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Part I

An Introduction to Lévy
and Feller Processes

By René L. Schilling



Preface

These lecture notes are an extended version of my lectures on Lévy and Lévy-type
processes given at the Second Barcelona Summer School on Stochastic Analysis
organized by the Centre de Recerca Matemàtica (CRM). The lectures are aimed
at advanced graduate and PhD students. In order to read these notes, one should
have sound knowledge of measure theoretic probability theory and some back-
ground in stochastic processes, as it is covered in my books Measures, Integals
and Martingales [54] and Brownian Motion [56].

My purpose in these lectures is to give an introduction to Lévy processes,
and to show how one can extend this approach to space inhomogeneous processes
which behave locally like Lévy processes. After a brief overview (Chapter 1) I in-
troduce Lévy processes, explain how to characterize them (Chapter 2) and discuss
the quintessential examples of Lévy processes (Chapter 3). The Markov (loss of
memory) property of Lévy processes is studied in Chapter 4. A short analytic
interlude (Chapter 5) gives an introduction to operator semigroups, resolvents
and their generators from a probabilistic perspective. Chapter 6 brings us back to
generators of Lévy processes which are identified as pseudo-differential operators
whose symbol is the characteristic exponent of the Lévy process. As a by-product
we obtain the Lévy–Khintchine formula.

Continuing this line, we arrive at the first construction of Lévy processes in
Chapter 7. Chapter 8 is devoted to two very special Lévy processes: (compound)
Poisson processes and Brownian motion. We give elementary constructions of both
processes and show how and why they are special Lévy processes, indeed. This
is also the basis for the next chapter (Chapter 9) where we construct a random
measure from the jumps of a Lévy process. This can be used to provide a further
construction of Lévy processes, culminating in the famous Lévy–Itô decomposition
and yet another proof of the Lévy–Khintchine formula.

A second interlude (Chapter 10) embeds these random measures into the
larger theory of random orthogonal measures. We show how we can use random
orthogonal measures to develop an extension of Itô’s theory of stochastic integrals
for square-integrable (not necessarily continuous) martingales, but we restrict our-
selves to the bare bones, i.e., the L2-theory. In Chapter 11 we introduce Feller
processes as the proper spatially inhomogeneous brethren of Lévy processes, and
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4 Preface

we show how our proof of the Lévy–Khintchine formula carries over to this set-
ting. We will see, in particular, that Feller processes have a symbol which is the
state-space-dependent analogue of the characteristic exponent of a Lévy process.
The symbol describes the process and its generator. A probabilistic way to cal-
culate the symbol and some first consequences (in particular the semimartingale
decomposition of Feller processes) is discussed in Chapter 12; we also show that
the symbol contains information on global properties of the process, such as con-
servativeness. In the final Chapter 13, we summarize (mostly without proofs) how
other path properties of a Feller process can be obtained via the symbol. In order
to make these notes self-contained, we collect in the appendix some material which
is not always included in standard graduate probability courses.

It is now about time to thank many individuals who helped to bring this
enterprise on the way. I am grateful to the scientific board and the organizing
committee for the kind invitation to deliver these lectures at the Centre de Recerca
Matemàtica in Barcelona. The CRM is a wonderful place to teach and to do
research, and I am very happy to acknowledge their support and hospitality. I
would like to thank the students who participated in the CRM course as well
as all students and readers who were exposed to earlier (temporally & spatially
inhomogeneous. . . ) versions of my lectures; without your input these notes would
look different!

I am greatly indebted to Ms. Franziska Kühn for her interest in this topic; her
valuable comments pinpointed many mistakes and helped to make the presentation
much clearer.

And, last and most, I thank my wife for her love, support and forbearance
while these notes were being prepared.

Dresden, September 2015 René L. Schilling



Symbols and Notation

This index is intended to aid cross-referencing, so notation that is specific to a single
chapter is generally not listed. Some symbols are used locally, without ambiguity, in
senses other than those given below; numbers following an entry are page numbers.

Unless otherwise stated, functions are real-valued and binary operations between
functions such as f ± g, f · g, f ∧ g, f ∨ g, comparisons f � g, f < g or limiting relations
fn

n→∞−−−−→ f , limn fn, lim infn fn, lim supn fn, supn fn or infn fn are understood pointwise.

General notation: analysis

positive always in the sense � 0

negative always in the sense � 0

N 1, 2, 3, . . .

inf ∅ inf ∅ = +∞
a ∨ b maximum of a and b

a ∧ b minimum of a and b

�x� largest integer n � x

|x| norm in Rd:
|x|2 = x2

1 + · · ·+ x2
d

x · y scalar product in Rd:∑d
j=1 xjyj

1A 1A(x) =

{
1, x ∈ A

0, x /∈ A

δx point mass at x

D domain

Δ Laplace operator

∂j partial derivative ∂
∂xj

∇, ∇x gradient
(

∂
∂x1

, . . . , ∂
∂xd

)�
Ff, f̂ Fourier transform

(2π)−d
∫
e− i x·ξf(x) dx

F−1f, qf inverse Fourier transform

∫
ei x·ξf(x) dx

eξ(x) e− i x·ξ

General notation: probability

∼ ‘is distributed as’

⊥⊥ ‘is stochastically
independent’

a.s. almost surely (w. r. t. P)

iid independent and identically
distributed

N,Exp,Poi normal, exponential, Poisson
distribution

P,E probability, expectation

V,Cov variance, covariance

(L0)–(L3) definition of a Lévy process,
7

(L2′) 13

Sets and σ-algebras

Ac complement of the set A

A closure of the set A

A ∪· B disjoint union, i.e., A∪B for
disjoint sets A ∩B = ∅

Br(x) open ball,
centre x, radius r

5



6 Symbols and Notation

supp f support, {f �= 0}
B(E) Borel sets of E

FX
t canonical filtration

σ(Xs : s � t)

F∞ σ
(⋃

t�0 Ft

)
Fτ 88

Fτ+ 32

P predictable σ-algebra, 119

Stochastic processes

Px,Ex law and mean of a Markov
process starting at x, 28

Xt− left limit lims↑t Xs

ΔXt jump at time t: Xt −Xt−

σ, τ stopping times:
{σ � t} ∈ Ft, t � 0

τx
r , τr inf{t > 0 : |Xt −X0| � r},

first exit time from the open
ball Br(x) centered at
x = X0

càdlàg right continuous on [0,∞)
with finite left limits on
(0,∞)

Spaces of functions

B(E) Borel functions on E

Bb(E) – – , bounded

C(E) continuous functions on E

Cb(E) – – , bounded

C∞(E) – – , lim
|x|→∞

f(x) = 0

Cc(E) – – , compact support

Cn(E) n times continuously diff’ble
functions on E

Cn
b (E) – – , bounded (with

all derivatives)

Cn
∞(E) – – , 0 at infinity (with

all derivatives)

Cn
c (E) – – , compact support

Lp(E,μ), Lp(μ), Lp(E) Lp space w. r. t.
the measure space (E,A , μ)

S(Rd) rapidly decreasing smooth
functions on Rd, 41



Chapter 1

Orientation

Stochastic processes with stationary and independent increments are classical ex-
amples of Markov processes. Their importance both in theory and for applications
justifies to study these processes and their history.

The origins of processes with independent increments reach back to the late
1920s and they are closely connected with the notion of infinite divisibility and the
genesis of the Lévy–Khintchine formula. Around this time, the limiting behaviour
of sums of independent random variables

X0 := 0 and Xn := ξ1 + ξ2 + · · ·+ ξn, n ∈ N,

was well understood through the contributions of Borel, Markov, Cantelli, Linde-
berg, Feller, de Finetti, Khintchine, Kolmogorov and, of course, Lévy; two new
developments emerged, on the one hand the study of dependent random variables
and, on the other, the study of continuous-time analogues of sums of indepen-
dent random variables. In order to pass from n ∈ N to a continuous parameter
t ∈ [0,∞) we need to replace the steps ξk by increments Xt − Xs. It is not hard
to see that Xt, t ∈ N, with iid (independent and identically distributed) steps ξk
enjoys the following properties:

X0 = 0 a.s. (L0)

stationary increments Xt − Xs ∼ Xt−s − X0 ∀s � t (L1)

independent increments Xt − Xs ⊥⊥σ(Xr, r � s) ∀s � t (L2)

where ‘∼’ stands for ‘same distribution’ and ‘⊥⊥’ for stochastic independence. In
the non-discrete setting we will also require a mild regularity condition

continuity in probability lim
t→0

P(|Xt − X0| > ε) = 0 ∀ε > 0 (L3)

which rules out fixed discontinuities of the path t �→ Xt. Under (L0)–(L2) one has
that

Xt =

n∑
k=1

ξk,n(t) and ξk,n(t) = (X kt
n

− X (k−1)t
n

) are iid (1.1)

7© Springer International Publishing Switzerland 2016  
D. Khoshnevisan, R. Schilling, From Lévy-Type Processes to Parabolic SPDEs,  
Advanced Courses in Mathematics - CRM Barcelona, DOI 10.1007/978-3-319-34120-0_1 



8 Chapter 1. Orientation

for every n ∈ N. Letting n → ∞ shows that Xt arises as a suitable limit of (a
triangular array of) iid random variables which transforms the problem into a
question of limit theorems and infinite divisibility.

This was first observed in 1929 by de Finetti [15] who introduces (without
naming it, the name is due to Bawly [6] and Khintchine [29]) the concept of infinite
divisibility of a random variable X

∀n ∃ iid random variables ξi,n : X ∼
n∑

i=1

ξi,n (1.2)

and asks for the general structure of infinitely divisible random variables. His paper
contains two remarkable results on the characteristic function χ(ξ) = E ei ξ·X of
an infinite divisible random variable (taken from [39]):

De Finetti’s first theorem. A random variable X is infinitely divisible if, and only
if, its characteristic function is of the form

χ(ξ) = lim
n→∞ exp

[− pn(1 − φn(ξ))
]

where pn � 0 and φn is a characteristic function.

De Finetti’s second theorem. The characteristic function of an infinitely divisible
random variable X is the limit of finite products of Poissonian characteristic
functions

χn(ξ) = exp
[− pn(1 − eihnξ)

]
,

and the converse is also true. In particular, all infinitely divisible laws are
limits of convolutions of Poisson distributions.

Because of (1.1), Xt is infinitely divisible and as such one can construct, in prin-
ciple, all independent-increment processes Xt as limits of sums of Poisson random
variables. The contributions of Kolmogorov [31], Lévy [37] and Khintchine [28]
show the exact form of the characteristic function of an infinitely divisible random
variable

− logE ei ξ·X = − i l · ξ + 1

2
ξ · Qξ +

∫
y �=0

(
1 − ei y·ξ + i ξ · y1(0,1)(|y|)

)
ν(dy) (1.3)

where l ∈ Rd, Q ∈ Rd×d is a positive semidefinite symmetric matrix, and ν is a
measure on Rd \ {0} such that

∫
y �=0

min{1, |y|2} ν(dy) < ∞. This is the famous

Lévy–Khintchine formula. The exact knowledge of (1.3) makes it possible to find
the approximating Poisson variables in de Finetti’s theorem explicitly, thus leading
to a construction of Xt.

A little later, and without knowledge of de Finetti’s results, Lévy came up in
his seminal paper [37] (see also [38, Chap. VII]) with a decomposition of Xt in four
independent components: a deterministic drift, a Gaussian part, the compensated
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small jumps and the large jumps ΔXs := Xs−Xs−. This is now known as Lévy–Itô
decomposition:

Xt = tl +
√
QWt + lim

ε→0

( ∑
0<s�t

ε�|ΔXs|<1

ΔXs − t
∫

ε�|y|<1

y ν(dy)
)

+
∑

0<s�t
|ΔXs|�1

ΔXs (1.4)

= tl +
√
QWt +

∫∫
(0,t]×B1(0)

y (N(ds, dy) − dtν(dy)) +

∫∫
(0,t]×B1(0)c

y N(ds, dy).

(1.5)

Lévy uses results from the convergence of random series, notably Kolmogorov’s
three series theorem, in order to explain the convergence of the series appearing
in (1.4). A rigorous proof based on the representation (1.5) are due to Itô [23] who
completed Lévy’s programme to construct Xt. The coefficients l, Q, ν are the same
as in (1.3), W is a d-dimensional standard Brownian motion, and Nω((0, t] × B)
is the random measure #{s ∈ (0, t] : Xs(ω) − Xs−(ω) ∈ B} counting the jumps
of X ; it is a Poisson random variable with intensity EN((0, t]×B) = tν(B) for all
Borel sets B ⊂ Rd \ {0} such that 0 /∈ B.

Nowadays there are at least six possible approaches to constructing processes
with (stationary and) independent increments X = (Xt)t�0.

The de Finetti–Lévy(–Kolmogorov–Khintchine) construction. The starting point
is the observation that each Xt satisfies (1.1) and is, therefore, infinitely divisible.
Thus, the characteristic exponent logE ei ξ·Xt is given by the Lévy–Khintchine
formula (1.3), and using the triplet (l, Q, ν) one can construct a drift lt, a Brownian
motion

√
QWt and compound Poisson processes, i.e., Poisson processes whose

intensities y ∈ Rd are mixed with respect to the finite measure

νε(dy) := 1[ε,∞)(|y|)ν(dy).
Using a suitable compensation (in the spirit of Kolmogorov’s three series theorem)
of the small jumps, it is possible to show that the limit ε → 0 exists locally
uniformly in t. A very clear presentation of this approach can be found in Breiman
[10, Chapter 14.7–8], see also Chapter 7.

The Lévy–Itô construction. This is currently the most popular approach to inde-
pendent-increment processes, see, e.g., Applebaum [2, Chapter 2.3–4] or Kyprianou
[36, Chapter 2]. Originally the idea is due to Lévy [37], but Itô [23] gave the first
rigorous construction. It is based on the observation that the jumps of a process
with stationary and independent increments define a Poisson random measure
Nω([0, t]×B) and this can be used to obtain the Lévy–Itô decomposition (1.5). The
Lévy–Khintchine formula is then a corollary of the pathwise decomposition. Some
of the best presentations can be found in Gikhman–Skorokhod [18, Chapter VI],
Itô [24, Chapter 4.3] and Bretagnolle [11]. A proof based on additive functionals
and martingale stochastic integrals is due to Kunita & Watanabe [35, Section 7].
We follow this approach in Chapter 9.
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Variants of the Lévy–Itô construction. The Lévy–Itô decomposition (1.5) is, in
fact, the semimartingale decomposition of a process with stationary and indepen-
dent increments. Using the general theory of semimartingales – which heavily relies
on general random measures – we can identify processes with independent incre-
ments as those semimartingales whose semimartingale characteristics are deter-
ministic, cf. Jacod & Shiryaev [27, Chapter II.4c]. A further interesting derivation
of the Lévy–Itô decomposition is based on stochastic integrals driven by martin-
gales. The key is Itô’s formula and, again, the fact that the jumps of a process
with stationary and independent increments defines a Poisson point process which
can be used as a good stochastic integrator; this unique approach1 can be found
in Kunita [34, Chapter 2].

Kolmogorov’s construction. This is the classic construction of stochastic processes
starting from the finite-dimensional distributions. For a process with stationary
and independent increments these are given as iterated convolutions of the form

Ef(Xt0 , . . . , Xtn)

=

∫
· · ·
∫

f(y0, y0 + y1, . . . , y0 + · · ·+ yn) pt0(dy0)pt1−t0(dy1) . . . ptn−tn−1(dyn)

with pt(dy) = P(Xt ∈ dy) or
∫
ei ξ·ypt(dy) = exp [−tψ(ξ)] where ψ is the char-

acteristic exponent (1.3). Particularly nice presentations are those of Sato [51,
Chapter 2.10–11] and Bauer [5, Chapter 37].

The invariance principle. Just as for a Brownian motion, it is possible to con-
struct Lévy processes as limits of (suitably interpolated) random walks. For finite-
dimensional distributions this is done in Gikhman & Skorokhod [18, Chapter IX.6];
for the whole trajectory, i.e., in the space of càdlàg2 functions D[0, 1] equipped
with the Skorokhod topology, the proper references are Prokhorov [43] and Grim-
vall [19].

Random series constructions. A series representation of an independent-increment
process (Xt)t∈[0,1] is an expression of the form

Xt = lim
n→∞

n∑
k=1

(
Jk1[0,t](Uk) − tck

)
a.s.

The random variables Jk represent the jumps, Uk are iid uniform random variables
and ck are suitable deterministic centering terms. Compared with the Lévy–Itô
decomposition (1.4), the main difference is the fact that the jumps are summed
over a deterministic index set {1, 2, . . . , n} while the summation in (1.4) extends

1It reminds of the elegant use of Itô’s formula in Kunita-and-Watanabe’s proof of Lévy’s
characterization of Brownian motion, see, e.g., Schilling & Partzsch [56, Chapter 18.2].

2A french acronym meaning ‘right-continuous and finite limits from the left’.
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over the random set {s : |ΔXs| > 1/n}. In order to construct a process with
characteristic exponent (1.3) where l = 0 and Q = 0, one considers a disintegration

ν(dy) =

∫ ∞

0

σ(r, dy) dr.

It is possible, cf. Rosiński [47], to choose σ(r, dy) = P(H(r, Vk) ∈ dy) where
V = (Vk)k∈N is any sequence of d-dimensional iid random variables and H :
(0,∞) × Rd → Rd is measurable. Now let Γ = (Γk)k∈N be a sequence of partial
sums of iid standard exponential random variables and U = (Uk)k∈N iid uniform
random variables on [0, 1] such that U, V,Γ are independent. Then

Jk := H(Γk, Vk) and ck =

∫ k

k−1

∫
|y|<1

y σ(r, dy) dr

is the sought-for series representation, cf. Rosiński [47] and [46]. This approach is
important if one wants to simulate independent-increment processes. Moreover, it
still holds for Banach space valued random variables.



Chapter 2

Lévy Processes

Throughout this chapter, (Ω,A ,P) is a fixed probability space, t0 = 0 � t1 �
· · · � tn and 0 � s < t are positive real numbers, and ξk, ηk, k = 1, . . . , n, denote
vectors from Rd; we write ξ · η for the Euclidean scalar product.

Definition 2.1. A Lévy process X =(Xt)t�0 is a random process Xt : Ω → Rd

satisfying (L0)–(L3); this is to say that X starts at zero, has stationary and inde-
pendent increments and is continuous in probability.

One should understand Lévy processes as continuous-time versions of sums
of iid random variables. This can easily be seen from the telescopic sum

Xt − Xs =
∑n

k=1

(
Xtk − Xtk−1

)
, s < t, n ∈ N, (2.1)

where tk = s+ k
n (t−s). Since the increments Xtk −Xtk−1

are iid random variables,
we see that all Xt of a Lévy process are infinitely divisible, i.e., (1.2) holds. Many
properties of a Lévy process will, therefore, resemble those of sums of iid random
variables.

Let us briefly discuss the conditions (L0)–(L3).

Remark 2.2. We have used in (L2) the canonical filtration FX
t := σ(Xr, r � t)

of the process X . Often this condition is written in the following way

Xtn − Xtn−1 , . . . , Xt1 − Xt0 are independent random variables

for all n ∈ N, t0 = 0 < t1 < · · · < tn.
(L2′)

It is easy to see that this is actually equivalent to (L2): From

(Xt1 , . . . , Xtn)
bi-measurable←−−−−−−−−−→ (Xt1 − Xt0 , . . . , Xtn − Xtn−1)

it follows that

FX
t = σ

(
(Xt1 , . . . , Xtn), 0 � t1 � · · · � tn � t

)
= σ

(
(Xt1 − Xt0 , . . . , Xtn − Xtn−1), 0 = t0 � t1 � · · · � tn � t

)
= σ

(
Xu − Xv, 0 � v � u � t

)
,

(2.2)

and we conclude that (L2) and (L2′) are indeed equivalent.

© Springer International Publishing Switzerland 2016  
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13



14 Chapter 2. Lévy Processes

The condition (L3) is equivalent to either of the following

• ‘t �→ Xt is continuous in probability’;

• ‘t �→ Xt is a.s. càdlàg’
1 (up to a modification of the process).

The equivalence with the first claim, and the direction ‘⇐’ of the second claim are
easy:

lim
u→t

P(|Xu − Xt| > ε) = lim
|t−u|→0

P(|X|t−u|| > ε) � lim
h→0

1

ε
E(|Xh| ∧ ε), (2.3)

but it takes more effort to show that continuity in probatility (L3) guarantees
that almost all paths are càdlàg.2 Usually, this is proved by controlling the os-
cillations of the paths of a Lévy process, cf. Sato [51, Theorem 11.1], or by the
fundamental regularization theorem for submartingales, see Revuz & Yor [45, The-
orem II.(2.5)] and Remark 11.2; in contrast to the general martingale setting [45,
Theorem II.(2.9)], we do not need to augment the natural filtration because of
(L1) and (L3). Since our construction of Lévy processes gives directly a càdlàg
version, we do not go into further detail.

The condition (L3) has another consequence. Recall that the Cauchy–Abel
functional equations have unique solutions if, say, φ, ψ and θ are (right-) contin-
uous:

φ(s + t) = φ(s) · φ(t) φ(t) = φ(1)t,

ψ(s+ t) = ψ(s) + ψ(t) (s, t � 0)=⇒ ψ(t) = ψ(1) · t (2.4)

θ(st) = θ(s) · θ(t) θ(t) = tc, c � 0.

The first equation is treated in Theorem A.1 in the appendix. For a thorough
discussion on conditions ensuring uniqueness we refer to Aczel [1, Chapter 2.1].

Proposition 2.3. Let (Xt)t�0 be a Lévy process in Rd. Then

E ei ξ·Xt =
[
E ei ξ·X1

]t
, t � 0, ξ ∈ Rd. (2.5)

Proof. Fix s, t � 0. We get

E ei ξ·(Xt+s−Xs)+i ξ·Xs
(L2)
= E ei ξ·(Xt+s−Xs) E ei ξ·Xs

(L1)
= E ei ξ·Xt E ei ξ·Xs ,

or φ(t+ s) = φ(t) · φ(s), if we write φ(t) = E ei ξ·Xt . Since x �→ ei ξ·x is continuous,
there is for every ε > 0 some δ > 0 such that

|φ(t)− φ(s)| � E
∣∣ei ξ·(Xt−Xs) − 1

∣∣ � ε+2P(|Xt −Xs| � δ) = ε+2P(|X|t−s|| � δ).

Thus, (L3) guarantees that t �→ φ(t) is continuous, and the claim follows from
(2.4). �

1‘Right-continuous and finite limits from the left’
2More precisely: that there exists a modification of X which has almost surely càdlàg paths.
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Notice that any solution f(t) of (2.4) also satisfies (L0)–(L2); by Proposi-
tion 2.3 Xt + f(t) is a Lévy process if, and only if, f(t) is continuous. On the
other hand, Hamel, cf. [1, p. 35], constructed discontinuous (non-measurable and
locally unbounded) solutions to (2.4). Thus, (L3) means that t �→ Xt has no fixed
discontinuities, i.e., all jumps occur at random times.

Corollary 2.4. The finite-dimensional distributions P(Xt1 ∈ dx1, . . . , Xtn ∈ dxn)
of a Lévy process are uniquely determined by

E exp

(
i

n∑
k=1

ξk · Xtk

)
=

n∏
k=1

[
E exp (i(ξk + · · · + ξn) ·X1)

]tk−tk−1

(2.6)

for all ξ1, . . . , ξn ∈ Rd, n ∈ N and 0 = t0 � t1 � · · · � tn.

Proof. The left-hand side of (2.6) is the characteristic function of (Xt1 , . . . , Xtn).
Consequently, the assertion follows from (2.6). Using Proposition 2.3, we have

E exp

(
i

n∑
k=1

ξk · Xtk

)

= E exp

(
i
n−2∑
k=1

ξk ·Xtk + i(ξn + ξn−1) ·Xtn−1 + i ξn · (Xtn − Xtn−1)

)
(L2)
=

(L1)
E exp

(
i
n−2∑
k=1

ξk ·Xtk + i(ξn + ξn−1) ·Xtn−1

)(
E ei ξn·X1

)tn−tn−1
.

Since the first half of the right-hand side has the same structure as the original
expression, we can iterate this calculation and obtain (2.6). �

It is not hard to invert the Fourier transform in (2.6). Writing pt(dx) :=
P(Xt ∈ dx) we get

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn) =

∫
· · ·

∫ n∏
k=1

1Bk
(x1 + · · · + xk)ptk−tk−1

(dxk)

(2.7)

=

∫
· · ·

∫ n∏
k=1

1Bk
(yk)ptk−tk−1

(dyk − yk−1). (2.8)

Let us discuss the structure of the characteristic function χ(ξ) = E ei ξ·X1

of X1. From (2.1) we see that each random variable Xt of a Lévy process is
infinitely divisible. Clearly, |χ(ξ)|2 is the (real-valued) characteristic function of

the symmetrization X̃1 = X1 − X ′
1 (X ′

1 is an independent copy of X1) and X̃1 is
again infinitely divisible:

X̃1 =

n∑
k=1

(X̃ k
n

− X̃ k−1
n

) =

n∑
k=1

[
(X k

n
− X k−1

n
) − (X ′

k
n

− X ′
k−1
n

)
]
.
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In particular, |χ|2 = |χ1/n|2n where |χ1/n|2 is the characteristic function of X̃1/n.
Since everything is real and |χ(ξ)| � 1, we get

θ(ξ) := lim
n→∞ |χ1/n(ξ)|2 = lim

n→∞ |χ(ξ)|2/n, ξ ∈ Rd,

which is 0 or 1 depending on |χ(ξ)| = 0 or |χ(ξ)| > 0, respectively. As χ(ξ) is
continuous at ξ = 0 with χ(0) = 1, we have θ ≡ 1 in a neighbourhood Br(0) of 0.
Now we can use Lévy’s continuity theorem (Theorem A.5) and conclude that the
limiting function θ(ξ) is continuous everywhere, hence θ ≡ 1. In particular, χ(ξ)
has no zeroes.

Corollary 2.5. Let (Xt)t�0 be a Lévy process in Rd. There exists a unique contin-
uous function ψ : Rd → C such that

E exp(i ξ · Xt) = e−tψ(ξ), t � 0, ξ ∈ Rd.

The function ψ is called the characteristic exponent.

Proof. In view of Proposition 2.3 it is enough to consider t = 1. Set χ(ξ) :=
E exp(i ξ · X1). An obvious candidate for the exponent is ψ(ξ) = − logχ(ξ), but
with complex logarithms there is always the trouble which branch of the logarithm
one should take. Let us begin with the uniqueness:

e−ψ = e−φ =⇒ e−(ψ−φ) = 1 =⇒ ψ(ξ) − φ(ξ) = 2π i kξ

for some integer kξ ∈ Z. Since φ, ψ are continuous and φ(0) = ψ(0) = 1, we get
kξ ≡ 0.

To prove the existence of the logarithm, it is not sufficient to take the principal
branch of the logarithm. As we have seen above, χ(ξ) is continuous and has no
zeroes, i.e., inf |ξ|�r |χ(ξ)| > 0 for any r > 0; therefore, there is a ‘distinguished’,
continuous3 version of the argument arg◦ χ(ξ) such that arg◦ χ(0) = 0. This allows
us to take a continuous version logχ(ξ) = log |χ(ξ)| + arg◦ χ(ξ). �
Corollary 2.6. Let Y be an infinitely divisible random variable. Then there exists
at most one4 Lévy process (Xt)t�0 such that X1 ∼ Y .

Proof. Since X1 ∼ Y , infinite divisibility is a necessary requirement for Y . On the
other hand, Proposition 2.3 and Corollary 2.4 show how to construct the finite-
dimensional distributions of a Lévy process, hence the process, from X1. �

So far, we have seen the following one-to-one correspondences

(Xt)t�0 Lévy process
1:1←→ E ei ξ·X1 1:1←→ ψ(ξ) = − logE ei ξ·X1

and the next step is to find all possible characteristic exponents. This will lead us
to the Lévy–Khintchine formula.

3A very detailed argument is given in Sato [51, Lemma 7.6], a completely different proof can
be found in Dieudonné [16, Chapter IX, Appendix 2].

4We will see in Chapter 7 how to construct this process. It is unique in the sense that its
finite-dimensional distributions are uniquely determined by Y .
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Examples

We begin with a useful alternative characterisation of Lévy processes.

Theorem 3.1. Let X = (Xt)t�0 be a stochastic process with values in Rd, X0 = 1
a.s., and Ft = FX

t = σ(Xr, r � t). The process X is a Lévy process if, and only
if, there exists an exponent ψ : Rd → C such that

E
(
ei ξ·(Xt−Xs)

∣∣∣ Fs

)
= e−(t−s)ψ(ξ) for all s < t, ξ ∈ Rd. (3.1)

Proof. If X is a Lévy process, we get

E
(
ei ξ·(Xt−Xs)

∣∣∣ Fs

)
(L2)
= E ei ξ·(Xt−Xs) (L1)

= E ei ξ·Xt−s Cor. 2.5
= e−(t−s)ψ(ξ).

Conversely, assume that X0 = 0 a.s. and (3.1) holds. Then

E ei ξ·(Xt−Xs) = e−(t−s)ψ(ξ) = E ei ξ·(Xt−s−X0)

which shows Xt − Xs ∼ Xt−s − X0 = Xt−s, i.e., (L1).

For any F ∈ Fs we find from the tower property of conditional expectation

E
(
1F · ei ξ·(Xt−Xs)

)
= E

(
1FE

[
ei ξ·(Xt−Xs)

∣∣∣ Fs

])
= E1F · e−(t−s)ψ(ξ). (3.2)

Observe that eiu1F = 1F c +eiu1F for any u ∈ R; since both F and F c are in Fs,
we get

E
(
eiu1F ei ξ·(Xt−Xs)

)
= E

(
1F cei ξ·(Xt−Xs)

)
+ E

(
1F e

iuei ξ·(Xt−Xs)
)

(3.2)
= E

(
1F c + eiu1F

)
e−(t−s)ψ(ξ)

(3.2)
= E eiu1F E ei ξ·(Xt−Xs).

Thus, 1F ⊥⊥(Xt − Xs) for any F ∈ Fs, and (L2) follows.

Finally, limt→0 E ei ξ·Xt = limt→0 e
−tψ(ξ) = 1 proves that Xt → 0 in distribu-

tion, hence in probability. This gives (L3). �
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Theorem 3.1 allows us to give concrete examples of Lévy processes.

Example 3.2. The following processes are Lévy processes.

a) Drift in direction l/|l|, l ∈ Rd, with speed |l|: Xt = tl and ψ(ξ) = − i l · ξ.
b) Brownian motion with (positive semi-definite) covariance matrix Q ∈ Rd×d:
Let (Wt)t�0 be a standard Wiener process on Rd and set Xt :=

√
QWt. Then

ψ(ξ) = 1
2ξ ·Qξ and P(Xt ∈ dy) = (2πt)−d/2(detQ)−1/2 exp(−y · Q−1y/2t) dy.

c) Poisson process in R with jump height 1 and intensity λ. This is an integer-
valued counting process (Nt)t�0 which increases by 1 after an independent expo-
nential waiting time with mean λ. Thus,

Nt =
∞∑
k=1

1[0,t](τk), τk = σ1 + · · ·+ σk, σk ∼ Exp(λ) iid.

Using this definition, it is a bit messy to show that N is indeed a Lévy process
(see, e.g., Çinlar [12, Chapter 4]). We will give a different proof in Theorem 3.4
below. Usually, the first step is to show that its law is a Poisson distribution

P(Nt = k) = e−tλ (λt)k

k!
, k = 0, 1, 2, . . .

(thus the name!) and from this one can calculate the characteristic exponent

E eiuNt =

∞∑
k=0

eiuke−tλ (λt)k

k!
= e−tλ exp

[
λteiu

]
= exp

[− tλ(1 − eiu)
]
,

i.e., ψ(u) = λ(1 − eiu). Mind that this is strictly weaker than (3.1) and does not
prove that N is a Lévy process.

d) Compound Poisson process in Rd with jump distribution μ and intensity λ.
Let N = (Nt)t�0 be a Poisson process with intensity λ and replace the jumps of
size 1 by independent iid jumps of random height H1, H2, . . . with values in Rd

and H1 ∼ μ. This is a compound Poisson process:

Ct =

Nt∑
k=1

Hk, Hk ∼ μ iid and independent of (Nt)t�0.

We will see in Theorem 3.4 that compound Poisson processes are Lévy processes.

Let us show that the Poisson and compound Poisson processes are Lévy
processes. For this we need the following auxiliary result. Since t �→ Ct is a step
function, the Riemann–Stieltjes integral

∫
f(u) dCu is well-defined.
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Lemma 3.3 (Campbell’s formula). Let Ct = H1+ · · ·+HNt be a compound Poisson
process as in Example 3.2.d) with iid jumps Hk ∼ μ and an independent Poisson
process (Nt)t�0 with intensity λ. Then

E exp

(
i

∫ ∞

0

f(t+ s) dCt

)
= exp

(
λ

∫ ∞

0

∫
y �=0

(ei yf(s+t) − 1)μ(dy) dt

)
(3.3)

holds for all s � 0 and bounded measurable functions f : [0,∞) → Rd with compact
support.

Proof. Set τk = σ1 + · · ·+ σk where σk ∼ Exp(λ) are iid. Then

φ(s) := E exp

(
i

∫ ∞

0

f(s+ t) dCt

)
= E exp

(
i

∞∑
k=1

f(s+ σ1 + · · ·+ σk)Hk

)
iid
=

∫ ∞

0

E exp

(
i

∞∑
k=2

f(s+ x+ σ2 + · · ·+ σk)Hk

)
︸ ︷︷ ︸

=φ(s+x)

E exp(i f(s+ x)H1)︸ ︷︷ ︸
=:γ(s+x)

P(σ1 ∈ dx)︸ ︷︷ ︸
=λe−λx dx

= λ

∫ ∞

0

φ(s+ x)γ(s+ x)e−λx dx

= λeλs
∫ ∞

s

γ(t)φ(t)e−λt dt.

This is equivalent to

e−λsφ(s) = λ

∫ ∞

s

(φ(t)e−λt)γ(t) dt

and φ(∞) = 1 since f has compact support. This integral equation has a unique
solution; it is now a routine exercise to verify that the right-hand side of (3.3) is
indeed a solution. �

Theorem 3.4. Let Ct = H1 + · · · + HNt be a compound Poisson process as in
Example 3.2.d) with iid jumps Hk ∼ μ and an independent Poisson process (Nt)t�0

with intensity λ. Then (Ct)t�0 (and also (Nt)t�0) is a d-dimensional Lévy process
with characteristic exponent

ψ(ξ) = λ

∫
y �=0

(1 − ei y·ξ)μ(dy). (3.4)

Proof. Since the trajectories of t �→ Ct are càdlàg step functions with C0 = 0, the
properties (L0) and (L3), see (2.3), are satisfied. We will show (L1) and (L2). Let
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ξk ∈ Rd, a < b and 0 = t0 � . . . � tn. Then the Riemann–Stieltjes integral∫ ∞

0

1(a,b](t) dCt =
∞∑
k=1

1(a,b](τk)Hk = Cb − Ca

exists. We apply the Campbell formula (3.3) to the function

f(t) :=

n∑
k=1

ξk1(tk−1,tk](t)

and with s = 0. Then the left-hand side of (3.3) becomes the characteristic function
of the increments

E exp

(
i

n∑
k=1

ξk · (Ctk − Ctk−1
)

)
,

while the right-hand side is equal to

exp

[
λ

∫
y �=0

n∑
k=1

∫ tk

tk−1

(ei ξk·y − 1) dt μ(dy)

]

=

n∏
k=1

exp

[
λ(tk − tk−1)

∫
y �=0

(ei ξk·y − 1)μ(dy)

]

=

n∏
k=1

E exp
[
i ξk · Ctk−tk−1

]
(use Campbell’s formula with n = 1 for the last equality). This shows that the in-
crements are independent, i.e., (L2′) holds, as well as (L1): Ctk −Ctk−1

∼ Ctk−tk−1
.

If d = 1 and Hk ∼ δ1, Ct is a Poisson process. �

Denote by μ∗k the k-fold convolution of the measure μ; as usual, μ∗0 := δ0.

Corollary 3.5. Let (Nt)t�0 be a Poisson process with intensity λ and denote by
Ct = H1 + · · · +HNt a compound Poisson process with iid jumps Hk ∼ μ. Then,
for all t � 0,

P(Nt = k) = e−λt (λt)
k

k!
, k = 0, 1, 2, . . . (3.5)

P(Ct ∈ B) = e−λt
∞∑
k=0

(λt)k

k!
μ∗k(B), B ⊂ Rd Borel. (3.6)

Proof. If we use Theorem 3.4 for d = 1 and μ = δ1, we see that the characteristic
function of Nt is χt(u) = exp[−λt(1 − eiu)]. Since this is also the characteristic
function of the Poisson distribution (i.e., the r.h.s. of (3.5)), we get Nt ∼ Poi(λt).
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Since (Hk)k∈N ⊥⊥(Nt)t�0, we have for any Borel set B

P(Ct ∈ B) =

∞∑
k=0

P(Ct ∈ B, Nt = k)

= δ0(B)P(Nt = 0) +

∞∑
k=1

P(H1 + · · ·+Hk ∈ B)P(Nt = k)

= e−λt
∞∑
k=0

(λt)k

k!
μ∗k(B). �

Example 3.2 contains the basic Lévy processes which will also be the building
blocks for all Lévy processes. In order to define more specialized Lévy processes,
we need further assumptions on the distributions of the random variables Xt.

Definition 3.6. Let (Xt)t�0 be a stochastically continuous process in Rd. It is
called self-similar, if

∀a � 0 ∃b = b(a) : (Xat)t�0 ∼ (bXt)t�0 (3.7)

in the sense that both sides have the same finite-dimensional distributions.

Lemma 3.7 (Lamperti). If (Xt)t�0 is self-similar and non-degenerate, then there
exists a unique index of self-similarity H � 0 such that b(a) = aH . If (Xt)t�0 is a
self-similar Lévy process, then H � 1

2 .

Proof. Since (Xt)t�0 is self-similar, we find for a, a′ � 0 and each t > 0

b(aa′)Xt ∼ Xaa′t ∼ b(a)Xa′t ∼ b(a)b(a′)Xt,

and so b(aa′) = b(a)b(a′) as Xt is non-degenerate.1 By the convergence of types
theorem (Theorem A.6) and the continuity in probability of t �→ Xt we see that
a �→ b(a) is continuous. Thus, the Cauchy functional equation b(aa′) = b(a)b(a′)
has the unique continuous solution b(a) = aH for some H � 0.

Assume now that (Xt)t�0 is a Lévy process. We are going to show that
H � 1

2 . Using self-similarity and the properties (L1), (L2) we get (primes always
denote iid copies of the respective random variables)

(n+m)HX1 ∼ Xn+m = (Xn+m−Xm)+Xm ∼ X ′′
n+X ′

m ∼ nHX ′′
1 +mHX ′

1. (3.8)

Any standard normal random variable X1 satisfies (3.8) with H = 1
2 .

1We use here that bX ∼ cX =⇒ b = c if X is non-degenerate. To see this, set χ(ξ) = E ei ξ·X
and notice

|χ(ξ)| = ∣∣χ( b
c
ξ
)∣∣ = · · · = ∣∣χ(( b

c

)n
ξ
)∣∣.

If b < c, the right-hand side converges for n → ∞ to χ(0) = 1, hence |χ| ≡ 1, contradicting the
fact that X is non-degenerate. Since b, c play symmetric roles, we conclude that b = c.
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On the other hand, if X1 has a second moment, we get

(n+m)VX1 = VXn+m = VX ′′
n +VX ′

m = nVX ′′
1 +mVX ′

1

by Bienaymés identity for variances, i.e., (3.8) can only hold with H = 1
2 . Thus,

any self-similar X1 with finite second moment has to satisfy (3.8) with H = 1
2 .

If we can show that H < 1
2 implies the existence of a second moment, we have

reached a contradiction.

If Xn is symmetric and H < 1
2 , we find because of Xn ∼ nHX1 some u > 0

such that

P(|Xn| > unH) = P(|X1| > u) <
1

4
.

By the symmetrization inequality (Theorem A.7),

1

2

(
1 − exp{−nP(|X1| > unH)}) � P(|Xn| > unH) <

1

4

which means that nP(|X1| > unH) � c for all n ∈ N. Therefore wee see that
P(|X1| > x) � c′x−1/H for all x > u+ 1, and so

E|X1|2 = 2

∫ ∞

0

xP(|X1| > x) dx � 2(u+ 1) + 2c′
∫ ∞

u+1

x1−1/H dx < ∞

as H < 1
2 . If Xn is not symmetric, we use its symmetrization Xn −X ′

n where X ′
n

are iid copies of Xn. �
Definition 3.8. A random variable X is called stable if

∀n ∈ N ∃bn � 0, cn ∈ Rd : X ′
1 + · · ·+X ′

n ∼ bnX + cn (3.9)

where X ′
1, . . . , X

′
n are iid copies of X . If (3.9) holds with cn = 0, the random

variable is called strictly stable. A Lévy process (Xt)t�0 is (strictly) stable if X1

is a (strictly) stable random variable.

Note that the symmetrization X −X ′ of a stable random variable is strictly
stable. Setting χ(ξ) = E ei ξ·X it is easy to see that (3.9) is equivalent to

∀n ∈ N ∃bn � 0, cn ∈ Rd : χ(ξ)n = χ(bnξ)e
i cn·ξ. (3.9′)

Example 3.9. a) Stable processes. By definition, any stable random variable is
infinitely divisible, and for every stable X there is a unique Lévy process on Rd

such that X1 ∼ X , cf. Corollary 2.6.

A Lévy process (Xt)t�0 is stable if, and only if, all random variables Xt are
stable. This follows at once from (3.9′) if we use χt(ξ) := E ei ξ·Xt :

χt(ξ)
n (2.5)

=
(
χ1(ξ)

n
)t (3.9′)

= χ1(bnξ)
tei(tcn)·ξ

(2.5)
= χt(bnξ)e

i(tcn)·ξ.

It is possible to determine the characteristic exponent of a stable process, cf. Sato
[51, Theorem 14.10] and (3.10) further down.
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b) Self-similar processes. Assume that (Xt)t�0 is a self-similar Lévy process. Then

∀n ∈ N : b(n)X1 ∼ Xn =

n∑
k=1

(Xk − Xk−1) ∼ X ′
1,n + · · ·+X ′

n,n

where the X ′
k,n are iid copies of X1. This shows that X1, hence (Xt)t�0, is strictly

stable. In fact, the converse is also true:

c) A strictly stable Lévy process is self-similar. We have already seen in b) that
self-similar Lévy processes are strictly stable. Assume now that (Xt)t�0 is strictly
stable. Since Xnt ∼ bnXt we get

e−ntψ(ξ) = E ei ξ·Xnt = E ei bnξ·Xt = e−tψ(bnξ).

Taking n = m, t � t/m and ξ � b−1
m ξ we see

e−
t
mψ(ξ) = e−tψ(b−1

m ξ).

From these equalities we obtain for q = n/m ∈ Q+ and b(q) := bn/bm

e−qtψ(ξ) = e−tψ(b(q)ξ) =⇒ Xqt ∼ b(q)Xt =⇒ Xat ∼ b(a)Xt

for all t � 0 because of the continuity in probability of (Xt)t�0. Since, by Corol-
lary 2.4, the finite-dimensional distributions are determined by the one-dimen-
sional distributions, we conclude that (3.7) holds.

This means, in particular, that strictly stable Lévy processes have an index of
self-similarity H � 1

2 . It is common to call α = 1/H ∈ (0, 2] the index of stability

of (Xt)t�0, and we have Xnt ∼ n1/αXt.

If X is ‘only’ stable, its symmetrization is strictly stable and, thus, every
stable Lévy process has an index α ∈ (0, 2]. It plays an important role for the
characteristic exponent. For a general stable process the characteristic exponent
is of the form

ψ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
∫
Sd

|z · ξ|α(1 − i sgn(z · ξ) tan απ
2

)
σ(dz) − iμ · ξ, (α �= 1),∫

Sd

|z · ξ|(1 + 2
π i sgn(z · ξ) log |z · ξ|) σ(dz)− iμ · ξ, (α = 1),

(3.10)

where σ is a finite measure on Sd and μ ∈ Rd. The strictly stable exponents have
μ = 0 (if α �= 1) and

∫
Sd zk σ(dz) = 0, k = 1, . . . , d (if α = 1). These formulae

can be derived from the general Lévy–Khintchine formula; a good reference is the
monograph by Samorodnitsky & Taqqu [48, Chapters 2.3–4].

If X is strictly stable such that the distribution ofXt is rotationally invariant,
it is clear that ψ(ξ) = c|ξ|α. If Xt is symmetric, i.e., Xt ∼ −Xt, then the exponent
is ψ(ξ) =

∫
Sd |z · ξ|α σ(dz) for some finite, symmetric measure σ on the unit sphere

Sd ⊂ Rd.



24 Chapter 3. Examples

Let us finally show Kolmogorov’s proof of the Lévy–Khintchine formula for
one-dimensional Lévy processes admitting second moments. We need the following
auxiliary result.

Lemma 3.10. Let (Xt)t�0 be a Lévy process on R. If VX1 < ∞, then VXt < ∞
for all t > 0 and

EXt = tEX1 =: tμ and VXt = tVX1 =: tσ2.

Proof. If VX1 < ∞, then E|X1| < ∞. With Bienaymé’s identity, we get

VXm =

m∑
k=1

V(Xk − Xk−1) = mVX1 and VX1 = nVX1/n.

In particular, VXm,VX1/n < ∞. This, and a similar argument for the expecta-
tion, show

VXq = qVX1 and EXq = qEX1 for all q ∈ Q+.

Moreover, V(Xq − Xr) = VXq−r = (q − r)VX1 for all rational r � q, and this
shows that Xq − EXq = Xq − qμ converges in L2 as q → t. Since t �→ Xt is
continuous in probability, we can identify the limit and find Xq − qμ → Xt − tμ.
Consequenctly, VXt = tσ2 and EXt = tμ. �

We have seen in Proposition 2.3 that the characteristic function of a Lévy
process is of the form

χt(ξ) = E ei ξXt =
[
E ei ξX1

]t
= χ1(ξ)

t.

Let us assume that X is real-valued and has finite (first and) second moments
VX1 = σ2 and EX1 = μ. By Taylor’s formula

E ei ξ(Xt−tμ) = E

[
1 + i ξ(Xt − tμ) −

∫ 1

0

ξ2(Xt − tμ)2 (1 − θ)ei θξ(Xt−tμ) dθ

]
= 1 − E

[
ξ2(Xt − tμ)2

∫ 1

0

(1 − θ)ei θξ(Xt−tμ) dθ

]
.

Since ∣∣∣∣∫ 1

0

(1 − θ)ei θξ(Xt−tμ) dθ

∣∣∣∣ � ∫ 1

0

(1 − θ) dθ =
1

2
,

we get ∣∣E ei ξXt
∣∣ = ∣∣E ei ξ(Xt−tμ)

∣∣ � 1 − ξ2

2
tσ2.



Chapter 3. Examples 25

Thus, χ1/n(ξ) �= 0 if n � N(ξ) ∈ N is large, hence χ1(ξ) = χ1/n(ξ)
n �= 0. For

ξ ∈ R we find (using a suitable branch of the complex logarithm)

ψ(ξ) := − logχ1(ξ) = − ∂

∂t

[
χ1(ξ)

]t∣∣∣∣
t=0

= lim
t→0

1 − E ei ξXt

t

= lim
t→0

1

t

∫ ∞

−∞

(
1 − ei yξ + i yξ

)
pt(dy) − i ξμ

= lim
t→0

∫ ∞

−∞

1 − ei yξ + i yξ

y2
πt(dy)− i ξμ (3.11)

where pt(dy) = P(Xt ∈ dy) and πt(dy) := y2 t−1pt(dy). Yet another application
of Taylor’s theorem shows that the integrand in the above integral is bounded,
vanishes at infinity, and admits a continuous extension onto the whole real line if
we choose the value 1

2 ξ
2 at y = 0. The family (πt)t∈(0,1] is uniformly bounded,

1

t

∫
y2 pt(dy) =

1

t
E(X2

t ) =
1

t

(
VXt +

[
EXt

]2)
= σ2 + tμ2 t→0−−−→ σ2,

hence sequentially vaguely relatively compact (see Theorem A.3). We conclude
that every sequence (πt(n))n∈N ⊂ (πt)t∈(0,1] with t(n) → 0 as n → ∞ has a vaguely
convergent subsequence. But since the limit (3.11) exists, all subsequential limits
coincide which means2 that πt converges vaguely to a finite measure π on R. This
proves that

ψ(ξ) = − logχ1(ξ) =

∫ ∞

−∞

1 − ei yξ + i yξ

y2
π(dy) − i ξμ

for some finite measure π on (−∞,∞) with total mass π(R) = σ2. This is some-
times called the de Finetti–Kolmogorov formula.

If we set ν(dy) := y−21{y �=0} π(dy) and σ2
0 := π{0}, we obtain the Lévy–

Khintchine formula

ψ(ξ) = − iμξ +
1

2
σ2
0 ξ

2 +

∫
y �=0

(
1 − ei yξ + i yξ

)
ν(dy)

where σ2 = σ2
0 +

∫
y �=0

y2 ν(dy).

2Note that ei yξ = ∂2
ξ

(
1 − ei yξ + i yξ

)
/y2, i.e., the kernel appearing in (3.11) is indeed

measure-determining.



Chapter 4

On the Markov Property

Let (Ω,A ,P) be a probability space with some filtration (Ft)t�0 and a d-dimen-
sional adapted stochastic process X = (Xt)t�0, i.e., each Xt is Ft measurable. We
write B(Rd) for the Borel sets and set F∞ := σ(

⋃
t�0 Ft).

The process X is said to be a simple Markov process, if

P(Xt ∈ B | Fs) = P(Xt ∈ B | Xs), s � t, B ∈ B(Rd), (4.1)

holds true. This is pretty much the most general definition of a Markov process,
but it is usually too general to work with. It is more convenient to consider Markov
families.

Definition 4.1. A (temporally homogeneous) Markov transition function is a mea-
sure kernel pt(x,B), t � 0, x ∈ Rd, B ∈ B(Rd) such that

a) B �→ ps(x,B) is a probability measure for every s � 0 and x ∈ Rd;

b) (s, x) �→ ps(x,B) is a Borel measurable function for every B ∈ B(Rd);

c) the Chapman–Kolmogorov equations hold

ps+t(x,B) =

∫
pt(y,B) ps(x, dy) for all s, t � 0, x ∈ Rd, B ∈ B(Rd).

(4.2)

Definition 4.2. A stochastic process (Xt)t�0 is called a (temporally homogeneous)
Markov process with transition function if there exists a Markov transition func-
tion pt(x,B) such that

P(Xt ∈ B | Fs) = pt−s(Xs, B) a.s. for all s � t, B ∈ B(Rd). (4.3)

Conditioning w.r.t. σ(Xs) and using the tower property of conditional expec-
tation shows that (4.3) implies the simple Markov property (4.1). Nowadays the
following definition of a Markov process is commonly used.
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Definition 4.3. A (universal) Markov process is a tuple (Ω,A ,Ft, Xt, t � 0,Px,
x ∈ Rd) such that pt(x,B) = Px(Xt ∈ B) is a Markov transition function and
(Xt)t�0 is for each Px a Markov process in the sense of Definition 4.2 such that
Px(X0 = x) = 1. In particular,

Px(Xt ∈ B | Fs) = PXs(Xt−s ∈ B) Px-a.s. for all s � t, B ∈ B(Rd). (4.4)

We are going to show that a Lévy process is a (universal) Markov process.
Assume that (Xt)t�0 is a Lévy process and set Ft := FX

t = σ(Xr, r � t). Define
probability measures

Px(X• ∈ Γ) := P(X• + x ∈ Γ), x ∈ Rd,

where Γ is a Borel set of the path space (Rd)[0,∞) = {w | w : [0,∞) → Rd}.1 We
set Ex :=

∫
. . . dPx. By construction, P = P0 and E = E0.

Note that Xx
t := Xt + x satisfies the conditions (L1)–(L3), and it is common

to call (Xx
t )t�0 a Lévy process starting from x.

Lemma 4.4. Let (Xt)t�0 be a Lévy process on Rd. Then

pt(x,B) := Px(Xt ∈ B) := P(Xt + x ∈ B), t � 0, x ∈ Rd, B ∈ B(Rd),

is a Markov transition function.

Proof. Since pt(x,B) = E1B(Xt + x) (the proof of) Fubini’s theorem shows that
x �→ pt(x,B) is a measurable function and B �→ pt(x,B) is a probability measure.
The Chapman–Kolmogorov equations follow from

ps+t(x,B) = P(Xs+t + x ∈ B) = P((Xs+t − Xt) + x+Xt ∈ B)

(L2)
=

∫
Rd

P(y +Xt ∈ B)P((Xs+t − Xt) + x ∈ dy)

(L1)
=

∫
Rd

P(y +Xt ∈ B)P(Xs + x ∈ dy)

=

∫
Rd

pt(y,B) ps(x, dy). �

Remark 4.5. The proof of Lemma 4.4 shows a bit more: From

pt(x,B) =

∫
1B(x+ y)P(Xt ∈ dy) =

∫
1B−x(y)P(Xt ∈ dy) = pt(0, B − x)

we see that the kernels pt(x,B) are invariant under shifts in Rd (translation in-
variant). In slight abuse of notation we write pt(x,B) = pt(B − x). From this it

1Recall that B((Rd)[0,∞)) is the smallest σ-algebra containing the cylinder sets Z =

×t�0 Bt where Bt ∈ B(Rd) and only finitely many Bt �= Rd.
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becomes clear that the Chapman–Kolmogorov equations are convolution identities
pt+s(B) = pt ∗ ps(B), and (pt)t�0 is a convolution semigroup of probability mea-
sures; because of (L3), this semigroup is weakly continuous at t = 0, i.e., pt → δ0
as t → 0, cf. Theorem A.3 et seq. for the weak convergence of measures.

