
Chapter 4
Composition Without a Given Structure

Every approach discussed in this section solves some form of a planning problem.
A planning problem asks for a sequence of actions that an agent must perform in
a problem domain Σ in order to reach a goal situation s∗ starting from an initial
situation s0. The problem domain Σ is defined based on a logical language L, which
may be propositional logic or (some variant) of first-order logic. It consists of a
countable set of states, a countable set of actions that can be performed by the agent,
and a state transition function that defines how the agent can move through the state
space through actions. The states are described as formulas over L, and the initial
state s0 and goal state s∗ belong to the state space.

The analogy between AI planning and automated service composition is as fol-
lows. Let us assume that we want to find the implementation for a service operation
for which we currently have only a signature and logical preconditions and post-
conditions. The preconditions describe knowledge that may be assumed to be true
at time of invocation, and the postconditions say what is true after the (successful)
invocation. Then, we can think of this as a planning problem where the initial situ-
ation s0 corresponds to the preconditions, the goal situation s∗ to the postcondition,
the state space corresponds to the semantic states of the thread that will later execute
the implementation, and the actions correspond to invocations of existing service
operations.

The service composition problem addressed this way is not generally a classical
planning problem [105]. Classical planning, which is subject of almost all available
planning tools, assumes that the state space of the planning domain is finite. This is
often possible even if L is a first-order logic language by grounding the predicates
using a finite set of objects that is assumed to exist in the environment.However, in the
case of software composition, this set of objects corresponds to the data containers
(programming variables) that are used to pass data between operations, and the
number of these containers is not bound in general.

© The Author(s) 2016
F. Mohr, Automated Software and Service Composition,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-34168-2_4

61



62 4 Composition Without a Given Structure

Fig. 4.1 Composition problems where no structure is given

We can identify three subclasses for the approaches within this class based on
the underlying logical language L. Figure4.1 shows an overview over the three
subclasses.

1. Many approaches canonically correspond to a propositional logical planning
problem in that there is exactly one planning action for each service operation
with an obvious translation. Section 4.1 discusses these approaches.

2. Many approaches use some sort of (possibly first-order) background knowledge
such as type hierarchies that must be encoded in additional planning actions. The
transformation to a classical planning problem can be done in linear time. These
approaches will be discussed in Sect. 4.2.

3. The third subclass comprises approaches that are based on FOL, which are dis-
cussed in Sect. 4.3. Here, operation descriptions may contain predicates with two
places or more. Not all of these encodings can be reduced to propositional logic,
and if they can, this translation cannot be done in polynomial time.

The main difference between the first two subclasses and the third one is that
only approaches in the third subclass allow to relate data to each other and to model
the data flow. Approaches discussed in Sects. 4.1 and 4.2 assume that we have only
unparametrized knowledge about data; e.g., that an object x is a client but not that
he is attended by some employee y unless y is fixed a priori. Hence, approaches in
the third subclass are an order of magnitude more expressive than the approaches in
the first two subclasses.

Note that, for better readability, the conclusion of this chapter is found in Chap. 5.
The body of the chapter is very long, and I felt that a conclusion of all approaches
is better off in the general conclusion. Of course, every section within the chapter
is closed with a conclusion in order to summarize the respective subfield; only the
general conclusion is found in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-34168-2_5
http://dx.doi.org/10.1007/978-3-319-34168-2_5


4.1 Propositional Systems Without Background Theory 63

4.1 Propositional Systems Without Background Theory

Approaches of this class assume that service operations are functionally specified
either through their inputs and outputs or in terms of propositional preconditions
and postconditions. Correspondingly, the goal is either to derive a set of desired
outputs from a given set of inputs or to find a composition that guarantees a desired
(propositional) postcondition to hold when invoked on a given precondition. The first
case is simply a special case of the second one, interpreting the inputs {i1, . . . , im} and
outputs {o1, . . . , on} of operations as propositions that are conjunctively connected.
Note that inputs and outputs sometimes refer tonames of the data ports and sometimes
to the types of data ports, but this difference is irrelevant for the composition process.

Given this type of operation specification, we can create propositional planning
actions in linear time. For every service operation oi , we create exactly one planning
action ai . The precondition of ai corresponds either to the conjunction of inputs or to
the precondition of oi , depending on the type of operation. Likewise, the postcondi-
tion of ai corresponds either to the conjunction of outputs or to the postcondition of
oi , depending on the type of operation. The state space is defined by the powerset of
the set of all propositions induced by inputs, outputs, preconditions, or postconditions
occurring in the description of any operation.

The number of approaches presented in this section should not hide the fact that
most of them solve problems that are trivial or at least very simple. If we assume
that the operators are given in advance—and we are not aware of an approach that
does not make this assumption—we can create look-up tables in a preprocessing
step that allows us to answer queries in constant time. But even if we do not apply
such a preprocessing step, most of the composition problems are still solvable within
polynomial runtime. This is simply because every service is contained atmost once in
a composition.Of course, if operations havenegative preconditions or postconditions,
or if the goal is to find solutions that optimize QoS-properties, the hardness of the
underlying problem increases. However, most approaches considered here do not
take these aspects into account and, hence, address extremely simple and practically
largely irrelevant problems.

4.1.1 IO-Based Composition

Approaches discussed in this section rely only on the names or the types of parame-
ters of operations. Service operations are not expected to have semantic annotations
in terms of preconditions or postconditions. The planning actions can be defined
straight forward. For every service operation, there is one action with preconditions
corresponding to the names or types of the inputs and positive postconditions cor-
responding to the names or types of the outputs. The actions do not have negative
postconditions.



64 4 Composition Without a Given Structure

4.1.1.1 Forward Search

Thakkar et al. propose a naive forward chaining approach to solve the problem [149].
Given the set of available inputs AI , they iteratively add every service operation
to the composition whose inputs are a subset of AI and add the outputs of that
operation to AI . The process terminates if all required outputs are contained in AI or
if all service operations have been added to the composition. However, the unguided
forward chaining implies that the composition also contains service operations that
are completely irrelevant for obtaining the desired outputs. Nonfunctional properties
are also not considered.

Blake and Cummings add the notion of service level agreements (SLA) to the sim-
ple composition algorithm [24]. Considered measurements are up-time (reliability),
service rate (execution duration + communication time), maintenance (time that the
service must announce its downtime before service is disabled), cost, and renegoti-
ation (time before agreement must be renegotiated). The input of the composition
algorithm is a set of provided input parameters, required output parameters, and a
vector with bounds for the SLA features. The composition algorithm first performs a
forward search in order to identify possible workflows. Every workflow satisfies the
SLA bounds of the user and transforms the given inputs into the required outputs.
Out of the set of candidates, they then choose the workflow that is best with respect
to predefined priorities among the SLA measurements. While the technical quality
of the approach is rather poor, e.g., the description of the composition routine is sig-
nificantly flawed, the approach brings some new interesting nonfunctional properties
that are not considered by other approaches. However, the discussion of related work
is quite insufficient. For example, the difference to Zeng et al. is not only the type
of considered nonfunctional properties but that the composition is not based on a
template but on a search algorithm. Summarizing, the approach is weak from the
functional point of view but provides some interesting nonfunctional properties that
are not considered by others.

4.1.1.2 Backward Search

Wu et al. address the same setting as Thakkar et al. but address it through backward
chaining using a distance-based heuristic [162]. The basic search algorithm is a
backward search algorithm that starts at s∗ and prepends operations to the current
plan; the state resulting from a prepend step is the old state minus the outputs of
the prepended operation plus the inputs of the prepended operation. The algorithm
stops when the empty state has been reached. This is a formal flaw, because this is
usually impossible, and the algorithm should terminatewhen a subset of s0 is reached.
The choice of operators to be prepended is driven by a heuristic computed in a
preprocessing step. Ironically, the heuristic cannot be computed efficiently, because
it already explores the whole search space. Apart from that, it is unclear why a
heuristic is needed at all for this unduly simple problem.



4.1 Propositional Systems Without Background Theory 65

Another approach of this section is presented by Matskin et al. [95]. The concrete
composition algorithm is not even described, but the requests are of the same type
as in the case of [149]. There seems to be no relevant novelty.

Pu et al. perform composition based on complex input and output types [125]. The
difference to the above approaches is that inputs and outputs are not only described by
atomic parameter names but by complex data types as used in XML schema. Given
the lack of semantics, which is already a conceptual shortcoming of the simple
problems described above, this approach must be considered almost absurd. The
main problem of the syntactical approaches, namely that the human must check
the proposed solutions if they are semantically valid, is much worse in this setting,
because the semantics faults are harder to track. For example, we could require
a type MyClient(cname,transaction[0,*]) that contains the client name and a list
of her transactions based on the two types Client(cname). There are two services:
The first receives a Client and returns the associated Employee. The second accepts
Employee[0,*] and returns the last transaction that was approved by every employee
listed in the input. The algorithm provided by Pu et al. finds a solution that determines
the employee of the client and creates a list only with this employee. This list is
passed to the second service, which delivers a transaction, which is again inserted
into a new list of transactions (of length 1). Then, a new complex type is created,
together with the client name from the beginning and the list of transactions. Now
the resulting type contains a list of transactions, but it contains all the transactions
that were approved by the employee associated with the client, which is obviously
not what was originally intended. The usage of a cost measure slightly alleviates this
problem, but the general problem remains.

4.1.1.3 Dependency Graph-Based Approaches

There are a number of approaches based on the so-called dependency graphs. The
idea of dependency graphs is to capture relations among services within a graph
structure, which is then used to construct a composition.

Initial Models

First Brogi et al. present an approach that considers ontological matchmaking [29].
The initial situation s0 and the goal situation s∗ are sets of desired ontological con-
cepts, e.g., username or address. First, their algorithm creates a dependency graph
(DG) that consists of data nodes ND and process nodes NP . Combined with the
concepts in s0 (s∗ respectively), the data nodes ND constitute a set I (O respectively)
of usable (required) data. For the creation of the dependency graph, they iteratively
run a matching algorithm that identifies services that can either work with the data in
I or provide at least one element of O . This matching step considers not only exact
matches, but also subsuming types, e.g., services are also selected if they require a
more general type than the one available. For every matching service, the algorithm
adds one process node for the service (unless it is already inserted) and one data
node for every input and output concept of the service that is not part of the graph



66 4 Composition Without a Given Structure

already. It then adds an edge from the nodes of the input concepts to the respective
process node and edges from the process node to the nodes of its outputs, respec-
tively. This process ends when no more service can be inserted into the dependency
graph. Second, it constructs a concrete composition from the dependency graph by
first determining the relevant processes using backward chaining and then, out of
this set, computing a sequence of “firable” processes; that is, it creates a sequence of
services that can be invoked with the given inputs and that obtain the desired outputs.

While there is some novelty in the construction of a dependency graph, the
improvement compared to simple backward chaining seems to be rather slim. The
novelty of the dependency graph is that it defines a structure in a preprocessing step
that then helps avoid decisions during the search process that would yield dead ends.
The absence of quality values makes it hard to qualify different solutions, so the
qualitative advantage or disadvantage compared to simple backward chaining or for-
ward chaining is not clear. Given the little relevance of the setting due to the lack of
semantics, however, there is no gain in going into a more detailed discussion about
this point.

