
Provenance Management for Evolving
RDF Datasets

Argyro Avgoustaki1,2(B), Giorgos Flouris2, Irini Fundulaki2,
and Dimitris Plexousakis1,2

1 Department of Computer Science, University of Crete, Heraklion, Greece
2 Institute of Computer Science, FORTH, Heraklion, Greece

{argiro,fgeo,fundul,dp}@ics.forth.gr

Abstract. Tracking the provenance of information published on the
Web is of crucial importance for effectively supporting trustworthiness,
accountability and repeatability in the Web of Data. Although extensive
work has been done on computing the provenance for SPARQL queries,
little research has been conducted for the case of SPARQL updates.
This paper proposes a new provenance model that borrows properties
from both how and where provenance models, and is suitable for cap-
turing the triple and attribute level provenance of data introduced via
SPARQL INSERT updates. To the best of our knowledge, this is the
first model that deals with the provenance of SPARQL updates using
algebraic expressions, in the spirit of the well-established model of prove-
nance semirings. We present an algorithm that records the provenance
of SPARQL update results, and a reconstruction algorithm that uses
this provenance to identify a SPARQL update that is compatible to the
original one, given only the recorded provenance. Our approach is imple-
mented and evaluated on top of Virtuoso Database Engine.

1 Introduction

During the last few years, we have witnessed an explosion in the volume of
semantic data available on the Web. These data are usually published using
the RDF data model1, where information is represented using triples, organized
in named graphs [6], thereby forming quadruples. Querying and updating RDF
data is performed using the W3C standards SPARQL2 and SPARQL Update3

respectively.
Nowadays semantic data is the most prominent example of large scale data

where one could create new datasets (sets of quadruples) by integrating existing
ones. In this setting, recording the provenance of such data, i.e., their origin,
which describes from where [5] and how [12] the data was obtained, is of cru-
cial importance for supporting trustworthiness, accountability and repeatabil-
ity. This is necessary due to the open and unconstrained nature of the Web of
1 http://www.w3.org/TR/rdf11-primer/.
2 http://www.w3.org/TR/sparql11-overview/.
3 http://www.w3.org/TR/sparql11-update/.

c© Springer International Publishing Switzerland 2016
H. Sack et al. (Eds.): ESWC 2016, LNCS 9678, pp. 575–592, 2016.
DOI: 10.1007/978-3-319-34129-3 35

http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-update/

576 A. Avgoustaki et al.

Data and the growing tendency to populate scientific data warehouses through
SPARQL updates offered by SPARQL endpoints.

In this work we deal with the problem of capturing and managing the prove-
nance of quadruples constructed through SPARQL updates. More specifically, we
focus on SPARQL INSERT operations (we refer to them as INSERT updates) used
to add newly created triples in a target named graph (i.e., quadruples). The pur-
pose of computing the provenance for such operations is to record from where
and how each quadruple was constructed, thereby allowing us to determine the
quadruples and the SPARQL operators that were used to produce it.

The problem of managing provenance information has received considerable
attention [5,9–13,15,16,20,21], but most works deal with query provenance.
W3C published a recommendation [18] concerning the interchange of provenance
information, which, however, focuses on providing a syntactic means to repre-
sent provenance rather than providing a method for identifying or computing it.
Algebraic expressions have been used to capture (query) provenance in varying
levels of detail [11,12,15]. In the RDF context, provenance is often represented
using named graphs [6,7,10,15].

However, the unique requirements associated with SPARQL update prove-
nance do not allow a direct reuse of such approaches. One problem is that the
named graph component of a quadruple is defined by the user in the INSERT

update, so triples with different origin may be added to the same named graph.
Thus, the standard approach of capturing provenance through the named graph
of a quadruple is not sufficient, and provenance should be defined for quadruples,
rather than triples (as in most works).

In addition, quadruples created via INSERT updates could be the result of
combining values found in different quadruples through different SPARQL oper-
ators. This creates a unique challenge, because each attribute of a quadruple
may have a different provenance. Thus, fine-grained, attribute level provenance
models are called for, and more expressive models that go beyond the named
graphs approach are needed.

Another challenge stems from the persistence of a SPARQL update result,
which implies that when a quadruple is accessed, the SPARQL update that
generated the quadruple is no longer available. This makes standard how prove-
nance models unsuitable for recording provenance at a fine-grained level in this
setting. As an example, standard how-provenance approaches will record that a
join was used to generate a quadruple, but will not record the components of the
quadruples that were joined to produce the result; even though this information
is easily available during queries (via the SPARQL query), this is not the case
for SPARQL updates (where the SPARQL update is not available). Recording
the INSERT update is not an efficient remedy for the situation, because (a) the
syntactic form of the actual INSERT update is irrelevant and (b) the INSERT

update is no longer relevant, as the dataset has evolved.
Therefore, more fine-grained forms of how-provenance are called for. We

define this more demanding form of how-provenance in an indirect manner, by
introducing the notion of reconstructability, which refers to the ability of using

Provenance Management for Evolving RDF Datasets 577

the provenance information for reconstructing an INSERT update that is compat-
ible (see Definition 4) with the INSERT update that generated this quadruple.

We show that, to satisfy the requirement of reconstructability, the provenance
of a quadruple should be expressive enough to identify: (a) the quadruples that
contributed to its creation (where provenance [8]), and (b) how these quadruples
were used (via joins and unions) to generate the new one (how provenance [12]),
under the more demanding form of how-provenance explained above.

The main contributions of this paper4 are:

– The introduction of a fine-grained and expressive provenance model that bor-
rows from both where and how provenance models, is suitable for encoding
both triple and attribute level provenance of quadruples obtained via INSERT

updates, and allows the reconstructability of such updates from their prove-
nance.