Lévy processes enjoy an even stronger version of the above Markov property.

Theorem 4.6 (Markov property for Lévy processes). Let X be a d-dimensional
Lévy process and set Y := (Xt+a −Xa)t�0 for some fixed a � 0. Then Y is again
a Lévy process satisfying

a) Y ⊥⊥(Xr)r�a, i.e., FY
∞ ⊥⊥FX

a .

b) Y ∼ X, i.e., X and Y have the same finite-dimensional distributions.

Proof. Observe that FY
s = σ(Xr+a −Xa, r � s) ⊂ FX

s+a. Using Theorem 3.1 and
the tower property of conditional expectation yields for all s � t

E
(
ei ξ·(Yt−Ys)

∣∣∣ FY
s

)
= E

[
E
(
ei ξ·(Xt+a−Xs+a)

∣∣∣ FX
s+a

) ∣∣∣ FY
s

]
= e−(t−s)ψ(ξ).

Thus, (Yt)t�0 is a Lévy process with the same characteristic function as (Xt)t�0.
The property (L2′) for X gives

Xtn+a − Xtn−1+a, Xtn−1+a − Xtn−2+a, . . . , Xt1+a − Xa ⊥⊥FX
a .

As σ(Yt1 , . . . , Ytn) = σ(Ytn −Ytn−1 , . . . , Yt1 −Yt0)⊥⊥FX
a for all t0 = 0 < t1 < · · · <

tn, we get

FY
∞ = σ

⎛⎝ ⋃
t1�...�tn

σ(Yt1 , . . . , Ytn)

⎞⎠⊥⊥FX
a . �

Using the Markov transition function pt(x,B) we can define a linear operator
on the bounded Borel measurable functions f : Rd → R:

Ptf(x) :=

∫
f(y) pt(x, dy) = Exf(Xt), f ∈ Bb(R

d), t � 0, x ∈ Rd. (4.5)

For a Lévy process, cf. Remark 4.5, we have pt(x,B) = pt(B−x) and the operators
Pt are actually convolution operators:

Ptf(x) = Ef(Xt + x) =

∫
f(y+ x) pt(dy) = f ∗ p̃t(x) where p̃t(B) := pt(−B).

(4.6)

Definition 4.7. Let Pt, t � 0, be defined by (4.5). The operators are said to be

a) acting on Bb(R
d), if Pt : Bb(R

d) → Bb(R
d).

b) an operator semigroup, if Pt+s = Pt ◦ Ps for all s, t � 0 and P0 = id.
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c) sub-Markovian if 0 � f � 1 =⇒ 0 � Ptf � 1.

d) contractive if ‖Ptf‖∞ � ‖f‖∞ for all f ∈ Bb(R
d).

e) conservative if Pt1 = 1.

f) Feller operators, if Pt : C∞(Rd) → C∞(Rd).2

g) strongly continuous on C∞(Rd), if limt→0 ‖Ptf−f‖∞ = 0 for all f ∈ C∞(Rd).

h) strong Feller operators, if Pt : Bb(R
d) → Cb(R

d).

Lemma 4.8. Let (Pt)t�0 be defined by (4.5). The properties 4.7.a)–e) hold for any
Markov process, 4.7.a)–g) hold for any Lévy process, and 4.7.a)–h) hold for any
Lévy process such that all pt(dy) = P(Xt ∈ dy), t > 0, are absolutely continuous
w.r.t. Lebesgue measure.

Proof. We only show the assertions about Lévy processes (Xt)t�0.

a) Since Ptf(x) = Ef(Xt + x), the boundedness of Ptf is obvious, and the
measurability in x follows from (the proof of) Fubini’s theorem.

b) By the tower property of conditional expectation, we get for s, t � 0

Pt+sf(x) = Exf(Xt+s) = Ex
(
Ex[f(Xt+s) | Fs]

)
(4.4)
= Ex

(
EXsf(Xt)

)
= Ps ◦ Ptf(x).

For the Markov transition functions this is the Chapman–Kolmogorov iden-
tity (4.2).

c) and d), e) follow directly from the fact that B �→ pt(x,B) is a probability
measure.

f) Let f ∈ C∞(Rd). Since x �→ f(x+Xt) is continuous and bounded, the claim
follows from dominated convergence as Ptf(x) = Ef(x+Xt).

g) f ∈ C∞ is uniformly continuous, i.e., for every ε > 0 there is some δ > 0 such
that |x − y| � δ implies |f(x) − f(y)| � ε. Hence,

‖Ptf − f‖∞ � sup
x∈Rd

∫
|f(Xt)− f(x)| dPx

= sup
x∈Rd

(∫
|Xt−x|�δ

|f(Xt) − f(x)| dPx +

∫
|Xt−x|>δ

|f(Xt) − f(x)| dPx

)
� ε + 2‖f‖∞ sup

x∈Rd

Px(|Xt − x| > δ)

= ε + 2‖f‖∞P(|Xt| > δ)
(L3)−−−→
t→0

ε.

2C∞(Rd) denotes the space of continuous functions vanishing at infinity. It is a Banach space
when equipped with the uniform norm ‖f‖∞ = supx∈Rd |f(x)|.
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Since ε > 0 is arbitrary, the claim follows. Note that this proof shows that
uniform continuity in probability is responsible for the strong continuity of
the semigroup.

h) See Lemma 4.9. �
Lemma 4.9 (Hawkes). Let X = (Xt)t�0 be a Lévy process on Rd. Then the op-
erators Pt defined by (4.5) are strong Feller if, and only if, Xt ∼ pt(y) dy for all
t > 0.

Proof. ‘⇐’: Let Xt ∼ pt(y) dy. Since pt ∈ L1 and since convolutions have a
smoothing property (e.g., [54, Theorem 14.8] or [55, Satz 18.9]), we get with
p̃t(y) = pt(−y)

Ptf = f ∗ p̃t ∈ L∞ ∗ L1 ⊂ Cb(R
d).

‘⇒’: We show that pt(dy) � dy. Let N ∈ B(Rd) be a Lebesgue null set
λd(N) = 0 and g ∈ Bb(R

d). Then, by the Fubini–Tonelli theorem∫
g(x)Pt1N (x) dx =

∫∫
g(x)1N (x+ y) pt(dy) dx

=

∫ ∫
g(x)1N (x+ y) dx︸ ︷︷ ︸

=0

pt(dy) = 0.

Take g = Pt1N , then the above calculation shows∫
(Pt1N(x))2 dx = 0.

Hence, Pt1N = 0 Lebesgue-a.e. By the strong Feller property, Pt1N is continuous,
and so Pt1N ≡ 0, hence

pt(N) = Pt1N (0) = 0. �

Remark 4.10. The existence and smoothness of densities for a Lévy process are
time-dependent properties, cf. Sato [51, Chapter V.23]. The typical example is
the Gamma process. This is a (one-dimensional) Lévy process with characteristic
exponent

ψ(ξ) =
1

2
log(1 + |ξ|2) − i arctan ξ, ξ ∈ R,

and this process has the transition density

pt(x) =
1

Γ(t)
xt−1e−x 1(0,∞)(x), t > 0.

The factor xt−1 gives a time-dependent condition for the property pt ∈ Lp(dx).
One can show, cf. [30], that

lim
|ξ|→∞

Reψ(ξ)

log(1 + |ξ|2) = ∞ =⇒ ∀t > 0 ∃pt ∈ C∞(Rd).
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The converse direction remains true if ψ(ξ) is rotationally invariant or if it is
replaced by its symmetric rearrangement.

Remark 4.11. If (Pt)t�0 is a Feller semigroup, i.e., a semigroup satisfying the
conditions 4.7.a)-g), then there exists a unique stochastic process (a Feller process)
with (Pt)t�0 as transition semigroup. The idea is to use Kolmogorov’s consistency
theorem for the following family of finite-dimensional distributions

pxt1,...,tn(B1 × · · · × Bn) = Pt1

(
1B1Pt2−t1

(
1B2Pt3−t2(. . . Ptn−tn−1(1Bn))

))
(x)

Here Xt0 = X0 = x a.s. Note: It is not enough to have a semigroup on Lp as we
need pointwise evaluations.

If the operators Pt are not a priori given on Bb(R
d) but only on C∞(Rd),

one still can use the Riesz representation theorem to construct Markov kernels
pt(x,B) representing and extending Pt onto Bb(R

d), cf. Lemma 5.2.

Recall that a stopping time is a random time τ : Ω → [0,∞] such that
{τ � t} ∈ Ft for all t � 0. It is not hard to see that τn := (�2nτ�+ 1)2−n, n ∈ N,
is a sequence of stopping times with values k2−n, k = 1, 2, . . . , such that

τ1 � τ2 � . . . � τn ↓ τ = inf
n∈N

τn.

This approximation is the key ingredient to extend the Markov property (Theo-
rem 4.6) to random times.

Theorem 4.12 (Strong Markov property for Lévy processes). Let X be a Lévy
process on Rd and set Y := (Xt+τ − Xτ )t�0 for some a.s. finite stopping time τ .
Then Y is again a Lévy process satisfying

a) Y ⊥⊥(Xr)r�τ , i.e., FY
∞ ⊥⊥FX

τ+ :=
{
F ∈ FX

∞ : F ∩ {τ < t} ∈ FX
t ∀t � 0

}
.

b) Y ∼ X, i.e., X and Y have the same finite-dimensional distributions.

Proof. Let τn := (�2nτ� + 1)2−n. For all 0 � s < t, ξ ∈ Rd and F ∈ FX
τ+ we find

by the right-continuity of the sample paths (or by the continuity in probability
(L3))

E
[
ei ξ·(Xt+τ−Xs+τ ) 1F

]
= lim

n→∞E
[
ei ξ·(Xt+τn−Xs+τn ) 1F

]
= lim

n→∞

∞∑
k=1

E
[
ei ξ·(Xt+k2−n−Xs+k2−n ) 1{τn=k2−n} · 1F

]
= lim

n→∞

∞∑
k=1

E
[
ei ξ·(Xt+k2−n−Xs+k2−n )︸ ︷︷ ︸

⊥⊥ FX
k2−n by (L2)

1{(k−1)2−n�τ<k2−n} 1F︸ ︷︷ ︸
∈FX

k2−n as F∈FX
τ+

]

= lim
n→∞

∞∑
k=1

E
[
ei ξ·Xt−s

]
P
({

(k − 1)2−n � τ < k2−n
} ∩ F

)
= E

[
ei ξ·Xt−s

]
P(F ).
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In the last equality we use
⋃·∞

k=1{(k − 1)2−n � τ < k2−n} = {τ < ∞} for all
n � 1.

The same calculation applies to finitely many increments. Let F ∈ FX
τ+ and

t0 = 0 < t1 < · · · < tn, ξ1, . . . , ξn ∈ Rd. Then

E
[
ei

∑n
k=1 ξk·(Xtk+τ−Xtk−1+τ ) 1F

]
=

n∏
k=1

E
[
ei ξk·Xtk−tk−1

]
P(F ).

This shows that the increments Xtk+τ −Xtk−1+τ are independent and distributed
like Xtk−tk−1

. Moreover, all increments are independent of F ∈ FX
τ+. Therefore,

all random vectors of the form (Xt1+τ −Xτ , . . . , Xtn+τ −Xtn−1+τ ) are independent
of FX

τ+, and we conclude that FY
∞ = σ(Xt+τ − Xτ , t � 0)⊥⊥FX

τ+. �



Chapter 5

A Digression: Semigroups

We have seen that the Markov kernel pt(x,B) of a Lévy or Markov process induces
a semigroup of linear operators (Pt)t�0. In this chapter we collect a few tools from
functional analysis for the study of operator semigroups. By Bb(R

d) we denote the
bounded Borel functions f : Rd → R, and C∞(Rd) are the continuous functions
vanishing at infinity, i.e., lim|x|→∞ f(x) = 0; when equipped with the uniform
norm ‖ · ‖∞ both sets become Banach spaces.

Definition 5.1. A Feller semigroup is a family of linear operators

Pt : Bb(R
d) → Bb(R

d)

satisfying the properties a)–g) of Definition 4.7: (Pt)t�0 is a semigroup of conser-
vative, sub-Markovian operators which enjoy the Feller property Pt(C∞(Rd)) ⊂
C∞(Rd) and which are strongly continuous on C∞(Rd).

Notice that (t, x) �→ Ptf(x) is for every f ∈ C∞(Rd) continuous. This follows
from

|Ptf(x) − Psf(y)| � |Ptf(x) − Ptf(y)|+ |Ptf(y)− Psf(y)|
� |Ptf(x) − Ptf(y)|+ ‖P|t−s|f − f‖∞,

the Feller property 4.7.f) and the strong continuity 4.7.g).

Lemma 5.2. If (Pt)t�0 is a Feller semigroup, then there exists a Markov transition
function pt(x, dy) (Definition 4.1) such that Ptf(x) =

∫
f(y) pt(x, dy).

Proof. By the Riesz representation theorem we see that the operators Pt are of the
form Ptf(x) =

∫
f(y) pt(x, dy) where pt(x, dy) is a Markov kernel. The tricky part

is to show the joint measurability (t, x) �→ pt(x,B) and the Chapman–Kolmogorov
identities (4.2).

For every compact set K ⊂ Rd the functions defined by

fn(x) :=
d(x, U c

n)

d(x,K) + d(x, U c
n)

, d(x,A) := inf
a∈A

|x− a|, Un := {y : d(y,K) < 1/n},
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36 Chapter 5. A Digression: Semigroups

are in C∞(Rd) and fn ↓ 1K . By monotone convergence, pt(x,K) = infn∈N Ptfn(x)
which proves the joint measurability in (t, x) for all compact sets.

By the same, the semigroup property Pt+sfn = PsPtfn entails the Chapman–
Kolmogorov identities for compact sets: pt+s(x,K) =

∫
pt(y,K) ps(x, dy). Since

D :=

⎧⎨⎩B ∈ B(Rd)

∣∣∣∣∣∣
(t, x) �→ pt(x,B) is measurable &

pt+s(x,B) =

∫
pt(y,B) ps(x, dy)

⎫⎬⎭
is a Dynkin system containing the compact sets, we have D = B(Rd). �

To get an intuition for semigroups it is a good idea to view the semigroup
property

Pt+s = Ps ◦ Pt and P0 = id

as an operator-valued Cauchy functional equation. If t �→ Pt is – in a suitable sense
– continuous, the unique solution will be of the form Pt = etA for some operator
A. This can be easily made rigorous for matrices A,Pt ∈ Rn×n since the matrix
exponential is well-defined by the uniformly convergent series

Pt = exp(tA) :=

∞∑
k=0

tkAk

k!
and A =

d

dt
Pt

∣∣∣
t=0

with A0 := id and Ak = A ◦ A ◦ · · · ◦ A (k times). With a bit more care, this can
be made to work also in general settings.

Definition 5.3. Let (Pt)t�0 be a Feller semigroup. The (infinitesimal) generator is
a linear operator defined by

D(A) :=

{
f ∈ C∞(Rd)

∣∣∣∣ ∃g ∈ C∞(Rd) : lim
t→0

∥∥∥∥Ptf − f

t
− g

∥∥∥∥
∞

= 0

}
(5.1)

Af := lim
t→0

Ptf − f

t
, f ∈ D(A). (5.2)

The next lemma is the rigorous version for the symbolic notation ‘Pt = etA’.

Lemma 5.4. Let (Pt)t�0 be a Feller semigroup with infinitesimal generator
(A,D(A)). Then Pt(D(A)) ⊂ D(A) and

d

dt
Ptf = APtf = PtAf for all f ∈ D(A), t � 0. (5.3)

Moreover,
∫ t

0
Psf ds ∈ D(A) for any f ∈ C∞(Rd), and

Ptf − f = A

∫ t

0

Psf ds, f ∈ C∞(Rd), t > 0 (5.4)

=

∫ t

0

PsAf ds, f ∈ D(A), t > 0. (5.5)
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Proof. Let 0 < ε < t and f ∈ D(A). The semigroup and contraction properties
give∥∥∥∥Ptf−Pt−εf

ε
−PtAf

∥∥∥∥
∞
�
∥∥∥∥Pt−ε

Pεf−f

ε
−Pt−εAf

∥∥∥∥
∞
+
∥∥Pt−εAf−Pt−εPεAf

∥∥
∞

�
∥∥∥∥Pεf−f

ε
−Af

∥∥∥∥
∞
+
∥∥Af−PεAf

∥∥
∞−−−→

ε→0
0

where we use the strong continuity in the last step. This shows d−
dt Ptf = APtf =

PtAf ; a similar (but simpler) calculation proves this also for d+

dt Ptf .

Let f ∈ C∞(Rd) and t, ε > 0. By Fubini’s theorem and the representation of
Pt with a Markov transition function (Lemma 5.2) we get

Pε

∫ t

0

Psf(x) ds =

∫ t

0

PεPsf(x) ds,

and so,

Pε − id

ε

∫ t

0

Psf(x) ds =
1

ε

∫ t

0

(
Ps+εf(x) − Psf(x)

)
ds

=
1

ε

∫ t+ε

t

Psf(x) ds − 1

ε

∫ ε

0

Psf(x) ds.

Since t �→ Ptf(x) is continuous, the fundamental theorem of calculus applies, and

we get limε→0
1
ε

∫ r+ε

r Psf(x) ds = Prf(x) for r � 0. This shows that
∫ t

0 Psf ds ∈
D(A) as well as (5.4). If f ∈ D(A), then we deduce (5.5) from∫ t

0

PsAf(x) ds
(5.3)
=

∫ t

0

d

ds
Psf(x) ds = Ptf(x) − f(x)

(5.4)
= A

∫ t

0

Psf(x) ds. �

Remark 5.5 (Consequences of Lemma 5.4). Write C∞ := C∞(Rd).

a) (5.4) shows that D(A) is dense in C∞, since D(A) � t−1
∫ t

0
Psf ds −−−→

t→0
f for

any f ∈ C∞.

b) (5.5) shows that A is a closed operator, i.e.,

fn∈D(A), (fn,Afn)
uniformly−−−−−−→
n→∞ (f,g)∈C∞×C∞ =⇒ f ∈D(A) &Af=g.

c) (5.3) means that A determines (Pt)t�0 uniquely.

Let us now consider the Laplace transform of (Pt)t�0.

Definition 5.6. Let (Pt)t�0 be a Feller semigroup. The resolvent is a linear operator
on Bb(R

d) given by

Rλf(x) :=

∫ ∞

0

e−λtPtf(x) dt, f ∈ Bb(R
d), x ∈ Rd, λ > 0. (5.6)
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The following formal calculation can easily be made rigorous. Let f ∈ D(A)
and (λ − A) := (λ id−A) for λ > 0. Then

(λ − A)Rλf = (λ − A)

∫ ∞

0

e−λtPtf dt

(5.4),(5.5)
=

∫ ∞

0

e−λt(λ − A)Ptf dt

= λ

∫ ∞

0

e−λtPtf dt −
∫ ∞

0

e−λt

(
d

dt
Ptf

)
dt

parts
= λ

∫ ∞

0

e−λtPtf dt − λ

∫ ∞

0

e−λtPtf dt − [e−λtPtf ]
∞
t=0 = f.

A similar calculation for Rλ(λ − A) gives

Theorem 5.7. Let (A,D(A)) and (Rλ)λ>0 be the generator and the resolvent of a
Feller semigroup. Then

Rλ = (λ − A)−1 for all λ > 0.

Since Rλ is the Laplace transform of (Pt)t�0, the properties of (Rλ)λ>0 can
be found from (Pt)t�0 and vice versa. With some effort one can even invert the
(operator-valued) Laplace transform which leads to the familiar expression for ex:

(n
t
Rn

t

)n

=

(
id− t

n
A

)−n
strongly−−−−−−→
n→∞ etA = Pt (5.7)

(the notation etA = Pt is, for unbounded operators A, formal), see Pazy [42,
Chapter 1.8].

Lemma 5.8. Let (Rλ)λ>0 be the resolvent of a Feller1 semigroup (Pt)t�0. Then

dn

dλn
Rλ = n!(−1)nRn+1

λ n ∈ N0. (5.8)

Proof. Using a symmetry argument we see

tn =

∫ t

0

. . .

∫ t

0

dt1 . . . dtn = n!

∫ t

0

∫ tn

0

. . .

∫ t2

0

dt1 . . . dtn.

Let f ∈ C∞(Rd) and x ∈ Rd. Then

(−1)n
dn

dλn
Rλf(x) =

∫ ∞

0

(−1)n
dn

dλn
e−λtPtf(x) dt =

∫ ∞

0

tne−λtPtf(x) dt

1This lemma only needs that the operators Pt are strongly continuous and contractive,
Definition 4.7.g), d).
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= n!

∫ ∞

0

∫ t

0

∫ tn

0

· · ·
∫ t2

0

e−λtPtf(x) dt1 . . . dtn dt

= n!

∫ ∞

0

∫ ∞

tn

· · ·
∫ ∞

t1

e−λtPtf(x) dt dt1 . . . dtn

= n!

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

e−λ(t+t1+···+tn)Pt+t1+···+tnf(x) dt dt1 . . . dtn

= n!Rn+1
λ f(x). �

The key result identifying the generators of Feller semigroups is the following
theorem due to Hille, Yosida and Ray, a proof can be found in Pazy [42, Chapter
1.4] or Ethier & Kurtz [17, Chapter 4.2]; a probabilistic approach is due to Itô [25].

Theorem 5.9 (Hille–Yosida–Ray). A linear operator (A,D(A)) on C∞(Rd) gener-
ates a Feller semigroup (Pt)t�0 if, and only if,

a) D(A) ⊂ C∞(Rd) dense.

b) A is dissipative, i.e., ‖λf − Af‖∞ � λ‖f‖∞ for some (or all) λ > 0.

c) (λ − A)(D(A)) = C∞(Rd) for some (or all) λ > 0.

d) A satisfies the positive maximum principle:

f ∈ D(A), f(x0) = sup
x∈Rd

f(x) � 0 =⇒ Af(x0) � 0. (PMP)

This variant of the Hille–Yosida theorem is not the standard version from
functional analysis since we are interested in positivity preserving (sub-Markov)
semigroups. Let us briefly discuss the role of the positive maximum principle.

Remark 5.10. Let (Pt)t�0 be a strongly continuous contraction semigroup on
C∞(Rd), i.e., ‖Ptf‖∞ � ‖f‖∞ and limt→0 ‖Ptf−f‖∞ = 0, cf. Definition 4.7.d),g).2

1◦ Sub-Markov ⇒ (PMP). Assume that f ∈ D(A) is such that f(x0) = sup f � 0.
Then

Ptf(x0)− f(x0)
f�f+

� P+
t f(x0) − f+(x0) � ‖f+‖∞ − f+(x0) = 0.

=⇒ Af(x0) = lim
t→0

Ptf(x0)− f(x0)

t
� 0.

Thus, (PMP) holds.

2◦ (PMP) ⇒ dissipativity. Assume that (PMP) holds and let f ∈ D(A). Since
f ∈ C∞(Rd), we may assume that f(x0) = |f(x0)| = sup |f | (otherwise
f � −f). Then

‖λf − Af‖∞ � λf(x0) − Af(x0)︸ ︷︷ ︸
�0

� λf(x0) = λ‖f‖∞.

2These properties are essential for the existence of a generator and the resolvent on C∞(Rd).
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3◦ (PMP) ⇒ sub-Markov. Since Pt is contractive, we have Ptf(x) � ‖Ptf‖∞ �
‖f‖∞ � 1 for all f ∈ C∞(Rd) such that |f | � 1. In order to see positivity,
let f ∈ C∞(Rd) be non-negative. We distinguish between two cases:

a) Rλf does not attain its infimum.] Since Rλf ∈ C∞(Rd) vanishes at infin-
ity, we have necessarily Rλf � 0.

b) ∃x0 : Rλf(x0) = inf Rλf . Because of the (PMP) we find

λRλf(x0)− f(x0) = ARλf(x0) � 0

=⇒ λRλf(x) � inf λRλf = λRλf(x0) � f(x0) � 0.

This proves that f � 0 =⇒ λRλf � 0. From (5.8) we see that λ �→ Rλf(x) is
completely monotone, hence it is the Laplace transform of a positive measure.
Since Rλf(x) has the integral representation (5.6), we see that Ptf(x) � 0
(for all t � 0 as t �→ Ptf is continuous).

Using the Riesz representation theorem (as in Lemma 5.2) we can extend
Pt as a sub-Markov operator onto Bb(R

d).

In order to determine the domain D(A) of the generator the following ‘max-
imal dissipativity’ result is handy.

Lemma 5.11 (Dynkin, Reuter). Assume that (A,D(A)) generates a Feller semi-
group and that (A,D(A)) extends A, i.e., D(A) ⊂ D(A) and A|D(A) = A. If

u ∈ D(A), u − Au = 0 =⇒ u = 0, (5.9)

then (A,D(A)) = (A,D(A)).

Proof. Since A is a generator, (id−A) : D(A) → C∞(Rd) is bijective. On the other
hand, the relation (5.9) means that (id−A) is injective, but (id−A) cannot have
a proper injective extension. �
Theorem 5.12. Let (Pt)t�0 be a Feller semigroup with generator (A,D(A)). Then

D(A) =

{
f ∈ C∞(Rd)

∣∣∣∣ ∃g ∈ C∞(Rd) ∀x : lim
t→0

Ptf(x) − f(x)

t
= g(x)

}
.

(5.10)

Proof. Denote by D(A) the right-hand side of (5.10) and define

Af(x) := lim
t→0

Ptf(x) − f(x)

t
for all f ∈ D(A), x ∈ Rd.

Obviously, (A,D(A)) is a linear operator which extends (A,D(A)). Since (PMP)
is, essentially, a pointwise assertion (see Remark 5.10, 1◦), A inherits (PMP); in
particular, A is dissipative (see Remark 5.10, 2◦):

‖Af − λf‖∞ � λ‖f‖∞.

This implies (5.9), and the claim follows from Lemma 5.11. �



Chapter 6

The Generator of a Lévy Process

We want to study the structure of the generator of (the semigroup corresponding
to) a Lévy process X = (Xt)t�0. This will also lead to a proof of the Lévy–
Khintchine formula.

Our approach uses some Fourier analysis. We denote by C∞
c (Rd) and S(Rd)

the smooth, compactly supported functions and the smooth, rapidly decreasing
‘Schwartz functions’.1 The Fourier transform is denoted by

f̂(ξ) = Ff(ξ) := (2π)−d

∫
Rd

f(x) e− i ξ·x dx, f ∈ L1(dx).

Observe that Ff is chosen in such a way that the characteristic function becomes
the inverse Fourier transform.

We have seen in Proposition 2.3 and its Corollaries 2.4 and 2.5 that X is
completely characterized by the characteristic exponent ψ : Rd → C

E ei ξ·Xt =
[
E ei ξ·X1

]t
= e−tψ(ξ), t � 0, ξ ∈ Rd.

We need a few more properties of ψ which result from the fact that χ(ξ) = e−ψ(ξ)

is a characteristic function.

Lemma 6.1. Let χ(ξ) be the characteristic function of a probability measure μ.
Then

|χ(ξ + η) − χ(ξ)χ(η)|2 � (1 − |χ(ξ)|2)(1 − |χ(η)|2), ξ, η ∈ Rd. (6.1)

Proof. Since μ is a probability measure, we find from the definition of χ

χ(ξ + η) − χ(ξ)χ(η) =

∫∫ (
eix·ξeix·η − eix·ξei y·η

)
μ(dx)μ(dy)

=
1

2

∫∫ (
eix·ξ − ei y·ξ

)(
eix·η − ei y·η

)
μ(dx)μ(dy).

1To be precise, f ∈ S(Rd), if f ∈ C∞(Rd) and if supx∈Rd(1 + |x|N)|∂αf(x)| � cN,α for any

N ∈ N0 and any multiindex α ∈ Nd
0.
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42 Chapter 6. The Generator of a Lévy Process

In the last equality we use that the integrand is symmetric in x and y, which
allows us to interchange the variables. Using the elementary formula |ei a − ei b|2 =
2− 2 cos(b− a) and the Cauchy–Schwarz inequality yield

|χ(ξ + η) − χ(ξ)χ(η)|
� 1

2

∫∫ ∣∣eix·ξ − ei y·ξ
∣∣ · ∣∣eix·η − ei y·η

∣∣μ(dx)μ(dy)
=

∫∫ √
1 − cos(y − x) · ξ

√
1 − cos(y − x) · η μ(dx)μ(dy)

�
√∫∫ (

1 − cos(y − x) · ξ)μ(dx)μ(dy)√∫∫ (
1 − cos(y − x) · η)μ(dx)μ(dy).

This finishes the proof as∫∫
cos(y − x) · ξ μ(dx)μ(dy) = Re

[∫
ei y·ξ μ(dy)

∫
e− ix·ξ μ(dx)

]
= |χ(ξ)|2. �

Theorem 6.2. Let ψ : Rd → C be the characteristic exponent of a Lévy process.
Then ξ �→ √|ψ(ξ)| is subadditive and

|ψ(ξ)| � cψ(1 + |ξ|2), ξ ∈ Rd. (6.2)

Proof. We use (6.1) with χ = e−tψ, divide by t > 0 and let t → 0. Since we have
|χ| = e−tReψ, this gives

|ψ(ξ + η) − ψ(ξ) − ψ(η)|2 � 4Reψ(ξ)Reψ(η) � 4|ψ(ξ)| · |ψ(η)|.
By the lower triangle inequality,

|ψ(ξ + η)| − |ψ(ξ)| − |ψ(η)| � 2
√

|ψ(ξ)|
√

|ψ(η)|
and this is the same as subadditivity:

√|ψ(ξ + η)| � √|ψ(ξ)| +√|ψ(η)|.
In particular, |ψ(2ξ)| � 4|ψ(ξ)|. For any ξ �= 0 there is some n = n(ξ) ∈ Z

such that 2n−1 � |ξ| � 2n, so

|ψ(ξ)| = |ψ(2n2−nξ)| � max{1, 22n} sup
|η|�1

|ψ(η)| � 2 sup
|η|�1

|ψ(η)|(1 + |ξ|2). �

Lemma 6.3. Let (Xt)t�0 be a Lévy process and denote by (A,D(A)) its generator.
Then C∞

c (Rd) ⊂ D(A).

Proof. Let f ∈ C∞
c (Rd). By definition, Ptf(x) = Ef(Xt + x). Using the differen-

tiation lemma for parameter-dependent integrals (e.g., [54, Theorem 11.5] or [55,
12.2]) it is not hard to see that Pt : S(R

d) → S(Rd). Obviously,

e−tψ(ξ) = E ei ξ·Xt = Exei ξ·(Xt−x) = e−ξ(x)Pteξ(x) (6.3)
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for eξ(x) := ei ξ·x. Recall that the Fourier transform of f ∈ S(Rd) is again in S(Rd).
From

Ptf = Pt

∫
f̂(ξ)eξ(·) dξ =

∫
f̂(ξ)Pteξ(·) dξ (6.4)

(6.3)
=

∫
f̂(ξ)eξ(·)e−tψ(ξ) dξ

we conclude that P̂tf = f̂e−tψ. Hence,

Ptf = F−1(f̂e−tψ). (6.5)

Consequently,

P̂tf − f̂

t
=

e−tψ f̂ − f̂

t
−−−→
t→0

−ψf̂

f̂∈S(Rd)
=======⇒ Ptf(x) − f(x)

t
−−−→
t→0

g(x) := F−1(−ψf̂)(x).

Since ψ grows at most polynomially (Lemma 6.2) and f̂ ∈ S(Rd), we know that

ψf̂ ∈ L1(dx) and, by the Riemann–Lebesgue lemma, g ∈ C∞(Rd). Using Theo-
rem 5.12 it follows that f ∈ D(A). �
Definition 6.4. Let L : C2

b(R
d) → Cb(R

d) be a linear operator. Then

L(x, ξ) := e−ξ(x)Lxeξ(x) (6.6)

is the symbol of the operator L = Lx, where eξ(x) := ei ξ·x.

The proof of Lemma 6.3 actually shows that we can recover an operator L
from its symbol L(x, ξ) if, say, L : C2

b(R
d) → Cb(R

d) is continuous:2 Indeed, for
all u ∈ C∞

c (Rd)

Lu(x) = L

∫
û(ξ)eξ(x) dξ

=

∫
û(ξ)Lxeξ(x) dξ

=

∫
û(ξ)L(x, ξ)eξ(x)dξ = F−1(L(x, ·)Fu(·))(x).

Example 6.5. A typical example would be the Laplace operator (i.e., the generator
of a Brownian motion)

1
2Δf(x) = − 1

2 (
1
i ∂x)

2f(x) =

∫
f̂(ξ)

(− 1
2 |ξ|2

)
ei ξ·x dξ, i.e., L(x, ξ) = −1

2
|ξ|2,

2As usual, C2
b(R

d) is endowed with the norm ‖u‖(2) =
∑

0�|α|�2 ‖∂αu‖∞.
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or the fractional Laplacian of order 1
2α ∈ (0, 1) which generates a rotationally

symmetric α-stable Lévy process

−(−Δ)α/2f(x) =

∫
f̂(ξ)

(− |ξ|α)ei ξ·x dξ, i.e., L(x, ξ) = −|ξ|α.

More generally, if P (x, ξ) is a polynomial in ξ, then the corresponding operator is
obtained by replacing ξ by 1

i ∇x and formally expanding the powers.

Definition 6.6. An operator of the form

L(x,D)f(x) =

∫
f̂(ξ)L(x, ξ)ei x·ξ dξ, f ∈ S(Rd), (6.7)

is called (if defined) a pseudo-differential operator with (non-classical) symbol
L(x, ξ).

Remark 6.7. The symbol of a Lévy process does not depend on x, i.e., L(x, ξ) =
L(ξ). This is a consequence of the spatial homogeneity of the process which is
encoded in the translation invariance of the semigroup (cf. (4.6) and Lemma 4.4):

Ptf(x) = Ef(Xt + x) =⇒ Ptf(x) = ϑx(Ptf)(0) = Pt(ϑxf)(0)

where ϑxu(y) = u(y+x) is the shift operator. This property is obviously inherited
by the generator, i.e.,

Af(x) = ϑx(Af)(0) = A(ϑxf)(0), f ∈ D(A).

In fact, the converse is also true: If L : C∞
c (Rd) → C(Rd) is a linear operator

satisfying ϑx(Lf) = L(ϑxf), then Lf = f ∗ λ where λ is a distribution, i.e., a
continuous linear functional λ : C∞

c (Rd) → R, cf. Theorem A.10.

Theorem 6.8. Let (Xt)t�0 be a Lévy process with generator A. Then

Af(x) = l ·∇f(x)+
1

2
∇·Q∇f(x)+

∫
y �=0

[
f(x+y)−f(x)−∇f(x) ·y1(0,1)(|y|)

]
ν(dy)

(6.8)
for any f ∈ C∞

c (Rd), where l ∈ Rd, Q ∈ Rd×d is a positive semidefinite matrix,
and ν is a measure on Rd \ {0} such that

∫
y �=0 min{1, |y|2} ν(dy) < ∞.

Equivalently, A is a pseudo-differential operator

Au(x) = −ψ(D)u(x) = −
∫

û(ξ)ψ(ξ)ei x·ξ dξ, u ∈ C∞
c (Rd), (6.9)

whose symbol is the characteristic exponent −ψ of the Lévy process. It is given by
the Lévy–Khintchine formula

ψ(ξ) = − i l · ξ + 1

2
ξ · Qξ +

∫
y �=0

(
1 − ei y·ξ + i ξ · y1(0,1)(|y|)

)
ν(dy) (6.10)

where the triplet (l, Q, ν) as above.
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I learned the following proof from Francis Hirsch; it is based on arguments
by Courrège [13] and Herz [20]. The presentation below follows the version in
Böttcher, Schilling & Wang [9, Section 2.3].

Proof. The proof is divided into several steps.

1◦ We have seen in Lemma 6.3 that C∞
c (Rd) ⊂ D(A).

2◦ Set A0f := (Af)(0) for f ∈ C∞
c (Rd). This is a linear functional on C∞

c .
Observe that

f ∈ C∞
c (Rd), f � 0, f(0) = 0

(PMP)
====⇒ A0f � 0.

3◦ By 2◦, f �→ A00f := A0(| · |2 · f) is a positive linear functional on C∞
c (Rd).

Therefore it is bounded. Indeed, let f ∈ C∞
c (K) for a compact set K ⊂ Rd

and let φ ∈ C∞
c (Rd) be a cut-off function such that 1K � φ � 1. Then

‖f‖∞φ ± f � 0.

By linearity and positivity ‖f‖∞A00φ ± A00f � 0 which shows |A00f | �
CK‖f‖∞ with CK = A00φ.

By Riesz’ representation theorem, there exists a Radon measure3 μ such
that

A0(| · |2f) =
∫

f(y)μ(dy) =

∫
|y|2f(y) μ(dy)|y|2︸ ︷︷ ︸

=:ν(dy)

=

∫
|y|2f(y) ν(dy).

This implies that

A0f0 =

∫
y �=0

f0(y) ν(dy) for all f0 ∈ C∞
c (Rd \ {0});

since any compact subset of Rd\{0} is contained in an annulus BR(0)\Bε(0),
we have supp f0 ∩ Bε(0) = ∅ for some sufficiently small ε > 0. The measure
ν is a Radon measure on Rd \ {0}.

4◦ Let f, g ∈ C∞
c (Rd), 0 � f, g � 1, supp f ⊂ B1(0), supp g ⊂ B1(0)

c
and

f(0) = 1. From

sup
y∈Rd

(‖g‖∞f(y) + g(y)
)
= ‖g‖∞ = ‖g‖∞f(0) + g(0)

and (PMP), it follows that A0(‖g‖∞f + g) � 0. Consequently,

A0g � −‖g‖∞A0f.

3A Radon measure on a topological space E is a Borel measure which is finite on compact
subsets of E and regular: for all open sets μ(U) = supK⊂U μ(K) and for all Borel sets μ(B) =
infU⊃B μ(U) (K, U are generic compact and open sets, respectively).
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If g ↑ 1 − 1B1(0)
, then this shows∫

|y|>1

ν(dy) � −A0f < ∞.

Hence,
∫
y �=0(|y|2 ∧ 1) ν(dy) < ∞.

5◦ Let f ∈ C∞
c (Rd) and φ(y) = 1(0,1)(|y|). Define

S0f :=

∫
y �=0

[
f(y)− f(0)− y · ∇f(0)φ(y)

]
ν(dy). (6.11)

By Taylor’s formula, there is some θ ∈ (0, 1) such that

f(y)− f(0)− y · ∇f(0)φ(y) =
1

2

d∑
k,l=1

∂2f(θy)

∂xk∂xl
ykyl.

Using the elementary inequality 2ykyl � y2k + y2l � |y|2, we obtain

|f(y)− f(0)− y · ∇f(0)φ(y)| �
{

1
4

∑d
k,l=1

∥∥ ∂2

∂xk∂xl
f
∥∥
∞|y|2, |y| < 1

2‖f‖∞, |y| � 1

� 2‖f‖(2)(|y|2 ∧ 1).

This means that S0 defines a distribution (generalized function) of order 2.

6◦ Set L0 := A0 − S0. The steps 2◦ and 5◦ show that A0 is a distribution of
order 2. Moreover,

L0f0 =

∫
y �=0

[
f0(0)− y · ∇f0(0)φ(y)

]
ν(dy) = 0

for any f0 ∈ C∞
c (Rd) with f0|Bε(0) = 0 for some ε > 0. This implies that

supp(L0) ⊂ {0}.
Let us show that L0 is almost positive (also: ‘fast positiv’, ‘prèsque

positif’):

f0 ∈ C∞
c (Rd), f0(0) = 0, f0 � 0 =⇒ L0f0 � 0. (PP)

Indeed: Pick 0 � φn ∈ C∞
c (Rd \ {0}), φn ↑ 1Rd\{0} and let f0 be as in (PP).

Then

L0f0
suppL0⊂{0}

= L0[(1 − φn)f0)]

= A0[(1 − φn)f0]− S0[(1 − φn)f0]

f0(0)=0
=

∇f0(0)=0
A0[(1 − φn)f0]−

∫
y �=0

(1 − φn(y))f0(y) ν(dy)

2◦

�
(PMP)

−
∫
(1 − φn(y))f0(y) ν(dy) −−−−→

n→∞ 0

by the monotone convergence theorem.
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7◦ As in 5◦ we find with Taylor’s formula for f ∈ C∞
c (Rd), supp f ⊂ K and

φ ∈ C∞
c (Rd) satisfying 1K � φ � 1

(f(y) − f(0)− ∇f(0) · y)φ(y) � 2‖f‖(2)|y|2φ(y).
(As usual, ‖f‖(2) =

∑
0�|α|�2 ‖∂αf‖∞.) Therefore,

2‖f‖(2)|y|2φ(y) + f(0)φ(y) + ∇f(0) · yφ(y) − f(y) � 0,

and (PP) implies

L0f � f(0)L0φ+ |∇f(0)|L0(| · |φ) + 2‖f‖(2)L0(| · |2φ) � CK‖f‖(2).
8◦ We have seen in 6◦ that L0 is of order 2 and suppL0 ⊂ {0}. Therefore,

L0f =
1

2

d∑
k,l=1

qkl
∂2f(0)

∂xk∂xl
+

d∑
k=1

lk
∂f(0)

∂xk
− cf(0). (6.12)

We will show that (qkl)k,l is positive semidefinite. Set g(y) := (y · ξ)2f(y)
where f ∈ C∞

c (Rd) is such that 1B1(0) � f � 1. By (PP), L0g � 0. It is not
difficult to see that this implies

d∑
k,l=1

qklξkξl � 0, for all ξ = (ξ1, . . . , ξd) ∈ Rd.

9◦ Since Lévy processes and their semigroups are invariant under translations,
cf. Remark 6.7, we get Af(x) = A0[f(x+ ·)]. If we replace f by f(x+ ·), we
get

Af(x) = cf(x) + l · ∇f(x) +
1

2
∇ · Q∇f(x)

+

∫
y �=0

[
f(x+ y) − f(x) − y · ∇f(x)1(0,1)(|y|)

]
ν(dy).

(6.8′)

We will show in the next step that c = 0.

10◦ So far, we have seen in 5◦, 7◦ and 9◦ that

‖Af‖∞ � C‖f‖(2) = C
∑
|α|�2

‖∂αf‖∞, f ∈ C∞
c (Rd),

which means that A (has an extension which) is continuous as an opera-
tor from C2

b(R
d) to Cb(R

d). Therefore, (A,C∞
c (Rd)) is a pseudo-differential

operator with symbol

−ψ(ξ) = e−ξ(x)Axeξ(x), eξ(x) = ei ξ·x.

Inserting eξ into (6.8′) proves (6.10) and, as ψ(0) = 0, c = 0. �
Remark 6.9. In step 8◦ of the proof of Theorem 6.8 one can use the (PMP) to
show that the coefficient c appearing in (6.8′) is positive. For this, let (fn)n∈N be
a sequence in C∞

c (Rd), fn ↑ 1 and fn|B1(0) = 1. By (PMP), A0fn � 0. Moreover,
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∇fn(0) = 0 and, therefore,

S0fn = −
∫
(1 − fn(y)) ν(dy) −−−−→

n→∞ 0.

Consequently,

lim sup
n→∞

L0fn = lim sup
n→∞

(A0fn − S0fn) � 0 =⇒ c � 0.

For Lévy processes we have c = ψ(0) = 0 and this is a consequence of the
infinite life-time of the process:

P(Xt ∈ Rd) = Pt1 = 1 for all t � 0,

and we can use the formula Ptf − f = A
∫ t

0
Psf ds, cf. Lemma 5.4, for f ≡ 1 to

show that c = A1 = 0 ⇐⇒ Pt1 = 1.

Definition 6.10. A Lévy measure is a Radon measure ν on Rd \ {0} such that∫
y �=0(|y|2 ∧ 1) ν(dy) < ∞. A Lévy triplet is a triplet (l, Q, ν) consisting of a vector

l ∈ Rd, positive semi-definite matrix Q ∈ Rd×d and a Lévy measure ν.

The proof of Theorem 6.8 incidentally shows that the Lévy triplet defining
the exponent (6.10) or the generator (6.8) is unique. The following corollary can
easily be checked using the representation (6.8).

Corollary 6.11. Let A be the generator and (Pt)t�0 the semigroup of a Lévy process.
Then the Lévy triplet is given by∫

f0 dν = Af0(0) = lim
t→0

Ptf0(0)

t
∀f0 ∈ C∞

c (Rd \ {0}),

lk = Aφk(0)−
∫

yk
[
φ(y) − 1(0,1)(|y|)

]
ν(dy), k = 1, . . . , d,

qkl = A(φkφl)(0) −
∫
y �=0

φk(y)φl(y) ν(dy), k, l = 1, . . . d,

(6.13)

where φ ∈ C∞
c (Rd) satisfies 1B1(0) � φ � 1 and φk(y) := ykφ(y). In particular,

(l, Q, ν) is uniquely determined by A or the characteristic exponent ψ.

We will see an alternative uniqueness proof in the next Chapter 7.

Remark 6.12. Setting pt(dy) = P(Xt ∈ dy), we can recast the formula for the
Lévy measure as

ν(dy) = lim
t→0

pt(dy)

t
(vague limit of measures on the set Rd \ {0}).

Moreover, a direct calculation using the Lévy–Khintchine formula (6.13) gives the
following alternative representation for the qkl:

1

2
ξ · Qξ = lim

n→∞
ψ(nξ)

n2
, ξ ∈ Rd.
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Construction of Lévy Processes

Our starting point is now the Lévy–Khintchine formula for the characteristic ex-
ponent ψ of a Lévy process

ψ(ξ) = − i l · ξ + 1

2
ξ · Qξ +

∫
y �=0

[
1 − ei y·ξ + i ξ · y1(0,1)(|y|)

]
ν(dy) (7.1)

where (l, Q, ν) is a Lévy triplet in the sense of Definition 6.10; a proof of (7.1) is
contained in Theorem 6.8, but the exposition below is independent of this proof,
see however Remark 7.7 at the end of this chapter.

What will be needed is that a compound Poisson process is a Lévy process
with càdlàg paths and characteristic exponent of the form

φ(ξ) =

∫
y �=0

[
1− ei y·ξ

]
ρ(dy) (7.2)

(ρ is any finite measure), see Example 3.2.d), where ρ(dy) = λ · μ(dy).
Let ν be a Lévy measure and denote by Aa,b = {y : a � |y| < b} an

annulus. Since
∫
y �=0

|y|2∧1 ν(dy) < ∞, the measure ρ(B) := ν(B ∩Aa,b) is a finite
measure, and there is a corresponding compound Poisson process. Adding a drift
with l = − ∫

y ρ(dy) shows that for every exponent

ψa,b(ξ) =

∫
a�|y|<b

[
1 − ei y·ξ + i y · ξ] ν(dy) (7.3)

there is some Lévy process Xa,b = (Xa,b
t )t�0. In fact,

Lemma 7.1. Let 0 < a < b � ∞ and ψa,b given by (7.3). Then the corresponding
Lévy process Xa,b is an L2(P)-martingale with càdlàg paths such that

E
[
Xa,b

t

]
= 0 and E

[
Xa,b

t · (Xa,b
t )�

]
=

(
t

∫
a�|y|<b

ykyl ν(dy)

)
k,l

.
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Proof. Set Xt := Xa,b
t , ψ := ψa,b and Ft := σ(Xr, r � t). Using the differentia-

tion lemma for parameter-dependent integrals we see that ψ is twice continuously
differentiable and

∂ψ(0)

∂ξk
= 0 and

∂2ψ(0)

∂ξk∂ξl
=

∫
a�|y|<b

ykyl ν(dy).

Since the characteristic function e−tψ(ξ) is twice continuously differentiable, X
has first and second moments, cf. Theorem A.2, and these can be obtained by
differentiation:

EX
(k)
t =

1

i

∂

∂ξk
E ei ξ·Xt

∣∣∣∣
ξ=0

= i t
∂ψ(0)

∂ξk
= 0

and

E(X
(k)
t X

(l)
t ) = − ∂2

∂ξk∂ξl
E ei ξ·Xt

∣∣∣∣
ξ=0

=
t∂2ψ(0)

∂ξk∂ξl
− t∂ψ(0)

∂ξk

t∂ψ(0)

∂ξl

= t

∫
a�|y|<b

ykyl ν(dy).

The martingale property now follows from the independence of the increments:
Let s � t, then

E(Xt | Fs) = E(Xt − Xs +Xs | Fs)

= E(Xt − Xs | Fs) +Xs
(L2)
=

(L1)
E(Xt−s) +Xs = Xs. �

We will use the processes from Lemma 7.1 as main building blocks for the
Lévy process. For this we need some preparations.

Lemma 7.2. Let (Xk
t )t�0 be Lévy processes with characteristic exponents ψk. If

X1 ⊥⊥X2, then X := X1 + X2 is a Lévy process with characteristic exponent
ψ = ψ1 + ψ2.

Proof. Set F k
t := σ(Xk

s , s � t) and Ft = σ(F 1
t ,F

2
t ). Since X1 ⊥⊥X2, we get for

F = F1 ∩ F2, Fk ∈ F k
s ,

E
(
ei ξ·(Xt−Xs)1F

)
= E

(
ei ξ·(X

1
t −X1

s )1F1 · ei ξ·(X2
t −X2

s )1F2

)
= E

(
ei ξ·(X

1
t −X1

s )1F1

)
E
(
ei ξ·(X

2
t −X2

s )1F2

)
(L2)
= e−(t−s)ψ1(ξ)P(F1) · e−(t−s)ψ2(ξ)P(F2)

= e−(t−s)(ψ1(ξ)+ψ2(ξ))P(F ).
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As {F1 ∩ F2 : Fk ∈ F k
s } is a ∩-stable generator of Fs, we find

E
(
ei ξ·(Xt−Xs)

∣∣∣ Fs

)
= e−(t−s)ψ(ξ).

Observe that Fs could be larger than the canonical filtration FX
s . Therefore, we

first condition w.r.t. E(· · · | FX
s ) and then use Theorem 3.1, to see that X is a

Lévy process with exponent ψ = ψ1 + ψ2. �

Lemma 7.3. Let (Xn)n∈N be a sequence of Lévy processes with characteristic ex-
ponents ψn. Assume that Xn

t → Xt converges in probability for every t � 0. If

either: the convergence is uniform in probability, i.e.,

∀ε > 0 ∀t � 0 : lim
n→∞P

(
sup
s�t

|Xn
s − Xs| > ε

)
= 0,

or: the limiting process X has càdlàg paths,

then X is a Lévy process with characteristic exponent ψ := limn→∞ ψn.

Proof. Let 0 = t0 < t1 < · · · < tm and ξ1, . . . , ξm ∈ Rd. Since the Xn are Lévy
processes,

E exp

[
i

m∑
k=1

ξk · (Xn
tk − Xn

tk−1
)

]
(L2),(L1)

=

m∏
k=1

E exp
[
i ξk ·Xn

tk−tk−1

]
and, because of convergence in probability, this equality is inherited by the lim-
iting process X . This proves that X has independent (L2′) and stationary (L1)
increments.

The condition (L3) follows either from the uniformity of the convergence in
probability or the càdlàg property. Thus, X is a Lévy process. From

lim
n→∞E ei ξ·X

n
1 = E ei ξ·X1

we get that the limit limn→∞ ψn = ψ exists. �

Lemma 7.4 (Notation of Lemma 7.1). Let (an)n∈N be a sequence a1 > a2 > · · ·
decreasing to zero and assume that the processes (Xan+1,an)n∈N are independent
Lévy processes with characteristic exponents ψan+1,an . Then X :=

∑∞
n=1 X

an+1,an

is a Lévy process with characteristic exponent ψ :=
∑∞

n=1 ψan+1,an and càdlàg
paths. Moreover, X is an L2(P)-martingale.

Proof. Lemmas 7.1, 7.2 show that Xan+m,an =
∑m

k=1 X
an+k,an+k−1 is a Lévy pro-

cess with characteristic exponent ψan+m,an =
∑m

k=1 ψan+k,an+k−1
, and Xan+m,an
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is an L2(P)-martingale. By Doob’s inequality and Lemma 7.1

E

(
sup
s�t

|Xan+m,an
s |2

)
� 4E

(|Xan+m,an

t |2)
= 4t

∫
an+m�|y|<an

y2 ν(dy)
dom. convergence−−−−−−−−−−−→

m,n→∞ 0.

Hence, the limit X = limn→∞ Xan,a1 exists (uniformly in t) in L2, i.e., X is an
L2(P)-martingale; since the convergence is also uniform in probability, Lemma 7.3
shows that X is a Lévy process with exponent ψ =

∑∞
n=1 ψan+1,an . Taking a

uniformly convergent subsequence, we also see that the limit inherits the càdlàg
property from the approximating Lévy processes Xan,a1 . �

We can now prove the main result of this chapter.

Theorem 7.5. Let (l, Q, ν) be a Lévy triplet and ψ be given by (7.1). Then there
exists a Lévy process X with càdlàg paths and characteristic exponent ψ.

Proof. Because of Lemma 7.1, 7.2 and 7.4 we can construct X piece by piece.

1◦ Let (Wt)t�0 be a Brownian motion and set

Xc
t := tl +

√
QWt and ψc(ξ) := − i l · ξ + 1

2
ξ ·Qξ.

