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Abstract. In recent years, an increasing number of semantic data
sources have been published on the web. These sources are further inter-
linked to form the Linking Open Data (LOD) cloud. To make full use of
these data sets, it is necessary to learn their data qualities. Researchers
have proposed several metrics and have developed numerous tools to
measure the qualities of the data sets in LOD from different dimensions.
However, there exist few studies on evaluating data set quality from the
users’ usability perspective and usability has great impacts on the spread
and reuse of LOD data sets. On the other hand, usability is well studied
in the area of software quality. In the newly published standard ISO/IEC
25010, usability is further broadened to include the notion of “quality in
use” besides the other two factors, namely, internal and external. In this
paper, we first adapt the notions and the methods used in software qual-
ity to assess the data set quality. Second, we formally define two quality
dimensions, namely, Queriability and Informativity from the perspective
of quality in use. The two proposed dimensions correspond to querying
and answering, respectively, which are the most frequent usage scenarios
for accessing LOD data sets. Then we provide a series of metrics to mea-
sure the two dimensions. Last, we apply the metrics to two representative
data sets in LOD (i.e., YAGO and DBpedia). In the evaluating process,
we select dozens of questions from both QALD and WebQuestions and
ask a group of users to construct queries as well as to check the answers
with the help of our usability testing tool. The findings during the assess-
ment not only illustrate the capability of our method and metrics but
also give new insights on data quality of the two knowledge bases.

1 Introduction

In recent years, an increasing number of semantic data sources are published on
the web. These sources are further interlinked to form Linking Open Data (LOD).
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They include not only encyclopedic knowledge bases (KBs) such as DBpedia and
YAGO, which serve as data hubs, but also domain-specific LOD data sets such
as DrugBank' and DailyMed.?

For a user who wants to utilize existing KBs, it is a demanding task to know
their qualities. Their quality can be measured in various ways. A systematic
review of the different approaches for assessing the data quality of LOD can
be referred to [1]. The authors summarized 68 metrics and categorized them
into four dimensions, namely, Availability, Intrinsic, Contertual and Represen-
tational. Glenn and Dave? listed 15 metrics to assess the quality of a data set.
The metrics include Accuracy, Completeness, Typing, and Currency, etc.

While the metrics proposed in literature could measure different character-
istics of a data set, these metrics neither take enough users’ point of view into
consideration, nor do they measure the “usability” of the data set. Despite that
most studies [1-3] agree with the opinion that data quality is “fitness for use
in special application context,” no research works have proposed quality models
or metrics related to this definition. In contrast to the state of the art of LOD
usability research, software usability is well studied and has mature models and
metrics. Since the definitions of software usability in traditional research do not
distinguish different usage contexts, the ISO/IEC 25010 (2011) broadened the
concept of software usability with quality in use. In the new standard, software
quality contains three factors, which are internal quality, external quality, and
quality in use. Quality in use is measured from the users’ point of view and is
obtained from using the software in the working environment.

In this paper, we propose metrics and methods to evaluate quality in use of
data sets. We use the concept quality in use instead of usability. The reason is
that usability is usually used to measure the user interface design, and a data
set may not provide any user interface. However, a data set without a user inter-
face can still be utilized in different contexts so that we call how easy a user
utilizes a data set quality in use. The most common usage scenario of LOD data
set is to access the information returned by executing a query. Therefore, we
propose two quality dimensions, namely, Queriability and Informativity. Que-
riability measures how easily an end user can construct a correct query on a
data set. Informativity shows how informative a data set is under a particular
usage context. Furthermore, we define three metrics Query Construction Time,
Number of Attempts, and Difficulty Rating to measure Queriability, and we also
use Precision, Recall, Comprehensive Informativity, and Informativeness Rating
to measure Informativity.

