1) n =

1

1 − 2− 1
2(n+1)

n ≤ 4(n + 1)2 = m.

Therefore, the sum can be evaluated to an analytic function bounded by m
on B

2
1

m+1
(0) and m is a valid value for the post-processor.

Recall from the introduction that C(D)|Cω(D) resp. CN|O denote the repre-
sented spaces obtained by restricting the representation of C(D) resp. C

N to
Cω(D), resp. O. Theorems 1, 3 and 4 and Lemma 3 are illustrated in Fig. 3.

3.3 Polynomials as Finite Sequences

Consider the set C[X] of polynomials with complex coefficients in one variable
X. There are several straightforward ways to represent polynomials. The first
one that comes to mind is to represent a polynomial by a finite list of complex
numbers. One can either demand the length of the list to equal the degree of the
polynomial or just to be big enough to contain all of the non-zero coefficients.
The first option fails to make operations like addition of polynomials computable.
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Fig. 3. The results of Theorems 1, 3 and 4 and Lemma 3.

Definition 8. Let C[X] denote the represented space of polynomials, where
p ∈ N

N is a C[X]-name of P if p(0) ≥ deg(P ) and n 
→ p(n+1) is a C
p(0)-name

of the first p(0) coefficients of P .

Fig. 4. fn(x) := (x− xn)−2n+1

for appropriate xn (Color figure
online).

Let Cm[X] denote the set of monic polyno-
mials over C, i.e. the polynomials with leading
coefficient equal to one. Make Cm[X] a repre-
sented space by restricting the representation of
C[X]. Monic polynomials are important because
it is possible to compute their roots – albeit in an
unordered way. To formalize this define a repre-
sentation of the disjoint union C

× :=
∐

n∈N C
n

as follows: A p ∈ N
N is a name of x ∈ C

× if
and only if x ∈ C

p(0) and n 
→ p(n + 1) is a
C

p(0) name of x. Note that the construction of
the representation of C[X] is very similar. The only difference being that vectors
with leading zeros are not identified with shorter vectors.

Now, the task of finding the zeros in an unordered way can be formalized by
computing the multivalued function that maps a polynomial to the set of lists
of its zeros, each appearing according to its multiplicities:

Zeros : C[X] ⇒ C
×, P 
→

⎧
⎨

⎩
(a1, . . . , adeg(P )) | ∃λ : P = λ

deg(P )∏

k=1

(X − ak)

⎫
⎬

⎭
(3)

The importance of Cm[X] is reflected in the following well known lemma:

Lemma 4. Restricted to Cm[X] the mapping Zeros is computable.

The main difficulty in computing the zeros of an arbitrary polynomial is to
find its degree. A polynomial of known degree can be converted to a monic poly-
nomial with the same zeros by scaling. On C[X] consider the following functions:
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– deg: The function assigning to a polynomial its degree.
– Dbnd: The multivalued function where an integer is a valid return value if

and only if it is an upper bound of the degree of the polynomial.

Dbnd is computable by definition of the representation of C[X]. The mapping
deg, in contrast, is not computable on the polynomials, however, the proof of
Lemma 4 includes a proof of the following:

Lemma 5. On Cm[X] the degree mapping is computable.

The next result classifies finding the degree, turning a polynomial into a monic
polynomial and finding the zeros to be Weihrauch equivalent to LPO∗.

Proposition 2. The following are Weihrauch-equivalent to LPO∗:

– deg, that is the mapping from C[X] to N defined in the obvious way.
– Monic, that is the mapping from C[X] to Cm[X] defined on the non-zero

polynomials by

P =
deg(P )∑

k=0

akXk 
→
deg(P )∑

k=0

ak

adeg(P )
Xk.

– Zeros :⊆ C[X] ⇒ C
×, mapping a non-zero polynomial to the set of its zeros,

each appearing according to its multiplicity (compare Eq. (3)).

3.4 Polynomials as Functions

As polynomials induce analytic functions on the unit disk, the representations
of Cω(D) and C(D) can be restricted to the polynomials. The represented spaces
that result from this are Cω(D)|C[X], resp. C(D)|C[X]. Here, the choice of the
unit disk D as domain seems arbitrary: A polynomial defines a continuous resp.
analytic function on the whole space. The following proposition can easily be
checked to hold whenever the domain contains an open neighborhood of zero
and, since translations are computable with respect to all the representations we
consider, if it contains any open set.

Denote the versions of the degree resp. degree bound functions that
take continuous resp. analytic functions by degC(D),DbndC(D) resp. degCω(D),
DbndCω(D). When polynomials are regarded as functions, resp. analytic func-
tions, these maps become harder to compute.

Theorem 5. The following are Weihrauch-equivalent:

– CN, that is: Closed choice on the naturals.
– DbndCω(D), that is: Given an analytic function which is a polynomial, find

an upper bound of its degree.
– degCω(D): Given an analytic function which is a polynomial, find its degree.
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Fig. 5. The result of Lemma 4, Proposition 1 and Theorems 5 and 6.

Proof. CN ≤W DbndCω(D): Use Lemma 1 and reduce to Bound instead. For an
enumeration p of a bounded set consider P (X) :=

∑
2−max{n,p(n)}Xp(n). A

Cω(D)-name of the function f corresponding to P can be computed from p.
Let the pre-processor H be a realizer of this assignment. Set K(p, q) := q.

DbndCω(D) ≤W degCω(D): Is trivial.
degCω(D) ≤W CN: By Lemma 1 replace CN with max. Let p be a Cω(D)-

name of the function corresponding to some polynomial P . Use Lemma 3
to extract a C

N-name q of the series of coefficients. Define the pre-processor
by H(p)(〈m,n〉) := n+1 if the dyadic number encoded by q(〈m,n〉) is bigger
than 2−m and 0 otherwise. Set K(p, q) := q.

From the proof of the previous theorem it can be seen, that stepping down
from analytic to continuous functions is not an issue. For sake of completeness we
add a slight tightening of the third item of Theorem4 and state this as theorem:

Theorem 6. The following are Weihrauch-equivalent to CN:

– degC(D): Given a continuous function which is a polynomial, find its degree.
– DbndC(D): Given an analytic function which is a polynomial, find an upper

bound of its degree.
– AdvCω |C[X]: Given a continuous function which happens to be a polynomial,

find the constant needed to represent it as analytic function.

DbndCω(D) may be regarded as the advice function of C[X] over Cω(D):
The representation where p is a name of a polynomial P if and only if p(0) =
DbndCω(D) and n 
→ p(n+1) is a Cω(D)-name of P is computationally equivalent
to the representation of C[X]. The same way, DbndC(D) can be considered an
advice function of C[X] over C(D).

Figure 5 illustrates Lemma 4, Proposition 1 and Theorems 5 and 6.

4 Conclusion

Many of the results proved in Sect. 3 work for more general domains: Lemma3
generalizes to any computable point of the interior of an arbitrary domain. It
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can be made a uniform statement by including the base point of a germ. In this
case for the proof to go through computability of the distance function of the
complement of the domain of the analytic function is needed.

Another example is the part of Theorem 4 that says finding a germ on the
boundary is difficult. In this case a disc of finite radius touching the boundary
in a computable point is needed. Alternatively, a simply connected bounded
Lipshitz domain with a computable point in the boundary can be used. Also in
this case it seems reasonable to assume that a uniform statement can be proven.

Furthermore, after considering polynomials and analytic functions [7] also
investigates representations for the set of distributions with compact support.
In the same vain as in this paper one could compare these representation and
the representation of distributions as functions on the spaces of test functions.
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Abstract. Two fundamental results of classical automata theory are
the Kleene theorem and the Büchi-Elgot-Trakhtenbrot theorem. Kleene’s
theorem states that a language of finite words is definable by a regular
expression iff it is accepted by a finite state automaton. Büchi-Elgot-
Trakhtenbrot’s theorem states that a language of finite words is accepted
by a finite-state automaton iff it is definable in the weak monadic second-
order logic. Hence, the weak monadic logic and regular expressions are
expressively equivalent over finite words. We generalize this to words
over arbitrary linear orders.

1 Definitions and Result

A linear ordering (L,<) is a non-empty set L equipped with a total order. A
subset I of a linear order (L,<) is convex, if for all x < y < z with x, z ∈ I also
y ∈ I. We use “interval”as a synonym for “convex subset.”

A linear order (A,<) is Dedekind complete if every non-empty subset (of the
domain) which has an upper bound has a least upper bound. For example, finite
orders, the naturals and reals are Dedekind complete, while the order of the
rationals is not.

In this paper a cut of a linearly ordered set (A,<) is a downward closed set
C ⊆ A. A cut C is non-trivial if it is not empty and is a proper subset of A.
If (A,<) is Dedekind complete and C is its nontrivial cut, then there is a ∈ A
such that C := {c ∈ A | c ≤ a} or C := {c ∈ A | c < a}.

1.1 Extended Regular Expression

We use a generalized notion of a word, which coincides with the notion of a
labeled linear ordering. Given a finite alphabet Σ, a word over Σ or Σ-labeled
chain is a linear order (L,<) equipped with a function lab from L into Σ. A
language over Σ is a class of words over Σ. Whenever Σ is clear from the
context or unimportant we will use “word” for “word over Σ” and “language”
for “language over Σ.”

The concatenation (the lexicographical sum) of two words w1 = (L1, <1, lab1)
and w2 = (L2, <2, lab2) over the same alphabet (up to renaming, assume that
L1 and L2 are disjoint) is a word (L1 ∪ L2, <, lab), where (1) lab coincides with
lab1 on L1, with lab2 on L2, and (2) < coincides with <1 on L1, with <2 on L2,
c© Springer International Publishing Switzerland 2016
A.S. Kulikov and G.J. Woeginger (Eds.): CSR 2016, LNCS 9691, pp. 382–393, 2016.
DOI: 10.1007/978-3-319-34171-2 27
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and if a ∈ L1 and b ∈ L2 then a < b. The concatenation of words w1 and w2 is
denoted1 by w1 + w2.

For languages C1 and C2, their concatenation is defined as {w1 + w2 | w1 ∈
C1 and w2 ∈ C2} and is denoted by C1;C2.

The Kleene iteration or the positive concatenation closure of a language C
is denoted by C+ and is defined as ∪∞

k=1{w1 + w2 + · · · + wk | wi ∈ C}.
Extended regular expressions over an alphabet Σ are defined by the following

grammar: E := ∅ | σ | E ∪ E | E;E | E+ | ¬E , where σ ∈ Σ. The semantics
assigns to such an expression a language over Σ, as follows: (1) The empty lan-
guage is assigned to ∅. (2) A language consisting of one element order labeled by
σ is assigned to σ. (3) ∪ is interpreted as the union and ¬ as the complementa-
tion with respect to the class of all words over Σ. (4) E1;E2 is the concatenation
of the languages assigned to E1 and E2, and (5) E+ is the positive concatenation
closure of the language assigned to E.

A regular expression is an extended regular expression without negation. Note
that the semantics assigns to a regular expression only a set of finite words. Usu-
ally, in classical automata theory the complementation is taken only with respect
to the set of finite words. Clearly, under such finite-words interpretation of com-
plementation only languages of finite words are defined by extended regular
expressions.

We conclude this section with examples which illustrate the expressive power
of extended regular expressions.

All expressions below are over unary alphabet {1}; a word over a unary
alphabet can be identified with the underlying linear order.

– All := ¬∅ - defines the class of all linear orders.
– Max := 1 ∪ All; 1 - defines the linear orders with a maximal element.
– Min := 1 ∪ 1;All - defines the linear orders with a minimal element.
– Dense:= ¬(Max;Min) - defines the dense linear orders.
– Dedekind:=1 ∪ ¬((¬Max); (¬Min)) - defines the Dedekind complete linear

orders.
– Dense+ - defines the orders which can be partitioned in a finite set of dense

intervals; equivalently the linear order with a finite set of a successor elements
where a is a successor if there is b < a such that no element exists between b
and a.

1.2 Fragments of MSO

The Monadic second-order logic (MSO) is an extension of first-order logic that
allows to quantify over elements as well as over subsets of the domain of the
structure.

The structures considered in this paper are expansions of nonempty lin-
ear orderings (A,<A) by subsets PA

1 , . . . , PA
l . When no confusion arises we

1 In algebraic framework to formal languages the concatenation of w1 and w2 is called
“the product” and is denoted by w1 · w2.
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cancel the superscript A, use the abbreviating notation P for the set tuple
(PA

1 , . . . , PA
l ), and write (A,P ).

Such a structure is called l-chain. It can be regarded as a labeled ordering
(or generalized word) with labels in {0, 1}l: the element a ∈ A has the label
(b1, . . . , bl) defined by bi := 1 iff a ∈ Pi. When P1, . . . , Pl partitions the domain
of a linear ordering (A,<A), such a structure can be regarded as a word with
labels in {1, . . . , l}: the element a ∈ A is labeled by i iff a ∈ Pi.

The standard language of MSO for structures of this signature is built up as
follows, using the relation symbols < and P1, . . . Pm. We have first-order variables
x, y, . . . for elements of structures, monadic second order variables X,Y . . . for
sets of elements of structures, and the atomic formulas are of the form x = y, x <
y, Pi(x), and Y (x), with the canonical interpretation. Formulas are constructed
from atomic formulas by the Boolean connectives, and by applying the first-order
quantifier ∃x “there is an element x” to first-order variables, and the monadic
second-order quantifier ∃X - “there is a set X” to monadic variables.