– The provision of algorithmic support for our model via the provenance con-
struction and update reconstruction algorithms. The former is used for com-
puting and recording the provenance of the result of an INSERT update based
on the proposed model, whereas the latter exploits the expressiveness of our
model to report on the generation process of a quadruple.

– The implementation, theoretical analysis, and experimental evaluation of
these algorithms on top of Virtuoso Database Engine.

2 Preliminaries

We consider provenance in the context of an RDF dataset (denoted by D); for
simplicity, we assume that an RDF dataset is composed of a set of quadruples
of the form (s,p,o,n), where (s,p,o) is a triple belonging in a named graph n.

SPARQL 1.1 is the official W3C recommendation for querying and updat-
ing RDF datasets, and is based on the concept of matching patterns against
such graphs. Patterns are defined via quad patterns which are like quadru-
ples but allow variables (prefixed with ?) in the subject, property or object
position. Quad patterns can be combined using SPARQL operators to form
graph patterns. In this work, we focus on union (UNION) and join (“.”) oper-
ators only, ignoring optional and filters (we plan to deal with these opera-
tors in future work). Thus, the considered INSERT updates are of the form:
U := INSERT {qpins} WHERE {gp}, where qpins is a quad pattern and gp is
a graph pattern formed as a union of individual graph patterns, gp1 UNION . . .
UNION gpk. Each gpi is of the form qpi1 . qpi2 qpim. Note that all INSERT
updates containing only union and join operators can be equivalently written in
the above form [19]. Note also that INSERT DATA operations can be defined in
terms of INSERT [2].

In addition, we require that for each qpij there is a sequence 〈qpij1 , . . . 〉 of
quad patterns from gpi, such that each element in the sequence has a common
4 Detailed presentation of our approach including the source code of our implementa-

tion can be found in http://www.ics.forth.gr/isl/provenance.

http://www.ics.forth.gr/isl/provenance

578 A. Avgoustaki et al.

variable with the previous element in the sequence, whereas the first element has
a common variable with qpins. This restriction is necessary to “strip” the graph
pattern in the WHERE clause from quad patterns that play no essential role in
its evaluation [19].

SPARQL Update specifications do not fully clarify the principles governing
transactions with multiple updates [13]; here, we focus on transactions consisting
of single atomic updates. Further details on SPARQL are omitted (see [1,2,19]).

3 Motivating Example

We provide an example from the medical domain to motivate our approach.
Note that this example is used for illustration purposes only and any conse-
quences pertaining to data privacy are out of the scope of our paper. Table 1
shows a dataset D1 containing four quadruples (with identifiers c1, . . . , c4), each
with a certain provenance (p1, . . . , p4). These quadruples describe treatments for
hypertension that have been provided by different doctors.

Table 1. Dataset D1

Now suppose that a patient visits the hospital and a young doctor diagnoses
hypertension. To decide on the proper treatment, he checks the system for pre-
vious treatments of hypertension, paying special attention to those proposed by
the diabetologist, because the patient’s history includes diabetes and some med-
ications may raise the blood sugar levels, a dangerous condition for a diabetic.
The result of his query needs also to be recorded in the database, as it will be
his suggested treatment, so he executes U :

INSERT {qpins} WHERE {qp11 UNION qp21 . qp22}

where: qpins: (<hypertension>, <treatedWith>, ?o, <YoungDoctor>)
qp11: (<hypertension>, <treatedWith>, ?o, <Diabetologist>)
qp21: (<hypertension>, <treatedWith>, ?o, <Pathologist1>)
qp22: (<hypertension>, <treatedWith>, ?o, <Pathologist2>)

The application of U upon D1 leads to the insertion of c5, forming dataset
D2, shown in Table 2. The expression p5 below is used to describe the provenance
of c5:

p5 : {(⊥, ⊥, qp1
1.o

(c1)) ⊕ (⊥, ⊥, qp2
1.o

(c2{qp2
1.o} �{qp2

2.o} c3))}
Some explanations on p5 are in order. First, each operand of ⊕ indicates a

Provenance Management for Evolving RDF Datasets 579

different way through which c5 occurred (due to the existence of UNION). The
first operand (⊥,⊥, qp1

1.o
(c1)) resulted from the prescription of the diabetologist;

in particular, its subject and property values were dictated by the correspond-
ing constants in qpins (indicated by the value ⊥), whereas its object resulted by
“copying” the object value (o) of c1 due to the quad pattern qp11 (denoted by
qp1

1.o
(c1)).

Similarly, the second operand’s subject and property were dictated by the
constants of qpins, whereas the object resulted from the agreeing prescriptions
of the two pathologists. In particular, the object value was the result of a join
(indicated by �) between two quadruples, namely c2, c3; the join happened
between the object position of qp21 (i.e., qp21.o) and the object position of qp22
(i.e., qp22.o), hence the left and right subscript of �. Finally, the result of this
join was projected over the object position as indicated by the outer subscript
qp21.o.

Table 2. Dataset D2

The created expression (p5) is inspired by standard how-provenance expres-
sions [12,15] used in abstract provenance models, but contains additional infor-
mation not present in such expressions. In particular, we include, for each
attribute of a result quadruple:

– a subscript denoting the quad pattern position in the WHERE clause that the
element’s value is taken from (arbitrarily we set this to be the first matching
position).

– two subscripts in the provenance join operator ({}�{}) to describe the posi-
tions of the quad patterns where the joins take place; the first subscript is
written to the left of the join operator and refers to the first operand of
the join, whereas the second is written to the right and refers to the second
operand. This information is important for understanding how c5 found its
way in the dataset (reconstructability).

