SPRINGER BRIEFS IN COMPUTER SCIENCE

Felix Mohr

Automated
Software and
Service
Composition

A Survey and
rvaluating Review

@ Springer

SpringerBriefs in Computer Science

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

Felix Mohr

Automated Software and
Service Composition

A Survey and Evaluating Review

@ Springer

Felix Mohr
Department of Computer Science
Paderborn University

Paderborn

Germany

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science

ISBN 978-3-319-34167-5 ISBN 978-3-319-34168-2 (eBook)

DOI 10.1007/978-3-319-34168-2
Library of Congress Control Number: 2016939580

© The Author(s) 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This book is the result of an exhaustive literature review I carried out in order to
determine related work of my Ph.D. thesis.

It was motivated by the difficulty of getting an overview of the field of auto-
mated software composition in spite of the numbers of already existing surveys and
the unclear search criteria they applied. Reading existing surveys only resulted in a
list of approaches with no or only highly superficial discussions on relations among
them. However, figuring out these differences and discussing the use cases and
usefulness of the approaches is the actual work and the value of a survey. It is the
aim of this book to save a great deal of time for those doing research in the area of
automated software composition and who seek to locate their work within the pool
of hundreds of others with similar (and sometimes even equal) titles but heavily
different content.

Having the goal to be as transparent as possible regarding the inclusion and
exclusion of papers, this book is accompanied by a web page containing all the
papers found in the discourse of the search but finally excluded. Hence, if the reader
is missing his approach, he or she is invited to visit the web page, http://felixmohr.
eu/research/crc901/survey, where an explanation for the exclusion is given for each
identified paper (of the 100.000). Also, if an author finds that the presentation of his
approach is not adequate, I would be glad to discuss his or her objections.

There was a discussion on the title of this book during the review process.
Initially, this book was entitled “Automated Software Composition.” However,
most papers discussed in this book treat a problem called service composition,
which caused the question: why should it not be entitled “Automated Service
Composition”. I would argue that service composition is software composition (just
a new name for the same thing). Of course, there are aspects in services that were
not considered before, e.g., quality of service, but it is actually not possible to find a
convincing example of software composition that cannot also be posed as a service
composition problem. Talks with colleagues, e.g. at ASE 2014, clearly showed that
it is important to show service composition in the context of the history of software
composition and not as an isolated discipline. It is just that the idea of services

http://felixmohr.eu/research/crc901/survey
http://felixmohr.eu/research/crc901/survey

vi Preface

revitalized automated software composition and brought its own brand. Even
though there are more publications on service composition, they can be located on
the research line of traditional software composition. Since many authors are not
aware of these roots, I consider it particularly important to also consider non-service
composition approaches. Consequently, we decided to change the title to its current
form in order to align the reader's supposed expectation with the actual book
content.

Finally, I would like to add that this book was created in the context of my
research on automated service composition within the Collaborative Research
Center “On-The-Fly Computing” (SFB 901); this work, hence, was directly and
financially supported by the German Research Foundation (DFG). Within this
research project, the reader can find a great deal of interesting publications around
(automated) service compositions and research dealing with service composition in
on-the-fly service markets, i.e., quality assurance, privacy, service deployment, and
much more.

Paderborn Felix Mohr
February 2016

Contents

1 Imtroduction 1
1.1 Contribution and Scope 2

1.2 Method for Selection of Approaches 3
1.2.1 Creating a Basis for Selection. 3

1.2.2 Determining the Considered Approaches 5

2 Automated Software Composition—A Top View. 9
2.1 Background 9
2.2 Features of Software Composition Problems 11
2.2.1 Input Features., 11

222 Output Features 14

2.2.3 Behavior Features 15

2.3 The Main Service Composition Problem Classes. 15
2.3.1 Class Identification 16

2.3.2 Goals and Focus When the Structure is Known 17

2.3.3 Goals and Focus When the Structure is Unknown. 18

2.34 Comparative Discussion of the Classes 19

3 Template-Based Composition. 23
3.1 Systems that Ignore Functionality 25
3.1.1 Simple Control Flow Models 25

3.1.2 Complex Control Flow Models. 29

3.1.3 Concluding Discussion. 33

3.2 Systems with Functional Operation Selection 35
3.2.1 Consideration of Behavior Descriptions 36

3.2.2 Dependencies and Conflicts of Operations 38

3.2.3 Consideration of Business Constraints 44

3.24 Concluding Discussion. 47

3.3 Systems with Placeholder Refinement 49
3.3.1 Nonrecursive Refinements 50

3.3.2 Recursive Refinement 53

3.3.3 Concluding Discussion.ouuiu.... 57

vii

http://dx.doi.org/10.1007/978-3-319-34168-2_1
http://dx.doi.org/10.1007/978-3-319-34168-2_1
http://dx.doi.org/10.1007/978-3-319-34168-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-34168-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-34168-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-34168-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-34168-2_2
http://dx.doi.org/10.1007/978-3-319-34168-2_2
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-34168-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-34168-2_3
http://dx.doi.org/10.1007/978-3-319-34168-2_3
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec9
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec9
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec10
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec10
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec11
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec11
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec14
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec14
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec18
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec18
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec22
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec22
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec23
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec23
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec24
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec24
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec29
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec29
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec32
http://dx.doi.org/10.1007/978-3-319-34168-2_3#Sec32

viii Contents
4 Composition Without a Given Structure. 59
4.1 Propositional Systems Without Background Theory. 61
4.1.1 I0-Based Composition.vuun.... 61

4.1.2 Composition with Preconditions and Effects. 67

4.1.3 Concluding Discussion. 73

4.2 Propositional Systems with Background Theory 75
4.2.1 Composition with Type Hierarchies. 75

4.2.2 Composition with Similarity Matching. 79

4.2.3 Concluding Discussion. 80

4.3 FOL-Based Systems.t .. 81
4.3.1 Approaches Without I/O-Relations 82

4.3.2 TI/O-Relational Approaches for Finite Spaces. 84

4.3.3 I/O-Relational Approaches for Infinite Spaces. 89

4.3.4 Concluding Discussion. 93

5 Conclusion and Outlook. 97
5.0 Summary 97
5.1.1 Template-Based Approaches. 97

5.1.2 Approaches Without a Given Structure 98

5.1.3 Answers to the Initial Research Questions 98

5.2 DISCUSSION .« ¢ v vttt e e e e e e e e 99
53 Outlook 102

References e 105

http://dx.doi.org/10.1007/978-3-319-34168-2_4
http://dx.doi.org/10.1007/978-3-319-34168-2_4
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec7
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec7
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec13
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec13
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec14
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec14
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec15
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec15
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec20
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec20
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec21
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec21
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec22
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec22
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec23
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec23
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec24
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec24
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec29
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec29
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec33
http://dx.doi.org/10.1007/978-3-319-34168-2_4#Sec33
http://dx.doi.org/10.1007/978-3-319-34168-2_5
http://dx.doi.org/10.1007/978-3-319-34168-2_5
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-34168-2_5#Sec6

Chapter 1
Introduction

The aim of this book is to provide researchers in the area of automated software com-
position with (i) a complete and comprehensive guide that helps understand the field
and easily relate new approaches to existing ones and (ii) literature recommendations
for potentially relevant related work. In this book, term “automated software com-
position” refers to the process of automatically assembling a new software artifact
using existing ones.

Automated software composition has been tackled by many people in one way
or the other, and it is hard to keep track of the approaches developed so far and to
understand important differences among them. For example, in 2009 two algorithms
claiming to tackle “the” service composition problem were published with somewhat
contradictory evaluation results [14, 23]. On one hand, Bertoli et al. propose an
algorithm technique that needs about 70s to find a composition out of a repository
of 18 services [23]. On the other hand, Bartalos et al. present a mechanism that
finds a composition in only 5 ms using a repository of 100.000 services [14]. Clearly,
the approaches cannot really address the same task, which rises the question of
which exactly are the differences between them. Another example is the different
understanding of the composition process itself, which is sometimes interleaved
with the execution of services and sometimes not. Understanding the differences and
advantages of the different approaches is far from trivial, and judging their suitability
or relevance for a particular task is just as hard.

There are already dozens of survey papers [17, 18, 21, 46, 48, 49, 80, 96, 101,
114, 120, 130, 142, 147], but these contain merely neutral paper descriptions instead
of helpful discussions. Indeed, some of these surveys are worth being read carefully,
because they contain a lot of valuable information. My objection is, however, that
the reader does not learn anything about the appropriateness of assumptions made
by the described approaches, potential use cases, and their scientific quality (formal
soundness, evaluation, etc.). For example, several of the above surveys pose Petri nets
as a possible model for services. While one can model services with Petri nets, other
techniques are much more appropriate (cf. Sect. 4.1.2.3); putting the technique on one
level with others is irritating to the reader. Judging the approaches, which is the actual
challenge, is only ever left to the reader; of course, this is usually impossible without

© The Author(s) 2016 1
F. Mohr, Automated Software and Service Composition,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-34168-2_1

http://dx.doi.org/10.1007/978-3-319-34168-2_4

2 1 Introduction

reading the papers one by one. Also, none of the above surveys can be considered a
systematic literature review. That is, the choice of discussed approaches is arbitrary
and it is not at all clear why an approach is included or excluded from the overview.

1.1 Contribution and Scope

This book is by far the most exhaustive and systematic review that has been carried
out on the field of automated software composition. In order to create this survey,
I analyzed many dozens of papers with respect to the concrete problem they tackle
and the proposed solutions. This book gives both an overview and a qualitative
comparison of the approaches.

More precisely, it is a literature review answering three research questions:

1. Which types of automated software composition problems exist?
This question aims at classifying the variants of automated software composition
problems using the most distinguishing features. It also asks for the goals and
capabilities inherent to these classes.

2. Which are the typical use cases where these problems occur?
This asks for situations in which we would apply the different approaches.

3. Which are the most prominent solution paradigms for the different types?
Here we examine the solution techniques used to address the problems.

The first and the second questions are partially answered in Chap.2. The field
of automated software composition can be divided into two areas. Approaches in
the first area assume that the behavior of the target software artifact is described
by a template that must be instantiated; the main use case is to find an admissible
and possibly optimal refinement of an abstract workflow for an individual context
of usage. Approaches in the second area assume that the behavior is described in
terms of logical preconditions and postconditions; the main use case is that we want
to convert a declarative programming statement into imperative code. Chapter 2
explains why this high-level classification is a good choice and gives answers to the
question of use cases for the two classes.

However, the classification system I apply is rather distributed over the three
chapters. Chapter 2 explains the two high-level classes, their use cases and dif-
ferences between them but does not provide a discussion on their respective sub-
classes. These discussions are part of the introduction of Chap.3 (for approaches
that assume a template given) and Chap. 4 (for approaches that create compositions
from scratch) respectively. The reason is that the these classifications are very spe-
cific and can be better explained in the respective context. The big picture can be
found in Chap. 5; Fig. 5.1 merges these distributed class descriptions into one single
classification scheme.

Hence, Chap. 2 should be seen as a general introduction into the field of software
composition but without the claim to provide a complete classification framework.
The detailed discussion of the two main classes that also contains the answers to the

http://dx.doi.org/10.1007/978-3-319-34168-2_2
http://dx.doi.org/10.1007/978-3-319-34168-2_2
http://dx.doi.org/10.1007/978-3-319-34168-2_2
http://dx.doi.org/10.1007/978-3-319-34168-2_3
http://dx.doi.org/10.1007/978-3-319-34168-2_4
http://dx.doi.org/10.1007/978-3-319-34168-2_5
http://dx.doi.org/10.1007/978-3-319-34168-2_5
http://dx.doi.org/10.1007/978-3-319-34168-2_2

1.1 Contribution and Scope 3

research questions takes place in Chaps. 3 and 4 respectively. The implied merged
classification tree can be found in the conclusion in Chap. 5.

For every approach, there is a detailed discussion and a summarizing evaluation
comprising strengths and weaknesses. The detail of discussion depends on several
factors such as the novelty, quality of the presentation and the used formal model.

However, the reader may also miss two aspects of discussion:

e Comparison of performance. 1 claim that it is not possible to give a comparison
of the performance of composition approaches without a centralized challenge.
They cannot be compared merely by the results claimed to have been obtained
in the respective papers. However, implementations are often not available, and
there is no standardized benchmark set for software composition, yet. Hence, a
quantitative comparison of approaches would be desirable but is beyond the scope
of this book.

e Comparison of tool support. The availability of tools is of tremendous importance
for the practical relevance of an approach. However, tools with roots in the scientific
community often tend to expire. In fact, some of the approaches discussed here
such as OWLS-XPlan once came with tools that are not available anymore or only
work on outdated platforms. In order to keep the content of this book independent
from changes that tend to occur over time, tool support is not part of the comparative
discussion.

In the following, I describe how the approaches discussed in this book were
determined. That is, the methodology under which the systematic literature review
was carried out.

1.2 Method for Selection of Approaches

This section describes how the approaches discussed in this book were identified.
Sect. 1.2.1 describes how a basis of approaches was created, and Sect. 1.2.2 describes
how the final set was achieved out of these.

1.2.1 Creating a Basis for Selection

1.2.1.1 Initial Set of Potentially Relevant Publications

First, I created an initial set of publications systematically using the scientific search
engines Google Scholar, Citeseer, and Science Direct. The search terms used for this
process consisted of two words that must be contained in the title of the publications.
The first keyword indicates a composition activity and the second keyword indicates
a subject of composition.

The considered keywords for the activity were: composition, compose, compos-
ing, composer, synthesis, synthesize, synthesizing, synthesizer, configuration, con-
figure, configuring, configurator, coordination, coordinate, coordinating, coordina-
tor, orchestration, orchestrate, orchestrating, orchestrator, plan, planning, replanning,

http://dx.doi.org/10.1007/978-3-319-34168-2_3
http://dx.doi.org/10.1007/978-3-319-34168-2_4
http://dx.doi.org/10.1007/978-3-319-34168-2_5

4 1 Introduction

planner, adapter, adapting, adaption, adapt, connector, connect, connecting, connec-
tion, mediator, mediating, mediation, mediate, and choreography.

The considered keywords for the subject were: service, services, component,
components, software, program, programs, module, modules, operation, operations,
workflow, workflows, process, and processes.

I performed a search for each such combination of keywords. A publication is
included if, for at least one search term, it contains all words of the search term in
its title; this resulted in a basic set of 118.530 publications.

1.2.1.2 Removing Topically False Positives and Manually Excluded

Since keywords may be used in different semantic contexts, there are many approaches
with titles that seem relevant to the topic of service composition but which are not.
So at this step, I removed approaches that are in no way related to the field of service
composition, e.g., biological processes, etc.

This removal was done semiautomatically using stoplists with black listed words
that clearly indicate an off-topic publication. The blacklisted words are: biol, bio-
div, chemi, molec, toxi, amino, diox, silic, medic, lipid, fischer, family, nano, psy-
chiatric, psycho, physio, lympho, human, pharma, pheromone, cataly, oil, child,
adult, hydro, thermal, zeolit, liquid, food, milk, nitro, organ, education, kine, fusion,
cultur, acetyl, choline, brain, nerve, magnet, spectr, geom, chlor, amphenicol, dna,
gluco, stereos, tumor, cancer, infect, protein, lactam, bacillus, depress, gas, fpga,
micro, macro, ethyl, ramoplanin, alamethicin, cedrene, cedrol, ferro, peptide, lig-
and, pyridin, pyrrolo, mannosid, drug, galact, ribosomal, proteolysis, school, hos-
pital, music, channel, nucl, nickel, crystal, heat, lumber, combustion, octanol, fuel,
methan, bismuth, sol-gel, mineral, oxi, polyol, morph, cell, liver, surgery, teeth,
tooth, bone, carbid, metabolic, membrane, cardiac, halogen, electr, smok, water,
drink, weight, jogg, body, life, clinic, genes, condens, ionic, photo, energ, atmo-
sph, synops, distill, ecosystem, deposition, public, student, pupil, classroom, lecture,
freshman, statewide, institutional, writers, grade, demogr, transport, rhetoric, enter-
prises, glyce, soybean, larva, B3, anoid, legal, judicial, justi, logistics, osmo, schedul,
supply, volcan, magma, melt, cognitive, teach, facilit, laser, patient, spatial, qfd, Ara-
bidopsis, economic, business, product, resource, group, team, age, aging, robot, and
mechanic.

This list seems quite restrictive and to potentially exclude papers that actually do
have to do something with software synthesis. While this objection is generally true,
we must keep in mind that an approach is only excluded this way if all the related
papers contain a blacklisted word. I admit this problem, but a manual revision of over
100.000 papers would have simply not been practical. For the next time, one could
apply some machine learning classifier in order to carry out a more sophisticated
detection of false positives.

In addition, I manually created a second blacklist of roughly 150 irrelevant pub-
lications that are not related to the topic of interest. This step removed a huge set of
publications; 56.891 remained in the pool.

1.2 Method for Selection of Approaches 5
1.2.1.3 Merging Publications to Approaches

Since many authors publish multiple papers on the same or very similar approach,
I merged publications to approaches. In this paper, an approach is simply a set of
publications, all of which have the same first author. This way, the 56.891 publications
were merged to 42.808 approaches. Like for publications, I created a blacklist of 34
approaches, which were associated with 167 publications. Hence, after this step,
there were 56.724 publications defining 42.774 approaches under consideration. A
complete version of this set, later denoted as M, can found at http://felixmohr.eu/
research/crc901/survey.

1.2.1.4 Computing the Citation Graph

The huge set of publications makes it impossible to review each of them, so the only
viable strategy is to use an evaluable criterion for automated processing. Even though
not perfect, a good criterion for filtering is the number of citations made and obtained
by approaches with respect to other approaches in the considered set. To this end,
I created a citation graph for approaches. In this graph, there is one node for every
approach (56.724 nodes) and one edge between node n and n’ if any publication of
approach n is cited by any publication of approach n’. If there is an edge from n
and n’ as well as from n’ to n, I only selected the citation link where the later cites
the earlier approach. Even though this is not a sufficient criterion for acyclicity in
general, the resulting citation graph is acyclic with 18.438 links.

1.2.2 Determining the Considered Approaches

1.2.2.1 Determine Recent Relevant Work

Removing approaches that do not cite enough others of the area: Considering the
huge number of publications, it is reasonable to first outsort approaches that do not
relate themselves to other approaches in the field. In particular, I require that every
approach cites at least five other approaches in the set; this means, every approach
with input degree at least five in the citation graph. Of course, this also eliminates
important early approaches that could not cite five other approaches; I reinclude them
in the following step. Quite amazingly, this step reduced the number of approaches
by 98 % to a rather manageable number of 733. Note that the high ratio of outsorted
papers is not only caused by flawed related work of papers but also by the fact that the
set still contained many approaches from foreign topics; since those approaches do
not cite software composition approaches, they do not achieve the required number
of made citations and are eliminated in this step.

http://felixmohr.eu/research/crc901/survey
http://felixmohr.eu/research/crc901/survey

6 1 Introduction

Removing non-recent approaches: For now, we are interested in rather recent
approaches, which I define as approaches from the last 5 years. Hence, from the
remaining 733 approaches, I removed approaches older than 2010, which resulted
in another 77 % reduction and a total number of remaining approaches of 168.

Removing recent but not brand new approaches without impact: Somewhat
moderately, I required approaches from 2010, 2011, and 2012 to have obtained at
least 3, 2, and 1 citations respectively. The computational base here is the output
degree in the original citation graph. That is, a link from n to approach n’ also counts
for n even if n’ was removed in the last step. Approaches from 2013, 2014 and 2015
are not excluded. Formally,

—x cites at least 5 other approaches from M, and
— x published in 2010 and has at least 3 citations, or
M ? = {x € My | — xpublished in 2011 and has at least 2 citations, or
— x published in 2012 and has at least 1 citation, or
— x published in 2013, 2014, or 2015

In our case, this yielded a set with |M ?| = 87.

1.2.2.2 Determine Very Influential Approaches

Computing most influential approaches. I define the (citation-based) relevance of
an approach as a basic (unconditional) value of 1 that is increased by the relevance of
approaches that cite it. For the computation of relevance values, we used the formula
fm)y=1+2>,5 /f(n), where n’ are successors of n in the original citation
graph. Using this function f to determine the relevance, I found the intuitively
most influential approaches (based on my own research and on the results of other
surveys) having the best values in an appropriate order. For the following, I used the
300 approaches with the highest such values. Formally, I define

M3 = {x € My | there are at most 299 other x’ € My with f(x') > f(x)}

1.2.2.3 Reject Approaches that Ignore Very Influential Works

Based on the recent approaches on one hand, and most influential approaches on the
other hand, I update the set of recent approaches that do relate themselves to the most
influential papers sufficiently. More precisely, I required that a recent approach cites
at least 3 of the 200 most influential approaches.

Mll ={xe M? | x cites at least 3 elements of Mzo}

This step reduced the recent approaches from |M(§| =87to |M 11| = 52. This tells
a lot about the quality of related work of these publications.

1.2 Method for Selection of Approaches 7
1.2.2.4 Determine Somewhat Relevant Approaches

There are a lot of approaches that are important to track the development of an area
but that are neither heavily influential nor very recent. In order to include these, I
include approaches with at least one citation obtained from and five citations made
on currently considered approaches.

The definition of the set of somewhat relevant approaches is recursive. Let Mg) be
the label for the set of somewhat relevant approaches and let M = M 11 U Mg U M?.
Every approach with a publication with at least one citation obtained from approaches
in M and 5 citations made on approaches in M is also in M} (and hence in M). The
obtained citation reflects (some) relevance, and the made citations are a necessary
condition for reasonable discussion of related work. Formally,

Mg:[XEMO

—at least oney € Ml1) Mg U Mg cites x and
—x cites five distinct yq, y2, ¥3, V4, V5 € Ml1 U Mg U Mg

We obtain a set of size |M3| = 172. Note that M|, M?, and MY are not generally
disjoint. http://felixmohr.eu/research/crc901/survey contains an overview of which
approach is contained in which of the sets.

1.2.2.5 The Final Set of Considered Approaches

First, not all of the 300 most influential approaches are really relevant for the dis-
course, so I only consider those approaches that are cited by at least two other
approaches in the set. Most influential approaches not satisfying this condition may
have been important but not for the actual discourse of the topic of automated soft-
ware composition. Formally,

My = {xe M} |at least 2 other approaches from M| U MY U MY cite x }

Of the initially 300 approaches, only 135 satisfy this criterion.

Second, I update the set of approaches in M| and M§) with respect to the related
work. Due to the incredible amount of approaches in the area of automated service
composition, every “non-ancient” approach in this domain must relate itself to (and
therefore cite) at least 5 other (relevant) approaches.

Formally, this yields the following final recursively defined set:

M = {x|x € Mjor(x € M{ UMy andx cites at least 5 items of M)}

The final set M contains 211 approaches, which I examined manually.

http://felixmohr.eu/research/crc901/survey

8 1 Introduction
1.2.2.6 Individual Revision of Remaining Approaches

In a very laborious revision process, I then outsorted another 105 of the 218
approaches. There were three main reasons for being outsorted manually. First, an
approach was outsorted if its publications did not contain any concrete composition
technique; these were basically surveys and roadmap papers and papers dealing with
nonautomated techniques. Second, an approach was outsorted if it does not discuss
related work at all (but merely lists other papers) or does not discuss very relevant
related work in sufficient detail; the latter was the case when an approach extends
an existing one but does not explain the difference. Third, flaws with respect to the
content also led to exclusion; the most frequent cases were the lack of a clear contri-
bution statement or unacceptably heavy formal flaws. There is no point in discussing
this in more detail within this paper, but I provide a justification for the exclusion of
any manually excluded approach elsewhere.

Iacknowledge that this last criterion is, in parts, subjective, but it is still better than
previously published surveys. Not only is every survey published so far completely
based on subjective selection criteria, but these criteria are even nontransparent. The
reader has no chance to reconstruct the results and must blindly trust in the quality
of research done by the respective authors.

Chapter 2
Automated Software Composition—A Top
View

This chapter gives a brief introduction to automated software composition. Section 2.1
provides an overview of the general task of automated software composition. Then,
Sect. 2.2 gives an overview over the features of composition problems. Third, Sect.2.3
proposes the first level of a classification scheme, which is the basis for the technical
discussions in the next chapters; i.e., it presents the two main classes of composition
problems. The discussion of subclasses of the two main classes is part of Chaps. 3 and
4. A summary of the complete classification tree is depicted in Fig.5.1 in Chap. 5.

2.1 Background

A nice vision statement of automated software composition was given by Koza end
Rice in the context of automated programming [76]:

The goal in automatic programming is to get a computer to perform a task by telling it what
needs to be done, rather than by explicitly programming it.

While avoiding explicit programming often is desireable, automated software
composition does not aim at replacing classical software development. As pointed
out by Hoare, one of the most important properties of software is that “it carries out
its intended function” [58]. To express this intended function, we will always need to
rely on some kind of formal descriptions, and there is not the illusion of the cocktail
party explanation of the vision of automated programming [131], where complex
software can be derived from natural language requirement definitions expressed by
somebody not even familiar with software engineering. On the other hand, the work
of software developers can be supported by automation techniques.

The idea of automated software composition is to automate a small part of the code
construction process. That is, we do not want to create huge software specifications,
press the button, and wait for the signal that the desired software has been deployed
on the machine. Instead, we want the machine to create rather simple programs fast.

© The Author(s) 2016 9
F. Mohr, Automated Software and Service Composition,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-34168-2_2

http://dx.doi.org/10.1007/978-3-319-34168-2_3
http://dx.doi.org/10.1007/978-3-319-34168-2_4
http://dx.doi.org/10.1007/978-3-319-34168-2_5

10 2 Automated Software Composition—A Top View

There seem to be two main cases where automated software composition is prefer-
able over ordinary programming.

First, there may be occasions where we need to create software within the time
frame of seconds where any human interaction would simply not be fast enough.
For example, we want to run a script that solves an optimization algorithm based on
simplex if the instance is rather small and with interior point if it is large, applying
specific parameters to the respective algorithm depending on the input instance,
which cannot be efficiently hard-coded in the script. We then would create a rough
workflow of the general process and automatically refine it at runtime based on the
concrete input.

Second, developers often only want to state conditions that should be true for an
object instead of describing how this is achieved. For example, one would like to be
able to write

v s.t. PriceOf(y,x) & EUR(y)

to say that y should be set to the price of x with respect to its current value in EUR
instead of writing the following:

p := getBookPriceOf (x) ;
vy = USD2EUR (D) ;

The declarative variant has many advantages. Not only is it closer to the actual
intention of the developer, simpler (no temporary variable) and exhibits higher read-
ability. It also decouples description from implementation, which means that the
developer does not need to know the exact function that realizes the functionality;
the name or location of the function may change without doing harm to the code.
In particular, the developer does not even need to know how the property can be
computed and whether or not the result is already in the right currency or whether
it must be converted. Moreover, given the correctness of the functions used by the
synthesizer, the generated code is correct by construction.

The largest subfield of automated software composition is called automated ser-
vice composition. Services are self-contained and platform independent software
components. Self-contained means that services do not visibly rely on other com-
ponents or services, so they can be used right away without the necessity to specify
components that should be used for some required interfaces. Platform independent
means that two services can be used together independently from the language in
which they have been implemented. The idea is that, instead of, say methods in
an object oriented programming language, service operations do not communicate
by exchanging object references over a commonly accessible memory but by mes-
sages. These properties allow for the definition of a simple composition model that
assumes a set of operations that can be combined (platform independentness) ad
hoc (self-containedness) into a new software artifact. These properties are naturally
given within every programming language, so, by making these assumptions, auto-

2.1 Background 11

mated service composition simply accounts for the fact that we now need to combine
components implemented in possibly different programming languages.

2.2 Features of Software Composition Problems

Clearly, one cannot speak of the automated software composition problem. I iden-
tified 22 very heterogenous features that separate the service composition problems
from each other. This greate variance makes many approaches distinct and some-
times even completely uncomparable to others. Since most of these features should be
intuitive, I only give a brief overview rather than discussing them in detail. Table 2.1
shows an overview about the features.

Every feature specifies a characteristic that relates to the algorithm inputs,
algorithm outputs, or its behavior. Composition problems impose conditions on the
inputs, outputs, and even the implementation of composition algorithms (that address
the respective problem). Hence, it is natural to see the set of different features that
determine a composition problem as constraints made on one of these three aspects.

2.2.1 Input Features

The 14 input features describe characteristics about what is fed to a composition
algorithm. Input features are as follows:

e Presence of a control flow of the solution.
In this case, the desired piece of software is specified in form of a workflow, which
needs to be concretized. The composition algorithm does not create a control flow
but only refines the given one. Prominent representants where the control flow is
given are [20, 138, 167], while prominent representants where no control flow is
specified are [72, 97, 106].

e Presence of a data flow of the solution.
In this case, we already know how data between the potential services will be
communicated. If the control flow is given, usually also the data flow is given
or even completely ignored (since not relevant for the composition problem).
However, it is possible that the data flow is given but the control is not available.
A prominant approach defined in this setting is the one of Bertoli et al. [23]. The
task is then to find an admissible order of invocations of the services. However,
most approaches that do not assume the control flow given also assume that no
data flow is predefined [72, 97, 109].

e Formalism to describe operation semantics.
Not all approaches define the semantics of operations [20, 167]. However, if
these are specified, this is usually done using logic preconditions and postcon-

2 Automated Software Composition—A Top View

12

paysnes A[ueniqre suonipuodaid Jossadopaid Aq paysnies 9q 3snw suonpuodrd
asn Areniqre ‘punoq Joddn awos ‘9ouo jsow e
paafoaur Suruued ‘poajoaut Furuuerd ou

uonoRJSHES UONIPUOIAIJ
uoneradQ 1od a3es) wnwirxejy
Suruue[SNSISA UOT)II[S

sok ‘ou PIABS[IAIU] UONNDAXH 29 uonisodwo)) Jo1AeYRg
(enqrey uo sdojs opun ued uonisodwod) sak ‘ou uonisodwo) jo L3Oy
SOJEpPIPUED UOTINJOS JO JOS ‘UONN[OS JUO suonNJog JO IoqUINN
smop ‘sdoo] ‘seAnjeurd)e :Jo uoneurquod Aue yim A[qissod soouanbos armonng uonisodwo))
uonisodwod
) Suynoaxa Wolj paureiqo Jnsar ay) st Jndino ‘aremyjos jo aoa1d e st ndino mndinQ jo od£[, e1ouan sindinQ
J[qe[IeAR ‘Q[qE[IBAR JOU Agpomouy] urewo(q [9A97 192[q0
sonI 7O Areniqre ‘sarSojojuo ‘SAIuouoXe) ‘ouou oSpo[mouy urewo(T [eIOUID)
uonepIifeaur 9[qrssod ‘sA (JYI) 2oua)sisiod 9[qeUOSEAI pUL UOTIBOOAUT sindinQ uoneradQ jo swy, uonendxyg
SuLy
PHOM 9y} Jo 93e)s oy oSueyd os[e suonerado snsioa A[uo-pear are suonerado e PHOA\ SnSIoA SULIdY)ED) UOEWLIOJU]
S9A ‘ou suone1adQ uo sjurensuo)) a3esn
sak ‘ou JorAeyeq uoneradQ oNSIUIuINAQ
sindjno pue syndur Areniqre ‘yndino Jo/pue ndur ouo jsour Je ‘ouou suonjeradQ jo Ayrxerdwo) amjeusig
BIep Jo3Ie) ‘ejep odwex? ‘Quou ere(q indug
SUOTINQIISIP ‘S[EAISIUL ‘SON[eA XIJ soSuey 00
uonoUNJ 9ANOA[QO ‘SHUTENSUOD 3JOS ‘SIUTENSUOD PIeY :JO UOTIRUIqUIOD JO QUOU syuowaIbay S0
104 Jo sjueLrea Areniqre ‘o13o] reuonisodoid (ferodwo)) ‘ouou suondrosa(Jo o3en3ue]
s100)39 29 suontpuodaid ‘(s3ey) Aprordxa ‘payroads jou suondrosa uoneradp
pauyep Aa3o[dwod ‘pauyep A[renied ‘pauyop jou MO[BIe(] Jo uoneoyroadsaig
10q 10 ‘SONUBWIAS ‘Injonns “1m pauyap A[1e[dwos 1o Ajjented ‘pauyep jou MO[[o1nu0)) Jo uonesyradsald snduy

(31nyea] 9A1IdsaY AY) JO SHNSLIdNIEIRY)) I[ISSO]) UTew o]

ERLLILEN |

‘sonswejorreyd a[qissod 1oy pue swe[qoid uonisoduwod aremijos pajewojne Jo SaINjed) Jo MAIAIIAO (ajo[dwooun) uy 7 dqEL

2.2 Features of Software Composition Problems 13

ditions/effects [72, 97, 106] or sometimes through keywords (tags) [99]. I do not
consider the usage of (ontological) types as semantic descriptions.

e Language of semantic descriptions.
If operations have descriptions in form of preconditions and effects, these may be
specified in different ways. On one hand, they can be propositional, allowing for
efficient composition but does not allow to express relations between inputs and
outputs of operations [75, 135]. On the other hand, they can be (a subclass of) first
order logic [72, 97, 106]. This is significantly more expressive at the natural cost
of higher problem complexity.

e Number of inputs and outputs of operations.
Some approaches ignore inputs and outputs completely, since data flow is not
important for them [20]. Most other approaches do not impose limitations on the
number of inputs and outputs, but it is imaginable to restrict them to only one
output (as in Java).

e How Quality of Service (QoS) is considered.
QoS is the common term to describe nonfunctional properties of services. Usu-
ally, these are properties like price, throughput, availability, trust, etc. [167]. If
considered at all, QoS requirements can be posed as hard constraints [106], soft
constraints with penalties [57], or be subject to optimization [167].

e Description of QoS properties.
QoS properties are most of the time considered as scalar values. However, these
could be more complex structures such as intervals (value is within a range),
density functions (value is a random variable distributed in a particular way), or
other functions (e.g., the price of a service depends on the number of invocations
within a session).

e Deterministic behavior of operations.
Is the response identical for every two equal invocations? This is the case if the
implementation of the operation is stateless and does not contain random ele-
ments. Most approaches assume deterministic behavior of operations, but some
also consider the more complex case [23].

e Expiration time of operation outputs and effects.
The outputs of an operation invocation usually may become invalid after some
time. For example, if the answer is the price of a flight, then the information is only
valid within a short range of time. However, most approaches make the assumption
of invocation and reasonable persistence (IRP). Under this assumption, the result
of an operation invocation remains valid at least throughout the execution of the
composition.

e Information gathering or world altering.
If a property P holds after an operation, we must distinguish the case that P was
determined to hold or whether it was made true. Settings that are purely information
gathering are read-only settings. Together with the IRP assumption, this means that
knowledge gathered by operations does never become false; hence, this constitutes
amonotonic setting. In a world altering setting, however, information that was true
at some point in the composition may be false later. Every approaches that does

14 2 Automated Software Composition—A Top View

not assume the control flow given implicitly makes this assumption, but, this point
is rarely discussed.

e Dependencies and conflicts among services.
Some approaches apply constraints on the common usage of services of the form:
If service A is used, then B must not be used.

e Presence of data to be fed to the solution.
Some approaches assume that the data passed to the search composition is already
given in the query [98]. This allows for a composition mechanic that interleaves
composition and execution. Most approaches, however, do not make this assump-
tion.

e General domain knowledge is specified.
Most approaches only assume a set of services given, but no background knowledge
is used [72, 75, 135]. However, there are also some approaches that allow for
domain knowledge in form of logic formulas [60,106].

e Object level domain knowledge.
Domain knowledge can be given in form of general rules (previous point) but
also in form of facts, e.g., ground literals that are known to be true in a particular
domain, e.g., that FRA is an airport close to Frankfurt, Germany. This is particularly
relevant in information integration-based settings like [8].

