
Chapter 2
Automated Software Composition—A Top
View

This chapter gives a brief introduction to automated software composition. Section2.1
provides an overview of the general task of automated software composition. Then,
Sect. 2.2 gives anoverviewover the features of compositionproblems.Third, Sect. 2.3
proposes the first level of a classification scheme, which is the basis for the technical
discussions in the next chapters; i.e., it presents the two main classes of composition
problems. The discussion of subclasses of the twomain classes is part of Chaps. 3 and
4. A summary of the complete classification tree is depicted in Fig. 5.1 in Chap.5.

2.1 Background

A nice vision statement of automated software composition was given by Koza end
Rice in the context of automated programming [76]:

The goal in automatic programming is to get a computer to perform a task by telling it what
needs to be done, rather than by explicitly programming it.

While avoiding explicit programming often is desireable, automated software
composition does not aim at replacing classical software development. As pointed
out by Hoare, one of the most important properties of software is that “it carries out
its intended function” [58]. To express this intended function, we will always need to
rely on some kind of formal descriptions, and there is not the illusion of the cocktail
party explanation of the vision of automated programming [131], where complex
software can be derived from natural language requirement definitions expressed by
somebody not even familiar with software engineering. On the other hand, the work
of software developers can be supported by automation techniques.

The idea of automated software composition is to automate a small part of the code
construction process. That is, we do not want to create huge software specifications,
press the button, and wait for the signal that the desired software has been deployed
on the machine. Instead, we want the machine to create rather simple programs fast.

© The Author(s) 2016
F. Mohr, Automated Software and Service Composition,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-34168-2_2

9

http://dx.doi.org/10.1007/978-3-319-34168-2_3
http://dx.doi.org/10.1007/978-3-319-34168-2_4
http://dx.doi.org/10.1007/978-3-319-34168-2_5


10 2 Automated Software Composition—A Top View

There seem to be twomain caseswhere automated software composition is prefer-
able over ordinary programming.

First, there may be occasions where we need to create software within the time
frame of seconds where any human interaction would simply not be fast enough.
For example, we want to run a script that solves an optimization algorithm based on
simplex if the instance is rather small and with interior point if it is large, applying
specific parameters to the respective algorithm depending on the input instance,
which cannot be efficiently hard-coded in the script. We then would create a rough
workflow of the general process and automatically refine it at runtime based on the
concrete input.

Second, developers often only want to state conditions that should be true for an
object instead of describing how this is achieved. For example, one would like to be
able to write

y s.t. PriceOf(y,x) & EUR(y)

to say that y should be set to the price of x with respect to its current value in EUR
instead of writing the following:

p := getBookPriceOf(x);

y = USD2EUR(p);

The declarative variant has many advantages. Not only is it closer to the actual
intention of the developer, simpler (no temporary variable) and exhibits higher read-
ability. It also decouples description from implementation, which means that the
developer does not need to know the exact function that realizes the functionality;
the name or location of the function may change without doing harm to the code.
In particular, the developer does not even need to know how the property can be
computed and whether or not the result is already in the right currency or whether
it must be converted. Moreover, given the correctness of the functions used by the
synthesizer, the generated code is correct by construction.

The largest subfield of automated software composition is called automated ser-
vice composition. Services are self-contained and platform independent software
components. Self-contained means that services do not visibly rely on other com-
ponents or services, so they can be used right away without the necessity to specify
components that should be used for some required interfaces. Platform independent
means that two services can be used together independently from the language in
which they have been implemented. The idea is that, instead of, say methods in
an object oriented programming language, service operations do not communicate
by exchanging object references over a commonly accessible memory but by mes-
sages. These properties allow for the definition of a simple composition model that
assumes a set of operations that can be combined (platform independentness) ad
hoc (self-containedness) into a new software artifact. These properties are naturally
given within every programming language, so, by making these assumptions, auto-



2.1 Background 11

mated service composition simply accounts for the fact that we now need to combine
components implemented in possibly different programming languages.

2.2 Features of Software Composition Problems

Clearly, one cannot speak of the automated software composition problem. I iden-
tified 22 very heterogenous features that separate the service composition problems
from each other. This greate variance makes many approaches distinct and some-
times even completely uncomparable to others. Sincemost of these features should be
intuitive, I only give a brief overview rather than discussing them in detail. Table2.1
shows an overview about the features.