2◦ Write Rd \{0} =
⋃·∞

n=0 An with A0 := {|y| � 1} and An :=
{

1
n+1 � |y| < 1

n

}
and set μn := ν(· ∩An)/ν(An), λn := ν(An).

3◦ Construct, as in Example 3.2.d), a compound Poisson process comprising the
large jumps

X0
t := X1,∞

t and ψ0(ξ) :=

∫
1�|y|<∞

[
1 − ei y·ξ

]
ν(dy)

and compensated compound Poisson processes taking account of all small
jumps

Xn
t := X

an+1,an

t , an :=
1

n
and ψn(ξ) :=

∫
An

[
1 − ei y·ξ + i y · ξ] ν(dy).

We can construct the processes Xn to be stochastically independent (just
choose independent jump time processes and independent iid jump heights
when constructing the compound Poisson processes) and independent of the
Wiener process W .

4◦ Setting ψ = ψ0+ψc+
∑∞

n=1 ψn, Lemma 7.2 and 7.4 prove the theorem. Since
all approximating processes have càdlàg paths, this property is inherited by
the sums and the limit (Lemma 7.4). �
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The proof of Theorem 7.5 also implies the following pathwise decomposition
of a Lévy process. We write ΔXt := Xt − Xt− for the jump at time t. From the
construction we know that

(large jumps) J
[1,∞)
t =

∑
s�t

ΔXs1[1,∞)(|ΔXs|) (7.4)

(small jumps) J
[1/n,1)
t =

∑
s�t

ΔXs1[1/n,1)(|ΔXs|) (7.5)

(compensated

small jumps)

J̃t
[1/n,1)

= J
[1/n,1)
t − EJ

[1/n,1)
t (7.6)

=
∑
s�t

ΔXs1[1/n,1)(|ΔXs|) − t

∫
1
n�|y|<1

y ν(dy).

are Lévy processes and J [1,∞) ⊥⊥ J̃ [1/n,1).

Corollary 7.6. Let ψ be a characteristic exponent given by (7.1) and let X be the
Lévy process constructed in Theorem 7.5. Then

Xt =
√
QWt + lim

n→∞

(∑
s�t

ΔXs1[1/n,1)(|ΔXs|) − t

∫
[1/n,1)

y ν(dy)

) ]]]
=: Mt,

L2-martingale

tl

continuous
Gaussian

+
∑
s�t

ΔXs1[1,∞)(|ΔXs|).

pure jump part

]]]
=: At,

bdd. variation,

where all appearing processes are independent.

Proof. The decomposition follows directly from the construction in Theorem 7.5.
By Lemma 7.4, limn→∞ X1/n,1 is an L2(P)-martingale, and since the (indepen-
dent!) Wiener process W is also an L2(P)-martingale, so is their sum M .

The paths t �→ At(ω) are a.s. of bounded variation since, by construction, on
any time-interval [0, t] there are N0

t (ω) jumps of size � 1. Since N0
t (ω) < ∞ a.s.,

the total variation of At(ω) is less or equal than |l|t +∑
s�t |ΔXs|1[1,∞)(|ΔXs|)

which is a.s. finite. �

Remark 7.7. A word of caution: Theorem 7.5 associates with any ψ given by the
Lévy–Khintchine formula (7.1) a Lévy process. Unless we know that all charac-
teristic exponents are of this form (this was proved in Theorem 6.8), it does not
follow that we have constructed all Lévy processes.

On the other hand, Theorem 7.5 shows that the Lévy triplet determining ψ
is unique. Indeed, assume that (l, Q, ν) and (l′, Q′, ν′) are two Lévy triplets which
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yield the same exponent ψ. Now we can associate, using Theorem 7.5, with each
triplet a Lévy process X and X ′ such that

E ei ξ·Xt = e−tψ(ξ) = E ei ξ·X
′
t .

Thus, X ∼ X ′ and so these processes have (in law) the same pathwise decomposi-
tion, i.e., the same drift, diffusion and jump behaviour. This, however, means that
(l, Q, ν) = (l′, Q′, ν′).



Chapter 8

Two Special Lévy Processes

We will now study the structure of the paths of a Lévy process. We begin with
two extreme cases: Lévy processes which only grow by jumps of size 1 and Lévy
processes with continuous paths.

Throughout this chapter we assume that all paths [0,∞) � t �→ Xt(ω) are
right-continuous with finite left-hand limits (càdlàg). This is a bit stronger than
(L3), but it is always possible to construct a càdlàg version of a Lévy process (see
the discussion on page 14). This allows us to consider the jumps of the process X

ΔXt := Xt − Xt− = Xt − lim
s↑t

Xs.

Theorem 8.1. Let X be a one-dimensional Lévy process which moves only by jumps
of size 1. Then X is a Poisson process.

Proof. Set FX
t := σ(Xs, s � t) and let T1 = inf{t > 0 : ΔXt = 1} be the time of

the first jump. Since {T1 > t} = {Xt = 0} ∈ FX
t , T1 is a stopping time.

Let T0 = 0 and Tk = inf{t > Tk−1 : ΔXt = 1}, be the time of the kth jump;
this is also a stopping time. By the Markov property ((4.4) and Lemma 4.4),

P(T1 > s+ t) = P(T1 > s, T1 > s+ t)

= E
[
1{T1>s}PXs(T1 > t)

]
= E

[
1{T1>s}P0(T1 > t)

]
= P(T1 > s)P(T1 > t)

where we use that Xs = 0 if T1 > s (the process hasn’t yet moved!) and P = P0.

Since t �→ P(T1 > t) is right-continuous, this functional equation has the
unique solution P(T1 > t) = exp[t logP(T1 > 1)] (Theorem A.1). Thus, the se-
quence of inter-jump times σk := Tk−Tk−1, k ∈ N, is an iid sequence of exponential
times. This follows immediately from the strong Markov property (Theorem 4.12)
for Lévy processes and the observation that

Tk+1 − Tk = T Y
1 where Y = (Yt+Tk

− YTk
)t�0

and T Y
1 is the first jump time of the process Y .

© Springer International Publishing Switzerland 2016  
D. Khoshnevisan, R. Schilling, From Lévy-Type Processes to Parabolic SPDEs,  
Advanced Courses in Mathematics - CRM Barcelona, DOI 10.1007/978-3-319-34120-0_8

55



56 Chapter 8. Two Special Lévy Processes

Obviously, Xt =
∑∞

k=1 1[0,t](Tk), Tk = σ1 + · · · + σk, and Example 3.2.c)
(and Theorem 3.4) show that X is a Poisson process. �

A Lévy process with uniformly bounded jumps admits moments of all orders.

Lemma 8.2. Let (Xt)t�0 be a Lévy process such that |ΔXt(ω)| � c for all t � 0
and some constant c > 0. Then E(|Xt|p) < ∞ for all p � 0.

Proof. Let FX
t := σ(Xs, s � t) and define the stopping times

τ0 := 0, τn := inf
{
t > τn−1 : |Xt − Xτn−1| � c

}
.

Since X has càdlàg paths, τ0 < τ1 < τ2 < · · · . Let us show that τ1 < ∞ a.s. For
fixed t > 0 and n ∈ N we have

P(τ1 = ∞) � P(τ1 � nt) � P(|Xkt − X(k−1)t| � 2c, ∀k = 1, . . . , n)

(L2)
=

(L2′)

n∏
k=1

P(|Xkt − X(k−1)t| � 2c)
(L1)
= P(|Xt| � 2c)n.

Letting n → ∞ we see that P(τ1 = ∞) = 0 if P(|Xt| � 2c) < 1 for some t > 0.
(In the alternative case, we have P(|Xt| � 2c) = 1 for all t > 0 which makes the
lemma trivial.)

By the strong Markov property (Theorem 4.12)

τn − τn−1 ∼ τ1 and τn − τn−1 ⊥⊥FX
τn−1

,

i.e., (τn − τn−1)n∈N is an iid sequence. Therefore,

E e−τn =
(
E e−τ1

)n
= qn

for some q ∈ [0, 1). From the very definition of the stoppping times we infer

|Xt∧τn | �
n∑

k=1

|Xτk − Xτk−1
| �

n∑
k=1

( |ΔXτk |︸ ︷︷ ︸
�c

+ |Xτk− − Xτk−1
|︸ ︷︷ ︸

�c

)
� 2nc.

Thus, |Xt| > 2nc implies that τn < t, and by Markov’s inequality

P(|Xt| > 2nc) � P(τn < t) � etE e−τn = et qn.

Finally,

E
(|Xt|p

)
=

∞∑
n=0

E
(|Xt|p1{2nc<|Xt|�2(n+1)c}

)
� (2c)p

∞∑
n=0

(n+ 1)pP(|Xt| > 2nc) � (2c)pet
∞∑
n=0

(n+ 1)pqn < ∞. �
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Recall that a Brownian motion (Wt)t�0 on Rd is a Lévy process such that Wt

is a normal random variable with mean 0 and covariance matrix t id. We will need
Paul Lévy’s characterization of Brownian motion which we state without proof.
An elementary proof can be found in [56, Chapter 9.4].

Theorem 8.3 (Lévy). Let M = (Mt,Ft), M0 = 0, be a one-dimensional martingale
with continuous sample paths such that (M2

t − t,Ft)t�0 is also a martingale. Then
M is a one-dimensional standard Brownian motion.

Theorem 8.4. Let (Xt)t�0 be a Lévy process in Rd whose sample paths are a.s.
continuous. Then Xt ∼ tl +

√
QWt where l ∈ Rd, Q is a positive semidefinite

symmetric matrix, and W is a standard Brownian motion in Rd.

We will give two proofs of this result.

Proof (using Theorem 8.3). By Lemma 8.2, (Xt)t�0 has moments of all orders.

Therefore, Mt := M ξ
t := ξ · (Xt − EXt) exists for any ξ ∈ Rd and is a martingale

for the canonical filtration Ft := σ(Xs, s � t). Indeed, for all s � t

E(Mt | Fs) = E(Mt − Ms | Fs) − Ms
(L2)
=

(L1)
EMt−s +Ms = Ms.

Moreover

E(M2
t − M2

s | Fs) = E((Mt − Ms)
2 + 2Ms(Mt − Ms) | Fs)

(L2)
= E((Mt − Ms)

2) + 2MsE(Mt − Ms)

Lemma 3.10
= (t− s)EM2

1 = (t − s)VM1,

and so (M2
t − tVM1)t�0 and (Mt)t�0 are martingales with continuous paths.

Now we can use Theorem 8.3 and deduce that ξ · (Xt − EXt) is a one-
dimensional Brownian motion with variance ξ · Qξ where tQ is the covariance
matrix of the random variable Xt (cf. the proof of Lemma 7.1 or Lemma 3.10).
Thus, Xt−EXt =

√
QWt where Wt is a d-dimensional standard Brownian motion.

Finally, EXt = tEX1 =: tl. �

Standard proof (using the CLT ). Fix ξ ∈ Rd and setM(t) := ξ ·(Xt−EXt). Since
X has moments of all orders, M is well-defined and it is again a Lévy process.
Moreover,

EM(t) = 0 and tσ2 = VM(t) = E[(ξ · (Xt − EXt))
2] = tξ ·Qξ

where Q is the covariance matrix of X , cf. the proof of Lemma 7.1. We proceed
as in the proof of the CLT: Using a Taylor expansion we get

E eiM(t) = E ei
∑n

k=1[M(tk/n)−M(t(k−1)/n)]

(L2′)
=

(L1)

(
E eiM(t/n)

)n

=

(
1 − 1

2
EM2(t/n) +Rn

)n

.
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The remainder term Rn is estimated by 1
6E|M3( t

n )|. If we can show that |Rn| � ε t
n

for large n = n(ε) and any ε > 0, we get because of EM2( t
n ) =

t
nσ

2

E eiM(t) = lim
n→∞

(
1 − 1

2
(σ2 + 2ε)

t

n

)n

= e−
1
2 (σ

2+2ε)t −−−→
ε→0

e−
1
2σ

2t.

This shows that ξ · (Xt − EXt) is a centered Gaussian random variable with
variance σ2. Since EXt = tEX1 we conclude that Xt is Gaussian with mean tl
and covariance tQ.

We will now estimate E|M3( t
n )|. For every ε > 0 we can use the uniform

continuity of s �→ M(s) on [0, t] to get

lim
n→∞ max

1�k�n
|M( kn t) − M(k−1

n t)| = 0.

Thus, we have for all ε > 0

1 = lim
n→∞P

(
max

1�k�n
|M( kn t)− M(k−1

n t)| � ε
)

= lim
n→∞P

( n⋂
k=1

{|M( kn t) − M(k−1
n t)| � ε

})
(L2)
=

(L1)
lim
n→∞

n∏
k=1

P(|M( t
n )| � ε)

= lim
n→∞

[
1 − P(|M( t

n )| > ε)
]n

� lim
n→∞ e−nP(|M(t/n)|>ε) � 1

where we use the inequality 1+x � ex. This proves limn→∞ nP(|M(t/n)| > ε) = 0.
Therefore,

E|M3( t
n )| � εEM2( t

n ) +

∫
|M(t/n)|>ε

|M3( t
n )| dP

� ε
t

n
σ2 +

√
P(|M( t

n )| > ε)
√
EM6( t

n ).

It is not hard to see that EM6(s) = a1s+· · ·+a6s
6 (differentiate the characteristic

function EeiuM(s) = e−sψ(u) six times at u = 0), and so

E|M3( t
n )| � ε

t

n
σ2 + c

t

n

√
P(|M(t/n)| > ε)

t/n
=

t

n

(
εσ2 + o(1)

)
�

We close this chapter with Paul Lévy’s construction of a standard Brownian
motion (Wt)t�0. Since W is a Lévy process which has the Markov property, it
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is enough to construct a Brownian motion W (t) only for t ∈ [0, 1], then produce
independent copies (Wn(t))t∈[0,1], n = 0, 1, 2, . . . , and join them continuously:

Wt :=

{
W 0(t), t ∈ [0, 1),

W 0(1) + · · · +Wn−1(1) +Wn(t− n), t ∈ [n, n+ 1).

Since each Wt is normally distributed with mean 0 and variance t, we will get
a Lévy process with characteristic exponent 1

2ξ
2, ξ ∈ R. In the same vein we

get a d-dimensional Brownian motion by making a vector (W
(1)
t , . . . ,W

(d)
t )t�0

of d independent copies of (Wt)t�0. This yields a Lévy process with exponent
1
2 (ξ

2
1 + · · ·+ ξ2d), ξ1, . . . , ξd ∈ R.

Denote a one-dimensional normal distribution with mean m and variance
σ2 as N(m,σ2). The motivation for the construction is the observation that a
Brownian motion satisfies the following mid-point law (cf. [56, Chapter 3.4]):

P(W(s+t)/2 ∈ • | Ws = x,Wt = y) = N
(
1
2 (x+ y), 1

4 (t− s)
)
, s � t, x, y ∈ R.

This can be turned into the following construction method:

Algorithm. Set W (0) = 0 and let W (1) ∼ N(0, 1). Let n � 1 and assume that
the random variables W (k2−n), k = 1, . . . , 2n − 1 have already been constructed.
Then

W (l2−n−1) :=

{
W (k2−n), l = 2k,
1
2

(
W (k2−n) +W ((k + 1)2−n)

)
+ Γ2n+k, l = 2k + 1,

where Γ2n+k is an independent (of everything else) N(0, 2−n/4) Gaussian random
variable, cf. Figure 8.1. In-between the nodes we use piecewise linear interpolation:

W2n(t, ω) := Linear interpolation of
(
W (k2−n, ω), k = 0, 1, . . . , 2n

)
, n � 1.

At the dyadic points t = k2−j we get the ‘true’ value of W (t, ω), while the
linear interpolation is an approximation, see Figure 8.1.

Theorem 8.5 (Lévy 1940). The series

W (t, ω) :=

∞∑
n=0

(
W2n+1(t, ω) − W2n(t, ω)

)
+W1(t, ω), t ∈ [0, 1],

converges a.s. uniformly. In particular (W (t))t∈[0,1] is a one-dimensional Brown-
ian motion.

Proof. Set Δn(t, ω) := W2n+1(t, ω) − W2n(t, ω). By construction,

Δn

(
(2k − 1)2−n−1, ω) = Γ2n+(k−1)(ω), k = 1, 2, . . . , 2n,
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Figure 8.1: Interpolation of order four in Lévy’s construction of Brownian motion.

are iid N(0, 2−(n+2)) distributed random variables. Therefore,

P

(
max

1�k�2n

∣∣Δn

(
(2k − 1)2−n−1

)∣∣ > xn√
2n+2

)
� 2nP

(∣∣√2n+2 Δn

(
2−n−1

)∣∣ > xn

)
,

and the right-hand side equals

2 · 2n√
2π

∫ ∞

xn

e−r2/2 dr � 2n+1

√
2π

∫ ∞

xn

r

xn
e−r2/2 dr =

2n+1

xn

√
2π

e−x2
n/2.

Choose c > 1 and xn := c
√
2n log 2. Then

∞∑
n=1

P

(
max

1�k�2n

∣∣Δn

(
(2k − 1)2−n−1

)∣∣ > xn√
2n+2

)
�

∞∑
n=1

2n+1

c
√
2π

e−c2 log 2n

=
2

c
√
2π

∞∑
n=1

2−(c2−1)n < ∞.

Using the Borel–Cantelli lemma we find a set Ω0 ⊂ Ω with P(Ω0) = 1 such that
for every ω ∈ Ω0 there is some N(ω) � 1 with

max
1�k�2n

∣∣Δn

(
(2k − 1)2−n−1

)∣∣ � c

√
n log 2

2n+1
for all n � N(ω).

Δn(t) is the distance between the polygonal arcs W2n+1(t) and W2n(t); the max-
imum is attained at one of the midpoints of the intervals [(k − 1)2−n, k2−n],
k = 1, . . . , 2n, see Figure 8.1. Thus,

sup
0�t�1

∣∣W2n+1(t, ω)− W2n(t, ω)
∣∣ � max

1�k�2n

∣∣Δn

(
(2k − 1)2−n−1, ω

)∣∣ � c

√
n log 2

2n+1
,
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for all n � N(ω) which means that the limit

W (t, ω) := lim
N→∞

W2N (t, ω) =

∞∑
n=0

(
W2n+1(t, ω)− W2n(t, ω)

)
+W1(t, ω)

exists for all ω ∈ Ω0 uniformly in t ∈ [0, 1]. Therefore, t �→ W (t, ω), ω ∈ Ω0,
inherits the continuity of the polygonal arcs t �→ W2n(t, ω). Set

W̃ (t, ω) := W (t, ω)1Ω0(ω).

By construction, we find for all 0 � k � l � 2n

W̃ (l2−n) − W̃ (k2−n) = W2n(l2
−n) − W2n(k2

−n)

=

l∑
l=k+1

(
W2n(l2

−n) − W2n((l − 1)2−n)
)

iid∼ N(0, (l − k)2−n).

Since t �→ W̃ (t) is continuous and the dyadic numbers are dense in [0, t], we

conclude that the increments W̃ (tk) − W̃ (tk−1), 0 = t0 < t1 < · · · < tN � 1
are independent N(0, tk − tk−1) distributed random variables. This shows that

(W̃ (t))t∈[0,1] is a Brownian motion. �



Chapter 9

Random Measures

We continue our investigations of the paths of càdlàg Lévy processes. Indepen-
dently of Chapters 5 and 6 we will show in Theorem 9.12 that the processes
constructed in Theorem 7.5 are indeed all Lévy processes; this gives also a new
proof of the Lévy–Khintchine formula, cf. Corollary 9.13. As before, we denote the
jumps of (Xt)t�0 by

ΔXt := Xt − Xt− = Xt − lim
s↑t

Xs.

Definition 9.1. Let X be a Lévy process. The counting measure

Nt(B,ω) := # {s ∈ (0, t] : ΔXs(ω) ∈ B} , B ∈ B(Rd \ {0}) (9.1)

is called the jump measure of the process X .

Since a càdlàg function x : [0,∞) → Rd has on any compact interval [a, b] at
most finitely many jumps |Δxt| > ε exceeding a fixed size,1 we see that

Nt(B,ω) < ∞ ∀t > 0, B ∈ B(Rd) such that 0 /∈ B.

Notice that 0 /∈ B is equivalent to Bε(0) ∩ B = ∅ for some ε > 0. Thus, B �→
Nt(B,ω) is for every ω a locally finite Borel measure on Rd \ {0}.
Definition 9.2. Let Nt(B) be the jump measure of the Lévy process X . For every
Borel function f : Rd → R with 0 /∈ supp f we define

Nt(f, ω) :=

∫
f(y)Nt(dy, ω). (9.2)

Since 0 /∈ supp f , it is clear that Nt(supp f, ω) < ∞, and for every ω

Nt(f, ω) =
∑

0<s�t

f(ΔXs(ω)) =

∞∑
n=1

f(ΔXτn(ω))1(0,t](τn(ω)). (9.2′)

1Otherwise we would get an accumulation point of jumps within [a, b], and x would be
unbounded on [a, b].
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Both sums are finite sums, extending only over those s where ΔXs(ω) �= 0. This is
obvious in the second sum where τ1(ω), τ2(ω), τ3(ω) . . . are the jump times of X .

Lemma 9.3. Let Nt(·) be the jump measure of a Lévy process X, take s < t,
tk,n = s+ k

n (t − s) and f ∈ Cc(R
d \ {0},Rm), i.e., f takes values in Rm. Then

Nt(f, ω) − Ns(f, ω) =
∑

s<u�t

f
(
ΔXu(ω)

)
= lim

n→∞

n−1∑
k=0

f
(
Xtk+1,n

(ω) − Xtk,n
(ω)

)
.

(9.3)

Proof. Throughout the proof ω is fixed and we will omit it in our notation. Since
0 /∈ supp f , there is some ε > 0 such that Bε(0) ∩ supp f = ∅; therefore, we need
only consider jumps of size |ΔXt| � ε. Denote by J = {τ1, . . . , τN} those jumps.
For sufficiently large n we can achieve that

• #
(
J ∩ (tk,n, tk+1,n]

)
� 1 for all k = 0, . . . , n − 1;

• |Xtκ+1,n − Xtκ,n | < ε if κ is such that J ∩ (tκ,n, tκ+1,n] = ∅.
Indeed: Assume this is not the case, then we could find sequences s < sk <
tk � t such that tk − sk → 0, J ∩ (sk, tk] = ∅ and |Xtk − Xsk | � ε. Without
loss of generality we may assume that sk ↑ u and tk ↓ u for some u ∈ (s, t];
u = s can be ruled out because of right-continuity. By the càdlàg property
of the paths, |ΔXu| � ε, i.e., u ∈ J , which is a contradiction.

Since we have f(Xtκ+1,n − Xtκ,n) = 0 for intervals of the ‘second kind’, only the
intervals containing some jump contribute to the (finite!) sum (9.3), and the claim
follows. �

Lemma 9.4. Let Nt(·) be the jump measure of a Lévy process X.

a) (Nt(f))t�0 is a Lévy process on Rm for all f ∈ Cc(R
d \ {0},Rm).

b) (Nt(B))t�0 is a Poisson process for all B ∈ B(Rd) such that 0 /∈ B.

c) ν(B) := EN1(B) is a locally finite measure on Rd \ {0}.
Proof. Set Ft := σ(Xs, s � t).

a) Let f ∈ Cc(R
d \ {0},Rm). From Lemma 9.3 and (L2′) we see that Nt(f) is

Ft measurable and Nt(f) − Ns(f)⊥⊥Fs, s � t. Moreover, if NY
t (·) denotes the

jump measure of the Lévy process Y = (Xt+s − Xs)t�0, we see that NY
t−s(f) =

Nt(f) − Ns(f). By the Markov property (Theorem 4.6), X ∼ Y , and we get
NY

t−s(f) ∼ Nt−s(f). Since t �→ Nt(f) is càdlàg, (Nt(f))t�0 is a Lévy process.

b) By definition, N0(B) = 0 and t �→ Nt(B) is càdlàg. Since X is a Lévy process,
we see as in the proof of Theorem 8.1 that the jump times

τ0 := 0, τ1 := inf
{
t > 0 : ΔXt ∈ B

}
, τk := inf

{
t > τk−1 : ΔXt ∈ B

}
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satisfy τ1 ∼ Exp(ν(B)), and the inter-jump times (τk − τk−1)k∈N are an iid se-
quence. The condition 0 /∈ B ensures that Nt(B) < ∞ a.s., which means that the
intensity ν(B) is finite. Indeed, we have

1 − e−tν(B) = P(τ1 � t) = P(Nt(B) > 0) −−−→
t→0

0;

this shows that ν(B) < ∞. Thus,

Nt(B) =

∞∑
k=1

1(0,t](τk)

is a Poisson process (Example 3.2) and, in particular, a Lévy process (Theo-
rem 3.4).

c) The intensity of (Nt(B))t�0 is ν(B) = EN1(B). By Fubini’s theorem it is clear
that ν is a measure. �
Definition 9.5. Let Nt(·) be the jump measure of a Lévy process X . The intensity
measure is the measure ν(B) := EN1(B) from Lemma 9.4.

We will see in Corollary 9.13 that ν is the Lévy measure of (Xt)t�0 appearing
in the Lévy–Khintchine formula.

Lemma 9.6. Let Nt(·) be the jump measure of a Lévy process X and ν the intensity
measure. For every f ∈ L1(ν), f : Rd → Rm, the random variable Nt(f) :=∫
f(y)Nt(dy) exists as L1-limit of integrals of simple functions and satisfies

ENt(f) = E

∫
f(y)Nt(dy) = t

∫
y �=0

f(y) ν(dy). (9.4)

Proof. For any step function f of the form f(y) =
∑m

k=1 fk1Bk
(y) with 0 /∈ Bk

the formula (9.4) follows from ENt(Bk) = tν(Bk) and the linearity of the integral.

Since ν is defined on Rd \ {0}, any f ∈ L1(ν) can be approximated by a
sequence of step functions (fn)n∈N in L1(ν)-sense, and we get

E|Nt(fn) − Nt(fm)| � t

∫
|fn − fm| dν −−−−−→

m,n→∞ 0.

Because of the completeness of L1(P), the limit limn→∞ Nt(fn) exists, and with
a routine argument we see that it is independent of the approximating sequence
fn → f ∈ L1(ν). This allows us to define Nt(f) for f ∈ L1(ν) as L1(P)-limit
of stochastic integrals of simple functions; obviously, (9.4) is preserved under this
limiting procedure. �
Theorem 9.7. Let Nt(·) be the jump measure of a Lévy process X and ν the in-
tensity measure.

a) Nt(f) :=
∫
f(y)Nt(dy) is a Lévy process for every f ∈ L1(ν), f : Rd → Rm.

b) XB
t := Nt(y1B(y)) and Xt − XB

t are for every B ∈ B(Rd), 0 /∈ B, Lévy
processes.
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Proof. a) Note that ν is a locally finite measure on Rd \ {0}. This means that, by
standard density results from integration theory, the family Cc(R

d \ {0}) is dense
in L1(ν). Fix f ∈ L1(ν) and choose fn ∈ Cc(R

d \ {0}) such that fn → f in L1(ν).
Then, as in Lemma 9.6,

E|Nt(f) − Nt(fn)| � t

∫
|f − fn| dν −−−−→

n→∞ 0.

Since P(|Nt(f)| > ε) � t
ε

∫ |f | dν → 0 for every ε > 0 as t → 0, the process Nt(f)
is continuous in probability. Moreover, it is the limit (in L1, hence in probability)
of the Lévy processes Nt(fn) (Lemma 9.4); therefore it is itself a Lévy process, see
Lemma 7.3.

b) Set f(y) := y1B(y) and Bn := B ∩ Bn(0). Then fn(y) = y1Bn(y) is bounded
and 0 /∈ supp fn, hence fn ∈ L1(ν). This means that Nt(fn) is for every n ∈ N a
Lévy process. Moreover,

Nt(fn) =

∫
Bn

y Nt(dy) −−−−→
n→∞

∫
B

y Nt(dy) = Nt(f) a.s.

Since Nt(f) changes its value only by jumps,

P(|Nt(f)| > ε) � P(X has at least one jump of size B in [0, t])

= P(Nt(B) > 0) = 1 − e−tν(B),

which proves that the process Nt(f) is continuous in probability. Lemma 7.3 shows
that Nt(f) is a Lévy process.

Finally, approximate f(y) := y1B(y) by a sequence φl ∈ Cc(R
d \ {0},Rd).

Now we can use Lemma 9.3 to get

Xt − Nt(φl) = lim
n→∞

n−1∑
k=0

[
(Xtk+1,n

− Xtk,n
) − φl(Xtk+1,n

− Xtk,n
)
]
,

The increments of X are stationary and independent, and so we conclude from the
above formula that X − N(φl) has also stationary and independent increments.
Since both X and N(φl) are continuous in probability, so is their difference, i.e.,
X − N(φl) is a Lévy process. Finally,

Nt(φl) −−−→
l→∞

Nt(f) and Xt − Nt(φl) −−−→
l→∞

Xt − Nt(f),

and since X and N(f) are continuous in probability, Lemma 7.3 tells us that
X − N(f) is a Lévy process. �

We will now show that Lévy processes with ‘disjoint jump heights’ are inde-
pendent. For this we need the following immediate consequence of Theorem 3.1:
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Lemma 9.8 (Exponential martingale). Let (Xt)t�0 be a Lévy process. Then

Mt :=
ei ξ·Xt

E ei ξ·Xt
= ei ξ·Xtetψ(ξ), t � 0,

is a martingale for the canonical filtration FX
t = σ(Xs, s � t) satisfying the

inequality sups�t |Ms| � etReψ(ξ).

Theorem 9.9. Let Nt(·) be the jump measure of a Lévy process X and U, V ∈
B(Rd), 0 /∈ U, 0 /∈ V and U ∩ V = ∅. Then the processes

XU
t := Nt(y1U (y)), XV

t := Nt(y1V (y)), Xt − XU∪V
t

are independent Lévy processes in Rd.

Proof. SetW := U∪V . By Theorem 9.7,XU , XV andX−XW are Lévy processes.
In fact, a slight variation of that argument even shows that (XU , XV , X − XW )
is a Lévy process in R3d.

To see their independence, fix s > 0 and define for t > s and ξ, η, θ ∈ Rd the
processes

Ct :=
ei ξ·(X

U
t −XU

s )

E
[
ei ξ·(XU

t −XU
s )
] − 1, Dt :=

ei η·(X
V
t −XV

s )

E
[
ei η·(XV

t −XV
s )
] − 1,

Et :=
ei θ·(Xt−XW

t −Xs+XW
s )

E
[
ei θ·(Xt−XW

t −Xs+XW
s )

] − 1.

By Lemma 9.8, these processes are bounded martingales and ECt = EDt = EEt =
0. Set tk,n = s+ k

n (t − s). Observe that

E(CtDtEt) = E

⎛⎝ n−1∑
k,l,m=0

(Ctk+1,n
− Ctk,n

)(Dtl+1,n
− Dtl,n)(Etm+1,n − Etm,n)

⎞⎠
= E

(
n−1∑
k=0

(Ctk+1,n
− Ctk,n

)(Dtk+1,n
− Dtk,n

)(Etk+1,n
− Etk,n

)

)
.

In the second equality we use that martingale increments Ct−Cs, Dt−Ds, Et−Es

are independent of FX
s , and by the tower property

E
[
(Ctk+1,n

− Ctk,n
)(Dtl+1,n

− Dtl,n)(Etm+1,n − Etm,n)
]
= 0 unless k = l = m.

An argument along the lines of Lemma 9.3 gives

E(CtDtEt) = E

( ∑
s<u�t

ΔCu ΔDu ΔEu︸ ︷︷ ︸
=0

)
= 0
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as XU
t , XV

t and Yt := Xt − XW
t cannot jump simultaneously since U , V and

Rd \ W are mutually disjoint. Thus,

E
[
ei ξ·(X

U
t −XU

s )ei η·(X
V
t −XV

s )ei θ·(Yt−Ys)
]

= E
[
ei ξ·(X

U
t −XU

s )
]
·E

[
ei η·(X

V
t −XV

s )
]
· E

[
ei θ·(Yt−Ys)

]
.

(9.5)

Since all processes are Lévy processes, (9.5) already proves the independence of
XU , XV and Y = X − XW . Indeed, we find for 0 = t0 < t1 < · · · < tm = t and
ξk, ηk, θk ∈ Rd

E
(
e
i
∑

k ξk·(XU
tk+1

−XU
tk

)
e
i
∑

k ηk·(XV
tk+1

−XV
tk

)
ei

∑
k θk·(Ytk+1

−Ytk
)
)

= E
(∏

k

e
i ξk·(XU

tk+1
−XU

tk
)
e
i ηk·(XV

tk+1
−XV

tk
)
ei θk·(Ytk+1

−Ytk
)
)

(L2′)
=

∏
k

E
(
e
i ξk·(XU

tk+1
−XU

tk
)
e
i ηk·(XV

tk+1
−XV

tk
)
ei θk·(Ytk+1

−Ytk
)
)

(9.5)
=

∏
k

E
(
e
i ξk·(XU

tk+1
−XU

tk
)
)
E
(
e
i ηk·(XV

tk+1
−XV

tk
)
)
E
(
ei θk·(Ytk+1

−Ytk
)
)
.

The last equality follows from (9.5); the second equality uses (L2′) for the Lévy
process (XU

t , XV
t , Xt − XW

t ).

This shows that the families

(XU
tk+1

− XU
tk)k, (XV

tk+1
− XV

tk)k and (Ytk+1
− Ytk)k

are independent, hence the canonical σ-algebras σ(XU
t , t � 0), σ(XV

t , t � 0) and
σ(Xt − XW

t , t � 0) are independent. �

Corollary 9.10. Let Nt(·) be the jump measure of a Lévy process X and ν the
intensity measure.

a) (Nt(U))t�0 ⊥⊥(Nt(V ))t�0 for U, V ∈ B(Rd), 0 /∈ U , 0 /∈ V , U ∩ V = ∅.
b) For all measurable f : Rd → Rm satisfying f(0) = 0 and f ∈ L1(ν)

E
(
ei ξ·Nt(f)

)
= E

(
ei

∫
ξ·f(y)Nt(dy)

)
= E

(
e−t

∫
y �=0[1−ei ξ·f(y)] ν(dy)

)
. (9.6)

c)

∫
y �=0

(|y|2 ∧ 1
)
ν(dy) < ∞.

Proof. a) Since (Nt(U))t�0 and (Nt(V ))t�0 are completely determined by the
independent processes (XU

t )t�0 and (XV
t )t�0, cf. Theorem 9.9, the independence

is clear.
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b) Let us first prove (9.6) for step functions f(x) =
∑n

k=1 fk1Uk
(x) with fk ∈ Rm

and disjoint sets U1, . . . , Un ∈ B(Rd) such that 0 �∈ Uk. Then

E exp

[
i

∫
ξ · f(y)Nt(dy)

]
= E exp

[
i

n∑
k=1

∫
ξ · fk1Uk

(y)Nt(dy)

]
a)
=

n∏
k=1

E exp [i ξ · fk Nt(Uk)]

9.4.b)
=

n∏
k=1

exp
[
tν(Uk)

[
ei ξ·fk − 1

]]
= exp

[
t

n∑
k=1

[
ei ξ·fk − 1

]
ν(Uk)

]
= exp

[
− t

∫ [
1 − ei ξ·f(y)

]
ν(dy)

]
.

For any f ∈ L1(ν) the integral on the right-hand side of (9.6) exists. Indeed, the
elementary inequality |1 − eiu| � |u| ∧ 2 and ν{|y| � 1} < ∞ (Corollary 9.4.c))
yield∣∣∣∣∫

y �=0

[
1 − ei ξ·f(y)

]
ν(dy)

∣∣∣∣ � |ξ|
∫
0<|y|<1

|f(y)| ν(dy) + 2

∫
|y|�1

ν(dy) < ∞.

Therefore, (9.6) follows with a standard approximation argument and dominated
convergence.

c) We have already seen in Lemma 9.4.c) that ν{|y| � 1} < ∞.

Let us show that
∫
0<|y|<1

|y|2 ν(dy) < ∞. For this we take U = {δ < |y| < 1}.
Again by Theorem 9.9, the processes XU

t and Xt − XU
t are independent, and we

get

0 <
∣∣E ei ξ·Xt

∣∣ = ∣∣E ei ξ·X
U
t

∣∣ · ∣∣E ei ξ·(Xt−XU
t )
∣∣ � ∣∣E ei ξ·X

U
t

∣∣.
Since XU

t is a compound Poisson process – use part b) with f(y) = y1U (y) – we
get for all |ξ| � 1

0 <
∣∣E ei ξ·X

U
t

∣∣ = e−t
∫
U
(1−cos ξ·y) ν(dy) � e

−t
∫
δ<|y|�1

1
4 (ξ·y)2 ν(dy)

.

For the equality we use |ez | = eRe z , the inequality follows from the elementary
estimate 1

4u
2 � 1 − cosu if |u| � 1. Letting δ → 0 we see that∫

0<|y|<1

|y|2 ν(dy) < ∞. �

Corollary 9.11. Let Nt(·) be the jump measure of a Lévy process X and ν the
intensity measure. For all f : Rd → Rm satisfying f(0) = 0 and f ∈ L2(ν) we
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have2

E

( ∣∣∣∣∫ f(y)
[
Nt(dy) − tν(dy)

]∣∣∣∣2) = t

∫
y �=0

|f(y)|2 ν(dy). (9.7)

Proof. It is clearly enough to show (9.7) for step functions of the form

f(x) =

n∑
k=1

fk1Bk
(x), Bk disjoint, 0 �∈ Bk, fk ∈ Rm,

and then use an approximation argument.

Since the processes Nt(Bk, ·) are independent Poisson processes with mean
ENt(Bk) = tν(Bk) and variance VNt(Bk) = tν(Bk), we find

E
[
(Nt(Bk)− tν(Bk))(Nt(Bl) − tν(Bl))

]
=

{
0, if Bk ∩Bl = ∅, i.e., k �= l,

VNt(Bk) = tν(Bk), if k = l,

}
= tν(Bk ∩ Bl).

Therefore,

E

(∣∣∣∣ ∫ f(y)
(
Nt(dy) − tν(dy)

)∣∣∣∣2)
= E

(∫∫
f(y)f(z)

(
Nt(dy) − tν(dy)

)(
Nt(dz)− tν(dz)

))
=

n∑
k,l=1

fkfl E
((

Nt(Bk) − tν(Bk)
)(
Nt(Bl)− tν(Bl)

))
︸ ︷︷ ︸

= tν(Bk∩Bl)

= t
n∑

k=1

|fk|2 ν(Bk) = t

∫
|f(y)|2 ν(dy). �

In contrast to Corollary 7.6 the following theorem does not need (but con-
structs) the Lévy triplet (l, Q, ν).

Theorem 9.12 (Lévy–Itô decomposition). Let X be a Lévy process and denote by
Nt(·) and ν the jump and intensity measures. Then

Xt =
√
QWt +

∫
0<|y|<1

y
(
Nt(dy) − tν(dy)

) ]]]
=: Mt, L2-martingale

tl

continuous
Gaussian

+

∫
|y|�1

y Nt(dy).

pure jump part

]]]
=: At, bdd. variation (9.8)

2This is a special case of an Itô isometry, cf. (10.9) in the following chapter.
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where l ∈ Rd and Q ∈ Rd×d is a positive semidefinite symmetric matrix and W is
a standard Brownian motion in Rd. The processes on the right-hand side of (9.8)
are independent Lévy processes.

Proof. 1◦ Set Un := { 1
n < |y| < 1}, V = {|y| � 1}, Wn := Un ∪· V and define

XV
t :=

∫
V

y Nt(dy) and X̃Un
t :=

∫
Un

y Nt(dy) − t

∫
Un

y ν(dy).

By Theorem 9.9 (XV
t )t�0, (X̃

Un
t )t�0 and

(
Xt −XWn

t + t
∫
Un

y ν(dy)
)
t�0

are inde-

pendent Lévy processes. Since

X = (X − X̃Un − XV ) + X̃Un +XV ,

the theorem follows if we can show that the three terms on the right-hand side
converge separately as n → ∞.

2◦ Lemma 9.6 shows EX̃Un
t = 0; since X̃Un is a Lévy process, it is a martingale:

for s � t

E
(
X̃Un

t

∣∣∣ Fs

)
= E

(
X̃Un

t − X̃Un
s

∣∣∣ Fs

)
+ X̃Un

s

(L2)
=

(L1)
E
(
X̃Un

t−s

)
+ X̃Un

s = X̃Un
s .

(Fs can be taken as the natural filtration of XUn or X). By Doob’s L2 martingale
inequality we find for any t > 0 and m < n

E

(
sup
s�t

∣∣X̃Un
s − X̃Um

s

∣∣2) � 4E
(∣∣X̃Un

t − X̃Um
t

∣∣2)
= 4t

∫
1
n<|y|� 1

m

|y|2 ν(dy) −−−−−→
m,n→∞ 0.

Therefore, the limit
∫
0<|y|<1

y
(
Nt(dy) − tν(dy)

)
= L2-limn→∞ X̃Un

t exists locally

uniformly (in t). The limit is still an L2 martingale with càdlàg paths (take a
locally uniformly a.s. convergent subsequence) and, by Lemma 7.3, also a Lévy
process.

3◦ Observe that

(X − X̃Un − XV )− (X − X̃Um − XV ) = X̃Um − X̃Un ,

and so Xc
t := L2- limn→∞(Xt − X̃Un

t − XV
t ) exists locally uniformly (in t) Since,

by construction |Δ(Xt − X̃Un
t −XV

t )| � 1
n , it is clear that X

c has a.s. continuous
sample paths. By Lemma 7.3 it is a Lévy process. From Theorem 8.4 we know that
all Lévy processes with continuous sample paths are of the form tl+

√
QWt where
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W is a Brownian motion, Q ∈ Rd×d a symmetric positive semidefinite matrix and
l ∈ Rd.

4◦ Since independence is preserved under L2-limits, the decomposition (9.8) fol-
lows. Finally,∫

|y|�1

y Nt(dy, ω) =
∑

0<s�t

ΔXs(ω)1{ΔXs(ω)�1} −
∑

0<s�t

|ΔXs(ω)|1{ΔXs(ω)�−1}

is the difference of two increasing processes, i.e., it is of bounded variation. �

Corollary 9.13 (Lévy–Khintchine formula). Let X be a Lévy process. Then the
characteristic exponent ψ is given by

ψ(ξ) = − i l · ξ + 1

2
ξ · Qξ +

∫
y �=0

[
1 − ei y·ξ + i ξ · y1(0,1)(|y|)

]
ν(dy) (9.9)

where ν is the intensity measure, l ∈ Rd and Q ∈ Rd×d is symmetric and positive
semidefinite.

Proof. Since the processes appearing in the Lévy–Itô decomposition (9.8) are in-
dependent, we see

e−ψ(ξ)=Eeiξ·X1 =Eeiξ·(−l+
√
QW1) ·Ee

i
∫
0<|y|<1

ξ·y(N1(dy)−ν(dy)) ·Ee
i
∫
|y|�1

ξ·yN1(dy).

Since W is a standard Brownian motion,

E ei ξ·(l+
√
QW1) = ei l·ξ−

1
2 ξ·Qξ.

Using (9.6) with f(y) = y1Un(y), Un = { 1
n < |y| < 1}, subtracting ∫

Un
y ν(dy)

and letting n → ∞ we get

E exp

[
i

∫
0<|y|<1

ξ · y(N1(dy)− ν(dy))

]

= exp

[
−
∫
0<|y|<1

[
1 − ei y·ξ + i ξ · y] ν(dy)] ;

finally, (9.6) with f(y) = y1V (y), V = {|y| � 1}, once again yields

E exp

[
i

∫
|y|�1

ξ · y N1(dy)

]
= exp

[
−
∫
|y|�1

[
1 − ei y·ξ

]
ν(dy)

]

finishing the proof. �



Chapter 10

A Digression: Stochastic Integrals

In this chapter we explain how one can integrate with respect to (a certain class
of) random measures. Our approach is based on the notion of random orthogonal
measures and it will include the classical Itô integral with respect to square-
integrable martingales. Throughout this chapter, (Ω,A ,P) is a probability space,
(Ft)t�0 some filtration, (E,E ) is a measurable space and μ is a (positive) measure
on (E,E ). Moreover, R ⊂ E is a semiring, i.e., a family of sets such that ∅ ∈ R,
for all R,S ∈ R we have R∩S ∈ R, and R\S can be represented as a finite union
of disjoint sets from R, cf. [54, Chapter 6] or [55, Definition 5.1]. It is not difficult
to check that R0 := {R ∈ R : μ(R) < ∞} is again a semiring.

Definition 10.1. Let R be a semiring on the measure space (E, E , μ). A ran-
dom orthogonal measure with control measure μ is a family of random variables
N(ω,R) ∈ R, R ∈ R0, such that

E
[|N(·, R)|2] < ∞ ∀R ∈ R0 (10.1)

E [N(·, R)N(·, S)] = μ(R ∩ S) ∀R,S ∈ R0. (10.2)

The following Lemma explains why N(R) = N(ω,R) is called a (random)
measure.

Lemma 10.2. The random set function R �→ N(R) := N(ω,R), R ∈ R0, is count-
ably additive in L2, i.e.,

N

( ∞⋃·
n=1

Rn

)
= L2- lim

n→∞

n∑
k=1

N(Rk) a.s. (10.3)

for every sequence (Rn)n∈N ⊂ R0 of mutually disjoint sets such that

R :=
∞⋃·

n=1

Rn ∈ R0.

In particular, N(R ∪· S) = N(R) + N(S) a.s. for disjoint R,S ∈ R0 such that
R ∪· S ∈ R0 and N(∅) = 0 a.s. (notice that the exceptional set may depend on the
sets R,S).
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Proof. From R = S = ∅ and E[N(∅)2] = μ(∅) = 0 we get N(∅) = 0 a.s. It is
enough to prove (10.3) as finite additivity follows if we take (R1, R2, R3, R4 . . . ) =
(R,S, ∅, ∅, . . . ). If Rn ∈ R0 are mutually disjoint sets such that R :=

⋃·∞
n=1 Rn is

again contained in R0, then

E

[(
N(R)−

n∑
k=1

N(Rk)
)2

]

= EN2(R)+

n∑
k=1

EN2(Rk)−2

n∑
k=1

E[N(R)N(Rk)]+

n∑
j �=k,j,k=1

E[N(Rj)N(Rk)]

(10.2)
= μ(R)−

n∑
k=1

μ(Rk)−−−−→
n→∞ 0

where we use the σ-additivity of the measure μ. �
Example 10.3. a) (White noise) Let R = {(s, t] : 0 � s < t < ∞} and μ = λ be
Lebesgue measure on (0,∞). Clearly, R = R0 is a semiring. Let W = (Wt)t�0 be
a one-dimensional standard Brownian motion. The random set function

N(ω, (s, t]) := Wt(ω)− Ws(ω), 0 � s < t < ∞
is a random orthogonal measure with control measure λ. This follows at once from

E
[
(Wt − Ws)(Wv − Wu)

]
= t ∧ v − s ∨ u = λ

[
(s, t] ∩ (u, v]

]
for all 0 � s < t < ∞ and 0 � u < v < ∞.

Mind, however, that N is not σ-additive. In order to see this, take Rn :=
(1/(n + 1), 1/n], where n ∈ N, and observe that

⋃·n Rn = (0, 1]. Since W has
stationary and independent increments, and scales like Wt ∼ √

tW1, we have

E exp
[
−
∑∞

n=1
|N(Rn)|

]
= E exp

[
−
∑∞

n=1
|W1/(n+1) − W1/n|

]
=

∏∞
n=1

E exp
[
−(n(n+ 1))−1/2|W1|

]
Jensen’s

�
ineq.

∏∞
n=1

α(n(n+1))−1/2

, α := Ee−|W1| ∈ (0, 1).

As the series
∑∞

n=1(n(n + 1))−1/2 diverges, we get E exp [−∑∞
n=1 |N(Rn)|] = 0

which means that
∑∞

n=1 |N(ω,Rn)| = ∞ for almost all ω. This shows that N(·)
cannot be countably additive. Indeed, countable additivity implies that the series

N

(
ω,

∞⋃
n=1

Rn

)
=

∞∑
n=1

N(ω,Rn)

converges. The left-hand side, hence the summation, is independent under rear-
rangements.
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This, however, entails absolute convergence of the series
∑∞

n=1 |N(ω,Rn)|
which does not hold as we have seen above.

b) (2nd order orthogonal noise) Let X = (Xt)t∈T be a complex-valued stochastic
process defined on a bounded or unbounded interval T ⊂ R. We assume that X
has a.s. càdlàg paths. If E(|Xt|2) < ∞, we call X a second-order process; many
properties of X are characterized by the correlation function K(s, t) = E

(
XsXt

)
,

s, t ∈ T .

If E
[
(Xt −Xs)(Xv −Xu)

]
= 0 for all s � t � u � v, s, t, u, v ∈ T , then X is

said to have orthogonal increments. Fix t0 ∈ T and define for all t ∈ T

F (t) :=

{
E(|Xt − Xt0 |2), if t � t0,

−E(|Xt0 − Xt|2), if t � t0.

Clearly, F is increasing and, since t �→ Xt is a.s. right-continuous, it is also right-
continuous. Moreover,

F (t) − F (s) = E(|Xt − Xs|2) for all s � t, s, t ∈ T. (10.4)

To see this, we assume without loss of generality that s � t0 � t. We have

F (t) − F (s) = E(|Xt − Xt0 |2)− E(|Xs − Xt0 |2)

= E(|(Xt − Xs) + (Xs − Xt0)|2) − E(|Xs − Xt0 |2)
orth.
=

incr.
E(|Xt − Xs|2).

This shows that μ(s, t] := F (t) − F (s) defines a measure on the family R =
R0 = {(s, t] : −∞ < s < t < ∞, s, t ∈ T }, which is the control measure of
N(ω, (s, t]) := Xt(ω) − Xs(ω). In fact, for s < t, u < v, s, t, u, v ∈ T , we have

Xt − Xs =
(
Xt − Xt∧v

)
+
(
Xt∧v − Xs∨u

)
+
(
Xs∨u − Xs

)
Xv − Xu =

(
Xu − Xt∧v

)
+
(
Xt∧v − Xs∨u

)
+
(
Xs∨u − Xu

)
.

Using the orthogonality of the increments we get

E
[
(Xt − Xs)(Xv − Xu)

]
= E

[(
Xt∧v − Xs∨u

)(
Xt∧v − Xs∨u

)]
= F (t ∧ v) − F (s ∨ u) = μ

(
(s, t] ∩ (u, v]

)
,

i.e., N(ω, •) is a random orthogonal measure.

c) (Martingale noise) Let M = (Mt)t�0 be a square-integrable martingale with
respect to the filtration (Ft)t�0, M0 = 0, and with càdlàg paths. Denote by
〈M〉 the predictable quadratic variation, i.e., the unique (〈M〉0 := 0) increasing
predictable process such that M2 −〈M〉 is a martingale. The random set function

N(ω, (s, t]) := Mt(ω) − Ms(ω), s � t,
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is a random orthogonal measure on R = {(s, t] : 0 � s < t < ∞} with con-
trol measure μ(s, t] = E(〈M〉t − 〈M〉s). This follows immediately from the tower
property of conditional expectation

E[MtMv]
tower
= E[MtE(Mv | Ft)] = E[M2

t ] = E〈M〉t if t � v

which, in turn, gives for all 0 � s < t and 0 � u < v

E[(Mt − Ms)(Mv − Mu)] = E〈M〉t∧v − E〈M〉s∧v − E〈M〉t∧u + E〈M〉s∧u

= μ
(
(s, t] ∩ (0, v]

)− μ
(
(s, t] ∩ (0, u]

)
= μ

(
(s, t] ∩ (u, v]

)
.

d) (Poisson random measure) Let X be a d-dimensional Lévy process,

S :=
{
B ∈ B(Rd) : 0 /∈ B

}
, R :=

{
(s, t] × B : 0 � s < t < ∞, B ∈ S

}
,

and Nt(B) the jump measure (Definition 9.1). The random set function

Ñ(ω, (s, t]×B) := [Nt(ω,B)− tν(B)]− [Ns(ω,B)− sν(B)], R = (s, t]×B ∈ R,

is a random orthogonal measure with control measure λ × ν where λ is Lebesgue
measure on (0,∞) and ν is the Lévy measure of X . Indeed, by definition R = R0,
and it is not hard to see that R is a semiring1.

Set Ñt(B) := Ñ((0, t] × B) and let B,C ∈ S , t, v � 0. As in the proof of
Corollary 9.11 we have

E
[
Ñt(B)Ñt(C)

]
= tν(B ∩ C).

Since S is a semiring, we get B = (B ∩ C) ∪· (B \ C) = (B ∩ C) ∪· B1 ∪· · · · ∪· Bn

with finitely many mutually disjoint Bk ∈ S such that Bk ⊂ B \ C.

The processes Ñ(Bk) and Ñ(C) are independent (Corollary 9.10) and cen-
tered. Therefore we have for t � v

E
[
Ñt(B)Ñv(C)

]
= E

[
Ñt(B ∩ C)Ñv(C)

]
+

n∑
k=1

E
[
Ñt(Bk)Ñv(C)

]
= E

[
Ñt(B ∩ C)Ñv(C)

]
+

n∑
k=1

EÑt(Bk) ·EÑv(C)

= E
[
Ñt(B ∩ C)Ñv(C)

]
.