There are very few dependencies among the input features. That is, most com-
binations of input characteristics is theoretically imaginable. Of course, there are
exceptions, e.g., if no QoS requirements are specified, then the ranges of QoS values
is irrelevant; or data are only relevant if the operations are considered with inputs
and outputs. Still, most features are independent, so I did not present them in form
of a (unreasonably dense) feature diagram.

2.2.2 Output Features

I identify four features of the output of the composition algorithm:

e First, a composition algorithm may return a piece of composed software or the
result of the execution of a piece of software. While in the first case the invoker
is interested in a functionality that he can reuse arbitrarily often, the second case
reflects some kind of database query whose outputs are the results of some more
or less complex computation.

e Second, a composition algorithm may return extremely different composition
structures, which can range from sequences of service operation calls to com-
plex structures with alternative branches, loops, and concurrency.

e Third, a composition algorithm may return different numbers of solutions. Since
many aspects that may be relevant for the requester cannot be efficiently formal-
ized, the algorithm cannot necessarily take the final decision about the appropri-
ateness of a solution; hence, it may return not only one but a hole set of solution
candidates among which the requester can select.

2.2 Features of Software Composition Problems 15

e Finally, compositions may or may not be equipped with the transactional prop-
erty of atomicity, which means that if their execution fails, potentially performed
changes on the world are automatically rolled back.

In contrast to the input features, there are some dependencies among these output
features. For example, if the general type of the composition output is the result
performed by the execution of the identified composition, then the other features are
irrelevant. Also, atomicity of compositions somehow requires that the composition
is not purely sequential, because purely sequential compositions cannot react on
possible execution failures of the invoked operations.

2.2.3 Behavior Features

Finally, I identified four features that describe high level characteristics about the
behavior of a composition algorithm.

e First, a composition algorithm may or may not interleave the composition process
and the software execution process.

e Second, a composition algorithm may be either a pure selection algorithm (selects
operations for several placeholders of a given template) or a planning algorithm
(also makes structural decisions on the control flow and data flow). Of course,
planning is only relevant if the control flow and data flow are not already completely
fixed in the input.

e Third, a composition algorithm may be limited in how often it may use (different
instances) of every available services and their operations.

e Fourth, planning-based composition algorithms may be limited in how the pre-
conditions of added service operations must be satisfied. For example, in [14],
the precondition of an operation must be completely satisfied by the immediate
predecessor in the control flow.

2.3 The Main Service Composition Problem Classes

In this section, I propose the presence of structural information about the solution
as the main criterion for classification. That is, I use only one of the above fea-
ture (prespecification of control flow) as a classification criterion. This is a suit-
able criterion not only because it avoids hybrids that belong into both classes but
also because it splits the field into two equally large subfields. This section dis-
cusses the goals, main research questions, use cases, and complexity of the two
classes.

16 2 Automated Software Composition—A Top View

2.3.1 Class Identification

One way to separate the problems into two intuitive classes is to ask whether or not
the structure of the desired composition is given. Here, the term structure refers to
some form of definition of the control flow of the solution. Figure 2.1 shows this high-
level classification scheme. If the structure is given, e.g., in form of a template with
placeholders, then the composition problem is to bind the placeholders to concrete
services. If the structure is not given, then the composition problem is to find it, i.e.,
to find the control and data flow of the desired service.

Even though other classification criteria are possible, this one is particularly con-
vincing for three reasons. First, it defines a real partition on the field. Either some
(possibly partial) structure is available for the input or it is not. For every approach,
exactly one of the two assertions is true, so there are no hybrids. Second, the clas-
sification separates the field into two roughly equally large subfields, which can be
seen in the following two chapters. Third, deciding the class for an approach is easy,
because the question whether or not a structure is available can be answered imme-
diately. Consequently, the question whether or not the structure of the solution is
known is a good (maybe the best) criterion.

Another striking argument for this classification is that it distinguishes between
two fundamentally different use cases. In the first case, the objective is to find a good
variant of a known process. In the second case, the objective is to design a new
process that satisfies a functional requirement specification.

Asaconsequence, the motivations and research questions pursued with approaches
in the two classes is very different. In the following, I discuss these aspects the goals
and the main research questions of the two classes in some more detail. Section2.3.4
compares the two classes on a high level with each other.

Since the discussion of subclasses of these two classes is very exhaustive, I defer
this discussion to the respective chapters. This is basically because the features used
to form the subclasses are different for the two classes. Hence, Chap.3 discusses
the subclasses of the class of approaches that assume that the structure is known,

Automated Software Composition Problems
Key question: Is the structure of the solution known?

Structure Known Structure Unknown
Situation: The software is already written but Situation: The behavior of the software is de-
contains placeholders with fixed semantics that scribed in terms of its preconditions and postcondi-

must be bound to concrete pieces of software. tions. The structure is unknown or highly abstract.

Goal: Find admissible or optimal binding. Goal: Find control flow and data flow.

Fig. 2.1 The availability of a template is the best classification criterion

http://dx.doi.org/10.1007/978-3-319-34168-2_3

2.3 The Main Service Composition Problem Classes 17

and Chap. 4 discusses the subclasses of the class of approaches that assume that the
structure is not known. For the same reason, there is not one large decision tree.

2.3.2 Goals and Focus When the Structure is Known

The goal of approaches where the structure of the desired component is known is to
construct a machine that refines the abstract description and binds its abstract parts
to existing service operations. So the subject of automation is the selection of both an
appropriate refinement and the concrete services and operations occuring in them.

The behavior of the desired component is described by a template. Figure?2.2
shows a brief sketch of a template and shows that it already specifies the control flow
and the data flow (not visualized) of the desired component but leaves placeholders
in it, which still must be bound to concrete services. So the eventual composition has
already been defined on a more or less abstract level.

Several aspects may play a role in the instantiation process of the predefined
template. First, we might consider nonfunctional properties such as price, execution
time, etc., and find a solution that is (globally) optimal with respect to these properties.
Second, we might consider functional constraints such as the behavior of candidate
operations, exclusion constraints, invocation order constraints of used operations,
etc. Third, we might be interested in solution that replace placeholders not only by
atomic operation calls but by entired subcompositions.

There are several research questions relevant for approaches within this class.

1. How can nonfunctional aspects relevant for service composition be modeled as
an optimization problem? Research is mostly concerned about how properties
associated with individual service choices must be aggregated to the whole com-
position.

s))
Template §>_, Task j
-
0
.—> Task 1
{ Task m
''''') f
................................... Tk
.....................) - J
| e _ J
; T)
Avallable Operatlons { Operation 1 } [Operation 2 }
(.

Fig. 2.2 Automated service composition with a given solution structure

http://dx.doi.org/10.1007/978-3-319-34168-2_4

18 2 Automated Software Composition—A Top View

2. How can templates be instantiated such that they satisfy functional constraints
imposed by the user or the environment? For example, in the Roman model the
question is how the placeholders can be replaced such that the communication
protocols of used services are satisfied.

3. How can templates be instantiated if placeholders may be bound not only to
atomic service operations but to entire compositions that must be created on the
fly? Research is mostly concerned with the question how the search process for the
instantiation can be designed such that a functionally valid solution is obtained.

4. How can this type of service composition be integrated into the software devel-
opment workflow?

2.3.3 Goals and Focus When the Structure is Unknown

The goal of approaches that have no structure of the solution given is to construct
a machine that computes outputs with the required properties given inputs with
the promised properties. Figure2.3 provides a sketch of this scenario. The intended
behavior of the desired composition is specified in terms of preconditions that may
be assumed to be true on execution and postconditions that are expected to hold after
execution of the composition.

Approaches in this class devise a new paradigm of programming, which is declara-
tive programming with translation into imperative code before compile time. Instead
of writing the code of the desired algorithm itself, i.e., specify functions to be invoked,
the developer only says what the algorithm can assume to hold at time of invocation
and what should be true at the end of the desired code. Preconditions and postcondi-

s N\
Composition Algorithm Input Service 1
O Operation (if ... i%, 0, ..., ol})
Pre- and Postcondltlon Pret Poat1
Query Interface QoS: Q'
DesiredOperation(if, ..., iy 07 2 0d4) . .:A
Pre- and Postcondition: Pre?, Post? Service k
QoS: Q7 OperationK (i¥,..., ik, o, ..., o)
Pre- and Postcondition: PreF, Post*
QoS: Q*

,
\

(Composition Algorithm Output Q Y ‘I’

Solution Controller

- J

Fig. 2.3 Automated service composition without a solution structure

2.3 The Main Service Composition Problem Classes 19

tions are formulated in terms of propositional or first order logic, sometimes through
the notion of ontological concepts.

In other words, approaches in this class aim at exceeding the automation enabled
already by compilers for high level languages. In fact, every compiler automatically
creates software from a given formal description. However, compilers underly a
deterministic translation process, so there is a direct correspondence between what
the developer writes and the program that will be created later. Automated software
composition goes a step further and allows the developer to use programming con-
structs that do not even have an executable implementation at design time but whose
implementation is tried to be achieved automatically before the compiler is run. In
contrast to the translation process of the compiler, which only fails on invalid inputs,
the composition process may also fail because it cannot find an implementation with
the requested properties.

Readers familiar with verification will notice the close relation between automated
service composition and that area. In classical verification, a Hoare triple { P} S{Q} is
correct if we can show that, assuming that the (logical) precondition { P} is true, the
execution of the code statement S yields the condition { Q}. Verification assumes the
program statement S being given as input for the verification process. In automated
software composition, the composition algorithm must create a code statement S
such that {P}S{Q} is a correct Hoare triple. Hence, verification is a subproblem of
this composition problem; usually, it is solved implicitly during search.

There are several research questions related to this composition type.

1. How expressive can (or should) requirements be specified? On one hand, proposi-
tional logic is usually not expressive enough, because it cannot relate the outputs
produced by an operation to the inputs passed to it. On the other hand, complete
first order logic may cause significant computational issues.

2. How can the search process for compositions be designed, and how can it be made
efficient? This is simple for many propositional logical requirement definitions
but hard for first order logical requirement definitions, (which are of particular
interest because of the aforementioned reasons).

3. How can possibly competing nonfunctional properties be considered in this search
process?

4. Fourth, how can the acceptance of this very formal approach be increased among
developers and how can it be integrated into the development workflow at all?

This is only an (incomplete) overview over the high level questions; of course, each
of them can be expanded into many subquestions.

2.3.4 Comparative Discussion of the Classes

The conceptual difference between the two classes is not the type of algorithm input
but the actual problem that we want to solve. In particular, the two problems have
different use cases, are unequally difficult to solve, and are faced with different
objections.

20 2 Automated Software Composition—A Top View

Expected Use Cases

In the class of availability of the solution structure, the use case is that we want to
find a (possibly optimal) variant of a general operation that best suits the individ-
ual context and requirements of a user. The template contains the algorithm that
implements the desired functionality, leaving only some placeholders that may be
replaced in different manners depending on the context. This type of composition
may be required in situations where different clients want to use the same service
but have different preferences regarding nonfunctional properties. For example, both
want to use a service that determines the cheapest flights for some journey. While the
first client wants the results within a second and accepts a higher price, the second
client accepts only a low price but does not care about runtime. The decision how
placeholders should be replaced depends on the actual preferences of the requesting
client. So the user of the composition algorithm has potentially no or only very few
knowledge in the area of software engineering.

The second class corresponds to the use case where a developer wants to have
the implementation of an algorithm be generated automatically; the focus is the
implementation of some desired functionality. This is sometimes called automated
programming, but a better term would be code deduction. The desired functionality
has not yet been fixed in a template but must be formulated by the user himself. This
can only be done by someone with sufficient skills in software engineering. Hence,
the context of this type of composition is a software development environment that
combines imperative or functional programming with this type of code deduction.

Unequal Difficulty of the Problems

Intuitively, the hardness of automation seems to be different for the two classes. On
one hand, it seems that, at least in theory, every composition that was obtained by
the instantiation of a template can also be obtained when no structure is given at all.
On the other hand, the absence of limitations on control flow and data flow leaves
much more work to do for the composition algorithm. Instead of checking a (possibly
large but) finite set of variants, the set of possible compositions when no structure is
given is generally infinite. This discrepance obviously induces also a difference in
the complexity.

However, the range of complexities within the respective classes is quite wide,
so we cannot really compare the complexity between the classes but only between
approaches. For both classes, there are cases constructible that have constant time
complexity and others that are undecidable. Hence, we cannot draw an overall con-
clusion about the hardness of the classes; the approaches must be considered indi-
vidually.

The only observation we can make is that, currently, all approaches that apply
to the first class decide the problem to which they are applied while there are two
approaches in the second class that do not have this property. More specifically,
the approaches presented in [97,109] are not guaranteed to terminate if no solution
exists.

2.3 The Main Service Composition Problem Classes 21

Main Conceptual A Priori Objections

The main objection against automated software composition if a structure is available
is the lack of variants that must be tried. Most papers are motivated by the “enormous
and evergrowing number of services”, but those legions of services seem to be hidden
quite effectively from potential customers in the real world. In fact, none of the
approaches within this class credibly reports the (potential of an) application to an at
least somewhat real world setting. Do we really have hundreds or at least dozens of
operations available for each task of the template such that automation is necessary? If
this is not the case, then the number of variants is relatively small, and the composition
task is often trivial.

A good answer to this objection could be that variants come from parametrization
of operations, and that, even if the set of variants is relatively small, we must give an
answer in very short time, e.g., because the composition must be found at runtime of
the program that embeds it. So there are actually two arguments. First, the variants
may not come from many different operations but many possible parametrizations
of some few ones. Second, there may be the need to find compositions on-the-fly,
which, even if the set of variants is small, makes it unacceptable to configure the
solutions manually.

Approaches that create compositions from scratch based on preconditions and
postconditions are often faced with the objection that we cannot assume formal
preconditions and postconditions to be available in real software development. This
is obviously an important issue, because most papers simply assume that operations
have semantic preconditions and effects given, but semantic descriptions are rare in
practice. Neither do the legions of publicly available (and semantically described)
services exist, nor do developers annotate functions with preconditions and effects
that would make them reusable by these automation techniques.

A good answer to this objection could be that developers actually do provide
formal specifications anyway and that specifications in form of preconditions and
effects can be hardly expected unless there are powerful tools that would give a benefit
to the developer. So there are also two arguments in favor of this type of automation.
First, software developers do nothing else but write formal specifications all the time,
namely, the implementation of functions. So specifying preconditions and effects in
addition to signatures is just to specify a little more than what is specified already
anyway. This becomes even more true in environments where developers are forced
to provide semantic documentation such as JavaDoc. Also, the core of descriptions
are rather the postconditions; preconditions may often be empty. Moreover, semantic
descriptions could, at least in parts, also be derived automatically, e.g., the description
of getter methods of entity classes. Second, the current non-existence of preconditions
and effects is absolutely no argument that this cannot change in the future if a benefit
arises for the developer. We have already seen that developers are ready to specify
tons of descriptions of classes and methods where they could write a much smaller
algorithm with nice goto commands. Of course, unless there is a mature composition
tool that makes this benefit available to the user, no semantic descriptions can be
expected.

Chapter 3
Template-Based Composition

Approaches in this class have the property that the desired composition is specified in
terms of a (possibly structured) set of tasks to be carried out. That is, the structure of
the desired composition is already known in advance at least on an abstract level. The
remaining problem is to concretize this structure with respect to some criterion such
as optimization of quality or adherence to communication restrictions of existing
services.

In other words, the composition problem consists of finding a valid or even optimal
instantiation of a given template. In the following, I will use the term template to refer
to a structure that defines a set of tasks and a control flow and data flow definition
for them using constructs such as if-statements, splits, joins, or loops. The tasks can
be understood as placeholders that must be replaced by (or bound to) either concrete
service operations or possibly complex subcompositions.

Since the approaches within this class are highly heterogeneous, I identify three
subclasses based on the question how functional aspects drive the composition
process. In this paper, I consider as functional aspects everything that has to do
with what the resulting composition does in terms of the respective problem domain.
For example, the task to book a flight is a functional requirement as well as the
requirement that the price may not exceed a particular sum. In contrast to this, non-
functional properties are related to properties of the composition itself, such as its
price (of using the services), its execution time, trust, etc. The three subclasses are
depicted in Fig.3.1 together with their (sub)subclasses. The rough overview is as
follows:

1. Approaches that ignore functional aspects. These approaches assume that func-
tional issues have been resolved in advance and that an explicit set of functionally
admissible service candidates is available for every task. Every placeholder is
bound to exactly one service operation. The goal is to find an instantiation that
possibly optimizes a goal function that aggregates the nonfunctional properties

© The Author(s) 2016 23
F. Mohr, Automated Software and Service Composition,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-34168-2_3

24 3 Template-Based Composition

Template-Based Composition

Key question: What are functional aspects considered for during instantiation?

Not Considered Operation Selection Complex Refinement
Goal: QoS-Optimization Goal: Admissible Selection Goal: Admissible Refinement
Relevant Subtopics: Relevant Subtopics: Relevant Subtopics:

1. Simple Control Flows 1. Behavior Descriptions 1. Non-Recursive Refinement
2. Complex Control Flows 2. Dependencies and Conflicts 2. Recursive Refinement

3. Business Constraints

Fig. 3.1 A classification scheme for approaches that use explicit descriptions

of the chosen services along the control flow specified in the template. These
approaches are discussed in Sect. 3.1.

2. Approaches that consider functional aspects to select concrete services. These
approaches bind placeholders to concrete service operations and take into account
functional constraints such as dependencies and conflicts among operations,
domain-specific user constraints such as traveling time etc. The goal is to iden-
tify an instantiation that satisfies the functional user requirements and possibly
nonfunctional properties. These approaches are discussed in Sect.3.2.

3. Approaches that consider functional aspects to plan refinements. These
approaches bind placeholders to possibly complex subcompositions. In other
words, they solve a composition problem for each of the placeholders instead of
only binding the placeholder to a single-service operation. These approaches are
discussed in Sect. 3.3.

It is interesting to observe that, apart from the cumulative character of the stud-
ied aspects, the approaches in the three classes form three relatively independent
research areas. Approaches in the first subclass are concerned about the question
how compositions can be optimized with respect to nonfunctional properties. This
question is also relevant for approaches in the second and third subclass, but it is
never—or at best superficially—considered. Similarly, none of the aspects consid-
ered by approaches in the second class, e.g., business constraints or transactional
properties, are considered by the approaches in the third subclass. In other words,
the approaches in the respective subclasses focus on the augment to the previous sub-
class whose major topics are largely ignored even though they are actually relevant
for them.

Note that, for better readability, the conclusion of this chapter is found in Chap. 5.
The body of the chapter is very long, and I felt that a conclusion of all approaches
is better off in the general conclusion. Of course, every section within the chapter
is closed with a conclusion in order to summarize the respective subfield; only the
general conclusion is found in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-34168-2_5
http://dx.doi.org/10.1007/978-3-319-34168-2_5

3.1 Systems that Ignore Functionality 25

3.1 Systems that Ignore Functionality

Approaches in this class assume that some explicit workflow is specified with a finite
and explicitly given set of candidates for each task. Functional issues are assumed
to have been resolved manually before, so every binding of tasks to services is
functionally valid. That is, the composition algorithm receives a template with (or a
set of) n tasks and candidate sets Cy, ..., C, where C; is the predetermined set of
candidates for task i. The set of all valid solutions is a relation C € C; x --- x C,,
which considers possible constraints on QoS values, e.g., by service level agreements.
We search for an element of C that optimizes an objective function defined in terms
of the nonfunctional properties. The considered nonfunctional properties are mostly
the price, availability, reliability, success rate, and execution time as presented in
[33].

I further divide the approaches within this subclass into those that work on simple
workflows only and those that work on complex workflows. In this paper, a workflow
is considered simple if its control flow is undefined, sequential, or if existing alter-
native branches are not treated specifically. For example, [167] considers alternative
branches but simply aggregates the properties of tasks of all branches as if they were
arranged in a sequence. Approaches working with simple workflows are discussed
in Sect.3.1.1. In contrast, workflows with special treatment (e.g., probabilities or
maximum operator) for conditional branches and loops are considered complex.
Obviously, the second model entails the first one, so every approach belonging to
the second category can also solve problem instances of approaches belonging to the
first one. Approaches addressing this problem are discussed in Sect.3.1.2.

3.1.1 Simple Control Flow Models

The special property of approaches within this class is that the actual workflow of the
template can be ignored. Since there are no alternative branches or loops, we know
(or assume for whatever reason) that each task is executed exactly once. Hence, we
simply aggregate the QoS values of the choices for the tasks.

I discuss three types of approaches. First, I introduce the basic approach proposed
by Zeng et al. applying integer programming. Then, I discuss several heuristics that
were proposed to improve the runtime behavior. Finally, I present three approaches
that do not return a single composition but a set of Pareto optimal solutions.

3.1.1.1 Integer Programming (IP) Solution
The founding paper on automated QoS-based service composition was published by

Zeng et al. [167]. The input of the composition algorithm is an activity diagram (they
call it state chart) of the target composition process, where every action represents a

26 3 Template-Based Composition

task for which a finite set of services that implement the task is known. The output is
an assignment of each task to a service that is optimal with respect to the weighted
nonfunctional properties. Considered nonfunctional properties are execution price,
(expected) execution duration, reputation, reliability, and availability of the services,
represented as a 5-vector, each of which weighted such the total weights sum up to 1.
For each quality, there is an aggregation function that allows to derive the quality of
the whole composition for the respective quality. The returned solution maximizes
the sum of weighted and scaled nonfunctional properties.

The composition problem is solved by linear integer programming. For each task
Jj in the input activity diagram and each service i that may be used for task j, there is
adecision variable y;; € {0, 1} being 1 if task j is bound to service i and 0 otherwise.
In addition, there are some auxiliary decision variables, e.g., for the critical paths
(zi, 1), and the aggregated values of the nonfunctional properties (Q price, - -), Which
are expressed in terms of the basic decision variables y;;. The objective function
maximizes the sum over the scaled and weighted auxiliary variables for aggregated
values (Qprice, - - -)-

The approach taken by Zeng et al. is an intuitive one, and, in one way or the other,
each of the other approaches discussed in this section shares the underlying model.
So, one can see this paper as the initial work on QoS-based service composition, and
related work is mostly defined by alternative and allegedly more efficient solution
methods.

In a consecutive paper, [168] extends [167] by simple loops. In a preprocessing
step, these simple loops are “unfolded” into a finite sequence of conditional branches
with the number being the maximum number of loop invocations observed. I am not
entirely ready to accept this as an actual loop treatment, because it assumes that
the composition always performs the same (maximum) number of loop iterations.
A strange side-effect of this technique is also that the number of decision variables
increases significantly. Computationally, this makes the model harder to solve. Con-
ceptually, this allows the composition algorithm to select the binding for a task
occurring in a loop individually for each loop run. Summarizing, the integration of
loops in [168] is a nice attempt but cumbersome in the details.

3.1.1.2 Heuristic Approaches

It is intuitive to consider heuristics to relax the runtime issues associated with integer
programming, but we should also have in mind that this is not necessarily the case
for service composition. It is quite questionable if the instances in practice are really
so huge that solving an IP is unacceptably slow or even infeasible. For example, the
evaluation of several papers that propose a heuristic show that optimally instantiating
a template with 20 tasks or more is done in less than five minutes, sometimes even
in a few seconds. Unless this optimization is done in an on-the-fly manner—and the

'T am not fully convinced how a linear constraint can fix the value of this variable. It is a little bit
curious that the paper does not describe this crucial point in more detail.

3.1 Systems that Ignore Functionality 27

approaches in this context lack a motivation of such a setting—there is no reason to
renounce optimality for runtime. So the practical relevance of the following heuristics
must be judged based on the necessity to instantiate a template within fractions of a
second.

Classical Heuristics

Berbner et al. were the first to develop a heuristic instantiation mechanism based
on a relaxed optimization model [22]. Their algorithm (H1_RELAX_IP) works in
four steps. First, the optimization problem is solved as a continuous optimization
problem (LP), which can be done efficiently; this results in a solution that assigns
fractions of services to tasks. Second, the candidate services for each task are ordered
descendingly by the respective value of the LP solution; the algorithm will try these
first. Third, the set of tasks is sorted descendingly by the number of candidates that
have a value of Oin the LP solution; the algorithm will try to fix tasks with few
candidates first. Finally, they apply a backtracking algorithm that looks at each task
and tries to instantiate it with candidates in the order of their sorting. If an instantiation
violates the constraints, it resets the choice for the respective tasks and steps back to
the previous task. The formal model seems to be sound and the evaluation shows a
clear improvement of runtime compared to the integer programming case while the
value of the objective function is about 99 % of the LP case.

An extremely simplifying heuristic was presented in [90]. First, the algorithm
assumes that the qualities have been merged into a single utility value, one for each
service and task. In addition, there is a finite number of resources that a service
associated with a task needs. The algorithm simply chooses the services that have
the best values for the resource requirements. However, the heuristic is poor not only
because it does not consider the qualities separately but also because it does not
even consider the merged utility in the search process. The evaluation shows that
the runtime is similarly efficient than the one of HI_RELAX_IP discussed above,
but the quality of solutions must be expected to be significantly worse in average.
Apart from that, it is not very clear and not discussed how the parameters used in
this model can be obtained in real applications.

Genetic Algorithms

Another approach based on a genetic algorithm was proposed by Xu et al. in [164].
The algorithm is an antibody-derivate of genetic programming. In each iteration, it
first clones the solution candidates with the highest fitness values, then determines
which service assignments occur in the majority of good candidates, and finally
mutates the less-agreed service assignments. To avoid the risk of running into local
optima, they use a measure called concentration. While the general idea of applying
genetic algorithms to the problem is valid, the overall quality of the paper is rather
poor. This is not only due to sloppy formalism (e.g., the fitness function is never
defined) but also due to a very slim evaluation that lacks a of comparison to other
approaches.

28 3 Template-Based Composition

Constraint Decomposition

A heuristic approach based on constraint decomposition was presented by Alrifai
et al. in [6, 7]. The idea presented in [6] is to split up every constraint, e.g., the
constraint on maximum price, execution time, etc. into n new constraints for each of
the n tasks of the template. The advantage is that choosing services locally optimal is
much easier than choosing globally optimal due to less decision variables. Instead of
choosing a local upper bound of + (given the global upper bound was c), they solve
a simplified IP model to compute the upper bounds of the local constraints based
on a utility function, such that the sum of local upper bounds is at most the global
upper bound for each quality value. While this approach is sound, it is not complete
as discussed in their consecutive paper [7], because the local constraints may also
cut candidates that could be contained in a global solution.

In [7], they propose two alternatives to overcome the problem of incompleteness.
The paper assumes that the candidate sets only contain Pareto-optimal services; that
is, services that are not dominated by others regarding the nonfunctional properties
(for whatever reason, they call these services skyline services). The first returns
from the local to the global optimization problem and tries to reduce the number of
decision variables in the global model by reducing the candidate sets for each task
using clustering. For each task, the service in the candidate set are grouped into K
clusters using k-means clustering, and finally the service with the highest utility in
each cluster is chosen as a representative. The second alternative pursues the local
constraint approach and tries to improve the local upper bounds also based on an
iterative clustering mechanism. Starting with a cluster size of one, every iteration
double the number of clusters. For every cluster, a vector is defined that contains the
maximum for each quality value of services within it. They then solve an optimization
problem to identify the best of these bound vectors for every task. Since approach
is complete, because it eventually converges to the original global problem after a
sufficient number of iterations. Summarizing, the presented techniques are sound
and complete, and, given the necessity of a heuristic solution, they constitute an
interesting option.

Sun et al. present another such decomposition technique [146]. There is no particu-
lar novelty in comparison to Alrifai et al., only that they compute the local constraints
in a different (but not obviously better) way.

3.1.1.3 A Posteriori Methods

The above approaches always produce a single solution that is hopefully on the Pareto
frontier of qualities, but there are also approaches that offer the whole frontier to the
user. Methods of this kind are sometimes called a posteriori methods. A common way
to solve a posteriori optimization is through the multiobjective genetic programming
algorithm NSGA-II. The difference between NSGA-II and other genetic algorithms is
that it returns not only one solution but a set of (Pareto-efficient) solutions. Among the
solutions returned by the algorithm, the user then can decide the preferred solution.

3.1 Systems that Ignore Functionality 29

In spite of some attempts to solve the service composition problem using NSGA-II,
the approaches in this area define a quite weak state of the art. First, Claro et al. solve
the above model proposed by Zeng et al. and simply convert the constraints defining
the quality variables into objective functions [40]. Unfortunately, the approach is
formally flawed and the evaluation is rather poor. For example, given that the integer
programming model is available, it would be the least to use it as a reference in
the evaluation; however, no such comparison is made. Second, Ludwig claims to
improve the former approaches by adding further user constraints in terms of service
level agreements [89]. However, the paper fails to give any detailed explanation of
how such constraints are actually considered in the search process. Apart from that,
her approach only supports sequential workflows, which makes it quite irrelevant for
practice.

An alternative solution to NSGA-II was presented by Wada et al. [158]. They
work on a slightly different setting as the above approaches in that they consider
service level agreements as opposed to a general objective function. The service
level agreements not only define the objective function but also introduce a set of
constraints for the quality values that must be achieved at least. They introduce an
algorithm called E?, which can be run with two different fitness functions; one fitness
function explores for homogenous solutions while the other tries to find solutions that
are very good for particular properties (and maybe significantly worse for others). The
consideration and detailed description of service level agreements is an improvement
of the above approaches, However, also E* only copes with sequential (or parallel)
compositions; there is no model for alternative branches or loops. Summarizing,
the approach presents a good alternative to the techniques discussed above, but the
complexity of supported compositions needs to be enhanced in order to consider
more realistic workflows.

3.1.2 Complex Control Flow Models

In contrast to the approaches discussed above, approaches within this class analyze
the template and take the control flow into account when instantiating it. For instance,
the template may contain two alternative branches one executed with probability 0.7
and one with 0.3. Then the QoS values of the operations bound to the tasks within
this branch can be weighted according to these probabilities. That is, the difference
to simple control flow models is that the aggregation functions for the properties
consider the actual workflow.

3.1.2.1 Integer Programming Solution

Basic Model

Schuller et al. equip the IP model with probabilities for the different paths [134].
Probabilities are introduced for both alternative paths in conditional branches and

30 3 Template-Based Composition

for loops. The probability annotated for a loop is the probability that the loop body
is executed once more time after its end has been reached; that is, given probability
p, the probability of the loop being executed n times is p"~!. Apart from this, the
model is quite similar to the one presented by Canfora et al. [32]. Unfortunately, the
approach is not evaluated.

Extended Model

Ardagna and Pernici apply replanning at execution time and add several other inter-
esting aspects such as bargaining [9]. First, loops are not only unrolled assuming a
maximum execution of iterations, but a probability distribution for loop cancellation
is considered. The probability distribution slightly alleviates the problems induced by
the unrolling technique (cf. discussion in Sect. 3.1.1 for the case of Zeng et al. [168]),
but the problem of obtaining decision variables for each loop iteration remains. Sec-
ond, the approach is the first in this category to consider not only services but also
their operations. Tasks are assigned to both services and their operations. The advan-
tage of this double assignment is that the model can be enhanced by restrictions
that require several tasks to be bound to (different operations of) the same service.
Another advantage is that nonfunctional properties can be assigned to both services
and operations and be aggregated in different manners. Unfortunately, this advantage
has not been exploited in the paper since all quality properties refer to operations.
Third, the composition algorithm is equipped with a bargaining model that tries to
negotiate over nonfunctional properties if no solution can be found for the initial
query. While the idea of negotiating about these properties is nice in general, the
applied model is conceptually rather disappointing. In the negotiation process, the
composition algorithm (called broker) and service providers alternatively send offers
and counter offers. The problem is that both parties increase their offers steadily, so
instead of decreasing his requirement, the broker even increases them, reflecting
a quite unnatural negotiation process. Summarizing, the paper contains significant
improvements and good ideas but also exhibits some significant shortcomings to be
looked at.

3.1.2.2 Heuristic Approaches

Genetic Algorithms

A genetic algorithm (GA) solution that also supports loops has been proposed by
Canfora et al. [31]. The aggregation functions for nonfunctional properties distin-
guish between sequences, conditional branches, parallel flows, and loops. In contrast
to the pessimistic estimate pursued in [168] for the runs of a loop, they use an “esti-
mate”, which probably means the expected number of runs. The fitness function of
the genetic algorithm is (arbitrarily) defined as the cost plus response time divided
by the availability plus the reliability plus the execution duration. The mutation of
genomes simply changes the assignment of tasks to services randomly. Their evalua-
tion shows that integer programming is better than their algorithm for small instances

3.1 Systems that Ignore Functionality 31

with at most about 20 tasks; the GA is better for bigger problems. The quality of
solutions, however, is not compared between the two approaches. The main concep-
tual improvement compared to Zeng et al. [167, 168] discussed in Sect.3.1.1 is the
more accurate aggregation of qualities for nonsequential workflows that also takes
into account the probabilities that particular branches are entered.

Canfora et al. also propose another approach that updates the composition based
on the path taken at runtime [32]. Based on the offline planning method, there is an
estimated quality value for the QoS values of the composition, which depends on
probabilities of paths chosen at runtime and, hence, may be different for a concrete
execution. For example, a priori it is estimated that a loop will be invoked & times, but
at runtime we know that it has been invoked &’ times, which implies that the actual
QoS cause by the inner part of the loop deviates from the estimate unless k = k’.
The same holds for paths taken in conditional control flow structures. In [32], a
replanning algorithm is triggered if the deviation of the actual from the estimated
QoS-properties exceeds a predefined relative threshold. In this case, the set of tasks
that may be part of the remaining execution is computed; this set is called slice.
Based on the QoS values of the already executed composition and the estimated one,
the replanner tries to find a new instantiation of the slice such that the overall quality
value will remain in the range of the estimated one.