Every feature specifies a characteristic that relates to the algorithm inputs,
algorithm outputs, or its behavior. Composition problems impose conditions on the
inputs, outputs, and even the implementation of composition algorithms (that address
the respective problem). Hence, it is natural to see the set of different features that
determine a composition problem as constraints made on one of these three aspects.

2.2.1 Input Features

The 14 input features describe characteristics about what is fed to a composition
algorithm. Input features are as follows:

• Presence of a control flow of the solution.
In this case, the desired piece of software is specified in form of a workflow, which
needs to be concretized. The composition algorithm does not create a control flow
but only refines the given one. Prominent representants where the control flow is
given are [20, 138, 167], while prominent representants where no control flow is
specified are [72, 97, 106].

• Presence of a data flow of the solution.
In this case, we already know how data between the potential services will be
communicated. If the control flow is given, usually also the data flow is given
or even completely ignored (since not relevant for the composition problem).
However, it is possible that the data flow is given but the control is not available.
A prominant approach defined in this setting is the one of Bertoli et al. [23]. The
task is then to find an admissible order of invocations of the services. However,
most approaches that do not assume the control flow given also assume that no
data flow is predefined [72, 97, 109].

• Formalism to describe operation semantics.
Not all approaches define the semantics of operations [20, 167]. However, if
these are specified, this is usually done using logic preconditions and postcon-



12 2 Automated Software Composition—A Top View

Ta
bl

e
2.

1
A
n
(u
nc
om

pl
et
e)

ov
er
vi
ew

of
fe
at
ur
es

of
au
to
m
at
ed

so
ft
w
ar
e
co
m
po

si
tio

n
pr
ob

le
m
s
an
d
th
ei
r
po

ss
ib
le
ch
ar
ac
te
ri
st
ic
s.

F
ea

tu
re

D
om

ai
n

(P
os

si
bl

e
C

ha
ra

ct
er

is
ti

cs
of

th
e

R
es

pe
ct

iv
e

F
ea

tu
re

)

In
pu

ts
Pr
es
pe
ci
fic

at
io
n
of

C
on

tr
ol

Fl
ow

no
td

efi
ne
d,

pa
rt
ia
lly

or
co
m
pl
et
el
y
de
fin

ed
w
rt
.s
tr
uc
tu
re
,s
em

an
tic

s,
or

bo
th

Pr
es
pe
ci
fic

at
io
n
of

D
at
a
Fl
ow

no
td

efi
ne
d,

pa
rt
ia
lly

de
fin

ed
,c
om

pl
et
el
y
de
fin

ed

O
pe
ra
tio

n
D
es
cr
ip
tio

ns
no

ts
pe
ci
fie

d,
ex
pl
ic
itl
y
(t
ag
s)
,p

re
co
nd

iti
on

s
&

ef
fe
ct
s

L
an
gu
ag
e
of

D
es
cr
ip
tio

ns
no
ne
,(
te
m
po
ra
l)
pr
op
os
iti
on
al
lo
gi
c,
ar
bi
tr
ar
y
va
ri
an
ts
of