The Weak Monadic Second-Order logic is an extension of first-order logic
that allows to quantify over elements as well as over finite subsets of the domain
of the structure. So, it has the first-order quantifiers, and the quantifier ∃finX -
“there is a finite set X”. We denote this logic by MSO[∃fin].

The logic we are going to consider is denoted by MSO[∃fin,∃cut] and it extends
the weak monadic logic by the quantifier over cuts: ∃cutX - “there is a cut X.”

A language (or a class of chains) definable by a formula ϕ is the class of all
chains that satisfy ϕ.

Note that over Dedekind complete chains MSO[∃fin] is expressively equiv-
alent to MSO[∃fin,∃cut]. Both MSO[∃fin] and MSO[∃fin,∃cut] are equivalent to
MSO over the class of finite words. McNaughton’s theorem [10] implies that
an ω-language is definable in MSO iff it is accepted by a deterministic Muller
automaton. For a deterministic automaton “the run on an ω-word is accepting”
can be formalized in MSO[∃fin]. Hence, MSO[∃fin], MSO[∃fin,∃cut] and MSO are
expressively equivalent on the class of ω-words.

1.3 Result

Kleene [7] introduced regular expressions and proved that a language is definable
by a regular expression iff it is accepted by a finite state automaton, and that the
transformations from expressions to automata and vice versa are computable.
The Büchi-Elgot-Trakhtenbrot theorem states that finite-state automata and
the Weak Monadic Second-Order Logic (interpreted over finite words) have the
same expressive power, and that the transformations from formulas to automata
and vice versa are computable [1,4,17]. Hence, the classical theorem is:

Theorem 1.1 (Kleene, Büchi, Elgot, Trakhtenbrot). The following are
equivalent for languages of finite words:

1. A language is definable by a regular expression.
2. A language is accepted by a finite state automaton.
3. A language is definable in MSO[∃fin].



On Expressive Power of Regular Expressions over Infinite Orders 385

We generalize the equivalence between (1) and (3) of this classical result to
arbitrary words, as follows:

Theorem 1.2 (Main). A language of labelled orderings is definable by an
extended regular expression iff it is definable in MSO[∃fin,∃cut].

Hence, extended regular expressions and MSO[∃fin,∃cut] have the same expres-
sive power over the class of all words. The transformations from formulas to
extended regular expressions and vice versa are computable and can be easily
extracted from the proof.

The paper is organized as follows. The next section provides a logical back-
ground and summarizes elements of the composition method. In Sect. 3 we prove
that every MSO[∃fin,∃cut] formula is equivalent to an extended regular expres-
sion. In Sect. 4 we prove that every extended regular expression is equivalent to
a MSO[∃fin,∃cut] formula. Section 5 presents a conclusion and further results.

2 Logical Background

2.1 A Variant of MSO[∃fin, ∃cut]

It will be convenient to work with a slightly modified (but expressively equiv-
alent) set-up, in which the first-order variables are canceled. We allow only
monadic second-order variables and take as atomic formulas of MSO[∃fin,∃cut]
the following: Empty(X), X ⊆ Y , Sing(X), X < Y , All(X), Finite(X) and
Cut(X). These are interpreted, respectively, as “X is empty,” “X is a subset of
Y ,” “X contains one element,” “X contains one element and Y contains one
element and the element of X is smaller than the element of Y ,” “X is the
universe,” “X is finite,” and “X is a cut.”

Formulas are constructed from atomic formulas by the Boolean connectives,
and by the quantifiers ∃fin and ∃cut.

The use of the unary relation symbols Pi will be avoided by taking free set
variables Xi instead. Thus, we shall use labeled chains (A,<,P ) as interpreta-
tions of monadic formulas ϕ(X).

The quantifier rank of a formula ϕ, denoted qr(ϕ), is the maximum depth of
nesting of quantifiers in ϕ. For r, l ∈ N we denote by Formr

l the set of formulas
of quantifier rank ≤ r and with free variables among X1, . . . , Xl.

2.2 Elements of the Composition Method

Our proofs use a technique known as the composition method [9,14]. To fix
notations and to aid the reader unfamiliar with this technique, we briefly review
those definitions and results that we require. A more detailed presentation can
be found in [16] or in [5].
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2.2.1 Hintikka Formulas and r-types
Definition 2.1 Let r, l ∈ N and A,B l-chains. The r-theory of A is

Thr(A) := {ϕ ∈ Formr
l | M |= ϕ}.

If Thr(A) = Thr(B), we say that A and B are r-equivalent and write A ≡r B.

Clearly, ≡r is an equivalence relation. For any r, l ∈ N, the set Formr
l is infinite.

However, it contains only finitely many semantically distinct formulas. So, there
are finitely many ≡r-classes of l-chains. In fact, we can compute “representa-
tives” for these classes:

Lemma 2.2 (Hintikka Lemma). For r, l ∈ N, we can compute a finite set
Hr

l ⊆ Formr
l such that:

(a) For distinct τ, τ ′ ∈ Hr
l , τ ∧ τ ′ is not satisfiable.

(b) If τ ∈ Hr
l and ϕ ∈ Formr

l , then either τ |= ϕ or τ |= ¬ϕ. Furthermore,
there is an algorithm that, given such τ and ϕ, decides which of these two
possibilities holds.

(c) For every l-structure A, there is a unique τ ∈ Hr
l such that A |= τ .

Any member of Hr
l we call an (r, l)-Hintikka formula2 or a formal (r, l)-type.

Definition 2.3 (r-type). For r, l ∈ N and A an l-chain, we denote by Tpr(A)
the unique member of Hr

l satisfied by A and call it the r-type of A.

Thus, Tpr(A) determines Thr(A) and, indeed, Thr(A) is computable from
Tpr(A).

Lemma 2.4 (Projection). For r, l ∈ N, there is an operation Prr
l

from Hr
l into Hr

l−1 such that if Tpr
l (A,<, PA

1 , · · · , PA
l−1, P

A
l ) = τ , then

Tpr
l−1(A,<, PA

1 , · · · , PA
l−1) = Prr

l (τ).

2.2.2 The Lexicographical Sum of Chains and of r-types
Let A := (A,<A, PA

1 , . . . , PA
l ) and B := (B,<B, , PB

1 , . . . , PB
l ) be l-chains with

disjoint domains. The lexicographical sum (or concatenation) of A and B is
denoted A+B and is defined as the l-chain (A ∪ B,<, PA

1 ∪ PB
1 , . . . , PA

l ∪ PB
l )

where a < b if a ∈ A and b ∈ B or a, b ∈ A and a <A b or a, b ∈ B and a <B b.
As usual, we do not distinguish between isomorphic structures. So, if the

domains of A and B are not disjoint, replace them with isomorphic l-chains that
have disjoint domains, and proceed as before.

It is clear that the sum of chains is associative. We will use the notation
A1 + A2 + · · · + Ak for the sum of k chains.

The next Lemma says that ≡r is a congruence with respect to the sum.

Lemma 2.5 The r-types of l-chains A, B determine the r-type of A + B.
2 Hintikka formulas made their first appearance in [6], in the framework of first-order

logic.



On Expressive Power of Regular Expressions over Infinite Orders 387

The Lemma justifies the notation τ1+τ2 for the r-type of an l-chain which is the
sum of two l-chains of r-types τ1 and τ2, respectively. The composition theorem
states that + can be extended to a (uniformly) computable operation on the
formal types.

Theorem 2.6 (Composition Theorem). For r, l ∈ N, there is an associative
operation + : Hr

l × Hr
l → Hr

l such that for every l-chains A, B if Tpr(A) = τ1
and Tpr(B) = τ2 then Tpr(A + B) = τ1 + τ2. Furthermore, the sum of (r, l)-
formal types is (uniformly) computable.

The reader may wonder why we do not say: “τ1 + τ2 is the unique element of
Hr

l such that . . . ”. The reason is that by Hintikka’s construction [6] there are in
Hr

l formulas that are not satisfied in any structure.

3 From Logic to Expressions

In this section we prove that for every formula ϕ in MSO[∃fin,∃cut] there is an
equivalent extended regular expression Eϕ.

We proceed by induction on the quantifier rank of formulas.
For a quantifier free formula the corresponding equivalent expression is easily

constructed.
If ϕ1 is equivalent to Eϕi

for i = 1, 2, then ϕ1∨ϕ2 is equivalent to Eϕ1 ∪Eϕ1 ,
and ¬ϕ1 is equivalent to ¬Eϕ1

The only interesting case is for quantifiers:

3.1 Translation for ∃cut Quantifier

Assume that the inductive assumption holds for r. In particular, for every Hin-
tikka formula τ of quantifier rank r there is an equivalent expression Eτ .

Let ϕ(X1, · · · ,Xl) be a formula and assume that qr(ϕ) = r.
∃cutXlϕ is equivalent to a disjunction of

1. ϕ0 := ∃cutXlEmpty(Xl) ∧ ϕ
2. ϕ1 := ∃cutXlAll(Xl) ∧ ϕ
3. ϕ2 := ∃cutXl¬Empty(Xl) ∧ ¬All(Xl) ∧ ϕ

Let S0 ⊆ Hr
l−1 be defined as {Prr

l (τ1) | τ1 ∈ Hr
l and τ1 |= ϕ∧Empty(Xl)}, where

Prr
l was defined in Lemma 2.4. Then A |= ϕ0 iff Tpr

l−1(A) ∈ S0. Therefore, ϕ0 is
equivalent to ∪τ∈S0Eτ (where Eτ are defined by the inductive assumption). For
ϕ1 an equivalent expression Eϕ1 is defined in a similar way as Eϕ1 := ∪τ∈S1Eτ ,
where S1 := {Prr

l (τ1) | τ1 ∈ Hr
l and τ1 |= ϕ ∧ All(Xl)}.

In order to translate ϕ2 into an equivalent expression we will use the com-
position theorem and an observation that every non-empty proper downward
closed subset P of the domain of A induces a representation of A as the sum
A1+A2 where A1 (respectively, A2) is the substructure of A over P (respectively,
the complement of P ).

Set ψ2 := ¬Empty(Xl) ∧ ¬All(Xl) ∧ Cut(Xl) ∧ ϕ. Hence, ϕ2 := ∃cutXlψ2.
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Claim 1. Let B be an l-chain. B |= ψ2 iff there are τ1, τ2 ∈ Hr
l and B1 and

B2 such that

1. B = B1 + B2 and τi = Tpr(B1) for i = 1, 2.
2. τ1 + τ2 |= ψ2.
3. τ1 |= All(Xl) and τ2 |= Empty(Xl).

Proof. ⇐ is immediate.
⇒ Take as B1 (respectively, B2) the substructure of B over Pl (respectively,

over the complement of Pl), and as τi the r-type of Bi. ��
Let S be the set of pairs 〈τ1, τ2〉 of Hr

l formulas, which satisfy conditions (2) and
(3) of Claim 1.

Define ̂S ⊆ Hr
l−1 × Hr

l−1 as ̂S := {〈Prr
l (τ1),Prr

l (τ2)〉 | 〈τ1, τ2〉 ∈ S}, where
Prr

l was defined in Lemma 2.4. Thus we obtain:

Claim 2. A |= ϕ2 if and only if there are A1 and A2 such that A = A1 + A2

and 〈Tpr(A1),Tpr(A2)〉 ∈ ̂S.

By the inductive assumption each formula of quantifier rank r is equivalent to
an expression. In particular, each Hintikka formula τ of quantifier rank r is
equivalent to an expression Eτ . Finally, Claim 2 implies that ϕ2 is equivalent to
∪〈τ1,τ2〉∈̂SEτ1 ;Eτ2 .

3.2 Translation for ∃fin Quantifier

In order to translate ∃finXlϕ into an equivalent expression we will use the com-
position theorem and an observation that every finite subset of the domain of A
induces a natural representation of A as a finite sum of its subchains.

Claim 3. B |= ϕ ∧ Finite(Xl) iff there is a sequence τ1, . . . , τk of Hr
l formulas

and a sequence B1 . . . ,Bk of l-chains such that

1. B = B1 + B2 + · · · + Bk and τi = Tpr(Bi) for i = 1, . . . , k.
2. τ1 + τ2 + · · · + τk |= ϕ and
3. if τi |= ¬Empty(Xl) then τi |= Sing(Xl) ∧ All(Xl), i.e., τi holds only on

singleton chains.

Proof. ⇐ is immediate.
⇒ Assume B |= ϕ∧Finite(Xl). Hence, Pl is finite. Define an equivalence ∼ as

follows: a1 ∼ a2 iff either a1 = a2 ∈ Pl or there is no element of Pl in the interval
[min(a1, a2),max(a1, a2)]. It is clear that ∼ is an equivalence relation. It has
finitely many equivalence classes, and each ∼ equivalence class is an interval of
the domain of B. Let I1 < · · · < Ik be the ∼-equivalence classes. For j = 1, . . . , k,
define Bj as the substructure of B over Ij and τj := Tpr(Bj). It is clear that
Bj and τj satisfy the requirements of the claim. ��
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Let S be the set of finite sequences of Hr
l formulas, which satisfy conditions (2)

and (3) of Claim 3.
Define a set ̂S of finite sequences of Hr

l−1 formulas as ̂S :=
{〈Prr

l (τ1), . . . , P rr
l (τk)〉 | 〈τ1, . . . , τk〉 ∈ S}. Therefore, Claim 3 implies:

Claim 4. A |= ∃finXlϕ iff there is a sequence 〈τ1, . . . , τk〉 ∈ ̂S and a sequence
A1 . . . ,Ak of (l − 1)-chains such that A = A1 + A2 + · · · + Ak and τi = Tpr(Ai)
for i = 1, . . . , k.