To investigate the effectiveness of our method, we carried out a few evalua-
tions on DBpedia and YAGO. The two encyclopedic knowledge bases contain a
large amount of instances or entities distributed in multiple domains. They are
not designed for specific purposes of a particular group of users and are widely
applicable theoretically. Therefore, the quality in use in different usage contexts

! http://www.drugbank.ca/.
2 http://dailymed.nlm.nih.gov.
3 http://lists.w3.org/Archives/Public/public-lod /2011 Apr/0145.html/.
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is very important for the spreading of these knowledge bases. We choose ques-
tions from two standard Q&A (questions and answers) test sets, namely, QALD
and WebQuestions as query contexts and ask a group of users to construct
queries complying with these questions and check the results with the answers
in the test sets. We also develop a GUI tool to help users to construct queries in
case they are not familiar with the SPARQL syntax. Our evaluation leads to a
few interesting findings. For example, DBpedia has too many similar properties
with different names, which greatly degrade the Queriability and Informtivity of
DBpedia. The number of classes in YAGO is so large, which makes it difficult
for evaluators to find the suitable domain in the query.

The paper is organized as follows: Sect. 2 introduces related work. Section 3
provides a quality model on LOD as well as the definitions of the metrics.
Section4 proposes our quality assessment process and related tools. Section 5
analyzes the results of the evaluation. Section 6 gives a conclusion and points
out the future direction of our work.

2 Related Work

Our work focuses on devising new metrics and assessing KBs such as DBpe-
dia and YAGO with these new metrics. Therefore, we survey literature regard-
ing metrics on LOD and Quality Evaluation on DBpedia and YAGO. Since we
learned usability assessment methods and metrics from the area of software
usability, we would also give a brief introduction on software usability and qual-
ity in use.

2.1 Metrics on LOD

Besides the systematic review of approaches for accessing the data quality of
LOD, there exist a lot of researches focusing on evaluating particular aspects
of LOD quality. Labels are considered as an important quality factor of LOD
in [4], and the authors introduced a number of related metrics to measure the
completeness, accessibility, and other quality aspects of labels. Zhang et al. [5]
designed a few complexity metrics on web ontologies. Gueret et al. [6] focused
on assessing the quality of links in LOD. They assumed that unsuitable network
structures are related to the low quality of links. Farber et al. [7] gave a survey on
major cross-domain data sets of LOD cloud. They compared DBpedia, Freebase,
OpenCyc, Wikidata, and YAGO from 35 aspects including schema constraints,
data types, LOD linkages, and so on. However, they used natural languages and
checklists instead of quantitative metrics to describe the special characteristics
of data sets. While there are a lot of metrics on LOD, they do not measure the
quality from the user’s usability point of view.

2.2  Quality Evaluation on DBpedia and YAGO

Quality evaluations and quality improvements on encyclopedic KBs became a
hot research topic recently. Zaveri et al. [8] classified the errors in DBpedia into
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four dimensions, including Accuracy, Relevancy, Representational-Consistency
and Interlinking. YAGO2 (a version of YAGO) [9] used statistic sampling with
Wilson score interval to reduce human efforts when evaluating the correctness
of the YAGO2 manually. Wienand et al. [10] detected incorrect numerical data
in DBpedia using unsupervised numerical outlier detection methods. Paulheim
and Bizer [11] added missing type statements and removed faulty statements
in both DBpedia and NELL using statistical distributions. Kontokostas et al.
[12] presented a methodology for test-driven quality assessment which automat-
ically generated test cases based on predefined test patterns. While there is
quality evaluation work on encyclopedic KBs, the assessment work on YAGO
and DBpedia is mostly focused on internal qualities such as correctness.

2.3 Software Usability and Quality in Use

There are various standards and models defining software usability [13,14]. The
GE model is one of the earliest work working on software quality by Mccall et al.
This hierarchical quality model consists of 11 quality factors, 25 quality criteria,
and 41 quality metrics. Usability is a quality factor in the GE model and relates
to 3 quality criteria. Usability is the second factor in the FURPS+ quality model
adopted by Rational Software.