Almost at the same time, a similar approach was presented by Hashemian et al.
[54, 55]. Instead of having data nodes and process nodes, the dependency graph in
their approach has only data nodes, and there is an edge between node v1 and v2
if at least one service has v2 as an output and requires v1 as an input; the service
may also require more inputs and produce more outputs. The edge is labeled with
the set of services that satisfy this property. The query is defined by a set of pairs of
input and output concepts, which are called dependencies; in [55], a query is a pair
of sets of inputs and outputs, respectively. For each such pair and for every output
concept in the pair, the algorithm searches for a path from the inputs to the respective
output concept. An additional feature considered in [55] is the cardinality of inputs
and outputs; that is, it can be defined that two objects of a particular type are needed
instead of only declaring that “some” object of that type is needed.

There are some difficulties with the way how Hashemian et al. make use of the
dependency graph. First, the introduction of cardinalities does make sense in this
setting. More precisely, it does not matter if a service requires one object of the
type city, two such objects, or any other constant number. Once it is clear that at
least one such object is needed by a service, we need a plan of how to achieve it.
But when we have this plan, it can be used arbitrarily often again to produce further
objects of that type (which simply yields two equal objects). Second, the composition
approach presented by Hashemian et al. is also unsound in that compositions which
may contain services whose inputs are not completely provided. For example, if we
want to get from concept a to concept b and there is a service that has two inputs a
and a′ and needs both to produce b. Then their approach will return the service as a
solution, because it defines an edge between a and b in the dependency graph. The
fact that someother object a′ is requiredmay be encoded in the label but is not relevant
in the path finding problem; this requirement is simply omitted. Summarizing, their
approach is hardly suitable for solving the tackled problem.

A third approach at that time considering something like a dependency graph was
presented by Liu et al. [88]. Here, a structure called “deduced network” is computed



4.1 Propositional Systems Without Background Theory 67

in order to determine the possible compositions. The novelty here is that execution
prices are considered. However, the quality of this approach is rather poor, because
they compute a composition for each output separately and then consider all possible
combinations of solutions for the individual subgoals. Among these, they choose the
composition with the optimal cost, but it is for example not clear, whether the same
service counts twice.

Extended Models

Akkiraju et al. apply an hybrid search to solve the composition problem [5]. The
algorithm receives a set of services, a set of provided concepts, and a set of required
concepts. First, it computes which services may be relevant for a solution through
backward search. Using the remaining services, they then perform a forward search
that is guided by a heuristic that is not explained. The approach does basically
the same as the algorithm presented by Brogi et al. [29]. Even though it considers
ontological concepts in the evaluation of the quality of a solution, the relations among
the concepts and their similarities are apparently not considered in the search process
itself. Hence, there is no significant novelty in this approach.

Zhou et al. solve the composition problem based on binary trees that encode the
dependencies among services [170]. The basis of the computation is a so-called
complete service invocation tree. Based on this tree, other data structures are derived
in order to find a composition. There is no significant novelty in the approach over
earlier approaches; in particular, nonfunctional properties are not considered. Since
relevant-related work is practically not discussed (in fact, none of the formerly dis-
cussed approaches within this section is mentioned), I cannot identify any novelty.

Bouillet et al. describe an approach that solves the same problem as the approaches
discussed byAkkiraju et al. [27, 28]. The difference ismerely terminological, because
they refer to concepts as tags. Even though they claim to use an ontology and to con-
sider subtypes, the planning algorithm used has no native support for this background
knowledge, and it is not explained how this knowledge is provided to the planner.
Hence, we do not know if and how the type hierarchy can really be considered in the
composition process. The discussion of related work (only Lécué et al. and Akkiraju
et al. are discussed) does not reveal a significant novelty neither.

Degeler et al. propose an approach that considers the response time of a com-
position as a nonfunctional criterion [45]. The underlying model is not explicitly
called dependency graph, but it has a very similar semantics to the one discussed
above. By a simple forward search in the set of possible data flows among services,
they determine the minimum response time that any composition has that reaches a
particular concept. Then, they apply a backward search individually for each concept
to get the “cheapest” composition for the respective concept. The approach brings
no novelty and is significantly flawed. First, the approach is not sound, because the
backward search does not consider the case that there are no services that can produce
required inputs of a service used to provide a goal concept. Second, the model they
use assumes that one creates n compositions if n concepts are desired and that these
are all executed in parallel. However, this is not a reasonable composition model, in
particular given other nonfunctional properties such as price.



68 4 Composition Without a Given Structure

Another solution to this problem was proposed by Blanco et al. [25]. They con-
struct a dependency graph quite similar to the one proposed by Brogi et al. [29] but
use the notion of Petri nets instead. The innovation is that they consider transactional
properties at a risk level as proposed by El Haddad et al. [50]. The difference to El
Haddad et al. is that no template is given, but that the composition algorithm tries to
find a composition that transforms a set of given input concepts into a set of required
output concepts. Some nonfunctional properties (number of service instances, exe-
cution time) are considered through constraints (no optimization). As discussed in
Sect. 4.1.2, Petri nets are a quite unsuitable model for service composition. They
avoid the mentioned problems by not consuming markings from the inputs places
when firing transitions, but then one wonders why they use Petri nets at all. Summa-
rizing, the consideration of transactional properties is a novelty, but the model used
in the approach is not convincing and the overall problem of finding compositions
for concept transformation is still rather irrelevant.

4.1.1.4 Application of GraphPlan

The first one to apply the GraphPlan algorithm [26] to this type of composition
problem were Rahmani et al. [126]. The basic idea seems to be that the search
process is guided by the distance of the nonfunctional properties to the initial solution.
However, the composition algorithm is not described in detail, and, in general, the
formalism of the paper is significantly flawed. It is not clear how the nonfunctional
properties can be reasonably connected with a heuristic for functionality. Apart from
that, given the simplicity of the problem, it is also unclear why a heuristic is needed
at all.

Yan et al. proposed a modified version of the standard planner GraphPlan that
considers QoS-properties of actions in order to solve the problem [165, 166]. In
the modified version, every action node is associated with the cost-properties of the
respective action and each proposition node is associated with an optimistic estimate
of the costs necessary to produce it. The idea of applying GraphPlan in this setting
is somewhat awkward, because the actions do not have negative postconditions, so
the heart of GraphPlan, which are the mutexes, are not required. So, approach model
does not exploit the strength ofGraphPlan but inherits its rather complicated planning
process; this even forces them to add a solution reduction algorithm. Moreover, the
computation of costs is not reasonable, because they assume the cost for a proposi-
tion p to be the cost of the action that produces p plus the maximum cost among the
properties within the precondition of the action. But taking the maximum here is not
correct, because if the propositions in the preconditions of an action are achieved by
several independent operations, only the cost of one of them is considered. Summa-
rizing, Yan et al. add two QoS-properties to the composition model but unnecessarily
complicate this actually which is very simple problem.

Recently, Zou et al. have addedQoS-properties and preferences to the composition
model [171, 172]. The input of the algorithm is a set of service operations, a set of
input parameter names, a set of output parameter names, a set of QoS bounds, and



4.1 Propositional Systems Without Background Theory 69

weights for the QoS-properties. A service operation w has a set of input names Iw,
output names Ow, and values for the QoS-properties Qw. The set of query input
variable names are the initial state s0, and the query output variable names are the
goal situation s∗. A service operation is applicable in a state s iff Iw ⊆ s, and the
state resulting from the application is s ′ = s ∪ Ow. A solution is a sequence of
operations such that the obtained state is a superset of s∗. The QoS-properties are
aggregated like in [167], and, among the set of valid solutions, the one that optimizes
the weighted QoS-aggregation is chosen.

4.1.2 Composition with Preconditions and Effects

Approaches within this section rely on operations that are described in terms of
propositional preconditions and postconditions (maybe in addition to inputs and
outputs). Hence, for each operation o, we can simply create a planning action a with
the same precondition and postcondition. Except ASTRO, all the approaches are
monotonic, which means that operations have only positive postconditions; that is,
the postcondition only contains positive literals. In ASTRO, operations are part of
state transition systems, so the ability of an operation to be fired must be encoded
using state literals, which must be negatable. The four paradigms.

4.1.2.1 Constructive Theorem Proving

In [79], SvenLämmermann proposed an approach to service composition based on so
calledmeta-interfaces. The rough idea ofmeta-interfaces seems to be that they define
functionalities (called axioms) in terms of typed variables or constants. A functional-
ity is encoded in terms of propositional logical preconditions and postconditions. A
precondition may contain variable names, logical propositions, and subtasks, which
are basically lambda-functions that must be solved first. It is satisfied if each of the
mentioned variables are known to have been initialized with a value, if the logical
propositions are known to be true, and if the subtask has been resolved. The post-
condition may contain a variable name, propositions, or an exception; these may be
joint also by a disjunctive operator. Given these meta-interfaces, a set of logical rules
can be derived. The query fed to the theorem prover is then as follows: Given the
rules obtained from the meta-interfaces and a set of variables that is assumed to be
set, can we infer that a particular variable can be set?

The two relevant features that most of the other approaches in this section do not
have are subtasks and conditional postconditions. Other approaches in this section
describe a service with a set of inputs, a set of outputs, preconditions, and postcondi-
tions; preconditions and postconditions are conjunctions of propositional atoms. In
contrast, Lämmermann allows for subtasks to contain in the preconditions. A subtask
itself is also described in terms of preconditions and postconditions, so it can alter-
natively be seen as an additional input of the type of a lambda-function. Hence, to



70 4 Composition Without a Given Structure

invoke the respective operation it is not necessary to provide an object of a particular
type but a function that implements the specified functionality. The second feature is
the possibility of disjoint postconditions of operations, which allows for exception
handling. This forces the composition algorithm to pursue alternative execution runs
of the composition it is creating. The resulting compositions reflect this feature by
containing exception handling or conditional statements.

Compared to the enormous formal corpus that is introduced to describe the
approach, the overall benefit is rather small. As for all approaches within this section,
the semantic power of the queries that can be sent to the system is quite small. How
interesting can it be to determine whether or not a particular variable can be set?
Of course, if we would impose constraints on the properties of the object that we
set to a variable, the issue would be more interesting, but this is never the case.
The low semantics are an issue of all the approaches discussed in this section, but
most of them are very easy to understand while the description of this solution is
very complex and little comprehensive in many aspects. For example, the descrip-
tion of meta-interfaces with the variables, constants, subtasks, and axioms is little
comprehensive when compared with the simple IOPE models that underly the other
approaches discussed below.

4.1.2.2 Classical Search Algorithms

Kona et al. present and approach for automated service composition that includes
propositional log [74, 75]. They provide a naive forward search algorithm that
reminds one of the work of Thakkar et al. [149]. The two additional features to
Thakkar are conditions and ontological concepts, but none of them is really con-
sidered in a convincing way. Conditions are only sets of propositions, so there is
actually no relevant difference between inputs and conditions for the algorithm. Sec-
ond, ontological concepts arementioned but not used in an appropriate manner.More
precisely, the subsumes-relation is used on sets of inputs, for which it is not defined.
Also, neither the algorithm nor the examples show the usage of any ontological
subsumption reasoning. Apart from this, the forward chaining-specific problem of
incorporating useless services is not resolved at all, so the solutions will usually also
contain many services that are irrelevant for the respective query. Summarizing, the
approach brings no relevant improvement compared to earlier attempts.

