Chapter 5

A Digression: Semigroups

We have seen that the Markov kernel p;(x, B) of a Lévy or Markov process induces
a semigroup of linear operators (P;);>o. In this chapter we collect a few tools from
functional analysis for the study of operator semigroups. By B;(R?) we denote the
bounded Borel functions f : R? — R, and €. (R?) are the continuous functions
vanishing at infinity, i.e., lim ;o f(z) = 0; when equipped with the uniform
norm | - ||so both sets become Banach spaces.

Definition 5.1. A Feller semigroup is a family of linear operators
P, By(RY) — By (R?)

satisfying the properties a)—g) of Definition 4.7: (P;):>0 is a semigroup of conser-
vative, sub-Markovian operators which enjoy the Feller property P;(C..(R%)) C
Coo(R?) and which are strongly continuous on C (RY).

Notice that (t,x) — Pf(z) is for every f € Coo(R?) continuous. This follows

from
|Pef(z) = Psf(y)l < [Puf(z) — Pof(y)l + [Pef(y) — Psf(y)l
< |Pf(z) - Ptf( N+ NP f = Flloos

the Feller property 4.7.f) and the strong continuity 4.7.g).

Lemma 5.2. If (P;);>0 is a Feller semigroup, then there exists a Markov transition
function p(x, dy) (Definition 4.1) such that P,f(x) = [ f(y) pi(z, dy).

Proof. By the Riesz representation theorem we see that the operators P; are of the
form P, f(z) = [ f(y) pte(x, dy) where p;(z,dy) is a Markov kernel. The tricky part
is to show the joint measurability (¢, ) — pi(z, B) and the Chapman—Kolmogorov
identities (4.2).

For every compact set K C R? the functions defined by

d(z,Uf)

P = g ) s dn, ey A0 A) = e —al U= fy < dly, K) <1/m,
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36 Chapter 5. A Digression: Semigroups

are in Coo (R?) and f,, | 1x. By monotone convergence, p;(z, K) = inf,en P; fn ()
which proves the joint measurability in (¢,z) for all compact sets.

By the same, the semigroup property P15 f, = PsP; f, entails the Chapman—
Kolmogorov identities for compact sets: piys(z, K) = [ pi(y, K) ps(x, dy). Since

(t,z) — pi(z, B) is measurable &

_ d
2 :=1{ B € BR%) prss(t, B) = /pt(y,B)ps(%dy)

is a Dynkin system containing the compact sets, we have 2 = Z(R%). O

To get an intuition for semigroups it is a good idea to view the semigroup
property
Pt+5:PSOPt and PU:ld

as an operator-valued Cauchy functional equation. If £ — P; is — in a suitable sense

— continuous, the unique solution will be of the form P, = ¢! for some operator

A. This can be easily made rigorous for matrices A, P, € R™*"™ since the matrix
exponential is well-defined by the uniformly convergent series

o0 Lk Ak

t"A d

P, = exp(tA) := and A= _ P
1 = exp(tA) 2 dt” 'l

with A% :=id and A* = Ao Ao---0 A (k times). With a bit more care, this can
be made to work also in general settings.

=0

Definition 5.3. Let (P;):>0 be a Feller semigroup. The (infinitesimal) generator is
a linear operator defined by
Pf—
W= gH = 0} (5.1)

D(A) = {fe@oo(IRd) ‘ Jg € Coo(RY) : lim .

t—0
Pf—f
t

Af :=lim

t—0

, feDA). (5.2)
The next lemma is the rigorous version for the symbolic notation ‘P, = et4’.

Lemma 5.4. Let (Py)i>0 be a Feller semigroup with infinitesimal generator
(A,D(A)). Then P(D(A)) C D(A) and

Moreover, fot P,fds € D(A) for any f € Coo(RY), and
t
Ptf—f:A/ P.fds, f€Cx(RY), t>0 (5.4)
0

= /t P,Afds, feD(A), t>0. (5.5)
0
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Proof. Let 0 < € < t and f € D(A). The semigroup and contraction properties
give

‘ Ptf—EPt—ef _PtAfH g‘ Pt_GPefe—f _Pt_eAfH +|| P Af - P PAS|
P ot i

where we use the strong continuity in the last step. This shows 021; P f=APf =

P,Af; a similar (but simpler) calculation proves this also for ‘g P f.

