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Abstract. With the rising interest in internet connected devices and
sensor networks, better known as the Internet of Things, data streams are
becoming ubiquitous. Integration and processing of these data streams is
challenging. Semantic Web technologies are able to deal with the variety
of data but are not able to deal with the velocity of the data. An emerging
research domain, called stream reasoning, tries to bridge the gap between
traditional stream processing and semantic reasoning. Research in the
past years has resulted in several prototyped RDF Stream Processors,
each of them with its own features and application domain. They all cover
querying over RDF streams but lack support for complex reasoning. This
paper presents how adaptive stream processing and context-awareness
can be used to enhance semantic reasoning over streaming data. The
result is a federated context-aware architecture that allows to leverage
reasoning capabilities on data streams produced by distributed sensor
devices. The proposed solution is stated by use cases in pervasive health
care and smart cities.
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1 Introduction

In recent years we saw an increasing interest in internet connected devices and
sensors, also called the Internet of Things (IoT) [18]. This led to a plethora
of new applications in different domains like smart cities, traffic monitoring,
pervasive healthcare, smart energy grids, smart buildings and environmental
sensing. The data generated by these IoT devices is a heterogeneous, voluminous,
and a possibly noisy or incomplete set of time-varying data elements called data
streams. The combination of these characteristics makes it a challenging task
to integrate, interpret and process data streams on the fly. Moreover, to create
added value out of these data streams, the data must be combined with domain
knowledge.

For example, in smart nursing homes and hospital, rooms are equipped with
Wireless Sensor Networks (WSNs) monitoring the environment, and patients’
health parameters are monitored by Body Area Networks (BANs). Lots of data
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events are generated by these sensor networks. To take advantage of the collected
streaming data, integration with domain knowledge containing diseases, symp-
toms and the patient’s Electronic Health Record (EHR) is important. Reasoning
on this information can infer new knowledge of the patients’ current condition.
Well integrated and aggregated information helps to monitor the patients more
closely and allows the nursing resources to operate more efficiently.

Semantic Web technologies like the data model RDF1, the ontology language
OWL2, and the RDF query language SPARQL3 allow to represent, integrate,
query and reason on heterogeneous data. However, these technologies were devel-
oped for static or slow changing data sources. On the other end of the spectrum
Data Stream Management Systems (DSMS) and Complex Event Processing
(CEP) systems allow to query homogeneous streaming data structured accord-
ing to a fixed data model. They are not able to deal with heterogeneous data
sources and lack support for the integration of domain knowledge. To bridge this
gap, stream reasoning has emerged as a challenging research area that focuses
on the adoption of Semantic Web technologies for streaming data. Della Valle et
al. [7] describes stream reasoning as a high-impact research area with a multi-
disciplinary approach that can provide the abstractions, foundations, methods,
and tools required to integrate data streams, the Semantic Web, and reasoning
systems.

As a result of stream reasoning research conducted in the past years, differ-
ent prototypes of RDF Stream Processing (RSP) engines have been presented.
These RSP engines can filter and query RDF data streams, but are not able to
deal with complex reasoning tasks. Reasoning over large complex ontologies is
computationally intensive and slow compared to the velocity of the data streams.
Traditional reasoners, like FaCT++ [19], HermiT [15] and Pellet [16], that have
the capabilities of performing such complex OWL 2 DL reasoning tasks are
designed to process static or slow evolving data, and are not able to manage
frequently changing data streams.

Despite all initiatives taken, stream reasoning is not yet mature and there is
a need for algorithms, protocols and approaches that support a scalable, efficient
and complex stream reasoning [11].

The aim of this research is to present a federated context-aware system that
integrates adaptive stream processing and complex reasoning. The federated
system should exploit context-awareness to bring together low-level stream rea-
soning and high-level complex reasoning. The low-level stream reasoning should
be performed close to the data stream sources while complex reasoning should
be performed deeper in the network.

This approach might especially be useful in large scale sensor applications
where an effective processing of the event streams is of high importance. By
using context information about the environment, irrelevant sensor data can

1 http://www.w3.org/TR/rdf-syntax-grammar/.
2 http://www.w3.org/TR/owl-overview/.
3 http://www.w3.org/TR/sparql11-overview/.

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/sparql11-overview/


Towards Scalable Federated Context-Aware Stream Reasoning 805

be filtered and only applicable domain knowledge can be take into account for
reasoning.