For the same setting, Sheshagiri et al. propose a backward chaining algorithm
[135]. The critics are the same as for Kona et al. except the use of backward-chaining.
Using backward-chaining at least saves Sheshagiri et al. from constructing compo-
sitions that contain irrelevant service operations. However, the distinction between
inputs and preconditions on one hand, and outputs and postconditions on the other
hand is obsolete in this form. So the overall model is quite similar to the ones dis-
cussed above and brings no actual novelty.

Agarwal et al. developed a system called Synthy that adds contingency planning
and QoS-properties to the above-explained approaches [1, 2]. The algorithm has
a logical composition phase, which creates an abstract workflow, and a so-called



4.1 Propositional Systems Without Background Theory 71

physical composition phase, where the abstract workflow is instantiated taking into
account the nonfunctional properties. Unfortunately, the logical composition phase is
not described sufficiently; they only say that they use limited contingency planning,
but it is impossible to figure out how this actually works. The second phase then
applies a simplified version of the QoS-optimization model proposed by Zeng et al.
[167]. Summarizing, the approach is conceptually relevant due to the integration of
planning and QoS, but the formal depth is so low that it is impossible to build upon it.

4.1.2.3 Approaches Based on Resource Models

There are basically two approaches that build on the idea that service composition
makes use of resources that are processed. The first is based on Petri nets while the
second is based on linear logic. I discuss the two approaches in detail.

Petri Nets

Narayanan et al. were the first to introduce Petri nets to model the consumption and
production of data in a service composition [113]. The idea is that the set of all
services is encoded as a Petri net, and the task is to find a sequence of transition
activations that transforms the initial marking into a goal marking. The Petri net
is constructed as follows. For each service operation, there is one transition in the
network, and there is one place for every possible assertion over the world (logical
atom) and every variable name that is an input or output of a service operation. There
is a link between a place and a transition if the assertion or the variable belonging
to the place is an input or a precondition of the operation. Likewise, there is a link
between a transition and a place if the assertion is an output or an postcondition
atom of the operation. The concrete query defines the markings of the network in the
beginning. The composition problem is to find a sequence of transition activations
such that a given goal marking is reached. Note that, even though the behavior is
expressed in situation calculus, it is de facto ground to propositional logic, which is
why I discuss it within this section. Later, similar approaches have been proposed by
other authors.

Linear Logic

Rao et al. proposed a resource-based approach through the notion of linear logic
[77, 127, 128, 129]. A linear logic formula is syntactically similar to propositional
logic only that it uses the junctors ⊗,⊕,� instead of ∧,∨,→, respectively. The
semantics of A ⊗ B is that both resources are available, and A ⊕ B means that
one of the two is available. α � β means that the resources are consumed as
described in α and new resources are produced as specified in β. In contrast to
propositional logic, a proposition may be contained several times in a conjunction
or disjunction in order to express how often the respective information is contained.
Services have inputs, which are consumed on execution, and outputs, which are
produced after execution. In the descriptions, the functional and nonfunctional parts
are separated, but this distinction is not relevant in the formal model or for the solver.



72 4 Composition Without a Given Structure

Required but nonconsumed properties must bemodeled by being both consumed and
produced by a service. So similar to the other approaches discussed in this section, the
query defines provided inputs and nonfunctional properties/resources on one hand
and desired outputs and demanded nonfunctional properties on the other hand. A
(very limited built-in) background theory allows to count the resources available and
prevents that more resources than available are used.

Discussion of Resource-Based Composition

In spite (or perhaps because) of the attention they gained in the community, we
should make clear that these models are substantially unsuitable for the problem of
service composition. While the applied modeling techniques may be interesting in
industrial manufacturing systems, digital data, which are the resources of interest
here, cannot be considered as consumable units. Once a piece of information is
created, it can be used arbitrarily often without being consumed; there is simply no
need to keep track of the number of objects available of a particular type. This is
the same objection I already discussed for the approach of Hashemian et al. The
only acceptable argument given in [127] is the application of these techniques to
nonfunctional properties such as budget; for example, the budget is 20 EUR and
every service consumes a certain amount of the budget. However, putting these
nonfunctional properties on one level with the functional properties, which are also
consumed and against any intuition cannot be used for a second time, yields a quite
inappropriate and unnecessarily complex model. Even if it is possible to avoid the
consumption semantics in individual cases by declaring every input also as an output,
this yields a very unnatural and blown up model.

4.1.2.4 Abduction-Based Service Composition

Okutan et al. propose a composition algorithm based on logical abduction [115,
118]. In logical abduction, we assume some knowledge base α and an observation
β as given, and we are interested in an explanation γ such that α ∧ γ |= β holds. In
the case of service composition, the formula α is a conjunction of service operation
encodings (e.g., in terms of rules) and an initial situation, β encodes what shall be
known for the outputs of the composition. The task of the composition algorithm is to
find the formula γ, which encodes the application of service operations. Intuitively,
the service descriptions (α) together with the information how the services are used
γ explains how the desired outputs β are obtained. In order to cope with the problem
that knowledge is bound to situations, Okutan et al. use the event calculus to encode
the knowledge and the services.

The idea of modeling the composition task as an abduction problem is intuitive
and may be an interesting option, but the approach is still quite preliminary and
need substantial improvement in order to be comparable with the other FOL-based
approaches discussed below. Even though this is not a general limitation of the
abductive approach, it is currently restricted to propositional logical preconditions
and postconditions. Only one problem arising from this limitation is that a type-



4.1 Propositional Systems Without Background Theory 73

hierarchical evaluation of parameters is not possible. For example, an object of the
type employee cannot be used as an input for a service that requires an object of the
type person, even though if employee is a subtype of person. There is a basic support
for nonfunctional properties (execution duration, price, reliability, availability), but
the model is rather poor. For example, increasing costs increase the score of com-
positions while they should decrease it, and there is no weighting of the qualities.
Summarizing, the abduction-based approach presented in [115] is an interesting ini-
tial work but still needs several improvements in order to be on the same level as the
FOL-based approaches discussed below.

One significant advantage of the abduction-based approach is that it is directly
apt for partial ordered composition. That is, the abductive reasoner does not create
a totally ordered composition but only fixes the data flow, which defines a par-
tial order on the service invocations. This property reduces the search space size
significantly.

4.1.2.5 The ASTRO Approach

Probably inspired by the Roman model, Traverso, Pistore, and Bertoli developed
a composition algorithm that considers services as finite automata [23, 121, 122,
123, 151]. The inputs of the composition algorithm are a finite set of finite state
automata, which correspond to the existing services, and a set S∗ of accepted (and
possibly ranked) goal states. In ASTRO, the state of a service is a conjunction of
propositional logical atoms encoding the values of its variables. The state of the con-
sidered system as a whole is defined as the product of states of the services; the initial
state s0 is implicitly defined through the product of initial states of the services. The
composition algorithm must construct a controller that drives the whole system into
any of the goal states of S∗ by exchanging messages with the services and, thereby,
changing their state and the state of the system as a whole. A particular challenge in
this setting is that the automata that model the services are not generally determinis-
tic, so the controller must be able to cope with nondeterministic evolvements of the
environment it interacts with.

The twomain differences to other approaches within this section are the consider-
ation of constraints on the invocation of service operations and the nondeterminism
of those operations. For example, the request for the availability of a product could
be true or false; while other approaches subsumes these two responses under a type
definition, the ASTRO model considers them on the value level (in form of different
response messages). These are important aspects, because both of them impose a
significant increase of the computational complexity. In fact, one could model the
services of the ASTRO model simply as one planning operation and encode the
source and target states in the preconditions and postconditions. For example, sup-
pose that a service has a transition t from state s to states {s ′

1, . . . , s
′
n}, then t is an

operation of the service, andwe could encode it as a planning action in set theorywith
preconditions s, positive postconditions s ′

1 ∨ · · · ∨ s ′
n , and negative postconditions



74 4 Composition Without a Given Structure

s. So we can understand the addressed problem as a nondeterministic variant of the
other approaches within this section.

Similar to the discussion on the Roman model, my main objections against this
approach is the rather low benefit of automation measured as the ratio between
specification effort and achievement of automation. First, the user of the ASTRO
framework must specify the goal states in terms of states of services. In other words,
the user has already resolved the selection problem by deciding which services are
part of the final composition; no other approach makes this assumption. Note that
this also makes the consideration of nonfunctional properties obsolete, which are
never a topic within the ASTRO framework. Second, the user must not only solve
the selection problem but also know the admissible final states of those services and
design the query such that it leaves the system in a consistent state. Third, the data
flow is not considered in the automatization process, and the user must specify it
in advance; in particular, the user must say which inputs of a service are read from
which outputs of which other service. Having the data flow completely encoded
this way, the parameters occurring in the operations of the services are fixed, and
the communication with the services can be understood as sending and receiving
parameter-less signals. The remaining problem is to find a tree that reflects the
possible signals exchanged by the controller and the service community. While this
problem may or may not be hard to solve from a computational point of view, the
user is certainly faster in simply writing the software than to specify all these details
for then having the algorithm automate a tiny part of the task.

Apart from these utility objections, there is also a problem with the soundness
of the approach. This can seen best in the latest variant [23], which summarizes
the efforts of the earlier attempts. The problem is that the controller may invoke
service operations with data that is not available. For example, it may request the
shipper service for an offer for a package of some size before the producer service
is invoked to determine the size. This is possible, because the requirement definition
only defines the partners between the data must flow, but there are no restrictions on
the availability.

Huai et al. presented an approach based on the ASTRO model that applies query-
based learning to solve the composition problem [61]. Similar to the Eagle language
developed by Traverso et al., they use computational tree logic (CTL) to encode the
composition problem. However, the approach differs from the above one only in the
algorithm that solves the problem, so themajor critics discussed above hold likewise.

Summarizing, the ASTRO project enhances the propositional-based composition
by conditional branches and by a service model that considers usage restrictions
on service operations, but its utility for the user is little convincing. Of course, the
consideration of protocols that limit the way how services are invoked is an important
feature. Also, the integration of different possible outcomes of service invocations
into the controller is an improvement; in fact, these are equivalent to if-then-else
constructs. Unfortunately, the way how the user requirements are specified is little
convincing, and it is not clear why the user should ever make the effort to provide



4.1 Propositional Systems Without Background Theory 75

all these formal specifications. However, these two aspects are not necessarily tied
together. One can envision a framework that takes the underlying service model used
in ASTRO but works with a different form of requirement definitions.

4.1.3 Concluding Discussion

Table4.1 summarizes the approaches discussed so far in this section. It showswhether
or not an approach considers nonfunctional properties andwhether compositionsmay
contain diverging control flows (if-statements in the control flow). Loops are gener-
ally not considered by the approaches in this class. I do not distinguish between the
actual information that is encoded (parameters or preconditions and postconditions),
because this has no effect on the algorithm. The semantics of these propositions is
either “a datum of some type x is available” or “some condition c is true”, but actually
the first assertion is only a special case of the second.

In spite of the number of approaches in this subclass, the relevance of the problem
addressed here is quite small. There are two major concerns about most approaches
within this section, which I discuss in the following.

First, the problem is technically so simple that the need to invent a new composi-
tion algorithm is quite unclear. Unless nonfunctional properties are considered, the
composition task can be simply encoded using PDDL and be solved extremely fast
using standard planners, which makes many approaches obsolete [5, 28, 29, 54, 75,
95, 135, 149, 162, 171].