Let f € Coo(RY) and t,e > 0. By Fubini’s theorem and the representation of
P, with a Markov transition function (Lemma 5.2) we get

P. /OtPsf(x) ds = /Ot P.Psf(x)ds,

and so,
P.—id
€

[ Ps@ids =" [ (Puset(a) - Psta)) ds
0 0

t+e €
= [ @i [ Pa@as

€

Since t — P, f(x) is continuous, the fundamental theorem of calculus applies, and
we get lime_,o | f:+€ P, f(x)ds = P,f(x) for r > 0. This shows that fot P,fds €
D(A) as well as (5.4). If f € D(A), then we deduce (5.5) from

¢ ot ¢
/ PAf(z)ds 2 / ; Pf(x)ds = Pif(z)— f(z) % A/ Pof(x)ds. O
0 o as 0
Remark 5.5 (Consequences of Lemma 5.4). Write Co := Coo (RY).
a) (5.4) shows that D(A) is dense in Cu, since D(A) > ¢t~ 1 fot Psfds . f for
—

any f € Cu.
b) (5.5) shows that A is a closed operator, i.e.,

Fa€D(A), (fu, Afy) MY (£ )€ Coo X oo => fED(A) & Af =g.

n—o0
¢) (5.3) means that A determines (P;)¢>0 uniquely.
Let us now consider the Laplace transform of (P;)¢>o.
Definition 5.6. Let (P;):>0 be a Feller semigroup. The resolvent is a linear operator

on By(R%) given by

Ryf(z) == /OOO e MPf(z)dt, fe€By(RY), xR A>0. (5.6)
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The following formal calculation can easily be made rigorous. Let f € D(A)
and (A — A) := (Aid —A) for A > 0. Then

A= A)R\f = ()\—A)/Ooe’\tPtfdt
0

L
0

= )\/ e_”Ptfdt—/ e_’\t(dPtf>dt

parts {/ fﬂafﬁ_A/'e”%wdw%€”Hﬂio=f
0 0

A similar calculation for Ry(A — A) gives
Theorem 5.7. Let (A, D(A)) and (Rx)xso be the generator and the resolvent of a
Feller semigroup. Then

Ry=\N—=A)"Y forall A>0.

Since R is the Laplace transform of (P;)¢>0, the properties of (Rx)x>o can
be found from (P;);>0 and vice versa. With some effort one can even invert the
(operator-valued) Laplace transform which leads to the familiar expression for e*:

n —n
"Ra) = (ia-ta)  Stonely, 4 p (5.7)
t t n n—o00

tA

(the notation e'* = P, is, for unbounded operators A, formal), see Pazy [42,

Chapter 1.8].

Lemma 5.8. Let (Ry)x>o be the resolvent of a Fellert semigroup (P;)i>0. Then

d’n

A= n!(=1)"RYT ne No. (5.8)

Proof. Using a symmetry argument we see

t t t tn ta
ﬂ:/HJJHHM:m//.”/dm”m.
0 0 0 JO 0

Let f € Coo(RY) and = € RY. Then

(1" g @) = [0 L e MR b= [ et

IThis lemma only needs that the operators P; are strongly continuous and contractive,
Definition 4.7.g), d).
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oo pt tn ta

:n!/ /// e MP,f(x)dty ... dt,dt
0 0 JO 0

:n!/ // e MP,f(x)dtdt, ...dt

=nl / / / —)\(t+t1+ +t")Pt+t1+ +tnf(l') dt dtl A dtn
_ ’I’L' Rn-{—l .

The key result identifying the generators of Feller semigroups is the following
theorem due to Hille, Yosida and Ray, a proof can be found in Pazy [42, Chapter
1.4] or Ethier & Kurtz [17, Chapter 4.2]; a probabilistic approach is due to It6 [25].