The approach is rather superficially elaborated, so there are quite some issues that
remain open. For example, the algorithm assumes the number of loop invocations
to be known before its actual execution, but this number is not known until the
node coming after the loop node is visited. Another issue is that nodes that already
have been executed are also replanned, which does not make sense. The paper also
lacks a comparison between no replanning and replanning, and also the rest of the
evaluation is rather weak. Finally, the replanning time obviously increases the time
of invocation, which is not discussed at all in the paper. Summarizing, the presented
problem of replanning a workflow at runtime based on the observed execution path
is interesting, but the paper leaves many questions open that are fundamental and
cannot merely be considered future work.

Gao et al. present another genetic algorithm very close to the one of Canfora et
al. [51]. They propose a rather complicated representation of genes based on the
complete workflow, i.e., the genes include not only the services for the placeholders
but also control flow nodes such as if-statements or loop heads. However, this consid-
eration only seems to complicate the model without bringing any particular benefit.
The work of Canfora is mentioned, but no real comparison is made; in particular,
the evaluation does not compare the presented approach with earlier ones. One novel
aspect is that the approach can also cope with soft-constraints that impose a penalty if
they are violated. The fitness function is defined as the standard QoS score defined by
Zeng et al. [167] minus the penalty resulting from violating the soft constraints. The
overall quality of the paper is mediocre; in particular, the improvement to existing
approaches is neither stressed nor proved.

32 3 Template-Based Composition

Tabu Search

Ko et al. propose to use tabu search for the instantiation mechanism [73]. They con-
sider the fact that only one of a set of conditional (sub-)paths is taken by pessimisti-
cally aggregating only the costliest one among them. The instantiation algorithm
starts with a random solution and then performs a predefined number of modifica-
tion steps. In each step, the algorithm randomly switches a random number of service
assignments. The algorithm remembers these mutations and considers each one at
most once. Depending on the improvement of the objective function and the number
of the iteration, the mutation is adopted or rejected. Similar to the approach proposed
by Berbner et al., their evaluation shows a clear improvement compared to the IP
model. However, the quality of solutions between the heuristic and the IP model is
not compared at all, so we have no information about the quality of the solutions
compared to the ones found by the IP model.

Clustering

Mabrouk et al. present a clustering-based approach similar to the one presented by
Alrifai et al. [92] discussed in Sect.3.1.1. In a first step, the candidate sets for every
task are clustered using K-means; the number of clusters is predefined by an expert
for each task, and the clustering is performed once for each quality. Based on this
clustering, they then determine the utility of each service for a solution. Then they
introduce a threshold (called heuristic) that every service’s utility must exceed to
be considered. A simple backtracking algorithm then tries to find a composition
that satisfied the QoS requirements. The paper quality is rather low, and there is
almost no novelty compared to the approach presented by Alrifai et al. [6], which
ironically appears in the references without being contained or discussed in the paper.
One problem is, for instance, that average values for QoS properties are computed
separately for each cluster, which means that the centroid of each cluster are computed
separately for each property. But the approach later uses the membership of services
to clusters (which is not unambiguous under these conditions) to compute the utility.

Relaxation

Klein et al. made two different approaches on the composition problem [68, 69, 70].
Both are based on the IP model proposed by Zeng et al.

The first approach tries to improve performance by relaxation [68, 69,]. While
[68] only sketches possible solution methods, [69] uses the rounded LP solution as an
initial starting point for a hill climbing algorithm. Given a parameter L, the algorithm
performs /L iterations where each iteration switches the assignment of one service
and then checks if the “utility” of the solution has improved.

Despite the fact that the related work by Berbner et al. [22] is apparently unknown
to Klein et al., their algorithm is neither sound nor gives it the impression to deliver
good results. First, the initial solution may violate the QoS-constraints, and, even
though nonviolating improvements are preferred, it is not checked if the returned solu-
tion actually satisfies the constraints. Second, the algorithm just randomly changes
service assignments, which is fine using genetic algorithms, but here this is combined
with a hill climbing algorithm, which can be hardly beneficial.

3.1 Systems that Ignore Functionality 33

The second approach relies on the (faulty) assumption that the network delays
in service networks cannot be considered in the other QoS-optimization approaches
[70]. Therefore, they introduce delay annotations for the edges of the workflow.
However, the network delay between the client and the service is simply the time
between sending the request and receiving the answer minus the actual execution
time. While it is true that the communication time depends on the position of the
invoker in the network, it can simply be added to the execution time once it has been
determined.

3.1.3 Concluding Discussion

We have seen that approaches within this class address a QoS-optimization problem
for which either one solution or a set of Pareto-optimal alternatives is returned. In
the first case, optimality is defined in terms of an objective function that somehow
weights the different qualities. Whether or not this makes sense is never discussed,
and, given the negative correlation between the qualities such as price and runtime,
I am skeptic about the appropriateness of this assumption. In the second case, the
algorithms do not return a single but a whole set of solutions, all of which are Pareto-
optimal. Unfortunately, even though this model should be preferred, there are only
few approaches implementing it, and they are in a rather preliminary stage. An ideal
algorithm would choose the optimal solution based on a utility function that reflects
the user preferences, but such an approach does not exist yet.

In the simplified case where requirements are channeled into one objective func-
tion, the problem can be solved optimally using integer programming or approximate
using heuristics. The basic IP model was specified in [167] and refined with proba-
bilities for conditional branches and loops in [134]. Heuristics are motivated by the
complexity of IP and are based on relaxed LP solutions [22, 68], utilities [7, 90], or
fitness functions applied to genetic algorithms [31, 164]. The first two can be con-
sidered a guided search, while genetic algorithms only rely on fitness values without
the notion of a rest problem.

In spite of a considerable number of heuristic approaches, for the time being,
there are no convincing arguments that they are needed. Of course, the IP approach
cannot be solved efficiently for large models, but we have not seen any example of a
QoS-optimization problem that could not be solved in a few seconds using advanced
solvers. In fact, it is not even clear whether runtime is a critical issue. While it is easy
to dream of a future where hundreds of services must be composed within fractions
of seconds, we have no hint yet that such a scenario is upcoming in the soon future.

34 3 Template-Based Composition

Also, the semi-multicriterial view is a frequently used but little helpful setting.
Unless the client’s utility function can be written as a (linear) function of the parame-
ters whose coefficients are known in advance, this view is not appropriate. Instead,
one should aim at identifying solutions on the Pareto frontier and, perhaps, try to
learn the preferences by the client’s choices.

Another open issue is to find a convincing treatment of loops. There is a reasonable
agreement that conditional branches are either treated by probabilities reflecting
the expected case or by applying the maximum operator reflecting the worst case.
However, the treatment of loops is not convincing yet. In [9, 69, 168], loops are
enrolled in a preprocessing using an expected number of iterations. The problem with
this technique is that the semantic of the problem changes, because the duplication of
the inner part of the loops implies that there are now more tasks that must be bound
to services. That is, the composition algorithm now must choose a binding between
tasks and services for each iferation of the loop; so a task occurring once in a loop
is bound 10 times to possibly different services given that we expect the loop being
executed 10 times. In contrast, in [32], loops are removed in a preprocessing, and the
inner part of the loop is equipped with a constant & that reflects the number of actual
executions and serves as a multiplicative factor for the quality values of the inner
part. The problem is that this number cannot be known in advance, which is assumed
in the cited paper. However, the idea is generally suited to replan the composition
as soon as the loop execution has been completed. Finally, in [134] there is a fixed
probability assigned that the loop body is re-entered, which is obviously not a good
assumption. Concludingly, the support for conditional branches is satisfying whereas
loops cannot be considered reasonably supported yet.

Summarizing, service composition in form of QoS-optimization has made some
progress, but there are concerns regarding the relevance and some important concep-
tual aspects. Relatively small issues are the appropriate treatment of the multicriterial
aspect and reasonable support of loops are important issues that have not been solved
yet. A good approach for the first issue would be to let the instantiation algorithm
be driven by a utility-function that reflect the preferences of the respective users. A
reasonable loop support may model the number of iterations of a loop as a normally
or exponentially distributed random variable. The most crucial objection against the
approaches in the class is that the whole community depends on the claim that huge
numbers of service candidates for individual tasks must be processed in fast time.
However, the last decade has not brought any evidence that this scenario really exists,
and no striking arguments have been reported why this should change in the future.

Table 3.1 shows the overview of the discussed approaches. The four considered
features are the treatment of multicriterial aspects, whether the search is guided, and
whether alternative branches or loops are considered respectively.

Systems that Ignore Functionality 35

3.1

soyoroidde a3 Jo suoIssnosIp

9ANOadsal Ay} Ul PUNOJ 9q UBD SIOUAIJAI QINJRIAIT “TOYI0 OB WIOI) SUONIISANS JUID Ip Ul passnasip sayoeordde oy areredas soul| 9[qnop oy, “passnosip
J1om sayoeoidde ay) yorym ur 1opIo dy) 03 Spuodsariod ISI[oY) UIIm Surlios Jy], “sse[o siy Jo sayoeoidde ay) U0 SUOISSNISIP 9Y) SZLIBWWINS O} SALI) J[qe] SIY L,
UONBWOINE J0J JUBAJ[RMI Inq pauoddns = ¢ ‘payroddns jou = O ‘paytoddns A[rented = @ ‘paytoddns A[renuelsqns = @

sdooy/sids-yOx ureiuod Aew saye[dwa], = sdoo /v ‘YoIeas pauioju] = papm) ‘uonezrundQ aandsfqonmy = QN

Aenou ou ‘yeem A[renideouod JI0M)9U UT JULID JO UOoI)Isod SIopIsuod) [®) @) ‘Te 30 ure[y]
pome]j A[[euLIo] ‘Ies[oun Aj[oAou S9)ePIPURD 9DIAISS JO SULIDISND) °) O |18 10 snoiqeyy
uorjenyess 10od ‘pomep A[eurioy SIUTRIISUOD-1JOSs ‘[opour onsijiqeqord))) D ‘Te 30 oexr)

anjewul Ioyjel ‘suorpdumsse ojeridorddeur ownjunl je guruue[dar ‘epowr ousijiqeqord 1)) 1) O | e 18 e101URY
11oddns dooj ou [syged YOX JO juowIjeal) ‘OIISLINSY dAI}RAOUUL O o O O ‘Te 10 03]

pomeq A[renjydeouod uorjerjosou go) Jo uorjerjodou ‘euwrrjuni je suruuedol D [D O | '1e 10 erUSRpPIY

uorjenyeas ou ‘'sqoxd jo ‘pdepur onseyools| sdoo[pue seniqeqoid ‘[opouw [RULIO] PUNOS) [®) O | e 1o IONUOg
- |syuemreaide [oas] ad1aIes ‘uorjezruaiydo risod e e 0 1)) ‘TR 70 BPRAA

wW{1I03[R JO UOI1dLIdsap JusIdnsul squreIIsuod Iosn ‘uorjeziwrdo jsod v @) @) D [Smpnr
uorjenyess 1ood ‘pemeyj A[euriof uoryeziwrdo jsod e ®) ®)) ® ‘Te 10 oIe[)
a[qreuorsenb juomesordut swrjuna [uorydriosep [euII0] POOF ‘SOIISLINSY SAI}eAOUUT @) @) O O ‘Te 90 TeJUI[y
uorjenyeas 1ood ‘pemeyy A[eurioy ewrydo [ed0] proar 0} A399eI)S e e o) e Te 30 nyY
uorjyenfeas 1ood ‘epouwr uorjyeziuiydo [eIALI} - ®) ®) () @) ‘Te 30 onr|
- uorjen[eAd poos ‘O1)s1Inay paseq-J o) ®) ® D | ‘1o 10 BUqISG

seouenbes oyI] Pajeal) SOUDURI(SATIRUISI[R uorjezrui}do-go) I0J [epouw 1SIy ®) @) ®) D ‘Te 10 Suey
S9SSOUNBOAA Je[NIIjIed syj8uailg Jemnoijred||sdoo |V |PepPmo |OIN aureN

syoadse [euonouny a1oust Jey) soyoeoidde paseq-ojejdwo) oY) Jo MAIAIOAQ '€ d[qBL

36 3 Template-Based Composition

3.2 Systems with Functional Operation Selection

This section shows approaches that instantiate a template by binding every place-
holder to a single service operation considering functional aspects. That is, for each
placeholder, there is a finite set of service operations from which exactly one is cho-
sen. Like in the previous section, the goal is to find a combination of such selections
such that all constraints are satisfied and that possibly optimizes some objective func-
tion. The only difference is that functional aspects are considered in the selection
mechanism.

There are several ways how functional aspects can influence the process of select-
ing the service operations for the placeholders of a template. First, functionality
may play a role in the discovery of candidates for a placeholder. For example, the
set of candidates for each task is not given but must be discovered in a network
based on inputs, outputs, preconditions, and effects annotated to the task. Second,
there could be restrictions, dependencies, and conflicts among the operations. For
example, several operations may belong to one service and can only be executed in
a particular order, or we may not use an operation a together with operation b in
the same composition due to license issues. Functionality can also be encoded in
business constraints.

The underlying model extends the model discussed in the last section by match-
making and functional constraints of several types. That is, again we have n candidate
sets Cy, ..., C, containing the admissible operations for each task. However, the set
of valid solutions C € C; x - - - X C,, is defined not only by QoS constraints but also
takes into account functional constraints.

The approaches are organized into three types of functional aspects that are
focused. Note that these aspects are rather topics, which are not mutually exclu-
sive. So, in theory, an approach could take into account each of the three aspects.
However, most approaches in this subclass focus on one of the three topics, which
is why I apply them to organize the subsection.

1. Behavior Descriptions. Approaches in this subclass assume that the sets Cy, ...,
C, are not given explicitly but must first be computed as subsets from a given
finite set C of available operations using a matchmaking algorithm. That is, based
on some criteria such as preconditions and postconditions, the sets Cy, --- , C,
are computed as subsets of operations of C that match the respective conditions.

2. Dependencies and Conflicts. Approaches in this subclass assume that the admis-
sibility of an operation for a placeholder may be constrained by how other place-
holders are bound. For example, particular operations in C; may only be used if
some specific operation c* is chosen for C;.

3. Business Constraints. Approaches in this subclass take into account global
domain-specific requirement definitions of the composition. For example, the
composition will create some round trip in a city and the condition is that the
overall cost for the activities will not exceed 20 EUR. Typically, we have numer-
ical constraints that must be satisfied by the selection of service operations.

3.2 Systems with Functional Operation Selection 37

Formally, these approaches simply complement the (nonfunctional) constraints
on C by functional constraints.

3.2.1 Consideration of Behavior Descriptions

Approaches within this subclass assume behavior descriptions of placeholders on one
side and operations on the other side in order to match them. The behavior is either
described through inputs, outputs, preconditions, and postconditions of an opera-
tion or placeholder. This type of description is sometimes called implicit behavior
description. Or it is described by keywords for the task that is being carried out. This
type of description is sometimes called explicit behavior description.

3.2.1.1 Inputs, Outputs, Preconditions, and Postconditions

METEOR-S

The general idea for the METEOR-S framework is to conduct composition through
replacing template placeholders with results from service discovery [3]. The basis of
composition is a so called abstract process defined in BPEL4WS or a METEOR-S
derivate of it. Unfortunately, METEOR-S uses the word template referring to place-
holders of the abstract process, which can be confusing at first. The placeholders,
which are called templates in METEOR-S, define service discovery requests. Given
an abstract process and a set of constraints, METEOR-S discovers services for every
placeholder such that the constraints are satisfied. Services are equipped with both
functional and nonfunctional attributes, so the discovery process searches for ser-
vices that satisfy the preconditions and effects defined for the respective placeholder
as well as the nonfunctional properties.

While approaches in the context of the METEOR-S project are called composi-
tion approaches, the focus is more on discovery, matchmaking, and issues around
composition. For example, in [35] the focus is on defining the similarity of onto-
logical concepts that are used in the discovery process. Nonfunctional properties are
briefly mentioned, but it is not explained how these are aggregated for the different
choices. This is also true for Verma’s works [153-156], which only refer to [34] for
an explanation how nonfunctional properties should be aggregated. Another focus
of attention is mediation, which deals with the problem that objects belonging to a
semantic concept may have different symbolical representations, and that these may
need transformation when passed among different services [156]. The most exhaus-
tive overview over the overall instantiation approach is probably given in [139]. Also
here, they call the entire process a composition process, but the only part that runs
automatically in itis the discovery of services (and the execution of the composition).

Summarizing, the METEOR-S framework is centered around service composi-
tion, but automation plays a role only for isolated subproblems. The discovery, which

38 3 Template-Based Composition

is an important subproblem of composition, is addressed. Nonfunctional properties
are considered, but rather locally; [34] does discuss the aggregation of these proper-
ties, but this is never applied in the context of the composition process. I am not aware
of any dedicated automated composition algorithm in the context of the METEOR-S
project.

An algorithm that would be somewhat appropriate for this context has been pre-
sented by Vallée et al. [152]. The input template is a DAG where each node is a task
described by inputs, outputs, preconditions and effects, and the edges describe data
dependencies between the tasks. The algorithm must bind every task to a service such
that the data that are used according to the input dependencies are at least as specific
as the respective types of the service used to replace the task. Context conditions are
a special type of precondition that is compared with a context provided in the query.
Nonfunctional properties are not considered in the approach, and no evaluation is
given. Unfortunately, there is no comparison to METEOR-S.

Ontological Matchmaking

Two attempts to consider ontological types during the instantiation of templates were
proposed by Lécué, Mehandjiev et al. [81, 84, 100].

First, Mehandjiev et al. propose a simple approach that replaces tasks of a given
template based on functional descriptions [100]. That is, tasks and services are
described through goals, inputs, outputs, preconditions, and effects. A service can
be used for a task if they have the same goal, if it matches the task definition under
the usual matching semantics (plug-in for types, implications for conditions). Hence,
there is no conceptual innovation to much earlier approaches, say METEOR-S, except
perhaps the user interface.

The second approach is very closely related to the genetic algorithms presented in
the previous section [31, 164] with the difference that it considers functional aspects
of tasks. Functionality is supposed to be considered through the ontological concepts
associated to service inputs and outputs. In addition to two nonfunctional properties
(time and price), Lécué et al. claim to also consider the matching quality of the
services for the tasks.

However, there are several problems with their approach. First, one of these func-
tional qualities relies on the number of individuals contained in the concepts of the
ontology, but ontologies in service composition are often only defined in terms of
concepts (only TBoxes); in fact, not even their own paper specifies an assertional
box. Second, the genotypes maintained by the genetic algorithm do only consist
of service selections but not of semantic links. This is only possible if there is a
canonical mapping of inputs and outputs of the services to the inputs and outputs of
the tasks. This mapping issue is fundamental for the approach but, surprisingly, it
is not discussed at all; semantic links are not a topic at all in the discussion of the
composition algorithm. Hence, the solution proposed in these papers exhibits serious
conceptual flaws.

3.2 Systems with Functional Operation Selection 39
3.2.1.2 Purpose and Category

In 2003, Brahim Medjahed et al. proposed a composition approach that instanti-
ates templates with placeholders described by categories and purposes [99]. This
is somewhat similar to the abstract processes in METEOR-S, only that placehold-
ers are functionally described not through inputs and outputs but by keywords that
reflect purpose and category. Nonfunctional properties of service (operations) are fee
(price), security (encrypted connection), and privacy (inputs and outputs not shown
to third-party entities). A template instantiation is admissible if every placeholder
is replaced by a service with an appropriate category, purpose, and if it satisfies the
quality restrictions. The quality properties are not used for global optimization of the
quality of the entire composition; hence, the resulting compositions are usually not
optimal with respect to these qualities.

3.2.2 Dependencies and Conflicts of Operations

Approaches within this subclass assume that the choice for a service operation influ-
ences the admissibility of other operations for other placeholders. Several types of
dependencies are discussed. First, the Roman model considers constraints on the
invocation order of operations defined by their provider. So binding an operation to a
placeholder might imply the requirement to bind a related operation to another place-
holder earlier or later in the control flow of the template. Second, some approaches
assume explicit dependencies or conflicts given among service operations, which
may arise e.g., from license issue. Third, there are transactional approaches that try
to maintain a global property of the composition (e.g., atomicity), which requires
that operations are only used if they can be undone later.

3.2.2.1 Constraints on the Order of Operation Calls

Roman Model (Initial Version)

The Roman Model is an approach to automated service composition that is based on
the coordination of finite state automata. It was first proposed and steadily extended
by Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,
and Massimo Mecella [20, 30]. In its basic version, the model consists of a finite set
of services, each of which with a finite set of (parameterless) operations, which are
called messages. The order in which the messages of a service can be invoked are
described in a finite automaton associated with each service; the messages are the
state transition labels of the automata. Similarly, a schema of the desired composition
is given by a finite state automaton with transition labels corresponding to messages.
The task of the composition algorithm is to bind every edge of this automaton to one
of the existing services such that every sequence of messages that may be exchanged

40 3 Template-Based Composition

with a service is a valid path in the automaton of that service. In other words, a
template in form of a finite state automaton is given with placeholders being the
transitions, and the placeholders must be bound to concrete services such that their
communication protocols are respected.

Even though the Roman Model is quite famous, it exhibits several quite significant
conceptual shortcomings. First, when defining the template, the designer must define
(i) the control flow, (ii) the explicit names of messages of the services that may be
bound to it, and (iii) the data flow among them. But then the designer has almost
done all the work already; the remaining task is only to find bindings such that
the order of messages of the used services is not violated. This is only difficult if
the set of messages (the so-called alphabet) is very distributed over the services,
such that many services have many messages (consisting of both operation name
and parameters) in common. This is rarely the case, and hence, the problem that is
automated here hardly justifies the efforts demanded of the designer. Second, given
that we actually have a selection problem of services with some constraints on the
invocation order, the client is probably rather interested in nonfunctional properties
(QoS). For example, he may want to have a cheapest instantiation that satisfies an
expected runtime behavior. Unfortunately nonfunctional properties are not part of
the Roman Model. Third, the templates may not contain loops. Taking these points
into account, it is hard to imagine a practical setting where this model might find
application; this suspicion is underlined by the extremely constructed examples.

Apart from this, the Roman Model does only present possible views on the com-
position problem but not a concrete technique to solve it. There is a sound formal
problem statement given, but the part on solving the problem only ever shows how
to reduce the problem to known problems, mostly the satisfiability of propositional
dynamic logic (PDL) formulas. I am not aware that they have reported the actual
application of a solver on either the original problem or the one to which they reduced
the original problem. Even though there may be routines to solve those (reduced)
problems, these are certainly not common knowledge, we do not know how these
perform for the case of service composition. Hence, the Roman Model is a purely
mathematical framework for a conceptually questionable composition problem with-
out the ambition to actually solve it.

Colombo

There is an extension of the Roman Model called Colombo that slightly lessens the
over-specification problem [19]. Colombo introduces parameters of messages and
a more complex binding model. However, the parameter names are simply part of
the message complete message and not parametrized by the approach; so it only
seems to the human reader as if parameters are considered while this is actually
not the case. The binding model between messages of the target services and the
existing services in fact is slightly more advanced, but still the designer must know
the exact message names. The messages specified by the designer are split up into
a send message and a receive message, which mark the communication with the
existing services. For example, a message checkltem(code, avail, warehouse, price)
is split up into two messages requestCheckltem(code, avail, warehouse, price) and

3.2 Systems with Functional Operation Selection 41

replyChecklItem(code, avail, warehouse, price). So, the designer needs only to specify
half of the messages and the framework automatically splits it up into two messages.

Other Related Approaches

Gerede et al. present an extension of the Roman Model that considers online compo-
sition that has some knowledge about the future at hand [52]. They point out the basic
Roman model suffers from the problem that there might be not general solution for a
target service but that, depending on the actual path taken within the target service for
an invocation, one can partially resolve this issue. For example, the requested service
shall first accept a message a and then a message b or c. There are two services, one
accepting a and then b, and the second accepting a and then c. It is possible to bind
the actions to the appropriate service but only if it is known in advance if the second
message will be b or c. In [52], this is resolved with lookaheads, which assume that
we always know the next k steps taken by the target service in advance. So given
that in some mythical way we know what the next k messages will be, we know that
we can exploit this information in finding a binding for the messages of the target
service. While this lookahead may or may not be available in reality, the approach
equally suffers from the formerly discussed problems and does not make any step
towards practical relevance of the model. Note that Gerede et al. actually introduce
an implementation called Wozart, which they use to solve the composition problem,
but they do not report any evaluation.

I am only aware of two versions of the Roman Model that deal with at least some
nonfunctional properties. First, Fahima Cheikh [37] introduces trust and reputation
in form of credentials. A credential has a name (e.g., client status), a value (e.g., gold),
and an issuer (e.g., a service or a third-party authority). The basic model is similar to
the original one, but it adds guards to the state transitions, where guards correspond
to constraints on the values of a credential or the reputation of an issuer. For example,
a guard may require that a client has status gold and that the issuer of the credential
stating that has a reputation of at least 5. These properties are, however, not part of
the requirement definition (the target service) but of the available services. So it is
not that the client can require that the reputation of every used service is at least 3 but
that the used services have requirements on other services that shall be used together
with them in one composition. This approach may make sense in environments
where every service knows other services, has an opinion about them, and wants to
express limitations on its usage together with other services in the same composition
depending on its opinion about them. Even though this may be relevant in some
settings, it does only slightly tackle the formerly discussed problems. In particular,
the problem of user-based constraints on nonfunctional properties of the composition
and the aggregation of such properties is not considered. Second, Mokhtar et al. [110,
111] discuss several QoS properties such as reliability, performance, cost, security,
etc., but the composition algorithm is described extremely informal such that the
exact process remains quite unclear; also, they do not relate themselves to the above
approaches.

Only for completeness, I mention the works of Mitra et al. [102—104], but they
do not seem to bring any innovation. They use a model very similar to the Colombo

42 3 Template-Based Composition

framework and call the services i/o automata. I cannot find any relevant novelty in
comparison to the above works, and their discussion of related work suggests that
the authors themselves could not either.

De Giacomo has presented a variant of the Roman model where the behavior of
the target process is not described by explicit actions but by conditions that must be
satisfied at a particular transition [44]. The task is to find a conditional composition
such that for any choice of the user at runtime, a rest-composition exists that satisfies
the conditions along the remaining subtree. Again, conditions are only propositional
logic, but for the used setting of a smart home this seems appropriate.

One relaxation of the Roman model with respect to the message labels was pre-
sented by Huma et al. [62]. Here, the messages of the desired state automaton are
not bound directly to messages with the same label of existing services, but instead
message sequences of the desired state automaton are bound to sequences of mes-
sages of existing services. In particular, message sequences can be bound also if the
message labels differ. For example, the message sequence findRoom — viewDetails
can be bound to getAvailableRoom. On one hand, this allows to find more composi-
tions and does not require that the requester knows the exact terminology (alphabet)
of the community. On the other hand, this technique imposes enormous complexity
issues, and it is not clear how the semantic correctness is assured. For example, it
is not clear how it is made sure that the above sequence is not bound to a message
rentCar. Hence, the approach touches an important topic, namely the relaxation of
exact message name matches, but must be considered still highly preliminary.

Hassen et al. propose a variant of the Roman model where the number of service
instances does not need to be bound in advance [56]. That is, in the original version,
there is some a priori constant that bounds the maximum instances that may be used
for each service. This constraint is removed in the above paper, and an algorithm for
that “unbound” composition is given.

Markov Decision Process Model

A curious attempt to solve service composition based on finding an optimal policy for
a Markov decision process (MDP) was made in [47]. The input of the composition
algorithm is an MDP that is supposed to encode the possible messages that can
be sent in the environment, and the output should be an optimal policy. This can
be seen as a template-based approach where the MDP is the template defining the
possible paths and the chosen policy is the instantiation. Unfortunately, the model
is extremely flawed in several ways. First, since the returned policy should be a
composition, the MDP should reflect the states of the composed algorithm. But this
is not the case, because the states of the MDP correspond to the participants of the
process. Second, the model lacks to define a goal state, so it is not even clear what
the composition should try to achieve. The overall goal is to minimize cost, but if
there is no requirement to reach a state with a particular property, then the optimal
policy simply does nothing. This seems to be a general problem when applying MDP
formalisms to the service composition problem. Currently, I cannot recognize that
this is a fruitful path.

3.2 Systems with Functional Operation Selection 43
3.2.2.2 Dependency and Conflict Sets

A first technique that takes into account dependencies and conflicts between services
was proposed by Ai et al. [4]. The approach is based on the nonfunctional model
described in the previous section [167]. It adds a dependency graph and a conflict
graph to the model, both of which connect concrete services that are candidates for
two different placeholders. The first graph connects services s; and s, if selecting s
for its placeholder means that s, must selected as well. The second graph connects
services sy and s, if selecting s; prohibits selecting s,. Using the objective function
as a fitness function, the composition algorithm then applies a genetic algorithm
in order to find a good composition. Genes that violate the above constraints are
“repaired” using a minimal-conflict hill climbing strategy. The approach claims to
cope with alternative branches and loops as far as these are equipped with estimated
probabilities and numbers of iterations respectively.

Liang et al. solve the same problem by combining a tabu search with a hybrid
particle swarm optimization algorithm [84]. Just like in the approach taken by Ai et
al., they make use of a dependency set and a conflict set for each service. Solutions
that violate these constraints are stored in the (fixed) tabu set that is indexed for faster
look-ups. The solutions are encoded as particles that move in an n-dimensional space
where n is the number of tasks and the domain of each dimension is the number of
candidates for the respective task. The evaluation suggests that the approach is better
than the approach taken by Ai et al. [4] in both time and quality, but this must be
relativized at least due to the fact that storing the complete tabu list in advance is
notably inefficient and clearly not part of the evaluation. Summarizing, the Liang et
al. present an alternative to the solution proposed by Ai et al. that may or may not
exhibit better quality but that needs an on-the-fly check of constraint violation in
order to be efficient.

Conflicts in terms of trust are examined by Sun [145]. Here, a trust relation is used
in order to compute only compositions in which two services may only interact if
their trust relation exceeds some predefined threshold, i.e., if the trust each other with
at least some predefined level; this is similar to [37]. If two services do not know each
other, it is tried to estimate the trust based on other trust values of similar services. It
is not clear under which conditions two services are considered to interact with each
other, and it is not clear why similarity of service attributes (which ones?) allows to
infer assertions about trust. Also, it is not clear what conclusions can be drawn from
the highly arbitrary evaluation setting. Summarizing, the idea of adding trust as an
important property is reasonable, but the overall paper quality is rather thin.

3.2.2.3 Transactional Constraints

Montagut et al. proposed the consideration of transactional requirement in the context
of automated service composition [112]. The input of the algorithm are a service tem-
plate, a set of available services that can be used for the placeholders in the template,
and a table that defines all the admissible combinations of termination states of the

44 3 Template-Based Composition

tasks. Termination states of a task can be aborted, completed, failed, compensated,
and canceled. The algorithm then iteratively instantiates the template and filters the
candidates for the currently considered task based on the former decisions. While the
idea of integrating automated service composition with transactional requirements
is very interesting, the paper exhibits significant formal flaws, and the algorithm
description is rather superficial. Nonfunctional properties are not considered by the
approach. Summarizing, the paper presents a conceptually very interesting approach
that in a preliminary stage of development.

An extension of this transactional-based approach was presented by Joyce El
Haddad, Maude Manouvrier, and Marta Rukoz [50]. Their approach resolves two
issues of the above technique. First, in contrast to an explicit set of accepted ter-
mination states for the tasks, which can be very large, they use the notion of risks,
which are basically profiles that subsume the termination state sets. This enables
for a convenient transactional requirement definition by the user in terms of a risk
profile; in their case, the user simply says whether or not she is willing to accept that
the composition cannot be undone. Second, they consider nonfunctional properties.
The nonfunctional properties are aggregated for the complete composition but the
optimization only happens on a local level; that is, nonfunctional properties are only
used to select the locally best operation for a placeholder that is admissible with
respect to the transactional requirements.

The overall quality of the paper is good, but it also exhibits some shortcomings,
which I discuss in some detail in order to maintain the overview.

First, the paper makes an uncommon use of the atomicity property, which yields
two risk profiles that fail to reflect the actual user’s interest. Risk 0 means that a
successful execution of the achieved composition can be (theoretically) undone; e.g.,
for each service in it, there is another service that undos his action. But the user is
probably not so much interested in a composition that can undo the first composition
but that the composition itself undos its steps in case of failure of some parts of it; that
is, the composition should make sure that atomicity property known from database
systems by itself. Unfortunately, this capacity is ignored completely. And even if we
accept their definition of atomicity, the undo-composition is not constructed, so the
user does only know that he can but not how to undo the effects of the composition
execution.

Second, the formal model is unnecessarily complicated in some parts. For exam-
ple, they use the property atomic for composite web service and pivot for noncom-
posite services, but the properties have the same meaning for the approach. This
distinction has a significant impact on the presentation, because they present four
tables instead of one, and the automaton modeling the possible transactional states
of a composition contains also more transitions. There is simply no need to treat
noncomposite services in a particular way. Also, pivot and compensable (compen-
satable in their paper) are properties whose formal relation is not considered at all.
They use p to denote the pivot property and ¢ to denote the compensable property,
but it would be much easier to simply say that a service is either compensable (p) or
not compensable (—p).

3.2 Systems with Functional Operation Selection 45

Third, local QoS-optimality is not really a significant achievement, since locally
optimal candidates can be computed in linear time. But I acknowledge that local
optimality is better than no optimality at all.

Apart from these issues, the approach is very well described, presents a reasonable
evaluation and, hence, serves as a good basis for developments in this direction, which
are necessary to make it relevant for practice.

3.2.3 Consideration of Business Constraints

Business constraints express conditions in terms of the domain in which the soft-
ware or service is supposed to work. In contrast to QoS, business constraints do not
make assertions about the composition as a piece of software but about the solutions
obtained by applying the composition. Typical business constraints are maximal hotel
costs, traveling time, etc.

3.2.3.1 Business Constraint Satisfaction

Approaches in this section consider business constraints but do not aim at optimizing
domain-specific criteria such as price of a booking etc.

Classical Constraint Satisfaction Model

Thiagarajan and Stumptner formulate the service composition problem as a constraint
satisfaction problem [150]. Intuitively, the variables are the placeholders and the
domains of the variables are the candidates available for the placeholder. The services
are associated with attributes (e.g., price of the purchased book) that can be used by
the user in order to constrain possible solutions.

The interesting aspect of the approach is that is solves the composition problem
interactively with the user. In the first phase, the composition algorithm tries to
find a binding of services to tasks such that the user constraints are satisfied. If no
composition can be found, the user may relax the constraints once and then it is retried
to find a solution. There is no further attempt, so there is at most one interaction with
the user.

