Chapter 5

A Digression: Semigroups

We have seen that the Markov kernel $p_t(x, B)$ of a Lévy or Markov process induces a semigroup of linear operators $(P_t)_{t\geq0}$. In this chapter we collect a few tools from functional analysis for the study of operator semigroups. By $\mathcal{B}_b(\mathbb{R}^d)$ we denote the bounded Borel functions $f : \mathbb{R}^d \to \mathbb{R}$, and $\mathcal{C}_{\infty}(\mathbb{R}^d)$ are the continuous functions vanishing at infinity, i.e., $\lim_{|x|\to\infty} f(x) = 0$; when equipped with the uniform norm $\|\cdot\|_{\infty}$ both sets become Banach spaces.

Definition 5.1. A **Feller semigroup** is a family of linear operators

$$
P_t: \mathcal{B}_b(\mathbb{R}^d) \to \mathcal{B}_b(\mathbb{R}^d)
$$

satisfying the properties a)–g) of Definition 4.7: $(P_t)_{t\geq0}$ is a semigroup of conservative, sub-Markovian operators which enjoy the **Feller property** $P_t(\mathcal{C}_{\infty}(\mathbb{R}^d)) \subset$ $\mathcal{C}_{\infty}(\mathbb{R}^d)$ and which are strongly continuous on $\mathcal{C}_{\infty}(\mathbb{R}^d)$.

Notice that $(t, x) \mapsto P_t f(x)$ is for every $f \in \mathcal{C}_{\infty}(\mathbb{R}^d)$ continuous. This follows from $\sum_{y} P(y) = \sum_{y} P(y) \sum_{y} P(y)$

$$
|P_t f(x) - P_s f(y)| \le |P_t f(x) - P_t f(y)| + |P_t f(y) - P_s f(y)|
$$

$$
\le |P_t f(x) - P_t f(y)| + ||P_{|t-s|} f - f||_{\infty},
$$

the Feller property 4.7.f) and the strong continuity 4.7.g).

Lemma 5.2. *If* $(P_t)_{t\geq0}$ *is a Feller semigroup, then there exists a Markov transition* function $p_t(x, dy)$ (*Definition* 4.1) *such that* $P_t f(x) = \int f(y) p_t(x, dy)$ *.*

Proof. By the Riesz representation theorem we see that the operators P_t are of the form $P_t f(x) = \int f(y) p_t(x, dy)$ where $p_t(x, dy)$ is a Markov kernel. The tricky part is to show the joint measurability $(t, x) \mapsto p_t(x, B)$ and the Chapman–Kolmogorov identities (4.2).

For every compact set $K \subset \mathbb{R}^d$ the functions defined by

$$
f_n(x) := \frac{d(x, U_n^c)}{d(x, K) + d(x, U_n^c)}, \ \ d(x, A) := \inf_{a \in A} |x - a|, \ \ U_n := \{y \ : \ d(y, K) < 1/n\},
$$

© Springer International Publishing Switzerland 2016

Advanced Courses in Mathematics - CRM Barcelona, DOI 10.1007/978-3-319-34120-0_5

D. Khoshnevisan, R. Schilling, *From Lévy-Type Processes to Parabolic SPDEs*,

are in $\mathcal{C}_{\infty}(\mathbb{R}^d)$ and $f_n \downarrow \mathbb{1}_K$. By monotone convergence, $p_t(x, K) = \inf_{n \in \mathbb{N}} P_t f_n(x)$ which proves the joint measurability in (t, x) for all compact sets.

By the same, the semigroup property $P_{t+s}f_n = P_sP_tf_n$ entails the Chapman– Kolmogorov identities for compact sets: $p_{t+s}(x, K) = \int p_t(y, K) p_s(x, dy)$. Since

$$
\mathcal{D} := \left\{ B \in \mathcal{B}(\mathbb{R}^d) \middle| \begin{array}{l} (t, x) \mapsto p_t(x, B) \text{ is measurable } \& \\ p_{t+s}(x, B) = \int p_t(y, B) \, p_s(x, dy) \end{array} \right\}
$$

is a Dynkin system containing the compact sets, we have $\mathscr{D} = \mathscr{B}(\mathbb{R}^d)$.