Second, the practical relevance of most of the approaches is very small due to the
almost complete absence of semantic information. Except for theASTROproject that
almost specifies the whole solution in advance, the description of desired behavior is
highly insufficient. Consider that we have a composition problem where we provide
an input Position and an output Telephone Number. There are numerous possibilities
for the semantic connection between the desired telephone number and the position.
It could be the phone number of the house closest to the position, the number of
the mobile phone that most recently called from that position, the number of a local
taxi company, the number of an employee responsible for the respective area around
the position, etc. It is highly questionable that the composition algorithm returns a
composition that realizes the desired semantic relation.

Probably involuntarily, Hashemian et al. show that the semantics of this compo-
sition model becomes quite absurd in the case that operations need more than one
input of the same type. For example, they suggest a service operation that computes
the distance between two cities, i.e. the operation requires two city objects as inputs.
However, the composition algorithm has no reason to provide two different cities
to that operation, and, in fact, their approach simply copies the solution to get the
first city to provide the second city, so the objects will be (always) the same. This
example shows in a very illustrative way that these propositional techniques can be
hardly considered more than heuristics for FOL composition algorithms discussed
above that can compute solutions of a relaxed model fast.



76 4 Composition Without a Given Structure

Ta
bl
e
4.
1

O
ve
rv
ie
w
of

ap
pr
oa
ch
es

w
ith

ou
ta

gi
ve
n
st
ru
ct
ur
e
th
at
re
ly

on
ly

on
pa
ra
m
et
er

na
m
es

or
pr
op
os
iti
on
al
co
nd
iti
on
s

Q
oS

=
Q
ua
lit
y
of

Se
rv
ic
e
(N

F-
Pr
op
er
tie
s)
,A

lt
=

C
om

po
si
tio

ns
w
ith

al
te
rn
at
iv
e
co
nt
ro
lfl

ow
s
(i
f-
st
at
em

en
ts
)

=
su
bs
ta
nt
ia
lly

su
pp
or
te
d,

=
pa
rt
ia
lly

su
pp
or
te
d,

=
no
ts
up
po
rt
ed
,

=
su
pp
or
te
d
bu
ti
rr
el
ev
an
tf
or

au
to
m
at
io
n

T
hi
s
ta
bl
e
tr
ie
s
to

su
m
m
ar
iz
e
th
e
di
sc
us
si
on

s
on

th
e
ap
pr
oa
ch
es

of
th
is
cl
as
s.
T
he

so
rt
in
g
w
ith

in
th
e
lis
tc
or
re
sp
on

ds
to

th
e
or
de
r
in

w
hi
ch

th
e
ap
pr
oa
ch
es

w
er
e

di
sc
us
se
d.

T
he

do
ub
le

li
ne
s
se
pa
ra
te

th
e
ap
pr
oa
ch
es

di
sc
us
se
d
in

di
ff
er
en
t
su
bs
ec
tio

ns
fr
om

ea
ch

ot
he
r.
L
ite

ra
tu
re

re
fe
re
nc
es

ca
n
be

fo
un

d
in

th
e
re
sp
ec
tiv

e
di
sc
us
si
on
s
of

th
e
ap
pr
oa
ch
es



4.1 Propositional Systems Without Background Theory 77

The two positively remarkable properties addressed by some approaches of this
subclass are the potential nondeterminism of operations and the idea of partial
ordered planning through abduction. Nondeterminism is considered by Lämmer-
mann [79] (through the notion of exceptions) and in the ASTRO project [23]. That
is, the composition algorithm must take into account that the invocation of an opera-
tion may have several results, and it must find a solution for each of these outcomes.
Abduction is sketched by Okutan et al. [115], which is highly interesting due to
the partial ordering of operations. Searching for compositions that are only partially
ordered greatly simplifies the search space. However, none of these characteristics
compensate the shortcomings of the low semantics imposed by the purely proposi-
tional preconditions and postconditions.

4.2 Propositional Systems with Background Theory

The only difference between this subclass and the previously discussed one is that
there is some kind of background knowledge that must be encoded in addition to
the service operations themselves. The most relevant case is the encoding of a type
hierarchy, which is discussed in Sect. 4.2.1. For example, one service determines
the price of a product in EUR and another service accepts currency objects as input.
Now we have the knowledge that every amount in EUR is also a currency value,
hence EUR(x) → Currency(x). Hence, we would expect that the second service can
be run with the output of the first one. However, approaches discussed above cannot
connect these two services based on the type hierarchy information.

Again, since approaches in this section only ever ask for the derivation of some
object of a given type, we do not need the predicate calculus version of the knowl-
edge base. For example, we can rewrite the above rule simply as EUR → Currency,
meaning that “whenever we have some object of type EUR, we also have an object of
type Currency”. These propositional rules can then be simply encoded as additional
planning actions.

The concept of simple type hierarchies can be generalized by the idea of simi-
larity matching. Instead of saying that the output of an operation o1 can be used as
input of operation o2 if it is as least as specific as the respectively required input
type, a similarity function is used instead to decide whether or not the object can be
passed in that way. So similarity matching is somewhat a semantic generalization of
the strict type hierarchy. In particular, we could have a similarity measure that takes
into account several ontologies and tries to match them based on lexical compar-
isons. Composition approaches that support this type of background knowledge are
discussed in Sect. 4.2.2.

From the complexity viewpoint, approaches using similarity functions are slightly
more complex to encode as a propositional logical planning problem. The reason is
that the similarity function encodes the rules that are needed to represent the concept
compatibilities implicitly. Computing the existence of such a rule for every pair of
concepts requires quadratic time in the number of concepts. However, this translation
can still be considered efficient.



78 4 Composition Without a Given Structure

4.2.1 Composition with Type Hierarchies

4.2.1.1 Classical Backward Search

A simple backward greedy search was proposed by Weise et al. [161]. The type
hierarchymatching is hidden in the implementationof a predicate called “Promising”.
Compositions are simply ordered by some heuristic c, where c “combines the size
of the set unsatisfied parameters, the composition lengths, the number of satisfied
parameters, and the number of known concepts”. The simplicity of this solution
underlines once more the trivial problem character.

The approaches published by Bartalos and Bieliková are based on a simple back-
ward chaining algorithm [15]. The algorithm is based on a predefined graph that
defines which services provide data required by other services. This idea is similar
to the dependency graph proposed in [29, 54]. In contrast to some other approaches
in this section, it considers the ontological type hierarchy. Later, they published
improved variants of their algorithms that can deal with simple first-order logic con-
straints (cf. Sect. 4.3.2.4).

In the same year, Talantikite et al. propose a backward chaining algorithm [148].
They claim that they improve earlier approaches [10, 11] (cf. Sect. 4.2.2) with bet-
ter runtime through a precompiled structure they call semantic network. However,
neither are these claims supported by evaluation nor is the concept of their seman-
tic network sufficiently innovative to constitute a significant improvement; these
networks can be computed efficiently also by other approaches. In contrast, the
approaches in [10, 11] actually do consider similarity that exceed mere type sys-
tems, while Talantikite et al. only consider exact matches and subsumption matches.
The approach also considers some nonfunctional properties (exec-time, resource
consumption) by ordering solutions according to a predefined preference function.
Hence, the approach provides a composition algorithm and some consideration of
nonfunctional properties that we were missing in the work of Constantinescu et al.
but it brings no significant improvement compared to existing solutions.

Later, Rodriguez-Mier et al. presented a composition technique that performs a
heuristic backward search based on a layered dependency graph [132]. The set of
services is partitioned into layers such that Li contains the services whose inputs can
be satisfied by the union of outputs of services contained in L j with j < i . The first
and the last layer contain only a dummy service with outputs corresponding to the
request inputs and inputs corresponding to the request outputs respectively. Then, an
A∗ algorithm is applied to search backwards for a solution. Every node represents a
set of (ontological) types that must still be achieved, and the root node is the set of
required outputs. For a node n, there is a successor for each set of services whose joint
outputs cover the types described in n; for types not coverable in this way, a dummy
service is introduced that has the same type has an input an defers the decision of
how to obtain it. A node is a solution if it is empty. The overall description and
evaluation of the approach is good, and the used heuristic seems to be admissible. Its
only drawback seems to be that nonfunctional properties are not considered at all.



4.2 Propositional Systems with Background Theory 79

4.2.1.2 Contingency Search

The earliest works that consider ontological type hierarchies in service composition
were presented by Constantinescu et al. [41, 42, 43]. In this approach, inputs and
outputs of service operations have a typewith a domain. An operation is applicable if,
for each input, we have a variable whose domain is a subset of the domain of the input
variable; i.e., the input must have a value that is accepted for the input variable. In the
ontological context, this is often called the subsumption relation, but Constantinescu
et al. consider also non-ontological types, which is why the applicability is defined
this way. While bringing ontological matchmaking to service composition was a
conceptual novelty at time of publication, the overall quality of their contribution
is rather thin. The formal model is partially unsound, e.g., in the definition of the
plugin match for services and query in [42], and the description of composition
algorithms is insufficient; in fact, a formal algorithm is only specified in [41], and
it is kept very abstract. Also, planning with disjunctive postconditions is far from
being trivial; however, this is not discussed at all. Summarizing, Constantinescu
et al. presented the fundament for ontological-based service composition but the
composition algorithm itself is not convincing.

4.2.1.3 Genetic Programming Solutions

In the same paper as already discussed above, Weise et al. also propose a genetic
algorithm to solve the composition problem [161]. In every iteration, the composi-
tions in the pool are mutated by removing the first service with probability σ or to
prepend a new promising service with probability 1−σ; a heuristic is used as a fitness
function. Little surprisingly, the runtime of this technique (that frequently revokes
its own decisions) is much slower than the one of the simple search techniques.

Rodriguez-Mier et al. presented an approach that randomly mutates programs
based on a genetic algorithm [133]. The basis of the algorithm is a simple process
grammar that defines the language of all admissible programs. The fact that they
exchange control structures completely at random (e.g., replace an if-statement with
a parallel execution or vice versa) almost surely yields tons of absurd compositions.
Of course, thesemay produce the desired output types, but the resulting compositions
must be expected to be quite unintuitive and semantically unsuitable. Summarizing,
the approach is a technique to “gamble” for programs, but the degree of randomness
of programs together with the low semantic level renders it completely irrelevant.

4.2.1.4 Hybrid Techniques

Dependency Graph Composition

Jiang et al. present an approach that stores the optimal QoS value for each concept in
order to optimize the global QoS value of the resulting composition [63, 64]. Through



80 4 Composition Without a Given Structure

forward chaining, the algorithm first determines the services that can be executed
from the initial situation. Then, it iteratively “triggers” each applicable service and
updates theQoS value for each concept that is provided by the respective service. The
set of applicable services is extended by the concepts that are outputs of the services
already considered. After this procedure, they apply a backward search algorithm to
find the best composition with respect to QoS-properties.

Unfortunately, the approach exhibits several significant flaws. Not only is the
formal model inconsistent in many parts, also the claim that the algorithm provides
globally optimal solutions is false. Suppose for example, that concept a is given
and b and c are desired. If there is a service that computes b and c and has cost
3, and there is one service each producing b and c, respectively, with cost 2, then
the composition will include the two simple services, because they are the cheapest
local solutions; however, the costlier service would be better here. Also, the QoS
properties are unduly simplified into one single value, and the aggregation of these
values remains unclear. Since the comparison to related work is also very thin, there
seems to be no significant contribution going along with their approach.