While adding interaction with the user is a good idea in general, I think that the
degree to which it is presented in the mentioned paper is by far insufficient. The
reason is that the user has no information about which constraint failed and does
not know how to relax the constraints such that a solution can be found. A better
solution would be to automatically compute a set of relaxed solutions by stripping
away different sets of constraints such that possibly few constraints are removed.
From this set, the user could then choose the relaxed solution that appears most
appropriate to him. Hence, the approach presented in [150] is rather initial work for
the respective setting.

Another problem is that it is not clear why the attribute values of the services are
available at design time. For example, the price of the book determined by a service

46 3 Template-Based Composition

obviously depends on the book that is used as input, which is not known before
execution.

Nonfunctional aspects in the sense of price of service usage, execution time, etc.
are not considered by the approach.

Effect Tree Model

Kiister et al. describe a composition technique based on requirement definitions
in form of effect trees [78]. The input of the algorithm is a set of services and a
requirement, each of which is described by a set of provided and desired effects
respectively. In a way, the effects of the requests in their paper can be thought of as
tasks of a template that have functional descriptions of the accepted bindings. This
(imaginary) template does not have a control flow specification but there is a data
flow specification among the placeholders in it, which defines a partial order between
the services that will be bound to the different effects. The effect descriptions are
given in form of a tree, which can also be imagined as sets of unary and binary
predicates. A state then is a formula with a variable for each node in the tree and
predicates corresponding to the semantics of the nodes and links between them; these
predicates may connect variables with constants that represent individuals from the
domain.

The composition algorithm works in two steps. First, it computes all possible
bindings of services to the desired effects using a matching algorithm; every such
coverage must satisfy every effect exactly once. In a second step, this set of candidates
is filtered by removing all compositions where two services share a resource and have
incompatible definitions on that resource; e.g. service 1 provides the products in a
warehouse in France but service 2 cannot ship items from France. Finally, the best
solution out of this set is determined and returned based on an overall matching score
that can be configured by the requester.

The approach is very interesting, because it allows for complex task descriptions
that also include numerical business constraints. Its major shortcomings are that no
nonfunctional properties of the composition itself are considered, that compositions
are only sequential, and that the formal aspects are treated very superficially; the
paper is rather a sketch paper even though the techniques are verbally explained and
even evaluated. For example, it is never defined what a composition is. The lack of
formalism makes it somewhat difficult to build upon their technique.

3.2.3.2 Optimization Using Business Constraints

Channa et al. present an integer programming optimization model similar to the
one proposed by Zeng et al. but considers business constraints [36]. The approach
assumes a template with placeholders given, and for each placeholder the finite
set of candidates is known. The user constraints are encoded into an LP program
that tries to minimize business goals, e.g., the price of a transaction considering
also other business domain constraints such as supply time. While the overall idea
of the approach is innovative, its technical elaboration is largely insufficient. First,

3.2 Systems with Functional Operation Selection 47

the formal model is heavily flawed (templates are never formally introduced), and
inner parts of the constraints are defined as sets instead of vectors. Second, the QoS
properties are mentioned but not really considered in the model. Third, multicriterial
aspects are completely ignored. Apart from that, no discussion of relevant related
work such as Zeng et al. is given.

Hassine et al. present an approach that considers user preferences on business
constraints of solutions [57]. Constraints can be either soft or hard. Hard constraints
must be satisfied, and soft constraints may be satisfied and induce a penalty in the case
they are not. In addition, for every service i and every placeholder j, a constant value
denotes the user’s preference that i is used for j; the preferences for a placeholder
do not necessarily add up to one, so the term utility would be more appropriate. The
algorithm tries to find the solution that has the best net utility, that is, the highest
sum of preferences minus the penalties for violated soft constraints. The type of
constraints introduced in this paper is quite interesting, but there are also some
flaws. For example, the approach does not contain any evaluation, and the formalism
contains several errors. Another problem is that the approach requires that the user
has an explicit opinion about every service, which is not the case in practice.

3.2.3.3 Rule-Based Domain Constraints

Karakoc and Senkul present a template-based approach quite similar to the METEOR-
S framework (cf. Sect.3.2.1.1) [66, 67]. The composition template is given in advance
with the tasks being specified semantically. However, the papers leave the concrete
description language quite vague, and no discovery mechanism or matchmaking
interface is described; one may assume that the descriptions are supposed to be simi-
lar to what is used in METEOR-S. The novelty is that conditional constraints on both
QoS values and service selection. For example, “If both Ski and Balloon activities
exist in holiday program, then total cost can cost $100 more” [67]. Constraints on
the instantiations are of the form “If Web service template WT1 is done by Web ser-
vice W1, then Web service template WT2 must be done by the same/different Web
service”, where “web service template” means what we understand by a placeholder.
In general, the problem is not very exciting, because solving this kind of problem
is rather trivial. This is also reflected in the evaluation, which shows that, even for
this nonoptimized approach, the instantiation even for large templates (60 control
flow nodes) and many candidate service (over 1000) can be done within less than a
second. Curiously, Karakoc and Senkul claim in the introduction of [67] to consider
quality of service (QoS) properties, which they effectively do not in either of the
papers. Also, they are apparently not aware of the approach by Hassine et al. [57]
and Thiagrajan and Stumptner [150].

A slightly different but also rule-based composition algorithm was proposed by
Zeng [169]. The input of the composition algorithm is a raw version of the desired
composite service and a set of so called forward dependencies and backward depen-
dencies. The composite service is described by an activity diagram and must be
refined using the dependencies, each of which is bound to exactly one activity.

48 3 Template-Based Composition

Forward dependencies say which other activities (tasks) must be executed after the
activity it refers to, and backward dependencies say which other activities must be
executed before it. The challenge in this setting is that the conditions partially depend
on values that become available at runtime only. First, the backward dependencies
are applied. Then, the resulting composition is executed and, if necessary, the com-
position is extend online using the forward dependencies. It is hard to judge this
approach, because it is kept relatively vague and the examples sometimes have little
to do with software services. However, my overall impression is that it has nothing
to offer that cannot also be done with HTN planning (even though they claim the
opposite).

3.2.4 Concluding Discussion

What we have seen in this section is that there is a wide range of approaches that pick
some specific functional aspect and create a composition algorithm that is tailored
for it. The main aspects are (i) discovery and matchmaking for the candidates of the
placeholders, (ii) dependencies and conflicts among operations, and (iii) business
constraints. There is no general incompatibility among these features, so there is no
reason why there could not be a composition framework that considers all of these
aspects (and even nonfunctional properties) at the same time at least in theory.

Besides the particular strengths and weaknesses of the approaches, Table 3.2 con-
siders six criteria that may be considered. First, the consideration of nonfunctional
aspects as described in the previous section, which is fully supported if they are glob-
ally optimized and partially if they are considered at all. The criteria abbreviated by
Mat, Dep, and Bus refer to the consideration of matchmaking between placeholders
and operations, dependencies and conflicts among operation selections, and business
constraints respectively. These columns show that there are only few approaches that
consider several of these aspects at a time, which is why the above organization
of subsections is almost a partition with respect to these criteria. Next, there is a
criterion that says whether or not an approach interleaves the composition process
and the execution process. This is a particularly important criterion for business
constraint approaches, because choices may depend on concrete results obtained at
execution time. However almost none of the examined approaches takes interleaving
into account. Finally, since loops are a particular challenge for the composition task,
there is a criterion that says whether or not the approach can work with loops.

The approaches that focus on discovery and matchmaking become composition
approaches basically by considering some global aspect such as nonfunctional prop-
erties of the composition. If only the matchmaking problem is considered as, e.g., in
[100, 152], then the term composition only refers to a fixed number of matchmaker
invocations; the relation to a composition task is rather thin.

49

3.2 Systems with Functional Operation Selection

sayoeoidde oy Jo suorssnosip

9A1303dsal 9 Ul PUNOJ 9qQ UBD SOIUIRJAI AINJLINIT IOYI0 OB WOIJ SUONIISNS JUAIIYIP Ul pIssndsip soydeoidde oy ojeredas soul] 9[qnop Y[, ‘passnosip
arom soyoeoxdde oy yorym ur 10pIo 9y} 03 SPuodsalIod ISI[oY) UIYIIM SUrIos Y], *SSe[d SIy) Jo soyoeordde oy) uo suoISSNOSIP dY) SZLIEWWNS 0} SALI) d[qE) SIY],
uorewolne 10j jueAd[oll nq payoddns = « ‘peyroddns jou = O ‘peyroddns A[rented = @ ‘peyroddns A[renuelsqns = @

juauneai], doo] = sdoor] ‘uonnooxg pue uonisodwo)) JUIABS[IAIU] = JU] ‘SIUTRIISUOY) ssaulsng = sng ‘suoneradQ

Suowry s1o1guo)) Jo/pue saroudpuadog = da(‘s1opjoyedeld jo suonduosaq Ioiaeyag 10j SunewrydeN = JeJA ‘(senradoid-gN) 991A19S Jo Aend) = S0

uo1)1s0duIod aIem)Jjos uey) ss0001d ssoulsn(Ioyjel suoryisoduion jo uorjdepe-jjos e} ol @ ® e) 1) ‘Te 10 Suoay
pomepy A[reurioj ‘resoun sjoodse [euorjdiiosop SHUTRIISUOD [RUOTIIPUOD ol @] o [@) ‘Te 19 doyeIRy]
UOI)RN[RAD OU ‘pome]j A[[RULIO] soouaojord TS @) ol @] o ®) @) ‘e 10 oUISSRE]

UOI)RN[RAD OU ‘pome]j A[[eULIO] - @) ol @] o ®) O ‘Te 10 euury))

soouanboas Auo ‘wsifeunio] reoyrodns soouaIajeld Josn @) O @ O O O ‘Te 0 199sn Y|

uorjoRIgUI Jo uorjejusweidurt rood UOT}ORINUT JOSTL @) ol @] o ®) O |'1e 90 uelerelderyy,

oruroje jou suoryisoduod ‘A(uo A[edo] goP) spoodse [euOIjORSURI) @) ol o] e ®) ® ‘Te 10 peppeH A

yeom A[[euriof syoadse [euoIjORSURI) @) ol o] e ®) @) ‘Te 19 n8ejuoy

yeom A[[euriof 1STLI} JO UOT)RIOPISUOD o ol o] e o O ung

uoljeneAd Irejun ‘[rews AI1oA sI j0odse [euorjouny - [ol o] e ®) () ‘Te 10 Suery
[rews A10A st joadse [euor}ounj - o ol ol e ®) ° ‘Te 90 1y

pomeyy A[renjdoouod pue A[[euLio] - @) ol o] e @) @) ‘Te 10 1gsoq

MarA [euorjouny orsidurs $00UR)SUI UO PUNO(SOXR[OI @) ol o] e @) @) ‘Te 19 Uossel]

oge)s Areururroad ‘Iedo[dUN SSOUPUNOS SOUD)RW JOBXO SOXB[DI @) ol o] e o @) ‘Te 10 ewiny

MOIA [eUOIOUN] O1)sTidUIIS SOUD)RW JOBXO SOXB[DI @) ol o] o @) O |'Te 90 owooelr) o

Qo) auo ATuo ‘mara Teuorjouny orgsidurs GO dUO Sk S0 SIOPISUOD @) ol o o O o ‘TR 90 RIYIIN
reoygradns uorpdiosop wyjLIoS[e ‘[Opouwl [eULIO] O GO [BI9ASS SIOPISUOD O ol O [@) o ‘e 19 IeyON
W)HLI0S[e Ou ‘Mol [euoIjOoUN] o1ystdurts GQO{) PUO S ISTLI) SIOPISU0D @) ol o] e @) o ‘e 19 YYD
OI1SI[RAIUN SPBIYENOO] ‘MIIA [RUOIOUN] O1)sT[dUIIS [opow [euLI0] poos @) ol o] @ @) @) ‘Te 10 opalon)
WHLI0S[e Oou ‘Mol [euoIjouUNj onystdurts [opow [euLI0] PooT @) ol o] e ®) @) ‘Te 10 1pIeIog

MarA reuorjouny onsijdurs|suorpdiiosep 1opoypoe(d joidxe ol ol o ° () ‘Te 10 payelpay

UOT)eN[eAd OU ‘GO OU ‘WI)LIOS[R [RULIOJ OU| UOIJRULIOJUI JX9)U0D SIDPISUOD [e) ol ol o Py @) ‘Te 10 29[['A
pamey A[renjdedouod SOTJURWIAS [€I130[0JU0 [e) ol ol o Py () ‘Te 19 9Nnd9T

Aypaou [enjdoouod ou pojuawe[dul 90RJISUL I9SN @) ol ol o Py O | ‘Te 1o astlpueyoy

wWIILI08[e [eUI0] ou Ing uorpdiosop AJuo patopisuoo spoadse Aeux ol @] O [[S-HOHALHAIN
S9SSOUNBOAA Je[ndijred syj3uaalg aernoijred|(sdoorg|qui[sng|deq|1eIN|SOD awreN

s1opoyaoed 10J suonjerado 201AIdS 122]as 0 s1oadse [euonouny asn jey) sayoeoidde paseq-ojerdue) oY) Jo MAIAIAQ '€ dqEL

50 3 Template-Based Composition

The Roman model offers an elaborate formal basis but does not present any con-
crete algorithm, and, without improved consideration of QoS, its utility is highly
questionable. It would be certainly beneficial to see evidence for the practical appli-
cations of the model and that the automation compensates the efforts necessary to
formalize services and the query. I think that the use case for the Roman model is
the same than the one for the QoS-optimizing tools discussed in the previous section
where constraints on the invocation order shall be considered like in [9]. Unfortu-
nately, the consideration of QoS in the scope of the Roman model [37, 104] stands
back even behind the simplest techniques of the QoS-community, so a lot of work has
to be done to make the model suitable for its actual use case. The good news is that
the functional aspects considered in the Roman model would be a great complement
for the efforts in QoS-optimization, so this combination would certainly be a step
into the right direction.

The approaches related to business constraints introduce an interesting conceptual
aspects but are technically disappointing. The business constraints presented in [57,
67, 150, 169] are certainly interesting and could also be included into the other
paradigms. However, the context in which they are presented is very isolated from
existing standards and tools on service composition and little convincing.

Similarly, the remaining approaches bring some interesting isolated aspects with
them but do hardly constitute a relevant composition solution themselves. For exam-
ple, the transactional approaches [50, 112] or the usage of purposes to tag operations
[99] are individually interesting aspects. However, the considered aspects by them-
selves are probably not strong enough to constitute a relevant composition problem,
so they must be combined with other existing aspects. A first step into this direction
was already done by El Haddad et al. through the consideration of QoS, but the lack
of a sufficient consideration of functional aspects is still a major concern.

3.3 Systems with Placeholder Refinement

Approaches within this section instantiate a template by refining every placeholder to
a possibly complex subcomposition. That is, the set of candidates for the placeholders
is not a set of atomic service operations but of possibly complex structures that are
not explicitly predefined. The goal of composition is to find a combination of such
subcompositions such that all constraints are satisfied and that possibly optimizes
some objective function.

We can distinguish recursive from nonrecursive refinement approaches. Nonre-
cursive refinement approaches assume that there are no potential structures prede-
fined for the subcompositions that may be used to refine the placeholders. Recursive
approaches assume that the candidates that can be used to refine a placeholder are
either atomic service operations or templates themselves.

3.3 Systems with Placeholder Refinement 51

3.3.1 Nonrecursive Refinements

3.3.1.1 Golog-Adpation

The first template oriented composition approach I am aware of is Mcllraith’s and
Son’s one adapting the Golog language [98]. They use the term action to refer to
service operations. Templates are formulated in the form of Golog programs, which
may contain sequences, tests, nondeterministic choices of actions and arguments,
and loops.

The important difference to common programs is that the control flow contains
nondeterminism in the sense that the program may “choose” at runtime how to
proceed. That is, during the execution of a Golog program 4, the executing interpreter

may hit a statement of the form d;] . . . |,. This statement means that it shall proceed
with one of the programs 4y, ..., J,, but it is up to the interpreter to choose which
one.

Automated composition comes into play when trying to find a possible execu-
tion run of a given program. The composition algorithm has two inputs, the Golog
program (the template) and the user constraints, which may define a certain bud-
get or logical constraints. The template is defined once for many use cases, and
the constraints define a subset of possible execution runs of the template. In other
words, the nondeterministic choice points of the generic program § implicitly induce
a set of possible execution runs, and the task is to identify one execution run that is
compatible with the user constraints.

In order to determine the satisfaction of user constraints, the composition algo-
rithm interleaves planning and execution. The composition algorithm applies a read-
only interpreter to perform the candidate execution runs; read-only means that it
executes only operations that gather information while it simulates the invocation
of world-altering operations (assuming default behavior). If an execution run that is
compatible with the user constraints is found, it is returned as a solution.

The approach is semi-recursive, because placeholders can be replaced by complex
constructs but replacements of this type cannot be done arbitrarily often. That is, on
one hand, the nondeterministic choice points, which are placeholders of the template,
may cause the interpreter not only to consider a single action but whole subprograms.
This implies that the interpreter replaces the structure with a program that may contain
placeholders itself. On the other hand, the complete (nondeterministic) program is
specified in advance, so the depth up to which this kind of recursion can happen is
bound by the template.

While the approach is conceptually interesting, it has not been sufficiently elabo-
rated and evaluated to be considered mature. There are some good motivating exam-
ples that show the general feasibility, which is not surprising. However, the approach
has never been evaluated. Technically, the approach has only been implemented on
the basis of Prolog, which requires an explicit database given; this is usually not
the case in a service environment. Another problem is the way how formalism is
used to describe the approach. On one hand, the paper is very formal and introduces

52 3 Template-Based Composition

some extremely detailed aspects such as the IRP assumption. Some aspects are not
even necessary for the paper, such as the so-called order construct, which can be
used to apply recovery routines online. On the other hand, it misses to point out very
fundamental elements. For example, the paper does not give a formal statement of
the addressed problem. Finally, nonfunctional properties of the composition such as
runtime and price of components is completely ignored. Consequently, the approach
corresponds to an interesting idea, but its description is too vague and due to its low
evaluation, it cannot be considered mature; the lack of consecutive research seems
to affirm this observation.

3.3.1.2 Alternative Templates

Oster et al. take an approach that considers several potential solution structures for
a query [116, 117]. Functional requirements are described as a propositional logical
formula ® represented in form of an AND-OR-tree, where the leafs correspond to
requirement keywords. The formula ® asserts which functionalities may be satisfied
together in order to satisfy the query but there is no notion of a control flow or a data
flow. Intuitively, every conjunction of this formula in disjunction normal form can be
seen as a specification of a template with where each literal is a task. Nonfunctional
properties are quantitative or ordinal in [117] and set-based in [116]. In [117], for
every leaf node in ©, there is a set of services satisfying the respective functional
requirement, each service having a price, a throughput, and a reliability. Starting
with the leafs of ®, they use a bottom-up propagation of nonfunctional properties to
identify the selections of services that are not dominated by others; hence, a set of
Pareto optimal solutions is computed.

The approach in [116] differs in two ways from most other techniques discussed
in this survey. First, the leafs of @ are already bound to concrete services; hence &
actually does not define a template but a set of solutions already. Second, nonfunc-
tional properties are expressed not in values of categories but as propositions. To
this end, they create a set of profiles of nonfunctional properties, which are simply
sets of propositions. The set of profiles is ordered by the user preferences using a
technique called Conditional Importance Networks (CI-nets). Every service has a
set of properties it supports and a set of properties it eliminates if contained in a
selection. Starting with the “best” profile, they try to find a selection that is satisfies
the functional requirements on one hand and the respective profile on the other hand.
In both papers, the result of the process is a set of services without control flow and
data flow. [116] mentions a phase of composing and verifying the selected services,
but the utility of this approach is quite questionable given that the only requirement
definition for that composition is that “services sy, ..., s, must be used in it”.

A similar approach was taken by Barakat et al. where the template is not described
by a single workflow but by a ser of possible workflows [13]. A task is simply a
label, and the possible decompositions of a task are described in a graph structure;
this structure induces a set of possible abstract workflows, which are sequential.

3.3 Systems with Placeholder Refinement 53

The novelty of the approach is then that the algorithm does not only search for the
best local selection but for the best decomposition of the overall task.

3.3.1.3 Simple Planning

Kalasapur et al. try to replace a task of the user query with an on-the-fly created
sequence of services if no existing one can be used to instantiate it [65]. Tasks
are functionally described in terms of input and output types, and services are
described by state charts with transitions corresponding to data that flows between
the (sub)services; input and output transitions of the whole diagram mark inputs and
outputs of the service. The input for the composition algorithm is a set of tasks and
a set of service descriptions. The goal is to bind every task to a service composition.
The algorithm first tries to bind a task to a single service if such a service can be
matched based on the inputs and outputs. If no such service exists, they try to find
a chain of services that starts with the task inputs and can produce data of the types
of the task outputs. To achieve this, they apply a shortest path search in a so-called
parameter graph, which consists of data nodes and arcs corresponding to services
indicating how particular data types can be achieved. The second step is very close to
what Hashemian et al. do in [54, 55], which I discuss in Sect. 4.1.2, and the problems
are quite similar. For example, it is not clear whether the all the inputs of the services
found for the composition are provided at all. For this reason, and due to the fact that
the approach lacks a concise formal description, it fails to convince for the property
of soundness.

3.3.1.4 Composition Through Interpretation of Unknowns

Srivastava et al. describe an approach to software synthesis that is based on theo-
rem proving for FOL formulas with unknowns [143]. Unknowns can be understood
as existentially quantified literals that must be bound to concrete formulas by the
theorem prover; hence, the problem is actually a second-order logic satisfiability
problem. The composition problem is described by a so called scaffold that contains
(i) preconditions and postconditions as FOL formulas, (ii) the available operations
and expressions usable for conditions, (iii) an abstract control flow template, and (iv)
restrictions on temporary variables and operation calls that the composition must
adhere to. The template only defines the general control flow structure, for instance
acyclic code followed by a loop with arbitrary acyclic body. For a fixed parameter n,
the template is expanded into an abstract control flow that introduces one loop head
for each loop occurring in the template and » if-then-statements for each acyclic
block occurring in the template. For each condition (of loops and if-statements)
and for each statement, an unknown is introduced for the guard, and for each loop,
an unknown is introduced for the invariant. The algorithm then derives a second-
order logic formula called the synthesis condition that encodes the conditions that
must be true in order for any template instantiation to be correct. In the next step, a

http://dx.doi.org/10.1007/978-3-319-34168-2_4

54 3 Template-Based Composition

second-order SMT (SAT modulo theories) solver is used to bind the unknowns to
concrete (problem specific) formulas and to check whether the respective binding
satisfies the required behavior.

Similar to the case of term algebraic synthesis discussed in Sect. 4.3.3.1, the main
difference to classical service composition is that operations are described by their
implementation. For instance, the postcondition of a service operation may be a
predicate AvailabilityOf (y, x) where y is the availability of an item x. There is no
information of how this predicate is computed; the implementation is hidden in the
operation. In contrast, operations in the approach by Srivastava et al. are described
by their implementation. For example, an operation y = 2 - x 44 says that the output
of the operation, which is y will be 2 - x 4+ 4, so x is an input of the operation. Not
only the designer but also the composition algorithm know the semantics of that
implementation, so the composition algorithm can exploit the knowledge about the
implementation of operations. In particular, knowing the space from which operations
stem, the composition algorithm can create arbitrary new operations on the fly, e.g.,
y = 3. x? + k, depending on the underlying theory.

It is not trivially clear how this type of program synthesis relates to automated
service composition. On one hand, the approach benefits from the built-in theories
available for the composition algorithm, because this allows for the encoding of
many different problems on the basis of a rather small vocabulary. That is, only
using the theories of linear algebra, we can already encode several problems that
can be addressed with the approach, e.g. swapping two variables without using tem-
porary variables, matrix multiplication, or integral square root computation. On the
other hand, the tight coupling between implementation and description of opera-
tions, which are bound to very narrow domains such as integers make the approach
little flexible. In fact, all of the presented examples work on the numerical domain,
and the operators do not have preconditions except that the inputs are numbers. The
framework would require a quite significant adaption to support operations that have
more complex preconditions than only types. Another problem is the tremendous
complexity, because the number of operations is usually infinite, so searching for
good instantiations of the unknowns is a quite challenging task. But complexity is
also an issue of other service composition approaches, so this is not a particular
drawback of their technique.

3.3.2 Recursive Refinement

This section treats approaches that assume that placeholders are replaced by instances
of other subtemplates. That is, for each placeholder, there is a set of candidate tem-
plates, and each of them can be instantiated again (in the same way) in order to obtain
an instantiation of the top-level template.

http://dx.doi.org/10.1007/978-3-319-34168-2_4

3.3 Systems with Placeholder Refinement 55
3.3.2.1 HTN Planning

Hierarchical Task Networks (HTN) are a powerful Al planning concept that allow to
create plans by recursive refinement of fasks. A task is nothing more than the name
representing some activity. For some tasks, there is an operation that implements
them; these tasks are called primitive. Tasks for which such an implementation does
not exist are complex and must be refined before they can be executed. A task network
is a partially ordered set of tasks. Given an initial task network, HTN planning tries
to refine the network to a sequence of actions (ground operations). Since some of
the tasks may be complex, these cannot be replaced directly by actions but must
be broken down first. This is done through so-called methods, which define how a
complex task can be substituted by another task network.

Initial Approach

HTN Planning was first applied to service composition by Dan Wu, Bijan Parsia,
Evren Sirin, James Hendler, and Dana Nau [163]. The obvious analogy to services is
that primitive tasks are atomic processes while complex tasks are simple or compound
processes in the sense of DAML-S/OWL-S. Simple processes are simply abstract
one-step processes that are refined by an atomic or a complex process. Hence, sim-
ple processes define a task network with only one task with one method for each
atomic or composed service that can be used to refine it. Compound processes define
a control flow that may contain other processes, which can be directly translated into
a task network with the tasks corresponding to the processes contained in the com-
pound process. Given the control flow of a desired compound process, they use HTN
planning to successively ground the tasks to actions. Atomic processes in the desired
process are directly bound to the respective service, while simple and compound
processes are recursively refined.

The service composition problem that is addressed here is extremely close to the
one by Mcllraith et al. In a more detailed version of the approach, Sirin define the
semantics of the OWL-S based composition on the action theory approach proposed
by Mcllrraith et al. [138]. Atomic processes correspond to actions and compound
processes to programs in [98]. Simple processes correspond to the nondeterministic
choice points. A major difference, which Sirin et al. fail to point out, is that Golog
programs cannot call subroutines, which avoids endless recursion. In other words,
the OWL-S process model used for HTN-based planning is more expressive than the
Golog variant proposed in [98]. This also enables a modularized representation of
the desired process.

The initial HTN-based approach exhibits some conceptual improvement of the
Golog approach, but the main critics remain. First, also the evaluation of HTN-based
service composition is very thin. While the initial works [138, 163] do not contain
any evaluation at all, at least a preliminary evaluation is given in [137]. Second, I
think that the approach in the presented form misses the actual point of interest.
The challenging and interesting aspect of this type of service composition is neither
translation from OWL-S processes to HTN methods and operations (which is straight
forward) nor the optimization of composition runtime. The fast runtime shown in

56 3 Template-Based Composition

the evaluation underlines the intuition that runtime is not an issue in a pure process
refinement setting. Instead, the consideration of both functional and nonfunctional
constraints would be of much more interest; out of all the possible refinements, which
is the best according to the nonfunctional properties considering a certain budget or
the user preferences? However, these questions are not tackled at all, which is even
worse given their claim to show how to “encode both hard constraints about the
functional parameters of the services and soft constraints related to nonfunctional
attributes of the services” [138], which is simply not true.

Extented Approaches

In the next step, Sohrabi et al. [140, 141], Lin et al. [87] independently added con-
straints in order to model functional user preferences. The constraints are similar to
classical HTN constraints and say which logical conditions should be true at which
point in the task network. In order to adopt the composition goal to the user con-
straints, Sohrabi et al. introduce preference formulas that order the importance of
constraints, and Lin et al. introduce a violation function that punishes the violation
of constraints by a constant factor. For example, they allow for statements like “Lara
prefers direct economy flights with a Star Alliance carrier, followed by economy
flights with a Star Alliance carrier, followed by direct economy flights with Delta
airlines” [141]. This is a nice extension, because it allows to guide the template
instantiation process by this kind of user preferences. Nonfunctional properties of
the services are still not considered.

The consideration of nonfunctional properties, at least in a rudimentary form, was
brought to HTN-based service composition by Chen et al. [38]. In [38], the basic
HTN algorithm is extended to cope with availability, reliability, cost, and response
time of services, which are merged in a reward function R. Every decomposition
with a reward value R smaller than some previously set threshold X is rejected.
Nonfunctional properties can be computed only for sequential processes and are
considered with a particular weight. They argue that HTN-plans are sequences of
operators and that, hence, the nonfunctional properties can be simply merged for
sequences of operations. But this is a mistake, because the primitive tasks could also
indicate the beginning or the end of a loop; hence, the composition is a sequence of
control flow elements, but the semantics of the elements could indicate alternative
branches or loops.

Another question addressed for this type of composition was how to proceed in the
presence of several sources of semantics [86]. The paper tackles the question how the
knowledge of several ontologies can be merged in order to obtain the desired results
in the composition process. However, user constraints or nonfunctional properties
do play no role in that approach.

This said, there have been some efforts on service composition through HTN
planning, but no mature approach considering more than only one interesting aspect
at atime has been presented yet. In its infancy, constraints were claimed to be relevant,
which is true, but they were de facto ignored. Later, user constraints and nonfunctional
properties were considered, but only in a rudimentary fashion and independently
from each other. An integrated approach of HTN-based service composition has not

3.3 Systems with Placeholder Refinement 57

been presented. While this type of service composition would be very interesting in
practice, the presented approaches failed to advance the technology to a sufficiently
mature (and usable) degree.

As a final remark, we should keep in mind that HTN is a general planning tech-
nique that can do much more than what has been done so far in HTN-based ser-
vice composition. In fact, this paper presents HTN-based service composition as a
template-instantiation mechanism, but the fact that HTN planning can also encode
classical planning tasks shows us that we can use the HTN calculus for much more
than it has been used up to now. Even though this is its most intuitive application, it
would be wrong to associate HTN planning only with recursive template instantia-
tion.

3.3.2.2 Composition Through Abduction

Aydin et al. present an approach that applies abductive theorem proving in the event
calculus in order to solve the composition problem [12]. The approach is closely
related to the GoLog and HTN planning approaches. The input of the algorithm is
a generic workflow encoded in terms of event axioms, the user inputs and business
constraints, e.g., maximum driving time, and the goal state, e.g., that a trip from
Ankara to Athens has been planned for a particular date. Abduction is a logical
calculus in which for a background theory T and a set of literals O (the observations),
a set of literals E that are an explanation for the observation is search. Formally, the
task is to find a set of literals E such that E A T is satisfiable and T A E = O. In
service composition, the set 7' consists of the service descriptions, O of the desired
goal state, and E is a set of actual invocations of the existing services.

The comparison to HTN planning for service composition is straight forward.
The desired composition is described by the name of the problem to be solve, e.g.,
travel(O, D, Dj, D,); this is what would be a simple process in OWL-S and a complex
task in HTN planning. Axiom correspond to methods in that they describe how a task
can be decomposed. The conclusion of the axiom defines the task that is accomplished
by the subprocess, and the premise defines the decomposition; hence, this is only
a syntactic difference. Aydin et al. claim that their approach is more powerful than
the HTN-based technique because it allows for services with that are information
gathering and world-altering at a time, while HTN-based composition would be
restricted to services that are exclusively one of the two types. However, this is not a
striking argument, because the difference of outputs and effects in OWL-S is rather
artificial and not very relevant for composition.

The main contribution of Aydin et al. is not so much to solve a new class of
problems but to bring a new paradigm to service composition. In fact, abduction is a
very natural way to see the service composition problem, and this observation is even
independent from the fact whether the desired composition is described explicitly
or implicitly. In fact, in Sect.4.1.2, T discuss an approach building on top of this
work but being based on input and output descriptions [115]. The great advantage of
standard logical approaches is that we can use existing tools, i.e., theorem provers, to

http://dx.doi.org/10.1007/978-3-319-34168-2_4

58 3 Template-Based Composition

solve the composition problem. With respect to nonfunctional properties, they briefly
claim to construct the plans based on quality of services, but the description on this
part of the composition is so slim that we cannot consider it a serious treatment of
the issue. Summarizing, the paper is an initial work whose major contribution is to
bring together logical abduction and a variant of the automated service composition
problem, for which other solutions already existed.

3.3.3 Concluding Discussion

Like in the previous section, Table 3.3 considers six criteria that may be considered
by approaches within this subclass. First, the consideration of nonfunctional aspects
as described in the previous section, which is fully supported if they are globally
optimized and partially if they are considered at all. The criteria abbreviated by Mat,
Dep, and Bus refer to the consideration of matchmaking between placeholders and
operations, dependencies and conflicts among operation selections, and business
constraints, respectively. These columns show that there are only few approaches
that consider several of these aspects at a time, which is why the above organization
of subsections is almost a partition with respect to these criteria. Next, there is a
criterion that says whether or not an approach interleaves the composition process
and the execution process. This is a particularly important criterion for business
constraint approaches, because choices may depend on concrete results obtained at
execution time. However almost none of the examined approaches takes interleav-
ing into account. Finally, since loops are a particular challenge for the composi-
tion task, there is a criterion that says whether or not the approach can work with
loops.

The approaches based on HTN planning suffer from a similar problem as the
Roman model. On one hand, they are formally well elaborated and introduce quanti-
tative business requirements such as traveling time, budgets, etc. On the other hand,
we have not seen an exhaustive example that would clearly demonstrate the necessity
of applying the technique. Also here, the convincing use case seems to be rather in
the QoS-optimization of the (recursive) template instantiations. It has not become
clear that there actually is a need for this recursive type of template instantiation,
but in case it was, quality of service would be an important issue. The efforts on
including QoS into HTN-based service composition made in [38] are only a first
step into that direction.