To get an intuition for semigroups it is a good idea to view the semigroup property

$$
P_{t+s} = P_s \circ P_t \quad \text{and} \quad P_0 = \text{id}
$$

as an operator-valued Cauchy functional equation. If $t \mapsto P_t$ is – in a suitable sense – continuous, the unique solution will be of the form $P_t = e^{tA}$ for some **operator** A. This can be easily made rigorous for matrices $A, P_t \in \mathbb{R}^{n \times n}$ since the matrix exponential is well-defined by the uniformly convergent series

$$
P_t = \exp(tA) := \sum_{k=0}^{\infty} \frac{t^k A^k}{k!} \quad \text{and} \quad A = \frac{d}{dt} P_t \Big|_{t=0}
$$

with $A^0 := \text{id}$ and $A^k = A \circ A \circ \cdots \circ A$ (k times). With a bit more care, this can be made to work also in general settings.

Definition 5.3. Let $(P_t)_{t\geq0}$ be a Feller semigroup. The (infinitesimal) **generator** is a linear operator defined by

$$
\mathcal{D}(A) := \left\{ f \in \mathcal{C}_{\infty}(\mathbb{R}^d) \: \left| \: \exists g \in \mathcal{C}_{\infty}(\mathbb{R}^d) \: : \: \lim_{t \to 0} \left\| \frac{P_t f - f}{t} - g \right\|_{\infty} = 0 \right\} \tag{5.1}
$$

$$
Af := \lim_{t \to 0} \frac{P_t f - f}{t}, \quad f \in \mathcal{D}(A). \tag{5.2}
$$

The next lemma is the rigorous version for the symbolic notation ' $P_t = e^{tA}$ '. **Lemma 5.4.** *Let* $(P_t)_{t\geq0}$ *be a Feller semigroup with infinitesimal generator* $(A, \mathcal{D}(A))$ *. Then* $P_t(\mathcal{D}(A)) \subset \mathcal{D}(A)$ *and*

$$
\frac{d}{dt}P_t f = AP_t f = P_t A f \quad \text{for all} \quad f \in \mathcal{D}(A), \ t \geq 0. \tag{5.3}
$$

Moreover, $\int_0^t P_s f ds \in \mathcal{D}(A)$ *for any* $f \in \mathcal{C}_{\infty}(\mathbb{R}^d)$ *, and*

$$
P_t f - f = A \int_0^t P_s f ds, \quad f \in \mathcal{C}_\infty(\mathbb{R}^d), \ t > 0 \tag{5.4}
$$

$$
= \int_0^t P_s A f \, ds, \quad f \in \mathcal{D}(A), \ t > 0. \tag{5.5}
$$

Proof. Let $0 < \epsilon < t$ and $f \in \mathcal{D}(A)$. The semigroup and contraction properties give

$$
\left\| \frac{P_t f - P_{t-\epsilon} f}{\epsilon} - P_t A f \right\|_{\infty} \leq \left\| P_{t-\epsilon} \frac{P_{\epsilon} f - f}{\epsilon} - P_{t-\epsilon} A f \right\|_{\infty} + \left\| P_{t-\epsilon} A f - P_{t-\epsilon} P_{\epsilon} A f \right\|_{\infty}
$$

$$
\leq \left\| \frac{P_{\epsilon} f - f}{\epsilon} - A f \right\|_{\infty} + \left\| A f - P_{\epsilon} A f \right\|_{\infty} \xrightarrow[\epsilon \to 0]{} 0
$$

where we use the strong continuity in the last step. This shows $\frac{d^-}{dt}P_tf = AP_tf$ P_tAf ; a similar (but simpler) calculation proves this also for $\frac{d^+}{dt}P_tf$.

Let $f \in \mathcal{C}_{\infty}(\mathbb{R}^d)$ and $t, \epsilon > 0$. By Fubini's theorem and the representation of P_t with a Markov transition function (Lemma 5.2) we get

$$
P_{\epsilon} \int_0^t P_s f(x) \, ds = \int_0^t P_{\epsilon} P_s f(x) \, ds,
$$

and so,

$$
\frac{P_{\epsilon} - \mathrm{id}}{\epsilon} \int_0^t P_s f(x) \, ds = \frac{1}{\epsilon} \int_0^t \left(P_{s+\epsilon} f(x) - P_s f(x) \right) ds
$$
\n
$$
= \frac{1}{\epsilon} \int_t^{t+\epsilon} P_s f(x) \, ds - \frac{1}{\epsilon} \int_0^{\epsilon} P_s f(x) \, ds.
$$

Since $t \mapsto P_t f(x)$ is continuous, the fundamental theorem of calculus applies, and we get $\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{r}^{r+\epsilon} P_s f(x) \, ds = P_r f(x)$ for $r \ge 0$. This shows that $\int_0^t P_s f \, ds \in$ $\mathcal{D}(\tilde{A})$ as well as (5.4). If $\tilde{f} \in \mathcal{D}(A)$, then we deduce (5.5) from

$$
\int_0^t P_s A f(x) \, ds \stackrel{(5.3)}{=} \int_0^t \frac{d}{ds} P_s f(x) \, ds \ = \ P_t f(x) - f(x) \stackrel{(5.4)}{=} A \int_0^t P_s f(x) \, ds. \ \ \Box
$$

Remark 5.5 (Consequences of Lemma 5.4). Write $\mathcal{C}_{\infty} := \mathcal{C}_{\infty}(\mathbb{R}^d)$.

