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      Genome Editing with Targetable Nucleases                     

     Stephane     Pelletier     

    Abstract     For decades, genome engineering relied on techniques that took years to 
master, required the generation of large and often complex DNA constructs contain-
ing selection markers, and could be applied to only a few organisms. However, the 
ease and effi ciency of current technologies to edit genomes are unprecedented. With 
the advent of targetable nucleases, most notably the CRISPR-Cas9 technology, 
genomes of all species are now easily accessible to modifi cations. This advance has 
provided countless opportunities not only to further our understanding of gene func-
tions and disease mechanisms but also to correct disease-causing mutations, modify 
crops and livestock, and perhaps modify our environment. This chapter discusses 
the advances in genome-editing technologies and their current and future 
applications.  

  Keywords     Clustered regularly interspaced palindromic repeats (CRISPR)–Cas9 
(CRISPR-associated protein 9)   •   CRISPR from  Prevotella  and  Francisella  1 (Cpf1)   
•   Genome editing   •   Genome engineering   •   Homologous recombination (HR)   
•   Meganucleases   •   Nonhomologous end-joining (NHEJ)   •   Transcription activator- 
like effector nucleases (TALENs)   •   Zinc-fi nger nucleases (ZFNs)  

      Introduction 

 Technologies to manipulate genomes have greatly improved during the past few 
years. For decades, researchers have relied on  homologous recombination (HR  ), a 
naturally occurring but infrequent event, to introduce or correct DNA alterations at 
specifi c genomic loci. Although the approach has provided invaluable insights into 
gene function and disease mechanisms, the low frequency of correct targeting events 
in many organisms and thus the need for large and complex DNA constructs as well 
as drug selection have limited its widespread use as a genome-editing strategy. 
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 Early studies on HR in  eukaryotic cells   showed that DNA double-strand ends, 
resulting from DNA double-strand breaks (DSBs), are highly recombinogenic [ 1 ]. 
This property of DNA double-strand ends prompted researchers to test whether the 
voluntary insertion of a DSB at a particular site within a genome would also pro-
mote HR at or near that site. Several groups have used a two-step strategy in which 
a meganuclease restriction site is inserted by conventional low-frequency HR and a 
DSB is introduced by expression of the cognate meganuclease. They found that 
voluntary insertion of DSBs at any given site promotes HR and gene replacement by 
several orders of magnitude [ 2 – 6 ]. However, the two-step strategy used in these 
studies did not allow for the rapid reprogramming of the nuclease and signifi cantly 
limited the application of this strategy for genome editing. 

 In search of a more fl exible reagent for introducing  DNA DSBs   within genomes, 
the Carroll group investigated the use of a new class of artifi cial endonucleases 
called the  zinc-fi nger nucleases (ZFNs  ) that was developed by the Chandrasegaran 
group [ 7 – 9 ]. These nucleases function as dimers and use eukaryotic DNA-binding 
domains, the  zinc-fi nger proteins (ZFPs  ) [ 10 ], to guide the catalytic domain of the 
nonspecifi c endonuclease Fok1 [ 11 – 14 ] to virtually any location within genomes. In 
contrast to  meganucleases  , which recognize predefi ned DNA sequences, ZFNs can 
be reprogrammed by modifying the ZFPs to target any desired location within 
genomes. Importantly, the use of ZFNs can improve site-specifi c gene replacement 
by HR by several orders of magnitude [ 9 ,  15 ]. However, the widespread adoption of 
 ZFNs   by the scientifi c community has been hampered by the complexity of their 
assembly and variable effi cacy in vivo [ 16 ]. 

 A decade after ZFNs were implemented as genome-editing tools, another class 
of targetable nucleases was developed. Similar to ZFNs, the transcription activator- 
like effector (TALE) endonucleases (TALENs) result from the fusion of engineered 
DNA-binding proteins (TALEs) and the catalytic domain of Fok1 [ 17 ,  18 ]. Similar 
to ZFNs, these enzymes function as dimers and effi ciently cleave DNA to enable 
genome editing, and they can be reprogrammed to target virtually any location 
within genomes [ 19 ]. Although the cloning of TALE repeats has been challenging 
because of the high sequence homology between repeats, the simplicity and predict-
ability of the TALE code (see following) enable rapid reprogramming of these 
endonucleases. 

 In 2012, the demonstration by Jinek and colleagues [ 20 ] that the CRISPR (clus-
tered regularly interspaced short palindromic repeat)–Cas9 (CRISPR-associated 
protein 9) system from  Streptococcus pyogenes  can be adapted for genome engi-
neering sparked a revolution in the fi eld of genome editing. The CRISPR-Cas9 sys-
tem for genome editing consists of a small RNA molecule, called single guide RNA 
(sgRNA), and a nonspecifi c endonuclease, Cas9 [ 20 ]. The small RNA molecule 
forms a complex with Cas9 and provides sequence specifi city to the system by 
interacting with its genomic target according to the Watson–Crick base-pairing 
rules. In contrast to ZFNs and TALENs, which require complete reengineering of 
the enzymes for reprogramming, the simple modifi cation of the sgRNA is suffi cient 
to reprogram Cas9 to target any sequence of interest [ 20 – 22 ]. The simplicity of 
CRISPR-Cas9 reprogramming, its high effi cacy, and its multiplexing capability 
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have propelled this technology to the forefront of genome editing. Can this technol-
ogy be surpassed? A recent study identifi ed a novel class 2 CRISPR effector system 
in  Francisella novicida  U112 having features that are slightly distinct from the 
CRISPR-Cas9 system and that can be readily used as a genome-editing tool [ 23 ]. 

 This chapter describes the different classes of targetable nucleases and discusses 
their applications as genome-editing tools.  

    Zinc-Finger Nucleases 

 ZFNs are artifi cial chimeric endonucleases formed by the fusion of a versatile class 
of eukaryotic transcription factor  DNA-binding domains  , the zinc-fi nger proteins 
(ZFPs), and the catalytic domain of Fok1 (Fig.  1 ). In contrast to conventional type 
II endonucleases that cleave DNA within or close to their binding sites, Fok1 is a 
type IIS endonuclease which cleaves DNA distally from its binding site [ 11 – 14 ]. 
Both the DNA-binding domain and the nuclease activity can be physically sepa-
rated [ 14 ,  24 – 26 ], allowing the fusion of the catalytic domain of  Fok1   to other 
DNA-binding domains such as ZFP or TALEs. Fok1 needs to dimerize to exert cata-
lytic activity [ 8 ]. The low affi nity between the Fok1 catalytic subunits is insuffi cient 
to promote dimerization and prevents random DNA cleavage. The targeting of two 
Fok1 subunits to any given locus in the genome is guided by DNA-binding domains 
(ZFPs, TALEs, or Cas proteins; see following), which recognize two adjacent bind-
ing sites in opposite directions [ 8 ]. Appropriate spacing between the two binding 
sites is required to allow dimerization of the catalytic subunits (Fig.  1 ) [ 8 ,  19 ,  27 ].

   In ZFNs, target specifi city is provided by the ZFP  domain  . ZFPs are modular 
DNA-binding domains that were originally identifi ed in eukaryotic transcription fac-
tors [ 28 ,  29 ]. ZFPs consist of tandem arrays of Cys2-His2 fi ngers, each binding a zinc 
(II) ion to form the DNA-binding domain. ZFPs bind DNA by inserting an α-helix 
into the major groove of the DNA double helix, and each fi nger recognizes approxi-
mately 3 bp of genomic DNA sequence [ 30 ,  31 ]. Three or more fi ngers are required to 
provide suffi cient affi nity for binding to genomic DNA, and ZFNs with three to six 
fi ngers are generally used for introducing DNA DSBs. Each array of three to six fi n-
gers recognizes 9 to 18 bp of genomic DNA, specifying 18 to 36 nucleotides for each 
pair of ZFNs. This arrangement provides remarkable specifi city, especially consider-
ing that an 18-bp sequence is predicted to be found less than once in the human 
genome. Tandem repeat arrays of fi ngers bind DNA from the 3′-end to the 5′-end. The 
3′-most triplet is recognized by the N-terminal fi nger, and so forth [ 30 ] (Fig.  1 ). To 
allow dimerization of the Fok1 catalytic subunits, opposing DNA sequences recog-
nized by the pair of ZFNs must be separated by a 5- to 6-bp- long spacer [ 9 ,  32 – 34 ] 
(Fig.  1 ). One of the major drawbacks of using ZFNs for genome editing is that their 
binding is sensitive to the epigenetic status of the target DNA [ 35 ,  36 ]. 

  Modular assembly methods   and combinatorial selection methods have been 
developed to engineer specifi c ZFPs. Modular assembly methods are based on 
the functional autonomy of each fi nger to associate with the 3-bp DNA segments. 

Genome Editing with Targetable Nucleases
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  Fig. 1    Schematic representation of  targetable nucleases   for genome editing. ( a ) Schematic repre-
sentation of a pair of zinc-fi nger nucleases (ZFN), each containing four zinc-fi nger (ZF) proteins, 
that recognizes a 12-nucleotide-long target sequence. A ZFN target site contains two zinc-fi nger- 
binding sites separated by a 5- to 7-nucleotide-long segment to enable FokI dimerization. ZFNs 
bind DNA “backward.” The N-terminal ZFP recognizes the 3′-triplet of the recognition sequence 
and so forth. ( b ) Schematic representation of a pair of TALENs, each containing an array of 20 
TALE repeats that defi nes a 20-nucleotide-long target sequence. A TALEN target site contains two 
TALE repeat binding sites separated by a 12- to 20-nucleotide-long segment accommodating for 
the requirement of extra TALE sequences at the C-terminus and FokI dimerization. Unlike ZFNs, 
which bind DNA 3′ to 5′, TALENs bind DNA 5′ to 3′ with the most N-terminal repeat recognizing 
the most 5′ nucleotide. The specifi city of TALE repeats is provided by repeat variable di-residues 
at positions 12 and 13 of the 35-amino-acid TALE repeats. Four repeat variable di-residues NI, 
HD, NN, and NG, defi ning adenine (A) cytosine (C), guanine (G), and thymidine (T), respectively, 
are commonly used. In addition to the TALE repeats, additional protein sequences are required for 
TALENs to recognize their target DNA. At the N-terminus, two small repeats recognize a thymi-
dine at position 0. ( c ) Schematic representation of the CRISPR-SpCas9 system for genome editing 
in complex with its target DNA. Cas9 is an endonuclease containing RuvC and HNH DNA endo-
nuclease activity. The single guide RNA ( red ) is an artifi cial RNA molecule formed by the fusion 
of the crRNA with the tracrRNA by using a small RNA linker. The Cas9 endonuclease–RNA 
complex interacts with its target DNA sequence, the protospacer element, fi rst by recognizing the 
small DNA element called the protospacer element adjacent motif located immediately down-
stream of the protospacer element. Alterations in the RuvC-like or HNH DNA nuclease activity 
can transform SpCas9 into a nickase that, when used as a pair, can reduce off-target activity. ( d ) 
Schematic representation of the CRISPR-FnCpf1 system for genome editing in complex with its 
target DNA. FnCpf1 is an endonuclease containing two RuvC-like endonuclease domains. Unlike 
SpCas9, which requires two small RNA molecules (or an artifi cial single guide RNA), FnCpf1 
requires only a small crRNA molecule for activity. Like SpCas9, FnCpf1 also requires a PAM for 
activity. Interestingly, however, the PAM sequence is located immediately 5′ of the protospacer 
element, and Cpf1 cleaves its target DNA at the 3′-end of the protospacer element. Moreover, 
unlike SpCas9, which produces DNA breaks with blunt ends, FnCpf1 introduces scattered double- 
strand breaks, leaving 4- to 5-nucleotide-long 5′-overhangs       
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By linking three or more natural or artifi cial fi ngers together in a single polypep-
tide, a DNA-binding domain with suffi cient affi nity and specifi city can be gener-
ated [ 37 – 41 ]. Although simple, these methods do not account for context-dependent 
factors that infl uence the affi nity and specifi city of ZFPs and have yielded ZFNs 
with poor effi cacies, poor affi nities, and high toxicities [ 42 – 44 ]. To account for 
context- dependent factors, pairs of fi ngers that function well together have been 
characterized and have been used for modular assembly [ 45 – 48 ]. Additional 
modifi cations, such as insertion of short or long linkers between fi ngers, can also 
be made to modular assembly methods to accommodate for B-form DNA or to 
skip base pairs [ 49 ].  Combinatorial selection methods   involve the interrogation 
of large randomized libraries to select ZFPs with high DNA-binding affi nities 
and high specifi cities [ 50 ,  51 ]. Although these strategies have yielded ZFNs with 
high activities and low toxicities [ 43 ,  44 ], only highly specialized laboratories 
have the expertise to perform these screens. 

 Several Web-based tools have been developed to help with the design and selec-
tion of ZFN pairs, such as the ZFN target site algorithm (  http://mccb.umassmed.
edu/ZFPmodularsearch.html    ); zinc fi nger tools (  http://www.scripps.edu/barbas/
zfdesign/zfdesignhome.php    ); ZiFit (  http://zifi t.partners.org/ZiFiT/    ); and ZFN-Site 
(  http://ccg.vital-it.ch/tagger/targetsearch.html    ).  

    Transcription Activator-Like Effector Endonucleases 

 Similar to ZFNs,  TALENs   are artifi cial endonucleases that use TALE DNA-binding 
domains as DNA-binding units and the Fok1 endonuclease as the catalytic subunit. 
As mentioned previously, Fok1 functions as a dimer and therefore two TALE-Fok1 
subunits must be brought together at any given locus for DNA cleavage. This pro-
cess is mediated by the TALE DNA-binding domains, which are designed to recog-
nize two adjacent and opposite DNA segments separated by 12 to 20 bp to allow 
Fok1 dimerization [ 19 ]. 

 TALEs are transcription factors secreted by the gram-negative plant bacterium 
 Xanthomonas  during host invasion [ 52 ]. These  transcription factors   bind and regu-
late host gene expression to support bacterial virulence, proliferation, and dissemi-
nation. TALEs are composed of an N-terminal domain containing a type III 
translocation signal, a central region containing tandem repeats responsible for 
DNA binding of TALEs to plant DNA, and a  C-terminal domain   containing nuclear 
localization signals and a transcriptional activation domain [ 52 ]. The fusion of the 
 Fok1 endonuclease   at the trimmed C terminus of an N-terminally truncated TALE 
has provided the framework for generating TALENs [ 19 ] (Fig.  1 ). 

 Differing from ZFPs in which each fi nger recognizes approximately 3-bp seg-
ments of target DNA, each TALE repeat, composed of a 33- to 35-amino-acid seg-
ment, specifi es 1 bp [ 53 ,  54 ]. TALE repeats are highly similar in sequence, and the 
specifi city is conferred by a pair of adjacent amino acids (typically residues 12–13) 
within each repeat [ 55 ,  56 ]. These amino acids are referred to as “repeat variable 
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di-residue” (RVD) and specify the TALE repeat code. Four major repeats with 
hypervariable residues NI, HD, NN, and NG are commonly used, which recognize 
adenine (A), cytosine (C), guanine (G), and thymidine (T) [ 57 – 60 ], respectively 
(Fig.  1 ). Additional hypervariable residues with increased specifi city have also been 
reported [ 19 ,  53 ,  59 ,  61 ] (Fig.  1 ). However, arrays containing some of these alterna-
tive RVDs can have less activity [ 59 ,  61 ]. 

 Differing from ZFNs, which require no additional protein segments for activity, 
TALENs require, in addition to the TALE repeats, some protein sequences on each 
end of the repeats. Although several TALE frameworks have been used to develop 
TALENs as a genome-editing tool, they all appear to have similar properties. One 
important property is the presence of two small repeats similar in structure but dis-
tinct in sequence from the TALE repeats. These repeats recognize an  obligate thy-
midine   at position 0 of the TALE target DNA sequence [ 55 ] (Fig.  1 ); in other words, 
every TALEN target DNA sequence should start with a T. Although 10–12 TALE 
repeats are suffi cient for binding, 15–21 TALE repeats are usually used for target-
ing, providing additional specifi city and affi nity to the TALEN. As seen with ZFNs, 
the DNA-cleavage activity of TALENs is affected by the epigenetic status of the 
target sites, in particular cytosine methylation in vivo [ 62 ]. Strategies to overcome 
this limitation have been developed, such as chemical inhibition of DNA methyl-
transferases or the use of an alternative TALE module in which the asparagine resi-
due at position 12 is conserved and the residue at position 13 is omitted [ 62 ,  63 ]. 

 The simplicity of the TALE code represents a major advancement over the more 
complex triplet  DNA recognition system   used by ZFNs. The cloning of several 
repeats, however, has been more challenging because of sequence similarity. To 
circumvent this limitation, several strategies such as solid-phase cloning [ 64 ,  65 ] 
and ligation-dependent [ 66 ] and ligation-independent [ 67 ] assembly strategies have 
been developed to construct TALE repeats with high specifi city. 

 Several Web-based tools have been developed to help with the design and selec-
tion of TALE pairs, such as TAL Effector Nucleotide Targeter 2.0 (TALE-NT, 
  https://tale-nt.cac.cornell.edu/    ); Scoring Algorithm for Predicting TALEN Activity 
(SAPTA,   http://baolab.bme.gatech.edu/Research/BioinformaticTools/TAL_tar-
geter.html    ); TAL effectors (  http://www.genome-engineering.org/taleffectors/    ); 
E-TALEN (  http://www.e-talen.org/E-TALEN/    ); CHOPCHOP (  https://chopchop.
rc.fas.harvard.edu/    ); TALEN designer (  http://www.talen-design.de/    ); ZiFit (  http://
zifi t.partners.org/ZiFiT/    ); and Mojo Hand (  http://www.talendesign.org/    ).  

     RNA-Guided Nucleases   

  Bacteria and Archaea   have evolved an adaptive immune system that captures DNA 
segments from invading phages or plasmids and integrates them within their genome 
for future use as a defense mechanism. These short DNA fragments, typically 20 to 
50 nucleotides long, are integrated within their genomes in between spacer elements 
of similar length [ 68 ]. These sequences are termed as clustered regularly 
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interspaced palindromic repeats because they are incorporated in small clusters 
within the host genome. After a second infection by phages of the same family (or 
other invading DNAs), small RNAs generated from these clusters associate with a 
Cas endonuclease and direct the cleavage of the invading phage genome. Of the 
several distinct CRISPR-Cas systems present in Bacteria and Archaea [ 69 ,  70 ], the 
type II CRISPR-Cas system has been adapted for genome editing [ 20 ]. 

 The type II  CRISPR-Cas system   has three components. The fi rst component is a 
processed RNA transcript called CRISPR RNA (crRNA) which is produced from 
the CRISPR array and contains a single spacer element as well as part of the repeat 
element. The second component is a  trans -encoded RNA transcript called trans- 
activating crRNA (TracrRNA), which has sequence complementarity to the repeat 
sequence of the crRNA transcript. The third component is the Cas9 endonuclease, 
which possesses two nuclease domains: a RuvC-like domain near the N-terminus of 
the protein and an HNH nuclease domain in the middle of the protein [ 20 ]. All three 
components form a ribonucleic complex that recognizes specifi c genomic DNA 
sequences, called protospacer elements, specifi ed by the spacer element of the 
crRNA. The formation of the  DNA–RNA hybrid   between the crRNA and the proto-
spacer element promotes cleavage of the target DNA [ 20 ]. The sequences receptive 
to the action of Cas endonuclease also require a protospacer-adjacent  motif   (PAM), 
which is a short DNA sequence located immediately downstream (3′) of the proto-
spacer element [ 20 ,  71 – 73 ]. The  S. pyogenes  Cas9 (SpCas9) endonuclease, for 
example, requires a 5-NGG-3′ sequence (where N represents any nucleotide) for 
optimal activity [ 74 ]. A variant of this sequence (5′-NAG-3′) also confers limited 
activity, whereas any other combination of triplets does not confer activity [ 74 ]. The 
 PAM   requirements for several CRISPR-Cas systems have been described, some of 
which have been adapted for genome editing [ 73 ,  75 – 80 ] (Table  1 ). Moreover, by 

    Table 1    Protospacer adjacent motif requirements for CRISPR-Cas9 systems adapted for genome 
editing   

 Species  PAM  References 

  Streptococcus pyogenes   NGG  [ 74 ] 
  Streptococcus pyogenes  (VQR variant)  NGAG  [ 81 ] 
  Streptococcus pyogenes  (VRER variant)  NGCG  [ 81 ] 
  Streptococcus mutans   NGG  [ 79 ] 
  Staphylococcus aureus   NNGGGT  [ 81 ,  246 ] 

 NNGAAT 
 NNGAGT 

  Streptococcus thermophilus  (CRISPR3)  NGGNG  [ 73 ,  76 ,  80 ] 
  Streptococcus thermophilus  (CRISPR1)  NNAAAAW  [ 76 ] 
  Campylobacter jejuni   NNNNACA  [ 76 ] 
  Neisseria meningitidis   NNNNGATT  [ 77 ,  78 ] 
  Pasteurella multocida   GNNNCNNA  [ 76 ] 
  Francisella novicida   NG  [ 76 ] 
  Treponema denticola   NAAAAN  [ 75 ] 
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using structural information, selection-based direct evolution, and combinatorial 
design, SpCas9 has been modifi ed to recognize alternative PAM sequences, which 
signifi cantly extends the range of sequences amenable for genome editing [ 81 ] 
(Table  1 ). Collectively, Cas9 endonucleases from various species enable the cover-
age of virtually all nucleotides of genomes.

   The most commonly used  CRISPR-Cas9 system      for genome editing comes from 
 S. pyogenes . The three-component system has been simplifi ed by linking the crRNA 
and tracrRNA into an sgRNA [ 20 ] (Fig.  1 ). The simple modifi cation of the guide 
sequence, a 20-nucleotide sequence corresponding to the protospacer element, 
within the sgRNA molecule is suffi cient to target SpCas9 to virtually any region of 
the genome (Fig.  1 ). 

  CRISPR-Cas9 systems   offer several advantages over TALENs or ZFNs for 
genome editing. First, CRISPR-Cas9 systems rely on a single endonuclease that 
remains constant and thus does not require reengineering for reprogramming. 
Reprogramming of CRISPR-Cas9 systems requires only the design and generation 
of a new sgRNA. Second, the simplicity of the system offers opportunities for 
genome-wide applications and multiplexing. Transduction of multiple sgRNAs 
together with the Cas9 endonuclease allows the simultaneous targeting of multiple 
sites. CRISPR libraries are now publicly available, and genome-wide screens have 
identifi ed genes essential for cell survival and drug resistance in vitro [ 82 – 89 ] as 
well as genes involved in tumor growth and metastasis in vivo [ 90 ]. Another advan-
tage of the CRISPR-Cas9 technology over ZFNs and TALENS is its ability to cleave 
genomic DNA regardless of its epigenetic status [ 74 ,  91 ]. Finally, differing from 
ZFNs and TALENS, which cleave DNA distally to their binding site, SpCas9 
cleaves DNA within its binding sites [ 20 ]. The resolution of the DNA DSB by 
 homologous recombination (HR  ) or  nonhomologous end-joining (NHEJ  ) modifi es 
the target site and prevents further cleavage by Cas9. This property of CRISPR- 
Cas9 represents a signifi cant asset for genome editing by HR. 

 Target specifi city is crucial for the successful application of genome editing 
tools. Thus,  sgRNA selection   plays an important role in tailoring mutations. Several 
studies have shown that SpCas9 can tolerate mismatches, RNA bulges, and DNA 
bulges between the guide sequence of the crRNA and the target sequence [ 20 ,  21 , 
 74 ,  92 – 95 ]. Although there are no simple and defi nitive rules for SpCas9 specifi city, 
studies have shown that the number and the position of these mismatches relative to 
the PAM sequence are important. DNA–RNA duplex mismatches, including DNA 
and RNA bulges, located near the PAM sequence impair Cas9 activity, whereas 
mismatches located distally are better tolerated. Although single-nucleotide mis-
matches have little effect on SpCas9 activity, two or more mismatches, depending 
on their position, can signifi cantly impair SpCas9 activity. Similarly, no simple and 
defi nitive rules governing on-target effi cacy have been established. However, recent 
studies have suggested that the nucleotide immediately upstream of the PAM 
sequence may affect the effi cacy of Cas9-mediated DNA DSBs [ 91 ,  96 – 98 ]. 

 Several open-access websites have been developed to help with the selection of 
sgRNAs. These websites accept a wide range of inputs and suggest on-target loca-
tions on the basis of their uniqueness within a genome and generate a list of potential 
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off-target loci associated with each on-target sequence. These websites include 
CRISPR Design (  http://crispr.mit.edu/    ); E-CRISP (  http://www.e-crisp.
org/E-CRISP/    ); ZiFit (  http://zifi t.partners.org/ZiFiT/    ); and Cas-OFFinder (  http://
www.rgenome.net/    ). 

 During the implementation of the  CRISPR-Cas9 technology   for mouse genome 
engineering, we developed our own sgRNA selection procedure by using Cas- 
Offi nder [ 99 ]. Although our procedure may seem more tedious than other guide 
RNA selection methods, it provides a comprehensive list of all potential guide 
RNAs along with their potential off-target sites within genomes. Our strategy also 
takes into account observations made by several groups who have worked on 
defi ning sgRNA selectivity [ 74 ,  92 ,  94 ,  95 ,  100 ], including those showing that 
SpCas9 can tolerate several mismatches (up to 8) located at the 5′-end of the 
sgRNA [ 20 ]. Cas-Offi nder allows the interrogation of not only several reference 
genomes but also nonreference vertebrate genomes, such as the non-obese dia-
betic and Friend leukemia virus, strain B mice. Importantly, our method allows 
the design of highly selective sgRNAs that exhibit little or no off-target activity 
in mice [ 99 ,  101 ]. 

 More recently, another class 2 CRISPR-Cas system has been adapted for 
genome editing [ 23 ]. The type  V CRISPR-Cas system   from  Francisella novicida  
(Fn) comprises a large protein called CRISPR from  Prevotella  and  Francisella  1 
(Cpf1) and a small crRNA. Unlike type II CRISPR-Cas systems, CRISPR-Cpf1 
systems do not require tracrRNAs for function. The 5′-end of the crRNA contains 
a highly conserved spacer region that is predicted to form a short hairpin loop. 
Alteration of the sequence or the hairpin disrupts CRISPR-FnCpf1 cleavage activ-
ity, suggesting that FnCpf1 recognizes a combination of sequence-specifi c and 
structural features of the stem loop. The crRNA–Cpf1 complex cleaves DNA that 
is preceded by a short T-rich PAM sequence and introduces scattered DSBs with a 
4- to 5-nucleotide-long 5′-overhang (Fig.  1 ). Similar to the CRISPR-Cas9 systems, 
the CRISPR-FnCpf1 endonuclease requires an 18-nucleotide-long spacer and can 
tolerate single- nucleotide mismatches between the guide sequence and the target 
DNA. In addition to FnCpf1, several other CRISPR-Cpf1 systems with distinct 
PAM requirements have been identifi ed in bacteria (Table  2 ). Unlike CRISPR-
Cas9 systems, however, and similar to TALENs and ZFNs, CRISPR-Cpf1 cleaves 
outside its recognition sequence—at nucleotide 18 on the nontargeted strand and 
nucleotide 23 on the targeted strand. This fi nding suggests that repeated cleavage 
might occur at the site until suffi cient alterations are introduced to prevent recogni-

   Table 2     Protospacer adjacent motif requirements   for CRISPR-Cpf1 systems   

 Species  PAM  References 

  Franciselle novicida   TTN  [ 23 ] 
  Acidaminococcus  sp.  BV3L6   TTTN  [ 23 ] 
  Lachnospiraceae bacterium MA2020   TTTN  [ 23 ] 
  Moraxella bovoculi 237   (T/C)(T/C)N  [ 23 ] 

Genome Editing with Targetable Nucleases

http://crispr.mit.edu/
http://www.e-crisp.org/E-CRISP/
http://www.e-crisp.org/E-CRISP/
http://zifit.partners.org/ZiFiT/
http://www.rgenome.net/
http://www.rgenome.net/


10

tion of the target site by Cpf1. Nevertheless, FnCpf1 and related systems represent 
a great addition to our armory of genome editing tools.

       Target Specifi city 

  Target specifi city   is fundamental for the successful application of nuclease-based 
genome editing. Excessive cleavage of off-target loci can cause cytotoxicity and 
confound the interpretation of genetically modifi ed organisms. In the context of 
clinical applications, off-target cleavage may have deleterious consequences if it 
modifi es loci other than the ones intended. Thus, reagents need to be optimized, and 
potential off-target cleavage sites need to be identifi ed. 

 Binding specifi cities of ZFPs and TALEs are usually determined in vitro by 
using the systematic evolution of ligands by exponential enrichment [ 102 ]. 
Information obtained from using this in vitro approach can then be used to inter-
rogate the genome of interest and generate a list of potential off-target loci. 
These potential off-target loci can in turn be interrogated by direct sequencing 
of the loci [ 103 ,  104 ]. Binding specifi city of CRISPR-Cas9 is governed by the 
Watson–Crick base-pairing rules. Potential off-targets are typically identifi ed by 
using bioinformatics tools. Although whole-genome sequencing studies show 
that off-target mutagenesis is rare in mice and cultured stem cells edited by 
using CRISPR-Cas systems, the careful selection of sgRNAs is recommended 
[ 101 ,  105 – 109 ]. 

 Two main approaches have been used to limit off-target cleavage by ZFNs and 
TALENs. The fi rst approach consists of selecting ZFNs or TALENs with long 
DNA recognition sites (12–18 bp). As already mentioned, an 18-nucleotide 
sequence is found less than once in a 3-billion base-pair genome (approximately 
the size of the human genome). The second approach is to use obligate heterodi-
mers of FokI that can prevent random dimerization of the nonspecifi c nuclease, 
and, consequently, random DNA cleavage [ 110 ]. Minimizing the off-target cleav-
age by ZFNs has also been achieved by reducing the half-life of ZFNs. Addition 
of an arginine residue at the N-terminus of ZFNs reduces toxicity in cells, possi-
bly by preventing excessive off-target cleavage [ 44 ]. In addition to the careful 
selection of sgRNA, several other strategies have been proposed to minimize the 
cleavage of off-target loci by CRISPR-SpCas9; these include use of the SpCas9-
D10A mutant, which inactivates the RuvC-like nuclease domain of SpCas9 [ 20 ], 
in combination with a pair of offset sgRNAs [ 111 ,  112 ]. This double nickases 
strategy can lead to a 100- to 1500-fold reduction of target activity in cell lines. 
Another strategy is to use shorter guide RNA molecules. Although counterintui-
tive, the use of this strategy reduces off- target cleavage by several thousand fold. 
In combination with paired  nickases  , this strategy can further improve selectivity 
[ 100 ,  113 ]. Another strategy is to combine the use of paired offset sgRNAs with 
catalytically inactive Cas9 fused to the catalytic subunit of the nonspecifi c endo-
nuclease FokI. By using this strategy, off-target cleavage can be limited by 
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approximately sevenfold over that by the paired nickase strategy [ 114 ]. In this 
case, a spacer length of 13 to 17 bp is required for maximum activity. The target 
specifi city of the newly identifi ed CRISPR-Cpf1 systems is still unknown, and 
additional studies are required to better defi ne their specifi city.  

    Genome Editing with Targetable Nucleases 

 Fundamental to genome editing with targetable nucleases are the DNA-repair 
mechanisms involved in the resolution of DNA DSBs. In  eukaryotic cells  , introduc-
tion of a DNA DSB by targetable nucleases stimulates DNA-repair mechanisms, of 
which NHEJ and homology-directed repair (HDR or HR) are the most prominent 
[ 115 ]. Resolution of DNA DSBs by NHEJ promotes the ligation of DSB ends in an 
error-prone manner and often results in the small insertion or deletion (indels) of 
genetic material at the break site. In some cases, NHEJ can also result in intra- or 
interchromosomal translocations when two or more breaks are introduced. 
Resolution of DSBs by the HDR pathway is generally considered error free, and the 
sister chromatid is used as a template for repair. Taking advantage of this repair 
mechanism by providing a user-defi ned DNA repair template (donor template) 
allows the insertion of specifi c mutations, including large DNA elements. 

  Gene inactivation   can be achieved by introducing a single DNA DSB within an exon 
downstream of the translational start site (Fig.  2a ). The resolution of DSBs by NHEJ can 
introduce several genetic modifi cations such as nonsense, missense, and frameshift 
mutations, which often result in gene inactivation by engaging the nonsense- mediated 
decay pathway [ 116 ]. This strategy is commonly used for genome-wide CRISPR-
mediated screens [ 82 – 89 ] and gene inactivation in vivo [ 99 ,  107 ,  109 ,  117 ].

    Gene correction   and site-directed mutagenesis can be achieved by introducing a 
single DNA DSB near the location of the intended correction or mutation (Fig.  2b ). 
Resolution of DSBs by HR is promoted by providing user-designed DNA templates 
that have sequence homology on both sides of the desired mutation(s). This strategy 
has been used to insert point mutations and large DNA fragments in vitro and in 
model organisms (Fig.  2c ) [ 15 ,  99 ,  101 ,  107 ,  117 – 123 ]. 

 Gene inactivation can also be achieved by introducing two DSBs fl anking the 
gene of interest (Fig.  2d ). Resolution of these DSBs by NHEJ can result in exclu-
sion of the intervening region [ 99 ,  117 ,  118 ,  124 – 129 ]. However, resolution of these 
breaks can also result in insertion or deletion of small DNA segments at both loci 
and might not generate null alleles. 