4 Abstract Provenance Model

Standard abstract provenance models are comprised of abstract identifiers and
abstract operators [12,15]. Abstract identifiers (quadruple identifiers in our case,
denoted by ci) are uniquely assigned to RDF quadruples, whereas abstract oper-
ators describe the computations performed on quadruples to derive a result

580 A. Avgoustaki et al.

quadruple. We additionally introduce the notion of quad pattern positions, which
are used to describe the position of the occurrence of a constant or a variable in
a quad pattern (we provide more details below). Using this infrastructure, RDF
quadruples are annotated with complex expressions that involve the identifiers,
the operators and the quad pattern positions:

Definition 1. The provenance p of a quadruple q is defined as p := {cpe1, . . . ,
cpek}. A cpe is a complex provenance expression defined as cpe := pe1 ⊕ pe2 ⊕
. . . ⊕ pem, where m ≥ 1, pej is a simple provenance expression and ⊕ is the
provenance operator for union. An expression pe is of the form (provs, provp,
provo), where provpos is the provenance of the attribute pos (described in detail
in Definition 2).

In the above definition, p is the full provenance of the quadruple. Since a
quadruple can be the result of more than one INSERT updates applied over the
course of time, we use cpei to record each such update. As explained in Sect. 3,
each pei corresponds to one operand of a UNION operator that leads to the
generation of the quadruple, whereas each provpos describes how the current
attribute resulted. Note that provpos allows the identification of the origin of
each element-attribute individually (attribute-level provenance [4]). We are not
interested in the provenance of the graph component (the fourth element of a
quadruple), as this is explicitly defined by the INSERT update.

Example 1. In our running example (Sect. 3), p5 = {cpe1} and cpe1 = pe1 ⊕pe2,
where pe1 = (⊥,⊥, qp1

1.o
(c1)) and pe2 = (⊥,⊥, qp2

1.o
(c2{qp2

1.o} �{qp2
2.o} c3)); each

pei results from one operand of the UNION. In pe1, provs = provp = ⊥, whereas
provo = qp1

1.o
(c1). �	

Now let’s see how the simple provenance expression pe is constructed. For
reasons that will be made apparent later, it is necessary to refer to each individual
variable or constant of an update. For this purpose, we arbitrarily number:

a. graph patterns, gpi (i � 1) indicates the ith graph pattern of the WHERE
clause.

b. quad patterns, qpij (j � 1) indicates the jth quad pattern in the graph pattern
gpi.

Moreover, we refer to the quad pattern in the INSERT clause as qpins.
Using this identification mechanism, each variable or constant in a quad

pattern can be uniquely identified by a quad pattern position, i.e., qpij .x (or
qpins.x), where qpij (qpins) is the corresponding quad pattern and x is one of
s, p, o, to indicate one of the these positions in a quad pattern (e.g., qp12.o denotes
the object of the 2th quad pattern of the 1st graph pattern).

Definition 2. The provenance of attribute pos (pos ∈ {s, p, o}), namely
provpos, is defined as provpos := ⊥ | varSub(spe), where ⊥ is a special label,
varSub is the var subscript (a quad pattern position) and spe is a standard

Provenance Management for Evolving RDF Datasets 581

provenance expression. spe is defined as spe := (ci joinSub1 � joinSub2 cj . . .

joinSubr−1 � joinSubr ck), where cx is a quadruple identifier, joinSubx is a join
subscript (quad pattern position IDs) and � is the provenance operator of join.

As proposed in [4,20], the special label ⊥ is used to record the case where the
INSERT update constructs an element of the new quadruple using a constant,
e.g., provs, provp in pe1 and pe2 expressions of p5 in our motivating example.
This is the case where the corresponding position in qpins contains a constant.

If a quad pattern position in qpins (say qpins.pos1) contains a variable, then
the corresponding value is copied by a quadruple in the dataset, or generated
via SPARQL joins. This is recorded using the form varSub(spe), where varSub
determines the quad pattern position qpij .pos2 that the value should originate
from (this position contains the same variable as qpins.pos1), and spe describes
the operation (join or simple “copy”) that created it. When there is a copy (in
the sense of [4]), spe records the quad pattern position ID from where the value is
taken. When there is a join, spe records the joined quadruples, and the positions
in said quadruples that were joined (via the left and right subscripts of �). This
is similar to [15], except that [15] does not record the joined positions, which is
critical for reconstructability.

Example 2. In our example, qpins.s and qpins.p are constants, so the s, p posi-
tions of pe1, pe2 are set to ⊥. For the o position, the expression pe1 contains the
var subscript qp11.o because this is the position where the variable ?o appears in
the first operand of the UNION. In this case, the value is taken directly from the
corresponding quadruple (c1), so in pe1, provo = qp1

1.o
(c1). Similarly, for pe2,

the corresponding var subscript is qp21.o; note that qp22.o contains the same vari-
able, but we take, by convention, the first valid appearance of said variable. The
actual value of the quadruple is generated through a join between the o positions
of qp21, qp

2
2, hence the subscripts of the � operand; the joined quadruples are c2

and c3. Thus, for pe2, provo = qp2
1.o

(c2{qp2
1.o} �{qp2

2.o} c3)). �	

5 Provenance Algorithms

5.1 Provenance Construction Algorithm

The provenance construction algorithm (Algorithm 1) is used to record the
provenance of quadruples resulting from an INSERT update. This algorithm takes
as input an INSERT update U and a dataset D, and returns a provenance expres-
sion pk to associate with each newly created quadruple qk. Due to space limi-
tations, we will present a simplified version of the algorithm, where the INSERT

update generates only one result quadruple; the interested readers can see the
full algorithm in [2].