2 State of the Art

Several RSP solutions such as C-SPARQL [4], CQELS [10], EP-SPARQL [2]
and SPARQLStream [6], which all mainly focus on stream processing, have
been developed in the past years. They extend SPARQL by using proven tech-
niques from DSMSs and CEP systems, namely sliding windows and continuous
queries [3]. A continuous query is registered once and produces results continu-
ously over time as the streaming data in the considered window changes.

The prototyped RSP engines enable processing of a continuous flow of data
and can provide real-time answers to registered queries. However, each of them
has different semantics and targets different scenarios. Steps towards a unifying
semantics query model are being taken by the W3C RDF Stream Processing
Community Group4.

Other solutions like Sparkwave [9] and INSTANS [14] make use of extensions
of the RETE algorithm [8] for pattern matching. With this approach queries are
translated into a RETE network through which the data flows. The resulting
network consists of a set of nodes which can memorize partial pattern matches
in the streaming data.

All RSP engines, with the exception of INSTANS, support integration of
domain knowledge in the querying process, but reasoning capabilities are lim-
ited (Table 1). None of the proposed systems is able to perform complex OWL
2 DL reasoning on streaming data. C-SPARQL is the only engine support-
ing full RDFS reasoning using the Jena Rule Engine. EP-SPARQL, that is
build around the Prolog engine ETALIS, also supports RDFS reasoning but the
domain ontologies have to be converted into Prolog rules and facts in advance.
Sparkwave supports an RDFS subset but as for EP-SPARQL preprocessing is
necessary. Both, the domain knowledge and the query conditions have to be
compiled into nodes of RETE network in advance. SPARQLStream, CQELS
and INSTANS do not provide reasoning features.

Incremental reasoning helps reasoners to handle streaming data by incre-
mentally maintaining the materialization of the knowledge base. By only con-
sidering the data that is subject to change, incremental reasoning tries to avoid
re-materializing the complete knowledge base [5,13]. However, also this approach
is subject to limitation and assumptions.

Despite all effort, reasoning capabilities remain limited due to the gap
between the changing frequency of streaming data and the computing time
demanded by complex reasoning algorithms. Cascading reasoning is a concept
presented by Stuckenschmidt et al. [17] to deal with this problem. The aim is to
construct a processing hierarchy by exploiting the trade-off between the complex-
ity of the reasoning method and the frequency of the data stream the reasoner

4 http://www.w3.org/community/rsp/.

http://www.w3.org/community/rsp/
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Table 1. Reasoning support in state of the art RDF Stream Processing solutions

Background knowledge Reasoning capabilities

C-SPARQL Y RDFS

SPARQLStream Y N

EP-SPARQL Y RDFS (in Prolog)

CQELS Y N

Sparkwave Y RDFS subset

INSTANS N N

is able to handle. At the lower levels of the hierarchy, with high frequency data
streams, we focus on filtering to reduce the change frequency. The higher in the
hierarchy the more complex reasoning can be applied. This approach helps to
avoid feeding high frequency data directly to complex reasoners.

StreamRule [12] is a 2-tier approach combining stream processing with rule-
based non-monotonic incremental Answer Set Programming (ASP) to enable the
ability of reasoning over data streams. The novelty of this approach is that the
size of the input stream towards the reasoner is reduced by the stream processor
as the reasoning task becomes more computationally intensive. To allow this a
feedback loop from the reasoner towards the stream processing is needed.

3 Problem Statement and Contributions

The available RSP engines aim filtering and querying on streaming data but lack
support for complex OWL 2 DL reasoning. To perform such complex reasoning
we need traditional DL reasoners which are computationally intensive and not
capable of handling streaming data. From the analysis of the state of the art,
we identified two problems we would like to address with this research:

P1: When integrating an RSP engine together with an OWL reasoning engine
using a pipeline architecture, as worked out by Mileo et al. [12] for ASP rea-
soning, effective stream processing is necessary. Because of the limitations
of the reasoners towards streaming data, it is important to neglect irrele-
vant data streams. Moreover, it is important to choose appropriate window
parameters. Today, window parameters and query conditions are defined in
advance. There is a lack of adaptive stream reasoning taking into account
the changes in stream characteristics and domain knowledge at runtime.

P2: IoT and sensor networks will only bring more streaming data flooding our
networks. One of the solutions to deal with this is to (pre-)process data
close to its source [11]. This approach fits with IoT architectures proposing
edge computing as an intermediate layer between data acquisition and the
cloud based processing layer [1]. This intermediate layer allows filtering and
aggregation of data, resulting in reduced network congestion, less latency
and improved scalability. We believe that this edge computing approach, is
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in line with the idea of cascading reasoners to reduce the change frequency
of the data [17], and can be useful to increase reasoning capabilities on
streaming data.