Theorem 5.9 (Hille-Yosida-Ray). A linear operator (A, D(A)) on Co(R?) gener-
ates a Feller semigroup (P;)i>o if, and only if,

a) D(A) C Coo(RY) dense.

b) A is dissipative, i. e, INf— Aflloo = Allflloc for some (or all) A > 0.
c) (A= A)(D(A)) = Coo(RY) for some (or all) X > 0.

d)

A satisfies the positive maximum principle:

f€D(A), f(wo) = sup f(z) 20 = Af(zo) <O. (PMP)

z€R4

This variant of the Hille-Yosida theorem is not the standard version from
functional analysis since we are interested in positivity preserving (sub-Markov)
semigroups. Let us briefly discuss the role of the positive maximum principle.

Remark 5.10. Let (P;);>0 be a strongly continuous contraction semigroup on
Coo(RY), i, [|Pif[loo < |1 f]loo and limy g || Prf — f|loo = 0, cf. Definition 4.7.d),g).2

1° Sub-Markov = (PMP). Assume that f € D(A) is such that f(xo) =sup f >0
Then

F<Ft

Pif(zo) — f(zo) < Pf(zo) — fT(z0) < || |loo — f(x0) = 0.
= o) =y T <o
Thus, (PMP) holds.

2° (PMP) = dissipativity. Assume that (PMP) holds and let f € D(A). Since
f € Cou(RY), we may assume that f(z¢) = |f(wo)| = sup|f| (otherwise

f ~ —f) Then
IAf = Aflloe = Af(x0) = Af(w0) 2 Af(20) = Allflloo-
<0

2These properties are essential for the existence of a generator and the resolvent on Coo(R%).
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3° (PMP) = sub-Markov. Since P; is contractive, we have P, f(x) < ||Pif]loo <
[fllee < 1forall f € Co(R?) such that |f| < 1. In order to see positivity,
let f € Coo(RY) be non-negative. We distinguish between two cases:

a) Ry f does not attain its infimum.] Since Ry f € Co (R?) vanishes at infin-
ity, we have necessarily Ry f > 0.

b) Jxo : Rxf(xo) = inf Ry f. Because of the (PMP) we find

AR f(wo) = f(wo) = ARxf(x0) 20
This proves that f > 0 = AR\ f > 0. From (5.8) we see that A — Ry f(z) is
completely monotone, hence it is the Laplace transform of a positive measure.

Since Ry f(x) has the integral representation (5.6), we see that P, f(x) > 0
(for all t > 0 as t — P.f is continuous).

Using the Riesz representation theorem (as in Lemma 5.2) we can extend
P; as a sub-Markov operator onto B, (R%).
In order to determine the domain D(A) of the generator the following ‘max-
imal dissipativity’ result is handy.
Lemma 5.11 (Dynkin, Reuter). Assume that (A, D(A)) generates a Feller semi-
group and that (A, D(A)) extends A, i.e., D(A) C D(A) and A|pay = A. If
ue D), u—~Au=0 = u=0, (5.9)
then (A, D(A)) = (A, D(A)).

Proof. Since A is a generator, (id —A) : D(A) — C(RY) is bijective. On the other
hand, the relation (5.9) means that (id —2() is injective, but (id —A) cannot have
a proper injective extension. ([

Theorem 5.12. Let (P,);>0 be a Feller semigroup with generator (A, D(A)). Then

D(A) = {f € Coc(RY) ‘ 39 € Coo(RY) Vz : lim Pif(z) = f=) _ ()

t—0 t

Proof. Denote by D(2) the right-hand side of (5.10) and define
o P @) — £(@)

for all f e D), z € R
t—0 t

Af(z) =

Obviously, (2, D(21)) is a linear operator which extends (A, D(A)). Since (PMP)
is, essentially, a pointwise assertion (see Remark 5.10, 1°), 2 inherits (PMP); in
particular, 2( is dissipative (see Remark 5.10, 2°):

[20f = Aflloe = Al flloo-
This implies (5.9), and the claim follows from Lemma 5.11. O



	Chapter 5: A Digression: Semigroups