1Both S and I := {(s, t] : 0 � s < t < ∞} are semirings, and so is their cartesian product
R = I × S , see [54, Lemma 13.1] or [55, Lemma 15.1] for the straightforward proof.
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Use the same argument over again, as well as the fact that Ñt(B ∩ C) has inde-
pendent and centered increments (Lemma 9.4), to get

E
[
Ñt(B)Ñv(C)

]
= E

[
Ñt(B ∩C)Ñv(B ∩ C)

]
= E

[
Ñt(B ∩C)Ñt(B ∩ C)

]
+

=EÑt(B∩C)E[Ñv(B∩C)−Ñt(B∩C)]=0︷ ︸︸ ︷
E
[
Ñt(B ∩C)

{
Ñv(B ∩ C) − Ñt(B ∩ C)

}]
= E

[
Ñt(B ∩C)Ñt(B ∩ C)

]
= tν(B ∩ C)

= λ((0, t] ∩ (0, v])ν(B ∩ C).
(10.5)

For s � t, u � v and B,C ∈ S a lengthy, but otherwise completely elementary,
calculation based on (10.5) shows

E
[
Ñ((s, t] × B)Ñ((u, v] × C)

]
= λ((s, t] ∩ (u, v])ν(B ∩ C).

e) (Space-time white noise) Let R :=
{
(0, t] × B : t > 0, B ∈ B(Rd)

}
and μ = λ

Lebesgue measure on the half-space H+ := [0,∞)× Rd.

Consider the mean-zero, real-valued Gaussian process (W(R))R∈B(H+) whose
covariance function is given by Cov(W(R)W(S)) = λ(R ∩ S).2 By its very defini-
tion W(R) is a random orthogonal measure on R0 with control measure λ.

We will now define a stochastic integral in the spirit of Itô’s original con-
struction.

Definition 10.4. Let R be a semiring and R0 = {R ∈ R : μ(R) < ∞}. A simple
function is a deterministic function of the form

f(x) =

n∑
k=1

ck1Rk
(x), n ∈ N, ck ∈ R, Rk ∈ R0. (10.6)

Intuitively, IN (f) =
∑n

k=1 ckN(Rk) should be the stochastic integral of a
simple function f . The only problem is the well-definedness. Since a random or-
thogonal measure is a.s. finitely additive, the following lemma has exactly the
same proof as the usual well-definedness result for the Lebesgue integral of a step
function, see, e.g., Schilling [54, Lemma 9.1] or [55, Lemma 8.1]; note that finite
unions of null sets are again null sets.

2The map (R, S) 
→ λ(R ∩ S) is positive semidefinite, i.e., for R1, . . . , Rn ∈ B(H+) and
ξ1, . . . , ξn ∈ R

n∑
j,k=1

ξjξkλ(Rj ∩ Rk) =
n∑

j,k=1

∫
ξj1Rj

(x)ξk1Rk
(x)λ(dx) =

∫ ( n∑
k=1

ξk1Rk
(x)

)2
λ(dx) � 0.
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Lemma 10.5. Let f be a simple function and assume that f =
∑n

k=1 ck1Rk
=∑m

j=1 bj1Sj has two representations as step-function. Then

n∑
k=1

ckN(Rk) =
m∑
j=1

bjN(Sj) a.s.

Definition 10.6. Let N(R), R ∈ R0, be a random orthogonal measure with control
measure μ. The stochastic integral of a simple function f given by (10.6) is the
random variable

IN (ω, f) :=

n∑
k=1

ckN(ω,Rk). (10.7)

The following properties of the stochastic integral are more or less immediate
from the definition.

Lemma 10.7. Let N(R), R ∈ R0, be a random orthogonal measure with control
measure μ, f, g simple functions, and α, β ∈ R.

a) IN (1R) = N(R) for all R ∈ R0;

b) S �→ IN (1S) extends N uniquely to S ∈ ρ(R0), the ring generated by R0;
3

c) IN (αf + βg) = αIN (f) + βIN (g); (linearity)

d) E
[
IN (f)2

]
=
∫
f2 dμ; (Itô’s isometry)

Proof. The properties a) and c) are clear. For b) we note that ρ(R0) can be
constructed from R0 by adding all possible finite unions of (disjoint) sets (see,
e.g., [54, Proof of Theorem 6.1, Step 2]). In order to see d), we use (10.6) and the
orthogonality relation E [N(Rj)N(Rk)] = μ(Rj ∩ Rk) to get

E
[
IN (f)2

]
=

n∑
j,k=1

cjckE [N(Rj)N(Rk)]

=

n∑
j,k=1

cjckμ(Rj ∩ Rk)

=

∫ n∑
j,k=1

cj1Rj (x) ck1Rk
(x)μ(dx)

=

∫
f2(x)μ(dx). �

Itô’s isometry now allows us to extend the stochastic integral to the L2(μ)-
closure of the simple functions: L2(E, σ(R), μ). For this take f ∈ L2(E, σ(R), μ)

3A ring is a family of sets which contains ∅ and which is stable under unions and differences of
finitely many sets. Since R∩S = R \ (R \S), it is automatically stable under finite intersections.
The ring generated by R0 is the smallest ring containing R0.
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and any approximating sequence (fn)n∈N of simple functions, i.e.,

lim
n→∞

∫
|f − fn|2 dμ = 0.

In particular, (fn)n∈N is an L2(μ) Cauchy sequence, and Itô’s isometry shows that
the random variables (IN (fn))n∈N are a Cauchy sequence in L2(P):

E
[
(IN (fn) − IN (fm))2

]
= E

[
IN (fn − fm)2

]
=

∫
(fn − fm)2 dμ −−−−−→

m,n→∞ 0.

Because of the completeness of L2(P), the limit limn→∞ IN (fn) exists and, by a
standard argument, it does not depend on the approximating sequence.

Definition 10.8. Let N(R), R ∈ R0, be a random orthogonal measure with control
measure μ. The stochastic integral of a function f ∈ L2(E, σ(R), μ) is the random
variable ∫

f(x)N(ω, dx) := L2(P)- lim
n→∞ IN (ω, fn) (10.8)

where (fn)n∈N is any sequence of simple functions which approximate f in L2(μ).

It is immediate from the definition of the stochastic integral, that f �→ ∫
f dN

is linear and enjoys Itô’s isometry

E

[(∫
f(x)N(dx)

)2
]
=

∫
f2(x)μ(dx). (10.9)

Remark 10.9. Assume that the random orthogonal measure N is of space-time
type, i.e., E = (0,∞) × X where (X,X ) is some measurable space, and R =
{(0, t] × B : B ∈ S } where S is a semiring in X . If for B ∈ S the stochastic
process Nt(B) := N((0, t] × B) is a martingale with respact to the filtration
Ft := σ(N((0, s] × B), s � t, B ∈ S ), then

Nt(f) :=

∫∫
1(0,t](s)f(x)N(ds, dx), 1(0,t] ⊗ f ∈ L2(μ), t � 0,

is again a(n L2-)martingale. For simple functions f this follows immediately from
the fact that sums and differences of finitely many martingales (with a common
filtration) are again a martingale. Since L2(P)-limits preserve the martingale prop-
erty, the claim follows. �

At first sight, the stochastic integral defined in 10.8 looks rather restrictive
since we can only integrate deterministic functions f . As all randomness can be
put into the random orthogonal measure, we have considerable flexibility, and the
following construction shows that Definition 10.8 covers pretty much the most
general stochastic integrals.

From now on we assume that

• the random measure N(dt, dx) on (E,E ) = ((0,∞) × X, B(Rd) ⊗ X ) is of
space-time type, cf. Remark 10.9, with control measure μ(dt, dx);
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• (Ft)t�0 is some filtration in (Ω,A ,P).

Let τ be a stopping time; the set �0, τ� := {(ω, t) : 0 < t � τ(ω)} is called
stochastic interval. We define

• E◦ := Ω × (0,∞)× X ;

• E ◦ := P ⊗ X where P is the predictable σ-algebra in Ω × (0,∞), see
Definition A.8 in the appendix;

• R◦ := {�0, τ� × B : τ bounded stopping time, B ∈ S };
• μ◦(dω, dt, dx) := P(dω)μ(dt, dx) as control measure;

• N◦(ω, �0, τ� × B
)
:= N

(
ω, (0, τ(ω)] × B

)
as random orthogonal measure4.

Lemma 10.10. Let N◦, R◦
0 and μ◦ be as above. The R◦

0 -simple processes

f(ω, t, x) :=

n∑
k=1

ck1�0,τk�(ω, t)1Bk
(x), ck ∈ R, �0, τk� × Bk ∈ R◦

0

are L2(μ◦)-dense in L2(E◦,P ⊗ σ(S ), μ◦).

Proof. This follows from standard arguments from measure and integration; notice
that the predictable σ-algebra P ⊗ σ(S ) is generated by sets �0, τ� ×B where τ
is a bounded stopping time and B ∈ S , cf. Theorem A.9 in the appendix. �

Observe that for simple processes appearing in Lemma 10.10∫
f(ω,t,x)N(ω,dt,dx) :=

n∑
k=1

ckN
◦(ω,�0,τk�×Bk)=

n∑
k=1

ckN(ω,(0,τk(ω)]×Bk)

is a stochastic integral which satisfies

E

[( ∫
f(·, t, x)N(·, dt, dx)

)2
]
=

n∑
k=1

c2k μ
◦(�0, τk�×Bk) =

n∑
k=1

c2k Eμ((0, τk]×Bk).

Just as above we can now extend the stochastic integral to L2(E◦,P ⊗σ(S ), μ◦).

Corollary 10.11. Let N(ω, dt, dx) be a random orthogonal measure on E of space-
time type with control measure μ(dt, dx) and f : Ω×(0,∞)×X → R be an element
of L2(E◦,P ⊗ σ(S ), μ◦). Then the stochastic integral∫∫

f(ω, t, x)N(ω, dt, dx)

exists and satisfies the following Itô isometry

E

[(∫∫
f(·, t, x)N(·, dt, dx)

)2
]
=

∫∫
Ef2(·, t, x)μ(dt, dx). (10.10)

4To see that it is indeed a random orthogonal measure, use a discrete approximation of τ .
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Let us show that the stochastic integral w.r.t. a space-time random orthogo-
nal measure extends the usual Itô integral. To do so we need the following auxiliary
result.

Lemma 10.12. Let N(ω, dt, dx) be a random orthogonal measure on E of space-
time type (cf. Remark 10.9) with control measure μ(dt, dx) and τ a stopping time.
Then ∫∫

φ(ω)1�τ,∞�(ω, t)f(ω, t, x)N(ω, dt, dx)

= φ(ω)

∫∫
1�τ,∞�(ω, t)f(ω, t, x)N(ω, dt, dx)

(10.11)

for all φ ∈ L∞(Fτ ) and f ∈ L2(E◦,P ⊗ σ(S ), μ◦).

Proof. Since t �→ 1�τ,∞�(ω, t) is adapted to the filtration (Ft)t�0 and left-contin-
uous, the integrands appearing in (10.11) are predictable, hence all stochastic
integrals are well defined.

1◦ Assume that φ(ω) = 1F (ω) for some F ∈ Fτ and f(ω, t, x) = 1�0,σ�(ω, t)1B(x)
for some bounded stopping time σ and �0, σ� × B ∈ R◦

0 . Define

Nσ(ω,B) := N(ω, (0, σ(ω)]× B) = N◦(ω, �0, σ� × B)

for any B ∈ S0. The random time τF := τ1F + ∞1F c is a stopping time5, and
we have

φ1�τ,∞�f = 1F1�τ,∞�1�0,σ�1B = 1�τF ,∞�1�0,σ�1B = 1�τF∧σ,σ�1B.

From this we get (10.11) for our choice of φ and f :∫∫
φ1�τ,∞�(t)f(t, x)N(dt, dx) =

∫∫
1�τF∧σ,σ�(t)1B(x)N(dt, dx)

= Nσ(B) − NτF∧σ(B)

= 1F · (Nσ(B) − Nτ∧σ(B))

= 1F

∫∫
1�τ∧σ,σ�(t)1B(x)N(dt, dx)

= 1F

∫∫
1�τ,∞�1�0,σ�(t)1B(x)N(dt, dx)

= φ

∫∫
1�τ,∞�(t)f(t, x)N(dt, dx).

2◦ If φ = 1F for some F ∈ Fτ and f is a simple process, then (10.11) follows
from 1◦ because of the linearity of the stochastic integral.

5Indeed, {τF � t} = {τ � t} ∩ F =

{
∅, τ > t

F, τ � t

}
∈ Ft for all t � 0.



82 Chapter 10. A Digression: Stochastic Integrals

3◦ If φ = 1F for some F ∈ Fτ and f ∈ L2(μ◦), then (10.11) follows from 2◦

and Itô’s isometry: Let fn be a sequence of simple processes which approximate
f . Then

E

[( ∫∫ (
φ1�τ,∞�(t)fn(t, x) − φ1�τ,∞�(t)f(t, x)

)
N(dt, dx)

)2
]

=

∫∫
E
[(
φ1�τ,∞�(t)fn(t, x) − φ1�τ,∞�(t)f(t, x)

)2]
μ(dt, dx)

�
∫∫

E
[(
fn(t, x) − f(t, x)

)2]
μ(dt, dx) −−−−→

n→∞ 0.

4◦ If φ is an Fτ measurable step-function and f ∈ L2(μ◦), then (10.11) follows
from 3◦ because of the linearity of the stochastic integral.

5◦ Since we can approximate φ ∈ L∞(Fτ ) uniformly by Fτ measurable step
functions φn, (10.11) follows from 4◦ and Itô’s isometry because of the following
inequality:

E

[( ∫∫ [
φn1�τ,∞�(t)f(t, x) − φ1�τ,∞�(t)f(t, x)

]
N(dt, dx)

)2
]

=

∫∫
E
([

φn1�τ,∞�(t)f(t, x) − φ1�τ,∞�(t)f(t, x)
]2)

μ(dt, dx)

� ‖φn − φ‖2L∞(P)

∫∫
E
[
f2(t, x)

]
μ(dt, dx). �

We will now consider ‘martingale noise’ random orthogonal measures, see
Example 10.3.c), which are given by (the predictable quadratic variation of) a
square-integrable martingale M . For these random measures our definition of the
stochastic integral coincides with Itô’s definition. Recall that the Itô integral driven
by M is first defined for simple, left-continuous processes of the form

f(ω, t) :=
n∑

k=1

φk(ω)1�τk,τk+1�(ω, t), t � 0, (10.12)

where 0 � τ1 � τ2 � · · · � τn+1 are bounded stopping times and φk bounded Fτk

measurable random variables. The Itô integral for such simple processes is∫
f(ω, t) dMt(ω) :=

n∑
k=1

φk(ω)
(
Mτk+1

(ω) − Mτk(ω)
)

and it is extended by Itô’s isometry to all integrands from L2(Ω× (0,∞),P , dP⊗
d〈M〉t). For details we refer to any standard text on Itô integration, e.g., Protter
[44, Chapter II] or Revuz & Yor [45, Chapter IV].

We will now use Lemma 10.12 in the particular situation where the space
component dx is not present.
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Theorem 10.13. Let N(dt) be a ‘martingale noise’ random orthogonal measure
induced by the square-integrable martingale M (Example 10.3). The stochastic in-
tegral w.r.t. the random orthogonal measure N(dt) and Itô’s stochastic integral
w.r.t. M coincide.

Proof. Let 0 � τ1 � τ2 � · · · � τn+1 be bounded stopping times, φk ∈ L∞(Fτk)
bounded random variables and f(ω, t) be a simple stochastic process of the form
(10.12). From Lemma 10.12 we get∫

f(t)N(dt) =

∫ n∑
k=1

φk1�τk,τk+1�(t)N(dt)

=
n∑

k=1

∫
φk1�τk,∞�(t)1�0,τk+1�(t)N(dt)

=

n∑
k=1

φk

∫
1�τk,∞�(t)1�0,τk+1�(t)N(dt)

=
n∑

k=1

φk(Mτk+1
− Mτk).

This means that both stochastic integrals coincide on the simple stochastic pro-
cesses. Since both integrals are extended by Itô’s isometry, the assertion fol-
lows. �
Example 10.14. Using random orthogonal measures we can re-state the Lévy–Itô
decomposition appearing in Theorem 9.12. For this, let Ñ(dt, dx) be the Poisson
random orthogonal measure (Example 10.3.d) on E = (0,∞) × (Rd \ {0}) with
control measure dt × ν(dx) (ν is a Lévy measure). Additionally, we define for all
deterministic functions h : (0,∞) × Rd → R∫∫

h(s, x)N(ω, ds, dx) :=
∑

0<s<∞
h(s,ΔXs(ω)) ∀ω ∈ Ω

provided that the sum
∑

0<s<∞ |h(s,ΔXs(ω))| < ∞ for each ω.6 If X is a Lévy
process with characteristic exponent ψ and Lévy triplet (l, Q, ν), then

Xt =
√
QWt +

∫∫
1(0,t](s)y1(0,1)(|y|) Ñ(ds, dy)

]]]
=: Mt, L2-martingale

tl

continuous
Gaussian

+

∫∫
1(0,t](s)y1{|y|�1}N(ds, dy).

pure jump part

]]]
=: At, bdd. variation

6This is essentially an ω-wise Riemann–Stieltjes integral. A sufficient condition for the abso-
lute convergence is, e.g., that h is continuous and h(t, ·) vanishes uniformly in t in some neigh-
bourhood of x = 0. The reason for this is the fact that Nt(ω,Bc

ε (0)) = N(ω, (0, t]×Bc
ε (0)) < ∞,

i.e., there are at most finitely many jumps of size exceeding ε > 0.



84 Chapter 10. A Digression: Stochastic Integrals

Example 10.14 is quite particular in the sense that N(·, dt, dx) is a bona fide
positive measure, and the control measure μ(dt, dx) is also the compensator, i.e., a

measure such that Ñ((0, t]×B) = N((0, t]×B)−μ((0, t]×B) is a square-integrable
martingale.

Following Ikeda & Watanabe [22, Chapter II.4] we can generalize the set-up
of Example 10.14 in the following way: Let N(ω, dt, dx) be for each ω a positive
measure of space-time type. Since t �→ N(ω, (0, t] × B) is increasing, there is a

unique compensator N̂(ω, dt, dx) such that for all B with EN̂((0, t] × B) < ∞

Ñ(ω, (0, t]× B) := N(ω, (0, t]× B) − N̂(ω, (0, t]× B), t � 0,

is a square-integrable martingale. If t �→ N̂((0, t] × B) is continuous and B �→
N̂((0, t]×B) a σ-finite measure, then one can show that the angle bracket satisfies〈

Ñ((0, ·]× B), Ñ((0, ·]× C)
〉
t
= N̂

(
(0, t] × (B ∩ C)

)
.

This means, in particular, that Ñ(ω, dt, dx) is a random orthogonal measure with

control measure μ((0, t] × B) = EN̂((0, t] × B), and we are back in the theory
which we have developed in the first part of this chapter.

It is possible to develop a fully-fledged stochastic calculus for this kind of
random measures.

Definition 10.15. Let (Ω,A ,P) be a probability space with a filtration (Ft)t�0.
A semimartingale is a stochastic process X of the form

Xt = X0 +At +Mt +

∫ t

0

∫
f(·, s, x) Ñ(ds, dx)

+

∫ t

0

∫
g(·, s, x)N(ds, dx)

(
∫ t

0
:=

∫
(0,t]

) where

• X0 is an F0 measurable random variable,

• M is a continuous square-integrable local martingale (w.r.t. Ft),

• A is a continuous Ft adapted process of bounded variation,

• N(ds, dx), Ñ(ds, dx) and N̂(ds, dx) are as described above,

• f1�0,τn� ∈ L2(Ω × (0,∞) × X,P ⊗ X , μ◦) for some increasing sequence
τn ↑ ∞ of bounded stopping times,

• g is such that
∫ t

0

∫
g(ω, s, x)N(ω, ds, dx) exists as an ω-wise integral,

• f(·, s, x)g(·, s, x) ≡ 0.
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In this case, we even have Itô’s formula, see [22, Chapter II.5], for any twice
continuously differentiable F ∈ C2(R,R):

F (Xt) − F (X0) =

∫ t

0

F ′(Xs−) dAs +

∫ t

0

F ′(Xs−) dMs +
1

2

∫ t

0

F ′′(Xs−) d〈M〉s

+

∫ t

0

∫ [
F (Xs− + f(s, x)) − F (Xs−)

]
Ñ(ds, dx)

+

∫ t

0

∫ [
F (Xs− + g(s, x)) − F (Xs−)

]
N(ds, dx)

+

∫ t

0

∫ [
F (Xs + f(s, x)) − F (Xs) − f(s, x)F ′(Xs)

]
N̂(ds, dx)

where we use again the convention that
∫ t

0 :=
∫
(0,t].



Chapter 11

From Lévy to Feller Processes

We have seen in Lemma 4.8 that the semigroup Ptf(x) := Exf(Xt) = Ef(Xt+x)
of a Lévy process (Xt)t�0 is a Feller semigroup. Moreover, the convolution struc-
ture of the semigroup Ef(Xt + x) =

∫
f(x + y)P(Xt ∈ dy) is a consequence

of the spatial homogeneity (translation invariance) of the Lévy process, see Re-
mark 4.5 and the characterization of translation invariant linear functionals (The-
orem A.10). Lemma 4.4 shows that the translation invariance of a Lévy process is
due to the assumptions (L1) and (L2).

It is, therefore, a natural question to ask what we get if we consider stochastic
processes whose semigroups are Feller semigroups which are not translation invari-
ant. Since every Feller semigroup admits a Markov transition kernel (Lemma 5.2),
we can use Kolmogorov’s construction to obtain a Markov process. Thus, the
following definition makes sense.

Definition 11.1. A Feller process is a càdlàg Markov process (Xt)t�0,Xt : Ω → Rd,
t � 0, whose transition semigroup Ptf(x) = Exf(Xt) is a Feller semigroup.

Remark 11.2. It is no restriction to require that a Feller process has càdlàg paths.
By a fundamental result in the theory of stochastic processes we can construct such
modifications. Usually, one argues like this: It is enough to study the coordinate
processes, i.e., d = 1. Rather than looking at t �→ Xt we consider a (countable,
point-separating) family of functions u : R → R and show that each t �→ u(Xt) has
a càdlàg modification. One way of achieving this is to use martingale regularization
techniques (e.g., Revuz & Yor [45, Chapter II.2]) which means that we should pick
u in such a way that u(Xt) is a supermartingale. The usual candidate for this is
the resolvent e−λtRλf(Xt) for some f ∈ C+∞(R). Indeed, if Ft = σ(Xs, s � t) is
the natural filtration, f � 0 and s � t, then

Ex
[
Rλf(Xt) | Fs

]
= EXs

∫ ∞

0

e−λrPrf(Xt−s) dr =

∫ ∞

0

e−λrPrPt−sf(Xs) dr

= eλ(t−s)

∫ ∞

t−s

e−λuPuf(Xs) du � eλ(t−s)

∫ ∞

0

e−λuPuf(Xs) du

= eλ(t−s)Rλf(Xs).
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Let Ft = FX
t := σ(Xs, s � t) be the canonical filtration.

Lemma 11.3. Every Feller process (Xt)t�0 is a strong Markov process, i.e.,

Ex
[
f(Xt+τ ) | Fτ

]
= EXτ f(Xt), Px-a.s. on {τ < ∞}, t � 0, (11.1)

holds for any stopping time τ , Fτ := {F ∈ F∞ : F ∩ {τ � t} ∈ Ft ∀t � 0} and
f ∈ C∞(Rd).

A routine approximation argument shows that (11.1) extends to f(y) =
1K(y) (where K is a compact set) and then, by a Dynkin-class argument, to
any f(y) = 1B(y) where B ∈ B(Rd).

Proof. In order to prove (11.1), we approximate τ from above by discrete stopping
times τn =

(�2nτ� + 1
)
2−n and observe that for F ∈ Fτ ∩ {τ < ∞}

Ex[1F f(Xt+τ )]
(i)
= lim

n→∞Ex[1F f(Xt+τn)]

(ii)
= lim

n→∞Ex
[
1FE

Xτn f(Xt)
]

(iii)
= Ex

[
1FE

Xτ f(Xt)
]
.

Here we use that t �→ Xt is right-continuous, plus (i) dominated convergence and
(iii) the Feller continuity 4.7.f); (ii) is the strong Markov property for discrete
stopping times which follows directly from the (ordinary) Markov property: Since
{τn < ∞} = {τ < ∞}, we get

Ex[1F f(Xt+τn)] =

∞∑
k=1

Ex
[
1F∩{τn=k2−n}f(Xt+k2−n)

]
=

∞∑
k=1

Ex
[
1F∩{τn=k2−n}EXk2−n f(Xt)

]
= Ex

[
1FE

Xτn f(Xt)
]
.

In the last calculation we use that F ∩ {τn = k2−n} ∈ Fk2−n for all F ∈ Fτ . �

Once we know the generator of a Feller process, we can construct many
important martingales with respect to the canonical filtration of the process.

Corollary 11.4. Let (Xt)t�0 be a Feller process with generator (A,D(A)) and semi-
group (Pt)t�0. For every f ∈ D(A) the process

M
[f ]
t := f(Xt)−

∫ t

0

Af(Xr) dr, t � 0, (11.2)

is a martingale for the canonical filtration FX
t := σ(Xs, s � t) and any Px,

x ∈ Rd.
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Proof. Let s � t, f ∈ D(A) and write, for short, Fs := FX
s and Mt := M

[f ]
t . By

the Markov property

Ex [Mt − Ms | Fs] = Ex

[
f(Xt) − f(Xs) −

∫ t

s

Af(Xr) dr

∣∣∣∣ Fs

]
= EXsf(Xt−s) − f(Xs)−

∫ t−s

0

EXsAf(Xu) du.

On the other hand, we get from the semigroup identity (5.5)∫ t−s

0

EXsAf(Xu) du =

∫ t−s

0

PuAf(Xs) du

= Pt−sf(Xs) − f(Xs)

= EXsf(Xt−s) − f(Xs)

which shows that Ex [Mt − Ms | Fs] = 0. �

Our approach from Chapter 6 to prove the structure of a Lévy generator
‘only’ uses the positive maximum principle. Therefore, it can be adapted to Feller
processes provided that the domainD(A) is rich in the sense that C∞

c (Rd) ⊂ D(A).
All we have to do is to take into account that Feller processes are not any longer
invariant under translations. The following theorem is due to Courrège [14] and
von Waldenfels [61, 62].

Theorem 11.5 (von Waldenfels, Courrège). Let (A,D(A)) be the generator of a
Feller process such that C∞

c (Rd) ⊂ D(A). Then A|C∞
c (Rd) is a pseudo-differential

operator

Au(x) = −q(x,D)u(x) := −
∫

q(x, ξ)û(ξ)ei x·ξ dξ (11.3)

whose symbol q : Rd × Rd → C is a measurable function of the form

q(x, ξ) = q(x, 0)︸ ︷︷ ︸
�0

− i l(x) · ξ+ 1

2
ξ ·Q(x)ξ+

∫
y �=0

[
1− ei y·ξ + i y · ξ1(0,1)(|y|)

]
ν(x, dy)

(11.4)
and (l(x), Q(x), ν(x, dy)) is a Lévy triplet1 for every fixed x ∈ Rd.

If we insert (11.4) into (11.3) and invert the Fourier transform we obtain the
following integro-differential representation of the Feller generator A:

Af(x) = l(x) · ∇f(x) +
1

2
∇ ·Q(x)∇f(x)

+

∫
y �=0

[
f(x+ y)− f(x) − ∇f(x) · y1(0,1)(|y|)

]
ν(x, dy).

(11.5)

1Cf. Definition 6.10
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This formula obviously extends to all functions f ∈ C2
b(R

d). In particular, we may
use f(x) = eξ(x) = eix·ξ, and get2

e−ξ(x)Aeξ(x) = −q(x, ξ). (11.6)

Proof of Theorem 11.5 (sketch). For a worked-out version cf. [9, Chapter 2.3]. In
the proof of Theorem 6.8 use, instead of A0 and A00

A0f � Axf := (Af)(x) and A00f � Axxf := Ax(| · −x|2f)

for every x ∈ Rd. This is needed since Pt and A are not any longer translation
invariant, i.e., we cannot shift A0f to get Axf . Then follow the steps 1◦– 4◦ to
get ν(dy) � ν(x, dy) and 6◦– 9◦ for (l(x), Q(x)). Remark 6.9 shows that the term
q(x, 0) is non-negative.

The key observation is, as in the proof of Theorem 6.8, that we can use
in steps 3◦ and 7◦ the positive maximum principle3 to make sure that Axf is a
distribution of order 2, i.e.,

|Axf |= |Lxf+Sxf |�CK‖f‖(2) for all f ∈C∞
c (K) and all compact sets K⊂Rd.

Here Lx is the local part with support in {x} accounting for (q(x, 0), l(x), Q(x)),
and Sx is the non-local part supported in Rd \ {x} giving ν(x, dy). �

With some abstract functional analysis we can show some (local) bounded-
ness properties of x �→ Af(x) and (x, ξ) �→ q(x, ξ).

Corollary 11.6. In the situation of Theorem 11.5, the condition (PP) shows that

sup
|x|�r

|Af(x)| � Cr‖f‖(2) for all f ∈ C∞
c (Br(0)) (11.7)

and the positive maximum principle (PMP) gives

sup
|x|�r

|Af(x)| � Cr,A‖f‖(2) for all f ∈ C∞
c (Rd), r > 0. (11.8)

Proof. In the above sketched analogue of the proof of Theorem 6.8 we have seen
that the family of linear functionals{

C∞
c (Br(0)) � f �→ Axf : x ∈ Br(0)

}
where Axf := (Af)(x) satisfies

|Axf | � cr,x‖f‖(2), f ∈ C∞
c (Br(0)),

2This should be compared with Definition 6.4 and the subsequent comments.
3To be precise: its weakened form (PP), cf. page 46.
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i.e., Ax : (C2
b(Br(0)), ‖ · ‖(2)) → (R, | · |) is bounded. By the Banach–Steinhaus

theorem (uniform boundedness principle)

sup
|x|�r

|Axf | � Cr‖f‖(2).

Since A also satisfies the positive maximum principle (PMP), we know from
step 4◦ of the (suitably adapted) proof of Theorem 6.8 that∫

|y|>1

ν(x, dy) � Aφ0(x) for some φ0 ∈ Cc(B1(0)).

Let r > 1, pick χ = χr ∈ C∞
c (Rd) such that 1B2r(0) � χ � 1B3r(0). We get for

|x| � r

Af(x) = A[χf ](x) +A[(1 − χ)f ](x)

= A[χf ](x) +

∫
|y|�r

[
(1 − χ(x+ y))f(x+ y)− (1 − χ(x))f(x)︸ ︷︷ ︸

=0

]
ν(x, dy),

and so

sup
|x|�r

|Af(x)| � Cr‖χf‖(2) + ‖f‖∞‖Aφ0‖∞ � Cr,A‖f‖(2). �

Corollary 11.7. In the situation of Theorem 11.5 there exists a locally bounded
function γ : Rd → [0,∞) such that

|q(x, ξ)| � γ(x)(1 + |ξ|2), x, ξ ∈ Rd. (11.9)

Proof. Using (11.8) we can extend A by continuity to C2
b(R

d) and, therefore,

−q(x, ξ) = e−ξ(x)Aeξ(x), eξ(x) = eix·ξ

makes sense. Moreover, we have sup|x|�r |Aeξ(x)| � Cr,A‖eξ‖(2) for any r � 1;
since ‖eξ‖(2) is a polynomial of order 2 in the variable ξ, the claim follows. �

For a Lévy process we have ψ(0) = 0 since P(Xt ∈ Rd) = 1 for all t � 0, i.e.,
the process Xt does not explode in finite time. For Feller processes the situation
is more complicated. We need the following technical lemmas.

Lemma 11.8. Let q(x, ξ) be the symbol of (the generator of ) a Feller process as
in Theorem 11.5 and F ⊂ Rd be a closed set. Then the following assertions are
equivalent.

a) |q(x, ξ)| � C(1 + |ξ|2) for all x, ξ ∈ Rd where C = 2 sup
|ξ|�1

sup
x∈F

|q(x, ξ)|.

b) sup
x∈F

q(x, 0) + sup
x∈F

|l(x)| + sup
x∈F

‖Q(x)‖ + sup
x∈F

∫
y �=0

|y|2
1 + |y|2 ν(x, dy) < ∞.
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If F = Rd, then the equivalent properties of Lemma 11.8 are often referred
to as ‘the symbol has bounded coefficients’.

Outline of the proof (see [57, Appendix ] for a complete proof ).
The direction b)⇒a) can be proved as Theorem 6.2. Observe that ξ �→ q(x, ξ) is for
fixed x the characteristic exponent of a Lévy process. The finiteness of the constant
C follows from the assumption b) and the Lévy–Khintchine formula (11.4).

For the converse a)⇒b) we note that the integrand appearing in (11.4) can

be estimated by c |y|2
1+|y|2 which is itself a Lévy exponent:

|y|2
1 + |y|2 =

∫
[1 − cos(y · ξ)] g(ξ) dξ, g(ξ) =

1

2

∫ ∞

0

(2πλ)−d/2e−|ξ|2/2λe−λ/2 dλ.

Therefore, by Tonelli’s theorem,∫
y �=0

|y|2
1 + |y|2 ν(x, dy) =

∫∫
y �=0

[1 − cos(y · ξ)] ν(x, dy) g(ξ) dξ

=

∫
g(ξ)

(
Re q(x, ξ) − 1

2
ξ ·Q(x)ξ − q(x, 0)

)
dξ. �

Lemma 11.9. Let A be the infinitesimal generator of a Feller process, assume that
C∞
c (Rd) ⊂ D(A) and denote by q(x, ξ) the symbol of A. For any cut-off function

χ ∈ C∞
c (Rd) satisfying 1B1(0) � χ � 1B2(0) and χr(x) := χ(x/r) one has

|q(x,D)(χreξ)(x)| � 4 sup
|η|�1

|q(x, η)|
∫
Rd

[
1 + r−2|ρ|2 + |ξ|2] ∣∣χ̂(ρ)∣∣ dρ, (11.10)

lim
r→∞A(χreξ)(x) = −eξ(x)q(x, ξ) for all x, ξ ∈ Rd. (11.11)

Proof. Observe that χ̂reξ(η) = rdχ̂(r(η − ξ)) and

q(x,D)(χreξ)(x) =

∫
q(x, η) ei x·η χ̂reξ(η) dη

=

∫
q(x, η) ei x·η rd χ̂(r(η − ξ)) dη

=

∫
q(x, ξ + r−1ρ) eix·(ξ+ρ/r) χ̂(ρ) dρ.

(11.12)

Therefore we can use the estimate (11.9) with the optimal constant γ(x) =
2 sup|η|�1 |q(x, η)| and the elementary estimate (a+ b)2 � 2(a2 + b2) to obtain

|q(x,D)(χreξ)(x)| �
∫ ∣∣q(x, ξ + r−1ρ)

∣∣∣∣χ̂(ρ)∣∣ dρ
� 4 sup

|η|�1

|q(x, η)|
∫ [

1 + r−2|ρ|2 + |ξ|2] ∣∣χ̂(ρ)∣∣ dρ.
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This proves (11.10); it also allows us to use dominated convergence in (11.12) to
get (11.11). Just observe that χ̂ ∈ S(Rd) and

∫
χ̂(ρ) dρ = χ(0) = 1. �

Lemma 11.10. Let q(x, ξ) be the symbol of (the generator of ) a Feller process.
Then the following assertions are equivalent:

a) x �→ q(x, ξ) is continuous for all ξ.

b) x �→ q(x, 0) is continuous.

c) Tightness: lim
r→∞ sup

x∈K
ν(x,Rd \ Br(0)) = 0 for all compact sets K ⊂ Rd.

d) Uniform continuity at the origin: lim
|ξ|→0

sup
x∈K

|q(x, ξ) − q(x, 0)| = 0 for all

compact sets K ⊂ Rd.

Proof. Let χ : [0,∞) → [0, 1] be a decreasing C∞-function satisfying 1[0,1) �
χ � 1[0,4). The functions χn(x) := χ(|x|2/n2), x ∈ Rd and n ∈ N, are radially
symmetric, smooth functions with 1Bn(0) � χn � 1B2n(0). Fix any compact set

K ⊂ Rd and some sufficiently large n0 such that K ⊂ Bn0(0).

a)⇒b) is obvious.

b)⇒c) For m � n � 2n0 the positive maximum principle implies

1K(x)A(χn − χm)(x) � 0.

Therefore, −1K(x)q(x, 0) = limn→∞ 1K(x)Aχn+n0 (x) is a decreasing limit of con-
tinuous functions. Since the limit function q(x, 0) is continuous, Dini’s theorem
implies that the limit is uniform on the set K. From the integro-differential rep-
resentation (11.5) of the generator we get

1K(x)|Aχm(x)−Aχn(x)|=1K(x)

∫
n−n0�|y|�2m+n0

(
χm(x+y)−χn(x+y)

)
ν(x,dy).

Letting m → ∞ yields

1K(x)|q(x, 0) +Aχn(x)| = 1K(x)

∫
|y|�n−n0

(
1 − χn(x+ y)

)
ν(x, dy)

� 1K(x)

∫
|y|�n−n0

(
1 − 1B2n+n0(0)

(y)
)
ν(x, dy)

� 1K(x)ν
(
x,Bc

2n+n0
(0)

)
.

where we use that K ⊂ Bn0(0) and

χn(x+ y) � 1B2n(0)(x + y) = 1B2n(0)−x(y) � 1B2n+n0(0)
(y).

Since the left-hand side converges uniformly to 0 as n → ∞, c) follows.



94 Chapter 11. From Lévy to Feller Processes

c)⇒d) Since the function x �→ q(x, ξ) is locally bounded, we conclude from
Lemma 11.8 that supx∈K |l(x)| + supx∈K ‖Q(x)‖ < ∞. Thus,

lim
|ξ|→0

sup
x∈K

(|l(x) · ξ| + |ξ ·Q(x)ξ|) = 0,

and we may safely assume that l ≡ 0 and Q ≡ 0. If |ξ| � 1 we find, using (11.4)
and Taylor’s formula for the integrand,

|q(x, ξ) − q(x, 0)|

=

∣∣∣∣∫
y �=0

[
1 − ei y·ξ + i y · ξ1(0,1)(y)

]
ν(x, dy)

∣∣∣∣
�
∫
0<|y|2<1

1

2
|y|2|ξ|2 ν(x, dy) +

∫
1�|y|2<1/|ξ|

|y||ξ| ν(x, dy) +
∫
|y|2�1/|ξ|

2 ν(x, dy)

�
∫
0<|y|2<1/|ξ|

|y|2
1 + |y|2 ν(x, dy)

(
1 + |ξ|−1/2

)|ξ| + 2ν
(
x, {y : |y|2 � 1/|ξ|}).

Since this estimate is uniform for x ∈ K, we get d) as |ξ| → 0.

d)⇒c) As before, we may assume that l ≡ 0 and Q ≡ 0. For every r > 0

1

2
ν(x,Bc

r(0)) �
∫
|y|�r

|y/r|2
1 + |y/r|2 ν(x, dy)

=

∫
|y|�r

∫
Rd

(
1 − cos

η · y
r

)
g(η) dη ν(x, dy)

�
∫
Rd

[
Re q

(
x, η

r

)− q(x, 0)
]
g(η) dη,

where g(η) is as in the proof of Lemma 11.8. Since
∫
(1+ |η|2)g(η) dη < ∞, we can

use (11.9) and find

ν(x,Bc
r(0)) � cg sup

|η|�1/r

∣∣Re q(x, η) − q(x, 0)
∣∣.

Taking the supremum over all x ∈ K and letting r → ∞ proves c).

c)⇒a) From Lemma 11.9 we know that limn→∞ e−ξ(x)A[χneξ](x) = −q(x, ξ). Let
us show that this convergence is uniform for x ∈ K. Let m � n � 2n0. For x ∈ K∣∣e−ξ(x)A[eξχn](x) − e−ξ(x)A[eξχm](x)

∣∣
=

∣∣∣∣∫
y �=0

[
eξ(y)χn(x+ y) − eξ(y)χm(x + y)

]
ν(x, dy)

∣∣∣∣
�
∫
y �=0

[
χm(x+ y) − χn(x+ y)

]
ν(x, dy)

�
∫
n−n0�|y|�2m+n0

[
χm(x+ y) − χn(x+ y)

]
ν(x, dy)

� ν(x,Bc
n−n0

(0)).
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In the penultimate step we use that, because of the definition of the functions χn,

supp
(
χm(x+ ·) − χn(x+ ·)) ⊂ B2m(x) \ Bn(x) ⊂ B2m+n0(0) \ Bn−n0(0)

for all x ∈ K ⊂ Bn0(0). The right-hand side tends to 0 uniformly for x ∈ K as
n → ∞, hence m → ∞. �
Remark 11.11. The argument used in the first three lines of the step b)⇒c) in the
proof of Lemma 11.10 shows, incidentally, that

x �→ q(x, ξ) is always upper semicontinuous

since it is (locally) a decreasing limit of continuous functions.

Remark 11.12. Let A be the infinitesimal generator of a Feller process, and assume
that C∞

c (Rd) ⊂ D(A); although A maps D(A) into C∞(Rd), this is not enough
to guarantee that the symbol q(x, ξ) is continuous in the variable x. On the other
hand, if the Feller process X has only bounded jumps, i.e., if the support of the
Lévy measure ν(x, ·) is uniformly bounded, then q(·, ξ) is continuous. This is, in
particular, true for diffusions.

This follows immediately from Lemma 11.10.c) which holds if ν(x,Bc
r(0)) = 0

for some r > 0 and all x ∈ Rd.

We can also give a direct argument: pick χ ∈ C∞
c (Rd) satisfying 1B3r(0) �

χ � 1. From the representation (11.5) it is not hard to see that

Af(x) = A[χf ](x) for all f ∈ C2
b(R

d) and x ∈ Br(0);

in particular, A[χf ] is continuous.

If we take f(x) := eξ(x), then, by (11.6),

−q(x, ξ) = e−ξ(x)Aeξ(x) = e−ξ(x)A[χeξ](x)

which proves that x �→ q(x, ξ) is continuous on every ball Br(0), hence everywhere.

We can now discuss the role of q(x, ξ) for the conservativeness of a Feller
process.

Theorem 11.13. Let (Xt)t�0 be a Feller process with an infinitesimal generator
(A,D(A)) such that C∞

c (Rd) ⊂ D(A), symbol q(x, ξ) and semigroup (Pt)t�0.

a) If x �→ q(x, ξ) is continuous for all ξ ∈ Rd and Pt1 = 1, then q(x, 0) = 0.

b) If q(x, ξ) has bounded coefficients and q(x, 0) = 0, then x �→ q(x, ξ) is con-
tinuous and Pt1 = 1.

Proof. Let χ and χr, r ∈ N, be as in Lemma 11.9. Then eξχr ∈ D(A) and, by
Corollary 11.4,

Mt := eξχr(Xt)− eξχr(x) −
∫
[0,t)

A(eξχr)(Xs) ds, t � 0,
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is a martingale. Using optional stopping for the stopping time

τ := τxR := inf{s � 0 : |Xs − x| � R}, x ∈ Rd, R > 0,

the stopped process (Mt∧τ )t�0 is still a martingale. Since ExMt∧τ = 0, we get

Ex(χreξ)(Xt∧τ )− χreξ(x) = Ex

∫
[0,t∧τ)

A(χreξ)(Xs) ds.

Observe that the integrand is evaluated only for times s < t ∧ τ where |Xs| �
R + x. Since A(eξχr)(x) is locally bounded, we can use dominated convergence
and Lemma 11.9 and we find, as r → ∞,

Exeξ(Xt∧τ ) − eξ(x) = −Ex

∫
[0,t∧τ)

eξ(Xs)q(Xs, ξ) ds.

a) Set ξ = 0 and observe that Pt1 = 1 implies that τ = τxR → ∞ a.s. as R → ∞.
Therefore,

Px(Xt∧τ ∈ Rd)− 1 = −Ex

∫
[0,τ∧t)

q(Xs, 0) ds,

and with Fatou’s Lemma we can let R → ∞ to get

0 = lim inf
R→∞

Ex

∫
[0,τ∧t)

q(Xs, 0) ds

� Ex

[
lim inf
R→∞

∫
[0,τ∧t)

q(Xs, 0) ds

]
= Ex

∫ t

0

q(Xs, 0) ds.

Since x �→ q(x, 0) is continuous and q(x, 0) non-negative, we conclude with Tonelli’s
theorem that

q(x, 0) = lim
t→0

1

t

∫ t

0

Exq(Xs, 0) ds = 0.

b) Set ξ = 0 and observe that the boundedness of the coefficients implies that

Px(Xt ∈ Rd) − 1 = −Ex

∫
[0,t)

q(Xs, 0) ds

as R → ∞. Since the right-hand side is 0, we get Pt1 = Px(Xt ∈ Rd) = 1. �
Remark 11.14. The boundedness of the coefficients in Theorem 11.13.b) is impor-
tant. If the coefficients of q(x, ξ) grow too rapidly, we may observe explosion in
finite time even if q(x, 0) = 0. A typical example in dimension 3 is the diffusion
process given by the generator

Lf(x) =
1

2
a(x)Δf(x)
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where a(x) is continuous, rotationally symmetric a(x) = α(|x|) for a suitable
function α(r), and satisfies

∫∞
1

1/α(
√
r) dr < ∞, see Stroock & Varadhan [60,

p. 260, 10.3.3]; the corresponding symbol is q(x, ξ) = 1
2a(x)|ξ|2. This process

explodes in finite time. Since this is essentially a time-changed Brownian motion
(see Böttcher, Schilling & Wang [9, Chapter 4.1]), this example works only if
Brownian motion is transient, i.e., in dimensions d = 3 and higher. A sufficient
criterion for conservativeness in terms of the symbol is

lim inf
r→∞ sup

|y−x|�2r

sup
|η|�1/r

|q(y, η)| < ∞ for all x ∈ Rd,

see [9, Theorem 2.34].



Chapter 12

Symbols and Semimartingales

So far, we have been treating the symbol q(x, ξ) of (the generator of) a Feller
process X as an analytic object. On the other hand, Theorem 11.13 indicates,
that there should be some probabilistic consequences. In this chapter we want to
follow this lead, show a probabilistic method to calculate the symbol and link it to
the semimartingale characteristics of a Feller process. The blueprint for this is the
relation of the Lévy–Itô decomposition (which is the semimartingale decomposi-
tion of a Lévy process, cf. Theorem 9.12) with the Lévy–Khintchine formula for
the characteristic exponent (which coincides with the symbol of a Lévy process,
cf. Corollary 9.13).

For a Lévy process Xt with semigroup Ptf(x) = Exf(Xt) = Ef(Xt + x) the
symbol can be calculated in the following way:

lim
t→0

e−ξ(x)Pteξ(x) − 1

t
= lim

t→0

Exei ξ·(Xt−x) − 1

t
= lim

t→0

e−tψ(ξ) − 1

t
= −ψ(ξ).

(12.1)

For a Feller process a similar formula is true.

Theorem 12.1. Let X = (Xt)t�0 be a Feller process with transition semigroup
(Pt)t�0 and generator (A,D(A)) such that C∞

c (Rd) ⊂ D(A). If x �→ q(x, ξ) is
continuous and q has bounded coefficients (Lemma 11.8 with F = Rd), then

−q(x, ξ) = lim
t→0

Exei ξ·(Xt−x) − 1

t
. (12.2)

Proof. Pick χ ∈ C∞
c (Rd), 1B1(0) � χ � 1B2(0) and set χn(x) := χ

(
x
n

)
. Obviously,

χn → 1 as n → ∞. By Lemma 5.4,

Pt[χneξ](x) − χn(x)eξ(x) =

∫ t

0

APs[χneξ](x) ds

= Ex

∫ t

0

A[χneξ](Xs) ds
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= −
∫ t

0

∫
Rd

Ex
(
eη(Xs)q(Xs, η) χ̂neξ(η)︸ ︷︷ ︸

=ndχ̂(n(η−ξ))

)
dη ds

−−−−→
n→∞ −

∫ t

0

Ps

[
eξq(·, ξ)

]
(x) ds.

Since x �→ q(x, ξ) is continuous, we can divide by t and let t → 0; this yields

lim
t→0

1

t
(Pteξ(x) − eξ(x)) = −eξ(x)q(x, ξ). �

Theorem 12.1 is a relatively simple probabilistic formula to calculate the sym-
bol. We want to relax the boundedness and continuity assumptions. Here Dynkin’s
characteristic operator becomes useful.

Lemma 12.2 (Dynkin’s formula). Let (Xt)t�0 be a Feller process with semigroup
(Pt)t�0 and generator (A,D(A)). For every stopping time σ with Exσ < ∞ one
has

Exf(Xσ)− f(x) = Ex

∫
[0,σ)

Af(Xs) ds, f ∈ D(A). (12.3)

Proof. From Corollary 11.4 we know that M
[f ]
t := f(Xt)− f(X0)−

∫ t

0
Af(Xs) ds

is a martingale; thus (12.3) follows from the optional stopping theorem. �
Definition 12.3. Let (Xt)t�0 be a Feller process. A point a ∈ Rd is an absorbing
point, if

Pa(Xt = a, ∀t � 0) = 1.

Denote by τr := inf{t > 0 : |Xt − X0| � r} the first exit time from the ball
Br(x) centered at the starting position x = X0.

Lemma 12.4. Let (Xt)t�0 be a Feller process and assume that b ∈ Rd is not
absorbing. Then there exists some r > 0 such that Ebτr < ∞.

Proof. 1◦ If b is not absorbing, then there is some f ∈ D(A) such that Af(b) �= 0.
Assume the contrary, i.e.,

Af(b) = 0 for all f ∈ D(A).

By Lemma 5.4, Psf ∈ D(A) for all s � 0, and

Ptf(b)− f(b) =

∫ t

0

A(Psf)(b) ds = 0.

So, Ptf(b) = f(b) for all f ∈ D(A). Since D(A) is dense in C∞(Rd) (Remark 5.5),
we get Ptf(b) = f(b) for all f ∈ C∞(Rd), hence Pb(Xt = b) = 1 for any t � 0.
Therefore,

Pb(Xq = b, ∀q ∈ Q, q � 0) = 1 and Pb(Xt = b, ∀t � 0) = 1,
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because of the right-continuity of the sample paths. This means that b is an ab-
sorbing point, contradicting our assumption.

2◦ Pick f ∈ D(A) such that Af(b) > 0. Since Af is continuous, there exist
ε > 0 and r > 0 such that Af |Br(b) � ε > 0. From Dynkin’s formula (12.3) with
σ = τr ∧ n, n � 1, we deduce

εEb(τr ∧ n) � Eb

∫
[0,τr∧n)

Af(Xs) ds = Ebf(Xτr∧n)− f(b) � 2‖f‖∞.

Finally, monotone convergence shows that Ebτr � 2‖f‖∞/ε < ∞. �

Definition 12.5 (Dynkin’s operator). Let (Xt)t�0 be a Feller process. The linear
operator (A,D(A)) defined by

Af(x) :=

⎧⎨⎩ lim
r→0

Exf(Xτr) − f(x)

Exτr
, if x is not absorbing,

0, otherwise,

D(A) :=
{
f ∈ C∞(Rd) : the above limit exists pointwise

}
,

is called Dynkin’s (characteristic) operator.

Lemma 12.6. Let (Xt)t�0 be a Feller process with generator (A,D(A)) and char-
acteristic operator (A,D(A)).

a) A is an extension of A, i.e., D(A) ⊂ D(A) and A|D(A) = A.

b) (A,D) = (A,D(A)) if D = {f ∈ D(A) : f, Af ∈ C∞(Rd)}.
Proof. a) Let f ∈ D(A) and assume that x ∈ Rd is not absorbing. By Lemma 12.4
there is some r = r(x) > 0 with Exτr < ∞. Since we have Af ∈ C∞(Rd), there
exists for every ε > 0 some δ > 0 such that

|Af(y)− Af(x)| < ε for all y ∈ Bδ(x).

Without loss of generality let δ < r. Using Dynkin’s formula (12.3) with σ = τδ,
we see∣∣Exf(Xτδ)− f(x) − Af(x)Exτδ

∣∣ � Ex

∫
[0,τδ)

|Af(Xs)− Af(x)|︸ ︷︷ ︸
�ε

ds � εExτδ.

Thus, limr→0

(
Exf(Xτr) − f(x)

)/
Exτr = Af(x).

If x is absorbing and f ∈ D(A), then Af(x) = 0 and so Af(x) = Af(x).

b) Since (A,D) satisfies the positive maximum principle (PMP), the claim follows
from Lemma 5.11. �
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Theorem 12.7. Let (Xt)t�0 be a Feller process with an infinitesimal generator
(A,D(A)) such that C∞

c (Rd) ⊂ D(A) and x �→ q(x, ξ) is continuous1. Then

−q(x, ξ) = lim
r→0

Exei(Xτr−x)·ξ − 1

Exτr
(12.4)

for all x ∈ Rd (as usual, 1
∞ := 0). In particular, q(a, ξ) = 0 for all absorbing states

a ∈ Rd.

Proof. Let χn ∈ C∞
c (Rd) such that 1Bn(0) � χn � 1. By Dynkin’s formula (12.3)

e−ξ(x)E
x[χn(Xτr∧t)eξ(Xτr∧t)] − χn(x) = Ex

∫
[0,τr∧t)

e−ξ(x)A[χneξ](Xs) ds.

Observe that A[χneξ](Xs) is bounded if s < τr, see Corollary 11.6. Using the
dominated convergence theorem, we can let n → ∞ to get

e−ξ(x)E
xeξ(Xτr∧t) − 1 = Ex

∫
[0,τr∧t)

e−ξ(x)Aeξ(Xs) ds

(11.6)
= −Ex

∫
[0,τr∧t)

eξ(Xs − x)q(Xs, ξ) ds.