Out of the discussed problems we formulate the following two hypotheses:

H1: When integrating an RSP engine and an OWL reasoner in a pipeline archi-
tecture, a context-dependent controller using stream characteristics and
domain knowledge can adapt at runtime, the window parameters and filter-
ing conditions of the RSP engine, in such a way it increases the throughput
of the pipeline.

H2: A federated reasoning platform, making use of context-awareness, to com-
bine low-level reasoners positioned close the data stream generator, and
high-level reasoners positioned deeper in the network, will leverage the rea-
soning capabilities over streaming data. By considering the context in which
the data streams are generated the applicable domain knowledge can be nar-
rowed, streaming frequency can be reduced and reasoning capabilities can
be leveraged.

The following research questions are targeted to prove these hypotheses:

Q1: How can adaptive stream reasoning be implemented?
The aim is to investigate how the actual stream characteristics and domain
knowledge can be used to adapt window parameters and query conditions
at runtime.
Q1.1: Do there exists relationships between stream characteristics, window

parameters and throughput which can be used to adapt the window
parameters at runtime?

Q1.2: Can information incorporated in the domain knowledge be used to
adapt the window parameters at runtime?

Q1.3: Can information incorporated in the domain knowledge be used to
change query conditions at runtime?

Q2: How can context-awareness be exploited to manage domain knowledge among
distributed reasoning systems?
Low-level reasoning should be performed close to the network edges and the
data stream generators. To reduce the size and complexity of the knowledge
bases among the different systems context information should be used.
Q2.1: How can context-awareness be used to distribute domain knowledge

among different reasoning systems?
Q2.2: How to manage the distributed domain knowledge when the context

changes?
Q2.3: How to deal with changes in the domain knowledge that is shared

among different reasoning systems?
Q3: How to build a federated context-aware reasoning system in which distrib-

uted adaptive stream reasoning is combined with a global reasoning system
using the results of Q1 and Q2?
Adaptive RSP engines (Q1) should be placed close to the data stream gen-
erators and being supervised by a more complex reasoning system for sup-
porting global decision making (Q2).
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4 Research Methodology and Approach

The different steps and approaches we will use to answer the research questions
are discussed in the following section making use of Fig. 1.

We start our research by creating an integrated reasoning environment com-
bining both an RSP engine and a OWL DL reasoner (Fig. 1 Q1). The output of
the RSP engine will be forwarded to and processed by an OWL DL reasoner.
The resulted framework allows us to perform experiments with different RSP
engines and OWL DL reasoners to process sensor data streams. The tests will
focus on throughput and latency and keep into account different semantics of
current RSP engines. The outcome of the conducted experiments will lead to the
selection of an RSP engine and OWL reasoner pair which will be used in later
research.

Policy 
Manager

Q3

Q1

Q2

Q1

Q1

Q1

Q1

Q1

Q1

Q1

Context-dependent
Controller

RSP
Policy 

Manager
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Fig. 1. Research approach

In a second phase we look how adaptive windows (Fig. 1 Q1(1)) and adaptable
query conditions (Fig. 1 Q1(2)) can be integrated in the RSP engine. We inves-
tigate how these features can be used to increase overall querying performance.
More specific, we want to know the impact of different window parameters on
throughput, latency, network load and resource usage.

Using the outcome of the previous phase, we introduce a context-dependent
controller (Fig. 1 Q1(3)) that controls the RSP engine based on available domain
knowledge. We investigate how context information included in the knowledge
base, can be used by the context-dependent controller to determine windows
parameters and query conditions used by the RSP engine. Results of the previous
phase, about the impact of window parameters, should be taken into account by
the controller when determining window parameters.
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Next, we focus on the OWL DL reasoning (Fig. 1 Q1(4)). We investigate
how modularization of the ontology in combination with context-awareness can
be used to improve reasoning performance. For making this possible, we think
about the introduction of semantic policies and rules which allow to neglect
or deactivate certain modules based on context information available in the
knowledge base.

In the next phase, we focus on the distribution of the domain knowledge
among reasoners positioned in different locations (Fig. 1 Q2). A centralized node
will be the only reasoning system dealing with the complete knowledge base. It
will manage and distribute knowledge over the edge reasoners depending on their
context. To apply context-awareness we have to identify which context informa-
tion is available, how we can access it, and how we will manage it. Once the
distributed system is running, we have to deal with synchronization of domain
knowledge and changes in the context of the different systems.