 The introduction of two DNA DSBs within the introns of genes can be used to 
insert recombinase recognition sites (e.g., loxP or Flp sites) to generate conditional 
alleles (Fig.  2d ). DNA fragments containing loxP sites fl anked by regions of homol-
ogy to the target sites can serve as donor DNA for HR [ 99 ,  107 ,  117 ]. As already 
described, the resolution of DSBs by NHEJ can also result in deletion of the inter-
vening region, thereby creating a null allele. Often in an attempt to generate mice 
bearing a conditional allele, null alleles are also generated by NHEJ [ 99 ]. Typically, 
targeting strategies that can generate both alleles simultaneously are designed [ 99 ]. 
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  Fig. 2    Targeting strategies used to introduce mutations by using targetable nucleases. ( a ) Gene 
inactivation and insertion of random mutations can be achieved by the use of a single targetable 
nuclease. Resolution of the double-strand breaks (DSBs) by NHEJ generates various alterations at 
the locus, such as nonsense, missense, and frameshift mutations, as well as insertion or deletion of 
large DNA fragments. ( b ) Specifi c point mutations can be introduced in genomes by using a single 
targetable nuclease. Resolution of the single DSB by  homologous recombination (HR  ) by using a 
donor template containing the specifi ed mutations and regions of homology fl anking the 
mutation(s) generates allele(s) with the desired mutation. ( c ) Insertion of large DNA elements can 
be achieved by introducing a single DNA DSB by using a single targetable nuclease. Resolution of 
the DSB by HR by using a donor template containing the desired DNA sequence to be inserted 
(e.g., YFP open reading frame) fl anked by a sequence of homology corresponding to the target 
locus generates one or more alleles with the desired insertion. ( d ) Generation of conditional alleles 
and large deletions can be achieved by using two targetable nucleases designed to target introns 
fl anking one or more critical exons of a gene. The resolution of these breaks by nonhomologous 
end-joining (NHEJ) can result in the exclusion or inversion of the intervening region, likely gen-
erating null alleles. Resolution of the DNA DSBs by NHEJ can also result in the generation of 
indels at the break sites. Resolution of the breaks by HR in the presence of donor templates con-
taining recombinase recognition sequences (e.g., loxP sites) fl anked by homology arms corre-
sponding to the target sites generates fl oxed alleles. ( e ) Chromosomal translocations can be 
generated by introducing DNA DSBs by using two targetable nucleases aiming at distinct chromo-
somal regions where the translocation is desired. Resolution of these breaks by NHEJ can result in 
the translocation of the two chromosomes. Insertion of loxP sites on each chromosome could also 
be introduced to make the translocation inducible       
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 Insertion of DSBs on separate chromosomes can also promote chromosomal 
translocations [ 130 – 136 ]; this is of particular interest in the case of cancer, wherein 
translocations often result in cellular transformation, and mimicking these translo-
cations in cells or mice can provide critical insights into disease pathogenesis. 
Homology-directed repair templates containing segments homologous to both chro-
mosomes can be used to promote chromosomal translocation. Alternatively, loxP 
sites can be inserted within both chromosomes and translocation can be promoted 
by Cre-mediated recombination [ 99 ,  137 ]. 

 Targetable nucleases can also be used to inactivate gene families with high 
sequence homology. A single pair of ZFNs or TALENs or a single sgRNA can be 
designed to target several family members [ 99 ] (Fig.  2a ). 

 Another application of targetable nucleases is insertion of the DNA transgene 
into genomic safe harbors by using nonintegrating viral vectors. The PPP1R12C 
locus on the human chromosome 19 is a transcriptionally competent region in which 
transgenes can be safely inserted without inducing adverse effects. This region is 
also known as AAVS1, and the insertion of DSBs by targetable nucleases can pro-
mote the insertion of large DNA elements fl anked by regions of homology to the 
AAVS1 locus [ 138 – 140 ].  

    Promoting Homologous Recombination over Nonhomologous 
End-Joining 

  DSB repair pathways   are in constant competition with one another. Because of this, 
the introduction of precise mutations by HR using targetable nucleases continues to 
be a major challenge. Two main strategies have been proposed to circumvent this 
problem. The fi rst strategy consists of inhibiting NHEJ, the most important DSB 
repair mechanism in eukaryotic cells. The second strategy is to deliver targetable 
nucleases during the late S- and G 2 -phases of the cell cycle when the HR pathway 
is most active. 

 Studies on DSB resolution pathways have identifi ed several factors involved in 
the canonical  NHEJ pathway   [ 115 ]. These factors include the heterodimers Ku70/
Ku80, which bind DNA DSBs and function as scaffolds to recruit the NHEJ machin-
ery. Another important factor in NHEJ is DNA ligase IV, which is essential for DNA 
end-joining. Inhibition of NHEJ by inhibiting the expression of the Ku70/Ku80 
heterodimers or DNA ligase IV as well as inhibition of DNA ligase IV binding to 
DNA DSB by the small molecule SCR7 can improve HR by several fold while 
reducing NHEJ both in cell lines and in mouse embryos [ 141 – 143 ]. 

 NHEJ operates throughout the cell cycle whereas HR is restricted to the late S- 
and G 2 -phases. Thus, delivering targetable nucleases at the late S- and G 2 -phases 
can likely promote HR over NHEJ. Indeed, the delivery of CRISPR-Cas9 reagents 
into cells treated with nocodazole, which causes cell-cycle arrest at the G 2 /M-phase, 
leads to a dramatic increase in HR (up to 38 %) relative to untreated cells [ 144 ].  
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     Delivery Methods   

 The delivery of targetable nucleases and donor DNA for HR into cells is also essen-
tial for the successful application of genome editing. Delivery of DNA plasmids that 
encode targetable nucleases and donor templates by using electroporation or trans-
fection using chemical reagents is common in transformed cells as well as select 
embryonic stem cells. However, these methods are usually ineffi cient in primary 
cell cultures and may induce toxicity. Several delivery methods have been devel-
oped to overcome these limitations. 

 One approach being investigated is the delivery of in vitro translated targetable 
nucleases by using reagent-free transfection strategies. These strategies rely on the 
chemical or genetic modifi cation of enzymes to make them membrane permeable. 
For example, conjugation of poly-arginine peptides to TALENs favors their uptake 
by cells, and the reversible modifi cation enables TALEN-mediated gene knockout 
at a rate similar to that by plasmid transfection [ 145 ]. The genetic fusion of TALEN 
to the cell-permeable TAT peptide also enables uptake of the fusion protein by cells 
while maintaining activity [ 146 ]. The genetic fusion of ZFNs to transferrin enables 
the uptake of the ZFN fusion protein and leads to site-specifi c in situ cleavage of the 
target locus [ 147 ]. Effi cient gene disruption in cultured cells can also be achieved by 
using cell-penetrating peptide-conjugated Cas9 and sgRNA [ 148 ]. The positively 
charged nature of ZFPs makes ZFNs membrane permeable, and internalization of 
unconjugated ZFNs leads to effi cient endogenous gene disruption in mammalian 
cells [ 149 ]. Another chemical-free delivery method under investigation is  electro-
poration   of in vitro-translated and in vitro-assembled targetable nucleases, in par-
ticular sgRNA–Cas9 complexes. This delivery method is less toxic than, but as 
effi cient as, DNA electroporation for introducing DNA DSBs [ 150 ]. Chemical 
reagents-dependent transfection procedures have also been developed to deliver 
in vitro-assembled CRISPR-Cas9 complexes. This delivery method can increase the 
effi cacy of  CRISPR-Cas9  -mediated genome editing by protecting the nuclease 
complex from being neutralized by serum proteins blood cells and the extracellular 
matrix or from being degraded by the endosomal/lysosomal pathway [ 151 ]. 
Electroporation, chemical transfection, or microinjection of mRNA transcripts 
encoding targetable nucleases is another widely used approach for genome editing 
in cell lines and zygotes [ 99 ,  101 ,  107 ,  109 ,  117 ,  152 ]. The limited off-target activ-
ity associated with these hit-and-run strategies is likely caused by the short half- 
lives of the in vitro-translated proteins or in vitro-transcribed mRNAs, which exert 
their activity for a shorter period of time than do plasmid DNA molecules and/or 
viral vectors (see following). Moreover, the random integration of plasmid DNA or 
viral vectors within genomes not only can affect the length of nuclease expression 
but also can interfere with genes in which the DNA has been inserted. In this regard, 
episomal viral vectors are preferred to integrating viruses. 

 Several viral vectors are currently being developed for targetable  nuclease tech-
nology  , such as adenovirus (AV), adeno-associated virus (AAV), lentivirus (LV), 
integrase-defi cient lentivirus (IDLV), and baculovirus (BV) vectors. These vectors 
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have been extensively used to deliver targetable nucleases in vitro and in model 
organisms. Some of these delivery systems, however, have their limitations and 
might not be suitable for all targetable nucleases. 

 For example,  LV and IDLV vectors   have been used to deliver ZFNs and TALENS 
as well as donor plasmids in vitro [ 153 – 155 ]. However, their susceptibility to epi-
genetic modifi cations and silencing limits their effi cacy. Moreover, the expression 
of intact TALENs can be severely impaired because of the extensive deletion of 
TALE repeats caused by switching of the reverse transcriptase template within 
TALE repeats [ 156 ,  157 ]. This limitation, however, can be surmounted by using 
alternative coding sequences that limit reverse transcriptase template switching 
[ 157 ] or by using reverse transcriptase-defi cient viruses [ 158 ]. 

 BV vectors have been used to deliver ZFNs and TALENs with high effi cacy in 
embryonic stem cell cultures, and the large packaging capacity of BV vectors has 
enabled the packaging of ZFP and TALEN dimers into a single viral particle [ 159 –
 162 ]. However, under certain propagation conditions, TALE repeats can also 
undergo rearrangement, which makes BV vectors less suitable for gene therapy and 
gene targeting in general [ 156 ,  163 ]. 

  AV vectors   represent an excellent platform for the delivery of targetable nucle-
ases, because they can infect dividing and nondividing cells, accommodate large 
DNA fragments and code for proteins without the need for integrating host genomes. 
Moreover, AV vectors are one of the most prominent vectors used in gene therapy 
clinical trials [ 164 ]. AV vectors have been used to deliver ZFNs, TALENs, and 
RNA-guided nucleases both in vitro and in vivo [ 156 ,  165 – 170 ]. AV particles are 
large enough to accommodate dimers of ZFNs and TALENs, the large endonuclease 
Cas9 and sgRNA, and donor templates. 

 Nonpathogenic  AAV vectors   have been developed for effi cient gene delivery and 
have yielded promising results in phase I to phase III clinical trials [ 171 ]. AAVs are 
replication-defi cient viral particles that rely on unrelated viruses for replication. 
Their genetic material is composed of a 4.7-kb single-stranded DNA with two open 
reading frames. AAVs have been used to deliver ZFNs [ 172 – 174 ], and, despite their 
smaller packaging capacity, CRISPR-Cas9 systems [ 175 – 177 ].  

     Applications   

 Targetable nucleases have enabled genome editing in a plethora of mammalian and 
nonmammalian cells as well as model organisms commonly used in biomedical 
research laboratories, such as yeast [ 178 ,  179 ],  Caenorhabditis elegans  [ 180 – 182 ], 
 Drosophila  [ 183 – 185 ], zebrafi sh [ 61 ,  186 – 190 ],  Xenopus  [ 191 – 194 ], mouse [ 99 , 
 101 ,  107 ,  109 ,  117 ,  195 – 199 ], rat [ 200 – 203 ], rabbit [ 204 – 207 ], and monkey [ 208 –
 210 ]. In laboratory models, targetable nucleases have been used to determine gene 
function, study structure–function relationships, and create animal models of human 
diseases. 

Genome Editing with Targetable Nucleases



16

 Targetable nucleases have also been used to modify crops [ 211 – 215 ], fungi [ 216 , 
 217 ], and livestock [ 124 ,  218 – 221 ]. In plants, for example, targetable nucleases 
have been used to insert important traits such as disease resistance [ 214 ] and herbi-
cide resistance [ 212 ,  213 ]. Gene inactivation in livestock has enabled the refi nement 
of traits for xenotransplantation [ 222 – 225 ], and it has been used to generate animal 
models for human diseases [ 226 ]. Gene inactivation or insertion can also confer 
pathogen resistance [ 218 ,  227 ], increase productivity [ 220 ,  227 ,  228 ], and perhaps 
reduce the transmission of zoonotic disease. 

 Targetable nucleases also hold great promise for clinical applications in humans. 
Targetable nucleases can be used to correct and cure monogenic diseases, and the 
multiplexing capability of CRISPR-Cas9 can be used to correct and cure complex 
genetic disorders [ 21 ,  92 ]. Targetable nucleases can also be used for the targeted 
inactivation of genes associated with a certain trait or to inactivate viral infections. 
As proof of concept, targetable nucleases have been used to correct disease-causing 
mutations associated with sickle cell disease [ 229 – 231 ], hemophilia A and B [ 232 –
 235 ], α1-antitrypsin defi ciency [ 236 ], X-linked severe combined immunodefi ciency 
in human hematopoietic stem cells [ 153 ], Duchenne muscular dystrophy in human 
myocytes [ 237 ,  238 ], Wiskott–Aldrich syndrome in hematopoietic stem cells [ 239 ], 
and cystic fi brosis in epithelial cells generated from patient-induced pluripotent 
stem cells from patients [ 240 ]. In vivo, targetable nucleases have been used to pre-
vent hypercholesterolemia [ 241 ] and Duchenne muscular dystrophy [ 242 ]. 

 Targetable nucleases have also been used for the targeted inactivation of the 
HIV1 co-receptor C –C chemokine receptor type 5 (CCR5  ) in T cells and hemato-
poietic stem cells [ 167 ,  243 ], and clinical trials on ZFN nucleases targeting CCR5 
are currently underway [ 165 ]. Targetable nucleases not only offer an opportunity to 
target and inactivate genes involved in viral infection but also allow the inactivation 
of integrated viral vectors. A recent study used CRISPR-Cas9 technology to target 
the HIV1 LTR U3 region and effi ciently excised the 9.7-kb fragment containing the 
integrated HIV genome [ 244 ]. Similar strategies have been employed to eliminate 
other latent and potentially pathogenic viruses from human genomes, such as the 
Epstein–Barr virus [ 245 ].  

    Conclusion 

 The development of targetable nucleases capable of introducing DNA DSBs to spe-
cifi c sites within genomes has greatly improved our ability to manipulate genomes 
and holds great promises for gene therapy. To achieve the full potential of the tech-
nology, however, several limitations inherent to the technologies themselves such as 
target specifi city and delivery of the targetable nucleases and donor templates, as 
well as those associated with the DNA-repair mechanisms, need to be improved. 
Although improving target specifi city and delivery has been the main focus of 
recent studies, developing a better understanding of the DNA-repair mechanisms 
and, more importantly, identifying ways to promote HR represents, in my opinion, 
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the most challenging and pressing issue. Inhibition of DNA ligase IV is already 
showing promising results in cell cultures and in model organisms and may be a 
translatable approach for in vivo gene therapy in humans.     
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    Abstract     Studies of gene function in mice have been supported during the past 
decade by a nearly exhaustive collection of mutants, systematically obtained by 
homologous recombination in murine ES cells. Unfortunately, the study of the 
noncoding fraction of the genome did not benefi t from the same valuable 
resources. Nevertheless, increasing evidence of the relevance of this fraction of 
the vertebrate genome has been accumulated in the past years. Comprehensive 
maps of histone modifi cations, methylation patterns, and DNA-binding protein 
occupancies have been made available to predict key regulatory elements through 
the work of various international collaborative consortia, such as ENCODE. 
Comparing these maps with data from genome-wide association studies (GWAS) 
suggested that variants in noncoding sequence elements might be involved in sev-
eral traits and disease conditions. Therefore, there is an urgent need for accurate 
functional tests and genetic modelling of noncoding elements. In this chapter, we 
propose a number of strategies to test hypothesis regarding noncoding DNA ele-
ments, by taking advantage of the most recent genome editing techniques, namely, 
CRISPR/Cas9 approaches.  
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      Introduction 

  Protein-coding genes   account for just a small fraction of the vertebrate 
genomes, estimated to be about 2 %. The remainder, 98 % of the genome, is 
composed of repetitive DNA elements and, most importantly, of a large variety 
of noncoding sequences that share a considerable degree of conservation across 
species [ 1 ]. Such conserved, noncoding elements are required for accurate reg-
ulation of gene expression and are involved in determining cell type identity 
and function.  Active and inactive regulatory sequences   are associated with spe-
cific biochemical marks.  DNA methylation  , histone modifications, and protein 
occupancy are predictive for the function and the state of a given element [ 2 ]. 
Active enhancer sequences are typically marked by mono-methylation of 
lysine 4 of histone H3 (H3K4me1), by acetylation of lysine 27 (H3K27ac), and 
localize in open  chromatin   regions that show hypersensitivity to DNase I diges-
tion (Fig.  1 ). In addition, the distribution of two enhancer-binding proteins, 
CHD7 and P300 [ 3 ], can be used with confidence to identify enhancers. Binding 
profiles of transcription factors in gene neighbourhoods allow inferring the 
underlying networks of gene regulation [ 4 ]. Interestingly, the distribution of 
 chromatin    marks   and transcription factors that decorates the noncoding frac-
tion of the genome varies between different cell types and changes dynamically 
during development and differentiation [ 5 ]. A direct correlation between tran-
scription profile and  chromatin   signatures has been described in many cell 
types or tissues, including embryonic stem (ES) cells [ 6 ], further triggering the 
interest for noncoding, regulatory elements in the fields of development and 
stem cell biology. Several sequence variants in noncoding elements have 
already been found associated with human traits as well as with disease condi-
tions [ 7 – 11 ]. For example,  genome-wide association studies (GWAS  ) high-
lighted that a common trait such as eye colour is strongly associated with a 
DNA polymorphism lying 21 kb upstream of the pigmentation-related  OCA2 
gene  . Molecular analyses indicated that a particular  single-nucleotide poly-
morphism (SNP  ) is located within a OCA2 enhancer and, interestingly, the 
rs12913832 C-allele is associated with decreased OCA2 expression, reduced 
transcription factor recruitment, and  chromatin   looping [ 11 ]. Hair colour also 
results, in part, from variants at noncoding sequences [ 12 ]. Thus, increasing 
evidence denotes the functional role of noncoding variants in both human traits 
and disease. Therefore, there is a pressing need of adequate modelling of non-
coding variants and mutations. This chapter aims to provide an overview of the 
experimental approaches that can be used to study the role of noncoding DNA 
elements and to obtain their inactivation in model systems using the CRISPR/
Cas9 system.
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       Genetic Manipulations of Noncoding  Sequences   
in the Prenuclease Era 

 Loss-of-function alleles of nearly all protein-coding genes have been obtained by 
homologous recombination in mouse ES cells [ 13 ]. On paper, the same experimen-
tal approach could be applied to inactivate noncoding elements. However, only a 
handful of noncoding elements have been inactivated using this strategy in ES cells 
[ 14 – 16 ]. In fact, the noncoding fraction of the genome is particularly enriched in 
repetitive elements, a characteristic that poses diffi culties and challenges the design 
of optimal targeting vectors, because the presence of non-unique DNA sequences 

  Fig. 1     Chromatin marks guide   the identifi cation of active regulatory elements. ENCODE and 
Roadmap Epigenomics datasets can be browsed to identify putative regulatory elements. DNaseI- 
seq tracks highlight open chromatin regions. RNA-seq tracks can be used to identify actively 
transcribing genes. Similarly, RNA polymerase II (PolII) ChIP-seq tracks marks transcription. 
H3K27ac is a typical mark of active enhancers, whereas H3K4me1 can be used to identify active 
promoters. In contrast, H3K27me3 marks repressed chromatin. CTCF protein is associated with 
chromatin boundaries and marks the transition between open and closed chromatin       
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within the homology arms is obviously detrimental for targeting effi ciency. Hence, 
most targeting events would be expected to occur elsewhere, outside the desired 
noncoding DNA element, but at genomic locations rich in similar repetitive 
sequences. 

 Furthermore, a recent study highlighted a bias associated with gene targeting in 
ES cells. In fact, by comparing the genome of 129/Sv and C57BL/6J, the mouse 
strains that are most commonly used as source of ES cells and as recipient embryos, 
respectively, more than 1000 passenger mutations in the vicinity of coding genes 
have been identifi ed, which can confound the interpretation of the associated mutant 
phenotypes [ 17 ]. 

 An alternative strategy that has been largely explored in previous years involves 
the use of large,  genomic-type  , transgenes [ 18 ]. Instead of targeting regulatory ele-
ments at their endogenous locus, several laboratories reproduced inactivating muta-
tions within large genomic constructs, such as those included with artifi cial 
chromosome type of transgenes (i.e., bacterial artifi cial chromosomes, BACs; or 
yeast artifi cial chromosomes, YACs). There, the desired mutation is built in the 
context of a large genomic-type transgene. Using bacteria or yeast, the effi ciency of 
homologous recombination is much higher and the handling of large numbers of 
clones is easier and also less expensive [ 19 ]. In addition, the recombined constructs 
are delivered to cells or model organisms, and the effect of the mutation in noncod-
ing DNA elements is often read through the activity of a reporter gene included in 
the transgene [ 20 ]. Alternatively, the modifi ed BAC or YAC can be introduced in 
mice where the endogenous gene was previously inactivated [ 21 ]. Nevertheless, this 
approach suffers from a number of drawbacks. First, large constructs are not easy to 
manipulate and not all laboratories succeeded in establishing the required protocols. 
Second, modelling a mutation in a large transgene would in turn introduce several 
other non-isogenic variants into the model. Finally, copy number, site of integration, 
and transgene integrity may severely affect the phenotype, leading to complex phe-
notypes resulting from a mixture of variables, where variegated expression of the 
transgenes can be also a confounding factor [ 22 ,  23 ]. 

 The CRISPR/Cas9 system, with its high effi ciency and fl exibility, seems to be 
the ideal candidate to fi ll the existing gap in the genetic modelling and functional 
assessment of noncoding  sequences   in vitro and in nearly all model organisms 
[ 24 ,  25 ]. By using this system, the limitations that we described associated with 
gene targeting in ES cells and large transgenes can be easily overcome. In par-
ticular, with the use of CRISPR/Cas9 approaches the requirement for sequence 
homology can be reduced to just 20 base pairs, relatively easy to fi nd even within 
stretches of repetitive DNA sequences. And, most importantly, the modifi cation 
occurs precisely at the endogenous locus, hence avoiding any chromosomal posi-
tion effect [ 23 ]. 

 In this chapter we illustrate three distinct strategies for the genetic perturbation 
of noncoding elements using CRISPR/Cas9 approaches. First, we introduce the 
inactivation by chromosomal deletion (Fig.  2a ). Next, we discuss a novel technique 
known as  epigenome editing  (Fig.  2b ). Finally, we discuss strategies to target 
 particular non-protein-coding genes, such as miRNA and lincRNAs.
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       Editing by  Chromosomal Deletion      

  Noncoding regulatory elements   are contained within arrays of transcription factor- 
binding sites. Their mechanism of action often relies on the cooperative occupancy 
of multiple DNA-binding proteins. Binding of a specifi c transcription factor to a 
DNA sequence can be anticipated by the presence of a particular motif or consensus 
sequence. However, DNA-binding motifs are not always completely predictive 
because many consensus-binding sequences are poorly defi ned.  Position weight 
matrices (PWM  )-based prediction of DNA-binding consensus highlighted that the 
majority of transcription factors tolerate multiple point mutations at their target 
sequence [ 26 ]. Hence, different from protein-coding genes that can be disrupted 
introducing frameshift mutations at their sequence, point mutations might be insuf-
fi cient to fully inactivate complex regulatory elements. One thoughtful approach 
would be to remove the noncoding DNA element from the genome, within a larger 
DNA sequence, including multiple predicted DNA-binding sites, that is hypotheti-
cally linked with a function (typically, a 1- to 2-kb large sequence). Next, in a sec-
ond round of experiments, smaller overlapping deletions can be produced to 
fi ne-map core elements or to dissect the differential relevance associated with each 
of the individual DNA sequences. The  nonhomologous end-joining DNA repair 
route (NHEJ),   triggered by the CRISPR/Cas9 approach, can be exploited to obtain 
such alleles, promoting religation of two distal DNA ends generated by adjacent and 

  Fig. 2    Different CRISPR/Cas9 approaches. ( a ) Inactivation by deletion: two single guide (sg)RNAs 
are designed to fl ank a chromatin region of interest. When simultaneous double-stranded breaks are 
produced, the intervening DNA is deleted. ( b ) Epigenetic editing: sgRNAs are designed across the 
target sequence and delivered with a dCas9 protein fused with the desired chromatin remodelling 
catalytic domain. For example, the Lsd1 catalytic domain is able to inactivate active enhancers. ( c ) 
Motif disruption. When the DNA-binding specifi cities of a transcription factor are well characterized 
and defi ned, a single sgRNA can be devised to target specifi cally the nucleotides that constitute a 
specifi c DNA-binding site. Upon NHEJ DNA repair,  indel  mutations will be introduced at the DNA-
binding motif, potentially abolishing the binding of the cognate transcription factor       
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simultaneous double-strand breaks (DSB); this would in turn lead to the loss of the 
intervening DNA sequences existing between the two DSBs (Fig.  2a ). This method 
represents a simple and effective approach to obtain the targeted inactivation of 
noncoding elements, in their endogenous genomic context, by designing two tar-
geted nucleases (i.e., in a CRISPR/Cas9 approach: two single guide RNAs, sgRNA, 
to drive the DSB caused by Cas9). Through surgical removal of the putative regula-
tory element, alteration in gene expression level of nearby and distal genes can be 
measured [ 27 ], as well as alterations in  chromatin   marks at the surrounding 
sequences. 

 In our laboratory, we have used a CRISPR/Cas9 deletion approach to test the 
in vivo relevance of a regulatory element found upstream from the mouse  Tyr  gene 
(encoding tyrosinase, the fi rst and fundamental enzyme in the  biosynthetic pathway   
of melanin) that we had previously investigated using YAC-based and standard 
transgenes [ 21 ,  28 ,  29 ]. The  Tyr  5′-upstream region contains multiple DNA-binding 
motifs and it is marked by EP300, a DNA-binding protein that often decorates 
active enhancers, and by H3K4me1 [ 23 ]. Through delivery of two sgRNAs fl anking 
this element and the Cas9 mRNA to mouse fertilized eggs, we have generated sev-
eral deletion alleles with high frequency [ 23 ]. When homozygous deletions are pro-
duced, a similar loss of coat-colour pigmentation is observed in several independent 
lines, indicating that such an element is indeed required to achieve wild-type  Tyr  
expression. As stated before, double-CRISPR/Cas9 deletions are generated through 
the error-prone NHEJ DNA repair route. Thus, each allele we obtained carries a 
typical and unique scar at the DNA sealing point. Another consequence of error- 
prone DNA repair is the production of partial and larger deletions, and even inver-
sions, probably the result of rearrangements during DNA repair, favoured by the 
number of repetitive DNA elements that fl ank the target sequences. Such additional 
alleles can be used for genetic mapping. In fact, by comparing the  phenotype   of 
distinct alleles, we have assembled a genetic map of this mouse  Tyr  5′-enhancer/
boundary element [ 23 ]. 

 A previous study in cultured cells highlighted that the effi ciency of induced chro-
mosomal deletions decreases with the size of the desired deletion [ 30 ]. Nevertheless, 
deletions in the megabase order are indeed possible [ 31 ], opening the possibility of 
precise modelling large chromosomal deletions, structural variants, or  copy number 
variation (CNV  ) that are often found in families associated with genetic conditions 
or diseases. 

 One striking example has been reported by Lupiáñez and colleagues upon mod-
elling mutations at genomic boundaries.  Genomic boundaries  , or insulators, are 
regulatory elements involved in the regulation of multiple genes domains. Typically, 
boundaries are located in between two different but adjacent topological expression 
domains [ 32 – 34 ]. Genomic boundaries physically separate chromatin territories 
containing genes with distinct expression patterns and restrict the activity of 
enhancer clusters to the cognate gene set [ 34 ]. Studying such sequences in an ecto-
pic manner, using DNA constructs linked to reporter genes that mimic the natural 
conformation, might reveal the insulating activity of these boundary elements but 
does not reveal the true function of such elements in the endogenous context [ 35 ]. 
In contrast, this can be achieved by inactivating them at the endogenous site by 
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CRISPR/Cas9 deletion [ 23 ]. Interestingly, imposing such genomic alterations in 
mice reproduced the phenotype observed in humans carrying similar chromosomal 
aberrations [ 36 ]. 

 The CRISPR/Cas9-deletion approach can also be applied to the genetic dissec-
tion of super- or stretch-enhancers [ 37 ]. In fact,  sgRNAs   can be easily designed to 
fl ank the full super-enhancer as well as individual regions associated with discrete 
chromatin immunoprecipitation resolved by DNA sequencing ( ChIP-seq  ) peaks. 
With this approach, the contribution of each module of the super-enhancer can be 
elucidated [ 38 ]. For some specifi c cases, inactivation of noncoding elements can 
also be achieved using one sgRNA, by disrupting a previously characterized DNA- 
binding motif (Fig.  2c ); this is the case of well-characterized transcription factor- 
binding motifs, such as GATA-2. Recently, Bresnick and colleagues described the 
relevance of a number of GATA-2-binding sites in hematopoiesis [ 39 ]. By targeting 
a CRISPR/Cas9 approach to the consensus DNA sequence,  indels  associated with 
the DNA repair scar will mutate some of the nucleotides constituting such a motif. 
As a caveat, one must always take into account that several transcription factor- 
binding sites can still be recognized by the corresponding nuclear factors, even 
though their sequences might differ signifi cantly from the observed consensus. 
Because the frequency of CRISPR/Cas9 target sites in the mammalian genome 
approaches one every eight nucleotides, tiled sgRNAs can also be generated to 
interrogate a regulatory element under saturating conditions. Using this approach, 
Canver and colleagues identifi ed vulnerabilities within an erythroid-specifi c 
BCL11A enhancer that can be used for therapeutical fetal globin re-induction in the 
context of sickle cell disease and β-thalassemias [ 40 ]. 

 Recently, the  mutational signatures   of several types of malignancies have been 
described. Interestingly, mutations at noncoding sequences have been identifi ed in a 
signifi cant number of cancer patients [ 41 – 43 ]. In contrast to mutations at protein- 
coding genes, whose impact can be predicted by taking advantage of already exist-
ing animal and cellular models, the effect of a mutation outside the coding sequence 
can be diffi cult to anticipate. Hence, CRISPR/Cas9 mutagenesis represents a valid 
experimental approach to rapidly identify the effect of those noncoding mutations. 
For example, mutations at a noncoding sequence were found accumulated in a num-
ber of  chronic lymphocytic leukemia (CLL  ) patients. In fact, a hypermutated region 
was found to display enhancer-like features such as H3K4 and H3K27ac enrich-
ment. By CRISPR/Cas9-mediated chromosomal deletion of this putative enhancer, 
Puente and colleagues proved that loss of that enhancer resulted in a 40 % decrease 
in  Pax5 , a gene located 330 kb upstream [ 44 ].  

     Epigenome Editing   

 Epigenetic modifi cations are defi ned as chemical modifi cations of either DNA or 
histone proteins that affect chromatin structure and accessibility to DNA-binding 
proteins. These modifi cations are dynamically remodelled during development, dif-
ferentiation, and aging. In fact, specifi c classes of enzymes exist that edit back and 
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forth such biochemical marks, including DNA and histone methylases, demethyl-
ases, histone acetyl transferases (HAT), and deacetylases (HDAC) [ 45 ]. Each of 
these enzymes can be targeted by specifi c drugs to inhibit their activities. In the past 
years, these inhibitors were used to interfere with chromatin-remodelling enzymes. 
Furthermore, the use of these molecules was also proposed and has already been 
explored as potential chemotherapy agents [ 46 – 48 ]. Unfortunately, these inhibitors 
act globally, nonspecifi cally. Advances in genome editing and synthetic biology led 
to the ability of building designer DNA-binding proteins over distinct targeting 
nuclease platforms. Artifi cial DNA-binding scaffolds can be coupled with a variety 
of catalytic domains, including those from the chromatin remodelling proteins listed 
here. This method allows imposing locally, and in a targeted manner, specifi c chro-
matin marks in the absence of any genetic, irreversible manipulation (Fig.  2b ). For 
example, a TALE (transcription activators-like effectors) DNA-binding array was 
coupled with Tet1, an enzyme that promotes DNA demethylation. Targeting such 
TALE-Tet1 fusion to methylated DNA targets resulted in the loss of local DNA 
methylation. For example, by targeting the  RHOXF2  promoter in Hela and HEK 
293 cells, this resulted in a 50- to 1000-fold gene activation [ 49 ]. Recently, the 
CRISPR/Cas9 system has been also adapted for applications in epigenome editing, 
by using a nuclease-dead Cas9 variant (dCas9). By fusing dCas9 with a catalytic 
domain of LSD1, a lysine-specifi c demethylase produced a tool to target active 
enhancers. By programming dCas9-LSD1 with enhancer-specifi c gRNAs, Kearns 
and colleagues could induce downregulation of target genes [ 50 ]. By targeting 
enhancers relevant for the expression of pluripotency factors, these authors induced 
morphological changes in murine ES cells. Interestingly, these changes depend on 
the depletion of H3K27ac from key enhancers. 