While usability is defined as a characteristic of products in traditional
approaches, more recent researches find that the required quality attributes vary
according to usage scenarios [15]. As the example in [15], the required quality
attributes of a text editor for a programmer should be different from those for
a casual user. Therefore, the quality model in the revised ISO/IEC 9126 [16]
and later in ISO/IEC 25010 [17] distinguishes three quality approaches: internal
quality, external quality, and quality in use. Internal quality concerns the static
properties of the code. External quality can be obtained by executing the soft-
ware system. Quality in use is measured from the users’ view and shows whether
the user is satisfied with the software in the working environment. The three
components are interrelated. The internal software attributes will determine the
quality of a software product in use in a particular context.

In this paper, we adapt the notions of quality in use to the research area
of data quality. Our metrics such as Query Construction Time and Number of
Incorrect Tempts are highly inspired by the task-oriented metrics in [18].

3 Metrics Design

3.1 Quality Model

Inspired by the software quality model in ISO/IEC 9261, we also divide the
quality of LOD into three factors, namely, internal quality, external quality, and
quality in use. We further map the quality dimensions of linked data mentioned
in [1] into internal and external factors in our model. The Queriability and
Informativity dimensions are put into quality in use, as shown in Fig. 1.
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— Quality in use relates to the notion “context of use”, which sometimes refers
as usage context or usage scenario. Context of use implies user requirements.
Users provide their data requirements in the form of a set of questions in
our paper, just like user requirements are modeled as a set of use cases in
software engineering. In the evaluation process, user-oriented questions are
converted into data set oriented queries, the queries are executed on the data
set, and the results are returned. Both the converting process and the results
are measured by quality in use metrics. The whole quality evaluation process
is requirement-oriented, conforming to the data quality definition “fitness for
use in special application context”. As a result, the metrics results depend on
the requirements.

— The internal quality of a KB influences the quality in use of a KB. For example,
the accuracy in Fig. 1 is categorized as internal quality. If there are errors in
the triples, users may find the query results less informative.

— The external quality of a KB influences the quality in use of a KB. For example,
the availability in Fig. 1 is categorized as external quality. Both DBpedia and
YAGO have SPARQL endpoints, but the exploring service of YAGO* on the
web can be accessed easily, which makes it easier for users who are not familiar
with SPARQL to find the data.

3.2 Analyzing the Process of Constructing a Query

We designed an experiment to investigate the processes of constructing SPARQL
queries for different evaluators on different data sets with different questions. In
the experiment, evaluators assessed Queriability and Informativeness manually
with the source files of data sets. We selected ten questions from WebQuestions
and QALD and asked five graduate students to construct queries of the ten
questions on both DBpedia and YAGO. Each evaluator wrote down his steps in
constructing the query. After we checked all the step flows in their reports, we
give a summarization, and the detail of the experiments can be accessed via our
web sites®.

* https://gate.d5.mpi-inf.mpg.de/webyago3spotlx/Browser.
5 http://kbeval.nlp-bigdatalab.com /qiu.html.
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1. Analyze each question and find the patterns of the question. For example,
the question “what was Abe lincoln’s wife name?” contains a subject and its
property, and the object is the answer. But the question “Give me all female
Russian astronauts” is much more complex. The pattern may contain a target
domain (astronauts or Russian astronauts) and one or two constraints (female
and Russian).

2. Find suitable vocabularies in the KBs. The vocabularies include domain
names, property names, property values as well as instance names. We call
the step to find domain names the “domain selection” step. As property
names and properties values are related, the sub-step to find them are adja-
cent in our experiment records. They are combined together as the “prop-
erty constraint selection” step. We find “domain selection” step is usually
before “property constraint selection” step. Among 100 SPARQL construct-
ing records (10 questions*5 evaluators*2 data sets), there is only one record
in which a property name instead of a domain name is first found. The two
steps are time-consuming (15 min on average) and evaluators may try many
times before success. For example, the “wife” may not be the property name
in a data set. It could be “married to” or something else. What’s worse,
the domain could be “Russian astronauts” instead of “astronauts,” and its
property names in the question are vacant.