Computing pk amounts to computing the new cper (resulting from U) to be
added; the actual addition happens in line 22 (line 21 determines the correspond-
ing quad qk). The computation of cper proceeds as follows: the outer FOR (lines
1–20) computes all pei (one for each operand of UNION), which are added to

582 A. Avgoustaki et al.

cper (line 19), whereas the inner FOR (lines 2–17) computes provs, provp, provo
which are composed to form pei (line 18). The value of each provpos is determined
by the corresponding qpins.pos: if it is a constant, then provpos = ⊥ (line 15);
otherwise (if it is a variable), the computation is more complex and is performed
in lines 4–13.

Algorithm 1. Provenance Construction Algorithm
Input: An INSERT update U , a dataset D
Output: The provenance pk of a result quadruple qk, P
1: for all (gpi ∈ WHERE clause) do
2: for all qpins.pos do
3: if qpins.pos ∈ V then
4: Create the set MatchingPatterns {mp1, . . .

mpz}
5: spe = findIDs(mp1) � “Copy” case
6: j = 2
7: while mpj �= null do � Join case
8: Create joinSubx and joinSubx+1

9: spe = spe joinSub1 � joinSub2 find-
IDs(mpj)

10: j++
11: end while
12: Create the varSub
13: provpos = varSub (spe)
14: else
15: provpos = ⊥
16: end if
17: end for
18: pei = (provs, provp, provo)
19: cper = cper ⊕ pei

20: end for
21: qk = getQuad(cper, qpins)
22: pk = pk∪ cper
23: return (qk,pk)

In the latter case,
we first compute the
ordered set MatchingPat-
terns (line 4), which con-
tains all quad pattern
identifiers that belong in
gpi and are related to
the evaluation of the vari-
able in qpins.pos. A quad
pattern is related if it
contains the specific vari-
able, or if it joins (possi-
bly via another variable)
with another related quad
pattern.

Then, spe is initially
set to be equal to the
quad pattern identifier
that matches the first
item in MatchingPatterns
(line 5). If MatchingPat-
terns has a single item,
then we have no joins,
i.e., we have a “copy”;
lines 7–11 will be skipped,
varSub will be computed
in line 12, and provpos in
line 13.

If, however, MatchingPatterns has more than one items, then there is one or
more joins, which have to be taken into account in the computation of spe. Each
join is identified in line 8 (by iterating over the quad patterns and recording the
positions where the joins take place by looking at their common variables), line
9 enhances spe with the new join (and the respective quadruple identifier) and
the process (lines 7–11) continues until no more MatchingPatterns exist.

It should be noted that there may be more than one quadruple identifiers
matching a given quad pattern. In this case, all the different valid combinations
are considered by findIDs, and each combination results to a different spe and
provpos.

Example 3. In our example, qpins.s, qpins.p are constants, provs = provp = ⊥;
on the other hand, qpins.o = ?o. For the graph pattern gp1, we have Matching-
Patterns = {qp11} (which contains the variable ?o); line 5 will set spe = c1 and

Provenance Management for Evolving RDF Datasets 583

line 12 will set varSub = qp11.o; the final result (line 18) will be: pe1 = (⊥, ⊥,
qp1

1.o
(c1)).

For gp2, the set MatchingPatterns = {qp21, qp22}, indicating that there was a
join between qp21, qp

2
2 that created this quadruple. Line 5 sets spe = c2, line 8

identifies the common variable(s) between these two quad patterns (qp21.o, qp
2
2.o),

and line 9 computes the final spe = c2{qp2
1.o} �{qp2

2.o} c3. Note that the evaluation
of qp22 also matches c4, but we ignore it since it does not join with c2. As before,
line 12 will set varSub = qp21.o, and the result will be: pe2 = (⊥, ⊥, qp2

1.o
(c2

{qp2
1.o}�{qp2

2.o} c3). �	

5.2 Update Reconstruction Algorithm

Algorithm 2 exploits the rich semantics of the provenance expression of a quadru-
ple in order to determine how the quadruple found its way in the dataset. It takes
as input a complex provenance expression cpe that is part of the provenance of
the input quadruple q and a dataset D, and returns another INSERT update U ′;
as we will show below, U ′ is compatible with the original INSERT update that
led to the creation of q, i.e., the same in most relevant aspects. The reason why
Algorithm 2 takes as input cpe, rather than the full provenance, is that each cpe
is the result of one INSERT update operation. Before presenting the algorithm,
we provide some formal definitions:

Definition 3. Let gp and gp′ be graph patterns. We say that gp′ is filter-
compatible to gp (denoted gp ∼ gp′) iff gp′ differs from gp only in the filters
that it may employ.

Note that Definition 3 refers also to implicit filters created by a constant
value in the WHERE clause, e.g., <hypertension> in qp11, qp

2
1, qp

2
2 of our motivating

example.

Definition 4. Let U and U ′ be INSERT updates. We say that U ′ is compatible
to U (denoted U � U ′) if there is a renaming of variables in U ′, such as qpins
= qp′

ins and for each gp′ in U ′ there is a filter-compatible gp in U .

Intuitively, Definition 4 says that U ′ is compatible to U iff U contains a
subset of the graph patterns in U ′, modulo filters and variable renaming. As a
consequence of Definition 4, the following theorem can be deduced:

Theorem 1. Let U and U ′ be UNION-free INSERT updates. If U ′ is compatible
to U (U � U ′), then U is also compatible to U ′ (U ′ � U).5

The Algorithm 2 can be split in three parts, each of which computes a differ-
ent component of the output U ′ = INSERT {qp′

ins} WHERE {gp′}. In particular,
lines 1–8 compute qp′

ins; lines 9–34 compute gp′ and line 35 combines the above
to form U ′.
5 Proofs for all theorems can be found in [2].