59

3.3 Systems with Placeholder Refinement

sayoeoidde ay) jo suorssnosip

9ANOadsal 9y} Ul PuUNOJ 9q UBD SIOUIIJAI 2INJLINIT “I9YI0 OB WOIJ SUOIIOSqNS JUSISJJIP UL passnodsip sayoeordde ayy ojeredas saur[o[qnop ayJ, "passnosip
arom seyoeoxdde ay) yorym ur 1op1o ay) 03 Spuodsariod ISI| Ay Uryim Suriios ayJ, "sse[o sy jo seyoeoidde ay) Uo SUOISSNOSIP AY) OZLIBWIWINS 0} SALI) 9[qe) SIY,
UOIBWOINE J0J JUBAJ[ALI Inq pauoddns = ¢ ‘payroddns jou = O ‘payroddns A[rented = @ ‘payroddns A[renueisqns = @

juauneai], doo = sdoor ‘uonnosxy pue uonisodwo)) JUTABI[INU] = JuUJ ‘SjuTensuo)) ssaursng = sng ‘suoneradQ

Suowry sjorguo)) Jo/pue sarouspuadoq = da(q ‘s1opjoyedeld jo suonduoseq Ioiaeyag 10j SunewydeN = A ‘(seniadoid-IN) 991A19S jo Ajend) = Sod)

UOI)RN[RAS OU ‘Seduatsjald ou O180[uoIPNpPgr | o ®) ® ®) ‘Te 10 UIpAy

soouaIojord ou ‘pome]j A[[RULIO] Qo yym [epowr N IH A[uo ol o ®))) ‘TR 30 uay))

-| seousisjerd sieprsuod ‘punos A[eurioy | O ®) ® ®) ‘Te 30 urg

-| seouaisjerd sioprsuod ‘punos Aeurioy 0| @ ®) ® ®) ‘Te 19 1qeIyos

uorjenyeas rood UOISINDAI [BdI ‘PUNOS A[[RULIOJ | O e)) O | 'Te 10 uLg ‘npp

9SIOUO0D J0U [9pow [ewiof| pajeijsuowsp Ajiqeordde [eoroerd 0| @ ®) @) O | 'Te 1° yareaOIN

Ayxordwos ‘uorjdrrosep=uorjejuowoduwr|-go pue ‘poaid ‘suorjisodwod xordurod) ol o e)) O |'Te 10 eaR)seALIg
uosLIeduod 29 UOIJRN[RAS ‘[9POU [RULIOJ YroM uoryeoyroads yse) [RIYDIRILIY ®) ol o e} ®) ® ‘Te 10 jeqereq
pamep A[eurio] ‘maia Teuorjouny onstiduars| sjyuswaImbal [euorOUN] s SPIOM AN ®) ol o e) e) ® ‘Te 19 19380
punosun A[qeqoid ‘W)LI03[e [RULIOJ OU| SOIIAISS JO AJI[RIO[JO S09I30p JUSIPIP ®) ol o e)) O [1e 1o andeserey
sosseuBOA\ Je[NoIlIed syj3uaalg Je[moryred||sdoory|jul|sng|de|reInN|Sod aure N

suonyisodwooqns Aq s1opjoyaoe[d auifa. 03 sjoadse Teuonouny asn jeyy seyoeoidde paseq-ore[durd) o) Jo MITATAQ ¢€°€ I[qBL

Chapter 4
Composition Without a Given Structure

Every approach discussed in this section solves some form of a planning problem.
A planning problem asks for a sequence of actions that an agent must perform in
a problem domain X' in order to reach a goal situation s* starting from an initial
situation sp. The problem domain ¥ is defined based on a logical language £, which
may be propositional logic or (some variant) of first-order logic. It consists of a
countable set of states, a countable set of actions that can be performed by the agent,
and a state transition function that defines how the agent can move through the state
space through actions. The states are described as formulas over £, and the initial
state 5o and goal state s* belong to the state space.

The analogy between Al planning and automated service composition is as fol-
lows. Let us assume that we want to find the implementation for a service operation
for which we currently have only a signature and logical preconditions and post-
conditions. The preconditions describe knowledge that may be assumed to be true
at time of invocation, and the postconditions say what is true after the (successful)
invocation. Then, we can think of this as a planning problem where the initial situ-
ation s corresponds to the preconditions, the goal situation s* to the postcondition,
the state space corresponds to the semantic states of the thread that will later execute
the implementation, and the actions correspond to invocations of existing service
operations.

The service composition problem addressed this way is not generally a classical
planning problem [105]. Classical planning, which is subject of almost all available
planning tools, assumes that the state space of the planning domain is finite. This is
often possible even if £ is a first-order logic language by grounding the predicates
using a finite set of objects that is assumed to exist in the environment. However, in the
case of software composition, this set of objects corresponds to the data containers
(programming variables) that are used to pass data between operations, and the
number of these containers is not bound in general.

© The Author(s) 2016 61
F. Mohr, Automated Software and Service Composition,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-34168-2_4

62 4 Composition Without a Given Structure

Composition Without a Given Structure

Key question: Which logic calculus is required to encode the problem?

Propositional Logic - Propositional Logic -

First Order Logic
no Background Theory ~with Background Theory s

Goal: Exact Object/Condition Goal: Implied Object/Condition Goal: Implied Object /Condition

Relevant Subtopics: Relevant Subtopics: Relevant Subtopics:
1. I/O Only 1. Type Hierarchies 1. Inputs and Outputs unrelated
2. Pre- and Postconditions 2. Similarity Matching 2. I/O Related & Finite Space

3. I/O Related & Infinite Space
Fig. 4.1 Composition problems where no structure is given

We can identify three subclasses for the approaches within this class based on
the underlying logical language L. Figure4.1 shows an overview over the three
subclasses.

1. Many approaches canonically correspond to a propositional logical planning
problem in that there is exactly one planning action for each service operation
with an obvious translation. Section 4.1 discusses these approaches.

2. Many approaches use some sort of (possibly first-order) background knowledge
such as type hierarchies that must be encoded in additional planning actions. The
transformation to a classical planning problem can be done in linear time. These
approaches will be discussed in Sect. 4.2.

3. The third subclass comprises approaches that are based on FOL, which are dis-
cussed in Sect. 4.3. Here, operation descriptions may contain predicates with two
places or more. Not all of these encodings can be reduced to propositional logic,
and if they can, this translation cannot be done in polynomial time.

The main difference between the first two subclasses and the third one is that
only approaches in the third subclass allow to relate data to each other and to model
the data flow. Approaches discussed in Sects. 4.1 and 4.2 assume that we have only
unparametrized knowledge about data; e.g., that an object x is a client but not that
he is attended by some employee y unless y is fixed a priori. Hence, approaches in
the third subclass are an order of magnitude more expressive than the approaches in
the first two subclasses.

Note that, for better readability, the conclusion of this chapter is found in Chap. 5.
The body of the chapter is very long, and I felt that a conclusion of all approaches
is better off in the general conclusion. Of course, every section within the chapter
is closed with a conclusion in order to summarize the respective subfield; only the
general conclusion is found in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-34168-2_5
http://dx.doi.org/10.1007/978-3-319-34168-2_5

4.1 Propositional Systems Without Background Theory 63

4.1 Propositional Systems Without Background Theory

Approaches of this class assume that service operations are functionally specified
either through their inputs and outputs or in terms of propositional preconditions
and postconditions. Correspondingly, the goal is either to derive a set of desired
outputs from a given set of inputs or to find a composition that guarantees a desired
(propositional) postcondition to hold when invoked on a given precondition. The first
case is simply a special case of the second one, interpreting the inputs {iy, ..., i,}and
outputs {oq, ..., 0,} of operations as propositions that are conjunctively connected.
Note that inputs and outputs sometimes refer to names of the data ports and sometimes
to the types of data ports, but this difference is irrelevant for the composition process.

Given this type of operation specification, we can create propositional planning
actions in linear time. For every service operation o;, we create exactly one planning
action a;. The precondition of a; corresponds either to the conjunction of inputs or to
the precondition of o;, depending on the type of operation. Likewise, the postcondi-
tion of a; corresponds either to the conjunction of outputs or to the postcondition of
0;, depending on the type of operation. The state space is defined by the powerset of
the set of all propositions induced by inputs, outputs, preconditions, or postconditions
occurring in the description of any operation.

The number of approaches presented in this section should not hide the fact that
most of them solve problems that are trivial or at least very simple. If we assume
that the operators are given in advance—and we are not aware of an approach that
does not make this assumption—we can create look-up tables in a preprocessing
step that allows us to answer queries in constant time. But even if we do not apply
such a preprocessing step, most of the composition problems are still solvable within
polynomial runtime. This is simply because every service is contained at most once in
acomposition. Of course, if operations have negative preconditions or postconditions,
or if the goal is to find solutions that optimize QoS-properties, the hardness of the
underlying problem increases. However, most approaches considered here do not
take these aspects into account and, hence, address extremely simple and practically
largely irrelevant problems.

4.1.1 10-Based Composition

Approaches discussed in this section rely only on the names or the types of parame-
ters of operations. Service operations are not expected to have semantic annotations
in terms of preconditions or postconditions. The planning actions can be defined
straight forward. For every service operation, there is one action with preconditions
corresponding to the names or types of the inputs and positive postconditions cor-
responding to the names or types of the outputs. The actions do not have negative
postconditions.

64 4 Composition Without a Given Structure
4.1.1.1 Forward Search

Thakkar et al. propose a naive forward chaining approach to solve the problem [149].
Given the set of available inputs Al, they iteratively add every service operation
to the composition whose inputs are a subset of A/ and add the outputs of that
operation to Al. The process terminates if all required outputs are contained in Al or
if all service operations have been added to the composition. However, the unguided
forward chaining implies that the composition also contains service operations that
are completely irrelevant for obtaining the desired outputs. Nonfunctional properties
are also not considered.

Blake and Cummings add the notion of service level agreements (SLA) to the sim-
ple composition algorithm [24]. Considered measurements are up-time (reliability),
service rate (execution duration 4+ communication time), maintenance (time that the
service must announce its downtime before service is disabled), cost, and renegoti-
ation (time before agreement must be renegotiated). The input of the composition
algorithm is a set of provided input parameters, required output parameters, and a
vector with bounds for the SLA features. The composition algorithm first performs a
forward search in order to identify possible workflows. Every workflow satisfies the
SLA bounds of the user and transforms the given inputs into the required outputs.
Out of the set of candidates, they then choose the workflow that is best with respect
to predefined priorities among the SLA measurements. While the technical quality
of the approach is rather poor, e.g., the description of the composition routine is sig-
nificantly flawed, the approach brings some new interesting nonfunctional properties
that are not considered by other approaches. However, the discussion of related work
is quite insufficient. For example, the difference to Zeng et al. is not only the type
of considered nonfunctional properties but that the composition is not based on a
template but on a search algorithm. Summarizing, the approach is weak from the
functional point of view but provides some interesting nonfunctional properties that
are not considered by others.

4.1.1.2 Backward Search

Wau et al. address the same setting as Thakkar et al. but address it through backward
chaining using a distance-based heuristic [162]. The basic search algorithm is a
backward search algorithm that starts at s* and prepends operations to the current
plan; the state resulting from a prepend step is the old state minus the outputs of
the prepended operation plus the inputs of the prepended operation. The algorithm
stops when the empty state has been reached. This is a formal flaw, because this is
usually impossible, and the algorithm should terminate when a subset of s is reached.
The choice of operators to be prepended is driven by a heuristic computed in a
preprocessing step. Ironically, the heuristic cannot be computed efficiently, because
it already explores the whole search space. Apart from that, it is unclear why a
heuristic is needed at all for this unduly simple problem.

4.1 Propositional Systems Without Background Theory 65

Another approach of this section is presented by Matskin et al. [95]. The concrete
composition algorithm is not even described, but the requests are of the same type
as in the case of [149]. There seems to be no relevant novelty.

Pu et al. perform composition based on complex input and output types [125]. The
difference to the above approaches is that inputs and outputs are not only described by
atomic parameter names but by complex data types as used in XML schema. Given
the lack of semantics, which is already a conceptual shortcoming of the simple
problems described above, this approach must be considered almost absurd. The
main problem of the syntactical approaches, namely that the human must check
the proposed solutions if they are semantically valid, is much worse in this setting,
because the semantics faults are harder to track. For example, we could require
a type MyClient(cname,transaction[0,*]) that contains the client name and a list
of her transactions based on the two types Client(cname). There are two services:
The first receives a Client and returns the associated Employee. The second accepts
Employee[0,*] and returns the last transaction that was approved by every employee
listed in the input. The algorithm provided by Pu et al. finds a solution that determines
the employee of the client and creates a list only with this employee. This list is
passed to the second service, which delivers a transaction, which is again inserted
into a new list of transactions (of length 1). Then, a new complex type is created,
together with the client name from the beginning and the list of transactions. Now
the resulting type contains a list of transactions, but it contains all the transactions
that were approved by the employee associated with the client, which is obviously
not what was originally intended. The usage of a cost measure slightly alleviates this
problem, but the general problem remains.

4.1.1.3 Dependency Graph-Based Approaches

There are a number of approaches based on the so-called dependency graphs. The
idea of dependency graphs is to capture relations among services within a graph
structure, which is then used to construct a composition.

Initial Models

First Brogi et al. present an approach that considers ontological matchmaking [29].
The initial situation sy and the goal situation s* are sets of desired ontological con-
cepts, e.g., username or address. First, their algorithm creates a dependency graph
(DG) that consists of data nodes Np and process nodes Np. Combined with the
concepts in 5o (s* respectively), the data nodes N constitute a set I (O respectively)
of usable (required) data. For the creation of the dependency graph, they iteratively
run a matching algorithm that identifies services that can either work with the data in
I or provide at least one element of O. This matching step considers not only exact
matches, but also subsuming types, e.g., services are also selected if they require a
more general type than the one available. For every matching service, the algorithm
adds one process node for the service (unless it is already inserted) and one data
node for every input and output concept of the service that is not part of the graph

66 4 Composition Without a Given Structure

already. It then adds an edge from the nodes of the input concepts to the respective
process node and edges from the process node to the nodes of its outputs, respec-
tively. This process ends when no more service can be inserted into the dependency
graph. Second, it constructs a concrete composition from the dependency graph by
first determining the relevant processes using backward chaining and then, out of
this set, computing a sequence of “firable” processes; that is, it creates a sequence of
services that can be invoked with the given inputs and that obtain the desired outputs.

While there is some novelty in the construction of a dependency graph, the
improvement compared to simple backward chaining seems to be rather slim. The
novelty of the dependency graph is that it defines a structure in a preprocessing step
that then helps avoid decisions during the search process that would yield dead ends.
The absence of quality values makes it hard to qualify different solutions, so the
qualitative advantage or disadvantage compared to simple backward chaining or for-
ward chaining is not clear. Given the little relevance of the setting due to the lack of
semantics, however, there is no gain in going into a more detailed discussion about
this point.

Almost at the same time, a similar approach was presented by Hashemian et al.
[54, 55]. Instead of having data nodes and process nodes, the dependency graph in
their approach has only data nodes, and there is an edge between node v; and v,
if at least one service has v, as an output and requires v; as an input; the service
may also require more inputs and produce more outputs. The edge is labeled with
the ser of services that satisfy this property. The query is defined by a set of pairs of
input and output concepts, which are called dependencies; in [55], a query is a pair
of sets of inputs and outputs, respectively. For each such pair and for every output
concept in the pair, the algorithm searches for a path from the inputs to the respective
output concept. An additional feature considered in [55] is the cardinality of inputs
and outputs; that is, it can be defined that two objects of a particular type are needed
instead of only declaring that “some” object of that type is needed.

There are some difficulties with the way how Hashemian et al. make use of the
dependency graph. First, the introduction of cardinalities does make sense in this
setting. More precisely, it does not matter if a service requires one object of the
type city, two such objects, or any other constant number. Once it is clear that at
least one such object is needed by a service, we need a plan of how to achieve it.
But when we have this plan, it can be used arbitrarily often again to produce further
objects of that type (which simply yields two equal objects). Second, the composition
approach presented by Hashemian et al. is also unsound in that compositions which
may contain services whose inputs are not completely provided. For example, if we
want to get from concept a to concept b and there is a service that has two inputs a
and @’ and needs both to produce b. Then their approach will return the service as a
solution, because it defines an edge between a and b in the dependency graph. The
fact that some other object @’ is required may be encoded in the label but is not relevant
in the path finding problem; this requirement is simply omitted. Summarizing, their
approach is hardly suitable for solving the tackled problem.

A third approach at that time considering something like a dependency graph was
presented by Liu et al. [88]. Here, a structure called “deduced network”™ is computed

4.1 Propositional Systems Without Background Theory 67

in order to determine the possible compositions. The novelty here is that execution
prices are considered. However, the quality of this approach is rather poor, because
they compute a composition for each output separately and then consider all possible
combinations of solutions for the individual subgoals. Among these, they choose the
composition with the optimal cost, but it is for example not clear, whether the same
service counts twice.

Extended Models

Akkiraju et al. apply an hybrid search to solve the composition problem [5]. The
algorithm receives a set of services, a set of provided concepts, and a set of required
concepts. First, it computes which services may be relevant for a solution through
backward search. Using the remaining services, they then perform a forward search
that is guided by a heuristic that is not explained. The approach does basically
the same as the algorithm presented by Brogi et al. [29]. Even though it considers
ontological concepts in the evaluation of the quality of a solution, the relations among
the concepts and their similarities are apparently not considered in the search process
itself. Hence, there is no significant novelty in this approach.

Zhou et al. solve the composition problem based on binary trees that encode the
dependencies among services [170]. The basis of the computation is a so-called
complete service invocation tree. Based on this tree, other data structures are derived
in order to find a composition. There is no significant novelty in the approach over
earlier approaches; in particular, nonfunctional properties are not considered. Since
relevant-related work is practically not discussed (in fact, none of the formerly dis-
cussed approaches within this section is mentioned), I cannot identify any novelty.

Bouillet et al. describe an approach that solves the same problem as the approaches
discussed by Akkirajuetal. [27, 28]. The difference is merely terminological, because
they refer to concepts as tags. Even though they claim to use an ontology and to con-
sider subtypes, the planning algorithm used has no native support for this background
knowledge, and it is not explained how this knowledge is provided to the planner.
Hence, we do not know if and how the type hierarchy can really be considered in the
composition process. The discussion of related work (only Lécué et al. and Akkiraju
et al. are discussed) does not reveal a significant novelty neither.

Degeler et al. propose an approach that considers the response time of a com-
position as a nonfunctional criterion [45]. The underlying model is not explicitly
called dependency graph, but it has a very similar semantics to the one discussed
above. By a simple forward search in the set of possible data flows among services,
they determine the minimum response time that any composition has that reaches a
particular concept. Then, they apply a backward search individually for each concept
to get the “cheapest” composition for the respective concept. The approach brings
no novelty and is significantly flawed. First, the approach is not sound, because the
backward search does not consider the case that there are no services that can produce
required inputs of a service used to provide a goal concept. Second, the model they
use assumes that one creates n compositions if n concepts are desired and that these
are all executed in parallel. However, this is not a reasonable composition model, in
particular given other nonfunctional properties such as price.

68 4 Composition Without a Given Structure

Another solution to this problem was proposed by Blanco et al. [25]. They con-
struct a dependency graph quite similar to the one proposed by Brogi et al. [29] but
use the notion of Petri nets instead. The innovation is that they consider transactional
properties at a risk level as proposed by El Haddad et al. [50]. The difference to El
Haddad et al. is that no template is given, but that the composition algorithm tries to
find a composition that transforms a set of given input concepts into a set of required
output concepts. Some nonfunctional properties (number of service instances, exe-
cution time) are considered through constraints (no optimization). As discussed in
Sect. 4.1.2, Petri nets are a quite unsuitable model for service composition. They
avoid the mentioned problems by not consuming markings from the inputs places
when firing transitions, but then one wonders why they use Petri nets at all. Summa-
rizing, the consideration of transactional properties is a novelty, but the model used
in the approach is not convincing and the overall problem of finding compositions
for concept transformation is still rather irrelevant.

4.1.1.4 Application of GraphPlan

The first one to apply the GraphPlan algorithm [26] to this type of composition
problem were Rahmani et al. [126]. The basic idea seems to be that the search
process is guided by the distance of the nonfunctional properties to the initial solution.
However, the composition algorithm is not described in detail, and, in general, the
formalism of the paper is significantly flawed. It is not clear how the nonfunctional
properties can be reasonably connected with a heuristic for functionality. Apart from
that, given the simplicity of the problem, it is also unclear why a heuristic is needed
at all.

Yan et al. proposed a modified version of the standard planner GraphPlan that
considers QoS-properties of actions in order to solve the problem [165, 166]. In
the modified version, every action node is associated with the cost-properties of the
respective action and each proposition node is associated with an optimistic estimate
of the costs necessary to produce it. The idea of applying GraphPlan in this setting
is somewhat awkward, because the actions do not have negative postconditions, so
the heart of GraphPlan, which are the mutexes, are not required. So, approach model
does not exploit the strength of GraphPlan but inherits its rather complicated planning
process; this even forces them to add a solution reduction algorithm. Moreover, the
computation of costs is not reasonable, because they assume the cost for a proposi-
tion p to be the cost of the action that produces p plus the maximum cost among the
properties within the precondition of the action. But taking the maximum here is not
correct, because if the propositions in the preconditions of an action are achieved by
several independent operations, only the cost of one of them is considered. Summa-
rizing, Yan et al. add two QoS-properties to the composition model but unnecessarily
complicate this actually which is very simple problem.

Recently, Zou et al. have added QoS-properties and preferences to the composition
model [171, 172]. The input of the algorithm is a set of service operations, a set of
input parameter names, a set of output parameter names, a set of QoS bounds, and

4.1 Propositional Systems Without Background Theory 69

weights for the QoS-properties. A service operation w has a set of input names 1,
output names O,,, and values for the QoS-properties Q,,. The set of query input
variable names are the initial state sy, and the query output variable names are the
goal situation s*. A service operation is applicable in a state s iff I, C s, and the
state resulting from the application is s’ = s U O,. A solution is a sequence of
operations such that the obtained state is a superset of s*. The QoS-properties are
aggregated like in [167], and, among the set of valid solutions, the one that optimizes
the weighted QoS-aggregation is chosen.

4.1.2 Composition with Preconditions and Effects

Approaches within this section rely on operations that are described in terms of
propositional preconditions and postconditions (maybe in addition to inputs and
outputs). Hence, for each operation o, we can simply create a planning action a with
the same precondition and postcondition. Except ASTRO, all the approaches are
monotonic, which means that operations have only positive postconditions; that is,
the postcondition only contains positive literals. In ASTRO, operations are part of
state transition systems, so the ability of an operation to be fired must be encoded
using state literals, which must be negatable. The four paradigms.

4.1.2.1 Constructive Theorem Proving

In [79], Sven Lammermann proposed an approach to service composition based on so
called meta-interfaces. The rough idea of meta-interfaces seems to be that they define
functionalities (called axioms) in terms of typed variables or constants. A functional-
ity is encoded in terms of propositional logical preconditions and postconditions. A
precondition may contain variable names, logical propositions, and subtasks, which
are basically lambda-functions that must be solved first. It is satisfied if each of the
mentioned variables are known to have been initialized with a value, if the logical
propositions are known to be true, and if the subtask has been resolved. The post-
condition may contain a variable name, propositions, or an exception; these may be
joint also by a disjunctive operator. Given these meta-interfaces, a set of logical rules
can be derived. The query fed to the theorem prover is then as follows: Given the
rules obtained from the meta-interfaces and a set of variables that is assumed to be
set, can we infer that a particular variable can be set?

The two relevant features that most of the other approaches in this section do not
have are subtasks and conditional postconditions. Other approaches in this section
describe a service with a set of inputs, a set of outputs, preconditions, and postcondi-
tions; preconditions and postconditions are conjunctions of propositional atoms. In
contrast, Limmermann allows for subtasks to contain in the preconditions. A subtask
itself is also described in terms of preconditions and postconditions, so it can alter-
natively be seen as an additional input of the type of a lambda-function. Hence, to

70 4 Composition Without a Given Structure

invoke the respective operation it is not necessary to provide an object of a particular
type but a function that implements the specified functionality. The second feature is
the possibility of disjoint postconditions of operations, which allows for exception
handling. This forces the composition algorithm to pursue alternative execution runs
of the composition it is creating. The resulting compositions reflect this feature by
containing exception handling or conditional statements.

Compared to the enormous formal corpus that is introduced to describe the
approach, the overall benefit is rather small. As for all approaches within this section,
the semantic power of the queries that can be sent to the system is quite small. How
interesting can it be to determine whether or not a particular variable can be set?
Of course, if we would impose constraints on the properties of the object that we
set to a variable, the issue would be more interesting, but this is never the case.
The low semantics are an issue of all the approaches discussed in this section, but
most of them are very easy to understand while the description of this solution is
very complex and little comprehensive in many aspects. For example, the descrip-
tion of meta-interfaces with the variables, constants, subtasks, and axioms is little
comprehensive when compared with the simple IOPE models that underly the other
approaches discussed below.

4.1.2.2 Classical Search Algorithms

Kona et al. present and approach for automated service composition that includes
propositional log [74, 75]. They provide a naive forward search algorithm that
reminds one of the work of Thakkar et al. [149]. The two additional features to
Thakkar are conditions and ontological concepts, but none of them is really con-
sidered in a convincing way. Conditions are only sets of propositions, so there is
actually no relevant difference between inputs and conditions for the algorithm. Sec-
ond, ontological concepts are mentioned but not used in an appropriate manner. More
precisely, the subsumes-relation is used on sets of inputs, for which it is not defined.
Also, neither the algorithm nor the examples show the usage of any ontological
subsumption reasoning. Apart from this, the forward chaining-specific problem of
incorporating useless services is not resolved at all, so the solutions will usually also
contain many services that are irrelevant for the respective query. Summarizing, the
approach brings no relevant improvement compared to earlier attempts.

For the same setting, Sheshagiri et al. propose a backward chaining algorithm
[135]. The critics are the same as for Kona et al. except the use of backward-chaining.
Using backward-chaining at least saves Sheshagiri et al. from constructing compo-
sitions that contain irrelevant service operations. However, the distinction between
inputs and preconditions on one hand, and outputs and postconditions on the other
hand is obsolete in this form. So the overall model is quite similar to the ones dis-
cussed above and brings no actual novelty.

Agarwal et al. developed a system called Synthy that adds contingency planning
and QoS-properties to the above-explained approaches [1, 2]. The algorithm has
a logical composition phase, which creates an abstract workflow, and a so-called

4.1 Propositional Systems Without Background Theory 71

physical composition phase, where the abstract workflow is instantiated taking into
account the nonfunctional properties. Unfortunately, the logical composition phase is
not described sufficiently; they only say that they use limited contingency planning,
but it is impossible to figure out how this actually works. The second phase then
applies a simplified version of the QoS-optimization model proposed by Zeng et al.
[167]. Summarizing, the approach is conceptually relevant due to the integration of
planning and QoS, but the formal depth is so low that it is impossible to build upon it.

4.1.2.3 Approaches Based on Resource Models

There are basically two approaches that build on the idea that service composition
makes use of resources that are processed. The first is based on Petri nets while the
second is based on linear logic. I discuss the two approaches in detail.

Petri Nets

Narayanan et al. were the first to introduce Petri nets to model the consumption and
production of data in a service composition [113]. The idea is that the set of all
services is encoded as a Petri net, and the task is to find a sequence of transition
activations that transforms the initial marking into a goal marking. The Petri net
is constructed as follows. For each service operation, there is one transition in the
network, and there is one place for every possible assertion over the world (logical
atom) and every variable name that is an input or output of a service operation. There
is a link between a place and a transition if the assertion or the variable belonging
to the place is an input or a precondition of the operation. Likewise, there is a link
between a transition and a place if the assertion is an output or an postcondition
atom of the operation. The concrete query defines the markings of the network in the
beginning. The composition problem is to find a sequence of transition activations
such that a given goal marking is reached. Note that, even though the behavior is
expressed in situation calculus, it is de facto ground to propositional logic, which is
why I discuss it within this section. Later, similar approaches have been proposed by
other authors.

Linear Logic

Rao et al. proposed a resource-based approach through the notion of linear logic
[77, 127, 128, 129]. A linear logic formula is syntactically similar to propositional
logic only that it uses the junctors ®, @, —o instead of A, Vv, —, respectively. The
semantics of A ® B is that both resources are available, and A @ B means that
one of the two is available. @ — (3 means that the resources are consumed as
described in o and new resources are produced as specified in §. In contrast to
propositional logic, a proposition may be contained several times in a conjunction
or disjunction in order to express how often the respective information is contained.
Services have inputs, which are consumed on execution, and outputs, which are
produced after execution. In the descriptions, the functional and nonfunctional parts
are separated, but this distinction is not relevant in the formal model or for the solver.

72 4 Composition Without a Given Structure

Required but nonconsumed properties must be modeled by being both consumed and
produced by a service. So similar to the other approaches discussed in this section, the
query defines provided inputs and nonfunctional properties/resources on one hand
and desired outputs and demanded nonfunctional properties on the other hand. A
(very limited built-in) background theory allows to count the resources available and
prevents that more resources than available are used.

Discussion of Resource-Based Composition

In spite (or perhaps because) of the attention they gained in the community, we
should make clear that these models are substantially unsuitable for the problem of
service composition. While the applied modeling techniques may be interesting in
industrial manufacturing systems, digital data, which are the resources of interest
here, cannot be considered as consumable units. Once a piece of information is
created, it can be used arbitrarily often without being consumed; there is simply no
need to keep track of the number of objects available of a particular type. This is
the same objection I already discussed for the approach of Hashemian et al. The
only acceptable argument given in [127] is the application of these techniques to
nonfunctional properties such as budget; for example, the budget is 20 EUR and
every service consumes a certain amount of the budget. However, putting these
nonfunctional properties on one level with the functional properties, which are also
consumed and against any intuition cannot be used for a second time, yields a quite
inappropriate and unnecessarily complex model. Even if it is possible to avoid the
consumption semantics in individual cases by declaring every input also as an output,
this yields a very unnatural and blown up model.

4.1.2.4 Abduction-Based Service Composition

Okutan et al. propose a composition algorithm based on logical abduction [115,
118]. In logical abduction, we assume some knowledge base o and an observation
(3 as given, and we are interested in an explanation « such that « A v = 3 holds. In
the case of service composition, the formula « is a conjunction of service operation
encodings (e.g., in terms of rules) and an initial situation, § encodes what shall be
known for the outputs of the composition. The task of the composition algorithm is to
find the formula -y, which encodes the application of service operations. Intuitively,
the service descriptions («) together with the information how the services are used
~ explains how the desired outputs 3 are obtained. In order to cope with the problem
that knowledge is bound to situations, Okutan et al. use the event calculus to encode
the knowledge and the services.

The idea of modeling the composition task as an abduction problem is intuitive
and may be an interesting option, but the approach is still quite preliminary and
need substantial improvement in order to be comparable with the other FOL-based
approaches discussed below. Even though this is not a general limitation of the
abductive approach, it is currently restricted to propositional logical preconditions
and postconditions. Only one problem arising from this limitation is that a type-

4.1 Propositional Systems Without Background Theory 73

hierarchical evaluation of parameters is not possible. For example, an object of the
type employee cannot be used as an input for a service that requires an object of the
type person, even though if employee is a subtype of person. There is a basic support
for nonfunctional properties (execution duration, price, reliability, availability), but
the model is rather poor. For example, increasing costs increase the score of com-
positions while they should decrease it, and there is no weighting of the qualities.
Summarizing, the abduction-based approach presented in [115] is an interesting ini-
tial work but still needs several improvements in order to be on the same level as the
FOL-based approaches discussed below.

One significant advantage of the abduction-based approach is that it is directly
apt for partial ordered composition. That is, the abductive reasoner does not create
a totally ordered composition but only fixes the data flow, which defines a par-
tial order on the service invocations. This property reduces the search space size
significantly.

4.1.2.5 The ASTRO Approach

Probably inspired by the Roman model, Traverso, Pistore, and Bertoli developed
a composition algorithm that considers services as finite automata [23, 121, 122,
123, 151]. The inputs of the composition algorithm are a finite set of finite state
automata, which correspond to the existing services, and a set S* of accepted (and
possibly ranked) goal states. In ASTRO, the state of a service is a conjunction of
propositional logical atoms encoding the values of its variables. The state of the con-
sidered system as a whole is defined as the product of states of the services; the initial
state s¢ is implicitly defined through the product of initial states of the services. The
composition algorithm must construct a controller that drives the whole system into
any of the goal states of S* by exchanging messages with the services and, thereby,
changing their state and the state of the system as a whole. A particular challenge in
this setting is that the automata that model the services are not generally determinis-
tic, so the controller must be able to cope with nondeterministic evolvements of the
environment it interacts with.

The two main differences to other approaches within this section are the consider-
ation of constraints on the invocation of service operations and the nondeterminism
of those operations. For example, the request for the availability of a product could
be true or false; while other approaches subsumes these two responses under a type
definition, the ASTRO model considers them on the value level (in form of different
response messages). These are important aspects, because both of them impose a
significant increase of the computational complexity. In fact, one could model the
services of the ASTRO model simply as one planning operation and encode the
source and target states in the preconditions and postconditions. For example, sup-
pose that a service has a transition ¢ from state s to states {s}, ..., s,}, then ¢ is an
operation of the service, and we could encode it as a planning action in set theory with
preconditions s, positive postconditions s; V --- V s;, and negative postconditions

n?

74 4 Composition Without a Given Structure

s. So we can understand the addressed problem as a nondeterministic variant of the
other approaches within this section.

Similar to the discussion on the Roman model, my main objections against this
approach is the rather low benefit of automation measured as the ratio between
specification effort and achievement of automation. First, the user of the ASTRO
framework must specify the goal states in terms of states of services. In other words,
the user has already resolved the selection problem by deciding which services are
part of the final composition; no other approach makes this assumption. Note that
this also makes the consideration of nonfunctional properties obsolete, which are
never a topic within the ASTRO framework. Second, the user must not only solve
the selection problem but also know the admissible final states of those services and
design the query such that it leaves the system in a consistent state. Third, the data
flow is not considered in the automatization process, and the user must specify it
in advance; in particular, the user must say which inputs of a service are read from
which outputs of which other service. Having the data flow completely encoded
this way, the parameters occurring in the operations of the services are fixed, and
the communication with the services can be understood as sending and receiving
parameter-less signals. The remaining problem is to find a tree that reflects the
possible signals exchanged by the controller and the service community. While this
problem may or may not be hard to solve from a computational point of view, the
user is certainly faster in simply writing the software than to specify all these details
for then having the algorithm automate a tiny part of the task.

Apart from these utility objections, there is also a problem with the soundness
of the approach. This can seen best in the latest variant [23], which summarizes
the efforts of the earlier attempts. The problem is that the controller may invoke
service operations with data that is not available. For example, it may request the
shipper service for an offer for a package of some size before the producer service
is invoked to determine the size. This is possible, because the requirement definition
only defines the partners between the data must flow, but there are no restrictions on
the availability.

Huai et al. presented an approach based on the ASTRO model that applies query-
based learning to solve the composition problem [61]. Similar to the Eagle language
developed by Traverso et al., they use computational tree logic (CTL) to encode the
composition problem. However, the approach differs from the above one only in the
algorithm that solves the problem, so the major critics discussed above hold likewise.