3. Construct the query using SPARQL syntax and execute the query.

4. Repeat step 1-3 if the results are not desirable.

While there exist questions which are so simple that some steps may not be
required, the above steps are unavoidable in general. The above steps contain all
the possible steps in constructing a query, which give us guidelines on developing
the evaluation tool. Since major difficulties arise from the “domain selection”
step and the “property constraint selection” step, we design special metrics for
the two steps in Sect. 3.3. Since we target at evaluating KBs and we do not
want to bother evaluators on question understanding and syntax of SPARQL,
we should eliminate the difficulties in steps 1 and 3. We develop a GUI tool which
help users construct a SPARQL query interactively. The functions in the tool
have direct mappings with the steps above in the manual construction process.
Thus, evaluators can construct queries in the same process with the same results
manually as in the tool and vice versa, as described in Sect. 4.3.

3.3 Metrics

The Queriability and Informativity focus on the process of query and the results
of the query, and the corresponding metrics are shown in Table 1. Queriabil-
ity measures how easily an end user can construct a correct query on a data
set. Informativity shows how informative a data set is under a particular usage
context.

3.3.1 Queriability

We design two kinds of Queriability metrics: one is the subjective metrics which
are collected from direct feedbacks of evaluators, and the other is the objective
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Table 1. Metrics definitions

Dimension Metric Description
Queriability | Query construction time | Time (T,) spent on setting the domain of
: 1 NOA .
on domain the query To = w57 Yoict Tai (Taiis

the time spent on setting the domain
of the attempt i)

Query construction time Time (T3) spent on setting the properties

on property constraint and property values of the query
Ty = b5 SN Tys (Thi is the time

spent on property constraint setting of
the attempt i)

Query construction time | Time (T') spent on constructing the
query T'= NOA(Tq + Tb)

Number of attempts Times (NOA) tried for constructing the
query
Difficulty rating Users’ rating on the difficulties on

constructing the query

Informativity | Precision The precision (P) of the results for the
query P = NCA/A (NCA is the
number of correct results, and A is
the number of query results)

Recall The recall (R) of the results for the query
C=NCA/NA (NA is the number of
standard answer for the query)

Comprehensive Comprehensive Informativity (CT) is a
informativity comprehensive metric to measure the
informativity of the answer

Informativeness rating Users’ rating on the information that the
results contain

metrics which are collected in the process of constructing a query. Difficulty
Rating in Table1 is a subjective metric. After evaluators finish (may be success
or fail) constructing a query, they give ratings on how difficulty the process was.
The rating has five levels: (1) very easy, (2) easy, (3) average, (4) difficult, and
(5) very difficult. Objective metrics are designed according to the process of
constructing a query. There are two important aspects in query constructing:
time spent in constructing a query and how many times a user has tried. We use
Query Construction Time On Domain T, and Query Construction Time On
Property Constraint Tj, to measure the former, and we use Number of Attempts
NOA to measure the latter. Then, Query Construction Time T = NOA(T,+T}).

Based on the analysis of the query construction process in Sect.3.2, con-
structing a query typically consists of two steps. One step is to set the domain of
the question, and the other step is to set the property constraints. T, is closely
linked to the taxonomy system of the KB. Both the complexity of the taxonomy
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system and the specificity of the vocabularies of the classes may lead to larger
T,. Ty is closely linked to properties used in the KB. The redundancy of the
properties and the ambiguity of the properties may influence the time T,. In
general, the longer the time spent, the harder the process is.