Claim 5. There is a regular expression E which defines ̂S.

Proof. We will construct a finite state automaton A which accepts ̂S. The set
QA of its states is QA := {qi} ∪ Hr

l , where qi �∈ Hr
l is a fresh state.

qi is the initial state of A. The set Acc of accepting states is defined as
Acc := {τ ∈ Hr

l | τ |= ϕ ∧ Finite(Xl)}.
For every τ ∈ Hr

l−1 define two sets D(τ), F (τ) ⊆ Hr
l as D(τ) := {τ ′ ∈ Hr

l |
τ ′ |= τ ∧ Empty(Xl)} and F (τ) := {τ ′ ∈ Hr

l | τ ′ |= τ ∧ All(Xl) ∧ Sing(Xl)}.
The transition relation →A⊆ QA × Hr

l−1 × QA is defined as follows:

1. 〈qi, τ, τ
′〉 ∈→A iff τ ′ ∈ D(τ) ∪ F (τ).

2. 〈τ1, τ, τ2〉 ∈→A iff there is τ ′ ∈ D(τ) ∪ F (τ) such that τ2 = τ1 + τ ′.

It is straightforward to check that A accepts ̂S. Therefore, by Theorem 1.1, ̂S is
definable by a regular expression. ��

By the inductive assumption each formula of quantifier rank r is equivalent
to an expression. In particular, each Hintikka formula τ of quantifier rank r is
equivalent to an expression Eτ .

Finally, let Eϕ be obtained from a regular (complementation free) expression
E of Claim 5, by replacing each letter τ ∈ Hr

l−1 with an equivalent extended
regular expression Eτ . Claims 4 and 5 imply that ϕ is equivalent to Eϕ.

4 From Expressions to Logic

We are going to prove that for every expression E over an alphabet Σ there is
an equivalent MSO[∃fin,∃cut] formula ϕ.

We proceed by the structural induction on expressions.
It is straightforward to write a formula for ∅ and for a letter σ ∈ Σ.
If Ei are equivalent to ϕi for i = 1, 2, then E1 ∪ E2 is equivalent to ϕ1 ∨ ϕ2

and ¬E1 is equivalent to ¬ϕ1.
Below we will treat concatenation and iteration.
First, let us introduce notations and state a standard “relativization” lemma

which will be used several times.

Notation 4.1. Let l ∈ N, A := (A,<, P1, . . . , Pl) an l-chain and D a non-
empty subset of A. The restriction of A to D is the l-chain A�D defined as
A�D := (D,<,P1 ∩ D, . . . , Pl ∩ D).
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Lemma 4.2. (Relativization). Let ϕ(Y ) be a formula, U a variable not
appearing in ϕ. There is a formula ϕ�U (Ȳ , U) such that for every chain (A,<,P )
and every non-empty D ⊆ A,

(A,<,P ,D) |= ϕ�U (Y ,U) iff (A,<,P )�D |= ϕ(Y ).

When this is the case, we say that ϕ holds in (A,<,P ) relativized to D.

4.1 Concatenation

Assume ϕi is equivalent to Ei for i = 1, 2.
Then E1;E2 is equivalent to ∃cutXϕ where ϕ is the conjunction of the

following:

1. X is a non-empty proper downward closed subset of the domain of A.
2. ϕ1 holds in A relativized to X.
3. ϕ2 holds in A relativized to the complement of X.

(1)–(3) are easily formalized in MSO[∃fin,∃cut]. Moreover, if ϕ1 and ϕ2 are
MSO[∃cut] formulas, then (1)–(3) are easily formalized in MSO[∃cut].

4.2 Kleene Iteration

Assume that E is equivalent to ϕ.
Recall that A is in E+ iff there is k > 0 and a partition of the domain of

A into intervals I1, . . . , Ik such that A�Ij are in E. In the case when all Ij are
intervals with endpoints in A this can be easily formalized. However, A is not
necessarily Dedekind complete, and not all intervals have end-points in A. To
overcome this problem we use the following Lemma:

Lemma 4.3. Let ϕ(X) be a formula. Then there are formulas ψi
≤(X) and

ψi
≥(X) (i = 0, . . . , m) such that for every A, element a ∈ A, and intervals

I≤a := {b ∈ A | b ≤ a} and I≥a := {b ∈ A | b ≥ a}:

A |= ϕ iff there is i such that A�I≤a |= ψi
≤ and A�I≥a

|= ψi
≥

The Lemma is easily obtained from Lemma 2.5 (one can take as ψi
≤(X), ψi

≥(X)
formulas of quantifier rank smaller than qr(ϕ) + 3).

The Lemma implies that “A is in E+” can be rephrased as:

there is a partition of the domain of A into intervals I1, . . . , Ik and there
are aj ∈ Ij and a function F : {1, . . . , k} into {0, . . . , m} such that for
every j ∈ {1, . . . , k} and s := F (j)
1. the substructure of A over the interval {b ∈ Ij | b ≥ aj} satisfies ψs

≥
2. the substructure of A over the interval {b ∈ Ij | b ≤ aj} satisfies ψs

≤
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The above is equivalent to

there is a non-empty finite subset P of the domain of A and a function
F : P → {0, . . . , m} such that
1. if a is the maximal element of P and s = F (a) then the substructure

of A over the interval {b | b ≥ a} satisfies ψs
≥

2. if a is the minimal element of P and s = F (a) then the substructure
of A over the interval {b | b ≤ a} satisfies ψs

≤, and
3. If a < c are successive elements of P and s = F (a) and p = F (c), then

there is a downward closed set D such that
(a) a ∈ D, c �∈ D
(b) the substructure of A over the interval {b ∈ D | b ≥ a} satisfies ψs

≥
(c) the substructure of A over the interval {b �∈ D | b ≤ c} satisfies ψp

≤

Observe that F cannot be represented by a single monadic predicate. However,
since F is a mapping from a finite set P to a set of size m + 1 (m is defined
in Lemma 4.3 depens on ϕ, but is independent of P ), it can be represented
by a tuple of finite sets and the conditions (1)–(3) can be easily formalized in
MSO[∃fin,∃cut].

5 Conclusion

The classical automata theory establishes equivalence (over finite words) between
three fundamental formalisms: the monadic second-order logic, regular expres-
sions and finite state automata. The cornerstones of automata theory on infinite
objects are Büchi’s and Rabin’s theorems. The Büchi theorem states that MSO
and finite automata are equivalent over ω-words [2] and the Rabin theorem states
that MSO and finite automata are equivalent over labeled binary trees [12].

MSO and its fragment have a natural interpretation over arbitrary (even
partial) orders. Regular expressions have a natural interpretation over arbitrary
linear orders. We proved expressive equivalence (over arbitrary words) between
the extended regular expressions and MSO[∃fin,∃cut]. It seems that there is no
natural notion of automata which has the same expressive power as the above
formalisms. Usually, automata correspond to logical formulas of a fixed quantifier
alternation depth. However, Thomas Colcombet pointed out that the quantifier
alternation hierarchy does not collapse for MSO[∃fin,∃cut].

Below we comment about some extensions of our results.

5.1 Words over Linear Orders of a Bounded Cardinality

Let ℵ be an infinite cardinal. A linear order (L,<) is an ℵ<-order if the car-
dinality of L is less than ℵ. Given a finite alphabet Σ, an ℵ<-word over Σ or
Σ-labeled ℵ<-chain is an ℵ<-linear order (L,<) equipped with a function lab
from L into Σ. A ℵ<-language over Σ is a set of ℵ<-words over Σ. Whenever Σ
is clear from the context or unimportant we will use “ℵ<-word” for “ℵ<-word
over Σ” and “ℵ<-language” for “ℵ<-language over Σ.”
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For an extended regular expression E over Σ the ℵ<-semantics assigns an
ℵ<-language over Σ. The ℵ<-semantics is defined exactly like the semantics
of extended regular expressions in Sect. 1.1 with the only exception that com-
plementation is taken with respect to the set of ℵ<-word over Σ. Namely, the
ℵ<-semantics is defined as follows: (1) The empty language is assigned to ∅. (2)
A language consisting of one element order labeled by σ is assigned to σ. (3) ∪ is
interpreted as the union and ¬ as the complementation with respect to the set of
all ℵ<-words over Σ. (4) E1;E2 is the concatenation of the languages assigned to
E1 and E2. (5) E+ is the positive concatenation closure of the language assigned
to E.
Note

(1) For the first infinite cardinal ℵ0, the ℵ<
0 -semantics assigns to an extended

regular expression the same language (of finite words) as the classical seman-
tics does.

(2) If C is the class of words assigned to E by the semantics defined in Sect. 1.1,
then ℵ<-semantics assigns to E the set of all ℵ<-words in C.

We say that a language C is ℵ<-definable by an expression E if ℵ<-semantics
assigns C to E. We say that an ℵ<-language is definable by an MSO formula ϕ
iff it is the set of all ℵ<-words that satisfy ϕ.

Our main theorem and (2) imply the following Theorem:

Theorem 5.1. Let ℵ be an infinite cardinal. An ℵ<-language is definable by an
extended regular expression iff it is definable by an MSO[∃fin,∃cut] formula.

From our proof it is also easy to extract that a language of labelled Dedekind
complete orderings is definable by an extended regular expression iff it is defin-
able by an MSO[∃fin] formula.

5.2 Star-Free Expressions

McNaughton and Papert introduced star-free regular expressions. These are
extended regular expressions without the Kleene iteration. Namely, given an
alphabet Σ, the star-free expressions over Σ are built up from ∅ and the let-
ters in Σ by union, concatenation and complementation. A famous theorem of
McNaughton and Papert [11] states that a language of finite words is definable
by a star-free expression if and only if it is definable in first-order logic. This
theorem was extended to ω-languages in Ladner [8] and Thomas [15], and to
languages over the real order by Rabinovich [13]. The following generalization
to Dedekind complete orders was proved in [13]:

Theorem 5.2. A language of labelled Dedekind complete orderings is definable
by a star-free regular expression iff it is definable by a first-order formula.

Our proof of Theorem 1.2 can be easily modified to show that:

Theorem 5.3. A language of labelled orderings is definable by a star-free regular
expression iff it is definable by an MSO[∃cut] formula.
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Abstract. In the classic problem of sequence prediction, a predictor
receives a sequence of values from an emitter and tries to guess the next
value before it appears. The predictor masters the emitter if there is
a point after which all of the predictor’s guesses are correct. In this
paper we consider the case in which the predictor is an automaton
and the emitted values are drawn from a finite set; i.e., the emitted
sequence is an infinite word. We examine the predictive capabilities of
finite automata, pushdown automata, stack automata (a generalization
of pushdown automata), and multihead finite automata. We relate our
predicting automata to purely periodic words, ultimately periodic words,
and multilinear words, describing novel prediction algorithms for mas-
tering these sequences.

1 Introduction

One motivation for studying prediction of infinite words comes from its position
as a kind of underlying “simplest case” of other prediction tasks. For example,
take the problem of designing an intelligent agent, a purposeful autonomous
entity able to explore and interact with its environment. At each moment, it
receives data from its sensors, which it stores in its memory. We would like the
agent to analyze the data it is receiving, so that it can make predictions about
future data and carry out actions in the world on the basis of those predictions.
That is, we would like the agent to discover the laws of nature governing its
environment.

Without any constraints on the problem, this is a formidable task. The data
being received by the agent might be present in multiple channels, correspond-
ing to sight, hearing, touch, and other senses, and in each channel the data
given at each instant could have a complex structure, e.g. a visual field or tactile
array. The data source could be nondeterministic or probabilistic, and further-
more could be sensitive to actions taken by the agent, leading to a feedback
loop between the agent and its environment. The laws governing the environ-
ment could be mathematical in nature or arise from intensive computational
processing.

Due to space constraints, some proofs are only sketched. The full version is available
at http://arxiv.org/abs/1603.02597.
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A natural approach to tackling such a complex problem is to start with the eas-
iest case. How, then, can we simplify the above scenario? First, say that instead
of receiving data through multiple channels, the agent has only a single channel
of data. And say that instead of the data having a complex structure like a visual
field, it simply consists of a succession of symbols, and that the set of possible
symbols is finite. Say that the data source is completely deterministic, and more-
over that the data is not sensitive to the actions or predictions of the agent, but
is simply output one symbol at a time without depending on any input.

Under these simplifying assumptions, the problem we are left with is that
of predicting an infinite word. That is, the agent’s environment now consists of
some infinite word, which it is the agent’s task to predict on the basis of the
symbols it has seen so far. We hope that by exploring and making progress in
this simple setting, we can develop techniques which may help with the more
general prediction problems encountered in the original scenario.

1.1 Our Contributions

In this paper, we consider the case in which the predictor in the above setting is
an automaton. In our model, a predicting automaton M takes as input an infinite
word α and produces as output an infinite word M(α), with the restriction that
for each i ≥ 1, M must output the ith symbol of M(α) before it can read beyond
the i − 1th symbol of α. If there is an n ≥ 1 such that for every i ≥ n, the ith
symbol of M(α) equals the ith symbol of α, then we say that M masters α.