Clustering Approaches

Wagner et al. present an approach based on ontological grouping [159, 160]. The
composition algorithm receives a set of services, a type ontology, and a specification
of a goal service as input. The algorithm consists of two steps. First, a directed graph
is computed where the node set corresponds to the set of services, and there is a link
between n1 and n2 if the service n2 subsumes the service n1. Subsumption is defined
as follows: Service n2 subsumes n1 iff for each input (type) of n1, n2 has an equal or
more specific input (type), and for each output of n2, n1 has an equal or more specific
output (type). Intuitively, n1 can be used whenever n2 can be used. This process
yields a graph with several unconnected node groups; every group has a root, which
is called the representative (most general service of the group). Second, a backward
chaining algorithm iteratively determines the representative services that contribute
to the (remaining) goal and add the corresponding cluster to the plan. If a plan is
found that does not have any open inputs anymore, it is marked as a solution. The
algorithm checks all possible plans and updates the solution whenever a plan with
better “utility” is found; utility here is expressed in terms of reliability and price.

In general, the algorithm leaves a rather weak impression. As so often for
approaches in this class, the simplicity of the problem hardly justifies the com-
plicated algorithms. First, the description of the algorithm has several conceptual
deficiencies. For example, the algorithm tries every possible plan, a strategy that can
hardly be considered an improvement for runtime. Second, a composition is a set
of links, but the algorithm does not at all explain how these links are added to the
plan; the complete logic is hidden in an opaque function computeNextStep. Third, the
approach claims to consider nonfunctional properties, but the QoS model is rather
weak. Indeed, the computation of the reliability measure as a “failure among all ser-
vices within the group” is a good idea, but unfortunately this is the only considered
property (a formula to compute the price is given but cannot be computed determinis-
tically). Apart from these objections, the service model considers preconditions and



4.2 Propositional Systems with Background Theory 81

postconditions, but these are completely ignored by the algorithm. Summarizing, the
approach brings no significant novelty with earlier approaches in the class.

Ma et al. proposed a further approach based on clustering [91]. Services are
clustered based on the outputs they produce. Then the clusters are used to compute a
possibly appropriate composition, but the paper fails to make clear how this works.
The computation is based on a search in a graph that is not formally defined. Hence,
it is not possible to verify the soundness or the evaluation of the approach.

4.2.2 Composition with Similarity Matching

An approach based on backward-chaining for types ground in multiple ontologies
was presented byAversano et al. [11].Going layer-wise, the approach tries in iteration
i to find possible sets of services that produce the concepts desired for layer i , where
the first layer corresponds to the goal state s∗. Each such set becomes a new node in
the search graph, and the algorithm is recursively applied to it. Ontological types of
inputs and outputs may stem from different ontologies. In order to determine whether
a service produces a desired output, the matchmaking algorithm considers the type
name, properties defined on the concept, and the relation to other concepts through
the subclass or superclass relation; hence, the matchmaking is not type hierarchical
but rather exact matching among possibly different ontologies. The search process is
guided by a node evaluation function that is based on nonfunctional properties. The
conceptual explanation of the function is reasonable, but a more formal definition
would be desirable. Its major weaknesses are that it does not support hierarchical
type recognition for types within one ontology, and that the support for nonfunctional
properties is rather rudimentary. However, given that it is one of the first approaches
in the class, it makes a significant contribution that exceeds the ones made by some
of the succinct approaches.

An approach closely related to the dependency graphs explained in the previous
section was proposed by Arpinar et al. [10]. The algorithm receives a set of input
concepts and output concepts, and it has the task to return a composition that obtains
the desired outputs given the inputs. It first determines the similarity for each pair of
(oy, ix ) where o is an output of service operation y and i is an input of a different
service operation x . The similarity is computed by their “ontological distance”, but
it is not explained in detail what this means. The result can be seen as a graph with
nodes corresponding to services and with an edge from node y to node x if y has
an output o and x has an input i such that the above condition holds. This graph
has two distinct nodes, one for the initial situation and one for the goal situation
with edges respectively for the query inputs and outputs. Then, for each input of a
service, they compute the “shortest distance” for each input starting from the user
input; unfortunately, it is not clear what is meant exactly by distance, but it may
be the number of edges. Third, for each service, the shortest distance is computed
(maximum among all shortest distances among its inputs). Finally, if the shortest
distance for the goal node is not infinite, a solution exists (and it has been computed
implicitly) during the former algorithm. Even though the approach provides a formal



82 4 Composition Without a Given Structure

model, the actual computation of similarity remains rather vague. Also, it is not clear
how the quality of services is considered in the composition process.

In 2006, Lécué and Léger presented a composition algorithm based on so-called
casual link matrices [83]. The general idea of casual link matrices is to store infor-
mation about which outputs of services can be used as inputs for other services.
The basis for this matrix are casual links between ontological concepts, which make
take values 1 (exact match), 2

3 (subsumption), 1
3 (plugin), and 0 if no matching is

possible. For every concept that is the input of any service, the matrix has a row and a
column. In addition, it has a column for each concept contained in the request. A cell
at position i, j contains a set of tuples (x, y) where x may be a service with i among
its inputs and having an output o whose similarity to the concept j is greater than 0.
In addition, x may be the concept j itself to denote that the concept is known; in this
case, y has the value 1. The algorithm Ra4C is supposed to find a solution through
regression-based search, starting from the desired concepts. Intuitively, it figures
out candidate services for the missing goals and, for each candidate, it recursively
invokes itself for the inputs of that candidate.

Unfortunately, the technical quality of the approach is very poor. In general,
the formal part of the paper is not only very complicated but also exhibits several
flaws. For example, the definition of the cells of a casual link matrix is not sound,
and the proof of the theorem on composability (which is should rather have the
status of a proposition) is technically unsound. However, the most crucial flaws are
contained in the composition algorithm itself. While the goals β are always treated
as a set of concepts, the algorithm seems to treat them only as a single concept. Also,
the algorithm simply ignores the tuples in the matrix that are defined on concepts
instead of services, which makes one wonder why these were introduced. Another
problem is that the algorithm returns a logical formula where the atoms correspond
to ontological concepts; it is not clear how a service composition can be constructed
from this formula. Summarizing, casual link matrices may introduce an interesting
concept for ontology-based service composition, but the Ra4C algorithm presented
in the paper cannot be considered a suitable solution for the composition problem
addressed in the paper.

In [82], Lécué and Delteil build on top of the Ra4C algorithm in order to only pro-
duce robust compositions. The motivation is that the Ra4C algorithm also considers
links between services that are only valid due to subsumption match, which is not
generally sound. For example, it allows to use a person object where an employee is
necessary, given that employee is a subconcept of person. Their approach is based
on the idea that it is possible to specify so called extra description for the more gen-
eral concept to cast it down to the more specific one. They suppose that these extra
descriptions can be computed automatically, but it is not explained how this can be
achieved. Hence, their approach does not constitute a convincing improvement.

Another approach considering similarity was presented by Chifu et al. [39]. The
approach is similar to the ones discussed above, and the only innovation worth being
mentioned is that outputs that cannot be obtained are added as a required input; this
makes the approach a little more robust. This is, however, the only new aspect of



4.2 Propositional Systems with Background Theory 83

their approach, and none of the related work discussed earlier is mentioned in the
paper.

4.2.3 Concluding Discussion

We can briefly summarize these approaches by saying that they consider more tech-
nical possibilities of connecting operations but do not resolve the semantic shortcom-
ings discussed in the previous section. That is, the consideration of type hierarchies
or similarity functions is a nice additional feature but does not resolve any of the
core critics discussed in Sect. 4.1.3. As long as we have no concise description of
the behavior, which is much more than the types of inputs and outputs even though
described through semantic concepts, compositions are mostly unlikely to achieve
the desired task.

Note that, apart from this discussion, there could be other types of background
knowledge imaginable, but there are no approaches using them. For example, we
could imagine knowledge of the form “if service k is used in a composition, then
service l may not be used” like applied for the case of template-based composition
Sect. 3.2. This type of knowledge could not be directly encoded into the planning
problem but would have to remain as a constraint on the meta level. However, I am
not aware of any approach that exploits this type of knowledge, and, of course, this
would not change anything about the above critics neither (Table4.2).

4.3 FOL-Based Systems

Approaches of this subclass allow to encode behavior on the level of knowledge
about identifiable objects. For example, we may talk about two zip codes and are
interested in the distance between the two cities belonging to those zip codes; there
will be objects for the zip codes, for the cities, and for the distance, respectively.
Forming expressions over objects is enabled by first-order logic (FOL).

I organize the approaches within this class into three further subclasses

1. There are approaches that, similarly to the above techniques, do not relate inputs
of operations to their outputs. Still, the behavioral description is more complex,
because within the set of inputs and outputs respectively, the objects can be
related to each other; that is, preconditions can relate the inputs to each other
and postconditions can relate the outputs to each other. Section4.3.1 discusses
approaches of this type.

2. If the postconditions of operations may relate outputs of the operation to inputs,
the space of possible compositions is generally infinite. Approaches that allow for
such postconditions but that make assumptions that avoid infinite search space
are discussed in Sect. 4.3.2.

http://dx.doi.org/10.1007/978-3-319-34168-2_3


84 4 Composition Without a Given Structure

Ta
bl
e
4.
2

O
ve
rv
ie
w
of

ap
pr
oa
ch
es

w
ith

ou
ta

gi
ve
n
st
ru
ct
ur
e
th
at
re
ly

on
ly

on
po
ss
ib
ly

on
to
lo
gi
ca
lt
yp
es

T
H

=
H
ie
ra
rc
hi
ca
l
Ty

pe
Sy

st
em

,
Si
m

=
O
nt
ol
og

ic
al

Si
m
ila

ri
ty

M
at
ch
in
g,

Q
oS

=
Q
ua
lit
y
of

Se
rv
ic
e
(N

F-
Pr
op
er
tie
s)
,
A
lt

=
C
om

po
si
tio

ns
w
ith

al
te
rn
at
iv
e

co
nt
ro
lfl

ow
s
(i
f-
st
at
em

en
ts
)

=
su
bs
ta
nt
ia
lly

su
pp
or
te
d,

=
pa
rt
ia
lly

su
pp
or
te
d,

=
no
ts
up
po
rt
ed
,

=
su
pp
or
te
d
bu
ti
rr
el
ev
an
tf
or

au
to
m
at
io
n

T
hi
s
ta
bl
e
tr
ie
s
to

su
m
m
ar
iz
e
th
e
di
sc
us
si
on

s
on

th
e
ap
pr
oa
ch
es

of
th
is
cl
as
s.
T
he

so
rt
in
g
w
ith

in
th
e
lis
tc
or
re
sp
on

ds
to

th
e
or
de
r
in

w
hi
ch

th
e
ap
pr
oa
ch
es

w
er
e

di
sc
us
se
d.