 It is also possible to turn the switch in the opposite direction. By coupling dCas9 
with EP300, a histone acetyltransferase, a strong activation of target genes can be 
achieved by using enhancer- and promoter-specifi c guide RNAs [ 51 ]. 

 This approach is not associated with irreversible DNA sequence alteration, a 
feature that is highly desirable for the study of chromatin dynamics. In fact, only the 
epigenetic features, and not the DNA sequences themselves, are altered. This factor 
allows performing a sequence-based assay, such as chromosome conformation cap-
ture, in the epigenetic-edited cells, a possibility that is obviously lost if a deletion 
occurs at the targeted sequence in the genome. In addition, reversibility and nonin-
heritability traits are highly desirable features for therapeutical applications. 
Therefore, epigenome editing is one of the most promising applications derived 
from the use of the CRISPR/Cas9 tools [ 52 ].  

     Targeting Noncoding RNAs   

 Recent evidence supported the role of noncoding RNAs, including micro-RNAs 
(miRNAs) and long intergenic noncoding RNAs (lincRNAs) in regulating gene 
expression at multiple levels [ 53 ]. Catalogues of these transcripts account for more 
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than 56,000 human lncRNAs [ 54 ] and a similar number of small miRNAs. Thus, 
appropriate genetic models are required to defi ne the role of this emerging class of 
regulatory RNA molecules. Dissimilar to protein-coding genes, these transcripts can-
not be inactivated by triggering frameshift mutations at their corresponding exons, as 
point mutations are not likely to fully inactivate their regulatory potential. Rather, they 
need to be removed from the genome by a deletion strategy, similarly to what was 
previously described in this chapter for noncoding DNA elements such as enhancers 
and insulators. For example, Han and colleagues generated a large deletion in mice, 
encompassing the 23 kb of the imprinted lncRNA  Rian  [ 55 ]. Interestingly, the authors 
detected an increase in the expression of genes adjacent to the lncRNA  Rian , provid-
ing evidence of the fact that lncRNA can regulate transcription of nearby genes. 

 In a study aimed to characterize the function of the lncRNA  Haunt , Yin and col-
leagues deployed a number of distinct CRISPR/Cas9-based strategies. To dissect 
the effect of the  Haunt  transcript from that of the  Haunt  locus, the authors produced 
a series of deletions of different sizes and directed to functional elements within the 
element. By deleting small sequences constituting the  Haunt  promoter, resulting in 
the loss of  Haunt  lncRNA expression, the authors detected an increase in the expres-
sion of  Haunt  target genes, suggesting that this transcript has a suppressive role. In 
contrast, by producing larger deletions, the authors observed a decrease in the 
expression of the same set of target genes, indicating that the  Haunt  locus acts as a 
HOXA enhancer. To confi rm these data, the authors induced  Haunt  overexpression 
by knocking in the sequence of a strong constitutive promoter, CAG, just upstream 
the  Haunt  TSS, using CRISPR/Cas9 to trigger homologous recombination [ 56 ]. 
With this strategy, overexpression of lncRNA could be obtained at the endogenous 
locus. As miRNAs are often organized into large gene clusters, we could consider 
that removal of the full cluster could be interesting. In this regard, by injecting two 
adjacent sgRNA in zebrafi sh embryos, Xiao and colleagues achieved a very large 
deletion encompassing a miRNA cluster on zebrafi sh chromosome 9 [ 57 ].  

    Conclusion 

 The effi ciency, fl exibility, and reproducibility of CRISPR/Cas9 approaches trig-
gered many researchers to engage in challenging experiments that were technically 
very diffi cult to achieve, or nearly impossible to undertake, just a few years ago. 
CRISPR/Cas9-mediated genome mutagenesis has provided an outstandingly simple 
solution to functionally assess both coding and noncoding DNA sequences at their 
endogenous locations. Currently, with all these target nuclease experimental 
approaches, the entire mammalian genome can be investigated, in vivo, to decipher 
the role of coding and noncoding DNA elements in physiology and pathology.     
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    Abstract     Human induced pluripotent stem cells (iPSCs) represent a personalized 
stem cell source and enable research using the human as a model genetic system. 
Although iPSCs have been available for nearly a decade, simple application of effi -
cient genome modifi cation—a mainstay of genetics in the long-used mouse model—
has only recently come to fruition. Recombinant and programmable nucleases 
induce targeted DNA damage and exploit native DNA-repair machinery to generate 
random mutations or designer modifi cations through a template-mediated process. 
In this review, we provide an overview of state-of-the-art nuclease technologies 
such as ZFN, TALEN, and CRISPR/Cas9 and their utility for genome engineering 
of human iPSCs. We explore how nucleases may be used to edit the genome with 
base-pair precision, and methods for the detection and avoidance of off-target cleav-
age. Finally, we highlight sources of genetic and technical variation in iPSCs, and 
propose resolutions to the question of appropriate isogenic controls.  

  Keywords     Human induced pluripotent stem cell   •   iPSC   •   Gene targeting   •   ZFN   
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controls  

  Abbreviations 

   AAVS1    Adeno-associated virus integration site 1   
  CRISPR    Clustered regularly interspaced short palindromic repeat   
  crRNA    CRISPR RNA   
  ddPCR    Droplet digital PCR   

        K.   Woltjen      (*) 
  Center for iPS Cell Research and Application (CiRA), Kyoto University , 
  53 Kawahara-cho, Shogoin, Sakyo-ku ,  Kyoto   606-8507 ,  Japan    

  Hakubi Center for Advanced Research, Kyoto University ,   Kyoto   606-8501 ,  Japan   
 e-mail: woltjen@cira.kyoto-u.ac.jp   

    F.   Oceguera-Yanez    •    H.   Kagawa    •    S.-I.   Kim    
  Center for iPS Cell Research and Application (CiRA), Kyoto University , 
  53 Kawahara-cho, Shogoin, Sakyo-ku ,  Kyoto   606-8507 ,  Japan    

mailto:woltjen@cira.kyoto-u.ac.jp


46

  DSB    Double-strand break   
  DSBR    Double-strand break repair   
  ESC    Embryonic stem cell   
  GFP    Green fl uorescent protein   
  HDR    Homology-directed repair   
  HLA    Histocompatibility leukocyte antigen   
  indel    Insertion or deletion   
  iPSC    Induced pluripotent stem cell   
  ITR    Inverted terminal repeat   
  IVF    In vitro fertilization   
  MMEJ    Microhomology-mediated end-joining   
  NHEJ    Nonhomologous end-joining   
  PAM    Protospacer adjacent motif   
  PB     piggyBac  transposon   
  PBase     piggyBac  transposase   
  PCR    Polymerase chain reaction   
  PSC    Pluripotent stem cell   
  RNA    Ribonucleic acid   
  RNP    Ribonucleoprotein   
  ROCKi    Rho-kinase inhibitor   
  sgRNA    Single guide RNA   
  SNV    Single nucleotide variation   
  ssODN    Single-strand oligonucleotide   
  T7E1    Bacteriophage T7 endonuclease I   
  TALEN    Transcription activator-like effector nuclease   
  tracrRNA    Trans-acting crRNA   
  WGS    Whole-genome sequencing   
  ZFN    Zinc-fi nger nuclease   

         Induced Pluripotency and the Human Genetic Model 
Organism   In Vitro 

 From the  inner cell mass (ICM  ) of fertilized embryos, James Thomson fi rst derived 
human embryonic stem cells (ESCs) [ 1 ]. These novel cells have two key properties: 
fi rst, they are capable of indefi nite cell division in culture (self-renewal), and sec-
ond, as do their biological counterparts, they maintain the capacity to differentiate 
into all cells and tissues of the embryo and adult (pluripotency). The unchallenged 
advantage of human ESCs over other experimental cell systems has been this capac-
ity for differentiation, either in vivo via teratoma [ 2 ] or in vitro via adherent or 
three-dimensional (3D) cell culture [ 3 ,  4 ]. An application in disease research and 
regenerative medicine for ESCs was immediately apparent; however, the embryonic 
source of material has remained an ethical controversy [ 5 ]. 
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 One decade has now passed since Kazutoshi Takahashi and Shinya Yamanaka 
fi rst demonstrated that mouse somatic cells could be reverted through the 
expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, to a 
primitive embryonic-like stem cell state [ 6 ]. Derivation of induced pluripotent 
stem cells (iPSCs) from human somatic cells (Fig.  1 ) followed shortly thereafter 
[ 7 ], marking a partial ethical resolution and profound technical contribution [ 8 ]. 
Compared to ESCs, iPSCs present an additional benefi t for disease modeling 
and putative therapies: derived from a consenting individual, they represent 
personalized stem cells. Moreover, in contrast to ESCs from terminated 
embryos,  iPSCs   may be linked to the health and well-being of a living person, 
complemented by a recorded lifetime medical history. Thus, combined with 
in vitro differentiation to cells and tissues (Fig.  1 ), human iPSCs present a proxy 
by which individualized genetic variation may be accessed to understand the 
relevance to personal health [ 9 ].

    Pluripotent stem cells (PSCs  )—whether ESCs derived from the human embryo 
or iPSCs derived through reprogramming—display key properties of a tractable 
genetic system: a short generation time (~15 h), a high proportion of cells in S-phase 
[ 10 ], indefi nite proliferation, ease of culture, a propensity for DNA transduction, 
and selection by antibiotics or genetic complementation followed by clonal isola-
tion and expansion. With more recent advances such as Rho-kinase inhibition for 
improved single-cell survival [ 11 ], and feeder-free cell culture methods using 
defi ned matrices and media [ 12 ,  13 ], human PSC handling is more akin to murine 
PSC counterparts by means of single cell passage, and high-throughput 96-well 
clonal maintenance and expansion [ 14 ]. 

 As is explored in the following sections, the marriage of iPSC technology with a 
new generation of genetic engineering tools has enabled the precise transfer of 

  Fig. 1    The source, characteristics, and applications of human pluripotent stem cells. Genome 
engineering is applied to generate or validate human models of development and disease       
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reporter or therapeutic transgenes, gene disruption, or even gene correction (Fig.  1 ). 
It is remarkable to refl ect on the speed and relative ease at which both iPSC and 
genome engineering technologies have been adapted and merged for in vitro  disease 
modeling and drug screening.  

    Rise of the Genome Editing Machines 

  Genetic manipulation   by gene targeting is a mainstay of functional genomics. Those 
fundamental principles of gene targeting fi rst outlined by Mario Cappechi using 
positive-negative selection in mouse ESCs [ 15 ,  16 ] are duly applicable to human 
PSCs. However, even following these guidelines, the fi rst gene-targeting experiments 
in human ESCs [ 17 ] indicated that gene-targeting rates would be typically lower than 
observed in the mouse, leaving an obvious need for improvement. 

 The formation of  double-strand breaks (DSBs  ) in genomic DNA occurs naturally 
during DNA replication or in response to stresses such as ionizing radiation, and are 
vital to resolve recombination during meiosis and the production of immune system 
diversity [ 18 ]. DSB repair (DSBR) by end-resection and nonhomologous end- 
joining (NHEJ) can be inherently mutagenic, whereas  homology-directed repair 
(HDR  ) can faithfully restore DNA sequence in the presence of a template donor 
DNA (such as the sister chromatid). It was therefore hypothesized that intentional 
formation of DSBs at target loci could enhance gene-targeting frequencies via a 
custom donor DNA [ 19 ,  20 ]. The demonstration that the FokI nuclease domain is 
separable from DNA-binding domains [ 21 ] suggested a method by which nucleases 
could be engineered with novel specifi city. 

  Fig. 2    Common nuclease systems used to stimulate double-strand break repair (DSBR) at target 
genomic sites. ( a ) Zinc-fi nger nucleases (ZFN) and TAL effector nucleases (TALEN) are com-
posed of dimeric nuclease domains addressed by engineered DNA-binding domains. The Cas9 
nuclease is addressed by a synthetic guide RNA molecule. Endonuclease components are  green ; 
targeting components are  blue . ( b ) DSBs recruit endogenous repair machinery allowing genetic 
modifi cation by nonhomologous end-joining (NHEJ) or template-mediated homology-directed 
repair (HDR) pathways       
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 Zinc-fi nger nucleases ( ZFNs     ; Fig.  2a , top) built a foundation for recombinant 
endonuclease applications to enhance gene targeting through targeted DSBR, and 
remain a powerful tool in genome engineering even today [ 22 ]. Composed of a 
DNA-binding domain-encoding specifi city and a FokI nuclease domain, ZFNs 
function as paired proteins that position and dimerize FokI monomers to cleave at a 
target locus [ 23 ]. The binding of zinc fi ngers to DNA triplets is modular [ 24 ]; how-
ever, fi nger–triplet interaction properties have been shown to be highly context and 
neighbor dependent, such that engineering custom ZFNs remains notoriously diffi -
cult. This problem has been partially addressed using validated libraries of submod-
ules composed of two or three fi ngers [ 25 ]; however, screening for functional ZFNs 
is a resource-heavy endeavor.

   TAL effector nucleases ( TALENs  ; Fig.  2a , middle) broke the barrier between 
technical novelty and practical application [ 26 ], priming research laboratories 
through in-house nuclease design and production [ 27 ]. Plant pathogenic 
 Xanthomonas  spp. secrete TAL Effector (TALE) proteins, which activate host gene 
expression, resulting in a metabolic advantage to the invader [ 28 ]. The TALEs rep-
resent a unique class of proteins that bind DNA in a 1:1 modality [ 29 ,  30 ], making 
engineered design of TALENs more straightforward than that of ZFNs. The nature 
of this protein–DNA interaction is mediated through polymorphic protein repeats 
that display little degeneracy and no obvious neighbor effects. In a large-scale 
in vivo screen in zebrafi sh, TALENs were found to be more mutagenic than ZFNs 
[ 31 ]. Presumably, the increased tolerance of the spacer region provides a larger 
substrate for exonuclease activity, resulting in broad deletions compared to the con-
servative resection observed using tightly juxtaposed ZFNs. 

 CRISPR/Cas9 (Fig.  2a , bottom) has stolen the proverbial ‘show,’ capturing the 
attention of academia and public alike as it rapidly transcended from discovery as 
the hunter–killer of a potent anti-phage adaptive bacterial immune system [ 32 ], to 
experimental modulation and design [ 33 ] for genome engineering purposes [ 34 ]. 
The  Cas9 protein  , a general endonuclease that produces DSBs through HNH and 
RuvC nuclease domains, forms a ribonucleoprotein (RNP) complex with bacterially 
processed short CRISPR RNAs (crRNA) and trans-acting crRNA (tracrRNA) that 
pair with foreign genomic DNA targets to address and activate nuclease activity 
[ 35 ]. Biochemical characterization of the key CRISPR components, by Jennifer 
Doudna and Emmanuelle Charpentier [ 33 ], indicated that programmable cleavage 
could be achieved through the custom design of a hybrid crRNA–tracrRNA  single 
guide RNA molecule (sgRNA  ), which could be simply co-expressed or transfected 
as RNA along with the  Streptococcus pyogenes  Cas9 (SpCas9) protein. Thus, the 
CRISPR/Cas9 system could theoretically be programmed to cleave any 20-nt 
sequence upstream of a 5′-NGG-3′  protospacer adjacent motif (PAM  ). This report 
was immediately followed by back-to-back proof-of principle experiments describ-
ing genome engineering in human cells [ 36 ,  37 ]. During the past 3 years, CRISPR/
Cas9 technology has enabled gene knockouts across previously inaccessible genetic 
model organisms [ 38 ] and high-throughput genomic screens [ 39 ,  40 ], highlighting 
the simplicity of design and ease of application. 
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  SpCas9   is by far the most commonly used CRISPR system. However, active 
 variants from other bacterial species such as  Staphylococcus aureus  (SaCas9, 
5′-NNGRRN-3′ PAM) [ 41 ] and  Neisseria meningitidis  (NmCas9, 5′-NNNNGATT-3′ 
PAM) [ 42 ] have been applied for genome editing with variable success. As proteins 
of bacterial origin, rational design of Cas9 in prokaryotes is conventional, leading to 
new variants of SaCas9 with modifi ed PAM specifi city, and therefore broader target-
ing ranges [ 43 ]. Mining prokaryotic genome databases through homology, cloning, 
and functional validation has yielded family members with new properties. Differing 
from SpCas9,  Francisella novicida  Cpf1 (FnCpf1) requires only a single guide RNA, 
and recognizes a 5′-TTN-3′-PAM, therefore accessing completely different sequence 
space [ 44 ]. The rich diversity of CRISPR systems in bacteria suggests that additional 
nucleases with distinct properties remain to be discovered. 

  Biochemical subtleties   of DNA recognition and cleavage aside, engineered 
nucleases enhance random mutagenesis and gene targeting by eliciting endogenous 
DSBR pathways (Fig.  2b ). As the NHEJ mutation spectrum is essentially random, 
it provides allelic depth for clonal cell panels, yet can complicate high throughput 
screening [ 45 ]. Under special circumstances of genomic sequence context and DSB 
position, DSBR can be driven by subtle regions of microhomology to produce 
indels in a predictable manner [ 46 ]. Bi-allelic DSBs can allow for homozygous 
targeting by HDR, an event achieved rarely with classic gene targeting [ 47 ]. 
Combinatorial events, such as HDR-mediated targeting of one allele, and NHEJ 
knockout of the other, can be a boon or a bane. Because of the promiscuity of the 
Cas9 protein, combinatorial approaches using multiplexed sgRNAs have led to mul-
tiple mutations in a mouse stem cell or embryo [ 48 ,  49 ], accelerating the analysis of 
multiple genetic interactions and emphasizing the power of the CRISPR/Cas9 
nuclease system for functional genomics studies.  

    Adding Function to iPSCs Through Transgenesis 
at Safe- Harbor Loci 

  Gene targeting   may be used to eliminate or alter endogenous genes, or introduce 
new functions. Transgenesis with viral or transposon systems has the advantage 
of being robust and rapid [ 14 ], yet as a trade-off does not directly control for 
integration site and therefore requires the use of populations or screening multi-
ple clones to discern suitable or comparable gene expression levels. Nucleases 
permit transgenes to be introduced into defi ned loci and therefore minimize 
clonal variation by moderating position effects [ 50 ]. HDR-targeted transgenesis 
includes applications such as cDNA rescue of mutant genes and fl uorescent 
knock-in alleles to report endogenous gene expression or simply label cells 
 constitutively [ 51 ]. 

 Perhaps the most well known “safe-harbor” locus is AAVS1, a hotspot for adeno- 
associated virus insertion located within intron 1 of the PPP1R12C gene [ 52 ]. 
AAVS1 is akin to the mouse ROSA26 locus [ 53 ], providing a reliable transgene 

K. Woltjen et al.



51

expression with no known phenotype resulting from homozygous transgene inser-
tions [ 47 ]. Targeting and expression of cDNAs from the AAVS1 locus has rescued 
monogenic diseases such as X-linked chronic granulomatous [ 54 ] and α-thalassemia 
[ 55 ]. Conversely, overexpression of dominant negative ion channel genes KCNQ1 
and KCNH2 from the  AAVS1   locus can recapitulate Long-QT syndrome for the 
development of an isogenic in vitro drug-screening platform [ 56 ]. 

 Other safe harbors, such as the X-linked hypoxanthine phosphoribosyltransfer-
ase 1 (HPRT1) locus, is permissive for constitutive expression [ 57 ], yet disruption 
causes HPRT1-defi ciency spectrum diseases ranging from gout to  Lesch–Nyhan 
syndrome  . The human  L -gulono-γ-lactone oxidase (GULOP) locus is a nonfunc-
tional pseudogene in humans [ 58 ,  59 ] presumed to avoid phenotypic effects. Yet, 
transgene expression in pluripotent and differentiated lineages is less well described. 
Beyond gene disruption, the local effects by potent transgenic promoters on endog-
enous gene expression must also be considered [ 60 ]. One such example is the  citrate 
lyase beta-like (CLYBL  ) locus that lies in a gene-defi cient region of human chromo-
some 13 and claims to confer less severe effects on local gene expression [ 61 ]. 
Finally, in a mouse model of hemophilia A and B, expression of human factors VIII 
and IX from the endogenous albumin locus achieved long-term expression of trans-
genes at therapeutic levels [ 62 ]. Therefore, context-dependent safe harbors may be 
found in loci that are active in the target-differentiated cell type yet repressed in 
others, and not associated with a known haploinsuffi ciency phenotype.  

    Achieving Seamless Genome Engineering for Accurate 
Disease Models 

 In the interest of generating faithful models of human genetic disease, engineered 
changes that recapitulate  single-nucleotide variations (SNVs  ) would be preferred 
over crude knockouts. The de facto test for evaluating the role of candidate muta-
tions in disease is to repair the mutation in patient iPSCs, or to recapitulate it in 
otherwise normal iPSCs [ 63 ]; true correction or recreation of patient-specifi c muta-
tions would require approaches that are free of residual foreign genetic elements. 

 Classic gene targeting [ 16 ] deposits antibiotic-positive selection cassettes to enrich 
for HDR-mediated events (Fig.  3a ). Retention of such elements is invaluable for pro-
ducing knockouts, and reconcilable with the integration of reporters [ 47 ] or even thera-
peutic transgenes [ 64 ]. However, in the interest of modifying small regions of DNA—or 
in the extreme case, single nucleotides—selection cassettes and other elements can 
disrupt the native locus and may even cause unpredictable pleiotropic effects [ 65 ]. 
Removal of  antibiotic selection cassettes   is typically performed through site-specifi c 
recombinase-mediated excision [ 66 ]. In this approach, the recognition sites for Cre 
( loxP ), Flp (FRT) recombinases [ 67 ] fl ank the selection cassette, which is introduced 
juxtaposed to the mutation (Fig.  3b , left). Following the selection of targeted clones, 
the cassette is excised by transient recombinase expression, yet a nontrivial single 
recombinase site (34 bp in the case of  loxP ) remains. Although residual elements may 
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be positioned in “neutral” genetic regions such as introns, unexpected effects on gene 
expression and the predicted phenotype remain probable [ 64 ].

   As an alternative to recombinases, the  piggyBac  (PB) transposon undergoes 
high- fi delity seamless excision from mouse and human iPSCs [ 68 ], and has been 
developed as an excisable positive/negative selection cassette for genome modifi ca-
tion [ 69 ]. One caveat is that PB elements excise only from TTAA tetranucleotides, 
such that a TTAA must be present, or silently engineered near the mutation (Fig.  3b , 
right). PB provides more fl exibility and a subtler footprint than recombinases, yet 
excision frequencies are locus dependent, and reintegration of the transposon may 
occur stochastically, whereas excision-prone transposase variants [ 70 ] may display 
higher rates of mutagenesis. 

 Diverging from classic targeting vector-based genome modifi cation relying on 
antibiotic enrichment,  short single-strand oligonucleotide (ssODN  ) templates have 
been employed in combination with ZFNs [ 71 ,  72 ], TALENs [ 73 ], and CRISPR/
Cas9 [ 48 ]. In this approach, ssODNs typically more than 100 nt in length carry suf-
fi cient homology to deposit point mutations into nuclease-cleaved loci in a single 
step without codeposition of foreign sequences (Fig.  3c ), providing a clear advan-
tage over recombinase-based methods [ 74 ]. It should be noted that  ssODN  -modifi ed 
loci that retain the nuclease target site are potentially subject to recleavage and 
mutagenic NHEJ repair. Silent mutations that prevent nuclease recognition and 
recleavage detract from the subtlety of the method, but may be necessary to avoid 
additional screening. Moreover, aberrant ssODN insertions at on- or off-target sites 
[ 75 ] or random mutations on-target [ 76 ] may occur under normal conditions or as a 
refl ection of oligo quality and are extremely diffi cult to predict and detect. Although 
ssODN-mediated targeting events are frequent in cell lines, the low frequency of 
correct targeting in iPSCs (>1 %) [ 48 ,  72 ,  73 ], compounded with possible muta-
genic events, demands robust and sophisticated selection. 

  Fig. 3    Derivation of human induced pluripotent stem cells (iPSCs) engineered by HDR. ( a ) 
Classic gene targeting events are enriched by positive selection. ( b ) Excision of antibiotic selec-
tion markers by Cre recombinase (left) leaves behind  loxP  sites, while PB transposase (right) 
removes cassettes seamlessly from endogenous or engineered TTAA tetranucleotides to deposit 
point mutations. ( c ) Mutation deposition by short single-strand oligonucleotides (ssODNs) obvi-
ates the need for excision, yet requires intensive screening       
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 One advanced approach to detect correct gene editing employs serial population 
screening, a type of sib-selection for human iPSCs where mutation-containing pop-
ulations are monitored by droplet digital polymerase chain reaction (ddPCR) and 
enriched using serial sub-fractionation [ 77 ]. In developing this technique, the authors 
successfully deposited mutations into fi ve disease-associated genes ( PHOX2B , 
 PKP2 ,  RBM20 ,  PRKAG2 , and  BAG3 ). Population screening by  ddPCR   is robust but 
not trivial, requiring custom TaqMan assays, sophisticated instrumentation, and addi-
tional iPSC passages. A streamlined approach to derive gene- corrected iPSCs that 
combined CRISPR/Cas9 gene targeting with the somatic cell reprogramming process 
[ 76 ], reported gene knock-in effi ciencies as high as 5 %, and ssODN- mediated gene 
correction rates as high as 8 %. Although useful during de novo iPSC derivation, this 
approach is obviously not applicable to previously established iPSC lines. Finally, 
frequencies of desirable targeting using ssODNs may still see improvements through 
lessons learned from the biochemistry of DNA opening and Cas9 cleavage. As the 
sgRNA nontarget (unbound) strand is released fi rst, ssODNs with positioning and 
complementarity to the nontarget DNA strand are more effective at inducing HDR, up 
to 60 % in HEK293T cells [ 78 ]. Applications of these fi ndings in iPSCs hold promise.  

    Avoiding Unwanted Outcomes: Off-Target Cleavage 
and Mosaicism 

  Nuclease cleavage   of the genome is by no means infallible, and undesirable DSBR 
events may occur through surreptitious cleavage at sites other than the chosen target 
region. In these cases, DSBs repaired preferentially through NHEJ may result in 
subtle indels (Fig.  2b ) with no capacity for counterselection. Such “off-target” 
effects may or may not have phenotypic consequences. 

 Unbiased off-target detection using  whole-genome sequencing (WGS  ) can evalu-
ate genome-engineered iPSC clones [ 79 ,  80 ], yet the depth of data and the threshold 
for detecting rare mutations argue against the practicality of the approach. Exome 
sequencing simplifi es analysis, yet provides data for only a small portion of the 
genome. Targeted screening methods based on degenerate sequence similarity 
between the sgRNA and nontarget regions of the host genome provide an off-target 
candidate list that may be verifi ed using conventional NHEJ detection methods such 
as the T7E1 hybrid-cleavage assay [ 81 ], Sanger sequencing with decomposition 
[ 82 ], or deep sequencing of amplifi ed products [ 46 ]. However, these biased 
approaches are time consuming and limited by the quality of prediction algorithms 
for candidate off-target sites. 

 Off-target screens relying on the functional properties of nucleases have the 
potential to focus screening efforts without user bias. Chromatin immunoprecipi-
tation using Cas9 antibodies [ 83 ,  84 ] can detect sites of Cas9 interaction with the 
genome but are not related directly to DNA-cleavage events. Linear amplifi ca-
tion-mediated high-throughput, genome-wide, translocation sequencing (LAM-
PCR HTGTS) is a cumulative method that detects off-target cleavage by virtue of 
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genomic  translocations formed between nuclease-generated or even endogenous 
DSBs [ 85 ], indicating a two-break-minimum detection limit. On the other hand, 
single NHEJ events have been shown to capture foreign DNA elements such as 
 integration defective lentiviral vectors (IDLV  ) [ 86 ,  87 ], which can then act as tags 
for targeted sequencing efforts. GUIDE-seq applies this same principle, yet uses 
oligonucleotide tags compatible with next-generation sequencing to streamline 
sample processing and data integration [ 88 ]. BLESS (direct in situ breaks labeling, 
enrichment on streptavidin, and next-generation sequencing) attempts to capture a 
snapshot of the fragmented genome within cells, but requires complex fi xation and 
manipulation steps [ 89 ].  DiGenome sequencing   is an in vitro approach to genomic 
DSB detection using WGS to detect indels as DNA fragment ends [ 90 ]. Differences 
in detection profi les for these methods may refl ect the methodology and must ulti-
mately be verifi ed experimentally. 

 Refi ning the detection of off-target cleavage is a crucial endeavor, yet does not 
directly prevent the causative insult to the genome. Therefore, it would be prudent to 
develop engineering methods that minimize off-target cleavage events or increase 
on-target cleavage specifi city. One straightforward approach could be to temporally 
limit the expression of Cas9 and sgRNAs. However, simply reducing the amount of 
expression vector DNA transfected does not reduce the relative rates of off-target 
cleavage [ 91 ]. In contrast to plasmids, which can express over periods of 3 to 4 days 
or even integrate randomly into the genome, delivery as  in vitro transcribed (IVT  ) 
mRNA limits the nuclease expression window to 1 to 2 days and yet is still effective 
for on-target cleavage. An additional step toward restricted nuclease activity is to 
produce RNP particles through the in vitro combination of commercially available 
recombinant SpCas9 protein and IVT or synthetic sgRNAs, followed by delivery 
directly into iPSCs by electroporation or chemical transfection [ 92 ,  93 ]. An in- depth 
analysis of the off-target outcomes from such procedural changes is pending. 

 It is clear, however, that limiting nuclease activity temporally has the potential to 
reduce mosaicism under conditions normally presumed to produce clonal iPSCs. 
Mosaicism can arise from unique DNA cleavage and DSBR events in the daughter 
cells of nuclease-transfected iPSCs, resulting in two or more divergent populations 
in a drug-selected colony [ 94 ].  Mosaicism   confounds the detection of off-target 
effects, which may be present below the threshold of detection in the total iPSC 
population. Interestingly, sib-selection procedures involving rounds of serial sub-
cloning from the starting population [ 77 ] impose a temporal separation of nuclease 
treatment and physical cloning events to derive truly clonal iPSC populations. 

 Engineering native nuclease behavior to reduce or prevent off-target cleavage was 
initially proposed for recombinant FokI nuclease domains [ 95 ]. By inactivating the 
catalytic domain of one monomer in a ZFN dimer, ZFNickases were shown to have 
lower levels of off-target mutagenesis, albeit with an overall reduction in on- target 
HDR activity [ 96 ]. Similarly, a derivative of  SpCas9   in which the RuvC nuclease 
domain has been inactivated by mutagenesis (SpCas9n, D10A) acts as a DNA nickase 
[ 37 ]. This hobbled enzyme has been used in juxtaposed pairs to produce staggered 
nicks, and touted as having lower off-target cleavage activity than their full active 
counterparts because rogue binding of a SpCas9n monomer would produce single-strand 
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nicks rather than DSB [ 97 ]. Yet, it is important to remember that nicked DNA 
intermediates can still be processed by NHEJ mechanisms, resulting in an off-target 
indel [ 98 ], suggesting that alternative approaches still require consideration. 

 With solution of the DNA/RNA hybrid-bound SpCas9 protein structure [ 99 ,  100 ] 
came the possibility of rational SpCas9 engineering. Modeling revealed a positively 
charged groove between the nuclease and PAM interacting domains, proposed to be 
involved in stabilizing the nontarget DNA strand. Mutagenesis of K848A, K1003A, 
and R1060A residues within the groove retained approximately 60 % on-target activ-
ity, while increasing sensitivity to sgRNA mismatches, most notably outside the 
7–12 nt “seed” region [ 44 ]. In another approach, diminished bonding energy through 
quadruple mutagenesis of DNA-contacting N497A, R661A, Q695A, and Q926A 
residues produced a high-fi delity variant of SpCas9 (SpCas9-HF1) with undetectable 
off-target activity [ 101 ]. On-target activity was reported to be 70 % of the native 
SpCas9, a modest compromise for higher specifi city. 

 Modulation of the RNA component of the  Cas9 RNP   complex has also been 
shown to positively affect on- and off-target cleavage ratios. It was suggested that 
truncated sgRNAs (truRNAs) may gain cleavage specifi city as a trade- off for activ-
ity [ 102 ], yet 16-nt versus the standard 20-nt sgRNA molecules has not become a 
norm for CRISPR experiments. Optimal sgRNA design has been shown to affect 
on-target cleavage activity [ 103 ]. More recently, revision of the rule set governing 
sgRNA design by Doench and colleagues suggests a predictive scoring system for 
increasing on-target activity while avoiding off-target cleavage, as demonstrated 
using a genome-wide knockout screen [ 104 ]. It remains to be seen how the com-
munity at large will adopt these bioinformatic rule sets, and if they hold true in vari-
ous experimental situations.  

    Selection of  Isogenic Clones and Technical Controls   

 Reprogramming technology captures the genome of the patient as a pluripotent cell 
resource, enabling in vitro modeling of disease that, by necessity, separates the cell 
from the patient. Differing from animal models, phenotyping results are therefore 
limited by the sophistication of in vitro cellular differentiation [ 105 ] and assay eval-
uation criteria. To directly link genotypes to phenotypes, appropriate control cell 
lines are of utmost importance. 