We consider three classes of infinite words. The first are the purely periodic
words, those of the form xxx · · · for some string x. Next are the ultimately
periodic words, those of the form xyyy · · · for strings x, y. Finally we consider
the multilinear words [21], which consist of an initial string followed by strings
that repeat in a way governed by linear polynomials, for example abaabaaab · · · .

All of the automata we consider are deterministic automata with a one-way
input tape. We first examine DFAs (deterministic finite automata), showing
that no DFA predictor masters every purely periodic word. We then consider
DPDAs (deterministic pushdown automata), showing that no DPDA predictor
masters every purely periodic word. We next turn to DSAs (deterministic stack
automata). Stack automata are a generalization of pushdown automata whose
stack head, in addition to pushing and popping when at the top of the stack,
can move up and down the stack in read-only mode [10]. We show that there is
a DSA predictor which masters every purely periodic word, and we provide an
algorithm by which it can do so.

Next, we consider multi-DFAs (multihead deterministic finite automata),
finite automata with one or more input heads [13]. We show that there is a multi-
DFA predictor which masters every ultimately periodic word, and we provide an
algorithm by which it can do so. Finally, we consider sensing multi-DFAs, mul-
tihead DFAs extended with the ability to sense, for each pair of heads, whether
those two heads are at the same position on the input tape [14]. We show that
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Table 1. Prediction of classes of infinite words. A checkmark means that there is a
predictor in that row which masters every infinite word in that column. A cross means
that this is not the case.

∃ masters−−−−−−−−−−−→ ∀ purely periodic ultimately periodic multilinear

DFA × × ×
DPDA × × ×
DSA � ? ?

multi-DFA � � ?

sensing multi-DFA � � �

there is a sensing multi-DFA predictor which masters every multilinear word,
and we provide an algorithm by which it can do so. Our results are depicted in
Table 1.

1.2 Related Work

A classic survey of inductive inference, including the problem of sequence predic-
tion, can be found in [2]. The concept of “mastering” an infinite word is a form
of “learning in the limit”, a concept which originates with the seminal paper
of Gold [11], where it is applied to language learnability. Turing machines are
considered as sequence extrapolators in [4]. An early work on prediction of peri-
odic sequences is [20], where these sequences appear in the setting of two-player
emission-prediction games. Inference of ultimately periodic sequences is treated
in [15] in an “offline” setting, where the input is a finite string and the output is a
description of an ultimately periodic sequence. An algorithm is presented which
computes the shortest possible description of an ultimately periodic sequence
when given a long enough prefix of that sequence, and can be implemented
in time and space linear in the size of the input, using techniques from string
matching. The algorithm works by finding the LRS (longest repeated suffix) of
the input and predicting the symbol which followed that suffix on its previous
occurrence.

In [18], finite-state automata are considered as predicting machines and the
question of which sequences appear “random” to these machines is answered. A
binary sequence is said to appear random to a predicting machine if no more than
half of the predictions made of the sequence’s terms by that machine are correct.
Further work on this concept appears in [5]. In [9] the finite-state predictability of
an infinite sequence is defined as the minimum fraction of prediction errors that
can be made by an finite-state predictor, and it is proved that finite-state pre-
dictability can be obtained by an efficient prediction procedure using techniques
from data compression. In [3] a random prediction method for binary sequences
is given which ensures that the proportion of correct predictions approaches the
frequency of the more common symbol (0 or 1) in the sequence. In [16], “inverse
problems” for D0L systems are discussed (in the title and throughout the paper,
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the term “finite automata” refers to morphisms). These problems ask, given a
word, to find a morphism and initial string which generate that word (bounds
are assumed on the size of the morphism and initial string). An approach is given
for solving this problem by trying different string lengths for the righthand side
of the morphism until a combination is found which is compatible with the
input. A genetic algorithm is described to search the space of word lengths. In
[6], an evolutionary algorithm is used to search for the finite-state machine with
the highest prediction ratio for a given purely periodic word, in the space of
all automata with a fixed number of states. In [7], the problem of successfully
predicting a single 0 in an infinite binary word being revealed sequentially to the
predictor is considered; only one prediction may be made, but at a time of the
predictor’s choosing. Learning of languages consisting of infinite words has also
been studied; see [1] for recent work.

An early and influential approach to predicting infinite sequences is that of
program-size complexity [22]. Unfortunately this model is incomputable, and in
[17] it is shown furthermore that some sequences can only be predicted by very
complex predictors which cannot be discovered mathematically due to prob-
lems of Gödel incompleteness. [17] concludes that “perhaps the only reasonable
solution would be to add additional restrictions to both the algorithms which
generate the sequences to be predicted, and to the predictors.” This suggestion
is akin to the approach followed in the present paper, where the automata and
infinite words considered are of various restricted classes. Following on from [17],
in [12] the formalism of sequence prediction is extended to a competition between
two agents, which is shown to be a computational resources arms race.

1.3 Outline of Paper

The rest of the paper is organized as follows. Section 2 gives definitions for infinite
words and predicting automata. Section 3 studies prediction of purely periodic
and ultimately periodic words. Section 4 studies prediction of multilinear words.
Section 5 gives our conclusions.

2 Preliminaries

2.1 Words

Where X is a set, we denote the cardinality of X by |X|. For a list or tuple v,
v[i] denotes the ith element of v; indexing starts at 1. An alphabet A is a finite
set of symbols. A word is a concatenation of symbols from A. We denote the set
of finite words by A∗ and the set of infinite words by Aω. We call finite words
strings and infinite words streams or ω-words. The length of x is denoted
by |x|. We denote the empty string by λ. A language is a subset of A∗. A
(symbolic) sequence S is an element of A∗ ∪ Aω. A prefix of S is a string x
such that S = xS′ for some sequence S′. The ith symbol of S is denoted by
S[i]; indexing starts at 1. For a non-empty string x, xω denotes the infinite word
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xxx · · · . Such a word is called purely periodic. An infinite word of the form
xyω, where x and y are strings and y �= λ, is called ultimately periodic. An
infinite word is multilinear if it has the form

q
∏

n≥0

ra1n+b1
1 ra2n+b2

2 · · · ramn+bm
m ,

where
∏

denotes concatenation, q is a string, m is a positive integer, and for each
1 ≤ i ≤ m, ri is a non-empty string and ai and bi are nonnegative integers such
that ai + bi > 0. For example,

∏
n≥0

an+1b = abaabaaab · · · is a multilinear word.

The class of multilinear words appears in [21] and also in [8] (as the reducts of the
“prime” stream Π). Clearly the multilinear words properly include the ultimately
periodic words. Any multilinear word which is not ultimately periodic we call
properly multilinear.

2.2 Predictors

We now define predictors based on various types of automata. (See [23] for results
on the original automata, which are language recognizers rather than predictors.)
Each predictor M takes as input an infinite word α and produces as output an
infinite word M(α), with the restriction that for each i ≥ 1, M must output the
ith symbol of M(α) before it can read beyond the i − 1th symbol of α. We call
M(α)[i] M ’s guess about position i of α. If M(α)[i] = α[i] then we say that the
guess is correct; otherwise we say that it is incorrect. If there is an n ≥ 1 such
that for every i ≥ n, M(α)[i] = α[i], then we say that M masters α. (If M
outputs only a finite number of symbols when given α, then we say that M(α)
is undefined and M does not master α.)

DFA Predictors. A DFA predictor is a tuple M = (Q,A, T, �, qs), where Q
is the set of states, A is the input alphabet, � is the start-of-input marker, qs ∈ Q
is the initial state, and T is a transition function of the form [Q × (A ∪ {�})] →
[Q × A].

To perform a computation, M is given an input consisting of the symbol �
followed by an infinite word α. M starts in state qs with its input head positioned
at �. M then makes transitions based on its current state and input symbol.
At each transition, M changes state, moves its head to the right, and makes
a guess about what the next symbol will be. The sequence of these guesses
constitutes M(α). More formally, let C = [C1, C2, C3, . . . ] where Ci = {[qi, ci, gi]
with qi ∈ Q, ci ∈ (A ∪ {�}), gi ∈ A such that q1 = qs and for each i ≥ 1,
ci = (�α)[i] and T (qi, ci) = [qi+1, gi]. Notice that there is only one possible C,
given M and α. Now for i ≥ 1, set M(α)[i] = gi.

DPDA Predictors. A DPDA predictor is a tuple M = (Q,A, F, T, �,�, qs),
where Q is the set of states, A is the input alphabet, F is the stack alphabet,
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� is the start-of-input marker, � is the bottom-of-stack marker, qs ∈ Q is the
initial state, and T is a transition function of the form

[Q × (A ∪ {�}) × (F ∪ {�})] → [Q × (A ∪ {stay}) × (F ∪ {pop, keep})].

To perform a computation, M is given an input consisting of the symbol �
followed by an infinite word α. M starts in state qs with stack � and with its
input head positioned at �. M then makes transitions based on its current state,
input symbol, and stack symbol. At each transition, M (1) changes state, (2)
either moves its input head to the right and guesses what the next symbol will
be, or else keeps it in place (using stay), and (3) either pushes a symbol to the
stack, pops the stack, or leaves it alone (using keep). It is illegal for M to pop
�. The sequence of guesses made by M constitutes M(α).

DSA Predictors. A DSA predictor is a tuple M = (Q,A, F, T, �,�, qs),
where Q is the set of states, A is the input alphabet, F is the stack alphabet,
� is the start-of-input marker, � is the bottom-of-stack marker, qs ∈ Q is the
initial state, and T is a transition function of the form

[Q × (A ∪ {�}) × (F ∪ {�}) × {top, inside}] →
[Q × (A ∪ {stay}) × (F ∪ {pop, keep, up, down})].

To perform a computation, M is given an input consisting of the symbol �
followed by an infinite word α. M starts in state qs with stack � and with its
input head positioned at �. M then makes transitions based on its current state,
input symbol, stack symbol, and whether or not the stack head is at the top of
the stack (top means the stack head is at the top; inside means it is not). At each
transition, M (1) changes state, (2) either moves its input head to the right and
guesses what the next symbol will be, or else keeps it in place (using stay), and
(3) either pushes a symbol to the stack, pops the stack, leaves it alone (using
keep), or moves its stack head up or down. It is illegal for M to push or pop the
stack when the stack head is not at the top of the stack, or to move it up when
it is already at the top or down when it is already at the bottom. The sequence
of guesses made by M constitutes M(α).

Multi-DFA Predictors. A multi-DFA predictor is a tuple of the form
M = (Q,A, k, T, �, qs), where Q is the set of states, A is the input alphabet,
k ≥ 1 is the number of input heads, � is the start-of-input marker, qs ∈ Q is the
initial state, and T is a transition function of the form

[Q × (A ∪ {�})k] → [Q × {stay, right}k × A].

To perform a computation, M is given an input consisting of the symbol �
followed by an infinite word α. M starts in state qs with its k input heads all
positioned at �. M then makes transitions based on its current state and the
input symbols it sees under each of its heads. At each transition, M (1) changes
state, (2) for each head either moves it to the right or keeps it in place (using
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stay), and (3) makes a guess about what the next symbol will be. If in a given
transition, M does not reach a new input position (one which had not previously
been reached by any head), M ’s guess at that transition is disregarded (i.e., it is
not included in M(α)). That is, M(α)[i] is the guess of the first transition which
moves any head to α[i].

A sensing multi-DFA predictor is a multi-DFA predictor extended so
that its transition function takes an additional argument indicating, for each
pair of heads, whether those two heads are at the same input position.

3 Prediction of Periodic Words

In this section we study finite automata, pushdown automata, stack automata,
and multihead finite automata as predictors of purely periodic and ultimately
periodic words.

3.1 Prediction by DFAs

Theorem 1. Let A be an alphabet such that |A| ≥ 2. Then no DFA predictor
masters every purely periodic word over A.

Proof. Suppose some DFA predictor M masters every purely periodic word over
A. M has some number of states p. Take any a, b ∈ A such that a �= b. Let α be
the purely periodic word (ap+1b)ω. Then there is an n ≥ 1 such that for every
i ≥ n, M(α)[i] = α[i]. Take the first segment of p + 1 consecutive as after the
position n. At two of these as, M is in the same state. Then M will repeat the
guesses it made between those two as for as long as it keeps reading as. But then
M will guess a for the next b, a contradiction. So M does not master α. �	

3.2 Prediction by DPDAs

Theorem 2. Let A be an alphabet such that |A| ≥ 2. Then no DPDA predictor
masters every purely periodic word over A.

Proof (Sketch). Suppose some DPDA predictor M = (Q,A, F, T, �,�, qs) mas-
ters every purely periodic word over A. We set p to be very large with respect
to |Q| and |F |. Take any a, b ∈ A such that a �= b. Let α be the purely periodic
word (apb)ω. Then there is some position m ≥ 0 after which all of M ’s guesses
about α are correct. Now, between each two segments of p consecutive a’s, there
is only one symbol (a single b), so the stack can grow by at most |Q| · |F | between
each two segments. It follows that in some segment of p consecutive a’s occurring
after m, the stack height does not decrease by more than |Q|·|F |, since otherwise
it would eventually become negative. We show that in such a segment, because p
is so large with respect to |Q| and |F |, there are two configurations Ci and Cj of
M occurring at different input positions with the same state and stack symbol,
such that the stack below the top symbol at Ci is not accessed between Ci and
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Cj . Then since all of M ’s guesses between Ci and Cj are a’s, M will continue
to guess a’s for as long as it continues to read a’s. But then M will guess a for
the b at the end of the segment, contradicting the supposition that all of M ’s
guesses about α after m are correct. Therefore M does not master every purely
periodic word over A. �	

3.3 Prediction by DSAs

We give two results about the predictive capabilities of DSAs: first, that some
DSA predictor masters every purely periodic word, and second, that no DSA
predictor can master any infinite word which is not multilinear.