- a) (5.4) shows that $\mathcal{D}(A)$ is dense in \mathcal{C}_{∞} , since $\mathcal{D}(A) \ni t^{-1} \int_0^t P_s f ds \xrightarrow[t \to 0]{} f$ for any $f \in \mathcal{C}_{\infty}$.
- b) (5.5) shows that A is a **closed operator**, i.e.,

$$
f_n \in \mathcal{D}(A), (f_n, Af_n) \xrightarrow[n \to \infty]{\text{uniformly}} (f,g) \in \mathcal{C}_{\infty} \times \mathcal{C}_{\infty} \implies f \in \mathcal{D}(A) \& \ Af = g.
$$

c) (5.3) means that A determines $(P_t)_{t\geq0}$ uniquely.

Let us now consider the Laplace transform of $(P_t)_{t\geq0}$.

Definition 5.6. Let $(P_t)_{t\geq0}$ be a Feller semigroup. The **resolvent** is a linear operator on $\mathcal{B}_b(\mathbb{R}^d)$ given by

$$
R_{\lambda}f(x) := \int_0^{\infty} e^{-\lambda t} P_t f(x) dt, \quad f \in \mathcal{B}_b(\mathbb{R}^d), \ x \in \mathbb{R}^d, \ \lambda > 0. \tag{5.6}
$$

The following formal calculation can easily be made rigorous. Let $f \in \mathcal{D}(A)$ and $(\lambda - A) := (\lambda \operatorname{id} - A)$ for $\lambda > 0$. Then

$$
(\lambda - A)R_{\lambda}f = (\lambda - A) \int_0^{\infty} e^{-\lambda t} P_t f dt
$$

\n
$$
= \lambda \int_0^{\infty} e^{-\lambda t} (\lambda - A) P_t f dt
$$

\n
$$
= \lambda \int_0^{\infty} e^{-\lambda t} P_t f dt - \int_0^{\infty} e^{-\lambda t} \left(\frac{d}{dt} P_t f\right) dt
$$

\nparts $\lambda \int_0^{\infty} e^{-\lambda t} P_t f dt - \lambda \int_0^{\infty} e^{-\lambda t} P_t f dt - [e^{-\lambda t} P_t f]_{t=0}^{\infty} = f.$

A similar calculation for $R_\lambda(\lambda - A)$ gives

Theorem 5.7. *Let* $(A, \mathcal{D}(A))$ *and* $(R_{\lambda})_{\lambda>0}$ *be the generator and the resolvent of a Feller semigroup. Then*

$$
R_{\lambda} = (\lambda - A)^{-1} \quad \text{for all} \quad \lambda > 0.
$$

Since R_{λ} is the Laplace transform of $(P_t)_{t\geq0}$, the properties of $(R_{\lambda})_{\lambda>0}$ can be found from $(P_t)_{t\geq0}$ and vice versa. With some effort one can even invert the (operator-valued) Laplace transform which leads to the familiar expression for e^x :

$$
\left(\frac{n}{t}R_{\frac{n}{t}}\right)^n = \left(\text{id} - \frac{t}{n}A\right)^{-n} \xrightarrow[n \to \infty]{\text{strongly}} \text{e}^{tA} = P_t \tag{5.7}
$$

(the notation $e^{tA} = P_t$ is, for unbounded operators A, formal), see Pazy [42, Chapter 1.8].