FO
L

Q
oS

R
eq
ui
re
m
en
ts

no
ne

or
co
m
bi
na
tio

n
of
:h

ar
d
co
ns
tr
ai
nt
s,
so
ft
co
ns
tr
ai
nt
s,
ob
je
ct
iv
e
fu
nc
tio

n

Q
oS

R
an
ge
s

fix
va
lu
es
,i
nt
er
va
ls
,d

is
tr
ib
ut
io
ns

In
pu
tD

at
a

no
ne
,e
xa
m
pl
e
da
ta
,t
ar
ge
td

at
a

Si
gn
at
ur
e
C
om

pl
ex
ity

of
O
pe
ra
tio

ns
no
ne
,a
tm

os
to

ne
in
pu
ta
nd
/o
r
ou
tp
ut
,a
rb
itr
ar
y
in
pu
ts
an
d
ou
tp
ut
s

D
et
er
m
in
is
tic

O
pe
ra
tio

n
B
eh
av
io
r

no
,y

es

U
sa
ge

C
on
st
ra
in
ts
on

O
pe
ra
tio

ns
no
,y

es

In
fo
rm

at
io
n
G
at
he
ri
ng

ve
rs
us

W
or
ld

A
lte

ri
ng

al
lo

pe
ra
tio

ns
ar
e
re
ad
-o
nl
y
ve
rs
us

op
er
at
io
ns

al
so

ch
an
ge

th
e
st
at
e
of

th
e
w
or
ld

E
xp
ir
at
io
n
T
im

e
of

O
pe
ra
tio

n
O
ut
pu
ts

in
vo
ca
tio

n
an
d
re
as
on

ab
le
pe
rs
is
te
nc
e
(I
R
P)

vs
.p

os
si
bl
e
in
va
lid

at
io
n

G
en
er
al
D
om

ai
n
K
no
w
le
dg
e

no
ne
,t
ax
on
om

ie
s,
on
to
lo
gi
es
,a
rb
itr
ar
y
FO

L
ru
le
s

O
bj
ec
tL

ev
el
D
om

ai
n
K
no
w
le
dg
e

no
ta
va
ila

bl
e,
av
ai
la
bl
e

O
ut

pu
ts

G
en
er
al
Ty

pe
of

O
ut
pu
t

ou
tp
ut

is
a
pi
ec
e
of

so
ft
w
ar
e,
ou
tp
ut

is
th
e
re
su
lt
ob
ta
in
ed

fr
om

ex
ec
ut
in
g
th
e

co
m
po

si
tio

n

C
om

po
si
tio

n
St
ru
ct
ur
e

se
qu

en
ce
s
po

ss
ib
ly

w
ith

an
y
co
m
bi
na
tio

n
of
:a
lte

rn
at
iv
es
,l
oo

ps
,fl

ow
s

N
um

be
r
of

So
lu
tio

ns
on
e
so
lu
tio

n,
se
to

f
so
lu
tio

n
ca
nd
id
at
es

A
to
m
ic
ity

of
C
om

po
si
tio

n
no
,y

es
(c
om

po
si
tio

n
ca
n
un
do

st
ep
s
on

fa
ilu

re
)

B
eh

av
io

r
C
om

po
si
tio

n
&

E
xe
cu
tio

n
In
te
rl
ea
ve
d

no
,y

es

Se
le
ct
io
n
ve
rs
us

Pl
an
ni
ng

no
pl
an
ni
ng

in
vo
lv
ed
,p

la
nn

in
g
in
vo
lv
ed

M
ax
im

um
U
sa
ge

pe
r
O
pe
ra
tio

n
at
m
os
to

nc
e,
so
m
e
up
pe
r
bo
un
d,

ar
bi
tr
ar
y
us
e

Pr
ec
on

di
tio

n
Sa
tis
fa
ct
io
n

pr
ec
on
di
tio

ns
m
us
tb

e
sa
tis
fie
d
by

pr
ed
ec
es
so
r,
pr
ec
on
di
tio

ns
ar
bi
tr
ar
ily

sa
tis
fie
d



2.2 Features of Software Composition Problems 13

ditions/effects [72, 97, 106] or sometimes through keywords (tags) [99]. I do not
consider the usage of (ontological) types as semantic descriptions.

• Language of semantic descriptions.
If operations have descriptions in form of preconditions and effects, these may be
specified in different ways. On one hand, they can be propositional, allowing for
efficient composition but does not allow to express relations between inputs and
outputs of operations [75, 135]. On the other hand, they can be (a subclass of) first
order logic [72, 97, 106]. This is significantly more expressive at the natural cost
of higher problem complexity.

• Number of inputs and outputs of operations.
Some approaches ignore inputs and outputs completely, since data flow is not
important for them [20]. Most other approaches do not impose limitations on the
number of inputs and outputs, but it is imaginable to restrict them to only one
output (as in Java).

• How Quality of Service (QoS) is considered.
QoS is the common term to describe nonfunctional properties of services. Usu-
ally, these are properties like price, throughput, availability, trust, etc. [167]. If
considered at all, QoS requirements can be posed as hard constraints [106], soft
constraints with penalties [57], or be subject to optimization [167].

• Description of QoS properties.
QoS properties are most of the time considered as scalar values. However, these
could be more complex structures such as intervals (value is within a range),
density functions (value is a random variable distributed in a particular way), or
other functions (e.g., the price of a service depends on the number of invocations
within a session).