Algorithm 1. A DSA predictor which masters every purely periodic word. The
input head is denoted by hi and the stack head is denoted by hs. The input
consists of the symbol � followed by an infinite word α. Wherever a guess is not
specified, it may be taken to be arbitrary.

1: loop
2: move hi

3: push α[hi]
4: recovering ← false
5: loop
6: move hs down until stack[hs] = �
7: matched ← true
8: loop
9: move hs up

10: move hi, guessing stack[hs]
11: matched ← false if α[hi] �= stack[hs]
12: break if top

13: recovering ← true if not matched
14: break if recovering and matched

Theorem 3. Let A be an alphabet. Then some DSA predictor masters every
purely periodic word over A.

Proof. Let M be a DSA predictor which implements Algorithm1. (The boolean
variables recovering and matched can be accommodated using M ’s finite state
control.) The idea is that M will gradually build up its stack until the stack
consists of the period (or a cyclic shift thereof) of the purely periodic word to
be mastered. Following Algorithm 1, M begins by pushing the first symbol of
the input after � onto its stack, and then enters the loop spanning lines 5–14.
This loop moves the stack head to the bottom of the stack and then moves it
up symbol by symbol, predicting that the input will match the stack. Call each
iteration of the loop spanning lines 5–14 a “pass”, and call a pass successful if
matched is true at line 14 and unsuccessful otherwise. Observe that if a pass is
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successful, then all of the guesses made during it (on line 10) are correct, and
that if eventually there are no more unsuccessful passes, then M masters its
input.

Now take any purely periodic word α = xω. To show that M masters α, we
first show that every unsuccessful pass will eventually be followed by a successful
pass. Observe that there must be at least one successful pass, since M begins
the passes with only one symbol on the stack, and that symbol will eventually
reappear in the input. So take any unsuccessful pass after the first successful
pass. Now take the most recent successful pass prior to that unsuccessful pass.
Let i be the position of the input head in x (counting from zero, so 0 ≤ i < |x|)
at the beginning of this most recent successful pass and let h be the height of
the stack. Then the position of the input head in x after the successful pass
is (i + h) mod |x|. Then after |x| − 1 unsuccessful passes, the position of the
input head in x will be (i + h|x|) mod |x| = i. So the next pass after that will
be successful. Hence every unsuccessful pass will eventually be followed by a
successful pass.

Since each unsuccessful pass sets recovering to true, the next successful pass
after it will break at line 14, causing M to push another symbol onto the stack.
If the height of the stack never reaches |x|, then after some point, every pass is
successful and M masters α. So say the height of the stack eventually reaches
|x|. Then since the last pass before the stack reached that height was successful,
and the input symbol following that pass is now at the top of the stack, the
previous |x| symbols of the input match the stack. Then every subsequent pass
will be successful, and M masters α. �	
Theorem 4. Every infinite word mastered by a DSA predictor is multilinear.

Proof. Let M be a DSA predictor and let α be any infinite word mastered by
M . We will show that there is a DSA recognizer for Prefix(α), the set of all
prefixes of α. Since M masters α, there is an n ≥ 1 such that for every i ≥ n,
M(α)[i] = α[i]. Take any such n. Let C = (q, s, i) be the configuration of M upon
reaching position n of α, where q is the state of M , s is the stack, and i is the
position of the stack head within s. Let Mα be a DSA recognizer which operates
as follows. First Mα uses its finite control to check that the first n symbols of its
input match the first n symbols of α. Then Mα uses its finite control to push s
onto its stack and move its stack head to position i within s. Next Mα simulates
M , starting from C. Whenever M would make a guess, Mα instead checks that
the next symbol of the input matches M ’s guess. If any check fails, then Mα

rejects its input; otherwise, when Mα reaches end-of-input, it accepts. Since all
of M ’s guesses after n are correct, Mα now recognizes Prefix(α), and hence Mα

determines α in the sense of [21]. Then by Theorem 8 of [21], α is multilinear. �	

3.4 Prediction by Multi-DFAs

We next consider multi-DFA predictors. We leave their more powerful cousins,
sensing multi-DFA predictors, to Sect. 4.
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Algorithm 2. A 2-head DFA predictor which masters every ultimately periodic
word. The heads are denoted by t and h. The input consists of the symbol �
followed by an infinite word α. Wherever a guess is not specified, it may be
taken to be arbitrary.

move h
loop

move t
move h, guessing α[t]
move h if α[h] �= α[t]

Theorem 5. Let A be an alphabet. Then some multi-DFA predictor masters
every ultimately periodic word over A.

Proof. We employ a variation of the “tortoise and hare” cycle detection algo-
rithm [19], adapted to our setting. Let M be a 2-head DFA predictor which
implements Algorithm 2. Take any ultimately periodic word α = xyω. Following
the algorithm, the two heads t (for “tortoise”) and h (for “hare”) begin at the
start of the input. M moves h one square to the right (making an arbitrary guess)
and then enters the loop. In the loop, M guesses that h will match t. After each
missed guess, h moves ahead an extra square (making an arbitrary guess), so the
distance between the two heads increases by 1. If this distance stops growing,
then there are no more missed guesses, so M masters α. Otherwise, both heads
will reach the periodic part yω of α and the distance between them will reach a
multiple of |y|. Then each head will point to the same position in y as the other,
so all guesses will be correct from that point on. So again M masters α. �	

4 Prediction of Multilinear Words

We turn now to prediction of the class of multilinear words. We give an algorithm
by which a sensing multi-DFA can master every multilinear word.

Theorem 6. Let A be an alphabet. Then some sensing multi-DFA predictor
masters every multilinear word over A.

Proof (Sketch). Let M be a sensing 10-head DFA predictor which implements
Algorithm 3. The idea of the algorithm is as follows. Any properly multilinear

word α can be written as q
∏

n≥1

m∏
i≥1

pis
n
i for some m ≥ 1 and strings q, pi, si

subject to certain conditions. That is, α can be broken into “blocks”, each block
consisting of m “segments” of the form pis

n
i . To master α, M will alternate

between two procedures, Correction and Matching. Correction attempts
to position h1, h2, h3, and h4 so that each head is at the beginning of a segment,
h2 is ahead of h1 by a given number of segments, h3 is ahead of h2 by the same
number of segments, and h4 is ahead of h3 by the same number of segments. Each
time Correction is entered, the given number of segments used to separate the
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heads is increased by one. Matching attempts to master α on the assumption
that Correction has successfully positioned h1, h2, h3, and h4 at the beginning
of segments and that the number of segments separating the heads is a multiple
of m (meaning that the segments share the same pi and si). If any problem is
detected, Matching is exited and Correction is entered again.

The number of segments used to separate the heads is given by r − l.
Before each call to Correction, r is moved forward, increasing this number
by one. Correction works by first moving h1 forward to h4 and then calling
AdvanceOne(1), which tries to move h1 to the beginning of the next segment.
Then Correction moves h2 to h1 and calls AdvanceMany(2), which tries to
move h2 forward by r − l segments. Correction then moves h3 to h2 and calls
AdvanceMany(3), which tries to move h3 forward by r − l segments. Finally,
Correction moves h4 to h3 and calls AdvanceMany(4), which tries to move
h4 forward by r − l segments. If everything worked as intended, the four heads
are now at the beginning of segments and each pair of heads hi and hi+1 are
separated by the same number of segments, r − l.

Matching works by using h1, h2, and h3 to predict h4. If the four heads are
separated by the same number of segments, and if this number is a multiple of
m, then the heads share the same pi and si. In this case, the later heads have
extra copies of si: for some d ≥ 1, in each segment i, h4 will see d more copies
of si than h3, which will see d more than h2, which will see d more than h1.
Matching moves the heads together, using the earlier heads to predict h4 and
detecting when each head passes its last copy of si by comparing the heads with
each other. By use of a normal form for properly multilinear words, we guarantee
that the first symbol of pi+1 differs from the first symbol of si, ensuring that
the next segment can be detected. The supplemental head h3a is used to predict
h4’s last d copies of si by using h3’s last d copies a second time. Once all heads
are at the beginning of the next segment, Matching repeats from the start.
If any guess is incorrect, then the heads were not separated by a multiple of
m segments when Matching was entered. Upon making an incorrect guess,
Matching exits, r − l is increased, and Correction is entered again.

The fact that M is sensing allows it to perform operations a designated
number of times, a technique used in the procedures AdvanceMany and
AdvanceOne called by Correction. This technique works in the following
way. Let n be the distance between the heads l and r at a given point in the
computation. To perform an operation n times, we first move another head, say
inner, to r. Then we move l and r together until l reaches inner, performing the
operation after each step. Now the operation has been performed n times, and
we can repeat this process to perform it another n times. Further, by increas-
ing the distance between l and r, we can increase n. It is also possible to nest
this process, by moving another head, say outer, to r, keeping outer’s position
constant relative to l and r during the inner process, and moving l and r, but
not outer, each time the inner process is completed. When l reaches outer, the
inner process has been executed n times, each time performing its operation n
times. In AdvanceMany and AdvanceOne, this technique is used to advance
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Algorithm 3. A sensing 10-head DFA predictor which masters every multilinear
word. The heads are denoted by h1, h2, h3a, h3, h4, t, l, r, inner, and outer.
The input consists of the symbol � followed by an infinite word α. Wherever a
guess is not specified, it may be taken to be arbitrary.

loop
move r
Correction
Matching

procedure Matching
loop

move h3a until h3a = h3

while α[h1] = α[h2] = α[h3] = α[h4] do
move h1, h2, h3a, h3

move h4, guessing α[h2]

break unless α[h2] = α[h4]

while α[h2] = α[h3] = α[h4] do
move h2, h3

move h4, guessing α[h3]

break unless α[h3] = α[h4]

while α[h3a] = α[h3] = α[h4] do
move h3a, h3

move h4, guessing α[h3a]

break unless α[h3a] = α[h4]

while h3a �= h3 and α[h3a] = α[h4] do
move h3a

move h4, guessing α[h3a]

break unless α[h3a] = α[h4]

procedure Correction
move h1 until h1 = h4

AdvanceOne(1)

move h2 until h2 = h1

AdvanceMany(2)

move h3 until h3 = h2

AdvanceMany(3)

move h4 until h4 = h3

AdvanceMany(4)

procedure AdvanceMany(i)
move outer until outer = r
while l �= outer do

AdvanceOne(i)
move l, r

procedure AdvanceOne(i)
move t until t = hi

move hi

move inner until inner = r
while l �= inner do

if α[t] = α[hi] then
move l, r, outer

else
move inner until inner = r
move hi

move t
move hi

while α[t] = α[hi] do
move t
move hi, guessing α[t]

a given hi by n segments, using within each segment a threshold based on n to
detect the beginning of the next segment.

To show that M masters every multilinear word α, we first show that if either
Matching or Correction gets “stuck”, i.e. is entered and does not end, then in
its stuck state it will continue to make guesses, all of which are correct, and so M
masters α. In particular, we show that the first while loop of AdvanceOne will
always end. This loop implements the “tortoise and hare” routine of Algorithm2
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on α, waiting for a streak of r−l consecutive matches. Such a streak will eventually
be obtained, because if α is ultimately periodic, then by the proof of Theorem5,
the “tortoise and hare” algorithm masters α, and if α is properly multilinear, then
we show that the “tortoise and hare” algorithm will eventually achieve k consec-
utive matches on α for any k ≥ 1, and so the loop will end.

So we are left with the case in which Matching and Correction always
end. Since r is moved at the beginning of each iteration of the main loop, and
since Correction and Matching leave r − l unchanged, r − l will grow. If α is
ultimately periodic, then eventually r− l will be large enough for AdvanceOne
to “line up” the heads hi and t with respect to the periodic part of α, so that
M masters α. If α is properly multilinear, then eventually r − l will be large
enough for AdvanceOne to always advance hi by at least one segment. We show
further that r − l will grow slowly enough with respect to the segment length
that eventually whenever hi is at the beginning of a segment, AdvanceOne
will move it to the beginning of the next segment and not farther. As a result,
eventually Correction will always end with the four heads h1, h2, h3, and h4

at the beginning of segments, with the heads separated by r − l segments as
desired. When r − l next reaches a multiple of m, the segments of the four heads
will share the same pi and si. We show that then Matching can make use of
h1, h2, and h3 to correctly predict h4 as intended. Thus M masters α. �	

5 Conclusion

In this paper, we studied the classic problem of sequence prediction from the
angle of automata and infinite words. We examined several types of automata
and sought to find out which classes of infinite words they could master. In doing
so we described novel prediction algorithms for the classes of purely periodic,
ultimately periodic, and multilinear words. Open questions in our investigation
include whether there is a DSA predictor which masters every ultimately periodic
word, and whether there is a multi-DFA predictor without sensing which masters
every multilinear word. Other directions for further research would be to consider
other types of automata as predictors, e.g. automata with two-way input tapes,
and to attempt prediction of other classes of infinite words, e.g. morphic words.
It would also be interesting to consider questions of computational tractability,
e.g. how many guesses and how much time is required to achieve mastery.
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Abstract. We study a conjecture called “linear rank conjecture”
recently raised in (Tsang et al. [16]), which asserts that if many lin-
ear constraints are required to lower the degree of a GF(2) polynomial,
then the Fourier sparsity (i.e. number of non-zero Fourier coefficients) of
the polynomial must be large. We notice that the conjecture implies a
surprising phenomenon that, if the highest degree monomials of a GF(2)
polynomial satisfy a certain condition (Specifically, the highest degree
monomials do not vanish under a small number of linear restrictions.),
then the Fourier sparsity of the polynomial is large regardless of the
monomials of lower degrees—whose number is generally much larger than
that of the highest degree monomials. We develop a new technique for
proving lower bound on the Fourier sparsity of GF(2) polynomials, and
apply it to certain special classes of polynomials to showcase the above
phenomenon (A full version of this paper is available at http://arxiv.
org/abs/1508.02158).