T
he

do
ub
le

li
ne
s
se
pa
ra
te

th
e
ap
pr
oa
ch
es

di
sc
us
se
d
in

di
ff
er
en
t
su
bs
ec
tio

ns
fr
om

ea
ch

ot
he
r.
L
ite

ra
tu
re

re
fe
re
nc
es

ca
n
be

fo
un

d
in

th
e
re
sp
ec
tiv

e
di
sc
us
si
on
s
of

th
e
ap
pr
oa
ch
es



4.3 FOL-Based Systems 85

3. Approaches that consider postconditions that relate inputs and outputs of an oper-
ation and that do not limit the potentially infinite search space are discussed in
Sect. 4.3.3.

4.3.1 Approaches Without I/O-Relations

The two approaches in this section are similar to the ones discussed in Sects. 4.1 and
4.2 except that preconditions and postconditions can contain relational information
referring to the inputs or outputs (but not both).

Composition of Relational Concepts

Ambite et al. propose a system for the composition of services where inputs and
outputs are relations instead of opaque values [8]. Presumably, the input for the
algorithm is a set of services, each ofwhich is described by input and output relations,
and a query consisting of a set of input and output relations. I write “presumably”,
because it is never clearly said what a query is; however, this is the most natural
interpretation,which is also shared byHoffmann et al. [59]. Every relation is factored,
whichmeans that it is associatedwith an ontological concept. The planning algorithm
applies partial ordered backward search. It maintains an agenda of concepts that have
not been achieved yet. In each step, it identifies a candidate service that has as an
output a concept that is equal or more specific than one of the concepts in the agenda.
A data link is then added between the inserted service and the service taking the
produced output. The innovative point is that the algorithm knows the structure of
the relations sent between the services and can perform standard relational algebraic
operations such as selection, union, etc., to synthesize an input needed by a successor
service.

The conceptual aspect of integrating a relational view into service composition
is innovative, but the approach only partially delivers on its promises. The actual
innovation of the approach is that artificial adapter services can be constructed on
the fly in order to translate known relations into desired relations. This is discussed in
sufficient detail for the translation obtained by the selection operator of the relational
algebra. However, they then claim that they also apply such a mediator algorithms
for the operations of projection, union, and join. But it is completely unclear how
the presented algorithm translates to these operations; in particular the realization of
this mediator for projection and join are far from being straight forward.

Note that there is no semantic relation between inputs and outputs of services.
That is, we have a great deal of information about the structure of inputs and outputs,
but we do not know how the output relations of services relate to the input relations.
In this sense, the approach does not provide richer behavioral semantics than the
above techniques.

Summarizing, the approach presented by Ambite et al. marks a significant
improvement for the application of concept-based composition, but its actual rel-
evance can hardly be judged based on the lack of concise descriptions. On one hand,



86 4 Composition Without a Given Structure

it allows for mediator-based composition by providing structural information about
ontological concepts. This is significantly more than what is possible with any other
approach discussed above. On the other hand, the description of the approach is very
imprecise on essential questions; e.g., one misses a concise definition of queries
accepted by the composition algorithm. Indeed, the formal parts contained in the
paper are (for the most part) sound and comprehensive, but the problem is with the
parts that are not described. The reader only gets a rough intuition of the inputs
and outputs of the composition algorithm, but since they never make an explicit
statement, it is not sufficient to reliably classify the capacities of the approach. In
particular, the benefit compared to established relational systems, say Prolog, does
not become entirely clear.

Planning with Strict Forward Effects

Hoffmann et al. present a composition algorithm based on (conformant) forward
search [59, 60, 136]. The algorithm input is a set of possible initial states, a desired
goal state, a set of service operations that can be applied, and a simple background
theory (ontology).Here, a state is a conjunction of ground literals.A service operation
o is applicable in a state s with input values X and output values Y iff the objects
X are known in s, the output objects are not known in s, and if the preconditions of
o interpreted under X are contained in s. The requirement that the outputs Y yet do
not exist accounts for the idea that the results of each service invocation are stored in
new data containers. Using a forward chaining technique, the algorithm extends the
current plan with applicable actions. Every node n in the search space is associated
with a formula φn in conjunctive normal form (CNF) that reflects the postcondition
of the composition corresponding to it. A candidate n is a solution to the query iff
φn |= s∗; that is, if the postcondition guarantees that every literal of the goal situation
s∗ is true.

The approach makes two simplifying assumptions that dismiss the necessity of
belief revision. First, every literal in the postconditions of an operation contains
at least one output of the operation. This implies that the application of a service
operation can never directly produce knowledge that is inconsistent to the former
state; this is because every literal contains a constant (of Y ) that was not contained
in the previous state. Second, it is required that in every clause of the background
theory (which is assumed to be in CNF too) the literals share all of the variables, i.e.,
the variables occurring in a literal are equal for all the literals in a clause. This makes
sure that it is also not possible to combine the newly obtained knowledge with the
background theory to infer new knowledge that talks only about constants that were
already known previously; otherwise, the newly obtained knowledge could yield an
implicit contradiction. Problems that satisfy these two properties are said to exhibit
forward effects.

In order to reduce the number of actions that must be considered, they make
another quite serious simplification,which they call strict forward effects. The second
of the above two conditions is restrictedmore by requiring that all variables occurring
in the postconditions of an operation are outputs. The serious consequence of this
restriction is that the outputs cannot be related to inputs of the service anymore.



4.3 FOL-Based Systems 87

I think that this is assumption is too restrictive, but at least this issue is discussed
honestly, and the authors also point out that there are still realistic problems that
can be solved under this restriction. Under the assumption of strict forward effects,
the composition problem is only slightly more expressive than in the propositional
systems.

Even though the algorithm uses an (admissible) heuristic, it is highly questionable
whether forward search is a good approach for service composition. The key problem
of forward search is that it also considers actions that are not relevant for the goal.
This problem increases by an order of magnitude in the service composition scenario
in which every action creates new objects and, thereby, enables many new actions.
In particular, the number of children of each node in the search space increases with
each step. It is hardly imaginable that we can get a heuristic that is sufficiently well
informed to efficiently guide a best-first search process. Probably, the only hope is
to try some hill-climbing strategy and to cut irrelevant elements later on. Of course,
in the case of strict forward effects, this problem is relieved by the fact that each
operation must be considered at most once. However, in the general case, forward
search is probably a borderline hopeless project; their results exhibits enormous
search runtimes even for the highly restricted case of strict forward effects.

4.3.2 I/O-Relational Approaches for Finite Spaces

The following approaches describe the behavior of operations by relating the pro-
duced outputs to the inputs. The potential infiniteness of the set of compositions is
avoided in several ways.

1. The simplest way tomake the search space finite is to allow only for compositions
that contain an operation at most once.

2. The information integration approach is bound by the fact that all operations work
on a central data model, which is finite.

3. The approaches applying PDDL bound the model by assuming only a finite num-
ber of containers that can be used to pass information among operations.

4. Finally, the technique proposed by Bartalos assumes that the precondition of an
operation must completely be satisfied by the preceding operation in the compo-
sition, which also bound the set of possible compositions.

4.3.2.1 Limitation of Operation Usage

An approach that makes use of SMT solvers to address the composition problemwas
presented by Gulwani et al. [53]. Here, the input of the composition algorithm are an
input vector, a desired postcondition, and a set of available operations; it is assumed
that the composition produces exactly one output whose relation to the inputs is
described in the postcondition. Every operation is likewise described by an input



88 4 Composition Without a Given Structure

vector and its postconditions. The algorithm creates a composition that is a sequence
of all of the available operations. So the composition algorithm (i) determines a
permutation of the operations and (ii) fixes the data flow between them. To this end,
they introduce so called local variables that reflect the position of an operation in
the final composition; since every operation has one output, this index also refers
to a datum produced by the respective operation. The algorithm then encodes the
integrity constraints on the data flow in a formula and passes it to an SMT solver
together with the operation descriptions and the desired postcondition. If the solver
finds a data flow such that the desired specification must necessarily be satisfied, the
respective data flow, (which imposes also the control flow) is returned.

The limitation that it creates compositions thatmake use of every operation exactly
once is a quite strong shortcoming. The authors argue that unnecessary parts can be
“easily” stripped away afterward and that operations that are required several times
can be cloned by the user in advance. But neither is this stripping process of “dead
code” (which is not dead, since the composition does not contain if-statements)
explained in detail, nor is the drawback discussed that arises when the user must
know in advance how often every operation is used; why would he then make use
of automated composition techniques? Intuitively, the algorithm either considers too
many or too few operations.

Apart from this conceptual flaw, the approach exhibits the same problems as the
one by Srivastava [143] discussed in Sect. 3.2 even though it avoids some complexity
issues due to the restriction to sequential compositions. The implementation and
description of operations are not separated from each other, which imposes the same
inflexibility as in the case of [143]. The composition process also relies on an SMT
solver, but the fact that the solver does not need to guess statements or guards, the
complexity is significantly less than in the case of [143]. The obvious consequence
is that the potentially achievable programs are much simpler.

One advantage of both this approaches over most service composition approaches
is that it allows for rather complex preconditions and postconditions. In general, it
seems possible that it works with preconditions and postconditions that are not only
conjunctions but arbitrarily structured formulas. For example, the postconditions
of the query consist of a conjunction of rules. In contrast, current approaches for
automated service composition only allow conjunctions of ground literals.1

To summarize, there are relevant recent approaches to program synthesis that
exhibit both a significant intersection and significant differences with automated
service composition. Themost important commonalities are the goal to automatically
synthesize software and that this is done on the basis of implicit goal descriptions
andwith a library of components described through preconditions and postconditions
(of unequal complexity). The most important differences are that program synthesis
approaches do not distinguish between the implementation and the description of
operations, which reduces these approaches to work with very simple operations,
mostly numeric or set theoretic ones. Certainly, the fields can learn a lot from each

1One exception is [59] where there may several initial states. Also, most approaches interpret the
output variables of the request as (implicitly) existentially quantified.

http://dx.doi.org/10.1007/978-3-319-34168-2_3


4.3 FOL-Based Systems 89

other, and it would be interesting to combine them in the long term view in order to
unify the power of both domain theories and interface-based composition.

4.3.2.2 Information Integration

In 2002, an approach related to information integration was proposed by Ponnekanti
and Fox [124]. The basis of the approach is an entity structure like an entity rela-
tionship model. A query sent to the composition algorithm consists of the entities
involved, provided attributes of these entities, constraints on the entities, and the
requested attributes or relations for the entities. For example, a query may ask for a
composition that works on two objects X and Y of the type Person, for both of which
the first name and the last name are given as inputs, and for which we are interested in
a shortest path to get from the house of X to the house of Y . That is, there is a relation
DrivingDirections(·, ·) that we want to compute for the pair (X,Y ). The controller
is assumed to have a table of each attribute and each relation available, which is
partially computed by the invocation of services. The data flow between services is
fixed in their description that matches the names of these tables maintained by the
composed algorithm.

Within its limited range, this technique is substantially better than many of the
propositional logical approaches discussed above that ignore the data flow. The
advantage is that the communication with services always happens with respect to
particular objects, and it is also possible to request the same attribute for two different
objects of the same type; in the propositional logic systems, this query type does not
make sense. Of course, there are some limitations. For example, one can determine
the price of a product as the attribute of the respective product entity, but the price
cannot be converted into a different currency. The reason is that the predicates are
only defined over entities but not over attributes, and a particular piece of information
can only be either an entity or an attribute. Apart from this limitation, the approach
is fairly easy to understand and seems to have the potential of reasonable usage in
practice.