• Deterministic behavior of operations.
Is the response identical for every two equal invocations? This is the case if the
implementation of the operation is stateless and does not contain random ele-
ments. Most approaches assume deterministic behavior of operations, but some
also consider the more complex case [23].

• Expiration time of operation outputs and effects.
The outputs of an operation invocation usually may become invalid after some
time. For example, if the answer is the price of a flight, then the information is only
valid within a short range of time. However, most approachesmake the assumption
of invocation and reasonable persistence (IRP). Under this assumption, the result
of an operation invocation remains valid at least throughout the execution of the
composition.

• Information gathering or world altering.
If a property P holds after an operation, we must distinguish the case that P was
determined to hold orwhether itwasmade true. Settings that are purely information
gathering are read-only settings. Togetherwith the IRP assumption, thismeans that
knowledge gathered by operations does never become false; hence, this constitutes
a monotonic setting. In a world altering setting, however, information that was true
at some point in the composition may be false later. Every approaches that does



14 2 Automated Software Composition—A Top View

not assume the control flow given implicitly makes this assumption, but, this point
is rarely discussed.

• Dependencies and conflicts among services.
Some approaches apply constraints on the common usage of services of the form:
If service A is used, then B must not be used.

• Presence of data to be fed to the solution.
Some approaches assume that the data passed to the search composition is already
given in the query [98]. This allows for a composition mechanic that interleaves
composition and execution. Most approaches, however, do not make this assump-
tion.

• General domain knowledge is specified.
Most approaches only assumea set of services given, but nobackgroundknowledge
is used [72, 75, 135]. However, there are also some approaches that allow for
domain knowledge in form of logic formulas [60,106].

• Object level domain knowledge.
Domain knowledge can be given in form of general rules (previous point) but
also in form of facts, e.g., ground literals that are known to be true in a particular
domain, e.g., that FRA is an airport close toFrankfurt,Germany.This is particularly
relevant in information integration-based settings like [8].

There are very few dependencies among the input features. That is, most com-
binations of input characteristics is theoretically imaginable. Of course, there are
exceptions, e.g., if no QoS requirements are specified, then the ranges of QoS values
is irrelevant; or data are only relevant if the operations are considered with inputs
and outputs. Still, most features are independent, so I did not present them in form
of a (unreasonably dense) feature diagram.

2.2.2 Output Features

I identify four features of the output of the composition algorithm:

• First, a composition algorithm may return a piece of composed software or the
result of the execution of a piece of software. While in the first case the invoker
is interested in a functionality that he can reuse arbitrarily often, the second case
reflects some kind of database query whose outputs are the results of some more
or less complex computation.

• Second, a composition algorithm may return extremely different composition
structures, which can range from sequences of service operation calls to com-
plex structures with alternative branches, loops, and concurrency.

• Third, a composition algorithm may return different numbers of solutions. Since
many aspects that may be relevant for the requester cannot be efficiently formal-
ized, the algorithm cannot necessarily take the final decision about the appropri-
ateness of a solution; hence, it may return not only one but a hole set of solution
candidates among which the requester can select.



2.2 Features of Software Composition Problems 15

• Finally, compositions may or may not be equipped with the transactional prop-
erty of atomicity, which means that if their execution fails, potentially performed
changes on the world are automatically rolled back.

In contrast to the input features, there are some dependencies among these output
features. For example, if the general type of the composition output is the result
performed by the execution of the identified composition, then the other features are
irrelevant. Also, atomicity of compositions somehow requires that the composition
is not purely sequential, because purely sequential compositions cannot react on
possible execution failures of the invoked operations.

2.2.3 Behavior Features

Finally, I identified four features that describe high level characteristics about the
behavior of a composition algorithm.

• First, a composition algorithm may or may not interleave the composition process
and the software execution process.

• Second, a composition algorithm may be either a pure selection algorithm (selects
operations for several placeholders of a given template) or a planning algorithm
(also makes structural decisions on the control flow and data flow). Of course,
planning is only relevant if the control flowanddata floware not already completely
fixed in the input.

• Third, a composition algorithm may be limited in how often it may use (different
instances) of every available services and their operations.