Lemma 5.8. *Let* $(R_{\lambda})_{\lambda>0}$ *be the resolvent of a Feller¹ semigroup* $(P_t)_{t\geq0}$ *. Then*

$$
\frac{d^n}{d\lambda^n}R_\lambda = n!(-1)^n R_\lambda^{n+1} \quad n \in \mathbb{N}_0.
$$
\n(5.8)

Proof. Using a symmetry argument we see

$$
t^{n} = \int_{0}^{t} \dots \int_{0}^{t} dt_{1} \dots dt_{n} = n! \int_{0}^{t} \int_{0}^{t_{n}} \dots \int_{0}^{t_{2}} dt_{1} \dots dt_{n}.
$$

Let $f \in \mathcal{C}_{\infty}(\mathbb{R}^d)$ and $x \in \mathbb{R}^d$. Then

$$
(-1)^n \frac{d^n}{d\lambda^n} R_\lambda f(x) = \int_0^\infty (-1)^n \frac{d^n}{d\lambda^n} e^{-\lambda t} P_t f(x) dt = \int_0^\infty t^n e^{-\lambda t} P_t f(x) dt
$$

¹This lemma only needs that the operators P_t are strongly continuous and contractive, Definition 4.7.g), d).

$$
= n! \int_0^{\infty} \int_0^t \int_0^{t_n} \cdots \int_0^{t_2} e^{-\lambda t} P_t f(x) dt_1 \dots dt_n dt
$$

\n
$$
= n! \int_0^{\infty} \int_{t_n}^{\infty} \cdots \int_{t_1}^{\infty} e^{-\lambda t} P_t f(x) dt dt_1 \dots dt_n
$$

\n
$$
= n! \int_0^{\infty} \int_0^{\infty} \cdots \int_0^{\infty} e^{-\lambda (t + t_1 + \dots + t_n)} P_{t + t_1 + \dots + t_n} f(x) dt dt_1 \dots dt_n
$$

\n
$$
= n! R_{\lambda}^{n+1} f(x).
$$

The key result identifying the generators of Feller semigroups is the following theorem due to Hille, Yosida and Ray, a proof can be found in Pazy [42, Chapter 1.4] or Ethier & Kurtz [17, Chapter 4.2]; a probabilistic approach is due to Itô [25].

Theorem 5.9 (Hille–Yosida–Ray). *A linear operator* $(A, \mathcal{D}(A))$ *on* $\mathcal{C}_{\infty}(\mathbb{R}^d)$ *generates a Feller semigroup* $(P_t)_{t\geq0}$ *if, and only if,*

- a) $\mathcal{D}(A) \subset \mathcal{C}_{\infty}(\mathbb{R}^d)$ dense.
- b) A *is* **dissipative**, *i.e.*, $\|\lambda f Af\|_{\infty} \ge \lambda \|f\|_{\infty}$ for some (or all) $\lambda > 0$.
- c) $(\lambda A)(\mathcal{D}(A)) = \mathcal{C}_{\infty}(\mathbb{R}^d)$ *for some* (*or all*) $\lambda > 0$ *.*
- d) A *satisfies the* **positive maximum principle***:*

$$
f \in \mathcal{D}(A), \ f(x_0) = \sup_{x \in \mathbb{R}^d} f(x) \geq 0 \implies Af(x_0) \leq 0. \tag{PMP}
$$

This variant of the Hille–Yosida theorem is not the standard version from functional analysis since we are interested in positivity preserving (sub-Markov) semigroups. Let us briefly discuss the role of the positive maximum principle.

Remark 5.10. Let $(P_t)_{t\geq0}$ be a strongly continuous contraction semigroup on $\mathcal{C}_{\infty}(\mathbb{R}^d)$, i.e., $||P_t f||_{\infty} \le ||f||_{\infty}$ and $\lim_{t\to 0} ||P_t f - f||_{\infty} = 0$, cf. Definition 4.7.d),g).²

 $1°$ Sub-Markov \Rightarrow (PMP). Assume that $f \in \mathcal{D}(A)$ is such that $f(x_0) = \sup f \ge 0$. Then

$$
P_t f(x_0) - f(x_0) \stackrel{f \le f^+}{\le} P_t^+ f(x_0) - f^+(x_0) \le \|f^+\|_{\infty} - f^+(x_0) = 0.
$$

$$
\implies Af(x_0) = \lim_{t \to 0} \frac{P_t f(x_0) - f(x_0)}{t} \le 0.
$$

Thus, (PMP) holds.

 2° (PMP) \Rightarrow dissipativity. Assume that (PMP) holds and let $f \in \mathcal{D}(A)$. Since $f \in \mathcal{C}_{\infty}(\mathbb{R}^d)$, we may assume that $f(x_0) = |f(x_0)| = \sup |f|$ (otherwise $f \rightarrow -f$). Then

$$
\|\lambda f - Af\|_{\infty} \geq \lambda f(x_0) - \underbrace{Af(x_0)}_{\leq 0} \geq \lambda f(x_0) = \lambda \|f\|_{\infty}.
$$

²These properties are essential for the existence of a generator and the resolvent on $\mathcal{C}_{\infty}(\mathbb{R}^d)$.

