
Chapter 5

A Digression: Semigroups

We have seen that the Markov kernel pt(x,B) of a Lévy or Markov process induces
a semigroup of linear operators (Pt)t�0. In this chapter we collect a few tools from
functional analysis for the study of operator semigroups. By Bb(R

d) we denote the
bounded Borel functions f : Rd → R, and C∞(Rd) are the continuous functions
vanishing at infinity, i.e., lim|x|→∞ f(x) = 0; when equipped with the uniform
norm ‖ · ‖∞ both sets become Banach spaces.

Definition 5.1. A Feller semigroup is a family of linear operators

Pt : Bb(R
d) → Bb(R

d)

satisfying the properties a)–g) of Definition 4.7: (Pt)t�0 is a semigroup of conser-
vative, sub-Markovian operators which enjoy the Feller property Pt(C∞(Rd)) ⊂
C∞(Rd) and which are strongly continuous on C∞(Rd).

Notice that (t, x) �→ Ptf(x) is for every f ∈ C∞(Rd) continuous. This follows
from

|Ptf(x)− Psf(y)| � |Ptf(x)− Ptf(y)|+ |Ptf(y)− Psf(y)|
� |Ptf(x)− Ptf(y)|+ ‖P|t−s|f − f‖∞,

the Feller property 4.7.f) and the strong continuity 4.7.g).

Lemma 5.2. If (Pt)t�0 is a Feller semigroup, then there exists a Markov transition
function pt(x, dy) (Definition 4.1) such that Ptf(x) =

∫
f(y) pt(x, dy).

Proof. By the Riesz representation theorem we see that the operators Pt are of the
form Ptf(x) =

∫
f(y) pt(x, dy) where pt(x, dy) is a Markov kernel. The tricky part

is to show the joint measurability (t, x) �→ pt(x,B) and the Chapman–Kolmogorov
identities (4.2).

For every compact set K ⊂ Rd the functions defined by

fn(x) :=
d(x, U c

n)

d(x,K) + d(x, U c
n)

, d(x,A) := inf
a∈A

|x− a|, Un := {y : d(y,K) < 1/n},
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36 Chapter 5. A Digression: Semigroups

are in C∞(Rd) and fn ↓ 1K . By monotone convergence, pt(x,K) = infn∈N Ptfn(x)
which proves the joint measurability in (t, x) for all compact sets.

By the same, the semigroup property Pt+sfn = PsPtfn entails the Chapman–
Kolmogorov identities for compact sets: pt+s(x,K) =

∫
pt(y,K) ps(x, dy). Since

D :=

⎧⎨⎩B ∈ B(Rd)

∣∣∣∣∣∣
(t, x) �→ pt(x,B) is measurable &

pt+s(x,B) =

∫
pt(y,B) ps(x, dy)

⎫⎬⎭
is a Dynkin system containing the compact sets, we have D = B(Rd). �

To get an intuition for semigroups it is a good idea to view the semigroup
property

Pt+s = Ps ◦ Pt and P0 = id

as an operator-valued Cauchy functional equation. If t �→ Pt is – in a suitable sense
– continuous, the unique solution will be of the form Pt = etA for some operator
A. This can be easily made rigorous for matrices A,Pt ∈ Rn×n since the matrix
exponential is well-defined by the uniformly convergent series

Pt = exp(tA) :=

∞∑
k=0

tkAk

k!
and A =

d

dt
Pt

∣∣∣
t=0

with A0 := id and Ak = A ◦A ◦ · · · ◦A (k times). With a bit more care, this can
be made to work also in general settings.

Definition 5.3. Let (Pt)t�0 be a Feller semigroup. The (infinitesimal) generator is
a linear operator defined by

D(A) :=

{
f ∈ C∞(Rd)

∣∣∣∣ ∃g ∈ C∞(Rd) : lim
t→0

∥∥∥∥Ptf − f

t
− g

∥∥∥∥
∞

= 0

}
(5.1)

Af := lim
t→0

Ptf − f

t
, f ∈ D(A). (5.2)

The next lemma is the rigorous version for the symbolic notation ‘Pt = etA’.

Lemma 5.4. Let (Pt)t�0 be a Feller semigroup with infinitesimal generator
(A,D(A)). Then Pt(D(A)) ⊂ D(A) and

d

dt
Ptf = APtf = PtAf for all f ∈ D(A), t � 0. (5.3)

Moreover,
∫ t

0
Psf ds ∈ D(A) for any f ∈ C∞(Rd), and

Ptf − f = A

∫ t

0

Psf ds, f ∈ C∞(Rd), t > 0 (5.4)

=

∫ t

0

PsAf ds, f ∈ D(A), t > 0. (5.5)
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Proof. Let 0 < ε < t and f ∈ D(A). The semigroup and contraction properties
give∥∥∥∥Ptf−Pt−εf

ε
−PtAf

∥∥∥∥
∞
�
∥∥∥∥Pt−ε

Pεf−f

ε
−Pt−εAf

∥∥∥∥
∞
+
∥∥Pt−εAf−Pt−εPεAf

∥∥
∞

�
∥∥∥∥Pεf−f

ε
−Af

∥∥∥∥
∞
+
∥∥Af−PεAf

∥∥
∞−−−→

ε→0
0

where we use the strong continuity in the last step. This shows d−
dt Ptf = APtf =

PtAf ; a similar (but simpler) calculation proves this also for d+

dt Ptf .