1 Introduction

The study of communication complexity, introduced by Yao [17] in 1979, aims at
investigating the minimum amount of information exchange required for com-
puting functions whose inputs are distributed among multiple parties [7]. In
the standard two-party setting, Alice holds an input x, Bob holds an input
y, and they wish to compute a function F on (x, y) by as little communi-
cation as possible. Perhaps the most important open problem in communica-
tion complexity is the so-called Log-rank Conjecture proposed by Lovász and
Saks [11], which states that the deterministic communication complexity of any
F : {0, 1}n × {0, 1}n → {0, 1}, DCC(F ), is upper bounded by a polynomial of
the logarithm of the rank the communication matrix MF = [F (x, y)]x,y, where
the rank is taken over the reals. Although a lot of effort has been devoted to the
conjecture in the past two decades, very little progress has been achieved and the
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best upper bound known to date is DCC(F ) = O
(√

rank(MF ) log (rank(MF ))
)
,

due to Lovett [12]. Note that there is still an exponential gap between this and
the best known lower bound, which is DCC(F ) = Ω̃

(
log2 rank(MF )

)
[5]. For an

overview of recent developments in this direction, see [13].
An interesting special class of functions computable by two parties is the

so-called XOR functions. Specifically, F is an XOR function if there exists an
f : {0, 1}n → {0, 1} such that for all x and y, F (x, y) = f(x⊕ y), where ⊕ is the
bit-wise XOR. Denote such F by f ◦ ⊕. Besides including important examples
such as Equality and Hamming Distance, XOR functions are particularly inter-
esting for studying the Log-rank Conjecture due to its intimate connection with
the analysis of Boolean functions. Specifically, if F is an XOR function, then the
rank of MF is just the Fourier sparsity of f (i.e., the number of non-zero Fourier
coefficients of f) [2]. Therefore proving the Log-rank conjecture for XOR func-
tions can be achieved by demonstrating short parity decision tree1 computing
Fourier sparse Boolean functions, namely showing

D⊕(f) = polylog‖f̂‖0, (1)

which attracted a lot of attention in the past several years [8,14–16,18].
Recently, by viewing Boolean functions as GF(2) polynomials, a new com-

munication protocol based on GF(2)-degree reduction was proposed in [16] for
XOR functions: suppose f(x ⊕ y) is a degree-d polynomial and rd is the mini-
mum number of variables (up to an invertible linear transformation) restricting
of which reduces f ’s degree to at most d− 1, then Alice and Bob both apply the
optimal linear map to their inputs and send each other rd bits of their respective
inputs. Repeating this process at most d − 1 times, the restricted function of
f becomes a constant function hence they successfully compute f(x ⊕ y). Of
course, such a protocol is efficient only if the numbers rd, rd−1, . . . , r1, of the
restricted variables that they need to exchange, are not large. Studying these
quantities, namely linear ranks of polynomials, is one the central objectives of
this paper.

Definition 1 (Linear Rank of a Polynomial). Let f be a degree-d polyno-
mial, V be a subspace in {0, 1}n and H = a+V be any affine shift of V . Denote
by f |H the restriction of f on H. The linear rank of f , denoted lin-rank(f), is
the minimum co-dimension of any subspace H s.t. the degree of f |H is strictly
less than d; i.e.

lin-rank(f) = min
deg2(f |H)<deg2(f)

co-dim(H).

In other words, lin-rank(f) is the minimum number of linear functions one
needs to fix in order to lower the degree of f . Consider, for example, the degree-3
1 Recall that a parity decision tree T for a function f : {0, 1}n → {0, 1} generalizes

an ordinary decision tree in the sense that each internal node of T is now associated
with a linear function �(x), instead of a single bit, of the input, and T branches
according to the parity of �(x).
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polynomial f(x1, . . . , x3n) = (x1 + · · ·+xn)(xn+1 + · · ·+x2n)(x2n+1 + · · ·+x3n).
In the original basis, one needs to fix at least n variables to lower the degree of
f . However, fixing one linear function x1 + · · · + xn = 0 is enough to lower its
degree. Therefore lin-rank(f) = 1.

For a Boolean function f , let spar(f) denote the Fourier sparsity of f and
D⊕(f) denote the parity decision tree complexity of f . As restrictions do not
increase spar(f) and deg2(f) ≤ log spar(f) for every f , the following linear rank
conjecture—if true—would readily imply the Log-rank Conjecture for XOR func-
tions.

Conjecture 1. (Linear rank conjecture [16]) For any f : {0, 1}n → {0, 1}, the
linear rank of f is upper bounded by polylogarithmic of the Fourier sparsity of f :
lin-rank(f) = O(logc(spar(f))) for some c = O(1). Equivalently, if lin-rank(f) =
r, then spar(f) = 2rΩ(1)

.

Although it is still open whether the linear rank conjecture is equivalent to the
Log-rank Conjecture for XOR functions, it is worthwhile to note that these two
would be equivalent due to an algorithm in [16], had the well-believed fact that
parity decision tree being the most efficient communication protocol for XOR
functions been proved to be true.

1.1 Large Fourier Sparsity Guaranteed by Highest Degree
Monomials Only

Before further discussing the linear rank conjecture, let us first state a lemma
of [16] (Lemma 19) in a slightly stronger form and give an alternative simple
proof (another simple proof used polynomial derivatives [3]). The lemma says
that, once the linear subspace V in Definition 1 is identified, it does not matter
which affine shift is used in the definition of linear rank: all affine subspaces of
V are equally good. More specifically, if f restricted to a+V has degree at most
d − 1 (where d = deg2(f)), then f restricted to any other a′ + V also has degree
at most d − 1. This can be seen by the following argument. Call a monomial in
f a maxonomial if it is of the maximal degree (i.e., degree d). Apply a linear
map to {0, 1}n so that V = {x : x1 = · · · = xr = 0}, where r = co-dim(V ).
Then f |a+V becomes a polynomial of degree at most d − 1 if and only if every
maxonomial of f (under the new basis) contains at least one variable in the
set {x1, . . . , xr}. Moreover, when this happens it does not matter whether xi

(i ≤ r) is restricted to 0 or 1, the degree of the maxonomial always decreases,
thus deg2(f |a′+V ) ≤ d − 1 for all a′ ∈ {0, 1}n.

The above fact also reveals that the linear rank r of any polynomial f(x) is
determined by the maxonomials in f(x) only. Fourier sparsity in general, on the
other hand, should depend on all GF(2) monomials, not only those with the high-
est degree. However, the linear rank conjecture claims that if the maxonomials
in f(x) make the linear rank large, then no matter how the lower-degree mono-
mials behave, the Fourier sparsity is large. Therefore, for the effect of forcing the
Fourier sparsity of GF(2) polynomial to be large, there exists a surprising fact



412 H.Y. Tsang et al.

(assuming the linear rank conjecture) that can be summarized by paraphras-
ing a famous quote from Animal Farm: “All monomials are equal, but some
monomials are more equal than others”.

In retrospect, this phenomenon is known for some extremal cases. When
deg2(f) = 2, the lower degree terms form a linear function χα, adding which
only shifts Fourier spectrum by α and thus does not affect the Fourier sparsity.
When deg2(f) = n, the Fourier sparsity is at least 2deg2(f) − 1 = 2n − 1, which
is again determined by the (unique) maxonomial. But for general 2 < d < n,
especially d = no(1) which is the interesting range of d for Log-rank Conjecture,
maxonomials by themselves do not necessarily lead to large Fourier sparsity. For
instance, if there is only one maxonomial x1 . . . xd, then the Fourier sparsity can
be as small as 2d (when, say, the lower degree part is x1 + · · ·+xn), and as large
as 2n−d (when, say, the lower degree part is a bent function2 over xd+1, . . . , xn).
Therefore it is not true for general 2 < d < n that maxonomials can control large
Fourier sparsity. However, we will show that when the maxonomials form certain
patterns, the Fourier sparsity is guaranteed to be large, regardless of the lower
degree terms (whose number can be much larger than that of maxonomials).
One sufficient condition for the pattern is that the linear rank, which depends
on maxonomials only, is large. And we will showcase some specific classes of
good patterns.

Therefore, apart from leading directly to a proof of the Log-rank Conjecture
for XOR functions, studying the linear rank conjecture is interesting in its own
right, due to its close connection to the Fourier analysis of Boolean functions in
the GF(2) polynomial representation.

1.2 Our Work

We study the linear rank conjecture and in particular investigate how the max-
onomials of a GF(2) polynomial could possibly determine by themselves the
Fourier sparsity of the polynomial. We develop a new technique which is able
to show that, under certain circumstances, the Fourier sparsity is large for all
possible settings of lower degree monomials. The precise statement of the general
theorem needs some technical definitions; see Theorem 1 in Sect. 3. We next use
the result to lower bound Fourier sparsity for arbitrary function with maxono-
mials forming certain patterns.

Dense Maxonomials. The first pattern we consider is when all
(
n
d

)
maxono-

mials appear. For this “complete pattern”, we are able to determine the exact
value of the linear rank. Specifically, for f =

∑
|S|=d

∏
i∈S xi +f ′, where f ′ is an

arbitrary polynomial of degree at most d − 1, it holds that

lin-rank(f) =

{
�n
2 	 − d

2 + 1 if d is even,

1 if d is odd.

2 A Boolean function f : {0, 1}m → {−1, 1} is bent if its Fourier coefficients satisfy
that |f̂(α)| = 2−m/2 for all α ∈ {0, 1}m.
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The proof exploits the symmetry of maxonomials and goes through a careful
induction on n and d. In particular the “step-function” type behaviour of the
linear rank (with respect to n) is proved by showing both upper and lower bounds
for the number of linear functions one needs to fix in order to decrease the degree
of the polynomial. Due to the space limit, the proof is deferred to AppendixA.

If the linear rank conjecture is true, then for any polynomial with complete d-
uniform maxonomials (d is even), the Fourier sparsity must be 2nΩ(1)

regardless
of the lower degree monomials. We are able to verify this when d is a power
of 2: if f : {0, 1}n → {0, 1} is a degree-d polynomial with complete d-uniform
maxonomials, then regardless of what lower degree monomials appear, it holds
that

spar(f) ≥ 2d·�n/d� − 1 = Ω(2n).

Zhang and Shi [18] proved that any symmetric boolean function has Fourier
sparsity 2Ω(n), unless it is constant, the parity function over n bits or its negation.
However, as the polynomials considered there are symmetric, their result requires
the degree-d′ monomials to be either empty or complete d′-uniform, for every
d′ ≤ d. On the contrary, our lower bound applies to a broader class of functions
as it holds for all possible choices of lower degree monomials, as long as the
highest-degree monomials are symmetric.

Sparse Maxonomials. We then go to the other end of the spectrum and con-
sider patterns formed by a few number of maxonomials. In particular, we show
lower bounds on the Fourier sparsity of polynomials whose maxonomials are pair-
wise disjoint. We also exhibit patterns in which maxonomials have very small
pair-wise intersection, and the number of maxonomials is much smaller than
that of lower-degree monomials, yet the maxonomials by themselves guarantee
a high Fourier sparsity of 2n.

The techniques developed can be used to show more results. Gopalan
et al. [6] studied the granularity of a function’s Fourier spectrum, which is
the smallest integer k such that all Fourier coefficients of the function can
be expressed as integer multiples of 1/2k. They showed that for any Boolean
function f : {0, 1}n → {0, 1}, gran(f) ≤ log spar(f). On the other hand, by
Parseval’s identity, log spar(f) ≤ 2gran(f). The granularity of a linear func-
tions is 1 and the maximum granularity of any n-variate quadratic polyno-
mial is n/2. It thus natural to conjecture that, for any n-variate low-degree
polynomial f(x), although spar(f) can be as large as 2n, the granularity of
f(x) is always bounded away from n. We are able to apply our technique to
show the following upper bound on the granularity of low-degree polynomials:
for any degree-d polynomial f , gran(f) ≤ n − �n

d � + 1. It is easy to see this
bound is tight as it is attained by the “generalized inner product function”:
f(x) = x1x2 · · · xd + · · · + x(k−1)d+1x(k−1)d+2 · · · xkd, where n = kd.