 Control iPSC lines represent a selected or engineered group of iPSCs that are 
genetically matched for the purpose of excluding erroneous variation and increasing 
the accuracy of disease studies [ 106 ]. iPSCs from unrelated normal individuals have 
been used to produce target cell disease controls [ 107 ], taking into account that their 
genetic backgrounds may vary by degrees (Fig.  4a ). As such, the number of unre-
lated iPSC clones that must be analyzed in parallel to defi ne a genotype–phenotype 
correlation increases in relation to the statistical power required (Fig.  4b ). Within 
practical limits, the required number of control iPSC lines depends mainly on the 
strength and correlation of the in vitro phenotype with clinical presentation and the 
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complex infl uence of genetic background variation on phenotypes observed within 
the patient population [ 108 ]. One standard for reducing genetic variation has been to 
compare disease iPSCs to normal iPSCs from unaffected siblings who share much 
of their genetic background with the affected donor by blood relationship (Fig.  4a ). 
Intriguingly, as ESCs are often derived from pools of discarded in vitro fertiliza-
tion (IVF) material [ 1 ], there may in fact be a higher rate of sibling relationship 
among publically available ESCs than iPSC lines. However, potential racial bias 
and an association with a higher incidence of infertility-related alleles, along with 
a reported marked difference in differentiation capacity between ESC lines [ 109 ], 
may further offset this proposed benefi t. On the other hand, the documented medical 
background of the donor combined with a deep genetic analysis may help predict 
the severity of phenotypic deviation between experimental and control iPSC lines.

   Subtle differences in the  genomes and epigenomes   between iPSC lines may infl u-
ence in vitro phenotypes [ 110 ]. Concerns over the accumulation of mutations 
throughout the reprogramming process as a result of proliferative stress have been 
raised [ 111 ]. Conversely, more recent studies have shown that iPSC derivation is 
inherently stable at the genetic level [ 112 ], suggesting that the risk of genetic drift 
arises during extended in vitro culture and is therefore similar for both ESCs and 
iPSCs. However, the process of iPSC derivation itself is selective, such that preexisting 

  Fig. 4    Appropriate sources of  isogenic control iPSC clones  . ( a ) iPSCs from unaffected siblings or 
normal donors are typically used as controls. ( b ) Multiple iPSCs may be used to reduce noise from 
clonal variation. ( c ) True isogenic controls may be produced through genome engineering. ( d ) To 
preclude phenotypic effects from off-target cleavage, different sgRNAs may be used to produce the 
same genomic modifi cation       
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somatic mutations in the patient’s donor tissue can be clonally amplifi ed [ 113 ,  114 ]. 
It has also been proposed that reprogrammed cells might retain an epigenetic mem-
ory of their somatic source, which could infl uence differentiation capacity [ 115 ]. 
Interestingly, such epigenetic memory has been disputed by the observation that 
more signifi cant variation in differentiation capacity occurs as a result of genetic 
background than somatic tissue source [ 116 ,  117 ]. Still, these uncertainties regarding 
inherent and acquired phenotypic variation strongly argue the case for isogenicity. 

 Fortunately, iPSCs themselves are inherently isogenic with their donor, and 
through the application of subtle nuclease-mediated genome-editing approaches 
described above, gene-corrected iPSCs can be derived directly from donor iPSCs 
(Fig.  4c ) [ 63 ]. Similarly, well-characterized normal iPSCs will retain isogenicity if 
converted to diseased iPSCs using nuclease techniques. When patient-specifi c 
iPSCs cannot be procured, recreating mutations by genome editing provides a novel 
material for the study of genetic effects on disease progression and severity in a 
defi ned genetic background. Quality-controlled normal iPSCs could be accessed 
from one of many proposed stem cell “libraries,” which aim to generate clinical-
grade and HLA haplotype-matched control iPSC lines for therapeutic applications 
[ 118 ]. However, it should be cautioned that in the conversion of normal iPSCs into 
diseased iPSCs, disease phenotypes might be masked by protective alleles. 
Candidate gene disruption in multiple ethnic backgrounds may therefore be neces-
sary to exclude complex genetic effects [ 119 ]. 

  Phenotypic variations   between experimental iPSC lines and isogenic controls 
may have a technical origin. Off-target nuclease effects require labor-intensive 
screening to detect and might contribute to the observed phenotype. As an alterna-
tive to deep sequencing or comparing multiple gene-corrected clones from a single 
experiment (Fig.  4b, c ), it is advised to instead make use of a second sgRNA with 
its own distinct off-target profi le (Fig.  4d ). In this way, it is possible to rule out com-
mon off-target events between separately derived clones as a direct infl uence on 
phenotype. Similarly, employing PB-mediated gene targeting and excision for pre-
cise editing [ 120 ], reintegration of the transposon may occur stochastically. Yet, 
these clones may still prove useful for validating phenotypes, because each clone 
should represent a novel reintegration event. Splinkerette PCR-based methods for 
mapping reintegrations [ 121 ] could help predict the infl uence on genomic integrity 
and possible phenotypic changes. Considering these sources of technical variation 
and their logical solutions, genome engineering (Fig.  4c ) stands as the strictest 
method to maintain isogenicity within control iPSCs.  

    Conclusions 

 The combination of iPSC and nuclease technologies, particularly CRISPR/Cas9, 
has generated a true paradigm shift in modeling human genetics and disease. 
Although more accessible than ESCs, patient-specifi c iPSCs still require informed 
consent, and can prove to be morally and monetarily extravagant research materials. 
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Applying genome-editing technologies, there is no longer a need to initiate disease 
modeling with the procurement of patient-specifi c iPSCs. Instead, candidate muta-
tions or allelic series may be fi rst engineered singly or in combinatorial fashion into 
genetically and phenotypically defi ned “reference” ESCs or iPSCs. Once available, 
the panel of iPSC “standards” may be used to refi ne in vitro physiological assays. 
Finally, as required, patient-specifi c iPSCs may be screened using the optimized 
assay system to interrogate candidate mutations and the effect of native genetic 
background. Future avenues of research will most certainly entail combined gene 
editing and reprogramming strategies, bringing to fruition both preclinical and clin-
ical applications of stem cell technology to personalized medicine.     
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    Abstract     The CRISPR revolution that began in 2013 has been adopted and 
embraced by many researchers worldwide, including the mouse molecular genetics 
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in transgenic technologies over the past 30 years. This chapter discusses the para-
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      Introduction 

 During the past three decades, techniques and procedures in genome manipulation devel-
oped and evolved primarily using the laboratory mouse as a model system, mainly 
because of the availability of murine  embryonic stem (ES) cells  .  ES cells      from no species 
other than the mouse were as robust and effi cient for usurping homologous recombina-
tion (HR) to induce targeted genetic changes in the mammalian genome. Methods for 
targeted genomic manipulation without the use of mouse ES cells were practically non-
existent. In the last few years, many techniques involving “designer nucleases” such as 
zinc-fi nger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), 
and clustered regularly interspaced short palindromic repeats/Crispr-associated 9 
(CRISPR/Cas9) have been developed that enable species-agnostic genome editing with-
out the need for ES cells. These new techniques have breached the species barrier and 
seamlessly made their way into the genome-editing arenas of many other species. 

 Among the methods that use  designer nucleases   (also known as sequence- 
specifi c endonucleases), the CRISPR/Cas9 system has become the most popular. Its 
technical simplicity, rapidity of designing and performing experiments, and high 
success rate have been well documented in almost every species in which it has 
been tried to date. In the pre-CRISPR era, ES cells served as critical reagents 
enabling giant strides in the fi eld, including the development of tens of thousands of 
reagents to systematically  knock out (KO) mouse   genes. Now, however, their utility 
is becoming overshadowed by new technologies as the mouse genome engineering 
community is shifting heavily toward CRISPR-based genome-editing approaches. 
In this chapter, we discuss how this novel technology has impacted the fi eld.  

    Traditional Mouse Genome Engineering Technologies 
in the Pre-CRISPR Era 

 The development of  mouse genetic engineering   began in the 1980s by attempting to 
transfer exogenous DNA (genes) into a genome for developing “transgenic (Tg)” ani-
mals and to delete/inactivate endogenous genes for developing “ knockout (KO)” ani-
mals  . Transgenesis was achieved by microinjecting purifi ed Tg DNA (transgenes) 
into fertilized zygotes and subsequently by transferring the zygotes to pseudo-preg-
nant recipient animals to generate live animals. To accomplish gene knockouts, how-
ever, simple injection of DNA into zygotes (as done in the case of transgenics) would 
not be enough: it was necessary to develop a special tool, the ES cells. Using ES cells, 
the endogenous genes were fi rst modifi ed through the HR process (which occurs dur-
ing DNA repair in cells); in the second step the ES cells containing the modifi ed gene 
were injected into blastocyst embryos about 3 days old to generate chimeric animals 
[ 1 ]. The resulting chimeric animals would contain cells originating from two sources: 
the cells derived from the embryo host blastocyst and those from exogenously injected 
ES cells. Breeding of the chimera to a wild-type mouse would result in vertical trans-
mission of the gene-modifi ed allele (the ES cell-derived mutant allele) to heterozy-
gous offspring. Intercrossing between heterozygous offspring would result in 
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production of homozygous, fully ES cell- derived mice. The third type of genetically 
engineered animal model is a  Knockin  (knock-in, KI), which refers to (usually) tar-
geted insertion of DNA with a desired type of genetic change. Generation of KI mice 
also required ES cells, and follows similar steps as just outlined. 

 The traditional  Tg and KO/KI techniques   prevailed for nearly three decades and 
have helped generate thousands of mouse disease models. However, these time- 
tested methods have a few limitations that are discussed next (sections “Traditional 
Tg Techniques and Their Limitations” to “Microinjection and Its Limitations”). 

    Traditional Tg Techniques and Their Limitations 

 Traditional  Tg mice   are generated by direct microinjection of Tg DNA (that consists 
of elements such as promoter, cDNA, transcription terminator, etc.) into the pronu-
clei of 0.5-day-old fertilized eggs (also known as zygotes), followed by their subse-
quent transfer to oviducts of pseudo-pregnant mice. The live offspring obtained are 
called founder (G 0 ) animals if they contain the DNA of interest, which are then bred 
to establish the Tg line. The detailed descriptions of designing and generating 
KO/KI mice are reviewed by Haruyama and Kulkarni (Haruyama et al. [ 2 ]). 

 The traditional  Tg mice generation methods   have a few inherent limitations: (1) 
random integration of the transgene where local regulatory elements could affect its 
expression, and/or the transgene itself can disrupt or affect the expression of local 
genes, and (2) integration at multiple sites or multiple copy integration, which occa-
sionally result in unreliable expression or transgene silencing [ 3 ]. Because of such 
pitfalls, several Tg G 0  lines are screened for desired expression before the lines are 
established for further experiments, a tedious but necessary step using random 
integration- based Tg mice generation projects [ 4 ].  

    Traditional KO/KI Techniques and Their Limitations 

 The traditional  KO/KI models   were generated through the use of ES cells that allow 
HR to replace or insert a genetically engineered DNA copy of a recombinant DNA 
construct that is designed and built for each KO/KI project. The process, in brief, 
includes four major steps: (1) construction of molecular targeting construct; (2) electro-
poration of the targeting construct into ES cells followed by positive/negative selection 
of correctly targeted clones; (3) microinjection of ES cell clones into blastocysts and 
transfer into pseudo-pregnant recipients to generate chimeras; and (4) breeding of chi-
meras with wild-type mouse to obtain a germline-transmitted mouse line. Detailed 
descriptions of designing and generating KO/KI mice are reviewed by Hall et al. [ 5 ]. 

 Traditional  KO/KI mice generation methods      also have a few inherent limitations. 
First, ES cells must retain pluripotency to populate germ cells and vertically transmit the 
induced mutation to the next generation. Second, germline-competent ES cells are avail-
able for only a very few genetic backgrounds, not for many of the commonly used 
mouse strains. Animal models that cannot be generated in a pure genetic background for 
many of those strains must undergo many generations of backcross breeding to achieve 
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congenesis [ 6 ]. Third, effi cient insertion of the targeting construct requires long regions 
of DNA, or homology arms, fl anking each end of the intended target, which can be dif-
fi cult to achieve for certain genes. Fourth, the targeting constructs need to contain addi-
tional elements, such as positive selection (e.g., neomycin or puromycin resistance 
genes) and negative selection (e.g., thymidine kinase or diphtheria toxin) markers to 
select single-cell clones that contain the correctly inserted DNA. Fifth, the insertion of 
long positive selection markers [or certain genetic elements such as fl ippase (Flp) or Cre 
recombinase sites that fl ank the positive selection cassettes] may result in unintentional 
interference of the regulatory elements near the gene locus. Sixth, the KO/KI strategy 
would be diffi cult if a conditional KO needs to be developed for single-exon genes. 
Seventh, not all chimeras result in germ line-transmitted offspring. Eighth, traditional 
gene targeting can generally only be used to generate no more than one gene KO/KI in 
an experiment. Last, design and generation of KO/KI animal models is labor intensive, 
requires extensive amounts of time, and is quite expensive.  

     Microinjection   and Its Limitations 

 Both Tg and KO/KI techniques require microinjection directly into mouse embryos. 
Although tedious, labor intensive, and expensive, the microinjection technique has 
been used as the gold standard for more than three decades for developing genetically 
engineered mouse models. The desired DNA cassette is microinjected into zygotes 
for generation of Tg mice, whereas gene-targeted ES cells are microinjected into 
blastocysts for generation of KO/KI mice. Zygotes or embryos are produced from 
females that are superovulated and mated with stud males. To ensure a suffi cient 
number of Tg G 0  lines or chimeras, typically 100 or more eggs or 50 or more embryos 
are injected for Tg or KO/KI projects, respectively. The manipulated embryos need 
to be surgically transferred into pseudo-pregnant females to generate live offspring. 

 In general, microinjection has been an integral step in mouse gene targeting projects, 
but its two major limitations are that it requires sophisticated equipment and well-trained 
and experienced personnel to perform the procedure. Typically, microinjection equip-
ment costs about $100,000–$200,000, and microinjection (and associated embryo-han-
dling techniques) requires signifi cant practice to perfect. At least a couple years of 
regular practice are required for a researcher to learn and be  profi cient in performing 
microinjection. Also, one needs continued practice to retain technical profi ciency.   

    CRISPR/Cas9 and  Mouse Genome Editing   

 Since 2013, the CRISPR-mediated genome editing has revolutionized almost every 
fi eld of biology. Briefl y, it uses a single guide RNA (sgRNA) with a 20-nucleotide 
sequence complementary to the target site in the genome, to bring a Cas9 nuclease 
to the site and make a double-stranded DNA break. This break is then repaired 
through an error-prone cellular DNA repair process called nonhomologous end- 
joining (NHEJ), resulting in gene disruption. The cut site can also be repaired by 
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providing a short DNA oligonucleotide with homology regions of about 30–60 
nucleotides, or by providing a repair template with long homology arms (typically 
about 0.5–2 kb or longer). Such donor DNAs are inserted through the less effi cient 
repair processes, such as homology-directed repair (HDR) [ 7 ] for single-stranded 
short templates or HR when using double-stranded templates. 

  CRISPR technology   can also be regarded as a “disruptor” because it has changed the 
basic format of how Tg and animal genome engineering experiments are performed, 
which has essentially remained unchanged during the past three decades. Additionally, 
CRISPR has superseded the other two genome-editing methods, ZFNs and TALENs, 
which prevailed for about 3 to 5 years before the CRISPR era. Because of its simplicity, 
relative ease, and rapidity to manipulate the genome, the CRISPR/Cas9 technique has 
propelled many technology developers to think outside the box and devise novel and inno-
vative features that make it versatile and adaptable to diverse fi elds of research. As we 
usher in a new era of genome engineering driven by CRISPR-related techniques, section 
“CRISPR Technology and the Paradigm Shifts in Mouse Genome Engineering” discusses 
the paradigm shifts in the fi eld. 

  Box 1: Limitations of  Traditional Mouse Genetic Engineering 
Technologies   and the Paradigm Shifts Created by CRISPR/Cas9 
Genome Editing 

 Traditional genetic engineering 
approaches  The CRISPR/Cas9 genome-editing approach 

 ES cells are absolutely essential for the 
generation of KO/KI models (costly and 
time consuming) 

 Can generate KO/KI models without the need 
for ES cells (cost- and time saving) 

 Techniques can be limited to certain 
strains where ES cells are available, 
particularly for KO/KI models 

 Can develop KO/KI models under any strain 
background 

 Diffi cult to generate KO/KI models without 
inserting additional elements in the genome 

 Can generate most KO/KI models without 
inserting additional elements in the genome 

 Generation of homozygous KO/KI mutants in 
G 0  stage is not possible and G 0  animals need to 
be intercrossed to obtain homozygotes before 
they are used for phenotyping 

 Generation of homozygous KO/KI mutants in G 0  
stage is readily possible, and they can be used for 
direct phenotyping in some cases (for instance, 
any visible traits, hematological phenotypes) 

 Except in case of advanced techniques [ 8 , 
 9 ], multiplexing (multiple Tg lines or 
multiple genes KO/KI) is diffi cult 

 Multiplexing is readily possible 

 Except in case of advanced techniques [ 8 ,  9 ], 
pronuclear injection of Tg DNA will get 
integrated randomly, often more than one 
copy and/or occasionally at multiple locations 

 Targeted insertion of single copy at Cas9 cut 
site is possible 

 Large-scale genome modifi cations 
(deletions or replacements) are diffi cult 

 Large-scale genome modifi cations are readily 
possible 

 Microinjection is a critical step; each 
embryo must be injected manually and 
transferred back into recipient females 

 Electroporation can replace the microinjection 
step and many embryos can be processed 
simultaneously [ 10 – 12 ]. More advanced 
approaches (GONAD) can even obviate the 
need for ex vivo embryo handling [ 13 ] 
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      CRISPR Technology and the Paradigm Shifts in Mouse Genome 
Engineering 

 Clearly, the  CRISPR system   has impacted traditional Tg and KO technologies. 
Many Tg mouse labs and core facilities across the globe have added CRISPR to 
their toolbox. The paradigm shifts in mouse genome editing that are listed in Box  1  
are discussed next.

    1.     Ability to bypass the use of ES cells . Two important features of ES cells that make 
them critical reagents for  genome engineering   are (1) they maintain pluripotency dur-
ing culturing and gene targeting and (2) they enable high competency in 
HR. Historically, mouse ES were the only ES cells with these two features that showed 
robust performance. Attempts to establish ES cells for other species (except rats) have 
failed to date. One of the biggest paradigm shifts that CRISPR has caused in the fi eld 
is its ability to bypass the need for ES cells. This, along with simplicity and lower cost, 
is the main reason why CRISPR has been so widely applicable in creating gene KO 
models in any species. Even in mice, with the advent of CRISPR, ES cells that served 
as valuable tools in generating thousands of mouse models during the past two to three 
decades are now being superseded by the use of CRISPR [ 14 ].   

   2.     Ability to generate KO / KI mice on any genetic background . Because CRISPR- 
mediated gene editing can be used directly on zygotes to edit genes, practically 
any strain of mouse can be used for generating KO/KI models. Previously, the 
fi eld relied on the availability of strain-specifi c ES cells for developing mouse 
models. Although better-quality ES cells for the  C57BL/6N strain   (the most 
popular in disease research) were developed during the past decade [ 15 ], for 
many years mouse KO technology predominantly relied on ES cells derived 
from sub-strains on the 129 genetic background. G 0  lines generated using 129 ES 
cells injected into a different genetic background (e.g., C57BL/6) are a mixed 
strain background that required backcrossing to the desired genetic background 
for many generations before the model could be used for experiments. The 
CRISPR system readily offers solutions to such limitations, as it is applicable to 
any strain, thus obviating the need for backcrossing.   

   3.     Ability to generate point mutations without any other genetic disruptions . For 
generation of simple KI models such as creating point mutations to mimic human 
disease or restoring the function of mutant proteins, the CRISPR/Cas9 system 
offers distinct advantages over traditional methods. Specifi cally, point mutations 
can be inserted without the need to include extra DNA near the locus, such as a 
positive selection cassette when using ES cell-based methods. Occasionally, the 
presence of such extra elements near the locus may affect gene expression by 
disrupting adjacent yet unknown regulatory elements, etc.   

   4.     Ability to generate    homozygous mutant mice     in F   0    generation . With traditional 
approaches using either ES cells or random transgenesis, it was not possible to 
obtain homozygous G 0  animals. CRISPR-generated models can produce homo-
zygous mutations in the G 0  generation and can be used for a quick phenotypic 
analysis, albeit mosacisim and possible off-target effects must be considered as 
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confounders. Nevertheless, in some cases, phenotypic screening of G 0  progeny 
can provide signifi cant cost and time savings, when compared to the use of other 
methods that require breeding to achieve homozygosity.   

   5.     Ability to generate multiple mutations in one    microinjection experiment   . Despite 
their popular use in the pre-CRISPR era, traditional KO/KI approaches are inad-
equate in the following aspects: (1) it is practically impossible to simultaneously 
generate KO mutations for more than one gene at a time; (2) germline transmis-
sion of the mutant allele is often not guaranteed; and (3) the models would be 
only heterozygous initially. In comparison, CRISPR-mediated gene editing 
offers giant solutions to these limitations. Indeed, the generation of up to fi ve KO 
mutant models has been reported in one session [ 16 ] with CRISPR, where previ-
ously such a task would take more than 3 to 4 years because of the time- 
consuming breeding steps after generating individual KO mice. The cost for 
such traditional KO projects would be severalfold more than that of CRISPR- 
based approaches because of the lengthy steps involved. Using CRISPR, it is not 
uncommon to obtain homozygous alleles for some mutations.   

   6.     Large-scale    genome modifi cations   . Although mouse models of large chromosomal 
deletions and insertions of hundreds of kilobases have been developed using tradi-
tional ES cell-based approaches [ 17 ,  18 ], clearly such projects need enormous 
amounts of resources and time to accomplish, because they were performed 
through a series of complex and successive modifi cations. Using certain advanced 
CRISPR-based strategies, such large-scale insertions and deletions are now possi-
ble, making the system highly cost effective [ 19 ].   

   7.      Cytoplasmic microinjection      . The traditional Tg models are developed by injecting 
Tg DNA into pronuclei because the injected DNA is intended to be inserted into 
the genome. Because the CRISPR system constitutes a sgRNA and a Cas9 endo-
nuclease, pronuclear injection might not be required (which can be a diffi cult skill 
to master). Further, pronuclei in certain strains of mice are not easy to visualize for 
microinjection. In many cases, cytoplasmic injection seems to be suffi cient [ 20 ], 
especially in cases where simple indel mutants are to be generated without the 
need for coinjection of complex donor DNA templates. When combined with a 
donor DNA template for genomic insertion, it is necessary to deliver injection 
mixture to the pronucleus to ensure insertion effi ciency. Simultaneous cytoplasmic 
and pronuclear injection has become a popular strategy in many labs for CRISPR-
based genome-editing applications that suit both NHEJ and HR mechanisms.   

   8.     Novel delivery approaches . CRISPR tools can be delivered to embryos without 
the need for microinjection or ex vivo handling of embryos. Although microin-
jection has been used as the gold standard for more than three decades for devel-
oping genetically engineered mouse models, there has been constant effort by 
many researchers to develop microinjection-independent methods because of 
the inherent limitations of microinjection (covered in the section “Microinjection 
and Its Limitations”). The advent of CRISPR readily enabled the development of 
an electroporation technique that can be performed on several embryos at a time, 
instead of manually injecting them one by one [ 10 – 12 ]. A step further is a new 
technique developed by us called  Genome Editing via Oviductal Nucleic Acids 
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Delivery (GONAD  ) [ 13 ]. GONAD allows direct electroporation of CRISPR 
tools into embryos in situ without the need for embryo isolation and handling 
 ex vivo . Thus,  GONAD   serves to bypass all major bottlenecks of animal trans-
genesis: isolation, microinjection, and surgical transfer of embryos into pseudo- 
pregnant mice [ 13 ,  21 ,  22 ].   

   9.     Germline transmission potential can be high compared to traditional methods- 
derived chimeras . Because the traditional ES cell-based approach relies on the plu-
ripotency and germline transmission potential of ES cells, some chimeras may not 
result in passage of the targeted allele to the next generation of offspring. Reasons 
for failure of germline transmission include low contribution of ES-derived germ 
cells in chimeric mice, or loss of ES cell pluripotency. Although mosaicism remains 
a potential disadvantage, the germ cells of CRISPR- generated G 0  mice are expected 
to contain CRISPR-induced mutation(s). Therefore, the chances of germline trans-
mission of a CRISPR-induced mutant allele to the next generation of offspring is 
high. Furthermore, certain CRISPR-generated G 0  mice may contain two or more 
types of mutations at a given locus, which can be segregated by breeding. Even 
though the segregation process seems complicated in certain cases, multiple differ-
ent mutations at the given locus offer more options to study the phenotype using 
multiple alleles.    

      The Current Challenges of CRISPR/Cas9-Mediated Mouse 
Genome Engineering 

    Poor Effi ciency of Insertion of Sequences at Cas9 Cut Sites 

 Although there are a few reports that demonstrate the insertion of longer DNA cas-
settes at Cas9-cut sites, increasing the overall effi ciency of insertion is an area that 
needs further development. Despite its widespread use, to achieve targeted insertion 
at many loci still remains challenging. Although one of the problems may be less 
effi cient guide sequences, the overall low insertion effi ciency may also be attributed 
to the loci (e.g., extent of chromatin density) and donor DNA design (e.g., extent of 
genomic homology to target region). Additional strategies are necessary to make the 
CRISPR system suitable for effi cient insertion of large DNA cassettes and for gen-
erating models more complex than indels on a routine basis.  

    Challenges in Developing Conditional KO Models 

 Conditional  KO mouse models   with two  loxP  sites fl anking the target exon/s is a 
standard approach followed in traditional ES cell-based applications. Many labs 
have been trying to develop conditional KO models using CRISPR. Insertion of two 
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 loxP  sites can be achieved through one of two ways: (1) using a double-stranded (ds) 
DNA donor containing short homology arms (~1 kb) and two  loxP  sites fl anking the 
target region [ 23 ], or (2) using two separate ssODNs (single-stranded oligodeoxy-
nucleotides) encoding  loxP  sites in the middle and ultrashort (~60-base-pair) fl ank-
ing homology arms corresponding to the desired genomic sites and inserting them 
through two separate CRISPR cuts in the genome [ 24 ]. High-effi ciency insertion of 
two  loxP  sites in  cis  orientation remains elusive and challenging. The reasons for this 
are (1) the two independent gRNAs should be effi cient in causing double-strand 
breaks at their target sites; if one fails to cut, the process will not result in the desired 
alleles; (2) even if both guides work effi ciently, NHEJ is still favored, causing the 
two fl anking ends to join together and excluding the intermediary piece of DNA; and 
(3) challenges in genotyping of correctly inserted  loxP  sites, specifi cally using the 
two ssODNs approach (see the section “Challenges Associated with Genotyping”).  

     Off-Target Effects   

 Because the gRNA recognition sequence is only 20 nucleotides long and certain 
mismatches are tolerated when gRNA binds to genomic DNA, use of CRISPR can 
result in unintentional off-target cleavages. Some of the initial studies, done in cell 
culture systems, cautioned that off-target effects could be a major concern with the 
use of CRISPR technology [ 25 ,  26 ]. Certain strategies have been described to mini-
mize or eliminate off-target cleavages. (1) The Cas9 nickase (nCas9 or Cas9n) 
approach [ 27 ,  28 ] that uses a mutated Cas9 which can create a nick instead of a 
double-strand break; by using paired nickases, two nicks are created using two 
gRNAs close to the target site. (2) Delivery of Cas9 in the form of mRNA or protein 
instead of plasmid; continued Cas9 expressed from plasmid DNA would result in an 
abundance of Cas9 protein over a much longer period than needed, resulting in the 
potential for more off-target cuts than when using Cas9 mRNA or protein. It was 
presumed that off-target cleavages would be high, based on the observations made 
in cell culture systems. However, some recent reports demonstrate that off-target 
effects are minimal or nil in mouse models generated through the CRISPR system 
[ 29 ]; one of the main reasons for this is the use of Cas9 mRNA or protein [ 30 ,  31 ]. 
Further, the concern about off-target cleavages in mouse models can be addressed 
by backcrossing G 0  mice to segregate mutations through successive breeding steps.  

    Challenges Associated with Genotyping 

  Genotyping   of CRISPR-generated offspring is another major challenge because it 
can generate many unexpected outcomes such as imprecise insertion of the donor 
template, and co-occurrence of more than two types of alleles (also known as mosa-
icism). It may require careful analysis of many offspring generated from G 0  mice to 
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segregate and establish the desired mutations. Also, genotyping may not be easy in 
certain cases using a simple PCR assay and it may require sequencing of every off-
spring. To avoid such complications, one can consider choosing gRNAs close to 
 restriction endonuclease (RE  ) recognition sites or to include an RE site in their 
donor template to aid in designing RFLP-PCR (restriction fragment length 
polymorphism)-based genotyping. Genotyping in case of the  loxP  ssODN approach 
is particularly challenging to ensure correct insertion of  loxP  sites on the same 
allele. Specifi cally, genotypic discrimination of correct targeting can be challenging 
if (a) the two  loxP  sites are far apart and it is diffi cult to amplify the entire fl oxed 
region by PCR (for confi rmation by RFLP), or if (b) if the G 0  animals are not homo-
zygous for at least one of the insertion sites. In such scenarios, Southern blotting 
becomes necessary for accurate confi rmation of  loxP  insertions on the same allele.   

    Future Impact of CRISPR/Cas9 on Manipulating the  Mouse 
Genome   

 Clearly, CRISPR/Cas9 has revolutionized many fi elds of biology, including mouse 
genome manipulation. Newer CRISPR tools and improved strategies are constantly 
being added. A few more CRISPR nucleases were recently discovered [ 32 ,  33 ] that 
offer additional features, refi nements, and capabilities to the CRISPR genome- 
editing toolbox. Such improvements can have a signifi cant impact on both tradi-
tional Tg and KO/KI technologies. 

    Impact on Random  Tg Technologies   

 The majority of Tg mouse models generated to date are of random Tg type; in many 
cases, such projects fail to obtain reliable Tg G0  lines with high effi ciency. If CRISPR/
Cas9 can be further improved to effi ciently insert larger DNA cassettes into the 
genome at safe harbor sites (e.g.,  ROSA26 ), it is very likely that the community will 
shift to “CRISPR transgenesis” and eventually random integration-based Tg mice 
production may become obsolete. Although there are not many reports of successful 
insertion of longer DNA cassettes with CRISPR/Cas9, certain strategies described 
recently promise targeted transgenesis of larger cassettes [ 31 ,  34 – 36 ].  

    Impact on  KO/KI Technologies   

 As already noted, the mouse molecular genetics fi eld has been transitioning rapidly 
to using CRISPR/Cas9 for making point mutation KIs. Although it is demonstrated 
that conditional KO models can be generated using the CRISPR system [ 24 ], it has 
not yet become a commonly used method because of the inherent diffi culties 
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associated with inserting two  loxP  sites fl anking the target site in  cis . It is likely that, 
in the near future, technical advances will evolve to develop conditional KO models 
easily and effi ciently.  

    Impact on  Microinjection Technique      

 Last, if in vitro zygote electroporation and GONAD techniques become popular, 
CRISPR-based methods do not need the specialized microinjection setup or spe-
cially skilled personnel, which can allow many researchers to perform genome- 
editing experiments, in contrast to specialized core facilities that performed 
traditional, microinjection-based genome editing. GONAD is a promising new 
method for delivering CRISPR reagents directly to zygotes within the oviducts 
through electroporation. Compared to microinjection, GONAD requires a higher 
concentration of reagents to ensure embryonic uptake and activity. Its wide applica-
bility and use in future is likely to result in faster and novel evolution and refi ning 
of the CRISPR technique itself, facilitating a transformation in the fi eld of genome 
editing.   

    Conclusion 

 Traditional mouse genome manipulation techniques, established over the past three 
decades, have been used to develop thousands of mouse models. The recent addition 
of genome-editing tools such as ZFNs, TALENs, and CRISPR/Cas9 have resulted 
in a rapid transformation in the landscape of genome manipulation. In particular, 
CRISPR/Cas9 has been widely adopted during the past 2 to 3 years, and its simplic-
ity and applicability across species has made the process faster, more cost effective, 
and versatile. It has also helped technology developers to devise newer methodolo-
gies that would have been practically impossible in the pre-CRISPR era. Research 
is underway to fi nd additional CRISPR endonuclease molecules, and newer strate-
gies to improve DNA insertion effi ciency and to facilitate and improve the insertion 
of longer DNA sequences. All such improvements would enable this simple and 
ingenious method of gene editing to revolutionize biomedical research in the years 
to come.     
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      Genome-Editing Technology in CRISPR/Cas 
System: How to Increase Knock-In Effi ciency 
in Mouse Zygotes                     

     Takuro     Horii     and     Izuho     Hatada    

    Abstract     The use of clustered regularly interspaced short palindromic repeats 
(CRISPR) and RNA-guided Cas9 nucleases, known as the CRISPR/Cas system, 
represents a major technological advance in mammalian gene disruption. CRISPR/
Cas enables genome editing by inducing targeted DNA double-strand breaks (DSBs) 
that are repaired by error-prone, nonhomologous end-joining (NHEJ), or homol-
ogy-directed repair (HDR). This system has emerged as an effective tool for gene 
knockout via NHEJ; however, it remains ineffi cient for precise editing of genome 
sequences depending on HDR. Nevertheless, HDR-mediated gene editing is essen-
tial for conditional knockout, introduction of reporter genes, and precise point 
mutation in mice. Many studies have examined, for example, conditions of Cas9 
and guide RNA (gRNA), methods of their introduction, and molecules to increase 
effi ciency. In this review, we describe various methods for increasing the effi ciency 
of editing in mouse zygotes.  
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  HDR    Homology-directed repair   
  indels    Insertions or deletions   
  iPSC    Induced pluripotent stem cells   
  NHEJ    Nonhomologous end-joining   
  ssODN    Single-stranded oligo-DNA   
  TALEN    Transcription activator-like effector nucleases   
  tracrRNA    Trans-activating crRNA   
  ZFN    Zinc-fi nger nucleases   

         Introduction 

 The mouse is the most widely used mammalian model system because its genome 
can be precisely modifi ed as desired. Conventional gene-targeting methods via 
homologous recombination are generally used for mouse  embryonic stem cells 
(ESCs  ) followed by germline chimera production. However, these technologies are 
not available in species other than mouse. The recent development of site-specifi c 
endonucleases for selective genome cleavage has been an important advancement in 
genome engineering. These technologies include  zinc-fi nger nucleases (ZFN  ) [ 1 ], 
transcription activator-like effector nucleases (TALEN) [ 2 ], and the CRISPR/Cas 
system [ 3 ]. These technologies enabled rapid production of gene editing not only in 
mice but also in other species. Previously, it took more than 1 year to obtain a homo-
zygous mutant mouse by the conventional method using ESCs; now, founder (F 0 ) 
mice can be obtained within a month in these technologies. In particular, the  con-
struction   of CRISPR/Cas is far easier and more economical than other engineered 
endonucleases, making this the most popular genome-editing system.  