(12.5)

If x is absorbing, we have q(x, ξ) = 0, and (12.4) holds trivially. For non-absorbing
x, we pass to the limit t → ∞ and get, using Exτr < ∞ (see Lemma 12.4),

e−ξ(x)E
xeξ(Xτr) − 1

Exτr
= − 1

Exτr
Ex

∫
[0,τr)

eξ(Xs − x)q(Xs, ξ) ds.

Since s �→ q(Xs, ξ) is right-continuous at s = 0, the limit r → 0 exists, and (12.4)
follows. �

A small variation of the above proof yields

Corollary 12.8 (Schilling, Schnurr [57]). Let (Xt)t�0 be a Feller process with gen-
erator (A,D(A)) such that C∞

c (Rd) ⊂ D(A) and x �→ q(x, ξ) is continuous. Then

−q(x, ξ) = lim
t→0

Exei(Xt∧τr−x)·ξ − 1

t
(12.6)

for all x ∈ Rd and r > 0.

Proof. We follow the proof of Theorem 12.7 up to (12.5). This relation can be
rewritten as

Exei(Xt∧τr−x)·ξ − 1

t
= −1

t
Ex

∫ t

0

eξ(Xs − x)q(Xs, ξ)1[0,τr)(s) ds.

Observe that Xs is bounded if s < τr and that s �→ q(Xs, ξ) is right-continuous.
Therefore, the limit t → 0 exists and yields (12.6). �

1For instance, if X has bounded jumps, see Lemma 11.10 and Remark 11.12. Our proof will
show that it is actually enough to assume that s 
→ q(Xs, ξ) is right-continuous.
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Every Feller process (Xt)t�0 such that C∞
c (Rd) ⊂ D(A) is a semimartingale.

Moreover, the semimartingale characteristics can be expressed in terms of the
Lévy triplet (l(x), Q(x), ν(x, dy)) of the symbol. Recall that a (d-dimensional)
semimartingale is a stochastic process of the form

Xt = X0 +Xc
t +

∫ t

0

∫
y1(0,1)(|y|)

[
μX(·, ds, dy)− ν(·, ds, dy)]

+
∑
s�t

1[1,∞)(|ΔXs|)ΔXs +Bt

where Xc is the continuous martingale part, B is a previsible process with paths
of finite variation (on compact time intervals) and with the jump measure

μX(ω, ds, dy) =
∑

s : ΔXs(ω) �=0

δ(s,ΔXs(ω))(ds, dy)

whose compensator is ν(ω, ds, dy). The triplet (B,C, ν) with the (predictable)
quadratic variation C = [Xc, Xc] of Xc is called the semimartingale characteris-
tics.

Theorem 12.9 (Schilling [53], Schnurr [59]). Let (Xt)t�0 be a Feller process with
infinitesimal generator (A,D(A)) such that C∞

c (Rd) ⊂ D(A) and symbol q(x, ξ)
given by (11.4). If q(x, 0) = 0,2 then X is a semimartingale whose semimartingale
characteristics can be expressed by the Lévy triplet (l(x), Q(x), ν(x, dy))

Bt =

∫ t

0

l(Xs) ds, Ct =

∫ t

0

Q(Xs) ds, ν(·, ds, dy) = ν(Xs(·), dy) ds.

Proof. 1◦ Combining Corollary 11.4 with the integro-differential representation
(11.5) of the generator shows that

M
[f ]
t = f(Xt) −

∫
[0,t)

Af(Xs) ds

= f(Xt) −
∫
[0,t)

l(Xs) · ∇f(Xs) ds − 1

2

∫
[0,t)

∇ ·Q(Xs)∇f(Xs) ds

−
∫
[0,t)

∫
y �=0

[
f(Xs + y)− f(Xs)− ∇f(Xs) · y1(0,1)(|y|)

]
ν(Xs, dy) ds

is for all f ∈ C2
b(R

d) ∩ D(A) a martingale.

2◦ We claim that C2
c(R

d) ⊂ D(A). Indeed, let f ∈ C2
c(R

d) with supp f ⊂ Br(0) for
some r > 0 and pick a sequence fn ∈ C∞

c (B2r(0)) such that limn→∞ ‖f − fn‖(2) =
0. Using (11.7) we get

sup
|x|�3r

|Afn(x) − Afm(x)| � c3r‖fn − fm‖(2) −−−−−→
m,n→∞ 0.

2A sufficient condition is, for example, that X has infinite life-time and x 
→ q(x, ξ) is
continuous (either for all ξ or just for ξ = 0), cf. Theorem 11.13 and Lemma 11.10.
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Since supp fn ⊂ B2r(0) and fn → f uniformly, there is some u ∈ C∞
c (B3r(0)) such

that |fn(x)| � u(x). Therefore, we get for |x| � 2r

|Afn(x) − Afm(x)| �
∫
y �=0

|fn(x+ y) − fm(x+ y)| ν(x, dy)

� 2

∫
y �=0

u(x+ y) ν(x, dy) = 2Au(x) −−−−→
|x|→∞

0

uniformly for all m,n. This shows that (Afn)n∈N is a Cauchy sequence in C∞(Rd).
By the closedness of (A,D(A)) we gather that f ∈ D(A) and Af = limn→∞ Afn.

3◦ Fix r > 1, pick χr ∈ C∞
c (Rd) such that 1B3r(0) � χ � 1, and set

σ = σr := inf{t > 0 : |Xt − X0| � r} ∧ inf{t > 0 : |ΔXt| � r}.

Since (Xt)t�0 has càdlàg paths and infinite life-time, σr is a family of stopping
times with σr ↑ ∞. For any f ∈ C2(Rd) ∩ Cb(R

d) and x ∈ Rd we set fr := χrf ,
fx := f(· − x), fx

r (· − x), and consider

M
[fx]
t∧σ = fx(Xt∧σ) −

∫
[0,t∧σ)

l(Xs) · ∇fx(Xs) ds − 1

2

∫
[0,t∧σ)

∇ · Q(Xs)∇fx(Xs) ds

−
∫
[0,t∧σ)

∫
y �=0

[
fx(Xs + y)− fx(Xs) − ∇fx(Xs) · y1(0,1)(|y|)

]
ν(Xs, dy) ds

= fx
r (Xt∧σ) −

∫
[0,t∧σ)

l(Xs) · ∇fx
r (Xs) ds − 1

2

∫
[0,t∧σ)

∇ ·Q(Xs)∇fx
r (Xs) ds

−
∫
[0,t∧σ)

∫
0<|y|<r

[
fx
r (Xs + y)− fx

r (Xs) − ∇fx
r (Xs) · y1(0,1)(|y|)

]
ν(Xs, dy) ds

= M
[fx

r ]
t∧σ .

Since fr ∈ C2
c(R

d) ⊂ D(A), we see that M
[fx]
t is a local martingale (with reducing

sequence σr, r > 0), and by a general result of Jacod & Shiryaev [27, Theorem
II.2.42], it follows that X is a semimartingale with the characteristics mentioned
in the theorem. �

We close this chapter with the discussion of a very important example: Lévy
driven stochastic differential equations. From now on we assume that

Φ : Rd → Rd×n is a matrix-valued, measurable function,

L = (Lt)t�0 is an n-dimensional Lévy process with exponent ψ(ξ),

and consider the following Itô stochastic differential equation (SDE)

dXt = Φ(Xt−) dLt, X0 = x. (12.7)
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If Φ is globally Lipschitz continuous, then the SDE (12.7) has a unique solution
which is a strong Markov process, see Protter [44, Chapter V, Theorem 32]3. If
we write Xx

t for the solution of (12.7) with initial condition X0 = x = Xx
0 , then

the flow x �→ Xx
t is continuous [44, Chapter V, Theorem 38].

If we use Lt = (t,Wt, Jt)
� as driving Lévy process where W is a Brownian

motion and J is a pure-jump Lévy process (we assume4 that W ⊥⊥J), and if Φ is
a block-matrix, then we see that (12.7) covers also SDEs of the form

dXt = f(Xt−) dt+ F (Xt−) dWt +G(Xt−) dJt.

Lemma 12.10. Let Φ be bounded and Lipschitz, X the unique solution of the SDE
(12.7), and denote by A the generator of X. Then C∞

c (Rd) ⊂ D(A).

Proof. Because of Theorem 5.12 (this theorem does not only hold for Feller semi-
groups, but for any strongly continuous contraction semigroup satisfying the pos-
itive maximum principle), it suffices to show

lim
t→0

1

t

(
Exf(Xt) − f(x)

)
= g(x) and g ∈ C∞(Rd)

for any f ∈ C∞
c (Rd). For this we use, as in the proof of the following theorem,

Itô’s formula to get

Exf(Xt) − f(x) = Ex

∫ t

0

Af(Xs) ds,

and a calculation similar to the one in the proof of the next theorem. A complete
proof can be found in Schilling & Schnurr [57, Theorem 3.5]. �
Theorem 12.11. Let (Lt)t�0 be an n-dimensional Lévy process with exponent ψ
and assume that Φ is Lipschitz continuous. Then the unique Markov solution X
of the SDE (12.7) admits a generalized symbol in the sense that

lim
t→0

Exei(Xt∧τr−x)·ξ − 1

t
= −ψ(Φ�(x)ξ), r > 0.

If Φ ∈ C1
b(R

d), then X is Feller, C∞
c (Rd) ⊂ D(A) and q(x, ξ) = ψ(Φ�(x)ξ) is the

symbol of the generator.

Theorem 12.11 indicates that the formulae (12.4) and (12.6) may be used to
associate symbols not only with Feller processes but with more general Markov
semimartingales. This has been investigated by Schnurr [58] and [59] who shows

3Protter requires that L has independent coordinate processes, but this is not needed in his
proof. For existence and uniqueness the local Lipschitz and linear growth conditions are enough;
the strong Lipschitz condition is used for the Markov nature of the solution.

4This assumption can be relaxed under suitable assumptions on the (joint) filtration, see for
example Ikeda & Watanabe [22, Theorem II.6.3]
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that the class of Itô processes with jumps is essentially the largest class that can
be described by symbols; see also [9, Chapters 2.4–5]. This opens up the way to
analyze rather general semimartingales using the symbol. Let us also point out
that the boundedness of Φ is only needed to ensure that X is a Feller process.

Proof. Let τ = τr be the first exit time for the process X from the ball Br(x)
centered at x = X0. We use the Lévy–Itô decomposition (9.8) of L. From Itô’s
formula for jump processes (see, e.g., Protter [44, Chapter II, Theorem 33]) we get

1

t
Ex (eξ(Xt∧τ − x) − 1)

=
1

t
Ex

[ ∫ t∧τ

0

i eξ(Xs− − x)ξ dXs − 1

2

∫ t∧τ

0

eξ(Xs− − x)ξ · d[X,X ]csξ

+ e−ξ(x)
∑

s�τ∧t

(
eξ(Xs) − eξ(Xs−) − i eξ(Xs−)ξ ·ΔXs

)]
=: I1 + I2 + I3.

We consider the three terms separately.

I1 =
1

t
Ex

∫ t∧τ

0

i eξ(Xs− − x)ξ dXs

=
1

t
Ex

∫ t∧τ

0

i eξ(Xs− − x)ξ · Φ(Xs−) dLs

=
1

t
Ex

∫ t∧τ

0

i eξ(Xs− − x)ξ · Φ(Xs−) ds

[
ls+

∫
|y|�1

y Ns(dy)

]
=: I11 + I12

where we use that the diffusion part and the compensated small jumps of a Lévy
process are a martingale, cf. Theorem 9.12. Further,

I3+I12

=
1

t
Ex

∫ t∧τ

0

∫
y �=0

eξ(Xs−−x)
[
eξ(Φ(Xs−)y)−1− iξ ·Φ(Xs−)y1(0,1)(|y|)

]
dsNs(dy)

=
1

t
Ex

∫ t∧τ

0

∫
y �=0

eξ(Xs−−x)
[
eξ(Φ(Xs−)y)−1− iξΦ(Xs−)y1(0,1)(|y|)

]
ν(dy)ds

−−−→
t→0

∫
y �=0

[
eiξ·Φ(x)y −1− iξ ·Φ(x)y1(0,1)(|y|)

]
ν(dy).

Here we use that ν(dy) ds is the compensator of dsNs(dy), see Lemma 9.4. This
requires that the integrand is ν-integrable, but this is ensured by the local bound-
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edness of Φ(·) and the fact that
∫
y �=0 min{|y|2, 1} ν(dy) < ∞. Moreover,

I11 =
1

t
Ex

∫ t∧τ

0

i eξ(Xs− − x)ξ · Φ(Xs−)l ds −−−→
t→0

i ξ · Φ(x)l,

and, finally, we observe that

[X,X ]c =
[ ∫

Φ(Xs−) dLs,

∫
Φ(Xs−) dLs

]c
=

∫
Φ(Xs−) d[L,L]csΦ

�(Xs−)

=

∫
Φ(Xs−)QΦ�(Xs−) ds ∈ Rd×d

which gives

I2 = − 1

2t
Ex

∫ t∧τ

0

eξ(Xs− − x)ξ · d[X,X ]csξ

= − 1

2t
Ex

∫ t∧τ

0

eξ(Xs− − x)ξ · Φ(Xs−)QΦ�(Xs−)ξ ds

−−−→
t→0

−1

2
ξ · Φ(x)QΦ�(x)ξ.

This proves

q(x, ξ) = − i l · Φ�(x)ξ +
1

2
ξ · Φ(x)QΦ�(x)ξ

+

∫
y �=0

[
1 − ei y·Φ

�(x)ξ + i y · Φ�(x)ξ1(0,1)(|y|)
]
ν(dy)

= ψ(Φ�(x)ξ).

For the second part of the theorem we use Lemma 12.10 to see that C∞
c (Rd) ⊂

D(A). The continuity of the flow x �→ Xx
t (Protter [44, Chapter V, Theorem 38])

– Xx is the unique solution of the SDE with initial condition Xx
0 = x – ensures

that the semigroup Ptf(x) := Exf(Xt) = Ef(Xx
t ) maps f ∈ C∞(Rd) to Cb(R

d).
In order to see that Ptf ∈ C∞(Rd) we need that lim|x|→∞ |Xx

t | = ∞ a.s. This
requires some longer calculations, see, e.g., Schnurr [58, Theorem 2.49] or Kunita
[34, Proof of Theorem 3.5, p. 353, line 13 from below] (for Brownian motion this
argument is fully worked out in Schilling & Partzsch [56, Corollary 19.31]). �



Chapter 13

Dénouement

It is well known that the characteristic exponent ψ(ξ) of a Lévy process L =
(Lt)t�0 can be used to describe many probabilistic properties of the process. The
key is the formula

Exei ξ·(Lt−x) = Eei ξ·Lt = e−tψ(ξ) (13.1)

which gives direct access to the Fourier transform of the transition probability
Px(Lt ∈ dy) = P(Lt+x ∈ dy). Although it is not any longer true that the symbol
q(x, ξ) of a Feller process X = (Xt)t�0 is the characteristic exponent, we may
interpret formulae like (12.4)

−q(x, ξ) = lim
r→0

Exei(Xτr−x)·ξ − 1

Exτr

as infinitesimal versions of the relation (13.1). What is more, both ψ(ξ) and q(x, ξ)
are the Fourier symbols of the generators of the processes. We have already used
these facts to discuss the conservativeness of Feller processes (Theorem 11.13) and
the semimartingale decomposition of Feller processes (Theorem 12.9).

It is indeed possible to investigate further path properties of a Feller process
using its symbol q(x, ξ). Below we will, mostly without proof, give some examples
which are taken from Böttcher, Schilling & Wang [9]. Let us point out the two
guiding principles.

� For sample path properties, the symbol q(x, ξ) of a Feller process
assumes same role as the characteristic exponent ψ(ξ) of a Lévy process.

�� A Feller process is ‘locally Lévy’, i.e., for short-time path properties
the Feller process, started at the point x0, behaves like the Lévy process
(Lt + x0)t�0 with exponent ψ(ξ) := q(x0, ξ).

The latter property is the reason why such Feller processes are often called Lévy-
type processes. The model case is the stable-like process whose symbol is given

© Springer International Publishing Switzerland 2016  
D. Khoshnevisan, R. Schilling, From Lévy-Type Processes to Parabolic SPDEs,  
Advanced Courses in Mathematics - CRM Barcelona, DOI 10.1007/978-3-319-34120-0_13
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by q(x, ξ) = |ξ|α(x) where α : Rd → (0, 2) is sufficiently smooth1. This process
behaves locally, and for short times t � 1, like an α(x)-stable process, only that
the index now depends on the starting point X0 = x.

The key to many path properties are the following maximal estimates which
were first proved in [53]. The present proof is taken from [9], the observation that
we may use a random time τ instead of a fixed time t is due to F. Kühn.

Theorem 13.1. Let (Xt)t�0 be a Feller process with generator A, C∞
c (Rd) ⊂ D(A)

and symbol q(x, ξ). If τ is an integrable stopping time, then

Px

(
sup
s�τ

|Xs − x| > r

)
� cExτ sup

|y−x|�r

sup
|ξ|�r−1

|q(y, ξ)|. (13.2)

Proof. Denote by σr = σx
r the first exit time from the closed ball Br(x). Clearly,

{σx
r < τ} ⊂

{
sup
s�τ

|Xs − x| > r

}
⊂ {σx

r � τ} .

Pick u ∈ C∞
c (Rd), 0 � u � 1, u(0) = 1, suppu ⊂ B1(0), and set

ux
r (y) := u

(
y − x

r

)
.

In particular, ux
r |Br(x)c = 0. Hence,

1{σx
r�τ} � 1 − ux

r (Xτ∧σx
r
).

Now we can use (5.5) or (12.3) to get

Px(σx
r � τ) � Ex

[
1 − ux

r (Xτ∧σx
r
)
]

= Ex

∫
[0,τ∧σx

r )

q(Xs, D)ux
r (Xs) ds

= Ex

∫
[0,τ∧σx

r )

∫
1Br(x)(Xs)eξ(Xs)q(Xs, ξ)û

x
r (ξ) dξ ds

� Ex

∫
[0,τ∧σx

r )

∫
sup

|y−x|�r

|q(y, ξ)||ûx
r (ξ)| dξ ds

= Ex [τ ∧ σx
r ]

∫
sup

|y−x|�r

|q(y, ξ)||ûx
r (ξ)| dξ

(11.9)

�
L 11.8

cExτ sup
|y−x|�r

sup
|ξ|�r−1

|q(y, ξ)|
∫
(1 + |ξ|2)|û(ξ)| dξ. �

1In dimension d = 1 Lipschitz or even Dini continuity is enough (see Bass [4]), in higher
dimensions we need something like C5d+3-smoothness, cf. Hoh [21]. Meanwhile, Kühn [33] es-
tablished the existence for d � 1 with α(x) satisfying any Hölder condition.
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There is a also a probability estimate for sups�t |Xs−x| � r, but this requires
some sector condition for the symbol, that is an estimate of the form

| Im q(x, ξ)| � κRe q(x, ξ), x, ξ ∈ Rd. (13.3)

One consequence of (13.3) is that the drift (which is contained in the imaginary
part of the symbol) is not dominant. This is a familiar assumption in the study
of path properties of Lévy processes, see, e.g., Blumenthal & Getoor [8]; a typical
example where this condition is violated are (Lévy) symbols of the form ψ(ξ) =

i ξ + |ξ| 12 . For a Lévy process the sector condition on ψ coincides with the sector
condition for the generator and the associated non-symmetric Dirichlet form, see
Jacob [26, Volume 1, 4.7.32–33].

With some more effort (see [9, Theorem 5.5]), we may replace the sector
condition by imposing conditions on the expression

sup
|y−x|�r

Re q(x, ξ)

|ξ| | Im q(y, ξ)| as r → ∞.

Theorem 13.2 (see [9, pp. 117–119]). Let (Xt)t�0 be a Feller process with generator
A, C∞

c (Rd) ⊂ D(A) and symbol q(x, ξ) satisfying the sector condition (13.3). Then

Px

(
sup
s�t

|Xs − x| < r

)
� cκ,d

t sup|ξ|�r−1 inf |y−x|�2r |q(y, ξ)| . (13.4)

The maximal estimates (13.2) and (13.4) are quite useful tools. With them we
can estimate the mean exit time from balls (X and q(x, ξ) are as in Theorem 13.2):

c

sup|ξ|�1/r inf |y−x|�r |q(y, ξ)| � Exσx
r � cκ

sup|ξ|�k∗/r inf |y−x|�r |q(y, ξ)|

for all x ∈ Rd and r > 0 and with k∗ = arccos
√
2/3 ≈ 0.615.

Recently, Kühn [32] studied the existence of and estimates for generalized
moments; a typical result is contained in the following theorem.

Theorem 13.3. Let X = (Xt)t�0 be a Feller process with infinitesimal generator
(A,D(A)) and C∞

c (Rd) ⊂ D(A). Assume that the symbol q(x, ξ), given by (11.4),
satisfies q(x, 0) = 0 and has (l(x), Q(x), ν(x, dy)) as x-dependent Lévy triplet. If
f : Rd → [0,∞) is (comparable to) a twice continuously differentiable submulti-
plicative function such that

sup
x∈K

∫
f(y) ν(x, dy) < ∞ for a compact set K ⊂ Rd,

then the generalized moment supx∈K sups�t E
xf(Xs∧τK − x) < ∞ exists and

Exf(Xt∧τK ) � cf(x)eC(M1+M2)t;
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here τK = inf{t > 0 : Xt /∈ K} is the first exit time from K, C = CK is some
absolute constant and

M1 = sup
x∈K

(
|l(x)| + |Q(x)| +

∫
y �=0

(|y|2 ∧ 1) ν(x, dy)
)
,

M2 = sup
x∈K

∫
|y|�1

f(y) ν(x, dy).

If X has bounded coefficients (Lemma 11.8), then K = Rd is admissible.

There are also counterparts for the Blumenthal–Getoor and Pruitt indices.
Below we give two representatives, for a full discussion we refer to [9].

Definition 13.4. Let q(x, ξ) be the symbol of a Feller process. Then

βx
∞ := inf

{
λ > 0 : lim

|ξ|→∞
sup|η|�|ξ| sup|y−x|�1/|ξ| |q(y, η)|

|ξ|λ = 0

}
, (13.5)

δx∞ := sup

{
λ > 0 : lim

|ξ|→∞
inf |η|�|ξ| inf |y−x|�1/|ξ| |q(y, η)|

|ξ|λ = ∞
}
. (13.6)

By definition, 0 � δx∞ � βx
∞ � 2. For example, if q(x, ξ) = |ξ|α(x) with a

smooth exponent function α(x), then βx∞ = δx∞ = α(x); in general, however, we
cannot expect that the two indices coincide.

As for Lévy processes, these indices can be used to describe the path be-
haviour.

Theorem 13.5. Let (Xt)t�0 be a d-dimensional Feller process with the generator
A such that C∞

c (Rd) ⊂ D(A) and symbol q(x, ξ). For every bounded analytic set
E ⊂ [0,∞), the Hausdorff dimension

dim {Xt : t ∈ E} � min

{
d, sup

x∈Rd

βx
∞ dimE

}
. (13.7)

A proof can be found in [9, Theorem 5.15]. It is instructive to observe that
we have to take the supremum w.r.t. the space variable x, as we do not know how
the process X moves while we observe it during t ∈ E. This shows that we can
only expect to get ‘exact’ results if t → 0. Here is such an example.

Theorem 13.6. Let (Xt)t�0 be a d-dimensional Feller process with symbol q(x, ξ)
satisfying the sector condition. Then, Px-a.s.

lim
t→0

sup0�s�t |Xs − x|
t1/λ

= 0 ∀λ > βx
∞, (13.8)

lim
t→0

sup0�s�t |Xs − x|
t1/λ

= ∞ ∀λ < δx∞. (13.9)
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As one would expect, these results are proved using the maximal estimates
(13.2) and (13.4) in conjunction with the Borel–Cantelli lemma, see [9, Theorem
5.16].

If we are interested in the long-term behaviour, one could introduce indices
‘at zero’, where we replace in Definition 13.4 the limit |ξ| → ∞ by |ξ| → 0, but we
will always have to pay the price that we loose the influence of the starting point
X0 = x, i.e., we will have to take the supremum or infimum for all x ∈ Rd.

With the machinery we have developed here, one can also study further path
properties, such as invariant measures, ergodicity, transience and recurrence etc.
For this we refer to the monograph [9] as well as recent developments by Behme
& Schnurr [7] and Sandrić [49, 50].





Appendix:

Some Classical Results

In this appendix we collect some classical results from (or needed for) probability
theory which are not always contained in a standard course.

The Cauchy–Abel functional equation

Below we reproduce the standard proof for continuous functions which, however,
works also for right-continuous (or monotone) functions.

Theorem A.1. Let φ : [0,∞) → C be a right-continuous function satisfying the
functional equation φ(s+ t) = φ(s)φ(t). Then φ(t) = φ(1)t.

Proof. Assume that φ(a) = 0 for some a � 0. Then we find for all t � 0

φ(a+ t) = φ(a)φ(t) = 0 =⇒ φ|[a,∞) ≡ 0.

To the left of a we find for all n ∈ N

0 = φ(a) =
[
φ
(
a
n

)]n
=⇒ φ

(
a
n

)
= 0.

Since φ is right-continuous, we infer that φ|[0,∞) ≡ 0, and φ(t) = φ(1)t holds.

Now assume that φ(1) �= 0. Setting f(t) := φ(t)φ(1)−t we get

f(s+ t) = φ(s+ t)φ(1)−(s+t) = φ(s)φ(1)−sφ(t)φ(1)−t = f(s)f(t)

as well as f(1) = 1. Applying the functional equation k times we conclude that

f
(
k
n

)
=

[
f
(
1
n

)]k
for all k, n ∈ N.

The same calculation done backwards yields[
f
(
1
n

)]k
=

[
f
(
1
n

)]n k
n =

[
f
(
n
n

)] k
n =

[
f(1)

] k
n = 1.

Hence, f |Q+ ≡ 1. Since φ, hence f , is right-continuous, we see that f ≡ 1 or,
equivalently, φ(t) = [φ(1)]t for all t > 0. �
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Characteristic functions and moments

TheoremA.2 (Even moments and characteristic functions). Let Y =(Y (1),...,Y (d))
be a random variable in Rd and let χ(ξ) = E ei ξ·Y be its characteristic function.

Then E(|Y |2) exists if, and only if, the second derivatives ∂2

∂ξ2k
χ(0), k = 1, . . . , d,

exist and are finite. In this case all mixed second derivatives exist and

EY (k) =
1

i

∂χ(0)

∂ξk
and E(Y (k)Y (l)) = −∂2χ(0)

∂ξk∂ξl
. (A.1)

Proof. In order to keep the notation simple, we consider only d = 1. If E(Y 2) < ∞,
then the formulae (A.1) are routine applications of the differentiation lemma for
parameter-dependent integrals, see, e.g., [54, Theorem 11.5] or [55, Satz 12.2].
Moreover, χ is twice continuously differentiable.

Let us prove that E(Y 2) � −χ′′(0). An application of l’Hospital’s rule gives

χ′′(0) = lim
h→0

1

2

(
χ′(2h)− χ′(0)

2h
+

χ′(0) − χ′(−2h)

2h

)
= lim

h→0

χ′(2h) − χ′(−2h)

4h

= lim
h→0

χ(2h)− 2χ(0) + χ(−2h)

4h2

= lim
h→0

E

[(
eihY − e− ihY

2h

)2
]

= − lim
h→0

E

[(
sinhY

h

)2
]
.

From Fatou’s lemma we get

χ′′(0) � −E

[
lim
h→0

(
sinhY

h

)2
]
= −E

[
Y 2

]
.

In the multivariate case observe that E|Y (k)Y (l)| � E
[
(Y (k))2

]
+ E

[
(Y (l))2

]
. �

Vague and weak convergence of measures

A sequence of locally finite2 Borel measures (μn)n∈N on Rd converges vaguely to
a locally finite measure μ if

lim
n→∞

∫
φdμn =

∫
φdμ for all φ ∈ Cc(R

d). (A.2)

2I.e., every compact set K has finite measure.
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Since the compactly supported continuous functions Cc(R
d) are dense in the space

of continuous functions vanishing at infinity

C∞(Rd) = {φ ∈ C(Rd) : lim|x|→∞ φ(x) = 0},
we can replace in (A.2) the set Cc(R

d) with C∞(Rd). The following theorem guar-
antees that a family of Borel measures is sequentially relatively compact3 for the
vague convergence.

Theorem A.3. Let (μt)t�0 be a family of measures on Rd which is uniformly
bounded, i.e., supt�0 μt(R

d) < ∞. Then every sequence (μtn)n∈N has a vaguely
convergent subsequence.

If we test in (A.2) against all bounded continuous functions φ ∈ Cb(R
d), we

get weak convergence of the sequence μn → μ. One has

Theorem A.4. A sequence of measures (μn)n∈N converges weakly to μ if, and only
if, μn converges vaguely to μ and limn→∞ μn(R

d) = μ(Rd) (preservation of mass).
In particular, weak and vague convergence coincide for sequences of probability
measures.

Proofs and a full discussion of vague and weak convergence can be found in
Malliavin [41, Chapter III.6] or Schilling [55, Chapter 25].

For any finite measure μ on Rd we denote by qμ(ξ) :=
∫
Rd e

i ξ·y μ(dy) its
characteristic function.

Theorem A.5 (Lévy’s continuity theorem). Let (μn)n∈N be a sequence of finite
measures on Rd. If μn → μ weakly, then the characteristic functions qμn(ξ) con-
verge locally uniformly to qμ(ξ).

Conversely, if the limit limn→∞ qμn(ξ) = χ(ξ) exists for all ξ ∈ Rd and defines
a function χ which is continuous at ξ = 0, then there exists a finite measure μ
such that qμ(ξ) = χ(ξ) and μn → μ weakly.

A proof in one dimension is contained in the monograph by Breiman [10],
d-dimensional versions can be found in Bauer [5, Chapter 23] and Malliavin [41,
Chapter IV.4].

Convergence in distribution

By
d−−→ we denote convergence in distribution.

Theorem A.6 (Convergence of types). Let (Yn)n∈N, Y and Y ′ be random variables
and suppose that there are constants an > 0, cn ∈ R such that

Yn
d−−−−→

n→∞ Y and anYn + cn
d−−−−→

n→∞ Y ′.

If Y and Y ′ are non-degenerate, then the limits a = limn→∞ an and c = limn→∞ cn
exist and Y ′ ∼ aY + c.

3Note that compactness and sequential compactness need not coincide!
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Proof. Write χZ(ξ) := EeiupξZ for the characteristic function of the random vari-
able Z.

1◦ By Lévy’s continuity theorem (Theorem A.5) convergence in distribution en-
sures that

χanYn+cn(ξ)=eicn·ξχYn(anξ)
locally unif.−−−−−−−→

n→∞ χY ′(ξ) and χYn(ξ)
locally unif.−−−−−−−→

n→∞ χY (ξ).

Take some subsequence (an(k))k∈N ⊂ (an)n∈N such that limk→∞ an(k) = a exists
in [0,∞].

2◦ Claim: a > 0. Assume, on the contrary, that a = 0.

|χan(k)Yn(k)+cn(k)
(ξ)| = |χYn(k)

(an(k)ξ)| −−−−→
k→∞

|χY (0)| = 1.

Thus, |χY ′ | ≡ 1 which means that Y ′ would be degenerate, contradicting our
assumption.

3◦ Claim: a < ∞. If a = ∞, we use Yn = (an)
−1(Yn − cn) and the argument from

step 1◦ to reach the contradiction

(an(k))
−1 −−−−→

k→∞
a−1 > 0 ⇐⇒ a < ∞.

4◦ Claim: There exists a unique a ∈ [0,∞) such that limn→∞ an = a. Assume that
there were two different subsequential limits an(k) → a, am(k) → a′ and a �= a′.
Then

|χan(k)Yn(k)+cn(k)
(ξ)| = |χan(k)Yn(k)

(ξ)| −−−−→
k→∞

χY (aξ),

|χam(k)Ym(k)+cm(k)
(ξ)| = |χam(k)Ym(k)

(ξ)| −−−−→
k→∞

χY (a
′ξ).

On the other hand, χY (aξ) = χY (a
′ξ) = χY ′(ξ). If a′ < a, we get by iteration

|χY (ξ)| =
∣∣χY

(
a′
a ξ

)∣∣ = · · · = ∣∣χY

((
a′
a

)N
ξ
)∣∣ −−−−→

N→∞
|χY (0)| = 1.

Thus, |χ| ≡ 1 and Y is a.s. constant. Since a, a′ can be interchanged, we conclude
that a = a′.

5◦ We have

ei cn·ξ =
χanYn+cn(ξ)

χanYn(ξ)
=

χanYn+cn(ξ)

χYn(anξ)
−−−−→
n→∞

χY ′(ξ)

χY (aξ)
.

Since χY is continuous and χY (0) = 1, the limit limn→∞ ei cn·ξ exists for all |ξ| � δ
and some small δ. For ξ = tξ0 with |ξ0| = 1, we get

0 <

∣∣∣∣∣
∫ δ

0

χY ′(tξ0)

χY (taξ0)
dt

∣∣∣∣∣ =
∣∣∣∣∣ limn→∞

∫ δ

0

ei tcn·ξ0 dt

∣∣∣∣∣
=

∣∣∣∣ limn→∞
ei δcn·ξ0 − 1

i cn · ξ0

∣∣∣∣ � lim inf
n→∞

2

|cn · ξ0| ,
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and so lim supn→∞ |cn| < ∞; if there were two limit points c �= c′, then ei c·ξ =
ei c

′·ξ for all |ξ| � δ. This gives c = c′, and we finally see that cn → c, ei cn·ξ → ei c·ξ,
as well as

χY ′(ξ) = ei c·ξχY (aξ). �

A random variable is called symmetric if Y ∼ −Y .

Theorem A.7 (Symmetrization inequality). Let Y1, . . . , Yn be independent symmet-
ric random variables. Then the partial sum Sn = Y1+ · · ·+Yn is again symmetric
and

P(|Y1 + · · ·+ Yn| > u) � 1
2P

(
max

1�k�n
|Yk| > u

)
. (A.3)

If the Yk are iid with Y1 ∼ μ, then

P(|Y1 + · · ·+ Yn| > u) � 1
2

(
1 − e−nP(|Y1|>u)

)
. (A.4)

Proof. By independence, Sn = Y1 + · · ·+ Yn ∼ −Y1 − · · · − Yn = −Sn.

Let τ = min{1 � k � n : |Yk| = max1�l�n |Yl|} and set Yn,τ = Sn−Yτ . Then
the four (counting all possible ± combinations) random variables (±Yτ ,±Yn,τ )
have the same law. Moreover,

P(Yτ > u) � P(Yτ > u, Yn,τ � 0) +P(Yτ > u, Yn,τ � 0) = 2P(Yτ > u, Yn,τ � 0),

and so

P(Sn > u) = P(Yτ + Yn,τ > u) � P(Yτ > u, Yn,τ � 0) � 1
2P(Yτ > u).

By symmetry, this implies (A.3). In order to see (A.4), we use that the Yk are iid,
hence

P( max
1�k�n

|Yk| � u) = P(|Y1| � u)n � e−nP(|Y1|>u),

along with the elementary inequality 1 − p � e−p for 0 � p � 1. This proves
(A.4). �

The predictable σ-algebra

Let (Ω,A ,P) be a probability space and (Ft)t�0 some filtration. A stochastic
process (Xt)t�0 is called adapted, if for every t � 0 the random variable Xt is Ft

measurable.

Definition A.8. The predictable σ-algebra P is the smallest σ-algebra on Ω ×
(0,∞) such that all left-continuous adapted stochastic processes (ω, t) �→ Xt(ω)
are measurable. A P measurable process X is called a predictable process.
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For a stopping time τ we denote by

�0, τ� := {(ω, t) : 0 < t � τ(ω)} and �τ,∞�:= {(ω, t) : t > τ(ω)} (A.5)

the left-open stochastic intervals. The following characterization of the predictable
σ-algebra is essentially from Jacod & Shiryaev [27, Theorem I.2.2].

TheoremA.9. The predictable σ-algebra P is generated by any one of the following
families of random sets

a) �0, τ� where τ is any bounded stopping time;

b) Fs × (s, t] where Fs ∈ Fs and 0 � s < t.

Proof. We write Pa and Pb for the σ-algebras generated by the families listed in
a) and b), respectively.

1◦ Pick 0 � s < t, F = Fs ∈ Fs and let n > t. Observe that the random time
sF := s1F +n1F c is a bounded stopping time4 and F ×(s, t] =�sF , tF �. Therefore,
�sF , tF � =�0, tF �\�0, sF � ∈ Pa, and we conclude that Pb ⊂ Pa.

2◦ Let τ be a bounded stopping time. Since t �→ 1�0,τ�(ω, t) is adapted and
left-continuous, we have Pa ⊂ P.

3◦ Let X be an adapted and left-continuous process and define for every n ∈ N

Xn
t :=

∞∑
k=0

Xk2−n1�k2−n, (k+1)2−n�(t).

Obviously, Xn = (Xn
t )t�0 is Pb measurable; due to the left-continuity of t �→ Xt,

the limit limn→∞ Xn
t = Xt exists, and we conclude that X is Pb measurable;

consequently, P ⊂ Pb. �

The structure of translation invariant operators

Let ϑxf(y) := f(y + x) be the translation operator and f̃(x) := f(−x). A linear
operator L : C∞

c (Rd) → C(Rd) is called translation invariant if

ϑx(Lf) = L(ϑxf). (A.6)

A distribution λ is an element of the topological dual (C∞
c (Rd))′, i.e., a continuous

linear functional λ : C∞
c (Rd) → R. The convolution of a distribution with a

function f ∈ C∞
c (Rd) is defined as

f ∗ λ(x) := λ(ϑ−xf̃), λ ∈ (
C∞
c (Rd)

)′
, f ∈ C∞

c (Rd), x ∈ Rd.

4Indeed, {sF � t} = {s � t} ∩ F =

{
∅, s > t

F, s � t

}
∈ Ft for all t � 0.
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If λ = μ is a measure, this formula generalizes the ‘usual’ convolution

f ∗ μ(x) =

∫
f(x− y)μ(dy) =

∫
f̃(y − x)μ(dy) = μ(ϑ−xf̃).

Theorem A.10. If λ ∈ (C∞
c (Rd))′ is a distribution, then Lf(x) := f ∗ λ(x) defines

a translation invariant continuous linear map L : C∞
c (Rd) → C∞(Rd).

Conversely, every translation-invariant continuous linear map L : C∞
c (Rd) →

C(Rd) is of the form Lf = f ∗ λ for some unique distribution λ ∈ (C∞
c (Rd))′.

Proof. Let Lf = f ∗ λ. From the very definition of the convolution we get

(ϑ−xf) ∗ λ = λ(ϑ−xϑ̃−xf) = λ(ϑ−x[f(x − ·)])
= ϑ−xλ(ϑ−x[f(− ·)])
= ϑ−x(f ∗ λ)

For proving the continuity of L, it is enough to show that L : C∞
c (K) → C∞(Rd) is

continuous for every compact set K ⊂ Rd (this is because of the definition of the
topology in C∞

c (Rd)). We will use the closed graph theorem: Assume that fn → f
in C∞

c (Rd) and fn ∗ λ → g in C∞(Rd), then we have to show that g = f ∗ λ.

For every x ∈ Rd we have ϑ−xf̃n → ϑ−xf̃ in C∞
c (Rd), and so

g(x) = lim
n→∞(fn ∗ λ)(x) = lim

n→∞λ(ϑ−xf̃n) = λ(ϑ−xf̃) = (f ∗ λ)(x).

Assume now, that L is translation invariant and continuous. Define λ(f) :=

(Lf̃)(0). Since L is linear and continuous, and f �→ f̃ and the evaluation at x = 0
are continuous operations, λ is a continuous linear map on C∞

c (Rd). Because of
the translation invariance of L we get

(Lf)(x) = (ϑxLf)(0) = L(ϑxf)(0) = λ(ϑ̃xf) = λ(ϑxf̃) = (f ∗ λ)(x).

If μ is a further distribution with Lf(0) = f ∗ μ(0), we see

(μ − λ)(f̃) = f ∗ (μ − λ)(0) = f ∗ μ(0)− f ∗ λ(0) = 0 for all f ∈ C∞
c (Rd)

which proves μ = λ. �
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Preface

These notes aim to introduce the reader to aspects of the theory of parabolic
stochastic partial differential equations (SPDEs, for short). As an example of the
type of object that we wish to study, let us consider the following boundary value
problem: we aim to find a real-valued space-time function (t , x) �→ ut(x), where
t � 0 and x ∈ [0 , 1], such that⎡⎢⎣ u̇t(x) = u′′

t (x) + σ(ut(x))ξt(x) for t > 0 and 0 < x < 1,

u0(x) = sin(2πx) for 0 < x < 1,

ut(0) = ut(1) = 0 for all t > 0.

(13.1)

Figure 13.1: A numerical evaluation of the heat equation, where σ(u) ≡ 0.

We have written ut(x) in place of the more commonplace notation u(t , x), as
it is more natural in the probabilistic context. Thus, ut designates the map t �→ u
and not the time derivative ∂u/∂t.

If σ : �→ � and ξ : [0 ,∞)×�→ � are sufficiently smooth then the preced-
ing is a classical problem of the theory of heat flow, the solution exists, is unique,
and has good regularity properties; see, for instance, Evans [17, Chapter 2, §2.3].
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(a) A simulation of the stochastic heat
equation where σ(u) = u.

(b) A simulation of the stochastic heat
equation where σ(u) = 1.

(c) A simulation of the stochastic heat
equation where σ(u) = 10u.

(d) A simulation of the stochastic heat
equation where σ(u) = 10.

(e) A simulation of the stochastic heat
equation where σ(u) = 50u.

(f) A simulation of the stochastic heat
equation where σ(u) = 50.

Figure 13.2: The left column consists of simulations of (13.1) where σ(u) = λu,
and the right column is for σ(u) = λ, as λ ranges in {1 , 10 , 50}.
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Consider an ideal rod of length one unit, and identify the rod with the interval
[0 , 1]. Suppose the rod is heated at time t = 0 such that the heat density at every
point x ∈ [0 , 1] (x units along the rod) is sin(2πx). Then it can be argued using
Fourier’s law of thermal conduction that, under ideal conditions, the heat density
ut(x) at place x ∈ [0 , 1] and at time t > 0 solves the linear heat equation u̇ = νu′′,
subject to u0(x) = sin(2πx). Here, ν is a physical constant and is sometimes called
“thermal conductivity”, in this context.

We can always scale the problem so that ν = 1. Indeed, if u̇ = νu′′ then
Ft(x) := ut/ν(x) solves the heat equation Ḟ = F ′′, subject to the same initial and
boundary conditions as u. In this way, we arrive at (13.1) with σ := ξ := 0.

Suppose that the rod also feels external density ξt(x) of heat (or cold, if
ξt(x) < 0) at the point (t , x). Then, the heat density solves u̇ = u′′ + ξ. That is,
(13.1) with σ(u) ≡ 1.

The general form of (13.1) arises when the external heating/cooling source
interacts with the heat flow on the rod due to the presence of one or more feedback
systems. In that case, the function σ models the nature of the feedback mechanism.

The main goal of these notes is to study the heat-flow problem (13.1) in the
case whereξ denotes “space-time white noise” (a notion defined carefully below).
For the time being, we can think of the ξt(x)’s as a collection of independent
mean-zero normal random variables. In this sense, (13.1) describes heat flow in a
random environment.

We plan to study how the solution depends on the nonlinearity σ. In order
to motivate this, consider the simplest case that σ ≡ 0. In that case, we can solve
u explicitly, and find that ut(x) = exp(−4π2t) sin(2πx) for all t � 0 and x ∈ [0 , 1],
when σ(u) ≡ 0.

Figure 13.1 shows a numerical evaluation of the solution for time values
t ∈ [0 , 10−3]. Figures 13.2(a) and 13.2(b) show typical simulations of the solution
for σ(u) = u and σ(u) = 1, respectively. Figures 13.2(c) and 13.2(d) do the same
thing for σ(u) = 10u and σ(u) = 10, respectively. And Figures 13.2(e) and 13.2(f)
for σ(u) = 50u and σ(u) = 50. A quick inspection of these suggests that the behav-
ior of the solution to (13.1) depends critically on the properties of the nonlinearity
σ. In the last chapter of these notes, an answer on how this phenomenon can arise
will be provided.

These notes are based on lectures given in the summer of 2014 at the Second
Summer School on Stochastic Analysis held at the Centre de Recerca Matemàtica
(CRM) in Barcelona. I would like to thank the CRM for their generous hospitality.
Many hearty thanks are owed to the organizing and scientific committee, David
Applebaum, Robert Dalang, L�luis Quer-Sardanyons, Marta Sanz-Solé, Frederic
Utzet, and Josep Vives for their kind invitation.

The material of these notes is based on my collaborations with Kunwoo
Kim [33, 34], as well as Mathew Joseph and Carl Mueller [30]. I thank all three
for many years of extremely enjoyable scientific discourse. Many thanks are due to
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Pavel Bezdek, who pointed out a number of misprints and one error in an earlier
draft. The remaining errors and misprints are of course mine.

My research was made possible thanks in part to a number of grants by the
United States’ National Science Foundation, in particular, DMS-1307470.

Salt Lake City (Utah), August, 2014 Davar Khoshnevisan



Chapter 14

White Noise

We begin our description of noisy equations with an analysis of the underlying
noise. Throughout these notes, we use only space-time white noise. There is a
very nice noise theory that is “white in time and colored in space”, as very well
described in the book of Sanz-Solé [51] on the Malliavin calculus. We will not cover
such noises here, however. The material of this chapter borrows heavily from the
paper [34] with Kunwoo Kim.

14.1 Some heuristics

The noise of choice in these notes in “white noise” on a nice space G such as
G = � or G = �. In order to gel some of the basic ideas, consider G = �.
Then the intuitive definition of white noise on � is a mean-zero Gaussian process
{ξ(x)}x∈�, indexed by G = �, such that

Cov[ξ(x) , ξ(y)] = δ0(x − y),

for all x, y ∈ �. Of course, such a Gaussian process does not exist in the usual sense
because (x , y) �→ δ0(x − y) is not a function on �2. Regardless, if x �→ ξ(x) did
make sense as was prescribed (it does not!), and if all sorts of nice measurability
conditions held (they do not either!), then it would follow that f �→ ξ(f) :=∫∞
−∞ f(x)ξ(x)dx is a mean-zero Gaussian process with covariance

Cov[ξ(f1) , ξ(f2)] =

∫ ∞

−∞
dx

∫ ∞

−∞
dy f1(x)f2(y)Cov[ξ(x) , ξ(y)],

which yields the following after we formally replace Cov[ξ(x) , ξ(y)] by δ0(x − y):

Cov[ξ(f1) , ξ(f2)] =

∫ ∞

−∞
f1(x)f2(x) dx. (14.1)

Most of the preceding “analysis” is admittedly flawed. However, the end
result, namely (14.1), turns out to make sense. In other words, we will be able

© Springer International Publishing Switzerland 2016  
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to construct a mean-zero Gaussian process ϕ �→ ξ(ϕ) with covariance (14.1) for
all ϕ ∈ L2(�). And if {ϕε}ε>0 is an approximation to the identity such that
ϕε ∈ L2(�) and ϕε(y) → δ0(x − y), vaguely as ε ↓ 0,1 then we may think of
ξ(ϕε) as an “approximation to ξ(x)”, even though ξ(x) itself is not a well-defined
random variable.

As our first task, we plan to make rigorous the preceding discussion and thus
define white noise as a mean-zero “generalized Gaussian random function” or,
perhaps more appropriately, put a “random linear functional”. For reasons that
will become clear later on, we will benefit by studying white noise on more general
objects than just the real line. Specifically, we will study white noise on “LCA
groups”.

14.2 LCA groups

Let G be a group with a multiplication operation, (g1, g2) �→ g1g2, and an inversion
operation, g �→ g−1. We will always endow G with its group topology; that is,
the smallest topology that makes the group operations (both multiplication and
inversion) continuous. In this way, we can always view G as a topological group.

Let G1 and G2 be two topological groups. A mapping h : G1 → G2 is a
homomorphism if h is continuous and respects the group operations; namely
that h(xy) = h(x)h(y) and h(x−1) = (h(x))−1 for all x, y ∈ G1. We say that
h : G1 → G2 is an isomorphism when h is a homomorphism with an inverse func-
tion h−1 : G2 → G1 that is also a homomorphism. If we can find an isomorphism
from G1 to G2 then we write G1

∼= G2 and might also say that we can identify
G1 with G2. In words, G1

∼= G2 if and only if G2 is a “relabeling” of G1 in a way
that is compatible with both the topology of G1, as well as the group-theoretic
properties of G1.

We say that a topological group G is an LCA group if it is locally compact,
Hausdorff, and abelian. Here are some examples of the sorts of LCA groups that
we will be studying.

Example 14.2.1 (The trivial group). Let G := {g} be a set with one element. We
can define g−1 := g and gg := g in order to see that G is an abelian group with
identity g. If we endow G with the discrete topology (the only one possible here)
then G becomes an LCA group that is, not surprisingly, referred to as the trivial
group.

Example 14.2.2 (Cyclic groups). Let G := {0 , 1} be endowed with the discrete
topology. Then G is an LCA group in a standard way: we impose binary addition
as our group multiplication on G; that is, 10 = 01 := 1 and 00 = 11 := 0, with

1More precisely, we want limε↓0
∫∞
−∞ f(y)ϕε(y) dy = f(x) for all x ∈ � and functions f : �→

� that are continuous and have compact support.
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0 being the group identity.2 In this way, we find that 0−1 = 0 and 1−1 = 1, as
well. The resulting LCA group can be identified with �/2� and is called the cyclic
group on two elements. The cyclic group on one element is G := �/�, which is
defined to be the trivial group, which we just saw. In the more interesting case
where n � 2, the cyclic group on n elements is G := �/n�, which can be thought
of in the following way: G = {0, . . . , n − 1} and the group multiplication is given
by addition mod n. The topology is, of course, the discrete topology. Moreover,
0−1 = n − 1, and g−1 = (g − 1)−1 for g ∈ {1, . . . , n − 1}. This preceding should
tell you why �/n� is called a “cyclic” group. All cyclic groups are LCA groups.

Example 14.2.3 (Euclidean groups). Let n be an integer greater than or equal to
one. Then the additive group �n is an LCA group, and the group topology is
the Euclidean one. And so is the n-dimensional torus �n := [0 , 2π)n, once it is
endowed with coordinatewise addition mod 2π. It is a good exercise to try and
verify that the group topology on �n is the usual Euclidean topology on [0 , 2π)n.

Example 14.2.4 (Positive reals). We endow G := (0 ,∞) with group multiplication
ab := a× b to see that G is an LCA group where the group identity is the numeral
1 and the group inverse g−1 is the reciprocal 1/g of g ∈ G. As was the case in
the previous example as well, it is a good exercise to try and identify the group
topology. Here too, as in the previous example, the topology is Euclidean.

Example 14.2.5 (Direct products). Suppose Ga is an LCA group for every a in
some index set A. The direct product

∏
a∈AGa is endowed with product topology,

and the group operations on
∏

a∈G Ga are defined coordinatewise in terms of the
group operations of the Ga’s. In this way we see that

∏
a∈AGa is an LCA group.

If G is an LCA group then we may write Gn in place of G × · · · × G (n times)
for every integer n � 1. We also might write G0 for the trivial group and G∞ for
the countable direct product

∏∞
i=1 G. A nice example of this sort of LCA group is

(�/2�)∞. Elements of this group are infinite sequences of 0s and 1s. Therefore, we
can identify (�/2�)∞ with a binary tree with a single root (or more carefully put,
(�/2�)∞ acts transitively on this binary tree). Somewhat more general remarks
apply to (�/n�)∞ (for n-ary trees).

General theory tells us that there exists a Radon Borel measure mG on G
such that mG(gA) = mG(A) for all Borel sets A ⊆ G and all elements g ∈ G. It
might help to recall that: (i) “Radon” means mG(C) < ∞ for all compact sets C;
and (ii) gA := {ga | a ∈ A} is the g-translate of A. The measure mG is said to
be a Haar measure on G. Moreover, we know also from the general theory that
if mG and m′

G are two Haar measures on G, then there exists a ∈ (0 ,∞) such
that mG = am′

G. In particular, there is a one-parameter family of possible Haar
measures on G. As it turns out, however, there always is a canonical choice which
will be the one that is denoted by mG henceforth. I will not describe here the why
or the how since that discussion will require topics that we have not covered; we

2In this example, “10” refers to the group product of the group elements 1 and 0; “10” does
not refer to the numeral ten! Similar remarks apply to “00”, “11,” etc.
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will see this later on. Instead, let me mention two examples where one can make
this canonical choice more or less explicitly:

(i) if G is a discrete LCA group, then we always choose mG to be the counting
measure on G; and

(ii) when G is compact (as is, for example, a torus), then we always choose mG

to be a probability measure (also known as the “uniform distribution on G”).

Rudin [49] has a more detailed account of Fourier analysis on LCA groups.

14.3 White noise on G

As in the previous section, let G denote an LCA group with a choice mG for
its Haar measure. Let L2(G) denote the usual space of all measurable functions
f : G → � such that ∫

G

|f(x)|2 mG(dx) < ∞,

endowed with the inner product

(f1 , f2)L2(G) :=

∫
G

f1(x)f2(x)mG(dx),

and corresponding norm

‖f‖L2(G) := (f , f)
1/2
L2(G).

We may begin with an existence theorem.

Theorem 14.3.1 (Wiener, [60, 61]). On a suitable probability space, one can con-
struct a mean-zero Gaussian process ξ := {ξ(f)}f∈L2(G) with covariance

Cov[ξ(f1) , ξ(f2)] = (f1 , f2)L2(G), (14.2)

for all f1, f2 ∈ L2(G).