Let f ∈ C∞(Rd) and t, ε > 0. By Fubini’s theorem and the representation of
Pt with a Markov transition function (Lemma 5.2) we get

Pε

∫ t

0

Psf(x) ds =

∫ t

0

PεPsf(x) ds,

and so,

Pε − id

ε

∫ t

0

Psf(x) ds =
1

ε

∫ t

0

(
Ps+εf(x)− Psf(x)

)
ds

=
1

ε

∫ t+ε

t

Psf(x) ds− 1

ε

∫ ε

0

Psf(x) ds.

Since t �→ Ptf(x) is continuous, the fundamental theorem of calculus applies, and

we get limε→0
1
ε

∫ r+ε

r Psf(x) ds = Prf(x) for r � 0. This shows that
∫ t

0 Psf ds ∈
D(A) as well as (5.4). If f ∈ D(A), then we deduce (5.5) from∫ t

0

PsAf(x) ds
(5.3)
=

∫ t

0

d

ds
Psf(x) ds = Ptf(x)− f(x)

(5.4)
= A

∫ t

0

Psf(x) ds. �

Remark 5.5 (Consequences of Lemma 5.4). Write C∞ := C∞(Rd).

a) (5.4) shows that D(A) is dense in C∞, since D(A) � t−1
∫ t

0
Psf ds −−−→

t→0
f for

any f ∈ C∞.

b) (5.5) shows that A is a closed operator, i.e.,

fn∈D(A), (fn,Afn)
uniformly−−−−−−→
n→∞ (f,g)∈C∞×C∞ =⇒ f ∈D(A) &Af=g.

c) (5.3) means that A determines (Pt)t�0 uniquely.

Let us now consider the Laplace transform of (Pt)t�0.

Definition 5.6. Let (Pt)t�0 be a Feller semigroup. The resolvent is a linear operator
on Bb(R

d) given by

Rλf(x) :=

∫ ∞

0

e−λtPtf(x) dt, f ∈ Bb(R
d), x ∈ Rd, λ > 0. (5.6)
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The following formal calculation can easily be made rigorous. Let f ∈ D(A)
and (λ−A) := (λ id−A) for λ > 0. Then

(λ−A)Rλf = (λ−A)

∫ ∞

0

e−λtPtf dt

(5.4),(5.5)
=

∫ ∞

0

e−λt(λ−A)Ptf dt

= λ

∫ ∞

0

e−λtPtf dt−
∫ ∞

0

e−λt

(
d

dt
Ptf

)
dt

parts
= λ

∫ ∞

0

e−λtPtf dt− λ

∫ ∞

0

e−λtPtf dt− [e−λtPtf ]
∞
t=0 = f.

A similar calculation for Rλ(λ−A) gives

Theorem 5.7. Let (A,D(A)) and (Rλ)λ>0 be the generator and the resolvent of a
Feller semigroup. Then

Rλ = (λ−A)−1 for all λ > 0.

Since Rλ is the Laplace transform of (Pt)t�0, the properties of (Rλ)λ>0 can
be found from (Pt)t�0 and vice versa. With some effort one can even invert the
(operator-valued) Laplace transform which leads to the familiar expression for ex:

(n
t
Rn

t

)n

=

(
id− t

n
A

)−n
strongly−−−−−−→
n→∞ etA = Pt (5.7)

(the notation etA = Pt is, for unbounded operators A, formal), see Pazy [42,
Chapter 1.8].

Lemma 5.8. Let (Rλ)λ>0 be the resolvent of a Feller1 semigroup (Pt)t�0. Then

dn

dλn
Rλ = n!(−1)nRn+1

λ n ∈ N0. (5.8)

Proof. Using a symmetry argument we see

tn =

∫ t

0

. . .

∫ t

0

dt1 . . . dtn = n!

∫ t

0

∫ tn

0

. . .

∫ t2

0

dt1 . . . dtn.

Let f ∈ C∞(Rd) and x ∈ Rd. Then

(−1)n
dn

dλn
Rλf(x) =

∫ ∞

0

(−1)n
dn

dλn
e−λtPtf(x) dt =

∫ ∞

0

tne−λtPtf(x) dt

1This lemma only needs that the operators Pt are strongly continuous and contractive,
Definition 4.7.g), d).
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= n!

∫ ∞

0

∫ t

0

∫ tn

0

· · ·
∫ t2

0

e−λtPtf(x) dt1 . . . dtn dt

= n!

∫ ∞

0

∫ ∞

tn

· · ·
∫ ∞

t1

e−λtPtf(x) dt dt1 . . . dtn

= n!