584 A. Avgoustaki et al.

For the first part, the graph position (n) of qp′
ins is determined by the graph

attribute of the input q (line 1). For the s, p, o positions, we exploit the fact that,
if provpos of pe1 is equal to ⊥, then the corresponding quadruple attribute was
created by a constant, so we set qp′

ins.pos = q.pos (note also that in this case,
the provpos of all pei will be equal to ⊥); otherwise, qp′

ins.pos is associated with
a new variable.

The main part of the algorithm (lines 9–34) contains one FOR loop which
computes the graph patterns (gp′i), each corresponding to one pei in cpe; each
loop computes all the quad patterns qp′i

j of gpi, composes them using join in
line 32 (to form gp′i), and uses the result to progressively built the final graph
pattern gp′ (line 33).

To construct gp′i, we progressively fill the positions of each quad pattern in
gp′i with variables, taking special care to use the same variables in positions that
are joined, and also to reuse the variables already in qp′

ins when appropriate.
Initially, we compute the size of gpi, i.e., the number of quad patterns in

gpi (line 10), by scanning all quad pattern identifiers found in the var or join
subscripts of pei.

Line 11 deals with the fourth attribute of quad patterns, which does not
accept variables, so its value is taken directly by the fourth attribute of the
corresponding quadruple. Finding the corresponding quadruple is easy: for a
quad pattern appearing in a var subscript, its corresponding quadruple is the
first that appears in the respective spe, whereas for join subscripts we take the
quadruple in the respective “side” of the join.

The most important task is done in lines 12–31, where the s, p, o positions
of quad patterns are filled. Lines 12–15 are the starting point: we “read” the
varSub of each provpos �= ⊥, in order to identify where each position in qp′

ins

took its value from. Line 13 finds j (i.e., the proper quad pattern qp′i
j in gpi)

and the position in said quad pattern (pos′), whereas line 14 fills this position
with the variable found in qp′

ins.pos.
Lines 16–28 essentially “follow the chain of joins” that is recorded in the join

subscripts, so as to assign common variable names where appropriate, reusing
the variables in qp′

ins, or introducing new ones. Recall that each join contains
two join subscripts; the number of quad pattern positions in each subscript of
the pair depends on the number of positions in which the join is applied. In
our algorithm, AllJoinSubs is an ordered list of all such join subscripts (easily
found by scanning provpos); by construction, joinSub1 and joinSub2 appear in
the same join (same for joinSub3 and joinSub4 and so on). Each joinSubr is a
sequence of quad patterns 〈jpr1, . . . , jprk〉.

If AllJoinSubs is empty, then we have a “copy”; lines 19–27 will be skipped,
and the only variable assignment necessary is the one already performed in line
14. In the more complex case where AllJoinSubs contains some elements, these
are processed in pairs, as indicated by the WHILE in line 19 and the increment
in line 26. The idea is to put the same variable in positions that are joined, i.e.,
the same variable in jprk, jp

r+1
k for all pairs r, r + 1 (for r an odd number). If

jprk has already an assigned variable, this was created either by line 14, or by a

Provenance Management for Evolving RDF Datasets 585

previous execution of line 24, so this value is copied in jpr+1
k ; if not, a “fresh”

variable is assigned to jprk (line 22) and the process continues normally. The
assumption that the quad pattern position appearing in the var subscript is the
first one that matches is critical for this process, because it guarantees that we
will not assign a fresh variable when the variables should be taken from qp′

ins.

Algorithm 2. Update Reconstruction Algorithm
Input: A cpe expression of the form pe1 ⊕ . . . ⊕ pek, a

quadruple q (s, p, o, n), a dataset D
Output: An INSERT update U ′, such that U ′ � U
1: qp′

ins = (qp′
ins.s, qp

′
ins.p, qp′

ins.o, n)
2: for all pos ∈ {s, p, o} do
3: if provpos of pe1 is equal to ⊥ then
4: qp′

ins.pos = q.pos
5: else
6: qp′

ins.pos = NewVar()
7: end if
8: end for
9: for all pei in cpe do

10: l = computeGPSize(pei)
11: assignGraphs(pei)
12: for all provpos in pei, such that provpos �= ⊥ do
13: (j, pos′) = getPosFromVarSub(provpos)
14: qpi

j .pos′ = qp′
ins.pos

15: end for
16: for all provpos in pei, such that provpos �= ⊥ do
17: Set AllJoinSubs = 〈joinSub1, . . ., joinSubx〉,

where joinSubr = 〈jpr
1, . . . , jp

r
k〉

18: r = 1
19: while joinSubr �= ∅ do
20: for all jpr

k ∈ joinSubr do
21: if jpr

k = null then
22: jpr

k = NewVar()
23: end if
24: jpr+1

k = jpr
k

25: end for
26: r = r + 2
27: end while
28: end for
29: for all unbound qp′i

j .pos do
30: qp′i

j .pos = NewVar()
31: end for
32: gp′i = qp′i

1 . qp′i
2 qp′i

l

33: gp′ = gp′ UNION gp′i

34: end for
35: return U ′ = INSERT {qp′

ins} WHERE {gp′}

Any unbound quad
pattern positions (i.e.,
positions with no assigned
variables) remaining after
the execution of lines 16–
28, are filled with “fresh”
variables (line 30).

Example 4. Now, we will
explain how Algorithm 2
works for our motivating
example. We first deter-
mine the graph attribute
of qp′

ins (<YoungDoctor>),
taken from c5 (line 1).
Then (lines 2–8), we note
that the s, p values of c5
resulted from a constant
(see pe1, pe2), whereas the
o value resulted from
a “copy” or join; thus,
qp′

ins = (<hypertension>,
<treatedWith>, ?v0,
<YoungDoctor>).
Subsequently, the FOR
loop in line 9 is called
for each pei. For pe1,
only qp11 appears, whose
named graph is the one
of c1, i.e., <Diabetologist>.
The o position of qp′1

1

is taken from qp′
ins.o, as

indicated by the var sub-
script (so qp′1

1 .o = ?v0.
There are no joins, so the
block in lines 16–28 has
no effect, and fresh vari-
ables are assigned in the
other positions in line 30.
Thus, qp′1

1 = (?v1, ?v2,
?v0, <Diabetologist>).