    CRISPR/Cas System 

 The CRISPR/Cas system was initially identifi ed as an adaptive immune system in 
bacteria. This system requires Cas9 nuclease and two small RNAs, CRISPR RNA 
(crRNA), which guides the  Cas9 complex   to the target sequence, and trans- activating 
crRNA (tracrRNA), which binds to crRNA. Cas9 nuclease and tracrRNA–crRNA 
form a ribonucleoprotein complex and generate a double-stranded break (DSB) on 
target sites [ 4 ]. When it is applied as a genome-editing tool, the process can be sim-
plifi ed using an engineered guide RNA (gRNA) containing a hairpin that mimics the 
tracrRNA–crRNA complex [ 3 ]. When targeted DNA DSBs have been made by the 
Cas9–gRNA complex, they are repaired by the two major DNA damage-repair path-
ways,  nonhomologous end-joining      (NHEJ) [ 5 ,  6 ] or  homology-directed repair 
(HDR  ) [ 7 ,  8 ]. Error-prone NHEJ-mediated repair, which occurs rapidly and prefer-
entially, induces small insertions or deletions (indels) at the DSB site, resulting in 
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disruption of gene function by frameshift mutations. By contrast, in the presence of 
a single- or double-stranded DNA template containing regions of homology to the 
sequences fl anking the DSB, mutant alleles with precise-point mutations or DNA 
inserts can be generated by HDR. 

 Currently, CRISPR-mediated gene knockout through the error-prone NHEJ 
pathway works effi ciently. For example, the knockout effi ciency of a protein-coding 
gene is 20–60 % in mouse ESCs and zygotes [ 9 ,  10 ]. By contrast, precise introduc-
tion of a point mutation or a sequence fragment directed by the HDR-mediated 
repair pathway has remained ineffi cient [ 9 – 11 ]. To increase editing effi ciency, a 
screening process by cell sorting or drug selection is usually required to obtain cor-
rectly edited cells. However, this strategy is diffi cult to apply to zygotes in part 
because the number of available zygotes is very limited compared to that of cultured 
cells (at most 10 2  zygotes versus more than 10 7  cultured cells per experiment). 
Therefore, improving the effi ciency of precise gene editing in zygotes has remained 
a major challenge. Here, we review studies that have sought to increase the effi -
ciency of gene editing, especially via the HDR-mediated repair pathway.  

    Delivery System of  Cas9 and gRNA   

 Microinjection into zygotes is the most widely used method for producing gene- 
edited mice with the CRISPR/Cas system. To generate a  NHEJ  -mediated mutants, 
two components must be introduced into zygotes: the Cas9 nuclease and a gRNA 
that is complementary to the target DNA. To generate knock-in mice via the HDR 
pathway, donor DNA must also be introduced into the target cell. Because many 
expression vectors can be easily produced from large-scale cultures of genetically 
modifi ed bacteria, the simplest method for generating knockout mice is injection of 
the expression vectors for Cas9 and gRNA into the pronucleus because many 
expression vectors are easily produced from large-scale culture of gene-modifi ed 
bacteria. In addition, many laboratories have established routine systems of DNA 
injection for production of transgenic mice. However, this injection method runs the 
risk of vector integration into the chromosomes. Mashiko and colleagues reported 
that 4.3 % (2/46) of mutant pups generated by the circular DNA injection method car-
ried the hCas9 transgene [ 12 ,  13 ]. Although this was lower than the average trans-
genic effi ciency of linearized DNA, 33.4 % (173/684,  N  = 26 constructs), undesired 
integration of the vectors into the chromosomes still occurred to some extent when 
the DNA injection method. 

 Therefore, injection of in vitro transcribed RNA is a better alternative, and this 
method is most widely used today. However, because the Cas9 RNA and gRNA 
function in different locations within the cell (the cytoplasm and pronucleus, respec-
tively), it was necessary to optimize this method. Horii and colleagues compared 
three different injection techniques [ 14 ]: (1) injection of circular DNA into the 
 pronucleus, (2) injection of RNA into the pronucleus, and (3) injection of RNA into 
the cytoplasm. The results revealed that injection of RNA into the cytoplasm is the 
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most effi cient method in terms of the numbers of generated blastocysts and pups. In 
addition, injection of RNA into the cytoplasm yielded the best overall knockout 
effi ciency. 

 For knock-in mice, it is necessary to consider where the donor DNA should be 
introduced. In general, transgenic mice are produced by pronuclear injection of 
DNA rather than cytoplasmic injection of RNA. To optimize the HDR-mediated 
knock-in method for the CRISPR/Cas system, Yang and colleagues compared three 
different injection methods [ 10 ]: (1) simultaneous injection of RNA and donor 
DNA into the cytoplasm (2) simultaneous injection of RNA and donor DNA into the 
pronucleus and (3) injection of RNA into the cytoplasm followed 2 h later by pro-
nuclear injection of donor DNA. Simultaneous injection of all components into the 
cytoplasm yielded 9–19 % of targeted blastocysts. Thus, donor DNA can be trans-
ported to the nucleus even if it is initially injected into the cytoplasm. Similarly, the 
simultaneous injection of all components into the pronucleus yielded 9–18 % tar-
geted blastocysts. By contrast, the two-step procedure yielded at most 3 % of tar-
geted blastocysts. These results suggest that simultaneous injection of RNA and 
DNA into the cytoplasm or pronucleus is the most effi cient procedure for achieving 
targeted insertion. In addition, some groups reported that simultaneous injection of 
RNA and DNA into both the pronucleus and cytoplasm of  zygotes   resulted in a rela-
tively high yield of targeted embryos [ 15 – 18 ]. 

  Gene-edited mice   can also be generated by direct injection of Cas9 protein rather 
than the Cas9 mRNA. A recent study reported effi cient generation of NHEJ- 
mediated knockout mice by direct delivery of the Cas9 protein–RNA complex [ 19 ]. 
The yield of mutant alleles obtained was dose-dependent, reaching 88 % at the high-
est dose by pronuclear injection and 71 % by  cytoplasmic injection  . Aida and col-
leagues reported that Cas9 protein is also useful for generating reporter knock-in 
mice [ 20 ]. First, they tried to generate knock-in mice by direct pronuclear delivery 
of a Cas9 protein–gRNA complex; however, they could not obtain any mice carry-
ing a functional gene cassette. Next, they tried microinjection of Cas9 protein com-
bined with chemically synthesized crRNA and tracrRNA instead of gRNA, which 
resulted in targeted insertion of the transgene with 45.5 % effi ciency. Although it is 
not clear why crRNA–tracrRNA is superior to gRNA, the combination of crRNA–
tracrRNA and Cas9 protein may be optimal. 

 Fujii and colleagues also compared the effectiveness of different types of gRNA 
(long and short) for generation of NHEJ-mediated knockout mice [ 21 ]. The short 
type of gRNA, which is more widely used, has Cas9-associated sequences of ~40 nt 
[ 22 ]; by contrast, long gRNA is ~80 nt in length. The effi ciency of genome modifi -
cation resulting from injection into zygotes is much higher for longer type. 

 In addition to the  microinjection  , electroporation enables effi cient mRNA deliv-
ery into mouse and rat zygotes [ 23 ,  24 ]. Microinjection into zygotes requires special 
skill and is too time consuming for large-scale production of gene-edited mice. By 
contrast, electroporation is simple and easy for beginners. In addition, Hashimoto 
and Takemoto successfully generated HDR-mediated knock-ins using 
 single- stranded oligo-DNA (ssODN) [ 23 ]; 36.4 % (4/11) of the resultant embryos 
carried the loxP on the target site.  
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    Single-Stranded Oligo-DNA and Double-Stranded DNA 
as Donor Templates 

 Knock-in mice carrying single nucleotide substitutions combined with  ssODN 
donors   have been generated by several groups (Table  1 ). By contrast, far fewer stud-
ies have reported the successful production of knock-in mice carrying gene cas-
settes derived from double-stranded DNA (dsDNA) (Table  2 ). The ssODN repair 
template requires only short homology arms and is inserted at a very high effi ciency, 
whereas the dsDNA-repair template requires long homology arms and is inserted 
with low effi ciency [ 18 ,  25 ]. When small epitope tags (V5, HA, or FLAG) or loxP 
is introduced,  ssODN  -containing homology arms of 40–60 bp are suffi cient [ 9 ,  10 , 
 18 ,  26 – 28 ]. By contrast, in many cases, larger tags or fl uorescent markers (GST, 
mCherry, or GFP) often require dsDNA templates with homology arms of 1–3 kb 
on either side of the DSB sites [ 10 ,  15 ,  17 ,  20 ].

     dsDNA   is used for large insertions due to limitations of imposed by the short 
length of ssODN length. The maximum length of commercially synthesized ssODN 
is ~200 nt. Miura and colleagues utilized a two-step method to synthesize longer 
ssODN molecules (~514 bp) and demonstrate that they effi ciently serve as repair 
templates for CRISPR/Cas-mediated knock-in [ 16 ]. In this system, RNA was 
fi rst synthesized from a DNA template, and reverse transcription of the RNA was 
then performed to generate  ssODN  . Using this approach, they demonstrated that 
artifi cial microRNA (amiRNA) cassettes against the exogenous eGFP or endoge-
nous orthodenticle homeobox 2 (Otx2) genes could be effi ciently targeted to a pre-
determined locus (44.4–83.3 %).  

    Molecules That Increase HDR Effi ciency 

 According to previous reports, effi ciencies of knockout via NHEJ and knock-in via 
HDR do not differ signifi cantly (Tables  1  and  2 ). However, the true effi ciency of 
HDR editing events must be lower than that of NHEJ editing because HDR is in 
competition with NHEJ. In our experiment, for example, the effi ciency of NHEJ 
events was 100 %, but that of HDR events was around 30 % on the same locus (data 
not shown). Therefore, NHEJ inhibition or HDR promotion is necessary to increase 
HDR effi ciency. 

 Recent work showed that a drug, SCR7 increased HDR effi ciency at the expense 
of NHEJ [ 18 ,  27 ,  29 ,  30 ]. Specifi cally, NHEJ repair is further divided into two sub-
classes: (1) KU- and DNA ligase IV-dependent, or “canonical” (C-NHEJ); and (2) 
DNA ligase I- or ligase III-dependent alternative end-joining (a-EJ or alt-NHEJ) 
[ 31 ].  SCR7   is an inhibitor of DNA ligase IV, a key enzyme in the C-NHEJ pathway. 
Indeed, SCR7 increased the effi ciency of HDR-mediated genome editing up to ten-
fold (5.8 % versus 56.2 %) in resultant pups [ 18 ]. Maruyama and colleagues also 
reported that SCR7 treatment increased the effi ciency of HDR events up to 19 fold 
in mice for at least four genes ( Kell ,  Igkc ,  Os9 ,  Sgms2 ) [ 27 ]. 
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 To increase the frequency of HDR events, Chu and colleagues used gene silenc-
ing to suppress the key NHEJ molecules KU70 and DNA ligase IV [ 29 ], resulting 
in a 4.5-fold increase in the effi ciency of HDR. They also found that co-expression 
of the adenovirus 4 (Ad4) E1B55K and E4orf6 proteins, which mediate the ubiqui-
tination and proteasomal degradation of DNA ligase IV, increased the effi ciency of 
HDR up to eightfold in both human and mouse cell lines. 

 Yu and colleagues developed a reporter-based screening approach for high- 
throughput identifi cation of chemical compounds that increase effi ciency of precise 
genome editing via HDR [ 32 ]. Using this screening method, they identifi ed 
two small molecules, L755507 and brefeldin A, that can increase HDR effi ciency 
threefold for large fragment insertions and ninefold for point mutations. They have 
also found small molecules, azidothymidine (AZT) and trifl uridine (TFT), that 
decrease the HDR effi ciency. Except for SCR7, these molecules have not been 
examined in zygotes, but they could be used to increase HDR frequency. Other 
small molecules can effectively activate or block certain DNA-repair pathways [ 33 , 
 34 ], but they have not been examined in the CRISPR/Cas system. These small mol-
ecules could be also used to modulate CRISPR-induced genome editing and DNA 
repair via the HDR pathway. 

 On the other hand, low-dose irradiation promotes gene targeting in human plu-
ripotent stem cells [ 35 ]. Hatada and colleagues reported that limited low-dose irra-
diation using either γ-rays or X-rays exposure (0.4 Gy) signifi cantly increased the 
HDR effi ciency of the CRISPR/Cas system, possibly through induction of 
 DNA- repair/recombination machinery such as the  ataxia-telangiectasia mutated 
(ATM  ), histone H2A.X, and RAD51 proteins. We summarize the molecules that 
promote HDR events (Fig.  1 ).

NHEJ HDR

Cas9:gRNA

SCR7
E1B55K 
E4orf6

G1, S and G2
phase

DSBs

Ku70
DNA ligase IV

ATM
H2A.X
RAD51

Late S and G2 
phase specific

L755507
Brefeldin A

-ray
or

x-ray

  Fig. 1    Molecules that regulate homology-directed repair (HDR) and nonhomologous end-joining 
homology-directed repair NHEJ effi ciency       
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        Cell Cycle   

 NHEJ dominates DNA repair during the G 1 -, S-, and G 2  phases, whereas HDR is 
restricted to late S- and G 2 -phases (Fig.  1 ) when DNA replication is completed and 
sister chromatids are available to serve as repair templates [ 36 ]. However, the 
Cas9–gRNA complex is usually introduced into unsynchronized cells and zygotes. 
Lin and colleagues examined HDR effi ciency depend on each cell cycle using syn-
chronized cells [ 37 ]. The frequency of HDR events was increased dramatically rela-
tive to experiments in unsynchronized cells, with rates of HDR up to 38 % in 
 HEK293T cells  . In particular, treatment with nocodazole, which blocks cells at the 
M-phase, led to higher HDR effi ciency. 

 On the other hand, synchronization of zygotes has not yet been reported. Zygotes 
at the pronuclear stage were classifi ed into fi ve pronuclear stages (PN1–PN5) 
according to pronuclear size and location in the cytoplasm [ 38 ]. The time at which 
Cas9 and gRNA are usually microinjected into pronuclei or cytoplasm during PN3 
to PN5, which correspond to the S-phase to G 2 -phase. Therefore, the cell cycle of 
zygotes could be almost adequate for HDR-mediated knock-in.  

    Perspective 

 HDR-mediated  gene editing   is has been applied to conditional knockouts, introduc-
tion of reporter genes, and precise point mutations in experimental animals. In addi-
tion, studies using mice and rats have shown that the CRISPR/Cas system can 
correct diseases caused by mutations and reverse their phenotypes [ 28 ,  39 ]. 
However, the fi nal goal of gene correction would be therapeutic application in 
humans. Precise correction of mutant genes has already been reported in human- 
induced pluripotent stem cells (iPSC) [ 40 – 44 ], suggesting that HDR-mediated gene 
editing by CRISPR/Cas would be effective for gene therapy. Liang and colleagues 
reported gene correction by  CRISPR/Cas   using human tri-pronuclear zygotes [ 45 ]. 
Specifi cally, they found that the HDR effi ciency of the endogenous human β-globin 
(HBB) gene was low, whereas CRISPR/Cas effectively cleaved the endogenous 
HBB gene. In addition, edited embryos exhibited mosaicism, and off-target cleav-
age also occurred. Thus, gene correction of human zygotes requires further improve-
ment of the fi delity and specifi city of the CRISPR/Cas system.  

    Conclusion 

 We described various methods and molecules that could enhance HDR frequency. 
Many molecules can increase the frequency of HDR events in cultured cells but 
most of them have not been examined in zygotes. In the future, a combination of 
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these molecules with optimized injection methods could increase the effi ciency 
of knock-in by HDR-mediated repair.     
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    Abstract     Pluripotent stem cells and their ability to form any cell type in the human 
body has allowed researchers to use them as research tools for applications in drug 
screening, basic developmental research, and potential therapeutic implementa-
tions. An emerging need in stem cell biology is effi cient and homogeneous differ-
entiation of stem cells into mature, specialized, functional cells. 

 Reporter stem cell lines are valuable models that enable noninvasive, live moni-
toring of marker onset and expression in a cell-specifi c manner. Several methods 
have been used to derive such cell lines based on lineage promoter-driven reporter 
expression. A more regulated expression achieved with a reporter knock-in into the 
endogenous promoter loci was less utilized because of the associated technical dif-
fi culty; however, new advances in genome-editing technologies has lowered these 
barriers for creating knock-in reporter lines. This chapter provides an overview of 
the methodology and potential applications of reporter stem cell lines.  
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      Introduction 

 Human  pluripotent stem cells (PSCs  ) such as embryonic stem cells (hESC) and 
induced pluripotent stem cells (iPSC) hold great promise in today’s world of regen-
erative medicine. Their ability to self-renew and differentiate into any specialized 
cell in the body [ 1 ,  2 ] has given researchers in the biomedical fi eld a unique tool to 
closer translate their research into the clinic. PSCs have the potential to be used in a 
variety of different research facets: from re-growing limbs, to conserving endan-
gered animals, or as a cell therapy for replacing dead or dying cells. However, one of 
the most benefi cial and most encouraging uses for PSCs is their ability to create 
in vitro human cell models. 

 A key challenge in realizing the full potential of pluripotent stem cells is the 
lack of robust methods to track and  monitor cell behavior  . The availability of 
stable modifi ed stem cells, expressing linage-specifi c reporters, would present 
an ideal platform for the real-time tracking and monitoring of cells. Such 
reporter lines facilitate visualization and or enrichment based on the reporter 
gene used, as cells transition from a pluripotent state to specifi c differentiated 
states [ 3 ]. Lineage tracking enables development of optimal methods for dif-
ferentiation and provides a live cell method to monitor cell fate behaviors in 
normal and diseased state. 

 Traditionally, reporter constructs have been composed of minimal, lineage- 
specifi c, promoter-driven reporters such as fl uorescent genes or drug-selectable 
markers, and have been delivered using random or site-specifi c integrational 
methods. To overcome the constraints of minimal promoter specifi city, large 
constructs carrying the full regulatory elements have been devised. However, 
the most context- specifi c method is insertion of reporters at the endogenous 
promoter loci to generate promoter knock-in lines. Genome-editing methods 
mediated via  homologous recombination (HR  ) has been used to create disease 
models through gene targeting and modifi cation [ 1 – 4 ]. These methods also 
enable targeted insertion of the reporter into promoter regions that are expressed 
in a lineage-specifi c manner such that expression is turned on only in the dif-
ferentiated cell type [ 5 ]. This chapter highlights the methods used for genera-
tion of reporter pluripotent stem cell lines.  

     Gene Reporter Pluripotent Lines   as Cell Models 

 Antibody staining or reverse transcriptase-polymer chain reaction (RT-PCR) meth-
ods specifi c for antigen or gene markers specifi c for that lineage traditionally achieve 
detection of specifi c cell type in a heterogeneous mixture [ 4 – 6 ]. These methods 
require a signifi cant number of cells and are typically end-point assays that do not 
allow real-time monitoring of cells. Additionally, enrichment of terminally differen-
tiated cells or elimination of undifferentiated cells is critical for therapeutic applica-
tion where residual pluripotent stem cells can lead to teratoma formation in vivo [ 7 ]. 
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  Gene reporters   are a valuable in vitro tool that facilitates live monitoring and 
tracking a cell type of interest [ 3 ]. Lineage reporters are either created using minimal 
lineage-specifi c promoter-driven reporter systems or via knock-in of the reporter into 
the endogenous promoter region. Choice of reporter is critical based on intended 
application. Although there is a wide choice of reporters that can be used, each sys-
tem offers its own advantages and disadvantages (Table  1 ).

    Green fl uorescent protein (GFP  ) and variants, such as cyan fl uorescent protein 
(CFP), yellow fl uorescent protein (YFP), and DsRed, have been popularly used to 
visualize cells. Their in vivo safety and applicability has been well demonstrated 
in mouse systems [ 8 ,  9 ]. However, even with enhanced versions of GFP, 10 5  cop-
ies per typical mammalian cells is required for visualization of fl uorescence. 
Therefore, despite the availability of sensitive instruments for signal detection, 
the lower sensitivity threshold is actually set by expression level and cellular 
autofl uorescence [ 10 ]. In contrast, gene tags such as β-lactamase, when used with 
membrane- permeant ester substrates, can be detected at low levels (~50 mole-
cules per cells.) [ 11 ]. Bioluminescence reporters offer a distinct advantage for 
biochemical assays because of their detection sensitivity and emission duration 
times [ 12 ]. Drug resistance markers offer an alternate option wherein intermedi-
ate copy numbers of the reporter are suffi cient for enrichment of the desired cell 
population and have been used extensively [ 13 ,  14 ]. The major disadvantage of 
this approach is the need for optimization of drug for each target cell type. Also, 
it does not allow visual monitoring of marker expression. However, a combina-
tion of one or more of these reporter systems can be used to successfully build 
robust tracking and enrichment reporter cell lines. A combination of fl uorescent 

   Table 1    Commonly used reporters for visualization and enrichment of lineage-specifi c cell types   

 Promoter  Reporter 

 Method  Gene mMarker  Advantages  Disadvantages 

 Exogenous 
lineage promoter 
or endogenous 
promoter Loci 

 Gene tags: bLac, 
bGal, AP 

 Enzymatic 
methods and 
hence signal can 
be amplifi ed 

 Cells need to be fi xed for 
visualization 

 Fluorescent proteins: 
GFP/CFP/YFP, 
DsRED 

 Enables 
visualization of 
cells 

 High-level expression is 
required to be visualized over 
autofl uorescence 

 Bioluminescent 
marker: luciferase 

 Detection of 
sensitivity and use 
in biochemical 
assays 

 Requires cofactors/substrates 
and specialized equipment 

 Drug selectable 
markers: Hyg, Neo, 
Puro, BSD 

 Sensitive even at 
low expression 
levels 

 Poor survival at low density, 
does not allow visualization 

 Suicide genes: 
HSV-TK, diphtheria 
toxin-A 

 Allows 
enrichment or 
elimination of 
desired cells 

 Poor survival at low density, 
does not allow visualization 
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reporter with drug resistance gene is most commonly used. However, the differ-
ence in their relative sensitivities, especially with weak promoters, can result in 
drug-resistant cells that do not show visible fl uorescence [ 14 ].  

    Methods for the Generation of Reporter Pluripotent Stem 
Cells 

 There are two main ways to create reporter lines: the fi rst is by inducing lineage- 
specifi c promoter-directed reporter expression; and the second is by insertion of the 
reporter gene into the endogenous promoter locus. 

     Minimal Promoter-Driven Reporter Expression   

 Exogenous lineage-specifi c promoter and regulatory fragments can be cloned 
upstream of a reporter gene to generate cell-specifi c promoter reporters. In most cases, 
DNA sequences upstream of the gene-encoding regions containing cis-acting ele-
ments that are conserved across species are designated as the promoter region; this 
represents a very restrictive representation of the regulatory elements as in some cases 
gene regulation is known to be complex, requiring combination of proximal and distal 
elements [ 15 ]. Consequently, the primary concern with the use of promoter- reporter 
systems is that the reporter may fail to faithfully recapitulate the activity of the endog-
enous target gene. It is therefore essential to carry out extensive validation of the 
promoter-reporter constructs to confi rm context-specifi c expression of the reporter. 

 Expression level is also largely dependent on how the construct is delivered for 
stable expression into host cells. The promoter-reporter construct can either be 
maintained episomally without integration, or integrated either randomly or site 
specifi cally into the host genome (Fig.  1 ).

       Nonintegrational Methods   

 Epstein–Barr virus (EBV)-based episomal vectors have been successfully used 
to stably express the gene of interest in multiple types of cells without integrat-
ing into the host genome [ 16 ]. This system offers an appealing alternative 
because it is relatively free from chromosomal effects associated with genomic 
integration methods and has been used to create pluripotent reporter lines with 
Pou5F1 (Oct4) promoter [ 17 ]. EBV vectors are rather large in size (more than 
10 kb) and, in the absence of an effi cient transfection method, this method can 
be limiting.  
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     Integrational Methods   

 Several viral and DNA-based methods facilitate the integration of delivered DNA con-
structs into the host genome, either in a random manner or to specifi c loci in the genome. 

 Random integration of the promoter-reporter construct can be achieved via 
naked DNA delivery or as lentiviral particles. In both cases, high copy num-
bers of the construct can be achieved with efficient delivery into cells. However, 
because the expression is largely dependent on the site of integration and hence 
subject to chromatin dynamics and epigenetic regulation, gene reporter expres-
sion is often diminished or silenced [ 18 ]. In addition, ESCs transduced with a 
high viral load of GFP transgene have been shown to result in reduced differ-
entiation capability [ 19 ]. 

 Site-specifi c integration of the promoter-reporter construct into a safe harbor 
site minimizes genomic loci effects to a large degree. Recombination-mediated 
cassette exchange has been shown to be effective to genetically modify the tran-
scriptionally active ROSA26 locus in human ESC [ 20 ]. PhiC31 integrase medi-
ates targeting of transgenes to specifi c hotspots and has been successfully used 
to generate constitutive and lineage-specifi c expression targeted to chromosome 
13 in human ESC [ 21 ,  22 ]. Other safe-harbor genomic loci that are shown to 
support sustained transgene expression in embryonic stem cells are ENVY [ 23 ] 
and AAVS1 [ 24 ]. A major limitation with site-specifi c insertion of lineage-spe-
cifi c promoter-driven reporter is that one or two copies of the gene may not be 
suffi cient to facilitate robust expression of the reporter. The best way to over-
come constraints with promoter-reporter construct systems is the development 
of promoter knock-in reporter lines.   

Lineage 
Promoter

Reporter
Nonintegra�onal Method

Integra�onal Methods

Random

Site-specific

Episomal

  Fig. 1    Methods for generation of lineage reporter lines using lineage promoter-driven reporter 
constructs. Nonintegrational methods using episomal vectors prevent genomic integration of the 
transgene, whereas integration methods result in either random insertion or site-specifi c integra-
tion of the transgene into the host genome       
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    Reporter Knock-In into Endogenous Promoter Site 

  Reporter genes   can be inserted into specific genomic sites of interest via 
homologous recombination [ 25 ]. The targeting construct composed of a core 
region carrying the reporter cassette is flanked by homology arms that recom-
bine with the target genomic loci, resulting in site-specific insertion of the 
reporter [ 26 ]. This process is fairly inefficient, generally occurring at a rate of 
one in a million cells that can be significantly enhanced in the presence of 
double-strand breaks [ 27 ]. New gene- targeting technologies aim to precisely 
cleave genomic loci to facilitate insertion or deletion of genes at the specific 
cleavage site (Fig.  2 ). Several reporter lines in ESC and iPSC have been gener-
ated using these methods (Table  2 ).

A

B

D

FOK1

FOK1

Reporter

C

E

  Fig. 2     Gene-editing methods   for generation of reporter knock-in into endogenous promoter sites. 
 a  Traditional methods relied on homologous recombination between the target genomic site at the 
endogenous promoter locus and homology arm fl anking the reporter. Meganucleases that use engi-
neered versions of naturally occurring restriction enzymes with extended recognition sequences 
comprise both the DNA recognition and cleavage on a single domain ( b ). The newer systems ZFN 
( c ), TALENS ( d ), and CRISPR ( e ) rely on engineered molecular scissors that precisely create 
double-strand breaks at specifi c genomic sites. ZFN and TALENS both rely on proteins containing 
a DNA-cleaving enzyme and a DNA-binding region that specifi cally recognizes the genomic 
region of interest. CRISPR relies on a DNA-cleaving protein guided by an RNA molecule that is 
complementary to the target genomic region of interest       
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   Table 2    Examples of  reporter knock  -in pluripotent lines generated using different gene-editing 
methods   

 Cell type  Locus  Reporter  Method  Cell model  References 

 Human 
ESC, 
human 
iPSC 

 POU5F1 
(Oct4) 

 GFP  HR, ZFN  Pluripotency  [ 24 ,  28 ] 

 HUES1, 
HUES3, 
KhES3 
human 
ESC, 
246H1 & 
243H7 
human 
iPSC 

 NANOG  GFP, Neomycin  HR, AAV  Pluripotency  [ 29 ,  30 ] 

 Human 
ESC 

 NESTIN  GFP  HR  Neuroepithelium  [ 31 ] 

 HUES 9 
human 
ESC 

 FEZf2  YFP  HR  Corticospinal neuron  [ 32 ] 

 HES3, 
MEL1. 
H9 
human 
ESC, 
DF19- 
9- 7T 
human 
iPSC 

 NKX2.1  GFP  HR  Forebrain, neuronal  [ 33 ] 

 BG01 
human 
ESC 

 Olig-2  GFP  HR  Oligodendrocyte  [ 34 ] 

 KhES3 
human 
ESC, 
246H1 
human 
iPSC 

 HB9  GFP  HDAdVs  Motor neuron  [ 35 ] 

 Human 
iPSC 

 GFAP  GFP  ZFN  Astrocyte  [ 36 ] 

 Human 
ESC, 
human 
iPSC 

 PITX3  GFP  ZFN  Dopamine neuron  [ 24 ] 

 Human 
ESC 

 MIXL1  GFP  HR  Primitive streak, 
hematopoietic 
precursor 

 [ 37 ] 

 Human 
ESC 

 NKX2.5  GFP  HR  Cardiac progenitor  [ 38 ] 

 Human 
ESC 

 MESP1, 
NKX2.5 

 mCherry/eGFP  HR  Cardiac progenitor  [ 39 ] 
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        Homologous Recombination   

 Since the idea of  double-strand break (DSB  ) repair by HR was described [ 40 ], this 
method has provided a powerful method for creating cell models in human stem 
cells. More recently, this method has been employed to generate engineered human 
ESCs. In 2003 Zwaka and Thomson performed targeted gene editing in two loci of 
human ESC, HPRT-1 and POUF1 [ 28 ]. Shortly thereafter, other investigators have 
successfully targeted various loci including the oligodendrocyte lineage-specifi c 
Olig2 gene and the safe-harbor hROSA26 loci [ 20 ,  34 ]. 

 Despite these studies, the traditional method of HR-mediated genome engineer-
ing has shortfalls. Given the low effi ciency of success, the method requires millions 
of cells [ 20 ,  28 ,  34 ,  41 ]. Furthermore, successful transfection and clonal isolation of 
modifi ed ESCs is a challenge because these cells prefer to remain as clumps [ 28 ]. 
Thus, the next milestone in genome editing would be developing more effi cient 
methods of HR induction. These methods rely on recognition of specifi c DNA 
sequences to induce double-strand breaks adjacent to the chromosomal target site, 
thus facilitating higher recombinogenic events.  

     Mega Nucleases   

 Specifi c DNA-binding proteins are selected from a mutant library of restriction 
enzymes to generate site-specifi c cleavage of DNA for improved homologous 
recombination effi ciency and reduced length of genomic DNA homology [ 42 ]. This 
approach requires a signifi cant timeline for development of the tools (~8 months) 
and to date, versatility has not been demonstrated.  

    Zinc-Finger Nucleases 

  Zinc-fi nger nucleases   include a nonspecifi c Folk1 cleavage domain fused to zinc- 
fi nger proteins that are composed of three to four zinc-fi nger motifs with each motif 
specifi cally recognizing a nucleotide triplet. The modular assembly approach 
involves the use of a preselected library of zinc-fi nger modules selected either via 
rational design or from a large combinatorial library [ 43 ,  44 ]. Several cell types has 
been successfully targeted using ZFN-mediated gene targeting [ 45 – 47 ]. The fi rst 
study to use a lenti-based delivery of a ZFN expression cassette and the donor con-
struct into human ESC reported a high gene-editing rate, even in the absence of 
selection [ 45 ]. Subsequent studies successfully used plasmid DNA in human ESC 
and iPSC for targeting drug resistance reporters to specifi c genes [ 41 ], and in par-
ticular for the creation of lineage-specifi c reporter lines via targeting of endogenous 
loci such as Oct4 (Pou5F1), PITX3, and GFAP [ 24 ,  36 ].  
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     TALEN   

 Transcription activator-like effector nucleases, or TALENs, are a genome- modifying 
technology that allows highly specifi c double-stranded breaks at any DNA sequence. 
The specifi city is achieved by recognition of a central repetitive region of 33–35 
amino acids with two variable amino acids called the repeat variable diresidues 
(RVD). TALENs are designed in pairs using a combination of specifi c DNA-binding 
proteins called transcription activator-like effector proteins (TALEs) and an artifi -
cial nuclease or restriction enzyme such as Fok1 nuclease to bind to opposing DNA 
target sites for the generation of double-strand breaks [ 48 ]. This method has been 
successfully used for the knock-in of endogenous Oct4 and PITX3 promoters in 
ESC and iPSC with frequencies similar to that observed with ZFN technology [ 24 , 
 49 ]. The combination of high targeting effi ciency and easier design, facilitated by 
the simpler recognition code, makes this a very powerful tool for stable modifi ca-
tion of pluripotent stem cells.  