A user may have tried many incorrect queries before he/she successfully con-
structed a query. If a user finds nothing returned or the returned results are
wrong after he executes a query, he may reconstruct a query. For example, for
the question “Which presidents were born in 19457” if the property is set as
“wasBornIn” on YAGO, nothing will be returned because the range of the prop-
erty “wasBornIn” is the city, and the correct property should be “wasBornOn-
Date.” There may be extreme conditions that whatever the user tries, he/she
does not get the intended answer since the KB does not contain the answer. The
whole process fails. In whatever situation, the Number of Attempts reflects the
quality of the KBs. The larger the number is, the more difficult to construct a
query. Since we limit the maximum number to 10 so that the value of Number
of Attempts is an integer between 1 to 10.

3.3.2 Informativity

We also design two kinds of Informativity metrics as the Queriability metrics
above. Informativeness Rating in Table1 is the subjective metric, and it is the
users’ rating on the informativeness that the results contain. The Informative-
ness Rating has five levels: (1) very little information, (2) little information,
(3) some information, (4) a fair amount of information, and (5) lots of infor-
mation. The objective metrics are computed according to the standard answers
of the questions, and we use Precision, Recall, Comprehensive Informativity to
measure the query results.

Precision and Recall are used to measure the query results in the Informativ-
ity dimension. Precision is the fraction of returned results that are relevant, and
it measures the correctness of the query results. Recall is the fraction of relevant
instances that are returned with querying, and it measures the completeness of
the query results. Comprehensive Informativity (CI) is a metric which integrates
different factors that influence the users’ comprehension of information. From
our understanding of information comprehension, the factors should include not
only precision and recall of a query results but also the accuracy of data returned
as well as the understandability of the data. Therefore, the formula is

_ NCA _NCA

C’I—ﬂ*( " )2 xax 3 (1)

NCA is the number of correct answers of the query results. NA is the number
of standard answers for the question. A is the number of query results. The
range of CI is [0,1]. The square function is used to punish the irrelevant answers.
The data in the KBs may be inaccurate. In our previous work [19], we use the
correctness ratio of facts metric to measure the accuracy. Here, we use « to
denote the metric result. In the process of calculating the CI, we just directly
reuse results in [19] to . B is the understandability of the data in the KB, and
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it measures whether the data of the KBs is human-readable. We do not measure
the dimension in this paper, so we just set it to a constant 0.8.

4 Experiment Design

4.1 Evaluated Knowledge Bases

We applied our metrics to DBpedia and YAGO in our experiment. DBpe-
dia and YAGO are two major general-purpose knowledge bases serving as the
hubs of Linked Open Data. In particular, we chose two representative versions
(DBpedia2014 and YAGO2S) for DBpedia and YAGO, respectively.

4.2 Questions and Patterns

Data requirements of users are modeled as question sets, as mentioned in
Sect. 3.1. Here we use the following criteria to collect questions which meet the
requirements for a good “wikipedia like data set”.

1. Biases on either data set should be avoided. We utilized two question sets in
the KB-based QA area. One source is the Question Answering over Linked
DataS (QALD), and the other is WebQuestions” from the NLP laboratory
of Standford. We choose QALD-2 whose questions are cross-domain. Because
the number of questions in WebQuestions is huge, we chose 50 questions from
the beginning, 50 questions in the middle, and 50 questions at the end.

2. Questions having no answers in either DBpedia or YAGO are avoided.

3. The diversity of question patterns is considered. For example, “what are the
official languages in spain?” and “what is the official language spoken in
mexico?” are similar, therefore, we only choose one of them.

At last, we chose 13 questions from QALD and 13 questions from WebQues-
tions. A full list of 26 questions, 150 questions from WebQuestions, and 100
questions from QALD could be found on our website.?

As explained before, our intention is to assess data set quality instead of
SPARQL syntax. We should try our best to eliminate the time that the evalua-
tors spend on SPARQL syntax. To meet that goal, we analyze the questions in
QALD and WebQuestions and find most of them (the detail statistics are also
on our website mentioned above) can be categorized to special patterns shown in
Table 2. The patterns in Table 2 cover all the 26 questions in the list. We build
a tool to support these patterns so that users will just fill in the appropriate
vocabularies and operators to instantiate the corresponding pattern, and the
executable SPARQL query is generated automatically.