586 A. Avgoustaki et al.

Similarly, for pe2, we have two quad pattern identifiers, qp21, qp
2
2, whose named

graph attributes are taken from c2, c3 respectively (lines 10–11). The value of
qp′1

1 .o is set to ?v0 (equal to qp′
ins.o, as indicated by the var subscript of pe2).

In this case, we have a join, so in line 24 we will copy the value of qp′1
1 .o (i.e.,

?v0) to qp′1
2 .o; this is due to the form of the join ({qp1

1.o}�{qp1
2.o}, which will set

AllJoinSubs = 〈〈qp11.o〉, 〈qp12.o〉〉). There are no further joins to process, so we
put fresh variables in the unbound positions of qp′1

2 , qp
′2
2 , resulting into: qp′1

2 =
(?v3, ?v4, ?v0, <Pathologist1>), qp′1

2 = (?v5, ?v6, ?v0, <Pathologist2>).
After the composition of the above quad patterns in lines 32, 33, 35 we get U’:
INSERT {qp′

ins} WHERE {qp′1
1 UNION qp′2

1 . qp
′2
2 }

where: qp′
ins: (<hypertension>, <treatedWith>, ?v0, <YoungDoctor>)

qp′1
1 : (?v1, ?v2, ?v0, <Diabetologist>)

qp′2
1 : (?v3, ?v4, ?v0, <Pathologist1>)

qp′2
2 : (?v5, ?v6, ?v0, <Pathologist2>)

Note that U ′ differs from U only in the (implicit) filters that U employs
(<hypertension>, <treatedWith>) in its quad patterns, as well as in the variable
names. �	

The following theorem proves the correctness of our algorithms:

Theorem 2. Let U be an INSERT update evaluated on a dataset D, q a result
quadruple and cpe a complex provenance expression in the provenance of q as
computed by Algorithm 1. Assume that we run Algorithm 2 with input (cpe, q,
D) and we get as output the INSERT update U ′. Then, U ′ returns q among other
quadruples and U � U ′.

Theorem 2 proves that the output of Algorithm 2 is compatible with the
original INSERT update that created the input quadruple; thus, the intended
semantics of a provenance expression, as given in Sect. 4, are correctly recorded
by Algorithm 1, and interpreted by Algorithm 2 to reconstruct the original
INSERT update.

5.3 Complexities

The time complexity of Algorithm 1 is linear with respect to the update size
(number of quad patterns in the WHERE clause). To see this, note that lines
2–17 will be executed three times, each run costing O(mi), where mi is the
number of joined quad patterns in gpi; thus, the total cost is O(3 · ∑

i mi) =
O(m), where m is the update size. Algorithm 1 is also of logarithmic complexity
with respect to the dataset size (number of quadruples), say R. Specifically, the
dataset is accessed in two occasions: to find the quadruple identifiers (lines 5,
9), and to get the attribute values of qk (line 21). Each access costs O(logR)
time (assuming appropriate indexes), and happens a constant number of times
(assuming a constant update size), so the total cost is O(logR). The above
complexities are related to the cost of annotating the result of the INSERT update
with its provenance, and do not include the cost of computing the result itself;

Provenance Management for Evolving RDF Datasets 587

an obvious conclusion is that the overhead imposed by the provenance algorithm
is negligible.

The time complexity of Algorithm 2 is linear with respect to the size of the
cpe. Lines 9–34 run once for each pei, each run costing O(mi) time (where mi is
the number of quad patterns in pei), because each part of provenance is accessed
a constant number of times. Hence, the complexity is O(

∑
i mi) = O(m), where

m is the total number of quad patterns in the WHERE clause (i.e., update size).
As with Algorithm 1, Algorithm 2 only accesses the dataset in specific points
(lines 4, 11), each being run a constant number of times (for a fixed update
size) and costing O(logR) (assuming adequate indexes) over a dataset of size R.
Thus, the complexity of Algorithm 2 is logarithmic with respect to the number
of quadruples in D.

Regarding space complexity, we note that the size of provenance is analogous
to the size of the input U (and vice-versa), and that all temporarily stored infor-
mation is no larger in size than the size of the update/provenance (respectively)
in either algorithm. Thus, the space complexity of both algorithms is linear with
respect to U/cpe.

6 Implementation and Evaluation

6.1 Implementation and Storage (Relational Schema)

Existing SPARQL engines do not support the kind of complex provenance infor-
mation proposed by our model. Thus, we used Virtuoso Database Engine as our
triple store, where quadruples and provenance expressions are stored in rela-
tional tables. On top of Virtuoso we built a main memory Java implementa-
tion of our algorithms. The quadruples and the related provenance expressions
are stored in a relational schema, which uses two tables: Quads(qid,s,p,o,n) and
Prov(qid, cpeNo, peNo, provs, provp, provo). Table Quads stores the quadruple’s
(ID, subject, property, object, named graph). Table Prov stores the provenance
information of a quadruple: qid is the quadruple ID, cpeNo and peNo are the IDs
of cpe and pe expressions, while provs, provp and provo contain the provenance
of the corresponding attribute related to the specific cpe and pe.