Summarizing, the ASTRO project enhances the propositional-based composition
by conditional branches and by a service model that considers usage restrictions
on service operations, but its utility for the user is little convincing. Of course, the
consideration of protocols that limit the way how services are invoked is an important
feature. Also, the integration of different possible outcomes of service invocations
into the controller is an improvement; in fact, these are equivalent to if-then-else
constructs. Unfortunately, the way how the user requirements are specified is little
convincing, and it is not clear why the user should ever make the effort to provide

4.1 Propositional Systems Without Background Theory 75

all these formal specifications. However, these two aspects are not necessarily tied
together. One can envision a framework that takes the underlying service model used
in ASTRO but works with a different form of requirement definitions.

4.1.3 Concluding Discussion

Table 4.1 summarizes the approaches discussed so far in this section. It shows whether
or not an approach considers nonfunctional properties and whether compositions may
contain diverging control flows (if-statements in the control flow). Loops are gener-
ally not considered by the approaches in this class. I do not distinguish between the
actual information that is encoded (parameters or preconditions and postconditions),
because this has no effect on the algorithm. The semantics of these propositions is
either “a datum of some type x is available” or “some condition c is true”, but actually
the first assertion is only a special case of the second.

In spite of the number of approaches in this subclass, the relevance of the problem
addressed here is quite small. There are two major concerns about most approaches
within this section, which I discuss in the following.

First, the problem is technically so simple that the need to invent a new composi-
tion algorithm is quite unclear. Unless nonfunctional properties are considered, the
composition task can be simply encoded using PDDL and be solved extremely fast
using standard planners, which makes many approaches obsolete [5, 28, 29, 54, 75,
95, 135, 149, 162, 171].

Second, the practical relevance of most of the approaches is very small due to the
almost complete absence of semantic information. Except for the ASTRO project that
almost specifies the whole solution in advance, the description of desired behavior is
highly insufficient. Consider that we have a composition problem where we provide
an input Position and an output Telephone Number. There are numerous possibilities
for the semantic connection between the desired telephone number and the position.
It could be the phone number of the house closest to the position, the number of
the mobile phone that most recently called from that position, the number of a local
taxi company, the number of an employee responsible for the respective area around
the position, etc. It is highly questionable that the composition algorithm returns a
composition that realizes the desired semantic relation.

Probably involuntarily, Hashemian et al. show that the semantics of this compo-
sition model becomes quite absurd in the case that operations need more than one
input of the same type. For example, they suggest a service operation that computes
the distance between two cities, i.e. the operation requires two city objects as inputs.
However, the composition algorithm has no reason to provide two different cities
to that operation, and, in fact, their approach simply copies the solution to get the
first city to provide the second city, so the objects will be (always) the same. This
example shows in a very illustrative way that these propositional techniques can be
hardly considered more than heuristics for FOL composition algorithms discussed
above that can compute solutions of a relaxed model fast.

4 Composition Without a Given Structure

76

sayoeoidde ay) Jo suoissnosip
2A152dsal oy} UT puUNOJ 9q UBD SIOUAISJAI AUNBINIT “IOYI0 OB WIOI) SUOIOISqNS JUAIIP Ul passnosip sayoeordde oyy gjeredas sauiy ajqnop ayJ, "passnosip

a1om sayoeordde ay) yorym ur 1opI1o Ay} 0) BpuedsamedogpumnmI g ppesddys ssejspaypglssyorozd de pepraddnsofygensed ago7papaddns & paruwsqess p
(SIUQWAIRIS-JT) SMOJ [ONUOD dATIRUIAI[E YIIM suonisodwo) = 77y ‘(san1adoid-JN) 901AI0S Jo Afen) = §00

pemep) [opowr SoP) ‘eSe)s [eriul | (Uoronpge 2y SNNO[ED JULAd) [[Noed [eroads sasn ‘Te 9o urInQ

[[euws AIoA YSe) pajewiojne WISTUTULIOOP-UOU ‘SJUTRI)SU0D 93esn ‘Te 9o renyy
[[ews AIoA sk} pajeuwrojne WSTUTULIOOP-UOU ‘SHUTRI)Su0d a3esn ‘Te 90 210981]
[opour paseq-uorjdwunsuod - ‘Te 10 oey

[epour paseq-uorydwunsuod -
pazifeuio] A[jUaIdInsur -

‘Te 1o urURARIEN
‘e 10 [emIely

soyprordde-(/1 09 pareduwod Aypaou 1ood SUOIIN[OS UI SOOIAISS JURAS[OLII OU ‘Te 10 LII3Rysoyyg
Jurureyd premioj ‘poazIfeulioj A[jusIOnsut SUOI}IPUOD AIRJUSWIPNI JO UOI)RISPISUOD ‘Te 10 'uoy]
[epowr pajesijduod AJLressedsuun syndur se suorjouny UURULIS IR |
SOIURUIOS OU - ‘Te 10 noy,

pamep Aqrenjydoouoo ‘xojdurod AjLressedouun - ‘e 30 urx
pomeyy A[eurio] seouaIejaId 1osn SI9PISUOD ‘Te 9o [ewyey

[epow paseq jeu Lo serpredoad [euorjoRSURI) ‘Te 9o ooue[g

punosun ‘suorjduwnsse s[qruOsRaIUN -
A3[9A0U OU ‘AZ0[OUTULIOY) SPUSAUTST -

‘Te 10 I9[8e(
‘& 30 9qinog

O|0|0|O|O|O|O|O|O[O|0|0|0|0|0]|0||e|O|0 |@|@ |« @ @ O

&0.0000000000000. O|0|0|@|0|«@|O|0|O

A3j[eaou ou ‘[epout [euLIOj I00d uorjen[RAd pOO3 ‘e 70 noyy,

A[enaou ou uor)dIdsep WJLIOF[R Ies[d ‘Te 10 nleiryy

WLIO3[e JusIdyoul ‘soljuewas 100d - ‘Te 9o nrg
wyjLIos[e punosun ‘sorjuewos 100d - ‘Te 9o URTWISYSE]
Suryojew [eIIS0[0IUO OU ‘sdorjuewas 100d [opow [eULIO] pOO3 ‘Te 30 1801g
SoRI) 01 JopIey usao ote sdes orjuewas sodAy xo[dwoo s1epISuod ‘Te 10 ng
[epout [euLIo} 100d - ‘Te 90 un[sIeIN

yeom A[[eULIO] - ‘Te 10 N\

pomeyy A[eurio] SJUSWERISR [9AS] 9OIAISS JO UOIRIIPISUOD ‘Te 10 oyelgq

suoryeIodo JURAS[DLII UTRIUOD suOIjIsoduod - ‘Te 9o Iexyey],
sassaueap) Je[nodijred syjSuaalg Jemonaed||(1V|S sureN

suonipuod [euonisodoid 1o sowreu 1a3owered uo Ajuo A[a1 jey) 2Injons UdAIS € noyim saydeordde Jo mIIAIOAQ T'f IqBL

4.1 Propositional Systems Without Background Theory 77

The two positively remarkable properties addressed by some approaches of this
subclass are the potential nondeterminism of operations and the idea of partial
ordered planning through abduction. Nondeterminism is considered by Lammer-
mann [79] (through the notion of exceptions) and in the ASTRO project [23]. That
is, the composition algorithm must take into account that the invocation of an opera-
tion may have several results, and it must find a solution for each of these outcomes.
Abduction is sketched by Okutan et al. [115], which is highly interesting due to
the partial ordering of operations. Searching for compositions that are only partially
ordered greatly simplifies the search space. However, none of these characteristics
compensate the shortcomings of the low semantics imposed by the purely proposi-
tional preconditions and postconditions.

4.2 Propositional Systems with Background Theory

The only difference between this subclass and the previously discussed one is that
there is some kind of background knowledge that must be encoded in addition to
the service operations themselves. The most relevant case is the encoding of a type
hierarchy, which is discussed in Sect. 4.2.1. For example, one service determines
the price of a product in EUR and another service accepts currency objects as input.
Now we have the knowledge that every amount in EUR is also a currency value,
hence EUR(x) — Currency(x). Hence, we would expect that the second service can
be run with the output of the first one. However, approaches discussed above cannot
connect these two services based on the type hierarchy information.

Again, since approaches in this section only ever ask for the derivation of some
object of a given type, we do not need the predicate calculus version of the knowl-
edge base. For example, we can rewrite the above rule simply as EUR — Currency,
meaning that “whenever we have some object of type EUR, we also have an object of
type Currency”. These propositional rules can then be simply encoded as additional
planning actions.

The concept of simple type hierarchies can be generalized by the idea of simi-
larity matching. Instead of saying that the output of an operation 0 can be used as
input of operation o, if it is as least as specific as the respectively required input
type, a similarity function is used instead to decide whether or not the object can be
passed in that way. So similarity matching is somewhat a semantic generalization of
the strict type hierarchy. In particular, we could have a similarity measure that takes
into account several ontologies and tries to match them based on lexical compar-
isons. Composition approaches that support this type of background knowledge are
discussed in Sect. 4.2.2.

From the complexity viewpoint, approaches using similarity functions are slightly
more complex to encode as a propositional logical planning problem. The reason is
that the similarity function encodes the rules that are needed to represent the concept
compatibilities implicitly. Computing the existence of such a rule for every pair of
concepts requires quadratic time in the number of concepts. However, this translation
can still be considered efficient.

78 4 Composition Without a Given Structure

4.2.1 Composition with Type Hierarchies

4.2.1.1 Classical Backward Search

A simple backward greedy search was proposed by Weise et al. [161]. The type
hierarchy matching is hidden in the implementation of a predicate called “Promising”.
Compositions are simply ordered by some heuristic ¢, where ¢ “combines the size
of the set unsatisfied parameters, the composition lengths, the number of satisfied
parameters, and the number of known concepts”. The simplicity of this solution
underlines once more the trivial problem character.

The approaches published by Bartalos and Bielikova are based on a simple back-
ward chaining algorithm [15]. The algorithm is based on a predefined graph that
defines which services provide data required by other services. This idea is similar
to the dependency graph proposed in [29, 54]. In contrast to some other approaches
in this section, it considers the ontological type hierarchy. Later, they published
improved variants of their algorithms that can deal with simple first-order logic con-
straints (cf. Sect. 4.3.2.4).

In the same year, Talantikite et al. propose a backward chaining algorithm [148].
They claim that they improve earlier approaches [10, 11] (cf. Sect. 4.2.2) with bet-
ter runtime through a precompiled structure they call semantic network. However,
neither are these claims supported by evaluation nor is the concept of their seman-
tic network sufficiently innovative to constitute a significant improvement; these
networks can be computed efficiently also by other approaches. In contrast, the
approaches in [10, 11] actually do consider similarity that exceed mere type sys-
tems, while Talantikite et al. only consider exact matches and subsumption matches.
The approach also considers some nonfunctional properties (exec-time, resource
consumption) by ordering solutions according to a predefined preference function.
Hence, the approach provides a composition algorithm and some consideration of
nonfunctional properties that we were missing in the work of Constantinescu et al.
but it brings no significant improvement compared to existing solutions.

Later, Rodriguez-Mier et al. presented a composition technique that performs a
heuristic backward search based on a layered dependency graph [132]. The set of
services is partitioned into layers such that L; contains the services whose inputs can
be satisfied by the union of outputs of services contained in L; with j < i. The first
and the last layer contain only a dummy service with outputs corresponding to the
request inputs and inputs corresponding to the request outputs respectively. Then, an
A* algorithm is applied to search backwards for a solution. Every node represents a
set of (ontological) types that must still be achieved, and the root node is the set of
required outputs. For a node n, there is a successor for each set of services whose joint
outputs cover the types described in n; for types not coverable in this way, a dummy
service is introduced that has the same type has an input an defers the decision of
how to obtain it. A node is a solution if it is empty. The overall description and
evaluation of the approach is good, and the used heuristic seems to be admissible. Its
only drawback seems to be that nonfunctional properties are not considered at all.

4.2 Propositional Systems with Background Theory 79
4.2.1.2 Contingency Search

The earliest works that consider ontological type hierarchies in service composition
were presented by Constantinescu et al. [41, 42, 43]. In this approach, inputs and
outputs of service operations have a type with a domain. An operation is applicable if,
for each input, we have a variable whose domain is a subset of the domain of the input
variable; i.e., the input must have a value that is accepted for the input variable. In the
ontological context, this is often called the subsumption relation, but Constantinescu
et al. consider also non-ontological types, which is why the applicability is defined
this way. While bringing ontological matchmaking to service composition was a
conceptual novelty at time of publication, the overall quality of their contribution
is rather thin. The formal model is partially unsound, e.g., in the definition of the
plugin match for services and query in [42], and the description of composition
algorithms is insufficient; in fact, a formal algorithm is only specified in [41], and
it is kept very abstract. Also, planning with disjunctive postconditions is far from
being trivial; however, this is not discussed at all. Summarizing, Constantinescu
et al. presented the fundament for ontological-based service composition but the
composition algorithm itself is not convincing.

4.2.1.3 Genetic Programming Solutions

In the same paper as already discussed above, Weise et al. also propose a genetic
algorithm to solve the composition problem [161]. In every iteration, the composi-
tions in the pool are mutated by removing the first service with probability o or to
prepend a new promising service with probability 1 —o; a heuristic is used as a fitness
function. Little surprisingly, the runtime of this technique (that frequently revokes
its own decisions) is much slower than the one of the simple search techniques.
Rodriguez-Mier et al. presented an approach that randomly mutates programs
based on a genetic algorithm [133]. The basis of the algorithm is a simple process
grammar that defines the language of all admissible programs. The fact that they
exchange control structures completely at random (e.g., replace an if-statement with
a parallel execution or vice versa) almost surely yields tons of absurd compositions.
Of course, these may produce the desired output types, but the resulting compositions
must be expected to be quite unintuitive and semantically unsuitable. Summarizing,
the approach is a technique to “gamble” for programs, but the degree of randomness
of programs together with the low semantic level renders it completely irrelevant.

4.2.1.4 Hybrid Techniques

Dependency Graph Composition

Jiang et al. present an approach that stores the optimal QoS value for each concept in
order to optimize the global QoS value of the resulting composition [63, 64]. Through

80 4 Composition Without a Given Structure

forward chaining, the algorithm first determines the services that can be executed
from the initial situation. Then, it iteratively “triggers” each applicable service and
updates the QoS value for each concept that is provided by the respective service. The
set of applicable services is extended by the concepts that are outputs of the services
already considered. After this procedure, they apply a backward search algorithm to
find the best composition with respect to QoS-properties.

Unfortunately, the approach exhibits several significant flaws. Not only is the
formal model inconsistent in many parts, also the claim that the algorithm provides
globally optimal solutions is false. Suppose for example, that concept a is given
and b and c are desired. If there is a service that computes b and ¢ and has cost
3, and there is one service each producing b and c, respectively, with cost 2, then
the composition will include the two simple services, because they are the cheapest
local solutions; however, the costlier service would be better here. Also, the QoS
properties are unduly simplified into one single value, and the aggregation of these
values remains unclear. Since the comparison to related work is also very thin, there
seems to be no significant contribution going along with their approach.

Clustering Approaches

Wagner et al. present an approach based on ontological grouping [159, 160]. The
composition algorithm receives a set of services, a type ontology, and a specification
of a goal service as input. The algorithm consists of two steps. First, a directed graph
is computed where the node set corresponds to the set of services, and there is a link
between n and n, if the service n, subsumes the service n;. Subsumption is defined
as follows: Service n, subsumes n iff for each input (type) of ny, n, has an equal or
more specific input (type), and for each output of n,, n| has an equal or more specific
output (type). Intuitively, n; can be used whenever n, can be used. This process
yields a graph with several unconnected node groups; every group has a root, which
is called the representative (most general service of the group). Second, a backward
chaining algorithm iteratively determines the representative services that contribute
to the (remaining) goal and add the corresponding cluster to the plan. If a plan is
found that does not have any open inputs anymore, it is marked as a solution. The
algorithm checks all possible plans and updates the solution whenever a plan with
better “utility” is found; utility here is expressed in terms of reliability and price.

In general, the algorithm leaves a rather weak impression. As so often for
approaches in this class, the simplicity of the problem hardly justifies the com-
plicated algorithms. First, the description of the algorithm has several conceptual
deficiencies. For example, the algorithm tries every possible plan, a strategy that can
hardly be considered an improvement for runtime. Second, a composition is a set
of links, but the algorithm does not at all explain how these links are added to the
plan; the complete logic is hidden in an opaque function computeNextStep. Third, the
approach claims to consider nonfunctional properties, but the QoS model is rather
weak. Indeed, the computation of the reliability measure as a “failure among all ser-
vices within the group” is a good idea, but unfortunately this is the only considered
property (a formula to compute the price is given but cannot be computed determinis-
tically). Apart from these objections, the service model considers preconditions and

4.2 Propositional Systems with Background Theory 81

postconditions, but these are completely ignored by the algorithm. Summarizing, the
approach brings no significant novelty with earlier approaches in the class.

Ma et al. proposed a further approach based on clustering [91]. Services are
clustered based on the outputs they produce. Then the clusters are used to compute a
possibly appropriate composition, but the paper fails to make clear how this works.
The computation is based on a search in a graph that is not formally defined. Hence,
it is not possible to verify the soundness or the evaluation of the approach.

4.2.2 Composition with Similarity Matching

An approach based on backward-chaining for types ground in multiple ontologies
was presented by Aversano etal. [11]. Going layer-wise, the approach tries in iteration
i to find possible sets of services that produce the concepts desired for layer i, where
the first layer corresponds to the goal state s*. Each such set becomes a new node in
the search graph, and the algorithm is recursively applied to it. Ontological types of
inputs and outputs may stem from different ontologies. In order to determine whether
a service produces a desired output, the matchmaking algorithm considers the type
name, properties defined on the concept, and the relation to other concepts through
the subclass or superclass relation; hence, the matchmaking is not type hierarchical
but rather exact matching among possibly different ontologies. The search process is
guided by a node evaluation function that is based on nonfunctional properties. The
conceptual explanation of the function is reasonable, but a more formal definition
would be desirable. Its major weaknesses are that it does not support hierarchical
type recognition for types within one ontology, and that the support for nonfunctional
properties is rather rudimentary. However, given that it is one of the first approaches
in the class, it makes a significant contribution that exceeds the ones made by some
of the succinct approaches.

An approach closely related to the dependency graphs explained in the previous
section was proposed by Arpinar et al. [10]. The algorithm receives a set of input
concepts and output concepts, and it has the task to return a composition that obtains
the desired outputs given the inputs. It first determines the similarity for each pair of
(0y, ix) where o is an output of service operation y and i is an input of a different
service operation x. The similarity is computed by their “ontological distance”, but
it is not explained in detail what this means. The result can be seen as a graph with
nodes corresponding to services and with an edge from node y to node x if y has
an output o and x has an input i such that the above condition holds. This graph
has two distinct nodes, one for the initial situation and one for the goal situation
with edges respectively for the query inputs and outputs. Then, for each input of a
service, they compute the “shortest distance” for each input starting from the user
input; unfortunately, it is not clear what is meant exactly by distance, but it may
be the number of edges. Third, for each service, the shortest distance is computed
(maximum among all shortest distances among its inputs). Finally, if the shortest
distance for the goal node is not infinite, a solution exists (and it has been computed
implicitly) during the former algorithm. Even though the approach provides a formal

82 4 Composition Without a Given Structure

model, the actual computation of similarity remains rather vague. Also, it is not clear
how the quality of services is considered in the composition process.

In 2006, Lécué and Léger presented a composition algorithm based on so-called
casual link matrices [83]. The general idea of casual link matrices is to store infor-
mation about which outputs of services can be used as inputs for other services.
The basis for this matrix are casual links between ontological concepts, which make
take values 1 (exact match), % (subsumption), % (plugin), and 0O if no matching is
possible. For every concept that is the input of any service, the matrix has arow and a
column. In addition, it has a column for each concept contained in the request. A cell
at position 7, j contains a set of tuples (x, y) where x may be a service with i among
its inputs and having an output o0 whose similarity to the concept j is greater than 0.
In addition, x may be the concept j itself to denote that the concept is known; in this
case, y has the value 1. The algorithm Ra4C is supposed to find a solution through
regression-based search, starting from the desired concepts. Intuitively, it figures
out candidate services for the missing goals and, for each candidate, it recursively
invokes itself for the inputs of that candidate.

Unfortunately, the technical quality of the approach is very poor. In general,
the formal part of the paper is not only very complicated but also exhibits several
flaws. For example, the definition of the cells of a casual link matrix is not sound,
and the proof of the theorem on composability (which is should rather have the
status of a proposition) is technically unsound. However, the most crucial flaws are
contained in the composition algorithm itself. While the goals (are always treated
as a set of concepts, the algorithm seems to treat them only as a single concept. Also,
the algorithm simply ignores the tuples in the matrix that are defined on concepts
instead of services, which makes one wonder why these were introduced. Another
problem is that the algorithm returns a logical formula where the atoms correspond
to ontological concepts; it is not clear how a service composition can be constructed
from this formula. Summarizing, casual link matrices may introduce an interesting
concept for ontology-based service composition, but the Ra4C algorithm presented
in the paper cannot be considered a suitable solution for the composition problem
addressed in the paper.

In [82], Lécué and Delteil build on top of the Ra4C algorithm in order to only pro-
duce robust compositions. The motivation is that the Ra4C algorithm also considers
links between services that are only valid due to subsumption match, which is not
generally sound. For example, it allows to use a person object where an employee is
necessary, given that employee is a subconcept of person. Their approach is based
on the idea that it is possible to specify so called extra description for the more gen-
eral concept to cast it down to the more specific one. They suppose that these extra
descriptions can be computed automatically, but it is not explained how this can be
achieved. Hence, their approach does not constitute a convincing improvement.

Another approach considering similarity was presented by Chifu et al. [39]. The
approach is similar to the ones discussed above, and the only innovation worth being
mentioned is that outputs that cannot be obtained are added as a required input; this
makes the approach a little more robust. This is, however, the only new aspect of

4.2 Propositional Systems with Background Theory 83

their approach, and none of the related work discussed earlier is mentioned in the
paper.

4.2.3 Concluding Discussion

We can briefly summarize these approaches by saying that they consider more tech-
nical possibilities of connecting operations but do not resolve the semantic shortcom-
ings discussed in the previous section. That is, the consideration of type hierarchies
or similarity functions is a nice additional feature but does not resolve any of the
core critics discussed in Sect. 4.1.3. As long as we have no concise description of
the behavior, which is much more than the types of inputs and outputs even though
described through semantic concepts, compositions are mostly unlikely to achieve
the desired task.

Note that, apart from this discussion, there could be other types of background
knowledge imaginable, but there are no approaches using them. For example, we
could imagine knowledge of the form “if service k is used in a composition, then
service [may not be used” like applied for the case of template-based composition
Sect. 3.2. This type of knowledge could not be directly encoded into the planning
problem but would have to remain as a constraint on the meta level. However, I am
not aware of any approach that exploits this type of knowledge, and, of course, this
would not change anything about the above critics neither (Table4.2).

4.3 FOL-Based Systems

Approaches of this subclass allow to encode behavior on the level of knowledge
about identifiable objects. For example, we may talk about two zip codes and are
interested in the distance between the two cities belonging to those zip codes; there
will be objects for the zip codes, for the cities, and for the distance, respectively.
Forming expressions over objects is enabled by first-order logic (FOL).

I organize the approaches within this class into three further subclasses

1. There are approaches that, similarly to the above techniques, do not relate inputs
of operations to their outputs. Still, the behavioral description is more complex,
because within the set of inputs and outputs respectively, the objects can be
related to each other; that is, preconditions can relate the inputs to each other
and postconditions can relate the outputs to each other. Section4.3.1 discusses
approaches of this type.

2. If the postconditions of operations may relate outputs of the operation to inputs,
the space of possible compositions is generally infinite. Approaches that allow for
such postconditions but that make assumptions that avoid infinite search space
are discussed in Sect. 4.3.2.

http://dx.doi.org/10.1007/978-3-319-34168-2_3

4 Composition Without a Given Structure

84

soyoeoxdde oy Jo suorssnosip
9AnOadsal oy} Ul PUNOJ 9q UBD SQOUSIJAI 2INJLIAIIT “JOYI0 OB WO} SUOIIOISNS JUSIQJJIP UL passnosip soyoeoidde oyy ojexedas saury ajgnop ayJ, "passnosip

a1om sayoeordde oy yorym ur 1op1o SHBRPAYER NN B RHRPERANRS 55 [~sRIYQAAND 18 5e0id RRMPAINS dIRTHBE o SDPAdInS SIeBURISERS sty P

(SIuQWIA)EIS-J1) SMOY [OTNUOD
aaneuIdE Pim suonisodwo) = 7y “(sentedoid-JN) 01AIS Jo Aend) = §o0 ‘Suryore]y AJIe[IuIS [eo130[0)uQ = wig ‘waIsAS odAT, [eomyoreIsty = g1

uorjeAouUl OU USALS sw}LI03[e 93010u0d([O | O | @ () 'Te 10 nyyD

pome]j A[eurioj seoLIjew MUl [ensed|| O | O | @ () 'Te 10 onoorT

uorjdriosep wyjrios8e [emyledns|serdojojuo oidijnu jo uoneisdaur|| O | @ [) ‘Te 10 reurdry
AyoIeIaly ou ‘sensst [eULIO} Iourul|sergo[ojuo o[dijnur jo uoneidaur|| O | @ ® | O ‘e 10 OURSIOAY
WISI[RULIO] POMe[) -l O| @ O | @ ‘Te 10 eI\

UOIJeAOUUT S[)1] ‘Yeom A[[RULIOJ aInseswr A[IgRI[a1 dAIjRAOUUL|| O D O [] ‘Te 10 Ioudep\
punosun A[enjdsduod ‘WSI[RULIO] PoMe -l O] O O | @ ‘e 1o Suerr
WYILIOS[R SSIOU0D OU ‘pome]j A[[RULIOJ sod Ay Tes13o0[0quo srepisuod|| O | O O | @ |Te 38 nossurjuer)suo))
QO ou ‘seanseswr AJLIR[IWIIS OU sfepour [eurIo} pood|| O | O O | @ |Te 10 I_IN-Zon3LIpoy
uorjesouur o131 | pajusserd wyjriodre uonrsodwod || O | @ O | @ ‘TR 10 9nIjueR],

swyjrIode eoygredns A1oa sod A1 reo18o10quo s1oprsuod|| O | O O | @ ‘e 10 sorejregq
sassouBOAA JR[NOIjIRd syjSuaalg Jemnonied||(1v|sod | wis | H.L awre N

sadA3 [eor3o1ojuo A[qissod uo A[uo a1 eyl Imonns UdAIS © Jnoyiim sayoeoldde Jo moraloaQ T'p dIqeL

4.3 FOL-Based Systems 85

3. Approaches that consider postconditions that relate inputs and outputs of an oper-
ation and that do not limit the potentially infinite search space are discussed in
Sect. 4.3.3.

4.3.1 Approaches Without 1/0-Relations

The two approaches in this section are similar to the ones discussed in Sects. 4.1 and
4.2 except that preconditions and postconditions can contain relational information
referring to the inputs or outputs (but not both).

Composition of Relational Concepts

Ambite et al. propose a system for the composition of services where inputs and
outputs are relations instead of opaque values [8]. Presumably, the input for the
algorithm is a set of services, each of which is described by input and output relations,
and a query consisting of a set of input and output relations. I write “presumably”,
because it is never clearly said what a query is; however, this is the most natural
interpretation, which is also shared by Hoffmann et al. [59]. Every relation is factored,
which means that it is associated with an ontological concept. The planning algorithm
applies partial ordered backward search. It maintains an agenda of concepts that have
not been achieved yet. In each step, it identifies a candidate service that has as an
output a concept that is equal or more specific than one of the concepts in the agenda.
A data link is then added between the inserted service and the service taking the
produced output. The innovative point is that the algorithm knows the structure of
the relations sent between the services and can perform standard relational algebraic
operations such as selection, union, etc., to synthesize an input needed by a successor
service.

The conceptual aspect of integrating a relational view into service composition
is innovative, but the approach only partially delivers on its promises. The actual
innovation of the approach is that artificial adapter services can be constructed on
the fly in order to translate known relations into desired relations. This is discussed in
sufficient detail for the translation obtained by the selection operator of the relational
algebra. However, they then claim that they also apply such a mediator algorithms
for the operations of projection, union, and join. But it is completely unclear how
the presented algorithm translates to these operations; in particular the realization of
this mediator for projection and join are far from being straight forward.

Note that there is no semantic relation between inputs and outputs of services.
That is, we have a great deal of information about the structure of inputs and outputs,
but we do not know how the output relations of services relate to the input relations.
In this sense, the approach does not provide richer behavioral semantics than the
above techniques.

Summarizing, the approach presented by Ambite et al. marks a significant
improvement for the application of concept-based composition, but its actual rel-
evance can hardly be judged based on the lack of concise descriptions. On one hand,

86 4 Composition Without a Given Structure

it allows for mediator-based composition by providing structural information about
ontological concepts. This is significantly more than what is possible with any other
approach discussed above. On the other hand, the description of the approach is very
imprecise on essential questions; e.g., one misses a concise definition of queries
accepted by the composition algorithm. Indeed, the formal parts contained in the
paper are (for the most part) sound and comprehensive, but the problem is with the
parts that are not described. The reader only gets a rough intuition of the inputs
and outputs of the composition algorithm, but since they never make an explicit
statement, it is not sufficient to reliably classify the capacities of the approach. In
particular, the benefit compared to established relational systems, say Prolog, does
not become entirely clear.

Planning with Strict Forward Effects

Hoffmann et al. present a composition algorithm based on (conformant) forward
search [59, 60, 136]. The algorithm input is a set of possible initial states, a desired
goal state, a set of service operations that can be applied, and a simple background
theory (ontology). Here, a state is a conjunction of ground literals. A service operation
o is applicable in a state s with input values X and output values Y iff the objects
X are known in s, the output objects are not known in s, and if the preconditions of
o interpreted under X are contained in s. The requirement that the outputs Y yet do
not exist accounts for the idea that the results of each service invocation are stored in
new data containers. Using a forward chaining technique, the algorithm extends the
current plan with applicable actions. Every node n in the search space is associated
with a formula ¢,, in conjunctive normal form (CNF) that reflects the postcondition
of the composition corresponding to it. A candidate n is a solution to the query iff
¢, = s¥; thatis, if the postcondition guarantees that every literal of the goal situation
s* is true.

The approach makes two simplifying assumptions that dismiss the necessity of
belief revision. First, every literal in the postconditions of an operation contains
at least one output of the operation. This implies that the application of a service
operation can never directly produce knowledge that is inconsistent to the former
state; this is because every literal contains a constant (of Y') that was not contained
in the previous state. Second, it is required that in every clause of the background
theory (which is assumed to be in CNF too) the literals share all of the variables, i.e.,
the variables occurring in a literal are equal for all the literals in a clause. This makes
sure that it is also not possible to combine the newly obtained knowledge with the
background theory to infer new knowledge that talks only about constants that were
already known previously; otherwise, the newly obtained knowledge could yield an
implicit contradiction. Problems that satisfy these two properties are said to exhibit
forward effects.

In order to reduce the number of actions that must be considered, they make
another quite serious simplification, which they call strict forward effects. The second
of the above two conditions is restricted more by requiring that all variables occurring
in the postconditions of an operation are outputs. The serious consequence of this
restriction is that the outputs cannot be related to inputs of the service anymore.

4.3 FOL-Based Systems 87

I think that this is assumption is too restrictive, but at least this issue is discussed
honestly, and the authors also point out that there are still realistic problems that
can be solved under this restriction. Under the assumption of strict forward effects,
the composition problem is only slightly more expressive than in the propositional
systems.

Even though the algorithm uses an (admissible) heuristic, it is highly questionable
whether forward search is a good approach for service composition. The key problem
of forward search is that it also considers actions that are not relevant for the goal.
This problem increases by an order of magnitude in the service composition scenario
in which every action creates new objects and, thereby, enables many new actions.
In particular, the number of children of each node in the search space increases with
each step. It is hardly imaginable that we can get a heuristic that is sufficiently well
informed to efficiently guide a best-first search process. Probably, the only hope is
to try some hill-climbing strategy and to cut irrelevant elements later on. Of course,
in the case of strict forward effects, this problem is relieved by the fact that each
operation must be considered at most once. However, in the general case, forward
search is probably a borderline hopeless project; their results exhibits enormous
search runtimes even for the highly restricted case of strict forward effects.

4.3.2 I/O-Relational Approaches for Finite Spaces

The following approaches describe the behavior of operations by relating the pro-
duced outputs to the inputs. The potential infiniteness of the set of compositions is
avoided in several ways.

1. The simplest way to make the search space finite is to allow only for compositions
that contain an operation at most once.

2. The information integration approach is bound by the fact that all operations work
on a central data model, which is finite.

3. The approaches applying PDDL bound the model by assuming only a finite num-
ber of containers that can be used to pass information among operations.

4. Finally, the technique proposed by Bartalos assumes that the precondition of an
operation must completely be satisfied by the preceding operation in the compo-
sition, which also bound the set of possible compositions.

4.3.2.1 Limitation of Operation Usage

An approach that makes use of SMT solvers to address the composition problem was
presented by Gulwani et al. [53]. Here, the input of the composition algorithm are an
input vector, a desired postcondition, and a set of available operations; it is assumed
that the composition produces exactly one output whose relation to the inputs is
described in the postcondition. Every operation is likewise described by an input

88 4 Composition Without a Given Structure

vector and its postconditions. The algorithm creates a composition that is a sequence
of all of the available operations. So the composition algorithm (i) determines a
permutation of the operations and (ii) fixes the data flow between them. To this end,
they introduce so called local variables that reflect the position of an operation in
the final composition; since every operation has one output, this index also refers
to a datum produced by the respective operation. The algorithm then encodes the
integrity constraints on the data flow in a formula and passes it to an SMT solver
together with the operation descriptions and the desired postcondition. If the solver
finds a data flow such that the desired specification must necessarily be satisfied, the
respective data flow, (which imposes also the control flow) is returned.

The limitation that it creates compositions that make use of every operation exactly
once is a quite strong shortcoming. The authors argue that unnecessary parts can be
“easily” stripped away afterward and that operations that are required several times
can be cloned by the user in advance. But neither is this stripping process of “dead
code” (which is not dead, since the composition does not contain if-statements)
explained in detail, nor is the drawback discussed that arises when the user must
know in advance how often every operation is used; why would he then make use
of automated composition techniques? Intuitively, the algorithm either considers too
many or too few operations.

Apart from this conceptual flaw, the approach exhibits the same problems as the
one by Srivastava [143] discussed in Sect. 3.2 even though it avoids some complexity
issues due to the restriction to sequential compositions. The implementation and
description of operations are not separated from each other, which imposes the same
inflexibility as in the case of [143]. The composition process also relies on an SMT
solver, but the fact that the solver does not need to guess statements or guards, the
complexity is significantly less than in the case of [143]. The obvious consequence
is that the potentially achievable programs are much simpler.