5 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald /index.php?
x=home\&g=home.

" http://nlp.stanford.edu/software/sempre//.

8 http://kbeval.nlp-bigdatalab.com /qiu.html.
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Table 2. Question patterns and SPARQL query patterns

Pattern Transformation Example
DomainPattern Find all sub classes Give me all school
types
PropertyPattern Select * where { ?s propertyname 7o } Population of cities
InstancePattern Select * where { instancename ?p 7o} Information of Google
ValuePattern Select * where { instancename What was abe lincoln’s
propertyname 7o} wife name?
AttributeEqual Select * where { ?s attributename Which presidents were
attributevalue } born in 19457
AttributeRange Select * where{ ?s attributename ?o filter(?o| The cities whose
operator value) } population bigger
than 3 million
AggreExpression Select ?s where {?s attributename ?0} group Which countries have
by ?s having(aggreateFuncname(?0) more than two
operator value) official languages?
OrderedTop Select ?s where {?s attributename 7o} order |What is the highest
by 7o mountain?
OrderedTop + Select ?s where {?s attributename 7o} order 'Who produced the
AggreExpression. . . by aggreateFuncname(?0) most films?

4.3 Evaluation Process and Evaluation Tool

We design a tool to support the manual process in Sect.3.2, as Fig.2 shown.
Each evaluator first chooses a question from the question list and selects a target
KB (YAGO or DBpedia). He then sets the domain of the question and inputs
property constraints to construct a corresponding query. The tool is shown in
Fig. 3. After clicking the “execute” button, the tool constructs and executes the
SPARQL query automatically, and the results are returned to the evaluator.

H Prossetrty F_,,Generate]_.
1
Constraint ) Query

Evaluate
Result

Fig. 2. Evaluation process

The vocabulary finding step in manual constructing process requires too
much human repeated laboring work, for example, searching for a property name
in an editor with the search function while the occurrences of the name is large,
or find all sub domains. Since these repeated laboring work may obscure our
mission of finding usability problems in the data sets, we provide some user-
friendly functions to relieve the evaluators from these work. All the functions
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Context Description: (2)Which television shows were created by Walt Disney?
KB: YAGO

Select Domain: wordnet_television_program_106620579

Class Selection

Select Property: Select Relation: Input Value: Add Constraint

5

Fig. 3. Our evaluation tool

are just suggestions to help user find vocabularies, and it is the evaluator who
ultimately chooses the vocabularies and determines the SPARQL query to be
executed.

1. Autofill functions. When users or evaluators input the name of a domain
or a property name, all the class names or property names containing the
input letter sequence would be popped up as suggestions. The function is
a replacement of the general search function in the editor in the manual
construction process.

2. Show the subclasses and superclasses of a domain. In the manual construc-
tion process, the evaluator may find appropriate domain names by searching
the subclasses or superclasses of existing class. For example, a user needs
to select the domain of the question “Give me all presidents of the United
States.” The user may first come up with “President,” and then he may find a
subclass “Presidents_of_the_United_States” which may be closer to the ques-
tion. Therefore, we provide the function which shows both subclasses and
superclasses of a domain.

3. PATTY [20] is integrated in our tool to obtain the candidates of a property.
We can use the relation patterns provided by PATTY to get the properties
contained in the sentence. For example, the question is “Which television
shows were created by Walt Disney?” and the candidates are “isMarriedTo,”
“created,” “directed,” “hasChild.” While candidates provided by PATTY
often have nothing to do with the question, the function broadens users’
conjectures on possible properties names.

4. DBpedia Spotlight [21] is integrated in our tool to annotate the instances in
the question. For the above question, DBpedia Spotlight can annotate the
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instance “http://dbpedia.org/resource/Walt_Disney.” This function can be
considered as an advanced search function for instances.