     CRISPR   

 The most recent advent in genome editing has been the development of clus-
tered regularly interspaced palindromic repeat (CRISPR)-guided Cas9 nuclease- 
mediated cleavage. There is a major aspect of CRISPR/Cas9 that makes it 
unique. The Cas9 nuclease remains independent of the guide sequence until the 
two are introduced upon performing an experiment. Having this fl exibility 
means that targeting multiple sites is relatively simple; as the CIRSPR/Cas9 
method only requires the synthesis of only a new guide RNA, instead of the 
production of a new target-specifi c nuclease from scratch [ 50 ]. The guide RNA 
is a single transcript consisting of two wild-type parts: target-specifi c crRNA 
and tracrRNA that helps to properly dock the Cas9 nuclease [ 51 ]. Cleavage 
occurs following binding of this RNA to its complementary strand of a 17- to 
20-nucleotide-long target sequence upstream of the 3-nucleotide NGG proto-
spacer adjacent domain (PAM). The biggest advantage of CRISPR-Cas9 is the 
specifi city, effi ciency, and ease with which the system can be utilized to target 
multiple sites, individually or together [ 52 ,  53 ].    

     Alternate Approaches   

 The methods described in earlier sections rely on stable modifi cation of cells, 
which adds time and considerable effort to the generation and validation of sta-
ble clones. Recently, Miki et al. reported the use of synthetic microRNA (miRNA) 
switches for the detection and purifi cation of specifi c cell populations [ 54 ]. The 
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method utilizes identifi cation and purifi cation based on endogenous miRNA 
activity. A cell type- specifi c miRNA is tagged with a reporter such as a fl uores-
cent protein and delivered as a synthetic mRNA. Using the appropriate miRNA 
switch, cardiomyocytes, hepatocytes, and insulin-producing cells were success-
fully purifi ed from differentiating human iPSC cultures [ 54 ]. This method pro-
vides a powerful approach that does not rely on DNA but is a safe and rapidly 
degradable method. The disadvantage to this is the fact that the microRNAs are 
short lived and the switches cannot be used in applications that require monitor-
ing over long periods of time.  

    Potential Uses of  Reporter Stem Cells   

 The applicability of reporter lines in pluripotent workfl ow is summarized in Fig.  3 . 
Reporters can either be expressed in the pluripotent state and turned off with dif-
ferentiation or vice versa, where the reporter expression is off to begin with and is 
turned on with differentiation. Reporter lines enable isolation of a homogeneous 
population of cells that is critical for characterization and for use in downstream 
applications. In addition, a visual reporter offers the opportunity of tracking cell fate 
progression in live cells.

   In the case of pluripotent reporters, creation and characterization of the reporter 
line is relatively easy because clones can be derived based on expression of the 
reporter [ 17 ,  22 ,  24 ,  28 – 30 ]. A pluripotent reporter line can be used as a model to 
identify culture and maintenance conditions that preserve the pluripotent state. In 
addition, presence of residual undifferentiated cells following differentiation can be 
monitored and eliminated. Although engineered stem cells pose a higher barrier for 
transplantation, these cell models provide a valuable tool to identify optimal work-
fl ow solutions. 

  Lineage reporters  , on the other hand, rely on onset of reporter expression as 
the pluripotent cell undergoes differentiation into lineage of choice; this has 
been best showcased in cardiomyocyte differentiation to help and defi ne cardiac 
cell lineages [ 55 ,  56 ]. Fluorescent reporters and drug-selectable markers driven 
by cardiac and/or subtype-specifi c promoters such as alpha-MHC or NCX-1 
promoter have been used for the enrichment of cardiac cell types to purity of 
greater than 90 % [ 14 ,  57 – 59 ]. However, as both alpha  MHC and NCX-1   are 
expressed in all cardiomyocytes, the resulting cells were a mixture of atrial, 
ventricular, and nodal cells. This approach was further utilized for the specifi c 
enrichment of the ventricular cardiac subtype in ventricular  myosin light chain 
2v (MLC2V  )-eGFP reporter [ 60 ] and nodal-like cells using cGATA6-GFP 
reporter [ 61 ]. More recently, knock-in human ESC lines MESP1-mCherry, 
NKX2.5-GFP, and a dual cardiac reporter carrying both these reporters has 
facilitated monitoring differentiation of hESC to precardiac mesoderm to car-
diac lineage [ 38 ,  56 ]. Interestingly, a novel approach of miRNA switches was 
recently used to purify ESC-derived cardiomyocytes. Here, a synthetic mRNA 
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composed of cardiomyocyte-specifi c miRNA driving expression of a selection 
reporter achieved cardiomyocytes with greater than 90 % purity; the resulting 
cells further survived and were successfully engrafted in immunocompromised 
mice [ 54 ]. Nevertheless, these methods have provided great value for optimiza-
tion of differentiation methods. A similar approach has been used for tracking 
and identifying the various intermediate stages [ 31 – 33 ] and neural subcell types 
[ 34 – 36 ] derived from pluripotent stem cells. 

 In summary, lineage reporters are valuable cell models for tracing and enriching 
target cell types of interest. With progress in gene-editing methods, one or more 
reporters can be engineered in the same pluripotent stem cell line and could provide 
visual cues for the progression from stem cell to progenitor to highly functional 
mature cell types. This approach is no longer limited by gene-editing methods but 
rather uses differentiation protocols that can derive mature cell types which express 
the marker of interest at a high enough levels. These editing technologies for the 
creation of multicolor reporter lines can serve as key cell models for optimization 
and development of methodologies to generate highly purifi ed, mature, and func-
tional cell types of interest.     

Enrichment

Elimination

Reprogramming

type • Enriched  target cell type
o Assay/screening
o Transplant
o Characterization

PSC Intermediate Lineage Cell
Differentiation

Elimination OR
Enrichment

•
•
•

Identify target cell 
Optimize Differentiation
Track progression

Pluripotent Reporter: On to Off

Lineage Reporter: Off to On

  Fig. 3     Pluripotent and lineage reporters   and their utility in downstream applications. Cell type of 
interest ( green ) can be either enriched or eliminated isolated from other cells ( gray ) in a heteroge-
neous mixture of cells based on reporter expression       
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    Abstract     During the past decades, numerous genetic mutations have been impli-
cated in the pathogenesis of cardiovascular diseases (CVDs). With the launching of 
the Precision Medicine Initiative in January 2015, emerging technologies such as 
induced pluripotent stem cells (iPSCs) and genome editing are well positioned to 
provide powerful tools to correlate genotypes with phenotypes. These new tech-
nologies are helping to identify specifi c mutations associated with human CVDs. 
Patient-specifi c iPSC-derived cardiomyocytes (iPSC-CMs) offer an exciting experi-
mental platform to model CVDs, study the molecular basis of cardiovascular biol-
ogy, accelerate predictive drug toxicology tests, and advance potential regenerative 
therapies. By harnessing the power of genome engineering, scientists are uncover-
ing the molecular mechanisms underlying the pathogenesis of CVDs, which will 
pave the way for the development of new personalized prediction, prevention, and 
treatment of diseases.  
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  Abbreviations 

   AAV    Adeno-associated virus   
  APD    Action potential duration   
  ARVD/C    Arrhythmogenic right ventricular dysplasia/cardiomyopathy   
  BAV    Bicuspid aortic valve   
  BTHS    Barth syndrome   
  CHD    Coronary heart disease   
  CPVT    Catecholaminergic polymorphic ventricular tachycardia   
  CRISPR/Cas    Clustered regularly interspaced short palindromic repeat (CRISPR)/

Cas (CRISPR-associated)   
  CVD    Cardiovascular disease   
  DCM    Dilated cardiomyopathy   
  DSB    Double-strand break   
  EAD    Early afterdepolarization   
  FH    Familial hypercholesterolemia   
  GWAS    Genome-wide association studies   
  HCM    Hypertrophic cardiomyopathy   
  HDR    Homology-directed repair   
  iPSC    Induced pluripotent stem cell   
  iPSC-CM    Induced pluripotent stem cell-derived cardiomyocyte   
  iPSC-EC    Induced pluripotent stem cell-derived endothelial cell   
  iPSC-SMC    Induced pluripotent stem cell-derived smooth muscle cell   
   KCNH2     Potassium channel voltage-gated eag related subfamily H, member 2   
   KCNQ1     Potassium channel voltage-gated KQT-like subfamily Q, member 1   
  LDL-C    Low-density lipoprotein cholesterol   
  LDLR    Low-density lipoprotein receptor   
  LQTS    Long-QT syndrome   
  LVNC    Left ventricular non-compaction   
   N1     Notch1   
  NHEJ    Nonhomologous end-joining   
   PCSK9     Proprotein convertase subtilisin/kexin type 9   
   PLN     Phospholamban   
  RCM    Restrictive cardiomyopathy   
  SaCas9     Staphylococcus aureus  Cas9   
  SpCas9     Streptococcus pyogenes  Cas9   
  TALEN    Transcription activator-like effector nuclease   
   TAZ     Tafazzin   
   TTN     Titin   
  VUS    Variant of uncertain signifi cance   
  ZFN    Zinc-fi nger nuclease   
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        Cardiovascular Disease Genomics 

     Precision Medicine      

 Cardiovascular disease (CVD) is a major health problem that affects more than 85 
million individuals in the United States alone [ 1 ]. One of the key goals in biomedi-
cal research currently is to identify the specifi c genes and variants associated with 
CVDs in humans. Such anticipated outcomes promise to transform human health by 
enabling more personalized prediction, prevention, and treatment of cardiovascular 
diseases on an individual level. This  precision medicine   approach is principally 
based on the ability to diagnose and stratify patients into different treatment groups 
by correlating a patient’s  genotype   with the associated cellular phenotype, which 
will indicate how the genetic differences among individuals could infl uence their 
responses to therapies [ 2 ]. However, realizing the potential to treat individual 
patients requires the development of an accurate and cost-effective diagnosis system 
and reliable disease models.  

    The Genetics of Cardiovascular Disease 

  Human cardiovascular diseases   include a wide range of disorders, including con-
genital heart diseases, cardiomyopathies, vasculature, and  electrical conduction dis-
orders  . Recent advances have shown that genetics are signifi cant in conferring risk 
for these disorders [ 3 ]. More than 1000 genetic mutations in more than 100 genes 
have been associated with inherited CVDs [ 3 ,  4 ], including dilated and hypertrophic 
cardiomyopathy (DCM and HCM, respectively) [ 5 – 7 ], arrhythmogenic right ven-
tricular cardiomyopathy/dysplasia (ARVC/D) [ 5 ,  8 ], long-QT syndromes (LQTS) 
[ 9 ,  10 ], aortic aneurysms [ 11 ], and hypercholesterolemia [ 12 ]. 

 In 1975, Goldstein and colleagues identifi ed a homozygous missense mutation in 
the  low-density lipoprotein receptor (LDLR  ) gene in a patient with familial hyper-
cholesterolemia (FH), representing the fi rst demonstration of a causal genetic vari-
ant in Mendelian CVD [ 13 – 16 ]. Since then, many Mendelian forms (monogenic 
disorders) of CVD have been successfully identifi ed by direct DNA sequencing or 
linkage analysis (Fig.  1 ) [ 4 ,  17 ]. However, this specifi c pattern of inheritance is rare 
and constitutes a minority of cases. Most of the common CVDs involve multiple 
genes, and their inheritance patterns can be variable and complex [ 18 ]. One of the 
main challenges in genetic research is to identify the genes that contribute to com-
plex diseases. To this end, the publication of the fi rst draft of the human genome in 
2001 provided a valuable resource of detailed information about the structure, orga-
nization, and function of the nearly complete set of human genes [ 19 ,  20 ].

   A decade later, the genome-wide association studies ( GWAS     ), which examined 
genetic variants to determine the disease-causing variants between case and control 
subjects, have identifi ed hundreds of loci associated with CVDs and traits [ 21 ]. Although 
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a plethora of newly discovered loci associated with cardiovascular risk factors and dis-
ease have been reported, the application of these fi ndings to diagnosis, risk prediction, 
prevention and treatment of disease is still in its infancy and requires further research. 

 In the span of just a few years, rapid advances in next generation sequencing 
technology, either targeted or genome-wide, have identified and will continue 
to discover numerous novel genes associated with CVD. Targeted sequencing 
is now used to sequence candidate regions of the  human genome  . In a recent 
study, Wilson et al. demonstrated that cardiomyopathy-associated gene muta-
tions can be identified with high fidelity using a high-throughput, clinical-
grade next-generation targeted sequencing assay, providing a powerful new 
tool for CVD variant discovery [ 17 ]. Genome-wide DNA sequencing consists 
of whole-exome and whole-genome sequencing. In whole-exome sequencing, 
rare genetic variants of CVD can be identified by sequencing the protein-cod-
ing regions in large cohorts with a strong evidence of heritability. Because the 
majority of genomic content is constituted of noncoding regions, whole-
genome sequencing is a comprehensive approach to identifying novel variants 
in both coding and noncoding regions [ 19 ,  20 ]. Data from the ENCODE proj-
ect suggest that 37 % of the total human genome might have a function and is 
probably regulated in a tissue-specific manner [ 22 ]. Recent studies by Cordell 
et al. demonstrated that mutations in the noncoding genomic regions are 
strongly associated with multiple congenital heart diseases, including tetralogy 
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  Fig. 1    The genetic basis of Mendelian cardiovascular diseases. Mutations in more than 100 
genes have been associated with Mendelian cardiovascular diseases. Inherited cardiomyopa-
thies, characterized by signifi cant overlap, include hypertrophic cardiomyopathy (HCM), dilated 
cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), left ventricular non-compaction 
(LVNC), and arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D).  FH  famil-
ial hypercholesterolemia       
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of Fallot [ 23 ,  24 ]. Therefore, as  whole-genome sequencing   becomes more 
widely utilized, more pathogenic variants associated with coding and noncod-
ing RNAs will be uncovered.  

    Disease Modeling with  Human Pluripotent Stem Cells   

 The  molecular mechanisms   underlying the pathogenesis of CVDs remain poorly 
understood despite tremendous advances in genetics. Disease models have been 
and will continue to provide important insights into the molecular basis of cardio-
vascular biology and disease. Transgenic animal models and heterologous cell sys-
tems have proven to be highly valuable in understanding of human CVDs [ 25 ]. 
However, considerable differences exist between animal models and human cells, 
and therefore human-based models are particularly important for cardiovascular 
research [ 26 ]. 

 The recent discovery of the human  iPSC technology   [ 27 – 30 ], and improvements 
in the differentiation method of iPSCs into disease-relevant cell types such as car-
diomyocytes (iPSC-CMs) [ 31 – 34 ], smooth muscle cells (iPSC-SMCs) [ 35 ,  36 ], and 
endothelial cells (iPSC-ECs) [ 37 ,  38 ], now provide an unprecedented opportunity 
for the generation of human patient-specifi c cell-based models for disease model-
ing, personalized drug screening, and regenerative approaches [ 39 ]. Indeed, signifi -
cant progress has been made in  iPSC-CM technology  , which has been used to model 
monogenic diseases in vitro [ 40 ,  41 ]. Diseases such as LQT (LQTS1 [ 42 – 44 ], 
LQTS2 [ 45 – 47 ], LQTS3 [ 48 ], LQTS8/Timothy syndrome [ 49 ]), catecholaminergic 
polymorphic ventricular tachycardia (CPVT) [ 50 – 51 ], ARVC/D [ 52 – 53 ], HCM 
[ 54 ], and DCM [ 55 – 59 ] have been further elucidated using iPSC-CMs. In principle, 
this technology provides a means by which a patient’s pathophysiology can be stud-
ied in vitro. However, the extent to which studies using patient-derived iPSCs will 
offer any advantage in understanding CVD pathogenesis is yet to be determined. 

 In addition, the interpretation of any  phenotypes   observed in a patient’s iPSC- 
derived cells can only be understood via comparison with appropriate control cells. 
The iPSC-based disease models do not account for possible confounders of genetic 
background differences between patient iPSCs that might be responsible for the 
phenotypic differences. Even in studies where healthy siblings have been used as 
controls for disease patients, the phenotypic differences observed could be the result 
of natural variance in the genome, rather than in the putative disease- associated 
mutations [ 60 ]. Thus, the ideal comparison would be between cell lines that differ 
only in the genetic variant (i.e., isogenic cell lines). One way to ensure a better com-
parison would be to use isogenic wild-type control and mutated cell lines derived by 
site-specifi c genome editing from the same parental cell line (Fig.  2 ).

   Site-specifi c  genome-editing technology   enables targeted double-strand 
breaks (DSBs) of the DNA at chromosomal loci of interest [ 61 ,  62 ]. DSBs sub-
sequently recruit endogenous repair machinery for either nonhomologous end-
joining (NHEJ) or homology-directed repair (HDR) pathways. The NHEJ 
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pathway generates random insertions or deletions at the site of DSBs, whereas 
HDR employs homologous donor DNA sequences from sister chromatids, 
homologous chromosomes, or exogenous DNA templates to produce precise 
genetic alteration. NHEJ and HDR are utilized for different aspects of genome 
engineering: NHEJ is specifi cally for gene inactivation, whereas HDR is for pre-
cise gene insertions, corrections, deletions, or base substitutions. 

 To date, four major classes of programmable nucleases, including meganucle-
ases and their derivatives [ 63 – 66 ], zinc-fi nger nucleases (ZFNs) [ 67 – 76 ], tran-
scription activator-like effector nucleases (TALENs) [ 77 – 85 ], and the clustered 
regularly interspaced short palindromic repeat (CRISPR)/Cas (CRISPR-
associated) (CRISPR/Cas) system [ 86 – 94 ] have been developed to enable site-
specifi c genome engineering in a precise and predictable manner (Table  1 ). 
Indeed, genes have been inserted into specifi c loci, and gene mutations have been 
introduced or corrected in human iPSC-based cardiovascular disease models. An 
increasing number of studies utilize genome editing and iPSC technologies to not 
only study the biological mechanisms of genetic CVD but also to provide 
personalized therapies for these diseases (Table  2 ).

  Fig. 2    Utilizing induced pluripotent stem cells (iPSC) and genome-editing technologies to model 
cardiovascular diseases. The genetic variability among human iPSCs can affect the outcome in 
modeling experiments. Site-specifi c genome engineering could in principle eliminate the variation 
arising from the iPSC line derivation and the genetic background. Isogenic iPSC lines (wild-type 
control and mutated cell lines) can be generated using the parental iPSC lines derived from healthy 
controls or patients. Generation of isogenic iPSC-CMs can be used to establish whether the 
observed in vitro phenotypes are the direct results of the disease-causing variant independently of 
the genetic background noise. Functional assays can be performed to identify disease-related 
molecular mechanisms. Additionally, this approach can be utilized in compound screening assays 
to fi nd novel therapies and to determine the susceptibility of the genetic variant to drug-induced 
cardiac toxicity and arrhythmias. iPSCs induced pluripotent stem cells; iPSC-CMs induced plu-
ripotent stem cell-derived cardiomyocytes       
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   Table 1    Comparison of three classes of site-specifi c nucleases   

 ZFNs  TALENs  CRISPR/Cas 

 DNA-binding 
determinant 

 Zinc-fi nger 
proteins 

 Transcription activator- 
like effectors 

 crRNA or sgRNA 

 Nucleases   Fok I   Fok I  Cas 
 Success rate a   Low 

(~20–30 %) 
 High (>90 %)  High (>90 %) 

 Average disruption 
rate a,b  

 Low (~10 %)  High (~20 %)  High (~20 %) 

 Length of target 
site 

 18–36 bp  30–40 bp  23 bp 

 Restriction in 
target site 

 G-rich  Start with T and end 
with A 

 End with NGG or NAG 
sequence 

 Off-target effect  High  Low  Variable 
 Size  ~1 kb × 2  ~3 kb × 2  3.3 kb (SaCas9) or 4.2 kb 

(SpCas9) + 0.1 kb (sgRNA) 

   CRISPR / Cas  clustered regularly interspaced short palindromic repeat (CRISPR)/Cas (CRISPR- 
associated),  crRNA  CRISPR RNA,  sgRNA  single chain guide RNA,  SaCas9 Staphylococcus 
aureus  Cas9,  SpCas9 Streptococcus  pyogenes Cas9,  TALEN  transcription activator-like effector 
nuclease,  ZFN  zinc-fi nger nuclease 
  a The success rates are based on studies using HEK293 cells [ 61 ,  120 – 125 ] 
  b The average disruption rate is based on the frequency of nonhomologous end-joining at the 
nuclease target site  

   Table 2    Summary of major efforts using genome-editing technology to model and treat 
cardiovascular diseases   

 Disorder  Study  Gene  Platform  Findings 

 Disease modeling of genetic cardiovascular diseases 
 BTHS  Wang et al. 

[ 97 ] 
  TAZ  (c.517delG, 
c.328 T>C) 

 CRISPR/
Cas9- mediated 
NHEJ and HDR 
(random insertion 
and gene 
mutation, 
respectively) 

 Immature cardiolipin 
content, abnormal 
mitochondrial functions, 
impaired sarcomere 
organization, and 
depressed contractile 
stress generation 

 DCM  Karakikes 
et al. [ 56 ] 

  PLN  (p.R14del)  TALEN-mediated 
HDR (gene 
correction) 

 Calcium-handling 
abnormalities and 
abnormal  PLN  protein 
distribution 

 Hinson et al. 
[ 57 ] 

  TTN  (p.W976R, 
c.V6382fs, 
p.A22352fs, 
p.P22582fs, 
c.N22577fs, 
c.T33520fs) 

 CRISPR/
Cas9- mediated 
HDR (gene 
correction, 
mutation) 

 Sarcomere insuffi ciency, 
impaired responses to 
mechanical stress and 
beta-adrenergic signaling 
with A-band mutations 

(continued)
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Table 2 (continued)

 Disorder  Study  Gene  Platform  Findings 

 LQTS1  Wang et al. 
[ 42 ] 

  KCNQ1  
(p.R190Q, 
p.G269S, 
p.G345E) 

 ZFN-mediated 
HDR (gene 
insertion) 

 Prolonged APD and 
EADs 

 LQTS2  Wang et al. 
[ 42 ] 

  KCNH2  
(p.A614V) 

 ZFN-mediated 
HDR (gene 
insertion) 

 Prolonged APD and 
EADs 

 Bellin et al. 
[ 100 ] 

  KCNH2  
(p.N996I) 

 Conventional 
homologous 
recombination 

 Reduced cell membrane 
 KCNH2  channels, 
decreased IKr, prolonged 
APD 

 BAV  Theodoris 
et al. [ 102 ] 

  N1  (p.R1108X, p.
H1505del) 

 TALEN-mediated 
HDR (gene 
correction) 

 Epigenetic dysregulation 
resulting in derepression 
of pro-osteogenic and 
pro-infl ammatory gene 
networks 

 Personalized therapy of genetic cardiovascular diseases 
 FH  Ding et al. 

[ 111 ] 
  PCSK9   CRISPR/

Cas9- mediated 
NHEJ (exon 1) 
delivered by 
adenovirus 

 Decrease plasma  PCSK9  
levels and plasma 
LDL-C 

 Ran et al. 
[ 118 ] 

  PCSK9   CRISPR/
Cas9- mediated 
NHEJ (exon 1 and 
5) delivered by 
AAV 

 Decrease plasma  PCSK9  
levels and total 
cholesterol level 

   AAV  adeno-associated virus,  APD  action potential duration,  BAV  bicuspid aortic valve,  BTHS  
Barth syndrome,  CRISPR / Cas  clustered regularly interspaced short palindromic repeat (CRISPR)/
Cas (CRISPR-associated),  DCM  dilated cardiomyopathy,  EAD  early afterdepolarization,  FH  
familial hypercholesterolemia,  HDR  homology-directed repair,  KCNH2  potassium channel, 
voltage- gated eag-related subfamily H, member 2,  KCNQ1  potassium channel, voltage-gated 
KQT-like subfamily Q, member 1,  LDL-C  low-density lipoprotein cholesterol,  LQTS  long-QT 
syndrome,  NHEJ  nonhomologous end-joining,  N1  notch1,  PCSK9  proprotein convertase subtili-
sin/kexin type 9,  PLN  phospholamban,  TALEN  transcription activator-like effector nuclease,  TAZ  
tafazzin,  TTN  titin,  ZFN  zinc-fi nger nuclease  

         Disease Modeling of Genetic Cardiovascular Disease 

    Inherited  Cardiomyopathies      

 Exciting progress has been made in defi ning the etiology of inherited cardiomy-
opathies, including HCM, DCM,  restrictive cardiomyopathy (RCM  ), left ventricu-
lar non-compaction cardiomyopathy (LVNC), and ARVC/D [ 40 ,  95 ]. To date, 
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numerous mutations in more than 50 genes that are associated with the pathogen-
esis of inherited cardiomyopathies have been discovered [ 17 ]. Although molecular 
analysis efforts have revealed important insights regarding the role of genetics in 
cardiomyopathies, the underlying molecular mechanisms of HCM, DCM, RCM, 
LVNC, and ARVC/D remain unclear. 

 In recent years, the iPSC-CM technology has been used to model inherited 
cardiomyopathies [ 5 ,  41 ]. However, one of the major limitations still remains the 
variability resulting from the genetic background differences between iPSC 
lines. In a study by Wang et al., human iPSC-CMs were generated from two 
patients with  Barth syndrome (BTHS  ), an inherited X-linked cardiac and skeletal 
mitochondrial myopathy caused by mutation of the gene encoding for tafazzin 
( TAZ ) [ 96 ,  97 ]. The study used CRISPR/Cas9-mediated NHEJ to mutate  TAZ  and 
demonstrated that the mutated isogenic iPSC-CMs exhibited similar phenotypes 
as BTHS patient-specifi c iPSC-CMs, including immature cardiolipin content, 
abnormal mitochondrial functions, impaired sarcomere organization, and 
depressed contractile stress generation. 

  Genome-editing technology   has also been utilized to study the pathogenesis of 
familial DCM. In a study by Karakikes et al., the p.R14del mutation in the coding 
region of the phospholamban ( PLN ) gene was corrected by TALEN-mediated 
 homology-directed repair (HDR  ) in patient-specifi c iPSCs [ 56 ]. After differentia-
tion into cardiomyocytes, the DCM phenotype was ameliorated in TALEN-corrected 
iPSC-CMs when compared to the isogenic  PLN  mutated cells, including alleviation 
of Ca 2+ -handling abnormalities, electrical instability, and abnormal cytoplasmic dis-
tribution of the  PLN  protein. 

 Most recently, Hinson et al. utilized iPSCs and genome-editing technologies 
to evaluate the pathogenicity of titin ( TTN ) gene variants [ 57 ]. Their study 
used CRISPR/Cas9-mediated homologous recombination to introduce and cor-
rect either missense or frameshift mutations in several loci of the  TTN  gene, 
including four mutations affecting the A-band and two mutations impacting the 
I-band. By combining functional analyses with RNA sequencing of isogenic 
lines, they demonstrated that mutations in the A-band domain of the  TTN  cause 
DCM, whereas truncations in the I-band are better tolerated. This study also 
showed that the pathogenesis of  TTN -induced DCM is associated with sarco-
mere insufficiency, as well as impaired responses to mechanical stress, and 
abnormal beta-adrenergic signaling.  

     Inherited Channelopathies   

  Long-QT syndrome (LQTS  ) is an inherited or acquired cardiac arrhythmic disease, 
predisposing patients to life-threatening ventricular arrhythmias and sudden cardiac 
death [ 9 ,  10 ]. Mutations in 13 genes have been implicated in the pathogenesis of 
familial LQTS [ 98 ]. The potassium channels, voltage-gated KQT-like subfamily Q, 
member 1 ( KCNQ1 ; LQTS1), and voltage-gated eag-related subfamily H, member 
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2 ( KCNH2 ; LQTS2) are the most common mutated genes associated with  LQTS  . 
Because both  KCNQ1  and  KCNH2  function as homotetramers, the mutated mono-
mer displays a dominant-negative effect by impairing the tetramerization of wild- 
type monomers [ 42 ]. 

 In the past 5 years, LQTS1 [ 42 – 44 ], LQTS2 [ 45 – 47 ], LQTS3 [ 48 ], and LQTS8/
Timothy syndrome [ 49 ] have been modeled by iPSC-CMs [ 9 ,  99 ]. However, this 
approach can still be somewhat limited because it is diffi cult to obtain patient samples 
with the desired genetic variants. A study by Wang et al. represented an exciting fi rst 
step in producing human cardiomyocytes that recapitulated LQTS by inserting the 
mutated genes in the safe-harbor locus ( AAVS1 / PPP1R12C ) [ 42 ]. Their study utilized 
ZFNs to insert an expression cassette encoding a pathogenic variant of  KCNQ1  and 
 KCNH2  into wild-type iPSCs. The  KCNQ1 -mutated and  KCNH2 - mutated iPSC-CMs 
showed prolonged action potential duration (APD) and calcium- handling abnormali-
ties when compared to the isogenic control iPSC-CMs. This study demonstrated an 
alternative approach to using actual patient samples and represents a novel way to study 
genetic variants that are known to display dominant negative effects. 

 Another study by Bellin et al. utilized a conventional HDR strategy (without 
using site-specifi c nucleases) to generate isogenic mutated and wild-type lines of a 
heterozygous missense  KCNH2  p.N996I mutation [ 100 ]. Correction of the mutation 
restored the electrical current conducted by the HERG channel (IKr) and the action 
potential duration in iPSC-CMs. As expected, introduction of the same genetic 
mutation reduced the IKr and prolonged the action potential duration in iPSC-CMs. 
Their study demonstrated that the isogenic mutated iPSC-CMs expressed fewer 
 KCNH2  channels at the cell membrane than the isogenic wild-type iPSC-CMs. 
Further treatment with the proteasome inhibitors, lactacystin and leupeptin, 
increased the protein levels of  KCNH2  on the cell membrane in the mutated iPSC- 
CMs, which may suggest a role of proteasomes in the pathogenesis of LQTS2.  

    Inherited  Valvulopathies   

 In the past decade, congenital defects of the aortic valve known as  bicuspid aortic 
valve (BAV  ) have been associated with genetic variants of a membrane-bound tran-
scription factor, NOTCH1 ( N1 ) [ 101 ]. BAV occurs in 1–2 % of the population and 
involves the formation of two valve leafl ets instead of the normal three leafl ets. 
Although the mechanism remains largely unknown, BAV is a major risk factor for 
early aortic valve calcifi cation, a condition that impairs the opening of the valve and 
is responsible for more than 100,000 valve transplants annually in the United States. 

 A study by Theodoris et al. recruited two families carrying a  N1  heterozygous 
nonsense mutation, which is suspected to cause congenital BAV [ 102 ]. Their study 
utilized TALEN-mediated HDR to correct the  N1  mutation in patient-specifi c iPSC 
lines. Comparing the isogenic mutated and control human iPSC-ECs, the  N1  mRNA 
levels were found to be reduced by 30–40 % in the isogenic mutated iPSC-ECs, 
which indicates that the  N1  mutation displays a haploinsuffi cient effect on the 
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pathogenesis of BAV. After exposing the isogenic iPSC-ECs to shear stress, the  N1  
isogenic mutated cells demonstrated epigenetic dysregulation, resulting in derepres-
sion of latent pro-osteogenic and pro-infl ammatory gene networks.   

    Personalized Therapy of Genetic Cardiovascular Diseases 

    Challenges in  Therapeutic Genome Engineering   

 Although different cell types have distinct abilities to repair DSBs, the phase of the 
cell cycle primarily governs the choice of whether the NHEJ or HDR pathways are 
utilized. NHEJ dominates DNA repair during the G 1 -, S-, and G 2 -phases, whereas 
HDR is limited to the late S- and G 2 -phases [ 103 ,  104 ]. This difference in cellular 
activity makes it more challenging to treat diseases that require HDR-mediated 
DSB repair (gene correction or gene insertion) than those requiring NHEJ-mediated 
repair (gene inactivation). Several studies have demonstrated that chemical or 
genetic interruption of the NHEJ pathway can favor HDR; however, such manipula-
tions can be diffi cult to employ and are harmful to cells [ 105 ,  106 ]. 