6.2 Experiments

In our experiments we used real data that were taken from the Billion Triple
Challenge (BTC) dataset (small crawl)6. The BTC dataset contains 10 million
quadruples, but we used smaller excerpts containing 100, 250 and 500 thousand
unique quadruples. Due to the absence of a standard benchmark for provenance,
we used our own custom synthetic set of INSERT updates7. All experiments were
conducted on a Dell OptiPlex 755 desktop with CPU Intel R© CoreTM 2 Duo CPU
Q6600 at 2.40 GHz, 6 GB of memory, running Windows 7 Professional x86 64.
6 https://km.aifb.kit.edu/projects/btc-2009/.
7 http://www.ics.forth.gr/isl/provenance/updates.pdf.

https://km.aifb.kit.edu/projects/btc-2009/
http://www.ics.forth.gr/isl/provenance/updates.pdf

588 A. Avgoustaki et al.

Fig. 1. Experiment 1, 2

We conducted three experiments.
Experiment 1 measures the time
required to compute the results of an
INSERT update along with their prove-
nance information, whereas Experi-
ment 2 considers the time required
to compute only the result quadru-
ples. The difference in time of Exper-
iment 1 and Experiment 2 indi-
cates the overhead for computing the
provenance. Experiment 3 computes
the time needed for reconstructing a
compatible INSERT update based on a
quadruple’s provenance.

Our experiments confirm the theoretical complexity results above. In par-
ticular, the evaluation time depends on the number of quad patterns, and is
also affected by the number of quadruples in the dataset, the number of quad
patterns in the WHERE clause (i.e., update size), and, of course, the applied
SPARQL operators (join, union).

Fig. 2. Experiment 3

Figure 1 shows the computation
time for executing the INSERT update
with and without the provenance
computation. The graph shows that
the provenance computation time
increases linearly with the number of
quad patterns, and that it is, in all
cases, only a fraction of the time
required for evaluating the INSERT
update. Moreover, note that the
dataset’s size has a great impact on the
evaluation time of both experiments.

Figure 2 shows how the perfor-
mance of Algorithm 2 scales as the complexity of the INSERT update increases,
for the considered datasets. We note that the evaluation time increases linearly
with respect to the number of quad patterns in the WHERE clause, and that
performance is not seriously affected by the dataset size.

7 Related Work

Data provenance has been widely studied in several different contexts such as
databases, distributed systems, Semantic Web etc. In [16], Moreau explores the
different aspects of provenance in the Web. Likewise, Cheney et al. [8] provide
an extended survey that considers the provenance of query results in relational
databases regarding the most popular provenance models.

Research on data provenance can be categorized depending on whether it
deals with updates [3,4,10,13,20] or queries [4,8–12,15,20,21]; compared to

Provenance Management for Evolving RDF Datasets 589

querying, the problem of provenance management for updates is less well-
understood.

Another important classification is based on the underlying data model,
SQL [5,12,20] or RDF [9–11,13,15,21], which determines whether the model
deals with the relational or SPARQL algebra operators respectively. Despite its
importance, only a few works deal with the problem of update provenance, and
even fewer consider the problem in the context of SPARQL updates [13].

A third categorization stems from the expressive power of the employed
provenance model, e.g., how, where and why among others. Since our proposed
model is based on how and where provenance models, we discuss them thor-
oughly here. Where provenance is a popular provenance model [3,5,10,20] that
describes where a piece of data is copied from, i.e., which quadruples contributed
to produce a result quadruple in our context. How provenance describes not
only the quadruples used for producing an output, but also how these source
quadruples were combined (through operators) to derive it. In [12], provenance
semirings are used to record how provenance for the relational setting through
polynomials; whereas [11,15] showed how to apply provenance semirings for the
RDF/SPARQL setting.

An important work on update provenance for the relational setting is [4],
which focuses on the copy and modify operations. The proposed formalization
is based on “tagging” tuples using “colors” propagated along with their data
item during the computation of the output. The provenance of the output is the
provenance propagated from the input item(s). Our model follows this approach
to capture the provenance of a quadruple attribute, but uses identifiers instead
of colors, as well as a more expressive provenance model.

In the context of SPARQL update provenance, there are no works that con-
sider abstract provenance models. Instead, RDF named graphs are used to repre-
sent both past versions and changes to a graph [13]. This is achieved by modelling
the provenance of an RDF graph as a set of history records, including a special
provenance graph and additional auxiliary versioning named graphs.

Moreover, our work builds on [15]. This work presents how popular rela-
tional data provenance models such as (how, why) can be adapted to capture
the provenance of the results of positive SPARQL queries (i.e., without SPARQL
OPTIONAL clauses). More specifically, the authors investigate how provenance
models for the positive fragment of the relational algebra (like [12]) can be
adapted for unions of conjunctive SPARQL queries. The present paper extends
this model in order to address the extra challenges associated with provenance
management of SPARQL updates (as opposed to queries).

Another major line of work deals with the different ways in which provenance
can be serialized and modelled in an ontology in the form of Linked Data [14,
17,18]. In [14], Hartig proposes a provenance model that captures information
about Web-based data access as well as information about the creation of data.
Moreau et al. created the Open Provenance Model [17] that supports the digital
representation of provenance for any “thing”, no matter how it was produced.
In this context, PROV was released as a W3C reccomendation [18]. The goal of

590 A. Avgoustaki et al.

PROV is to enable the wide publication and interchange of provenance on the
Web and other information systems. PROV can exhibit provenance information
using widely available formats such as RDF and XML.

8 Conclusions

As the volume of data made available in the Web is continuously increasing,
the need for capturing and managing the provenance of such data becomes all
the more important. Our work addresses this problem for RDF data, by propos-
ing a novel, fine-grained and expressive provenance model to record the triple
and attribute-level provenance of RDF quadruples generated through SPARQL
INSERT updates.