• Fourth, planning-based composition algorithms may be limited in how the pre-
conditions of added service operations must be satisfied. For example, in [14],
the precondition of an operation must be completely satisfied by the immediate
predecessor in the control flow.

2.3 The Main Service Composition Problem Classes

In this section, I propose the presence of structural information about the solution
as the main criterion for classification. That is, I use only one of the above fea-
ture (prespecification of control flow) as a classification criterion. This is a suit-
able criterion not only because it avoids hybrids that belong into both classes but
also because it splits the field into two equally large subfields. This section dis-
cusses the goals, main research questions, use cases, and complexity of the two
classes.



16 2 Automated Software Composition—A Top View

2.3.1 Class Identification

One way to separate the problems into two intuitive classes is to ask whether or not
the structure of the desired composition is given. Here, the term structure refers to
some form of definition of the control flow of the solution. Figure2.1 shows this high-
level classification scheme. If the structure is given, e.g., in form of a template with
placeholders, then the composition problem is to bind the placeholders to concrete
services. If the structure is not given, then the composition problem is to find it, i.e.,
to find the control and data flow of the desired service.

Even though other classification criteria are possible, this one is particularly con-
vincing for three reasons. First, it defines a real partition on the field. Either some
(possibly partial) structure is available for the input or it is not. For every approach,
exactly one of the two assertions is true, so there are no hybrids. Second, the clas-
sification separates the field into two roughly equally large subfields, which can be
seen in the following two chapters. Third, deciding the class for an approach is easy,
because the question whether or not a structure is available can be answered imme-
diately. Consequently, the question whether or not the structure of the solution is
known is a good (maybe the best) criterion.

Another striking argument for this classification is that it distinguishes between
two fundamentally different use cases. In the first case, the objective is to find a good
variant of a known process. In the second case, the objective is to design a new
process that satisfies a functional requirement specification.

As a consequence, themotivations and researchquestions pursuedwith approaches
in the two classes is very different. In the following, I discuss these aspects the goals
and the main research questions of the two classes in some more detail. Section2.3.4
compares the two classes on a high level with each other.

Since the discussion of subclasses of these two classes is very exhaustive, I defer
this discussion to the respective chapters. This is basically because the features used
to form the subclasses are different for the two classes. Hence, Chap.3 discusses
the subclasses of the class of approaches that assume that the structure is known,

Fig. 2.1 The availability of a template is the best classification criterion

http://dx.doi.org/10.1007/978-3-319-34168-2_3


2.3 The Main Service Composition Problem Classes 17

and Chap.4 discusses the subclasses of the class of approaches that assume that the
structure is not known. For the same reason, there is not one large decision tree.

2.3.2 Goals and Focus When the Structure is Known

The goal of approaches where the structure of the desired component is known is to
construct a machine that refines the abstract description and binds its abstract parts
to existing service operations. So the subject of automation is the selection of both an
appropriate refinement and the concrete services and operations occuring in them.

The behavior of the desired component is described by a template. Figure2.2
shows a brief sketch of a template and shows that it already specifies the control flow
and the data flow (not visualized) of the desired component but leaves placeholders
in it, which still must be bound to concrete services. So the eventual composition has
already been defined on a more or less abstract level.

Several aspects may play a role in the instantiation process of the predefined
template. First, we might consider nonfunctional properties such as price, execution
time, etc., andfind a solution that is (globally) optimalwith respect to these properties.
Second, we might consider functional constraints such as the behavior of candidate
operations, exclusion constraints, invocation order constraints of used operations,
etc. Third, we might be interested in solution that replace placeholders not only by
atomic operation calls but by entired subcompositions.

There are several research questions relevant for approaches within this class.

1. How can nonfunctional aspects relevant for service composition be modeled as
an optimization problem? Research is mostly concerned about how properties
associated with individual service choices must be aggregated to the whole com-
position.

Fig. 2.2 Automated service composition with a given solution structure

http://dx.doi.org/10.1007/978-3-319-34168-2_4


18 2 Automated Software Composition—A Top View

2. How can templates be instantiated such that they satisfy functional constraints
imposed by the user or the environment? For example, in the Roman model the
question is how the placeholders can be replaced such that the communication
protocols of used services are satisfied.