 The potential use of genome-editing technology in cardiovascular therapy 
can be divided into two approaches: those carried out in vitro or those in vivo 
(Fig.  3a, b , respectively). With established in vitro approaches, the editing pro-

  Fig. 3    Personalized therapy of genetic cardiovascular disease (CVD). The potential use of genome-
editing technology in cardiovascular therapy can be divided in two approaches: those carried out 
in vitro or those in vivo. ( a ) With established in vitro approaches, the editing process is achieved via 
inpatient-specifi c iPSC lines in culture, and these iPSC lines are subsequently differentiated into the 
human cell type of interest by using established differentiation protocols. These edited cells can be 
delivered to patients to treat specifi c CVDs. ( b ) In vivo genome-editing therapy is achieved by 
delivering programmable nucleases to patients to correct or disrupt the mutations of interest       
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cess is achieved in human iPSC lines in culture, and these iPSC lines are sub-
sequently differentiated into the human cell type of interest, such as iPSC-CMs 
or iPSC-ECs, by using established differentiation protocols [ 31 – 34 ,  37 ,  38 ]. 
These corrected cells can be delivered to patients to treat specific CVDs. By 
contrast, in vivo genome-editing therapy is still very much a work in progress. 
For instance, one limitation is that adult cardiomyocytes are arrested in the G 0 -
phase, in which the HDR mechanism is inactive and NHEJ is very limited. 
Furthermore, adult cardiomyocytes have a very low rate of replication [ 107 ], 
so that to achieve therapeutic effects, the efficiency of modification must be 
quite high. Nonetheless, in vivo genome-editing therapy is technically more 
feasible in certain cell types, including hepatocytes and satellite cells, mainly 
because these types of cells replicate better and theoretically could outcompete 
the native diseased cells [ 108 – 110 ].

       Current Targets for In Vivo Genome-Editing Therapy 

 The concentration of  low-density lipoprotein cholesterol (LDL-C  ) in the blood 
is among the most established causal risk factors for  coronary heart disease 
(CHD  ) [ 111 ]. Pharmacological agents that reduce LDL-C levels, namely 
statins, are currently the most effective means of reducing this coronary heart 
disease risk. However, a large proportion of patients are intolerant to statin 
therapy. Proprotein convertase subtilisin/kexin type 9 ( PCSK9 ) has been iden-
tified as the cause of autosomal dominant FH [ 112 ].  PCSK9  is specifically 
expressed in and secreted from the liver and functions as an antagonist to the 
LDLR. Therefore,  PCSK9  has now emerged as a promising therapeutic target 
for the prevention of CHD. 

 Studies have shown that individuals with loss-of-function mutations in 
 PCSK9  experienced a signifi cant reduction of LDL-C levels and consequently 
CHD risk [ 113 – 116 ]. As might be expected, gain-of-function mutations elevate 
LDL-C levels, leading to early-onset CHD in patients diagnosed with FH [ 112 ]. 
In 2015, a  PCSK9 - targeting monoclonal antibody (alirocumab) was approved 
by the U.S. Food and Drug Administration for the treatment of FH [ 117 ]. 
Although this antibody has been shown to be effective for the treatment of FH, 
its effects on LDL-C are transient. Patients must receive injections every few 
weeks to maintain the desired level of  PCSK9 -targeting monoclonal antibody. 

 A study by Ding et al. utilized CRISPR/Cas9-mediated NHEJ to permanently 
disrupt the mouse   PCSK9  gene   in vivo [ 111 ]. They demonstrated that after the 
administration of adenovirus to express a CRISPR/Cas9 targeting  PCSK9  in 
mice, at least 50 % of the  PCSK9  alleles in the liver were altered; this resulted 
in a signifi cant decrease in plasma  PCSK9  levels, as well as an increase in 
hepatic LDLR levels and a reduction of plasma LDL-C level by 35–40 %. Their 
study is the fi rst to demonstrate the potential of genome engineering in vivo for 
the prevention of CVD. 
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 More recently, a study by Ran et al. demonstrated that Cas9 from 
 Staphylococcus aureus  (SaCas9) can alter the genome with an effi ciency similar 
to that of Cas9 from   Streptococcus pyogenes  (SpCas9  ), while being encoded by 
a gene that is more than 1 kilobase (kb) shorter [ 118 ]. The smaller SaCas9 
(~3.3 kb) enabled in vivo genome engineering using adeno-associated virus 
(AAV) that would otherwise be prohibited by the AAV’s restrictive cargo size 
(~4.5 kb) [ 119 ]; the study then utilized CRISPR/SaCas9 to target the  PCSK9  
gene in the mouse liver. As in the previous study [ 111 ], more than 40 % of gene 
modifi cation was observed, accompanied by signifi cant reductions in serum 
 PCSK9  and total cholesterol levels. Assessment of off-target effects by targeted 
deep sequencing did not show any indel formations. This study suggested that 
in vivo genome editing using the novel CRISPR/SaCas9 has the potential to be 
both highly effi cient and specifi c.   

    Conclusions and Future Perspectives 

 With the launching of the  Precision Medicine   Initiative, rapidly emerging tech-
nologies such as iPSCs and genome editing are well positioned to provide pow-
erful tools for studying genotype–phenotype associations, for predicting the 
cardiovascular risks of individual patients and their responses to therapies [ 2 ]. 
The iPSC technology is revolutionary and continues to evolve. As it becomes 
easier to edit mutations in iPSCs, it will become feasible to test genetic variants 
of uncertain significance (VUS), and to assess the importance of genetic modi-
fiers on disease penetrance [ 9 ] (Fig.  4 ). The genome-editing technology pres-
ents a novel and rapidly advancing technology with exciting applications. 
However, significant challenges remain, including enhancing specificity and 
minimizing off-target effects, increasing efficiency, and improving the selec-
tion of targeted sites and delivery methods, and especially for in vivo genome 
engineering. Further refinements are needed to fully exploit the potential of 
genome editing to be a vital tool of future precision medicine treatment for 
CVD.

   We envision that the use of  genome engineering   to generate human cell-based 
disease models will become a standard approach in the laboratory, allowing 
researchers to decipher the molecular mechanisms of genetic variants and unlock 
the secret of CVDs. Nevertheless, many obstacles remain unresolved at this point. 
Population-based data sets will be necessary to identify novel genetic variants that 
are contributors to CVDs. Bioinformatics will be an important tool to determine the 
casual relationship between genotypes and phenotypes, as most of the diseases in 
question will be polygenic. Finally, in the genetic diagnosis aspect, research should 
focus on improving the accuracy, fl exibility, turnaround, and cost of the next- 
generation sequencing.     
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      Using CRISPR-Cas9 Genome Editing 
to Enhance Cell Based Therapies for the 
Treatment of Diabetes Mellitus                     

     Nicole     A.  J.     Krentz      and     Francis     C.     Lynn    

    Abstract     Human pluripotent stem cells (hPSCs) have the ability to form all cell 
types of the body, making them an excellent potential source of insulin-producing 
pancreatic β-cells for diabetes treatment. To generate these cells in vitro requires a 
complete understanding of the normal process of pancreas development: an objec-
tive greatly aided by CRISPR-Cas9 genome-editing technology. First identifi ed as 
the adaptive immune system of bacteria, CRISPR-Cas9 uses RNA to specifi cally 
target a DNA endonuclease to the genome, generating a double-strand break that 
can either be repaired by the error-prone NHEJ or via HDR. From the fi rst demon-
stration that CRISPR-Cas can be programmed to cleave DNA in 2012, the fi eld has 
advanced fast and now includes examples of targeting in many model organisms 
as well as gene knockout or reporter hPSC lines that will aid in the production of 
specifi c cell types, such as pancreatic β-cells.  

  Keywords     CRISPR-Cas9   •   Human pluripotent stem cells   •   Diabetes   •   β-cell   • 
  Endoderm   •   Pluripotency   •   Developmental biology  
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  DSB    Double-strand break   
  gRNA    Guide RNA   
  GUIDE-seq    Genome-wide unbiased identifi cation of double-strand breaks 

enabled by sequencing   
  HDR    Homology-directed repair   
  hESC    Human embryonic stem cells   
  iCRISPR    Induced CRISPR   
  iPSC    Induced pluripotent stem cell   
  MODY4    Mature-onset diabetes of the young 4   
  Ngn3    Neurogenin3   
  NHEJ    Nonhomologous end-joining   
  PAM    Protospacer-adjacent motif   
  Pdx1    Pancreatic and duodenal homeobox 1   
  TALEN    Transcription activator-like effector nuclease   
  tracrRNA    Trans-activating crRNA   
  ZFN    Zinc-fi nger nuclease   

        Importance of Genome-Editing Technologies for Regenerative 
Medicine 

 Human embryonic stem cells ( hESCs     ) are pluripotent cells found in the inner cell 
mass of preimplantation embryos. For reasons of their unlimited capacity for self- 
renewal and ability to form all cell types, hESCs are an excellent source of potential 
cells for the regenerative medicine approach for the treatment of many diseases, 
including diabetes. As  diabetes   is caused by the loss of the insulin-producing β-cells 
of the pancreas, simply replacing these cells represents a potential cure for diabetes. 
Although great progress has been made and current protocols are tantalizingly close 
[ 1 ,  2 ], the fi nal objective of making functional β-cells has not been realized, likely 
because of the lack of an easy readout to quickly evaluate the effi ciency of proto-
cols, an incomplete understanding of normal mammalian pancreas development, 
and the subtle differences between mouse and human β-cell maturation. The gen-
eration of knock-in reporter and knockout mutant hESC lines will greatly aid our 
understanding of human β-cell differentiation and propel us toward the fi nal goal of 
curing diabetes using stem-cell derived endocrine cells. 

 Previously, creating these lines in hESCs was diffi cult because of the low rate of 
homologous recombination. However, the advent of genome-editing technologies 
such as  zinc-fi nger nucleases (ZFN  ), transcription activator-like effector nucleases 
(TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein (Cas) allows for the site-specifi c generation of double- 
strand DNA breaks to increase the frequency of homologous recombination [ 3 – 5 ]. 
By far, the most popular of these approaches is the CRISPR-Cas system because of 
the relative ease, specifi city, and effi ciency of this technology. The CRISPR-Cas 
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system uses RNA to direct a Cas nuclease to a genome sequence. First discovered 
in the adaptive immune system of bacteria, CRISPR-Cas was quickly adapted for 
genome editing and has fast become a “must-have” for every stem cell researcher.  

    Identifi cation of  CRISPR Array  : The Real Heroes 

 In 1987, an unusual structure of repetitive DNA that was fi rst described in 
 Escherichia coli  [ 6 ]. This genomic sequence consists of repeats 24 to 47 bp long 
with unique intervening spacer sequences 27 to 72 bp in length [ 7 ] and were named 
clustered regularly interspaced palindromic repeats (CRISPR) by Jansen and col-
leagues in 2002 [ 7 ]. The repeats are exclusively found in prokaryotes, with approxi-
mately 50 % of all bacterial and nearly all sequenced Archaea genomes containing 
these sequences [ 8 ]. Despite their abundance, the source and signifi cance of these 
repeats remained a mystery. The fi rst clue of its biological role was the presence of 
genes encoding both a DNA helicase and polymerase, suggesting that it may involve 
DNA repair [ 9 ]. 

 In 2005, three independent research groups discovered that the unique spacer 
sequences are derived from invading bacteriophage genomes [ 10 – 12 ], which led to 
the proposal that the sequences are part of a bacterial adaptive immune system [ 13 –
 15 ] that defends the host against invading pathogens via an RNA interference-like 
mechanism [ 16 ]. It is now clear that when foreign DNA is detected in prokaryotic 
cells the CRISPR system responds by integrating short fragments of the foreign 
DNA into the host chromosome at the 5′-end of the CRISPR locus [ 13 ,  16 ,  17 ], and 
the resulting spacers act as “vaccination cards” serving as a genetic record of prior 
encounters with foreign DNA [ 13 ,  17 ,  18 ] (Fig.  1 ).

CRISPR array

Cas genes

Spacer Repeat

Leader

  Fig. 1    Structure of the CRISPR array. Unique spacer sequences ( colored boxes ) derived from 
invading phage genomes are separated by repeats 24–47 bp in length. Adjacent to the spacer repeat 
array is an AT-rich leader sequence ( black box ) containing promoter elements and binding sites for 
regulatory proteins. Upon detection of foreign DNA in prokaryotic cells, short fragments of the 
foreign DNA are integrated as new spacer sequences at the 5′-end of the CRISPR locus       
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   In a unique collaboration between  academia and industry  , the hypothesis that 
these repetitive sequences of DNA are part of an adaptive immune system was 
investigated by challenging the bacteria  Streptococcus thermophilus  with two dif-
ferent phages isolated from yogurt and screening the resulting cultures for 
bacteriophage- resistant mutants [ 13 ]. All the nine isolated mutants contained 
between one to four new spacer sequences added to the leader end that were derived 
from either the sense or antisense strand of phage DNA. It was determined that the 
unique spacer sequences were critical for the resistance to infection as single- 
nucleotide differences between the spacer and phage did not confer resistance. 
Inserting or removing pathogen-specifi c spacer sequences from the CRISPR loci 
resulted in improved or decreased resistance to infections [ 13 ]. Thus, the number of 
spacers in the CRISPR locus that are homologous to the invading DNA dictates the 
sensitivity of the host to a challenging phage [ 10 ]. Although successive phage chal-
lenges results in the addition of spacer sequences at the leader end of loci, there is 
occasional loss of repeat spacer units, usually of those found toward the trailer end 
of the locus [ 14 ]; however, the addition of spacers appears to occur more frequently 
than the loss of repeat spacer units [ 11 ]. The discovery of these repeats and their 
apparent role in the adaptive immune system of bacteria led to a great interest in 
understanding their structure and mechanism.  

    Structure of  CRISPR Arrays   

 The  CRISPR   locus is fl anked by a diverse set of  CRISPR-associated  ( cas ) genes. A 
systematic study aimed at characterizing proteins in the vicinity of the CRISPR 
locus determined that the loci are large, heterogeneous, and complex, containing up 
to 20 different  cas  genes [ 19 ]. The defi ning characteristic of the locus is the series 
of direct repeats that are separated by unique spacer sequences of a similar length 
[ 16 ,  20 ,  21 ], the number of which can vary from a few to several hundred. The 
spacer repeats array is generally fl anked by an AT-rich sequence [ 7 ] that is thought 
to contain both promoter elements [ 22 – 24 ] and regulatory protein-binding sites [ 23 , 
 24 ]. As the spacer sequences closest to the leader are more diverse than those in the 
trailer [ 7 ,  11 ], there is a polarity that is defi ned by the leader. Sequences of foreign 
DNA that are selected for integration are called protospacers and are fl anked by 
sequence-specifi c protospacer-adjacent motifs (PAMs) [ 10 ,  14 ]. 

 Because of the complexity and diversity of the  CRISPR-Cas system  , a classifi ca-
tion system of three major types (types I, II, III) was proposed based on phylogeny 
of  cas  genes, sequence/organization of repeats, and the architecture of loci [ 25 ]. 
Each of the three main types of systems differs in how they mechanistically prevent 
infections, and more than one type can be active at a time in an organism [ 26 ]. Space 
constraints require this book chapter to focus solely on type II systems and their use 
in genome editing; however, there are several great reviews detailing the major 
CRISPR variants [ 27 ,  28 ]. 
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 The type II system has only been found in bacteria [ 25 ] and is the simplest of all 
types of microbial CRISPRs [ 28 – 30 ]. It is the most compact with only four  cas  
genes:  cas1 ,  cas2 ,  cas9 , and either  csn2  (type II-A) or  cas4  (type II-B).  Cas1 and 
Cas2   are the only proteins that are universally conserved across all types of CRISPR- 
Cas systems [ 16 ,  19 ]. Two defi ning features of the type II system is the large multi-
functional protein Cas9 and the requirement of the trans-acting CRISPR-associated 
RNA (tracrRNA) that is encoded upstream and on the opposite strand of the 
CRISPR-Cas locus [ 31 ].  

    Mechanism of Adaptive Immunity 

 There are three stages of CRISPR-mediated adaptive immunity: spacer acquisition, 
 crRNA maturation     , and interference [ 30 ,  32 ,  33 ] (Fig.  2 ).

   Spacer acquisition occurs when a short protospacer sequence of foreign DNA is 
incorporated into the CRISPR array as a new spacer [ 18 ], serving as a genetic record 
of previous infections [ 13 ]; this requires the  protospacer-adjacent motif (PAM  ) 
sequence, a four- or fi ve-nucleotide sequence that is directly 5′ to the protospacer on 
the target DNA strand and not included in the spacer itself [ 10 ,  14 ,  15 ,  17 ] (Fig.  2a ). 
PAM sequences were fi rst discovered as a conserved sequence adjacent to proto-
spacers in phage DNA using in silico analysis [ 10 ], and the PAM sequence depends 
on the CRISPR-Cas variant [ 34 ]. The  PAM   is important for the discrimination of 
self versus non-self [ 35 ] by distinguishing potential target sequences from CRISPR 
spacers in the loci [ 36 ,  37 ] as the spacers do not contain the required adjacent PAM 
sequence [ 10 ,  14 ]. In addition, the PAM sequence is necessary for effi cient target 
binding [ 38 ], for spacer acquisition as integration machinery recognizes the PAM 
[ 39 ], and for target interference [ 14 ,  17 ,  38 ]. 

 The strict requirement for PAM sequences in type II CRISPR-Cas systems pre-
vents DNA cleavage from occurring when the PAM sequence is mutated [ 14 ,  38 , 
 40 – 43 ], resulting in phages adapting to avoid CRISPR immunity when mutations 
occur in the PAM sequence [ 14 ]. This protection from CRISPR-mediated interfer-
ence with a single mutation in  the   PAM sequence occurs even if the spacer and 
protospacer sequences have 100 % complementarity [ 14 ,  17 ,  38 ,  44 ]. 

 After spacer acquisition and to confer immunity against a pathogen, the spacer 
sequences need to undergo maturation to produce crRNA (Fig.  2b ). This process 
requires two distinct steps: fi rst, the CRISPR loci is transcribed as a long precursor 
crRNA (pre-crRNA) from promoter sequences in leader, and second, the pre-crRNA 
is processed into mature crRNA by the subtype-specifi c enzymes Cas9 and RNAse 
III. The mature crRNA then hybridizes with the tracrRNA to form a dsRNA that is 
recognized and cleaved by RNAse III during crRNA maturation [ 31 ]. As deletion of 
Cas9 prevents crRNA biogenesis,  Cas9   is required for crRNA maturation but its 
exact role in this process is unknown [ 31 ]. It is also during the crRNA maturation 
phase of adaptive immunity that the  cas  genes are transcribed and translated. 
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 Finally, during interference, the mature crRNA “guides” cas protein(s) to cleave 
the complementary nucleic acid [ 17 ,  32 ,  33 ,  40 ,  45 ,  46 ] (Fig.  2c ). In type II systems, 
this involves a single protein, Cas9, along with the dual-RNA heteroduplex of 
tracrRNA and crRNA [ 31 ,  40 ]. Cas9 requires both the mature crRNA and tracrRNA 
for DNA cleavage to occur during target interference [ 40 ] and each crRNA:tracrRNA 
complex can only recognize one target that is dictated by the sequence of the spacer 
that it contains [ 31 ,  36 ,  45 ,  47 – 54 ]. 

 The success of the interference phase of  CRISPR adaptive immunity   depends on 
several factors including the expression of Cas9, which is important not only for 

Spacer 
Acquisition

crRNA
Maturation

Pre-crRNA

cRNA processing
(Cas9 and RNase III)

Interference

tracrRNA

Cas9

PAM

REC
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Nuclease
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  Fig. 2    The three stages of CRISPR-mediated adaptive immunity. ( a ) Spacer acquisition results in 
a short protospacer sequence of foreign DNA ( purple square ) being incorporated at the leader end 
( black square ) of the CRISPR locus, separated from the adjacent spacer sequence ( red square ) by 
repeat sequences ( white square ). Cas genes are located upstream of the repeat spacer units ( blue 
ovals ). ( b ) crRNA maturation begins with transcription of the long precursor crRNA (pre-crRNA). 
The pre-crRNA is then processed into mature crRNA by Cas9 and RNase III and hybridizes with 
the tracrRNA to form a dsRNA. ( c ) Target sequences are cleaved during interference when a 
mature crRNA recognizes its complementary sequence in a process that involves an adjacent PAM 
sequence ( yellow ). The Cas9 enzyme has two lobes: the target recognition (REC) lobe and the 
nuclease lobe. Within the nuclease lobe the RuvC domain cleaves the nontarget strand and the 
HNH domain cleaves the target strand DNA to generate a blunt-end cleavage product       
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crRNA biogenesis but also for target interference [ 17 ,  31 ,  40 ]. The Cas9 protein has 
a bilobed architecture that consists of the target recognition and the nuclease lobes 
with the positively charged groove at the interface [ 55 ]. To investigate the bilobed 
nature of Cas9 protein, a split-Cas9 enzyme was created in which the nuclease lobe 
and the recognition lobe were expressed as separate peptides [ 56 ]. The two lobes do 
not interact on their own, but the crRNA:tracrRNA is necessary and suffi cient to 
dimerize the nuclease and recognition lobes into an active complex [ 56 ]. Within the 
nuclease lobe there are two domains: the HNH domain that is responsible for DNA 
cleavage of the target strand and the RuvC-like domain which cleaves DNA on the 
nontarget strand [ 40 ,  57 ] (Fig.  2c ). DNA cleavage occurs in the protospacer sequence 
to generate a blunt-end cleavage product [ 17 ]. 

 Although the PAM sequence is required for spacer acquisition, it is also strictly 
required for interference as DNA cleavage can only occur when there is a PAM 
sequence on the target DNA, allowing for  Watson–Crick base-pairing   between the 
crRNA:tracrRNA sequence and its complementary target sequence [ 40 ]. Although 
Cas9 can transiently and weakly react with DNA in the absence of PAM, evidence 
from single-molecule-based assays suggests that Cas9 preferentially interacts and 
binds longer to DNA with PAM sequences [ 58 ,  59 ]. As the Cas9 protein is the limit-
ing factor for Cas9-mediated DNA cleavage [ 60 ] and the DNA sequence is interro-
gated by Cas9-RNA beginning at the PAM sequence and proceeding directionally 
toward the distal end of target sequence [ 58 ], the PAM sequence is integral for the 
CRISPR-mediated adaptive immunity.  

    Adaptation of  Type II CRISPR-Cas   for Genome Editing 

 The discovery of an RNA-based DNA cleavage system in bacteria was quickly 
adapted for genome editing: with the type II CRISPR-Cas system from  Streptococcus 
pyogenes  being the most widely applied. The most common system uses a guide 
RNA (gRNA) that is a single RNA chimera, produced by fusion of the crRNA and 
tracrRNA with an addition of 20 nt to the 5′-end (protospacer region of crRNA) that 
is suffi cient to guide Cas9 to an intended target site [ 40 ]. The gRNA was also 
extended at the 3′-end to improve DNA-targeting activity [ 40 ]. Thus, the gRNA in 
this system is about 100 nt long with a 17- to 20-nt sequence at the 5′-end that speci-
fi es DNA target sequence. Similarly to adaptive immunity, the target site is recog-
nized by Watson–Crick base-pairing between the  gRNA   and target DNA strand, is 
mediated by Cas9 [ 16 ,  40 ] and requires a PAM sequence for the generation of a 
double-stranded break (DSB). 

 The DSB that is generated can be repaired in one of two ways:  nonhomologous 
end-joining (NHEJ  ) or  homology-directed repair (HDR  ). DSBs that are repaired by 
NHEJ can induce missense or nonsense mutations (indels) when the break occurs in 
an open reading frame. For HDR, a DNA template with homology arms is required 
and can be as short as 10–30 nt [ 61 ,  62 ], allowing for the use of single-stranded 
DNA oligonucleotides [ 61 ,  63 ,  64 ]. 
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 When using  genome-editing technology  , it is important to consider targeting effi -
ciency, which is largely dependent on the cell type that is being targeted and the 
genomic location of the targeting site. Several studies targeting the same loci using 
both  TALEN and CRISPR-Cas9 systems   have determined that CRISPR technology is 
more effi cient [ 65 ,  66 ]. Although DNA methylation has been reported to decrease effi -
ciency when using TALENs [ 67 ], limited reports suggest that CRISPR-Cas9 may not 
be as sensitive to DNA methylation [ 68 ]. To improve the effi ciency of HDR, nucleofec-
tion of preassembled Cas9/guide RNA complexes can be used [ 69 ]. In addition, gener-
ating KO via NHEJ can be improved using a modifi ed gRNA structure with an extended 
duplex length and a mutated fourth thymine to either cytosine or guanine [ 70 ].  

    Reducing the Risk of  Off-Target Mutagenesis   When Using 
CRISPR-Cas9 

 An important consideration when undertaking genome editing is the specifi city of 
targeting as off-target binding of Cas9 enzymes in unintended regions of the genome 
could lead to double-stranded breaks and induce mutations. As CRISPR-Cas9 only 
requires the binding of a single RNA to generate the double-stranded break, there is 
an increased chance of erroneous genome binding. The specifi city of CRISPR-Cas9 
and TALENs was compared by targeting GFP into the AAVS1 locus followed by 
whole-genome sequencing, determining that CRISPR-Cas9 was not only as effi cient 
but also as specifi c as TALENs [ 71 ]; this was corroborated by other studies that 
determined that off-target mutations by Cas9 are very rare [ 72 ,  73 ]. The rates of 
mutagenesis were further studied using the technique GUIDE-seq (genome-wide, 
unbiased identifi cation of DSBs enabled by sequencing), which involves sequencing 
of double-stranded oligodeoxynucleotides that are incorporated into DSBs gener-
ated by Cas9. Using this approach the authors investigated 13 different gRNAs in 
human cells and determined that off-target binding varies and is largely dependent 
on gRNA [ 74 ], a fi nding that is consistent with other reports [ 75 ,  76 ]. 

  ChIP-seq data   using 12 gRNAs and a catalytically dead mutant Cas9 enzyme 
(dCas9) revealed that off-target binding varies from as little as ten instances to greater 
than a thousand and is dependent on both the gRNA and the genomic regions 3′ of the 
PAM [ 77 ]. To determine if this binding was suffi cient to cause cleavage, the authors 
performed whole-genome sequencing using the catalytically active form of Cas9 and 
found that although some off-target sites had indels at rates higher than background, 
mutation frequencies were signifi cantly reduced compared to those at intended target 
sites [ 77 ]. The fi nding that off-target binding may not result in cleavage led to the 
proposal of a two-state model, where seed match triggers binding but extensive pair-
ing is required for cleavage [ 78 ]. Consistently, single-particle tracking of  Cas9   deter-
mined that off-target binding in living cells is short lived [ 79 ] and that Cas9 cleaves 
off-target DNA in a sequence-dependent manner that is sensitive to the number, posi-
tion, and distribution of the mismatches between gRNA and genomic sequence [ 80 ]. 

 Because much of the off-target activity of  Cas9   appears to be gRNA dependent, 
care must be taken to select unique target sequences in the genome [ 81 ], and there 
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are several Web-based tools to aid in the selection of potential targeting sequences 
[ 80 ,  82 – 85 ]. Early models suggested that the fi rst seven base pairs of the gRNA seed 
sequence were important for binding, but high-throughput sequencing of eight 
gRNAs determined that specifi city extends into the 7- to 12-bp region as well [ 86 ], 
suggesting that particular attention must be paid to the fi rst 12 bp proximal to the 
PAM when designing gRNAs [ 87 ]. Using truncated gRNAs of fewer than 20 nucle-
otides decreases off-target mutagenesis by 5000-fold [ 74 ,  88 ] but likely reduces 
activity [ 86 ]. In addition, the concentration of gRNA can be titrated to minimize 
off-target effects [ 80 ], as high concentrations of gRNA can lead to off-target cleav-
age even with mismatches that are near or within the PAM [ 86 ,  88 ]. 

 Another consideration for target design is the presence of the PAM sequence, as 
its abundance in the genome adjacent to the complementary gRNA sequence will 
increase the likelihood of off-target cleavage [ 58 ]. To address this, a side-by-side 
comparison of the  Streptococcus pyogenes  Cas9 that used the PAM sequence 
“NGG” was compared to  Streptococcus thermophilus , which requires a longer 
PAM. Although these two enzymes were comparable for target cleavage, the Cas9 
that required a longer PAM sequence had signifi cantly reduced off-target mutagen-
esis [ 89 ]. Further characterization of other  Cas9 enzymes   or improved design of 
gRNA in the future will likely reduce the risk of off-target Cas9 recognition. 

 To improve specifi city, a nickase that only cuts a single DNA strand can be used 
[ 40 ], such as the D10A Cas9 enzyme that has a mutation in the RuvC domains 
which does not impair binding to DNA but results in a single-strand endonuclease 
that is highly specifi c [ 40 ,  81 ,  90 – 92 ]. Using two nickases reduces off-target effects 
by 50- to 1500-fold in cell lines [ 81 ,  90 ,  91 ]. Unfortunately, this is at the cost of 
effi ciency as it can be diffi cult to fi nd two PAM sequences in close proximity. A 
similar approach is to use RNA to guide two Fok1 nucleases that must dimerize 
before cutting can occur [ 93 ,  94 ]. This approach reduces the off-target mutagenesis 
to an undetectable level when using deep-sequencing analysis and results in 140- 
fold higher specifi city in human cells [ 94 ]. It has also been used to delete large 
genomic regions of 10 kb to 15 mega bases [ 91 ,  95 ,  96 ] as well as to generate 
mutant mice by microinjection into mouse zygotes [ 97 ].  

    Alternate Uses of the  CRISPR-Cas9 System   

 The CRISPR-Cas9 system can also be used to activate or repress transcription in an 
inducible manner. Expression of endogenous human genes can be increased by using 
a dCas9 fused to VP64 (4xVP16) transcriptional activation domain [ 98 ]. Similarly, the 
CRISPR-On system uses RNA to guide dCas9 fused to 3xVP16 (dCas9-VP48), a sys-
tem that was suffi cient to activate reporter genes [ 99 ]. Using epigenetic modifi ers, such 
as the histone acetyltransferase p300, can also enhance dCas9-VP64 induction of tran-
scription [ 100 ]. Conversely, transcription can also be repressed by using a dCas9 fused 
to the KRAB-repressive domain, preventing RNA polymerase binding to promoter 
sequences or acting as a transcription terminator by blocking RNA polymerase [ 101 ]. 
Further studies suggest that dCas9-KRAB induces H3K9me3 at enhancer regions, 
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resulting in decreased accessibility of genomic sequences [ 102 ]. This system is sensi-
tive to even a few mismatches [ 103 ], making it highly specifi c to repress transcription 
of only that gene of interest [ 103 ,  104 ]. Similarly, the expression of genes can be turned 
off using CRISPRi, which also uses dCas9 to block transcription via interference with 
transcriptional elongation, RNA polymerase binding, or transcription factor binding 
[ 105 ]. These strategies have also been amended for genome-scale induction or repres-
sion of genes and libraries of up to 10 gRNAs per TSS have been generated [ 103 ]. 

 To allow for conditional control of  CRISPR-Cas system  , a light-activated form of 
Cas9 was generated by inserting a caged lysine amino acid that renders Cas9 inac-
tive. Upon exposure to light, the caging is reversed and Cas9 becomes active [ 106 ]. 
Another inducible genome-editing technique is called iCRISPR, involving doxycy-
cline-inducible expression of Cas9 in hESCs. With transfection of individual gRNAs, 
double- or triple-gene knockout can be generated with 10 % effi ciency or knock-in 
clones can be created by providing a ssDNA template [ 107 ]. An hESC line with 
Flpe-ER T2  knocked in to the AAVS1 locus allows for easy inducible knockout: the 
exon of interest is fl anked with Flp/FRT sites using CRISPR-Cas9, and upon addi-
tion of 4-OHT, fl ippase enters the nucleus and removes the frt fl anked exon [ 108 ]. 

 In an attempt to discover other Cas proteins that will allow for simultaneous 
targeting at one time, the Cas9 protein from  Neisseria meningitides  was found to 
target human and bacterial cells with high effi ciency [ 90 ]. In search of a smaller 
Cas9 protein to package within a single adeno-associated virus (AAV) vector, six 
other Cas9 orthologues were investigated and the Cas9 protein from  Staphylococcus 
aureus  was found to be as effi cient although being 1 kb smaller [ 109 ]. Using this 
strategy, the authors targeted the gene Pcsk9 and achieved indels in greater than 
40 % of liver cells within 1 week of a single injection of AAV [ 109 ]. Finally, another 
study investigated a different family of proteins containing 16 members called Cpf1. 
Two of these proteins from   Acidaminococcus    and  Lachnospiraceae  were found to 
edit the genome of human cells with high effi ciency; however, they differ from other 
Cas9 proteins as they do not need a tracrRNA, have a T-rich PAM, and cleave DNA 
via a staggered double-stranded break [ 110 ], generating sticky ends that could 
improve the effi ciency of knocking in DNA. The addition of these other Cas pro-
teins will allow for multiplex targeting and in vivo targeting, including targeting 
brain [ 111 ,  112 ], liver [ 112 ,  113 ], and immune cells [ 112 ].  

    Using  CRISPR-Cas9   Approaches in Model Organisms 

 Our understanding of basic cell biology and embryonic development has been 
greatly aided by the study of model organisms and the adaptation of genome 
editing to these organisms will serve to identify new genes in developmental 
processes. Within the plant kingdom, CRISPR-Cas has been used to modify the 
genomes of  Arabidopsis , tobacco, sorghum, rice, and sweet orange [ 114 ]. In 
 Saccharomyces cerevisiae , constitutive Cas9 expression paired with transient 
gRNA expression increased the rates of homologous recombination to nearly 
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100 % [ 115 ]. Two transgenic strains of  Drosophila  have been generated wherein 
Cas9 is expressed ubiquitously using U6 or in the germline using  nanos  pro-
moter, allowing for germline transition of mutations in about 60 % of progeny 
[ 75 ]. Similarly,  Caenorhabditis elegans  has also been targeted [ 116 ,  117 ]. 
CRISPR-Cas9 has been used in zebrafi sh to generate chromosomal deletions or 
inversions [ 118 ], biallelic modifi cations [ 119 ], and to target multiple genes 
[ 120 ] with similar effi ciencies as other genome- editing strategies [ 121 ]. In 
mammals, CRISPR-Cas9 has been used to simultaneously target up to fi ve 
genes with high effi ciency in mouse embryos by co-injecting Cas9 mRNA and 
gRNA [ 122 ,  123 ]. Similarly, cynomolgus monkeys have been targeted by co-
injection of Cas9 mRNA and gRNA at the one-cell stage of embryogenesis 
[ 124 ]. The multifaceted nature of the  CRISPR-Cas9 system   combined with its 
adoption in multiple model organisms highlights the importance and utility of 
genome editing in many research programs.  