Techniques. The main challenge in proving sparsity lower bounds based on
only the maxonomials of a polynomial is how to isolate the effect of all lower
degree monomials. To the best of our knowledge, there is no prior method or
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result of this kind. Our method is to first apply the standard procedure to
transform a degree-d polynomial f into a Fourier polynomial, and then define a
“weight function” wf (T ) on each set T ⊆ [n] such that the Fourier coefficient
of f at any set S can be written as

∑
T⊇S wf (T ). This implies that the weight

function at [n] is the most important term as it contributes to all the Fourier
coefficients of f . Another nice property of the weight function is that for any
T , 2|T |wf (T ) can be expressed as a sum of alternating terms in which the kth

term is (−2)kNk(T ), where Nk(T ) is the number of ways to cover T with (the
supports of) exactly k monomials of f(x). Therefore, the problem of computing
the Fourier coefficients of a GF(2) polynomial is now reduced to a combinatorial
problem of counting the numbers of covers of all subsets of [n] using various
numbers of sets from the set family defined by the monomials of the polynomial.
Moreover, the parity of 2|T |wf (T ) is likely to be determined by the numbers
of smaller covers due to the factor (−2)k in each term of the sum. Using the
notion of “granularity” introduced in [6], our strategy for showing sparsity lower
bound is to argue that wf ([n]) is the single one with the highest granularity
among all weight function values. Note that if n = kd and we can cover [n]
with (the supports of) maxonomials of f(x) only, then these covers would be
the minimum covers as they require only k = n/d sets while any cover involving
lower monomials is of size at least k + 1. Hence to prove that wf ([n]) has the
highest possible granularity, it suffices to show that the number of k-covers of
[n] is odd, as we did for the several sparsity lower bounds.

2 Preliminaries

All logarithms in this paper are base 2. For f : {0, 1}n → {0, 1}, we use f± = 1−
2f to denote the equivalent Boolean function with range converted to {+1,−1}.
For S ⊆ [n], the monomial xS is xS =

∏
i∈S xi, and S is called the support of

the monomial. We say a set T meets a monomial xS if T ∩ S �= ∅. The degree
of f : {0, 1}n → {0, 1}, denoted deg2(f), is the degree of f as a multi-linear
polynomial on variables x1, . . . , xn.

For any real function f : {0, 1}n → R, the Fourier coefficients are defined by
f̂(α) = 2−n

∑
x f(x)χα(x), where α ∈ {0, 1}n and χα(x) =

∏n
i=1(−1)αixi . Its

Fourier sparsity, denoted by ‖f̂‖0, is the number of nonzero Fourier coefficients
of f . The Fourier coefficients of f : {0, 1}n → {0, 1} and f± := 1−2f are almost
the same:

‖f̂‖0 − 1 ≤ ‖f̂±‖0 ≤ ‖f̂‖0 + 1. (2)

Sometimes we employ the one-to-one mapping between vectors in {0, 1}n and
subsets of [n]: x ↔ {i ∈ [n] : xi = 1}, and use the subsets of [n] to index the
Fourier coefficients. Parseval’s identity asserts that E[f2(x)] =

∑
S f̂2.

Definition 2 (Granularity [6]). Let r ∈ Q, the granularity of r, denoted
gran(r), is the smallest nonnegative integer k such that 2kr ∈ Z, and gran(r) = ∞
if no such k exists. The Fourier granularity of a Boolean function f , denoted
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gran(f), is the maximum granularity over all the Fourier coefficients of f ; i.e.,
gran(f) = maxα∈{0,1}n(gran(f̂(α))).

Clearly, gran(−x) = gran(x) for any x ∈ Q. An easy but useful fact is
that gran(x + y) ≤ max(gran(x), gran(y)) for all x, y ∈ Q. More generally,
gran(

∑k
i=1 xi) ≤ max1≤i≤k gran(xi), where xi ∈ Q for every 1 ≤ i ≤ k.

Fact 1. Let f±, g± : {0, 1}n → {−1, 1} be two Boolean functions. Let h = f ⊕g.
Then |gran(f±) − gran(g±)| ≤ gran(h±) ≤ gran(f±) + gran(g±).

Gopalan et al. [6] showed that, if a Boolean function has only a small number
of non-zero Fourier coefficients, then all these non-zero Fourier coefficients have
small granularities.

Lemma 1 ([6]). Suppose f± : {0, 1}n → {−1, 1} is s-sparse with s > 0, then
all the Fourier coefficients of f± have granularity at most �log s	 − 1.

This lemma implies that the logarithm of the sparsity and granularity of a
Boolean function are in fact equivalent up to a constant factor.

Proposition 1. Let f± : {0, 1}n → {−1, 1} be a Boolean function, then

gran(f±) + 1 ≤ log spar(f±) ≤ 2gran(f±).

For a function f : {0, 1}n → R, define two subfunctions f0 and f1, both
on {0, 1}n−1: fb(x2, . . . , xn) = f(b, x2, . . . , xn). It is easy to see that for any
α ∈ {0, 1}n−1, f̂b(α) = f̂(0α) + (−1)bf̂(1α), thus

‖f̂b‖0 ≤ ‖f̂‖0 and ‖f̂b‖1 ≤ ‖f̂‖1. (3)

where ‖f̂‖p = (
∑

α |f̂(α)|p)1/p and ‖f̂‖0 = |{α : f̂(α) �= 0}|. The notion of
subfunctions can be generalized to restrictions to affine subspaces. It is worth
noticing that, for any Boolean function, its F2-degree, Fourier sparsity and gran-
ularity are all invariant under invertible linear maps.

3 Fourier Spectra of GF(2) Polynomials

In this section, we present a lower bound for Fourier sparsity. It first needs to
compute the Fourier spectrum of a GF(2) polynomial based on its monomials.
We suspect that such a formalism was known before but we could not track any
previous sources.

For a fixed S ⊆ [n], a collection {S1, . . . , Sk} of k (distinct) subsets of [n]
form a k-cover of S if ∪k

i=1Si = S. The main result of this section is the following
lemma, which shows that the Fourier coefficients of a GF(2) polynomial can be
computed by counting the number of k-covers of subsets of [n] — for different
values of k — using the supports of monomials in the GF(2) polynomial as
subsets. Of particular importance is the number of kmin-covers of [n], where
kmin is minimum number of subsets that are required to cover [n].
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For a family F = {Si}i∈[m] of subsets Si of the base set [n] and an index set

M ⊆ [m], let SM
def= ∪k∈M Sk, the union of the subsets with indices in M .

Let f(x1, . . . , xn) =
∑m

i=1 xSi
be the GF(2) polynomial representation of f .

Define a weight function wf : {0, 1}n → Q as

wf (T ) =
∑

M⊆[m]:SM=T

c(M), where c(M) =
(−2)|M |

2|SM | . (4)

Equivalently, if we denote F = {Si}i∈[m] and let Nk(T ) be the number of k-
covers of T using sets in F , then

wf (T ) =
1

2|T |

m∑
k=1

(−2)kNk(T ). (5)

Lemma 2. Let f(x1, . . . , xn) =
∑m

i=1 xSi
be a GF(2) polynomial, then the

Fourier coefficients of f± are given by

f̂±(S) = (−1)|S| ∑
T⊇S

wf (T ). (6)

Proof. For a Boolean variable xi ∈ {0, 1}, let x̃i = (−1)xi = 1 − 2xi be its
{+1,−1} representation, with the inverse transformation given by xi = (1 −
x̃i)/2. Recall that f± = 1− 2f . We next express f± as a multilinear polynomial
over R from which its Fourier coefficients can be readily read out.

Note that xS corresponds to 1−2
∏

i∈S
1−x̃i

2 and
∏

i∈S x̃i corresponds to x̃S ,
thus

f±(x̃1, . . . , x̃n) =
∏

i∈[m]

(
1 − 2

∏
j∈Si

1 − x̃j

2

)
(7)

Fact 2. For x ∈ {−1, 1} and integer k ≥ 1, we have (1 − x)k = 2k−1(1 − x).

By (7), the Fourier polynomial of f± in terms of x̃ is

f
±
(x̃) =

m∏

i=1

(
1 −

∏
j∈Si

(1 − x̃j)

2|Si|−1

)

=
m∑

k=0

(−1)
k

∑

1≤i1<i2<...<ik≤m

∏
j1∈Si1

(1 − x̃j1 )
∏

j2∈Si2
(1 − x̃j2 ) · · ·∏jk∈Sik

(1 − x̃jk
)

2
|Si1

|+|Si2
|+···+|Sik

|−k

=

m∑

k=0

(−1)
k

∑

1≤i1<i2<...<ik≤m

∏
j∈Si1

∪···∪Sik
(1 − x̃j)

2
|Si1

∪···∪Sik
|−k

(by Fact 2)

=
∑

M⊆[m]

(−1)
|M|
∏

j∈SM
(1 − x̃j)

2|SM |−|M|

=
∑

S⊆[n]

(−1)
|S|
⎛

⎝
∑

M⊆[m]:SM ⊇S

(−1)
|M| · 2|M|

2|SM |

⎞

⎠ x̃S .
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Since the coefficient of x̃S in f±(x̃) is just the Fourier coefficient f̂±(S), this
completes the proof of the lemma. ��
Theorem 1. If f : {0, 1}n → {0, 1} has d|n where d = deg2(f), and Nn/d([n])
is odd, then ‖f±‖0 = 2n.

Proof. Note that for T = [n], one cannot cover T by less than n/d sets Si,
thus Nk(T ) = 0 for all k < n/d. By assumption, Nn/d([n]) = t is odd, thus
wf (T ) = (−1)n/d t

2n−n/d +s, where gran(s) < n−n/d. So gran(wf ([n])) = n−n/d.

For general S ⊆ [n], consider f̂±(S) and note that among all T ⊇ S in (6), the
largest granularity of wf (T ) is n/d, achieved by T = [n]. Indeed, for all other
T , |T | < n, the largest possible granularity is |T | − �|T |/d�, which is strictly less
than n − n/d. Thus all Fourier coefficients f̂±(S) have granularity n − n/d > 0,
implying that f̂±(S) �= 0. ��

4 Fourier Sparsity of Polynomials with Complete
d-uniform Maxonomials

This section is devoted to the proof of the following Fourier sparsity lower bound
for polynomials whose maxonomials are the complete d-uniform monomials.

Theorem 2. Let d be a power of 2. For any degree-d polynomial f ∈
F2[x1, . . . , xn] whose maxonomials include all

(
n
d

)
degree-d monomials, its

Fourier sparsity has the following lower bound

spar(f) ≥ 2d·�n/d� − 1 = Ω(2n),

regardless of the lower degree monomials.

Proof. In the rest of this section, we fix k = �n/d	. First we apply a restriction
to set, say the last n − kd variables in f to zero. This leaves us with a function
g on n′ = kd variables, and by (3), we have spar(f) ≥ spar(g). Furthermore, the
maxonomials of g are still complete d-uniform monomials (now over n′ variables).

Let F be the set of the supports of all monomials in g. In particular, F
contains all d-subsets of [n′]:

(
[n′]
d

) ⊆ F . By Theorem 1, it suffices to prove the
following.

Lemma 3. Nk([n′]) ≡ 1 (mod 2).

Proof. Clearly any k-cover of [n′] consists of k distinct sets in
(
[n′]
d

)
, and there

are exactly ( n′
d,...,d)

k! such k-covers. Hence we have

Nk([n′]) =

(
n′

d,...,d

)

k!
=

1
k

(
kd

d

)
· 1
k − 1

(
(k − 1)d

d

)
· · · 1 ·

(
d

d

)

=
(

kd − 1
d − 1

)
·
(

(k − 1)d − 1
d − 1

)
· · ·

(
d − 1
d − 1

)
.
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Recall the following Lucas’ theorem:

Theorem 3 (Lucas’ Theorem, c.f. [4]). Let s and t be non-negative integers
and p be a prime. Let s = s0 + s1p + · · · sip

i and t = t0 + t1p + · · · tipi, 0 ≤
sj , tj < p, be the base-p expansions of s and t respectively, then

(
s

t

)
≡

i∏
j=0

(
sj

tj

)
(mod p).

In fact, what we need is the a simple corollary of Lucas’ theorem (known as
Kummer’s theorem) for the special case of p = 2: the largest integer j such that
2j divides

(
s
t

)
is equal to the number of carries that occur when s and s − t are

added in the binary.
Since d is a power of 2, the binary representation of d − 1 is 1 · · · 1︸ ︷︷ ︸

log d

and the

binary representation of jd − 1 − (d − 1) = (j − 1)d is · · · 0 · · · 0︸ ︷︷ ︸
log d

, for every j ≥ 1.

Therefore no carry occurs when adding (j −1)d to d−1 and thus, by Kummer’s
theorem,

(
jd−1
d−1

) ≡ 1 (mod 2) for all j ≥ 1. It follows that

Nk([n′]) ≡ 1 (mod 2),

which also implies Theorem 2. ��

5 Fourier Sparsity for Functions with Sparse
Maxonomials

In the previous two sections, we see cases that when all
(
n
d

)
monomials of the

highest degree appear, then the function has large Fourier sparsity, no matter
what other lower-degree monomials exist or not. In this section, we will con-
sider the other end of the spectrum when there are only a small number of the
maxonomials, and show that the same phenomena can occur in this case as well.

The first example is the class of functions with disjoint maxonomials.