The latter part of the research consist of putting together the solutions found
in Q1 and Q2, in such a way we get a federated context-aware stream reasoning
platform (Fig. 1 Q3). Success of this step is highly dependent of previous results.

5 Initial Investigation

As initial step a literature study on the state of the art of stream reasoning
and the RSP engines has been conducted. The most mature technologies where
presented in Sect. 2. At the moment we are working on a test environment for
RSP engines.

To perform credible tests with the RSP and reasoning engines, it is important
to do some tests in a real-life context, and not only in a simulated environment.
For this we can make use of the iMinds iLab.t5 testing facilities. These include:
the Virtual Wall, the w-ilab.t testbed and the iMinds Homelab. The Virtual Wall,
a fully configurable set of servers, can be used to test distributed reasoning in
the future. The w-ilab.t testbed consisting of 200 sensor nodes can be used to
generate and test stream reasoning and RSP engines.

6 Evaluation Plan

The researched algorithms will be evaluated using two cases. The first one
consists of a pervasive healthcare use case based on a continuous care OWL
DL ontology. It will be used to evaluate the performance of the solutions pre-
sented for the different research questions. On the one hand, we are interested
in throughput and latency to verify processing speed of the solutions. We expect
the reasoning component on the gateway (Fig. 1 Q1(1)) to be the bottleneck
but we strive to prevent queuing of events. On the other hand, we want to see
the impact of the choices we made on network traffic. Using local reasoning at
the gateways should result in a decrease of the number of events arriving at the
central reasoner component.
5 http://ilabt.iminds.be/testbeds/.

http://ilabt.iminds.be/testbeds/
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Pervasive Healthcare. The proposed solution is explained using Fig. 2. The
environment is a nursing home equipped with sensors monitoring both, the
patients’ room (yellow box) and the patients’ health parameters (green box).
The sensor data of a single room are captured by a smart gateway, presented
as Q1 in Fig. 1. On their turn all these gateways are connected to a central rea-
soning system, presented as Q2 in Fig. 1. The continuous care ontology used in
this use case models among others sensors, rooms, patients, medical diagnoses,
nurses and nursing activities.

Fig. 2. Patient monitoring (Color figure online)

Suppose a patient, suffering from a concussion, stays in room 2 (Fig. 2).
According to the domain ontology such a patient is sensitive to light and noise,
hence has to recover in a dark and quiet environment. The patient and its room
are monitored with different sensors including light, sound, temperature, blood
pressure, heart rate and body temperature sensors.

Sensor values obtained on the patient and in the patient’s room are collected
by the smart room gateway. The gateway also receives the patients’ EHR. Based
on the medical diagnose in the EHR, the sense rate of the sensors, which is
part of the domain knowledge, and the actual stream characteristics, the data
streams can be filtered in an intelligent way. Light and sensor values, which are
responsive values, should be monitored more closely than room temperature,
room temperature, blood pressure and others which are of less significance.

When increasing light or sound values are registered, the gateway reasoner
detects the possible unpleasant situation for the patient. A warning event will
be sent to the central nursing reasoning system. Based on the current locations,
competences and activities of the nurses the system decides who can visit the
patient. A nursing task is assigned and sent to the mobile device of the nurse.

A second use case, about smart cities, will be used in a later part of the
research to show applicability in an IoT domain different from healthcare.
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Smart Cities. This use case is about parking and traffic information in smart
cities. Consider a city where roads are equipped with traffic sensors and parking
spot are monitored on their availability. In stead of collecting all sensor data
in one single place, smart gateways capturing the data are distributed over the
city. Each gateway monitors a district, a couple of streets or parking site.

Based on their location, gateways are informed about events taking place in
their environment by a central reasoning system. For example public markets,
manifestations or road works will lead to unaccessible roads and parking spots.
Using this knowledge, smart gateways can filter out irrelevant sensor data about
unaccessible places that would lead to false positives. As a result, more accurate
information about parking spots can be forwarded to the central system.

In another situation, a sudden increase or decrease of the traffic intensity in a
certain area, without any apparent reason, can be an indication of an unexpected
incident. In this case a warning event should be sent to the central system.

In the central reasoning system, information of the different regions will be
merged and used for traffic routing towards parking spots or for the creation of
heat maps with information about parking spots, traffic and incidents.

7 Conclusions

This paper presented our vision on how adaptive stream processing and context-
awareness can help to deal with challenges in stream reasoning. The aim is
to exploit context-awareness in an attempt to bridge the gap between stream
processing and complex reasoning. We described our approach and discussed it
using use cases in pervasive healthcare en smart cities. With this approach we
intend to contribute to future federated stream reasoning solutions.
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