4.3.2.3 PDDL-Based Approaches

Initial Model

JoachimPeer proposed a technique that composes constant-based service invocations
[119]. The algorithm receives a set of services with preconditions and postconditions
and a goal specification. As an example, he proposes a goal that requires the com-
position to “send the name of the city with ZIP code 30313 to the email address
john@some.com”. Services can be information gathering, e.g., a service that com-
putes the state and the city given a ZIP code, and world-altering services, e.g., a
service that sends an email. The composition algorithm consists of two parts. First,
a simplified problem is reduced in which constraints on concrete values are ignored.



90 4 Composition Without a Given Structure

Then, the information-gathering services of the plan are invoked in order to extend
the knowledge about theworld. Second, the gathered knowledge is added to the initial
situation s0, and the problem is solved again. The composition problem is encoded
in the planning language PDDL, so that it can be solved with any standard planner.
The objects encoded in the PDDL problem are constants referring to objects in the
real world. Since the objects do refer to concrete data items instead of generic data
objects (what would be called a variable in a programming language), the algorithm
does not create a composition with a data flow between service operations. This is
the same as programming a sequence of function calls where every argument passed
to a function call is a constant and not an output of previous function calls. These
constants are either given initially or obtained through the first phase of the algorithm.

In the presented form, the approach exhibits two major flaws. First, it simply
merges input and outputs to the general concept of parameters in PDDL. The con-
ceptual problem is that we cannot encode information-gathering service operations
in classical PDDL, because then an invocation is not possible unless we already
know the desired information, which is simply a normal parameters such as the
inputs, in advance. A more detailed discussion of this problem was published earlier
by McDermott [97], which is even cited by Peer; however, this issue was simply
ignored. Second, the actually interesting part of the algorithm, which is the first
phase, is not described. The second phase is simple and could be also considered
as a simple Prolog query. The world-altering services, which have no outputs, are
encoded as rules, and the knowledge initially given or gathered in the first phase are
assertions. But the interesting question is obviously the first phase of the algorithm,
in which it is determined for which predicates a partial grounding is desired and
queried. Given the fact that this first phase would be the actual contribution, but that
it is not discussed at all, the approach does not exceed a preliminary conceptual level.

Extended Models

Klusch et al. propose a PDDL encoding that avoids these problems [71, 72]. The
idea is to introduce a special predicate agentHasKnowledgeAbout(x) to assert that
the object x is available. For each input of a service operation, the predicate is part
of its precondition, and for each output, it is part of the postconditions. Having this
meta predicate at hand, the planner can only use data objects as inputs that have been
made available either in the request or by previous service calls. The approach is
based on both HTN planning and classical planning. It first tries to find a solution
using a simplified form of HTN planning, and, if no solution can be found that way,
it applies a classical planner.

In spite of the generally good idea, there are quite some problems with their
approach. First, the overall explanation of the approach is unduly superficial. For
example, HTN planning and classical planning are quite distinct approaches, but
they simply mix the two without a detailed explanation of how this is done. Second,
there are several conceptual flawswith respect to the planning problemdefinition. For
example, the paper uses real world entities in the planning problem, e.g., the patient
Mikka. But this does not make sense in combination with the agentHasKnowledge-
About predicate, because either we know that Mikka exists (then we can use it) or we



4.3 FOL-Based Systems 91

do not (then we cannot even model this object). The problem is that the semantics of
the agentHasKnowledgeAbout predicate is that it asserts whether or not a data con-
tainer (in programming languages wewould call it a variable) has a value assigned or
not; hence, it implements the check x �= undefined. However, this semantics does not
make sense when applied to real entities. Third, the resulting encoding into PDDL
suggests that it can be solved with standard planners, but it effectively cannot due to
complexity issues. The reason is that the set of objects in the PDDL problem is the
set of data containers that is used to pass information among the service operations,
and we do not know in advance how many such containers are necessary. Even for
relatively small sizes, e.g., 30, the resulting planning problem cannot be solved even
with highly advanced planning tools.2 In their implementation, they only use one
or at most two variables per type, which is equal to the assumption that we already
know in advance what data we will need; but then, data flow planning is obsolete.
Summarizing, the approach brings a small conceptual improvement, but its overall
quality is rather weak.

A third approach that is based on a PDDL encoding was proposed by Vuković
et al. [157]. The core idea is pretty similar to those of Peer and Klusch et al. The
main difference is that no particular predicate for the availability of data is used,
such as the agentHasKnowledgeAbout predicate in [72]; this makes one wonder how
it is avoided that undefined variables are used. The approach lacks from the same
complexity problem as Klusch et al. does, even though their evaluation suggests
that the approach is efficient. Since none of the earlier approaches [72, 97, 119] is
discussed, I cannot identify a particular novelty of the approach.

4.3.2.4 Limitation by Requiring Full Precondition Coverage

Another approach-based based on simple first-order logical preconditions and post-
conditions was proposed by Bartalos and Bieliková [14, 16]. In this approach, a
service is described by ontologically typed inputs and outputs and by so-called con-
ditions. A condition is a formula that contains symbols for predicates, conjunction,
disjunction, and negation; so no function symbols or quantifiers are allowed. A com-
position is a DAGwhere every node is a service invocation and a link between service
s1 and s2 exists only if the postcondition of s1 implies the precondition of s2. The
paper defines the logical implication in an optimistic way, such that condition c2 is
said to be implied by condition c1 if there is one clause in the disjunctive normal
form (DNF) of c1 that implies at least one clause of the DNF of c2. A composition
is a solution for the request, if, for each desired output, there is one service that pro-
vides it. In addition to the explicit conditions, the approach also considers ontological
matchmaking in the data flow; outputs can be used whenever they are more specific
than what was requested.

The strong restrictions used in the definition of a composition help create a highly
efficient composition algorithm but are equally highly limiting. On one hand, the

2I used the FastDownward algorithm to verify this claim.



92 4 Composition Without a Given Structure

requirement that a service covers the complete preconditions of its successor in a
composition allows for a preprocessing step in which all possible ways to chain two
services can be computed. This allows to answer queries in fractions of seconds. On
the other hand, the set of possible compositions is extremely reduced by this assump-
tion, because preconditions of services cannot be composed from two independent
operations. For example, consider that we want to use a service that sends some
information to all reliable clients that have completed an order in the last month,
and suppose that there are two services that compute from a given set of clients
all those that are reliable or completed a purchase in the last month respectively. A
valid composition invokes one of them with the input set and then the other with
the result of the first operation; the result can then be passed to the third processing
service. However, this is not possible here, because the preconditions of the third
service cannot be satisfied by any of the former two alone. Another issue is that the
simplified treatment of disjunctive conditions cannot be considered sound. Summa-
rizing, the approach allows to consider a significant extent of semantics in the service
descriptions. An efficient composition of these services is enabled by a simplified
evaluation of the conditions and by a rigorous restriction on possible compositions.

4.3.3 I/O-Relational Approaches for Infinite Spaces

Approaches belonging to this subclass consider the possibility of producing arbitrary
new information by the application of operations. The invocation of an operation
produces (if it has any outputs) a new datum, which can possibly be used as inputs
for other operations. The set of possible compositions is infinite, because we can
potentially create ever new pieces of information.

4.3.3.1 Term-Algebraic Program Synthesis

Thefirst solutions for automated software composition at allwere proposedbyManna
andWaldinger [93, 94]. Their approach is based on an algebraic term transformation
system. The request consists of a precondition and a goal term that shall be computed.
The basis for the composition process are transformation rules that assert admissible
ways to rewrite terms. For example, an transformation rule v · 0 ⇒ 0 asserts that
one can renounce a factor multiplied with 0. Based on the resolution calculus, they
propose amethod that allows to rewrite the initially desired goal term into other goals
until the trivial goal true is reached. The program is obtained by the term unifications
used to apply the transformation rules.

The main difference between this type of automatic programming and service
composition is that operations are described in terms of other operations. The seman-
tics of an operation in deductive synthesis is encoded in transformation rules. The
left-hand side of the rule states the invocation of an operation and the right-hand side
states what we know about the result of the invocation; that is, how we can replace



4.3 FOL-Based Systems 93

the invocation. For example, the rule reverse(u) ⇒ reverse(tail(u)) <> [head(u)]
defines the postcondition of inverting a nonempty list u. So the semantics of reverse
is expressed in terms of itself (recursion) and other operations tail and head. Rules
may also be bound to some condition, which we would call precondition. In a way,
the transformation rules have similarities with methods in HTN planning (discussed
in Sect. 3.3), because they describe how a term (possibly a complex service) can be
rewritten.

When discussing their approach, it is important to distinguish the underlying
algebraic calculus from the way how they apply it. My assertion is that the way
how they encode composition problems and how they perform deductive synthesis
is apparently different from the way how composition problems are encoded today.
However, I do not want to give the impression that the algebraic calculus used by
Manna and Waldinger is unsuitable for service composition in general. In contrast,
it seems that the term transformation system is so general that it could also be
used to encode the type of service composition we are using in the planning context
nowadays. Still, we can only discuss an approach to the extent towhich the calculus is
explicitly used for the particular problem; otherwise we could also argue that Turing
presented a mechanism that can be used for service composition by proposing a
model of computation.

The most crucial problem with deductive program synthesis for today’s research
is that we are left with the lack of evaluation. Except the very vague explanations
in [114], there is virtually no information about the runtime performance of their
algorithm on the machines that were recent in the respective time and much less
of how those algorithm would perform today. Of course, complexity issues cannot
be resolved with (polynomially) faster computations, but at least it would be easier
to compare the approaches. Unless somebody reanimates this algebraic approach,
deductive program synthesis stands behind service composition like a shadow of
which it is unclear how it relates to the currently developed techniques.

Summarizing, while deductive synthesis in the presented form is hardly com-
patible with a modern view on software development, we can still learn a lot from
this early attempt. Of course, the encoding chosen in [93, 94] exhibits a connection
between description and implementation that can be hardly considered timely. On
the other hand, current composition approaches completely lack built-in operations
for basic data structures. It would be advantageous to compose not only business
service operations but also set operations such as head. Together with the knowledge
y = head(x) ∧ sortedBy(x, price) ⇒ cheapestOf (y, x), the composition algorithm
could be enhanced with very useful theories that help treat different data structures
or basic arithmetical operations. Hence, we should rather seek to complement the
modern approaches with the early stage attempts.

4.3.3.2 PDDL-Modification

In one of the first approaches so automated service composition, Drew McDermott
extended the PDDL specification in order to make it suitable for service composition

http://dx.doi.org/10.1007/978-3-319-34168-2_3


94 4 Composition Without a Given Structure

[97]. McDermott realized that PDDL lacks the possibility to specify the creation of
new information; so he added the notion of step-values, which are like the (single)
output of an action. The output values have a type and may or may not have a
default value. If an output has a default value and if another service is used whose
precondition make assertions about that value, the planner inserts a special predicate
verify that signals that, in case that a solution is found, a case distinction must be
inserted. In an initial run, the algorithm assumes that the verify-predicates are all true.
If a solution is found, the algorithm is restarted with the initial situation being the
first situation in which a verify-predicate occurs, modified in a way that the statement
to be verified is negated. Starting from there, the algorithm tries to find a solution for
the alternative branch. In this way, the algorithm is able to compose programs with
conditional branches.