The Gaussian process ξ is called white noise on G, and plays a central theme
in these lectures. You might wish to compare the content of Theorem 14.3.1 with
that of the discussion that surrounds (14.1).

Proof of Theorem 14.3.1. It is easy to see that the inner product of L2(G) is pos-
itive semidefinite bi-linear form on L2(G). This is another way to state that

n∑
j=1

n∑
k=1

zjzk(fj , fk)L2(G) � 0,



14.3. White noise on G 137

for every f1, . . . , fn ∈ L2(G) and z1, . . . , zn ∈ C. Indeed, a direct computation
reveals that

n∑
j=1

n∑
k=1

zjzk(fj , fk)L2(G) =

∥∥∥∥∥
n∑

j=1

zjfj

∥∥∥∥∥
2

L2(G)

.

Consequently, ((fi , fj)L2(G))
n
i,j=1 is a positive semidefinite n-by-nmatrix for every

F := {f1, . . . , fn} ⊂ L2(G).

Let Ω := [0 , 1] and F := the Borel σ-algebra on Ω. Because of the asserted
positive semidefinite property, the theory of multivariate normal distributions on
�

n tells us that for every F := {f1, . . . , fn} ⊂ L2(G) we can find a probability
space (ΩF ,FF , PF ) which supports a mean-zero Gaussian random vector ξ :=
(ξ(f1) , . . . , ξ(fn)) such that

Cov[ξ(fi) , ξ(fj)] = (fj , fj)L2(G),

for all 1 � i, j � n; see Chapter 1 of Ash–Gardner [2], for a detailed account. One
checks directly that the PF ’s form a consistent family of probability measures. This
means the following: let Ω∗ := ΩL2(G), and endow it with the product topology
and corresponding Borel σ-algebra FL2(G). Whenever F1 and F2 are finite subsets
of L2(G) and F1 ⊂ F2,

PF2 ◦ πF2 ◦ π−1
F1

= PF1 ,

where πF denotes the canonical projection from ΩL2(G) onto ΩF for every finite
subset F ⊂ L2(G). Then Kolmogorov’s consistency theorem ensures the existence

of a probability measure P on (ΩL2(G), FL2(G)) such that P ◦π−1
F = PF for every

finite F ⊂ L2(G). This is another way to state the theorem. �

Now we can derive the central property of white noise on G.

Proposition 14.3.2 (Wiener, [60, 61]). Let ξ denote white noise on G. Then for all
real numbers a1, . . . , an and functions f1, . . . , fn ∈ L2(G),

ξ

(
n∑

j=1

ajfj

)
=

n∑
j=1

ajξ(fj) a.s.

Proof. By induction it suffices to prove that, for all a ∈ � and f, h ∈ L2(G),

(i) ξ(af) = aξ(f) a.s.; and

(ii) ξ(f + h) = ξ(f) + ξ(h) a.s.

We verify (i) by appealing to (14.2) in order to see that

E
(|ξ(af) − aξ(f)|2) = 0. (14.3)

Similarly, one can prove (ii) by showing that

E
(|ξ(f + h)− ξ(f) − ξ(h)|2) = 0. (14.4)

This requires only (14.2). �
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Exercise 14.3.3. Verify the details of formulas (14.3) and (14.4).

Theorem 14.3.1 and Proposition 14.3.2 together tell us that ξ : L2(G) →
L2(Ω) is a linear isometry. This is a way to say that f �→ ξ(f) is a “random linear
functional”. The relation (14.2) is referred to as the Wiener isometry for similar
reasons.

If f ∈ L2(G), then the square-integrable random variable ξ(f) is called the
Wiener integral of f . We may write this, using alternative notations, as

ξ(f) :=

∫
G

fdξ :=

∫
G

f(x)ξ(dx).

Proposition 14.3.2 is a way to say that
∫
G f dξ is an “L2(Ω)-valued integral”. We

might also write the “indefinite integral”∫
A

f dξ

in place of ∫
G

f1A dξ,

when A is a Borel subset of G. Define

A (G) := {B ⊂ G | B is Borel measurable and mG(B) < ∞} .

It is easy to verify that A (G) is an algebra of Borel-measurable subsets of G. Then
we abuse notation slightly and write ξ(B) in place of ξ(1B) for every B ∈ A (G).
I have learned the following from Walsh [57].

Proposition 14.3.4. The following is true:

(i) if B1, B2 ∈ A (G), then ξ(B1 ∪ B2) = ξ(B1) + ξ(B2) − ξ(B1 ∩ B2) a.s.; and

(ii) if B1 ⊃ B2 ⊃ · · · are elements of A (G) such that ∩∞
n=1Bn = ∅, then

limn→∞ ξ(Bn) = 0 in L2(Ω).

Proof. We will require the following immediate consequence of the Wiener isom-
etry (14.2):

E [ξ(B)ξ(B′)] = mG(B ∩ B′),

for all B,B′ ∈ A (G). From this, we can conclude readily that

E
(|ξ(B1 ∪ B2) − ξ(B1) − ξ(B2)|2

)
= 0,

whenever B1, B2 are disjoint elements of A (G). The general case of (i) reduces to
this one by induction. The proof of (ii) is even quicker, since E(|ξ(Bn)|2) = mG(Bn)
for every n � 1. �
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It is easy to deduce from the preceding proposition that if B1, B2, . . . are
disjoint (non-random) elements of A (G) such that ∪∞

n=1Bn ∈ A (G), then

ξ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

ξ(Bn) a.s.,

where the sum converges in L2(Ω). This is another way to say that ξ is “an L2(Ω)-
valued measure”. In other words, we have identified the “L2(Ω)-valued integral”,

f �−→ ξ(f) :=

∫
G

fdξ,

with the L2(Ω)-valued measure ξ in the same way that one can identify a real-
valued integral with a real-valued measure. Among other things, this justifies our
abuse of notation in writing ξ both for the random linear functional f �→ ξ(f) and
for the infinite-dimensional measure A �→ ξ(A).

14.4 Space-time white noise

We continue to write G for an LCA group, but now consider the LCA group �×G
as well. Because of the underlying product topology, it is not hard to argue that
the Haar measure on �×G is the product measure m�×G(dxdy) = dx×mG(dy).

Let ξ̃ denote a white noise on �×G. Then we say that ξ is space-time white
noise on �+ × G when, viewed as an L2(Ω)-valued measure, ξ is the restriction
of ξ̃ to �+ × G; that is,

ξ(A) := ξ̃ (A ∩ [�+ × G]) ,

for all Borel sets A ⊂ �×G of finite Haar measure. Equivalently, we can consider
Wiener integrals: for all f ∈ L2(�+ × G),∫

�+×G

f dξ :=

∫
�×G

f̃ dξ̃,

where f̃(t , x) := f(t , x) if t � 0 and f̃(t , x) := 0 when t < 0.

The Wiener integral
∫
�+×G f dξ generalizes Wiener integrals that you are

likely to have seen before.

Example 14.4.1 (Group on one element). Consider the case that G := {e} is
the trivial group. Then L2({e}) ∼= � isometrically, as Hilbert spaces. It is easy
to see from (14.2) that Bt := ξ([0 , t] × {e}) defines a Brownian motion, t � 0.
Also, L2(�+ × {e}) ∼= L2(�+). Therefore, f ∈ L2(�+ × {e}) is identified with
t �→ f(t), and

∫
�+×{e} f dξ can be written more compactly as

∫∞
0 f(t) dBt; the

latter is sometimes called the Wiener integral of the (non-random) function f
against Brownian motion B.
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Example 14.4.2 (Group on n elements). Consider G = {0 , . . . , n − 1}, as a cyclic
group on n � 1 elements. If f ∈ L2(�+ × G), then t �→ f(t , •) is a square-
integrable function from �+ to �n; that is, it is an element of L2(�+ ,�n).
And conversely, we can identify (isometrically) L2(�+ ,�n) with L2(�+ ×G); in
symbols, L2(�+ × G) ∼= L2(�+ ,�n).

Let Bt := (B
(1)
t , . . . , B

(n)
t ), where B

(i)
t := ξ([0 , t] × {i}) for t � 0 and i =

0, . . . , n − 1. According to the Wiener isometry (14.2), B := {Bt}t�0 is an n-
dimensional Brownian motion. Let f ∈ L2(�+ ,�n); then people frequently write∫ ∞

0

f(t) · dBt =

n−1∑
i=0

∫ ∞

0

f(t , i) dB
(i)
t

in place of
∫
�+×G

f dξ. Frequently, people refer to
∫∞
0

f(t) · dBt as the Wiener

integral of f ∈ L2(�+ ,�n) against the n-dimensional Brownian motion B.

As one can check directly, (14.2) implies that, whenever ϕ ∈ L2(G),

Bt(ϕ) :=

∫
[0,t]×G

ϕ(y) ξ(ds dy) (t � 0)

defines a Brownian motion, scaled to have variance t‖ϕ‖2L2(G) at time t. Let

{Fϕ
t }t�0 denote the filtration of the Brownian motion t �→ Bt(ϕ). Define

F ∗
t :=

∨
ϕ∈L2(G)

Fϕ
t (t � 0).

One can check that t �→ Bt(ϕ) continues to be a Brownian motion in the filtration
{F ∗

t }t�0. Let F t denote the P-completion of F ∗
t for every t � 0. Standard meth-

ods show that t �→ Bt(ϕ) is also a Brownian motion in the filtration F := {Ft}t�0,
where Ft is the right-continuous extension of F t for every t � 0. That is,

Ft :=
⋂
s>t

F s (t � 0).

For these reasons, the filtration F is called the Brownian filtration corresponding
to the space-time white noise ξ.

14.5 The Walsh stochastic integral

Let G continue to designate an LCA group, and ξ space-time white noise on
�+ × G. We now extend the domain of the definition of the Wiener integral∫
�+×G f dξ in order to include some random functions f as well. The resulting

stochastic integral is then called the Walsh integral.
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To be more concrete, we wish to integrate now a function Φ(t , x)(ω) of three
variables against ξ(dt dx)(ω), where the variables are: t � 0 (time variable), x ∈
G (space variable), and ω ∈ Ω (probability variable). We do this by following
Walsh [57] and Itô [26] in a few simple steps.3

14.5.1 Simple random fields

We say that Φ: �+ ×G×Ω → � is a simple random field if there exists positive
real numbers a < b, a random variables X ∈ L2(Ω ,Fa), and a function ϕ ∈ Cc(G)
such that

Φ(t , x)(ω) = X(ω)ϕ(x)1(a,b](t), (14.5)

for every t > 0, x ∈ G, and ω ∈ Ω.4 We might also refer to the time interval (a , b]
as the temporal support of Φ.

If Φ is a simple random field with the preceding representation, then we
define the stochastic integral

∫
�+×GΦdξ, ω by ω, as

ξ(Φ) :=

∫
�+×G

Φdξ := X ·
∫
(a,b]×G

ϕ(x) ξ(dt dx),

where the integral with respect to ξ is the Wiener integral of the preceding sec-
tions. Thanks to (14.2), the random variable

∫
(a,b]×G

ϕ(x) ξ(dt dx) is uncorrelated

– whence independent – from
∫
[0,a]×G

h(x) ξ(dt dx) for all h ∈ L2(G); therefore,

the Wiener integral
∫
(a,b]×G

ϕ(x) ξ(dt dx) is independent from the σ-algebra Fa.

Since X is measurable with respect to Fa, it follows that
∫
(a,b]×G ϕ(x) ξ(dt dx)

and X are independent. In particular,

E[ξ(Φ)] = 0, (14.6)

and
E
(
[ξ(Φ)]2

)
= ‖Φ‖2L2(�+×G×Ω), (14.7)

where we are writing Φt(x) := Φ(t , x), as is standard in the theory of stochastic
processes. (We will, in fact, write our space-time stochastic processes this way very
often from now on.)

Exercise 14.5.1. Verify (14.7).

3There are other definitions of the “Itô stochastic integral in infinite dimension” than those
introduced here. Other approaches can be found, for example, in Chow [6], Kotelenez [35],
Krylov [36, 37], Krylov–Rozovskii [38], Mikulevicious–Rozovskii [39], da Prato–Zabczyk [11], and
Prévôt–Röckner [45]. For examples of concrete families of important SPDEs see Corwin [9],
Dawson–Perkins [15], Giacomin–Lebowitz–Presutti [22], and Quastel [46] and their combined
bibliographies. As far as the central bulk of the theory is concerned, all of these approaches are
essentially equivalent; see Dalang–Quer-Sardanyons [14] for details.

4As is customary, Cc(G) denotes the space of all continuous functions f : G → � that
have compact support. It is well known that Cc(G) is always dense in L2(G); see for example
Rudin [49, E8, p. 268]. For this reason, we could also define our simple function with ϕ ∈ L2(G)
without altering the end result, which is the Walsh integral.
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14.5.2 Elementary random fields

We say that Φ: �+ × G × Ω → � is an elementary random field if there exist
simple random fields Φ(1), . . . ,Φ(n), with disjoint temporal supports, such that
Φ =

∑n
i=1 Φ

(i). In this case, we may define∫
�+×G

Φdξ :=
n∑

i=1

∫
�+×G

Φ(i) dξ.

We will denote by E the class of all elementary random fields.

The elementary properties of Wiener integrals show that our definition of
the integral

∫
�+×G

Φdξ a.s. does not depend on the choice of the Φ(i)’s. In other

words, if we could write

Φ =

n∑
i=1

Φ(i) =

m∑
j=1

Φ̃(j)

as a finite sum of simple random fields of disjoint temporal support in two different
ways, then

n∑
i=1

∫
�+×G

Φ(i) dξ =

m∑
j=1

∫
�+×G

Φ̃(j) dξ a.s.

Furthermore, one checks directly that (14.6) and (14.7) continue to hold when
Φ ∈ E .

14.5.3 Walsh-integrable random fields

The identity (14.7) is called the Walsh isometry, and shows that the Walsh integral
operator E � Φ �→ ξ(Φ) ∈ L2(Ω) is a linear isometry.

As a corollary of this development, consider a sequence {Φ(n)}∞n=1 of ele-
ments of E that is a Cauchy sequence in L2(�+ × G × Ω). By completeness,
Φ := limn→∞ Φ(n) exists in L2(�+ × G × Ω). According to the Walsh isometry,
{ξ(Φ(n))}∞n=1 is Cauchy in L2(Ω). Therefore,

ξ(Φ) := lim
n→∞ ξ(Φ(n))

exists in L2(Ω) and satisfies (14.6) and (14.7). We have proved the following.

Theorem 14.5.2 (Walsh, [57]). Let W denote the completion of E with respect to the
L2(�+×G×Ω)-norm. Then, ξ : W → L2(Ω) is a linear isometry satisfying (14.6)
and (14.7).

Let us mention the following ready fact as well.

Proposition 14.5.3. The class of all non-random elements of W agrees with all of
L2(�+ ×G). Moreover, the Walsh integral of Φ ∈ L2(�+ ×G) is the same as the
Wiener integral of Φ a.s.
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Here is the idea of the proof: if Φ is a non-random simple function, then one
sees immediately that the Walsh and Wiener integrals agree a.s. The general case
follows by approximation.

From now on, we refer to the elements of W as Walsh-integrable random
fields, and (14.7) as the Walsh isometry, valid for all Φ ∈ E . We also might write,
interchangeably,

ξ(Φ) :=

∫
�+×G

Φdξ :=

∫
�+×G

Φt(x) ξ(dt dx) :=

∫
�+×G

Φ(t , x) ξ(dt dx).

As we did for Wiener integrals, whenever Λ ⊂ �+ × G, we may also write∫
Λ

Φt(x) ξ(dt dx) :=

∫
Λ

Φ(t , x) ξ(dt dx) :=

∫
Λ

Φdξ := ξ(Φ1Λ),

for all Φ ∈ W .

The Walsh integral is a strict generalization of the so-called Itô integral of
stochastic calculus. The following two examples hash out some of the details for
respectively 1-dimensional and n-dimensional Itô calculus of Brownian motion.

Example 14.5.4 (The trivial group). Consider the case that G = �/� is the trivial
group. Let e denote the identity element of �/�, and recall that �+ � t �→ Bt :=
ξ([0 , t] × {e}) defines a standard Brownian motion. In stochastic calculus terms,
the class W of all Walsh-integrable random fields coincides with the family of
all B-predictable processes X such that E

∫∞
0

X2
s ds < ∞ in the following sense:

if Φ ∈ W , then Xt := Φ(t , e) is predictable and E
∫∞
0 X2

s ds < ∞, and vice

versa. The integral
∫
�+×{e}Φ(s , y) ξ(ds dy) is usually written as

∫∞
0 Xs dBs, and

is called the Itô integral of X .

Example 14.5.5 (Cyclic groups). Let G := �/n� ∼= {0 , . . . , n−1} for some integer

n � 1 and recall that �+ � t �→ B
(i)
t := ξ([0 , t] × {i}) defines standard n-

dimensional Brownian motion, i = 0, . . . , n − 1. In stochastic calculus terms, the
class of all Φ ∈ W coincides with the family of all B-predictable processes taking
values in �n and satisfying E

∫∞
0

‖Xs‖2 ds < ∞. Properties of Walsh integrals
show that, since G is finite,∫

�+×G

Φ(s , y) ξ(ds dy) =
n−1∑
i=0

∫
�+×{i}

Φ(s , i) ξ(ds dy),

for every Φ ∈ W . Define for all i = 0, . . . , n−1 and any Borel set A ⊂ �+ of finite
Lebesgue measure, ξ(i)(A) := ξ(A× {i}). It is easy to see that ξ(1), . . . , ξ(n−1) are
i.i.d. white noises on �+, the process s �→ Φ(s , i) is Walsh integrable with respect
to ξ(i) for every i, and∫

�+×{i}
Φ(s , i) ξ(ds dy) =

∫ ∞

0

Φ(s , i) ξ(i)(ds) a.s.
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for every i = 0, . . . , n − 1 (it suffices to prove the preceding for a simple random
field Φ, in which case the identity is a tautology). Therefore,

t �→ B
(i)
t := ξ(i)([0 , t])

defines i.i.d. Brownian motions, as i ranges over {0, . . . , n − 1} and, in terms of
Itô integrals,∫

�+×G

Φ(s , y) ξ(ds dy) =

n−1∑
i=0

∫ ∞

0

X(i)
s dB(i)

s :=

∫ ∞

0

Xs · dBs,

where X
(i)
s := Φ(s , i), i = 0, . . . , n− 1, defines a B-predictable process.

14.6 Moment inequalities

If Φ is a simple random field, then one sees directly that

t �−→ Mt(Φ) :=

∫
[0,t]×G

Φdξ (14.8)

defines a continuous L2(Ω)-martingale with quadratic variation process

t �−→ 〈M(Φ)〉t :=
∫ t

0

‖Φs‖2L2(G) ds. (14.9)

The same fact will therefore hold when Φ ∈ E .

If Φ ∈ W , then we can find Φ(n) ∈ E such that Φ(n) converges to Φ in
L2(�+ × G × Ω), as n → ∞. And ξ(Φ(n)) → ξ(Φ) in L2(Ω) as n → ∞, thanks to
the Walsh isometry (14.7). Moreover, by Doob’s maximal inequality for continuous
L2(Ω)-martingales,

E

(
sup
t�0

∣∣∣Mt(Φ
(n)) − Mt(Φ

(m))
∣∣∣2) � 4 sup

t�0
E

(∣∣∣Mt

(
Φ(n) − Φ(m)

)∣∣∣2)
= 4‖Φ(n) − Φ(m)‖2L2(�+×G×Ω),

which goes to zero as n,m → ∞. It follows that for all Φ ∈ W , (14.8) defines a
continuous L2(Ω)-martingale. Moreover, we can see from this that∫

�+×G

Φdξ = lim
t→∞Mt(Φ) in probability,

whence

E

⎛⎝∣∣∣∣∣
∫
�+×G

Φdξ

∣∣∣∣∣
k
⎞⎠ � sup

t�0
E
(
|Mt(Φ)|k

)
,
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for all real numbers k � 0 thanks to Fatou’s lemma. In this way, we obtain the
following from (14.9) and the Burkholder–Davis–Gundy inequality for continuous
L2(Ω)-martingales; see Revuz–Yor [47, Chapter IV], for instance.

Proposition 14.6.1. For every real number k � 2 there exists a finite constant ck
such that

E

(∣∣∣∣∫
�+×G

Φdξ

∣∣∣∣k
)

� ckE

(∣∣∣∣∫ ∞

0

‖Φs‖2L2(G) ds

∣∣∣∣k/2
)
,

for every Φ ∈ W .

Remark 14.6.2. It can be shown that ck � (4k)k/2 for all k ∈ [2 ,∞); see Carlen–
Krée [4]. This bound is optimal too; in fact, if ck,opt denotes the smallest such
choice of ck, then Carlen–Krée [4] shows that

lim
k→∞

c
1/k
k,opt√
k

= 2.

In these notes we will not require this bound on ck. However, the following exercise
hints at the fact that the multiplicative factor of kk/2 can be useful in obtaining
large-deviations bounds for Walsh integrals.

Exercise 14.6.3. Let W be a non-negative random variable, and suppose that there
exists a finite constant a such that E[W k] � akkk/2, for all integers k � 2. Prove
that there exists a finite constant θ such that P{W > λ} � θ exp(−λ2/θ) for all
λ > 1. (Hint: It suffices to prove that E exp(εW 2) < ∞ for some ε > 0.)

14.7 Examples of Walsh-integrable random fields

One of the main themes of this chapter is that if Φ is a Walsh-integrable random
field, Φ ∈ W , then we can integrate it against space-time white noise. A question
that arises naturally at this point is, “what do Walsh-integrable random fields look
like”? We explore some answers to this question next.

14.7.1 Integral kernels

First of all, the Walsh integral is a strict generalization of the integral of Wiener;
in other words, L2(�+ × G) ⊂ W and

∫
�+×G Φdξ is the Wiener integral of

Φ ∈ L2(�+×G). This assertion is obvious when Φ ∈ L2(�+×G) is an elementary
function in the sense of Lebesgue. We take limits in L2(Ω) of such stochastic
integrals for general Φ ∈ L2(�+ × G). This provides an answer to our question,
but the answer is not satisfactory, since elements of L2(�+ ×G) are non-random.

Our strategy is the following: suppose we have some random field Φ ∈ W
such as Φ ∈ L2(�+ × G). Then we can try to build a new random field in W by
choosing a good non-random “kernel” K such that:
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(i) (K ,Φ)t(x) :=
∫
[0,t]×GKt,s(x , y)Φs(y) ξ(ds dy), (t > 0, x ∈ G), and

(K ,Φ)0(x) := 0, is a Walsh integral for every t � 0 and x ∈ G; and

(ii) (K ,Φ) itself is a Walsh-integrable random field.

As we will now see, this procedure sometimes works to produce bona fide random
fields in W .

First, suppose Φ has the following particular form:

Φs(y) = X · 1(a,b](s)ϕ(y), (14.10)

where 0 < a < b, X ∈ L2(Ω ,Fa), and ϕ ∈ Cc(G). In particular, Φ is a simple
random field in the sense of (14.5). Consider also a simple kernel of the form

Kt,s(x , y) := α1(β,γ](s)1(β′,γ′](t)1Q(x)ψ(y), (14.11)

where α ∈ �, 0 < β < γ � β′ < γ′, ψ ∈ L∞(G), and Q and Q′ are compact
subsets of G. In this particular case,

Kt,s(x , y)Φs(y) = α1(β′,γ′](t)1Q(x)X · 1(β,γ]∩(a,b](s) · (ϕψ)(y).
Since α1(β′,γ′](t)1Q(x)X is in L2(Ω ,Fa) and ϕψ ∈ L2(G), (s , y) �→ Kt,s(x , y) is
a simple random field for every t � 0 and x ∈ G. Consequently, (K ,Φ)t(x) is a
bona fide Walsh integral for every t � 0 and x ∈ G, and

(K ,Φ)t(x) = α1(β′,γ′](t)1Q(x) · X̃,

where X̃ := X · ∫(β,γ]∩(a,b]ϕ(y)ψ(y) ξ(ds dy).

Clearly, X̃ ∈ L2(Ω ,Fγ) ⊂ L2(Ω ,Fβ′); the last set inclusion holds since
γ � β′. Therefore, KΦ is a simple random field in this case.

Let W00 denote the collection of all finite linear combinations of simple ran-
dom fields of the form (14.10) having disjoint temporal support. To be sure, el-
ements of W00 are elementary random fields; that is, W00 ⊂ E . Also, define K00

to be the collection of all finite linear combinations of kernels of the form (14.11)
having disjoint supports. Then, clearly, (K ,Φ)t(x) is a well-defined Walsh integral
for all t � 0 and x ∈ G, and (K ,Φ) ∈ W . Furthermore, the Walsh isometry (14.7)
tells us that

E
(|(K ,Φ)t(x)|2

)
=

∫ t

0

ds

∫
G

mG(dy) [Kt,s(x , y)]
2E

(|Φs(y)|2
)

� N0(Φ) · sup
t>0

sup
x∈G

∫ t

0

ds

∫
G

mG(dy) [Kt,s(x , y)]
2.

The right-hand side does not depend on (t , x). For all space-time random fields
X := {Xt(x)}t�0,x∈G, let us define the norm

N0(X) := sup
t�0

sup
x∈G

{
E
(|Xt(x)|2

)}1/2
.
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Also define, for every measurable function F : (s , t ;x , y) → Ft,s(x , y), the norm

M0(F ) := sup
t>0

sup
x∈G

[∫ t

0

ds

∫
G

mG(dy) [Ft,s(x , y)]
2

]1/2
.

In this way we find that

N0 ((K ,Φ)) � N0(Φ)M0(K), (14.12)

uniformly for all Φ ∈ W00 and K ∈ K00. Now let K0 denote the completion of
K00 in the norm M0, and W0 the completion of W00 in the norm N0. Since (K ,Φ)
is a (random) bilinear map on K and Φ, this procedure defines the random field
(t , x) �→ (K ,Φ)t(x) for every K ∈ K0 and Φ ∈ W0.

If F,G ∈ K0 are equal almost everywhere (ds × dMG) then we can identify
F and G with one another. We will write K0 also for the family of the resulting
equivalence classes (as one does in Lp-theory, for instance). In this way, we see
that (K0,M0) is a metric space. Similarly, if we identify two random fields that
are modifications of one another (as one does in probability theory), then (W0,N0)
is easily seen to be a metric space.

Let Λ be a compact subset of �+×G, and define a kernel F via Ft,s(x , y) :=
1Λ(s , y)1(0,t)(s) for all s, t � 0 and x, y ∈ G. Then it is easy to see that F ∈ K0.
Let us summarize our findings.

Theorem 14.7.1. Define Wloc to be the collection of all space-time random fields
Φ such that Φ1Λ ∈ W for all compact non-random sets Λ ⊂ �+ × G. Then,
L∞((0 ,∞) × G) ⊂ W0 ⊂ Wloc. Moreover, (K ,Φ) defines a bilinear form from
K0 ×W0 to W0 which satisfies (14.12). Finally, (K ,Φ)t(x) is a Walsh integral for
all K ∈ K0 and Φ ∈ W0.

14.7.2 Stochastic convolutions

We now apply Theorem 14.7.1 in order to produce non-trivial examples of Walsh-
integrable random fields that are relevant to the study of SPDEs.

Suppose κ : (0 ,∞)×G �→ � is a non-random measurable function, and write
κt(x) in place of κ(t , x) in order to be consistent with the notation of stochastic
process theory. We can define a kernel K as follows:

Kt,s(x , y) :=

{
κt−s(xy

−1) if s ∈ (0 , t),

0 otherwise,

for all s, t � 0 and x, y ∈ G. According to Lebesgue’s integration theory,K ∈ K0 if
and only if κ ∈ L2((0 ,∞)×G). For a such a κ, we will always write κ�Φ in place
of (K ,Φ), whenever Φ ∈ W0. We might also write the Walsh integral (κ� Φ)t(x)
as

(κ� Φ)t(x) :=

∫
[0,t]×G

κt−s(xy
−1)Φs(y) ξ(ds dy).
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We will refer to κ � Φ as the stochastic convolution of κ ∈ L2((0 ,∞) × G) with
Φ ∈ W0. According to Theorem 14.7.1, κ � Φ is itself in W0. Therefore, so are
the “multifold stochastic convolutions”, κ �(2) Φ := κ � (κ � Φ), κ �(3) Φ :=
κ� [κ� (κ� Φ)], etc. And by induction,

N0

(
κ�(n) Φ

)
� N0(Φ) ·

[∫ ∞

0

‖κs‖2L2(G) ds

]n/2
,

for all n � 1, where κ�(1) Φ := κ� Φ.

If α > 0, then we can define Wα to be the collection of all random fields Φ
such that the random field (t , x) �→ exp(−αt)Φt(x) is in W0. Note that Wα ⊆ Wβ ,
whenever 0 � α � β. Also, if X := {Xt(x)}t�0,x∈G is a space-time random field,
then we define the norm

Nα(X) := sup
t�0

sup
x∈G

{
e−αtE

(|Xt(x)|2
)}1/2

.

Since κt−s(x − y)Φs(y) = e−α(t−s)κt−s(x − y) · e−αsΦs(y), we can replace κt(x −
y) by e−αtκt(x − y) and Φs(y) and e−αsΦs(y) everywhere in order to see that
Theorem 14.7.1 implies the following.

Theorem 14.7.2. Suppose κ : (0 ,∞)×G → � is non-random and measurable, and
satisfies

∫∞
0 exp(−αs)‖κs‖2L2(G) ds < ∞ for some α ∈ [0 ,∞). Then, the stochastic

convolution map Φ �→ κ � Φ defines a linear mapping from Wα to Wα such that,
for all n � 1,

Nα

(
κ�(n) Φ

)
� Nα(Φ) ·

[∫ ∞

0

e−αs‖κs‖2L2(G) ds

]n/2
.

14.7.3 Relation to Itô integrals

Since every non-random element of L2((0 ,∞)×G) is Walsh integrable, the Walsh
integral generalizes the integral of Wiener. It also generalizes the integral of Itô,
as we will see next. It might be a good idea to revisit Examples 14.4.1 and 14.4.2
[p. 141] before you read on.

Example 14.7.3 (The trivial group). Let G = {e} denote the trivial group, and
recall that Bt := ξ([0 , t]× {e}) defines a Brownian motion. In this case, for every
fixed α � 0, the elements of Wα are stochastic processes of the form t �→ Φt(e) :=
Φt, since G has only one element. These processes are called predictable with
respect to the Brownian motion B := {Bt}t�0, and satisfy E

∫∞
0

exp(−αs)Φ2
s ds <

∞. The Walsh integral
∫
�+×{e} Φs(y) ξ(ds dy) is often written as

∫∞
0 Φs dBs, and

is referred to as the Itô integral of Φ.

Example 14.7.4 (Cyclic groups). Let G = {0 , . . . , n− 1} ∼= �/n� for some n � 1.

Recall that we B
(i)
t := ξ([0 , t] × {i}) defines an n-dimensional Brownian motion
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B. If α � 0, then elements Φ of Wα are also called predictable (with respect to B).
In addition, the Walsh integral∫

�+×G

Φs(y) ξ(ds dy) =

n−1∑
i=0

∫
�+×{i}

Φs(y) ξ(ds dy)

is also written as ∫ ∞

0

Φs · dBs :=
n−1∑
i=0

∫ ∞

0

Φs(i) dB
(i)
s ,

and called the Itô integral of the n-dimensional process Φ.

Example 14.7.5 (The integer group). If G = � denotes the additive integers, then

t �→ B
(i)
t := ξ([0 , t]×{i}) (i ∈ �) defines an infinite sequence of Brownian motions.

The sequence-valued stochastic process Bt := (· · · , B(−1)
t , B

(0)
t , B

(1)
t , . . .) is called

Brownian motion on ��, elements Φ of Wα are said to be predictable processes
(with respect to B) and satisfy

∑∞
i=−∞ E

∫∞
0 |Φs(i)|2 ds < ∞. Finally, the Walsh

integral ∫
�+×�

Φs(y) ξ(ds dy) =

∞∑
i=−∞

∫
�+×{i}

Φs(y) ξ(ds dy)

is usually written as ∫ ∞

0

Φs · dBs =
∞∑

i=−∞

∫ ∞

0

Φs(i) dB
(i)
s ,

and called the Itô integral of Φ with respect to the Brownian motion B.



Chapter 15

Lévy Processes

Before we continue our discussion of stochastic partial differential equations, we
pause to recall a few facts from the theory of Lévy processes on LCA groups.

Definition 15.0.6. Let X := {Xt}t�0 be a stochastic process with values in an
LCA group G. Then we say that X is a Lévy process if:

(i) X0 = e is the group identity;

(ii) the map t �→ Xt is right-continuous with left limits (for all ω ∈ Ω);

(iii) X has stationary independent increments, that is, for all s, t � 0,

(a) (Stationarity) Xt+sX
−1
t has the same distribution as Xs; and

(b) (Independence) Xt+sX
−1
t is independent of {Xr}r∈[0,t].

It is possible to prove the following.

Proposition 15.0.7. Lévy processes satisfy the strong Markov property.

15.1 Introduction

We will simplify the discussion greatly by concentrating only on Lévy processes
that we will need later on. Therefore, from now on we assume tacitly that G is
either �, �, �, or �/n� for some n � 1. All of our remarks that refer to G
continue to hold for general LCA groups, after suitable modifications are made.
However, the extra gain in generality is not of direct use to us.

We will also use the additive notation for group operations; thus, we will
write x+y in place of xy, −x in place of x−1, and 0 in place of e. We will continue
to write mG for the Haar measure on G in all cases, though it might help to recall
the following: (i) when G = �, the Haar measure is the ordinary Lebesgue measure
normalized to assign total mass one to [0 , 1]; (ii) when G = �, the Haar measure
is the Lebesgue measure normalized to assign total mass one to � = [0 , 2π); and
(iii) mG denotes the counting measure when G = � or �/n�.

© Springer International Publishing Switzerland 2016  
D. Khoshnevisan, R. Schilling, From Lévy-Type Processes to Parabolic SPDEs,  
Advanced Courses in Mathematics - CRM Barcelona, DOI 10.1007/978-3-319-34120-0_15

151



152 Chapter 15. Lévy Processes

We may study Lévy processes on �, �, �, and �/n� separately, on a case by
case basis. The general theory of Lévy processes on LCA groups requires abstract
harmonic analysis, which is a topic for another lecture series. Thus, let us begin
in this order with the concrete LCA groups �, �, �, and �/n�.

15.1.1 Lévy processes on

Recall, once again, that X is a Lévy process on � if and only if: (i) X0 = 0;
(ii) t �→ Xt is right-continuous with left limits; and Xt+s − Xt is independent of
{Xr}r∈[0,t] with a distribution that does not depend on t, for every s, t � 0.

Definition 15.1.1. A Lévy measure m is a Borel measure on� such thatm({0}) = 0
and

∫∞
−∞(1 ∧ x2)m(dx) < ∞. A characteristic exponent is a function Ψ: � → �

that has the form

Ψ(z) = iaz +
σ2z2

2
+

1

2

∫ ∞

−∞

[
1 − eixz + ixz1[−1,1](x)

]
m(dx), (15.1)

where m is a Lévy measure, and a, σ ∈ �. We might refer to (a , σ ,m) as the
Lévy–Khintchine triple.

The constants −a and σ are called the drift coefficient and the diffusion
coefficient of X , respectively. We follow the standard convention of the theory of
Lévy processes and rewrite (15.1) slightly differently in the special cases that m
is a finite measure. In these cases, we can (and always will) write (15.1) as

Ψ(z) = ibz +
σ2z2

2
+

1

2

∫ ∞

−∞

[
1 − eixz

]
m(dz), (15.2)

where b = a + 1
2

∫
[−1,1]

xm(dx). Characteristic exponents are of interest to us

because of the following celebrated result; see Bertoin [3] and Sato [52] for more
details.

Theorem 15.1.2 (The Lévy–Khintchine formula). If X is a Lévy process on �,
then there exists a characteristic exponent Ψ such that

E exp(izXt) = exp(−tΨ(z)) (15.3)

for all t � 0 and z ∈ �. Conversely, for every characteristic exponent Ψ we can
find a probability space on which there exists a Lévy process satisfying (15.3).

Perhaps the three most famous examples of Lévy processes are “uniform
motion”, “Brownian motion”, and “compound Poisson processes” (also known as
“continuous-time random walks”).

Example 15.1.3 (Uniform motion). If Xt = μt for some μ ∈ � and all t � 0, then
X is a (non-random) Lévy process whose characteristic exponent satisfies (15.1)
with a := −μ and σ := 0, and has Lévy measure identically equal to zero.

��
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Example 15.1.4 (Brownian motion). Recall that X is a Brownian motion if it is a
centered Gaussian process with continuous trajectories and covariance

Cov[Xt , Xs] = min(s , t) for all s, t � 0.

One can verify directly that a Brownian motion is a Lévy process whose charac-
teristic exponent satisfies (15.1) with a := 0 and σ := 1, and has Lévy measure
identically equal to zero.

Figure 15.3: A simulation of Brownian motion by time t = 30.

Example 15.1.5 (Compound Poisson processes). Suppose that J1, J2, . . . are i.i.d.
random variables and let N denote an independent rate-κ Poisson process where

κ > 0 is fixed. Then Xt :=
∑N(t)

j=0 Jj , for t � 0, defines a Lévy process, where J0 :=
0. Moreover, disintegration and elementary computations with Poisson processes
together reveal that

E exp(izXt) = E
[
{E exp(izJ1)}N(t)

]
= exp (−tκ [1 − φ(z)])

= exp

(
−tκ

∫ ∞

−∞

[
1 − eixz

]
m(dx)

)
,

where m(A) := P{J1 ∈ A, J1 �= 0} is manifestly a Lévy measure of finite total
mass, and φ(z) := E exp(izJ1) denotes the characteristic function of J1. Thus,
compound Poisson processes are Lévy processes whose characteristic exponent
satisfies (15.2) with b = σ = 0.

One can combine the previous examples in order to build new Lévy processes
as follows: let {Bt}t�0 be a Brownian motion, and {Ct}t�0 an independent com-
pound Poisson process with a Lévy measure m that is finite per force. Then for
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every a, σ ∈ �,
Xt := −at+ σBt + Ct, (15.4)

for t � 0, is a Lévy process whose characteristic exponent satisfies (15.1). It
can be shown that the family of all Lévy processes is the “closure” of those of
type (15.4) “in the topology of weak convergence”. In other words, Lévy processes
of type (15.4) are the building blocks of all Lévy processes on �. Next, thers is an
example of a Lévy process that is not of the form (15.4).

Example 15.1.6 (Symmetric stable processes). For every fixed constant C > 0, the
Borel measure m(dx) := C|x|−1−α dx is a Lévy measure if and only if α ∈ (0 , 2).
For those values of α,∫ ∞

−∞

[
1 − eixz − ixz1[−1,1](x)

]
m(dx) = 2C

∫ ∞

0

1 − cos(xz)

x1+α
dx.

The integral converges absolutely and is defined in the usual way because |1 −
cos(θ)| � θ2 for all θ ∈ �. Moreover, a change of variables shows that the integral
is proportional to |z|α. Therefore, we can adjust our choice of C in order to see
that

Ψ(z) := κ|z|α, (15.5)

z ∈ �, defines the characteristic exponent of a Lévy process whenever α ∈ (0 , 2)
and κ > 0. The same is true when α = 2, though in that case, the Lévy measure
needs to be set to zero identically and κ is twice the diffusion coefficient in (15.1).
Lévy processes whose characteristic function satisfies (15.5) are said to be symmet-
ric α-stable. A symmetric 2-stable Lévy process is a constant multiple of standard
Brownian motion. As it turns out, Brownian motion is the only symmetric α-stable
Lévy process that has continuous sample trajectories. All other stable processes

Figure 15.4: A simulation of the Cauchy process by time t = 30.
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than Brownian motion have pure-jump same functions. Perhaps you can see an
example of this pure-jump property in Figure 15.4, which shows a simulation of a
symmetric 1-stable Lévy process (a so-called symmetric Cauchy process).

Occasionally, we might have use for the following result.

Lemma 15.1.7. lim|z|→∞Ψ(z)/z2 = σ2/2.

When X is a Brownian motion, Ψ(z) ∝ z2. The preceding says that, asymp-
totically, the characteristic exponent of Brownian motion is larger than that of
any other Lévy process. The largeness of the characteristic exponent is equivalent
to the smallness of the characteristic function; therefore, the preceding is really
saying that the tail probabilities of Brownian motion are the smallest among all
Lévy processes. It turns out that, for this reason, Brownian motion is the only
continuous non-constant Lévy process.

Proof of Lemma 15.1.7. In light of (15.1), we may assume without loss of gener-
ality, that a = σ = 0. Otherwise we replace Ψ(z) by Ψ(z)− σ2z2/2 henceforth.

Choose and fix ε > 0, and note that |1− e−ixz + ixz| � x2z2 for all x, z ∈ �,
thanks to the series expansion of the complex exponential. Therefore,∫

[−ε,ε]

|1 − e−ixz + ixz|m(dx) � z2
∫
[−ε,ε]

x2 m(dx).

And ∫
|x|>ε

|1 − eixz|m(dx) � 2μ([−ε , ε]c),

manifestly. Since m is a Lévy measure,

m([−ε , ε]c) +

∫
[−ε,ε]

x2 m(dx) =

∫ ∞

−∞
(1 ∧ x2)m(dx) < ∞.

Therefore, we have proved that

lim sup
|z|→∞

|Ψ(z)|
z2

� inf
ε>0

∫
[−ε,ε]

x2 m(dx),

which is zero, thanks to the dominated convergence theorem. �

15.1.2 Lévy processes on

Usually, one thinks of � as the quotient �/2π�. However, it is also helpful to
think of the torus as � = h(�) for the homomorphism h(x) := x mod 2π, x ∈ �.
You can think of h as a map that “wraps � around the torus”. It follows from
this construction that every Lévy process {Xt}t�0 on � can be constructed (on
some probability space) as follows: Xt = h(Yt), t � 0, where Y := {Yt}t�0 is a

��
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Lévy process on �. Thus, for example, if B denotes a Brownian motion on � then
Xt := h(Bt) defines the Brownian motion on the torus. In other words, in order
to construct X we “wrap B around the torus”.

Similarly, all continuous-time random walks on � are constructed by “wrap-
ping compound Poisson processes around the torus”.

15.1.3 Lévy processes on

Let X be a Lévy process on �, and define a sequence of stopping times T0 � T1 �
T2 � · · · as follows: T0 := 0, and

Tn+1 := inf {t > Tn | Xt �= Xt−} ,

for all n � 0, where inf ∅ := ∞. The stopping times T1, T2, . . . are the times at
which X jumps. Since � is discrete, the defining properties of Lévy processes show
that either Xt := 0 for all t � 0, or {XTn}∞n=0 is a non-degenerate discrete-time
random walk on �. Also as it turns out, the strong Markov property of X (i.e.,
Proposition 15.0.7) implies that{

(Tn+1 − Tn , XTn+1 − XTn)
}∞
n=0

are i.i.d. with T1 having an exponential distribution. This analysis then implies
that every Lévy process on � is a compound Poisson process (or a continuous-time
random walk, if you wish) with values in �.

15.1.4 Lévy processes on /n

Since �/� is the trivial group, the only Lévy process on �/� is Xt := 0. Therefore,
we consider �/n� where n � 2 for the remainder of this subsection.

We just proved that every Lévy process on � is a compound Poisson pro-
cess. Our justification required only the strong Markov property of X (Proposi-
tion 15.0.7) and the fact that the state space of X is �, which is a discrete LCA
group. Thus, it follows from the same line of reasoning that every Lévy process on
�/n� is a compound Poisson process. It might help to hash this out a little more.
Therefore, let us consider the simplest non-trivial case in which n = 2 and X is a
Lévy process on �/2�. Since X is a compound Poisson process we can find i.i.d.
random variables J1, J2, . . . with values in {0 , 1} together with an independent
rate-κ Poisson process N (for some κ > 0) such that

Xt =

N(t)∑
j=0

Jj ,

for all t � 0, where J0 := 0. The summation symbol refers to the group multipli-
cation in �/2�, of course (that is, addition mod 1). In other words, the Markov

��
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process X evolves as follows: at time zero, X is at zero. X remains at zero until
the first jump time of the Poisson process N . Then, X jumps to one and stays
there until the second jump time of N . At that time X switches to the value 0,
and so on. This completely characterizes Lévy processes on �/2�.

Exercise 15.1.8. Characterize all Lévy processes on �/n� when n � 3. (Hint.
You will need n− 1 jump rates.)

15.2 The semigroup

In order to analyze Lévy processes further we need to cite a number of facts from
the theory of Markov processes. See Jacob [27–29] for more details.

We can define a family {Pt}t�0 of linear operators as (Ptf)(x) := E [f(xXt)],
for t � 0, x ∈ G. This is well defined, for example, if f : G → � is measur-
able and bounded. But it makes sense more generally still if f is measurable and
E|f(xXt)| < ∞ for all x ∈ G and t � 0. The Markov property of X ensures
that (Pt[Psf ])(x) = (Pt+sf)(x) for all s, t � 0 and x ∈ G. That is, we have the
semigroup property

PtPs = Pt+s, (15.6)

for all s, t � 0, where AB denotes the composition of linear operators A and B, as
usual.1 The family {Pt}t�0 is thus dubbed a semigroup of linear operators. Since
X0 = 0, we also see that P0 is the identity operator.

Knowledge of the semigroup {Pt}t�0 amounts to knowing the probability
distribution of the process {xXt}t�0, which we can think of as our Lévy process,
started at x ∈ G. Analytically, it turns out that it is slightly more convenient
to work with the Lévy process X−1 (recall that x−1 denotes the group inverse
of x ∈ G). Thus, let pt denote the distribution of X−1

t for all t � 0; that is,
pt(A) := P{X−1

t ∈ A}, t � 0, for every Borel set A ⊆ G. Each pt is a probability
measure on G, with p0 := δ0. Moreover,

(Ptf)(x) =

∫
G

f(xy−1) pt(dy) = (f ∗ pt)(x),

where “∗” denotes convolution. In other words, we can (and will) identify every
linear operator f �→ Ptf with the convolution operator f �→ f ∗ pt. In this way, we
see that the semigroup property (15.6) is written in equivalent form as pt+s = pt∗ps
for all s, t � 0. Thus, the family {pt}t�0 (or, equivalently, the operators {Pt}t�0)
is known as a convolution semigroup.

1In fact, (15.6) is just another way to say that X has the Markov property. In this particular
context, (15.6) is sometimes known also as the Chapman–Kolmogorov equation.
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15.3 The Kolmogorov–Fokker–Planck equation

The Fokker–Planck equation, or Kolmogorov’s forward equation, is a description of
the evolution of the distribution of X . Somewhat more generally, we wish to know
how the function x �→ (Ptf)(x) evolves with time. The class of testing function
f should be quite rich; in fact, rich enough that we can use our evaluation of
Ptf (by an approximation scheme or some such method) to ultimately compute
probabilities of the type P{xXt ∈ A}. For our family of testing functions f , we will
choose the space L2(G), to be concrete. Our first result, Lemma 15.3.1, ensures
that the evolution t �→ Ptf always takes place in L2(G) as long as the initial state
P0f = f is in L2(G).

First let us observe that, by the Cauchy–Schwarz inequality,

‖Ptf‖2L2(G) =

∫
G

∣∣∣∣∫
G

f(xy−1) pt(dy)

∣∣∣∣2 mG(dx)

�
∫
G

∫
G

|f(xy−1)|2 pt(dy)mG(dx) = ‖f‖2L2(G),

for all f ∈ L2(G) ∩ L∞(G). (Recall that mG is translation invariant, by its very
definition.) Therefore, we can continuously extend every Pt to a linear operator
acting on f ∈ L2(G), which we continue to denote by Pt.

Lemma 15.3.1. For every t � 0, the map Pt : L
2(G) → L2(G) is non expanding.

Moreover, t �→ ‖Ptf‖L2(G) is non increasing for every f ∈ L2(G).

Proof. Since ‖Ptf‖L2(G) � ‖f‖L2(G) for all f ∈ L2(G)∩L∞(G) and L∞(G) is dense
in L2(G), it follows that ‖Ptf‖L2(G) � ‖f‖L2(G) for all f ∈ L2(G), by density.
Thus, the proof is complete once we prove that ‖Pt+sf‖L2(G) � ‖Ptf‖L2(G) for all
f ∈ L2(G) and s, t � 0. But this follows from the semigroup property

‖Pt+sf‖L2(G) = ‖PsPtf‖L2(G) � ‖Ptf‖L2(G),

since Ptf ∈ L2(G) for all f ∈ L2(G) and Ps is nonexpanding, as we just proved. �

A deeper analysis of Lévy processes on LCA groups hinges on the develop-
ment of harmonic analysis on LCA groups, which is an interesting topic in its own
right. But a complete treatment will distract us too much from our main goals.
Instead, we study Lévy processes only on concrete LCA groups that are of interest
to us. My hope is that there will be enough examples giving us hints of a large
theory. For that larger theory itself see Morris [41] and Rudin [49].

15.3.1 Lévy processes on

Let X be a Lévy process on � whose characteristic exponent Ψ is given by (15.1).
The semigroup is defined by (Ptf)(x) = E[f(x +Xt)]. Since Ptf ∈ L2(�) for all
f ∈ L2(�) (Lemma 15.3.1), we can try to understand the behavior of Ptf in terms

��
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of its action on other functions in L2(�); namely, we can study the time evolution
of (g , Ptf)L2(�) for g ∈ L2(�). Since Pt ∗ f = f ∗ pt when f ∈ L2(�) ∩ L∞(�),
and since pt is the probability distribution of −Xt, we apply Parseval’s identity in
order to see that

(g , Ptf)L2(�) =
1

2π

∫ ∞

−∞
ĝ(z)f̂(z)Ee−izXt dz =

1

2π

∫ ∞

−∞
ĝ(z)f̂(z)e−tΨ(−z) dz.

Moreover, by density, this identity is valid for all f ∈ L2(�).

We wish to differentiate the preceding with respect to the non-negative time
variable t. In other words if s, t � 0 are two distinct time points, then we wish to
compute the limit, as s → t, of(

g ,
Psf − Ptf

s− t

)
L2(�)

=
1

2π

∫ ∞

−∞
ĝ(z)f̂(z)

(
e−sΨ(−z) − e−tΨ(−z)

s − t

)
dz.

If we could take the limit inside the integral, then it would follow that

d

dt
(g , Ptf)L2(�) = − 1

2π

∫ ∞

−∞
ĝ(z)e−tΨ(−z)f̂(z)Ψ(−z) dz

= − 1

2π

∫ ∞

−∞
ĝ(z)P̂tf(z)Ψ(−z) dz,

(15.7)

for all g ∈ L2(�), where the time derivative at t = 0 is understood as a right
derivative (Ptf is not defined for t < 0).

It turns out that the only way to make the preceding rigorous is to restrict
attention to a smaller family of functions f than all of f ∈ L2(�). With this in
mind, define

Dom[G] :=
{
h ∈ L2(�)

∣∣∣∣ ∫ ∞

−∞
|ĥ(z)Ψ(z)|2 dz < ∞

}
,

where “ ̂ ” refers to the Fourier transform (in the sense of distribution theory)
normalized so that

ĥ(z) =

∫ ∞

−∞
exp(ixz)h(x) dx,

for all h ∈ L1(�). Since | exp(−rΨ(z))| � 1 for all r � 0 and z ∈ �,∣∣∣∣e−sΨ(z) − e−tΨ(z)

s− t

∣∣∣∣ � ∣∣∣∣1 − e−|s−t|Ψ(z)

|s− t|
∣∣∣∣ � |Ψ(z)| = |Ψ(−z)|.

Therefore, it follows from the dominated convergence theorem that (15.7) holds
whenever f ∈ Dom[G]. By the Cauchy–Schwarz inequality, the following defines a
linear operator G : Dom[G] → L2(�):

(g ,Gf)L2(�) := − 1

2π

∫ ∞

−∞
ĝ(z)f̂(z)Ψ(−z) dz.
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From the preceding statements, it is possible to deduce that if f ∈ S (�), then

(Gf)(x) := − 1

2π

∫ ∞

−∞
eizxf̂(z)Ψ(−z) dz, (15.8)

for almost every x ∈ � (or for every x ∈ �, if we take the preceding as the defi-
nition of Gf for f ∈ S (�)). In any event, Dom[G] is the domain of the definition
of G, and because of (15.7) and Fubini’s theorem we can see that

d

dt
(g , Ptf)L2(�) = (g ,GPtf)L2(�),

for all g ∈ L2(�) and f ∈ Dom[G]. In other words, we have proved the existence
portion of the following fact.

Theorem 15.3.2. If f ∈ Dom[G], then the 2-parameter function ut(x) := (Ptf)(x)
is the unique weak solution to the evolution equation,⎡⎣ d

dt
ut(x) = (Gut)(x) for t � 0 and x ∈ �,

u0(x) = f(x) for x ∈ �.
(15.9)

Remark 15.3.3. Equation (15.9) is called the Fokker–Planck equation as well as
Kolmogorov’s forward equation. We refer to G and Dom[G] as the generator of X
and the domain (of definition) ofX . Lemma 15.1.7 implies that S (�) ⊂ Dom[G] ⊂
L2(�), where S (�) denotes the collection of all rapidly-decreasing test functions
on �. Since S (�) is dense in L2(�), it follows that Dom[G] is dense in L2(�)
also; i.e., G is defined densely on L2(�), as prescribed by (15.8).