    Generating β-Cells from Human Pluripotent Stem Cells 
for Diabetes Treatment 

  Regenerative medicine approaches   to produce transplantable cells for disease 
treatment have shown much promise in many diseases including diabetes. 
Diabetes results from the loss or dysfunction of pancreatic β-cells located in the 
islets of Langerhans. In 2000, Shapiro and colleagues described a glucocorticoid-
free immunosuppressive therapy for islet transplantation that provided insulin 
independence in patients with type 1 diabetes [ 125 ]. The benefi ts of islet trans-
plantation at reducing secondary complications and the shortage of human donor 
islets have encouraged research focused on the generation of large numbers of 
transplantable β-cells. One potential approach is the differentiation of  human 
embryonic stem cells (hESC  ). Current differentiation protocols result in endo-
crine progenitor cells that fully differentiate and mature into insulin-secreting 
β-cells upon transplantation into immunodefi cient mice [ 126 – 129 ]. We are able 
to produce immature endocrine cells in culture [ 1 ,  2 ], but currently no differentia-
tion protocol has been successful at producing fully functioning glucose-sensing 
insulin secreting β-cells in vitro. To produce mature cells for transplantation 
in vitro, we will require a detailed understanding of the developmental network 
that regulates the formation of pancreatic β-cells. 

 Genome-editing technologies such as CRISPR-Cas9 provide a great opportu-
nity to improve our understanding of this process. Traditionally, targeting pluripo-
tent cells was diffi cult [ 5 ] because it required homologous recombination, a rare 
event in human pluripotent stem cells [ 130 ]. However, the use of CRISPR-Cas9 
improved the effi ciency of targeting in induced pluripotent stem cells (iPSC) to 
2–4 % [ 131 ], and this was further increased to 51–79 % by using fl uorescent mark-
ers to select Cas9-expressing cells [ 65 ], making generating knockout or knock-in 
reporter lines more feasible in stem cell research. 
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 The fi rst step in the differentiation protocol toward any somatic cell type is to lose 
expression of  pluripotency   genes such as OCT4, SOX2, and NANOG (Fig.  3 ). OCT4/
POU5F1 is an important member of the  pluripotency   network as loss of Oct4 in 
mouse embryos results in a loss of pluripotent cells [ 132 ], and Oct4 is required for the 
formation of all embryonic germ layers in vitro and in vivo [ 133 ]. Owing to its impor-
tant role in pluripotency and differentiation, many reporter lines have been generated 
to understand the role of OCT4 in early fate decisions in human pluripotent cells. 
While this was traditionally done using transgenic approaches [ 134 – 136 ], recent 
advances in genome editing have allowed for the knock-in of fl uorescent proteins 
directly into the OCT4 locus of hPSCs [ 66 ,  137 ,  138 ]. Another important member of 
the pluripotency network is Sox2, which works together with Oct4 to regulate the 
transcription of many genes [ 139 ]. Using homologous recombination mediated by an 
adeno-associated virus, the SOX2 coding region was replaced with eGFP-SV40-Neo-
pA in H9 hESCs, which did not affect the formation of  endoderm   [ 140 ]. Another 
study used homologous recombination to insert eGFP into exon 1 of NANOG in 
HUES-1 and HUES-3 hESCs and determined that eGFP expression overlapped with 
NANOG immunofl uorescence and was lost upon differentiation [ 141 ].

   The important role of OCT4 both in maintaining  pluripotency   and in directing dif-
ferentiation resulted in the generation of strategies to control transcription of  OCT4   
during hPSC differentiation to the  endoderm   lineage, the germ layer from which 
many tissues, including the pancreas, are derived [ 142 ]. Using a CRISPRi system 
wherein dCas9 is fused to the transcriptional repressor KRAB, a gRNA was used to 
repress transcription of the OCT4a gene [ 143 ]. Conversely, fusing dCas9 to the acti-
vation domain VP16 was used to increase OCT4 expression up to 70-fold [ 144 ]. A 
similar strategy with dCas9-VP64 was suffi cient to induce the expression of SOX17 
[ 143 ], a protein important for  endoderm   formation. This technique paired with a H9 
reporter line that marks SOX17-expressing cells with GFP [ 145 ] will greatly improve 
our understanding of early fate decisions and how SOX17 regulates this process. 

 A subset of  endoderm   cells activates the transcription factor  pancreatic and duo-
denal homeobox 1 (PDX1  ), giving rise to the pancreas and gut. Mice null for  Pdx1  

SOX17OCT4
SOX2
NANOG

PDX1
NKX6.1

NGN3
MAFA

EndocrinePancreasDEhPSC

  Fig. 3    Schematic of CRISPR-Cas9-targeted genes in the developmental pathway from stem cell 
to beta cell. Reporter hPSC lines have been generated for the pluripotency genes OCT4, SOX2, 
and NANOG, the defi nitive endoderm (DE) gene SOX17, and the pancreas gene PDX1. hPSC 
lines that allow for the induction of the defi nitive endoderm gene SOX17, pancreatic genes PDX1 
and NKX6.1, and the endocrine gene MAFA have also been generated; CRISPR-Cas9 was used to 
repress expression of the pluripotency gene OCT4. Knockout mutant lines have been generated for 
the endocrine genes NGN3       
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have pancreatic agenesis [ 146 ] that is thought to be the result of a reduction in pro-
genitor cell proliferation [ 147 ]. As with mouse pancreas development,  PDX  1 is 
required for human pancreas formation [ 148 ], and patients with a single nucleotide 
deletion in  PDX1  also have pancreatic agenesis [ 149 ]. Accordingly, mutations in 
 PDX1  have been linked to maturity-onset diabetes of the young (MODY4) [ 150 ] 
and permanent neonatal diabetes [ 151 ]. 

 To investigate the role of PDX1 in human pancreas development, the doxycycline- 
inducible Cas9 (iCRISPR) line, where gRNA transfection in combination with 
doxycycline treatment improves biallelic knockout effi ciency to 17–67 % [ 107 ], 
was used to generate PDX1-eGFP reporter lines [ 152 ], an important resource for 
understanding specifi cation of the pancreatic lineage from defi nitive  endoderm   
cells. Another important tool is to activate expression of pancreas-specifi c genes in 
an inducible manner. PDX1 expression was controlled using gRNAs and dCas9 
fused to a  dihydrofolate reductase (DHFR  )-derived destabilization domain that is 
only stabilized upon addition of Trimethoprim [ 144 ]. This approach was suffi cient 
to simultaneously activate PDX1 and NKX6.1 expression during hPSC differentia-
tion in combination with doxycycline induction of MAFA [ 144 ], highlighting the 
feasibility of controlling the activation or repression of transcriptional programs to 
improve the effi ciencies of current differentiation protocols. 

 The majority of  endocrine differentiation   occurs in mice between E13.5 and 
E15.5 in a process known as the “ secondary transition  .” Neurogenin3 (Ngn3), a 
basic-helix-loop-helix transcription factor that is markedly induced toward the end 
of the secondary transition, marks the cells fated to become endocrine cells [ 153 ] 
and is required for the formation of all endocrine cell types [ 154 ]. Moreover, ectopic 
expression of  Ngn3   is suffi cient to generate all islet cell types in vivo [ 153 ,  155 , 
 156 ]. A subset of cells within the pancreatic epithelium will activate Ngn3 expres-
sion, migrate away from the epithelium, and begin to activate the lineage-specifi c 
gene expression cascade (reviewed by Pan and Wright [ 157 ]). However, the process 
that governs which progenitor cells activate Ngn3 and why Ngn3 is activated is not 
well understood. In human development, by gestational week 8 NGN3 protein 
expression is detected within a subset of pancreatic epithelial cells [ 158 ].  Neurog3   
is required for the formation of all endocrine cell types in the mouse pancreas [ 153 ] 
but patients with biallelic mutations in NEUROG3 are born with circulating 
C-peptide levels [ 159 ], suggesting the NEUROG3 may not be as important for the 
formation of human endocrine pancreas. To investigate the role of NEUROG3 in 
human pancreas formation, CRISPR-Cas9 was used to generate hPSCs with hetero-
zygous or homozygous mutations in NEUROG3, and the formation of endocrine 
cells was determined using directed differentiation protocols [ 160 ]. From this study 
it was determined the NEUROG3 is required for endocrine formation during human 
pancreas development. With the relative ease of generating biallelic mutations in 
hPSCs using  CRISPR-Cas9  , it will be possible to determine the function of many 
new genes in human endocrine cell differentiation as well as to understand some of 
the mutations that cause monogenic diabetes and to learn how genetic variants drive 
the development of type 1 and 2 diabetes [ 161 ].  
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    Conclusion 

 Regenerative medicine approaches to treat diseases such as diabetes by creating an 
unlimited source of transplantable cells from hESCs or iPSCs has been of great 
interest to many researchers. Manipulating the genome of pluripotent cells was pre-
viously diffi cult because of the low rates of homologous recombination, but new 
genome-editing technologies such as CRISPR-Cas now allow the rapid creation of 
knockout mutant lines and knock-in reporter lines. First discovered in the adaptive 
immune system of bacteria, CRISPR-Cas has fast become essential for every stem 
cell researcher. Although the use of genome editing in investigating pancreas devel-
opment, monogenic forms of diabetes, or the metabolic disorder itself is still in its 
infancy, the relative ease and accessibility of CRISPR-Cas9 promises to lead to 
many new advances in these areas of research.     
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    Abstract     The future of precision medicine, genome editing has gained momentum 
in the fi eld of ophthalmology because of the eye’s amenability to genetic interven-
tions. The eye is an ideal target for gene therapy due to its accessibility, ease of 
noninvasive monitoring, signifi cant compartmentalization, immunoprivileged sta-
tus, optical transparency, and the presence of a contralateral control. One of the fi rst 
gene therapy clinical trials was conducted in the eye for a severe form of early-onset 
retinal dystrophy called Leber congenital amaurosis, and it has encouraged further 
exploration of this technique as a viable treatment option for other inherited disor-
ders across medical disciplines. This chapter highlights current ocular gene therapy 
approaches, clinical and preclinical experiments, and provides a case study of the 
bench-to-bedside personalized medicine approach taken for a novel and rare retini-
tis pigmentosa mutation.  
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      Retinitis Pigmentosa 

 Retinal dystrophies and  retinitis pigmentosa (RP        ) are a heterogeneous group of 
inherited retinal dystrophies characterized by rod and cone photoreceptor cell 
death [ 1 ,  2 ]: 1 in 4000 individuals are affected, and more than 200 genes are impli-
cated, leading to a spectrum of phenotypic manifestations and symptoms [ 2 ,  3 ]. 
Typically, patients experience night blindness in adolescence, tunnel vision in 
early adulthood, and blindness from a severely constricted visual fi eld later in life 
(Fig.  1 ) [ 1 ,  4 ]. There are limited treatment options available. Currently, high-dose 
vitamin A palmitate, omega-3 supplements, and avoidance of vitamin E are the 
only widely accepted treatment recommendations, although they only slow pro-
gression and convey risks of birth defects and liver toxicity [ 1 ,  5 ,  6 ].

   Scientists have turned to gene therapy in the hopes of developing an alternative, 
safe, lifelong treatment for RP that will halt cell degeneration indefi nitely [ 7 ,  8 ]. 
Multiple gene therapy trials have centered on RP because many of the genes causing 
RP have already been cloned, and several well-characterized mouse models exist. 

  Fig. 1     Retinitis pigmentosa (RP) phenotypic and visual comparison . The  upper left  and  right 
boxes  show autofl uorescence images of the retina. RP-affected retinae have fovea preservation 
amidst peripheral cell death, leading to tunnel vision as depicted in the  lower right box        
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The  interventional approach of the therapy is dependent on the inheritance pattern 
of the condition: recessive conditions can be amended through gene supplementa-
tion, whereas patients with dominant conditions must undergo gene correction.  

     Gene Supplementation   

 In recessive conditions, germline mutations in both alleles prevent production 
of a functional gene product. Supplementation of a wild-type copy of the gene 
can restore the normal phenotype [ 9 ,  10 ]. Gene supplementation distinguishes 
itself from gene correction in that the mutant alleles are left intact, relying on 
translation of the wild-type transgene to compensate for the inactive, absent, or 
defective protein. The most commonly used strategy for introducing the wild-
type gene is viral transduction. Transgenes are packaged into viral vectors, 
which transduce the target cells, delivering the transgenes to the host in a cell-
specifi c fashion [ 10 ]. Choice of vector allows for fl exibility in therapy and 
determines the permanence of transgene expression, its pathogenicity, and the 
risk of insertional mutagenesis, among other factors [ 11 ]. A discussion of com-
mon vectors and their application in clinical and preclinical models is provided 
in the following section.  

     Viral Gene Therapy   Strategies 

     Adenoviruses   

 The adenovirus is a non-enveloped, double-stranded DNA virus with broad tro-
pism [ 9 ,  11 ]. The virus binds to cell-surface receptors, which internalize the 
DNA. The transgenes are not integrated into the genome, however, but exist as 
transcriptionally active episomes that are degraded on the timescale of days to 
weeks [ 12 ]. Adenovirus vector transgene expression is thus transient, and repeated 
vector administration is necessary for long-term clinical benefi ts. The status of the 
transgene as an episome can in other ways be advantageous, as its expression is 
immediate and independent of the cell reproductive state [ 11 ]. Concern regarding 
the pathogenicity of adenoviruses has led to the development of replication-defi -
cient viruses, although there still remains the risk of recombination with wild-type 
adenoviruses within the host [ 13 ].  Encapsidated adenoviral mini-chromosomes 
(EAMs  ), which have had all viral genes removed, may address this limitation and 
are able to carry 30 kb DNA compared to only 8 kb in the average adenovirus vec-
tor [ 11 ]. The effi cacy of EAMs was demonstrated by Kumar-Singh and Farber, 
who achieved photoreceptor functional rescue and transgene expression lasting 90 
days following subretinal delivery (Fig.  2 ) of cyclic GMP phosphodiesterase 
cDNA to mice with retinal degeneration using EAM vectors [ 14 ,  15 ].
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       Adeno-Associated Viruses 

  Adeno-associated virus (AAV  ) vectors are another popular delivery strategy. AAVs 
are non-enveloped, single-stranded DNA viruses that can infect mitotic and postmi-
totic cells, inserting transgenes into specifi c loci [ 16 ]. AAVs are not associated with 
any human infectious diseases, making them a safer option than adenoviruses, and 
they are also less likely to induce deleterious side effects from erroneous insertions 
[ 11 ]. However, they are comparatively limited in their cDNA carrying capacity 
(4.5 kb), and their expression occurs gradually rather than immediately. 

 Use of  AAV vectors   is common in ocular gene therapy. An AAV2/8 vector carry-
ing a wild-type copy of the  PDE6a   nmf363   gene with a cell type-specifi c rhodopsin 
promoter was transduced in the retinas of  Pde6a   nmf363   mice, an RP model organism. 
A single injection preserved photoreceptor cells for at least 6 months compared to 
untreated mice, whose photoreceptors were undetectable by that time point [ 17 ]. 
Similar experiments were conducted in the autosomal recessive RP mouse model 
 Mfrp   rd6  / Mfrp   rd6  , wherein long-term visual function preservation was achieved through 
 AAV2/8-hu MFRP  infection   [ 18 ]. These fi ndings were corroborated in in vitro 
patient-derived, induced pluripotent stem (iPS)-retinal pigment epithelium (RPE) 
cell lines, in which AAV infection restored the cell pigmentation, transepithelial 
resistance, actin structural organization, and apical microvilli. Several clinical trials 
based on AAV vector therapy were conducted for Leber congenital amaurosis, a 

  Fig. 2     Subretinal injections . A schematic diagram of the eye indicates the location of subretinal 
injections       
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severe form of retinitis pigmentosa caused by a loss-of-function mutation in the 
65-kDa protein of the  retinal pigment epithelium (RPE65  ) [ 19 – 21 ]. Researchers 
were able to successfully express the transgene by way of a rAAV-RPE65 vector and 
temporarily halt the photoreceptor degeneration, although cell death and functional 
impairment resumed after 3 years. Research to determine the ideal delivery time and 
amount is underway to address this issue.  

    RNA Viruses 

 Many  RNA viruses  , including retroviruses, integrate into the host genome at 
random locations and risk inducing insertional mutagenesis. They have a DNA- 
shuttling capacity of 8 kb and are limited to transducing mitotic cells because 
they are unable to enter the nucleus of nondividing cells. Lentiviruses, on the 
other hand, are a subclass of RNA retroviruses that can form complexes with the 
nuclear envelope of nondividing cells, meaning they can infect mitotic and post-
mitotic cells alike [ 22 ]. 

  Lentiviruses   have undergone signifi cant modifi cations to enhance their safety 
for clinical use. Pseudo-typed viruses, where only transgenes, not viral genes, 
integrate into the host, have been developed to avoid activation of T-cell lym-
phocytes, which trigger infl ammation and destruction of vector-containing cells 
[ 22 ]. Concerns regarding the clinical application of lentiviruses, which could 
theoretically generate live HIV through three recombinations, have motivated 
further efforts to develop new constructs with decreased risks. 

  Lentiviral vectors   have been successfully used in mouse models of RP to halt 
photoreceptor degeneration. Lentiviral-mediated gene transfer of  Opsin :: Pde6b  in 
 Pde6b   H620Q   homozygous mice delayed photoreceptor death [ 23 ]. In a follow-up 
study using the same preclinical model as in Davis et al., bipartite vectors that 
expressed both the wild-type  Pde6b  gene and small hairpin RNA (shRNA) encod-
ing guanlyate cyclase (GUCY) facilitated signifi cantly greater photoreceptor sur-
vival compared to the monopartite vectors. Normally in the phototransduction 
cascade, the  Pde6b  protein is activated when photons impinge on rod outer seg-
ments, and it reduces free cGMP concentration via hydrolysis; this in turn lowers 
the excitation state of the photoreceptor and halts the release of neurotransmitter 
from the rod. Contrastingly, GUCY is the opposing counterpart of  Pde6b  and stim-
ulates cGMP production from guanosine-5′-triphosphate (GTP). In darkness, 
 Pde6b  is inactivated, leading to high  cGMP   and calcium levels. For homozygous 
mutants such as  Pde6b   H620Q / H620Q  ,  Pde6b  is inactive, and perpetually elevated levels 
of cGMP and calcium eventually cause cell death. Thus, the halt in photoreceptor 
degeneration observed in this study was plausibly obtained by expressing the wild-
type transgene while simultaneously lowering calcium levels. This observation 
suggests that combined gene therapies may be more effi cacious than single thera-
pies alone [ 24 ].   
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     Gene Correction and Repair   

 In dominant conditions, one or more alleles carry a dominant negative or gain-of- 
function mutation that cannot be remedied by introducing the wild-type copy of the 
gene. Instead, the mutated allele(s) must be silenced or removed and, in some cases, 
the wild-type gene must be inserted in its place. This insertion poses the challenge 
of a two-step process, wherein the mutant allele is removed or silenced and the 
functional gene is introduced. Several approaches to remove or override the mutated 
gene have been developed, including ribozyme therapy, antisense gene therapy, 
antiapoptosis therapy, and the newest technologies: zinc-fi nger nucleases (ZFN), 
transcription activator-like effector nucleases (TALEN), and clustered regularly 
interspaced short palindromic repeats (CRISPR). 

     Ribozyme Interference   

 Ribozymes cleave specifi c messenger RNA (mRNA) sequences by hydrolyzing 
trinucleotide motifs, preventing protein translation [ 25 ]. They are synthesized in 
situ from vectors and are a useful technique for gene correction by disrupting a 
dominant mutant gene protein product [ 26 ]. They can even be used in gene cor-
rection strategies. In a mutation-independent fashion, the ribozyme can be 
designed to cleave both the wild-type and mutant mRNA transcripts; then, a 
functional gene copy not targetable by the ribozyme can be introduced into the 
cell [ 11 ]. Lewin et al. successfully executed this technique and slowed photore-
ceptor degeneration for 3 months in a rat model of autosomal dominant RP 
using ribozymes to silence the mutant mRNAs produced by a proline to histi-
dine substitution at codon 23 of the rhodopsin gene (P23H) [ 27 ].  

     Antisense Gene Therapy   

 With many parallels to ribozyme interference, antisense gene therapy uses short, 
synthetic DNA sequences that are complementary to targeted mRNA transcripts to 
form DNA–RNA heteroduplexes that prevent translation [ 11 ]. RNase H degrades 
the mRNA in the duplex, releasing the oligodeoxynucleotide (ODN) to bind to 
another complementary mRNA strand. In a study of ischemia-induced proliferative 
retinopathies, antisense ODNs complementary to the mRNA of the neovasculariza-
tion gene product, vascular endothelial growth factor (VEGF), were administered 
before the onset of proliferative retinopathy [ 28 ]. The VEGF protein concentration 
was reduced by 40–66 % and blood vessel growth by 25–31 %, demonstrating the 
effi cacy of this technique.  
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     Antiapoptosis Gene Therapy   

  Programmed cell death   is regulated by apoptotic proteins such as  p53 . Researchers 
have modulated the genes that control these apoptotic proteins to prevent photoreceptor 
death in a mutation-independent manner. For example, viral transfer of the antiapop-
totic gene  bcl -2 to the retina was shown to delay degeneration in various mouse models 
[ 29 ]. However, transfer to retinal ganglion cells had the opposite effect, leading to 
increased apoptosis, suggesting that the effects of these genes may be cell type specifi c 
[ 30 ]. This technique is promising and merits further research and exploration.   

    Recent Advances: ZFN, TALEN, and CRISPR 

 Scientists have studied naturally occurring DNA-repair mechanisms to inspire new 
approaches for targeted gene therapy. A common, natural DNA-editing scheme 
occurs in response to  double-strand breaks (DSBs  ) in DNA caused unintentionally 
by external forces, such as irradiation, or intentionally for the purposes of recombi-
nation [ 31 ,  32 ]. DSBs activate two main repair strategies. The fi rst is non-homolo-
gous end-joining (NHEJ), wherein the ends of the cleaved DNA strands are simply 
religated together without regard for sequence accuracy [ 31 ,  33 ]. This error-prone 
process causes small insertions or deletions (indels) that often lead to nonfunctional 
gene products. The second repair strategy is  homology-directed repair (HDR  ), in 
which the broken strands are paired with an unbroken sister chromatid or homolo-
gous chromosome, which serves as a template for accurately reforming the DNA 
sequence at the break site. Exploiting these repair mechanisms for the purposes of 
targeted gene therapy was delayed by the challenge of fi nding a reliable means of 
inducing DSBs at specifi c loci. Protein nucleases were recognized as having the 
most potential for addressing this challenge, and the zinc-fi nger nuclease served as 
the fi rst generation of nuclease-based gene therapies. 

    Zinc-Finger Nucleases 

 Synthetic  zinc-fi nger nucleases (ZFN  ) are made by fusing zinc-fi nger-binding 
domains to the catalytic unit of the type IIS restriction enzyme,  Fok I [ 31 ,  32 ]. Each 
fi nger contains roughly 30 amino acids, 4 of which (Cys 2 His 2 ) coordinate a zinc 
atom. One zinc fi nger interacts with three base pairs, and at least three consecutive 
fi ngers are required for adequate binding. The catalytic domain of  Fok I must dimer-
ize to cleave the DNA, necessitating two ZFNs per site. 

 ZFN  technology   has been successfully applied in the retina. Greenwald et al. 
[ 34 ] designed ZFNs to target human embryonic retinoblast cell lines and found 
ZFN-induced homologous recombination rates at the human rhodopsin gene to be 
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as high as 17 % compared with endogenous homologous recombination [ 34 ]. 
Another study examined the applications of ZFNs for Usher syndrome, a form of 
RP that leads to deafness and blindness. Although fi ve USH1 genes (USH1B-G) 
have been identifi ed, Overlack and colleagues focused on the p.R31X mutation in 
murine  Ush1c , for which they designed customized ZFNs [ 35 ]. Their data con-
fi rmed the feasibility of site-specifi c gene correction following treatment with ZFNs 
and introduction of rescue DNA. 

 A drawback of ZFNs is that not all variations of three base pairs can be targeted 
because zinc-fi nger domains for certain combinations of nucleotides have not yet 
been engineered. Reliable specifi city and affi nity are diffi cult to achieve as well, and 
neighboring domains in the protein may affect the specifi city of binding [ 31 ]. The 
unreliability of ZFNs has motivated scientists to search for alternatives.  

    Transcription Activator-Like Effector Nucleases 

  Plant-pathogenic bacteria   in the genus  Xanthomonas  integrate into the host genome 
and promote infection using genes that encode for  transcription activator-like endo-
nucleases (TALs  ) [ 31 ,  32 ]. The TAL proteins are DNA-binding domains with tan-
dem repeats of 34 amino acids that are highly conserved except at residues 12 and 
13, which vary based on the identity of the nucleotide of the target sequence. TALs 
were fused with the catalytic domain of  Fok I to recapitulate ZFNs, and the complex 
was called TALEN (TAL effector nuclease). Similar to ZFN, TALEN utilizes  Fok I 
and thus must dimerize to cleave the DNA. However, they differ in that there is one 
TAL per nucleotide, which greatly simplifi es the recognition code compared to 
ZFNs and confers greater binding effi ciency. The disadvantage of the one-to-one 
ratio of base pair to TALs is that long arrays of TALs (at least 12) are required to 
achieve adequate binding affi nity and specifi city. 

 TALENs were used to create an X-linked RP 2 (RP2) zebrafi sh model that reca-
pitulates the retinal degeneration typical of affected humans by disrupting the RP2 
gene [ 36 ]. In another application of TALEN, iPS cell lines derived from best vitel-
liform macular dystrophy (BVMD) patients were corrected using TALEN by induc-
ing NHEJs following DSB and disrupting the vitelliform macular degeneration 2 
(VMD2) gene product [ 37 ]. In yet another experiment, ocular abnormalities caused 
by mutations in the  Crb1  gene were corrected by HDR following TALEN-induced 
DSB in murine models. In this study, mouse embryos with the  Crb1   rd8   mutation 
were coinjected with TALENs targeting the  Crb1  gene loci and single-stranded, 
complementary oligonucleotides to correct the allele, with only slight nucleotide 
alterations in the strand to avoid targeting by TALEN. Twenty-seven percent of off-
spring showed HDR, although founder mosaicism was present among them. Treated 
mice showed the normal retinal phenotype, but the untreated mice exhibited retinal 
dysplasia [ 38 ].  
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    Clustered Regularly Interspaced Short Palindromic Repeats 

 Most recently, research in bacteria and archaea immunity strategies has led to the 
creation of the revolutionary CRISPR/Cas9 technology. It was discovered that spe-
cifi c regions of the bacterial genome are reserved for the incorporation of invading 
viral genes, which are broken into segments and integrated within the bacterial 
genome in between  clustered regularly interspaced short palindromic repeats 
(CRISPR  ) [ 39 ]. The incorporated viral genes are then expressed as CRISPR-derived 
RNA (crRNA), which complexes with the CRIPSR-associated (Cas) nuclease and a 
trans-activating crRNA (tracrRNA), which is involved in crRNA biogenesis and 
maturation in the type II CRISPR/Cas system [ 33 ,  40 ]. The crRNA–tracrRNA com-
plex acts as a guide for the Cas protein and directs it to specifi c sequences on the 
target strand, where it induces DSBs. 

 In 2012, Jinek and colleagues fused the crRNA and tracrRNA to create chime-
ric guide RNA (gRNA), which they demonstrated to be equally as effective as 
the crRNA–tracrRNA complex in guiding the Cas9 protein to cleave DNA and is 
customizable to target any number of sites [ 41 ]. The guide RNA has 20 amino 
acids at its 5′-end that determine its target specifi city and are alterable. The 
3′-end contains an invariable region required to complex with the Cas9 protein. 
To cleave DNA, the target sequence must contain a protospacer-adjacent motif 
(PAM) directly downstream of the desired cleavage site [ 42 ]. There is no ana-
logue to PAM in the gRNA. The  Streptococcus pyogene s Cas9 protein recog-
nizes the PAM, NGG, where N is variable and G is the guanosine nucleotide 
[ 43 ]. Delivering the Cas9 protein can be accomplished through a helper plasmid 
that carries the coding sequence and a promoter, which may be fused with a 
nuclear localization signal [ 44 ]. Introducing the guide RNA may be more diffi -
cult but can be achieved by expressing the gRNA from a plasmid or transgene 
in vivo in conjunction with RNA polymerase III promoters [ 45 ]. 

 The advantage of  CRISPR/Cas9   over TALEN is that it has a much higher target-
ing effi ciency, and CRISPR/Cas9 has the ability to cleave regardless of the target 
sequence DNA methylation status [ 43 ]. CRISPR/Cas9 specifi city is arguably more 
precise, especially with the development of nickases to minimize off-targeting 
effects. A mutant Cas9, called a nickase, cleaves only one strand of the target DNA 
sequence. Nickases can still create a DSB by inducing two single-strand breaks 
(nicks) close to one another on opposite DNA strands [ 46 ,  47 ]. Requiring these 
nicks to be closely linked drastically reduces off-targeting effects and enhances 
targeting specifi city. 

  CRISPR/Cas9   is a 3-year-old technology that is rapidly evolving, but in a short 
time it has already overtaken other nuclease-based strategies and has been applied 
in numerous diverse model organisms (review by Sander and Young) [ 39 ]. There is 
every indication that its applications will continue to expand, becoming increasingly 
far reaching.   
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    Case Study in the Bench-to-Bedside Approach 
for the Autosomal Dominant RP  D190N Mutation   

 A family presented with an RP-inducing rhodopsin mutation (Asp190Asn, or 
D190N) inherited in an autosomal dominant fashion.  Rhodopsin (RHO  ) is a G 
protein- coupled receptor located in the rod outer segment discs and is responsible 
for initiating the phototransduction cascade. Mutations in  RHO  account for roughly 
54 % of autosomal dominant RP (adRP) conditions [ 48 ]. Normally, photons induce 
the isomerization of 11- cis  retinal to all- trans  retinal on the RHO chromophore. 
This process malfunctions in D190N individuals, and the mutation gradually leads 
to cell death in a manner that has not yet been determined. This fi nding motivated 
the development of a mouse model that recapitulates the phenotype and natural his-
tory of the disease. 

 Heterozygous  D190N knock-in mice   were produced as described by Sancho and 
colleagues, and homozygous mutants were bred from the heterozygotes [ 48 ]. 
Electrophysiology, histology, angiography, imaging results, and functional mea-
surements were shown to faithfully recapitulate the human disease. Mouse eyes 
were then transduced with dual  AAV8::Cas9  and  AAV8::gRNA  vectors injected sub-
retinally (Fig.  3 ). Cone cells, the death of which is the primary cause of blindness, 
were preserved in CRISPR/Cas9-mediated rescue (Fig.  4 ). Electroretinogram data 
on a D190N heterozygote demonstrated functional rescue as well, with treated mice 
having greater b-wave amplitudes compared to controls (Fig.  5 ). These preliminary 
data suggest that CRISPR/Cas9 may be a viable option for correcting this novel 
 RHO  mutation in the patients.

  Fig. 3     Adeno-associated virus (AAV) construct carrying Cas9 and repair templates . The 
pZac AAV vector was used to transduce double-dominant  Rho  ( Rho   D190N  / Rho   D190N  ) models       
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  Fig. 4     AAV-mediated repair of a double-dominant   Rho   model . Verifi cation of guide RNA 
(gRNA) targeting ability by  Afl  II enzyme digestion. ( a ) Mouse  Rho  genomic sequence was 
replaced with a codon-modifi ed donor sequence containing an additional  Afl  II site ( orange arrow ), 
marking cells that underwent homologous recombination;  dark blue arrows  represent primer pairs 
for PCR amplifi cation. ( b ) Amplicons generated from cells undergoing recombination are 130 and 
180 bp; the parental sequence is a single 310-bp band. ( c ) Retinal section of a 3-month-old homo-
zygote  Rho   D190N  / Rho   D190N   eye transduced by the  AAV8::Cas9  vector reveals only a few cones 
( green ). ( d )  Rho   D190N  / Rho   D190N   eye co-transduced with donor template and Cas9 vectors indicates 
cone rescue ( green )       

  Fig. 5     Functional data . Functional rescue is detectable in the experimental right eye (OD) com-
pared with the control left eye (OS), as indicated by the higher b-wave amplitude on the electroret-
inogram (ERG) recording       
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         Conclusions 

 The past few years have seen signifi cant advances in gene editing. Targeting effi -
ciency and binding specifi city have been enhanced signifi cantly, and the combined 
use of viral vectors alongside DNA-editing technologies such as TALEN and 
CRISPR has improved site-specifi c gene targeting in a way that has never been 
achieved before. With the latest developments in genome editing, the future of pre-
cision medicine has never been brighter.     
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