3. How can templates be instantiated if placeholders may be bound not only to
atomic service operations but to entire compositions that must be created on the
fly?Research ismostly concernedwith the question how the search process for the
instantiation can be designed such that a functionally valid solution is obtained.

4. How can this type of service composition be integrated into the software devel-
opment workflow?

2.3.3 Goals and Focus When the Structure is Unknown

The goal of approaches that have no structure of the solution given is to construct
a machine that computes outputs with the required properties given inputs with
the promised properties. Figure2.3 provides a sketch of this scenario. The intended
behavior of the desired composition is specified in terms of preconditions that may
be assumed to be true on execution and postconditions that are expected to hold after
execution of the composition.

Approaches in this class devise a newparadigmof programming,which is declara-
tive programming with translation into imperative code before compile time. Instead
ofwriting the code of the desired algorithm itself, i.e., specify functions to be invoked,
the developer only says what the algorithm can assume to hold at time of invocation
and what should be true at the end of the desired code. Preconditions and postcondi-

...

Fig. 2.3 Automated service composition without a solution structure



2.3 The Main Service Composition Problem Classes 19

tions are formulated in terms of propositional or first order logic, sometimes through
the notion of ontological concepts.

In other words, approaches in this class aim at exceeding the automation enabled
already by compilers for high level languages. In fact, every compiler automatically
creates software from a given formal description. However, compilers underly a
deterministic translation process, so there is a direct correspondence between what
the developer writes and the program that will be created later. Automated software
composition goes a step further and allows the developer to use programming con-
structs that do not even have an executable implementation at design time but whose
implementation is tried to be achieved automatically before the compiler is run. In
contrast to the translation process of the compiler, which only fails on invalid inputs,
the composition process may also fail because it cannot find an implementation with
the requested properties.

Readers familiarwith verificationwill notice the close relation between automated
service composition and that area. In classical verification, a Hoare triple {P}S{Q} is
correct if we can show that, assuming that the (logical) precondition {P} is true, the
execution of the code statement S yields the condition {Q}. Verification assumes the
program statement S being given as input for the verification process. In automated
software composition, the composition algorithm must create a code statement S
such that {P}S{Q} is a correct Hoare triple. Hence, verification is a subproblem of
this composition problem; usually, it is solved implicitly during search.

There are several research questions related to this composition type.

1. How expressive can (or should) requirements be specified? On one hand, proposi-
tional logic is usually not expressive enough, because it cannot relate the outputs
produced by an operation to the inputs passed to it. On the other hand, complete
first order logic may cause significant computational issues.

2. How can the search process for compositions be designed, and how can it bemade
efficient? This is simple for many propositional logical requirement definitions
but hard for first order logical requirement definitions, (which are of particular
interest because of the aforementioned reasons).

3. Howcan possibly competing nonfunctional properties be considered in this search
process?

4. Fourth, how can the acceptance of this very formal approach be increased among
developers and how can it be integrated into the development workflow at all?

This is only an (incomplete) overview over the high level questions; of course, each
of them can be expanded into many subquestions.

2.3.4 Comparative Discussion of the Classes

The conceptual difference between the two classes is not the type of algorithm input
but the actual problem that we want to solve. In particular, the two problems have
different use cases, are unequally difficult to solve, and are faced with different
objections.



20 2 Automated Software Composition—A Top View

Expected Use Cases

In the class of availability of the solution structure, the use case is that we want to
find a (possibly optimal) variant of a general operation that best suits the individ-
ual context and requirements of a user. The template contains the algorithm that
implements the desired functionality, leaving only some placeholders that may be
replaced in different manners depending on the context. This type of composition
may be required in situations where different clients want to use the same service
but have different preferences regarding nonfunctional properties. For example, both
want to use a service that determines the cheapest flights for some journey. While the
first client wants the results within a second and accepts a higher price, the second
client accepts only a low price but does not care about runtime. The decision how
placeholders should be replaced depends on the actual preferences of the requesting
client. So the user of the composition algorithm has potentially no or only very few
knowledge in the area of software engineering.