Proof of Theorem 15.3.2. We have shown that ut(x) = (Ptf)(x) is a weak solution.
Suppose vt(x) were another weak solution. That is, suppose vt ∈ Dom[G] for all
t > 0, v0(x) = f(x), and

d

dt
(g , vt)L2(�) = (g ,Gvt)L2(�)

for all g ∈ L2(�). Then, ht(x) := ut(x) − vt(x) solves ḣ = Gh on (0 ,∞) × �,
subject to h0 ≡ 0. This is a linear equation; take Fourier transforms in order to
see that the unique weak solution is ht(x) = 0. This proves uniqueness. �

Let us work out a family of examples that is relevant to our later needs. First,
let us recall that if f ∈ Dom[G] then Gf ∈ L2(�) and hence (15.8) and Fubini’s
theorem together imply that

(g ,Gf)L2(�) = − 1

2π

∫ ∞

−∞
ĝ(z)f̂(z)Ψ(−z) dz,
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for all g ∈ L2(�). Thanks to the Plancherel theorem, the Fourier transform of
Gf is

Ĝf(z) = −f̂(z)Ψ(−z), (15.10)

z ∈ �. In other words, we can identify the linear operator G with a Schwartz
distribution, which we continue to write as G, such that Gf = G ∗ f and Ĝ(z) =
−Ψ(−z) for all z ∈ �. We now work out a few examples.

Example 15.3.4 (Uniform motion). Suppose Xt = at for some a ∈ � and every
t � 0; that is, Ψ(z) = −iaz for all z ∈ �. In this case,

Dom[G] =
{
f ∈ L2(�)

∣∣∣∣ ∫ ∞

−∞
|zf̂(z)|2 dz < ∞

}
,

and (Gf)̂(z) = iazf̂(z) thanks to (15.10). Recall that the weak derivative of f is
a distribution f ′ such that (g , f ′)L2(�) = −(g′ , f)L2(�) for all rapidly-decreasing
test functions g on �. In our setting, we can deduce from the preceding that
Gf = af ′, and

Dom[G] = {f ∈ L2(�) | f ′ ∈ L2(�)}
is the Sobolev space W 1,2(�).

Example 15.3.5 (Brownian motion). If X is a Brownian motion on �, then Ψ(z) =
σ2z2/2 for some σ �= 0 (σ = 1 is standard Brownian motion). Thus,

Dom[G] =
{
f ∈ L2(�)

∣∣∣∣ ∫ ∞

−∞
z4|f̂(z)|2 dz < ∞

}
,

and (Gf)̂(z) = −(σ2/2)z2f̂(z). In other words, the generator of our Brownian
motion is Gf = (σ2/2)f ′′, where f ′′ refers to the second (weak) derivative of f ,
and

Dom[G] := {
f ∈ L2(�) | f ′′ ∈ L2(�)

}
,

which is simply the Sobolev space W 2,2(�).

Example 15.3.6 (Zero-drift, zero-diffusion case). Consider a real-valued Lévy pro-
cess X whose drift and diffusion coefficients −a and σ are both zero. That is,

Ψ(z) =

∫ ∞

−∞

[
1 − eiyz − iyz1[−1,1](y)

]
m(dy).

This and (15.10) together tell us that, for all f ∈ Dom[G],

Ĝf(z) =
∫ ∞

−∞
f̂(z)

[
e−iyz − 1 + iyz1[−1,1](y)

]
m(dy).

Recall that z �→ f̂(z)e−iyz is the Fourier transform of x �→ f(y + x), and that

z �→ izf̂(z) is the Fourier transform of f ′. Therefore,

(Gf)(x) =
∫ ∞

−∞

[
f(x+ y)− f(x) − y1[−1,1](y)f

′(x)
]
m(dy).
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Thus, for example, if X is a symmetric α-stable process with α �= 2 (see Ex-
ample 15.1.6), then G is seen to be the following “negatively-indexed fractional-
derivative operator”

(Gf)(x) = C

∫ ∞

−∞

f(x+ y)− f(x)

|y|1+α
dy. (15.11)

We interpret this expression, and others like it in the usual way: the preceding
formula yields a well-defined pointwise convergent construction of G f for all f ∈
S (�), and thus, defines G densely on its domain Dom[G ].

According to the Lévy–Khintchine formula (Theorem 15.1.2), every Lévy
process X on � can be written as Xt = Dt +Bt +Πt, where Dt = −at for some
a ∈ �, B is a Brownian motion with speed σ, and Π is an independent Lévy process
with no drift or diffusion. Since {Pt}t�0 is a convolution semigroup, it follows
easily that the generator GX of X can be decomposed as GX = GD + GB + GΠ,
on I := Dom[GD] ∩ Dom[GB ] ∩ Dom[GΠ], notation being obvious. Since rapidly-
decreasing test functions are always in I, the preceding examples together show
us the following.

Corollary 15.3.7. Let X be a Lévy process on � with Lévy–Khintchine triple
(a, σ,m). Then, the generator G of X is defined densely on L2(�), and satisfies

(Gf)(x) = −af ′(x) +
σ2

2
f ′′(x) +

∫ ∞

−∞

[
f(x+ y) − f(x) − y1[−1,1](y)f

′(x)
]
m(dy),

for all f ∈ S (�) and x ∈ �.

Example 15.3.8 (Lévy processes on �). Let J1, J2, . . . be i.i.d. with values in �,
and N be an independent mean-κ Poisson process for some κ > 0. Then, we have

seen already that Xt =
∑N(t)

j=0 Jj (with J0 := 0) defines a Lévy process on �. We
have also seen that every Lévy process on � is realized in this way. Furthermore,
the characteristic exponent of such an X has the form

Ψ(z) = κ
∑
x∈�

[1 − e−ixz]D(x),

where D : � → �+ designates the “displacement probability law” of the random
walk −X ; that is, D(x) = P{J1 = −x} for all x ∈ �. See Example 15.1.5 on page
155 for an equivalent formulation.2

According to the theory of Fourier series, for every f, g ∈ L2(�),

(g , Ptf)L2(�) =
1

2π

∫ 2π

0

ĝ(z)f̂(z)Ee−izXt dz,

2It is perhaps worth mentioning that, according to Example 15.1.5, we should actually write
D(x) = P{J1 = −x , J1 �= 0} and not D(x) = P{J1 = −x}. However, both choices of D are
correct because 1− e−ixz vanishes at x = 0.
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where “ ̂ ” denotes the Fourier transform on �; i.e.,

ĥ(z) :=
∑
x∈�

h(x)eixz

for all h ∈ L1(�). In particular, since E exp(−izXt) = exp(−tΨ(−z)), this means
that whenever s, t � 0 are distinct and f, g ∈ L2(�),(

g ,
Psf − Ptf

s− t

)
L2(�)

=
1

2π

∫ 2π

0

ĝ(z)f̂(z)

(
e−sΨ(−z) − e−tΨ(−z)

s− t

)
dz.

Define

(Gf)(x) := − 1

2π

∫ 2π

0

eizxf̂(z)Ψ(−z) dz,

for all f ∈ Dom[G] and x ∈ �. The integral converges absolutely for every f ∈
L2(�) since Ψ is continuous, whence bounded, on [0 , 2π). That is, Dom[G] is all
of L2(�). Moreover, our formula for Ψ yields the following alternative form of G:

(Gf)(x) = − κ

2π

∑
y∈�

D(y)

∫ 2π

0

eizx
[
1 − eiyz

]
f̂(z) dz.

Since L2(�) ⊃ L1(�), the inversion formula for Fourier series applies as well, and

tells us that (2π)−1
∫ 2π

0 exp(i�z)f̂(z) dz = f(�) for all � ∈ �. Therefore, it follows
that

(Gf)(x) = κ
∑
y∈�

[f(x+ y)− f(x)]D(y),

for all x ∈ � and f ∈ L2(�).3 Now we proceed, much as we did for Theorem 15.3.2,
in order to deduce the following.

Theorem 15.3.9. If f ∈ L2(�), then the 2-parameter function ut(x) := (Ptf)(x)
is the unique weak solution to the evolution equation⎡⎣ d

dt
ut(x) = (Gut)(x) for t � 0 and x ∈ �,
u0(x) = f(x) for x ∈ �.

We skip the details, as they are almost exactly the same as their analogous
reasons for Theorem 15.3.2. In fact, it is slightly easier to prove Theorem 15.3.9
than to prove Theorem 15.3.2 because we are always considering Fourier inte-
grals on the compact set � = [0 , 2π) here, whereas the Fourier integrals behind

3Thus, for example, if X is the continuous-time simple symmetric random walk on �, then
D = 1

2
δ1 + 1

2
δ−1, whence (Gf)(x) = 1

2
(f(x+ 1) + f(x− 1)− 2f(x)) is the discrete Laplacian of

f . We could alternatively derive the generator G by appealing to the strong Markov property, as
we will in the next example.
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Theorem 15.3.2 were at times more delicate since they are over the entire real
numbers.

If you were not convinced before that under all this lies a general abstract
theory of Lévy processes on LCA groups, perhaps you are now. We will not develop
that here; instead let us study one final (very simple) example that could very well
have been presented first, as it is likely to be well known to many readers already.

Example 15.3.10 (Lévy processes on �/2�). As we saw earlier, the class of all
Lévy processes on �/2� coincides with all random walks on {0 , 1}. That is, if X
is a Lévy process on �/2� ∼= {0 , 1} then we can find κ � 0 such that X begins
at 0 and switches to 1 to 0 to 1, etc., at the jump times of a Poisson process
N := {N(t)}t�0 with rate κ. (If κ = 0, then N is degenerate; i.e., it does not
jump.) And conversely, for every κ � 0 there is such a random walk. Thus, the
family of random walks on �/2� coincides with the collection of all stationary
Markov chains on {0 , 1}, equivalently, all stationary 2-state automatons. This is
a rather simple setting. But we will do the analysis in the style of the preceding
examples in order to suggest that there are deeper underlying methods that are
tied intimately to the structure of the underlying group (here, �/2�).

One can compute the generator of X in analogy with the preceding examples,
by using a suitable form of the “Fourier transform” on �/2�. But perhaps the
best definition of the Fourier transform on the LCA group �/2� is the trivial one:

f̂(z) = f(z) for all z ∈ �/2�. Therefore, we might as well compute the generator
using elementary probabilistic ideas.

The family L2(�/2�) is identified with the collection all real-valued functions
on {0 , 1}. Notice that, as t ↓ 0,

(i) P{N(t) = 0} = exp(−κt) = 1 − κt+O(t2);

(ii) P{N(t) = 1} = κt exp(−κt) = κt+O(t2); and

(iii) P{N(t) � 2} = 1 − exp(−κt)− κt exp(−κt) = O(t2).

Since X0 = 0 it follows that, for every f ∈ L2(�/2�),

(Ptf)(0) = E [f(Xt);N(t) = 0] + E [f(Xt);N(t) = 1] + E [f(Xt);N(t) � 2]

= f(0)
(
1 − κt+O(t2)

)
+ f(1)κt+O(t2) as t ↓ 0.

Therefore,

(Gf)(0) := lim
t↓0

(Ptf)(0)− f(0)

t
= κv(f(1) − f(0)).

Similarly,

(Gf)(1) := lim
t↓0

(Ptf)(1) − f(1)

t
= κ(f(0)− f(1)).

In other words, (Gf)(x) = κ(f(x+ 1)− f(x)), for x ∈ �/2�, where we recall that
“x + 1” refers to the group multiplication operation (stated in additive terms).
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The linear operator G is the generator of the walk, and its domain Dom[G] is all
of L2(�/2�).

We have proved most of the following, and leave the remaining few details
as exercise for the interested reader.

Theorem 15.3.11. Let X be a random walk on �/2� with jump rate κ � 0. If
f ∈ L2(�/2�), then the 2-parameter function ut(x) := (Ptf)(x) is the unique
weak solution to the evolution equation⎡⎣ d

dt
ut(x) = (Gut)(x) for t � 0 and x ∈ �/2�,
u0(x) = f(x) for x ∈ �/2�,

(15.12)

where (Gh)(x) = κ[h(x+ 1) − h(x)] for x ∈ �/2� and h ∈ L2(�/2�).

One can use the Kolmogorov–Fokker–Planck equation (15.12) itself to com-
pute pt(x) whence (Ptf)(x). For instance, we can set f := δ0 in order to see
that

(Ptδ0)(x) = Eδ0(x+Xt) = P{x+Xt = 0} = pt(x),

and that Ptδ0 solves (15.12) with f = δ0. Now,

(GPtδ0)(x) = κ[(Ptδ0)(x+ 1)− (Ptδ0)(x)] = κ[pt(x + 1)− pt(x)] = κ [1 − 2pt(x)] .

It follows from Theorem 15.3.11 that dpt(0)/dt = (Gpt)(0) = κ[1 − 2pt(0)], sub-
ject to the initial condition p0(0) = 1. This is a simple ODE that can be solved
explicitly. The solution is

pt(0) =
1 + e−2κt

2
, whence also pt(1) =

1 − e−2κt

2
,

for all t � 0.



Chapter 16

SPDEs

The “SPDEs” in the title is shorthand for stochastic partial differential equations
or more appropriately still, stochastic partial integro-differential equations. This is
the main topic of these lecture notes. Throughout, G denotes an LCA group and
X a Lévy process on G with semigroup {Pt}t�0, whose “generator” is denoted by
G. By the latter, we mean a linear operator that is defined densely on L2(G), and
satisfies

lim
t→∞

Ptf − f

t
= Gf

in L2(G), for every function f : G → � in the domain Dom[G] of the definition of
G. Such a generator always exists (see Jacob [27–29]); we have verified this claim
for many interesting examples of G.

16.1 A heat equation

For reasons that should by now be familiar, one can then solve the following
Kolmogorov–Fokker–Planck equation for each f ∈ L2(G): u̇t(x) = (Gut)(x) on
(0 ,∞)×G, subject to u0 = f , where u̇ denotes du/dt (the weak derivative). This
equation is also known as the linear heat equation for G, and has a unique weak
solution

ut(x) = (Ptf)(x) = (f ∗ pt)(x).

We will be concerned only with Lévy processes whose transition measures pt(A) :=
P{−Xt ∈ A} are nice functions when t > 0. Of course, p0 = δe cannot be a
function; specifically,

Convention 16.1.1. We assume from now on that there exists a measurable function
pt(x) of (t , x) ∈ (0 ,∞)× G such that

pt(A) =

∫
A

pt(x)mG(dx),

for all t > 0 and Borel sets A ⊂ G of finite Haar measure.
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We will refer to the functions pt as the transition functions of the Lévy
process X .

Example 16.1.2. If G is discrete, then transition functions exist vacuously, and
pt(x) = P{−Xt = x} for all t � 0 and x ∈ G. For more interesting examples,
consider the case where G = � and X is a symmetric α-stable Lévy process for
some α ∈ (0 , 2] (α = 2 is Brownian motion). In all cases, we can find κ > 0 such
that

p̂t(z) = exp(−tκ|z|α), (16.1)

for all t > 0 and z ∈ � (see Examples 15.1.4 and 15.1.6). Since p̂t ∈ L1(�) for all
t > 0, the inversion formula yields

pt(x) =
1

2π

∫ ∞

−∞
e−ixz−tκ|z|α dz,

for almost every x ∈ �. The right-hand side is a continuous function of (t , x) ∈
(0 ,∞)×� thanks to the dominated convergence theorem. Therefore, we can define
pt(x) as the preceding pointwise, and still retain the property (16.1).

Example 16.1.3. Every Lévy process X on � := [0 , 2π) is obtained by wrapping
a Lévy process Y on � around the torus. Now suppose Y is a Lévy process on �
such that

P{−Yt ∈ A} =

∫
A

pYt (y) dy,

for all Borel sets A ⊂ �, where (t , y) �→ pYt (y) is uniformly continuous and
bounded on [ε ,∞)×� for every ε > 0. Then, for all Borel sets B ⊂ [0 , 2π),

P{−Xt ∈ B} =

∞∑
n=−∞

P {−2nπ − Yt ∈ B} =

∞∑
n=−∞

∫
B

pYt (y + 2nπ) dy.

Thus, using obvious notation, we have the following version of pXt (x) for the pro-
cess X :

pXt (x) :=

∞∑
n=−∞

pYt (x+ 2nπ),

for every t > 0 and x ∈ �. In this way we can see that a mild decay condition on
y �→ pYt (y) will ensure that p

X is bounded and continuous uniformly on [ε ,∞)×�
for every ε > 0. It can be shown that a good enough decay condition in fact holds
when Y is a symmetric α-stable Lévy process on �; this fact is elementary when
α = 2, but requires work when α ∈ (0 , 2). We omit the details.

Let us choose and fix a finite Borel measure μ on (0 ,∞) × G that has
“bounded thermal potential”; see Watson [58, 59]. This means that

sup
x∈G

sup
t∈[0,T ]

∫
[0,t]×G

pt−s(xy
−1)μ(ds dy) < ∞
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for all T > 0. Choose and fix a Lipschitz-continuous function σ : � → � and a
function f ∈ L2(G) ∩ L∞(G). Then a more or less standard method from partial
differential equations (Duhamel’s principle, or more aptly in this case, variation
of parameters) shows that the partial integro-differential equation1

u̇t(x) = (Gut)(x) + σ(ut(x))μ(t , x) (16.2)

subject to u0(x) = f(x), also has a weak solution that can be represented, in
integral form, as the unique solution to

ut(x) = (Ptf)(x) +

∫
[0,t]×G

pt−s(xy
−1)σ(us(y))μ(ds dy). (16.3)

Moreover, that solution is the only one which satisfies the additional boundedness
condition, ‖u‖L∞([0,t]×G,μ) < ∞ for all T > 0. Furthermore, standard localization
arguments can be applied to show that the preceding continues to hold as long
as f ∈ L∞(G). For the sake of simplicity, we will consider only the case that
f ≡ 1 from now on; this choice simplifies the exposition a little, since in this case
Ptf ≡ 1, manifestly. And the integral form of the solution to (16.2) also simplifies
a little, namely

ut(x) = 1 +

∫
[0,t]×G

pt−s(xy
−1)σ(us(y))μ(ds dy). (16.4)

The SPDEs of this chapter are the same as (16.2), with f ≡ 1, except μ is no
longer a measure of bounded thermal potential. Rather, μ are replaced by a space-
time white noise ξ on G. And we interpret the meaning of the resulting SPDE as
the solution to (16.4), if there is one, with μ replaced by ξ. This undertaking at
least might make sense, since the integral in (16.4) can in principle be interpreted
as a Walsh integral.

We have seen that in many cases Walsh’s stochastic integral generalize that
of Itô. In similar vein, we will soon see that our SPDEs generalize Itô stochastic
differential equations, and our interpretation of an SPDE is a direct generalization,
once again à la Itô, of the usual interpretation of a one-dimensional Itô stochastic
differential equation.

16.2 A parabolic SPDE

LetX be a Lévy process on an LCA groupG. We have seen that, in many contexts,
X has a generator G, which is a densely-defined linear mapping from its domain
Dom[G] ⊂ L2(G) to L2(G). Suppose σ : �→ � is a measurable function. We now

1When μ is a function, this is fine as is; when it is only a measure, one can make sense
of (16.2) in a weak sense. The end result is (16.3).
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consider parabolic SPDEs of the following type:[
u̇t(x) = (Gut)(x) + σ(ut(x))ξ(t , x) on (0 ,∞) × G,

u0 ≡ 1.
(16.5)

The preceding has to be interpreted suitably because, as it turns out, the
solution will typically not be in the domain of the definition of G nor d/dt. This
is because ξ is not typically a measure (e.g., for almost all ω). And, of course, ξ is
typically not a function, and so ξ(t , x) does not make sense.

Still, the integral form (16.4) of the solution continues to make sense, provided
that we interpret the dμ-integral in (16.4) as aWalsh stochastic integral. Therefore,
in analogy with the discussion of the preceding section for non-random parabolic
equations of the general type (16.5), we would like to say that u is a solution
to (16.5) in integral form if it solves

ut(x) = 1 +

∫
[0,t]×G

pt−s(xy
−1)σ(us(y)) ξ(ds dy) (16.6)

for all t > 0 and x ∈ G, where the integral is understood as a Walsh integral. This
is still not quite a fully rigorous definition. Since u and ξ are random, we could
interpret the preceding notion of solution in different ways. For instance, a rather
weak notion of solution might be to expect u to solve the preceding display for
every t > 0 and x ∈ G almost surely; that is, the null set off which (16.6) holds
might depend on t and x. A slightly better interpretation is to understand (16.6),
in terms of stochastic convolutions, as u = 1 + (p� σ(u)) a.s., where the identity
holds as elements of Wα for some α � 0; see Section 14.7.

Definition 16.2.1. We say that u is a mild solution to (16.5) if there exists α � 0
such that u ∈ Wα, σ(u) ∈ Wα, and u = 1 + (p � σ(u)), where the equality
holds in Wα.

One can show that a mild solution to (16.5) is a “weak solution” to (16.5)
as well. This undertaking hinges on a “stochastic Fubini theorem” which we will
not develop here (for related work, see Khoshnevisan [32, §5.3]). Instead, let us
present the first fundamental theorem of these lectures.

Theorem 16.2.2. Suppose

Υ(α) :=

∫ ∞

0

e−αs‖ps‖2L2(G) ds < ∞ (16.7)

for some α > 0. Then, there exists γ > 0 and a unique random field u ∈ ∩β>γWβ

such that u is a mild solution to (16.5).

We will prove Theorem 16.2.2 at the end of this chapter. First, we would
like to understand better the meaning of Condition (16.7), which we call Dalang’s
condition, after the seminal work [12].
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Let X ′ denote an independent copy of X . The process t �→ X̄t := X−1
t X ′

t is
a Lévy process on G with transition functions

p̄t(x) :=

∫
G

pt(yx
−1)pt(y)mG(dy),

for all t > 0, x ∈ G. Thus, Dalang’s condition (16.7) is often equivalent to the
condition that X̄ has a finite α-potential r̄α at x = 0 for some α > 0, where

r̄α(x) :=

∫ ∞

0

e−αtp̄t(x) dt,

for all x ∈ G; see Foondun–Khoshnevisan [18, 19]. One can use probabilistic po-
tential theory in order to prove that (16.7) is equivalent to the seemingly stronger
condition that r̄β(0) < ∞ for all β > 0. In the next few subsections, we will work
out examples of this phenomenon. The analysis of the general case requires a good
deal of probabilistic potential theory, which is a subject for another lecture series.

Of course, the condition r̄0(0) < ∞ subsumes (16.7). But the former condition
is rarely met, whereas (16.7) holds in many natural situations, as we will soon see.

16.2.1 Lévy processes on

Let X be a Lévy process on � whose characteristic exponent Ψ satisfies the Lévy–
Khintchine representation (15.1). Since |E exp(izXt)|2 = exp(−2tReΨ(z)) � 1, it
follows that ReΨ(z) � 0 for all z ∈ �.

Suppose that

lim
|z|→∞

ReΨ(z)

log |z| = ∞. (16.8)

Then,
∫∞
−∞ |E exp(izXt)| dz < ∞ and hence,

pt(x) :=
1

2π

∫ ∞

−∞
e−ixz−tΨ(z) dz,

t > 0, x ∈ �, is absolutely convergent and defines a version of the transition
functions of X , thanks to the inversion formula. Moreover,

p̄t(x) =
1

2π

∫ ∞

−∞
e−ixz−2tReΨ(z) dz � 1

2π

∫ ∞

−∞
e−2tReΨ(z) dz = p̄t(0).

Therefore, Tonelli’s theorem implies that, for all α > 0,

r̄α(0) = sup
x∈�

r̄α(x) =
1

2π

∫ ∞

−∞

dz

α+ 2ReΨ(z)
.

At this point you should convince yourself that r̄α(0) < ∞ for some α > 0 if
and only if r̄α(0) < ∞ for all α > 0. When X is a symmetric β-stable process

��
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(that is, Ψ(z) ∝ |z|β) then β ∈ (0 , 2], and (16.8) holds. In that case, Dalang’s
condition (16.7) is equivalent to the condition β ∈ (1 , 2].

The condition r̄0(0) < ∞ is equivalent to∫ ∞

−∞

dz

ReΨ(z)
< ∞. (16.9)

Condition (16.9) and Dalang’s conditions will never both hold when X is a sym-
metric stable process (Ψ(z) ∝ |z|α for some α ∈ (0 , 2]). But they do hold if, for
example, Ψ(z) = |z|α + |z|β when α ∈ (1 , 2] and β ∈ (0 , 1). The resulting Lévy
processes are examples of tempered stable processes ; see Rosiński [48].

We complete the example of linear Lévy processes by saying a few words
about Condition (16.8). Recall from (15.1) that

ReΨ(z) =
σ2z2

2
+

1

2

∫ ∞

−∞
[1 − cos(xz)]m(dx)

for all z ∈ �. It follows that if σ �= 0 then (16.8) holds automatically; (16.8)
can hold also when σ = 0. To see this, let us suppose that σ = 0 and m(dx) =
ṁ(|x|) dx for a symmetric nonincreasing function ṁ : (0 ,∞) → �+ satisfying∫∞
0

(1 ∧ x2)ṁ(x) dx < ∞. (Every such function ṁ corresponds to a Lévy measure
m.) Since 1 − cos θ � θ2/2− θ4/24 for all real θ, it follows that

1 − cos θ � 1

2
θ2 − 1

24
θ2 =

11

24
θ2

for all θ ∈ [0 , 1]. Consequently,

ReΨ(z) � 2

∫ ∞

0

(1 − cos(x|z|))ṁ(x) dx � 11

12
z2

∫ 1/|z|

1/2|z|
x2ṁ(x) dx

� 11

48

∫ 1/|z|

1/2|z|
ṁ(x) dx � 11ṁ(1/z)

96|z|
for all z �= 0. In particular, (16.8) holds for example when

lim
ε↓0

εṁ(ε)

| log ε| = ∞.

The preceding is a “tauberian/abelian” argument in disguise and can also be
reversed.

16.2.2 Lévy processes on a denumerable LCA group

If G is countable or finite, for example if G = � or G = �/n� for some integer
n � 1, then p̄t(x) = P{X̄t = x} is bounded between zero and one. In particular,

r̄α(0) �
∫ ∞

0

e−αs ds = α−1 < ∞
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for all α > 0. That is, Dalang’s Condition (16.8) holds a fortiori and without
further restrictions. In this case it is easy to understand exactly when r̄0(0) is
finite as well. Indeed, we note that

‖pt‖2L2(G) =
∑
x∈G

P{−Xt = x}P{−Xt = x} = P{X̄t = 0},

for all t > 0. Therefore,

r̄0(0) = E

∫ ∞

0

1{0}(X̄s) ds,

thanks to Tonelli’s theorem. The Chung–Fuchs theory [7] of classical random walks
now applies, and tells us that r̄0(0) < ∞ if and only if the symmetrized Lévy
process X̄ is recurrent.

16.2.3 Proof of Theorem 16.2.2

We wish to produce a good solution to u = 1 + (p� σ(u)).

Recall that constants are always in W0, whence in Wβ for every β > 0 (see
Theorem 14.7.1). In particular, Theorem 14.7.2 implies our result when σ is con-
stant. Therefore, we will consider only the case that σ is not a constant. In that

case, the proof uses a fixed-point argument. Namely, define u
(0)
t (x) := 1, and then

iteratively set

u
(n+1)
t (x) := 1 +

[
p� σ(u(n))

]
for all n � 0, provided that the stochastic convolution p � σ(u(n)) makes sense.
We might refer to u(0), u(1), . . . as a Picard iteration sequence, if and when it is
well defined.

We will use the following lemma in a few spots.

Lemma 16.2.3. If v ∈ Wβ for some β � 0, then σ(v) ∈ Wβ as well.

Proof. Since σ is Lipschitz continuous and non constant,

Lipσ := sup
w,z∈�
w �=z

∣∣∣∣σ(w) − σ(z)

w − z

∣∣∣∣
is strictly positive and finite. In particular, |σ(w)| � |σ(0)|+Lipσ|w|, for all w ∈ �.
We may now apply the triangle inequality for the norm Nβ in order to see that if
v ∈ Wβ , then

Nβ(σ(v)) � |σ(0)| + LipσNβ(v) < ∞.

There exist elementary random fields v(1), v(2), . . . such that

lim
n→∞Nβ

(
v(n) − v

)
= 0.
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Since ∣∣∣σ(v(n)t (x)) − σ(vt(x))
∣∣∣ � Lipσ

∣∣∣v(n)t (x) − vt(x)
∣∣∣

for all t > 0 and x ∈ G, it follows that

lim
n→∞Nβ

(
σ(v(n)) − σ(v)

)
= 0.

Sincev(n) is an elementary random field, so is σ(v(n)). Thus, the lemma follows. �

With Lemma 16.2.3 proved and tucked away nicely, we can complete the
proof of the theorem.

Proof of Theorem 16.2.2. Since u(0) ∈ L∞((0 ,∞) × G), Theorem 14.7.1 ensures
that u(0) ∈ W0, whence u(0) ∈ Wβ for every β � 0. Lemma 16.2.3 shows that
σ(u(0)) ∈ Wβ for all β � 0 as well. Define

γ := inf

{
α > 0

∣∣∣∣Υ(α) >
1

Lip2σ

}
.

Since σ is non constant, γ ∈ [0 ,∞).

If β > γ, then we appeal to Theorem 14.7.2 with κ := p in order to see
that p � σ(u(0)) ∈ Wβ as well. Since constants are in Wβ , it follows also that
u(1) ∈ Wβ for every β > γ. The very same reasoning shows us that, whenever
there exists an integer n � 0 such that u(n) ∈ Wβ for every β > γ, then also
p� σ(v(n)), u(n+1) ∈ Wβ for all β > γ.

Next, let us observe that if n � 1 and β > 0, then

Nβ

(
u(n+1) − u(n)

)
= Nβ

(
p�

[
σ(u(n)) − σ(u(n−1))

])
� Nβ

(
σ(u(n)) − σ(u(n−1))

)√
Υ(β)

� LipσNβ

(
u(n) − u(n−1)

)√
Υ(β).

The first inequality follows from Theorem 14.7.2. The function Υ is continuous
and decreasing. Therefore, Lipσ

√
Υ(β) < 1 if β > γ, and hence∑

n

Nβ

(
u(n+1) − u(n)

)
< ∞

if β > γ. In particular, n �→ u(n) is a Cauchy sequence in the Banach space
(Wβ ,Nβ); therefore, u := limn→∞ u(n) exists in Wβ for every β > γ. The Wβ ’s are
nested, so u is in ∩β>γWβ . Finally, note that

∞∑
n=1

Nβ

(
p� σ(u) − p� σ(u(n))

)
=

∞∑
n=1

Nβ

(
p�

[
σ(u) − σ(u(n))

])
� Lipσ

∞∑
n=1

Nβ(u − u(n))
√

Υ(β) < ∞.
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Therefore, p � σ(u(n)) converges to p � σ(u) in Wβ for every β > γ as well. It
follows that u is a fixed point of u = 1 + p � σ(u), viewed as an equation on
∩β>γWβ . Finally, if v ∈ ∩β>γWβ also solves v = 1 + p� σ(v), then

Nβ(u − v) = Nβ(p� [σ(u) − σ(v)]) � Lipσ
√
Υ(β)Nβ(u − v),

for all β � 0. If β is sufficiently large, then Nβ(u − v) < ∞ and Lipσ
√
Υ(β) < 1;

therefore, the preceding shows that Nβ(u − v) is zero. Uniqueness follows. �

16.3 Examples

We can best understand our SPDE (16.5) via somewhat more concrete examples.

16.3.1 The trivial group

If G := {e} is the trivial group, then the only Lévy process on G is Xt := e and
in fact all functions on G are constants! The transition function of X is pt(e) = 1,
and the generator of X is also computed easily: Ptf = f for all f ∈ L2(G) ∼= �
and t � 0, whence (Gf)(e) := 0 for all function f on G. Let us write ut := ut(e)
and ξ(t) := ξ(t , e) in order to see that our formal “equation” (16.5) reduces to the
following formal equation,

dut = σ(ut)ξ(t) dt, (16.10)

subject to u0 = 1. The rigorous interpretation of this equation is via the integral
formulation u = 1 + p� σ(u) = 1 + 1� σ(u) of the solution, where 1(e) := 1.

Recall that Bt := ξ([0 , t]× {e}) defines a Brownian motion and

(1� σ(u))t(e) =

∫
[0,t]×{e}

σ(us(y)) ξ(ds dy) =

∫ t

0

σ(us) dBs.

This means that (16.5) is described as the solution {us}s�0 to

ut = 1 +

∫ t

0

σ(us) dBs (16.11)

(t � 0). Most people write (16.10) formally as dut = σ(ut) dBt, subject to u0 = 1,
and interpret this rigorously as (16.11). The equation (16.11) is called an Itô
stochastic differential equation (SDE) with zero drift. In other words, when G
is trivial, our SPDE (16.5) coincides with an arbitrary drift-free Itô stochastic
differential equation (with initial value one). One can generalize (16.5) to include
all one-dimensional Itô stochastic differential equations. But we will refrain from
developing that theory here.
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16.3.2 The cyclic group on two elements

It might be tempting to think that since (16.5) codes all drift-free Itô SDEs when
G is a group on one element, then (16.5) codes all two-dimensional SDEs when
G = �/2� ∼= {0 , 1} is an LCA group on two elements. This turns out not to be
the case. In fact, something more interesting happens.

Let us write G as {0 , 1} in the usual way, so that B
(i)
t := ξ([0 , t] × {i})

defines two independent Brownian motions, i = 1, 2. Every Lévy process on G
corresponds, in a 1-1 fashion, to a non-negative number κ in the following way: X
starts at 0 at time zero; at rate κ it jumps to 1; then, at rate κ it jumps to 0; and
so on; see Section 15.1.4. The generator of X is described via

(Gf)(i) = κ [f(i+ 1 mod 2) − f(i)] ,

for i ∈ {0 , 1} and f ∈ L2({0 , 1}) ∼= �2.2 The resulting form of (16.5) is usually
written as

dut(x) = κ [ut(x+ 1 mod 2) − ut(x)] + σ(ut(x)) dB
(x)
t

for t > 0 and x ∈ {0 , 1}, subject to u0 ≡ 1. Equivalently, we may write the
preceding, “in coordinates,” as the coupled system of SDEs,[

dut(0) = κ [ut(1)− ut(0)] dt+ σ (ut(0)) dB
(0)
t

dut(1) = κ [ut(0)− ut(1)] dt+ σ (ut(1)) dB
(1)
t ,

(16.12)

subject to u0 = (1 , 1), where we have written ut = (ut(0), ut(1)).

Think of t �→ ut = (ut(0), ut(1)) as a model for the molecular motion of a two-
body system, where ut(x) denotes the position of the particle x at time t. Then,
we see that each of the two particles 0 and 1 moves locally according to a standard
one-dimensional diffusion dxt = σ(xt) dbt, but there is Ornstein–Uhlenbeck type
(“molecular”) attraction between the two particles: for each x ∈ {0 , 1}, particle x
diffuses independently, but will also move toward particle x + 1 mod 2 with drift
proportional to the spatial distance between the two particles.

In order to better see what is going on let us consider the simplest case: κ = 1
and σ(x) ≡ 1 for all x ∈ �. Let us define, for all t � 0,

W
(0)
t :=

B
(0)
t +B

(1)
t√

2
, W

(1)
t :=

B
(0)
t − B

(1)
t√

2
.

It is easy to see that W (0) and W (1) are two independent standard Brownian
motions. Next, we plan to write ut in terms of (W (0) ,W (1)). In order to do this, let
us define St to denote the “separation” between ut(0) and ut(1): St := ut(0)−ut(1)

2The Hilbert space isometry is, of course, L2({0 , 1}) 
 f 
→ (f(0) , f(1)) ∈ �2.
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for all t � 0. It follows from (16.12) that S solves the Itô stochastic differential
equation

dSt = −2St dt+
√
2dW

(1)
t ,

for all t � 0, and subject to S0 = u0(0) − u0(1) = 0. The process S is called
an Ornstein–Uhlenbeck process, and can be explicitly solved in terms of W (1) as
follows:

St =
√
2 e−2t

∫ t

0

e2s dW (1)
s .

In particular, S and W (0) are independent. At the same time, we can see
from (16.12) that

ut(0) + ut(1) = 2 +
√
2W

(0)
t

for all t � 0. Therefore, we can write

ut(0) =

(
ut(0) + ut(1)

2

)
+

(
ut(0)− ut(0) + ut(1)

2

)
= 1 +

W
(0)
t√
2

+
St

2
.

Similarly,

ut(1) = 1 +
W

(0)
t√
2

− St

2
.

Therefore, we see that ut(0) and ut(1) both follow the Brownian motion 1 +

2−1/2W
(0)
t plus or minus 1/2 times the Ornstein–Uhlenbeck process S, which is

independent of the said Brownian motion. Clearly, {St}t�0 is a mean-zero Gaussian
process with variance

E(S2
t ) = 2e−4t

∫ t

0

e4s ds → 1

2
, as t → ∞.

Therefore, at a large time t, ut(0) behaves as the Brownian motion 2−1/2W
(0)
t plus

an independent mean-zero normal random variable with variance 1/8, and ut(1)
behaves approximately as the same Brownian motion minus the same normal ran-
dom variable. In other words, at large times, the two particles together behave as
a two-body molecule: their joint position resembles the position of a single Brown-
ian motion (the bulk motion) plus/minus an independent normal random variable
which describes the effect of the “molecular forces” between the two particles. Fig-
ure 16.5 depicts a simulation of the positions of the two particles (one in red, the
other in blue), except we have started u0(0) and u0(1) at 3 and −3, respectively,
in order to better see what is going on.

It can be argued similarly that the SPDE (16.5) on G = �/n� describes
the diffusion of an n-body system with Ornstein–Uhlenbeck type attractions. Fig-
ure 16.6 shows a simulation of a three-body case. A great deal is known about the
ergodic theory of interacting Itô diffusions; see, for example, Cox–Fleischmann–
Greven [10], Greven–Hollander [23], and Shiga [53].
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Figure 16.5: A 2-body Brownian motion with molecular attractions. The legend
on the y axis is using the notation U(t) := ut(0), V (t) := ut(1).

Figure 16.6: A 3-body Brownian motion with homogeneous O-U attractions
(U(t) := ut(0), V (t) := ut(1),W (t) := ut(2)).

16.3.3 The integer group

If G = �, then B
(i)
t = ξ([0 , t]×{i}) describes the evolution of infinitely many inde-

pendent Brownian motions, and one can think of (16.5) as another way to write a
system of infinitely many interacting particles. The existence and uniqueness of the
solution to (16.5), in the case that G = �, was proved first in Shiga–Shimizu [54].
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Recall that the generator of the walk X has the form

(Gf)(i) = κ

∞∑
j=−∞

[f(i+ j)− f(i)]D(j),

for all i ∈ � and f ∈ L2(�) ∼= �2 (the space of square-summable sequences), where
D(i) denotes the displacement probabilities3 of −X , and κ � 0 is a rate parameter.
Then, (16.5) is sometimes also written as the interacting particle system

dut(i) = κ

∞∑
j=−∞

[ut(i+ j) − ut(i)]D(j) dt+ σ(ut(i)) dB
(i)
t ,

for i ∈ � and t > 0, and subject to u0(k) = 1 for all k ∈ �.
A noteworthy special case is when X is the simple walk on � with jump rate

κ. In that case, equal to 1
2δ1 +

1
2δ−1 and hence the generator is

(Gf)(i) = f(i+ 1) + f(i − 1)− 2f(i)

2
:=

1

2
(Δ�f)(i),

for all i ∈ �. The linear operator Δ� is called the discrete Laplacian on �. In this
particular case, we can think of (16.5) as a coding of the system

dut(i) =
κ

2
(Δ�ut)(i) + σ(ut(i)) dB

(i)
t ,

subject to u0 ≡ 1. This describes the evolution of infinitely many particles in the
following sense: if you think of ut(i) as the position of the ith particle at time t,
then each particle diffuses as dxt = σ(xt)dbt, independently of all other particles,
but also for every i ∈ �, particle i experiences a drift that pushes it half-way
toward the “neighboring particles” i ± 1 (nearest neighbor Ornstein–Uhlenbeck
type attraction).

16.3.4 The additive reals

One can interpret (16.5) as an SDE with respect to an infinite-dimensional Brow-
nian motion but, instead, I will describe a different intuitive picture that is related
to the original one developed by Walsh [57]. For simplicity, consider only the case
that the Lévy process X is a Brownian motion on �, with some speed κ � 0, so
that Gf = (κ/2)f ′′ for all f in the Sobolev space W 1,2(�); i.e., (16.5) reduces to

u̇t(x) =
κ

2
u′′
t (x) + σ(ut(x))ξ(t , x),

3That is, D(i) = P{Xτ = −i} for the stopping time τ := inf{s > 0 | Xs �= 0}.
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subject to u0(x) ≡ 1. Since we may view ξ as an L2(Ω)-valued measure, it might
make sense to think of its “distribution function”

Bt(x) :=

{
ξ([0 , t]× [0 , x]) if x � 0,

ξ([0 , t]× [−x , 0]) if x < 0.
(16.13)

It is easy to see that, in the sense of distributions,

ξ(t , x) =
∂2

∂t∂x
Bt(x).

Thanks to the Wiener isometry (14.2), the two-parameter process B is a mean-zero
Gaussian process with covariance

Cov[Bt(x) , Bs(y)] = min(s , t)min(|x| , |y|)1(0,∞)(xy),

and is called the two-parameter Brownian sheet4 on �+ ×�. Some people write
the SPDE (16.13) in the following way:

u̇t(x) =
κ

2
u′′
t (x) + σ(ut(x))

∂2

∂t∂x
Bt(x),

subject to u0 ≡ 1. Sometimes, people write the preceding as

u̇t(x) =
κ

2
u′′
t (x) + σ(ut(x))Ḃt(x),

where Ḃ is shorthand for the more cumbersome mixed derivative Ḃ′. But this
notation seems to confuse some readers of SPDEs outside probability theory (pri-
vate communications). I will keep away this terminology in order to avoid the
possibility of this sort of confusion.

16.3.5 Higher dimensions

You might find yourself asking why we have examples of G = � and not G = �n

for n > 1, when it is just as easy to study �n as it is to analyse �. This extension
can indeed be carried out just as easily as we did it for G = �. The end result is
the same as Theorem 16.2.2. Namely, a solution exists provided that Υ(α) < ∞
for some α > 0, where

Υ(α) :=

∫ ∞

0

e−αs‖ps‖2L2(�n) ds.

The study of Lévy processes on �n is also very much the same as that on � and,
thanks to Plancherel’s theorem, it leads to

‖pt‖2L2(�n) = (2π)−n

∫
�n

|p̂t(z)|2 dz = (2π)−n

∫
�n

e−2tReΨ(z) dz,

4To be consistent with some of earlier finite-dimensional examples, some people think of
t 
→ Bt as an “infinite-dimensional Brownian motion.”
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where Ψ is defined via E exp(iz · Xt) = exp(−tΨ(z)). In other words, Dalang’s
condition (16.7) on �n is the condition that∫

�n

dz

α+ 2ReΨ(z)
< ∞

for some, hence all, α > 0. So far, this is almost exactly the same as it was when
n = 1. However, when n � 2, Lemma 15.1.7 also has its analogue: |Ψ(z)| = O(‖z‖2)
as ‖z‖ → ∞. Since ∫

�n

dz

1 + ‖z‖2 = ∞

for n � 2, this means that Dalang’s condition never holds in �n when n � 2. As it
turns out, Dalang’s condition is also necessary when σ is a constant; see Dalang [12]
and Peszat–Zabczyk [44]. Therefore, we cannot hope to have a general theory of
SPDEs of the form (16.5) on �n when n > 1.



Chapter 17

An Invariance Principle

for Parabolic SPDEs

17.1 A central limit theorem

Throughout this chapter we suppose that J1, J2, . . . are independent, identically
distributed random variables, with values in �, and assume that there exist con-
stants κ, α > 0 such that the characteristic function φ of the Ji’s satisfies

φ(z) := EeizJ1 = 1 − κ|z|α + o (|z|α) as z → 0. (17.1)

Let N := {N(t)}t�0 be an independent Poisson process with rate one, J0 :=
0, and define

X(t) :=

N(t)∑
j=0

Jj ,

for t � 0. Then, EeizX(t) = e−t[1−φ(z)], for all t � 0 and z ∈ �. It follows readily
from this that X := {X(t)}t�0 is a Lévy process (comound Poisson, in fact) with
characteristic exponent ψ(z) = 1 − φ(z). Note, in particular, that for all z ∈ �,
t � 0, and n � 1,

E exp

(
izX(nt)

n1/α

)
=

[
E exp

(
izX(t)

n1/α

)]n
= exp

(
−nt

[
1 − φ

( z

n1/α

)])
.

Therefore, Condition (17.1) ensures that, for all z ∈ � and t � 0,

E exp

(
izX(nt)

n1/α

)
= exp

(
−nt

[
κ|z|α
n

+ o(1/n)

])
→ exp(−tκ|z|α),

as n → ∞. Since z �→ exp(−tκ|z|α) is continuous and a pointwise limit of charac-
teristic functions, as we just saw, we can envoke a well-known theorem of Lévy [16,
§3.4] to deduce that z �→ exp(−tκ|z|α) is a characteristic function of a random
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variable xt, and n−1/αX(nt) converges in distribution to xt as n → ∞. At the same
time, another theorem of Lévy [16, Chapter 2, §7] tells us that z �→ exp(−tκ|z|α)
is the Fourier transform of a finite (and hence probability) measure if and only if
α ∈ (0 , 2]. Therefore, it follows that n−1/αX(nt) converges in distribution to xt

for every t � 0, where x := {xt}t�0 is a symmetric α-stable Lévy process. The
following generalizes these remarks. For reasons that we have mentioned already,
we will consider the case that 0 < α � 2 only.

Lemma 17.1.1. If Condition (17.1) for some α ∈ (0 , 2], then the finite-dimensional
distributions of t �→ n−1/αX(nt) converge to those of the symmetric α-stable Lévy
process X. That is, for all non-random tk > tk−1 > · · · > t1 � 0, the random
vector

n−1/α (X(nt1), . . . , X(ntk))

converges in distribution to (xt1 , . . . , xtk).

Proof. We have discussed the case that k = 1. Therefore, let us assume without
loss of generality that k � 2.

Let Ft denote the σ-algebra generated by {X(r)}r∈[0,t] for all t � 0. Since
X is a Lévy process and X(ntk) = X(ntk−1) + {X(ntk) − X(ntk−1)}, (17.1) and
elementary properties of conditional expectations together yield

E

[
exp

(
izkX(ntk)

n1/α

) ∣∣∣∣ Ftk−1

]
= exp

(
izkX(ntk−1)

n1/α

)
E

[
exp

(
izkX(n[tk − tk−1])

n1/α

)]
= exp

(
izkX(ntk−1)

n1/α

)
exp

(
−n(tk − tk−1)

[
1 − φ

( zk
nα

)])
= exp

(
izkX(ntk−1)

n1/α

)
exp (−κ(tk − tk−1)|zk|α) ,

almost surely as n → ∞, for all t � 0 and z1, . . . , zk ∈ �. This and the tower
property of conditional expectations together yield the following:

lim
n→∞E exp

(
k∑

j=1

izjX(ntj)

n1/α

)
= exp

(
−κ

k−1∑
j=1

(tj − tj−1)

k∑
i=j

|zi|α
)
.

A similar application of conditional expectations shows that the right-hand side
is equal to E exp(

∑k
j=1 izjxtj ). Therefore, the result follows from the convergence

theorem of Fourier transforms. �

Next, we verify that Condition (17.1) is not vacuous.

Example 17.1.2. Suppose J1, J2, . . . are independent, identically distributed, sym-
metric random variables in � with finite variance σ2. The Taylor expansion of the
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cosine reveals that ∣∣∣∣1 − cos θ − θ2

2

∣∣∣∣ � θ2 ∧ |θ|3,

for all θ. By symmetry, φ(z) := E exp(izJ1) = E cos(zJ1), whence it follows from
the preceding that ∣∣∣∣1 − φ(z) − z2σ2

2

∣∣∣∣ � E
(|zJ1|2 ∧ |zJ1|3

)
,

which is clearly o(z2) as z → 0, thanks to the dominated convergence theorem.
Therefore, (17.1) holds with α = 2 and κ = σ2/2. Note that κ could, in principle,
be any positive real number.

Example 17.1.3. The preceding example shows that Condition (17.1) can hold
when α = 2. Now we verify that condition for other values of α ∈ (0 , 2). With this
aim in mind, let J1, J2, . . . be i.i.d. random variables with

P{J1 = j} =
1

2ζ(1 + α)|j|1+α

for j = ±1,±2, . . ., where ζ(s) :=
∑∞

k=1 k
−s for all s > 1. In particular, J1, J2, . . .

are symmetric, take values in � \ {0}, and satisfy

1 − φ(z) =
1

ζ(1 + α)

∞∑
j=1

1 − cos(jz)

j1+α

for all z ∈ �, where φ(z) := E exp(izJ1) = E cos(zJ1). We can write

1 − φ(z) =
|z|α

ζ(1 + α)
· |z|

∞∑
j=1

1 − cos(jz)

(j|z|)1+α
=

|z|α
ζ(1 + α)

·
(∫ ∞

0

1 − cos r

r1+α
dr + o(1)

)
,

as z → 0. Therefore, (17.1) holds with α ∈ (0 , 2) and

κ :=
1

ζ(1 + α)

∫ ∞

0

1 − cos θ

θ1+α
dθ =

π

2ζ(1 + α)Γ(1 + α) sin(απ/2)
.

(The latter identity is based on complex function theory.) Thus, it is possible to
construct random variables on � that satisfy (17.1) for some κ > 0, regardless of
the choice of α ∈ (0 , 2).

17.2 A local central limit theorem

Let us continue to assume that J1, J2, . . . are symmetric, independent and iden-
tically distributed random variables on �. Let X := {X(t)}t�0 denote the asso-
ciated continuous-time random walk, as we did in the previous section. Then we
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can define, for all ε > 0 a continuous-time random walk X(ε) on ε� by setting
X(ε)(t) := εX (t/εα), for t � 0. According to a minor variation of Lemma 17.1.1,
if (17.1) holds then the finite-dimensional distributions of X(ε) converge to those
of the symmetric α-stable Lévy process x := {xt}t�0.

1 Now we ask whether the
probability function of X(ε)(t) can converge to the density function of xt after
suitable rescaling. With this in mind, define for every ε > 0,

P
(ε)
t (w) := P

{
X(ε)(t) = w

}
= P

{
X

(
t

εα

)
=

w

ε

}
for all t � 0 and w ∈ ε�. Clearly, P

(ε)
t defines the transition functions of X(ε).

Let pt denote the transition function of the stable process xt; it might help
to recall that Ef(xt) =

∫∞
−∞ f(y)pt(−y) dy for all Borel functions f : � → �+.

Since x is symmetric, pt is also the probability density function of xt. As it turns
out, we will want to know whether one can have

ε−1P
(ε)
t (w) ≈ pt(w).

When t > 0 is fixed, this sort of question is classical and is an example of a “local
CLT” or a “local limit theorem.” Many such results are scattered, for example,
throughout the classic book by Spitzer [56]. We will need a version however that

holds uniformly for all t > 0. Of course, one expects ε−1P
(ε)
t (w) not to approximate

pt(w) very well when t ≈ 0 because

lim
t→0

P
(ε)
t (w) =

{
1 if w = 0,

0 if w �= 0,

whereas

lim
t→0

pt(w) =

{
∞ if w = 0,

0 if w �= 0.

Thus, our uniform local CLT has to take the size of t into account in some form
or another.

Before we state the uniform local CLT that we will need later on, let us state
the hypotheses under which that local CLT holds.

Assumption 17.2.1. We assume the following:

(i) φ(z) := E exp(izJ1) = 1 for some |z| � π if and only if z = 0;

(ii) there exist a, κ > 0 and α ∈ (1 , 2] such that φ(z) = 1 − κ|z|α + o (|z|a+α) as
z → 0.

Remark 17.2.2. We would like to say a few things about Assumption 17.2.1. Part
(i) of Assumption 17.2.1 is a mild “aperiodicity condition”. Part (ii) is a restrictive

1Lemma 17.1.1 implies this fact in the case that ε−α is a positive integer.
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form of (17.1). One can show, using Examples 17.1.2 and 17.1.3, that Assump-
tion 17.2.1 is not vacuous; that is, there indeed exist symmetric random variables
J1 on � satisfying Assumption 17.2.1.

We have stated Proposition 17.2.3 only when α > 1. There are probably
versions of this that are valid for α ∈ (0 , 1]. However, we will not need the latter
examples for reasons that will manifest themselves in time.

Now we can state and prove our local CLT.

Proposition 17.2.3 (Joseph–Khoshnevisan–Mueller, [30]).
Under Assumption 17.2.1, for all T > 0 there exist positive and finite constants
K,C, ε0 such that

sup
w∈ε�

∣∣∣ε−1P
(ε)
t (w) − pt(w)

∣∣∣ � C ×

⎧⎪⎨⎪⎩
εa| log ε|(a+α)/α

t(a+1)/α
if t � Kεα| log ε|(a+α)/α,

t−1/α + ε−1 otherwise,

uniformly for all t ∈ (0 , T ] and ε ∈ (0 , ε0).

Proof. Recall that x is a Lévy process with characteristic exponent Ψ(z) = κ|z|α.
By (15.1) and the inversion formula of Fourier transforms,

pt(w) =
1

2π

∫ ∞

−∞
e−izw−κt|z|α dz =

1

π

∫ ∞

0

cos(zw)e−κtzα

dz.