One advantage of both this approaches over most service composition approaches
is that it allows for rather complex preconditions and postconditions. In general, it
seems possible that it works with preconditions and postconditions that are not only
conjunctions but arbitrarily structured formulas. For example, the postconditions
of the query consist of a conjunction of rules. In contrast, current approaches for
automated service composition only allow conjunctions of ground literals.'

To summarize, there are relevant recent approaches to program synthesis that
exhibit both a significant intersection and significant differences with automated
service composition. The most important commonalities are the goal to automatically
synthesize software and that this is done on the basis of implicit goal descriptions
and with a library of components described through preconditions and postconditions
(of unequal complexity). The most important differences are that program synthesis
approaches do not distinguish between the implementation and the description of
operations, which reduces these approaches to work with very simple operations,
mostly numeric or set theoretic ones. Certainly, the fields can learn a lot from each

One exception is [59] where there may several initial states. Also, most approaches interpret the
output variables of the request as (implicitly) existentially quantified.

http://dx.doi.org/10.1007/978-3-319-34168-2_3

4.3 FOL-Based Systems 89

other, and it would be interesting to combine them in the long term view in order to
unify the power of both domain theories and interface-based composition.

4.3.2.2 Information Integration

In 2002, an approach related to information integration was proposed by Ponnekanti
and Fox [124]. The basis of the approach is an entity structure like an entity rela-
tionship model. A query sent to the composition algorithm consists of the entities
involved, provided attributes of these entities, constraints on the entities, and the
requested attributes or relations for the entities. For example, a query may ask for a
composition that works on two objects X and Y of the type Person, for both of which
the first name and the last name are given as inputs, and for which we are interested in
a shortest path to get from the house of X to the house of Y. That is, there is a relation
DrivingDirections(-, -) that we want to compute for the pair (X, Y). The controller
is assumed to have a table of each attribute and each relation available, which is
partially computed by the invocation of services. The data flow between services is
fixed in their description that matches the names of these tables maintained by the
composed algorithm.

Within its limited range, this technique is substantially better than many of the
propositional logical approaches discussed above that ignore the data flow. The
advantage is that the communication with services always happens with respect to
particular objects, and it is also possible to request the same attribute for two different
objects of the same type; in the propositional logic systems, this query type does not
make sense. Of course, there are some limitations. For example, one can determine
the price of a product as the attribute of the respective product entity, but the price
cannot be converted into a different currency. The reason is that the predicates are
only defined over entities but not over attributes, and a particular piece of information
can only be either an entity or an attribute. Apart from this limitation, the approach
is fairly easy to understand and seems to have the potential of reasonable usage in
practice.

4.3.2.3 PDDL-Based Approaches
Initial Model

Joachim Peer proposed a technique that composes constant-based service invocations
[119]. The algorithm receives a set of services with preconditions and postconditions
and a goal specification. As an example, he proposes a goal that requires the com-
position to “send the name of the city with ZIP code 30313 to the email address
john@some.com”. Services can be information gathering, e.g., a service that com-
putes the state and the city given a ZIP code, and world-altering services, e.g., a
service that sends an email. The composition algorithm consists of two parts. First,
a simplified problem is reduced in which constraints on concrete values are ignored.

90 4 Composition Without a Given Structure

Then, the information-gathering services of the plan are invoked in order to extend
the knowledge about the world. Second, the gathered knowledge is added to the initial
situation s¢, and the problem is solved again. The composition problem is encoded
in the planning language PDDL, so that it can be solved with any standard planner.
The objects encoded in the PDDL problem are constants referring to objects in the
real world. Since the objects do refer to concrete data items instead of generic data
objects (what would be called a variable in a programming language), the algorithm
does not create a composition with a data flow between service operations. This is
the same as programming a sequence of function calls where every argument passed
to a function call is a constant and not an output of previous function calls. These
constants are either given initially or obtained through the first phase of the algorithm.

In the presented form, the approach exhibits two major flaws. First, it simply
merges input and outputs to the general concept of parameters in PDDL. The con-
ceptual problem is that we cannot encode information-gathering service operations
in classical PDDL, because then an invocation is not possible unless we already
know the desired information, which is simply a normal parameters such as the
inputs, in advance. A more detailed discussion of this problem was published earlier
by McDermott [97], which is even cited by Peer; however, this issue was simply
ignored. Second, the actually interesting part of the algorithm, which is the first
phase, is not described. The second phase is simple and could be also considered
as a simple Prolog query. The world-altering services, which have no outputs, are
encoded as rules, and the knowledge initially given or gathered in the first phase are
assertions. But the interesting question is obviously the first phase of the algorithm,
in which it is determined for which predicates a partial grounding is desired and
queried. Given the fact that this first phase would be the actual contribution, but that
itis not discussed at all, the approach does not exceed a preliminary conceptual level.

Extended Models

Klusch et al. propose a PDDL encoding that avoids these problems [71, 72]. The
idea is to introduce a special predicate agentHasKnowledgeAbout(x) to assert that
the object x is available. For each input of a service operation, the predicate is part
of its precondition, and for each output, it is part of the postconditions. Having this
meta predicate at hand, the planner can only use data objects as inputs that have been
made available either in the request or by previous service calls. The approach is
based on both HTN planning and classical planning. It first tries to find a solution
using a simplified form of HTN planning, and, if no solution can be found that way,
it applies a classical planner.

In spite of the generally good idea, there are quite some problems with their
approach. First, the overall explanation of the approach is unduly superficial. For
example, HTN planning and classical planning are quite distinct approaches, but
they simply mix the two without a detailed explanation of how this is done. Second,
there are several conceptual flaws with respect to the planning problem definition. For
example, the paper uses real world entities in the planning problem, e.g., the patient
Mikka. But this does not make sense in combination with the agentHasKnowledge-
About predicate, because either we know that Mikka exists (then we can use it) or we

4.3 FOL-Based Systems 91

do not (then we cannot even model this object). The problem is that the semantics of
the agentHasKnowledgeAbout predicate is that it asserts whether or not a data con-
tainer (in programming languages we would call it a variable) has a value assigned or
not; hence, it implements the check x # undefined. However, this semantics does not
make sense when applied to real entities. Third, the resulting encoding into PDDL
suggests that it can be solved with standard planners, but it effectively cannot due to
complexity issues. The reason is that the set of objects in the PDDL problem is the
set of data containers that is used to pass information among the service operations,
and we do not know in advance how many such containers are necessary. Even for
relatively small sizes, e.g., 30, the resulting planning problem cannot be solved even
with highly advanced planning tools.? In their implementation, they only use one
or at most two variables per type, which is equal to the assumption that we already
know in advance what data we will need; but then, data flow planning is obsolete.
Summarizing, the approach brings a small conceptual improvement, but its overall
quality is rather weak.

A third approach that is based on a PDDL encoding was proposed by Vukovié
et al. [157]. The core idea is pretty similar to those of Peer and Klusch et al. The
main difference is that no particular predicate for the availability of data is used,
such as the agentHasKnowledgeAbout predicate in [72]; this makes one wonder how
it is avoided that undefined variables are used. The approach lacks from the same
complexity problem as Klusch et al. does, even though their evaluation suggests
that the approach is efficient. Since none of the earlier approaches [72, 97, 119] is
discussed, I cannot identify a particular novelty of the approach.

4.3.2.4 Limitation by Requiring Full Precondition Coverage

Another approach-based based on simple first-order logical preconditions and post-
conditions was proposed by Bartalos and Bielikovd [14, 16]. In this approach, a
service is described by ontologically typed inputs and outputs and by so-called con-
ditions. A condition is a formula that contains symbols for predicates, conjunction,
disjunction, and negation; so no function symbols or quantifiers are allowed. A com-
position is a DAG where every node is a service invocation and a link between service
s1 and s, exists only if the postcondition of s; implies the precondition of s,. The
paper defines the logical implication in an optimistic way, such that condition c; is
said to be implied by condition c; if there is one clause in the disjunctive normal
form (DNF) of c; that implies at least one clause of the DNF of ¢,. A composition
is a solution for the request, if, for each desired output, there is one service that pro-
vides it. In addition to the explicit conditions, the approach also considers ontological
matchmaking in the data flow; outputs can be used whenever they are more specific
than what was requested.

The strong restrictions used in the definition of a composition help create a highly
efficient composition algorithm but are equally highly limiting. On one hand, the

2 used the FastDownward algorithm to verify this claim.

92 4 Composition Without a Given Structure

requirement that a service covers the complete preconditions of its successor in a
composition allows for a preprocessing step in which all possible ways to chain two
services can be computed. This allows to answer queries in fractions of seconds. On
the other hand, the set of possible compositions is extremely reduced by this assump-
tion, because preconditions of services cannot be composed from two independent
operations. For example, consider that we want to use a service that sends some
information to all reliable clients that have completed an order in the last month,
and suppose that there are two services that compute from a given set of clients
all those that are reliable or completed a purchase in the last month respectively. A
valid composition invokes one of them with the input set and then the other with
the result of the first operation; the result can then be passed to the third processing
service. However, this is not possible here, because the preconditions of the third
service cannot be satisfied by any of the former two alone. Another issue is that the
simplified treatment of disjunctive conditions cannot be considered sound. Summa-
rizing, the approach allows to consider a significant extent of semantics in the service
descriptions. An efficient composition of these services is enabled by a simplified
evaluation of the conditions and by a rigorous restriction on possible compositions.

4.3.3 I/O-Relational Approaches for Infinite Spaces

Approaches belonging to this subclass consider the possibility of producing arbitrary
new information by the application of operations. The invocation of an operation
produces (if it has any outputs) a new datum, which can possibly be used as inputs
for other operations. The set of possible compositions is infinite, because we can
potentially create ever new pieces of information.

4.3.3.1 Term-Algebraic Program Synthesis

The first solutions for automated software composition at all were proposed by Manna
and Waldinger [93, 94]. Their approach is based on an algebraic term transformation
system. The request consists of a precondition and a goal term that shall be computed.
The basis for the composition process are transformation rules that assert admissible
ways to rewrite terms. For example, an transformation rule v - 0 = 0 asserts that
one can renounce a factor multiplied with 0. Based on the resolution calculus, they
propose a method that allows to rewrite the initially desired goal term into other goals
until the trivial goal true is reached. The program is obtained by the term unifications
used to apply the transformation rules.

The main difference between this type of automatic programming and service
composition is that operations are described in terms of other operations. The seman-
tics of an operation in deductive synthesis is encoded in transformation rules. The
left-hand side of the rule states the invocation of an operation and the right-hand side
states what we know about the result of the invocation; that is, how we can replace

4.3 FOL-Based Systems 93

the invocation. For example, the rule reverse(u) = reverse(tail(u)) <> [head(u)]
defines the postcondition of inverting a nonempty list u. So the semantics of reverse
is expressed in terms of itself (recursion) and other operations fail and head. Rules
may also be bound to some condition, which we would call precondition. In a way,
the transformation rules have similarities with methods in HTN planning (discussed
in Sect. 3.3), because they describe how a term (possibly a complex service) can be
rewritten.

When discussing their approach, it is important to distinguish the underlying
algebraic calculus from the way how they apply it. My assertion is that the way
how they encode composition problems and how they perform deductive synthesis
is apparently different from the way how composition problems are encoded today.
However, I do not want to give the impression that the algebraic calculus used by
Manna and Waldinger is unsuitable for service composition in general. In contrast,
it seems that the term transformation system is so general that it could also be
used to encode the type of service composition we are using in the planning context
nowadays. Still, we can only discuss an approach to the extent to which the calculus is
explicitly used for the particular problem; otherwise we could also argue that Turing
presented a mechanism that can be used for service composition by proposing a
model of computation.

The most crucial problem with deductive program synthesis for today’s research
is that we are left with the lack of evaluation. Except the very vague explanations
in [114], there is virtually no information about the runtime performance of their
algorithm on the machines that were recent in the respective time and much less
of how those algorithm would perform today. Of course, complexity issues cannot
be resolved with (polynomially) faster computations, but at least it would be easier
to compare the approaches. Unless somebody reanimates this algebraic approach,
deductive program synthesis stands behind service composition like a shadow of
which it is unclear how it relates to the currently developed techniques.

Summarizing, while deductive synthesis in the presented form is hardly com-
patible with a modern view on software development, we can still learn a lot from
this early attempt. Of course, the encoding chosen in [93, 94] exhibits a connection
between description and implementation that can be hardly considered timely. On
the other hand, current composition approaches completely lack built-in operations
for basic data structures. It would be advantageous to compose not only business
service operations but also set operations such as head. Together with the knowledge
y = head(x) N sortedBy(x, price) = cheapestOf (y, x), the composition algorithm
could be enhanced with very useful theories that help treat different data structures
or basic arithmetical operations. Hence, we should rather seek to complement the
modern approaches with the early stage attempts.

4.3.3.2 PDDL-Modification

In one of the first approaches so automated service composition, Drew McDermott
extended the PDDL specification in order to make it suitable for service composition

http://dx.doi.org/10.1007/978-3-319-34168-2_3

94 4 Composition Without a Given Structure

[97]. McDermott realized that PDDL lacks the possibility to specify the creation of
new information; so he added the notion of step-values, which are like the (single)
output of an action. The output values have a type and may or may not have a
default value. If an output has a default value and if another service is used whose
precondition make assertions about that value, the planner inserts a special predicate
verify that signals that, in case that a solution is found, a case distinction must be
inserted. In an initial run, the algorithm assumes that the verify-predicates are all true.
If a solution is found, the algorithm is restarted with the initial situation being the
first situation in which a verify-predicate occurs, modified in a way that the statement
to be verified is negated. Starting from there, the algorithm tries to find a solution for
the alternative branch. In this way, the algorithm is able to compose programs with
conditional branches.

Even though the approach does not exhibit particular shortcomings, it has never
been adopted or served as a basis to build upon by later approaches. I already dis-
cussed some approaches based on PDDL that do not make use of McDermott’s
modifications. One problem could be that the supposed advantage of PDDL is that
it serves as an input for standard planners but that a significant part of the specifi-
cation is not covered by any planner; this becomes obviously even worse with the
additional extension made in [97]. At time of writing, at least the planner Optop
written by McDermott himself is available at his website. Bertoli et al. claim that the
approach cannot cope with protocol specifications [23], but given the fact that pro-
tocols can be encoded simply through propositional assertions in the preconditions
and postconditions of services, this claim cannot be justified.

I think that there are three arguments why Optop is not the end of the story for
service composition. First, we have seen that nonfunctional properties are an impor-
tant aspect of service composition, but these are not considered at all. Since there is
no straight-forward way in PDDL to consider these properties, another extension of
PDDL would be required. Second, a lot of research related to service composition
is concerned not only to how to model the composition problem but also of how the
space of possible compositions is fraversed. McDermott proposes a search based on
aregression-match graph, but there are many other possibilities about how the search
space can be traversed. Third, the paper reflects only a preliminary stage of research
without any evaluation. We have no information of how the approach performs in
comparison to others; the goal and the achievements of the paper is only to give a
proof of concept that estimated regression works for service composition. Also, it
does not provide for loops, which are inevitable for most applications. Hence, we
have seen a sound but rudimentary solution for automated service composition, and
there is plenty space for improvements.

4.3.3.3 General Unbounded Search

In our recent works, we have proposed a technique to search for service compositions
without a limitation of the number of variables [109]. The input of the composition
algorithm is precondition and postcondition as conjunctions of literals, a set of ser-

4.3 FOL-Based Systems 95

vices described in the same way, and a vector of bounds for the nonfunctional proper-
ties. The algorithm searches backwards starting from the desired postconditions and
builds a composition by prepending an operation invocation to the current composi-
tion in each step. Hence, compositions computed by this approach are only sequences
of operation invocations. A service operation is a candidate for being prepended if its
postcondition contains at least one literal that is required for the precondition of the
currently considered composition. During the composition process, the algorithm
may introduce an arbitrary number of new variables (as yet undefined sources of
some of the inputs of prepended operation invocations). Every (partial) composi-
tion is associated with a vector of nonfunctional properties, which are assumed to
increase or decrease monotonically. The algorithm returns a stream of Pareto optimal
compositions.

The algorithm can also insert more complex control structures if these are hidden
in building blocks derived from domain independent templates [107, 108]. These
templates are more specific with respect to the control flow elements than the ones
used by Srivastava et al. in [143], e.g., the rough code within a loop body is already
set. This structural restriction increases the feasibility of the approach, because oth-
erwise there would be too many candidate implementations. The templates contain
placeholders for boolean expressions (usually of if-statements), service invocations,
and auxiliary predicates. For example, a template FILTER takes a set A as input and
computes the subset of elements that satisfy a particular property. For every a € A,
a (still undetermined) service s is invoked and determines the value of some (still
undetermined) property of a. The obtained value is tested against some (still unde-
termined) condition. The item « is added to the output set A’ if this test has a positive
result. This template can then be used to, say, filter a set of books by those that are
available. In [108], we present a template instantiation technique that can be directly
integrated with the composition algorithm described above. Similar to the approach
of Srivastava et al. template here are a possible guide to find a solution but they do
not encode the actual behavior of the composition.

The formal model underlying our approach is almost the same as the one of
Hoffmann et al. [S9] with the crucial difference that we do not assume strict forward
effects. That is, we allow the postconditions of services and the postconditions spec-
ified in the query to related outputs to the inputs. On one hand, this difference has
a significant computantional impact in that it precludes the possibility to ground the
problem to a (finite) propositional model. In fact, the composition problem probably
becomes undecidable by this assumption. On the other hand, it allows to specify much
richer requirement definitions that are much closer to the intuition of a specification
of actual behavior than lose properties of the ingoing and outgoing data. While unde-
cidability is certainly not a desirable theoretical feature, for practical applications of
service composition undecidability is not much worse than highly exponential com-
plexities. That is, it does not matter whether the algorithm runs forever or whether
it terminates after some weeks or even years saying that no answer exists; either it
finds a solution fast or we must implement the desired component by ourselves. So,
independently from decidability questions, the goal must be to find solutions fast if
they exist; proving that no solution exists is of minor practical importance.

96 4 Composition Without a Given Structure

The main drawback of the approach is that it does not support diverging con-
trol flow branches. That is, if-statements are only allowed in templates and only if
the template postconditions are still deterministic (purely conjunctive); that is, the
composition algorithm does not need to plan two or more possible program states in
parallel. McDermott resolved this problem by first planning optimistically and then
planning the alternative branches afterward. However, the current version of our
composition algorithm does not provide this clearly desirable functionality. Hence,
the treatment of alternative and diverging control flow branches remains important
and, given a backward search, nontrivial future work.

Summarizing, our approach provides an alternative to the model proposed by
McDermott that considers nonfunctional properties and complex predefined control
structures but that still lacks the ability to compose diverging control flows. Instead
of investigating the problem on a language-specific level like PDDL, we prefer an
independent mathematical model that defines a search space that can then be traversed
by search algorithms such as A*.

4.3.4 Concluding Discussion

The techniques discussed in Sect. 4.3.1 provide good formal models and interesting
ideas, but the lack of relations between inputs and outputs of operations hinders
semantically meaningful composition. The more detailed description of inputs and
outputs based on first-order logical formulas is an improvement over the approaches
discussed in Sects. 4.1 and 4.2, but meaningful composition requires to relate inputs
to outputs, which is not the case in these systems. Still, at least for the system
proposed by Hoffmann et al. [59, 60], the model has a native support for meaningful
composition if the assumption of strict forward effects is dropped. On the other hand,
dropping this assumption probably renders the task unsolvable with current planning
algorithms, so practically solving the problem without strict forward effects certainly
entails quite some work. Another issue of the two techniques discussed here is that
they do not incorporate any notion of nonfunctional properties (Table4.3).

Program synthesis is an interesting field but is somehow out of phase with respect
to the underlying operation model. The fact that we can only use operations whose
implementation corresponds to the description seems to be a strong limitation. The
reader always has the impression that those techniques only work on very specific
domains, e.g., numerics and sets. On the other hand, it is quite possible that these
composition models can be extended such that they decouple implementation and
description. The advantage of such a system would be tremendous because it would
allow for operation descriptions with both uninterpreted and interpreted predicates.
However, this integration is currently not visible.

The remaining approaches address what I would call the core of automated ser-
vice composition. The user can specify a desired behavior of the composition in
terms of uninterpreted predicates that relate the requested outputs to the provided
inputs. Unfortunately, the approaches described by Peer [119], Klusch et al. [72],

97

4.3 FOL-Based Systems

soyoeoidde oy Jo suorssnosip
QAn0adsal oy Ul PUNOJ 9q UBD SOUSIJI 2INJLISNIT “JIOYI0 YOora WOIJ SUOTIISqNS JUIIP ur passnosip sayoeoidde ayy oyeredes sauij ajqnop ayJ, ‘passnosip

orom soypeordde oy yoTym UT TopIo oHCHIRBAVHRIRIBIY B THRARPERALRS 57 1~ sRMOAANS 18t Se0rd RPN SO BBE S SDPIAAINS SISBURISEARS s/ P

sdoof yyim suonisodwo)
= sdooT ‘(sjuowere)s-JI) SMO[[01IUO0D dAneuIa)e YIM suonisodwo) = 77y ‘(senredoid-IN) 991A10S Jo Aend) = §o0 ‘WSS odA1, [eoryoreIoty = K[

soArjRUID)R 10] 310ddns saryeu ou|sdoo[OISeq ‘PaIspISu0d Qo) ‘[PpowW papunoqun D > @ | @ ‘TR 90 IO\
pajeIoqe[e I8[}INny j0U SeyoURI(SAIJRUISI[R ‘[opPOW papunoqun O | O | @ 10U (O

uoljen[eAs ou ‘go) ou UOISINDAI ‘WSI[RULIO] POOS3) | O | O ‘Te 70 euuR\

O o]l Oo0 | e ‘Te 90 so[ejreq

A)[oA0U OU ‘MI0M Paje[dl JO UOISSNISIP OU O O] O | e ‘Te 10 JIAONNA
Burpunoisd ysnoiyy soururiorred rood @) Ol O | @ ‘e 90 yosn[yf
siojowrered Jqd Areurpio are sindino O Ol O [) 1004
senqiqrssod uoryrsoduod pejruar) A1ea wyjLIos[e syduurs O Ol O O |Te 10 nuespuuog
suorjesodo pajejnuurod ‘1osop=-waduit suorjrpuodjsod xoidwoo ‘eoururiopred poos @) Ol O | O ‘TR J0 TuRMNL)
sindjno pue sjndul usamilsq UOIJR[eI OU [OIBSS PUNOQUN S[QIPUS)XS ‘WSI[RULIOJ JeaI13 O O] O | @ | 'Te e uuewyoy
sortonb uoryisoduwos jo uorydiiosep ou ®vIRD POINIONI)s ‘WSI[RULIO] POOS @) Ol O | @ ‘e 10 9yquIy
SessoueapA Je[noljred syj3uaalg aenoiaed|/sdoor|1v|Sod |H.L suwreN

suondr1osap 01507 19pI0-1sIY U0 A[9I Jey) 2IN3oNI)s UAAIS € Jnoyiim soyoeoidde Jo MIIAIOAQ €'p dqRL

98 4 Composition Without a Given Structure

and Vukovi¢ [157] exhibit significant formal flaws or are not sufficiently elaborated
to actually apply them. Also, nonfunctional aspects play virtually no role. The tech-
nique presented by Ponnekanti and Fox [124] is well elaborated and appears quite
useful. Probably the only concern against their technique is that the set of possible
queries is very limited, because we can only ask for attributes of entities. Among all
approaches discussed so far, McDermott [97] and our own work [106] are the only
solutions to the composition problem that do not exhibit any of these limitations.

However, even the composition algorithms discussed in [97, 109] can only be
considered initial steps. One problem is that none of the two has a complete support
for all of the functional and nonfunctional aspects that would be relevant for com-
position. For example, McDermott does not treat nonfunctional properties or loops.
Our own algorithm covers nonfunctional aspects but has only quite limited support
for conditional statements and loops. In particular, the consideration of diverging
control flows is not possible in a straight-forward manner.

Clearly the greatest challenge of unbounded service composition is to optimize the
runtime of the search process without simplifying the model. Semantically meaningful
composition may induce semi-decidability, which seems to be the case in [97, 109].
However, the strategy should not be to downgrade the problem but to enable a fast
finding of solutions if they exist. In practice, the difference between, say, NEXPTIME
and undecidability is almost irrelevant, because we do not need a proof for the
nonexistence of a solution. Either we can find a solution fast or we implement it
manually, but we do not care about whether no solution was returned in time because
no one exists or because the algorithm was not fast enough to find it. I do not say
that it is not a good idea to solve a simplified version of the model in an interior
routine whose parameters are iteratively adjusted to continuously expand the search
space. But we should not unnecessarily simplify the task itself only to obtain fast
algorithms (that solve irrelevant problems).

Chapter 5
Conclusion and Outlook

5.1 Summary

This section briefly summarizes the state of the art of the two main classes of auto-
mated software composition and answers the research questions initially posed in
Chap. 1.

5.1.1 Template-Based Approaches

Template-based service composition is currently split into three rather isolated
branches. All the approaches aim at (possibly recursively) instantiating a given tem-
plate under a given set of constraints.

1.

There are approaches that ignore functional aspects and aim at optimally instan-
tiating a template with respect to quality of service such as price, reliability,
execution time, etc.

Within this group, approaches can be further classified by the complexity of the
control flow (simple, i.e., sequential or none at all, vs. complex) and by the output,
which may be an optimal solution (IP models), an approximate solution (heuristic
search or genetic programming), or several Pareto optimal solutions.

There are approaches that consider constraints related to functional properties
that affect the admissibility of instantiations.

Within this group, approaches focus either on discovery aspects (finding appro-
priate operations for placeholders based on IOPE specifications or task names),
dependencies (maintain a correct order of invocation of operations of used ser-
vices, observe conflicts among services, or guarantee transactional properties),
and problem domain specific requirements (such as maximum hotel costs, trav-
eling time, etc.).

Some few approaches consider a (recursive) refinement of templates in which the
placeholders are not replaced by atomic service operations but entire subroutines.
Within this subclass, we distinguish approaches that instantiate placeholders non-
recursively (a nonrecursive routine computes the composition that fits into the
placeholder) or recursively (placeholders are replaced by atomic operations or

© The Author(s) 2016 929
F. Mohr, Automated Software and Service Composition,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-34168-2_5

http://dx.doi.org/10.1007/978-3-319-34168-2_1

100 5 Conclusion and Outlook

recursively by instantiating another template that implements the respective place-
holder).

Surprisingly, there are only very few approaches that consider aspects that belong
into more than one of the subclasses. In general, we can think of a composition sys-
tem that considers all of the aspects presented in the papers in this class, because they
are generally complementary. However, only some works can be considered to look
at more than one of these aspects. For example, [38, 50] consider quality of service
besides the main focus of their work (transactional properties, hierarchical instanti-
ation, etc.). Probably, even though being one of the first systems of all, METEOR-S
considers functional discovery, QoS, and domain specific constraints and can hence
be considered the most complete one [3].

5.1.2 Approaches Without a Given Structure

Service composition that does not rely on a given template aims at converting declar-
ative requirement definitions into imperative implementations. The requirement def-
initions are (at least indirectly) given in form of logical preconditions and postcon-
ditions, which constitute a planning problem.

In general, the behavior of an operation can be described either through propo-
sitional logic or through first-order logic. On one hand, most approaches are based
on propositionally described preconditions and postconditions, which reduces to a
set theoretic planning problem. Even though some of them are more complex due
to dependencies among the operations (e.g., in the ASTRO project), most of the
addressed problems can be solved in polynomial time. On the other hand, there are
some approaches that allow for limited predicate logical descriptions of the behavior
of operations. Usually, these still forbid uninterpreted function symbols, and quanti-
fier usage is also limited. However, they are more expressive because they can work
on properties defined between inputs and outputs of an operation.

5.1.3 Answers to the Initial Research Questions

To summarize the results of this work, I answer the three questions posed in the
introduction.

1. Which types of automated software composition problems exist?
There are two very general types of automated software composition problems,
which can be distinguished by the question whether or not a structure that
describes the behavior of the desired software artifact is given. Template-based
composition may consider both functional and nonfunctional aspects, but most
current approaches are highly specialized in only one of the two. Composition

5.1 Summary 101

based on implicit descriptions may be based on propositional or first-order logic.
Figure 5.1 shows the more specific subclasses identified in this book.

2. Which are the typical use cases where these problems occur?

The typical use case of template-based composition is that a workflow must be
refined in the presence of a concrete composition input or user specific preferences
or constraints. The client of the system is somebody from the domain rather
than a software developer. The typical use case of composition based on implicit
behavior descriptions is that we want to enhance an imperative or functional
development environment by the possibility to declaratively state conditions on
variables such that the concrete implementation that satisfies these conditions
is automatically determined by the environment. The client of the system is a
software developer.

3. Which are the most prominent solution paradigms for the different types?
Composition based on explicit behavior descriptions is done mainly through inte-
ger programming, heuristic search, and genetic programming. In the case of recur-
sive refinements, hierarchical Al planning methods such as HTN planning are
used. Composition based on implicit behavior descriptions is done either through
the notion of Al planning, algebraic term replacement systems, and theorem
proving.

5.2 Discussion

The large number of publications in the field shows not only a broad interest in
automated software composition but also the variety of aspects that are relevant for
the problem. Many of the approaches presented here were published on venues like
the Conference on Services Computing (SCC), the International Conference on Web
Services (ICWS), or the International Conference on Service Oriented Computing
(ICSOC). The mere existence of these (quite large) venues shows that many people
are interested in the topic. At the same time, the wide range of approaches shows
that automated composition is interesting from many different viewpoints.

However, looking at the development of automated composition during the last
decade, we should be aware of an alarming trend. Automated composition had a
great upturn in the five years from 2002 to 2006, but this momentum became to
dwindle in 2012. My explanation for this development is that, at the beginning of the
century, practitioners recognized (again) that automation in software development
has a great potential. But the little convincing research results (from the practical
viewpoint) made the interest vanish again. This reminds of the development of Al in
the last century.

I think that there are basically two reasons for this situation.

e Wrong things are done.
Apparently, many authors think that the hype on services is (was) a self-sufficient
evidence for the relevance of automated composition. It is not! Many people doubt

5 Conclusion and Outlook

102

JANIqIses) urejuIR 0 Pasn
a1e suoresyrduns YOIAN

218077 J0pIQ 9SIg

sooedg ejruyuy 10§ seypeorddy [euorye[dy-0O/1

sooedg aj1ulq 10j seyoeoaddy [euoryedy-0/1

\

suore[EY-Q/1 Moyym soypeorddy
juoryisodutod 10§ posn st Juopqoad oty opooud 0y paambolx
OBPOMOTY JO PUL] [P
A1091], punoadyoeq yjm
- 013017 TeuoIyIsodoig

Surypey Ayre[ruis yym uorysoduoyy 2INJONIG UBALL) ©

MOYIIAN uonjIsoduro))

|

soryoaetarf] odA T, yjm uonisoduio)
Jporpout st suoryeiado

JO 1oadse PIA

A1097], punoasyoeqg ou
- 013017 reuorjisodorg

$709]Jf] PU®R SUOI}IPU0IALJ YIIm uoryisoduro))

V

uoryisodwio)) pasegd-Q/1

JOATSINDDI JUDWIOUYDT 9T} ST

SIUOWIDUYIY OAISINIDY
Jueweuyey xo[duro)

V

SJUBUWIBUYSY SAISINIIY-UON

SIUTRIISUO]) UTeWO(] pased-o[ny /POIOPISUOD SJUIRIISUOD I} o8 MOH

sjureIjuoy) ssauisng

uoryezrunyd(y
TUOTIORJSIRG JUIRIISTO))

/PAIDPISTIOD ST ,UOTYRIUR)SUT SULIP 10] POIOPISTOD
SJUTRIISUO)) [RUOTJORSTRI], ;PoTapISTIoD oTe sowepUadep AL adse [euorouNy YDIYAN syo0dse [RUONDUNY D18 TR\
syog Aouopuadacy sopuapuadaq uoryd9[eg uorerndQ uoryisodwio)) poseg-oyerdway,

I9PI() UOIIRIOAU] UO SHUTRIISUO)

. \.;uwﬂ:hUm@Mu .HOT»‘—NJQA— QJU ST P/QHAH
osodmg T —————ouwpg
4dOI

JuonoLsal Ayrenb oty st yRA X
o . ad xordwog) ;ore[duay o1} Jo Moy
(sonsumoy) suonnjog pejeurrxorddy [013u0D oy s1 Xo[dwod MOF

(d1) suormog 9oexsy PpoIopIsuo)) JoN

\/

JuonpLsor £yenb oty ST e

(1ots0J y) suornjog rewyd(-0ja1eg ordurrg
(somysumoyy) suonnog pojewrxorddy \
(d1) suormiog joexsy

|

Structure of the Solution known?

Automated Software Composition Problems

Fig. 5.1 Classification system for software composition based on existing approaches

5.2 Discussion 103

in the potential of automated programming, and, given the background of almost 40
years without success seems to give them right. This will not stop until automated
composition will have become a part of everyday programming.
This fact is, however, frequently ignored. Instead of working towards a reality with
automated composition, many papers show striking evaluation results achieved on
unreasonably trivial problems that will never ever be part of a relevant composition
setting. I would highly prefer a treatment of relevant and hard problems with
mediocre results, (which can be improved) over the treatment of irrelevant and
trivial problems with great results, (which few people care about).!
People outside the community first ask for what the technology can be used, and
then (perhaps) whether the algorithm finds solution within a second. Hence, the
goal should be to make the scenario of software composition more credible and
applicable and not to generate ever better algorithms on uninteresting subproblems.
e Things are done in the wrong manner.
Writing this book, I became aware that many authors do not know at all the field
they publish in. The incredible number of outsorted papers shows that many authors
do not even know the most important related work. But also in many approaches
presented in this book, the discussion of related papers appears to fulfill only
an alibi function. Quite often, it seems that the authors did not carefully read or
understand the papers they cite; in particular the related papers are only described
highly superficially but the differences between the own and the related approach
often are not discussed. Hopefully, this book helps reduce the obstacle to study
(and know) related work.
Another problem is that many authors do not recognize or do not care about
obvious conceptual flaws in their publications. Many approaches are too abstract
and model-oriented, and the formalisms are often heavily flawed. Correctness or
executability of the resulting compositions does not seem to be a relevant issue.
There is nothing wrong with a formal and abstract model, but it must be clear that
the assumptions that the compositions obtained from the model can be translated
into working compositions.
The problem is that this type of research hinders progress. If I am not aware of the
other or if the other only provides heavily flawed contributions, I must begin from
scratch. This is a tremendous waste of human resources.

Is everything bad? No! This book presents a lot of papers with great ideas and
approaches on automated software composition. Building systematically on top of
these with high quality contributions should allow us to see automated composition
become reality—or to see that nobody wants to use it. In any case, much high quality
work is necessary to let this vision become true.