Even though the approach does not exhibit particular shortcomings, it has never
been adopted or served as a basis to build upon by later approaches. I already dis-
cussed some approaches based on PDDL that do not make use of McDermott’s
modifications. One problem could be that the supposed advantage of PDDL is that
it serves as an input for standard planners but that a significant part of the specifi-
cation is not covered by any planner; this becomes obviously even worse with the
additional extension made in [97]. At time of writing, at least the planner Optop
written by McDermott himself is available at his website. Bertoli et al. claim that the
approach cannot cope with protocol specifications [23], but given the fact that pro-
tocols can be encoded simply through propositional assertions in the preconditions
and postconditions of services, this claim cannot be justified.

I think that there are three arguments why Optop is not the end of the story for
service composition. First, we have seen that nonfunctional properties are an impor-
tant aspect of service composition, but these are not considered at all. Since there is
no straight-forward way in PDDL to consider these properties, another extension of
PDDL would be required. Second, a lot of research related to service composition
is concerned not only to how to model the composition problem but also of how the
space of possible compositions is traversed. McDermott proposes a search based on
a regression-match graph, but there are many other possibilities about how the search
space can be traversed. Third, the paper reflects only a preliminary stage of research
without any evaluation. We have no information of how the approach performs in
comparison to others; the goal and the achievements of the paper is only to give a
proof of concept that estimated regression works for service composition. Also, it
does not provide for loops, which are inevitable for most applications. Hence, we
have seen a sound but rudimentary solution for automated service composition, and
there is plenty space for improvements.

4.3.3.3 General Unbounded Search

In our recent works, we have proposed a technique to search for service compositions
without a limitation of the number of variables [109]. The input of the composition
algorithm is precondition and postcondition as conjunctions of literals, a set of ser-



4.3 FOL-Based Systems 95

vices described in the sameway, and a vector of bounds for the nonfunctional proper-
ties. The algorithm searches backwards starting from the desired postconditions and
builds a composition by prepending an operation invocation to the current composi-
tion in each step. Hence, compositions computed by this approach are only sequences
of operation invocations. A service operation is a candidate for being prepended if its
postcondition contains at least one literal that is required for the precondition of the
currently considered composition. During the composition process, the algorithm
may introduce an arbitrary number of new variables (as yet undefined sources of
some of the inputs of prepended operation invocations). Every (partial) composi-
tion is associated with a vector of nonfunctional properties, which are assumed to
increase or decrease monotonically. The algorithm returns a stream of Pareto optimal
compositions.

The algorithm can also insert more complex control structures if these are hidden
in building blocks derived from domain independent templates [107, 108]. These
templates are more specific with respect to the control flow elements than the ones
used by Srivastava et al. in [143], e.g., the rough code within a loop body is already
set. This structural restriction increases the feasibility of the approach, because oth-
erwise there would be too many candidate implementations. The templates contain
placeholders for boolean expressions (usually of if-statements), service invocations,
and auxiliary predicates. For example, a template Filter takes a set A as input and
computes the subset of elements that satisfy a particular property. For every a ∈ A,
a (still undetermined) service s is invoked and determines the value of some (still
undetermined) property of a. The obtained value is tested against some (still unde-
termined) condition. The item a is added to the output set A′ if this test has a positive
result. This template can then be used to, say, filter a set of books by those that are
available. In [108], we present a template instantiation technique that can be directly
integrated with the composition algorithm described above. Similar to the approach
of Srivastava et al. template here are a possible guide to find a solution but they do
not encode the actual behavior of the composition.

The formal model underlying our approach is almost the same as the one of
Hoffmann et al. [59] with the crucial difference that we do not assume strict forward
effects. That is, we allow the postconditions of services and the postconditions spec-
ified in the query to related outputs to the inputs. On one hand, this difference has
a significant computantional impact in that it precludes the possibility to ground the
problem to a (finite) propositional model. In fact, the composition problem probably
becomes undecidable by this assumption.On the other hand, it allows to specifymuch
richer requirement definitions that are much closer to the intuition of a specification
of actual behavior than lose properties of the ingoing and outgoing data. While unde-
cidability is certainly not a desirable theoretical feature, for practical applications of
service composition undecidability is not much worse than highly exponential com-
plexities. That is, it does not matter whether the algorithm runs forever or whether
it terminates after some weeks or even years saying that no answer exists; either it
finds a solution fast or we must implement the desired component by ourselves. So,
independently from decidability questions, the goal must be to find solutions fast if
they exist; proving that no solution exists is of minor practical importance.



96 4 Composition Without a Given Structure

The main drawback of the approach is that it does not support diverging con-
trol flow branches. That is, if-statements are only allowed in templates and only if
the template postconditions are still deterministic (purely conjunctive); that is, the
composition algorithm does not need to plan two or more possible program states in
parallel. McDermott resolved this problem by first planning optimistically and then
planning the alternative branches afterward. However, the current version of our
composition algorithm does not provide this clearly desirable functionality. Hence,
the treatment of alternative and diverging control flow branches remains important
and, given a backward search, nontrivial future work.

Summarizing, our approach provides an alternative to the model proposed by
McDermott that considers nonfunctional properties and complex predefined control
structures but that still lacks the ability to compose diverging control flows. Instead
of investigating the problem on a language-specific level like PDDL, we prefer an
independentmathematicalmodel that defines a search space that can then be traversed
by search algorithms such as A∗.

4.3.4 Concluding Discussion

The techniques discussed in Sect. 4.3.1 provide good formal models and interesting
ideas, but the lack of relations between inputs and outputs of operations hinders
semantically meaningful composition. The more detailed description of inputs and
outputs based on first-order logical formulas is an improvement over the approaches
discussed in Sects. 4.1 and 4.2, but meaningful composition requires to relate inputs
to outputs, which is not the case in these systems. Still, at least for the system
proposed by Hoffmann et al. [59, 60], the model has a native support for meaningful
composition if the assumption of strict forward effects is dropped. On the other hand,
dropping this assumption probably renders the task unsolvable with current planning
algorithms, so practically solving the problemwithout strict forward effects certainly
entails quite some work. Another issue of the two techniques discussed here is that
they do not incorporate any notion of nonfunctional properties (Table4.3).

Program synthesis is an interesting field but is somehow out of phase with respect
to the underlying operation model. The fact that we can only use operations whose
implementation corresponds to the description seems to be a strong limitation. The
reader always has the impression that those techniques only work on very specific
domains, e.g., numerics and sets. On the other hand, it is quite possible that these
composition models can be extended such that they decouple implementation and
description. The advantage of such a system would be tremendous because it would
allow for operation descriptions with both uninterpreted and interpreted predicates.
However, this integration is currently not visible.

The remaining approaches address what I would call the core of automated ser-
vice composition. The user can specify a desired behavior of the composition in
terms of uninterpreted predicates that relate the requested outputs to the provided
inputs. Unfortunately, the approaches described by Peer [119], Klusch et al. [72],



4.3 FOL-Based Systems 97

Ta
bl
e
4.
3

O
ve
rv
ie
w
of

ap
pr
oa
ch
es

w
ith

ou
ta

gi
ve
n
st
ru
ct
ur
e
th
at
re
ly

on
fir
st
-o
rd
er

lo
gi
c
de
sc
ri
pt
io
ns

T
H

=
H
ie
ra
rc
hi
ca
l
Ty

pe
Sy

st
em

,
Q
oS

=
Q
ua
lit
y
of

Se
rv
ic
e
(N

F-
Pr
op

er
tie

s)
,
A
lt

=
C
om

po
si
tio

ns
w
ith

al
te
rn
at
iv
e
co
nt
ro
l
flo

w
s
(i
f-
st
at
em

en
ts
),
L
oo
ps

=
C
om

po
si
tio

ns
w
ith

lo
op
s

=
su
bs
ta
nt
ia
lly

su
pp
or
te
d,

=
pa
rt
ia
lly

su
pp
or
te
d,

=
no
ts
up
po
rt
ed
,

=
su
pp
or
te
d
bu
ti
rr
el
ev
an
tf
or

au
to
m
at
io
n

T
hi
s
ta
bl
e
tr
ie
s
to

su
m
m
ar
iz
e
th
e
di
sc
us
si
on

s
on

th
e
ap
pr
oa
ch
es

of
th
is
cl
as
s.
T
he

so
rt
in
g
w
ith

in
th
e
lis
tc
or
re
sp
on

ds
to

th
e
or
de
r
in

w
hi
ch

th
e
ap
pr
oa
ch
es

w
er
e

di
sc
us
se
d.

T
he

do
ub
le

li
ne
s
se
pa
ra
te

th
e
ap
pr
oa
ch
es

di
sc
us
se
d
in

di
ff
er
en
t
su
bs
ec
tio

ns
fr
om

ea
ch

ot
he
r.
L
ite

ra
tu
re

re
fe
re
nc
es

ca
n
be

fo
un

d
in

th
e
re
sp
ec
tiv

e
di
sc
us
si
on
s
of

th
e
ap
pr
oa
ch
es



98 4 Composition Without a Given Structure

and Vuković [157] exhibit significant formal flaws or are not sufficiently elaborated
to actually apply them. Also, nonfunctional aspects play virtually no role. The tech-
nique presented by Ponnekanti and Fox [124] is well elaborated and appears quite
useful. Probably the only concern against their technique is that the set of possible
queries is very limited, because we can only ask for attributes of entities. Among all
approaches discussed so far, McDermott [97] and our own work [106] are the only
solutions to the composition problem that do not exhibit any of these limitations.

However, even the composition algorithms discussed in [97, 109] can only be
considered initial steps. One problem is that none of the two has a complete support
for all of the functional and nonfunctional aspects that would be relevant for com-
position. For example, McDermott does not treat nonfunctional properties or loops.
Our own algorithm covers nonfunctional aspects but has only quite limited support
for conditional statements and loops. In particular, the consideration of diverging
control flows is not possible in a straight-forward manner.

Clearly the greatest challenge of unbounded service composition is to optimize the
runtimeof the searchprocesswithout simplifying themodel. Semanticallymeaningful
composition may induce semi-decidability, which seems to be the case in [97, 109].
However, the strategy should not be to downgrade the problem but to enable a fast
finding of solutions if they exist. In practice, the difference between, say,NEXPTIME
and undecidability is almost irrelevant, because we do not need a proof for the
nonexistence of a solution. Either we can find a solution fast or we implement it
manually, but we do not care about whether no solution was returned in time because
no one exists or because the algorithm was not fast enough to find it. I do not say
that it is not a good idea to solve a simplified version of the model in an interior
routine whose parameters are iteratively adjusted to continuously expand the search
space. But we should not unnecessarily simplify the task itself only to obtain fast
algorithms (that solve irrelevant problems).


	4 Composition Without a Given Structure
	4.1 Propositional Systems Without Background Theory
	4.1.1 IO-Based Composition
	4.1.2 Composition with Preconditions and Effects
	4.1.3 Concluding Discussion

	4.2 Propositional Systems with Background Theory
	4.2.1 Composition with Type Hierarchies
	4.2.2 Composition with Similarity Matching
	4.2.3 Concluding Discussion

	4.3 FOL-Based Systems
	4.3.1 Approaches Without I/O-Relations
	4.3.2 I/O-Relational Approaches for Finite Spaces
	4.3.3 I/O-Relational Approaches for Infinite Spaces
	4.3.4 Concluding Discussion