After executing the query, the results may be empty or are not the ones as
the users expect. Users need to construct another new query until the results
are satisfactory or the number of attempts achieves the maximum limit. Each
question in the question list has a standard answer set as ground truths, so the
metrics in the Informativity dimension can be computed. Finally, users should
set the Difficulty Rating according to their evaluation process and set the Infor-
mativeness Rating according to the query results after the evaluation for each
question. Since the entire evaluation process includes several manual steps, in
order to reduce errors caused by the subjectivity of the users, we employ eight
people, and each of them tested all the 26 questions.

5 Evaluation Results

5.1 Queriability of DBpedia and YAGO

The comparison results of two KBs with respect to the average Query Con-
struction Time, Query Construction Time on Domain, as well as the Query
Construction Time on Property Constraints for every question are shown in
Fig. 4(a—c), respectively. The means and variations for these metrics are shown
in Fig. 4(d).

We find in Fig.4(a) that it costs evaluators more time on YAGO than
on DBpedia to find a satisfactory query. We look into detail Fig.4(b) and
Fig.4(c). From Fig.4(b), we find that when users select domains, they spend
much more time on YAGO than on DBpedia. This is because YAGO con-
tains a huge number of classes, and some class names are excessively long.
As mentioned in Sect.4.1, YAGO has 451k classes. The length of some
class names may exceed 50 characters. For example, the category name
wikicategory_Failed _assassins_of_United_States_presidents is really difficult for
users to read or input. On the contrary, classes of DBpedia are fewer, and the
names of the classes are easier to understand. From Fig. 4(c), we find that when
considering properties selection, it takes longer on DBpedia than on YAGO.
Compared with the number of properties defined in YAGO (i.e., 75), DBpedia
has more than 55,000 properties. Moreover, there exist a lot of nearly duplicated
properties, which lead to more effort on selecting properties. For example, the
property names “dateOfBirth,” “birthDate,” “birth,” “birthdate,” and “birth-
day” in DBpedia are all related to the notion “birthday.”

Figure4(d) shows that when users query on YAGO, Query Construction
Time On Domain and Query Construction Time On Property Constraint have
a larger fluctuation. The fluctuation of domain selection results from the dif-
ferences of the classes in YAGO. Classes with relatively simple names which
are close to the root of the taxonomy hierarchy are easier to be found, such as
“wordnet_actor_109765278.” Classes with long names which are close to the leaf
level of taxonomy hierarchy are difficult to find. The reason for the fluctuation of
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Fig. 4. Results of query construction time

property selection is that, for simple queries, users only need to set the domain,
and then the Query Construction Time On Property Constraint is 0. However,
if the selected domain is not suitable, users have to spend a lot of time to switch
between similar properties.

The comparison results of two KBs with respect to the average Number of
Attempts are shown in Fig. 5(a). In general, the Number of Attempts in DBpedia
is more than that in YAGO. The conclusion becomes more obvious for the second
half of the questions. After investigation, we find that in the beginning, users
are not familiar with YAGO classes. They find wrong classes and try to change
the properties to construct a query, which leads to a number of failed attempts.
In the later stages, users have a better understanding of the YAGO taxonomy
and are aware that they should rely more on it.

The comparison results of two KBs with respect to the average Difficulty
Rating are shown in Fig. 5(b). Even with the help of our tool, no question is rated
by users as easy on average, whether for DBpedia or for YAGO. Figure 5(b) also
shows a tendency that in the first-half questions, DBpedia is easier, while in the
second half, YAGO is easier.

We also calculate the correlation between the Difficulty Rating and the
other Queriability metrics. We find that Difficulty Rating closely correlates
with Number of Attempts in DBpedia and closely correlates with the sum of
Query Construction Time on Domain and Query Construction Time On Prop-
erty Constraint in YAGO. For DBpedia, it does not cost much time to set the
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Fig. 5. Results of number of attempts and difficulty rating

domain and property. However, duplication exists in the property names. When
users enter wrong property names with no query result, they have to try other
property names. In this case, users have to try many times before being suc-
cessful, and they feel confused and have a difficult time. That’s the reason the
Difficulty Rating correlates with Number of Attempts in DBpedia. For YAGO,
it costs time to select the appropriate domain and property, especially when the
target class is complex. That’s the reason why Difficulty Rating correlates with
the total time.