In particular,

sup
w∈�

pt(w) = pt(0) =
c

t1/α
,

where c = π−1
∫∞
0

exp(−κzα) dz. Since P
(ε)
t (w) � 1, being a bona fide probability,

and

|ε−1P
(ε)
t (w) − pt(w)| � ε−1P

(ε)
t (x) + pt(w),

it follows that

sup
w∈ε�

∣∣∣ε−1P
(ε)
t (w) − pt(w)

∣∣∣ � ct−1/α + ε−1,

for all t, ε > 0. This yields the second inequality of the theorem.

In order to obtain the first inequality, recall that

E exp (izX(t/εα)) = exp
(−tε−α [1 − φ(z)]

)
,

for all z ∈ �, t � 0, and ε > 0. Therefore, we may apply the inversion theorem of
Fourier series in order to deduce the following:

2π

ε
P

(ε)
t (w) =

∫ π/ε

−π/ε

exp

(
−iwz − t[1 − φ(εz)]

εα

)
dz, (17.2)
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for all ε > 0, t � 0, and z ∈ �. Since φ is bounded, Assumption 17.2.1 assures us
that there exists a finite constant C such that

|1 − φ(v) − κ|v|α| � C|v|α+a,

for all v ∈ �. Consequently, there exists r0 ∈ (0 , π) such that

1 − φ(v) � κ|v|α
2

(17.3)

whenever |v| � r0. By symmetry, φ is real valued. Define

λ := λ(ε , t) :=

(
(10 + 2a)| log ε|

κt

)1/α

.

If t > Kεα| log ε|(a+α)/a for some K > 20 + 4a, then

λ �
( | log ε|
2εα| log ε|(a+α)/a

)1/α

<
r0
ε

uniformly for all ε ∈ (0 , ε0), as long as ε0 := ε0(r0) is sufficiently small. We fix
such a ε0 for the remainder of this proof. Then we divide the integral in (17.2)
into three regions:

2π

ε
P

(ε)
t (x) = I1 + I2 + I3,

where:

I1 :=

∫ λ

−λ

exp

(
−iwz − t[1 − φ(εz)]

εα

)
dz;

I2 :=

∫
z∈�:

λ<|z|�r0/ε

exp

(
−iwz − y

t[1 − φ(εz)]

εα

)
dz; and

I3 :=

∫
z∈�:

r0/ε<|z|�π/ε

exp

(
−iwz − t[1 − φ(εz)]

εα

)
dz.

By the inversion theorem of Fourier transforms,

2πpt(w) =

∫ ∞

−∞
exp (−iwz − κt|z|α) dz.

We plan to show that I1 ≈ 2πpt(w) and I2, I3 ≈ 0, in this order. For our first task,
let us note that

|I1 − 2πpt(w)| �
∫ λ

−λ

∣∣∣∣exp(− t[1 − φ(εz)]

εα

)
− e−κt|z|α

∣∣∣∣dz + 2

∫ ∞

λ

e−κtzα

dz

= 2

∫ λ

0

e−κtzα

∣∣∣∣1 − exp

(
− t[1− φ(εz)] − κ(εz)α

εα

)∣∣∣∣dz + 2

∫ ∞

λ

e−κtzα

dz.



17.2. A local central limit theorem 189

Since 0 < λ < r0/ε < π/ε, Assumption 17.2.1 implies the existence of finite
constants c1, c2, c3 such that, uniformly for all ε ∈ (0 , ε0), z ∈ (0 , λ) and t ∈ (0 , T ],

t

∣∣∣∣1 − φ(εz)− κ(εz)α

εα

∣∣∣∣ � c1tz
(a+α)εa � c2tλ

(a+α)εa

= c3
(10 + 2a)(a+α)/α

ta/α
εa| log ε|(a+α)/α.

If t > Kεα| log ε|(a+α)/a for some K > 20 + 4a, then the preceding implies that

t

∣∣∣∣1 − φ(εz)− κ(εz)α

εα

∣∣∣∣ � c3
(10 + 2a)(a+α)/α

Ka/α
.

Therefore, we may choose (and fix!) K > 20 + 4a such that

t

∣∣∣∣1 − φ(εz) − κ(εz)α

εα

∣∣∣∣ < 1,

uniformly for all ε ∈ (0 , ε0), z ∈ (0 , λ) and t ∈ (0 , T ]. Because of the elementary
inequality |1 − exp(−w)| � 105|w|, valid for all for all w ∈ � with |w| � 1,
Assumption 17.2.1 implies that

|I1 − 2πpt(w)|

� c3
(10 + 2a)(a+α)/α

ta/α
εa| log ε|(a+α)/α

∫ λ

0

e−κtzα

dz + 2

∫ ∞

λ

e−κtzα

dz.

We emphasize that the right-hand side does not depend on w ∈ �. The first
integral is bounded above by∫ ∞

0

exp(−κtzα) dz =
Γ(1/α)

α(κt)1/α
.

By l’Hôpital’s rule, there exists a finite constant c4, depending only on κ and α,
such that ∫ ∞

q

exp(−κyα) dy � c4 exp(−κqα/2),

for all q > 0. Therefore,

|I1 − 2πpt(w)| � c3(10 + 2a)(a+α)/αΓ(1/α)

ακ1/αt(a+1)/α
εa| log ε|(a+α)/α +

2c4e
−κtλα/2

t1/α

= const ·
[
εa| log ε|(a+α)/α

t(a+1)/α
+

ε5+a

t1/α

]
, (17.4)

where “const” denotes a finite constant depending only on κ and α. This shows
that I1 ≈ 2πpt(w).
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Next, we prove that I2 ≈ 0 as follows: by (17.3), and the definition of I2,

|I2| �
∫

z∈�:
λ<|z|�r0/ε

exp

(
− t(1− φ(εz))

εα

)
dz �

∫ ∞

λ

e−κtzα/2 dz � c4ε
5+a

t1/α
. (17.5)

Finally, we estimate I3 by noticing that, since φ is continuous and real valued
(by symmetry), we may appeal to part (i) of Assumption 17.2.1 in order to see
that

η := sup
r0�|z|�π

φ(z) ∈ [0 , 1).

Consequently,

|I3| � 2π

ε
exp

(
− t(1− η)

εα

)
� c5

t1/α
exp

(
− t

c5εα

)
(17.6)

uniformly for all t > Kεα| log ε|(a+α)/a, for a finite and strictly positive constant
c5 depending only on κ and α.

We can combine (17.4), (17.5), and (17.6) to complete the proof. �

17.3 Particle systems

We now use the notation and results of the previous section in order to establish
an “invariance principle” for SPDEs. First, let us establish some notation.

Recall from the previous section that X is a continuous-time symmetric ran-
dom walk on �; denote its generator by G . It might help to recall that

(G f)(m) =

∞∑
n=−∞

[f(m+ n) − f(m)]D(n),

where D(n) = P{J1 = −n} = P{J1 = n} for all n ∈ �.
Let Ξ denote a space-time white noise on �+ × � and consider the SPDE[

U̇t(w) = (GUt)(w) + σ(Ut(w)) Ξ(t , w) [t > 0, w ∈ �],
subject to U0(w) ≡ 1 for all w ∈ �. (17.7)

Let Bt(w) := Ξ([0 , t] × {w}) and recall that {B(w)}∞w=−∞ is a system of in-
finitely many independent, identically distributed Brownian motions. Moreover
(see §16.3.3), we can write (17.7) as a system of countably-many interacting Itô
stochastic differential equations:[

dUt(w) = (GUt)(w)dt + σ(Ut(x)) dBt(w) [t > 0, w ∈ �],
subject to U0(w) ≡ 1 for all w ∈ �. (17.8)
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Here and throughtout, we assume that σ : � → � is non-random and Lipschitz
continuous. In this way we may deduce from Theorem 16.2.2 the existence of a
unique solution to (17.8).

The equations (17.7) and (17.8) are one and the same; the formulation (17.8)
has been studied extensively in the literature on stochastic differential equations,
whereas (17.7) is an example of a general stochastic PDE.

We have seen that we may think of (17.8) as a description of a particle
system, where Ut(w) describes the position of particle labelled w ∈ � at time
t > 0. Each particle diffuses in space as an Itô diffusion dy = σ(y)db, where b is
a Brownian motion; and particles interact with one another as they feel a kind
of “inverse gravitational attraction” to other particles, as described by the linear
operator G .

For every ε > 0, let πε define the canonical map that rescales ε� to �. That
is, for all functions f : ε� → �, and all w ∈ �, (πεf)(w) := f(εw). We may use
πε to rescale (17.8) to an SPDE on �+ × ε�, one for every ε > 0, as follows:⎡⎣dU

(ε)
t (w) =

(
G [πεU

(ε)
t ]

)
(w)dt + σ

(
U

(ε)
t (w)

)
dBt(w/ε) [t > 0, w ∈ ε�],

subject to U0(w) ≡ 1 for all w ∈ ε�.

Our next goal is to study the “fluid limit” of this particle system as ε ↓ 0. As
it is stated, the problem turns out to be ill defined because the system is not
scaled appropriately. The correct scaling turns out to be described by the following
variation:⎡⎣dU

(ε)
t (w) = ε−α

(
G [πεU

(ε)
t ]

)
(w)dt + ε−1/2σ

(
U

(ε)
t (w)

)
dBt(w/ε),

for t > 0 and w ∈ ε�, subject to U0(w) ≡ 1 for all w ∈ ε�.
(17.9)

In order to understand what the scaling does, we need to make two remarks: one
for the scaling coefficient of G , and one for the coefficient of σ. We do this next,
without further ado:

(i) first, we observe that t �→ Xλt is a continuous-time random walk on the
integer lattice, for every λ > 0, and has generator λG . Therefore, the extra
scaling factor ε−α that is put in front of L amounts to speeding up the
underlying random-walk mechanism by a factor of 1/εα;

(ii) the factor ε−1/2 in front of σ is there to ensure that the scaled noise
ε−1/2dBt(w/ε) corresponds to a system of i.i.d. Brownian motions with vari-
ance ε−1t at time t.

In other words, (i) and (ii) together tell us that should scale the space variable
by 1/ε and the time variable by 1/ε for the noise and 1/εα for the underlying
random walk mechanism (which describes the nature of the gravitational attrac-
tion between the particles). Thus, (17.9) is merely a “central-limit-type space-time
scaling” of (17.8).
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Recall also that x is a symmetric α-stable Lévy process with characteristic
exponent Ψ(z) = κ|z|α, where κ is the constant of Assumption 17.2.1. Let G denote
the generator of x; that is,

(Gf)(w) = C

∫ ∞

−∞

f(w + y)− f(w)

|y|1+α
dy,

w ∈ �, for a suitable constant C ∈ (0 ,∞) depending only on κ and α; see (15.11).
Let ξ denote a space-time white noise on �+ ×� and consider the SPDE,[

u̇t(w) = (Gut)(w) + σ(ut(w))ξ(t , w) [t > 0, w ∈ �],

subject to u0(w) ≡ 1 for all w ∈ �.
(17.10)

Theorem 16.2.2 ensures the existence of a unique solution to (17.9). The next result
is the main theorem of these lectures, and shows that (17.10) is the “fluid limit”
approximation to (17.9) as ε ↓ 0. For a precursor to this result, see Funaki [20].

Theorem 17.3.1 (Joseph–Khoshnevisan–Mueller, [30]). Under Assumption 17.2.1,
there exists a coupling of the solutions to (17.9) and (17.10) (on the same prob-
ability space) satisfying the following: for all real numbers T > 0, k � 2, and
ρ ∈ (0, α− 1),

sup
t∈[0,T ]

sup
w∈ε�

E

(∣∣∣U (ε)
t (w) − ut(w)

∣∣∣k) = O
(
ερk/2

)
as ε ↓ 0.

The proof is somewhat technical and can be found in [30]. Instead of work-
ing out all the details, we content ourselves by merely describing the coupling
construction.

Let (Ω ,F ,P) be a probability space rich enough to support a space-time
white noise ξ on �+ ×�. Of course, we can solve (17.10) uniquely on that prob-
ability space. Next, we define

B
(ε)
t (w) := ε−1/2ξ ([0 , t]× [wε , (w + 1)ε]) ,

for t > 0, w ∈ �. Then {B(ε)(w)}w∈� is a systerm of i.i.d. Brownian motions,
for every fixed ε > 0. In particular, Theorem 16.2.2 assures us that the following
SPDE has a unique solution for every ε > 0:⎡⎣dV

(ε)
t (w) = ε−α

(
G [πεV

(ε)
t ]

)
(w) dt+ ε−1/2σ

(
V

(ε)
t (w)

)
dB

(ε)
t (w/ε),

for t > 0 and w ∈ ε�, subject to V
(ε)
0 (w) ≡ 1 for all w ∈ ε�.

By the uniqueness portion of Theorem 16.2.2, the random field V (ε) has the same
finite-dimensional distributions as U (ε). Moreover, V (ε) is defined on the same
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probability space as u. We can write V (ε) in integrate form as follows:

V
(ε)
t (w) = 1 + ε−1/2

∞∑
j=−∞

∫ t

0

P
(ε)
t−s(jε − w)σ

(
V (ε)
s (jε)

)
dB(ε)

s (j)

= 1 + ε−1

∫
[0,t]×�

P
(ε)
t−s(ε�y/ε� − w)σ

(
V (ε)
s (ε�y/ε�)

)
ξ(ds dy).

If ε ≈ 0, then ε−1P
(ε)
t−s(a) ≈ pt(a) in a uniform sense (see Proposition 17.2.3).

Thus, using the local CLT, one can then try to prove that V
(ε)
t (w) ≈ V̄

(ε)
t (w),

where V̄ ε solves

V̄
(ε)
t (w) = 1 +

∫
[0,t]×�

pt−s(ε�y/ε� − w)σ
(
V̄ (ε)
s (ε�y/ε�)

)
ξ(ds dy).

The preceding is not an SPDE in itself, but has a unique solution V̄ (ε) for the
same sort of reason that Theorem 16.2.2 is true. Now recall that u solves a very
similar integral equation, namely,

ut(w) = 1 +

∫
[0,t]×�

pt−s(y − w)σ(us(y)) ξ(ds dy).

It can be shown that u is Hölder continuous in each variable t and w, and “hence”,

ut(w) ≈ 1 +

∫
[0,t]×�

pt−s(ε�y/ε� − w)σ(us(y)) ξ(ds dy)

when ε ≈ 0. By keeping careful track of the errors incurred, one can then show

that ut(x) ≈ V̄
(ε)
t (x), whence also ut(x) ≈ V

(ε)
t (x).



Chapter 18

Comparison Theorems

In this chapter we outline very briefly some of the main applications of the in-
variance principle from the preceding chapter. More specifically, we plan to prove
that for a large family of SPDEs: (1) the solution is always positive as long as the
initial value is positive; and (2) one can sometimes compute “moment function-
als” of solutions to various SPDEs to one another. The material of this chapter is
borrowed from Joseph–Khoshnevisan–Mueller [30].

18.1 Positivity

Our first application of Theorem 17.3.1 is a positivity principle. Before we describe
that, let us digress and talk a little about classical diffusions.

Let σ : �→ � be a non-random Lipschitz-continuous function, and consider
a one-dimensional Itô diffusion X that is the solution to the Itô differential equa-
tion dXt = σ(Xt) dBt, for all t > 0, where X0 = x0 ∈ � is non-random. Let Y
denote the solution to the same Itô ODE but with Y0 := y0 (also non-random).
Then, a classical result about one-dimensional diffusions states that if X0 � Y0

then Xt � Yt a.s. for all t � 0. A particularly important consequence is the fol-
lowing result, due in various levels of generality, to Skorohod, Yamada, and Ikeda
and Watanabe; see [25] for the source and previous references.

Proposition 18.1.1. If σ(0) = 0 and X0 � 0, then Xt � 0 a.s. for all t � 0.

Proof. Let Y be as before, but now with Y0 := 0. I claim that Yt = 0 a.s. for all
t � 0. Since Xt � Yt a.s. for all t � 0, this claim will prove the proposition. Define

Y
(0)
t := Y0 for all t � 0, and then iteratively set

Y
(n+1)
t := Y0 +

∫ t

0

σ(Y (n)
s ) dBs.

Since σ(0) = 0 it follows that Y
(n)
t = 0 a.s. for all n � 0 and t � 0. As part of our

© Springer International Publishing Switzerland 2016  
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construction of solutions to SPDEs, we saw that E(|Y (n)
t − Yt|2) → 0 as n → ∞.

Thus it follows that Yt = 0 a.s. for all t � 0, as was asserted. �

Let G denote the generator of a random walk on �, as in the previous chapter.
Let B denote a field of i.i.d. Brownian motions and define U to be the solution to
the interacting system (17.8). That is,[

dUt(w) = (GUt)(w)dt + σ(Ut(x)) dBt(w) [t > 0, w ∈ �],
subject to U0(w) ≡ 1 for all w ∈ �, (18.1)

where σ : � → � is non-random and Lipschitz continuous. The following is a
consequence of a more general series of comparison principles for multidimensional
Itô diffusions; see Geiß–Manthey [21].

Theorem 18.1.2. If σ(0) = 0 then Ut(w) � 0 a.s. for all t � 0 and w ∈ �.
Let us rescale the particle system (18.1) as we did in the previous chapter:⎡⎣dU

(ε)
t (w) = ε−α

(
G [πεU

(ε)
t ]

)
(w)dt + ε−1/2σ

(
U

(ε)
t (w)

)
dBt(w/ε),

for t > 0 and w ∈ ε�, subject to U0(w) ≡ 1 for all w ∈ ε�.

Then, Theorem 18.1.2 tells us that if σ(0) = 0 then U
(ε)
t (x) � 0 a.s. for all t � 0,

ε > 0, and x ∈ ε�. This and Theorem 17.3.1 together yield the following.

Theorem 18.1.3. Let G denote the generator of a symmetric α-stable Lévy process
with α ∈ (1 , 2]. That is, Gf = κf ′′ for some κ > 0 when α = 2 and

(Gf)(w) = C

∫ ∞

−∞

f(w + y)− f(w)

|y|1+α
dy,

w ∈ �, for some C > 0 when α ∈ (1 , 2); see (15.11). Let ξ denote a space-time
white noise on �+ ×� and consider the SPDE,[

u̇t(w) = (Gut)(w) + σ(ut(w))ξ(t , w) [t > 0, w ∈ �],

subject to u0(w) ≡ 1 for all w ∈ �.

If σ(0) = 0 then ut(x) � 0 a.s. for all t � 0 and x ∈ �.

For related results see, for example, Mueller [42] and Dalang–Khoshnevisan–
Mueller–Nualart–Xiao [13, Theorem 5.1].

18.2 The Cox–Fleischmann–Greven inequality

Suppose σ̄ : �→ � is non-random and Lipschitz continuous, and let Ū denote the
solution to the following system, analogous to (18.1):[

dŪt(w) = (G Ūt)(w)dt + σ̄(Ūt(x)) dBt(w) [t > 0, w ∈ �],
subject to Ū0(w) ≡ 1 for all w ∈ �. (18.2)
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Throughout we assume that σ(0) = σ̄(0) = 0 so that U and Ū are a.s.-non-
negative random fields; see Theorem 18.1.3.

An important comparison theorem of Cox–Fleischmann–Greven [10] states
that, under some mild conditions, whenever σ(u) � σ̄(u) for all u � 0 then various
expectation functionals of U are dominated by the same expectation functionals
of Ū . In order to state this more precisely, we need some notation.

Let ��+ be the usual collection of all countable non-negative sequences, en-
dowed with the product topology. Recall that F : ��+ → � is called a cylinder
function if there exists a finite set I ⊂ � such that F (x) = F (y) for all x, y ∈ ��+
with xk = yk for all k �∈ I. Let F denote the collection of all cylinder func-
tions from �

�

+ to � such that ∂i∂jF is a measurable and a.e.-positive function
for all i, j ∈ �. Let F0 denote the collection of F ∈ F such that xi �→ F (x) is
nondecreasing (or nonincreasing) for all i ∈ �.
Example 18.2.1. Let I denote a finite subset of �. Then two typical examples
of F ∈ F are F (u) :=

∏
j∈I u

pj

j and F (u) := exp(−∑
j∈I λjuj) for ui � 0,

pi ∈ [2 ,∞), and λi ∈ (0 ,∞).

The following compares the moments1 of F (Ut) to those of F (Ūt) for all
F ∈ F .

Theorem 18.2.2 (Cox–Fleischmann–Greven, [10]). Suppose 0 � σ(x) � σ̄(x) for
all x ∈ � and σ(0) = σ̄(0) = 0. Then, for all F ∈ F0 and t1, . . . , tn � 0,

E

n∏
j=1

F (Utj ) � E

n∏
j=1

F (Ūtj ).

The preceding holds for every F ∈ F when t1 = · · · = tn.

This and Theorem 17.3.1 have the following ready consequence for moment
comparisons for SPDEs.

Theorem 18.2.3 (Joseph–Khoshnevisan–Mueller, [30]). Suppose σ, σ̄ : � → �+

satisfy 0 � σ(u) � σ̄(u) for all u � 0, and σ(0) = σ̄(0) = 0. Let u solve[
u̇t(w) = (Gut)(w) + σ(ut(w))ξ(t , w) [t > 0, w ∈ �],

subject to u0(w) ≡ 1 for all w ∈ �,

and let ū solve the same SPDE, but where σ is replaced by σ̄. Then, for all
t1, . . . , tn � 0,

E

n∏
j=1

F (utj ) � E

n∏
j=1

F (ūtj ),

1We think of Ut = {Ut(x)}x∈� as an infinite sequence for every t � 0, so that F (Ut) is a
perfectly well-defined process. To be perfectly honest, Cox–Fleischmann–Greven [10] state this
theorem under further conditions on σ, σ̄, and F . The present result follows easily from theirs
and standard approximation arguments.
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if either:

(i) F (u) =
∏

j∈I u
pj

j for pj � 2 and I ⊂ � finite; or

(ii) F (u) = exp{−∑
j∈I λjuj} for λj � 0.

For an example, consider the case that σ(x) = λx for some fixed λ > 0. The
resulting SPDE is called the parabolic Anderson model. In the case that α = 2, we
have [

u̇t(w) = κu′′
t (w) + λut(w)ξ(t , w) [t > 0, w ∈ �],

subject to u0(w) ≡ 1 for all w ∈ �,

where κ > 0 is the viscosity coefficient. It is known that, in this case, there exist
finite constants c1, . . . , c4 > 0 such that

c1 exp(c2λ
4n3t) � E ([ut(x)]

n) � c3 exp(c4λ
4n3t),

for all x ∈ �, n ∈ [2 ,∞), and t � 0; see, for example, Joseph–Khoshnevisan–
Mueller [30].

Now suppose τ : �→ � is a Lipschitz continuous function and consider the
solution v to the SPDE[

v̇t(w) = κv′′t (w) + τ(vt(w))ξ(t , w) [t > 0, w ∈ �],

subject to v0(w) ≡ 1 for all w ∈ �.

If τ(0) = 0, then |τ(x)| � Lipτ |x| for all x ∈ �, where Lipτ denotes the Lipschitz
constant of τ . Consequently, it follows from Theorem 18.2.3 that there exist finite
constants A,A′ > 0 such that E ([vt(x)]

n) � A exp(A′n3t) for all n � 2 and t > 0.
If, in addition, infx∈� |σ(x)/x| > 0, then the preceding displayed inequality can
be reversed (with different constants). Define

γ(n) := lim sup
t→∞

t−1 sup
x∈�

log E ([vt(x)]
n) ,

γ(n) := lim inf
t→∞ t−1 inf

x∈�
log E ([vt(x)]

n) .

The functions γ and γ are called the upper and the lower Lyapunov exponents of
v, respectively. It follows that, under the present conditions, there exist finite and
positive constants B and B′ not depending on λ > 0 and satisfying

Bλ4n3 � γ(n) � γ(n) � B′λ4n3,

for all n � 2. This shows that the moments of the solution grows very quickly
with time. In analogy with the literature on finite-dimensional dynamical systems
(see Ruelle [50] for a discussion in the context of turbulence), we may predict
then that the solution v to our SPDE ought to be “chaotic”. This is true; see
Conus–Joseph–Khoshnevisan [8].
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18.3 Slepian’s inequality

Let us close these notes by making some remarks on Theorem 18.2.2. We will
not prove that theorem here, but it would be a shame not to say anything about
that beautiful proof altogether. Let me try and convince you why Theorem 18.2.2
has to be true. I believe the following can in fact be used to construct a proof
of Theorem 18.2.2, though the original derivation is slightly different. For related
results, see the elegant paper Nourdin–Peccati–Viens [43].

First, one has to believe that the systems (18.1) and (18.2) are locally linear
SPDEs. The reason can be gleaned by seeing how Picard iteration works: that
method shows basically that a nonlinear SPDE with Lipschitz coefficients is, in
fact, a small local perturbation of a linear SPDE with constant coefficients. In
the constant coefficient case, σ and σ̄ are reduced to positive constants and the
solutions are Gaussian processes. Thus, Theorem 18.2.2 is reduced to a statement
about Gaussian processes. Since the elements of F and F0 are cylinder functions,
we have in fact a statement about finite-dimensional Gaussian random vectors.
That statement is itself very well known, and is due to Slepian [55]. Let us conclude
by stating and proving only that statement.

Let X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn) be two Gaussian random
vectors in �n such that EXi = EYi = 0 for all i = 1, . . . , n. Let QX and QY

denote the respective covariance matrices of X and Y . That is, QX
i,j = E(XiXj)

and QY
i,j = E(YiYj) for i, j = 1, . . . , n.

Let Cexp(�
n) denote the collection of all continuous functions F : �n → �

growing at most exponentially; that is, F ∈ Cexp(�
n) if and only if there exists a

finite constant c such that |F (x)| � cec‖x‖ for all x ∈ �n.

Theorem 18.3.1 (Slepian’s inequality, [55]). Suppose F ∈ Cexp(�
n) satisfies∑∑

1�i,j�n

[
QX

i,j − QY
i,j

] ∂2

∂xi∂xj
F (x) � 0 (18.3)

for almost all x ∈ �n, where the mixed derivatives are understood in the weak
sense. Then, E[F (X)] � E[F (Y )].

Proof. Without loss of generality, we may, and will, assume that X and Y are
independent.

First consider the case where QX and QY are nonsingular, and F ∈ S (�n)
is a rapidly decreasing test function.

Consider the stochastic process Z := {Z(t)}t∈[[0,1], defined as

Z(t) :=
√
tX +

√
1 − t Y,

for 0 � t � 1. The process of using Z is sometimes called Gaussian interpolation.
This is in part because, for every fixed t ∈ [0 , 1], Z(t) is a Gaussian random vector
with mean vector zero and covariance matrix Q(t) := tQX +(1− t)QY . Therefore:

199
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(i) Z(0) = Y and Z(1) = X , so we are running a Gaussian process starting at
Y and ending at X ; and

(ii) the covariance matrix of Z is a convex combination of those of X and Y .

Let μt denote the distribution of Z(t) for each t ∈ [0 , 1]. Then every μt is a
probability measure on �n with Fourier transform

μ̂t(z) = Eeiz·Z(t) = exp
(− 1

2z
′Q(t)z

)
, for t ∈ [0 , 1] and z ∈ �n.

In particular,

E[F (Z(t))] =

∫
�n

F dμt = (2π)−n

∫
�n

F̂ (z)e−z′Q(t)z/2 dz,

thanks to the Parseval identity and the hypotheses on F and QX and QY . Thus,
we may differentiate to find that

d

dt
E[F (Z(t))] = − 1

2(2π)n

∫
�n

F̂ (z)e−z′Q(t)z/2z′
[
QX − QY

]
z dz

= − 1

2(2π)n

∑∑
1�i,j�n

[
QX

i,j − QY
i,j

] ∫
�n

zizjF̂ (z)e−z′Q(t)z/2 dz.

The exchange of the derivative and the integral is justified by the assumptions
that QX and QY are nonsingular and F ∈ S (�n).2 Now the Fourier transform of

∂i,jF (x) :=
∂2F (x)

∂xi∂xj
is ∂̂i,jF (z) = −zizjF̂ (z),

for every i, j = 1, . . . , n and z ∈ �n. Therefore,

d

dt
E[F (Z(t))] =

1

2(2π)n

∑∑
1�i,j�n

[
QX

i,j − QY
i,j

] ∫
�n

∂̂i,jF (z)e−z′Q(t)z/2 dz

=
1

2

∫
�n

∑∑
1�i,j�n

[
QX

i,j − QY
i,j

]
∂i,jF (x)μt(dx),

(18.4)

after a second appeal to the Parseval identity. Since QX and QY are non singular,
μt is mutually absolutely continuous with respect to the Lebesgue measure on �n.
Therefore, thanks to (18.4) and condition (18.3), the map t �→ E[F (Z(t))] is non
decreasing, whence E[F (Z(0))] � E[F (Z(1))]. This is another way to state the
theorem when F ∈ S (�n) and QX and QY are nonsingular.

Next, consider the more general case where F is continuous and satisfies the
conditions of the theorem. We continue to assume that QX and QY are nonsingu-
lar.

2In particular, we are using the property that if QX and QY are nonsingular, then there
exists λ > 0 such that z′Q(t)z � λ‖z‖2 uniformly for all t ∈ [0 , 1] and z ∈ �n.
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Let ψε denote the normal probability density with mean zero and variance
ε > 0 for every ε > 0. If F ∈ Cexp(�) satisfies (18.3), then every function Fε :=
F ∗ ψε ∈ Cexp(�) also satisfies (18.3). What we have proved so far shows that
E[Fε(X)] � E[Fε(Y )], for every ε > 0. Let ε ↓ 0 and appeal to the dominated
convergence theorem to see that E[F (X)] � E[F (Y )].

It remains to prove that the nonsingularity hypothesis on QX and QY can be
dropped altogether. Let W be an independent n-dimensional centered Gaussian
vector with identity covariance matrix. What we have proved up to this point
shows that

E[F (X + εW )] � E[F (Y + εW )],

for every ε > 0. Thanks to continuity and the at-most-exponential growth condi-
tion on F ,

lim
ε→0

E[F (X + εW )] = E[F (X)] and lim
ε→0

E[F (Y + εW )] = E[F (Y )],

by the dominated convergence theorem. This proves the theorem in full generality.
�



Chapter 19

A Dash of Color

A great portion of the literature on SPDEs is concerned, in one form or another,
with stochastic partial differential equations that are driven by noises showing
some form of correlations. As of this time, there seems to be no unified theory
of nonlinear SPDEs driven by correlated (henceforth, “colored”) noise, except
in certain special cases; see, for example, Carmona–Molchanov [5] and Hu–Lu–
Nualart [24] and their combined bibliography. By contrast, there is a very general
approach to linear SPDEs, thanks to a rich theory of Gaussian processes. I will
conclude these notes by describing, very briefly, the theory of linear SPDEs that
are driven by quite general Gaussian noises.

19.1 Reproducing kernel Hilbert spaces

In order to study Gaussian noises, we need a notion of “covariance”. The correct
notion, in our context, is that of covariance operators. This is the topic of this
section. Throughout, G denotes an LCA group with Haar measure mG.

Let L1
loc(G) denote the class of all locally integrable real-valued functions on

G. That is, f ∈ L1
loc(G) if and only if f : G → � is measurable and∫

A

|f(x)|mG(dx) < ∞

for all compact sets A ⊂ G.

Here and throughout, let K be a self-adjoint linear operator from Cc(G) to
L1
loc(G). Then, by default, the integrals

(f1 ,Kf2)L2(G) =

∫
G

f1(x)(Kf2)(x)mG(dx)

are absolutely convergent, as f1 and f2 range over all of Cc(G).

Definition 19.1.1. A linear operator K: Cc(G) → L2
loc(G) is said to be positive

definite (on Cc(G)) if (f ,Kf)L2(G) � 0 for all f ∈ Cc(G).

© Springer International Publishing Switzerland 2016  
D. Khoshnevisan, R. Schilling, From Lévy-Type Processes to Parabolic SPDEs,  
Advanced Courses in Mathematics - CRM Barcelona, DOI 10.1007/978-3-319-34120-0_19

203



204 Chapter 19. A Dash of Color

Suppose K is self-adjoint and positive definite. Since (f1 ,f2) �→(f1 ,Kf2)L2(G)

defines a pre-Hilbertian inner product on Cc(G), general theory tells us that one
can construct a centered Gaussian process η := {η(f)}f∈Cc(G) such that

Cov[η(f1) , η(f2)] = (f1 ,Kf2)L2(G) (19.1)

for all f1, f2 ∈ Cc(G); see Ash–Gardner [2, Chapter 1].

The operator K is the covariance operator of the process η. Sometimes, η is
called colored noise. This is particularly so outside of mathematics.

Example 19.1.2. If K denotes the identity operator – that is, (Kf)(x) := f(x) for
all f ∈ Cc(G) and x ∈ G – then η is white noise on G, but with its index set
restricted to Cc(G).

The following extends Proposition 14.3.2 to the present setting. The next
result is a way to say that η : Cc(G) → L2(Ω) is a random linear functional.

Proposition 19.1.3. f �→ η(f) is a linear mapping from Cc(G) to L2(Ω).

Proof. The proof uses the same method as did the proof of Proposition 14.3.2.
Namely, (19.1) implies that, for all a ∈ � and f ∈ Cc(G),

E
(|η(af) − aη(f)|2) = E

(|η(af)|2)+ a2E
(|η(f)|2)− 2aCov[η(af) , η(f)]

= (af ,K[af ])L2(G) + a2 (f ,Kf)L2(G) − 2a (af ,Kf)L2(G)

= 0.

Thus, η(af) = aη(f) a.s. Similarly, one shows that η(f1+f2)− (η(f1)+η(f2)) has
zero variance, and hence η(f1 + f2) = η(f1) + η(f2) a.s. �

Example 19.1.2 and Proposition 19.1.3 together show that, in some sense,
colored noise is more general than white noise. But this is not quite true, since we
have defined colored noise only as a linear map on Cc(G), whereas white noise was
defined on all of L2(G). One can pursue this matter further in the next section.
In the mean time, we associate to K an important Hilbert space that is called the
reproducing kernel Hilbert space associated with K.

Define (f1 , f2)L2
K(G) := (f1 ,Kf2)L2(G) for all f1, f2 ∈ Cc(G). Then, it is

easy to check that (. . . , . . .)L2
K(G) is a pre-Hilbertian inner product on Cc(G). It

is natural to define also a corresponding “norm” as

‖f‖L2
K(G) := (f ,Kf)

1/2
L2(G)

for all f ∈ Cc(G). Clearly, ‖af‖L2
K(G) = |a| ·‖f‖L2

K(G) for all a ∈ � and f ∈ Cc(G),
and

‖f1 + f2‖L2
K(G) � ‖f1‖L2

K(G) + ‖f2‖L2
K(G)

for all f1, f2 ∈ Cc(G). In other words, ‖ · · · ‖L2
K(G) is a pseudo-norm; however it is

not always a bona fide norm, as the following shows.
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Exercise 19.1.4. Construct a positive definite, self-adjoint operator K: Cc(G) →
L2
loc(G) and nonzero function f ∈ Cc(G) such that ‖f‖L2

K(G) = 0. (Hint: Consider

(Kψ)(x) := 1S(x)ψ(x) for all ψ ∈ Cc(G) and x ∈ G, for a suitable Borel set
S ⊂ G.)

The fact that ‖ · · · ‖L2
K(G) is not always a norm should not be a disappoint-

ment. In fact, the usual L2(�)-norm is also not a proper norm for the vector space
of all measurable functions f : �→ � with

∫∞
−∞ |f(x)|2 dx < ∞. The way around,

here, is as it was in the Lebesgue L2-theory. In the latter case, we identified two
functions f1, f2 ∈ L2(�) if

∫∞
−∞ |f1(x) − f2(x)|2 dx = 0; then the L2(�)-norm is

rendered a bona fide norm on the space L2(�) of all resulting equivalence classes.

The same procedure can be applied in the present more general setting: we
identify f1, f2 ∈ Cc(G) if ‖f1 − f2‖L2

K(G) = 0. By default, ‖ · · · ‖L2
K(G) is a norm

on the resulting equivalence classes, in the usual way. Also, as is usual, we abuse
notion slightly and write f for the equivalence class of a function f , etc. The
following generalizes classical L2-spaces of Lebesgue.

Definition 19.1.5. Let the space L2
K(G) denote the completion of Cc(G) in the

norm ‖ · · · ‖L2
K(G).

We will endow L2
K(G) with its canonical inner product (· · · , · · · )L2

K(G) and

norm ‖ · · · ‖L2
K(G). By its very definition, L2

K(G) is a Hilbert space. In parts of

the literature, L2
K(G) is called the reproducing kernel Hilbert space [RKHS] of the

reproducing kernel K; see Moore [40] and also Aronszajn [1]. The RKHS of K is
important since it is the natural domain of definition of the operator K. By this I
mean that we can extend without effort, by density, K to a linear operator from
L2
K(G) to L2(G).

19.2 Colored noise

Our “colored noise” process η has a natural extension to L2
K(G). In order to

develop that extension, let us first observe that if ‖f1 − f2‖L2
K(G) = 0 for some

f1, f2 ∈ Cc(G), then

E
(|η(f1) − η(f2)|2

)
= ‖f1 − f2‖2L2

K(G) = 0,

thanks to (19.1). In other words, if f1, f2 ∈ Cc(G) are identified with one another,
as elements of L2

K(G), then η(f1) and η(f2) are identified, as elements of L2(Ω),
with one another as well. Thus, we obtain a unique extension of {η(f)}f∈Cc(G) to
a process {η(f)}f∈L2

K(G) by density. Since L2(Ω)-limits of Gaussian processes are
themselves Gaussian, we arrive at the following extension of Proposition 19.1.3.

Proposition 19.2.1. The process η := {η(f)}f∈L2
K(G) is a centered Gaussian pro-

cess with covariance Cov [η(f1) , η(f2)] = (f1 ,Kf2)L2
K(G) for all f1, f2 ∈ L2

K(G).

Furthermore, f �→ η(f) is a linear isometry from L2
K(G) to L2(Ω).
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Let us conclude this section by mentioning a few examples. The first is a
continuation of Example 19.1.2, and shows that this model of colored noise includes
white noise.

19.2.1 Example: white noise

Let Kf := f denote the identity operator. Then L2
K(G) = L2(G) because Cc(G)

is dense in L2(G) (see Rudin [49, E8, p. 268], for example). Thus, we see that our
construction of η as a process indexed by L2

K(G) is a generalization of white noise
on G.

19.2.2 Example: Hilbert–Schmidt covariance

We can associate to every real-valued function k ∈ L2(G×G) a linear operator K
as follows: for all f ∈ Cc(G) and x ∈ G,

(Kf)(x) :=

∫
G

f(y)k(x , y)mG(dy).

The integral converges absolutely for mG-almost every x ∈ G, thanks to the
Cauchy–Schwarz inequality.

Definition 19.2.2. Suppose that k is symmetric; i.e., k(x , y) = k(y , x) for almost
every (x , y) ∈ G× G. Then, K is called a Hilbert–Schmidt operator.

Exercise 19.2.3. Prove that if K is Hilbert–Schmidt, then the RKHS of K includes
all of L2(G). But it is entirely possible that L2

K(G) contains much more than just
L2(G). For instance, prove that if k ∈ Cc(G×G), then L2

K(G) contains Lp(G) for
all 1 � p � ∞. For a greater challenge, prove that if k ∈ Cc(G × G), then the
RKHS of K contains all finite Borel measures on G.

The following proposition ensures that if k is positive definite and K is
Hilbert–Schmidt, then K is a covariance operator for some centered Gaussian
noise η indexed by the RHKS of K.

Proposition 19.2.4. The linear operator K maps Cc(G) to Cc(G). Suppose, in
addition, K is Hilbert–Schmidt and k is (real) positive definite; that is,∫

G

mG(dx)

∫
G

mG(dy) k(x , y)f(x)f(y) � 0 (19.2)

for all f ∈ Cc(G). Then, K is a self-adjoint, positive definite operator.

Proof. The dominated convergence theorem ensures that K: Cc(G) → Cc(G), and
if k is symmetric then K is self-adjoint thanks to the Fubini theorem. The positive-
definite assertion follows also from Fubini’s theorem. �
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19.2.3 Example: spatially-homogeneous covariance

Choose and fix a function k ∈ L1
loc(G), and define

(Kf)(x) := (k ∗ f)(x) :=

∫
G

k(xy−1)f(y)mG(dy)

for all x ∈ G and f ∈ Cc(G). Then, K is a linear operator from Cc(G) to L1
loc(G).

We suppose, in addition, that k is symmetric and positive definite. Positive definite
means (19.2), and symmetry of course means that

k(x) = k(x−1) (19.3)

formG-a.e. x ∈ G. Then, K is a proper covariance operator. In order to understand
what its RKHS might look like, we need to study harmonic analysis on G. This
is a topic that we have not discussed in these notes; instead, we have chosen to
study harmonic analysis on special examples of G. In keeping with this tradition,
we will therefore study a particular example in greater depth.

Example 19.2.5. Suppose G = �n for some integer n � 1. Then, K can be writ-
ten as

(Kf)(x) =

∫
�n

k(x − y)f(y) dy

for all x ∈ �n and f ∈ Cc(�
n). Let ĝ denote the Fourier transform of g ∈ L1

loc(�
n)

in the sense of distributions. The symmetry of k implies that k̂ is real. Indeed,
(19.3) implies that(

k̂ , ϕ
)
L2(G)

= (k , ϕ̂)L2(G) =

∫
�n

k(x)ϕ̂(x) dx =

∫
�n

k(−x)ϕ̂(x) dx

=

∫
�n

k(y)ϕ̂(−y) dy =
(
k̂ , ϕ

)
L2(G)

for all ϕ ∈ S (�n). And since k is positive definite, then

0 �
∫∫
�n×�n

k(x − y)ϕ(x)ϕ(y) dxdy = (ϕ , k ∗ ϕ)L2(G)

=
1

(2π)n

∫
�n

|ϕ̂(z)|2 k̂(z) dz.

for all ϕ ∈ S (�n). The first equality holds because of the Fubini theorem, and
the second holds by the Parseval identity. It follows easily from this that

k̂(x) � 0 (19.4)

for a.e. x ∈ �n. In fact, we can trace our way back through the preceding to
see that Condition (19.4) on the a.e.-positivity of k̂ is equivalent to the positive-
definiteness condition (19.2) on k. A similar application of Parseval’s identity shows
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that L2
K(�

n) contains every distribution u on �n whose Fourier transform û is a
measurable function and satisfies∫

�n

|û(z)|2 k̂(z) dz < ∞.

Thus, for example, if k̂ ∈ L1(�n), then L2
K(�

n) contains the vector space

PM(�n) := {u ∈ S ′(�n) | û ∈ L∞(�n)} .
Elements of PM(�n) are called pseudo-measures ; see, for example, Kahane–

Salem [31]. It is easy to see that every finite Borel measure, and more generally
every signed Borel measure of finite total variation, is in PM(�n).

19.2.4 Example: tensor-product covariance

Suppose G1 and G2 are two LCA groups and fi : Gi → �, i = 1, 2. Recall that
the tensor product of f1 and f2 is defined as the function f1 ⊗ f2 : G1 × G2 → �

given by
(f1 ⊗ f2)(x1, x2) := f1(x1) · f2(x2)

for all (x1, x2) ∈ G1 × G2. If Ki is a linear operator from Cc(Gi) to L1
loc(Gi) for

i = 1, 2, then the tensor product K1 ⊗ K2 is the linear operator

[(K1 ⊗ K2) f ] (x1, x2) := (K1f1)(x1) · (K2f2)(x2),

for (x1, x2) ∈ G1 ×G2, defined on all functions of the form f := f1 ⊗ f2 such that
fi ∈ Cc(Gi) for i = 1, 2. The class of such functions f is denoted by Cc(G1) ⊗
Cc(G2).

Since Cc(G1)⊗Cc(G2) is dense in Cc(G1 ×G2), one might expect to be able
to extend K1 ⊗ K2 to a nice linear operator on all of Cc(G1 × G2) without effort.
That is almost always the case, as the following result shows.

Proposition 19.2.6. If each Ki is a bounded linear operator from Cc(Gi) to Cc(Gi),
i = 1, 2, then there exists a unique continuous extension1 of K1 ⊗ K2 to a linear
operator from Cc(G1 × G2) to L1

loc(G1 × G2).

Definition 19.2.7. This extension is the tensor product of K1 and K2; we continue
to denote it by K1 ⊗ K2.

For the remainder of this subsection we assume that Ki is a bounded linear
operator from Cc(Gi) to itself, for i = 1, 2.

We prove Proposition 19.2.6 next. The result is a special case of the classical
Tietze extension theorem.

1In fact, the extension is a linear map from Cc(G1×G2) to C0(G1×G2), where: (i) C0(G1×
G2) denotes the space of all continuous real-valued functions on G1×G2 vanishing at the infinity
of the Hausdorff–Alexandroff one-point compactification of G1×G2 when G1×G2 is noncompact;
and (ii) C0(G1 ×G2) := C(G1 ×G2) if G1 ×G2 is compact.
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Proof of Proposition 19.2.6. Since Ki is a bounded linear operator for each i =
1, 2, there exist finite constants C1 and C2 such that

sup
z∈Gi

|(Kiψ) (z)| � Ci sup
z∈Gi

|ψ(z)|

for all ψ ∈ Cc(Gi), and i = 1, 2. Consequently, if f, g ∈ Cc(G1) ⊗ Cc(G2), then

sup
(x1,x2)∈G1×G2

∣∣[(K1 ⊗ K2) f ] (x1, x2) − [(K1 ⊗ K2) g] (x1, x2)
∣∣

� sup
(x1,x2)∈G1×G2

∣∣[(K1 ⊗ K2) (f1 ⊗ f2)] (x1, x2)

− [(K1 ⊗ K2) (g1 ⊗ f2)] (x1, x2)
∣∣

+ sup
(x1,x2)∈G1×G2

∣∣[(K1 ⊗ K2) (g1 ⊗ f2)] (x1, x2)

− [(K1 ⊗ K2) (g1 ⊗ g2)] (x1, x2)
∣∣

� C1C2 sup
x1∈G1

|f1(x1)− g1(x1)| · sup
x2∈G2

|f2(x2)|

+ C1C2 sup
x1∈G1

|g1(x1)| · sup
x2∈G2

|f2(x2) − g2(x2)| .

It follows that, whenever n �→ fn is a Cauchy sequence in Cc(G1) ⊗ Cc(G2), the
sequence n �→ (K1 ⊗ K2)f

n is Cauchy in Cc(G1 × G2). The proposition follows
from this and the density of Cc(G1) ⊗ Cc(G2) in Cc(G1 × G2). �

Proposition 19.2.8. If K1 and K2 are self-adjoint and positive definite, then so is
K1 ⊗ K2.

Proof. If f := f1 ⊗ f2 and g := g1 ⊗ g2 are elements of Cc(G1) ⊗ Cc(G2), then

(f , [K1 ⊗ K2] g)L2(G1×G2)
= (f1 ,K1f1)L2(G1)

· (f2 ,K2f2)L2(G2)
.

Therefore, K1 ⊗ K2 is positive and self-adjoint, viewed as a linear operator from
the vector space Cc(G1)⊗Cc(G2) to itself. The result follows from this fact, thanks
to density. �

In other words, Propositions 19.2.6 and 19.2.8 together imply that the tensor
product K1 ⊗K2 is a covariance operator. Thus, the remarks of this chapter apply
to K1 ⊗ K2.

Exercise 19.2.9. Be sure that you can understand how space-time white noise
(more precisely, white noise on �×G) is covered by the preceding tensor-product
covariance kernels. (Hint: Consider K1f := f and K2g := g.)
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19.3 Linear SPDEs with colored-noise forcing

We conclude these notes by studying briefly a linear stochastic PDE that is driven
by “space-time colored noise”.

To begin, suppose that G is an LCA group. Let K denote a covariance opera-
tor on G and suppose Γ is a covariance operator on the additive group �. We will
assume in addition that K: Cc(G) → Cc(G) and Γ: Cc(�) → Cc(�) are bounded
linear operators. In this way, Propositions 19.2.6 and 19.2.8 of the previous section
ensure the existence of the centered Gaussian noise

η := {η(f)}f∈L2
Γ⊗K(�×G),

whose covariance operator is Γ ⊗ K.

As was done earlier, let G denote the generator of a Lévy process X on G
such that the Lévy process X−1 has transition densities {pt}t>0. Consider the
stochastic heat equation,

u̇ = Gu+ η, (19.5)

on (0 ,∞)×G and subject to u0 ≡ 0 for simplicity. As we did earlier, we interpret
the preceding SPDE via a formal application of Duhamel’s principle. This will
(still non-rigorously) lead us to the following candidate expression for the solution
to (19.5) (see (16.6), for example):

ut(x) =

∫
(0,t)×G

pt−s(xy
−1) η(ds dy). (19.6)

If the preceding colored-noise Wiener integral makes sense, then we say that (19.5)
has a solution u. Else it does not make sense for us to talk about (19.5). Since
the preceding integral is a centered Gaussian random variable, the existence of a
solution to (19.5) is reduced to the existence of a second moment for ut(x) for all
t > 0 and x ∈ G. That problem is now concrete, and has to do with whether or
not the transition density function p is in the RKHS of Γ ⊗ K, as the following
shows.

Theorem 19.3.1. If

(s , t) �→ pt−s(xy
−1)1(0,t)(s) ∈ L2

Γ⊗K(�× G) (19.7)

for all t > 0 and x ∈ G, then the stochastic integral in (19.6) has a finite second
moment, and hence the linear SPDE (19.5) is well defined.

Proof. The tensorized vector space L2
Γ(�)⊗L2

K(G) is dense in L2
Γ⊗K(�×G). For

all T : �→ � and X : G → �, and for all t > 0 and x ∈ G, define

Tt(s) := 1[0,t](s)T (t− s) and Xx(y) := X(xy−1)

for 0 < s < t, y ∈ G. By density, we can approximate (s , y) �→ pt−s(xy
−1) by finite

linear combinations of functions of the form (s , y) �→ Tt(s)Xx(y) = (Tt⊗Xx)(s , y)
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where Tt ∈ L2
Γ(�) and Xx ∈ L2

K(G) for all t > 0 and x ∈ G. Proposition 19.2.1
does the rest, since

‖Tt ⊗ Xx‖L2
Γ⊗K(�×G) = ‖Tt‖L2

Γ(�) · ‖Xx‖L2
K(G) < +∞,

for all t > 0 and x ∈ G. �

Though it is not entirely obvious, the present condition (19.7) is the colored-
noise extension of the Dalang condition (16.7). Thus, we end with the following
exercise, which clarifies the connection.

Exercise 19.3.2. Suppose η is “white in time”; that is, Γf = f for all f ∈ Cc(�).
Suppose also that ps ∈ L2

K(G) for all s > 0. Then, prove that (19.7) is equivalent
to ∫ t

0

‖ps‖2L2
K(G)ds < ∞

for all t > 0. This condition holds, in particular, if
∫∞
0 exp(−αs)‖ps‖2L2

K(G)ds < ∞
for some α > 0.
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Hermann, Paris, second edition, 1994. With notes by Kahane, T.W. Körner,
R. Lyons, and S.W. Drury.

[32] D. Khoshnevisan. Analysis of Stochastic Partial Differential Equations.
CBMS Regional Conference Series in Mathematics 119. American Mathe-
matical Society.

[33] D. Khoshnevisan and K. Kim. Non-linear noise excitation and intermittency
under high disorder. Proc. Amer. Math. Soc., 2014. Available electronically
at http://arxiv.org/abs/1302.1621.

[34] D. Khoshnevisan and K. Kim. Non-linear noise excitation of intermittent
stochastic PDEs and the topology of LCA groups. Ann. Probab., 2014. Avail-
able electronically at http://arxiv.org/abs/1302.3266.

[35] P. Kotelenez. Stochastic Ordinary and Stochastic Partial Differential Equa-
tions. Stochastic Modelling and Applied Probability 58, Springer, New York,
2008.

[36] N.V. Krylov. An analytic approach to SPDEs. In Stochastic Partial Differen-
tial Equations: Six Perspectives. Math. Surveys Monogr. 64, 183–242. Amer.
Math. Soc., Providence, RI, 1999.

[37] N. Krylov. A brief overview of the Lp-theory of SPDEs. Theory Stoch. Process.
14(2) (2008), 71–78.

[38] N.V. Krylov and B.L. Rozovskii. Stochastic Evolution Equations. In Stochas-
tic Differential Equations: Theory and Applications. Interdiscip. Math. Sci.
2, 1–69. World Sci. Publ., Hackensack, NJ, 2007.

[39] R. Mikulevicius and B.L. Rozovskii. Martingale problems for stochastic PDEs.
In Stochastic Partial Differential Equations: Six Perspectives. Math. Surveys
Monogr. 64, 243–325. Amer. Math. Soc., Providence, RI, 1999.

[40] E.H. Moore. General Analysis, Part 2: Fundamental Notions of General Anal-
ysis. Mem. Amer. Phil. Soc. 1 (1939).

[41] S.A. Morris. Pontryagin Duality and the Structure of Locally Compact
Abelian Groups. Cambridge University Press, Cambridge-New York-Mel-
bourne, 1977. London Mathematical Society Lecture Note Series, No. 29.

[42] C. Mueller. On the support of solutions to the heat equation with noise.
Stochastics Stochastics Rep. 37(4) (1991), 225–245.

[43] I. Nourdin, G. Peccati, and F.G. Viens. Comparison inequalities on Wiener
space. Stochastic Process. Appl. 124(4) (2014), 1566–1581.

//arxiv.org/abs/1404.6911
//arxiv.org/abs/1404.6911
http://arxiv.org/abs/1302.1621
http://arxiv.org/abs/1302.3266


216 Bibliography

[44] S. Peszat and J. Zabczyk. Nonlinear stochastic wave and heat equations.
Probab. Theory Related Fields 116(3) (2000), 421–443.
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