The second class corresponds to the use case where a developer wants to have
the implementation of an algorithm be generated automatically; the focus is the
implementation of some desired functionality. This is sometimes called automated
programming, but a better term would be code deduction. The desired functionality
has not yet been fixed in a template but must be formulated by the user himself. This
can only be done by someone with sufficient skills in software engineering. Hence,
the context of this type of composition is a software development environment that
combines imperative or functional programming with this type of code deduction.

Unequal Difficulty of the Problems

Intuitively, the hardness of automation seems to be different for the two classes. On
one hand, it seems that, at least in theory, every composition that was obtained by
the instantiation of a template can also be obtained when no structure is given at all.
On the other hand, the absence of limitations on control flow and data flow leaves
muchmore work to do for the composition algorithm. Instead of checking a (possibly
large but) finite set of variants, the set of possible compositions when no structure is
given is generally infinite. This discrepance obviously induces also a difference in
the complexity.

However, the range of complexities within the respective classes is quite wide,
so we cannot really compare the complexity between the classes but only between
approaches. For both classes, there are cases constructible that have constant time
complexity and others that are undecidable. Hence, we cannot draw an overall con-
clusion about the hardness of the classes; the approaches must be considered indi-
vidually.

The only observation we can make is that, currently, all approaches that apply
to the first class decide the problem to which they are applied while there are two
approaches in the second class that do not have this property. More specifically,
the approaches presented in [97,109] are not guaranteed to terminate if no solution
exists.



2.3 The Main Service Composition Problem Classes 21

Main Conceptual A Priori Objections

Themain objection against automated software composition if a structure is available
is the lack of variants that must be tried. Most papers are motivated by the “enormous
and evergrowing number of services”, but those legions of services seem to be hidden
quite effectively from potential customers in the real world. In fact, none of the
approaches within this class credibly reports the (potential of an) application to an at
least somewhat real world setting. Do we really have hundreds or at least dozens of
operations available for each task of the template such that automation is necessary? If
this is not the case, then the number of variants is relatively small, and the composition
task is often trivial.

A good answer to this objection could be that variants come from parametrization
of operations, and that, even if the set of variants is relatively small, we must give an
answer in very short time, e.g., because the composition must be found at runtime of
the program that embeds it. So there are actually two arguments. First, the variants
may not come from many different operations but many possible parametrizations
of some few ones. Second, there may be the need to find compositions on-the-fly,
which, even if the set of variants is small, makes it unacceptable to configure the
solutions manually.

Approaches that create compositions from scratch based on preconditions and
postconditions are often faced with the objection that we cannot assume formal
preconditions and postconditions to be available in real software development. This
is obviously an important issue, because most papers simply assume that operations
have semantic preconditions and effects given, but semantic descriptions are rare in
practice. Neither do the legions of publicly available (and semantically described)
services exist, nor do developers annotate functions with preconditions and effects
that would make them reusable by these automation techniques.

A good answer to this objection could be that developers actually do provide
formal specifications anyway and that specifications in form of preconditions and
effects can be hardly expected unless there are powerful tools thatwould give a benefit
to the developer. So there are also two arguments in favor of this type of automation.
First, software developers do nothing else but write formal specifications all the time,
namely, the implementation of functions. So specifying preconditions and effects in
addition to signatures is just to specify a little more than what is specified already
anyway. This becomes even more true in environments where developers are forced
to provide semantic documentation such as JavaDoc. Also, the core of descriptions
are rather the postconditions; preconditions may often be empty. Moreover, semantic
descriptions could, at least in parts, also be derived automatically, e.g., the description
of gettermethods of entity classes. Second, the current non-existence of preconditions
and effects is absolutely no argument that this cannot change in the future if a benefit
arises for the developer. We have already seen that developers are ready to specify
tons of descriptions of classes and methods where they could write a much smaller
algorithmwith nice goto commands. Of course, unless there is a mature composition
tool that makes this benefit available to the user, no semantic descriptions can be
expected.


	2 Automated Software Composition---A Top View
	2.1 Background
	2.2 Features of Software Composition Problems
	2.2.1 Input Features
	2.2.2 Output Features
	2.2.3 Behavior Features

	2.3 The Main Service Composition Problem Classes
	2.3.1 Class Identification
	2.3.2 Goals and Focus When the Structure is Known
	2.3.3 Goals and Focus When the Structure is Unknown
	2.3.4 Comparative Discussion of the Classes