5.2 Informativity of DBpedia and YAGO

In terms of Informativitiy, we focus on the amount of information a user can
gain under a certain context, and we do not care about how many incorrect
queries are constructed by users. Therefore, we choose the best result achieved
by all evaluators for each question to assess Informativity. In general, there are 20
questions that return at least one answer in YAGO and 14 questions in DBpedia.
The comparison results of two KBs with respect to the average Precision and
Recall as well as the CI for every question are shown in Fig. 6. All of them show
that YAGO has better Informativity than DBpedia.

From Fig. 6(a), we find DBpedia has a rather low precision. One reason is the
polysemy of type words. For example, presidents can be presidents of countries
or presidents of organizations. So for the question “Give me all presidents of
the United States,” we found that the results include the Chairman of the Fed-
eral Reserve and other types of presidents. The low precision of YAGO arises
from our misinterpretation of the vocabulary in YAGO. For example, the class
“wikicategory_German_actors” means actors whose nationality, not birthplace,
is German.

From Fig. 6(b), we find DBpedia and YAGO have low recalls. The reason for
DBpedia is that it has duplicated properties as mentioned before. The reason for
YAGO is that it really does not contain abundant properties with enough facts.
For the question “Which actors were born in Germany?” if the users set the
domain as “wordnet_actor_109765278,” set the property as “wasBornln,” and
set its value as “Germany,” no results are returned. For the question “who is
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number 5 on the Boston Celtics?” evaluators cannot find the property in YAGO
to describe “number” in the context.

Informativeness Rating before and after the user checked the correct answers
are different. The former relates to how many times users attempt to construct
a query and how many results are returned. The latter relates to the precision
and the recall, and relates to CI as a whole.

In summary, the results on Queriability and Informativity relate to internal
characteristics of KBs, namely, the schema design and the richness of the data.
For YAGO, the huge class hierarchy increases difficulties in finding the classes,
the small number of properties reduces the “expressiveness” of the data set, and
the smaller number of facts makes query results less informative. While DBpedia
seems to have a better balance between the number of classes and the number
of properties, the property duplication problem largely decreases the quality in
use of DBpedia.
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Fig. 6. Informativity of DBpedia and YAGO

The lessons learned from our assessment work include: (1) Naming convention
for classes, objects and properties are required in the LOD world, similar to
that in software (2) Duplicate property names should be avoided since they will
mislead the users. (3) There should be a tradeoff between the number of classes
and the number of properties. Users may encounter difficulties when both of the
numbers become too large. In general, our experiments show that a well-designed
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schema is very important for people to utilize a data set. We wish someone could
run a “linked open schema (LOS)” website which contains more schema data,
vocabularies and constraints than existing schema web sites such as schema.org.
Every data set should be linked and registered to the LOS websites before the
data set is published. There could be facilities such as Q&A engines on this LOS
site so that every data set can be accessed via natural language interfaces. In
this way, the data sets published will be of higher quality, and end users could
utilize the data set immediately.

6 Conclusion and Future Work

In this paper, we designed two metric sets, namely, Queriablity and Informativity
with respect to the “quality in use” factor on LOD. The metric results on YAGO
and DBpedia not only show that users have experienced difficulties in utilizing
these KBs, but also give many hints on where the difficulties arise as well as
how to improve these KBs. In the future, we plan to assess other usage scenarios
of quality in use, such as search and browsing or Q& A, and assess more cross-
domain KBs such as Wikidata. We also plan to collect data requirements on the
medical domain and evaluate the quality in use of medical data sets of the LOD
cloud.
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