- 3° (PMP) \Rightarrow sub-Markov. Since P_t is contractive, we have $P_t f(x) \leq \|P_t f\|_{\infty} \leq$ $||f||_{\infty} \leq 1$ for all $f \in \mathcal{C}_{\infty}(\mathbb{R}^d)$ such that $|f| \leq 1$. In order to see positivity, let $f \in \mathcal{C}_{\infty}(\mathbb{R}^d)$ be non-negative. We distinguish between two cases:
	- a) $R_{\lambda}f$ does not attain its infimum.] Since $R_{\lambda}f \in \mathcal{C}_{\infty}(\mathbb{R}^d)$ vanishes at infinity, we have necessarily $R_{\lambda} f \geq 0$.
	- b) $\exists x_0 : R_\lambda f(x_0) = \inf R_\lambda f$. Because of the (PMP) we find

$$
\lambda R_{\lambda} f(x_0) - f(x_0) = A R_{\lambda} f(x_0) \ge 0
$$

\n
$$
\implies \lambda R_{\lambda} f(x) \ge \inf \lambda R_{\lambda} f = \lambda R_{\lambda} f(x_0) \ge f(x_0) \ge 0.
$$

This proves that $f \ge 0 \implies \lambda R_\lambda f \ge 0$. From (5.8) we see that $\lambda \mapsto R_\lambda f(x)$ is completely monotone, hence it is the Laplace transform of a positive measure. Since $R_\lambda f(x)$ has the integral representation (5.6), we see that $P_t f(x) \geq 0$ (for all $t \geq 0$ as $t \mapsto P_t f$ is continuous).

Using the Riesz representation theorem (as in Lemma 5.2) we can extend P_t as a sub-Markov operator onto $\mathcal{B}_b(\mathbb{R}^d)$.

In order to determine the domain $\mathcal{D}(A)$ of the generator the following 'maximal dissipativity' result is handy.

Lemma 5.11 (Dynkin, Reuter)**.** *Assume that* (A, D(A)) *generates a Feller semigroup and that* $(\mathfrak{A}, \mathfrak{D}(\mathfrak{A}))$ *extends A, i.e.,* $\mathfrak{D}(A) \subset \mathfrak{D}(\mathfrak{A})$ *and* $\mathfrak{A}|_{\mathfrak{D}(A)} = A$ *. If*

 $u \in \mathcal{D}(\mathfrak{A}), u - \mathfrak{A}u = 0 \implies u = 0,$ (5.9)

then $(A, \mathcal{D}(A)) = (\mathfrak{A}, \mathcal{D}(\mathfrak{A})).$

Proof. Since A is a generator, $(id - A) : \mathcal{D}(A) \to \mathcal{C}_{\infty}(\mathbb{R}^d)$ is bijective. On the other hand, the relation (5.9) means that (id − \mathfrak{A}) is injective, but (id −A) cannot have a proper injective extension. a proper injective extension.

Theorem 5.12. Let $(P_t)_{t\geq0}$ be a Feller semigroup with generator $(A, \mathcal{D}(A))$. Then

$$
\mathcal{D}(A) = \left\{ f \in \mathcal{C}_{\infty}(\mathbb{R}^d) \middle| \exists g \in \mathcal{C}_{\infty}(\mathbb{R}^d) \ \forall x \ : \ \lim_{t \to 0} \frac{P_t f(x) - f(x)}{t} = g(x) \right\}.
$$
\n(5.10)

Proof. Denote by $\mathcal{D}(\mathfrak{A})$ the right-hand side of (5.10) and define

$$
\mathfrak{A}f(x) := \lim_{t \to 0} \frac{P_t f(x) - f(x)}{t} \quad \text{for all} \ \ f \in \mathcal{D}(\mathfrak{A}), \ x \in \mathbb{R}^d.
$$

Obviously, $(\mathfrak{A}, \mathfrak{D}(\mathfrak{A}))$ is a linear operator which extends $(A, \mathfrak{D}(A))$. Since (PMP) is, essentially, a pointwise assertion (see Remark 5.10, 1°), \mathfrak{A} inherits (PMP); in particular, $\mathfrak A$ is dissipative (see Remark 5.10, 2°):

$$
\|\mathfrak{A}f - \lambda f\|_{\infty} \geqslant \lambda \|f\|_{\infty}.
$$

This implies (5.9), and the claim follows from Lemma 5.11.