! One of my papers was rejected at ICAI with the comment that the addressed problem is undecidable
and, hence, not relevant. What a conclusion! If decidability is the criterion for relevance, why do
FOL solvers exist and are used?

104 5 Conclusion and Outlook

5.3 Outlook

Once again, the most important issue is to give evidence for the actual necessity of
this type of composition, i.e., that software composition is not a phantom problem.
Many papers are motivated by the “enormous and ever-growing number of services”,
but those legions of services seem to be hidden quite effectively from potential
customers in the real world. Automated software composition faces the objection of
solving a theoretic problem that will never occur in practice, e.g., because semantic
descriptions do not exist. The setting assumed for automated composition will not
come into existence without a strong incentive, and this incentive can only be the
existence of high quality tools that provide a better net utility for developers than
nonautomated systems.

I'see different research prospects for the two main classes of composition presented
in the book. In template-based composition, a unified composition model that brings
together the achievements of all the existing approaches should be the goal. That
is, service usage constraints, hierarchical instantiation, QoS optimization, business
constraints, etc., should be considered simultaneously and not in isolation. As a basis,
one may suggest [3, 38, 50] and established models such as [20, 136]. Future work
in the area of composition without templates is to provide feasibility for composition
with expressive description languages (FOL). The works of Hoffmann et al. [60]
(without limitation of strict forward effect), McDermott [97], and my own ones
[106, 109] provide closely related formal problem descriptions that can be used to
build on top. An interesting other aspect is the integration of nondeterminism as
covered by Bertoli et al. [23].

For both cases, the integration of user interaction for choosing the desired (among
several Pareto optimal, possibly relaxed) solutions would complement the model with
respect to the client necessities.

References

10.

11.

12.

14.

. Agarwal, V., Chafle, G., Dasgupta, K., Karnik, N., Kumar, A., Mittal, S.: Synthy: a system for

end to end composition of web services. Web Semant.: Sci., Serv. Agents World Wide Web
3(4), 311-339 (2005)

Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, A., Mittal, S., Srivastava, B.: A
service creation environment based on end to end composition of web services. In: Proceedings
of the 14th International Conference on World Wide Web, pp. 128-137. ACM (2005)
Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Constraint driven web service composition in
METEOR-S. In: Proceedings of the IEEE International Conference on Services Computing
(SCC), pp. 23-30 (2004)

Ai, L., Tang, M.: Qos-based web service composition accommodating inter-service depen-
dencies using minimal-conflict hill-climbing repair genetic algorithm. In: IEEE Fourth Inter-
national Conference on eScience, pp. 119-126. IEEE (2008)

Akkiraju, R., Srivastava, B., Ivan, A.A., Goodwin, R., Syeda-Mahmood, T.: Semaplan: com-
bining planning with semantic matching to achieve web service composition. In: International
Conference on Web Services ICWS), pp. 37-44. IEEE (2006)

Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient qos-
aware service composition. In: Proceedings of the 18th International Conference on World
Wide Web, pp. 881-890. ACM (2009)

Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for qos-based web service com-
position. In: Proceedings of the 19th International Conference on World Wide Web, pp. 11-20.
ACM (2010)

. Ambite, J.L., Kapoor, D.: Automatically Composing Data Workflows With Relational De-

scriptions and Shim Services. Springer, Berlin (2007)

Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans.
Softw. Eng. 33(6), 369-384 (2007)

Arpinar, I.B., Zhang, R., Aleman-Meza, B., Maduko, A.: Ontology-driven web services com-
position platform. Inf. Syst. E-Bus. Manag. 3(2), 175-199 (2005)

Aversano, L., Canfora, G., Ciampi, A.: An algorithm for web service discovery through their
composition. In: Proceedings of IEEE International Conference on Web Services, pp. 332-339
(2004)

Aydin, O., Cicekli, N.K., Cicekli, I.: Automated web services composition with the event
calculus. In: Engineering Societies in the Agents World VIII, pp. 142-157. Springer (2008)

. Barakat, L., Miles, S., Poernomo, 1., Luck, M.: Efficient multi-granularity service composition.

In: Proceedings of the IEEE International Conference on Web Services, pp. 227-234 (2011)
Bartalos, P., Bielikova, M.: Fast and scalable semantic web service composition approach
considering complex pre/postconditions. In: Proceedings of the 2009 Congress on Services,
pp- 414-421. IEEE (2009)

© The Author(s) 2016 105
F. Mohr, Automated Software and Service Composition,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-34168-2

106

—

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

5.

References

Bartalos, P., Bielikova, M.: Semantic web service composition framework based on parallel
processing. In: Proceedings of the Conference on Commerce and Enterprise Computing, pp.
495-498. IEEE (2009)

Bartalos, P., Bielikova, M.: QoS aware semantic web service composition approach consid-
ering pre/postconditions. In: Proceedings of the International Conference on Web Services,
pp- 345-352. IEEE (2010)

ter Beek, M., Moruzzi, V.G.: Web service composition approaches: from industrial standards
to formal methods. In: Proceedings of the Second International Conference on Internet and
Web Applications and Services. IEEE (2007)

Benatallah, B., Perrin, O., Rabhi, F.A., Godart, C.: Web service computing: overview and di-
rections. In: Handbook of Nature-Inspired and Innovative Computing, pp. 553-574. Springer,
Heidelberg (2006)

Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic composi-
tion of transition-based semantic web services with messaging. In: Proceedings of the 31st
International Conference on Very large data bases, pp. 613-624. VLDB Endowment (2005)
Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic compo-
sition of e-services that export their behavior. In: Proceedings of the International Conference
on Service-Oriented Computing, pp. 43-58. Springer (2003)

Berardi, D., De Giacomo, G., Mecella, M., Calvanese, D.: Automatic web service composi-
tion: service-tailored vs. client-tailored approaches. Al for Service Composition, p. 63 (2006)
Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for qos-aware
web service composition. In: Proceedings of the International Conference on Web Services,
pp- 72-82. IEEE (2006)

Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via planning in
asynchronous domains. Artif. Intell. 174(3), 316-361 (2010)

Blake, M.B., Cummings, D.J.: Workflow composition of service level agreements. In: Pro-
ceedings of the International Conference on Services Computing, pp. 138-145. IEEE (2007)
Blanco, E., Cardinale, Y., Vidal, M.E., El Haddad, J., Manouvrier, M., Rukoz, M.: A
transactional-qos driven approach for web service composition. In: Resource Discovery, pp.
23-42. Springer, Heidelberg (2012)

Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1),
281-300 (1997)

Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan, A., Riabov, A.: A folksonomy-
based model of web services for discovery and automatic composition. In: Proceedings of the
International Conference on Services Computing, vol. 1, pp. 389-396. IEEE (2008)
Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A.: A faceted requirements-
driven approach to service design and composition. In: Proceedings of the International Con-
ference on Web Services, pp. 369-376. IEEE (2008)

Brogi, A., Corfini, S., Popescu, R.: Composition-oriented service discovery. In: Software
Composition, pp. 15-30. Springer, Heidelberg (2005)

Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic service
composition and synthesis: the roman model. IEEE Data Eng. Bull. 31(3), 18-22 (2008)
Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware service
composition based on genetic algorithms. In: Proceedings of the 7th Annual Conference on
Genetic and Evolutionary Computation, pp. 1069-1075. ACM (2005)

Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-aware replanning of composite
web services. In: Proceedings of the International Conference on Web Services, pp. 121-129.
IEEE (2005)

Cardoso, A.J.S.: Quality of service and semantic composition of workflows. Ph.D. thesis,
Ph.D. Dissertation, Department of Computer Science. 2002, University of Georgia, Athens,
GA, USA, 215 (2002)

Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Quality of service for workflows and web service
processes. J. Web Semant. 1, 281-308 (2004)

References 107

35

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

. Cardoso, J., Sheth, A.: Semantic e-workflow composition. J. Intell. Inf. Syst. 21(3), 191-225
(2003)

Channa, N., Li, S., Shaikh, A.W., Fu, X.: Constraint satisfaction in dynamic web service
composition. In: Proceedings of the Sixteenth International Workshop on Database and Expert
Systems Applications, pp. 658-664. IEEE (2005)

Cheikh, F., De Giacomo, G., Mecella, M.: Automatic web services composition in trustaware
communities. In: Proceedings of the 3rd ACM Workshop on Secure Web Services, pp. 43-52.
ACM (2006)

Chen, K., Xu, J., Reiff-Marganiec, S.: Markov-htn planning approach to enhance flexibility
of automatic web service composition. In: Proceedings of the International Conference on
Web Services, pp. 9-16. IEEE (2009)

Chifu, V.R., Salomie, I., Riger, A., Radoi, V.: A graph based backward chaining method for
web service composition. In: Proceedings of the 5th International Conference on Intelligent
Computer Communication and Processing, pp. 237-244. IEEE (2009)

Claro, D.B., Albers, P., Hao, J.K.: Selecting web services for optimal composition. In: ICWS
International Workshop on Semantic and Dynamic Web Processes, Orlando-USA (2005)
Constantinescu, I., Binder, W., Faltings, B.: Service composition with directories. In: Software
Composition, pp. 163—177. Springer, Heidelberg (2006)

Constantinescu, I., Faltings, B., Binder, W.: Large scale, type-compatible service composition.
In: Proceedings of the International Conference on Web Services, pp. 506-513. IEEE (2004)
Constantinescu, 1., Faltings, B., Binder, W.: Type based service composition. In: Proceedings
of the 13th International World Wide Web Conference on Alternate Track Papers & Posters,
pp. 268-269. ACM (2004)

De Giacomo, G., Di Ciccio, C., Felli, P., Hu, Y., Mecella, M.: Goal-based composition of
stateful services for smart homes. In: On the Move to Meaningful Internet Systems: OTM
2012, pp. 194-211. Springer, Heidelberg (2012)

Degeler, V., Georgievski, 1., Lazovik, A., Aiello, M.: Concept mapping for faster qos-aware
web service composition. In: Proceedings of the International Conference on Service-Oriented
Computing and Applications, pp. 1-4. IEEE (2010)

D’Mello, D.A., Ananthanarayana, V., Salian, S.: A review of dynamic web service composi-
tion techniques. In: Advanced Computing, pp. 85-97. Springer, Heidelberg (2011)

Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition using
markov decision processes. In: Proceedings of the International Conference on Web Services,
pp- 576-582. IEEE (2004)

Dustdar, S., Papazoglou, M.P.: Services and service composition—an introduction (ser-
vices und service komposition—eine einfiihrung). it-Information Technology (vormals it+ ti)
50(2/2008), 86-92 (2008)

Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Serv. 1(1),
1-30 (2005)

El Haddad, J., Manouvrier, M., Rukoz, M.: Tqos: transactional and qos-aware selection algo-
rithm for automatic web service composition. IEEE Trans. Serv. Comput. 3(1), 73-85 (2010)
Gao, C., Cai, M., Chen, H.: QoS-aware service composition based on tree-coded genetic algo-
rithm. In: Proceedings of the 31st Annual International Computer Software and Applications
Conference, vol. 1, pp. 361-367. IEEE (2007)

Gerede, C.E., Hull, R., Ibarra, O.H., Su, J.: Automated composition of e-services: lookaheads.
In: Proceedings of the 2nd International Conference on Service Oriented Computing, pp. 252—
262. ACM (2004)

Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In: ACM
SIGPLAN Notices, pp. 62-73. ACM (2011)

Hashemian, S.V., Mavaddat, F.: A graph-based approach to web services composition. In:
Proceedings of the Symposium on Applications and the Internet, pp. 183—189. IEEE (2005)
Hashemian, S.V., Mavaddat, F.: A graph-based framework for composition of stateless web
services. In: Proceedings of the 4th European Conference on Web Services, pp. 75-86. IEEE
(2006)

108

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

References

Hassen, R.R., Nourine, L., Toumani, F.: Protocol-based web service composition. In: Proceed-
ings of the International Conference on Service-Oriented Computing, pp. 38-53. Springer
(2008)

Hassine, A.B., Matsubara, S., Ishida, T.: A constraint-based approach to horizontal web service
composition. In: The Semantic Web-ISWC 2006, pp. 130-143. Springer, Heidelberg (2006)
Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576—
580 (1969)

Hoffmann, J., Bertoli, P., Helmert, M., Pistore, M.: Message-based web service composition,
integrity constraints, and planning under uncertainty: a new connection. J. Artif. Intell. Res.
35, pp. 49-117 (2009)

Hoffmann, J., Bertoli, P., Pistore, M.: Web service composition as planning, revisited: In
between background theories and initial state uncertainty. In: Proceedings of the National
Conference on Artificial Intelligence, p. 1013. Menlo Park, CA, Cambridge, MA, London,
AAAI Press, MIT Press, 1999 (2007)

Huai, J., Deng, T., Li, X., Du, Z., Guo, H.: Autosyn: a new approach to automated synthesis
of composite web services with correctness guarantee. Sci. China Ser. F: Inf. Sci. 52(9),
15341549 (2009)

Huma, Z., Gerth, C., Engels, G., Juwig, O.: Automated service composition for on-the-fly
soas. In: Service-Oriented Computing, pp. 524-532. Springer, Heidelberg (2013)

Jiang, W., Hu, S., Lee, D., Gong, S., Liu, Z.: Continuous query for qos-aware automatic
service composition. In: Proceedings of the 2012 IEEE 19th International Conference on
Web Services (ICWS), pp. 50-57. IEEE (2012)

Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: Qsynth: A tool for qos-aware auto-
matic service composition. In: Proceedings of the International Conference on Web Services,
pp- 42-49. IEEE (2010)

Kalasapur, S., Kumar, M., Shirazi, B.: Seamless service composition (sesco) in pervasive
environments. In: Proceedings of the first ACM international workshop on Multimedia service
composition, pp. 11-20. ACM (2005)

Karakoc, E., Kardas, K., Senkul, P.: A workflow-based web service composition system.
In: Proceedings of the International Conference on Web Intelligence and Intelligent Agent
Technology Workshops, pp. 113—116. IEEE (2006)

Karakoc, E., Senkul, P.: Composing semantic web services under constraints. Expert Syst.
Appl. 36(8), 11021-11029 (2009)

Klein, A., Ishikawa, F., Honiden, S.: Efficient qos-aware service composition with a prob-
abilistic service selection policy. In: Service-Oriented Computing, pp. 182-196. Springer,
Heidelberg (2010)

Klein, A., Ishikawa, F., Honiden, S.: Efficient heuristic approach with improved time com-
plexity for qos-aware service composition. In: Proceedings of the International Conference
on Web Services, pp. 436—443. IEEE (2011)

Klein, A., Ishikawa, F., Honiden, S.: Towards network-aware service composition in the cloud.
In: Proceedings of the 21st International Conference on World Wide Web, pp. 959-968. ACM
(2012)

Klusch, M., Gerber, A.: Fast composition planning of owl-s services and application. In:
Proceedings of the 4th European Conference on Web Services, pp. 181-190. IEEE (2006)
Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning with
OWLS-XPlan. In: Proceedings of the 1st International AAAI Fall Symposium on Agents
and the Semantic Web, pp. 55-62 (2005)

Ko, J.M., Kim, C.O., Kwon, I.H.: Quality-of-service oriented web service composition algo-
rithm and planning architecture. J. Syst. Softw. 81(11), 2079-2090 (2008)

Kona, S., Bansal, A., Blake, M.B., Gupta, G.: Generalized semantics-based service compo-
sition. In: Proceedings of the International Conference on Web Services, pp. 219-227. IEEE
(2008)

Kona, S., Bansal, A., Gupta, G., Hite, D.: Automatic composition of semantic web services.
ICWS 7, 150-158 (2007)

References 109

76.

77.
78.
79.
. Lautenbacher, F., Bauer, B.: A survey on workflow annotation and composition approaches.

81.

82.

83.
84.
85.
86.
87.
88.

89.

90.

91.

92.

93.
94.

9s.

96.

97.

98.

Koza, J.R., Rice, J.P.: Automatic programming of robots using genetic programming. AAAI
92, 194-207 (1992)

Kiingas, P., Matskin, M.: Semantic web service composition through a p2p-based multi-agent
environment. In: Agents and Peer-to-Peer Computing, pp. 106-119. Springer, Heidelberg
(2006)

Kiister, U., Konig-Ries, B., Stern, M., Klein, M.: Diane: an integrated approach to automated
service discovery, matchmaking and composition. In: Proceedings of International Conference
on World Wide Web, pp. 1033-1042. ACM (2007)

Lammermann, S.: Runtime service composition via logic-based program synthesis (2002)

In: SBPM (2007)

Lécué, F.: Optimizing Qos-Aware Semantic Web Service Composition. Springer, Heidelberg
(2009)

Lécué, F.,, Delteil, A.: Making the difference in semantic web service composition. In: Pro-
ceedings of the National Conference on Artificial Intelligence, pp. 1383-1388. AAAI Press,
MIT Press, Menlo Park, CA, Cambridge, MA, London (2007)

Lécué, F., Léger, A.: A formal model for semantic web service composition. In: The Semantic
Web-ISWC 2006, pp. 385-398. Springer, Heidelberg (2006)

Lecue, F., Mehandjiev, N.: Seeking quality of web service composition in a semantic dimen-
sion. IEEE Trans. Knowl. Data Eng. 23(6), 942-959 (2011)

Liang, Z., Zou, H., Yang, F., Lin, R.: A hybrid approach for the multi-constraint web service
selection problem in web service composition. J. Inf. Comput. Sci. 9(13), 3771-3781 (2012)
Lin, N., Kuter, U., Hendler, J.: Web service composition via problem decomposition across
multiple ontologies. In: Proceedings of the Services Congress, pp. 65-72. IEEE (2007)

Lin, N., Kuter, U., Sirin, E.: Web service composition with user preferences. Springer, Hei-
delberg (2008)

Liu, J., Fan, C., Gu, N.: Web services automatic composition with minimal execution price.
In: Proceedings of the International Conference on Web Services, pp. 302-309. IEEE (2005)
Ludwig, S., et al.: Single-objective versus multi-objective genetic algorithms for workflow
composition based on service level agreements. In: Proceedings of the International Confer-
ence on Service-Oriented Computing and Applications, pp. 1-8. IEEE (2011)

Luo, Y.s., Qi, Y., Shen, L.f., Hou, D., Sapa, C., Chen, Y.: An improved heuristic for qos-aware
service composition framework. In: Proceedings of the International Conference on High
Performance Computing and Communications, pp. 360-367. IEEE (2008)

Ma, Y., Chen, L., Hui, J., Wu, J.: Cbbcm: Clustering based automatic service composition.
In: Proceedings of the International Conference on Services Computing, pp. 354-361. IEEE
(2011)

Mabrouk, N.B., Beauche, S., Kuznetsova, E., Georgantas, N., Issarny, V.: Qos-aware service
composition in dynamic service oriented environments. In: Middleware 2009, pp. 123-142.
Springer, Heidelberg (2009)

Manna, Z., Waldinger, R.: Synthesis: Dreams—programs. IEEE Trans. Softw. Eng. SE-5(4),
294-328 (1979)

Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans. Program.
Lang. Syst. 2(1), 90-121 (1980)

Matskin, M., Rao, J.: Value-added web services composition using automatic program synthe-
sis. In: Web Services, E-Business, and the Semantic Web, pp. 213-224. Springer, Heidelberg
(2002)

Maurice, A.B., Gnesi, S.: A survey on service composition approaches: from industrial stan-
dards to formal methods. In: Proceedings of the International Conference on Internet and Web
Applications and Services, pp. 10-129 (2006)

McDermott, D.V.: Estimated-regression planning for interactions with web services. AIPS 2,
204-211 (2002)

Mcllraith, S., Son, T.C.: Adapting golog for composition of semantic web services. KR 2,
482-493 (2002)

110

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.
121.

References

Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the semantic
web. The VLDB J. Int. J. Very Large Data Bases 12(4), 333-351 (2003)

Mehandjiev, N., Lecue, F., Wajid, U., Namoun, A.: Assisted service composition for end users.
In: Proceedings of the European Conference on Web Services, pp. 131-138. IEEE (2010)
Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE Internet
Comput. 8(6), 51-59 (2004)

Mitra, S., Basu, S., Kumar, R.: Local and on-the-fly choreography-based web service com-
position. In: Proceedings of the International Conference on Web Intelligence, pp. 521-527.
IEEE (2007)

Mitra, S., Kumar, R., Basu, S.: Automated choreographer synthesis for web services compo-
sition using i/o automata. In: IEEE International Conference on Web Services, 2007 (ICWS
2007), pp. 364-371. IEEE (2007)

Mitra, S., Kumar, R., Basu, S.: Optimum decentralized choreography for web services com-
position. In: Proceedings of the International Conference on Services Computing, vol. 2, pp.
395-402. IEEE (2008)

Mohr, F.: Issues of automated software composition in ai planning. In: Proceedings of the 29th
International Conference on Automated Software Engineering, pp. 895-898. ACM (2014)
Mohr, F,, Jungmann, A., Buning, H.K.: Automated online service composition. In: Proceed-
ings of the International Conference on Services Computing, pp. 57-64. IEEE (2015)

Mohr, F., Kleine Biining, H.: Semi-automated software composition through generated com-
ponents. In: Proceedings of International Conference on Information Integration and Web-
based Applications and Services, p. 676. ACM (2013)

Mohr, F., Walther, S.: Template-based generation of semantic services. In: Software Reuse
for Dynamic Systems in the Cloud and Beyond, pp. 188-203. Springer, Heidelberg (2014)
Mohr, F., Walther, S.: Template-based generation of semantic services. In: Journal of Systems
and Software. Springer, Heidelberg (2015)

Mokhtar, S.B., Fournier, D., Georgantas, N., Issarny, V.: Context-aware service composi-
tion in pervasive computing environments. In: Rapid Integration of Software Engineering
Techniques, pp. 129-144. Springer, Heidelberg (2006)

Mokhtar, S.B., Liu, J., Georgantas, N., Issarny, V.: Qos-aware dynamic service composition
in ambient intelligence environments. In: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pp. 317-320. ACM (2005)

Montagut, F., Molva, R., Golega, S.T.: Automating the composition of transactional web
services. J. Web Serv. Res. 5(1), 24 (2008)

Narayanan, S., Mcllraith, S.A.: Simulation, verification and automated composition of web
services. In: Proceedings of the 11th International Conference on World Wide Web, pp. 77-88.
ACM (2002)

Oh, S.C., Lee, D., Kumara, S.R.: A comparative illustration of ai planning-based web services
composition. ACM SIGecom Exch. 5(5), 1-10 (2005)

Okutan, C., Cicekli, N.K.: A monolithic approach to automated composition of semantic web
services with the event calculus. Knowl.-Based Syst. 23(5), 440-454 (2010)

Oster, Z.J., Ali, S.A., Santhanam, G.R., Basu, S., Roop, P.S.: A service composition framework
based on goal-oriented requirements engineering, model checking, and qualitative preference
analysis. In: Service-Oriented Computing, pp. 283-297. Springer, Heidelberg (2012)

Oster, Z.J., Santhanam, G.R., Basu, S.: Identifying optimal composite services by decompos-
ing the service composition problem. In: Proceedings of the International Conference on Web
Services, pp. 267-274. IEEE (2011)

Ozorhan, E.K., Kuban, E.K., Cicekli, N.K.: Automated composition of web services with the
abductive event calculus. Inf. Sci. 180(19), 3589-3613 (2010)

Peer, J.: A pddl based tool for automatic web service composition. In: Principles and Practice
of Semantic Web Reasoning, pp. 149-163. Springer, Heidelberg (2004)

Peer, J.: Web service composition as ai planning-a survey (2005)

Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services
by planning at the knowledge level. In: Proceedings of the International Joint Conference on
Artificial Intelligence, pp. 1252-1259 (2005)

References 111

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

Pistore, M., Traverso, P., Bertoli, P.: Automated composition of web services by planning in
asynchronous domains. ICAPS 5, 2-11 (2005)

Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated synthesis of composite bpel4ws
web services. In: Proceedings of the International Conference on Web Services, pp. 293-301.
IEEE (2005)

Ponnekanti, S.R., Fox, A.: Sword: A developer toolkit for web service composition. In: Pro-
ceedings of the Eleventh International World Wide Web Conference, Honolulu, HI, vol. 45
(2002)

Pu, K., Hristidis, V., Koudas, N.: Syntactic rule based approach to web service composition.
In: Proceedings of the International Conference on Data Engineering, pp. 31-31. IEEE (2006)
Rahmani, H., GhasemSani, G., Abolhassani, H.: Automatic web service composition con-
sidering user non-functional preferences. In: Proceedings of the International Conference on
Next Generation Web Services Practices, pp. 33-38. IEEE (2008)

Rao, J., Kiingas, P.: Application of linear logic to web service composition. In: Proceedings
of the International Conference on Web Services, Las Vegas, pp. 3-9. CSREA Press (2003)
Rao, J., Kungas, P., Matskin, M.: Logic-based web services composition: From service de-
scription to process model. In: Proceedings of the International Conference on Web Services,
pp- 446-453. IEEE (2004)

Rao, J., Kiingas, P., Matskin, M.: Composition of semantic web services using linear logic
theorem proving. Inf. Syst. 31(4), 340-360 (2006)

Rao, J., Su, X.: A survey of automated web service composition methods. In: Semantic Web
Services and Web Process Composition, pp. 43-54. Springer, Heidelberg (2005)

Rich, C., Waters, R.C.: Automatic programming: myths and prospects. IEEE Comput. 21(8),
40-51 (1988)

Rodriguez-Mier, P., Mucientes, M., Lama, M.: Automatic web service composition with a
heuristic-based search algorithm. In: Proceedings of the International Conference on Web
Services, pp. 81-88. IEEE (2011)

Rodriguez-Mier, P., Mucientes, M., Lama, M., Couto, M.1.: Composition of web services
through genetic programming. Evol. Intell. 3(3—4), 171-186 (2010)

Schuller, D., Eckert, J., Miede, A., Schulte, S., Steinmetz, R.: Qos-aware service composition
for complex workflows. In: Proceedings of the International Conference on Internet, Web
Applications and Services, pp. 333-338. IEEE (2010)

Sheshagiri, M., DesJardins, M., Finin, T.: A planner for composing services described in
daml-s. Web Serv. Agent-based Eng.-AAMAS 3, 1-5 (2003)

Sirbu, A., Hoffmann, J.: Towards scalable web service composition with partial matches. In:
Proceedings of the International Conference on Web Services, pp. 29-36. IEEE (2008)
Sirin, E., Parsia, B., Hendler, J.: Template-based composition of semantic web services. In:
AAAI Fall Symposium on Agents and the Semantic Web, vol. 5, p. 01. AAAI (2005)

Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition
using SHOP2. Web Semant.: Sci., Serv. Agents World Wide Web 1(4), 377-396 (2004)
Sivashanmugam, K., Miller, J.A., Sheth, A.P., Verma, K.: Framework for semantic web process
composition. Int. J. Electron. Commer. 9(2), 71-106 (2005)

Sohrabi, S., Prokoshyna, N., Mcllraith, S.A.: Web service composition via generic procedures
and customizing user preferences. In: The Semantic Web-ISWC 2006, pp. 597-611. Springer,
Heidelberg (2006)

Sohrabi, S., Prokoshyna, N., Mcllraith, S.A.: Web service composition via the customiza-
tion of golog programs with user preferences. In: Conceptual Modeling: Foundations and
Applications, pp. 319-334. Springer, Heidelberg (2009)

Srivastava, B., Koehler, J.: Web service composition-current solutions and open problems. In:
ICAPS 2003 workshop on Planning for Web Services, vol. 35, pp. 28-35 (2003)

Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program synthesis.
ACM Sigplan Not. 45(1), 313-326 (2010)

Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., Underwood, I.: Deductive composition
of astronomical software from subroutine libraries. In: Automated Deduction—CADE-12, pp.
341-355. Springer, Heidelberg (1994)

112

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

References

Sun, P.: Service composition and optimal selection with trust constraints. In: Proceedings of
the Asia-Pacific Services Computing Conference, pp. 645-653. IEEE (2010)

Sun, S.X., Zhao, J.: A decomposition-based approach for service composition with global
qos guarantees. Inf. Sci. 199, 138-153 (2012)

Syu, Y., Ma, S.P,, Kuo, J.Y., FanJiang, Y.Y.: A survey on automated service composition
methods and related techniques. In: Proceedings of the International Conference on Services
Computing, pp. 290-297. IEEE (2012)

Talantikite, H.N., Aissani, D., Boudjlida, N.: Semantic annotations for web services discovery
and composition. Comput. Stand. Interfaces 31(6), 1108-1117 (2009)

Thakkar, S., Knoblock, C.A., Ambite, J.L., Shahabi, C.: Dynamically composing web services
from on-line sources. In: Proceedings of the AAAI-2002 Workshop on Intelligent Service
Integration, pp. 1-7 (2002)

Thiagarajan, R., Stumptner, M.: Service composition with consistency-based matchmaking:
a csp-based approach. In: Proceedings of the European Conference on Web Services, pp.
23-32. IEEE (2007)

Traverso, P., Pistore, M.: Automated composition of semantic web services into executable
processes. In: The Semantic Web, pp. 380-394. Springer, Heidelberg (2004)

Vallée, M., Ramparany, F., Vercouter, L.: Flexible composition of smart device services. PSC
5, 165-171 (2005)

Verma, K.: Configuration and adaptation of semantic web processes. Ph.D. thesis, University
of Georgia (2006)

Verma, K., Akkiraju, R., Goodwin, R., Doshi, P., Lee, J.: On accommodating inter service
dependencies in web process flow composition. In: AAAI spring symposium on semantic
web services, pp. 37-43 (2004)

Verma, K., Doshi, P., Gomadam, K., Miller, J., Sheth, A.: Optimal adaptation in web processes
with coordination constraints. In: Proceedings of the International Conference on Web Ser-
vices, pp. 257-264. IEEE (2006)

Verma, K., Gomadam, K., Sheth, A.P., Miller, J., Wu, Z.: The METEOR-S approach for
configuring and executing dynamic web processes (2005)

Vukovi¢, M., Kotsovinos, E., Robinson, P.: An architecture for rapid, on-demand service
composition. Serv. Oriented Comput. Appl. 1(4), 197-212 (2007)

Wada, H., Suzuki, J., Yamano, Y.: Oba, K.: E&# xb3;: A multiobjective optimization frame-
work for sla-aware service composition. Trans. Serv. Comput. 5(3), 358-372 (2012)
Wagner, F.: Efficient, failure-resilient semantic web service planning. In: Service-Oriented
Computing, pp. 686—689. Springer, Heidelberg (2010)

Wagner, E., Ishikawa, F., Honiden, S.: Qos-aware automatic service composition by applying
functional clustering. In: Proceedings of the International Conference on Web Services, pp.
89-96. IEEE (2011)

Weise, T., Bleul, S., Comes, D., Geihs, K.: Different approaches to semantic web service com-
position. In: Proceedings of the International Conference on Internet and Web Applications
and Services, pp. 90-96. IEEE (2008)

Wu, B., Deng, S., Li, Y., Wu, J., Yin, J.: Awsp: an automatic web service planner based on
heuristic state space search. In: Proceedings of the International Conference on Web Services,
pp. 403-410. IEEE (2011)

Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web Services Com-
position Using SHOP2. Springer, Heidelberg (2003)

Xu, J., Reiff-Marganiec, S.: Towards heuristic web services composition using immune algo-
rithm. In: Proceedings of the International Conference on Web Services, pp. 238-245. IEEE
(2008)

Yan, Y., Chen, M., Yang, Y.: Anytime qos optimization over the plangraph for web service
composition. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing,
pp. 1968-1975. ACM (2012)

Yan, Y., Poizat, P., Zhao, L.: Self-adaptive service composition through graph plan repair. In:
Proceedings of the International Conference on Web Services, pp. 624-627. IEEE (2010)

References 113

167.

168.

169.

170.

171.

172.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web ser-
vices composition. In: Proceedings of the 12th International Conference on World Wide Web,
pp- 411-421. ACM (2003)

Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware
middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311-327 (2004)
Zeng, L., Ngu, A.H., Benatallah, B., Podorozhny, R., Lei, H.: Dynamic composition and
optimization of web services. Distrib. Parallel Databases 24(1-3), 45-72 (2008)

Zhou, A., Huang, S., Wang, X.: Bits: a binary tree based web service composition system.
Int. J. Web Serv. Res. 4(1), 40 (2007)

Zou, G., Gan, Y., Chen, Y., Zhang, B.: Dynamic composition of web services using efficient
planners in large-scale service repository. Knowl.-Based Syst. 62, 98—112 (2014)

Zou, G., Lu, Q., Chen, Y., Huang, R., Xu, Y., Xiang, Y.: Qos-aware dynamic composition of
web services using numerical temporal planning. Trans. Serv. Comput. 7(1), 18-31 (2014)

	Preface
	Contents
	1 Introduction
	1.1 Contribution and Scope
	1.2 Method for Selection of Approaches
	1.2.1 Creating a Basis for Selection
	1.2.2 Determining the Considered Approaches

	2 Automated Software Composition---A Top View
	2.1 Background
	2.2 Features of Software Composition Problems
	2.2.1 Input Features
	2.2.2 Output Features
	2.2.3 Behavior Features

	2.3 The Main Service Composition Problem Classes
	2.3.1 Class Identification
	2.3.2 Goals and Focus When the Structure is Known
	2.3.3 Goals and Focus When the Structure is Unknown
	2.3.4 Comparative Discussion of the Classes

	3 Template-Based Composition
	3.1 Systems that Ignore Functionality
	3.1.1 Simple Control Flow Models
	3.1.2 Complex Control Flow Models
	3.1.3 Concluding Discussion

	3.2 Systems with Functional Operation Selection
	3.2.1 Consideration of Behavior Descriptions
	3.2.2 Dependencies and Conflicts of Operations
	3.2.3 Consideration of Business Constraints
	3.2.4 Concluding Discussion

	3.3 Systems with Placeholder Refinement
	3.3.1 Nonrecursive Refinements
	3.3.2 Recursive Refinement
	3.3.3 Concluding Discussion

	4 Composition Without a Given Structure
	4.1 Propositional Systems Without Background Theory
	4.1.1 IO-Based Composition
	4.1.2 Composition with Preconditions and Effects
	4.1.3 Concluding Discussion

	4.2 Propositional Systems with Background Theory
	4.2.1 Composition with Type Hierarchies
	4.2.2 Composition with Similarity Matching
	4.2.3 Concluding Discussion

	4.3 FOL-Based Systems
	4.3.1 Approaches Without I/O-Relations
	4.3.2 I/O-Relational Approaches for Finite Spaces
	4.3.3 I/O-Relational Approaches for Infinite Spaces
	4.3.4 Concluding Discussion

	5 Conclusion and Outlook
	5.1 Summary
	5.1.1 Template-Based Approaches
	5.1.2 Approaches Without a Given Structure
	5.1.3 Answers to the Initial Research Questions

	5.2 Discussion
	5.3 Outlook

	 References