Our work follows the approach of [10,15], where the use of abstract identifiers
and operators is proposed; we build upon the novel notion of quad pattern posi-
tions in order to provide a richer set of operators, that allow the identification of
the attributes of quad patterns that were involved in a join or “copy” operation.
Our model is richer than standard query provenance models since it captures
fine-grained provenance both at triple and attribute level.

Our model supports the feature of update reconstructability. Reconstructabil-
ity prescribes that the information stored in the provenance of a quadruple allows
the identification of an INSERT update that is almost identical (in the sense of
compatibility) to the original one that was used to create said quadruple. This
is a stronger form of how provenance. On the algorithmic side, we introduce two
algorithms that allow recording the provenance information, as well as interpret-
ing it to identify how the quadruple found its way in the dataset, through the
identification of a compatible INSERT update as described above. The overhead
imposed by these algorithms in the execution of an INSERT update is negligi-
ble. We implemented the provenance construction and the update reconstruction
algorithms on top of Virtuoso Database Engine and conducted a preliminary set
of experiments that verified the complexity of the proposed algorithms.

In the future, we plan to consider FILTER and non-monotonic SPARQL oper-
ators (OPTIONAL) as well as SPARQL functions. In addition, we will study the
SPARQL DELETE, CREATE and DROP operations since all SPARQL update oper-
ations can be written as a combination of INSERT, DELETE, CREATE and DROP

statements. Furthermore, we plan to take under consideration benchmarks sup-
porting update operations and will try to extend them in order to compute the
provenance information using our model.

We also intend to explore the use of PROV approach for representing our
model in the form of Linked Data. As a long term plan we aim at working
towards a provenance aware triple store in the spirit of TripleProv [21].

Provenance Management for Evolving RDF Datasets 591

References

1. Arenas, M., Gutierrez, C., Perez, J.: On the Semantics of SPARQL. In: De Virgilio,
R., Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Management: A
Model-Based Perspective, pp. 281–307. Springer, Heidelberg (2009)

2. Avgoustaki, A.: Provenance management for SPARQL updates. Master’s thesis,
University of Crete (2014). http://www.ics.forth.gr/isl/provenance/provenance.
pdf

3. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated data-
bases. In: Chaudhuri, S., Hristidis, V., Polyzotis, N. (eds.) ACM SIGMOD Inter-
national Conference on Management of Data, pp. 539–550 (2006)

4. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. In: Schwentick, T., Suciu, D. (eds.)
ICDT 2007. LNCS, vol. 4353, pp. 209–223. Springer, Heidelberg (2006)

5. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: a characterization of data
provenance. In: Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp.
316–330. Springer, Heidelberg (2000)

6. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. J. Web Semant. 3(4),
247–267 (2005)

7. Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named graphs, provenance and
trust. In: International Conference on World Wide Web, pp. 613–622 (2005)

8. Cheney, J., Chiticariu, L., Tan, W.-C.: Provenance in databases: why, how, and
where. Found. Trends Databases 1(4), 379–474 (2009)

9. Damásio, C.V., Analyti, A., Antoniou, G.: Provenance for SPARQL queries. In:
Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth,
M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.)
ISWC 2012, Part I. LNCS, vol. 7649, pp. 625–640. Springer, Heidelberg (2012)

10. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring
RDF triples to capture provenance. In: Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 196–212. Springer, Heidelberg (2009)

11. Geerts, F., Karvounarakis, G., Christophides, V., Fundulaki, I.: Algebraic struc-
tures for capturing the provenance of SPARQL queries. In: International Confer-
ence on Database Theory, pp. 153–164 (2013)

12. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Principles
Of Database Systems, pp. 31–40 (2007)

13. Halpin, H., Cheney, J.: Dynamic provenance for SPARQL updates. In: Mika, P.,
Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P.,
Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796,
pp. 425–440. Springer, Heidelberg (2014)

14. Hartig, O.: Provenance information in the web of data. In: Proceedings of the 2nd
Linked Data on the Web Workshop at the World Wide Web Conference (2009)

15. Karvounarakis, G., Fundulaki, I., Christophides, V.: Provenance for linked data.
In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, W.-C., Fourman, M. (eds.)
Buneman Festschrift 2013. LNCS, vol. 8000, pp. 366–381. Springer, Heidelberg
(2013)

16. Moreau, L.: The foundations for provenance on the web. Found. Trends Web Sci.
2(2–3), 99–241 (2010)

http://www.ics.forth.gr/isl/provenance/provenance.pdf
http://www.ics.forth.gr/isl/provenance/provenance.pdf

592 A. Avgoustaki et al.

17. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P.T., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E.G., den
Bussche, J.V.: The open provenance model core specification (v1.1). Future Gener.
Comput. Syst. 27(6), 743–756 (2011)

18. Moreau, L., Missier, P.: PROV-DM: the PROV data model. W3C Recommendation
(2013)

19. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006)

20. Vansummeren, S., Cheney, J.: Recording provenance for SQL queries and updates.
IEEE Data Eng. Bull. 30(4), 29–37 (2007)

21. Wylot, M., Cudré-Mauroux, P., Groth, P.T.: Tripleprov: efficient processing of
lineage queries in a native RDFstore. In: International Conference on World Wide
Web, pp. 455–466 (2014)

	Provenance Management for Evolving RDF Datasets
	1 Introduction
	2 Preliminaries
	3 Motivating Example
	4 Abstract Provenance Model
	5 Provenance Algorithms
	5.1 Provenance Construction Algorithm
	5.2 Update Reconstruction Algorithm
	5.3 Complexities

	6 Implementation and Evaluation
	6.1 Implementation and Storage (Relational Schema)
	6.2 Experiments

	7 Related Work
	8 Conclusions
	References