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

e−λ(t+t1+···+tn)Pt+t1+···+tnf(x) dt dt1 . . . dtn

= n!Rn+1
λ f(x). �

The key result identifying the generators of Feller semigroups is the following
theorem due to Hille, Yosida and Ray, a proof can be found in Pazy [42, Chapter
1.4] or Ethier & Kurtz [17, Chapter 4.2]; a probabilistic approach is due to Itô [25].

Theorem 5.9 (Hille–Yosida–Ray). A linear operator (A,D(A)) on C∞(Rd) gener-
ates a Feller semigroup (Pt)t�0 if, and only if,

a) D(A) ⊂ C∞(Rd) dense.

b) A is dissipative, i.e., ‖λf −Af‖∞ � λ‖f‖∞ for some (or all) λ > 0.

c) (λ −A)(D(A)) = C∞(Rd) for some (or all) λ > 0.

d) A satisfies the positive maximum principle:

f ∈ D(A), f(x0) = sup
x∈Rd

f(x) � 0 =⇒ Af(x0) � 0. (PMP)

This variant of the Hille–Yosida theorem is not the standard version from
functional analysis since we are interested in positivity preserving (sub-Markov)
semigroups. Let us briefly discuss the role of the positive maximum principle.

Remark 5.10. Let (Pt)t�0 be a strongly continuous contraction semigroup on
C∞(Rd), i.e., ‖Ptf‖∞ � ‖f‖∞ and limt→0 ‖Ptf−f‖∞ = 0, cf. Definition 4.7.d),g).2

1◦ Sub-Markov ⇒ (PMP). Assume that f ∈ D(A) is such that f(x0) = sup f � 0.
Then

Ptf(x0)− f(x0)
f�f+

� P+
t f(x0)− f+(x0) � ‖f+‖∞ − f+(x0) = 0.

=⇒ Af(x0) = lim
t→0

Ptf(x0)− f(x0)

t
� 0.

Thus, (PMP) holds.

2◦ (PMP) ⇒ dissipativity. Assume that (PMP) holds and let f ∈ D(A). Since
f ∈ C∞(Rd), we may assume that f(x0) = |f(x0)| = sup |f | (otherwise
f � −f). Then

‖λf −Af‖∞ � λf(x0)−Af(x0)︸ ︷︷ ︸
�0

� λf(x0) = λ‖f‖∞.

2These properties are essential for the existence of a generator and the resolvent on C∞(Rd).
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3◦ (PMP) ⇒ sub-Markov. Since Pt is contractive, we have Ptf(x) � ‖Ptf‖∞ �
‖f‖∞ � 1 for all f ∈ C∞(Rd) such that |f | � 1. In order to see positivity,
let f ∈ C∞(Rd) be non-negative. We distinguish between two cases:

a) Rλf does not attain its infimum.] Since Rλf ∈ C∞(Rd) vanishes at infin-
ity, we have necessarily Rλf � 0.

b) ∃x0 : Rλf(x0) = inf Rλf . Because of the (PMP) we find

λRλf(x0)− f(x0) = ARλf(x0) � 0

=⇒ λRλf(x) � inf λRλf = λRλf(x0) � f(x0) � 0.

This proves that f � 0 =⇒ λRλf � 0. From (5.8) we see that λ �→ Rλf(x) is
completely monotone, hence it is the Laplace transform of a positive measure.
Since Rλf(x) has the integral representation (5.6), we see that Ptf(x) � 0
(for all t � 0 as t �→ Ptf is continuous).

Using the Riesz representation theorem (as in Lemma 5.2) we can extend
Pt as a sub-Markov operator onto Bb(R

d).

In order to determine the domain D(A) of the generator the following ‘max-
imal dissipativity’ result is handy.

Lemma 5.11 (Dynkin, Reuter). Assume that (A,D(A)) generates a Feller semi-
group and that (A,D(A)) extends A, i.e., D(A) ⊂ D(A) and A|D(A) = A. If

u ∈ D(A), u− Au = 0 =⇒ u = 0, (5.9)

then (A,D(A)) = (A,D(A)).

Proof. Since A is a generator, (id−A) : D(A) → C∞(Rd) is bijective. On the other
hand, the relation (5.9) means that (id−A) is injective, but (id−A) cannot have
a proper injective extension. �
Theorem 5.12. Let (Pt)t�0 be a Feller semigroup with generator (A,D(A)). Then

D(A) =

{
f ∈ C∞(Rd)

∣∣∣∣ ∃g ∈ C∞(Rd) ∀x : lim
t→0

Ptf(x)− f(x)

t
= g(x)

}
.

(5.10)

Proof. Denote by D(A) the right-hand side of (5.10) and define

Af(x) := lim
t→0

Ptf(x)− f(x)

t
for all f ∈ D(A), x ∈ Rd.

Obviously, (A,D(A)) is a linear operator which extends (A,D(A)). Since (PMP)
is, essentially, a pointwise assertion (see Remark 5.10, 1◦), A inherits (PMP); in
particular, A is dissipative (see Remark 5.10, 2◦):

‖Af − λf‖∞ � λ‖f‖∞.

This implies (5.9), and the claim follows from Lemma 5.11. �
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