Proposition 2. Suppose that f : {0, 1}n → {0, 1} has deg2(f) = d where d|n.
If there are exactly n/d monomials of degree d, and their supports are pairwise
disjoint, then spar(f) ≥ 2n − 1, regardless of the lower degree monomials.

Proof. Note that there is only one cover of [n] of size n/d, i.e. Nn/d([n]) = 1. By
Theorem 1, spar(f) ≥ spar(f±) − 1 = 2n − 1. ��

The second example extends the first class by allowing “regular” overlaps
between maxonomials. Assume that deg2(f) = d is an odd prime power, and
d2|n. Divide [n] into n/d2 piles of equal size, with each pile identified with a
d × d grid. All maxonomials are linear functions in a pile. More precisely, for
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the first pile [d] × [d], for each pair (a, b) ∈ F
2
d, define univariate polynomial

pa,b ∈ F[x] by pa,b(x) = ax + b. Now define sets

Sa,b = {(0, p(0)), (1, p(1)), . . . , (d − 1, p(d − 1))}.

The first pile thus has d2 sets inside. Similarly define d2 sets for each other pile.
These sets are supports of the maxomonials. Note that there are d2 · n/d2 = n
maxonomials, a number much smaller than the possible number of lower degree
monomials, which is

∑d−1
i=0

(
n
i

)
. Yet the next theorem says that the this small

number of maxonomials determines a large Fourier sparsity, regardless of how
the vast majority of other (lower-degree) terms behave.

Theorem 4. For any function f : {0, 1}n → {0, 1} with the maxonomials
defined as above, spar(f) ≥ 2n − 1, regardless of the lower degree monomials.

Proof. Clearly the set [n] can be partitioned using supports of n/d maxonomials.
We will show that the number of such partitions is dn/d2

, which is an odd number
given that d is odd.

Since the piles are disjoint and all maxonomials are defined within each pile, it
suffices to show that there are d ways of partitioning each pile into maxonomials.
We consider the first pile and the same argument applies to others. Note that for
each fixed a, if we vary b over Fd, then we get d maxonomials that are pairwise
disjoint. Since there are d different choices of a, there are at least these d ways to
partition the pile into d maxonomials. We next show that there are actually no
other partition of the pile using d maxonomials. Indeed, assume that a partition
uses d maxonomials and not all these maxonomials have the same a, then there
are two maxonomials corresponding to a1x + b1 and a2x + b2 and a1 �= a2. But
now these two “lines” intersect at exactly one point x = (a1 − a2)−1(b1 − b2),
where the existence of (a1 − a2)−1 uses the assumption that a1 �= a2. Note the
trivial fact that the union of d maxonomials of degree d is at most d2, and it is d2

only if they are pairwise disjoint. So the existence of intersecting maxonomials in
the selected d maxonomials make them impossible to cover the d2 points in the
pile. This shows that the number of partitions of one pile using d maxonomials is
exactly d, and thus the number of covers of [n] using n/d2 maxonomials is dn/d2

,
an odd number by the assumption that d is odd. Applying Theorem1 completes
the proof of Theorem 4. ��

6 Granularity Upper Bound for Low-Degree Polynomials

Note that there is a gap of factor 2 in characterizing the logarithm of Fourier
sparsity of a Boolean function by means of its granularity (cf. Proposition 1).
Note also that both lower and upper bounds in Proposition 1 are tight, but one
is attained by the AND function (a degree-n polynomial) and the other by any
bent function, e.g. the Inner Product function (a degree-2 polynomial). It thus
natural to conjecture that, for any low-degree polynomial f(x), although spar(f)
can be as large as 2n, the granularity of f(x) is always bounded away from n.
We now apply our technique developed in Sect. 3 to prove the following upper
bound for the granularity of low-degree polynomials.
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Theorem 5. For any Boolean function f : {0, 1}n → {0, 1}, if d = deg2(f)
is the F2-degree of f , then gran(f±) ≤ n − �n

d �, and consequently, gran(f) ≤
n − �n

d � + 1.

Proof. Suppose f̂±(T ) achieves gran(f±), i.e., f̂±(T ) = c/2gran(f
±) for some odd

integer c. Without loss of generality, we may assume that T �= ∅. Actually, if
f̂±(0) is the single Fourier coefficient that achieves gran(f±), then the sum of
the squares of all Fourier coefficients of f± would be a rational number with
granularity 2gran(f±) instead of 1, contradicting Parseval’s identity.

Now we apply an invertible linear map L such that (LT )−1(T ) = [n]. Let
g = f ◦ L and note that deg2(g) = d. It is not difficult to show that ĝ±([n]) =
f̂±(T ).

Suppose g(x) =
∑m

i=1

∏
j∈Si

xj , where |Sj | ≤ d for every 1 ≤ j ≤ m. Apply-
ing Lemma 2 and notice that, since |Sj | ≤ d, the minimum number k such that
there exists a collection of k subsets from {Sj}j∈[m] that cover [n] is k ≥ �n

d �.
Therefore, by (6),

ĝ±([n]) = (−1)nwg([n]) = (−1)n
m∑

j=k

(−2)jNj([n])
2n

.

Note that the granularity of the jth term in the above summation is at most
n− j (we only have inequality here as Nj([n]) may be an even number), and the
granularity of a sum of rational numbers is at most the maximum granularity in
the summands:

gran

⎛
⎝

�∑
j=1

yj

⎞
⎠ ≤ max

1≤j≤�
gran(yj),

where yj ∈ Q for 1 ≤ j ≤ �, we therefore have gran
(
ĝ±([n])

)
≤ n−k = n−�n

d �.
This finally gives

gran(f±) = gran
(
f̂±(T )

)
= gran

(
ĝ±([n])

)
≤ n − �n

d
�.

The upper bound of the granularity of f follows from the easy fact that gran(f) ≤
gran(f±) + 1. ��
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A Linear Rank of Complete d-uniform Maxonomials

In this section we compute the exact value of the linear rank of a degree d
polynomial whose set of maxonomials consists of all

(
n
d

)
degree-d monomials.

Define Cd,n(x) =
∑

I⊆[n],|I|=d

∏
i∈I xi, the summation of all degree-d mono-

mials over variables x1, . . . , xn ∈ F2. The subscript n is dropped when it is clear
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from the context. We use the equivalence relation ≡d for polynomials with the
same maxonomials, i.e. p ≡d q if both p and q have F2-degree d and p+q has F2-
degree strictly less than d. It is clear that if p ≡d q, then lin-rank(p) = lin-rank(q).

Theorem 6. Let n ≥ d ≥ 0 be integers. Then the following hold:

1. If d is odd, then lin-rank(Cd,n) = 1.
2. If d is even, then lin-rank(Cd,n) = �n

2 	 − d
2 + 1, i.e.

lin-rank(Cd,n) =

{
n−d
2 + 1 if n is even,

n−d−1
2 + 1 if n is odd.

Proof. The first item follows simply by the factorization Cd,n ≡d C1,nCd−1,n.
Indeed, when we multiply C1,n =

∑
i∈[n] xi and Cd−1,n =

∑
|I|=d−1 xI , for i /∈ I,

xixI = xI∪{i}, and each J with |J | = d comes from d many (i, I). For each i ∈ I,
xixI = xI , and each resulting xI with |I| = d − 1 comes from d − 1 many i ∈ I.
Thus

C1,nCd−1,n = d
( ∑

|J|=d

xJ

)
+ (d − 1)

( ∑
|I|=d−1

xI

)
= dCd,n + (d − 1)Cd−1,n

= Cd,n,

for all odd d.
Now we consider the second item in the statement and assume from now on

that d is even and d ≤ n. The second item follows from the following two claims.

Claim 1. If lin-rank(Cd,n+1) = lin-rank(Cd,n), then lin-rank(Cd,n+2) > lin-rank
(Cd,n+1).

Claim 2. lin-rank(Cd,n+2) ≤ lin-rank(Cd,n) + 1.

Let us first show Theorem 6 assuming these two claims. We prove by induc-
tion on the number of variables that for all k ≥ d/2,

lin-rank(Cd,2k) = lin-rank(Cd,2k+1) = k − d

2
+ 1. (8)

which is just a restatement of the second item of Theorem 6.

Base Case k = d/2. We have

Cd(x1, . . . , x2k) = Cd(x1, . . . , xd) = Cd−1(x1, . . . , xd−1) · xd, (9)

so lin-rank(Cd,2k) = 1. For n = 2k + 1, note that

Cd(x1, . . . , x2k+1) = Cd(x1, . . . , xd+1)
= Cd−1(x1, . . . , xd−1)(xd + xd+1) + Cd−2(x1, . . . , xd−1)xdxd+1,

(10)
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Putting restriction xd = xd+1 makes the first summand vanish and decreases
the degree of the second summand, hence lin-rank(Cd,2k+1) = 1.

General k. Now we assume that (8) holds for k and will prove the case for k +1.
The following sequence of inequalities hold.

k − d

2
+ 1 < lin-rank(Cd,2(k+1)) ≤ lin-rank(Cd,2(k+1)+1) ≤ k − d

2
+ 2,

where the first inequality follows by Claim 1; the second follows by the facts that
Cd,n−1 can be obtained from Cd,n by restricting xn = 0 and restriction does not
increase lin-rank; and the last inequality follows by Claim2. Therefore (8) also
holds for k + 1. ��

Now it remains to prove the two claims. We start with Claim 2, which is
simpler.

Proof (Proof of Claim 2). We first observe the following identity:

Cd(x1, . . . , xn+2) = Cd(x1, . . . , xn) + Cd−1(x1, . . . , xn)(xn+1 + xn+2)
+ Cd−2(x1, . . . , xn)xn+1xn+2

≡d Cd(x1, . . . , xn) + Cd−1(x1, . . . , xn, xn+1)(xn+1 + xn+2).
(11)

Therefore the restriction xn+2 = xn+1 reduces Cd(x1, . . . , xn+2) to

Cd(x1, . . . , xn+2)|xn+1=xn+2 ≡d Cd(x1, . . . , xn).

Since each restriction can reduce lin-rank by at most 1, we have

lin-rank(Cd,n+2) − 1 ≤ lin-rank(Cd,n+2|xn+2=xn+1) = lin-rank(Cd,n),

as desired. ��
Proof (Proof of Claim 1). For the sake of contradiction, assume that

lin-rank(Cd,n+2) = lin-rank(Cd,n+1) = lin-rank(Cd,n) = r.

Fix an optimal set of linear restrictions for lin-rank(Cd,n+2). Without loss
of generality, we can assume it contains a restriction of the form xn+2 =
�(x1, . . . , xn+1) = �(x) for some linear form �. It is clear that such restriction
will reduce the lin-rank by exactly 1. So we have

lin-rank(Cd,n+2|xn+2=�(x)) ≤ lin-rank(Cd,n+2) − 1 = r − 1. (12)

But by the expansion

Cd(x1, . . . , xm+1) = Cd(x1, . . . , xm) + Cd−1(x1, . . . , xm)xm+1,

we have

Cd(x1, . . . , xn+2)|xn+2=�(x) = Cd(x1, . . . , xn+1) + Cd−1(x1, . . . , xn+1)�(x)

= Cd(x1, . . . , xn) + Cd−1(x1, . . . , xn)xn+1

+ Cd−1(x1, . . . , xn+1)�(x). (13)
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Now, consider to further restrict xn+1 = x1 + x2 + · · · + xn = C1(x1, . . . , xn).
By the fact that Cd−1(x1, . . . , xm) ≡d Cd−2(x1, . . . , xm)C1(x1, . . . , xm) for every
even d ≥ 4, the second term on the right of (13) is ≡d-equivalent to

Cd−2(x1, . . . , xn)C1(x1, . . . , xn)xn+1|xn+1=C1(x1,...,xn)

=Cd−2(x1, . . . , xn)C2
1(x1, . . . , xn)

=Cd−2(x1, . . . , xn)C1(x1, . . . , xn) ≡d 0,

and the last term becomes

Cd−2(x1, . . . , xn+1)C1(x1, . . . , xn+1)�(x)|xn+1=C1(x1,...,xn) = 0.

Plugging these two back to (13),

Cd,n+2|xn+2=�(x),xn+1=x1+···+xn
≡d Cd,n.

As restriction does not increase linear rank, we have from (12) that

r = lin-rank(Cd,n) = lin-rank(Cd,n+2|xn+2=�(x),xn+1=x1+···+xn
)

≤ lin-rank(Cd,n+2|xn+2=�(x))

≤ r − 1,

which is a contradiction. ��
As a simple application of Theorem6, for any symmetric function f , let r1,

r0 be the largest and smallest integers such that f(x) is constant or parity
on {x ∈ {0, 1}n : r0 ≤ |x| ≤ n − r1}. The quantity r := r0 + r1 turns out
to be an important complexity measure for symmetric functions. For example,
the randomized and quantum communication complexity of symmetric XOR
functions is characterized by this r [9,10,18], and log ‖f̂‖1 = Θ(r log(n/r)) for
all symmetric functions f [1].

Here we relate this measure to the F2-degree of f . It is clear that we can fix
x1 = x2 = · · · = xr0 = 1 and xn = xn−1 = · · · = xn−r1+1 = 0 to reduce the
degree of f to at most 1. We therefore have the following corollary.

Corollary 1. Let f be a symmetric function with even F2-degree d, then

1. �n
2 	 − d

2 + 1 ≤ r0 + r1.
2. log ‖f̂‖1 = Ω(n/ log n), if d = (1 − Ω(1))n.
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